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Preface

This volume contains the full papers presented at the 12th International Confer-
ence on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR),
held 2-6 December 2006, in Montego Bay, Jamaica. The call for papers attracted
108 full paper submissions, each of which were reviewed by at least three re-
viewers. The Program Committee accepted the 46 papers that appear in these
proceedings. The conference program also included 4 invited talks, by Tom Ball
of Microsoft Research, Doug Lenat of Cycorp, Roberto Nieuwenhuis of the Uni-
versidad Politécnica de Cataluña, and Allen Van Gelder of the University of
California at Santa Cruz. Papers or abstracts for the invited talks are in these
proceedings.

In addition to the main program, the conference offered a short paper track,
which attracted 13 submissions, of which 12 were accepted, and the Workshop
on Emperically Successful Higher Order Logic (ESHOL).

Thanks go to: the authors (of both accepted and rejected papers); the Pro-
gram Committee and their reviewers; the invited speakers; Christoph Benzmüller,
John Harrison, and Carsten Schürmann for organizing ESHOL; Celia Alleyne-
Ebanks for administering the conference in Jamaica; the Honorable Minister
Phillip Paulwell of the Ministry of Commerce, Science and Technology for open-
ing the conference (and Daphne Simmonds for introducing us to the minister);
the Mona Institute of Applied Sciences at the University of the West Indies
for their support; Microsoft Research for sponsorship of student regsitrations;
the Kurt Gödel Society for taking registrations; and EasyChair for hosting the
review process.

October 2006 Geoff Sutcliffe
Andrei Voronkov
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XIV Table of Contents

Satisfiability Checking for PC(ID)
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Zap: Automated Theorem Proving
for Software Analysis

Thomas Ball, Shuvendu K. Lahiri, and Madanlal Musuvathi

Microsoft Research
{tball, shuvendu, madanm}@microsoft.com

Abstract. Automated theorem provers (ATPs) are a key component
that many software verification and program analysis tools rely on.
However, the basic interface provided by ATPs (validity/satisfiability
checking of formulas) has changed little over the years. We believe that
program analysis clients would benefit greatly if ATPs were to provide a
richer set of operations. We describe our desiderata for such an interface
to an ATP, the logics (theories) that an ATP for program analysis should
support, and present how we have incorporated many of these ideas in
Zap, an ATP built at Microsoft Research.

1 Introduction

To make statements about programs in the absence of concrete inputs requires
some form of symbolic reasoning. For example, suppose we want to prove that
the execution of the assignment statement x:=x+1 from a state in which the
formula (x < 5) holds yields a state in which the formula (x < 10) holds. To
do so, we need machinery for manipulating and reasoning about formulas that
represent sets of program states.

Automated theorem provers (ATPs) provide the machinery that enables such
reasoning. Many questions about program behavior can be reduced to questions
of the validity or satisfiability of a first-order formula, such as ∀x : (x < 6) =⇒
(x < 10). For example, given a program P and a specification S, a verification
condition V C(P, S) is a formula that is valid if and only if program P satisfies
specification S. The validity of V C(P, S) can be determined using an ATP. The
basic interface an ATP provides takes as input a formula and returns a Boolean
(“Valid”, “Invalid”) answer. Of course, since the validity problem is undecidable
for many logics, an ATP may return “Invalid” for a valid formula.

In addition to this basic interface, ATPs may generate proofs witnessing the
validity of input formulas. This basic capability is essential to techniques such as
proof-carrying code [Nec97], where the ATP is an untrusted and potentially com-
plicated program and the proof generated by the ATP can be checked efficiently
by a simple program.

Through our experience with the use of ATPs in program analysis clients, we
often want ATPs to provide a richer interface so as to better support program
analysis tasks. We group these tasks into four categories:

G. Sutcliffe and A. Voronkov (Eds.): LPAR 2005, LNAI 3835, pp. 2–22, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Zap: Automated Theorem Proving for Software Analysis 3

– Symbolic Fixpoint Computation. For propositional (Boolean) formulas,
binary decision diagrams (BDDs) [Bry86] enable the computation of fix-
points necessary for symbolic reachability and symbolic CTL model check-
ing [BCM+92] of finite state systems. The transition relation of a finite state
system can be represented using a BDD, as well as the initial and reachable
states of the system. A main advantage of BDDs is that every Boolean func-
tion has a normal form, which makes various operations efficient. The basic
operations necessary for fixpoint computation are a subsumption test (to
test for convergence), quantifier elimination (to eliminate temporary vari-
ables used in image computation) and a join operation (to combine formulas
representing different sets of states; this is simply disjunction in the case
of Boolean logic). We would like to lift these operations to logics that are
more expressive than propositional logic, so as to enable the computation of
symbolic fixpoints over structures that more closely correspond to the types
in programming languages (integers, enumerations, pointers, etc.). While
normal forms may not be achievable, simplification of formula is highly de-
sirable to keep formulas small and increase the efficiency of the fixpoint
computation.

– Abstract Transformers. A fundamental concept in analyzing infinite-state
systems (such as programs) is that of abstraction. Often, a system may be
converted to a simpler abstract form where certain questions are decidable,
such that proofs in the abstract system carry over to proofs in the original
system. Abstract interpretation is a framework for mathematically describing
program abstractions and their meaning [CC77]. A basic step in the process is
the creation of abstract transformers: each statement in the original program
must be translated to a corresponding abstract statement. This step often
is manual. Predicate abstraction is a means for automating the construc-
tion of finite-state abstract transformers from infinite-state systems using an
ATP [GS97]. ATPs can also be used to create symbolic best transformers
for other abstract domains [YRS04]. Unfortunately, these approaches suffer
from having to make an exponential number of calls to the ATP. If an ATP
provides an interface to find all the consequences of a set of facts, the process
of predicate abstraction and creation of symbolic best transformers can be
made more efficient [LBC05]. Consequence finding [Mar99] is a basic oper-
ation for the automated creation of abstract transformers that ATPs could
support.

– Property-guided Abstraction Refinement. If an abstraction is not pre-
cise enough to establish the correctness of a program with respect to some
property, we wish to find a way to make the abstraction more precise with
respect to the property of interest [Kur94, CGJ+00, BR01]. Recently, McMil-
lan showed how interpolants naturally describe how to refine (predicate)
abstractions with respect to a property of interest [McM03, HJMM04]. An
interpolating ATP [McM04] can support the automated refinement of ab-
stractions.

– Test Generation. Finally, we would like to use ATPs to prove the presence
of a bug to the user through the automated generation of failure-inducing
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inputs [Cla76]. In general, we wish to generate a test input to a program to
meet some coverage criteria (such as executing a certain statement or cover-
ing a certain control path in the program). To do this, one can create from
the program a formula that is satisfiable if and only if there is a test input
that achieves the desired coverage criteria. We wish not only to determine
the satisfiability of the input formula but also to generate a satisfying assign-
ment that can be transformed into a test input. Model finding/generation is
an important capability for ATPs in order to support test generation [ZZ96].

The paper is organized as follows. Section 2 presents more detail about the needs
of (symbolic) program clients of ATPs. Section 3 describes the theories/logics
that naturally arise from the analysis of programs. We have created an ATP
called Zap to meet some of the needs described above. Section 4 gives back-
ground material necessary to understand Zap’s architecture, which is based on
the Nelson-Oppen combination procedure [NO79a, TH96]. We have found that
the Nelson-Oppen method can be extended in a variety of ways to support the de-
mands of program analysis clients mentioned above. Section 5 gives an overview
of Zap’s architecture and describes some of our initial results on efficient decision
procedures for fragments of linear arithmetic that occur commonly in program
analysis queries. Section 6 describes how we have extended Zap and the Nelson-
Oppen combination framework to support richer operations such as interpolation
and predicate abstraction. Finally, Section 7 discusses related work.

2 Symbolic Program Analysis Clients of ATPs

This section formalizes the requirements of symbolic program analysis clients of
ATPs.

2.1 Notation

A program is a set C of guarded commands, which are logical formulas c of the
form

c ≡ g(X) ∧ x′
1 = e1(X) ∧ . . . ∧ x′

m = em(X)

where X = {x1, x2, . . . , xm} are all the program variables. The variable x′
i stands

for the value of xi after the execution of the command. We write g(X) to em-
phasize that g’s free variables come only from X . A program state is a valuation
of X . We have a transition of one state into another one if the corresponding val-
uation of primed and unprimed variables satisfies one of the guarded commands
c ∈ C.

In symbolic evaluation, a formula φ represents a set of states, namely, those
states in which the formula φ evaluates true. Formulas are ordered by implica-
tion. We write φ ≤ φ′ to denote that φ logically implies φ′.

The application of the operator postc on a formula φ is defined as usual; its
computation requires a quantifier elimination procedure.

postc(ϕ) ≡ (∃X. ϕ ∧ g(X) ∧ x′
1 = e1(X) ∧ . . . ∧ x′

m = em(X))[X/X ′]
post(ϕ) ≡

∨
c∈C postc(ϕ)
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In order to specify correctness, we fix formulas init and safe denoting the set
of initial and safe states, respectively. A program is correct if no unsafe state is
reachable from an initial state. The basic goal of a fixpoint analysis is to find a
safe inductive invariant, which is a formula ψ such that

(init ≤ ψ) ∧ (post(ψ) ≤ ψ) ∧ (ψ ≤ safe)

The correctness can be proven by showing that lfp(post, init) ≤ safe, where
lfp(F , φ) stands for the least fixpoint of the operator F above φ.

2.2 Fixpoint Computation

Figure 1 gives a very basic algorithm for (least) fixpoint computation using the
post operator. Here we abuse notation somewhat and let φ and old be variables
ranging over formulas. Initially, φ is the formula init and old is the formula false.
The variable old represents the value of φ on the previous iteration of the fixpoint
computation. As long as φ is not inductive (the test φ ≤ old fails) then old gets
the value of φ and φ is updated to be the disjunction of current value of φ and
the value of post applied to the current value of φ. If φ is inductive (the test
φ ≤ old succeeds) then the algorithm tests if φ is inside the safe set of states.
If so, then the algorithm returns “Correct”. Otherwise, it returns “Potential
error”.

φ, old := init, false
loop

if (φ ≤ old) then
if (φ ≤ safe) then

return “Correct”
else

return “Potential error”
else

old := φ
φ := φ ∨ post(φ)

endloop

Fig. 1. Basic fixpoint algorithm

So, in order to implement a symbolic algorithm using an ATP, we require
support for: (1) a subsumption test to test if φ is inductive under post (≤); (2)
quantifier elimination (to implement post); (3) disjunction of formulas (to collect
the set of states represented by φ and post(φ)).

There are a number of interesting issues raised by the symbolic fixpoint client.
First, it is well known that certain logics (for example, equality with uninter-
preted functions) do not entail quantifier elimination. In these cases, we desire
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the ATP to provide a “cover” operation, cover(φ), that produces the strongest
quantifier-free formula implied by φ.

Second, because the lattice of formulas may be infinite, to achieve termination
it may be necessary to use an operator other than disjunction to combine the
formulas φ and post(φ). As in abstract interpretation, we desire that logics are
equipped with “widening” operators. Given formulas φi and φi+1 such that φi ≤
φi+1, a widening operator widen produces a formula ψ = widen(φi, φi+1) such
that: (1) φi+1 ≤ ψ; (2) the iterated application of widening eventually converges
(reaches a fixpoint) [CC77].

The fixpoint algorithm computes a sequence of formulas as follows: φ0 = init
and φi+1 = φi ∨ post(φi). Widening typically is applied to consecutive formulas
in this sequence: φi+1 = widen(φi, φi ∨ post(φi)). The type of widening operator
applied may depend on the underlying logic as well as the evolving structure
of formulas in the fixpoint sequence. An example of widening over the integer
domains would be to identify a variable with an increasing value and widen to
an open interval: widen(i = 1, i = 1 ∨ i = 2) = i ≥ 1.

2.3 Finitary Abstract Transformers

As we have seen in the previous section, the symbolic fixpoint computation
can diverge because the lattice of formulas may have infinite ascending chains.
Widening is one approach to deal with the problem. Another approach is to
a priori restrict the class of formulas under consideration so as to guarantee
termination of the fixpoint computation.

For example, suppose we restrict the class of formulas we can assign to the
variables φ and old in the fixpoint computation to be propositional formulas over
a set P of finite atomic predicates. Let us denote this class of formulas by FP .
In this case, the number of semantically distinct formulas is finite.

However, there is a problem: this class of formulas is not closed under post
(nor under pre, the backwards symbolic transformer, for that matter). Suppose
that we have φ ∈ FP and that post(φ) �∈ FP . We again require a cover operation
coverP (φ) of the ATP, that produces the strongest formula in FP implied by φ.
Then, we modify the fixpoint computation by changing the assignment statement
to variable φ to:

φ := φ ∨ coverP (post(φ))

Note that coverP is not the same operation as the cover operation from the
previous section. coverP is parameterized by a set of predicates P while the cover
operation has no such restriction. The coverP operation is the basic operation
required for predicate abstraction [GS97].

The coverP operation is related to the problem of consequence finding
[Mar99]. Given a set of predicates P , the goal of consequence finding is to find
all consequences of P . The coverP (φ) operation expresses all consequences of
P that are implied by φ. As described later, we have shown that is possible to
compute coverP efficiently for suitably restricted theories [LBC05].
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2.4 Abstraction Refinement

In the presence of abstraction, it often will be the case that the fixpoint compu-
tation will return “Potential error”, even for correct programs. In such cases, we
would like to refine the abstraction to eliminate the “potential errors” and guide
the fixpoint computation towards a proof. In the case of predicate abstraction,
this means adding predicates to the set P that defines the finite state space.
Where should these new predicates come from?

Let us again consider the sequence of formulas computed by the abstract
symbolic fixpoint: φ0 = init; φi+1 = φi ∨ coverP (post(φi)). Suppose that φk

is inductive (with respect to post) but does not imply safe. Now, consider the
following sequence of formulas: ψ0 = init; ψi+1 = post(ψi). If the program is
correct then the formula ψk ∧ ¬safe is unsatisfiable. The problem is that the
set of predicates P is not sufficient for the abstract symbolic fixpoint to prove
this. One approach to address this problem would be to take the set of (atomic)
predicates in all the ψj (0 ≤ j ≤ k) and add them to P . However, this set
may contain many predicates that are not useful to proving that ψk ∧ ¬safe is
unsatisfiable.

Henzinger et al. [HJMM04] showed how Craig interpolants can be used to
discover a more precise set of predicates that “explains” the unsatisfiability.
Given formulas A and B such that A ∧ B = false, an interpolant Θ(A, B)
satisfies the three following points:

– A⇒ Θ(A, B),
– Θ(A, B) ∧B = false,
– V (Θ(A, B)) ⊆ V (A) ∩ V (B)

That is, Θ(A, B) is weaker than A, the conjunction of Θ(A, B) and B is unsat-
isfiable (Θ(A, B) is not too weak), and all the variables in Θ(A, B) are common
to both A and B.

Let us divide the formula ψk ∧¬safe into two parts: a prefix Aj = postj(init)
and a suffix Bj = postk−j ∧ ¬safe, where 0 ≤ j ≤ k and posti denotes the i-fold
composition of the post operator (recall that post is itself a formula).1

An interpolant Qj = Θ(Aj , Bj) yields a set of predicates p(Qj) such that
coverp(Qj)(Aj) ∧ Bj is unsatisfiable. This is because Aj ⇒ Qj and Qj ∧ Bj =
false (by the definition of interpolant) and because Aj ⇒ coverp(Qj)(Aj) and
coverp(Qj)(Aj) is at least as strong as Qj (by the definition of cover).

Thus, the union Q =
⋃

j∈{1,···k} p(Qj) is sufficient for the abstract symbolic
fixpoint to prove that it is not possible to reach an unsafe state (a state satisfying
¬safe) in k steps.

2.5 Test Generation

We also would like to use ATPs to prove the presence of errors as well as their
absence. Thus, it makes sense for ATPs to return three-valued results for va-
lidity/satisfiability queries: “yes”, “no” and “don’t know”. Of course, because
1 Note that ψk = postk(init).
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of undecidability, we cannot always hope for only “yes” or “no” answers. How-
ever, even for undecidable questions, it is more useful to separate out “no” from
“don’t know” when possible, rather than lumping the two together (as is usu-
ally done in program analysis as well as automated theorem proving). Much
research has been done in using three-valued logics in program analysis model
checking [SRW99, SG04].

The ultimate “proof” to a user of a program analysis tool that the tool has
found a real error in their program is for the tool to produce a concrete input on
which the user can run their program to check that the tool has indeed found an
error. Thus, just as proof-carrying code tools produce proofs that are relatively
simple to check, we would like defect-detection tools to produce concrete inputs
that can be checked simply by running the target program on them. Thus, we
desire ATPs to produce models when they find that a formula is satisfiable, as
SAT solvers do. We will talk about the difficulty of model production later.

2.6 Microsoft Research Tools

At Microsoft Research, there are three main clients of the Zap ATP: Boogie, a
static program verifier for the C# language [BLS05]; MUTT, a set of testing
tools for generating test inputs for MSIL, the bytecode language of Microsoft’s
.Net framework [TS05]; and Zing, a model checker for concurrent object-oriented
programs (written in the Zing modeling language) [AQRX04]. In the following
sections, we describe each of the clients and their requirements on the Zap ATP.

Boogie. The Boogie static program verifier takes as input a program written in
the Spec# language, a superset of C# that provides support for method spec-
ifications like pre- and postconditions as well as object invariants. The Boogie
verifier then infers loop invariants using interprocedural abstract interpretation.
The loop invariants are used to summarize the effects of loops. In the end, Boogie
produces a verification condition that is fed to an ATP.

MUTT. MUTT uses a basic approach [Cla76] to white-box test generation for
programs: it chooses a control-flow path p through a program P and creates a
formula F (P, p) that is satisfiable if and only if there is an input I such that
execution of program P on input I traverses path p. A symbolic interpreter for
MSIL traverses the bytecode representation of a program, creating a symbolic
representation of the program’s state along a control-flow path. At each (bi-
nary) decision point in the program, the interpreter uses the ATP to determine
whether the current symbolic state constrains the direction of the decision. If it
does not, both decision directions are tried (using backtracking) and appropriate
constraints added to the symbolic state for each decision. This client generates
formulas with few disjuncts. Furthermore, the series of formulas presented to
the ATP are very similar. Thus, an ATP that accepts the incremental addi-
tion/deletion of constraints is desired. Finally, when a formula is satisfiable, the
ATP should produce a satisfying model.
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Zing. Zing is an explicit state model checker for concurrent programs written in
an objected-oriented language that is similar to C#. Zing implements various op-
timizations such as partial-order reduction, heap canonicalization and procedure-
level summarization. Recently, researchers at Microsoft have started to experi-
ment with hybrid state representations, where some parts of the state (the heap)
are represented explicitly and other parts (integers) are represented symbolically
with constraints. Zing uses the Zap ATP to represent integer constraints and to
perform the quantifier elimination required for fixpoint computation.

3 Theories for Program Analysis

Various program analyses involve reasoning about formulas whose structure is
determined both by the syntax of the programs and the various invariants that
the analyses require. This section identifies those logics that naturally arise when
analyzing programs and thus should be supported by the ATP. We provide
an informal description of these logics and emphasize those aspects that are
particularly important for the clients of Zap. The reader should read [DNS03]
for a more detailed description.

We restrict the discussion to specific fragments of first-order logic with equal-
ity. While we have not explored the effective support for higher order logics
in Zap, such logics can be very useful in specifying certain properties of pro-
grams [GM93, ORS92, MS01, IRR+04]. For instance, extending first-order logic
with transitive closure [IRR+04] enables one to specify interesting properties
about the heap.

The control and data flow in most programs involve operations on integer
values. Accordingly, formulas generated by program analysis tools have a pre-
ponderance of integer arithmetic operations. This makes it imperative for the
ATP to have effective support for integers. In practice, these formulas are mostly
linear with many difference constraints of the form x ≤ y + c. While multipli-
cation between variables is rarely used in programs, it is quite common for loop
invariants to involve non-linear terms. Thus, some reasonably complete support
for multiplication is desirable.

As integer variables in programs are implemented using finite-length bit
vectors in the underlying hardware, the semantics of the operations on these
variables differs slightly from the semantics of (unbounded) integers. These dif-
ferences can result in integer-overflow related behavior that is very hard to reason
about manually. An ATP that allows reasoning about these bounded integers,
either by treating them as bit-vectors or by performing modular arithmetic,
can enable analysis tools that detect overflow errors. In addition, the finite-
implementation of integers in programs becomes apparent when the program
performs bit operations. It is a challenging problem for the ATP to treat a vari-
able as a bit-vector in such rare cases but still treat it as an integer in the
common case.

Apart from integer variables, programs define and use derived types such as
structures and arrays. Also, programs use various collection classes which can
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be abstractly considered as maps or sets. It is desirable for the ATP to have
support for theories that model these derived types and data structures.

Another very useful theory for program analysis is the theory of partial or-
ders. The inheritance hierarchy in an object oriented program can be modeled
using partial orders. The relevant queries involve determining if a particular type
is a minimum element (base type) or a maximal element (final type), if one type
is an ancestor (derived class) of another, and if two types are not ordered by the
partial-order.

While the formulas generated during program analysis are mostly quantifier-
free, invariants on arrays and collection data structures typically involve quan-
tified statements. For instance, a tool might want to prove that all elements in
an array are initialized to zero. Accordingly, the underlying ATP should be able
to reason about quantified facts. In addition, supporting quantifiers in an ATP
provides the flexibility for a client to encode domain-specific theories as axioms.

4 Background

In this section, we briefly describe the notations, the syntax and semantics of
the logic, and a high-level description of the Nelson-Oppen combination algo-
rithm for decision procedures. Our presentation of theories and the details of the
algorithm is a little informal; interested readers are referred to excellent survey
works [NO79a, TH96] for rigorous treatment.

4.1 Preliminaries

Figure 2 defines the syntax of a quantifier-free fragment of first-order logic. An
expression in the logic can either be a term or a formula. A term can either be a
variable or an application of a function symbol to a list of terms. A formula can
be the constants true or false or an atomic formula or Boolean combination
of other formulas. Atomic formulas can be formed by an equality between terms
or by an application of a predicate symbol to a list of terms. A literal is either
an atomic formula or its negation. A monome m is a conjunction of literals. We
will often identify a conjunction of literals l1 ∧ l2 . . . lk with the set {l1, . . . , lk}.

The function and predicate symbols can either be uninterpreted or can be
defined by a particular theory. For instance, the theory of integer linear arith-
metic defines the function-symbol “+” to be the addition function over integers
and “<” to be the comparison predicate over integers. For a theory T , the sig-
nature Σ denotes the set of function and predicate symbols in the theory. If an

term ::= variable | function-symbol(term, . . . , term)

formula ::= true | false | atomic-formula

| formula ∧ formula | formula ∨ formula | ¬formula

atomic-formula ::= term = term | predicate-symbol(term, . . . , term)

Fig. 2. Syntax of a quantifier-free fragment of first-order logic
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expression E involves function or predicate symbols from two (or more) theories
T1 and T2, then E is said to be an expression over a combination of theories
T1 ∪ T2.

An interpretation M = 〈D,J 〉 consists of (i) a domain D and a (ii) mapping
J from each function (or predicate) symbol in the theory to a function (or
relation) over the domain D. A formula φ is said to be satisfiable if there exists
an interpretation M and an assignment ρ to the variables such that φ evaluates
to true under (M, ρ). Such an interpretation is called a model of φ. A formula
is valid if ¬φ is not satisfiable (or unsatisfiable). A satisfiability (or decision)
procedure for Σ-theory T checks if a formula φ (over Σ) is satisfiable in T .

A theory T is convex if a quantifier-free formula φ in the T implies a disjunc-
tion of equalities over variables x1 = y1 ∨ x2 = y2 . . . xk = yk if and only if φ
implies at least one of the equalities xi = yi. A theory T is stably-infinite if a
quantifier-free formula φ has a model if and only if φ has an infinite model, i.e.,
the domain of the model is infinite. Example of both convex and stably-infinite
theories include the logic of Equality with Uninterpreted Functions (EUF) and
rational linear arithmetic [NO79a]. Example of non-convex theories include the
theory of arrays and the theory of integer linear arithmetic.

4.2 Nelson Oppen Combination

Given two stably infinite theories T1 and T2 with disjoint-signatures Σ1 and Σ2
respectively (i.e. Σ1 ∩ Σ2 = {}), and a conjunction of literals φ over Σ1 ∪ Σ2,
we want to decide if φ is satisfiable under T1 ∪ T2. Nelson and Oppen [NO79a]
provided a method for modularly combining the satisfiability procedures for T1
and T2 to produce a satisfiability procedure for T1 ∪ T2.

We describe the Nelson-Oppen procedure for convex theories.2 The input φ
is split into the formulas φ1 and φ2 such that φi only contains symbols from Σi

and φ1 ∧ φ2 is equisatisfiable with φ. Each theory Ti decides the satisfiability
of φi and returns unsatisfiable if φi is unsatisfiable in Ti. Otherwise, the set of
equalities implied by φi over the variables common to φ1 and φ2 are propagated
to the other theory Tj . The theory Tj adds these equalities to φj and the process
repeats until the set of equalities saturate.

Therefore, in addition to checking the satisfiability of a set of literals, each
theory also has to derive all the equalities over variables that are implied by the
set of literals. The satisfiability procedure is called equality generating if it can
generate all such equalities.

5 Zap

In this section, we start by describing the basic theorem proving architecture in
Zap in Section 5.1. In Section 5.2, we present improvements to decision proce-
dures for a restricted fragment of linear arithmetic that constitute most program
analysis queries. In Section 5.3, we describe the handling of quantifiers in first-
order formulas.
2 For the description of the algorithm for non-convex case, refer to the [NO79a].
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5.1 Basic Architecture

In this section, let us assume that we are checking the satisfiability of a quantifier-
free first-order formula φ over theories T1, . . . , Tk. The basic architecture of Zap
is based on a lazy proof-explicating architecture for deciding first-order formu-
las [ABC+02, BDS02, FJOS03].

First, a Boolean abstraction of φ is generated by treating each atomic formula
e in φ as an uninterpreted Boolean variable. The abstract formula is checked us-
ing a Boolean SAT solver. If the SAT solver determines that the formula is
unsatisfiable, then the procedure returns unsatisfiable. Otherwise, the satisfying
assignment from SAT (a monome m over the literals in φ) is checked for sat-
isfiability using the Nelson-Oppen decision procedure for the combined theory
T1 ∪ . . . ∪ Tk, as described in the last section. If φ is satisfiable over the first-
order theories, the formula ψ is satisfiable and the procedure returns satisfiable.
Otherwise, a “conflict clause” is derived from the theories that will prevent the
same assignment being produced by the SAT solver. The process repeats until
the Boolean SAT solver returns unsatisfiable or the Nelson-Oppen procedure
returns satisfiable.

To generate a conflict clause, the decision procedure for the combined theories
generates a proof of unsatisfiability when the monome m is unsatisfiable over
T1 ∪ . . . ∪ Tk. The literals that appear in the proof constitute a conflict clause.
In this framework, each theory generates the proof of (i) unsatisfiability of a
monome in the theory and (ii) proof of every equality x = y over the shared
variables that are implied by the literals in the theory.

We use SharpSAT, a variant of the ZChaff [MMZ+01] Boolean SAT solver
developed at Microsoft by Lintao Zhang, as the underlying Boolean solver. In
addition to checking satisfiability of a Boolean formula, SharpSAT also gener-
ates proof of unsatisfiability for unsatisfiable formulas. The theories present in
Zap are the logic of equality with uninterpreted functions (EUF) and linear
arithmetic. The decision procedure for EUF is based on the congruence closure
algorithm [NO80]. For linear arithmetic, we have an implementation of proof-
generating variant of the Simplex algorithm described in the Simplify technical
report [DNS03]. We also have a decision procedure for Unit Two Variable Per
Inequality (UTVPI) subset of linear arithmetic.

5.2 Restricted Linear Arithmetic Decision Procedures

Pratt [Pra77] observed that the arithmetic component in most program verifi-
cation queries is mostly restricted to the difference logic (x ≤ y + c) fragment.
Recent studies by Seshia and Bryant [SB04] also indicate that more than 90%
of the arithmetic constraints in some program analysis benchmarks are in differ-
ence logic fragment. We have also observed that structure of the constraints is
sparse, i.e., if n is the number of variables in the queries, and m is the number of
arithmetic constraints, then m is typically O(n). In this section, we present our
first step to obtain efficient decision procedure that exploit these observations.

The Unit Two Variable Per Inequality (UTVPI) logic is the fragment of
integer linear arithmetic, where constraints are of the form a.x + b.y ≤ c, where
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a and b are restricted to {−1, 0, 1} and c is an integer constant. This fragment
(a generalization of difference constraints) is attractive because this is the most
general class (currently known) of integer linear arithmetic for which the decision
procedure enjoys a polynomial complexity [JMSY94]. Extending this fragment
to contain three variables (with just unit coefficients) per inequality or adding
non-unit coefficients for two variable inequalities make the decision problem
NP-complete [Lag85]. Having an integer solver is often useful when dealing with
variables for which rational solutions are unacceptable. Such examples often arise
when modeling indices of an array or queues [FLL+02].

In [LM05a], we present an efficient decision procedure for UTVPI constraints.
Our algorithm works by reducing the UTVPI constraints to a set of difference
constraints, and then using negative cycle detection algorithms [CG96] to solve
the resultant problem. Given m such constraints over n variables, the procedure
checks the satisfiability of the constraints in O(n.m) time and O(n + m) space.
This improves upon the previously known O(n2.m) time and O(n2) space algo-
rithm provided by Jaffar et al. [JMSY94] based on transitive closure. The space
improvement of our algorithm is particularly evident when m is O(n), which
occurs very frequently in practice, as the number of constraints that arise in
typical verification queries have a sparse structure.

In addition to checking satisfiability of a set of UTVPI constraints, the de-
cision procedure is also equality generating and proof producing. These require-
ments are in place because the decision procedure participates in the proof-
explicating ATP described earlier. The decision procedure generates equalities
between variables implied by a set of UTVPI constraints in O(n.m) time. The al-
gorithm can generate a proof of unsatisfiability and equalities implied in O(n.m)
time. Both these algorithms use linear O(n+m) space. The algorithm for UTVPI
generalizes our earlier results for difference logic fragment [LM05b].

We also provide a model generation algorithm for rational difference logic
constraints (i.e. the variables are interpreted over rationals) in [LM05b]. The
highlight of the algorithm is that the complexity of generating the model places a
linear time and space overhead over the satisfiability checking algorithm. We also
provide a model generation algorithm for integer UTVPI constraints in [LM05a].
The algorithm is currently based on transitive closure and runs in O(n.m +
n2.logn) time and O(n2) space.

For many program analysis queries, having a UTVPI decision procedure suf-
fice — more complex linear constraints often simplify to UTVPI constraints
after propagating equalities and constants. We are also working on integrating
the decision procedure UTVPI constraints within a general linear arithmetic de-
cision procedure. This will enable us to exploit the efficient decision procedures
for UTVPI even in the presence of (hopefully a few) general linear arithmetic
constraints.

5.3 Quantifiers

Quantified statements naturally arise when analyzing invariants over arrays and
data structures such as maps. To handle such quantified formulas, Zap uses an
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approach very similar to Simplify based on heuristic instantiations. When the
theories (that reason on quantifier-free literals in the formula) are not able to
detect unsatisfiability, Zap uses various heuristics to instantiate quantified for-
mulas with relevant terms from the input formula. Zap propagates the resulting
quantifier-free formulas to the theories, which in turn try to detect unsatisfi-
ability. This instantiation process continues for a few iterations (if necessary)
after which Zap returns stating its inability to prove the unsatisfiability of the
formula.

One challenge in supporting this instantiation based approach in a lazy proof
explication setting is the following. Quantified formulas typically involve propo-
sitional connectives. As a result, quantifier instantiations performed during the-
ory reasoning can dynamically introduce Boolean structure in the formula. This
directly conflicts with the requirement that the Boolean structure be exposed
statically to the SAT solver in a lazy proof explication setting. Moreover, most
quantifier instantiations are not useful in proving the validity of the formula.
Blindly exposing such redundant instantiations to the SAT solver could drasti-
cally reduce the performance of the propositional search.

To alleviate these problems, Zap implements a two-tier technique [LMO05]
for supporting quantifiers. This technique involves two instances of a SAT solver,
a main solver that performs the propositional reasoning of the input formula,
and a little solver that reasons over the quantifier instantiations. When the main
SAT solver produces a propositionally satisfying instance that is consistent with
the decision procedures, the heuristic instantiation process generates a set of
new facts that The little SAT solver, along with the decision procedures, tries
to falsify the satisfying instance with the instantiations produced. If success-
ful, the little SAT solver generates a blocking clause that only contains literals
from the input formula. By thus separating the propositional reasoning of the
input formula from that of the instantiated formulas, this technique reduces the
propositional search space, with an eye toward improving performance.

In practice, we have found that our implementation is limited by the heuris-
tics we use to instantiate quantifiers. These heuristics rely heavily on the “pat-
terns” that the user specifies with each quantified statement. The performance
of the ATP changes significantly even for slight changes to these patterns requir-
ing several iterations to get them right. Moreover, we have found that it takes
considerable effort to automate the process of generating these patterns. Ideally,
we could use general purpose resolution-based ATPs (such as Vampire [RA01])
that are optimized to reason about quantified statements. However, these ATPs
do not effectively support arithmetic reasoning, an important requirement for
Zap. Combining a decision procedure for integers with a resolution-based ATP
is a challenging open problem. Such an ATP would be very useful in our setting.

6 Richer Operations and Their Combinations

As described in Section 2, the main goal of Zap is to support a rich set of
symbolic operations, apart from validity checking. These operations, such as
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quantifier elimination and model generation are essential to support symbolic
computation in Zap’s clients. On the other hand, Zap needs to support a variety
of theories (Section 3) that are useful for program analysis. Supporting these
symbolic operations in the presence of multiple theories leads to an interesting
challenge of combining these operations across theories.

Specifically, we seek a generalization of the Nelson-Oppen combination for
decision procedures as follows. For a particular symbolic operation, assume that
there exists a theory-specific procedure that performs the operation for formulas
in that theory. Now, given such procedures for two different theories, the com-
bination problem is to devise a procedure that performs the symbolic operation
on formulas in the combination of the two theories, using the two theory-specific
procedures as black boxes. When the symbolic operation in question is that of
determining the satisfiability of a set of formulas then the general combination
problem reduces to the well studied combination of decision procedures.

Such a combination procedure for supporting symbolic operations has several
advantages over a monolithic procedure for a specific combination of theories.
First, the combination approach provides the flexibility of adding more theories
in the future. This is very important for Zap as enabling new applications might
require supporting new theories. Second, the combination approach allows each
theory-specific decision procedure to be independently designed, implemented
and proven correct. The combination method itself needs to be proven once. The
correctness of a particular combination directly follows from the correctness of
each individual theory-specific procedure and the correctness of the combination
method. Finally, the combination approach leads to a modular implementation
of Zap that greatly simplifies the correctness of the implementation.

In the following sections, we describe how we extended the equality propaga-
tion framework of Nelson-Oppen combination to modularly combine procedures
for interpolant-generation (in Section 6.1), and predicate abstraction (in Sec-
tion 6.2). In Section 6.3, we present difficulties in modularly combining model
generation procedures. The combination methods for other symbolic operations
still remains open.

6.1 Interpolants

In [YM05], we presented a novel combination method for generating interpolants
for a class of first-order theories. Using interpolant-generation procedures for
component theories as black-boxes, this method generates interpolants for for-
mulas in the combined theory. Provided the individual procedures for the compo-
nent theories can generate interpolants in polynomial time, our method generates
interpolants for the combined theory in polynomial time.

The combination method uses the fact that the proof of unsatisfiability
produced in a Nelson-Oppen combination has a particular structure. In the
Nelson-Oppen framework, the decision procedures for component theories com-
municate by propagating entailed equalities. Accordingly, the proof can be split
into theory-specific portions that only involve inference rules from that theory.
These theory-specific portions use literals from the input or equalities generated
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by other theories. The crucial idea behind the combination method is to asso-
ciate a partial interpolant with each propagated equality. Whenever a component
theory propagates an equality, the combination method uses the interpolant-
generation procedure for that theory to generate the partial interpolant for the
equality. When a theory detects a contradiction, the combination method uses
the partial interpolants of all propagated equalities to compute the interpolant
for the input formulas.

The combination method places some restrictions on the theories that can be
combined. The Nelson-Oppen combination requires that the component theories
have disjoint signatures and be stably-infinite [NO79b, Opp80]. Our method nat-
urally inherits these restrictions. Additionally, our combination method restricts
the form of equalities that can be shared by the component theories. Specifi-
cally, the method requires that each propagated equality only involve symbols
common to both input formulas A and B. We show that this restricted form of
equality propagation is sufficient for a class of theories, which we characterize
as equality-interpolating theories. Many useful theories including the quantifier-
free theories of uninterpreted functions, linear arithmetic, and Lisp structures
are equality-interpolating, and thus can be combined with our method.

While the restriction to equality-interpolating theories provides us a way to
extend the existing Nelson-Oppen combination framework, the problem of gen-
eralizing the combination result to other theories remains open. Moreover, while
our method generates an interpolant between two formulas, it is not clear if the
interpolant generated is useful for the program analysis in question. Accordingly,
we need to formalize the notion of usefulness of an interpolant to a particular
analysis and design an algorithm that finds such interpolants.

6.2 Predicate Abstraction

Given a formula φ and a set of predicates P , the fundamental operation in
predicate abstraction is to find the best approximation of φ using P . Let FP (φ)
be the weakest expression obtained by a Boolean combination of the predicates
that implies φ.3

In [LBC05], we describe a new technique for computing FP (φ) without us-
ing decision procedures, and provide a framework for computing FP (φ) for a
combination of theories. We present a brief description of the approach in this
section.

For simplicity, let us assume that φ is an atomic expression (for more general
treatment, refer to [LBC05]). To compute FP (φ), we define a symbolic decision
procedure (SDP) for a theory to be a procedure that takes as input a set of
atomic expressions G and an atomic expression e and returns a symbolic repre-
sentation of all the subsets G′ ⊆ G such that G′∧¬e is unsatisfiable. SDP(G, e)
symbolically simulates the execution of a decision procedure on every subset
G′ ⊆ G. Let P̃ be the set of negated predicates in P . If the formula φ and the
predicates P belong to a theory T , then SDP(P ∪ P̃ , φ) represents FP (φ).
3 Note that FP (φ) is the dual of coverP (φ) introduced earlier. It is easy to see that

coverP (φ) = ¬FP (¬φ).
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We present an algorithm for constructing SDP for a class of theories called
saturating theories. For a theory T , consider the following procedure that repeat-
edly derives new facts from existing facts by applying the inference rules of the
theory on the existing set of facts — Given a set of atomic expressions H0

.= H ,
let H0, H1, . . . , Hi, . . . denote a sequence of sets of atomic expressions in T such
that Hi+1 is the set of atomic expressions either present in Hi or derived from
Hi using inference rules in the theory. A theory is saturating, if (i) each of the
sets Hi is finite and, (ii) if H is inconsistent, then false is present in HkH , where
kH is a finite value that is a function of the expressions in H alone. For such a
saturating theory one can construct SDP(G, e) by additionally maintaining the
derivation history for each expression in any Hi. The derivation history can be
maintained as a directed acyclic graph, with leaves corresponding to the facts
in H . Finally, the expression for SDP(G, e) can be obtained by performing the
above procedure for H

.= G ∪ {¬e} and returning (all) the derivations of false
after kH steps.

For two saturating theories T1 and T2 with disjoint signatures that also are
convex and stably-infinite, we present a procedure for constructing SDP for
the combined theory T1 ∪ T2, by extending the Nelson-Oppen framework. In-
tuitively, we symbolically encode the operation of the Nelson-Oppen equality
sharing framework for any possible input for the two theories. The SDP for the
combined theory incurs a polynomial blowup over the SDP for either theory. For
many theories that are relevant to program analysis, SDP can be computed in
polynomial or pseudo-polynomial time and space complexity. Examples of such
theories include EUF and difference logic (DIF). The combination procedure
allows us to construct an SDP from these theories’ SDPs.

We have implemented and benchmarked our technique on a set of program
analysis queries derived from device driver verification [BMMR01]. Preliminary
results are encouraging and the new predicate abstraction procedure outper-
formed decision procedure based predicate abstraction methods by orders of
magnitude [LBC05]. It remains open how to extend this approach in the pres-
ence of more complex (non-convex) theories or quantifiers.

6.3 Model Generation

When Zap reports that a first-order formula φ is satisfiable, it is desirable to
find a model for φ. Apart from serving as a witness to the satisfiability of φ, the
model generated is very useful for generating test cases from symbolic execution
of software. In this section, we present some of the issues in combining model
generation for different theories.

To generate an assignment for the variables that are shared across two the-
ories, each theory Ti needs to ensure that the variable assignment ρ for Ti

assigns two shared variables x and y equal values if and only if the equal-
ity x = y is implied by the constraints in theory Ti. Such a model where
ρ(x) = ρ(y) if and only if Ti ∪ φi implies x = y, is called a diverse model.
We have shown that for even (integer) difference logic, producing diverse models
is NP-complete [LM05a].
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The following example shows why diverse model generation is required in
the Nelson-Oppen framework. Let φ = (f(x) �= f(y) ∧ x ≤ y) be a formula in
the combined theory of EUF and UTVPI. An ATP based on the Nelson-Oppen
framework will add φ1

.= f(x) �= f(y) to the EUF theory (T1) and φ2
.= x ≤ y to

the UTVPI theory (T2). Since there are no equalities implied by either theory,
and each theory Ti is consistent with φi, the formula φ is satisfiable. Now, the
UTVPI theory could generate the model ρ

.= 〈x �→ 0, y �→ 0〉 for φ2. However,
this is not a model for φ, as it is not diverse.

Presently, Zap uses various heuristics for generating a model consistent with
all the theories. As a last resort, we perform an equisatisfiable translation of φ to
a Boolean formula using an eager encoding of first-order formulas [LS04, SB04]
and use the SAT solver to search for a model4.

7 Related Work

In this section, we describe some prior work on theorem proving and symbolic
reasoning for program analysis.

Simplify [DNS03] is an ATP that was built to discharge verification conditions
(VCs) in various program analysis projects including ESC/JAVA [FLL+02]. It
supports many of the theories discussed in this paper along with quantifiers.
It is based on the Nelson-Oppen framework for combining decision procedures.
Apart from validity checking, Simplify allows for error localization by allowing
the verification conditions to contain labels from the program. These labels help
to localize the source locations and the type of errors when the validity check of
a VC fails.

McMillan [McM04] presents an interpolating ATP for the theories of EUF
and linear inequalities (and their combination). This ATP has been used in ab-
straction refinement for the BLAST [HJMM04] software model checker. Our
work on combining interpolants for various equality-interpolating theories gen-
eralizes McMillan’s work, and extends it to other theories. Lahiri et al. [LBC03]
present an algorithm for performing predicate abstraction for a combination of
various first-order theories by performing Boolean quantifier elimination. Unlike
their approach, the use of symbolic decision procedures in our case allows us to
perform predicate abstraction in a modular fashion.

Gulwani et al. [GTN04] present join algorithms for subclasses of EUF using
abstract congruence closure [BTV03]. They show the completeness of he algo-
rithm for several subclasses including the cases when the functions are injective.
Chang and Leino [CL05] provide an algorithm for performing abstract opera-
tions (e.g. join, widen etc.) for a given base domain (e.g. the polyhedra domain
for linear inequalities [CH78]) in the presence of symbols that do not belong to
the theory. Their framework introduces names for each alien expression in the
theory. A congruence closure abstract domain equipped with the abstract oper-
ations (join, widen etc.) is used to reason about the mapping of the names to
4 Krishna K. Mehra implemented part of the model generation algorithm in Zap when

he spent the summer in Microsoft.
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the alien expressions. They instantiate the framework for the polyhedra domain
and a domain for reasoning about heap updates.

There has also been a renewed interest in constructing decision procedures
for first-order theories by exploiting SAT solver’s backtracking search. Decision
procedures based on lazy proof explicating framework (e.g. CVC [BDS02], Ver-
ifun [FJOS03], Mathsat [ABC+02]), eager approaches (e.g. UCLID [BLS02]),
extending DPLL search to incorporate theory reasoning [GHN+04] have been
proposed to exploit rapid advances in SAT solvers. Although Zap is closest to
the lazy approaches in its architectures, we are also investigating the best match
of these approaches for the nature of queries generated by the various clients of
program analysis.
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Decision Procedures for SAT,
SAT Modulo Theories and Beyond.

The BarcelogicTools�

Robert Nieuwenhuis and Albert Oliveras��

Abstract. An overview is given of a number of recent developments
in SAT and SAT Modulo Theories (SMT). In particular, based on our
framework of Abstract DPLL and Abstract DPLL modulo Theories, we
explain our DPLL(T) approach to SMT.

Experimental results and future projects are discussed within Barce-
logicTools, a set of logic-based tools developed by our research group in
Barcelona. At the 2005 SMT competition, BarcelogicTools won all four
categories it participated in (out of the seven existing categories).

1 Introduction

Nowadays, SAT solvers and their extensions are becoming the tool of choice for
attacking more and more different problems in areas such as Electronic Design
Automation, Verification, Artificial Intelligence, or Operations Research. Most
state-of-the-art SAT solvers [MMZ+01, GN02, ES03, Rya04] today are based on
the Davis-Putnam-Logemann-Loveland (DPLL) procedure [DP60,DLL62].
These DPLL-based SAT solvers have spectacularly improved in the last years,
due to better implementation techniques and conceptual enhancements such as
backjumping, conflict-driven lemma learning ([MSS99]), and restarts. These ad-
vances make it possible to decide the satisfiability of industrial SAT problems
with tens of thousands of variables and millions of clauses.

Because of their success, both the DPLL procedure and its enhancements
have been adapted for handling satisfiability problems in logics that are more
expressive than propositional logic. For example, some properties of timed au-
tomata are naturally expressed in difference logic, where formulas contain atoms
of the form a− b ≤ k, which are interpreted with respect to a background the-
ory T of the integers, rationals or reals [Alu99]. Similarly, for the verification
of pipelined microprocessors it is convenient to consider a logic of Equality with
Uninterpreted Functions (EUF), where the background theory T specifies a con-
gruence [BD94]. To mention just one other example, the conditions arising from
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program verification usually involve arrays, lists and other data structures, so it
becomes very natural to consider satisfiability problems modulo the theory T of
these data structures. In such applications, problems may contain thousands of
clauses like

p ∨ ¬q ∨ a=f(b− c) ∨ read(s, f(b− c) )=d ∨ a− g(c) ≤7

containing purely propositional atoms as well as atoms over (combined) theories.
This is known as the Satisfiability Modulo Theories (SMT) problem for a theory
T : given a formula F , determine whether F is T -satisfiable, i.e., whether there
exists a model of T that is also a model of F . A library of benchmarks for SMT
called SMT-LIB is maintained at http://combination.cs.uiowa.edu/smtlib/
and a formal standard for its syntax exists [RT03].

In this paper, based on our framework of Abstract DPLL (Section 2) and Ab-
stract DPLL modulo Theories (Section 3), we explain our DPLL(T) approach to
SMT (Section 4). We describe two variants of DPLL(T ), depending on whether
theory propagation is done exhaustively or not. DPLL(T ) is based on a gen-
eral DPLL(X) engine, whose parameter X can be instantiated with specialized
solvers Solver

T
for given theories T , thus producing a system DPLL(T ). Once

the DPLL(X) engine has been implemented, this approach becomes extremely
flexible: new theories can be dealt with by simply plugging in new theory solvers.
These solvers must only be able to deal with conjunctions of theory literals and
conform to a minimal and simple set of additional requirements. We describe how
DPLL(X) and Solver

T
cooperate, and the architecture of DPLL(T ) for several

theories that are widely used in industrial verification problems.
Section 5 describes BarcelogicTools, a set of logic-based tools developed by

our research group in Barcelona, including, in particular, a state-of-the-art SAT
solver, a DPLL(X) engine, and a number of theory solvers. Results show that our
DPLL(T ) systems in BarcelogicTools significantly outperform the other state-
of-the-art tools, frequently in several orders of magnitude, and moreover scale
up very well. In fact, at the 2005 SMT competition, BarcelogicTools won all
four categories it participated in (out of seven categories that existed in total;
search SMT Competition on the web). Finally, some future extensions of the
BarcelogicTools project are discussed.

2 Abstract DPLL in the Propositional Case

Let P be a fixed finite set of propositional symbols. If p ∈ P , then p and ¬p
are literals of P . The negation of a literal l, written ¬l, denotes ¬p if l is p, and
p if l is ¬p. A clause is a disjunction of literals l1 ∨ . . . ∨ ln. A unit clause is
a clause consisting of a single literal. A (finite, non-empty, CNF) formula is a
conjunction of one or more clauses C1∧. . .∧Cn. When it leads to no ambiguities,
we sometimes also write such a formula in set notation {C1, . . . , Cn} or simply
replace ∧ connectives by commas.

A (partial truth) assignment M is a set of literals such that {p,¬p} ⊆ M
for no p. A literal l is true in M if l ∈ M , it is false in M if ¬l ∈ M , and l is
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undefined in M otherwise. M is total over P if no literal of P is undefined in
M . A clause C is true in M if at least one of its literals is in M . It is false in M
if all its literals are false in M , and it is undefined in M otherwise. A formula
F is true in M , or satisfied by M , denoted M |= F , if all its clauses are true
in M . In that case, M is called a model of F . If F has no models then it is
called unsatisfiable. If F and F ′ are formulas, we write F |= F ′ if F ′ is true in
all models of F . Then we say that F ′ is entailed by F , or is a logical consequence
of F . If F |= F ′ and F ′ |= F , we say that F and F ′ are logically equivalent.

In what follows, (possibly subscripted or primed) lowercase l always denote
literals. Similarly C and D always denote clauses, F and G denote formulas, and
M and N are assignments. If C is a clause l1 ∨ . . . ∨ ln, we sometimes write ¬C
to denote the formula ¬l1 ∧ . . . ∧ ¬ln.

2.1 The Classical DPLL Procedure

Here a DPLL procedure is modelled by a transition relation over states (check
[NOT05] for details). A state is either FailState or a pair M || F , where F is
a finite set of clauses and M is a sequence of literals that is seen as a partial
interpretation. Some literals l in M will be annotated as being decision literals;
these are the ones added to M by the Decide rule given below, and are sometimes
written ld. The transition relation is defined by means of rules. The following
simple Classical DPLL system is given here mainly for explanatory and historical
reasons.

Definition 1. The Classical DPLL system Cl consists of the five rules:

UnitPropagate :

M || F, C ∨ l =⇒ M l || F, C ∨ l if
{

M |= ¬C
l is undefined in M

PureLiteral :

M || F =⇒ M l || F if

⎧⎨⎩
l occurs in some clause of F
¬l occurs in no clause of F
l is undefined in M

Decide :

M || F =⇒ M ld || F if
{

l or ¬l occurs in a clause of F
l is undefined in M

Fail :

M || F, C =⇒ FailState if
{

M |= ¬C
M contains no decision literals

Backtrack :

M ld N || F, C =⇒ M ¬l || F, C if
{

M ld N |= ¬C
N contains no decision literals
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One can use the transition system Cl for deciding the satisfiability of an input
CNF F by simply generating an arbitrary derivation ∅ || F =⇒Cl . . . =⇒Cl Sn,
where Sn is a final state with respect to Cl. Such derivations are always finite,
and (i) F is unsatisfiable if, and only if, the final state Sn is FailState, and (ii)
if Sn is of the form M || F then M is a model of F .

These rules speak for themselves, providing a classical depth-first search with
backtracking, where the Decide rule represents a case split: an undefined literal l
is chosen from F , and added to M . The literal is annotated as a decision literal,
to denote that, if M l cannot be extended to a model of F , then (by Backtrack)
still the other possibility M ¬l must be explored. In the following, if M is a
sequence of the form M0 l1 M1 . . . lk Mk, where the li are all the decision literals
in M , then the literals of each li Mi are said to belong to decision level i.

Example 2. In the following derivation, to improve readability we have denoted
atoms by natural numbers, negation by overlining, and written decision literals
in bold font:

∅ || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 2 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)
1 2 3 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 2 3 4 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Backtrack)
1 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (Decide)
1 4 3 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒Cl (UnitPropagate)

1 4 3 2 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 Final state:
model found. ��

The Davis-Putnam procedure [DP60] was originally presented as a two-phase
proof-procedure for first-order logic. The unsatisfiability of a formula was to be
proved by first generating a suitable set of ground instances which then, in the
second phase, were shown to be propositionally unsatisfiable.

Subsequent improvements, such as the Davis-Logemann-Loveland procedure
of [DLL62], mostly focused on the propositional phase. What most authors nowa-
days call the DPLL Procedure is a satisfiability procedure for propositional logic
based on this propositional phase. Originally, this procedure amounted to the
depth-first search algorithm with backtracking modeled by our Classical DPLL
system.

2.2 Modern DPLL Procedures

The major modern DPLL-based SAT solvers do not implement the Classical
DPLL system. For example, due to efficiency reasons the pure literal rule is
normally only used as a preprocessing step, and hence we will not consider this
rule in the following. Moreover, instead of Backtrack a more general Backjump
rule is considered, of which Backtrack is a particular case.
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Definition 3. The Basic DPLL system is the four-rule transition system B
consisting of UnitPropagate, Decide, Fail, and the following Backjump rule:

Backjump :

M ld N || F, C =⇒ M l′ || F, C if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M ld N |= ¬C, and there is
some clause C′ ∨ l′ such that:

F, C |= C′ ∨ l′ and M |= ¬C′,
l′ is undefined in M , and
l′ or ¬l′ occurs in F or in M ld N

We call the clause C′ ∨ l′ in Backjump a backjump clause.

Example 4. The aim of this Backjump rule is to generalize backtracking by a
better analysis of why the so-called conflicting clause C is false. Standard back-
tracking reverses the last decision, and adds it as a unit to the previous decision
level. Backjumping frequently allows one to add a new unit literal to a decision
level that is lower than the previous level. Consider:

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (UnitPropagate)

1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (UnitPropagate)

1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (UnitPropagate)

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒B (Backjump)
1 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2

Before the Backjump step, the clause 6 ∨5∨2 is conflicting: it is false in
1 2 3 4 5 6. The reason for its falsity is the unit propagation 2 of the decision
1, together with the decision 5 and its unit propagation 6. Therefore, one can
infer that the decision 1 (and its unit propagation 2) is incompatible with the
decision 5. This is why the Backjump rule moves to the state 1 2 5.

Note that an application of Backtrack instead of Backjump would have given
a state with first component 1 2 3 4 5, even though the decision level 3 4 is
unrelated with the reasons for the falsity of 6∨5∨2. Moreover, intuitively, the
search state 1 2 5 reached after Backjump is more advanced than 1 2 3 4 5. This
notion of “being more advanced” is formalized in Theorem 12 below. ��

The Backjump rule makes progress in the search by reverting to a strictly
lower decision level, but with the additional information given by the literal l′

that is added to that level. Indeed, as it is proved below, the four rules of the
Basic DPLL system (UnitPropagate, Decide, Fail, and Backjump) suffice for com-
pleteness. But in most modern DPLL implementations, in addition the backjump
clause C′∨ l′ is added to the clause set as a learned clause (conflict-driven clause
learning). In Example 4, learning the clause 1∨5 will allow the application of
UnitPropagate to any state whose assignment contains either 1 or 5. Hence, it will
prevent any conflict caused by having both 1 and 5 in M . Indeed, reaching such
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similar conflicts frequently happens in industrial problems having some regular
structure, and learning such lemmas has been shown to be very effective. Since
a lemma is aimed at preventing future similar conflicts, when such conflicts are
not very likely to be found again the lemma can be removed. In practice this is
usually done if the activity of a lemma (e.g., the number of times it becomes a
unit or a conflicting clause) has become low [ES03]. In order to model lemma
learning and removal we consider the following system.

Definition 5. The rules of Learn and Forget are the following ones:

Learn :

M || F =⇒ M || F, C if
{

all atoms of C occur in F
F |= C

Forget :
M || F, C =⇒ M || F if

{
F |= C

In any application step of these two rules, the clause C is said to be learned and
forgotten, respectively.

Example 6. Assume a strategy that is followed in most state-of-the-art SAT
solvers: (i) Decide is applied only if no other Basic DPLL rule is applicable, and
(ii) after each application of Backjump, the backjump clause is learned. Consider
a state of the form M || F , where, among other clauses, F contains:

9∨6∨7∨8 8∨7∨5 6∨8∨4 4∨1 4∨5∨2 5∨7∨3 1∨2∨3

and M is of the form: . . . 6 . . . 7 . . .9 8 5 4 1 2 3. It is easy to observe how
by six applications of UnitPropagate this state has been reached after the last
decision 9. For example, 8 is implied by 9, 6, and 7, due to the leftmost clause
9∨6∨7∨8. The DPLL implementation stores the ordered sequence of propagated
literals, each one of them together with the clause that caused it. In this state
M || F , the clause 1∨2∨3 is conflicting, since M contains 1, 2 and 3. Now one
can trace back the reasons for this conflicting clause. For example, the DPLL
implementation knows that 3 was implied by 5 and 7, due to the clause 5∨7∨3.
The literal 5 was in turn implied by 8 and 7, and so on. In this way, working
backwards from the conflicting clause, and in the reverse order in which each
literal was propagated, one can build a conflict graph:

6

8

4

5

2

1

3

9

7
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In the graph that is shown, the building process was stopped when the current
decision literal 9 was reached, and hence 9 and the nodes belonging to earlier
decision levels (in this example, literals 6 and 7) have no incoming arrows. For
finding a backjump clause, it suffices to cut the graph into two parts. The first
part must contain at least the literals with no incoming arrows. The second
part must contain at least the literals with no outgoing arrows, i.e., the negated
literals of the conflicting clause (in our example, 1, 2 and 3). It is not hard to
see that in such a cut no model of F can satisfy all the literals whose outgoing
edges are cut.

For instance, consider the cut indicated by the dotted line, where the literals
with cut outgoing edges are 8, 7, and 6. Indeed, from these three literals by
unit propagation using five clauses of F one can infer the negated literals of
the conflicting clause. Hence, one can infer from F that 8, 7, and 6 cannot be
simultaneously true, i.e., one can infer the clause 8∨7∨6. In this case, it is an
adequate backjump clause, that is, the clause C′ ∨ l′ in the definition of the
Backjump rule, where the literal 8 plays the role of l′. Indeed, it allows one to
backjump to the decision level of 7, adding 8 to it. After that, under our strategy
the clause 8∨7∨6 has to be learned, in order to explain, in future conflicts, the
presence of 8 as a propagation from 6 and 7.

Such a cut produces an adequate backjump clause provided that only one of
the literals with cut outgoing edges belongs to the current decision level. Then,
this literal is called a Unique Implication Point (UIP) and it can play the role of
l′ in the backjump clause. It is not hard to argue that there is always at least one
UIP, namely the current decision literal (which is 9 in our example). In practice
one does not actually build the graph; it suffices to work backwards from the
conflicting clause, maintaining only a frontier list of literals yet to be expanded,
until reaching the first UIP (in our example, 8) [MSS99, ZMMM01, GN02]. This
can also be seen as a resolution process, until reaching a clause with only one
literal of the current decision level (in our example, the literal 8 in the clause
8∨7∨6). In our example, the clause 8∨7∨6 is obtained by resolution by resolving
on the conflicting clause the literals 3, 2, 1, 4 and 5, i.e., in the reverse order they
were propagated, with the clauses that caused their propagation:

8∨7∨5
6∨8∨4

4∨1
4∨5∨2

5∨7∨3 1∨2∨3
5∨7∨1∨2

4∨5∨7∨1
4∨5∨7

6∨8∨5∨7
8∨7∨6

Some provers such as Siege also learn some of the intermediate clauses in such
resolution derivations [Rya04]. ��

State-of-the art SAT-solvers [MMZ+01, GN02, ES03, Rya04] essentially ap-
ply Abstract DPLL with Learning using efficient implementation techniques for
UnitPropagate (e.g., watching two literals for unit propagation [MMZ+01]), and
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heuristics for selecting the decision literal when applying the Decide rule. In ad-
dition, modern DPLL implementations restart the DPLL procedure whenever
the search is not making enough progress according to some measure. The ra-
tionale behind this idea is that upon each restart, the newly learned lemmas
will lead the heuristics for Decide to behave differently, and hopefully cause the
procedure to explore the search space in a more compact way.

The combination of learning and restarts has been shown to be powerful
not only in practice, but also from the theoretical point of view. Essentially,
any Basic DPLL derivation to FailState is equivalent to tree-like refutation by
resolution. But for some classes of problems tree-like proofs are always exponen-
tially larger than the smallest general, i.e., DAG-like, resolution ones [BEGJ00].
The good news is that DPLL with learning and restarts becomes again equiv-
alent to general resolution with respect to such notions of proof complexity
[BKS03].

Definition 7. The DPLL system with learning and restarts, denoted by L, con-
sists of the four transition rules of the Basic DPLL system, the Learn and Forget
rules and the following Restart rule:

M || F =⇒ ∅ || F

2.3 Correctness of Modern DPLL Systems

Deciding the satisfiability of an input formula F will be done by generating
an arbitrary derivation of the form ∅ || F =⇒L . . . =⇒L Sn such that Sn

is final with respect to the Basic DPLL system (note that one cannot aim at
reaching final states with respect to the DPLL system with learning, since, e.g.,
tautologies like p ∨ ¬p can be learned or forgotten in all states but FailState).

Building such derivations is practical because for all rules their applicability is
easy to check, and such derivations are always finite if one never applies infinitely
many consecutive Learn and Forget steps, and Restart is applied with increasing
periodicity. Then, one always reaches a state Sn that is final with respect to the
Basic DPLL system, and a final state is moreover easily recognizable as such,
because it is either FailState or else it is of the form M || F where all literals of
F are defined in M and there is no conflicting clause. Then, moreover, (i) F is
unsatisfiable if, and only if, Sn is FailState, and (ii) if Sn is of the form M || F ′

then M is a model of F .
The following three lemmas are the key to proving these results (see [NOT05]

for details). The first one states some easy invariants that are preserved under
rule application. Proving the second one essentially involves the construction of
an adequate backjump clause for showing that Backjump applies, which is less
simple. From these two lemmas, the third one, stating properties of final states,
is not hard to obtain.

Lemma 8. Assume ∅ || F =⇒∗
L M || G . Then G is logically equivalent to F .

If M is of the form M0 l1 M1 . . . ln Mn, where l1, . . . , ln are all the decision
literals of M , then F, l1, . . . , li |= Mi for all i in 0 . . . n.
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Lemma 9. Assume that ∅ || F =⇒∗
L M || F ′ and that M |= ¬C for some clause

C in F ′. Then either Fail or Backjump applies to M || F ′.

Lemma 10. If ∅ || F =⇒∗
L S, and S is final with respect to Basic DPLL,

then S is either FailState, or it is of the form M || F ′, where
(i) all literals of F ′ are defined in M , and
(ii) there is no clause C in F ′ such that M |= ¬C, and
(iii) M is a model of F .

Theorem 11. If ∅ || F =⇒∗
L S where S is final w.r.t. Basic DPLL, then

1. S is FailState if, and only if, F is unsatisfiable.
2. If S is of the form M || F ′ then M is a model of F .

Proof. For Property 1, if S is FailState it is because there is some state M || F ′

such that ∅ || F =⇒∗
L M || F ′ =⇒L FailState. By the definition of the Fail rule,

there is no decision literal in M and there is a clause C in F ′ such that M |= ¬C.
Since F and F ′ are equivalent by Lemma 8, we have that F |= C. However, if
M |= ¬C, by Lemma 8 then also F |= ¬C, which implies that F is unsatisfiable.
For the right-to-left implication, if S is not FailState it has to be of the form
M || F ′. But then, by Lemma 10, M is a model of F and hence F is satisfiable.
For Property 2, if S is M || F ′ then, again by Lemma 10, M is a model of F . ��

The soundness and completeness results of Theorem 11 can be applied if one
can ensure that a final state with respect to Basic DPLL is eventually reached.
This is usually done in practice by periodically increasing the minimal number
of Basic DPLL steps between each pair of restart steps. Also, one should not
apply infinitely many consecutive Learn and Forget steps (for example, learning
and forgetting the same clause all the time), a condition that is weak and easily
enforced. In fact, Learn is typically only applied together with Backjump in order
to learn the corresponding backjump clause. This is formalized below.

Theorem 12. Any derivation ∅ || F =⇒ S1 =⇒ . . . by the transition system
L extended with the Restart rule is finite if (i) it contains only finitely many
consecutive Learn and Forget steps, and (ii) between every two Restart steps there
are more steps by Basic DPLL than between the previous two Restart steps.

Proof. (See [NOT05] for details.) The four basic rules can be shown terminating
by a well-founded ordering � that considers only the first component M of
states of the form M || F . The ordering is lexicographic. It considers M more
advanced than M ′ (i.e., M ′ � M) if M has more literals at decision level 0
than M ′, or both have the same number of literals at level 0 and M has more
literals at level 1, etc. If D is an infinite derivation fulfilling the requirements,
then in a subderivation of D without Restart steps, at each step either this first
component decreases with respect to � (by the Basic DPLL steps) or it remains
equal (by the Learn and Forget steps). Therefore, since there are no infinitely
many consecutive Learn and Forget steps, there must be infinitely many Restart
steps in D. Also, if between two states there is at least one Basic DPLL step,
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these states do not have the same first component. Therefore, if N denotes the
(fixed, finite) number of different first components of states that exist for the
given finite set of symbols, there are no subderivations with more than N Basic
DPLL steps between two Restart steps. This contradicts the fact that there are
inifinitely many Restart steps if Restart has increasing periodicity. in D. ��

3 Abstract DPLL Modulo Theories

Here we consider the same definitions and notations given in Section 2 except
that here the set P over which formulas are built is a fixed finite set of ground
(i.e., variable-free) first-order atoms (instead of propositional symbols).

In addition to these propositional notions, a theory T is a set of closed first-
order formulas that is satisfiable in the first-order sense.

A formula F is T -satisfiable or T -consistent if F ∧T is satisfiable in the first-
order sense. Otherwise, it is called T -unsatisfiable or T -inconsistent. As before, a
partial assignment M will also be seen as a conjunction and hence as a formula.
If M is a T -consistent partial assignment and F is a formula such that M |= F ,
i.e., M is a (propositional) model of F , then we say that M is a T -model of F .
The SMT problem for a theory T is the problem of determining, given a formula
F , whether F is T -satisfiable, or, equivalently, whether F has a T -model. Note
that, as usual in SMT, here we only consider the SMT problem for ground (and
hence quantifier-free) CNF formulas F . Also note that F may contain constants
that are free in T , which, as far as satisfiability is concerned, can equivalently
be seen as existential variables. We will consider here only theories T such that
the T -satisfiability of conjunctions of such ground literals is decidable, and a
decision procedure for doing so is called a T -solver. If F and G are formulas,
then F entails G in T , written F |=T G, if F ∧¬G is T -inconsistent. If F |=T G
and G |=T F , we say that F and G are T -equivalent.

3.1 An Informal Presentation of SMT Procedures

In the so-called eager approach to SMT, the input formula is translated in a
single satisfiability-preserving step into a propositional CNF formula which is
then checked by a SAT solver for satisfiability (see, e.g., [BGV01, BV02, Str02]).
Sophisticated ad-hoc translations have been developed for several theories, but
still, on many practical problems the translation process or the SAT solver run
out of time or memory (see [dMR04]), and the alternative techniques explained
below are usually orders of magnitude faster.

As an alternative to the eager approach, one can use a T -solver for decid-
ing the satisfiability of conjunctions of theory literals. Then, a decision pro-
cedure for SMT is easily obtained by converting the formula into disjunctive
normal form (DNF) and using the T -solver for checking whether there is at
least one conjunction which is satisfiable. However, the exponential blowup
due to the conversion into DNF makes this approach too inefficient. There-
fore, a large amount of recent research involves the combination of the strengths
of specialized T -solvers with the strengths of state-of-the-art SAT solvers for
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dealing with the boolean structure of the formulas. One such an approach,
which has been widely used in the last few years is usually referred to as the
lazy approach [ACG00, FORS01, ABC+02,BDS02, dMR02, FJOS03,ACGM04],
[BCLZ04]. It initially considers each atom occurring in a formula F to be checked
for satisfiability simply as a propositional symbol, i.e., it “forgets” about the
theory T . Then it sends the formula to a SAT solver. If the SAT solver reports
propositional unsatisfiability, then F is also T -unsatisfiable. If the SAT solver
returns a propositional model of F , then this model (a conjunction of literals)
is checked by a T -solver. If it is found T -satisfiable then it is a T -model of F .
Otherwise, the T -solver builds a ground clause, called a theory lemma, a clause
C such that ∅ |=T C, precluding that model. This lemma is added to F and the
SAT solver is started again. This process is repeated until the SAT solver finds
a T -satisfiable model or returns unsatisfiable.

Example 13. Assume we are deciding the satisfiability of a large EUF formula,
i.e., the background theory T is equality, and assume that the model M found
by the SAT solver contains, among many others, the literals: b = c, f(b) = c,
a �= g(b), and g(f(c)) = a. Then the T -solver detects that M is not a T -model,
since b = c ∧ f(b) = c ∧ g(f(c)) = a |=T a = g(b). Therefore, the
lazy procedure has to be restarted after the corresponding theory lemma has
been added to the clause set. In principle, one can take as theory lemma simply
the negation of M , that is, the disjunction of the negations of all the literals in
M . However, this clause may therefore have thousands of literals, and the lazy
approach will behave much more efficiently if the T -solver is able to generate a
small explanation of the T -inconsistency of M , which in this example could be
the clause b �=c ∨ f(b) �=c ∨ g(f(c)) �=a ∨ a=g(b). ��

The lazy approach is quite flexible: it can easily combine any SAT solver with
any T -solver. Moreover, if the SAT solver used by the lazy SMT procedure is
based on DPLL, several refinements exist that make it much more efficient:

Incremental T-solver. The T -consistency of the model can be checked incre-
mentally, while the model is being built by the DPLL procedure, i.e., without
delaying the check until a propositional model has been found. This can save a
large amount of useless work. Currently, most SMT implementations work with
incremental T-solvers. The idea was already mentioned in [ABC+02] under the
name of early pruning and in [Bar03] under the name of eager notification.

On-line SAT solver. When a T -inconsistency is detected by the incremental
T-solver, one can ask the DPLL procedure simply to backtrack to the last point
where the assignment was still T -consistent, instead of restarting the search
from scratch. If the current DPLL state is of the form M l M ′ || F , and M
is the maximal T -consistent prefix of M l M ′, then the DPLL procedure can,
for instance, backjump to M¬l || F . On-line SAT solvers (in combination with
incremental T-solvers) are nowadays common in SMT implementations.

Theory propagation. In the approach presented so far, the T -solver provides
information only after a T -inconsistent partial assignment has been generated.
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In this sense, the T -solver is used only to validate the search a posteriori, not to
guide it a priori. In order to overcome this limitation, the T -solver can also be
used in a given DPLL state M || F to detect literals l ocurring in F such that
M |=T l, allowing the DPLL procedure to move to the state M l || F . This is
called theory propagation. It was first mentioned in [ACG00] under the name of
forward checking simplification; however, it was believed to be very expensive.
Since T -solvers were not designed to support it, it was simply implemented
by sending ¬l to the T -solver, and, if this made the model T -inconsistent, then
inferring l. The real effectiveness of theory propagation has become demonstrated
in our DPLL(T ) approach [GHN+04, NO05b], using efficient T -solvers for it.

Exhaustive Theory Propagation. For some theories it even pays off, for every
state M || F , to eagerly detect and propagate all literals l ocurring in F such that
M |=T l [NO05b]. Then, in every state M || F the model M will be T -consistent,
and hence the T-solver will never detect any T-inconsistencies. Similarly, theory
lemma learning becomes useless if exhaustive theory propagation is applied,
because any unit propagation from a theory lemma will already be immediately
obtained as a theory propagation. For some logics, such as, e.g., Difference Logic,
exhaustive theory propagation can give several orders of magnitude of speedup
(see Section 5).

3.2 Abstract DPLL Modulo Theories

In this section we formalize the different enhancements of the lazy approach
to Satisfiability Modulo Theories. This will be done by adapting the abstract
DPLL framework for the propositional case presented in the previous section.
Here Learn, Forget and Backjump are slightly modified in order to work modulo
theories: in these rules, entailment between formulas now becomes entailment
in T :

Definition 14. The rules T -Learn, T -Forget and T -Backjump are:

T -Learn :

M || F =⇒ M || F, C if
{

every atom of C occurs in F or in M
F |=T C

T -Forget :

M || F, C =⇒ M || F if
{

F |=T C

T -Backjump :

M ld N || F, C =⇒ M l′ || F, C if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M ld N |= ¬C, and there is
some clause C′ ∨ l′ such that:

F, C |=T C′ ∨ l′ and M |= ¬C′,
l′ is undefined in M , and
l′ or ¬l′ occurs in F or in M ld N
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Modeling the naive lazy approach. Each time a state M || F is reached
that is final with respect to Decide, Fail, UnitPropagate, and T -Backjump, i.e.,
final in a similar sense as in the previous section, M can be T -consistent or
not. If it is, then M is indeed a T -model of F . If it is not, then there exists a
subset {l1, . . . , ln} of M such that ∅ |=T ¬l1∨ . . .∨¬ln. By one T -Learn step,
this theory lemma ¬l1∨. . .∨¬ln can be learned and then Restart can be applied.
If these theory lemmas are never removed by the T -Forget rule, this stategy
is terminating under the same restrictions as stated in the previous section on
T -Learn, T -Forget, and Restart, and it is also sound and complete: the initial
formula is T -unsatisfiable iff, the final state is FailState, and otherwise a T -
model has been found.

Modeling the lazy approach with an incremental T -solver. Assume the
incremental T -solver detects that a (not necessarily final) state M || F has been
reached such that M is T -inconsistent. Then, as in the naive lazy approach,
there exists a subset {l1, . . . , ln} of M such that ∅ |=T ¬l1∨. . .∨¬ln. This theory
lemma is then learned, reaching the state M || F, ¬l1∨. . .∨¬ln. As in the previous
case, then Restart can be applied and the same results apply.

Modeling the lazy approach with an incremental T -solver and an on-
line SAT solver. As in the previous case, if a T -inconsistency is detected a state
M || F, ¬l1∨. . .∨¬ln is reached. But now instead of completely restarting, the
procedure repairs the T -inconsistency of the partial model by exploiting the fact
that ¬l1∨. . .∨¬ln is a conflicting clause. Then, as before, if there is no decision
literal in M then Fail applies, and otherwise T -Backjump applies. Even if always
immediately after backjumping the theory lemma is forgotten, the termination,
soundness and completeness results hold.

Modeling the previous refinements and theory propagation. This re-
quires the following additional rule:

Definition 15. The Theory Propagate rule is:

M || F =⇒ M l || F if

⎧⎨⎩M |=T l
l or ¬l occurs in F
l is undefined in M

The purpose of this rule is to prune the search by assigning a truth value to
literals that are T -entailed by M . Below we prove that the results of termination,
soundness, and completeness mentioned for the previous three lazy approaches
also hold in combination with arbitrary applications of this rule.

Modeling the previous refinements and exhaustive theory propaga-
tion. Exhaustive theory propagation is modeled simply by assuming that
Theory Propagate is applied eagerly. As a particular case of the previous re-
finement (arbirary applications of Theory Propagate), the aforementioned results
remain true.
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3.3 Correctness of Abstract DPLL Modulo Theories

Definition 16. The Basic DPLL Modulo Theories system consists of the rules
Decide, Fail, UnitPropagate, and T -Backjump.

The Full DPLL system Modulo Theories, denoted by FT, consists of the
Basic DPLL Modulo Theories rules and the rules of Theory Propagate, T -Learn,
T -Forget, and Restart.

The proofs of the following results are structured in the same way as the
ones given in Section 2.3 for the propositional case (see [NOT05] for details).
As before, a decision procedure is any derivation by the given rules using a
terminating strategy, and again we consider as final states, apart from FailState,
the ones of the form M || F that are final with respect to the four rules of Basic
DPLL Modulo Theories, but now in addition we require that the model M is
T -consistent. We provide here only one additional property, showing that such
final states can be effectively computed:

Property 17. If ∅ || F =⇒∗
FT M || F ′ and M is T -inconsistent, then either there

is a conflicting clause in M || F ′, or else T -Learn applies to M || F ′, generating a
conflicting clause.

Theorem 18.

1. If ∅ || F =⇒∗
FT FailState then F is T -unsatisfiable.

2. If ∅ || F =⇒∗
FT S where S is final with respect to Basic DPLL modulo

theories and M is T -consistent, then M is a T -model of F .

Theorem 19 (Termination). Any derivation ∅ || F =⇒FT S1 =⇒FT . . . by
the Full DPLL system modulo theories is finite, if it contains only finitely many
consecutive T -Learn and T -Forget steps, and between every two Restart steps,
either there are more steps by Basic DPLL Modulo Theories than between the
previous two Restart steps, or else a new clause has been learned that is never
forgotten in D.

4 The DPLL(T) Approach

In this section we shortly describe the DPLL(T ) approach for SAT Modulo The-
ories [GHN+04, NO05b]. It is based on a general DPLL engine, called DPLL(X),
that is not dependent on any particular theory T . Instead, it is parameterized by
a solver for a theory T of interest. A system DPLL(T ) for deciding the satisfia-
bility of CNF formulas in a theory T is produced by instantiating the parameter
X with a module Solver

T
that can handle conjunctions of literals in T . The

basic idea is similar to the CLP (X) scheme for constraint logic programming:
provide a clean and modular, but at the same time efficient, integration of spe-
cialized theory solvers within a general-purpose engine, in our case one based on
DPLL.
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The concrete DPLL(T ) scheme and its architecture and implementation pre-
sented here combine the advantages of the eager and lazy approaches to SMT.
On the one hand, experiments for several different theories reveal that, as soon as
the theory predicates start playing a significant role in the formula, our DPLL(T )
approach outperforms all others. On the other hand, DPLL(T ) has the flexibility
of the lazy approaches: more general logics can be dealt with by simply plugging
in other solvers into our general DPLL(X) engine, provided that these solvers
conform to a minimal interface.

Here we describe two versions of the DPLL(T ) approach, namely with and
without exhaustive theory propagation. For the first case, in [NO05b] an effi-
cient exhaustive solver for difference logic is described. For some other logics,
such as the logic of Equality with Uninterpreted Functions (EUF, see Exam-
ple 13), exhaustive theory propagation is not the best DPLL(T ) approach. Our
experiments with EUF revealed that detecting exhaustively all negative equality
consequences is very expensive, whereas all positive equalities can be propagated
efficiently by means of a congruence closure algorithm [DST80]. In [NO03] a mod-
ern incremental, backtrackable congruence closure algorithm for this purpose is
described, and progressively more efficient ways of retrieving explanations in this
context are described in [dMRS04, ST05, NO05c].

4.1 DPLL(T ) with Exhaustive Theory Propagation

For the initial setup of DPLL(T ), Solver
T

reads the input CNF, stores the list
of all literals occurring in it, and hands it over to DPLL(X), who treats it as a
purely propositional CNF. After that, DPLL(T ) implements the rules as follows:

• At each state M || F , both DPLL(X) and Solver
T

are aware of the current
M . Each time DPLL(X) communicates to Solver

T
that a literal l is added

to M , (e.g., due to UnitPropagate or to Decide), Solver
T

answers with the
list of all literals of the input formula that are new T -consequences. Then,
for each one of these consequences, Theory Propagate is immediately applied
by DPLL(X). Note that hence M never becomes T -inconsistent.

• If Theory Propagate is not applicable, then UnitPropagate is eagerly ap-
plied by DPLL(X) (this is implemented using the two-watched-literals
scheme).

• DPLL(X) applies Fail or T -Backjump if a conflicting clause is detected.
T -Backjump works as explained in Example 6, but there is a difference:
a literal l at a node in the graph can now also be due to an applica-
tion of Theory Propagate. Hence, building the graph requires that SolverT

must be able to recover a (preferrably small) subset of literals of M that T -
entailed l. This is done by the Explain(l) operation provided by Solver

T
. It

is the same operation as for providing explanations in the lazy approach, cf.
Example 13.

• Immediately after each T -Backjump application, the T -Learn rule is applied
for learning the backjump clause. This clause is always a T -consequence of
the current formula. As explained in Subsection 3.1 for exhaustive theory
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propagation, theory lemmas (clauses C such that ∅ |=T C) are not learned,
since this is useless.

• After each backjump has taken place in DPLL(X), it tells Solver
T

how
many literals of the partial interpretation have been unassigned, which allows
Solver

T
to undo them.

• In our current implementation, DPLL(X) applies Restart when certain sys-
tem parameters reach some prescribed limits, such as the number of conflicts
or lemmas, the number of new units derived, etc.

• In our current implementation, T -Forget is applied by DPLL(X) after each
restart (and only then), removing at least half of the lemmas according to
their activity (number of times involved in a conflict since last restart). The
500 newest lemmas are not removed.

• DPLL(X) applies Decide only if none of Theory Propagate, UnitPropagate,
Fail or T -Backjump is applicable. We currently use a heuristic for chosing
the decision literal as in BerkMin [GN02].

4.2 DPLL(T ) with Non-exhaustive Theory Propagation

• Each time DPLL(X) adds a literal l to M , Solver
T

either indicates that M
has become T -inconsistent, or, otherwise, it returns a (possibly incomplete)
list of T -consequences to which Theory Propagate is immediately applied
by DPLL(X) (as in the exhaustive case). T -inconsistencies are treated by
DPLL(X) as described in Subsection 3.2 for modeling with an on-line SAT
solver: if there is a subset {l1, . . . , ln} of M that becomes T -inconsistent by
adding l to it, the corresponding theory lemma ¬l1∨. . .∨¬ln ∨¬l is learned,
and used as a backjump clause in a T -Backjump step.

• As before, if Theory Propagate is not applicable, then UnitPropagate is eagerly
applied by DPLL(X), and Fail or T -Backjump are applied if a conflicting
clause C is detected. After each T -Backjump application, Solver

T
is notified

for unassigning literals, and T -Learn is applied for learning the backjump
clause. Also Decide (only lazily) and Restart are applied as before.

• T -Forget is also applied as in the exhaustive case, but in this case among the
(less active) lemmas that are removed there are also theory lemmas.

5 The BarcelogicTools

In this section we describe BarcelogicTools, a set of logic-based tools developed
by our research group in Barcelona. The development of the BarcelogicTools
is funded by the Spanish Ministry of Education and Science (TIN2004-03382),
as well as by several private sources. The intended applications of Barcelogic-
Tools range from hardware and software verification to industrial combinato-
rial optimization problems (planning, scheduling). Most of the tools are built
around a state-of-the-art SAT solver, and there is also a DPLL(X) engine and
a number of theory solvers that can be combined forming different DPLL(T )
systems.
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5.1 SMT Inside BarcelogicTools

Currently, BarcelogicTools supports difference logic over the integers or the re-
als, equality with uninterpreted function symbols (EUF) and the interpreted
functions symbols predecessor and successor, or combinations of these theories.
More theory solvers for, e.g., linear integer and real arithmetic, the theory of
arrays, and bit vectors are under development.

The system is written in C. Apart from the parser and the CNF translator,
three are the main components of the system.

1. Its DPLL(X) engine has some 3500 lines of source code. It is based on
the DPLL procedure and implements state-of-the-art techniques such as the
two-watched literal scheme, 1UIP learning scheme and VSIDS-like decision
heuristics, but does not present any significant novelty wrt. state-of-the-art
SAT solvers.

2. The solver for EUF (some 4000 lines) is an extension of a congruence clo-
sure algorithm. Apart from determining the satisfiability of a given set of
equalities and disequalities E, it can detect that some literals in the origi-
nal formula are entailed by E. In addition, for each such literal the solver
can compute a small subset of E of which the literal is already a logical
consequence. More details can be found at [NO03, NO05c].

3. The solver for difference logic (1400 lines) can be seen an extension of a
shortest-path algorithm aimed at determining, given a consistent set of dif-
ference constraints S, all literals in the original formula that are logically
entailed by S. For each of these consequences, the solver can compute a min-
imal (wrt set inclusion) subset of S from which the literal is also entailed.
For further details see [NO05b].

The effectivity of our approach was shown at the 2005 SMT Competition
[BdMS05]. A large collection of benchmarks (around 1300) coming from di-
verse areas such software and hardware verification, bounded model checking,
finite model finding, or scheduling were classified, according to the underly-
ing theory or to some syntactic restrictions, into the 7 divisions of which the
competition consisted. For each division, around 50 benchmarks were randomly
chosen and given to each entrant with a time limit of 10 minutes per bench-
mark.

One single version of BarcelogicTools, our DPLL(T) implementation as de-
scribed in Section 4, entered (and won) all four divisions for which it had a theory
solver: EUF, IDL and RDL (integer and real difference logic), and UFIDL (com-
bining EUF and IDL). The same Among the competitors were well-known SMT
solvers like SVC [BDL96], CVC [BDS02], CVC-Lite [BB04], MathSAT [BBA+05]
and the very recent successors of ICS [FORS01], called Yices (by Leonardo de
Moura) and Simplics (by Dutertre and de Moura). For each division, the results
of the best three systems are given in the following table, where Time is the
total time for the solved problems :
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top-3 systems # Problems solved Time (secs.)
BarcelogicTools 39 1758.2

EUF (50 problems): Yices 37 1801.4
MathSAT 33 2186.2
BarcelogicTools 41 940.8

RDL (50 pbms.): Yices 37 1868.0
MathSAT 37 2608.0
BarcelogicTools 47 1131.2

IDL (51 pbms.): Yices 47 1883.2
MathSAT 46 1295.4
BarcelogicTools 45 305.2

UFIDL (49 pbms.): Yices 36 1989.8
MathSAT 22 1055.5

5.2 Ad-Hoc Theory Combination and UFIDL

Perhaps the most remarkable results obtained by BarcelogicTools in the SMT
Competition are the ones for the UFIDL division, where problems contain both
uninterpreted functions and difference logic atoms, interpreted with respect to
a background theory T of the integers. That is, atoms can be equalities s = t,
or atoms of the form s − t ≤ k, where s and t are ground terms built over
uninterpreted symbols, and k is a concrete integer (apart from ≤, also > may
appear).

Many general results exist for the modular combination of decision proce-
dures, à la Shostak, or à la Nelson-Oppen [Sho84, NO79]. But we believe that
for certain classes of problems it is better to apply a more ad-hoc combination
of theories. One particular example appears to be this combination of EUF and
IDL.

Our procedure proceeds as follows. It first checks whether the input formula
contains some ordering predicate (≤ or <).

– If this is the case, first all function symbols are removed by means of Ack-
ermann’s reduction [Ack54]: for each pair of occurrences in the formula of
terms of the form f(s1, . . . , sn) and f(t1, . . . , tn), a monotonicity clause

s1 = t1 ∧ . . . ∧ sn = tn −→ f(s1, . . . , sn) = f(t1, . . . , tn)
is added. After that, the equality predicate can be encoded as an equivalence
relation (i.e., not any more as a congruence relation). This can be done by
simply considering s = t as a difference logic atom (e.g., as s ≤ t ∧ t ≤ s),
and hence only a theory solver for difference logic needs to be used.

– If the input formula contains no ordering predicates ≤ or <, an EUF solver
using the congruence closure algorithm of [NO03] is used. Its extension with
integer offsets for dealing with the symbols predecessor and successor (also
described in [NO03]) allows for expressing literals of the form s − t = k as
equalities s = t + k.

Even if there are no ordering predicates, if the number of function symbols
is reasonably small it is sometimes still useful to add the monotonicity clauses
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of Ackermann’s transformation. The reason is that it allows one to detect some
propagations of negative equalities that would remain undetected in the non-
exhaustive theory propagation approach used by BarcelogicTools for EUF. More
precisely, it is not detected in general that f(a) �= f(b) implies a �= b, which
will be detected in the presence of the monotonicity clause a �= b ∨ f(a) =
f(b).

5.3 The Role of Theory Propagation in BarcelogicTools

In our experience, the overhead produced by theory propagation is usually com-
pensated by a significant reduction of the search space. In [GHN+04] we already
gave extensive experimental results showing its effectivity inside our DPLL(T )
approach for EUF logic, and in [NO05b] a large amount of experiments are dis-
cussed for difference logic, with additional emphasis on the good scaling proper-
ties. Hence it is not surprising that new SMT solvers such as Yices and MathSAT
also apply theory propagation. In fact, the most recent versions of MathSAT in-
clude exactly our congruence closure algorithms with theory propagation and
Explain [NO03, NO05c] for its EUF solver.

In the following two figures, BarcelogicTools with and without theory propa-
gation is compared in terms of runtime (in seconds) and number of decisions on a
typical real-world difference logic suite (fisher6-mutex) consisting of 20 problems
of increasing size.
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The figures show the typical behaviour on the larger problems: both the
runtime and the number of decisions are orders of magnitude smaller in the
version with theory propagation. In both cases the DPLL(X) engine used was
exactly the same, although in the exhaustive theory case some parts of the code
never applied (e.g., theory lemma learning).

Of course, theory propagation may not pay off in certain specific problems
where the theory plays an insignificant role, i.e., where reasoning is done almost
entirely at the boolean level. Such situations can be detected on the fly by
computing the percentage of conflicts which are produced in part due to theory
propagation. If this number is very low, theory propagation can be switched off
automatically in order to speed up the computation.
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5.4 Comparison of BarcelogicTools with the Eager Approach

For completeness, we finally compare DPLL(T ) with UCLID, the best-known
tool implementing the eager translation approach to SMT [LS04]. Three typical
series of benchmarks of difference logic are considered, coming from different
methods for pipelined processor verification given in [MS05a, MS05b]. Results of
runtimes in seconds (with one hour timeout) are given using Siege [Rya04] as
the final SAT solver for UCLID, since it gave the best results.

UCLID DPLL(T) UCLID DPLL(T) UCLID DPLL(T)
6 stage 258 1 3596 5 19 1
7 stage 835 3 >3600 8 58 1
8 stage 3160 15 >3600 18 226 1
9 stage >3600 23 >3600 18 664 1
10 stage >3600 54 >3600 29 >3600 2

6 Conclusions

We have shown that the Abstract DPLL formalism introduced here can be very
useful for understanding and formally reasoning about a large variety of DPLL-
based procedures for SAT and SMT.

In particular, we have used it here for describing two variants of a new,
efficient, and modular approach for SMT, called DPLL(T ). New theories can
be dealt with by DPLL(T ) by simply plugging in new theory solvers, which
must only be able to deal with conjunctions of theory literals and conform to a
minimal and simple set of additional requirements.

Current work inside the BarcelogicTools concerns the development of more
theory solvers, for, e.g., linear integer and real arithmetic, the theory of arrays,
and bit vectors, as well as the development of other logic-related tools.

Also, a new DPLL(X1, . . . , Xn) engine is being developed for automatically
dealing with the combination of theories, i.e., essentially standard theory solvers
for theories T1, . . . , Tn can be used for obtaining a system DPLL(T1, . . . , Tn). We
aimat an approach for doing this in away similar to the one of [BBC+05], butwhere
part of the equality reasoning takes place inside the DPLL(X1, . . . , Xn) engine.
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[ES03] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Proceed-
ings of the Sixth International Conference on Theory and Applications of
Satisfiability Testing (SAT), pages 502–518, 2003.

[FJOS03] C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe. Theorem proving using
lazy proof explanation. In Procs. 15th Int. Conf. on Computer Aided
Verification (CAV), LNCS 2725, 2003.
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Abstract. The paper describes the formalization and implementation of an ef-
ficient constraint programming framework operating on 3D crystal lattices. The
framework is motivated and applied to address the problem of solving the ab-
initio protein structure prediction problem—i.e., predicting the 3D structure of a
protein from its amino acid sequence. Experimental results demonstrate that our
novel approach offers up to a 3 orders of magnitude of speedup compared to other
constraint-based solutions proposed for the problem at hand.

1 Introduction

In this paper we investigate the development of a generic constraint framework for dis-
crete three dimensional (3D) crystal lattices. These lattice structures have been adopted
in different fields of scientific computing [7, 15], to provide a manageable discretization
of the 3D space and facilitate the investigation of physical and chemical organization of
molecular, chemical, and crystal structures. In recent years, lattice structures have be-
come of great interest for the study of the problem of computing approximations of the
folding of protein structures in 3D space [20, 3, 11, 12, 15]. The basic values, in the con-
straint domain we propose, represent individual lattice points, and primitive constraints
are introduced to capture basic spatial relationships within the lattice structure (e.g.,
relative positions, Euclidean and lattice distances). Variables representing those points
can assume values on a finite portion of the lattice. We investigate constraint solving
techniques in this framework, with a focus on propagation and search strategies.

The main motivation behind this line of research derives from the desire of more
scalable and efficient solutions to the challenging problem of determining the 3D struc-
ture of globular proteins. The protein structure prediction (or protein folding) problem
can be defined as the problem of determining, given the molecular composition of a pro-
tein (i.e., a list of amino acids, known as the primary structure), the three dimensional
(3D) shape (tertiary structure) that the protein assumes in normal conditions in biolog-
ical environments. Knowledge of the 3D protein structure is vital in many biomedical
applications, e.g., for perfect drugs design and for pathogen detection. We allow as in-
put some secondary structure knowledge (i.e., local 3D rigid conformations) that can

G. Sutcliffe and A. Voronkov (Eds.): LPAR 2005, LNAI 3835, pp. 48–63, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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be obtained directly from the primary sequence using predictors [19]. We can classify
our problem as ab-initio, since there is no other input information.

In recent decades, most scientists have agreed that the answer to the folding problem
lies in the concept of the energy state of a protein. The predominant strategy in solving
the protein folding problem has been to determine a state of the amino acid sequence in
the 3D space with minimum energy state. According to this theory, the 3D conformation
that yields the lowest energy state represents the protein’s natural shape (a.k.a. the native
conformation). The energy of a conformation can be modeled using energy functions,
that determine the energy level based on the interactions between any pairs of amino
acids [6]. Thus, we can reduce the protein folding problem to an optimization problem,
where the energy function has to be minimized under a collection of constraints (e.g.,
derived from known chemical and physical properties) [9].

The problem is extremely complex and it can be reasonably simplified in several
aspects, in order to reduce the overall complexity, without compromising the biological
relevance of the solutions. A common simplification relies on the use of lattice space
models to restrict the admissible positions of the amino acids in the space [1, 21, 20].
In this discrete space framework, the use of constraint solving techniques can lead to
very effective solutions [11, 3].1 Previous work conducted in this area relied on map-
ping the problem to traditional Constraint Logic Programming over finite domains
(CLP(FD)) (or making use of integer programming solutions [15]). In [11, 12], we
showed that highly optimized constraints and propagators implemented in CLP al-
low us to achieve satisfactory performances on small/medium size instances, improv-
ing precision over previous models [3]. Unfortunately, the CLP(FD) libraries we ex-
plored (SICStus Prolog and ECLiPSe) proved ineffective in scaling to larger instances
of the problem [12]. Furthermore, these libraries provided insufficient flexibility in im-
plementing search strategies and heuristics that properly match the structure of our
problem.

In this paper, we overcome the limitations of CLP(FD) encodings by implement-
ing the protein folding problem in our novel lattice constraint programming frame-
work. The novel solver is an optimized C program, that implements techniques for
constraint handling and solution search, dealing directly with lattice elements—i.e.,
our native FD variables represent 3D lattice points (lattice variables). We include an
efficient built-in labeling strategy for lattice variables and new search techniques for
specific rigid objects (predicted secondary structure elements). The experimental re-
sults obtained show a dramatic improvement in performance (102–103 speedups w.r.t.
SICStus 3.12.0 and ECLiPSe 5.8). We also implemented ideas and heuristics discussed
through the paper and show our solver is robust enough to tackle proteins up to 100
amino acids and to produce acceptable quality solutions, given the model in use. We
show that the encoding of the protein folding problem on Face-Centered Cubic (fcc)
lattices, using our native lattice constraint framework, allows us to process signifi-
cantly larger proteins than those handled in [11, 12], directly or by viewing them as
clusters composed of known parts. The code discussed in the paper can be found at
www.dimi.uniud.it/dovier/PF.

1 Even with simple lattice models, the problem is NP-complete [10].



50 A. Dal Palù, A. Dovier, and E. Pontelli

2 A New Constraint Solver on 3D Lattices

We describe a framework developed to solve Constraint Satisfaction Problems (CSPs)
modeled on 3D lattices. The solver allows us to define lattice variables with associated
domains, constraints over them, and to search the space of admissible solutions.

2.1 Variables and Domains

Crystal Lattices. A crystal lattice (or, simply, a lattice) is a graph (N, E), where N is a
set of 3D points (Px, Py, Pz) ∈ Z3, connected by undirected edges (E). Lattices contain
strong symmetries and present regular patterns repeated in the space. If all nodes have
the same degree δ, then the lattice is said δ-connected. Given A, B ∈ N , we define:

• the squared Euclidean distance as: eucl(A, B) = (Bx−Ax)2+(By−Ay)2+(Bz−Az)2

• the norm infinity as: norm∞(A, B) = max{|Bx −Ax|, |By −Ay|, |Bz −Az |}
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Fig. 1. An fcc-cube

In this work, we focus on fcc lattices, where:

N = {(x, y, z) | x, y, z ∈ Z and x + y + z is even} and
E = {(P, Q) | P, Q ∈ N, eucl(P, Q) = 2}.

Lattice points lie on the vertices and on the center point of each
face of cubes of size 2 (Fig. 1). Points at Euclidean distance√

2 are connected and their distance is called lattice unit. Two
points are in contact iff their Euclidean distance is 2. This lattice
is 12-connected. In [17] it is shown that the fcc model is a well-
suited, realistic model for 3D conformations of proteins.

Domains. A domain D is described by a pair of lattice points
〈D, D〉, where D = (Dx, Dy, Dz) and D = (Dx, Dy, Dz). D
defines a box:

Box(D) =
{
(x, y, z) ∈ Z3 : Dx ≤ x ≤ Dx ∧ Dy ≤ y ≤ Dy ∧ Dz ≤ z ≤ Dz

}
We only handle the bounds of the effective domain, since a detailed representation

of all the individual points in a volume of interest would be infeasible (due to the sheer
number of points involved). The approach follows the same spirit as the manipulation
of finite domains using bounds consistency [2]. The choice of creating a single variable
representing a three dimensional point is driven by the fact that consistency is less
effective when independently dealing with individual coordinates [16]. We say that D is
admissible if Box(D) contains at least one lattice point; D is ground if it is admissible
and D = D; D is empty (failed) if D is not admissible. We introduce two operations:

• Domain intersection: Given two domains D and E, their intersection is defined as
follows: D ∩ E = 〈↑ (D, E), ↓ (D, E)〉 where:

↑ (D, E) = ( max{Dx, Ex}, max{Dy, Ey}, max{Dz, Ez} )
↓ (D, E) = ( min{Dx, Ex}, min{Dy, Ey}, min{Dz, Ez} )

• Domain dilation: Given a domain D and a positive integer d, we define the domain
dilation operation (that enlarges Box(D) by 2d units) D + d as:

D + d = 〈(Dx − d, Dy − d, Dz − d), (Dx + d, Dy + d, Dz + d)〉
Each variable V , that represent lattice points, is associated to a domain DV = 〈DV , DV 〉.
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2.2 Constraints

We define the following binary constraints on variables, based on spatial distances.
Given two lattice variables V1, V2 and d ∈ N, we define the constraints:

CONSTR DIST LEQ(V1, V2, d) ⇔ ∃P1 ∈ B1, ∃P2 ∈ B2 s.t. norm∞(P1, P2) ≤ d
CONSTR EUCL(V1, V2, d) ⇔ ∃P1 ∈ B1, ∃P2 ∈ B2 s.t. eucl(P1, P2) = d
CONSTR EUCL LEQ(V1, V2, d) ⇔ ∃P1 ∈ B1, ∃P2 ∈ B2 s.t. eucl(P1, P2) ≤ d
CONSTR EUCL G(V1, V2, d) ⇔ ∃P1 ∈ B1, ∃P2 ∈ B2 s.t. eucl(P1, P2) > d

where B1 = Box(DV1 ), B2 = Box(DV2 ), and P1, P2 are lattice points.
All the constraints introduced are bi-directional (i.e., symmetric). Nevertheless, for

practical reasons, we treat them as directional constraints, using the information of the
first (leftmost) domain to test and/or modify the second domain. Consequently, every
time a constraint C over two variables has to be expressed, we will add in the constraint
store both constraints C(V1, V2, d) and C(V2, V1, d). A Constraint Satisfaction Problem
(CSP) on the variables V1, . . . , Vn with domains DV1 , . . . , DVn is a set of binary con-
straints of the form above. A solution of the CSP is an assignment of lattice points to the
variables V1, . . . , Vn, such that the lattice points belong to the corresponding variable
domains and they satisfy all the binary constraints.

Proposition: The general problem of deciding whether a CSP in the lattice framework
admits solutions is NP-complete.

Proof [Sketch]: The problem is clearly in NP. To show the NP-hardness, we reduce
the Graph 3-Colorability Problem of an undirected graph G(V, E) in our CSP (we
refer to cubic lattices. For other lattices, additional CONSTR EUCL G constraints might
be required to identify 3 points in the box). For each node ni ∈ V , we introduce a
variable Vi with domain DVi = 〈(0, 0, 0), (0, 0, 2)〉. Box(DVi ) contains three lattice
points (0, 0, j), corresponding to the color j. For every edge e = (ni, nj), we add the
constraint CONSTR EUCL G(Vi, Vj , 0), that constrains the points represented by the
variables to be at a distance greater than 0 (i.e., have a different color). �

The constraint store is a data structure used to implement a CSP, representing con-
straints, variables, and their domains. In our implementation, it is realized as a dynamic
array. For efficiency, we also maintain, for each variable Vi, the adjacency list con-
taining links to all the constraints C(Vi, Vj)—those that have to be considered after a
modification of the domain of DVi .

2.3 Constraint Solving

We modeled the solver considering the constrain phase separated from the search phase.
Thus, neither new variables nor constraints can be added during the search.

Propagation and Consistency. The constraint processing phase is based on propagat-
ing the constraints on the bounds of the domains in the 3 dimensions at the same time,
i.e., modifying the boxes of the domains.

The constraint CONSTR DIST LEQ(A, B, d) states that the variables A and B are
distant no more than d in norm∞. It can be employed to simplify domains through
bounds consistency. The formal rule is: DB = (DA + d) ∩DB .
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The constraint CONSTR EUCL LEQ(A, B, d) states that A and B are at squared
euclidean distance less than or equal to d. The sphere of radius

√
d, that contains

the admissible values defined by the constraint, can be approximated by the minimal
surrounding box that enclose it (a cube with side 2�

√
d�). The formal propagation

rule is: DB = (DA + �
√

d�) ∩ DB . This rule can also be applied in the case of
the CONSTR EUCL constraint (this constraint implies CONSTR EUCL LEQ). The con-
straint CONSTR EUCL G does perform any propagation. We also assume that an even-
tual cost function (to be optimized during the search for solutions) does not propagate
any information to the domains and thus it is handled as simple evaluation function.

Propagation is activated whenever the domain of a variable is modified. Let us con-
sider a situation where the variables G = {V1, . . . , Vk−1} have been bound to specific
values, Vk is the variable to be assigned next, and let NG = {Vk+1, . . . , Vn} be all
the remaining variables. The first step, after the labeling of Vk, is to check for consis-
tency the constraints of the form C(Vk, Vi), where Vi ∈ G (this is the node consistency
check). The successive propagation phase is divided in two steps. First, all the con-
straints of the form C(Vk, Vj) are processed, where Vj ∈ NG. This step propagates the
new bounds of Vk to the variables not yet labeled. Thereafter, bounds consistency, using
the same outline of AC-3 [2], is applied to the constraints of the form C(Vi, Vj), where
Vi, Vj ∈ NG. We carefully implemented a constant-time insertion for handling the set
of constraints to be revisited, using a combination of an array to store the constraints
and an array of flags for each constraint. This leads to the following result:

Proposition: Each propagation phase has a worst-case time complexity of O(n+ed3),
where n is the number of variables involved, e is the number of constraints in the con-
straint store, and d the maximum domain size.

Proof [Sketch]: Let us assume that the variable Vi is labeled. Each propagation for a
constraint costs O(1), since only arithmetic operations are performed on the domain
of the second variable. Let us assume that for each pair of variables and type of con-
straint, at most one constraint is deposited in the constraint store (it can be guaranteed
with an initial simplification). In the worst case, there are O(n) constraints of the form
C(Vi, Vj , d), where Vj is not ground. Thus, the algorithm propagates the new infor-
mation in time O(n), since each constraint costs constant time. The worst-case time
complexity of AC-3 procedure is O(ed3), where e is the number of constraints in the
constraint store and d the maximum domain size. �

Handling the Search Tree. The search procedures are implementations of a standard
backtracking+propagation search procedure [2]. The evolution of the computation can
be depicted as the construction of a search tree, where the internal nodes correspond to
guessing the value of a variable (labeling) while the edges correspond to propagating
the effect of the labeling to other variables (through the constraints). We implement two
variable selection strategies: a leftmost strategy—it selects the leftmost uninstantiated
variable for the next labeling step—and a first-fail strategy—it selects the variable with
the smallest domain size, i.e., the box with the smallest number of lattice points. The
process of selecting the value for a variable V relies on DV , on the structure of the un-
derlying lattice and on the constraints present. E.g., in a fcc lattice, if V is known to be
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only 1 lattice unit from a specific point in the lattice, then it has only 12 possible place-
ments, that can be tested directly, instead of exploring the full content of Box(DV ).

At the implementation level, the current branch of the search tree is stored into an
array; each element of the array represents one level of the current branch. A value-
trail stack is employed to keep track of variables modified during propagation, and
used to undo modifications during backtracking. Moreover, we allow the possibility of
collapsing levels of the search tree, by assigning a set of (related) variables in a single
step. This operation is particularly useful when dealing with variables that represent
points that are part of a secondary structure element.

2.4 Bounded Block Fails Heuristic

We present a novel heuristic to guide the exploration of the search tree, called Bounded
Block Fails (BBF). This technique is general and can be applied to every type of search,

V1 V3 V5 V6 V7 V9

V1

V3

V5

V6

V7

V9

B1

B2

Fig. 2. An fcc-cube

though it is particularly effective when ap-
plied to the protein folding problem [12]. The
heuristic involves the concept of block. Let
V̂ be a list [V1, . . . , Vn] of variables and con-
stants (i.e., ground variables). The collection
of variables in V̂ is partitioned in blocks of
fixed size k, such that the concatenation of all
the blocks B1B2 . . . B� gives the ordered list
of non ground variables in V̂ , where 	 ≤ �n

k �.
The blocks are dynamically selected, accord-
ing to the variable selection strategy and the
state of the search. Fig. 2 shows an example
for a list of 9 variables and k = 3. Dark boxes
represent ground variables.

The heuristics consists of splitting the search among the 	 blocks. Within each block
Bi, the variables are individually labeled. When a branch in block Bi is completely
labeled, the search moves to the successive block Bi+1, if any. If the labeling of the
block Bi+1 fails, the search backtracks to the block Bi. Here there are two possibilities:
if the number of times that Bi+1 completely failed is below a certain threshold ti, then
the process continues, by generating one more solution to Bi and re-entering Bi+1.
Otherwise, if too many failures have occurred, then the BBF heuristic generates a failure
for Bi as well and backtracks to a previous block. Observe that the count of the number
of failures includes both the regular search failures as well as those caused by the BBF
strategy. The list t1, . . . , t� of thresholds determines the behavior of the heuristic. In
Fig. 2, t1 = 3; note how, after the third failure of B2, the search on B1 fails as well.

BBF is an incomplete strategy, i.e., it can miss the optimum. However intuition and
experimental results suggest that it is effective in finding suboptimal solutions whenever
they are spread in the search tree. In these cases, we can afford to skip solutions when
generating block failure, because others will be discovered following other choices in
earlier blocks. In the context of searching for solutions in 3D lattices, a failure in the
current branch means that the partial spatial structure constructed so far (by placing
variables in the lattice) does not allow to proceed without violating some constraints.
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The BBF heuristic suggests to revise earlier choices (i.e., a “more drastic” revision of
the structure built so far) instead of exploring the whole space of possibilities depending
on the block that collects failures (i.e., a “more local” revision of the structure). The
high density and the large number of admissible solutions typically available in the
type of lattice problems we consider, permit to exclude some solutions, depending on
the threshold values, and to still be able to find almost optimal solutions in shorter time.

3 An Application: The Protein Folding Problem on the fcc Lattice

Fig. 3. Protein 1d6t native state

A protein folds in the 3D space with a high de-
gree of freedom and tends to reach the Native
conformation (tertiary structure) with a minimal
value of free energy. Native conformations are
largely built from secondary structure elements
(e.g., α-helices and β-sheets), often arranged in
well-defined motifs.

In Fig. 3, α-helices (contiguous amino acids
arranged in a regular right-handed helix) are in
dark color and β-sheets (collections of extended strands, each made of contiguous
amino acids) in light color. Following similar proposals (e.g., [1, 3, 15]), we focus on
fcc lattices. For details about the biological issues and lattice modeling see [11].

Let A be the set of amino acids (|A| = 20). Given a (primary) sequence S =
s1 · · · sn, with si ∈ A, we represent with lattice variable Vi the lattice position of
amino acid si—i.e., the placement of the amino acid si in the lattice. The modeling
leads to the following constraints:

• for i ∈ {1, . . . n− 1}, CONSTR EUCL(Vi, Vi+1, 2): adjacent amino acids in the pri-
mary sequence are mapped to lattice points connected by one lattice unit;

• for i ∈ {2, . . . n − 1}, CONSTR EUCL LEQ(Vi−1, Vi+1, 7): three adjacent amino
acids may not form an angle of 180◦ in the lattice;

• for i, j ∈ {1, . . . n}, |i − j| ≥ 2, CONSTR EUCL G(Vi, Vj , 4): two non-consecutive
amino acids must be separated by more than one lattice unit (no overlaps), and angles
of 60◦ are disallowed for three consecutive amino acids.

In fcc, the angle between three consecutive amino acids can assume only values 60◦,
90◦, 120◦, and 180◦, but volumetric constraints make values 60◦ and 180◦ infeasible.
The following additional constraints are also introduced [11]:

• CONSTR DIST LEQ(Vi, Vj , 4) are added whenever the presence of a ssbond be-
tween the amino acids si and sj is known; the ssbond (disulfide bridge) is a pre-
dictable limit on the distance in space between pairs of amino acids.

• CONSTR DIST LEQ(Vi, Vj , cf · n) are added, where cf is the compact factor, ex-
pressed as a number between 0 and 1, and n is the protein length. The compact
factor establishes an approximated maximal distance between amino acids.

A folding ω of S = s1 · · · sn is an assignment of lattice points to the variables
V1, . . . , Vn that is a solution of the CSP defined by the constraints above.
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A simplified evaluation of the energy of a folding can be obtained by observing the
contacts present in the folding. Each pair of non-consecutive amino acids si and sj

in contact (i.e., at Euclidean distance 2) provide an energy contribution, described by
the commutative function Pot(si, sj) [11]. These contributions can be obtained from
tables developed using statistical methods applied to structures obtained from X-Rays
and NMR experiments [6]. Finally, the protein structure prediction problem can be
modeled as the problem of finding the folding ω of S such that the following energy
cost function is minimized:

E(ω, S) =
∑

1≤i<n

∑
i+2≤j≤n contact(ω(Vi), ω(Vj)) · Pot(si, sj).

The function contact takes two lattice points and returns a value in {0, 1}:
contact(A, B) = 1⇔ eucl(A, B) = 4.

Together with the primary sequence S, we allow input knowledge about presence of
specific secondary structure elements (e.g., helices). These could be determined, for ex-
ample, using standard secondary structure prediction systems (e.g., PHD or PSI-pred).
This information can be used to impose several local constraints forcing a sequence of
points to assume the a rigid spatial form. In this paper, we view each rigid object (an
helix or a sheet) as a unique high-level disjunctive constraint, which is automatically
activated when one point in the secondary structure is labeled.

3.1 Variable Instantiation in the fcc Lattice

Once the constraints have been set up, the search phase is initiated. Different strategies
are employed to prune the search space at this stage.

If the variable Vi−1 (with first fail strategy also Vi+1) is ground and the variable Vi

has to be instantiated, it turns out that there are only 12 possible assignments allowed
by fcc—being the lattice 12-connected, and consecutive amino acids are connected
by exactly one lattice unit. Thus, it is convenient to expand the search tree for only
those 12 assignments that are compatible with the current domain of Vi. A more par-
ticular case, but very common, occurs when Vi−1 and Vi−2 (Vi+1 and Vi+2) are both
ground. In this case, the interaction of all constraints limits the values of Vi to at most
6 possible assignments—and only those that are also present in Box(DVi ) are used
to expand the search tree. This lattice dependent instantiation scheme allows us to di-
rectly assign feasible values, reducing the number of consistency checks. The use of
this strategy leads to a speedup of 2-3 times w.r.t. a labeling that explores all points in
Box(DVi ).

Another labeling strategy relates to the handling of secondary structure elements.
When the first variable belonging to a rigid object is labeled, all the other variables in it
are assigned, according to precomputed patterns that describe every possible orientation
of the secondary structure elements in the lattice. After a point in the secondary structure
is labeled, there are only 24 possible assignments for the whole rigid object, due to
the lattice constraints and symmetries. To save unnecessary work, moreover, after the
consistency checks are performed, the bounds consistency procedure is run only once,
after the propagation from the newly labeled variables has been completed.
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3.2 Pruning Minimal Contacts Heuristic

In this section, we present a branch and bound (BB) strategy, adapted to the specific
needs of the protein folding problem. In the case of the protein folding problem, a
generic branch and bound scheme, based on the estimation of the energy of the confor-
mation, proved to be rather ineffective with large input sizes. Our intuition is that the
cost function can collect many contributions at the very end of a branch and drastically
change its value. This behavior is particularly evident when processing large proteins.
As a result, the prediction of the bounds for the energy function, computationally ex-
pensive, reveals to be potentially inaccurate.

We adopted a more coarse and constant time cost estimation. The strategy we pro-
pose implements branch and bound using the number of contacts generated by the given
conformation as the information to perform pruning. In general, the global energy and
the number of contacts are strongly related. Nevertheless, since the energy function
is composed of weighted contributions of amino acids in contact, the two values may
occasionally diverge.

The computation of estimates of the number of contacts is facilitated by the peculiar
properties of the fcc lattice; e.g., each amino acid can form at most 3 contacts with other
ones. When a new best conformation is found, we compute the number c of contacts
realized. Assuming that, in the worst case, the last amino acids to be labeled generate 3
contacts each, at c/3 levels before the leaves, each subtree can be safely pruned when-
ever the number of contacts is less than c. This heuristic can be computed in constant
time since, given a partial assignment, an upper bound for possible contacts is imme-
diately known. Since the energy is not precisely expressed by the number of contacts,
we cannot guarantee the completeness of the heuristics. Nevertheless, empirical tests
showed that this is not a significant problem; our experiments indicated also that the
pruning of the last levels of the tree provides significant speedup during search.

Table 1. Effectiveness of contact pruning heuristic

Enumeration BB Heuristic
ID N Energy Nodes Time Energy Nodes Time
1kvg 12 -6,881 318,690 0.851s -6,881 124,722 0.540s
1le0 12 -4,351 1,541,107 4.015s -4,351 487,105 1.842s
1le3 16 -5,299 1,544,830 5.938s -5,299 439,969 2.513s
1edp 17 -12,279 20,491 0.140s -12,279 8,726 0.120s
1pg1 18 -10,352 56,934 0.280s -10,352 7,908 0.140s
1zdd 34 -12,315 268,061 5.037s -12,097 68,428 3.805s

In Table 1, we show
some experimental tests of
enumeration of the com-
plete search tree, with and
without the pruning heuris-
tic presented above (un-
der Windows on an AMD
Duron 1.0GHz). For each
protein ID of length N, we
run a complete enumera-
tion and then perform the
same search with the con-
tacts heuristic activated. In all cases, the heuristic improves time and reduces the num-
ber of nodes explored, without significantly changing the optima discovered.

4 Results and Comparisons

Efficiency Analysis. The first test we discuss is designed to benchmark the speed of
our solver. Our goal is to compare the solution to the protein folding problem using
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our lattice solver with the solution obtained by mapping the problem to finite domain
constraints—using SICStus 3.12.0 (clpfd) and ECLiPSe 5.8 (ic). We run complete
enumerations of the search tree using the first-fail strategy. To perform a fair compari-
son, we did not make use of branch and bound strategies in any of the implementations.

Table 2. Complete Search

ID Our SICStus ECLiPSe

1edp 0.063s 8.92s (142x) 1m.5s (1039x)
1pg1 0.156s 16.00s (103x) 1m.50s (704x)
1kvg 0.406s 40.81s (101x) 4m.22s (646x)
1le0 1.922s 6m.31s (203x) 33m.13s (1036x)
1le3 2.859s 9m.46s (205x) 59m.37s (1251x)
1zdd 2.437s insuff. memory > 8h. (>10000x)

We implement the protein struc-
ture prediction problem in SICStus
and ECLiPSe using the best for-
malization we developed in [12].
In our solver, we implement the
equivalent sets of constraints, re-
ported in Section 3, but expressed
in terms of finite domains. In
Table 2, we compare the run-
ning times required to explore the
whole search space. In the first col-
umn, we report the protein selected, in the second the time (in seconds) required by the
lattice solver to explore the search tree, while the last two columns report the corre-
sponding running times using SICStus and ECLiPSe (in brackets the speedup w.r.t. the
lattice solver). For these examples, we use proteins whose search tree can be exhaus-
tively explored in a reasonable time. These tests are performed using Windows (Pentium
P4, 2.4GHz, 256Mb RAM). Table 2 shows that the choices made in the design and im-
plementation of the new solver allow us to gain speedups in the order of 102–103 times
w.r.t. standard general-purpose FD constraint solvers. Moreover, our implementation is
robust and scales to large search trees with a limited use of memory. These positive
results have also an interesting side-effect: the solver allows us to quickly collect the
entire pool of admissible conformations for small proteins.

Quality of the Results. We analyze the foldings produced by our solver for proteins
for which the native conformation is known. In our case, we consider proteins with
known conformation from the PDB database [5]. Different ingredients come into play:
the use of a simplified spatial model (fcc in our case), the use of a simplified energy
function, and the use of a simplified protein model. Clearly, we cannot compare directly
our results to the ones deposited in the PDB. In [11], we showed how to enrich fcc
predictions to a solution relaxed in the continuous space. Only after that step a direct
comparison with the original protein in the PDB is meaningful. Since in these tests we
do not apply any refinement to our fcc solutions, we introduce a new quality measure,
in order to mask the errors induced by the use of the lattice. We analyze the foldings as
follows. We map an original protein from the PDB onto the fcc lattice, using the usual
constraints for an admissible conformation. Moreover, to reproduce the same shape
on the lattice, we add a set of distance constraints for each pair of amino acids taken
from the original protein. The distance constraints are relaxed to a range of possible
distances allowed for each pair, in order to allow the protein to find a placement in
the discretized space. This process produces a set of admissible foldings that are very
close to the original protein. These PDB over fcc proteins are the best representatives
on fcc of quasi-optimal foldings according to the native conformation. Since it is not
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possible to collect the complete set of solutions, due to time complexity, we select, as
representatives of the complete set, the enumeration of the first 1, 000 conformations
found. Out of this set we identify the best conformation evaluated according to the
comparison function introduced below.

The function used to compare the quality of the foldings cannot be the energy func-
tion used in the minimization process, since it accounts only for local contacts. We also
decided not to use a standard RMSD2 measure of spatial positions. This measure, in
fact, computes only the deviation of corresponding positions between two conforma-
tions, and does not take into account other properties of the amino acids being com-
pared. In our specific case, we want to include also the specific energy contribution
carried by every pair of amino acids. We developed a comparison function that includes
all these properties; basically the function is a more refined extension to continuous
values of the contact energy function. The comparison of two conformations is reduced
to comparing the values returned by the comparison function applied to the two confor-
mations. The comparison function is as follows:

compare(S, ω) = 4 ·
∑

i	=j contrib(i, j) /
√

eucl( ω(i), ω(j) )

where S is the sequence of amino acids and ω is the conformation. The function is nor-
malized w.r.t. the distance of a contact (i.e., 4). The function is a continuous extension
of our energy model, and it is tolerant to small changes in positions of amino acids,
compensating for the differences of the spatial and energetic models.

Table 3. compare applied to best,
PDB on fcc and PDB folding

ID Our PDB (1) PDB (2)

1kvg -19,598 -17,964 -28,593
1le0 -11,761 -12,024 -16,030
1le3 -20,192 -14,367 -21,913
1edp -46,912 -38,889 -48,665
1pg1 -44,436 -39,906 -58,610
1zdd -64,703 -63,551 -69,571
1e0n -57,291 -54,161 -60,728

In Table 3, we compare the evaluations with
the comparison function for different proteins;
the Our column reports the value of the com-
parison function applied to the best folding ob-
tained from our solver, using a complete search;
the PDB (1) column reports the value for the best
mapping of the PDB protein on the fcc lattice.
The PDB (2) column reports the value for the
original protein as in the PDB. This is useful to
compare how much the protein is deformed when
placed on the lattice.

It is interesting to discuss these data, since
our previous implementations [11, 12] could not
terminate a complete enumeration in reasonable
time. The results indicate that the values are indeed very close. It is important to re-
member that we are constrained to fold the proteins on the lattice structure, and thus
the values are expected to be closer to (1) than (2). In general, (2) should be an upper
bound for (1). Moreover, note that our best folding on lattice is often better than the
corresponding mapping from PDB to fcc. This is due to the fact that the pool of confor-
mations used in computing the PDB on fcc mapping is not complete, and the constraints
used in the two approaches are different. Visually, the predicted conformations are very
close to the corresponding original ones (e.g., Fig. 4).

2 Root-Mean-Square Deviation, a typical measure of structural diversity.
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Fig. 4. Protein 1zdd: our solution, fcc on PDB mapping and PDB

For medium and
large size proteins,
determining the op-
timal folding is
computationally in-
feasible. When
computing an ap-
proximated solution
for the folding of a
protein, it is also important to relate the result of the computation to the optimal solu-
tion, in order to evaluate the impact of the pruning strategies adopted. Once again we
use the scheme presented above to estimate the quality of our solutions—by comparing
how far our heuristic landed from the hypothetical optimal solution.

Heuristics Tests. To show the power of our constraint solver in handling ad-hoc search
heuristics, we test a set of selected proteins, with lengths ranging from 12 to 104. Table 4
reports the results of the executions; the Table indicates the PDB protein name, the
protein length (n) in terms of amino acids, the BBF thresholds value assigned to t1 =
· · · = t�, the time to complete the search, the evaluation of the comparison function
applied to the best solution, to the PDB on fcc, and to the original PDB. For BBF,
we decided to define the block size equal to �n/12� + 1 for n ≤ 48 and equal to 5
for larger proteins. We empirically noticed that larger block sizes provide less accurate
results, due to the higher pruning when failing on bigger blocks.

Proteins with more than 100 amino acids can be handled by our solver. This result
is improved over the capabilities of the previous proposed frameworks (60 [11] and
80 [12] amino acids). This improvement is non-trivial, because of the NP-completeness
of the problem at hand. The new heuristics provide more effective pruning of the search

Table 4. BBF experimental results (Linux, 2.8MHz, 512Mb RAM)

ID n CF BBF Time Energy PDB on fcc PDB

1kvg 12 0.94 50 0.16s -19,644 -17,964 -28,593
1edp 17 0.76 50 0.04s -46,912 -38,889 -48,665
1e0n 27 0.56 50 1.76s -52,558 -51,656 -60,728
1zdd 34 0.49 50 0.80s -63,079 -62,955 -69,571
1vii 36 0.48 50 4.31s -76,746 -71,037 -82,268
1e0m 37 0.47 30 19m57s -72,434 -66,511 -81,810
2gp8 40 0.45 50 0.27s -55,561 -55,941 -67,298
1ed0 46 0.41 50 8.36s -124,740 -118,570 -157,616
1enh 54 0.37 50 45.3s -122,879 -83,642 -140,126
2igd 60 0.35 20 2h42m -167,126 -149,521 -201,159
1sn1 63 0.18 10 58m53s -226,304 -242,589 -367,285
1ail 69 0.32 50 2m49s -220,090 -143,798 -269,032
1l6t 78 0.30 50 1.19s -360,351 -285,360 -446,647
1hs7 97 0.20 50 35m16s -240,148 -246,275 -367,687
1tqg 104 0.15 20 10m35s -462,918 -362,355 -1,242,015
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tree, and allow to collect better quality solutions. The tradeoff between quality and
speed is controlled by the BBF threshold: higher values provide a more refined search
and higher quality solutions. Moreover, the quality comparisons between our folding
and the mapping of PDB on fcc and PDB itself, reveal that our solutions, even for
larger proteins, are comparable to foldings of PDB on fcc. Note also that, for larger
proteins, the size of pool of the selected solutions for PDB on fcc mappings, becomes
insufficient, i.e., the difference of comparison function from the PDB value becomes
significant. For large proteins, it is an open problem in the literature how to precisely
estimate the errors arising from discretizing the protein structure in a lattice space.

Scalability. A distinct advantage of our approach is its ability to readily use addi-
tional knowledge about known components of the protein in the resolution process,
as long as they can be expressed as lattice constraints. In particular, some proteins, like
hemoglobin, are constructed of a cluster of subunits, whose structure is known and al-
ready deposited in the PDB (or can be predicted). This approach follows the evolution
of proteins, i.e., combination of already existing pieces into new bigger blocks. Often
biologists explore unknown proteins by extracting the structure of sub-blocks by ho-
mology from the PDB. Our constraint-based approach can easily take advantage of the
known conformations of the subsequences, treated as rigid spatial objects described by
constraints, to determine the overall conformation of the protein. This ability is lacking
in most other approaches to the problem; our previous finite domains encodings cannot
handle proteins with more than 100 amino acids.

To study the scalability of our solver, we report some tests on artificial proteins
having a structure of the type XY Z , i.e., composed of two known subsequences (X and
Z), while Y is a short connecting sequence. We can show that our framework can easily
handle proteins of size up to 1, 000 amino acids. We run some complete enumerations
varying the length of Y and the proteins used as pattern for X and Z .

In our tests, we load the proteins X and Z as predicted in Table 4. We link them with
a coil of amino acids with length |Y | (leaving X and Z free of moving in the lattice
as rigid objects). The search is a simple enumeration using Leftmost variable selection.

Table 5. From left to right, processing proteins XY Z (a), and ratios sphere/box approach (b)

X Z |X| |Y | |Z| Time

1e0n 1e0n 27 5 27 11.3s
1e0n 1e0n 27 6 27 1m5s
1ail 1ail 69 5 69 1m25s
1ail 1ail 69 6 69 7m52s
1hs7 1hs7 97 5 97 3m7s
1hs7 1hs7 97 6 97 16m25s
1e0n 1e0n 27 3 27 0.40s
1e0n-2 1e0n-2 57 3 57 1.92s
1e0n-4 1e0n-4 117 3 117 9.26s
1e0n-8 1e0n-8 237 3 237 29.7s
1e0n-16 1e0n-16 477 3 477 1m48s

ID Nodes Time
1pg1 1.00 1.34
1kvg 1.95 2.39
1le0 1.00 1.06
1le3 1.02 1.16
1edp 2.96 2.00
1zdd 1.30 2.18
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Table 5 (a) shows that the computational times are extremely low, and dominated by
the size of Y , instead of the size of XY Z . In the second part of the Table, we consider
proteins constructed as follows: we start with X and Z equal to the 1e0n protein (whose
folding can be optimally computed), and every successive test makes use of X ′ =
Z ′ = XY Z—i.e., at each experiment we make use of the results from the previous
experiment. This approach allowed us to push the search to sequences of size up to
1, 000 amino acids. In these experiments, our concern is not only the execution time,
but the ability of the solver to make use of known structures to prune the search tree.

Boxes vs Spheres. We tested a different formalization of the variables domains, where
domains are represented as spheres instead of using Box. We reimplemented in our
solver the domain description of a variable in terms of a center and a radius (with dis-
crete coordinates) and the definition of an intersection of spheres as the smallest sphere
that includes them. The idea is that a sphere should be more suitable to express the prop-
agation of euclidean distance constraints. Unfortunately, results reported in Table 5 (b)
show that this idea is not successful. The Table reports in the first column the test pro-
tein used, in the second the ratio of visited nodes in the search tree between sphere
over box implementations. The last column provides the ratio of computation times be-
tween the two implementations. In particular, note that many more internal nodes are
expanded in the sphere implementation. There are two reasons for this. First, computing
spheres intersection is more expensive than intersecting boxes. Second, often two inter-
secting spheres are almost tangent. In this case the correct intersection is approximated
by another sphere that includes a great amount of discarded volume.

5 Related Works

The problem of protein structure prediction is a fundamental challenge [20] in molec-
ular biology. An abstraction of the problem, that has been investigated, is the ab-initio
problem in the HP model, where amino acids are separated into two classes (H , hy-
drophobic, and P , hydrophilic). The goal is to search for a conformation produced by
an HP sequence, where most HH pairs are neighboring in a predefined lattice. The
problem has been studied on 2D square lattices [10, 15], 2D triangular lattices [1], 3D
square models [15], and fcc lattices [17]. Backofen et al. have extensively studied this
last problem [3, 4]. Integer programming approaches to this problem have also been
considered [14]. The approach is suited for globular proteins, since the main force driv-
ing the folding process is the electrical potential generated by Hs and P s, and the
fcc lattices are effective approximations of the 3D space. Backofen’s model has been
extended in [11, 6], where the interactions between classes H and P are refined as in-
teractions between every pair of amino acids, and modeling of secondary structures has
been introduced.

The use of constraint technology in the context of the protein folding problem has
been fairly limited. Backofen and Will used constraints over finite domains in the con-
text of the HP problem [4]. Rodosek [18] proposed an hybrid algorithm which com-
bines constraint solving and simulated annealing. Clark employed Prolog to implement
heuristics in pruning a exhaustive search for predicting α-helix and β-sheet topology
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from secondary structure and topological folding rules [8]. Distributed search and con-
tinuous optimization have been used in ab-initio structure prediction, based on selec-
tion of discrete torsion angles for combinatorial search of the space of possible foldings
[13]. Krippahl and Barahona [16] used a constraint-based approach to determine protein
structures compatible with distance constraints obtained from NMR data.

In this work we adopted an approach different from the previous literature [3, 11,
12], where the modeling relied on traditional FD constraints. The description of a 3D
lattice model using (single dimensional) FD-variables requires a complex interaction
of constraints, in order to reproduce the natural correlation between the coordinates
of the same lattice point. This leads to larger encodings with many constraints to be
processed. Moreover, arc and bounds consistency reduce the domains one dimension at
a time, and the system stores the explicit set of admissible (single-dimensional) points.
Scalability is also hampered in this type of encodings. Our experience [11, 12] indicates
that performance of these representations based on SICStus and ECLiPSe solvers is
insufficient for larger instances of the problem.

The constraint model adopted in this paper is similar in spirit to the model used
in [16]—as they also make use of variables representing 3D coordinates and box do-
mains. The problem addressed in [16] is significantly different, as they make use of a
continuous space model, they do not rely on a energy model, and they assume the avail-
ability of rich distance constraints obtained from NMR data, thus leading to a more con-
strained problem—while in our problem we are dealing with a search space of O(6n)
conformations in the fcc lattice for proteins with n amino acids. Every modification of a
variable domain, in our version of the problem, propagates only to a few other variables,
and every attempt to propagate refined information (i.e., the good/no good sub-volumes
of [16]) when exploring a branch in the search tree, is defeated by the frequent back-
tracking. Thus, in our approach we preferred a very efficient and coarse bounds consis-
tency. The ideas of [16], i.e., restricting the space domains for rigid objects is simply
too expensive in our framework (see [12]). We opted for a direct grounding of rigid
objects, since in lattices there are few possible orientations. In our case, the position of
objects can be basically anywhere, due to the lack of strong constraints. The techniques
of [16] would be more costly and produce a poor propagation.

6 Conclusion and Future Work

We presented a formalization of a constraint programming framework on crystal lattice
structures—a regular, discretized version of the 3D space. The framework has been re-
alized into a concrete solver, with various search strategies and heuristics. The solver
has been applied to the problem of computing the minimal energy folding of proteins
in the fcc lattice, providing high speedups and scalability w.r.t. previous solutions. The
speedups derive from a more direct and compact representation of the lattice constraints,
and the use of search strategies that better match the structure of the problem. We pro-
posed general lattice (BBF) and problem-specific heuristics, showing how they can be
integrated in our constraint framework to effectively prune the search space.

As future work, we plan to extend the investigation of search strategies and heuris-
tics. We also propose to explore the use of parallelism to further improve scalability of
the solution to larger instances of the problem.
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Abstract. Earlier we introduced Constraint Lambda Calculi which in-
tegrate constraint solving with functional programming for the simple
case where the constraint solver produces no more than one solution to
a set of constraints. We now introduce two forms of Constraint Lambda
Calculi which allow for multiple constraint solutions. Moreover the lan-
guage also permits the use of disjunctions between constraints rather
than just conjunction. These calculi are the Unrestricted, and the Re-
stricted, Disjunctive Constraint-Lambda Calculi. We establish a limited
form of confluence for the unrestricted calculus and a stronger form for
the restricted one. We also discuss the denotational semantics of our
calculi and some implementation issues.

1 Introduction

Constraint programming languages have been highly developed in the context of
logic programming (see e.g. [9, 3] and, regarding confluence, [14]). In [11] Mandel
initiated the use of the lambda calculus as an alternative to a logic programming
base. There were many difficulties and, in particular, the treatment of disjunc-
tion was not very satisfactory (see [12]). It has turned out to be surprisingly
difficult to get a transparent and elegant system for the functional programming
paradigm. This was ultimately accomplished in [6] and [8], where we introduced
the unrestricted and restricted constraint-lambda calculi. In this paper we ex-
pand the language of these calculi to include disjunction in constraints.

The basic problem with the introduction of disjunction or, indeed with mul-
tiple solutions, is easily demonstrated by the example (first noted, we believe,
by Hennessy [5]) (λx.x + x)(2|3) where “2|3” means “2 or 3”. If a choice is first
made of a value of the disjunction “2|3”, then there are two answers: 4 and 6.
If the β-reduction is performed first, then the result is (2|3) + (2|3). In this case
there is also the possible interpretation that the first value should be chosen to
be 2 and the second to be 3 (or vice versa) yielding an additional answer: 5.

We propose two solutions, one for each possibility, in Sections 2 and 8.
The systems that we define are extensions of our calculi in [8]. Because we

now have multiple solutions as a matter of course we cannot expect conflu-
� Special thanks to Martin Wirsing for his support, interest and extremely helpful
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ence.1 Nevertheless we are able to establish a weaker property, which we call
path-confluence, in Theorem 2 for the Restricted Disjunctive Constraint-Lambda
Calculus.

We briefly discuss the denotational semantics of our systems and implementa-
tion issues. Then we turn to the question of multiple constraint stores and finally
we compare our systems with the earlier work of Mandel and Cengarle [13] and
other current approaches to constraint-functional programming integration.

2 Unrestricted Disjunctive Constraint-Lambda Calculus

The Constraint Language. A constraint is a relation that holds between
several entities from a fixed domain. We assume a notion of equality, denoted by
=, is given. Typical constraint domains are the real numbers, the integers, or a
finite subset of the integers.

A constraint language is a 4-tuple L = (C,V ,F ,P), where C = {c1, c2, . . . } is
a set of individual constants, V = {X1, X2, . . . } is a set of constraint variables,
F = {f1, f2, . . . } is a set of function letters with fixed arity, and P = {P1, P2, . . . }
is a set of predicate symbols, again with fixed arities. We assume that a constant,
⊥, representing the undefined value is included in C. The set T of constraint terms
over a constraint language L is defined inductively in the usual way. Constraint
terms containing no variables are called ground and Tg is the set of all ground
constraint terms. Model-theoretic notions such as model and satisfaction are
defined for sets of formulae in the constraint language in the usual way.

Definition 1. If P is a predicate letter with arity n and t1, . . . , tn are constraint
terms, then P (t1, . . . , tn) is an atomic constraint. The set of constraints C is
the closure of the atomic constraints under conjunction (∧) and disjunction (∨).
The empty conjunction is written as true and the empty disjunction as false.

Definition 2 (Inconsistent constraints). A set S = {C1, C2, . . . , Cn} of con-
straints is said to be inconsistent, if S is not satisfiable.

The denotation of a constraint term in a constraint language L over a con-
straint domain D, is defined by evaluating it in the usual way (which gives
the usual properties): value : (V → D) → T → D. So if θ : V → D then
value(θ) : T → D.

Convention 1 (Canonical names). We assume that there is an idempotent
mapping (canonical naming) n : Tg → C with the following properties:

value(θ)(n(t)) = value(θ)(t) (1)(
value(θ)(t1) = value(θ)(t2)

)
=⇒ n(t1) ≡ n(t2) (2)

1 Confluence is the property that when a lambda-calculus-style term M is reduced in
two different ways (possibly in many steps) to M1 and M2 then (up to renaming of
bound variables) there is a third term M3 to which both M1 and M2 reduce.



66 M.M. Hölzl and J.N. Crossley

for all maps θ : V → D, where = is the semantic equality of the constraint domain
and ≡ is syntactic equality. The image of a ground constraint term under n is
called its canonical name, the image of the constraint domain under n is the set
of canonical names. We write cn or cni for canonical names and CN for n[Tg].

A constraint store is a set of constraints. The only operation on constraint
stores is the addition of a new constraint to the store, denoted by S ⊕ C:

S ⊕ C = S ∪ {C}.

We shall only be concerned with formulae, principally equations, implied by a
constraint store S, therefore a constraint solver may simplify the set of con-
straints contained in the constraint store without changing the possible reduc-
tions. Since, for our purposes, all inconsistent stores are equivalent, we write ⊗
to denote any inconsistent store and we then write S = ⊗.

Syntax. The syntax for constraint-lambda terms is given by:2

Λ ::= x | X | c | f(Λ, . . . , Λ) | λx.Λ | ΛΛ | {GC}Λ,

GCT ::= Λ, GC ::= P (GCT, . . . , GCT ) | (GC ∧GC) | (GC ∨GC).

The syntactic categories are:

– Constraint-lambda terms (Λ): These are the usual lambda terms aug-
mented with a notation for constraint-variables (variables whose values are
computed by the constraint solver) and a notation to describe the addition
of constraints to the constraint store.

– General constraint terms (GCT ): These are augmented terms of the con-
straint language. Constraint-variables may appear as part of a lambda term
or as part of a general constraint term. This makes it possible to transfer
values from the constraint store to lambda terms. Similarly, a lambda term
may appear inside a constraint term. Having lambda variables inside con-
straints allows us to compute values in the lambda calculus and introduce
them as part of a constraint. We also allow arbitrary lambda terms inside
constraints. These terms have to be reduced to constraint terms before being
passed to the constraint solver.

– General constraints (GC): These are primitive constraints as well as dis-
junctions and conjunctions of constraints (defined in terms of general con-
straint terms instead of the usual constraint terms). They correspond to,
but are slightly more general than, the notion of constraint in the previ-
ously defined constraint-language, since they may include lambda terms as
constituents.

Note. The generalized constraint terms correspond exactly to the constraint-
lambda terms. Nevertheless we consider it important to distinguish these two
sets, since the set of pure constraint-lambda terms and pure constraint terms
are disjoint:
2 In the rest of the paper we sometimes omit the parentheses around disjunctions and

conjunctions.
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Definition 3. We call a constraint-lambda term pure if it contains no term of
the form {C}M ; we call a constraint term pure if it contains no lambda term,
i.e., if the only constraint-lambda terms it contains are constraint variables, con-
stants or applications of function-symbols to pure constraint terms. A constraint
C is called a pure constraint if every constraint term appearing in C is pure.
We write Λp for the set of all pure constraint-lambda terms not containing ⊥.

Free and bound variables and substitution are defined in a straightforward
way (see [6] for details). Only lambda variables may appear as free and bound
variables, i.e., FV(X) = ∅ = BV(X). As usual we identify α-equivalent terms, so
we can freely rename bound variables and also ensure no variable appears both
free and bound in M . We postulate the following:

Convention 2 (Variable Convention). The following property holds for all
λ-terms M : No variable appears both free and bound in M , FV(M)∩BV(M) = ∅.
Furthermore, we can always assume by changing bound variables (if necessary)
that for different subterms λx.M1 and λy.M2 of M , we have x �= y.

Reduction Rules. It is necessary to take the constraint stores into account
in defining the reductions of our constraint terms since the stores interact with
these terms, so we define reductions on pairs (M, S) where S is a constraint
store.
Rule 1. Fail on an Inconsistent Store (M,⊗)→ (⊥,⊗) (⊥)

Rule 2. Beta-reduction ((λx.M)N, S) → (M [x/N ], S) (β)

Rule 3. Reduce Pure Constraint Terms
(C, S) → (n(C), S) if C is pure, C ∈ Tg and C �= n(C) (CR)

Rule 4. Introduce Constraint
({C}M, S)→ (M, S ⊕ C) if C is a pure constraint (CI)

Rule 5. Use Constraint
(X, S)→ (cn, S ⊕ (X = cn)) if (S ⊕ (X = cn)) �= ⊗ and cn ∈ CN (CS)

Notes on the Rules.
Rule 1. Reductions resulting in inconsistent stores correspond to failed com-

putations in logic programming languages.
Rule 2. We allow full beta-reduction in the disjunctive constraint-lambda

calculi. E.g., if we have the integers as constraint domain, (λx.x + 1)5→ 5 + 1.
Rule 3. This rule ties the constraint system into the lambda calculus. E.g.,

continuing our example: 5 + 1 → 6. We do not allow arbitrary transformations
between pure constraint terms, since this does not increase the expressive power
of the system.3

3 This rule was not included in our earlier work [8] but it easy to verify that it does
not affect the confluence properties.
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Rule 4. We only allow pure constraints to be passed to the constraint store
since otherwise the constraint solver could perform transformations other than
β-reduction on lambda terms. This would increase the power of the system since
“oracles” might be introduced as predicates in the constraint language. But it
would also require the constraint theory to be a true superset of the lambda
calculus. This would pose a major problem for practical applications of the
calculus, since most constraint systems cannot handle lambda terms.

Rule 5. A constraint variable may be instantiated to any value that is con-
sistent with the constraint store. We only introduce canonical names into the
lambda term since this allows us to obtain confluent restrictions of the disjunc-
tive calculus. We introduce the constraint X = cn into the constraint store to
remove the possibility of substituting different values for the same variable.

Definition 4. We say a constraint lambda term M is reducible with store S if
one of the rules (⊥), (β), (CR), (CI) or (CS) is applicable to the pair (M, S).
We say M is reducible if it is reducible for all stores S. We write M → M ′ as
an abbreviation for ∀S.∃S′.(M, S) → (M ′, S′).

We call a sequence of zero or more reduction steps (M1, S1)→ (M2, S2), . . . ,
(Mn−1, Sn−1)→ (Mn, Sn) a reduction sequence and abbreviate it by (M1, S1) →∗

(Mn, Sn). We write M →∗ M ′ as an abbreviation for ∀S.∃S′.(M, S) →∗ (M ′, S′).

Example 1. Without the addition of X = M to the store we would have:

(X + X, {X = 2 ∨X = 3})→ (2 + X, {X = 2 ∨X = 3})
→ (2 + 3, {X = 2 ∨X = 3}).

If we add the new constraint to the store, there are only two (essentially differ-
ent) possible reduction sequences:

(2) (X + X, {X = 2 ∨X = 3})→ (2 + X, {X = 2 ∨X = 3, X = 2})
→ (2 + 2, {X = 2 ∨X = 3, X = 2})

(3) (X + X, {X = 2 ∨X = 3})→ (3 + X, {X = 2 ∨X = 3, X = 3})
→ (3 + 3, {X = 2 ∨X = 3, X = 3}).

Obviously the order in which the variables are instantiated can be changed.

We need to have the reductions commute with the constructions of con-
straints in order to allow reductions of subterms. (For example, a pair of the
form (λx.(λy.y)x, S) ought to be reducible to (λx.x, S).) If the reduction of a
subterm changes the store, then this change propagates to the store associated
with the enclosing term. We give only a few examples. If (M, S)→ (M ′, S′),

(f(M1, . . . , M, . . . , Mn), S)→ (f(M1, . . . , M
′, . . . , Mn), S′)

(L ∧M, S)→ (L ∧M ′, S′), (LM, S)→ (LM ′, S′)
(λx.M, S) → (λx.M ′, S′), ({M}N, S)→ ({M ′}N, S′)

To avoid infinite reduction paths where the terms differ only in the names of
constraint variables we impose:
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Convention 3. We assume a well-founded partial order ≺ on the set of con-
straint variables. Substitution in rule (CS) is only allowed if, for every variable
Y in M , we have Y ≺ X.

Example 2. We write (x|y)X as an abbreviation for {X = x ∨X = y}X with a
fresh constraint-variable X . When we reduce the term (λx.x+ x)(2|3)X with an
empty constraint store, we obtain as one possible reduction sequence:

((λx.x + x)(2|3)X , {})→ ({X = 2 ∨X = 3}X + {X = 2 ∨X = 3}X, {})
→ (X + {X = 2 ∨X = 3}X, {X = 2 ∨X = 3})
→ (2 + {X = 2 ∨X = 3}X, {X = 2})
→ (2 + X, {X = 2})
→ (2 + 2).

3 Confluence

It is not possible to have confluence in the traditional sense for the unrestricted
calculus because different reductions can lead to different constraint stores as
well as to different solutions.

Example 3. Consider the pair ((λx.X)({X = cn}M), ∅), where the constraint
store is initially empty. This can be reduced in two different ways. In the first
the final store contains X = cn but in the second the store remains empty and it
is not possible to carry out any further reduction. Thus we have the reductions:

((λx.X)({X = cn}M), ∅)→ ((λx.X)M, {X = cn}) by (CI)
→ (X, {X = cn}) by (β)

(∗) → (cn, {X = cn}) by (CS)
but we also have

(∗∗) ((λx.X)({X = cn}M), ∅)→ (X, ∅) by β-reduction,

and there is no way to reduce (∗) and (∗∗) to a common term.

Note that the constraint store may contain different sets of constraints at differ-
ent stages of the the reduction so that, while a constraint substitution may not
be possible at some reduction step, it may become possible later.

Definition 5. Suppose that in a reduction sequence (M1, S1) →∗ (Mn, Sn) we
apply rule (CS) zero or more times and replace Xi by cni. If a store S exists,
such that, for all these applications of rule (CS), we have S |= Xi = cni, then
we say that (M1, S1) →∗ (Mn, Sn) is a reduction sequence that can be restricted
to store S.

Let (M, S)→∗ (M1, S1) and (M, S) →∗ (M2, S2) be two reduction sequences.
We say these reduction sequences are compatible if S1 ∪ S2 is consistent.
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Definition 6. We call the following property confluence as a reduction system:
For every pair of reductions (M, S) →∗ (M1, S1) and (M, S) →∗ (M2, S2) such
that both reduction sequences can be restricted to store S there exist a term N
and stores S′

1, S′
2 such that (M1, S1)→∗ (N, S′

1) and (M2, S2)→∗ (N, S′
2).

Example 1 shows that the unrestricted disjunctive constraint-lambda calculus
is not confluent as a reduction system since different reductions may introduce
different values for a constraint variable. But if two reductions introduce the
same values for all constraint-variables then their results can be reduced to a
common term. This property is made explicit in the remainder of this section.

Since each application of the rule (CS) introduces a constraint Xi = cni into
the store it is clear that all applications of rule (CS) for a variable X in two
compatible reduction sequences substitute the same value for X . From this we
may conclude that the reduction sequences (M, S1 ∪ S2) →∗ (M1, S1 ∪ S2)
and (M, S1 ∪ S2)→∗ (M2, S1 ∪ S2) (obtained from the original sequences by
extending the stores but not changing any reductions) are reduction sequences
in the single-valued calculus of [8]. These sequences can trivially be restricted to
S1 ∪ S2. It follows from the confluence as a reduction system of the single-valued
constraint-lambda calculus which was proved as Theorem 1 in [8] that there is a
term N and a store S′ such that both (M1, S1 ∪ S2) and (M2, S1 ∪ S2) reduce
to (N, S′). We therefore have:

Theorem 1. Let (M, S) →∗ (M1, S1) and (M, S) →∗ (M2, S2) be compati-
ble reduction sequences. Then there is a term N and a store S′ such that both
(M1, S1 ∪ S2) and (M2, S1 ∪ S2) reduce to (N, S′).

4 Restricted Disjunctive Constraint-Lambda Calculus

The restricted constraint-lambda calculus has the same reduction rules as the
unrestricted constraint-lambda calculus, but the allowed terms are only those
from λI (not λK, see Barendregt [1], Chapter 9) so an abstraction λx.M is only
allowed if x ∈ FV (M):

Definition 7. The set of restricted constraint-lambda terms, RCTs, ΛI is de-
fined inductively by the following rules:

– Every lambda variable x and every constraint variable X is a RCT.
– If M is a RCT and x ∈ FV(M), then λx.M is a restricted lambda term.
– If M and N are restricted lambda terms, then MN is a RCT.
– If C is an extended constraint and M a restricted constraint-lambda term,

then {C}M is a RCT.

The sets of extended constraints and extended constraint terms (corresponding
to GC and GCT ) are defined similarly to the sets of general constraints and
general constraint terms, but with RCTs in place of general constraint terms.

We write M ∈ ΛI if M is a restricted lambda term.
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We use the same conventions as for the unrestricted constraint-lambda cal-
culus, most importantly, we use the variable convention. The reduction rules for
the restricted constraint-lambda calculus are the same as for the unrestricted
constraint-lambda calculus. The terms of the restricted constraint-lambda cal-
culus satisfy certain properties that are not necessarily true of unrestricted terms.

Lemma 1. 1. λx.M, N ∈ ΛI =⇒ M [x/N ] ∈ ΛI ,
2. λx.M ∈ ΛI =⇒ FV((λx.M)N) = FV(M [x/N ]),
3. M ∈ ΛI , M →∗ N =⇒ N ∈ ΛI, and
4. M ∈ ΛI , M →∗ N, N �= ⊥ =⇒ FV(M) = FV(N).

For the proof see [6].
The following Lemma holds for terms of ΛI . A normal form is a term which

cannot be reduced.

Lemma 2. Let M ∈ ΛI. If (M, S)→∗ (N, S′), where N is a normal form, then
every reduction path starting with (M, S) is finite.

The proof is similar to the one in [1]. We make use of the previously introduced
Convention 3 for rule (CS) (see page 69) to show that no infinite (CS)-reduction
sequences can occur. This Lemma is also true for the restricted single-valued cal-
culus. Since we make no other use of this Lemma we omit the details.

5 Path-Confluence

The single-valued restricted constraint-lambda calculus was proved in [8] to be
confluent so we can improve Theorem 1 for terms of the Restricted Disjunctive
Constraint-Lambda Calculus to the following whose proof may be found in [6].
Path-confluence requires a controlled sequence of choices of extensions to stores.

Theorem 2 (Path-confluence). Let M be a RCT and let (M, S)→∗ (M1, S1)
and (M, S)→∗ (M2, S2) be compatible reduction sequences. Then there is a term
N and a store S′ such that both (M1, S1) and (M2, S2) reduce to (N, S′).

6 Denotational Semantics

We defined the denotational semantics of the constraint-lambda calculus without
disjunction in [8] and we recall only a few key points here. We let E denote the
semantic domain of the constraint-lambda terms. The denotational semantics
are defined in such a way that each model for the usual lambda calculus can be
used as a model for the constraint-lambda calculus provided that the model is
large enough to allow an embedding emb : D → E of the underlying constraint
domain D into E. This is usually the case for the constraint domains appearing
in applications. As usual we have an isomorphism E → E $ E (see e.g. [1],
chapter 5). We denote environments by η (a mapping from lambda variables to
E). We can then define a semantic valuation from the set of constraint terms,
T , into D which we call val : T → D. We shall write val ′ for emb ◦ val : T → E.
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We associate a pure lambda term with every constraint-lambda term by
replacing all constraint variables by lambda variables. Let M be a constraint-
lambda term with constraint variables {X1, . . . , Xn} and let {x1, . . . , xn} be a set
of distinct lambda variables not appearing in M . Then the associated constraint-
variable free term, cvt (M), is the term

λx1 . . . λxn.(M [X1/x1] . . . [Xn/xn]).

We separate the computation of a constraint-lambda term into two steps.
First we collect all constraints appearing in the term and compute all the lambda
terms contained therein in the appropriate context. Then we apply the associated
constraint-variable free term to the values computed by the constraint-solver to
obtain the value of the constraint-lambda term.

For a constraint-lambda term M and store S we set

1. Dη as the denotation of a constraint-lambda term in an environment η when
the constraints are deleted from the term.4

2. The function CC applied to the constraint-lambda term, M , collects all con-
straints appearing in M and evaluates the lambda expressions contained
within these constraints. The superscript C on C denotes the recursively
generated context.

The semantics of a single-valued constraint-lambda term with respect to a store
S is defined as

[[(M, S)]] = {Dη(cvt (M)v1 . . . vn) | S ∪ C◦(M) & X1 = v1, . . . , Xn = vn}
where Dη defines the usual semantics for pure lambda terms and ignores con-
straints contained within a term. The superscript ◦ on C indicates that we are
starting with the empty context and building up C as we go into the terms. The
environment η is supposed to contain bindings for the free variables of M .

Intuitively, this definition means that the semantics of a single-valued constr-
aint-lambda term is obtained as the denotation of the lambda term when all
constraints are removed from the term and all constraint-variables are replaced
by their values. In particular we have (by footnote 4):

Fact 1. The denotational semantics of a pure lambda term is the same as in
the traditional denotational semantics.

The denotation of a constraint-lambda term in an environment η, Dη, is
defined as follows:5

Dη(λx.M) = λv.Dη[x/v](M)
Dη(x) = η(x)
Dη(c) = val ′(c)

Dη(MN) = Dη(M)Dη(N)
Dη({C}M) = Dη(M)

Dη(f(M1, . . . , Mn)) = val ′(f)(Dη(M1), . . . ,Dη(Mn))
4 Therefore, for pure constraint-lambda terms, Dη represents the usual semantics.
5 Notice that the semantic function D is only applied to constraint-variable-free terms

and that it does not recurse on constraints, therefore there is no need to define it on
constraints or constraint terms. Furthermore the interpretations of a constant, when
regarded as part of a lambda term or as part of a constraint, coincide, as expected.
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When evaluating lambda terms nested inside constraints, we are only in-
terested in results that are pure constraints, since the constraint solver cannot
handle any other terms. Therefore we identify all other constraint-lambda terms
with the failed computation.

We can now show that the semantics of a constraint-lambda term is compat-
ible with the reduction rules.

Lemma 3. For all environments η and all terms M , N , we have

Dη(M [x/N ]) = Dη[x/Dη(N)](M).

For unrestricted constraint-lambda terms without disjunction we may lose a
constraint during the reduction and then we get [[(M, S)]] ⊇ [[(M ′, S′)]]. However
in the case of the disjunctive calculus the situation is reversed: Now a smaller
set of constraints implies a larger set of values, therefore if (M, S) → (M ′, S′)
it may be the case that [[(M ′, S′)]] contains values that are not contained in
[[(M, S)]]. Therefore the operational semantics are not correct with respect to the
denotational semantics in this case. This, however, is not surprising if we consider
the meaning of [[(M, S)]]. We have defined the semantics so that this expression
denotes the precise set of values that can be computed in such a way that all
constraints are satisfied. If constraints are dropped during a β-reduction step the
new term places less restrictions on the values of the constraint variables, thus
we obtain an approximation “from above” as the semantics of the new term.6

7 Implementation Issues

Application of the rule (CS) to a variable with a large range of possible values
may lead to many unnecessary reductions. If, for example, we introduce

({X = 100}X, {1 ≤ X, X < 500})
6 The evaluation of constraints in the denotational semantics is currently done in a

very “syntactical” manner. To see why this is the case, we have to make a short di-
gression into the motivations for defining the semantics in the way they are defined.
As M. B. Smyth points out in [18], the Scott topology is just the Zariski topol-
ogy ([2]) on the ring defined by the lattice structure of the domain in question and
corresponds to the notion of an observable property. It is evident that this topology
cannot be Hausdorff for any interesting domain. The denotational semantics of logic
programming languages, on the other hand, is generally defined on the Herbrand-
universe, and the fixed points are calculated using consequence operators, see [10]
or [4]. It seems that these two methods of defining the denotational semantics do
not match well. A more natural approach in our setting would be to regard the
predicates of the constraint theory as boolean functions over the constraint domain
and constraints as restrictions on the known ranges of these functions. However, this
definition results in a Hausdorff topology on the universe in question, and is there-
fore incompatible with the topology of the retract definition. It would be interesting
to see whether this problem can be resolved by a suitable denotational semantics for
the constraint theory. The resulting topology shows another problem: A Hausdorff
topology cannot be the topology resulting from observable properties. This suggests
a connection with the sometimes difficult to control behavior of constraint programs.
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with rule (CS) we may have to try many substitutions for X before instantiating
X with the only value that does not lead to an inconsistent store in the next
reduction step. If we introduce the constraint X = 100 into the store the next
reduction step immediately leads to the normal form 100. Therefore one has to be
careful not to apply the (CS)-rule indiscriminately in an implementation of the
constraint-lambda calculus. We discuss practical issues about implementation in
our paper [7].

For applications of the constraint-lambda calculus it is sometimes useful to
extend the system with additional capabilities. One such extension is the addition
of multiple constraint stores, another is the computation of fresh constraint
variables. We discuss this extension in the next section. It adds some additional
complexity to the calculus but we think that this is more than compensated for
by the added expressive power.

8 Multiple Constraint Stores

For some applications it is desirable to split the problem into several smaller
parts and to have each part operate on its own constraint store. This can be done
by extending the constraint-lambda calculus to incorporate multiple constraint
stores. The addition of multiple stores allows us to provide a choice for the
following problem: If a function is applied to a non-deterministic argument,
should all references to this argument be instantiated with the same value or
should it be possible to instantiate each reference individually? For example,
should (λx.x + x)(2|3) return only the values 4 and 6 or should it also return
5? In Section 2 we restricted ourselves to the first solution. With the extension
discussed in this section we allow the user to choose the preferred alternative
by means of a store assignment. To keep the strict separation between program
logic and control, the store assignment is defined on the meta-level.

Syntax. When we add multiple stores to a constraint-lambda calculus we need
a means of showing on which store the rules (CI) and (CS) operate. To this end
we extend the syntax of the calculus with names for stores, denoted by the letter
S (with indices and subscripts if necessary) and with locations. Syntactically, any
constraint-lambda term can be used as a location, but only locations evaluating
to a store-name can actually select a store. We write the locations as superscripts
to other constraint-lambda terms. For example, in the term MN , the term N is
used as the location for M . In terms of the form {C}NM , the term N is used as
the location for the constraint C, and terms of the form {C}M without location
for the constraint C are not valid terms of the constraint-lambda calculus with
multiple stores. The context-free syntax is therefore

Λ ::= ⊥ | x | X | c | S | ΛΛ | f(Λ, . . . , Λ) | λx.Λ | (ΛΛ) | {GC}ΛΛ.

We write N for the set of all names for stores and C for the set of all constraints.
We extend substitution to the new terms in the natural way:

S[x/L]=S; MN [x/L]=M [x/L]N [x/L]; ({C}NM)[x/L]={C[x/L]}N [x/L]M [x/L].
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Reduction Rules. We want to be able to “alias” store names, i.e., we want to
be able to have two different names refer to the same constraint store. Therefore
we define reductions on triples (M, σ, S) where M is a constraint-lambda term,
σ is a map from store names to integers, σ : N → ω and S is a map from
integers to sets of constraints, S : ω → P(C). where P denotes “power set”. For
any integer n we write S⊕n C for the following mapping:

(S⊕n C)(m) =

{
S(m) if m �= n

S(n) ∪ {C} if m = n.

If σ is clear from the context, we write S⊕S C for S⊕σ(S) C.
We consider a branch of the computation to fail if any constraint store be-

comes inconsistent in that branch.
With these notations we can define the reduction rules for the disjunctive

constraint-lambda calculus with multiple stores:

(M, σ, S) → (⊥, σ, S) if ∃n ∈ ω.S(n) = ⊗. (⊥)
((λx.M)N, σ, S) → (M [x/N ], σ, S). (β)

(C, σ, S) → (n(C), σ, S), if C is a pure constraint & C �= n(C).
(CR)

({C}SM, σ, S)→ (M, σ, S⊕S C), if C is a pure constraint. (CI)

(XS , σ, S)→ (M, σ, S⊕S (X = M)), if S⊕S (X = M) �= ⊗. (CS)

The closure rules can be transferred mutatis mutandis from the disjunctive
constraint-lambda calculus. We allow reductions in locations: If (M, σ, S) →
(M ′, σ, S′), then (LM , σ, S) → (LM ′

, σ, S′), and similarly for {C}MN .
Next we show how the addition of multiple stores adds even more flexibility.

Example 4. On p. 68, we argued that when we substitute M for X using the rule
(CS) we have to add the constraint X = M to the store to avoid substitutions
such as those in Example 1. With the addition of multiple stores we have more
liberty to define whether we want to allow this kind of behaviour. To illustrate
this we slightly modify the example.

We define the abbreviation M |N by: M |N := λxS .{X = M ∨X = N}xSXxS

where X is a fresh constraint variable. This term can be applied to a store name
and evaluates to either M or N . For example, if we write S0 for the map n �→ ∅,
and if σ is any map N → ω, then we obtain the following reductions:

((2|3)S, σ, S0) → ({X = 2 ∨X = 3}SXS, σ, S0)

→ (XS , σ, S0 ⊕S {X = 2 ∨X = 3})
→ (2, σ, S0 ⊕S {(X = 2 ∨X = 3), X = 2})

and ((2|3)S, σ, S0) → ({X = 2 ∨X = 3}SXS, σ, S0)

→ (XS , σ, S0 ⊕S {X = 2 ∨X = 3})
→ (3, σ, S0 ⊕S {(X = 2 ∨X = 3), X = 3}).
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Now consider a more complicated expression (corresponding to Example 2):
(λx.xS1+xS2)(2|3). If we evaluate this expression with a map σ for which σ(S1) =
σ(S2) it is obvious that this expression only evaluates to the values 4 and 6. If we
change σ to a map where σ(S1) �= σ(S2) we obtain the three values 4, 5 and 6.
In general this is not the desired behavior for arithmetic problems, but for other
problems this behavior is more sensible. For example, if we allow constraints to
range over job-titles in an organization, then it might be reasonable for a function
talkTo(programmer |manager) to talk to the manager in the part dealing with
business matters and to the programmer when deciding technical details.

Another example where the choice of different values for a single constraint
variable is useful are compilers. One specific example is code generators: An opti-
mizing compiler might have different code generators for the same intermediate-
language expression; these code generators usually represent different trade-offs
that can be made between compilation speed, execution speed, space and safety.
For example, the d2c compiler can assign either a speed-representation or a space-
representation to a class. The CMUCL Common Lisp compiler has different poli-
cies (:fast, :safe, :fast-safe and :small) with which an intermediate rep-
resentation might be translated into machine code. In a compiler based on the
constraint-lambda calculus the policy used for the translation of some intermedi-
ate code could be determined by a constraint solver. This constraint-solver might
compute disjunctive solutions, e.g., the permissible policy values might be :safe
and :fast-safe, but not :small and :fast because some constraint on the safety
of the program part in question has to be satisfied. In this case it is obviously de-
sirable if different instantiations of the “policy-variable” can be instantiated with
different values: An innermost loop might be compiled with :fast-safe policy
to attain the highest possible execution speed while user-interface code might be
compiled with the :safe policy to reduce the size of the program.

9 Comparison with Earlier Work

In [13], Mandel and Cengarle provided a partial solution of the disjunction prob-
lem only. We have now provided mechanisms for resolving Hennessy’s problem
(see Section 1) in both directions.

A current example for a constraint-functional language is Alice [16] which is
based on a concurrent lambda calculus with futures, λ(fut) [15, 17]. The λ(fut)
calculus is not directly concerned with integration of constraints but rather al-
lows the integration of constraint solvers via general-purpose communication
mechanisms. There are two major technical differences between λ(fut) and our
work: the treatment of concurrency, and how far the order of evaluations is
restricted.

In our constraint-lambda calculi we do not deal with concurrency in our for-
mulations of the the reduction rules of the calculi, we use reduction strategies to
specify parallel executions on the meta-level. λ(fut) incorporates an interleaving
semantics for concurrent execution of multiple threads directly in the reduction
rules. This makes it possible to talk about communication between concurrently
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executing threads in λ(fut) but not in the basic constraint-lambda calculi. In [6]
we have developed an extension of the constaint-lambda calculi that can model
explicit communication with the environment.

The λ(fut) calculus uses the call-by-value β-reduction rule, which requires
all arguments to functions to be evaluated before the function can be applied.
Furthermore, to preserve confluence, futures may only be evaluated at precisely
specified points of a reduction secuence. The constraint-lambda calculi do not re-
strict applications of the β-rule at all and in general impose very few restrictions
on allowed reductions.

10 Conclusions and Future Work

We have extended constraint functional programming to accommodate disjunc-
tions. In particular we have introduced the unrestricted disjunctive constraint-
lambda calculus and the restricted disjunctive constraint-lambda calculus in a
simple and transparent fashion which, unlike previous attempts at defining com-
binations of constraint solvers and lambda calculi, makes them conservative ex-
tensions of the corresponding traditional lambda calculi.

The interface between the constraint store and the lambda terms ensures
clarity and the smooth movement of information into and out of the constraint
store.

We have shown that the restricted disjunctive constraint-lambda calculus
satisfies a restricted form of confluence, namely that it is path-confluent as a re-
duction system. In the case of the the unrestricted disjunctive constraint-lambda
calculus the stores play an important rôle and we can prove convergence of the
terms only under certain conditions on the stores (Theorem 1).

In addition, we have given the denotational semantics for each of these the-
ories.

Finally, we have shown how both horns of Hennessy’s dilemma: e.g., the
evaluation of (λx.x + x)(2|3) to either {4, 6} or {4, 5, 6}, can be accommodated
by the appropriate choice of one of our calculi.

In the future we are planning to extend our implementation of the con-
straint lambda calculi without disjunction (see [6, 7]) to the disjunctive constraint
lambda calculi treated here.
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Abstract. We present efficient Pure Pointer Machine (PPM) algorithms to test
for “leftness” in dynamic search trees and related problems. In particular, we
show that the problem of testing if a node x is in the leftmost branch of the subtree
rooted in node y, in a dynamic tree that grows and shrinks at the leaves, can
be solved on PPMs in worst-case O((lg lg n)2) time per operation in the semi-
dynamic case—i.e.,all the operations that add leaves to the tree are performed
before any other operations—where n is the number of operations that affect the
structure of the tree. We also show that the problem can be solved on PPMs in
amortized O((lg lg n)2) time per operation in the fully dynamic case.

1 Introduction

Logic Programming (LP) is a popular computer programming paradigm, that has been
effectively used in a wide variety of application domains. A nice property of LP is that
parallelism can be automatically extracted from logic programs by a run-time system,
allowing the user to transparently take advantage of available parallel computing re-
sources to speed-up program execution. However, the implementation of a parallel LP
system poses many challenging problems [7]. In spite of the extensive research in the
field, which has led to a variety of approaches and implemented systems, to date very
little attention has been paid to the analysis of the computational complexity of the oper-
ations required to support this type of parallel execution models. This type of analysis is
vital for providing a clear understanding of the inherent costs of the operations required
to support parallel LP, as well as for providing a formal framework for the comparison
of alternative execution models.

Execution of LP can be abstracted as the process of maintaining a dynamic tree; the
operational semantics of the language determines what operations on the tree are of
interest. As execution proceeds, the tree grows and shrinks, and, in the parallel case,
different parts of the tree are concurrently affected. Various additional operations are
needed to guarantee the correct execution behavior. Although dynamic data structures
have been extensively studied, the specific ones required by parallel LP have yet to be
fully investigated. In this paper, we focus on modeling the key operations underlying
the implementation of dependent and-parallelism, and we rely on the pointer machine
model for the investigation of the problem—as this model allows us to perform a finer-
grained analysis of the problem, and it naturally models the linked nature of the struc-
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tures involved in Prolog systems’ implementations. This line of research continues our
successful exploration of formal analysis of parallel logic programming, which led to
a formal classification of models for or-parallelism [11] and to the discovery of more
effective methodologies for handling side-effects in parallel executions [13].

And-Parallelism in Logic Programming: One of the commonly used strategies to
support parallel execution of LP programs, referred to as dependent and-parallelism
(DAP) [7], relies on the concurrent execution of separate components of the current
goal—i.e., given a goal B1, . . . , Bn, multiple subgoals Bi can be concurrently solved.
Thus, we allow different processors to cooperate in the construction of one solution
to the original goal. A major research direction in parallel LP has been the design of
parallel implementations that automatically reproduce the observable behavior of se-
quential systems [7]. The parallel execution mechanisms have to be designed so that a
user observes the same external behavior during parallel execution as observed during
sequential execution. This is necessary in order to guarantee proper treatment of many
language features, such as I/O and user-defined search strategies.

The and-parallel execution can be visualized as an and-tree. The root is labeled with
the initial goal; if a node contains a conjunction B1, . . . , Bn, then it will have n chil-
dren: the ith child is labeled with the body of the program clause used to solve Bi.

The main problem in the implementation of DAP is how to efficiently manage the
unifiers produced by the concurrent reduction of different subgoals. Let vars(B) de-
note the set of variables present in the subgoal B. Two subgoals Bi and Bj (1 ≤ i <
j ≤ n) in the goal B1, . . . , Bn should agree in the bindings for all the variables in
vars(Bi) ∩ vars(Bj)—such variables are termed dependent variables in parallel LP
terminology. In sequential Prolog execution, usually, Bi, the goal to the left, binds the
dependent variables and Bj works with the bindings produced by Bi. During DAP ex-
ecution, however, Bi and Bj may produce bindings in a different order (e.g., Bj may
bind a variable first). This may modify the behavior of the program and violate the se-
quential Prolog semantics [7]. Unfortunately, it is in general undecidable to determine
whether a variable binding will modify the observable behavior w.r.t. a sequential ex-
ecution. The most commonly used computable approximation to guarantee the proper
semantics is to ensure that bindings to common variables are made in the same order
as in a sequential execution [7]. Two strategies have been considered to tackle the prob-
lem: curative and preventive strategies. In our previous work we have investigated the
formalization of the curative scheme as a data structure problem [18]. In this paper,
we analyze the data structure problem originating from the use of preventive strategies.
This is a more important problem, since preventive strategies have been shown in prac-
tice to have superior performance [7] and have been more widely adopted. We tackle the
problem in different steps, showing that it can be efficiently solved, on a pure pointer
machine, with an amortized time complexity of O((lg lg n)2) per operation, where n is
the number of updates performed on the and-tree. We also show that the problem can be
solved in worst-case time O((lg lg n)2) per operation in the semi-dynamic case, where
all operations that add nodes to the tree are performed first. These results provide some
important insights on the inherent complexity of the problem, and suggest the potential
to improve the performance of existing implementation schemes.
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Pointer Machines: The model of computation adopted in this investigation is the
Pointer Machine model. Pointer Machines have been defined in different ways [2]. All
models of pointer machines share the common characteristic of disallowing indexing
into an array (i.e., pointer arithmetic), as opposed to RAM models. In a pointer ma-
chine, memory is structured as a collection of records (all with the same, finite, struc-
ture), and each record field can store a pointer to a record or a data item. The primitive
operations allow following pointers, storage and retrieval from record fields, creation of
new records, and conditional jumps based on equality comparisons. The Pure Pointer
Machine (PPM) model also has the restriction of disallowing constant-time arithmetic
operations and constant-time comparisons between numbers. The pure pointer machine
model is essentially the Linking Automaton model proposed by Knuth and is a rep-
resentative of what has been called atomistic pointer machine model in [2]. Further
details on PPMs can be found in [2, 16, 14]. Even though RAM is the most commonly
used reference model in studies of complexity of algorithms, the PPM model has re-
ceived increasing attention. PPMs provide a good base for modeling implementation of
linked data structures. The PPM model is also simpler, thus making it more suitable for
analysis of lower bounds of time complexity [16, 4, 9, 12]. Note that the PPM model
is similar to the Turing Machine model with respect to the fact that the complexity of
the arithmetic operations has to be accounted for while analyzing the complexity of an
algorithm. It is more powerful than the Turing machine model because it allows for
“jumps” based on pointer comparisons in constant time, that is not possible in the Tur-
ing machine model. The Arithmetic Pointer Machine (APM) model is an extension of
the PPM that allows integer numbers to be stored in the records and that allows constant
time arithmetic for O(lg n)-size integers [3].

2 The ANDPP Problem

2.1 Background, Notations and Definitions

In this work we will focus on labeled binary trees, where labels are drawn from a label
set Γ . For a node v in the tree, we denote with left(v) (right(v)) the left (right) child
of v in the tree (⊥ if v does not have a left (right) child). We assume that the following
operations are available to manipulate the structure of trees:

1. create tree(	), used to create a tree containing a single node labeled 	 ∈ Γ .
2. expand(u, 	1, 	2): given a leaf u in the tree, the operation creates two new nodes

(labeled 	1 and 	2) and makes them the children of u;
3. remove(u): given a leaf u in the tree, the operation removes it from the tree.

For two nodes u and v in a tree T , we write u ( v if u is an ancestor of v. Observe that
( is a partial order. We will often refer to the notion of leftmost branch—i.e., a path in
the tree containing nodes with no left siblings. Given a node u, left branch(u) contains
all the nodes (including u) that belong to the leftmost branch of the subtree rooted in
u. For any node u, the elements of left branch(u) constitute a total order with respect
to (. The notion of leftmost branch allows us to define a partial order between nodes,
indicated by �. Given two nodes u, v, we say that u � v if v is a node in the leftmost
branch of the subtree rooted at u. Formally, u � v ⇔ v ∈ left branch(u). Given a
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node v, let subroot(v) = min
{u node of T |u � v}. subroot(v) is the highest node
u in the tree (i.e., closest to the root) such that v is in the leftmost branch of the subtree
rooted at u. subroot(v) is known as the subroot node of v [8].

2.2 Formalizing Preventive Strategies: The ANDPP Problem

Preventive strategies enforce the correct order of variable bindings by assigning pro-
ducer or consumer status to each subgoal that shares a given dependent variable [15, 7].
The leftmost subgoal that has access to the variable is designated as the producer for
that variable, while all the others are consumers. A consumer subgoal is not allowed to
bind the dependent variable, it is only allowed to read its binding. If a consumer subgoal
attempts to bind a free dependent variable, it has to suspend until the producer binds it
first. If the producer terminates without binding the variable, then the producer status is
transferred to the leftmost active consumer of such variable. Thus, the producer subgoal
for a dependent variable can change during execution. A major problem in DAP is to
dynamically keep track of the leftmost active subgoal that shares each variable.

The management of goals can be abstracted in terms of operations on the dynamic
tree representing the execution of a program. During an and-parallel execution, nodes
are added and deleted from the and-tree. The execution steps can be directly expressed
using the tree expand and remove operations described in the previous section [18]. The
correct management of variables in preventive strategies, can be abstracted as follows.
A binding for a variable X , taking place in a node u of the tree, can be safely performed
(w.r.t., sequential Prolog semantics) iff the node u lies on the leftmost branch of each
node in alias(X), where alias(X) collects all the nodes where the variables that have
been aliased to X (i.e., unbound variables that have been mutually unified) have been
defined. Formally, for all Y in alias(X) we have node(Y ) � u. We will denote with
verify leftmost(u, v) the operation which, given a node u and a node v, verifies whether
u is in the leftmost branch in the subtree rooted in v (a.k.a. leftness test). Thus, we have
the following data structure problem: “The problemANDPP consists of the following
operations on dynamic trees: create, expand, remove, and verify leftmost.”

The rest of the paper tackles the problem of designing efficient algorithms for this
problem. We can easily show that the ANDPP problem requires Ω(lg lg n) on PPMs,
via a reduction from the Temporal Precedence (TP) problem—i.e., the problem of main-
taining a dynamic list (where elements can be inserted) and performing precedence
tests. The TP problem has a lower bound time complexity of O(lg lg n) on PPMs [12].

3 Efficient Solutions for Some Restricted Cases

3.1 General Scheme and Solutions Based on Relationships to Other Problems

Algorithm VERIFY LEFTMOST (u, v)
s1 ← SUBROOT(u); s2 ← SUBROOT(v);
return (s1 = s2 AND height(v) < height(u));

Fig. 1. General Scheme

The general verify leftmost test
can be performed efficiently
if one can efficiently main-
tain the subroot nodes for all
nodes in the tree. More pre-
cisely, the ability to determine
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SUBROOT(v) for any node v allows the solution outlined in Fig. 1 for verifying leftness.
The time required by this algorithm is the sum of the times required by the procedure
subroot and by the height comparison. In general, the set of nodes in a dynamic tree
can be partitioned into disjoint subsets of nodes with all nodes in each subset having
the same subroot node. The nodes of each subset form a path in the tree, each path
terminating in a leaf (Fig. 2). From this perspective, it is easy to relate the problem to
the Union-Find Problem [16, 9, 4] and the Marked-Ancestor Problem [1].

Relationship to the Union-Find Problem: The ANDPP problem can be solved us-
ing the solution to the union-find problem [16]. This solution maintains the disjoint
paths with the same subroot nodes as disjoint sets, with the subroot nodes as the repre-
sentatives. Each time we perform an expand operation, a new set containing the right
child and a new set containing the left child are created; the latter is unioned to the set
containing its parent. When a remove operation is performed, if the removed node does
not have a right sibling, then nothing needs to be done. If the removed node u has a
right sibling w, then the set containing w is unioned with the set containing the parent
of u. verify leftmost(u, v) can be implemented by checking if find(u) = find(v) and if
node v is closer to the root than u. The union-find problem can be solved optimally on
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Fig. 2. Marked Ancestors

a Pointer Machine with Arithmetic (APM) in amor-
tized time O(mα(m, n)) (m is the number of opera-
tions performed and n is the number of nodes in the
tree) [9]. Furthermore, comparison of the heights of
the nodes can be done in constant time on an APM
(since an APM allows constant-time comparisons of
numbers).

To analyze the complexity of this scheme on PPM
(i.e., with no constant-time arithmetic), let us denote
with e the number of expand operations, with d the
number of remove operations, and with q the num-
ber of verify leftmost queries performed. Let m =
d + e + q. Each expand operation requires constant
time. Each remove operation requires one union op-
eration; the union using the union-by-rank heuristic
can be performed in O(lg lg lg n) time on a PPM.
Each verify leftmost operation requires two find op-
erations and one precedes operation (for height com-
parison). This can be done in O(lg lg n) time1. This solution can be implemented on a
PPM in amortized time O(mα(m, e)+d lg lg lg e+q lg lg e). Blum [4] provides a PPM
solution with a worst-case time complexity of O(lg n/ lg lg n) per operation.

The type of union-find operations required to support the computation of the subroot
nodes are actually very specialized. Each union operation is performed when a node
with a right sibling is removed from the tree; in that case the union links the set asso-
ciated with the right sibling with the set associated with its parent. This can be seen as
an instance of the adjacent union-find problem [10, 17]—a union-find problem where

1 Using the scheme in [12].
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elements are arranged in a list and the union operation is performed only on adja-
cent sets. The problem has been shown to be solvable in worst-case time complexity
O(lg lg n) on a pointer machine with arithmetic (APM) [10, 17]; however the solution
makes extensive use of the arithmetic capabilities of APM, and the corresponding solu-
tion is not as effective on a PPM, as it requires O(lg n lg lg n) time per operation.

Relationship to Marked Ancestor: Another problem that is strongly related to the
one at hand is the Marked Ancestor problem [1]. The problem assumes the presence
of a tree structure, where each node can be either marked or unmarked. The operations
available are mark(v)—used to mark the node v—unmark(v)—used to remove the
mark from v—and first(v)—used to retrieve the nearest marked ancestor of node v.
The results in [1] provide optimal solutions for the marked ancestor problem (on RAM),
with worst-case time complexity Θ(lg n/ lg lg n) per operation. A simplified version of
the problem, the decremental marked ancestor problem, allows only the unmark and
first operations. This problem can be solved in amortized constant time on RAMs.
The problem can also be solved on RAMs with worst case O(lg lg n) per unmark and
O(lg n/ lg lg n) per first operation [1].

The semi-dynamicANDPP problem is an instance of the decremental marked an-
cestor problem. Starting from the same tree structure as in ANDPP problem, initially
the only marked nodes are those that are subroot nodes of at least one node in the tree.
Each time a remove(v) operation is required, if the node v has a right sibling, then
the right sibling is unmarked, otherwise no nodes are changed. Each SUBROOT opera-
tion corresponds to a first operation. This provides a solution for the problem with
worst-case complexity O(lg n/ lg lg n) per operation, and amortized time complexity
O(1)—on RAM. These results do not provide a better complexity on PPMs.

3.2 A Good PPM Solution for the Static Case

Algorithm Linear-Subroot(head)
1. u← head
2. while (next[u] is not NIL) do
3. if (u is marked) do
4. subroot[u]← u
5. else
6. subroot[u]← subroot[prev[u]]
7. u← next[u]

Fig. 3. Linear Subroot

In the static version of the problem,
all the expand and remove opera-
tions are performed prior to any ver-
ify leftmost operations—i.e., the ver-
ify leftmost queries are applied to a
static tree. One can obtain an efficient
solution in this case by making a sim-
ple, but key, observation.

Theorem: Let T be a tree where only
and all subroot nodes are marked (see
Fig. 2), and L be the preorder traver-
sal of T . For every node v, the subroot
node of v is the nearest marked node to the left (marked predecessor) of v in L. The
tree T can be preprocessed in linear time to answer the subroot queries in O(1) time.
First, in linear time one can construct the preorder traversal L of T (as a double-linked
list). The procedure Linear-Subroot(L) (Fig. 3) preprocesses the list L in linear time.
After this procedure is called, the subroot node field for each node is set correctly. Each
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successive subroot query can be answered in O(1) time—this is illustrated in Fig. 4.
To answer the verify leftmost query, we still need to compare the height of two given
nodes. This can be done in time O(lg lg n) on a PPM [12]. Thus, this static version of
the problem has a solution with worst-case time complexity of O(lg lg n) per operation.

X X X X

Fig. 4. A data structure allows constant time subroot query

3.3 An Efficient PPM Solution in the Semi-dynamic Case

Algorithm Find-Marked-Predecessor-Binary(u)
1. v′ ← u; v ← parent(u);
2. if (u is marked) do
3. return u
4. while (v′ is left child of v or the left sibling of v′ is unmarked) do
5. v′ ← v; v ← parent(v);
6. v′ ← left marked child of v;
7. while (v′ is not a leaf) do
8. v′ ← rightmost marked child of v′;
9. return v′

Fig. 5. Find-Marked-Predecessor-Binary

The solution can
be extended to
a semi-dynamic
version of the
problem, where
all the expand
operations are
performed prior
to the remove
and verify
leftmost opera-

tions. As men-
tioned, this ver-
sion of the prob-
lem is an instance of the decreased marked ancestor problem. Solving the semi-dynamic
version of the problem can be simplified to the problem of maintaining a list L of nodes,
some of which are marked, which represents the preorder traversal of the tree. The re-
quired operations on this list are unmark and find-marked-predecessor. The unmark(v)
operation is required when a leaf u with right sibling v is removed. The find-marked
predecessor(u) operation returns the nearest marked node to the left of u in the pre-
order traversal list L. This is a special case of the Marked-Ancestor Problem, i.e., the
Marked-Ancestor problem on a linear tree. [17] provides a solution with worst-case
single operation complexity O(lg lg n) on RAMs.

While [16] gives solutions which are efficient in amortized time complexity, the fo-
cus here is to obtain an efficient solution w.r.t. single operation worst case time complex-
ity. We begin with a simple solution that has O(lg n) single operation worst case time
complexity. This solution is then improved to o(lg n) and, finally, to a O((lg lg n)2)
worst-case time solution for the semi-dynamic ANDPP problem on PPMs. Results
that are similar in spirit to this investigation have been proposed in [6] for the union-
find problem (where the union-find problem is solved w.r.t. a fixed union structure).

An O(lg n) Solution: Let L be the preorder traversal of the tree T . Let T ′ be a complete
binary tree with the nodes of L as leaves. T ′ has height �lg n�. We proceed to mark in T ′

an internal node if any of its descendants is marked. If there are less than 2�lg n� nodes,
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dummy nodes can be added to make it a complete binary tree without changing the
asymptotic time complexity of the operations. This requires preprocessing time O(n),
where n is the number of nodes in the list L. The marked predecessor can then be found
simply as indicated in procedure Find-Marked-Predecessor-Binary(u)—see Figure 5.
The single operation worst case time complexity of this procedure is proportional to the
height of the tree, which is O(lg n).

An O(lg n lg lg lg n/ lg lg n) Solution: We can improve the previous algorithm by
keeping shorter trees. Increasing the degree from 2 to some k > 2 will reduce the
height of the tree to lgk n. Let L be the preorder traversal of T . Without loss of general-
ity, let T ′ be a complete k-ary tree with the nodes of L as leaves. T ′ has height �lgk n�.
As done earlier, in T ′ we will mark an internal node if any of its descendants is marked.
This construction requires O(n) preprocessing time (n is the number of nodes in L).
The procedure in Fig. 6 finds the marked predecessor of u in L.

Algorithm Find-Marked-Predecessor-Binary(u)
1. v′ ← u; v ← parent(u);
2. if (u is marked) do
3. return u
4. while (v′ is left child of v or the left sibling of v′ is unmarked) do
5. v′ ← v; v ← parent(v);
6. v′ ← left marked child of v;
7. while (v′ is not a leaf) do
8. v′ ← rightmost marked child of v′;
9. return v′

Fig. 6. Find-Marked-Predecessor

The while
loops in the pro-
cedure are ex-
ecuted at most
�lgkn� times.
On the flip side,
however, it be-
comes more ex-
pensive to test
the condition in
the first while
loop. If we use
a trivial compar-
ison scheme to
test precedence
in line 2, the comparison requires time O(k). Making use of the result from [12], this
comparison can be done in lg lg k time. The loop in line 2, requires at most �lgk n�
precedence tests in the worst-case (potentially one for each tree level). Line 4 requires
time O(k) as one can walk left starting from v′ until a marked sibling is found. The
loop in line 5 requires time at most lgk n. Hence, the total time required for the Find-
Marked-Predecessor operation illustrated in Fig. 6, in the worst-case, is bounded by
lg lg k lgk n + k + lgk n. The unmark(u) operation is performed as follows: first of
all, the node u is unmarked; if u is either the leftmost or the rightmost marked child
of its parent, then this information has to be updated. If u is the only marked child
of its parent, then the unmarking procedure is repeated on the parent of u. The to-
tal time for unmark in the worst-case is O(lgk n). The best value of k turns out to be
k = lg n/ lg lg n, leading to a time complexity of O(lg n lg lg lg n/ lg lg n) for the Find-
Marked-Predecessor operation; the time complexity of unmark is O(lg n/(lg lg n)).

An O((lg lg n)2) Solution: The idea here is to note that, in line 4 of the Find-Marked-
Predecessor procedure in Figure 6, we are actually finding the marked predecessor of
v′ in the list of children of v. Hence, one can improve the computation by recursively
organizing the children of a node as a tree. We use a

√
n-ary tree with height 2 (Fig.
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Fig. 7. A 16 node
√

n-ary tree with height 2

Algorithm Find-Marked-Predecessor(u,�)
0. if (� = lg lg n) then use direct list search to determine
the answer;
1. if (marked(u)) then return(u);
2. v ← parent(u, �);
3. if ((leftmost marked child of v precedes u)) then
4. return(Find-Marked-Predecessor(u,� + 1));
5. w ← Find-Marked-Predecessor(v,� + 1);
6. return rightmost marked child w;

Fig. 8. Find-Marked-Predecessor

7). The
√

n-ary tree has
√

n subtrees, each having size
√

n. We recursively maintain
a similar structure for each subtree—thus, the

√
n children of a node are themselves

organized in a 4
√

n-ary tree, etc. The number of levels of the recursive construction is
bounded by O(lg lg n). The tree structure information has to be maintained for each
recursive level. This can be done efficiently using the scheme developed to solve the
temporal precedence problem, as described in [12]. Let us refer to the number of edges
connected to the root as root degree and the number of edges connecting a middle level
node to leaves as middle level degree.

The algorithm Find-Marked-Predecessor(u,�) described in Fig. 8 finds the marked
predecessor of node u at level � of nesting in the recursive tree structure. To find the
marked predecessor of u in the list L, the procedure Find-Marked-Predecessor(u,0) is
called. Note that a node may have different parents at different recursive levels (see Fig.
7)—in the algorithm parent(u, �) denotes the parent of u at level �. Note also that a
node may have children only in one of the recursive levels. Let T (n) to be the worst-case
time required by the Find-Marked-Predecessor operation performed on a list of size n.
The procedure Find-Marked-Predecessor calls itself at most once, in line 4 or line 5,
with the problem size equal to

√
n. This contributes T (

√
n) in the recurrence. The

comparison in line 3 takes time O(lg lg
√

n) (again, using the solution to the temporal
precedence problem). Hence, with this scheme T (n) satisfies the recurrence: T (n) =
O(lg lg

√
n)+T (

√
n), where n is the number of nodes in the list L. The solution of this
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recurrence relation is T (n) = Θ((lg lg n)2). The unmark operation takes time O(1)
per level of nesting. Hence, the total time required is O(lg lg n).

On an APM (and hence on RAM), this scheme requires only O(lg lg n) for both
operations, as the precedence test now requires O(1) time, and the recurrence for T (n)
becomes: T (n) = T (

√
n)+O(1). A different O(lg lg n) scheme to solve this problem,

on RAM, has been presented in [17]. However, a direct translation of that scheme to
Pure Pointer Machines will require O(lg n lg lg n) time per operation.

4 Solution to the Dynamic Case

The dynamic version of the problem allows the operations expand, verify leftmost, and
remove to be carried out in any order. This section extends the data structure presented
earlier to obtain an efficient solution in the fully dynamic case. This solution has an
amortized time complexity of O((lg lg n)2) per operation, where n is the total number
of operations.

4.1 Dynamic Expand Operation

We devise a scheme to update the data structure developed for the semi-dynamic case
when an expand operation is performed, without adversely affecting the time to answer
marked predecessor queries. Since the time required to answer a query depends directly
on the degree of the nodes in the tree, it is intuitive to prevent the degree of nodes from
growing too large. The algorithm we propose does exactly this by either “splitting” the
tree node or “reorganizing” the recursive data structure. The algorithm relies also on the
following simple observation:

Lemma: Let L be the preorder traversal of T . After the operation expand(u, l1, l2) is
performed, u, l1 and l2 appear consecutively in L, in that order.

It follows from this lemma that, if we adopt the nested recursive structure discussed
earlier, l1 and l2 are consecutive in the frontier of the outer-most recursion tree.

The Basic Strategy: The whole data structure is reorganized when the root degree of
the outermost recursion tree doubles, by using the preprocessing for the static case. For
the recursion trees at other levels, starting from the deepest recursion level, whenever
the root degree of a recursion tree doubles, the tree is split into two trees. Correspond-
ingly, in the tree at next higher level of recursion, it is natural to split the node for the
original group to be two nodes. We can see that each tree split implies a node split of a
middle layer node in the preceding level of recursion. The process is applied recursively
(see Figures 9-10).

The “reorganization” is the process of constructing the whole recursive data struc-
ture from scratch. If the tree has size n, the reorganization requires time n lg lg n. The
field olddegree is the degree of a recursion tree produced during reorganization. Be-
fore another reorganization, the actual degrees may shrink and grow, and the degrees of
different nodes may be different. However, the olddegree field for every node remains
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unchanged. It represents the “capacity” of the recursive tree and serves as a criteria for
the timing of splitting. This field is set during reorganization.

The Algorithm: The procedure Dynamic-Expand(u, l1, l2) inserts two nodes l1 and
l2 into the frontiers of lg lg n different recursion trees. Line 1 and lines 8-13 of the
loop ensure that the list of marked children of each node at each level is maintained
correctly. The procedure Adjust is called after the insertions to perform the “splitting”
and reorganization, as needed.

In the procedure Dynamic-Expand(u, l1, l2), Find-Marked-Predecessor is called in
line 1 to find the marked predecessor w of u in the outer-most recursion level. This
requires O((lg lg n)2) time. The loop in line 2 requires at most lg lg n time to insert l1
and l2 in all the recursion levels. Line 14 calls Adjust(u, lg lg n−1) to split or reorganize
the recursion trees from the deepest recursion level, if necessary. The code can be found
in Appendix A. The procedure Adjust(u, level) readjusts the group size at all recursion
levels, starting from the deepest recursion and ending with the outermost recursion tree.
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Algorithm Dynamic-Expand(u, l1, l2)
1. w ← Find-Marked-Predecessor(u, 0)
2. for (each recursion level t) do
3. parent(l1, t) ← parent(u, t);
4. parent(l2, t) ← parent(u, t);
5. degree[parent(u, t)] ← degree[parent(u, t)] + 2;
6. insert l1 and l2 into the doubly linked list of all children

of parent(u, t), immediately following u
7. mark l2
8. if (parent(w, t) = parent(u, t)) then
9. insert l2 into the doubly linked list of all marked children

of parent(u, t), immediately following w
10. else
11. insert l2 at the beginning of the doubly linked list of

all marked children of parent(u, t)
12. if parent(u, t) is unmarked, mark it
13. if parent(parent(u, t), t) is unmarked, mark it
14. Adjust(u, lg lg n − 1)

Fig. 11. Dynamic Expand

Lines 28-29 represent the base case. If the root degree of the outermost recursion tree
doubles, then these lines reorganize the whole data structure. Lines 3-15 split an internal
node if the middle level degree of a recursion tree doubles. Lines 16-27 split a recursion
tree if the root degree of a recursion tree (except the outermost one) doubles. For an
expand operation, the procedure Adjust may either be called through all the recursion
levels or be called just for the deepest recursion level. The cost depends on the how far
we need to fix the data structure after inserting the two nodes in each recursion level.
Let us analyze the amortized cost in this scenario.

The Time Complexity of the Algorithm: The cost of expand is composed of the fol-
lowing parts: (i) the insertion of two nodes in each recursion level and management of
data structures; (ii) the splitting of nodes and splitting of the tree as the degree grows;
(iii) the reorganization of the whole data structure when the root degree of the outermost
recursion tree doubles.

Cost of Insertion and Reorganization: Since the procedure Dynamic-Expand calls
Find-Marked-Predecessor, which requires O((lg lg n)2) time in the worst case,
O(n(lg lg n)2) time is needed between two reorganizations. The reorganization itself
needs O(n lg lg n) for a list of length n.

Total Cost of Splitting: Notice that, during the expansion, every time a tree is split, the
size of this tree is at least twice of what it was immediately after the previous split.
Let T (2k) denote the total cost (i.e., including costs of splits of nodes that are children
w) of splitting a node w which has degree 2k. In this tree, the olddegree of the node
is k. To split this node into two new nodes of degree k, each of which has half of all
the children, we create two new nodes u and v, where u is the new parent of the first
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half of the children of w and v is the new parent of the second half of the children
of w. We also need to maintain the marked children of u and v as doubly linked lists.
These steps can be done in O(k) time. The natural question is how often do we split
nodes with degree 2k and what is the total time required for all these splits. Splitting
a node implies that the root degree of corresponding one level deeper recursion tree
has doubled. In this deeper level recursion tree, olddregree is

√
k. Hence, at most

√
k

splitting node operations can be performed in this recursion tree before its root degree
doubles. The split nodes in the deeper level of recursion have degree 2

√
k, hence the

time used for one such splitting is bound by T (2
√

k). This leads to the recurrence
T (2k) ≤

√
k · T (2

√
k) + O(k). Solving the recurrence, T (2k) is O(k lg lg k). Let us

assume that we have just reorganized the data structure and that the olddegree in the
outermost level is k. Then, before the whole data structure is reorganized again, there
will be k outermost level splitting node operations. Hence, the time used between two
reorganizations, is (k2 lg lg k). The actual size of the tree is at least n = 2k2. Thus, the
total cost of splitting between reorganizations is O(n lg lg n).

Total Cost of Dynamic Expand: Let G(n) be the time complexity of total cost for for all
n Dynamic-Expand operations. Between two reorganizations, maintaining the structure
has cost O(n · lg lg n) and the reorganization itself has cost O(n · lg lg n). The last
reorganization occurs when the size is n

2 . Then the recurrence relation for G(n) is:
G(n) = G(n

2 ) + O(n · (lg lg n)2). Solving this recurrence, we obtain that the total cost
for O(n) Dynamic-Expand operations is O(n · (lg lg n)2). Hence, the Dynamic-Expand
operation can be performed with amortized time complexity O((lg lg n)2).

4.2 Dynamic Remove Operation

When the remove operation is performed on a dynamic tree T , there are two cases. If
the node to be removed u does not have a right sibling, then we can remove this node
from each level of the recursion tree and maintain the data structures. If u has a right
sibling v, then we need to remove u and unmark the right sibling v in all recursive trees.
Since the level of recursion is O(lg lg n), the remove operation requires O(lg lg n) time.
Section 4.3 will show that this simple solution allows an efficient query algorithm.

4.3 Dynamic Verify Leftmost Operation

The find algorithm is identical to the static case. However, the analysis of the run-
ning time is more involved. Recall that, in the static case, the recurrence relation is
T (n) = O(lg lg

√
n) + T (

√
n). as the nodes are maintained in equally sized groups.

In the new scheme, we allow the number of nodes to increase up to a certain point.
It is worth noting that our scheme may allow the size of a group to increase by more
than a constant factor between levels, nevertheless it still supports the Find-Marked-
Predecessor operation in O((lg lg n)2) time.

Consider a freshly reorganized data structure for a n-node dynamic tree. According
to the scheme, the level (lg lg n−1) recursion tree (which has 4 leaves) may grow up to
7 leaves before splitting is performed. Its size cannot exceed 2 times of the original size.
In the level (lg lg n− 2) recursion tree, since the middle level degree may be the largest
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possible size of level (lg lg n − 1) recursion tree and the root degree cannot exceed 2
times the original, the size of level (lg lg n− 2) recursion tree cannot exceed 4 times of
the original size. Similarly, the size of level (lg lg n− 3) recursion tree cannot exceed 8
times of the original size. Extending this, the size of level 1 recursion tree cannot exceed
2lg lg n−1 times of the original size, which is lg n

2 ·
√

n.
More formally, define N(i) to be largest possible size in recursion level i. Then,

N(i) ≤
{

7 if i = lg lg n− 1;
2 · olddegree(i) ·N(i + 1) otherwise.

where the olddegree(i) is the value of olddegree field in level i recursion tree, which
is n

1
2i+1 . Solving this recurrence relation, N(1) = O(2lg lg n−1 · n 1

2 ) = O(
√

n lg n).
N(1) is the largest possible group in the outer-most recursion tree. Observe that with
this bound on the largest group size, the asymptotic running time to answer the query
is unchanged. It is important to note that in the Dynamic-Expand operation one needs
to insert nodes in arbitrary positions in a list (of children of a node) and still be able to
compare if the leftmost marked node in this list is to the left of a given node efficiently.
This is more general than the temporal precedence problem. However, data structures
developed in [5] can be used to solve the general problem equally efficiently.

5 Conclusions and Future Work

We have studied the problem of testing leftness in a dynamically growing tree and pro-
vided efficient pure pointer machine algorithms for several variants of the problems.
The problem has theoretical interest and practical applications in programming lan-
guages implementation. The results indeed suggest that preventive schemes in DAP can
be executed more efficiently than curative schemes (which have been shown to have
higher complexity); at the same time, the data structures provided in this paper suggest
that, at least theoretically, better implementation structures can be devised to support
preventive schemes. None of the algorithms we propose is provably optimal. As future
work, we propose to investigate possibly tighter bounds; for example, we will investi-
gate if these problems can be solved in O(lg lg n) time on pure pointer machines.
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Appendix A

Algorithm Adjust(u, level)
1. p ← parent(u, level);
2. pp ← parent(p, level);
� middle level degree of deepest recursion tree doubles or
when upper level of recursion is called, split node
3. if ((degree[p] ≥ 2 · olddegree[p] and level = lg lg n − 1) or level �= lg lg n − 1)
4. Create two nodes left and right;
5. degree[left] ← degree[p]/2;
6. degree[right] ← degree[p]− degree[left];
7. parent[left] ← pp;
8. parent[right] ← pp;
9. degree[pp] ← degree[pp] + 1;
10. replace p with left and insert right into the children list of pp;
11. the parent of the first half children of p ← left;
12. if any child of left is marked, left is marked;
13. the parent of the second half children of p ← right;
14. if any child of right is marked, right is marked;
15. maintain marked children list for nodes left and right;
� root degree of the tree doubles, split tree
16. if (degree[pp] ≥ 2 · olddegree[pp] and level �= 0)
17. Create two nodes old and new;
18. degree[old] ← degree[pp]/2;
19. degree[new] ← degree[pp]− degree[old];
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20. parent[old] ← NIL;
21. parent[new] ← NIL;
22. the parent of the first half children of pp ← old;
23. if any child of old is marked, old is marked;
24. the parent of the second half children of pp ← new;
25. if any child of new is marked, new is marked;
26. maintain marked children list for nodes old and new;
27. Adjust(u, level − 1);
� base case of the recursion
28. if (degree[pp] ≥ 2 · olddegree[pp] and level = 0)
29. reorganize the whole data structure by building it from scratch.

a. taking the preorder traversal of the dynamic tree of size n.
b. constructing all lg lg n levels of recursion trees.
c. “olddegree” field squared for each level of recursion.
d. maintain correct internal structure for each group.
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Abstract. We present a new answer set solver, called nomore++, along with its
underlying theoretical foundations. A distinguishing feature is that it treats heads
and bodies equitably as computational objects. Apart from its operational foun-
dations, we show how it improves on previous work through its new lookahead
and its computational strategy of maintaining unfounded-freeness. We underpin
our claims by selected experimental results.

1 Introduction

A large part of the success of Answer Set Programming (ASP) is owed to the early
availability of efficient solvers, like smodels [1] and dlv [2]. Since then, many other sys-
tems, sometimes following different approaches, have emerged, among them assat [3],
cmodels [4], and noMoRe [5].

We present a new ASP solver, called nomore++, along with its underlying theo-
retical foundations. nomore++ pursues a hybrid approach in combining features from
literal-based approaches, like smodels and dlv, with the rule-based approach of its pre-
decessor noMoRe. To this end, it treats heads and bodies of logic programs’ rules equi-
tably as computational objects. We argue that this approach allows for more effective (in
terms of search space pruning) choices than obtainable when dealing with either heads
or bodies only. As a particular consequence of this, we demonstrate that the resulting
lookahead operation allows for more effective propagation than previous approaches.
Finally, we detail a computational strategy of maintaining “unfounded-freeness”.

We empirically show that, thanks to its hybrid approach, nomore++ outperforms
smodels on relevant benchmarks. In fact, we mainly compare our approach to that of
smodels. Our choice is motivated by the fact that both systems primarily address normal
logic programs.1 dlv and many of its distinguishing features are devised for dealing with
the more expressive class of disjunctive logic programs. Also, smodels and nomore++
share the same concept of “choice points”, on which parts of our experiments rely upon.

The paper is organised as follows. After some preliminary definitions, we start with
a strictly operational specification of nomore++. In fact, its configurable operator-based
design is a salient feature of nomore++. We then concentrate on two specific features:
First, we introduce nomore++’s lookahead operation and prove that, in terms of propa-
gation, it is more powerful than the ones encountered in smodels and noMoRe. Second,
we present nomore++’s strategy of keeping assignments unfounded-free. Finally, we
provide selected experimental results backing up our claims.

1 Unlike smodels, nomore++ cannot (yet) handle cardinality and weight constraints.

G. Sutcliffe and A. Voronkov (Eds.): LPAR 2005, LNAI 3835, pp. 95–109, 2005.
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2 Background

A logic program is a finite set of rules of the form

p0 ← p1, . . . , pm,not pm+1, . . . ,not pn, (1)

where n ≥ m ≥ 0 and each pi (0 ≤ i ≤ n) is an atom in some alphabet A. A literal
is an atom p or its negation not p. For r as in (1), let head(r) = p0 be the head of r
and body(r) = {p1, . . . , pm,not pm+1, . . . ,not pn} be the body of r. Given a set X
of literals, let X+ = {p ∈ A | p ∈ X} and X− = {p ∈ A | not p ∈ X}. For body(r),
we then get body(r)+ = {p1, . . . , pm} and body(r)− = {pm+1, . . . , pn}.

A logic program Π is called basic if body(r)− = ∅ for all r ∈ Π . The reduct, ΠX ,
of Π relative to a set X of atoms is defined by

ΠX = {head(r) ← body(r)+ | r ∈ Π, body(r)− ∩X = ∅}.

A set X of atoms is closed under a basic program Π if, for any r ∈ Π , head(r) ∈ X if
body(r)+ ⊆ X . Cn(Π) denotes the smallest set of atoms closed under basic program
Π . A set X of atoms is an answer set of a logic program Π if Cn(ΠX) = X .

As an example, consider program Π1 comprising rules:

r1 : a ← not b r3 : c ← not d
r2 : b ← not a r4 : d ← not c

(2)

We get four answer sets, viz. {a, c}, {a, d}, {b, c}, and {b, d}.
For a program Π , we write head(Π) = {head(r) | r ∈ Π} and body(Π) =

{body(r) | r ∈ Π}. We further extend this notation: For h ∈ head(Π), define
body(h) = {body(r) | r ∈ Π, head(r) = h}.

Without loss of generality, we restrict ourselves to programs Π satisfying {p | r ∈
Π, p ∈ body(r)+∪body(r)−} ⊆ head(Π). That is, every body atom must occur as the
head of some rule. Any program Π can be transformed into such a format, exploiting
the fact that no atom in (A \ head(Π)) is contained in any answer set of Π .

3 Operational Specification

We provide in this section a detailed operational specification of nomore++. The firm
understanding of nomore++’s propagation mechanisms serves as a basis for formal
comparisons with techniques used by smodels or dlv. We indicate how the operations
applied by nomore++ are related to well-known propagation principles, in particular,
showing that our basic propagation operations are as powerful as those of smodels (cf.
Theorem 1). Beyond this, the hybrid approach of nomore++ allows for more flexible
choices, in particular, leading to a more powerful lookahead, as we detail in Section 4.

We consider assignments that map heads and bodies of a program Π into {⊕,�},
indicating whether a head or body is true or false, respectively. Such assignments are
extended in comparison to those used in literal-based solvers, such as smodels and dlv,
or rule-based solvers, such as noMoRe. Formally, a (partial) assignment is a partial
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mapping A : head(Π) ∪ body(Π) → {⊕,�}. For simplicity, we often represent such
an assignment A as a pair (A⊕, A�), where A⊕ = {x | A(x) = ⊕} and A� = {x |
A(x) = �}. Whenever A⊕ ∩ A� �= ∅, then A is undefined as it is no mapping. We
represent an undefined assignment by (head(Π)∪body(Π), head(Π)∪body(Π)). For
comparing assignments A and B, we define A � B, if A⊕ ⊆ B⊕ and A� ⊆ B�. Also,
we define A �B as (A⊕ ∪B⊕, A� ∪B�).

Forward propagation in nomore++ can be divided into two sorts. Head-oriented
propagation assigns⊕ to a head if one of its associated bodies belongs to A⊕, it assigns
� whenever all of a head’s bodies are in A�. This kind of propagation is captured
by sets TΠ(A) and TΠ(A) in Definition 1. Body-oriented propagation is based on the
concepts of support and blockage. A body is supported if all its positive literals belong
to A⊕, it is unsupported if one of its positive literals is in A�. This is reflected by sets
SΠ(A) and SΠ(A) below. Analogously, but with roles partly interchanged, sets BΠ(A)
and BΠ(A) define whether a body is blocked or unblocked, respectively.2

Definition 1. Let Π be a logic program and let A be a partial assignment of head(Π)∪
body(Π). We define

1. TΠ(A) = {h ∈ head(Π) | body(h) ∩A⊕ �= ∅};
2. TΠ(A) = {h ∈ head(Π) | body(h) ⊆ A�};
3. SΠ(A) = {b ∈ body(Π) | b+ ⊆ A⊕};
4. SΠ(A) = {b ∈ body(Π) | b+ ∩A� �= ∅};
5. BΠ(A) = {b ∈ body(Π) | b− ∩A⊕ �= ∅};
6. BΠ(A) = {b ∈ body(Π) | b− ⊆ A�}.

We omit the subscript Π whenever it is clear from the context. In what follows, we also
adopt this convention for similar concepts without further notice.

Based on the above sets, we define forward propagation operator P as follows.

Definition 2. Let Π be a logic program and let A be a partial assignment of head(Π)∪
body(Π). We define

PΠ(A) = A � (T (A) ∪ (S(A) ∩B(A)), T (A) ∪ S(A) ∪B(A)) .

A head is assigned ⊕ if it belongs to T (A); a body must be supported as well as un-
blocked, namely, belong to S(A) ∩ B(A). Conversely, a body is assigned � whenever
it is unsupported or blocked, i.e. in S(A) ∪B(A); a head must be in T (A).

For example, let us apply P to A0 = ({body(r1)}, ∅) on Π1:

P(A0) = A1 = ({a, body(r1)}, ∅) by T (A0)
P(A1) = A2 = ({a, body(r1)}, {body(r2)}) by B(A1)
P(A2) = A3 = ({a, body(r1)}, {b, body(r2)}) by T (A2)

Note that A3 is closed under P , that is, P(A3) = A3.
For describing the saturated result of operators’ application, we need the following

definition. LetO be a collection (possibly a singleton) of operators and let A be a partial

2 We systematically use over-lining for indicating sets with antonymous contents.



98 C. Anger et al.

assignment. Then, we denote byO∗(A) the�-smallest partial assignment containing A
and being closed under all operators inO. In the above example, we get P∗(A0) = A3.

Backward propagation can be viewed as an inversion of P . For example, consider
the definition of T (A) and suppose h ∈ head(Π) ∩ A⊕ whereas body(h) ∩ A⊕ = ∅,
that is, no body of any rule with head h has been assigned ⊕ so far. Hence, h is not
“produced” by T (A). Yet there must be some body b ∈ body(h) that is eventually
assigned⊕, otherwise h cannot be true. However, this body can only be determined if all
other bodies are already in A�. This leads us to the definition of T �

Π(A).3 Analogously,
we can derive the following sets.4

Definition 3. Let Π be a logic program and let A be a partial assignment of head(Π)∪
body(Π). We define

1. T �
Π(A) = {b | b ∈ body(h), h ∈ head(Π) ∩A⊕, body(h) \ {b} ⊆ A�};

2. T
�

Π(A) = {b | b ∈ body(h), h ∈ head(Π) ∩A�};
3. S�

Π(A) = {h | h ∈ b+, b ∈ body(Π) ∩A⊕};
4. S

�

Π(A) = {h | h ∈ b+, b ∈ body(Π) ∩A� ∩B(A), b+ \ {h} ⊆ A⊕};
5. B�

Π(A) = {h | h ∈ b−, b ∈ body(Π) ∩A� ∩ S(A), b− \ {h} ⊆ A�};
6. B

�

Π(A) = {h | h ∈ b−, b ∈ body(Π) ∩A⊕}.

Combining the above sets yields backward propagation operator B.

Definition 4. Let Π be a logic program and let A be a partial assignment of head(Π)∪
body(Π). We define

BΠ(A) = A � (T �(A) ∪ S�(A) ∪B�(A), T �(A) ∪ S�(A) ∪B�(A)) .

Adding the rule b ← c to program Π1 still gives P(A3) = A3. Due to the fact that
b ∈ A�

3 , iterated application of B additionally yields:

B(A3) = A4 = A3 � (∅, {{c}}) by T �(A3)
B(A4) = A5 = A3 � (∅, {{c}, c}) by S�(A4)
B(A5) = A6 = A3 � (∅, {{c}, c, body(r3)}) by T �(A5)
B(A6) = A7 = A3 � ({d}, {{c}, c, body(r3)}) by B�(A6)
B(A7) = B∗(A3) = A3 � ({d, body(r4)}, {{c}, c, body(r3)}) by T �(A7)

The next definition elucidates the notion of an unfounded set [6] in our context.
Given an assignment A, the greatest unfounded set of heads and bodies, UΠ(A), is
defined in terms of the still potentially derivable atoms in UΠ(A).

Definition 5. Let Π be a logic program and let A be a partial assignment of head(Π)∪
body(Π). We define

UΠ(A) = {b ∈ body(Π) | b+ �⊆ UΠ(A)} ∪ {h ∈ head(Π) | h �∈ UΠ(A)}

where UΠ(A) = Cn((Π \ {r ∈ Π | body(r) ∈ A�})∅).
3 We use the superscript � to indicate sets used in backward propagation.
4 The relation between P and B will be detailed in the full paper.
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The set U(A) of potentially derivable atoms is formed by removing all rules whose
bodies belong to A�. The resulting subprogram is reduced with respect to the empty
set so that we can compute its (potential) consequences by means of the Cn operator,
as defined for basic programs in Section 2.

The following operator U falsifies all elements in a greatest unfounded set.

Definition 6. Let Π be a logic program and let A be a partial assignment of head(Π)∪
body(Π). We define

UΠ(A) = A � (∅, U(A)) .

Consider program Π2, obtained from Π1 by adding rules

r5 : e ← not a,not c, r6 : e ← f,not b, r7 : f ← e, (3)

and assignment A = (∅, {body(r5)}).5 We then have U(A) = Cn((Π2 \ {r5})∅) =
Cn({a ←, b ←, c ←, d ←, e ← f, f ← e}) = {a, b, c, d}, and thus we obtain
U(A) = (∅, {body(r5), e, body(r6), f, body(r7)}). As we detail in the full paper, the
assignment (PU)∗((∅, ∅)) amounts to a program’s well-founded semantics [6].

Let us compare the introduced operators to propagation in smodels, which is based
on two functions, called atleast and atmost. Function atleast computes deterministic
consequences by forward and backward propagation, Function atmost is the counter-
part of U(A) and amounts to Cn((Π \ {r | body(r)+ ∩A� �= ∅})A⊕∩head(Π)). In [1],
smodels’ assignments are represented as sets of literals. Although we refrain from giv-
ing a formal definition, we however mention that atleast bounds the set of true literals
from “below” and that atmost bounds the set of true atoms from “above”.

Theorem 1. Let Π be a logic program. Let X be a partial assignment of head(Π)
and let A be a partial assignment of head(Π) ∪ body(Π) such that (A⊕, A�) =
(X+, X−).6 Then, we have the following results.

1. Let Y = atleast(Π, X) and B = (PB)∗(A).
If Y + ∩ Y − = ∅ and B⊕ ∩ B� = ∅, then (Y +, Y −) = (B⊕ ∩ head(Π), B� ∩
head(Π)); otherwise, Y + ∩ Y − �= ∅ and B⊕ ∩B� �= ∅.

2. Let Y = X � (∅, head(Π) \ atmost(Π, X)) and B = U(P(A)).
If Y + ∩ Y − = ∅ and B⊕ ∩ B� = ∅, then (Y +, Y −) = (B⊕ ∩ head(Π), B� ∩
head(Π)); otherwise, Y + ∩ Y − �= ∅ and B⊕ ∩B� �= ∅.

The above results show that nomore++’s basic propagation operations P , B, and U are
as powerful as those of smodels. The reason why P is applied once in 2. is that initially
A assigns no values to bodies in order to be comparable to smodels’ assignment X .

Concluding with basic propagation, we mention that P corresponds to Fitting’s op-
erator [7], (PB) coincides to unit propagation on a program’s completion [8], (PU)
amounts to propagation via well-founded semantics [6], and (PBU) matches smodels’
propagation, that is, well-founded semantics enhanced by backward propagation.

5 The situation that a body is in A� without belonging to S(A)∪B(A) is common in nomore++,
as bodies can be taken as choices.

6 Note that (A⊕ ∩ body(Π), A� ∩ body(Π)) = (∅, ∅).
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The first differences to well-known approaches are encountered at choices. In smod-
els and dlv, choices are restricted to heads; noMoRe chooses on rules (comparable to
bodies) only. Unlike this, nomore++ generally allows for choosing to assign values to
heads as well as bodies, and we define nomore++’s choice operator C as follows.

Definition 7. Let Π be a logic program, let A be a partial assignment of head(Π) ∪
body(Π), and let X ⊆ head(Π) ∪ body(Π). We define

1. C⊕Π(A, X) = (A⊕ ∪ {x}, A�) for some x ∈ X \ (A⊕ ∪A�);
2. C�Π(A, X) = (A⊕, A� ∪ {x}) for some x ∈ X \ (A⊕ ∪A�).

The set X delineates the set of possible choices. In general, the chosen object x ∈ X
can be any unassigned head or body.

The possibility of choosing among heads and bodies provides us with great flexibil-
ity. Notably, some choices have a higher information gain than others. On the one hand,
setting a head to � yields more information than choosing some body to be �. Negat-
ing some head h by � implies that all bodies in body(h) are false (via B). Conversely,
choosing a body to be� has generally no direct effect on the body’s heads because there
may be alternative rules (i.e. other bodies) sharing the same heads. Also, we normally
gain no information on the constituent literals of the body. On the other hand, assigning
⊕ to bodies is superior to assigning⊕ to heads. When we choose⊕ for a body, we infer
that its heads must be assigned ⊕ as well (via P). Moreover, assigning ⊕ to a body
b implies that every literal in b is true (via B). Unlike this, choosing ⊕ for some head
does generally not allow to determine a corresponding body that justifies this choice
and would then be assigned ⊕, too. The observation that assigning � to heads and ⊕
to bodies, respectively, subsumes the opposite assignments also fortifies nomore++’s
lookahead strategy, detailed in Section 4.

Following [9], we characterise the process of answer set formation by a sequence
of assignments.

Theorem 2. Let Π be a logic program, let A be a total assignment of head(Π) ∪
body(Π), and let X = head(Π)∪ body(Π). Then, A⊕ ∩ head(Π) is an answer set of
Π iff there exists a sequence (Ai)0≤i≤n of assignments with the following properties:

1. A0 = (PBU)∗((∅, ∅));
2. Ai+1 = (PBU)∗(C◦(Ai, X)) for some ◦ ∈ {⊕,�} and 0 ≤ i < n;
3. An = A.

The intersection A⊕ ∩ head(Π) accomplishes a projection to heads and thus to the
atoms forming an answer set. Many different strategies can be shown to be sound and
complete. For instance, the above result still holds after eliminating B. (For simplicity,
we refer to these strategies by (PBU)∗C or (PU)∗C, respectively. We also drop super-
scripts ⊕ and � from C when referring to either case.) As with computational strategies,
alternative choices, expressed by X , are possible. For example, Theorem 2 also holds
for X = head(Π) or X = body(Π), respectively, mimicking a literal-based approach
such as smodels’ one or a rule-based approach as the one of noMoRe. A further restric-
tion of choices is discussed in Section 5.

Although we cannot provide the details here, it is noteworthy to mention that al-
lowing X = head(Π) ∪ body(Π) as choices leads to an exponentially stronger proof
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system (in terms of proof complexity [10], i.e. minimal proofs for unsatisfiability) in
comparison to either X = head(Π) or X = body(Π). The comparison between dif-
ferent proof systems and proof complexity results will be key issues in the full paper.

4 Lookahead

We have seen that nomore++’s basic propagation is as powerful as that of smodels. An
effective way of strengthening propagation is to use lookahead.7 Apart from specifying
nomore++’s lookahead, we demonstrate below that a hybrid lookahead strategy, incor-
porating heads and bodies, allows for stronger propagation than a uniform one using
only either heads or bodies. Uniform lookahead is for instance used in smodels on lit-
erals and in noMoRe on rules (comparable to bodies). However, we do not want to put
more computational effort into hybrid lookahead than needed in the uniform case. The
solution is simple: Assigning� to heads and⊕ to bodies within lookahead is, in combi-
nation with propagation, powerful enough to compensate for the omitted assignments.

First of all, we operationally define our lookahead operator L as follows.

Definition 8. Let Π be a logic program and let A be a partial assignment of head(Π)∪
body(Π). Furthermore, let O be a collection of operators.

For x ∈ (head(Π) ∪ body(Π)) \ (A⊕ ∪A�), we define:

�⊕,O
Π (A, x) =

{
(A⊕, A� ∪ {x}) if O∗((A⊕ ∪ {x}, A�)) is undefined
A otherwise

��,O
Π (A, x) =

{
(A⊕ ∪ {x}, A�) if O∗((A⊕, A� ∪ {x})) is undefined
A otherwise

For X ⊆ head(Π) ∪ body(Π), we define:

L⊕,O
Π (A, X) =

⊔
x∈X\(A⊕∪A�) �⊕,O

Π (A, x)

L�,O
Π (A, X) =

⊔
x∈X\(A⊕∪A�) ��,O

Π (A, x)

LOΠ(A, X) = L⊕,O
Π (A, X) � L�,O

Π (A, X)

Observe that, according to the above definition, elementary lookahead � can only be
applied to an unassigned head or body x. For such an x, � tests whether assigning and
propagating a value leads to a conflict. If so, the opposite value is assigned. We stipulate
x to be unassigned because the intended purpose of lookahead is gaining information
from imminent conflicts when basic propagation is stuck, hence the name “lookahead”.

Our lookahead operatorL can be parametrised in several ways. First, one can decide
on a set X ⊆ head(Π) ∪ body(Π) to apply � to. Second, either⊕, �, or both of them,
one after the other, can be temporarily assigned and propagated. Third, the collection
O determines the propagation operators to be applied inside lookahead, which can be

7 Note that we consider lookahead primarily as a propagation operation, such as P , B, and U .
Supplementary, lookahead is often also used for gathering heuristic values for the selection of
choices. As with smodels and dlv, this information is exploited by nomore++ as well.
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different from the ones used outside lookahead. The general definition allows us to
describe and to compare different variants of lookahead.

In what follows, we detail nomore++’s hybrid lookahead on heads and bodies and
show that it is strictly stronger than uniform lookahead on only either heads or bodies,
without being computationally more expensive. To start with, observe that full hybrid
lookahead by LO(A, head(Π) ∪ body(Π)) is the most powerful lookahead operation
with respect to some O. That is, anything inferred by a restricted lookahead is also
inferred by full hybrid lookahead. Given that full hybrid lookahead has to temporarily
assign both values, ⊕ and �, to each unassigned head and body, it is also the com-
putationally most expensive lookahead operation. In the worst case, there might be
2 ∗ (|head(Π)|+ |body(Π)|) applications of � without inferring anything.

The high computational cost of full hybrid lookahead is the reason why nomore++
applies a restricted hybrid lookahead. Despite the restrictions, nomore++’s hybrid
lookahead does not sacrifice propagational strength and is in combination with prop-
agation as powerful as full hybrid lookahead (see 3. in Theorem 3 below). The obser-
vations made on choices in the previous section provide an explanation on how a more
powerful hybrid lookahead operation can be obtained without reasonably increasing the
computational cost in comparison to uniform lookahead on only either heads or bodies:
Assigning� to a head subsumes assigning� to one of its bodies, assigning⊕ to a body
subsumes assigning ⊕ to one of its heads. That is why nomore++’s hybrid lookahead
applies ��,O to heads and �⊕,O to bodies only. Provided that P belongs to O and that
all operators in O are monotonic (like, for instance, P , B, and U), nomore++’s hybrid
lookahead has the same propagational strength as full hybrid lookahead.

Theorem 3. Let Π be a logic program. Let A be a partial assignment of head(Π) ∪
body(Π) and let

B = P(L⊕,O(A, body(Π))) � L�,O(A, head(Π)) .

Then, for every collectionO of �-monotonic operators such that P ∈ O, we have

1. LO(A, head(Π)) � B;
2. LO(A, body(Π)) � P(B);
3. LO(A, head(Π) ∪ body(Π)) � P(B).

Fact 3. states that nomore++’s lookahead is, in combination with propagation, as pow-
erful as full hybrid lookahead. Facts 1. and 2. constitute that it is always at least as
powerful as any kind of uniform lookahead. Thereby, condition P ∈ O stipulates that
propagation (within lookahead) must be at least as powerful as Fitting’s operator. Un-
like this, the occurrences of P in B, 2., and 3. are only of formal nature and needed for
synchronising heads and bodies. In practise, lookahead is interleaved with P anyway,
since it is integrated into propagation, viz. (PBUL)∗. More importantly, nomore++’s
restricted hybrid lookahead, assigning � to heads and ⊕ to bodies only, faces approxi-
mately the same computational efforts as encountered in the uniform case and not more
than the most consuming uniform lookahead, since 2 ∗min{|head(Π)|, |body(Π)|} ≤
|head(Π)|+ |body(Π)| ≤ 2 ∗max{|head(Π)|, |body(Π)|}.8

8 For both, heads and bodies, we have |head(Π)| ≤ |Π | and |body(Π)| ≤ |Π |, respectively.
In uniform cases, factor 2 accounts for assigning both values, ⊕ and , one after the other.
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Πn
b =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r0 : x ← not x
r1 : x ← a1, b1 r2 : a1 ← not b1 r3 : b1 ← not a1

...
r3n−2 : x ← an, bn r3n−1 : an ← not bn r3n : bn ← not an

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Πn
h =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r0 : x ← c1, . . . , cn,not x
r1 : c1 ← a1 r2 : c1 ← b1 r3 : a1 ← not b1 r4 : b1 ← not a1

...
r4n−3 : cn ← an r4n−2 : cn ← bn r4n−1 : an ← not bn r4n : bn ← not an

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Fig. 1. Lookahead programs Πn

b and Πn
h for some n ≥ 0

Finally, let us demonstrate that nomore++’s hybrid lookahead is in fact strictly more
powerful than uniform ones. Consider Programs Πn

b and Πn
h , given in Figure 1. Both

programs have, due to rule r0 in the respective program, no answer sets and are thus
unsatisfiable. For Program Πn

b , this can be found out by assigning ⊕ to bodies of the
form {ai, bi} (1 ≤ i ≤ n) and by backward propagation via B. With Program Πn

h ,
assigning � to an atom ci (1 ≤ i ≤ n) leads to a conflict by backward propagation via
B. Provided that B belongs to O in LO,9 body-based lookahead detects the unsatisfi-
ability of Πn

b , and head-based lookahead does the same for Πn
h . Hence, nomore++’s

hybrid lookahead detects the unsatisfiability of both programs without any choices be-
ing made. Unlike this, detecting the unsatisfiability of Πn

b with head-based lookahead
and choices restricted to heads (smodels’ strategy) requires exponentially many choices
in n. The same holds for Πn

h with body-based lookahead and choices restricted to bod-
ies (noMoRe’s strategy). Respective benchmark results are provided in Section 6.

5 Maintaining Unfounded-Freeness

A characteristic feature, distinguishing logic programming from propositional logic, is
that true atoms must be derived via the rules of a logic program. For problems that
involve reasoning, e.g. Hamiltonian cycles, this allows for more elegant and compact
encodings in logic programming than in propositional logic. Such logic programming
encodings produce non-tight programs [11, 12], for which there is a mismatch between
answer sets and the models of programs’ completions [8]. The mismatch is due to the
potential of circular support among atoms. Such circularity is prohibited by the answer
set semantics, but not by the semantics of propositional logic. The necessity of support-
ing true atoms non-circularly is reflected by propagation operator U in Section 3.

We detail in this section how our extended concept of an assignment, incorporating
bodies in addition to heads, can be used for avoiding that atoms assigned ⊕ are sub-
sequently detected to be unfounded. (Note that such a situation results in a conflict.)
More formally, our goal is to avoid that atoms belonging to A⊕ in an assignment A
are contained in U(B) for some extension B of A, i.e. A � B. We therefore devise a

9 If B �∈ O, neither variant of lookahead detects unsatisfiability without making choices.
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computational strategy that is based on a modified choice operator, largely preventing
conflicts due to true atoms becoming unfounded as a result of some later step. Finally,
we point out how our computational strategy facilitates the implementation of operator
U and which measures must be taken in the implementation of operators B and L.

Let us first reconsider program Π2 in (2) and (3) for illustrating the problem of true
atoms participating in an unfounded set. Assume that the collection (PBU) of operators
is used for propagation and that we start with A0 = (PBU)∗((∅, ∅)) = (∅, ∅). Let our
first choice be applying C⊕ to atom e. We obtain

A1 = (PBU)∗(({e}, ∅)) = ({e, f, body(r7)}, ∅).

At this point, we cannot determine a rule for deriving the true atom e, since we have
two possibilities, r5 and r6. Let us apply C⊕ to atom d next. We obtain

A2 = (PBU)∗(A1 � ({d}, ∅)) = A1 � ({d, body(r4)}, {c, body(r3)}).

Still we do not know whether to use r5 or r6 for deriving e. Our next choice is applying
C⊕ to atom a, and propagation via (PB) yields

A′
2 = (PB)∗(A2 � ({a}, ∅))

= A2 � ({a, body(r1), body(r6)}, {b, body(r2), body(r5)}).

We have U(A′
2) = {b, c, e, f, body(r6), body(r7)}, and U(A′

2) yields a conflict on
atoms e and f and on bodies body(r6) and body(r7).

The reason for such a conflict is applying choice operator C⊕ to a head or a body
lacking an established non-circular support. Consider a head h that is in A⊕, but not in
T (A), that is, h has not been derived by a rule yet. Supposing that h is not unfounded
with respect to A, i.e. h �∈ U(A), some of the bodies in body(h) might still be assigned
� in the ongoing computation. As a consequence, all bodies potentially providing a
non-circular support for h might be contained in B� for some extension B of A, that
is, A � B. For such an assignment B, we then have h ∈ U(B), and propagation via U
leads to a conflict. Similarly, a body b that is in A⊕ but not supported with respect to A,
i.e. b �∈ S(A), can be unfounded in an assignment B such that A � B, as some positive
literal in b+ might be contained in U(B).

Conflicts due to ⊕-assigned heads and bodies becoming unfounded cannot occur
when non-circular support is already established. That is, every head in A⊕ must be
derived by a body that is in A⊕, too. Similarly, the positive part b+ of a body b in A⊕

must be derived by other bodies in A⊕. This leads us to the following definition.

Definition 9. Let Π be a logic program and let A be an assignment of head(Π) ∪
body(Π). We define A as unfounded-free, if

(head(Π) ∩A⊕) ∪ (
⋃

b∈body(Π)∩A⊕ b+) ⊆ Cn({r ∈ Π | body(r) ∈ A⊕}∅) .

Heads and bodies in the positive part, A⊕, of an unfounded-free assignment A can-
not be unfounded with respect to any extension of A.

Theorem 4. Let Π be a logic program and let A be an unfounded-free assignment of
head(Π)∪ body(Π). Then, A⊕ ∩U(B) = ∅ for any assignment B such that A � B.
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Unfounded-freeness is maintained by forward propagation operator P . That
is, when applied to an unfounded-free assignment, operator P produces again an
unfounded-free assignment.

Theorem 5. Let Π be a logic program and let A be an unfounded-free assignment of
head(Π) ∪ body(Π). If P(A) is defined, then P(A) is unfounded-free.

For illustrating the above result, reconsider Π2 in (2) and (3) and assignment A =
({body(r5)}, ∅). A is unfounded-free because body(r5)

+ = ∅ ⊆ Cn({e ←}) = {e}.
We obtain P∗(A) = ({body(r5), e, body(r7), f}, ∅), which is again unfounded-free,
since {e, f} ∪ body(r5)

+ ∪ body(r7)
+ = {e, f} ⊆ Cn({e ←, f ← e}) = {e, f}.

In order to guarantee unfounded-freeness for choice operator C⊕, the set X of heads
and bodies to choose from has to be restricted appropriately. To this end, nomore++
provides the following instance of C.

Definition 10. Let Π be a logic program and let A be a partial assignment of
head(Π) ∪ body(Π). We define

1. D⊕
Π(A) = C⊕Π(A, (body(Π) ∩ S(A)));

2. D�
Π(A) = C�Π(A, (body(Π) ∩ S(A))).

Operator D differs from C in restricting its choices to supported bodies. This still
guarantees completeness, as an assignment A that is closed under (PBU) is total if
(body(Π) ∩ S(A)) \ (A⊕ ∪A�) = ∅.10

Like P , operatorD maintains unfounded-freeness.

Theorem 6. Let Π be a logic program and let A be an unfounded-free partial assign-
ment of head(Π) ∪ body(Π) such that (body(Π) ∩ S(A)) \ (A⊕ ∪ A�) �= ∅. Then,
D◦(A) is unfounded-free for ◦ ∈ {⊕,�}.

Note that there is no choice operator like D for heads. A head h having a true body,
i.e. body(h)∩A⊕ �= ∅, is already decided throughP . Thus, h cannot be assigned� and
is no reasonable choice. On the other hand, if we concentrate on heads having a body
that is supported but not already decided, i.e. there is a body b ∈ (body(h) ∩ S(A)) \
(B(A) ∪ B(A)), such a b can still be assigned � in some later step. That is, a head
chosen to be true can still become unfounded later on.

Unlike P andD, backward propagationB and lookaheadL can generally not main-
tain unfounded-freeness, as they assign ⊕ for other reasons than support. That is why
we introduce at the implementation level a weak counterpart of ⊕, denoted by ⊗.11

Value ⊗ indicates that some head or body, for which non-circular support is not yet
established, must eventually be assigned ⊕. In the implementation, only P and D as-
sign ⊕, while operators B, C, and L can only assign ⊗ (or �).12 Any head or body
in A⊗ can be turned into ⊕ by P without causing a conflict. So, by distinguishing

10 Note that any body whose literals are true is in A⊕ due to P . All other bodies either contain a
false literal and are in A� due to P , or they positively depend on unfounded atoms in U(A)
and are in A� due to U .

11 Similar to dlv’s must-be-true [13]; see Section 7.
12 Please note that P retains ⊗ when propagating from ⊗. Also, a body b cannot be chosen by D

if some h ∈ b+ is in A⊗.
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two types of “true”, we guarantee unfounded-freeness for the ⊕-assigned part of an
assignment.

Maintaining unfounded-freeness allows for a lazy implementation of operator U .
That is, the scope of U(A) (cf. Definition 5) can be restricted to (head(Π)∪body(Π))\
(A⊕∪A�), taking the non-circular support of A⊕ for granted. In other words, the com-
putation of U(A) is restricted to heads and bodies being either unassigned or assigned
⊗. Beside the fact that D can assign ⊕ and C only ⊗, using D instead of C helps in
avoiding that true atoms lead to a conflict by participating in an unfounded set. This can
be crucial for efficiently computing answer sets of non-tight programs, as the bench-
mark results in the next section demonstrate.

6 System Design and Experimental Results

nomore++ is implemented in C++ and uses lparse as parser. A salient feature of
nomore++ is that it facilitates the use of different sets of operators. For instance, if
called with command line option “--choice-op C --lookahead-op PB”, it
uses operator C for choices and (PB) for propagation within lookahead. The default
strategy of nomore++ is applying (PBUL) for propagation, where lookahead by L
works as detailed in Section 4, andD as choice operator. By default, (PBU) is used for
propagation within lookahead. The system is freely available at [14].

Due to space limitations, we confine our listed experiments to selected benchmarks
illustrating the major features of nomore++. A complete evaluation, including further
ASP solvers, e.g. assat and cmodels, can be found at the ASP benchmarking site [15].
All tests were run on an AMD Athlon 1.4GHz PC with 512MB RAM. As in the context
of [15], a memory limit of 256MB as well as a time limit of 900s have been enforced.
All results are given in terms of number of choices and seconds (in parentheses), re-
flecting the average of 10 runs.

Let us note that, due to the fairly early development state of nomore++, its base
speed is still inferior to more mature ASP solvers, like smodels or dlv.

This can for instance be seen in the results of the “Same Generation” bench-
mark, where smodels outperforms nomore++ roughly by a factor of two (cf. [15]).13

Despite this, the selected experiments demonstrate the computational value of cru-
cial features of nomore++ and provide an indication of the prospect of the overall
approach.

In all test series, we ran smodels with its (head-based) lookahead and dlv.
For a complement, we also give tests for nomore++ with body-based looka-
head L(PBU)(A, body(Π)) for an assignment A and a program Π , abridged Lb.
The tests with nomore++’s hybrid lookahead rely on L⊕,(PBU)(A, body(Π)) �
L�,(PBU)(A, head (Π)), abbreviated by Lbh.

For illustrating the effect of maintaining unfounded-freeness, Table 1 shows results
obtained on Hamiltonian cycle problems on complete graphs with n nodes (HCn), both
for the first and for all answer sets. While nomore++ does not make any wrong choices
leading to a linear performance in Table 1(a), smodels needs an exponential number

13 Other apt benchmarks are “Factoring” and “Schur Numbers” (cf. [15]); in both cases, smodels
still outperforms nomore++ by an order of magnitude.
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of choices, even for finding the first answer set. The usage of choice operator D en-
forces that rules are chained in the appropriate way for solving HCn programs. We note
that, on HCn programs, dlv performs even better regarding time (cf. [15]); the different
concept of “choice points” makes nomore++ and dlv incomparable in this respect.

Table 1. Experiments for HCn Computing (a) one answer set; (b) all answer sets

HCn

dlv smodels nomore++ nomore++ dlv smodels nomore++ nomore++
(PBVLb)∗D (PBVLbh)∗D (PBVLb)∗D (PBVLbh)∗D

3 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) (0.00) 1 (0.00) 1 (0.00) 1 (0.00)
4 (0.00) 2 (0.01) 2 (0.01) 2 (0.00) (0.00) 5 (0.00) 5 (0.00) 5 (0.00)
5 (0.00) 3 (0.00) 3 (0.00) 3 (0.01) (0.01) 26 (0.00) 23 (0.02) 23 (0.02)
6 (0.01) 4 (0.01) 4 (0.01) 4 (0.01) (0.02) 305 (0.02) 119 (0.11) 119 (0.11)
7 (0.01) 3(0.01) 5 (0.02) 5 (0.02) (0.14) 4,814 (0.38) 719 (0.83) 719 (0.85)
8 (0.01) 8 (0.00) 6 (0.03) 6 (0.03) (1.06) 86,364 (7.29) 5,039 (7.40) 5,039 (7.60)
9 (0.02) 48 (0.01) 7 (0.05) 7 (0.05) (10.02) 1,864,470(177.91) 40,319 (73.94) 40,319 (76.09)
10 (0.03) 1,107 (0.18) 8 (0.08) 8 (0.08) (109.21) n/a 362,879 (818.73) 362,879 (842.57)
11 (0.03) 18,118 (2.88) 9 (0.13) 9 (0.12) n/a n/a n/a n/a
12 (0.05) 398,306 (65.29) 10 (0.19) 10 (0.20) n/a n/a n/a n/a
13 (0.06) n/a 11 (0.29) 11 (0.30) n/a n/a n/a n/a

Table 2. Results for (a)Πn
b ; (b) Πn

h

Πn
b

dlv smodels nomore++ nomore++
Πn

h

dlv smodels nomore++ nomore++
(PBVLb)∗D (PBVLbh)∗D (PBVLb)∗D (PBVLbh)∗D

0 (0.04) 0 (0.00) 0 (0.01) 0 (0.01) 0 (0.07) 0 (0.01) 0 (0.01) 0 (0.01)
2 (0.04) 0 (0.00) 0 (0.01) 0 (0.01) 2 (0.04) 0 (0.01) 0 (0.01) 0 (0.01)
4 (0.04) 3 (0.00) 0 (0.01) 0 (0.01) 4 (0.04) 0 (0.01) 3 (0.01) 0 (0.01)
6 (0.04) 15 (0.00) 0 (0.01) 0 (0.01) 6 (0.04) 0 (0.01) 15 (0.01) 0 (0.01)
8 (0.05) 63 (0.00) 0 (0.01) 0 (0.01) 8 (0.05) 0 (0.01) 63 (0.01) 0 (0.01)
10 (0.06) 255 (0.00) 0 (0.01) 0 (0.01) 10 (0.06) 0 (0.01) 255 (0.03) 0 (0.01)
12 (0.10) 1,023 (0.01) 0 (0.01) 0 (0.01) 12 (0.10) 0 (0.01) 1,023 (0.09) 0 (0.02)
14 (0.26) 4,095 (0.03) 0 (0.02) 0 (0.02) 14 (0.29) 0 (0.01) 4,095 (0.33) 0 (0.02)
16 (0.93) 16,383 (0.11) 0 (0.02) 0 (0.02) 16 (1.06) 0 (0.01) 16,383 (1.27) 0 (0.02)
18 (3.60) 65,535 (0.43) 0 (0.03) 0 (0.02) 18 (4.14) 0 (0.01) 65,535 (5.04) 0 (0.02)
20 (14.46) 262,143 (1.71) 0 (0.03) 0 (0.03) 20 (16.61) 0 (0.01) 262,143 (20.37) 0 (0.02)
22 (57.91) 1,048,575 (6.92) 0 (0.03) 0 (0.03) 22 (66.80) 0 (0.01) 1,048,575 (81.24) 0 (0.03)
24 (233.44) 4,194,303 (27.70) 0 (0.03) 0 (0.03) 24 (270.43) 0 (0.01) 4,194,303 (322.73) 0 (0.03)
26 n/a 16,777,215 (111.42) 0 (0.03) 0 (0.03) 26 n/a 0 (0.01) n/a 0 (0.04)
28 n/a 67,108,863 (449.44) 0 (0.04) 0 (0.04) 28 n/a 0 (0.01) n/a 0 (0.04)
30 n/a n/a 0 (0.04) 0 (0.04) 30 n/a 0 (0.01) n/a 0 (0.04)

The results in Table 2, obtained on programs Πn
b and Πn

h from Figure 1, aim
at supporting nomore++’s hybrid lookahead. We see that a hybrid approach is supe-
rior to both kinds of uniform lookahead. smodels employs a head-based lookahead,
leading to a good performance on programs Πn

h , yet a bad one on Πn
b . The con-

verse is true when restricting nomore++ to lookahead on bodies only (command line
option “--body-lookahead”). nomore++ with hybrid lookahead performs opti-
mal regarding choice points on both types of programs. Also, a comparison of the
two nomore++ variants shows that hybrid lookahead does not introduce a computa-
tional overhead. Note that dlv performs similar to the worst approach on both Πn

b and
Πn

h .
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7 Discussion

We have presented a new ASP solver, along with its underlying theory, design and
some experimental results. Its distinguishing features are (i) the extended concept of
an assignment, including bodies in addition to atoms, (ii) the more powerful looka-
head operation, and (iii) the computational strategy of maintaining unfounded-freeness.
We draw from previous work on the noMoRe system [5], whose approach to answer
set computation is based on “colouring” the rule dependency graph (RDG) of a pro-
gram. noMoRe pursues a rule-based approach, which amounts to restricting the domain
of assignments to body(Π). The functionality of noMoRe has been described in [9]
by graph-theoretical operators similar to P , U , C, and D. nomore++’s operators for
backward propagation (B) and lookahead (L) were presented here for the first time.14

In general, operator-based specifications facilitate formal comparisons between tech-
niques used by different ASP solvers. Operators capturing propagation in dlv are given
in [18]. Pruning operators based on Fitting’s [7] and well-founded semantics [6] are
investigated in [19]. The full paper contains a detailed comparison of these operators.

smodels [1] and dlv [2] pursue a literal-based approach, which boils down to re-
stricting the domain of assignments to head(Π). However, in both systems, propaga-
tion keeps track of the state of rules, which bears more redundancy than using bodies.15

nomore++’s strategy of maintaining unfounded-freeness is closely related to some con-
cepts used in dlv, but still different. In fact, the term “unfounded-free” is borrowed from
[20], where it is used for assessing the complexity of unfounded set checks and charac-
terising answer sets in the context of disjunctive logic programs. We, however, address
assignments in which the non-circular support of true atoms is guaranteed. Also, dlv se-
lects its choices among so-called possibly-true literals [13], corresponding to a literal-
based version of choice operatorD. But, as discussed in Section 5, unfounded-freeness
in our context cannot be achieved by choosing atoms to be true.

We conclude with outlining some subjects to future development and research. First,
the low-level implementation of nomore++ will be improved further in order to be
closer to more mature ASP solvers, such as smodels and dlv. Second, aggregates, like
smodels’ cardinality and weight constraints, will be supported in future versions of
nomore++, in order to enable more compact problem encodings. Finally, we detail in
the full paper that restricting choices to either heads or bodies leads to exponentially
worse proof complexity. Although choice operatorD is valuable for handling non-tight
programs, it is directly affected, as it restricts choices to bodies.16 Thus, conditions
for allowing non-supported choices, though still preferring supported choices, will be
explored, which might lead to new powerful heuristics for answer set solving.

Acknowledgements. We are grateful to Yuliya Lierler, Tomi Janhunen, and anonymous
referees for their helpful comments. This work was supported by DFG under grant
SCHA 550/6-4 as well as the EC through IST-2001-37004 WASP project.

14 Short or preliminary, respectively, notes on nomore++ can be found in [16, 17].
15 The number of unique bodies in a program is always less than or equal to the number of rules.
16 Note that literal-based solvers, such as smodels and dlv, suffer from exponential worst-case

complexity as well.
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Abstract. The traditional purpose of types in programming languages
of providing correctness assurances at compile time is increasingly being
supplemented by a direct role for them in the computational process. In
the context of typed logic programming, this is manifest in their effect
on the unification operation. Their influence takes two different forms.
First, in a situation where polymorphism is permitted, type information
is needed to determine if different occurrences of the same name in fact
denote an identical constant. Second, type information may determine
the form of bindings for variables. When types are needed for the sec-
ond purpose as in the case of higher-order unification, these have to be
available with every variable and constant. However, in situations such
as first-order and higher-order pattern unification, types have no impact
on the variable binding process. As a consequence, type examination is
needed in these situations only for the first of the two purposes described
and even here a careful preprocessing can considerably reduce their run-
time footprint. We develop a scheme for treating types in these contexts
that exploits this observation. Under this scheme, type information is
elided in most cases and is embedded into term structure when this
is not entirely possible. Our approach obviates types when properties
known as definitional genericity and type preservation are satisfied and
has the advantage of working even when these conditions are violated.

1 Introduction

This paper concerns the runtime treatment of types in a higher-order logic pro-
gramming language that incorporates polymorphic typing. We are interested in
a setting where types are used prescriptively, i.e., where their purpose is to im-
pose coherence conditions on expressions in a program. The traditional utility
for such conditions is to express limitations in the applicability of specific op-
erations, thereby providing a control over the kinds of computations that are
attempted. This is, in fact, a role for types that is relevant to program correct-
ness and one that is typically discharged at compile-time. There is, however,
another mode in which types can be used: they can be employed to influence the
kind of computation that is carried out. Such a usage of types leads to ad hoc
polymorphism, a facet that is exploited systematically in object-oriented pro-
gramming and also sometimes imported into functional programming contexts
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for efficiency reasons [15]. It is when types are used in this fashion that they
exhibit a runtime presence.

The two uses of types that we describe above apply also in the logic pro-
gramming setting; they are present, for instance, in the language λProlog [12].
The runtime effects of types are characterized within this paradigm by their role
in the unification operation. This operation is carried out by a possibly repeated
application of two phases. One of these phases is that of term simplification, a
critical part of this computation being that of matching the constants at the
heads of the two terms that are being unified. In a polymorphic setting, differ-
ent instances of a constant with a particular name may have distinct associated
types and information must be available for determining if these can be made
identical. The other phase is one in which a binding is determined for a variable
that appears at the head of one of the terms. Types can affect this variable bind-
ing phase as well, impacting thereby on the shape of unifiers rather than merely
on the question of unifiability. When types influence both phases, as they do in
the case of higher-order unification [3], they must be available with each variable
and constant appearing in a term.

Types typically have a rich structure in declarative programming languages,
making their runtime processing a costly operation. The usual resolution to this
problem in the typed logic programming setting is to restrict the language so
as to altogether eliminate their need in computations. The language that is at
the center of most such proposals is either a first-order one or, at least, uses
unification in a first-order way. In such a situation, types can be made irrelevant
to the variable binding phase. Conditions are then imposed on the structure of
the declared types of constants, the instance types of the predicates that appear
as the heads of clauses and possibly on the mode in which predicates are used
to ensure that types are not needed to determine unifiability either. Exemplars
of this approach are those presented in [1, 2, 5, 9].1

Our concern in this paper also is to minimize the impact of types on runtime
behaviour. However, we take the view that we cannot change the language to suit
our needs as its implementors. Instead, we focus on a combination of compile-
time analysis and a processing structure that can reduce the runtime footprint
of types. The key ingredients of our approach are the following:

– We orient our implementation around a form of unification in which types
do not impact on the variable binding phase; this allows us to elide types
with variables.

– Following [4], we utilize information available from signature declarations to
factor types for constants into a fixed skeleton part that we discard and a
variable part that we carry around at runtime.

– Using a compile-time examination of predicate definitions and the structure
of the types for constants, we isolate and eliminate those variable parts in
types over which unification is guaranteed to succeed.

1 Both [1] and [2] seem to suggest that their conditions can be applied on a “per con-
stant” and “per clause” basis. However, the proposals in these papers are incorrect
if interpreted in this way; see Section 5 for a specific example to this effect.
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The scheme we describe allows all runtime computations over types to be elimi-
nated when the conditions known as definitional genericity and type preservation
required by many of the previously described approaches are met and degrades
gracefully to function also in situations where these are not satisfied.

The rest of this paper is organized as follows. In the next two sections we
describe the typed language and we present a computational model for it around
which we orient our implementation ideas. In Section 4 we show how compile-
time type checking and the structure of types can be exploited to eliminate much
of the type information with non-predicate constants. For predicate constants,
we have to further analyze the usage of type information in goal invocations, an
aspect that we discuss in Section 5. We conclude the paper in Section 6 with an
indication of how the ideas that are presented in it are actually being used.

2 The Syntax of the Typed Language

We consider the core language of λProlog in this paper with a restriction: we
do not permit predicate quantification and we disallow predicates and logical
symbols within the arguments of predicates. This omission simplifies our presen-
tation without seriously limiting the applicability of the scheme that we develop.

The types that are used are similar to the ones employed in a language such
as SML. We begin with sorts and type variables and use type constructors to
build structured types over these. We assume a collection of built-in sorts such as
int, string, and o (that stands for propositions) and the well-known unary type
constructor list. Syntactically, type variables are distinguished as tokens that
begin with uppercase letters. Using this vocabulary, we obtain types such as
int, (list int) and (list A). The last is an example of a polymorphic type whose
different manifestations are obtained by suitably instantiating the variable A.
Existing collections of sorts and type constructors can be enhanced through
mechanisms whose details we omit. We use a curried syntax for constructed
types. Thus, if pair has been identified as a binary type constructor, then the
expression (pair int string) is a type; note that a constructor must be given
a number of arguments equal to its arity to produce a legitimate type. The
types that we have described thus far constitute atomic types. The language
also admits of function types, written as α → β where α and β are types.
Parentheses are omitted in type expressions by assuming that → associates to
the right. Using this convention, a function type may be depicted in the form
α1 → · · · → αn → β where β is an atomic type. Such a type has α1, . . . , αn as
its argument types and β as its target type. This notation and terminology is
extended to atomic types by allowing the argument types to be missing. We do
not permit o to appear in argument types.

The terms of the language are those of a lambda calculus restricted by the
types just described. The starting point is provided by a collection of constants
and variables each element of which has a designated type. We assume as built-
in the usual integer and string constants of type int and string and the list
constructors nil of type (list A) and :: of type (A → (list A) → (list A)), the
latter being written as an infix, right associative operator. Additional constants
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can be identified together with their types in a manner that we do not detail
here. In constructing terms, we are permitted to use constants at instances of
their declared types. In particular, the terms are given with their associated
types by the following rules: (i) a variable is a term of its associated type, (ii) a
constant is a term of any instance of its declared type, (iii) if t and s are terms
of type α→ β and α respectively, then (t s) is an (application) term of type β,
and (iv) if x is a variable of type α and t is a term of type β, then λx t is an
(abstraction) term of type α→ β. In writing terms, we shall use the conventions
that application associates to the left and has higher priority than abstraction.

We assume a notion of equality on terms that is given by the rules of α-, β-
and η-conversion. Types ensure that these rules can be used to convert every term
into a head-normal form. Such a form has the structure λx1 . . . λxn (h t1 . . . tn),
where h is a constant or variable; we shall refer to h as the head of the term
and to t1, . . . , tn as its arguments. We also observe that, given two head-normal
forms of the same type, the α- and η-rules allow us to arrange the abstractions
at the front to be identical in number and in the names for the bound variables.
We utilize these facts implicitly in the discussions that follow.

Programming in the language is based on two sets of formulas called program
clauses and queries or goals. Formulas in these two classes are constructed using
logical symbols from atomic ones that are actually terms of type o with (predi-
cate) constants as heads. Denoting atomic formulas by the symbol A and using
x to represent variables that do not have o as a target type, program clauses
and goals are the D and G formulas given by the following syntax rules:

D ::= A | G ⊃ A | ∀xD
G ::= A | ∃xG | ∀xG | G ∧G | D ⊃ G.

Computation consists of attempting to solve a closed query relative to a finite
collection of closed program clauses, called a program, in a manner that we
explain in the next section.

We will use devices familiar from Prolog when we have to depict actual
programs. In particular, we will adopt Prolog’s manner for writing implications in
program clauses, its convention of making top-level universal quantifiers implicit
by using names beginning with uppercase letters for quantified variables and its
method for depicting sets of clauses. As an illustration, the program

{ ∀l (append nil l l),
∀x∀l1 ∀l2 ∀l3 ((append l1 l2 l3) ⊃ (append (x::l1) l2 (x::l3))) },

in which we assume append to be a predicate constant of type

(list A) → (list A) → (list A) → o,

will be rendered as

append nil L L.
(append (X::L1) L2 (X::L3)) :- (append L1 L2 L3).

Similarly, the convention for making top-level existential quantifiers in queries
implicit will also be used. Thus, the query
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∃f ∀a (append (a::nil) (b::a::nil) (f a)),

where we assume b to be a constant of a (new) type i, will be depicted as

∀a (append (a::nil) (b::a::nil) (F a)).

Solving a query is intended to produce a bindings for its implicitly quantified
variables. Thus, in this instance, the result would be the binding λx (x::b::x::nil)
for F. This query incidentally illustrates the fact that the language is higher-order
and that computation in it can take place under a mixed prefix of quantifiers.

We have thus far been silent about how types are associated with variables.
This can be done by annotating the abstractions and quantifiers that introduce
variables in terms. It is also possible to infer a unique most general type for them
using ideas familiar from SML; using this approach we would, for instance, infer
the type (list A) for the variable L that appears in the first clause for append
above. For constants, we have to contend with the fact that their defined types
may be refined in specific contexts of use; this happens for instance for both ::
and nil in the term (1::nil). In the end, these specific type associations may have
to be carried into computations. We shall depict them as subscripts on variables
and constants in the next section when we spell out the evaluation model. We
then devote our attention to the efficient treatment of these type annotations.

3 The Model of Computation

Given a program P , let us denote the set of instances of clauses in P obtained
by substituting ground types for the type variables appearing in them by {P}t.
Similarly, let us denote the set of all ground type instances of a goal G by {G}t.
A goal G is then intended to be solvable from a program P if and only if there
is a G′ ∈ {G}t such that {P}t � G′ holds in intuitionistic logic. Our language
possesses the uniform provability property [8] and this fact allows us to use a
procedure similar to the one for Prolog in addressing this derivability question.
In particular, given a complex goal, we may proceed by simplifying it as per
its top-level logical symbol. When this symbol is an existential quantifier, we
introduce a special logic variable that serves as a place-holder for a term whose
precise shape will be determined as the search proceeds. When the goal has been
reduced to an atomic one, we use clauses from the program in a backchaining
mode. This step makes use of unification and may yield a further goal to solve,
leading to a repetition of the overall process.

There are, however, new aspects to be dealt with arising out of the richer
syntax of our language. One such aspect relates to the possible presence of impli-
cations in goals. The program can change dynamically because of this, requiring
the solution of each subgoal to be relativized to a specific program. Another
issue concerns the treatment of mixed prefixes of quantifiers. Universal quanti-
fiers in goals lead to the introduction of new constants during computation and
unification must respect the scope of such constants. To satisfy this restriction,
we think of annotating each constant and logic variable with a level indicator
and of using these annotations in an occurs-check phase in unification.



Optimizing the Runtime Processing of Types 115

θ ∈ unify(A,A′)

P , n � A, θ
[ATOM]

θ ∈ unify(A, A′) θ(P), n � θ(G), θ′

P , n � A, θ′ ◦ θ
[BC]

where A′ ∈ [P ]n where G ⊃ A′ ∈ [P ]n

P ∪ {D}, n � G, θ

P ,n � D ⊃ G, θ
[IMP]

P , n � G1, θ
′ θ′(P), n � θ′(G2), θ

P , n � G1 ∧ G2, θ
[AND]

P , n � G[x := Xn], θ
P , n � ∃x G, θ

[SOME]
P , n + 1 � G[x := cn+1], θ

P , n � ∀x G, θ
[ALL]

where X is a new logic variable where c is a new constant of the same
of the same type as x type as x

Fig. 1. The operational semantics rules

Towards realizing these ideas, we allow logic variables into our formulas and
we label them and also the constants with natural numbers. We display these
labels where needed as superscripts on the corresponding symbols. The opera-
tional semantics of our language is then given by the derivation of judgements of
the form P , n � G, θ, where P is a program, n is a natural number, G is a goal
and θ is a substitution for both logic and type variables. Let us write F ∈ [P ]n
if F can be obtained from a clause in P by first picking fresh names for the
type variables that appear in it and then instantiating the universal quantifiers
that appear at its head with new logic variables carrying the label n. Moreover,
let us denote the result of replacing the variable x in a formula F with t by
the expression F [x := t]. Then the rules shown in Figure 1 allow us to derive
the judgements that are of interest to us. To solve the (top-level) goal G from
the program P , we label all the constants appearing in G and in P with 0 and
then try to construct a derivation for P , 0 � G, θ for some θ using these rules.
Notice that the substitution component of such a judgement actually constitutes
the result produced by a computation and, when thought of in this manner, this
imposes a sequentiality in the solution of conjunctive goals using the rule [AND].

The rules in Figure 1 rely on a unification judgement. In elaborating this,
we shall assume that all the unification problems that we encounter dynamically
satisfy the following condition: whenever a logic variable appears as the head of
(the normal form of) a term, it has as arguments a sequence of distinct vari-
ables bound by abstractions or distinct constants with labels greater than that
attached to the logic variable. This is the higher-order pattern restriction [7, 13]
that is satisfied trivially by first-order terms and also by most higher-order uni-
fication problems that arise in practice [6]. The solution to such problems can be
computed by descending through the structures of terms first in a simplification
mode and later in a variable binding mode if needed [10]. The rules in Figure 2
define the form of this process. These rules use lists of equations to capture
recursion through term structure. To find a θ in unify(A, A′), we initiate the
rewriting process with the tuple 〈A = A′ :: nil, ∅〉, hoping to reduce this to the
form 〈nil, θ〉. Notice that rule (2) requires a most general unifier to be computed
for two types under a view of them as first-order terms. We also use in this rule
the fact that if two terms of identical type have the same constant or bound
variable as their heads, then they must have the same number of arguments.
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(1) 〈(λx t = λx s :: E, θ〉 −→ 〈(t = s) :: E, θ〉.
(2) 〈(aτ t1 . . . tn) = (aσ s1 . . . sn) :: E, θ〉 −→ 〈φ(t1 = s1 :: ... :: tn = sn :: E), φ ◦ θ〉,

provided a is a constant or a variable bound by an abstraction
and φ is a most general unifier for τ and σ

(3) 〈(Fσ y1 . . . yn) = t) :: E, θ〉 −→ 〈ϕ(E), ϕ ◦ θ〉
provided F is a logic variable and mksubst(Fσ, t, [y1, . . . , yn]) = ϕ.

(4) 〈(t = (Fσ y1 . . . yn) :: E, θ〉 −→ 〈ϕ(E), ϕ ◦ θ〉
provided F is a logic variable and mksubst(Fσ, t, [y1, . . . , yn]) = ϕ.

Fig. 2. Simplification rules for higher-order pattern unification

The invocation of mksubst(Fσ, t, [y1, . . . , yn]) in the last two rules initiates
the variable binding phase. This computation is intended to determine a substi-
tution for Fσ and possibly for logic variables appearing in t that make the terms
(Fσ y1 . . . tn) and t identical, if they are in fact unifiable. Towards this end,
a traversal is carried out over the structure of t, determining at each subterm
what needs to be done with the head symbol if a unifying substitution is to be
generated. If this symbol is a constant with a label less than or equal to that
of Fσ or if it is a variable bound by an abstraction appearing inside t, then it
can appear directly in the term to be substituted for Fσ. If it is a constant that
has a label larger than that of Fσ or it is a variable bound by an abstraction
outside of t, then it may appear in an instance of (Fσ y1 . . . yn) only if it is in
the list [y1, . . . , yn] and in this case the term that Fσ is bound to must carry
out a suitable projection. Finally, the head symbol may itself be a logic variable.
Suppose that the subterm is (Gρ z1 . . . zm) where Gρ is a logic variable and
the arguments z1, . . . , zm satisfy the pattern restriction. If Gρ is identical to Fσ,
then the terms are unifiable only if the subterm under consideration is all of t.
If this is the case, then n must be identical to m and the substitution for Fσ

should prune away all the arguments for which yi and zi do not agree. If Gρ is
distinct from Fσ , we have two cases to consider. If the label of Gρ is smaller than
or equal to that of Fσ, it is necessary to “prune” those elements of z1, . . . , zm

that do not appear in y1, . . . , yn and a suitable pruning substitution for Gρ and a
corresponding projection for the subterm must be computed. On the other hand,
if the label of Gρ is larger than that of Fσ, it is necessary to replace this vari-
able in the subterm by one that has the same label as Fσ to prevent subsequent
instantiations that violate scope restrictions. However, while doing this, the el-
ements of y1, . . . , yn that can legitimately appear in an instantiation of Gρ and
that are not already contained in z1, . . . , zm must be added to the sequence of
arguments of the subterm. To realize this correctly, the earlier described pruning
substitution for Gρ must be complemented by a “raising” component.

We refer the reader to [10] for an elaboration of the above description of
mksubst. Relative to such a description, we have the following theorem:

Theorem 1. Let P be a program and let G be a goal and let P ′ and G′ be
obtained from these by labelling all the constants appearing in them with the
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number 0. Further suppose that all the terms appearing in a derivation rooted
at P ′, 0 � G′, θ (for an arbitrary θ) satisfy the higher-order pattern restriction.
Then there is a derivation of P ′, 0 � G′, ϕ for some ϕ if and only if there is a
G′ ∈ {G}t and a finite subset Γ of {P}t such that Γ � G′ in intuitionistic logic.

The computation process that we have described has a shortcoming in that
it “stalls” when it encounters a unification problem outside the higher-order pat-
tern fragment. Practical systems work around this difficulty by deferring equa-
tions that violate the pattern restriction, reexamining them later or presenting
them as qualifications on computed answers—see, e.g., [14]. We elide a further
discussion of this matter since it is orthogonal to our present concerns.

4 Using Declared Types to Simplify Type Annotations

Types need to be carried into runtime computations only insofar as they affect
the course of computation. Towards understanding how this might happen, we
consider the different phases of the interpreter of Section 3.

In one phase, characterized by the rules in Figure 1, goals are simplified and
a unification computation may be initiated in support of backchaining. Types do
not determine the steps in this phase although some bookkeeping work relating
to them may have to be done. In particular, the rules [ALL] and [SOME] must
attach the type of the quantified variable to the new constant and logic variable
introduced by these rules if in fact these types are needed later during execution.
An important point to note with these constants and variables, though, is that
the same type is shared by every instance and, in terms of checking identity, a
simple lookup of the names suffices.

Another phase, defined by the rules in Figure 2, corresponds to the simplifi-
cation of the top-level fixed structure of terms in the unification process. Types
are used in an essential way in one of these rules, specifically in rule (2). In
determining the applicability of this rule, it is necessary to match up both the
names and the types of the constants or abstracted variables that appear as
the heads of the two terms being unified. Observe, however, that if these heads
are matching abstracted variables or constants introduced by the [ALL] rule for
goals, then the types must already be identical. Thus the checking or unification
of types is necessary only for the genuinely polymorphic constants declared at
the top-level in the program.

The last phase is the one that determines variable bindings in unification. A
closer look at the description we have provided of the computation carried out
by mksubst reveals the following: First, the types of logic variables are neither
examined nor refined in the process of constructing bindings; we do have to
check the identities of these variables at certain places but a simple comparison
of names is all that is needed for this. Second, we sometimes have to compare
constants (and abstracted variables), but these comparisons are restricted to
being between constants that appear as the arguments of the logic variables
in the appropriate instances of rule (3) or (4) in Figure 2. The higher-order
pattern restriction requires that such constants have higher labels than the logic
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variable at the head, implying thereby that they must have been introduced by
a use of the [ALL] rule. Hence every instance of any such constant must already
be known to have the same type. From these observations, it is evident that
types are incidental to the variable binding computation.

From the above considerations, it is clear that the only symbols with which we
need to maintain types at run time are the top-level declared constants. A further
examination allows us to simplify even this information. The defined type for such
a constant provides a skeleton that compile-time type checking ensures every oc-
currence of the constant shares. The only possible differences between the types
of distinct occurrences are in the instantiations of the variables that occur in the
skeleton. Thus, the type annotations for each constant can be systematically trans-
formedby a compiler into a (possibly empty) list of type variable instantiations and
it is only these (simpler) types that need to be unified during execution. As a par-
ticular example, given the types (list A) for nil and A→ (list A)→ (list A) for ::,
a compiler can determine that only the bindings for the type variable A need to be
stored with instances of these constants. Let us write type annotations as a special
first list argument for constants and let us temporarily use a prefix syntax for ::.
Then, by virtue of the present observation, the structure (:: [int→ (list int)→ (list
int)] 1 (nil [list int])) can be rendered into the form (:: [int] 1 (nil [int])) instead.

The manner in which unification problems are processed actually allows for
a further refinement of type annotations. The usage of the rules in Figure 2
begins with an equation between two (predicate) terms that have the same type
and each transformation preserves this relationship between the terms in each
equation. Thus, at the time when the types of different instances of a constant
are being unified in rule (2), their target types are known to be identical. This
has the special implication that there is no need to check the bindings for the
variables in the type skeleton that also occur in the target type and so these
may be eliminated from the annotations. In the case that all the variables in
the skeleton type also appear in the target type, i.e., when the constant type
satisfies the type preservation property [2], the compiler can conclude that no
type annotation needs to be maintained with the constant. This happens to be
the case for both :: and nil, for instance, and so all type information can be
elided from lists that are implemented using these constants.

We formalize the ideas expressed up to this point in the following fashion.
First, we attach with each constant an initial “list of types” argument. This list
is empty for the constants introduced by the [ALL] rule and for instances of the
other constants it consists of bindings for the variables that appear only in the
argument part of their declared types, presented in an order determined by a
compiler. This extra argument is simply carried along with the constant when a
variable substitution is being constructed. The only real use of it occurs in rule
(2) of the simplification phase of unification that is refined into the form shown
in Figure 3. The second rule in this collection is needed because constructors of
function type can appear without their arguments in programs in our higher-
order language. We also note that the types list argument is likely to be empty
in most situations and this is to be treated by a special case of rule (2.1).
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(2.1) 〈(a [τ1, ..., τk] t1...tn) = (a [σ1, ..., σk] s1...sn) :: E, θ〉
−→ 〈φ((t1 = s1) :: ... :: (tn = sn) :: E), φ ◦ θ〉,

where n > 0, and φ is a most general unifier for {〈τ1, σ1〉, . . . , 〈τk, σk〉},
if a is a constant.

(2.2) 〈(a [τ1, ..., τk]) = (a [σ1, ..., σk]) :: E, θ〉 −→ 〈E, θ〉, if a is a constant.

(2.3) 〈(a t1...tn) = (a s1...sn) :: E, θ〉 −→ 〈((t1 = s1) :: ... :: (tn = sn) :: E), θ〉,
if a is a variable bound by an abstraction.

Fig. 3. The refined structure simplification rule

The correctness of the implementation scheme described in this section is
stated in the following theorem. The proof of this theorem requires a formal
presentation of the compiler function that transforms the types of constants into
lists of type variable bindings. A subsequent argument utilizes this definition to
establish a correspondence between compile-time type checking and the runtime
type unification in rule (2.1) in Figure 3 on the one hand and the unification
carried out at runtime over the entire type in rule (2) of Figure 2 on the other.

Theorem 2. The modified interpreter described in this section in combination
with the scheme for transforming type annotations is sound and complete with
respect to the interpreter presented in Section 3.

The ideas we have described here may be applied to the append program.
There is a type variable appearing in the argument types of append that does
not appear in its target type the binding for which must therefore annotate its
occurrences. We have already seen that type annotations can be dropped from
:: and nil. Thus, the definition of append is transformed into the following:

append [A] nil L L.
(append [A] (X::L1) L2 (X::L3)) :- (append [A] L1 L2 L3).

The query considered in Section 2 correspondingly becomes

∀a (append [i] (a::nil) (b::a::nil) (F a)).

The scheme that we have described is capable also of dealing with the situ-
ation where the type preservation property is violated. For example, consider a
representation of heterogenous lists based on the constants null of type lst and
cons of type A→ lst→ lst. The list containing 1 and “list” as its elements would
then be represented by the term (cons [int] 1 (cons [string] “list” null)).

5 Eliminating Type Annotations for Predicates

Predicate names are constants whose declared types have o as their target types.
A consequence of this is that the ideas of the previous section do not allow any
of the variables that appear in the type of a predicate constant to be dispensed
with from the annotation that adorns it. This is unfortunate because in many
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instances these annotations have no tangible effect on a computation. A partic-
ular illustration of this fact is provided by the transformed definition of append
that we saw towards the end of Section 4. The type variable A that annotates
the head of each of these clauses can be unified with any type and hence has no
impact on the applicability of the clause to a given query. Actually carrying out
its unification with an incoming type will result in extracting a binding that, in
the second clause, is passed on to a recursive call of append. However, this call
will also at most result in the type binding being extracted and passed along
without affecting the computation in an observable way. The type annotation
for append can therefore be dispensed with without adverse effect.

But is there a systematic way for determining when a type annotation on a
predicate constant can be so eliminated? This is the issue we now address. We
propose a way for determining the elements of the types list associated with a
predicate name that could potentially influence a computation. For the types
not in this list we conclude that they can be elided.

The process of determining the potentially “needed” elements in the types
list can be oriented around the clauses defining the predicate constant.2 We
must include in this analysis also the clauses that appear on the lefthand sides
of implication goals in the bodies of clauses. If a constant appears as the head of
such a clause, we assume every element in its types list is needed: in the model
of computation we have described, the values for the type variables that appear
in such a clause get fixed when the clause is added to the program and conse-
quently runtime unification with them may determine a binding that influences
the subsequent usage of the clause. For a clause that appears at the top-level,
our analysis can be more sophisticated. An element in the types list for its head
predicate is needed if the value in the relevant position in the list associated with
the head in that clause is anything other than a variable; unification over this
element must be attempted during execution since it has the possibility of failing
in this case. Another situation in which the element is needed is if it is a vari-
able that occurs elsewhere in the same types list or in the types lists associated
with a non-predicate constant that occurs in the clause. The rationale here is
that either the variable will already have a binding that must be tested against
an incoming type or a value must be extracted into it that is used later in a
unification computation of consequence. A more subtle situation for the variable
case is when it occurs in the types list associated with the predicate head of a
clause that appears on the left of an implication goal in the body. In this case
the binding that is extracted at runtime in the variable has an impact on the
applicability of the clause that is added and consequently is a needed one.

The only case that remains to be considered is that where a variable element
in the types list for the clause head appears also in the types list associated with
a predicate constant in a goal position in the body, either at the top-level or,

2 The calculation we describe is sensitive to our being able to fix statically the full set
of clauses for a predicate. We obtain this ability here by assuming that the top-level
goal does not contain implications. In reality, the module system of λProlog gives
assistance in this task. A detailed discussion is beyond the scope of this paper.
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recursively, in an embedded clause definition. We could, somewhat simplistically,
treat such predicate constants also like the other constants. The drawback with
this is that the type annotation with the predicate constant appearing in the
body may itself be eliminable and then an opportunity for optimization would
be missed. We could, of course, determine this neededness information for the
body predicate constant first and then use this information in the analysis for
the given clause head. As an example of how this might work, suppose that print
is a predicate of type A → o and printlist is a predicate of type (list A) → o and
consider the following clauses annotated in the style of Section 4:

print [int] X :- {code for printing the integer value bound to X}.
print [string] X :- {code for printing the string value bound to X}.
printlist [C] nil.
printlist [C] (X::L) :- print [C] X, printlist [C] L.

In this code, print is a predicate that is polymorphic in an ad hoc way and
that makes genuine use of its type “argument.” This information can be used to
determine that it needs its type adornment and the following analysis exposes
the fact that printlist must therefore carry its type annotation.3

The approach suggested above needs refinement to be applicable to a context
where dependencies between definitions can be iterated and even recursive; at
present, it doesn’t apply directly even to the definition of append. The solution
is to use an iterative, fixed-point computation that has as its starting point
the neededness information gathered by initially ignoring predicate constants
appearing in goal positions in the body of the clause. In effecting this calculation
relative to a given program P , we employ a two-dimensional global boolean array
called needed whose first index, p, ranges over the set of predicate constants
appearing in P and whose second index, i, is a positive integer that ranges over
the length of the types list for p; this array evidently has a variable size along
its second dimension. The intention is that if, at the end of the computation,
needed[p][i] is false then the ith element in the types list associated with p does
not have an influence on the solution of any goal G from P . We compute the
value of this array by initially setting all the elements of needed to false and then
calling the procedure find needed defined in Figure 4 on the program P .

The invocation of find needed on any program P must clearly terminate. The
correctness of the procedure is then the content of the following lemma.

Lemma 1. Let p be a predicate constant defined in P and let it be the case that
when find needed(P) terminates, needed[p][i] is set to false. Then the ith element
in the types list of p has no impact on the solvability of any goal G from P.

Proof. Only a sketch is provided. Suppose that the specific value of a component
of the types list of a predicate constant p has a bearing on some computation.
3 This example vividly illustrates the problem with interpreting the conditions de-

scribed in [1] and [2] as applicable on a “per clause” and “per constant” basis. Using
them in this way, we would drop the type annotation with print list and therefore
not be able to pass this information on to print where it is genuinely needed.
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procedure find needed(P) {
init needed(P);
repeat
for each top-level non-atomic clause C in P {process clause(C);}

until (the value of needed does not change)
}
procedure init needed(P) {

for every embedded clause C in P with (p [τ1, ..., τk] t1 ... tn) as head
for 1 ≤ i ≤ k {needed[p][i] = true};

for every top-level clause C in P with (p [τ1, ..., τk] t1 ... tn) as head
for 1 ≤ i ≤ k
if τi is not a type variable {needed[p][i] = true;}
else {
if ((τi occurs in τj for some j such that 1 ≤ j ≤ k and i �= j) or

(τi occurs in the types list of a non-predicate constant in C) or
(τi occurs in the types list of a predicate constant appearing
as the head of an embedded clause in the body of C))

needed[p][i] = true;
}

}
procedure process clause(C) {

let C be of the form (p [τ1, . . . , τk] t1 . . . tn) :- G
for 1 ≤ i ≤ k
if needed[p][i] is false then {needed[p][i] = process body(G, τi)};

}

function process body(G, τ) : boolean {
if G is
∀G′ , ∃G′ : return process body(G′, τ);
G1 ∧ G2: return (process body(G1, τ) or process body(G2, τ));
D ⊃ G: return (process body(G, τ) or process embedded clause(D, τ));
atomic and of the form (q [σ1, ..., σl] s1 ...sm):
if τ occurs in σi for some i such that 1 ≤ i ≤ l and needed[q][i] is true
then return true;
else return false;

}

function process embedded body(D, τ) : boolean {
if D is
∀D1 : return process embedded body(D1);
G ⊃ A: return process body(G, τ));
atomic: return false;

}

Fig. 4. Determining if a predicate type argument is needed
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Then it must become relevant at a specific point in the backchaining sequence.
An induction on the distance of the relevant call of p from this point in the
sequence shows that needed[p][i] must be set to true by find needed: the base
case is accounted for by the initialization code and the inductive case is handled
by the fact that the iteration concludes only when a fixed point is reached.

The lemma leads naturally to the following theorem:

Theorem 3. Let P and G be a program and a goal that is annotated in the style
described at the end of Section 4. Let P and G be the program and goal that result
from P and G by eliminating those components from the types lists of predicates
that are found not to be needed by the invocation of find needed(P). Then G succeeds
fromP if and only if G succeeds from P using the interpreter described in Section 4.

Using this theorem and find needed, the type annotation for append can be
eliminated and the definition of this predicate can be reduced to essentially the
untyped form. In general, if every clause is type general in the sense of [2], then
types can be eliminated entirely from runtime computations.

6 Conclusion

A polymorphically typed higher-order logic programming language like λProlog
requires type information to be carried into computations. We have described
in this paper ways in which the amount of information that must be available
and manipulated at runtime can be significantly reduced. A critical part of our
approach is a shift from using a full higher-order unification procedure to one
based on higher-order patterns. There can be some differences in the end re-
sults of computations as a result of this shift but, in most cases, the changes are
actually for the better in that more precise answers are produced. The modi-
fied model also facilitates a static analysis of the dynamic effects of types that
eventually lies at the heart of our approach for eliding them in programs.

The ideas we have described here need extension in one respect to be actually
applicable to λProlog. In this language, predicate constants can in fact appear
within terms. When they appear in such contexts, they have to be treated like
other (non-predicate) constants and, under the present scheme, must carry bind-
ing for their type variables. However, even in this situation, the ideas in Section 5
can be applied to the extensional uses of predicate constants. Moreover, by ex-
ploiting visibility properties of constants emanating from the modules language
of λProlog, we can profitably lift the kind of analysis that we have described
in Section 5 for predicate constants that appear extensionally to constants that
appear within terms. As a particular case, then, the reach of these ideas can also
be extended to constants that appear both intensionally and extensionally.

The work that we have described here is being utilized in a new implemen-
tation of λProlog. They already have an impact in yielding an abstract machine
for the language that is considerably simpler than the one underlying the Teyjus
system [11]. We expect in the future to be able to compare the performance
of the two systems and to isolate the efficiency benefits of the reduced type
processing that are supported by the ideas in this paper.
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The Four Sons of Penrose
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Abstract. We distill Penrose’s argument against the “artificial intelli-
gence premiss”, and analyze its logical alternatives. We then clarify the
different positions one can take in answer to the question raised by the
argument, skirting the issue of introspection per se.

1 The Argument

It follows that there are four sons:
one wise; and one wicked;

one simple; and who knows not how to ask.

—Mekhilta of R. Ishmael (c. 300)

Artificial Intelligence (AI) is the endeavor to endow mechanical artifacts with
human-like intellectual capacities. The “strong” AI hypothesis (as propounded
in [7], for example, and critiqued in [18]) avows that “an appropriately pro-
grammed computer really is a mind” [18]. The Computational Hypothesis asserts
that the human mind is in reality some kind of physical symbol-manipulation
system. The “weak” version of the hypothesis (“A physical symbol system has
the necessary and sufficient means for intelligent action.” [13]) allows for the
possibility that the mind is not mechanical, but claims that it is (theoreti-
cally, at least) simulatable by mechanico-symbolic means (to wit, by a Turing
machine).1

In The Emperor’s New Mind [14] and especially in Shadows of the Mind [15],
Roger Penrose argues against these AI theses, contending that human reasoning
cannot be captured by an artificial intellect because humans detect nontermi-
nation of programs in cases where digital machines do not. Penrose thus adapts
the similar argumentation of Lucas [11]. The latter was based on Gödel’s incom-
pleteness results, whereas Penrose uses the undecidability of the halting problem,
demonstrated by Turing [22].

� This research was supported by the Israel Science Foundation (grant no. 250/05).
1 For a discussion of problems inherent in comparisons of computational power via

simulations, see [2].
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In a nutshell, Penrose’s argument runs as follows:

1. Consider all current sound human knowledge about non-termination.
2. Suppose one could reduce said knowledge to a (finite) computer program.
3. Then one could create a self-referential version of said program.
4. From the assumed existence of such a program, a contradiction to its correct

performance can be derived.

Penrose’s resolution of this contradiction is to deny the validity of the second
step: No program can incorporate everything (finitely many) humans know. This,
it would seem, violates even the weak AI premiss.

Since some (immortal) humans can emulate (unbounded) Turing machines,
while machines—according to this argument—cannot simulate all humans, Pen-
rose concludes that the human mind comprises super-Turing abilities, using
undiscovered physical processes. (For a more recent dispute over whether quan-
tum physics supports potentially super-Turing computability, see [8, 21, 9, 19].)
Penrose’s conclusions have been roundly critiqued, for example, in [1, 3, 5, 10, 16].

In this paper, we distill the arguments on both sides. Specifically, we reduce
the bone of contention to a consideration only of the question, “Does X not
respond to input X?”, and restrict ourselves to one entity versed in computer
science, namely, “Roger”. In the process, we demonstrate that there are exactly
four ways to resolve the conundrum raised by the above “diagonalization” argu-
ment. Roger falls into one (or more) of the following categories:

I. An idealized human who is inherently more powerful than Turing’s ma-
chines.

II. A slipshod human who can err in judgement.
III. An impetuous human who sometimes errs, having resorted to a baseless

hunch.
IV. A pedantic human who may decline to express an opinion when questioned.

The analysis remains the same regardless of whether the entities involved are
human, humanoid, or otherwise endowed with reasoning abilities. Knowledge of
one’s self-consistency does not directly enter the equation.

Most discussions exclude options II and III, as irrelevant when considering
“ideal” beings. Thus, it appears that IV, though rarely proposed explicitly in
these terms, is the preferred alternative for those who, unlike Penrose, do not
accept I. It goes without saying that real, corporeal mortal, humans suffer from
both II and III, and ultimately from IV, and—in the final analysis—have no
more computational power than sub-Turing finite automata.

In Sect. 3, we recapitulate a simplified version of Turing’s proof of the unde-
cidability of the halting problem. Before and after that section, we give a fanciful
rendition of the interplay between soundness (never giving a wrong answer) and
completeness (in the sense of always knowing when the answer is “yes”). Sec-
tion 5 defines transfinite sequences of better and better programs for termination
analysis. In Sect. 6, we introduce the entities that play a rôle in our analysis.
After setting the stage, we present our quadriad of possible solutions in Sect. 7.
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Finally, in the concluding section, these alternatives are matched up with some
of the different published opinions on the subject.

2 The Androids

Thousands of battle droids, super battle droids,
droidekas and other models

are built from start to finish within the factory.

—starwars.com

Androids have become more and more commonplace in the 21st century. Each
specimen is identified by model# and serial#. The older Model-T units are
being phased out. Most modern consumer models belong to either the R series
(circa 2001) or S series (circa 2010). Intelligence engineers have worked hard over
the years to continually lower response time, without compromising performance
quality. The R series is quite impressive, with guaranteed response time nowadays
of less than one minute. Reaction to this series, however, has been mixed, since R-
series androids have been known to occasionally give wrong answers and, hence,
cannot be trusted with sensitive tasks. Despite manufacturer claims that such
occurrences are extraordinarily rare, and that normal household use is highly
unlikely to suffer, the fact is that complaints continue to stream in.

In response to customer demands, the S series was launched, in which reliabil-
ity was made a top priority. These androids came with a “money back” guarantee
of correctness, for which purpose logicians were hired by android manufacturers.
Reviews of this series remain mixed, however. As it turns out, some questions
seem to befuddle members of this class, and unreasonably long delays have been
experienced before an answer was forthcoming. Some questions took so long,
that the “last resort” restart procedure was manually invoked.

It has become something of a geek game to come up with neat questions
that trip-up R-units and/or stump S-units. A simple litmus test to distinguish
between these two series is to ask the “trick question”:2

Will you answer “no” to this question?

All R models give a wrong answer, though some answer in the affirmative and
others in the negative. On the other hand, no S model answers within a minute,
or—indeed—has ever been known to answer this trick question. In fact, this
question belies claims that R-series droids will never fail in ordinary day-to-day
use.

In response to customer dissatisfaction, a new model has just hit the market.
It is the vanguard of the much-vaunted Q-series, which promises to harness
quantum technology to overcome shortcomings of the R and S models. Whether
it will be a success remains to be seen.

2 I have not yet found the origin of this riddle.
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3 The Halting Problem

This statement is false.

—Eubulides (c. −350)

The argument for undecidability of the halting problem, as in the seminal work
of Alan Turing, is by reductio ad absurdum. We provide a full “one-minute proof”
of the undecidability of a special case (viz. self-divergence), inspired by Doron
Zeilberger’s “2-minute proof” [24] and by Penrose’s claims. The idea is to for-
malize a paraphrasing of the trick question of the previous section, namely,

Will you not answer “yes” to this question?

computationally.
Consider any programming language supporting programs as data (as in

typical AI languages), which has some sort of conditional (if . . . then . . . else
. . . ) and includes at least one non-terminating program (which we denote loop).
Consider the decision problem of determining whether a program X diverges on
itself, that is, X(X) = ⊥, where ⊥ denotes a non-halting computation. Suppose
A were a program that purported to return true (T ) for (exactly) all such X .
Then A would perforce fail to answer correctly regarding the behavior of the
following (Lisp-ish) program:

C(Y ) := if A(Y ) then T else loop() ,

since we would be faced with the following contradiction:

C(C) returns T ⇔ A(C) returns T ⇔ C(C) diverges .

The first biconditional is by construction of C (the only case in which C returns
T is when A does); the second, by specification of A (A is to return T iff the
program it is applied to is self-looping).

So, we are forced to reject the supposition that there exists such an A. Tech-
nically, we say that the self-looping problem is not semi-decidable. But the fact
that no program can answer such a question should not surprise us, any more
than the failure of smart humans at the same task.

Programming languages that do not directly support “procedures as param-
eters” need to use some “code” c as the parameter instead of program C itself,
but otherwise the undecidability proof is unchanged:

C(c) returns T ⇔ A(c) returns T ⇔ C(c) diverges .

4 The Clones

This copy will outlive the original
and always look young and alive.

—L’Eve future (Villiers de l’Isle-Adam, 1886)

Our goal in this section is to demonstrate the impossibility of designing an
omniscient robot.
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Consider a Model-T android, named Andrea, with the ability to speak, com-
prehend speech, and react. Any one could pose questions to Andrea, like “Is it
raining here, now?”. Andrea might answer correctly (by sticking her hand out
the window and determining the meteorological state), she might lie (if she is
contrary), she might guess and take her chances at being right or wrong (without
looking out the window), she might give an inappropriate answer (like, “Shall I
get you an umbrella?”), or she may ignore the question and simply stay mum
on the subject.

Just as people might question Andrea, other robots might query her. Fur-
thermore, people as well as robots, might ask her questions about herself or
about other robots, like: “Are you hungry?”; “Do you fancy Borg?”; or “Is Borg
in love with himself?”.

The situation can get trickier. Andrea might be programmed to consult her
cohorts regarding certain questions. For example, rather than trying to figure
out for herself whether Borg is narcissistic, she may be designed to refer such
questions to the subject himself. In that case, Andrea will give the same answer
to this question as would Borg had we asked him directly (assuming Borg does
not formulate his answer based on who is doing the asking). Andrea might turn
some questions around before turning to Borg, or might barrage Borg with a
series of questions.

Alternatively, Andrea may be smart enough to occasionally detect that Borg
is lying, after hearing him explain his answer. So it may be that Andrea gives
a different answer than Borg. Still, let’s assume that in any such case, where
Andrea requests an answer from Borg, but he refuses to answer, she too remains
reticent.

Now, hypothesize the existence of a “know-it-all” android, Data. An impos-
sibly self-contradictory situation follows logically from the supposition that such
an omniscient, unerring robot is conceivable. If one could construct such a Data,
then one could also build a sister robot Echo with design specifications that
include the following behavior pattern:

If anyone asks Echo the abbreviated question, “What about So-and-
So?”, where “So-and-So” is the name (or serial number) of any robot,
then Echo first asks Data (or, better, a built-in homunculus clone of
Data) the following roundabout question:

“Does So-and-So answer the question
‘What about So-and-So?’ ?”.

Moreover, Echo is quite contrary:
– whenever Data answers “no” to this question, she answers “yes”;
– whenever Data answers “yes” to this question, she keeps her mouth

shut.

For example, if we ask Echo about Andrea, Echo turns to Data to ask whether
Andrea answers the question, “What about Andrea?”. Suppose Andrea would
answer “no” to this particular question, and Data is smart enough to predict
Andrea’s answer without even asking. Then Data will answer “yes” to Echo, since
Andrea in fact gives a negative answer. Hearing Data’s answer to her question,
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Echo refuses to answer. Echo also keep her mouth shut whenever Data neglects
to answer her, but she never answers “no”, herself.

The crux of the issue is whether Data (or any other robot) could in fact be
all-knowing. To resolve this, consider the specific question “What about Echo?”
and imagine that we pose this question to Echo herself! Echo proceeds to ask
Data whether or not Echo answers the very same question. Consider all three
possibilities:

– If Echo in fact answers “yes” when asked that question, it can only be because
Data answers “no” when Echo asks him about her own behavior. But then
Data gave the wrong answer. He was asked whether Echo answers. She does,
but he said she doesn’t.

– If Echo does not answer the question, it may be because Data answers “yes”,
but then again Data got it backwards.

– It may also be that Echo does not answer us, because Data does not answer
her. But that means that Data himself does not know the right answer.

The inescapable conclusion is that no robot can be made smart enough to
answer such questions: Either Data gives an erroneous answer (our Option II),
or else he is dumbfounded (Option IV), just like a human interlocutor in the
same situation. The intent of the vague question (“What about So-and-So?”) is
immaterial.

Of course, bystanders, equipped with hindsight, have no problem giving the
correct answer ex post facto, as soon as Echo answers—should she altogether.
Furthermore, privy to the inner workings of Echo’s CPU, and armed with the
knowledge that Data is programmed to never lie, no matter what, we can predict
the correct answer: Echo will not answer (since Data won’t).

5 The Transfinite

To iterate through ordinals requires ordinal notations.
These are notations for computable predicates,

but it is necessary to establish that the computation
really produces a well-founded total ordering.

Thus we need to consider provably recursive ordinals.

—John McCarthy (1999)

In fact, one can build a transfinite series of (ordinal-indexed) programs or robots,
each more knowledgable about such matters (self-looping) than its predecessors.

Let O be any system of ordinal notations (e.g. ordinal diagrams [20] or the
recursive path ordering [6]) with programmable ordering <, that is, such that
the computation of a comparison β < α terminates for all α, β ∈ O. Define, for
each α ∈ O:

Sα(y) := if oS(y) < α then T else loop() ,

where oS(y) is a pattern-based function that checks if y is a program of the form
if < β then T else loop(), and returns the upper bound β if it is (and O,
otherwise, where O is bigger than any α ∈ O, as is customary). Similarly,
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Rα(y) := if oR(y) < α then loop() else T ,

where oR returns β if y is of this form (or else O).
For all α ∈ O, we have Sα(Sα) = ⊥ and Rα(Rα) �= ⊥. So, all the Sα are

guaranteed sound with respect to the question X(X) = ⊥, and are complete for
X = Sβ, for all β up to (but not including) the ordinal α. Similarly, all the Rα

are guaranteed complete (responsive when the answer is in the affirmative), and
are sound for all Rβ, β < α. However, for us to be sure that they are correct, we
must verify the correctness of < on O.

Despite the fact that Sω and Rω have no trouble answering correctly regard-
ing infinitely many programs, there are transfinitely many “better” programs!
(Cf. the ordinal-indexed search algorithms of [17].)

6 The Processes

You must reject the statement I am now making to you
because all the statements I make are incorrect.

—The Monkey Wrench (Gordon Dickson, 1951)

Now we add two new components to the argument, corresponding to the plau-
sible option (III) that an android sometimes just guesses an answer (instead of
fruitlessly mulling over the question) and to the remote prospect that some alien
androids are not cloneable (Option I).

Five processes will play a rôle:

R: This (Data-like) process (a.k.a. Roger) is meant to identify some programs
X that diverge when fed themselves as input, but is implemented in some
undisclosed fashion, say, via quantum wetware. (We are living in a Lisp
world wherein programs are their own code.) At this point, we are making
no assumptions about R’s correctness.

A: This program (Andrea, say) has the same purpose as R. In Penrose’s sce-
nario [15], A incorporates all current, sound scientific knowledge on the sub-
ject, but only answers “yes”, if it answers at all. It is enough for the argument,
however, to incorporate all of R’s knowledge. (Since R’s knowledge is pre-
sumed to be some finite of “rules”, were we able to program all of it in a
finite program, a finite set of rules that include only those of R’s ideas that
are sound would also have to exist as a program.) Again, we will make no a
priori presumptions about the correctness of A’s behavior.

G: This (God-like) entity is our truth yardstick, an oracle that always has the
absolute, correct answer to such questions of divergence.

C: This (Echo-like) program applies Cantorian diagonalization to A in the stan-
dard fashion so as to produce paradoxical behavior vis-à-vis any pretensions
of A to know too much.

K: This will be an undisclosed process (in Roger’s cerebrum or Data’s logic
circuitry) used by R to inspect programs like A.
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Unlike [15], we will be specializing A and R to deal with divergences (lack of
answer) of self-applications X(X), rather than questions regarding more general
applications Y (X). This simplifies matters and is all that is, in the final analysis,
cogent to the argument.

Let Π denote the set of one-input partial predicates in any standard model of
computation (which contains diverging programs and has a conditional construct
and subprocedures). By “predicate”, we mean that the output is always one of
the Boolean truth values, T /F ; by “partial”, we mean that some inputs may
result in no output. As is common, one can enrich the range of a function to
include an undefined value ⊥, denoting the outcome of a never-ending or non-
responsive (“I don’t know the answer.”) process. That is, each p ∈ Π may be
viewed as a total function p : y �→ {T, F,⊥}. For example, Π can be the set
of one-argument untyped Lisp programs whose range is {T, F,⊥} (or a subset
thereof).

As explained above, for any particular program A ∈ Π, one can construct
the following diagonalized program CA ∈ Π:

CA(Y ) := if A(Y ) then T else loop() where A . . . , (1)

The input Y can be any program in Π (Borg, say). The behaviors of A and CA

are intimately connected:

– When A(Y ) returns T , so does CA(Y ).
– If A(Y ) responds F , then CA(Y ) enters an eternal loop.
– If A(Y ) does not respond, neither does CA(Y ).

The stated requirement for A is that A(X) answer T when “it” is aware
that execution of X(X) is nonterminating (X(X) = ⊥). In other words, A is
sound if A(X) ⇒ X(X) = ⊥. But there is no guarantee that A behaves as
expected. Were A to know all there was to know (completeness), that would
mean X(X) = ⊥ ⇒ A(X).

On the other hand, G : Π→ {T, F} is the total predicate,

G(X) := [X(X) = ⊥] , (2)

manifesting the truth of the matter. Equality (=) is semantic: both sides must
be equally (un)defined.

Now consider some (partial) predicate R : X �→ {T, F,⊥} with the following
behavioral rule:

return T if
program X is of the form
X(Y ) := if Z(Y ) then T else loop(), where Z . . .
and
K[Z(X) �= T ] .

(3)

Here X , Y , and Z are pattern variables (“placeholders”) and K : S → {T, F,⊥}
is some partial predicate over statements S. The process K is meant to model
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whatever thought processes are involved in R’s analysis of the question whether
Z(X) �= T . Thus, the above behavior is (a special case of) what Penrose believes
humans are capable of.

The presumption is that R on input X will, in fact, answer T regarding the
divergence of X(X) when and if R “believes it knows”—via process K—that the
test Z(X) performed by X(X) does not succeed. Specifically, R(CA) returns T
if K[A(CA) �= T ] returns T and some other rules of R has not already ventured
an answer. On the other hand, R may have various additional considerations that
that pre-empt the above behavior and are employed when K responds with F , or
when K does not come up with an answer within some reasonable time frame.

7 The Four Sons

All human errors are impatience,
a premature breaking off of methodical procedure. . . .

—Franz Kafka (1917)

The following facts are indisputable:

A(CA) = T ⇔ CA(CA) = T (4)
A(CA) �= T ⇔ CA(CA) = ⊥ (5)
A(CA) = T ⇒ G(CA) = F (6)
A(CA) �= T ⇒ G(CA) = T . (7)

Facts (4,5) follow directly from the references to A in the definition (1) of C:
CA calls A, answers T if A does, and loops, otherwise. Facts (6,7) follow directly
from C’s behavior and the specification (2) of G: If A(CA) yields T , then CA

does not diverge (4), and G knows it; if A(CA) doesn’t yield T , then CA does
diverge (5), and again G knows it.

Now, G is infallible and total (G(CA) �= ⊥). Hence (by 6, 7), no A can always
be right, whether the result of A, when asked question CA, is T , F , or ⊥. That is:

A(CA) �= G(CA) , (8)

which is just a restatement (as in Sect. 3) of Turing’s undecidability result for
the halting problem. That is, no program A(X) can answer infallibly—for any
program X—whether X(X) diverges; specifically, it must trip up with regard to
CA. So, if A happens to agree with R about CA, then R, too, must not give the
textbook answer G.

The upshot of the above facts is that:

A(CA) = R(CA) ⇒ R(CA) �= G(CA) . (9)

In other words, if A simulates R (at least on CA), then R does not respond
properly (T for F , F for T , or ⊥), while if R is averred to never err (precluding
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both Options II and III), then either A(CA) �= R(CA) (Option I) or else R(CA) =
⊥ (as dictated by Option IV). In the last case, R’s knowledge is incomplete:

A(CA) = R(CA) = ⊥ ⇒ ¬K[A(CA) �= T ] , (10)

since, were K to have responded, so would have R.
The dichotomy at the heart of the debate is whether there in fact exists a

computer program A in Π that agrees with R on CA, or perhaps there can never
be such a program. According to both the strong and weak AI points of view,
there exists such a program A that, in particular, agrees with R when queried
regarding CA. But, then, either neither answer, or else both give the same wrong
answer. In the latter case, R’s error may result either from faulty “reasoning”,
or from some other cause. It is much like an examinee who, presented with a
difficult true/false question, cannot work out the correct answer within the time
limit. In this situation, a person may “guess” (using heuristics, perhaps), or may
give up and leave the answer blank.

To summarize, we have discerned four characteristics of the nature of R:3

A = R

I: Wise

F

R = ⊥

T

K = T

F

III: Simpleton

F

II: Wicked

T

IV: Ignorant

T

Fig. 1. Possible resolutions

I. R the Wise: R /∈ Π
(wise, in a super-Turing sense);

II. R the Wicked: K[A(CA) �= T ] = T but in fact ¬[A(CA) �= T ]
(wicked, in that R internalizes an untruth);

3 The options are evocative of the “Four Sons” of the Passover Haggadah, derived
from the Mekhilta, quoted at the outset.
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III. R the Simpleton: K[A(CA) �= T ] �= T and in reality R(CA) = ¬G(CA)
(acting without thinking);

IV. R the Ignorant: R(CA) = ⊥
(expressing no opinion in the matter).

Using an ostensibly ratiocinative, but fallacious, process (K) is Case II; resorting
to an extralogical process is our Case III; not answering is IV. See Fig. 7.

If R gives the wrong answer, it is either due to the above-specified behavior
pattern (3), in which case K is unsound (Case II), or else R answers wrongly
based on some other consideration or impulse (Case III). In the latter event, K
does not respond with T within some allocated time frame, either because its
answer is F , or else because it never reaches a conclusion.

Case I follows from the supposition that there is no A ∈ Π such that
A(CA) = R(CA). If, on the contrary, A(CA) = R(CA) for some A ∈ Π, then
(by 9) R(CA) �= G(CA), either because R(CA) gives a wrong answer or yields
no answer. With the latter outcome (Case IV), R is not fully (self-) cognizant,
since ¬K[A(CA) �= T ], though in fact R(CA) = A(CA) and R(CA) �= T (by 10).
In other words, R is an incomplete reasoner.

8 The Conclusion

If a machine is expected to be infallible, it cannot also be intelligent.
There are several theorems which say almost exactly that.

But these theorems say nothing about how much intelligence may be
displayed

if a machine makes no pretense at infallibility.

—Alan Turing (1947)

We have skirted the issue of R’s being “aware” or “unaware” of its own consis-
tency. We all know (even R’s creator claims to know) that R cannot correctly an-
swer all questions involving his own consistency, any more than can A. Whether
R sees himself reflected in A is beside the point. The more perspicacious ques-
tion is whether R reasons soundly about one specific aspect of one particular
observable program A. Does R (erroneously, perhaps) believe (via K) that he
knows how A behaves given program CA (which, in turn, involves A) as input?

Penrose opts for the “R the Wise” solution, since he believes that R is sound
(neither “Wicked” nor “Simpleton”) and responsive (not “Ignorant”). He goes
on [14, 15] to propose a non-Turing-equivalent model for R /∈ Π. Rejoinders to
Penrose along the lines that R represents an “idealized” mathematician agree
that such an R cannot be captured algorithmically, but is rather more G-like.4

4 “[Penrose] admits that he is talking about an idealized mathematician, not an actual
one. It would be a great feat to discover that a certain program is the one that the
brain of an actual mathematician ‘runs’, but it would be quite a different feat to
discover that a program is the one that a brain of an idealized mathematician would
run.” [16].
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Detractors of Penrose who contend that there may be a program A mimicking
R must choose between one of the other three options: R reasons unsoundly
with K (II); R feels under pressure and answers using a process other than K
(III); or R doesn’t answer at all (IV). For example, Hilary Putnam is quoted
in [11] as suggesting that humans are inconsistent machines, that is, R (“the
Wicked”) believes (via K) a falsehood (A(CA) �= T ), our Case II. Similarly,
Martin Davis [5] says in response to Penrose: “No human mathematician can
claim infallibility. We all make mistakes! So there is nothing in Gödel’s theorem
to preclude the mathematical powers of a human mind being equivalent to an
algorithmic process that produces false as well as true statements.”

In frustration at getting nowhere with his sound, cerebral reasoning faculty
K, R may blurt out some simplistic—but invariably wrong—answer (Option
III). This is how I interpret one of John McCarthy’s [12] criticisms: “Much of
Penrose’s reasoning is nonmonotonic, e.g. preferring the simplest explanation of
some phenomenon, but his methodology doesn’t allow for nonmonotonic reason-
ing by the program.” In other words, there is in fact an A that acts precisely like
R and answers incorrectly, for reasons that are non-Aristotelian, but Penrose
looks instead at an alternate A′ that acts like a hamstrung R for which only
monotonic K is consulted. Thus, it is A′ �= R, whereas A = R.

Lucas [11] does attribute actual human foibles to “Simpleton” shortcomings:
“Our inconsistencies are mistakes rather than set policies. They correspond to
the occasional malfunctioning of a machine, not its normal scheme of opera-
tions.” Along these lines, most discussions exclude option III as irrelevant when
considering “ideal” humans.

Consider arguments such as:

– “Perhaps we are sound, but we cannot know unassailably that we are
sound.” [4]

– “There is an obvious lacuna: the possibility of a program . . . which is not
‘simple enough to appreciate in a perfectly conscious’ way is overlooked.”
[16]

– “One can show quite rigorously that Penrose’s notion of what it is to know
oneself to be sound cannot itself be sound.” And, “Humans may be unable
to know that they are consistent.” [10–emphasis mine]

– “We cannot fully analyze a complicated learning machine, let alone the hu-
man mind. Hence, one cannot establish one’s own self-consistency.” [1–my
translation]

These quotes do not make it clear what the authors believe human mathemati-
cians do in the face of this lack of soundness/consistency. Some are (perhaps)
suggesting that R is “inadequate” and need not have an answer to each and
every question. Rather, R—in honest ignorance—does not respond at all to the
most vexing of questions, CA, or perhaps reaches his demise without ever having
reached a conclusion. Interpreted thus, they are subscribing to Option IV.

Finally, it is engaging to consider the analogous situation where A is an
android (Andrea), designed to parrot R when asked whether C (A’s alter ego)
diverges on C. That places R in a quandary: Any answer will turn out to be
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wrong. Whenever someone inquires of C, C consults A, who turns the question
over to R. If R says “yes” to A, when asked if C will diverge, then A answers
“yes” to C, and C converges, instead. If, on the other hand, R predicts that C
will respond, then R says “no”, and A also says “no”, in which case C cycles,
contrary to R’s assertion. Thus, the only sound alternative for R, in such a
circumstance, would be to “take the Fifth” and avoid perjuring himself.

Paraphrasing Turing [23]:

If a machine is intelligent, it must also be fallible.
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Abstract. Ehrenfeucht-Fräıssé games are commonly used as a method
to measure the expressive power of a logic, but they are also a flexible
tool to compare structures. To exploit such a comparison power, explicit
conditions characterizing the winning strategies for both players must
be provided. We give a necessary and sufficient condition for Duplicator
to win games played on finite structures with a successor relation and a
finite number of unary predicates. This structural characterization sug-
gests an algorithmic approach to the analysis of games, which can be
used to compute the “remoteness” of a game and to determine the opti-
mal moves for both players, that is, to derive algorithms for Spoiler and
Duplicator that play optimally. We argue that such an algorithmic solu-
tion may be used in contexts where the “degree of similarity” between
two structures must be measured, such as the comparison of biological
sequences.

1 Introduction

The Ehrenfeucht-Fräıssé method was introduced in [6] in its algebraic form, and
then interpreted in a game-theoretic framework in [4]. We will refer to the latter
as an EF-game. The importance of the method rests on its intuitive appeal and
its wide applicability: it is one of the few tools in model theory that can still
be used when restricting to finite structures, so it is particularly relevant to
problems in computer science [16].

EF-games are two-player combinatorial games of perfect information, that is,
no chance, probability or information hiding mechanism are involved, which can
be used to compare two structures. The first player is called Spoiler, the second
Duplicator. Roughly speaking, Spoiler aims at proving that the two structures are
“different”, while Duplicator wants to show that they are “equivalent”. Typically,
they must achieve their purpose in a fixed, bounded number of rounds (although
infinite variants of the game can be defined). The structures form the playground
and in each round the players pick elements from them.

The rules of an EF-game usually have a logical counterpart, in a way that
the existence of a winning strategy for one of the players relates to the ability
of formulas of a suitable logic to distinguish the structures used in the game. As
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a consequence, the main use of EF-games is to prove inexpressibility results: if
a property P of a class of structures is not definable by a given logic, this can
be proved by showing that, no matter how many rounds are to be played, there
are always two (finite) structures A and B such that A satisfies P , B does not
satisfy P , and Duplicator has a winning strategy in the game played on A and B
that corresponds to the logic.

In this paper we focus our attention on the comparison power of EF-games.
As we have just pointed out, EF-games are used to establish whether two struc-
tures can be distinguished or not (by a logic), so they are widely recognized as a
handy tool to measure the expressive power of a logic. But EF-games also provide
information on “how much” and “where” two structures differ. We argue that
this feature may be useful in contexts where the degree of similarity of structures
is relevant, e.g. in the comparison of biological sequences: we will provide a con-
crete example of such an application at the end of Section 4. EF-games provide
a mathematically precise, yet flexible, way to define what similarity is. Besides,
they bring in logical languages that can formally describe how the structures
look alike. So, instead of using games to study properties of a logic, we tailor
our approach towards a use of games for the study of properties of structures.

In order to use games in this way, structural characterizations of playgrounds
are needed. The existence of a winning strategy for Duplicator implies that the
structures involved must share common features, and vice versa. Moreover, the
ability to exhibit a winning strategy in an effective way can lead to further
insight into the similarities and discrepancies of the two structures. It turns
out to be difficult to give such characterizations. In [13] it is shown that the
problem of determining the existence of a winning strategy for Duplicator in an
m-round EF-game on two finite structures over any vocabulary containing at
least a binary and a ternary relation is PSPACE-complete.

In this paper we will consider EF-games adequate for first-order logic. Several
general sufficient conditions for Duplicator to be able to win such games have
been proposed in the literature [5, 14, 1, 11], but complete knowledge is achieved
only in special cases, the simplest being probably unlabeled successor structures
and unlabeled linear orderings. We give a necessary and sufficient condition for
Duplicator to win games played on finite structures with a successor relation
and a finite number of unary predicates (Theorem 5).

In Section 2 we give the necessary definitions needed further. In Section 3
we review a characterization of the languages definable in the first-order logic of
one successor. In Section 4, we give an algorithmic characterization of EF-games
on labeled sets with a successor relation, and in Section 5 we briefly comment
on the algorithmic aspects.

2 Basics

For m, n ∈ N, let [m, n] � { i ∈ N | m ≤ i ≤ n }. Let τ be a finite rela-
tional vocabulary. We denote τ -structures with symbols A, B, etc. . . The do-
main of a structure will be denoted by the corresponding roman letter, e.g. A,
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B, and so on. A structure A with designated elements a1, . . . , ak ∈ A is denoted
by (A, a1, . . . , ak). Two structures (A, a1, . . . , ak) and (B, b1, . . . , bk), with k ≥ 0,
are isomorphic, (A, a1, . . . , ak) ∼= (B, b1, . . . , bk) for short, if there is an isomor-
phism between A and B that maps aj to bj, for 1 ≤ j ≤ k. A partial isomor-
phism p from A to B is an injective function such that dom(p) ⊆ A, cod(p) ⊆ B
and p is an isomorphism between the substructures of A and B induced by
dom(p) and cod(p), respectively. For m ∈ N, two τ -structures (A, a1, . . . , ak) and
(B, b1, . . . , bk) are m-equivalent , (A, a1, . . . , ak) ≡m (B, b1, . . . , bk) for short, if,
for every first-order formula φ(x) with quantifier depth at most m and free vari-
ables among x = x1, . . . , xk, (A, a1, . . . , ak) |= φ(x) if and only if (B, b1, . . . , bk) |=
φ(x). For more detailed definitions, see [3]. In this paper, we restrict our attention
to finite structures.

We now give a more precise definition of EF-games for first-order logic. The
game is played by two players, called Spoiler and Duplicator : to help distinguish
between the two, we conventionally refer to the former as a male and to the
latter as a female player. The playground is made by two τ -structures A and B.
The game is divided into n rounds, and each round consists of a move by Spoiler
followed by a move by Duplicator.

Definition 1. A configuration of an EF-game played on structures A and B is
a relation p ⊆ A × B. Given tuples a = a1, . . . , ak of elements of A and b =
b1, . . . , bk of elements of B, we write ((A,a), (B,b)) to denote the configura-
tion p = {(ai, bi)}1≤i≤k.

A position is a configuration specifying the number of remaining rounds.

Definition 2. A position in an EF-game played on structures A and B is a
triple ((A,a), (B,b), j) where j ∈ N is the number of rounds yet to be played.

Thus, in the game-theoretic view, relations are viewed as configurations in a
game; a play from an initial position ((A,a), (B,b), m), with m ≥ 0, consists in
performing m extensions of the initial configuration according to the following
rules:

– Spoiler chooses one of the two structures (say A) and an element c in it;
– Duplicator replies by choosing an element d in the other structure (say B);
– the new position becomes ((A,a, c), (B,b, d), m − 1).

The game ends at positions of the form ((A, a), (B,b), 0).

Definition 3. An ending position ((A,a), (B,b), 0) is winning for Duplicator
if and only if ((A, a), (B,b)) is a partial isomorphism. Duplicator has a win-
ning strategy from position ((A, a), (B,b), m), written D((A, a), (B,b), m), if
she can reach a winning ending position no matter how Spoiler plays. We write
S((A, a), (B,b), m) to denote that Duplicator does not have a winning strategy.

As EF-games are finite and do not have draw positions, it is not difficult to
prove that they are determined, that is, exactly one of the players has a winning
strategy. The relevance of EF-games is tied to the following characterization
of m-equivalence.
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Theorem 1 (Ehrenfeucht, [4, 3]). For structures A and B, k-tuples a ∈
Ak,b ∈ Bk and m ∈ N,

D((A,a), (B,b), m) ⇐⇒ (A,a) ≡m (B,b) .

Corollary 1. A class K of τ-structures is first-order definable if and only if
there is m ∈ N such that, whenever A ∈ K and B �∈ K, then S(A, B, m).

Corollary 1 can be used to prove that a property is not first-order definable: it
is sufficient to show that Duplicator has a winning strategy in suitable EF-games.
Proving this, however, can be very difficult.

In the proof of our results we make use of Fräıssé’s characterization of m-
equivalence, based on the following notion of m-isomorphism.

Definition 4. Let a = a1, . . . , ak and b = b1, . . . , bk. Two structures (A, a) and
(B,b) are m-isomorphic, written (A,a) ∼=m (B,b), if there is a sequence of
nonempty sets I0, . . . , Im of partial isomorphisms such that {(ai, bi)}1≤i≤k ∈ Im

and, for every k = 1, . . . , m, the following back-and-forth property holds:

(forth property) for every p ∈ Ik and for every a ∈ A there is b ∈ B such
that p ∪ {(a, b)} ∈ Ik−1;

(back property) for every p ∈ Ik and for every b ∈ B there is a ∈ A such that
p ∪ {(a, b)} ∈ Ik−1.

Theorem 2 (Fräıssé, [6, 3]). For structures A and B, k-tuples a ∈ Ak,b ∈ Bk

and m ≥ 0,
(A,a) ∼=m (B,b) ⇐⇒ (A,a) ≡m (B,b) .

A logical description of the equivalence classes of the relation ∼=m by for-
mulas of quantifier depth at most m can be given by means of the so-called
m-Hintikka formulas [10]: for a given structure (A, a) and given m there exists
a formula ϕm

(A,a)(x) of quantifier depth m that holds exactly in the structures
m-isomorphic to (A,a) (see [3] for details). Every first-order formula ϕ(x) is
equivalent to the disjunction of a finite number of Hintikka formulas, each one
describing one ∼=m-class.

Another interesting characterization of first-order logic is due to Gaifman [7]:
every first-order sentence is equivalent to a boolean combination of “local” sen-
tences. Each local sentence can be evaluated by examining small neighborhoods
of a set of elements of the domain far apart from each other, where the dis-
tance between two points is the distance in the Gaifman graph associated to the
structure [3].

The locality of first-order logic is a well-known fact, which has consequences
on the form assumed by the strategies of the corresponding EF-games. The
“high-level” strategy of Duplicator in such games prescribes that she “mimicks”
Spoiler if he plays in the neighborhoods of already chosen elements; otherwise,
Duplicator must find an element with a sufficiently large “equivalent” neighbor-
hood outside all current neighborhoods. The difficult part in characterizing a
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winning strategy lies in the precise meaning of “mimicking” and finding “equiv-
alent” neighborhoods.

All the sufficient conditions proposed in the literature [5, 1, 14, 11] implement
in some way the high-level strategy sketched above. Maybe unsurprisingly, there
is a lack of complete structural characterizations of winning strategies, even for
restricted classes of structures. The simplest result of this kind is probably the
characterization of (unlabeled) linear orderings: D(([1, n], <), ([1, p], <), m) if and
only if n = p or n, p ≥ 2m− 1. In Section 4 we will characterize games played on
labeled successor structures.

3 Definability in the First-Order Logic of One Successor

In [15] the class of languages definable in the first-order logic of one successor
(FOL(s) for short) is characterized as the class of the threshold (or generalized)
locally testable languages. In this section we review and comment this result,
especially from a computational and algorithmic point of view. We first define
the relevant structures.

Definition 5. Let Σ be a finite alphabet, and let w = w1 · · ·wn ∈ Σ+ be a
nonempty word of length |w| = n. The labeled s-structure induced by w is the
relational structure Sw = ([1, n], s, {Pc}c∈Σ), where s is the successor relation
over [1, n], that is, s(x, y) holds if and only if y = x + 1, and, for each c ∈ Σ,
Pc = { i | i ∈ [1, n] ∧ wi = c }. The distance δ(a, b) between two elements of a
structure Sw is δ(a, b) = |a− b|.

A word x is a factor of length l of a word w = w1 · · ·wn if there exists i ∈
[1, n− l + 1] such that x = wi · · ·wi+l−1. The factor x is a prefix (resp., suffix )
of w if i = 1 (resp., i = n − l + 1). We denote the prefix (resp., suffix) of w of
length l by prefl(w) (resp., suffl(w)).

Given the above correspondence between words and labeled s-structures, we
will freely use words and models interchangeably. For example, we will say that
a word w satisfies a formula φ, meaning that Sw satisfies φ, and we will speak
of a factor of a labeled s-structure Sw, meaning the substructure induced by a
factor of w.

The multiplicity of x in w, denoted by
[
w
x

]
, is the number of occurrences of x

as a factor of w. Given t ∈ N, let =t be an equivalence relation on N defined as
follows: for m, n ∈ N, m =t n if m = n or m, n > t.

For given k, t > 0, let ∼k,t be the congruence defined, for u, v ∈ Σ+, by
setting u ∼k,t v if and only if

1. prefk−1(u) = prefk−1(v);
2. suffk−1(u) = suffk−1(v);

3. for every x ∈ Σ+ of length k,
[
u
x

]
=t

[
v
x

]
.

Note that if u ∼k,t v then u ∼k′,t′ v for all k′ ≤ k and t′ ≤ t.
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Definition 6. A language L ⊆ Σ+ is threshold locally testable if there exist
integers k, t > 0 such that L is a finite union of ∼k,t-classes.

Theorem 3 (Thomas, [15]). A language L ⊆ Σ+ is definable in FOL(s) if
and only if it is threshold locally testable.

To what extent does this result help characterizing m-equivalence? Since each
≡m-class can be defined by an m-Hintikka formula [3], each ≡m-class is a finite
union of ∼k,t-classes for some k and t; that is, there are k and t, depending on m,
such that ∼k,t is a refinement of ≡m. The proof of Theorem 3, from left to right,
makes use of a sufficient condition essentially due to Hanf [9], which guarantees
that u ≡m v if u ∼3m,3m+1 v. This condition is not necessary, however, and,
actually, such values are not tight.

Even if the tightest values for k and t can be provided, given a fixed m,
deriving a procedure to test the m-equivalence of two words w and w′ from The-
orem 3 is not straightforward. If m is part of the input, the procedure becomes
even more involved and computationally complex.

It should be clear that, although definability and m-equivalence are strictly
related (see also Corollary 1), from an algorithmic point of view the two problems
are better tackled independently. Theorem 3 does not provide an explicit way to
establish whether two given words are m-equivalent for a given m or to determine
the maximum m such that two given words are m-equivalent.

In the next section, we provide an effective characterization of m-equivalence
of two labeled s-structures, based on a structural description of two words that
guarantees a winning strategy for a player of an EF-game. Our result provides
algorithms for determining the winner of an EF-game in m rounds, for determin-
ing the least m such that Spoiler has a winning strategy (or, equivalently, the
greatest m such that Duplicator has a winning strategy), and for determining
the set of optimal moves for each player in a given configuration of a game.

4 EF-Games on Successor Structures

From now on, two expressions will recur very often, namely 2m−i−1 and 2m−i−1
(as we will see, they are the radii of entailing and reachable intervals at round i
in an EF-game with m rounds). To make the notation a little more compact, we
will give them names. So, let em

i � 2m−i−1 and rm
i � 2m−i− 1. These quantities

are related as follows: rm
i = 2em

i − 1 and
∑m−1

k=i em
k = rm

i .

Definition 7. Given a word w = w1 · · ·wn, i ∈ [1, n] and r ∈ N, the factor of w
of radius r centered at position i, written wr(i), is wi−r · · ·wi · · ·wi+r, where
we assume, for convenience, that wk = $, for k < 1 or k > n, with $ �∈ Σ. We
denote the set of factors of radius r of a word w with Fr(w).

Note that, by the above definition, the length of wr(i) is always 2r + 1, even
if i < r or i > n − r. Moreover, the multiplicity of a factor wr(i) containing at
least one $ is always 1.
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Definition 8. Given a structure (Sw,a), a tuple of elements b, and r ∈ N, the
(r-)neighborhood N

(Sw,a)
r (b) around b is the substructure of (Sw, a,b) induced

by the set of elements whose distance from some element of b is less than or
equal to r.

We start by analyzing strategies involving moves in the neighborhoods of
current configurations. In each round, Spoiler can constrain Duplicator to make a
specific move when he plays within certain regions, which we will call “entailing”,
whose size halves after each round. The move Duplicator is forced to do inside
such regions must “mimic” Spoiler’s action: she must select an element that has
exactly the same distance from close elements as Spoiler’s choice, and it lies “on
the same side” with respect to them. The following definition formalizes this
concept.

Definition 9. Let a = a1, . . . , ak and b = b1, . . . , bk, and let m, i ∈ N, with i ≤
m. A position ((Sw ,a), (Sw′ ,b), m − i) is locally safe for Duplicator if, for
all 1 ≤ j, l ≤ k, whenever δ(aj , al) ≤ em

i−1 or δ(bj , bl) ≤ em
i−1, then aj−al = bj−bl.

The following result shows that local safety is a necessary condition for Du-
plicator to be able to win.

Lemma 1. Given w, w′ ∈ Σ∗, let a = a1, . . . , ak and b = b1, . . . , bk be tuples of
elements in [1, |w|] and in [1, |w′|], respectively, and let m, i ∈ N with i ≤ m. If
position ((Sw,a), (Sw′ ,b), m− i) is not locally safe for Duplicator, then Spoiler
has a winning strategy.

Proof. The proof is by induction on the number of remaining rounds.

Induction base: when i = m, the position is an ending position. Suppose that
it is not locally safe: then there are j, l such that aj − al �= bj − bl. Without
loss of generality, we may assume that 0 ≤ aj − al ≤ em

m = 1/2. So, aj = al

and bj �= bl, hence the final configuration is not a partial isomorphism.
Induction step: w.l.o.g., suppose that, at position ((Sw, a), (Sw′ ,b), m − i),

there are j, l such that 0 ≤ al − aj ≤ em
i−1 = 2em

i and al − aj �= bl − bj . Let
Spoiler pick ak+1 in Sw such that ak+1−aj ≤ em

i and al−ak+1 ≤ em
i . There

is no bk+1 in Sw′ such that bk+1 − bj = ak+1 − aj and bl − bk+1 = al − ak+1
(otherwise, we would get bj − bl = aj − al, against the hypothesis). So, the
new position is not locally safe and, by the inductive hypothesis, it is winning
for Spoiler. $�

So, positions that are not locally safe for Duplicator are winning for Spoiler.
Besides, the winning strategy is independent of the words associated to the two
structures. As the game goes on and less rounds are left, Spoiler’s ability to force
moves exponentially decreases.

The bound em
i−1 in Lemma 1 is tight: at round i, Spoiler may not be able to

force Duplicator’s choice when he picks an element whose distance from previ-
ously chosen elements is greater than em

i−1. So, we give the following definition.
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Definition 10. Let Sw be a labeled s-structure. Let a ∈ [1, |w|] and m, i ∈ N,
with i ≤ m. The i/m-entailing interval around a is NSw

em
i

(a). For a tuple a,

NSw

em
i

(a) is called the i/m-entailing region around a.

In s-structures there is always a unique feasible reply to each Spoiler’s move
in the entailing region. This is not true for arbitrary structures, but the above
rule is valid in general.

Lemma 1 describes which moves Spoiler can force in the next round. By
applying the lemma iteratively, we can say what Spoiler can force from a position
up to the end of a game.

Definition 11. Let w ∈ Σ∗, a ∈ [1, |w|] and m, i ∈ N, with i ≤ m. The i/m-
reachable interval around a is NSw

rm
i

(a). For a tuple a, NSw
rm

i
(a) is called the

i/m-reachable region around a.

Lemma 2. Necessary condition for Duplicator to be able to win a game from
position ((Sw,a), (Sw′ ,b), m− i) is that the i/m-reachable interval around aj is
isomorphic to the i/m-reachable interval around bj, for 1 ≤ j ≤ k.

Proof. If N
(Sw,a)
rm

i
(aj) � N

(Sw′ ,b)
rm

i
(bj), for some j, then every difference between

the two intervals can be found by Spoiler by playing at most m − i entailing
moves. $�

Figure 2 shows the reachable interval around a when m = 4 and a is picked
at the first round.

Corollary 2. Duplicator can win an EF-game from ((Sw, a), (Sw′ ,b), m) only
if w and w′ have the same factors of length rm

0 , and the same prefix and suffix
of length rm

1 .

Lemma 2 suggests the following definition.

Definition 12. A position ((Sw,a), (Sw′ ,b), m− i) is globally safe if it is lo-
cally safe and the i/m-reachable interval around aj is isomorphic to the i/m-
reachable interval around bj, for 1 ≤ j ≤ k.

Note that the rm
i -neighborhoods around aj and bj may be isomorphic for

all j, even if the position is not locally safe. Consider, for example, the unla-
beled s-structures ({1, 2, 3}, s) and ({1, 2, 3, 4}, s): it is easy to check that position
(({1, 2, 3}, s, 1, 3), ({1, 2, 3, 4}, s, 1, 4), 1) is not locally safe, but the corresponding
0/1-reachable intervals are isomorphic in the two structures. Vice versa, position
(({1, 2, 3}, s, 1, 3), ({1, 2, 3, 4}, s, 2, 4), 1) is locally safe, but the 0/1-reachable in-
terval around 1 is not isomorphic to the 0/1-reachable interval around 2.

Global safety characterizes the winning strategies when there are no unary
predicates.

Theorem 4. LetSn = ([1, n], s)andSp = ([1, p], s) be twounlabeleds-structures,
and let a and b be two nonempty tuples of elements in [1, n] and [1, p], respectively,
such that |a| = |b|. Then,

D((Sn,a), (Sp,b), m) ⇐⇒ ((Sn,a), (Sp,b), m) is globally safe.
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a

Reachable interval

Fig. 1. Reachable intervals

Proof. (⇒) If ((Sn,a), (Sp,b),m) is not globally safe, then Spoiler wins either
by Lemma 1 or by Lemma 2.

(⇐) (Sketch) Build a sequence of sets of partial isomorphisms having the
back-and-forth property, and apply Fräıssé’s Theorem. From the game-theoretic
standpoint, Duplicator’s strategy runs as follows: if Spoiler, at the first round,
plays inside an entailing interval, Duplicator will reply with the same (relative)
position in the corresponding entailing interval of the other structure. The hy-
pothesis guarantees that this can always be done. If Spoiler plays outside the
entailing region, Duplicator must reply with an element outside the entailing
region of the other structure, such that the 1/m-reachable intervals determined
by the two elements are isomorphic. Local safety guarantees that Duplicator
can always find an element outside the entailing region, and the isomorphisms
between reachable intervals ensure that Duplicator can find an isomorphic reach-
able interval. $�

In general, an outline of a winning strategy for Duplicator requires that, in
each round, Duplicator be able to find a sufficiently long factor that matches the
reachable interval around Spoiler’s choice; moreover, if Spoiler plays outside all
entailing intervals, Duplicator must be able to do the same in the other structure.
To guarantee this, w and w′ must have the same factors of suitable lengths and
there must be enough copies of such factors (or both words must have the same
number of them), distributed in a similar way in both words. We now formalize
these concepts.

Definition 13. Let A ⊆ N. An l-partition of A is a partition of A such that for
all i, j ∈ A, if i and j are in the same class, then |i− j| ≤ l + 1.

Definition 14. Let occw(v) be the set of starting positions of the occurrences
of v in w. The offset-multiplicity σw(v) of v in w is the minimum cardinality of
a |v|-partition of occw(v).

i/m-reachable interval

i/m-entailing interval

a

e
m

i

r
m

i

Fig. 2. Entailing and reachable intervals



148 A. Montanari, A. Policriti, and N. Vitacolonna

The offset-multiplicity corresponds to the maximum “scattering” of the oc-
currences of a factor v, that is, the maximum number of occurrences of v whose
pairwise distance is greater than |v|+ 1. In Fig. 3, the coarsest offset-partitions
of occw(aba) are ({1, 3, 5}, {10, 13}, {15}) and ({1, 3, 5}, {10}, {13, 15}), so the
offset-multiplicity of aba in w is 3.

w = a b a b a b a b b a b a a b a b a

1
3

5
10 13

15

Fig. 3. Offset-multiplicity

Definition 15. Given a word w ∈ Σ∗, i, j ∈ [1, |w|] and r ∈ N, we say that
wr(i) falls inside wr′(j) if |i− j| ≤ r′.

In Fig. 4, the occurrence around a of radius r falls inside the occurrence
around b of radius r′ (but not vice versa).

r

r
′

a

b

Fig. 4. A factor falling inside another

The following lemma will be used in the proof of Theorem 5.

Lemma 3. Let i,m ∈ N with i ≤ m. Given a word w ∈ Σ∗ and a factor v ∈
Frm

i+1
(w), σw(v) ≤ k if and only if there is a tuple of positions a = a1, . . . , ak ∈

[1, |w|] such that all occurrences of v fall inside the i/m-entailing region around a.

Proof. Suppose that all occurrences of v fall inside the i/m-entailing intervals
around a1, . . . , ak. Define a partition of occw(v) such that all occurrences in the
same class fall inside a common entailing interval. Then, the distance between
two occurrences of v in the same class is at most 2em

i = em
i−1 = (2rm

i+1 + 1)+ 1 =
|v|+ 1. So, the partition is a |v|-partition with at most k classes.

For the converse, suppose that σw(v) ≤ k. Let P = {I1, . . . , Ik} be a (not
necessarily minimal) |v|-partition of occw(v). The distance between any two oc-
currences in the same class is at most |v|+1 = 2em

i . Then, for every j = 1, . . . , k
there is aj ∈ [1, |w|] such that, for all c ∈ Ij , δ(aj , c) ≤ em

i (for instance,
take aj = %(max Ij+min Ij)/2&), so all occurrences in Ij fall inside the i/m-entailing
interval around aj . $�

The equivalence relation that characterizesEF-games over labeled s-structures
is a refinement of the following.
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Definition 16. Let ∼rm
i

be the equivalence relation over Σ∗ defined as follows:
given two words w,w′ ∈ Σ∗, w ∼rm

i
w′ if and only if for every v ∈ Frm

i
(w) ∪

Frm
i

(w′), either σw(v), σw′(v) ≥ i or (σw(v) = σw′(v) and
[
w
v

]
=

[
w′

v

]
).

Now we are ready to state our main result.

Theorem 5. Given two words w,w′ ∈ Σ∗ and m ∈ N,

D(Sw,Sw′ ,m) ⇐⇒ w ∼rm
i
w′, for 1 ≤ i ≤ m .

Proof. (⇐): The proof uses Theorem 2. We define a sequence of sets I0, . . . , Im

of partial isomorphisms such that1 {(aj , bj)}1≤j≤i is in Im−i if and only if,
for every j = 1, . . . , i, wrm

i
(aj) = w′rm

i
(bj) and, for all 1 ≤ j, l ≤ i, whenever

δ(aj , al) ≤ em
i or δ(bj , bl) ≤ em

i , then aj − al = bj − bl. By the equivalence of
Fräıssé’s and Ehrenfeucht’s characterization, we only need to prove that such
sequence satisfies the back and forth properties of Definition 4.

Let us prove the forth property. Let a = ai+1 ∈ [1, |w|]. We distinguish two
cases:

1. for some 1 ≤ j ≤ i, a is in the i/m-entailing interval around aj . Then, we
may choose b = bi+1 ∈ [1, |w′|] such that a − aj = b − bj, because in this
case wrm

i+1
(a) is a factor of wrm

j
(aj), and wrm

j
(aj) = w′rm

j
(bj) by the inductive

hypothesis.
2. Let α = wrm

i+1
(a). If a is outside all i/m-entailing intervals, we must choose

b outside the entailing region of Sw′ such that w′rm
i+1

(b) = α. For the sake
of contradiction, assume that this is not possible, that is, all b ∈ [1, |w′|]
satisfying w′rm

i+1
(b) = α fall inside the i/m-entailing intervals around b1, . . . , bi.

Then, by Lemma 3, the offset-multiplicity of α in w′ is at most i. So, the
hypothesis of the theorem implies that α must have the same multiplicity
both in w and in w′.

Since every w′rm
i+1

(b) such that w′rm
i+1

(b) = α falls inside the i/m-entailing
interval around some bj, and rm

i+1 < em
i , every w′rm

i+1
(b) is a factor of w′rm

i
(bj).

By the inductive hypothesis, w′rm
i

(bj) = wrm
i

(aj), so all such occurrences
exist also in w. But, as α is outside the i/m-entailing region of w, it cannot

be among such occurrences. Therefore,
[
w
α

]
>

[
w′

α

]
, which contradicts the

hypothesis of the theorem.

The back property can be proved in a similar way.

(⇒): We describe Spoiler’s winning strategy when w �rm
i

w′ for some i.
Without loss of generality, suppose that, for some 1 ≤ i + 1 ≤ m, there is
v ∈ Frm

i+1
(w) having offset-multiplicity σ1 < i + 1 in w and offset-multiplicity

σ2 > σ1 in w′. Then, by Lemma 3, there are positions a = a1, . . . , aσ1 in w

1 Note that Im only contains the empty map.
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such that all occurrences of v fall inside the i/m-entailing intervals around a. Let
Spoiler pick such elements (possibly repeating moves) in the first i rounds.

At round (i+1), the i/m-entailing region of w covers all occurrences of v, and,
since Duplicator must match the reachable intervals, corresponding occurrences
are in the entailing region of w′. Since σw′(v) > σ1, there must be an occurrence
of v in w′ outside all entailing intervals. Let Spoiler pick the center of such
occurrence. Spoiler wins because Duplicator must reply inside an i/m-entailing
interval or choose a non-matching (i+1)/m-reachable interval.

As for other case, suppose that, for some 1 ≤ i+1 ≤ m, there is v ∈ Frm
i+1

(w)

such that σw(v) = σw′(v) < i + 1, but
[
w
v

]
<

[
w′

v

]
. As before, Spoiler will

move in order to make all occurrences of v in w fall inside i/m-entailing intervals
after round i, forcing Spoiler to cover the same occurrences and leave out of the
i/m-entailing region in w′ at least one occurrence of v. This must be possible,
otherwise v would have the same multiplicity in w and w′. At round i + 1,
Spoiler selects the center of an occurrence of v outside all entailing intervals.
This will force Duplicator to reply in an entailing interval or choose a non-
matching (i+1)/m-reachable interval, and lose by Lemma 11. $�

Corollary 3. Let Sn and Sp be two unlabeled s-structures, as in Theorem 4,
and let m ≥ 2. Then,

D(Sn,Sp,m) ⇐⇒ Sn
∼= Sp ∨ n, p ≥ 2m .

Proof. Sn and Sp can be thought of as induced by words over Σ = {a}. $�

To be able to describe the optimal strategies in a game between words, we
must first extend Theorem 5 to arbitrary configurations.

Theorem 6. Given two words w,w′ ∈ Σ∗, and m ∈ N,

D((Sw,a), (Sw′ ,b),m) ⇐⇒ w ∼rm
i
w′, for 1 ≤ i ≤ m,

and ((Sw ,a), (Sw′ ,b)) is globally safe.

Proof. (⇒) By contraposition, using Theorem 5 and Theorem 4.
(⇐) The proof goes as in Theorem 5, by considering partial isomorphisms

extending ((Sw,a), (Sw′ ,b)). $�

We conclude the section by giving a hint of how games provide an alternative
way of measuring the similarity of two structures, which may be useful in bio-
logical sequence comparison, especially when the classical alignment methods,
based on dynamic programming [8], turn out to be too rigid. Two facts, in our
opinion, are relevant in this context: genomes often contain a high percentage of
repeated sequences (up to 80% in some plants), and they undergo different kinds
of rearrangements, in particular inversions and transpositions of DNA regions
(see, for example, [12] and the references thereby). As a first example, consider
the two strings agggagttttaga and agtttagaggga: a standard alignment algorithm
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based on the computation of their edit distance may align the two sequences as
follows:

ag-ggagttttaga
agtttag--aggga

Such an alignment misses completely the similarity between the prefix of each
string with the suffix of the other. On the contrary, by Theorem 5 Duplicator has
a winning strategy in a 2-round game played on agggagttttaga and agtttagaggga.
Her winning strategy clearly connects the corresponding substrings aggga and
gtt(t)tag. Note that a game based on the less-than relation would not allow such
inversions: biological comparison calls for a “local” notion of similarity, which
requires relations of bounded degree.

Successor structures do not need to be mapped at a nucleotide level, though.
We may consider a higher level view of a genome, as composed of several succes-
sive discrete elements: genes, pseudogenes, transposons, microsatellites, etc. . .
Figure 5 shows parts of two genomes, where segments are classified either as
“genes” or “LINE elements” or “SINE elements” (which are two kinds of inter-
spersed repetitions). It is interesting to note that Duplicator can always reply to
two moves of Spoiler, unless Spoiler picks an element inside one of the dashed
boxes. The fact that the structures are (almost) 2-equivalent allows one to ex-
press some very simple properties that hold for both sequences, such as “every
gene in the considered region is immediately followed by a LINE”.

gene

LINE

SINE

Fig. 5. Duplicator has winning strategy in a 2-round game between the two above
successor structures with unary predicates gene, LINE and SINE , when Spoiler is not
allowed to pick the elements inside the dashed boxes

We argue that variants of EF-games can be successfully applied to a class of
problems of biological significance. The successor relation is not the only relation
one may consider and first-order logic is not necessarily the most natural logic
for this kind of applications. But the above examples give some hint for further
variations that could be developed: in particular, it is apparent that Spoiler’s
and Duplicator’s abilities should be tuned to the “approximate” context that
molecular biology introduces, which might result in a new logical formalism
with an associated game with completely different rules. A possible extension
would consist in letting Duplicator play a limited number of “cheating moves”,
which would allow her to perform modifications of the structures “on the fly”,
e.g. substitutions, insertions and deletions of (subsets of) elements. It would be
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interesting to investigate how winning strategies would be affected by adding
such rules.

5 Complexity of the Winning Strategies

Given a configuration ((Sw,a), (Sw′ ,b)), we want to establish the computa-
tional complexity of determining the minimum m such that Spoiler has a winning
strategy (or, equivalently, the maximum m such that Duplicator has a winning
strategy) in a game from ((Sw,a), (Sw′ ,b),m). We call such number the remote-
ness of the given configuration (the remoteness of a game is a standard notion
in combinatorial game theory, see [2]). We assume that (Sw, a) � (Sw′ ,b),
otherwise Duplicator has a winning strategy for every m.

By Theorem 6, this problem amounts to computing the minimum m such that
either global safety fails, or w �rm

i
w′ for some i. Local safety can be checked

in O(|a|) time if we assume that a1 ≤ · · · ≤ ak. The minimum value such
that local safety does not hold is log2

(
min{ δ(aj+1, aj), δ(bj+1, bj) | aj+1 − aj �=

bj+1 − bj }
)
. The isomorphic region around a and b can easily be computed

in O(min(|w|, |w′|)) time by any linear string matching algorithm.
To examine the equivalence relation ∼rm

i
, we may concentrate on configura-

tions of the form (Sw,Sw′), with w �= w′. By Corollary 3, log2 min(|w|, |w′|)+1
is an upper bound to the number of rounds needed by Spoiler to win a game.
A tighter bound can be obtained by Corollary 2: it is sufficient to compare
the prefixes and suffixes of w and w′ until a mismatch is found. For example,
suppose that the prefix of w differs from the prefix of w′ at position j: then,
log2(j+1)+1 is an upper bound to the remoteness. Let U be the tightest upper
bound determined in this way. Note that U = O(log2 min(|w|, |w′|)).

Then, we enumerate all the factors of length 2j − 1, for 1 ≤ j ≤ U occurring
in w or w′. There are O((|w|+ |w′|)U) such substrings. For each factor, we may
compute its multiplicity and offset-multiplicity in O(|w|+ |w′|) time by a linear
search. Therefore, the remoteness is the minimum among the values m such that

rm
i = |v|, i = min(σw(v), σw′(v)) + 1, and either σw(v) �= σw′(v) or

[
w
v

]
�=

[
w′

v

]
,

where v ranges over the set of the enumerated factors. The overall complexity is
therefore O((|w| + |w′|)2 log min(|w|, |w′|)).

6 Concluding Remarks

We have given a structural characterization for m-equivalence of labeled suc-
cessor structures, and we have proved that the complexity of determining the
winner of a game played on two words is polynomial in the size of the words.
Moreover, the proofs of our results are constructive, that is, algorithms, both
for Spoiler and Duplicator, which play optimally can be derived from them. We
are investigating whether the computational complexity of the problem can be
lowered by building (generalized) suffix trees of the words [8].
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oretical Computer Science, 174:97–121, 1997.

2. E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for Your Mathe-
matical Plays, volume 2. A K Peters Ltd, second edition, January 2003.

3. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer Verlag, 1995.
4. A. Ehrenfeucht. An application of games to the completeness problem for formal-

ized theory. Fundamenta Mathematicae, 49:129–141, 1961.
5. R. Fagin, L. Stockmeyer, and M. Y. Vardi. On monadic NP vs. monadic co-NP.

Inform. and Comput., 120(1):78–92, 1995.
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Abstract. Within the setting of object-oriented program specification
and verification, pointers and object references can be considered as re-
lations between the elements of a data structure. When we specify prop-
erties of these data structures, we often describe properties of relations.
Hence it is important to be able to talk about relations and their proper-
ties when specifying object-oriented programs or programs with pointers.
Many interesting properties of relations such as transitive closure, finite-
ness, and generatedness are not expressible in first-order logic (FOL);
hence neither are they expressible in first-order fragments of specifica-
tion languages. In this paper we give an overview of the different ways
such properties can be expressed in various logics, with a particular em-
phasis on extensions of FOL, i.e. transitive closure logic, fixed-point logic,
and first-order dynamic logic. Within the paper we also discuss which of
these extensions already are – or in fact should be – implemented within
specification languages. We feel that such a discussion is necessary since
it is often the case that when an extension of FOL is implemented within
a specification language it is done so in an ad hoc manner or the under-
pinning logical concepts are not well documented.

1 Introduction

When it comes to specifying object-oriented programs, we need to be able to:
(a) refer to a set of particular objects in an object structure; and (b) talk about
the properties of the relation between the objects. As an example, consider the
definition of sets of related objects which are used in modifies clauses (a modifies
clause allows one to specify those parts of a program state that are exclusively
allowed to change [28, 6]). To illustrate, suppose we have a linked list with objects
of class Node having a next field. For a method say, sortInPlace, it would be
useful to be able to write list.next∗ in the method’s modifies clause, where ∗

denotes some form of transitive closure. Its semantic intention would then be
that the set of locations that are reachable from list using the field next may
be modified during the method’s execution. One may also wish to specify that
the list is not cyclic; assuming that this is the case, a field such as position()
may be introduced such that it returns a reference to a node at a given position.
If the position is less than or greater than 1, then the field returns null.
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All specification languages have some form of modification which allows them
to extend beyond the limitations of first-order logic. For example the query lan-
guage SQL implements fixed-point logic, the Object Constraint Language OCL
uses the iterate and let constructs, the Common Algebraic Specification Lan-
guage CASL uses the notion of freeness, and the Java Modeling Language, JML,
incorporates built-in recursion. However it is often the case that the modifica-
tions made to specification languages are done in a “make-do” fashion and their
designers are unaware of the logic underpinning their decisions. In this paper we
attempt to clarify what is really going on within these specification languages.

Our work is carried out in the framework of the KeY project. The KeY system
is a commercial CASE tool augmented with specification and deductive verifi-
cation functionalities [1] (see website at www.key-project.org). KeY uses the
Unified Modeling Language UML for visual modelling of designs and specifica-
tions, along with OCL for specifying constraints and other expressions attached
to the models [29]. The target language for program verification is Java. Both
the specification language OCL and the verification language of the KeY tool –
namely, dynamic logic – have second-order elements (as described in Section 4).
Our case study experience has shown that often there is a need for expressing
second-order principles in a more usable and/or flexible way; this need provides
the motivation behind our investigations. In particular, a modifies clause has
been recently implemented within the KeY system [6]. As the above example
demonstrates, it would be advantageous to be able to express transitive closure
in OCL in an easier fashion than the current method – which is by using the
OCL iterate construct – described in Section 4.

The paper is organised as follows: in Section 2 we look at how one goes about
expressing properties of relations and composing relations. We discuss various
properties which may or may not be expressed in first-order logic. This logic’s
lack of expressiveness leads us to an examination of a number of extensions
of first-order logic in Section 3. In Section 4 we discuss several specification
languages and the approaches they take in determining properties of relations.
Finally, we draw conclusions in Section 5.

2 Relations and Relational Formulae in a FOL Setting

We are interested in both expressing properties of relations and composing rela-
tions in relational formulae. In this section we provide the basic definitions for
these notions and briefly discuss relational algebra. We conclude by describing a
number of properties which can or cannot be expressed in first-order logic. How-
ever, before we begin, we need to stipulate what we mean by a relation within
an object-oriented language.

Following [30] we say that a relation expresses (the symmetric form of) those
associations which are represented in a programming language as pointers or
object references. Hence we model both object references and pointers as first-
order functions on objects.

A property P of a relation R (a formula with two free variables) is said to be
expressible if there is a closed formula φP (R) such that, for all models M , the in-
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terpretation RM has property P if and only if φP (R) is true in M . Here RM is
the (single) interpretation of relation R in M . The formula φP (R) must be effec-
tively constructible from any given R in a uniform way. This notion is extended
to properties of tuples of relations. Formally, a property is a relation on relations.

A composition C of relations R1, . . . , Rk is expressible if there is a formula
ψP (R1, . . . , Rk)(x, y) with free variables x and y such that (ψP (R1, . . . , Rk))M is
the relation composed from RM

1 , . . . , RM
k . Here (ψP (R1, . . . , Rk))M is the (single)

interpretation of ψP (R1, . . . , Rk)(x, y) in M . The formula ψP (R1, . . . , Rk) must
be effectively constructible from any givenR1, . . . , Rk in a uniform way. Formally,
a composition is a function on relations.

Note that the constructibility of φ and ψ neither implies the decidability
of P , nor respectively the computability of C. This is because the validity of
the constructed formula is in general undecidable. Moreover, the composition of
relations may be iterated, but the properties themselves cannot be iterated.

Relational algebra is a formal system used for manipulating relations. The set
of its operations may vary per definition, but it usually includes set operations –
since relations are sets of tuples – and special operators defined for relations
such as select, project, and join. The select operator selects tuples from a relation
whose attributes meet the selection criteria (which is normally expressed as a
predicate). The project operator selects certain attributes from a single relation,
discarding the rest. The join operator composes two relations. Relational algebra
forms the basis of a multitude of relational query languages; these are used in
order to manipulate the data of a relational database. We discuss aspects of one
of the standard languages, SQL, in Section 4.

Examples of properties expressible in FOL are reflexivity and transitivity;
concatenation is an expressible composition: We say that R is reflexive if ∀x. xRx
and R is transitive if ∀x∀y∀z. (xRy ∧ yRz → xRz). The concatenation of two
relations R and S is expressible by R ◦ S ≡ {(x, z) | ∃y. xRy ∧ ySz}. Note that
we use the notation xRy for (x, y) ∈ R and R(x, y) respectively.

On the other hand, properties that demand the finiteness of certain sets of
elements are not expressible. For example: “all elements are at most related to a
finite number of other elements”. Furthermore, many properties that demand the
existence of a finite but unknown number of elements which are related in a cer-
tain way are not expressible. For example quantifications such as ∃n. ∃x1 . . . xn

(which are routinely used in mathematical notation) do not exist in FOL and
often cannot be expressed by any other means.

Another typical but important example is transitive closure. The transitive
closure of a relation R is the relation TC (R) such that for all elements x and y the
relation TC (R)(x, y) holds if and only if there is a finite number of intermediate
points z0, . . . , zn where n ∈ N with x = z0, y = zn and zi−1Rzi for 1 ≤ i ≤ n.
Accordingly, one cannot express in FOL that some point b is R-reachable from
some other point a, i.e. TC (R)(a, b). An alternative – yet equivalent – definition
of transitive closure TC (R) is: (1) TC (R) is transitive; (2) R ⊆ TC (R) and;
(3) if R′ is transitive and R ⊆ R′ then TC (R) ⊆ R′. The latter condition is not
expressible in FOL as it implicitly quantifies over R′.
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It is important to note, however, that the transitive closure of a structure
can be expressed in a FOL setting if the structure is both finite and acyclic (see
Section 4).

3 Extensions of FOL

In this section we investigate a number of extensions of first-order logic including
transitive closure logic, fixed-point logic, and first-order dynamic logic. These
extensions allow us to express various properties and compositions of relations
that cannot be expressed using first-order logic alone.

Transitive Closure Logic. First-order logic extended by a transitive closure
operator – written FO(TC ) and called transitive closure logic – was first in-
troduced by Immerman [16]. If we let the formula φ(x̄, ȳ) represent a binary
relation on two n-tuples of domain variables – which range over the universe
of a Kripke structure – then the reflexive transitive closure of this relation is
expressed by TC x̄,ȳφ(x̄, ȳ), or more succinctly TCφ. Strict transitive closure is
denoted TC sφ. This represents the transitive closure of φ as opposed to the
reflexive transitive closure of φ. The restriction FO2 (TC ) is such that only
two variables x and y may appear in a formula φ. For example, the formula
∃y. ((TC x,yRa(x, y))(x, y) ∧ p(y)) expresses “there is a path of a-edges from x
to a vertex where p holds”.

Reachability LogicRL is a fragment of FO2 (TC ) with an unbounded number
of boolean variables in addition to the two domain variables x and y [3]. Boolean
variables are first-order variables restricted to range over 0 and 1. Formulae of the
logic are constructed using an adjacency formula δ(x, b̄, y, b̄′) which is a binary
relation between two n-tuples (x, b1, . . . , bn−1) and (y, b′1, . . . , b

′
n−1). This is in

fact a disjunction of conjunctions where each conjunction contains at least one of
the following: x = y, Ra(x, y), or Ra(y, x) for some binary relation Ra. Hence the
adjacency formula necessarily implies that there is an edge from x to y, or an edge
from y to x, or that x is equal to y. Conjuncts may also contain expressions of the
form ¬(bi = bj), bi = 0, or bi = 1. For φ ∈ RL the formulae NEXT (δ)φ (denoting
∃y. (δ(x, 0̄, y, 1̄) ∧ φ[y/x])), REACH (δ)φ (i.e., ∃y. (TC δ)(δ(x, 0̄, y, 1̄) ∧ φ[y/x])),
and CYCLE (δ) (i.e., (TC sδ)(δ(x, 0̄, x, 0̄))) are also formulae of RL. Hence it is
possible to describe in this logic: steps out of the current vertex x, paths out
of x, and cycles from x back to itself.

Importantly, the boolean variables allow Propositional Dynamic Logic (PDL)
and the variation of Computational Tree Logic, CTL∗, to be embedded in RL.
Consider the PDL formula 〈α〉p, which is a true property of a state s whenever
there is some state t in which p holds that is reachable from s by execution of α.
The regular expression α can be translated into an non-deterministic finite au-
tomaton Nα with n states. Within the framework of RL the adjacency formula
of α is a translation of the transition relation of Nα, whereby each state of the
automaton is represented by k ≡ 1 + log n bits with 0̄ and 1̄ representing the
initial and final states respectively. For example, if α is the sequential composi-
tion π0;π1 then a transition from state s to state t in Nπ0;π1 is represented by
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the adjacency formula Rπ0(x, y) ∧ b1 . . . bk = s ∨ Rπ1(x, y) ∧ b′1 . . . b
′
k = t where

b1 . . . bk is the initial state and b′1 . . . b
′
k is the final state. Hence an example of a

formula in RL is REACH (δ)p where δ(x, b1, b2, y, b′1, b′2) is (Rπ0(x, y) ∧ b1b2 =
00∧ b′1b′2 = 01)∨ (Rπ1(x, y)∧ b1b2 = 01∧ b′1b′2 = 11). This has the meaning that
it is possible to take the path of a π0-edge followed by a π1-edge to a point where
p holds; this is just 〈π0;π1〉p in PDL.

Regular Expressions Over Relations. Kleene algebras are algebraic struc-
tures that generalise the operations of regular expressions. A Kleene algebra
consists of a set K with binary + and · operations, a unary operation ∗, and
constants 0 and 1. In general the algebra’s operational semantics depends on the
model, but typically ∗ involves some notion of finite iteration. A Kleene algebra
gives rise to a relational algebra extended with reflexive transitive closure when
the following interpretations of the operations are made: operation · as join; el-
ement 0 as the null/empty relation; element 1 as the identity relation; and ∗ as
the reflexive transitive closure of a relation.

As mentioned previously, an extension of first-order logic with the ability to
write list.next∗ – or even more generally, to be able to use regular expressions
to describe terms or term sets – would be very useful. There exist approaches
which allow an extended syntax for terms in first-order logic. For example in [10]
recursive term definitions are added to first-order logic.

Rather than using regular expressions and Kleene algebras to extend FOL, it
is possible to manipulate FOL formulae such that they fulfill a purpose similar
to that of regular expressions.

Two ways to define words and/or formal languages are by using: (1) predicate
logics, such that each model corresponds to a word in the language; and (2) modal
logics, such that each path in a Kripke structure corresponds to a word. There is a
large amount of literature on the latter. For (1), we fix a family of signatures ΣA.
They contain the binary relation symbol <, a constant symbol first, a unary
postfix function +1, and for every a in the alphabet A, we have the unary relation
symbol Qa. The set of words over A is denoted A∗. For w ∈ A∗\{Λ}, where Λ is
the empty word, the associated ΣA-structure is denotedMw (the empty model
is not possible). The formula Mw |= Qa(first) holds true if and only if the first
letter of w is a. The formulaMw |= Qb(+1) holds true if and only if the second
letter of w is b, etc. For (2), we express information about semi-structured data –
represented as a graph – by imposing constraints on the possible paths through
the graph. Such a constraint might be “all objects reachable by a path p are
also reachable via a path q”, where p and q are sequences of labels possibly
involving regular expressions. In order to check that the constraints hold, we re-
cast them as model or satisfiability checking tasks in some logic (usually modal).
For example, see [2] where this is done using propositional dynamic logic, and [12]
where this is done using monadic second-order logic.

Fixed-Point Logic. Fixed-point logics are particularly well-suited for mod-
elling recursion and have consequently found applications in various areas of
computer science such as database theory, finite model theory and, formal



Second-Order Principles in Specification Languages 159

verification. Following [22, 13], for a set A and a function F : ℘(A)→ ℘(A), a
fixed-point P of F is any set P ⊆ A such that F (P ) = P . A fixed point Q is called
the least (greatest) fixed-point of F if and only if Q ⊆ P (P ⊆ Q) holds for all
fixed points P of F . The function F is said to be monotone if F (X) ⊆ F (Y ) for
all X ⊆ Y ⊆ A. A well-known theorem by Knaster and Tarski states that every
monotone function has a least and a greatest fixed-point [33]. For limit ordi-
nals λ and the monotone function F , consider the sequence (Xα)α∈Ord of sets
Xα ⊆ A defined by (i) X0 = ∅, (ii) Xα+1 = F (Xα), and (iii) Xλ =

⋃
ξ<λ Xξ.

A fixed-point X∞ is reached in this sequence whereby X∞ = Xα for the least
ordinal α such that Xα = Xα+1. This fixed-point X∞ is called the inductive
fixed-point of F . A second theorem by Knaster and Tarski states that the least
and inductive fixed-points coincide, hence any least fixed-point of a monotone
function can be defined inductively by a sequence of sets as described above.
Dually, the greatest fixed-point of a monotone function F can be defined induc-
tively using the sequence (Xα)α∈Ord of sets Xα ⊆ A defined by (i) X0 = A,
(ii) Xα+1 = F (Xα), and (iii) Xλ =

⋂
ξ<λ Xξ. Note that if F is inflationary

(i.e. X ⊆ F (X) for all X ⊆ A) rather than monotone, then X∞ is called the
inflationary fixed-point of F . Next let τ be a signature, i.e. a finite set of relation
symbols, and let A be a structure consisting of a universe A and interpretations
for each relation symbol in τ . Consider a first-order formula ϕ(R, x̄) with R a
k-ary free relation symbol not occurring in τ and x̄ a k-tuple of free variables.
On A the formula ϕ induces a fixed-point operator Fϕ : ℘(Ak)→ ℘(Ak) such
that Fϕ(R) = {ā | (A, R) |= ϕ(ā)}. Here (A, R) |= ϕ(ā) means that formula ϕ is
satisfied by the interpretation that assigns to each variable xi of x̄ the element ai

of ā ∈ Ak.
Below we investigate three fundamental fixed-point logics: monotone, least,

and inflationary fixed-point logics. First of all we discuss monotone fixed-point
logic. Using this logic we can nest inductive definitions; from one fixed-point
built-up from a formula we can define another.

Monotone Fixed-Point Logic. Monotone Fixed-Point Logic MFP is the extension
of FOL by the following rule: if R is a k-ary free relation variable, x̄ is a k-tuple of
free first-order variables, t̄ is a k-tuple of terms and ϕ(R, x̄) is a formula such that
the corresponding operator Fϕ is monotone on all structures, then [lfpR,x̄ϕ](t̄)
is also a formula. For any structure A that provides an interpretation of the
free variables of ϕ except for x̄, A |= [lfpR,x̄ϕ](t̄) if and only if the interpretation
of t̄ in A is in the least fixed-point of the operator defined by ϕ(R, x̄). As we
have mentioned previously, the least and greatest fixed-point of any monotone
operator always exists. However it is undecidable as to whether a formula induces
a monotone operator. In order to guarantee monotonicity on the operator one
can restrict the formulae such that they are positive in the relation variable R.
This leads us to the definition of least fixed-point logic.

Least Fixed-Point Logic. Least Fixed-Point Logic LFP is the extension of FOL
by the following rule: if R is a k-ary free relation variable, x̄ is a k-tuple of free
first-order variables, t̄ is a k-tuple of terms and ϕ(R, x̄) is a formula in which R oc-
curs only positively, then [lfpR,x̄ϕ](t̄) is also a formula. For any structure A that
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provides an interpretation of the free variables of ϕ except for x̄, A |= [lfpR,x̄ϕ](t̄)
if and only if the interpretation of t̄ in A is in the least fixed-point of the operator
defined by ϕ(R, x̄). Consider, for example, the directed graph (V,E), where V is
a set of n vertices and E ⊆ V × V is a set of ordered pairs, i.e. edges. Then the
transitive closure of E is defined as [lfpR,x,y (xEy ∨ ∃z. (xRz ∧ zRy))](x, y).

Inflationary Fixed-Point Logic. Inflationary Fixed-Point Logic IFP can be con-
sidered the simplest non-monotone fixed-point logic. It is the extension of first-
order logic by the following rule: if R is a k-ary free relation variable, x̄ is a
k-tuple of free first order variables, t̄ is a k-tuple of terms and ϕ(R, x̄) is a
formula, then [ifpR,x̄ϕ](t̄) is also a formula. Let A be a structure which pro-
vides an interpretation of the free variables of ϕ except for x̄. The operator
Iϕ(R) = {ā | ā ∈ R or (A, R) |= ϕ(ā)} is inflationary and therefore has an infla-
tionary fixed-point R∞. Hence A |= [ifpR,x̄ϕ](t̄) if and only if the interpreta-
tion of t̄ in A is in the inflationary fixed-point. An interesting result is that
both least and inflationary fixed-point logics are equally expressive on arbitrary
structures [21].

First-Order Dynamic Logic. The principle of dynamic logic (DL) is to fa-
cilitate the formulation of statements about program behaviour by integrating
programs and formulas within a single language (see e.g. [15, 20] for general ex-
positions of DL). By permitting arbitrary programs α as actions of a labelled
multi-modal logic, dynamic logic provides formulas of the form [α]φ and 〈α〉φ.

When considering states during program execution as worlds of modal logic,
[α]φ expresses that all (terminating) executions of program α lead to states in
which φ holds; whereas 〈α〉φ is a true property of a state s whenever there is some
state t reachable from s by execution of program α in which φ holds. A Hoare-
style specification {φ}α{ψ} of partial correctness can be expressed as φ→ [α]ψ.
In contrast to Hoare logic and temporal logic approaches to program verifica-
tion, dynamic logic permits the expression of structural relationships between
different programs by using multiple modalities. For example relative correctness
statements like 〈α〉φ → 〈α′〉φ as well as nesting are possible, as in the formula
[α](c ≥ 0→ 〈α′〉c ≤ d · d).

Provided that they are computable, dynamic logic can express properties of
relations that are ordinarily not expressible in pure first-order logic. For example
to express that y is reachable from x via applications of the function next (i.e.
x and y are related in the transitive closure of the relation p defined by p(u, v)
iff v = next(u)) can be expressed by 〈while (x �= y) x := next(x)〉true.

4 Specification Languages

In this section we look at the approaches that specification languages take
in defining transitive closure and similar properties of relations. Most require
“hacks” to force a model’s finiteness and acyclicity before transitive closure can
be determined (an interesting and unique approach is taken by the Java Model-
ing Language JML).



Second-Order Principles in Specification Languages 161

Alloy. The Alloy Analyzer implements an automatic analysis method for formu-
lae of relational logic [17, 18]. This logic acts as an intermediate language for the
object modelling notation Alloy. It is a first-order logic with sets and relations
whereby each formula is accompanied by a declaration that associates variables
to their types. The combination of formula and declaration is called a problem.
There are three kinds of types: set, relation, and function. Scalar variables are
treated as singleton sets and sets are encoded as “degenerate” relations. For ex-
ample, a scalar variable v of set type T can also be represented as the relational
type T → Unit , where Unit is a special type designed for this purpose.

A “navigation” expression s.r denotes the image of a set s under a relation r.
The encoding of sets as degenerate relations allows a uniform syntax to be given
to such expressions, i.e. if p is a person then p.mother will denote p’s mother,
whereas p.parents will denote the set of p’s parents. A transitive closure opera-
tor + is also included in Alloy. For example, the formula (p+)∩ Id = 0 expresses
that p is acyclic. Here Id is the identity relation and 0 is the empty relation.

Because relational logic is undecidable, it is in general impossible to prove
that a formula is either consistent or valid. To determine for a given formula
whether a model exists (within a particular scope), the Alloy Analyzer places
restrictions on the size of the sets of the basic types. A model is said to be
within a scope of k if it assigns to each type a set consisting of no more than k
elements.

SQL. In order to manipulate the data of a relational database, relational query
languages – based on relational algebra – are used. The database query language
SQL was adopted as an industry standard in 1986 [32]. Having undergone two
major revisions, SQL3 is now the current version.

WITH
RECURSIVE AncestorDescendant(ancestor, descendant) AS

((SELECT ∗ FROM ParentChild)
UNION
(SELECT ad1.ancestor, ad2.descendant
FROM AncestorDescendant ad1, AncestorDescendant ad2
WHERE ad1.descendant = ad2.ancestor))

SELECT ancestor FROM AncestorDescendant WHERE descendant = ”Mary”;

Fig. 1. SQL specification

Unlike its predecessors, SQL3 supports linear recursion; a recursive query has
the form “WITH RECURSIVE R AS r Q;”, where r is the expression that you
want to recurse and R is its name that can then be used in the associated query
expression Q. If we consider a query as a function on tables, then a recursive
query computes the “fixed-point table” [34]. Essentially, we start with R as
an empty table. We then evaluate r using the (temporary) contents of R and
replace R with this new value. As long as Rnew �= R, we continue to evaluate r
and replace R by its new value. Once Rnew = R, we compute Q using the current
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contents of R and output the result. The example shown in Figure 1 outlines how
we find Mary’s ancestors from the schema ParentChild(parent, child). The
first part of the recursive definition – utilising ∗ – is the base case. Its meaning is
that all “parent/child” pairs are also “ancestor/descendant” pairs. Although
initially we know nothing about ancestor-descendant relationships, after the first
round we deduce that parents are ancestors and children are descendants. In
each subsequent round we use the facts deduced in previous rounds to get more
ancestor-descendant relationships. We eventually stop when no new facts can be
proven.

When the query Q is non-monotone, i.e. adding tuples to R might cause
some tuple to be removed from the result of Q, then the fixed-point iteration
may not converge. A way to circumvent this is to construct a dependency graph
whereby: (1) each table Ri is a node; (2) there is a directed arc from Ri to Rj

if Ri is defined in terms of Rj ; and (3) the arc is labelled “-” if the query
defining Ri is non-monotone with respect to Rj , i.e. by adding something to Rj

we may cause something to be removed from Ri. The maximum number of
- arcs on any path from R in the dependency graph is called the stratum of
node R. A recursive query statement is said to be stratified if every node has
a finite stratum, i.e. there are no cycles containing - arcs. Hence legal SQL3
recursive queries are required to be stratified. Note that this technique can also
be used in other languages using fixed-point definitions in order to exclude non-
monotonicity cases that lead to fixed-points being undefined.

CASL. The Common Algebraic Specification Language (CASL), has been de-
veloped by CoFI, the international Common Framework Initiative for algebraic
specification and development (see website at http://www.cofi.info). The al-
gebraic approach to software specification was conceived in the early 1970s, see
for example [35]. Programs are considered as algebras consisting of datatypes
and operations; the intended behaviour of a program is specified by formulae
involving these operations. The development of dozens of languages, all with
slight variations in syntax and semantics, demanded the need for a common
framework, hence CoFI was formed. The resulting specification language CASL
features partial functions, subsorts, sort generation constraints, first-order logic,
and structural and architectural specifications [27].

In CASL datatypes are specified using the keyword type and are given in
terms of sorts (i.e. the types of values) and constructors. Datatypes may be de-
clared to be either generated or free. When a generated datatype is declared,
then the corresponding sort is constrained to be generated only by the declared
constructors. For example in the specification of GENERATED CONTAINER
taken from the CASL User Manual [7] (see Figure 2), the generatedness con-
straint is such that any value of sort Container is denoted by a term built only
with operators empty, insert and variables of sort Elem.

Note that within this specification, the pairs of underscores “ ” indicate
place-holders for the binary predicate is in and the bulleted list features “ax-
ioms” which constrain the predicate. Essentially, the generatedness constraint
allows one to prove – by induction on the declared constructors – properties
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spec GENERATED CONTAINER [sort Elem] =
generated type Container ::= empty | insert(Elem; Container)
pred is in : Elem × Container
∀e, e′ : Elem; C : Container
• ¬(e is in empty)
• e is in insert(e′, C) ⇔ (e = e′ ∨ e is in C)

end

spec TRANSITIVE CLOSURE [sort Elem pred R : Elem × Elem] =
free { pred R+ : Elem × Elem

∀x, y, z : Elem • x R y → x R+ y
• x R+ y ∧ y R+ z → x R+ z }

end

Fig. 2. CASL specifications

of values of the sort Container. A free datatype declaration has the same in-
terpretation as the generated datatype declaration with the additional prop-
erty that all distinct constructor terms of the same sort denote distinct
values.

In CASL a “freeness” constraint – using the keyword free – can be im-
posed on a predicate declaration. This has the effect that a predicate that is
consistent with the given axioms but not a consequence of the axioms will be
false; predicates hold minimally. We can see this in the specification of TRAN-
SITIVE CLOSURE shown in Figure 2 (also taken from [7]). Here the transitive
closure of a binary relation R on some sort Elem is specified. Since predicates
hold minimally in models of free specifications, R+ is actually the smallest tran-
sitive relation including R.

OCL. The Object Constraint Language (OCL) [19] is a part of the Unified
Modeling Language (UML) [14]. Currently the industry standard, UML allows
software developers to graphically specify, visualise and document models of soft-
ware systems. OCL can be used to augment UML object models with additional
textual information which cannot otherwise be expressed by UML diagrams.
This additional information takes the form of side-effect-free expressions and
constraints. An expression is a specification of a value. A constraint is a restric-
tion of one or more values in (part of) the object-oriented model. The semantics
of OCL constraints is defined by an evaluation function which maps – in a given
object diagram – any constraint to one of the logical constants true, false,
and undefined. Admissible diagrams are those whereby all constraints of the
corresponding class diagram evaluate to true.

The type of an OCL expression is either pre-defined (Boolean, Integer, etc.)
or it is the type of a class in the corresponding class diagram. Dot notation is
used for accessing the attributes of objects. The basic data structures of OCL
are the collections Set, Bag and Sequence.

OCL does not have a primitive operator for transitive closure, but it does al-
low recursion. Consider the following OCL invariant in the context Person, where
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ancestors are recursively defined in order to represent the transitive closure of
the relation defined by parents (note that both ancestors and parents are of
type Set(Person)): ancestors = parents -> union(parents.ancestors).
The expression parents.ancestors computes the set of all ancestors of a set of
parents and returns a value of type Set(Person).

Now suppose A is a parent of B, who in turn is a parent of C. Then the minimal
object structure which solves the constraint is such that the parent of B is A and
the ancestors of C include both B and A. However, additional solutions involve
situations where B and A are both ancestors of each other and themselves. In our
case we would prefer to use the minimal solution (corresponding to the minimal
fixpoint), but this cannot always be found: there may be more than one equiva-
lent solution, or it may not even exist. A suggestion to uniquely characterise the
minimal solution is given in [11]. This paper suggests mimicking induction over
a natural number n. This is exhibited in the following OCL specification.

ancestors up to(n) = if (n==1) then parents
else parents -> union(parents.ancestors up to(n-1))

Nat -> forall(n | ancestors up to(n) = ancestors up to(n+1)
implies ancestors = ancestors up to(n))

Of course this makes the assumption that the models are finite. Alternatively, as
done in [9], we can use the OCL let construct to stipulate that the inheritance
relationship must be acyclic. Note that self refers to any instance of the class
in which it is specified.

let parents = self.parents
let ancestors = self.parents -> union(self.parents.ancestors)

in <some expression using definition of ancestor>

The let construct is a new addition to OCL, introduced in version 2.0. The
expression let x = e1 in e2 evaluates expression e2 with each occurrence of x
replaced by the value of e1. Its use avoids evaluating the same expression multiple
times. However the construct’s semantics within OCL is not entirely clear [9].
Whether arbitrary recursively defined expressions are allowed is uncertain. Thus,
using let to define transitive closure is not advised.

In [26] the transitive closure of a relation is computed by coding the well-
known Warshall’s algorithm in OCL. This coding makes use of the OCL iterate
construct which iterates through all items of a collection, verifying a given con-
dition and possibly updating the value of a variable returned at the end of
the iteration. The algorithm itself calculates the transitive closure of a directed
graph (V,E), where V is a set of n vertices and E ⊆ V × V is a set of ordered
pairs, i.e. edges. A path from vertex v0 to vk is denoted v0

∗−→ vk and is a se-
quence of edges (v0, v1), (v1, v2), . . . , (vk−1, vk). The intuition behind Warshall’s
algorithm is this: if the graph contains paths v ∗−→ w and w

∗−→ u whose interme-
diate vertices belong to the set S, then the graph also contain a path v

∗−→ u such
that the intermediate vertices belong to S ∪ {w}. The algorithm iterates from
1 to n. At the kth iteration it selects paths whose intermediate vertices come



Second-Order Principles in Specification Languages 165

from {v1, . . . , vk−1}. Unfortunately the resulting OCL code of this algorithm is
about one and a half pages in length; it is neither intuitive nor easy to read, and
furthermore it requires the directed graph to be finite.

A transitive closure construct for OCL is proposed by Schürr in [31]. This
is based on features of the path expression sublanguage – similar to OCL – of
PROGRES, a graph transformation language. The transitive closure operator *

is implemented to keep track of already visited objects and therefore avoids any
cyclic problems. Schürr defines it as follows:

self.ancestors* = self.ancestorsClosure(self)
self.ancestorsClosure(visitedObj) =

let S : . . . = self.ancestors -> excludeAll(visitedObj) in
S -> collect(ancestorsClosure(S -> union(visitedObj))) -> asSet

This definition will suffer from the unclear semantics of the let construct.
As mentioned in Section 2, it is possible to define the transitive closure

of relations known to be finite and acyclic. To illustrate this, Baar [4] de-
fines ancestors by APar(x) = Par(x) ∪ {y | ∃z. z ∈ Par(x) ∧ y ∈ APar(z)},
where Par(x) and APar(x) are the translations of x.parents and x.ancestors,
respectively. Correspondingly, in first-order logic, this definition can be expressed
by the formula r∗(x, y) ⇔ (r(x, y) ∨ ∃z. r(x, z) ∧ r∗(z, y)), where the relation
symbols r and r∗ are substituted for Par and APar, with r(x, y) meaning
y ∈ Par(x) and r∗(x, y) meaning y ∈ APar(x). This formula is interpreted by
the structure (U,R,R∗) where U is a universe of variables, and R and R∗ are
interpretations of the relations r and r∗, respectively. Countermodels for this
formula are presented whereby R∗ does not coincide with the transitive closure
of R. However if the model (U,R,R∗) is finite and the axiom ¬r∗(x, x) holds –
enforcing R∗s acyclicity – then R∗ is a correct definition of transitive closure
(however, in general finiteness is not expressible).

JML and SPEC#. The Java Modeling Language (JML) was originally de-
signed by Leavens et al. at Iowa State University in 1998. Having spawned a
much larger community of users and tool developers who are now actively in-
volved in its development, JML has since become the standard specification
language used for verification of Java programs. JML is used to specify Java
classes and interfaces [23, 24].

The Spec# system [5] has been developed as a specification language for .Net.
The recent developments in the JML community have been influenced and some
ideas have been adopted that originated from the Spec# project. The treatment
of second-order concepts is similar in both languages (we concentrate on JML
in the following).

Specifications in JML are formulated by making use of (side-effect-free)
boolean Java expressions; they are written as Java comments. The original JML
tool is a pre-compiler designed to translate specified programs into Java pro-
grams that explicitly monitor assertions at run-time. Specification violations
that are found throw Java exceptions. Since JML’s conception, many more tools
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have been developed using JML as an input specification language. For a more
extensive overview of JML tools and applications, see [8].

When specifying transitive closure, JML manages to avoid the whole issue
of acyclicity by defining recursive datagroups [28]. These have been designed
primarily with frame-condition issues in mind. To solve the information hiding
problem (i.e. that protected or private fields of a class should remain hidden
from their clients) the represents clause was introduced to JML, allowing one
to specify the representation of concrete fields by particular abstract fields. Hence
protected or private fields in an implementation can be changed without changing
the specification visible to its clients. Unfortunately, the use of abstract fields
generated problems with the modifies clause. (A method’s modifies clause
specifies those locations that are permitted to be changed by execution of the
method.) This was fixed by a depends clause which relates those locations used
to determine an abstract location’s values. A datagroup can be modelled by
an abstract location whose value contains no information. By using a depends
clause, a location can be declared to be in a datagroup, therefore membership
in a datagroup allows the locations in the datagroup to be modified whenever
the datagroup is mentioned in the modifies clause. The license to modify a
datagroup implies the license to modify the members of the datagroup as defined
by a downward closure rule [25]. For any set of datagroups S, the downward
closure of this set is the smallest superset of S such that for any group G in the
closure of S, all nested datagroup members of G also belong in the closure of S.
For example, consider the following Java linked list with Node objects having
next and value fields:

class Node { Integer value; Node next; }

The datagroups nodeValues and nodeLinksare are defined recursively using
clauses such as “maps next.nodeValues \into nodeValues”. Hence the clause
“modifies list.nodeLinks;”, when it is added to the JML specification of a
method sortInPlace(Node list), says that all node objects reachable from
list may be changed whenever sortInPlace is executed.

Such specifications rely on a smallest-fixed-point semantics for recursive defi-
nitions built into JML. Gleaned from mailing list discussions, Leavens et al. have
considered introducing regular expressions, (i.e. writing list.next∗ in order to
specify the JMLObjectSet of all objects reachable from list using the field name
next) but have rejected this as not particularly beneficial since using datagroups
seems to be an adequate enough solution.

5 Conclusions

Although important properties of relations are not expressible in classical first-
order logic, it is possible to extend first-order logic (e.g. with fixed-point and
transitive closure operators) in order to describe such properties. We find that
all specification languages feature modifications which allow them to extend
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beyond the limitations of first-order logic. For example SQL implements fixed-
point logic, OCL uses the iterate and let constructs, CASL implements the
notion of freeness, whereas JML incorporates built-in recursion. However, the
logical concepts underpinning these modifications are often not well documented.
This paper has attempted to clarify what is going on regarding these extensions.

Generally we have found that once integers are “available” in a specification
language, it is possible to define transitive closure and other properties of rela-
tions in the language. Otherwise this is possible only for finite relations (which
is mostly adequate). In our opinion the best solution is that which is taken by
CASL and JML, namely by building freeness or minimal fixed-points either ex-
plicitly or implicitly into the language. It still seems desirable to add regular
expressions to specification languages. It is not clear yet how this should be
done; this is the subject of future work.
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likavec@di.unito.it

Abstract. We investigate some syntactic properties of Wadler’s dual calculus, a
term calculus which corresponds to classical sequent logic in the same way that
Parigot’s λμ calculus corresponds to classical natural deduction. Our main result
is strong normalization theorem for reduction in the dual calculus; we also prove
some confluence results for the typed and untyped versions of the system.

1 Introduction

This paper establishes some of the key properties of reduction underlying Wadler’s dual
calculus [30, 31]. The basic system, obtained as a term-assignment system for classi-
cal sequent calculus, is not confluent, inheriting the well-known anomaly of classical
cut-elimination. Wadler recovers confluence by restricting to reduction strategies cor-
responding to (either of) the call-by-value or call-by-name disciplines, indeed these
subcalculi and the duality between them are the main focus of attention in Wadler’s
work.

In this paper we are less interested in call-by-value and call-by-name per se than in
the pure combinatorics of reduction itself, consequently we work with as few restric-
tions as possible on the system. We prove strong normalization (SN) for unrestricted
reduction of typed terms, including expansion rules capturing extensionality. We show
that once the obvious obstacle to confluence is removed (the “critical pair” in the re-
duction system) confluence holds in both the typed and untyped versions of the term
calculus. This critical pair (see Section 3) can be disambiguated in two ways but the
proof we give dualizes to yield confluence results for each system, an example of the
“two theorems for the price of one” benefit of duality.

The dual calculus is an embodiment of the “proofs-as-programs” paradigm in the
setting of classical logic, as well as being a clear expression of the relationship between
call-by-name and call-by-value in functional programming. So the fundamental syntac-
tic results given here should play an important role in the currently active investigations
into the relationship between classical logic and computation.
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Background. The Curry-Howard correspondence expresses a fundamental connection
between logic and computation [18]. In its traditional form, terms in the λ-calculus en-
code proofs in intuitionistic natural deduction; from another perspective the proofs serve
as typing derivations for the terms. Griffin extended the Curry-Howard correspondence
to classical logic in his seminal 1990 POPL paper [16], by observing that classical tau-
tologies suggest typings for certain control operators. This initiated a vigorous line of
research: on the one hand classical calculi can be seen as pure programming languages
with explicit representations of control, while at the same time terms can be tools for
extracting the constructive content of classical proofs [21, 3]. In particular the λμ cal-
culus of Parigot [23] has been the basis of a number of investigations [24, 11, 22, 5, 1]
into the relationship between classical logic and theories of control in programming
languages.

As early as 1989 Filinsky [14] explored the notion that the reduction strategies
call-by-value and call-by-name were dual to each other. Filinski defined a symmetric
lambda-calculus in which values and continuations comprised distinct syntactic sorts
and whose denotational semantics expressed the call-by-name vs call-by-value dual-
ity in a precise categorical sense. Later Selinger [27] modeled the call-by-name and
call-by-value variants of the λμ by dual control and co-control categories.

These two lines of investigation come together nicely in the framework of classical
sequent calculus. In contrast to natural deduction proof systems (upon which Parigot’s
λμ, for example, is based) sequent calculi exhibit inherent symmetries not just at the
level of terms, but of proof structures as well. There are several term calculi based on
sequent calculus. The most relevant to the current study are those in which terms un-
ambiguously encode sequent derivations for which reduction corresponds to cut elimi-
nation. See, for example, [29, 9, 19, 2]. Curien and Herbelin [17, 9] defined the system
λμμ̃, a sequent calculus-inspired calculus exhibiting symmetries in the syntax, whose
terms represent derivations in the implicational fragment of Gentzen’s system LK [15].
In addition, as described in [9], the sequent calculus basis for λμμ̃ supports an inter-
pretation of the reduction rules of the system as operations of an abstract machine.
In particular, the right- and left-hand sides of a sequent directly represent the code
and environment components of the machine. This perspective is elaborated more fully
in [8]. See [7] for a discussion of the importance of symmetries in computation. In [2],
a calculus, which interprets directly the implicational sequent logic, is proposed as a
language in which many kinds of other calculi can be implemented, from λ-calculus to
λμμ̃ through a calculus of explicit substitution and λμ.

The Symmetric Lambda Calculus of Barbanera and Berardi [3], although not based
on sequent calculus, belongs in the tradition of exploiting the symmetries found in clas-
sical logic, in their case with the goal of extracting constructive content from classical
proofs. Barbanera and Berardi [3] proved SN for their calculus using a “symmetric
candidates” technique; Urban and Bierman [29] adapted their technique to prove SN
for their sequent-based system. Lengrand [19] shows how simply-typed λμμ̃ and the
calculus of Urban and Bierman [29] are mutually interpretable, so that the strong nor-
malization proof of the latter calculus yields another proof of strong normalization for
simply-typed λμμ̃. Polonovski [25] presents a proof of SN for λμμ̃ with explicit sub-
stitutions using the symmetric candidates idea. Pym and Ritter [26] identify two forms
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of disjunction for Parigot’s[23] λμ calculus; they prove strong normalization for λμν
calculus (λμ calculus extended with such disjunction). David and Nour [10] give an
arithmetical proof of strong normalization for a symmetric λμ calculus.

The Dual Calculus. Wadler’s dual calculus [30] refines and unifies these themes. It is
a term-assignment system based on classical sequent calculus, and a key step is that
implication is not taken as a primitive connective. It turns out that this permits a very
clear expression of the way in which the traditional duality between the left- and right-
hand sides of a sequent reflects the duality between call-by-value and call-by-name.

Unfortunately these beautiful symmetries come at the price of some anomalies in
the behavior of reduction. The unrestricted reduction relation in the dual calculus (as
well as in λμμ̃) has a critical pair, and indeed this system is not confluent. In [30] Wadler
gives two restricted versions of each reduction rule obtaining subcalculi which naturally
correspond to call-by-value and call-by-name, respectively. He then defines translations
of these systems into the simply-typed λ-calculus; each translation both preserves and
reflects reductions. See Propositions 6.6, 6.9, 6.10 on [30]. (Curien and Herbelin [9]
gave a similar encoding of their λμμ̃ calculus.)

It was “claimed without proof” in [30], that these call-by-value and call-by-name
reductions are confluent and that the call-by-value and call-by-name reduction rela-
tions (without expansions) are strongly normalizing. But in fact confluence and strong
normalization for each of call-by-value and call-by-name follows from the correspond-
ing results in the λ-calculus by diagram-chasing through the CPS translations into the
simply-typed λ-calculus, given the fact that reductions are preserved and reflected by
the translations.

In [31] the emphasis is on the equational theory of the dual calculus. The equations
of the dual calculus include a group of equations called “η-equations” which express
extensionality properties; these equations play an important role in the relationship be-
tween the dual calculus and λμ. The relationship with Parigot’s λμ is worked out, the
result is a clear notion of duality for λμ.

Summary of Results

We prove that unrestricted reduction of typed expressions in the dual calculus is strongly
normalizing. The proof is a variation on the “semantical” method of reducibility, where
types are interpreted as pairs of sets of terms (observe: yet another symmetry). Our
proof technique uses a fixed-point construction similar to that in [3] but the technique
is considerably simplified here (Section 6).

In fact our proof technique also shows the strong normalization for the reduction
system including the η-expansion rules of the dual calculus. Due to space restrictions
we only outline the treatment of the expansions but the machinery is the same as for the
core calculus and filling in the missing details should only be an exercise for the reader.

To our knowledge none of the previous treatments of strong normalization for clas-
sical calculi has addressed extensionality rules.

We prove that if we disambiguate the single critical pair in the system, by giving
priority to either the “left” or to the “right” reductions, the resulting subsystems are
confluent. Furthermore reduction is confluent whether terms are typed or untyped. The



172 D. Dougherty et al.

proof is an application of Takahashi’s parallel reductions technique [28]; we prove the
result for one system and are able to conclude the result for the other by duality (Sec-
tion 4).

The relationship between our results and those in [30, 31] is somewhat subtle. Wadler
is motivated by programming language concerns and so is led to focus on sub-calculi of
the dual calculus corresponding to call-by-name and call-by-value reduction; not only
is the critical pair in the system removed but reductions must act on “values” (or “cov-
alues”). In contrast, we are interested in the pure combinatorics of reduction, and so

- in exploring strong normalization we consider unrestricted reduction of typed terms
(as well as incorporating expansions), and

- in exploring confluence we consider reduction of untyped terms, and impose only
the restriction that the critical pair (which demonstrably destroys confluence) be disam-
biguated.

2 Syntax

Following Wadler, we distinguish three syntactic categories: terms, coterms, and state-
ments. Terms yield values, while coterms consume values. A statement is a cut of a
term against a coterm. We call the expressions in the union of these three categories
D-expressions.

Let r,q range over the set ΛR of terms, e, f range over the set ΛL of coterms, and c
ranges over statements. Then the syntax of the dual calculus is given by the following:

Term: r,q ::= x | 〈r, q〉 | 〈r〉inl | 〈r〉inr | [e]not | μα .c
Coterm: e, f ::= α | [e, f ] | fst[e] | snd[e] | not〈r〉 | μ̃x .c
Statement: c ::= � r • e �

where x ranges over a set of term variables VarR, 〈r, q〉 is a pair, 〈r〉inl (〈r〉inr) is an
injection on the left (right) of the sum, [e]not is a complement of a coterm, and μα .c is
a covariable abstraction. Next, α ranges over a set of covariables VarL, [e, f ] is a case,
fst[e] (snd[e]) is a projection from the left (right) of a product, not〈r〉 is a complement
of a term, and μ̃x .c is a variable abstraction. Finally � r • e � is a cut. The term vari-
ables can be bound by μ abstraction, whereas the coterm variables can be bound by
μ̃ abstraction. The sets of free term and coterm variables, FvR and FvL, are defined as
usual, respecting Barendregt’s convention [4] that no variable can be both, bound and
free, in the expression. As in [30, 31], angle brackets always surround terms and square
brackets always surround coterms. Also, curly brackets are used for substitution and to
denote holes in contexts.

We decided to slightly alter the notation given by Wadler. First of all, we use μα .c
and μ̃x .c instead of (S).α and x.(S). Furthermore, we use � r • e � for statements, since
from our point of view it is easier to read than r • e. Finally, the lowercase letters that
we use to denote D-expressions should help to distinguish such expressions from types.

3 Reduction Rules

Wadler defines the dual calculus, giving the reductions that respect call-by-value and
call-by-name reduction strategies, respectively. We give the reduction rules for an
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(βμ̃) � r • μ̃x .c � → c{r/x}
(βμ) � μα .c • e � → c{e/α}
(β∧) � 〈r, q〉 • fst[e] � → � r • e �
(β∧) � 〈r, q〉 • snd[e] � → � q • e �
(β∨) � 〈r〉inl • [e, f ] � → � r • e �
(β∨) � 〈r〉inr • [e, f ] � → � r • f �
(β¬) � [e]not • not〈r〉 � → � r • e �

Fig. 1. Reduction rules for the dual calculus

unrestricted calculus in Figure 1. Of course the notion of reduction is defined on raw ex-
pressions, and does not make use of any typing constraints. We use �� �� to denote the
reflexive transitive closure of→ (with a similar convention for other relations denoted
by other arrows).

Remark 1. The following observation will be useful later; it is the analogue of the stan-
dard λ-calculus trick of “promoting head reductions.” Specifically, if a reduction se-
quence out of a statement ever does a top-level μ-reduction, then we can promote the
first such reduction to be the first in the sequence, in the following sense: the reduc-
tion sequence � μα.c • e � �� �� � μα.c′ • e′ � �� c′{e′/α} can be transformed to the
reduction sequence � μα.c • e � �� c{e/α} �� �� c′{e′/α}.

The calculus has a critical pair � μα .c1 • μ̃x .c2 � where both the (βμ̃) and (βμ) rules
can be applied ambiguously, producing two different results. For example,

� μα.� y • β � • μ̃x.� z • γ � �→ � y • β �, � μα.� y • β � • μ̃x.� z • γ � �→ � z • γ �
Hence, the calculus is not confluent. But if the priority is given to one of the rules,
we obtain two subcalculi DualR and DualL. Therefore, there are two possible reduction
strategies in the dual calculus that depend on the orientation of the critical pair. The
system DualL with call-by-value reduction is obtained if the priority is given to (μ)
redexes, whereas the system DualR with call-by-name reduction is obtained by giving
the priority to (μ̃) redexes.

That is, DualR is defined by refining the reduction rule (βμ) as follows

� μα.c • e �→ c{e/α} provided e is a coterm not of the form μ̃x.c′

and DualL is defined similarly by refining the reduction rule (βμ̃) as follows

� r • μ̃x .c �→ c{r/x} provided r is a term not of the form μα.c′

Both systems DualR and DualL are shown to be confluent in Section 4.

Implication, λ-Terms, and Application

Implication can be defined in terms of other connectives, indeed in two ways:

- under call-by-value A⊃ B≡ ¬(A∧¬B)
- under call-by-name A⊃ B≡ ¬A∨B.
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Under each of these conventions we can define expressions λx.r and q@e validating
the reduction � λx .r • q@e � → � q • μ̃x.� r • e � � in the sense that when ⊃ is
defined by call-by-value and the translation of � λx.r • q@e � is reduced according to
the call-by-value calculus, we get to � q • μ̃x.� r • e � � after several steps (and the same
claim holds for call-by-name).

4 Confluence of the Dual Calculus

To prove the confluence of the dual calculi DualR and DualL we adopt the technique of
parallel reductions given by Takahashi in [28] (see also [20]). This approach consists
of simultaneously reducing all the redexes existing in an expression and is simpler than
standard Tait-and-Martin-Löf proof of confluence of β-reduction for lambda calculus.
We omit the proofs for the lack of space. The detailed proofs of confluence for λμμ̃ can
be found in [20].

We denote the union of all the reduction relations for DualR by
R

�� . Its reflexive

transitive closure and closure by congruence is denoted by
R

�� �� .

First, we define the notion of parallel reduction⇒R for DualR. Since we will show
that

R
�� �� is the reflexive and transitive closure of⇒R, in order to prove the confluence

of
R

�� �� it is enough to prove the diamond property for⇒R. The diamond property for

⇒R follows from the stronger “Star property” for⇒R that we prove.
Applying the duality transformations that Wadler gives, reductions dualize as well,

and in particular a μ-step is dual to a μ̃-step. A reduction from s to t under the restriction
that μ-steps have priority over μ̃-steps dualizes to a reduction from the dual of s to
the dual of t under the restriction that μ̃-steps have priority over μ-steps. So if we prove
confluence for one of these systems, we get confluence for the other by diagram-chasing
a duality argument.

4.1 Parallel Reduction for DualR

The notion of parallel reduction is defined directly by induction on the structure of
D-expressions, and does not need the notion of residual or any other auxiliary notion.

Definition 2 (Parallel reduction for DualR). The parallel reduction, denoted by⇒R is
defined inductively in Figure 2, where e is a coterm not of the form μ̃x.c′.

Lemma 3. For every D-expression D, D⇒R D.

Lemma 4 (Substitution lemma). If x �= y and x �∈ FvR(r2) then

1. D{r1/x}{r2/y}= D{r2/y}{r1{r2/y}/x};
2. D{e/α}{r/x}= D{r/x}{e{r/x}/α};
3. D{r/x}{e/α}= D{e/α}{r{e/α}/x};
4. D{e1/α}{e2/β}= D{e2/β}{e1{e2/β}/α}.
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x⇒R x (pr1R)
c⇒R c′

μα .c⇒R μα .c′
(pr2R)

α⇒R α (pr3R)
c⇒R c′

μ̃x .c⇒R μ̃x .c′
(pr4R)

r⇒R r′,q⇒R q′

〈r, q〉⇒R〈r′, q′〉
(pr5R)

r⇒R r′

〈r〉inl⇒R〈r′〉inl
(pr6R)

r⇒R r′

〈r〉inr⇒R〈r′〉inr
(pr7R)

e⇒R e′, f⇒R f ′

[e, f ]⇒R[e′, f ′]
(pr8R)

e⇒R e′

fst[e]⇒R fst[e′]
(pr9R)

e⇒R e′

snd[e]⇒R snd[e′]
(pr10R)

r⇒R r′

not〈r〉⇒R not〈r′〉
(pr11R)

e⇒R e′

[e]not⇒R[e′]not
(pr12R)

r⇒R r′,e⇒R e′

� r • e �⇒R� r′ • e′ �
(pr13R)

c⇒R c′,e⇒R e′

� μα .c • e �⇒R c′{e′/α}
(pr14R)

r⇒R r′,c⇒R c′

� r • μ̃x .c �⇒R c′{r′/x}
(pr15R)

r⇒R r′,q⇒R q′,e⇒R e′

� 〈r, q〉 • fst[e] �⇒R� r′ • e′ �
(pr16R)

r⇒R r′,q⇒R q′,e⇒R e′

� 〈r, q〉 • snd[e] �⇒R� q′ • e′ �
(pr17R)

r⇒R r′,e⇒R e′, f⇒R f ′

� 〈r〉inl • [e, f ] �⇒R� r′ • e′ �
(pr18R)

r⇒R r′,e⇒R e′, f⇒R f ′

� 〈r〉inr • [e, f ] �⇒R� r′ • f ′ �
(pr19R)

r⇒R r′,e⇒R e′

� [e]not • not〈r〉 �⇒R� r′ • e′ �
(pr20R)

Fig. 2. Parallel reduction

Lemma 5.

1. If D
R

�� D′ then D⇒R D′;

2. If D⇒R D′ then D
R

�� �� D′;

3. If D⇒R D′ and H⇒R H ′, then D{H/x}⇒R D′{H ′/x} and D{H/α}⇒R D′{H ′/α}.

From the points 1. and 2. in Lemma 5 we conclude that
R

�� �� is the reflexive and

transitive closure of⇒R.

4.2 Confluence of DualR

Next, we define the D-expression D∗ which is obtained from D by simultaneously re-
ducing all the existing redexes of the D-expression D.

Definition 6. Let D be an arbitrary D-expression of DualR. The D-expression D∗ is de-
fined inductively as follows:

(∗1R) x∗ ≡ x (∗2R) (μα .c)∗ ≡ μα .c∗ (∗3R) α∗ ≡ α (∗4R) (μ̃x .c)∗ ≡ μ̃x .c∗

(∗5R) 〈r, q〉∗ ≡ 〈r∗, q∗〉 (∗6R) 〈r〉inl∗ ≡ 〈r∗〉inl (∗7R) 〈r〉inr∗ ≡ 〈r∗〉inr
(∗8R) [e, f ]∗ ≡ 〈e∗, f ∗〉 (∗9R) fst[e]∗ ≡ fst[e∗] (∗10R) snd[e]∗ ≡ snd[e∗]
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(∗11R) not〈r〉∗ ≡ not〈r∗〉 (∗12R) [e]not∗ ≡ [e∗]not
(∗13R) � r • e �∗ ≡ � r∗ • e∗ � if � r • e � �= � [e′]not • not〈r′〉 � and

� r • e � �= � μα .c • e � and � r • e � �= � r • μ̃x .c � and
� r • e � �= � 〈r′, q〉 • fst[e′] � and � r • e � �= � 〈r′, q〉 • snd[e′] � and
� r • e � �= � 〈r′〉inl • [e′, f ] � and � r • e � �= � 〈r′〉inr • [e′, f ] �

(∗14R) � μα .c • e �∗ ≡ c∗{e∗/α} (∗15R) � r • μ̃x .c �∗ ≡ c∗{r∗/x}
(∗16R) � 〈r, q〉 • fst[e] �∗ ≡ � r∗ • e∗ � (∗17R) � 〈r, q〉 • snd[e] �∗ ≡ � q∗ • e∗ �
(∗18R) � 〈r〉inl • [e, f ] �∗ ≡ � r∗ • e∗ � (∗19R) � 〈r〉inr • [e, f ] �∗ ≡ � r∗ • f ∗ �

(∗20R) � [e]not • not〈r〉 �∗ ≡ � r∗ • e∗ �
Theorem 7 (Star property for⇒R). If D⇒R D′ then D′⇒R D∗.

Now it is easy to deduce the diamond property for⇒R.

Theorem 8 (Diamond property for⇒R).
If D1 R⇐D⇒R D2 then D1⇒R D′ R⇐D2 for some D′.

Finally, from Lemma 5 and Theorem 8, it follows that DualR is confluent.

Theorem 9 (Confluence of DualR).
If D1 ����

R
D

R
�� �� D2 then D1 R

�� �� D′ ����
R

D2 for some D′.

5 Type Assignment System

A complementary perspective to that of considering the dual calculus as term-assignment
to logic proofs is that of viewing sequent proofs as typing derivations for raw expres-
sions. The set of types corresponds to the logical connectives; for the dual calculus the
set of types is given by closing a set of base types X under conjunction, disjunction, and
negation.

Type: A,B ::= X | A∧B | A∨B | ¬A

Type bases have two components, the antecedent, a set of bindings of the form Γ = x1 :
A1, . . . ,xn : An, and the succedent of the form Δ = α1 : B1, . . . ,αk : Bk, where xi,α j are
distinct for all i = 1, . . . ,n and j = 1, . . . ,k.

The judgements of the type system are given by the following:

Γ � Δ,
�

�

�

�
r : A

�

�

�

�
e : A , Γ � Δ c : (Γ � Δ)

where Γ is the antecedent and Δ is the succedent. The first judgement is the typing for a
term, the second is the typing for a coterm and the third one is the typing for a statement.
The box denotes a distinguished output or input, i.e. a place where the computation will
continue or where it happened before.

The type assignment system for the dual calculus, introduced by Wadler [30, 31], is
given in Figure 3.
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(axR)
Γ,x : A � Δ,

�

�

�

�
x : A

(axL)�

�

�

�
α : A , Γ � α : A,Δ

�

�

�

�
e : A , Γ � Δ

�

�

�

�
fst[e] : A∧B , Γ � Δ

�

�

�

�
e : B , Γ � Δ

(∧L)�

�

�

�
snd[e] : A∧B , Γ � Δ

Γ � Δ,
�

�

�

�
r : A Γ � Δ,

�

�

�

�
q : B

(∧R)
Γ � Δ,

�

�

�

�
〈r, q〉 : A∧B

�

�

�

�
e : A , Γ � Δ

�

�

�

�
f : B , Γ � Δ

(∨L)�

�

�

�
[e, f ] : A∨B , Γ � Δ

Γ � Δ,
�

�

�

�
r : A

Γ � Δ,
�

�

�

�
〈r〉inl : A∨B

Γ � Δ,
�

�

�

�
r : B

(∨R)
Γ � Δ,

�

�

�

�
〈r〉inr : A∨B

�

�

�

�
e : A , Γ � Δ

(¬R)
Γ � Δ,

�

�

�

�
[e]not : ¬A

Γ � Δ,
�

�

�

�
r : A

(¬L)�

�

�

�
not〈r〉 : ¬A , Γ � Δ

c : (Γ � α : A,Δ)
(μ)

Γ � Δ,
�

�

�

�
μα.c : A

c : (Γ,x : A � Δ)
(μ̃)�

�

�

�
μ̃x.c : A , Γ � Δ

Γ � Δ,
�

�

�

�
r : A

�

�

�

�
e : A , Γ � Δ

(cut)
� r • e � : (Γ � Δ)

Fig. 3. Type system for the dual calculus

6 Strong Normalization of Typeable D-Expressions

Definition 10. A pair is given by two sets T and C with T⊆ ΛR and C⊆ ΛL. If each of
the components of a pair is non-empty we refer to it as a non-trivial pair.

The pair (T,C) is a stable pair if each of T and C is non-empty and for every r ∈ T
and every e ∈C, the statement � r • e � is SN.

For example, the pair (VarR,VarL) is stable. Note that the terms and coterms in any
stable pair are themselves SN.

We can use pairs to interpret types; the following technical condition will be crucial.

Definition 11. A pair (T,C) is saturated if

– T contains all term variables and C contains all coterm variables,
– whenever μα.c satisfies ∀e ∈ C,c{e/α} is SN then μα.c ∈ T, and
– whenever μ̃x.c satisfies ∀r ∈ T,c{r/x} is SN then μ̃x.c ∈ C.

A pair (T,C) is simple if no term in T is of the form μα.c and no coterm in C is of the
form μ̃x.c.

We can always expand a pair to be saturated. The next result shows that if the orig-
inal pair is stable and simple, then we may always arrange that the saturated extension
is stable. The technique is similar to the “symmetric candidates” technique as used by
Barbanera and Berardi [3] for the Symmetric Lambda Calculus and further adapted
by Polonovski [25] in his proof of strong normalization for λμμ̃ calculus with explicit
substitutions.
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Note that the saturation condition on variables is no obstacle to stability: it is easy
to see that if (T,C) is any stable pair, then the pair obtained by adding all term variables
to T and all coterm variables to C will still be stable.

Lemma 12. Let (T,C) be a simple stable pair. Then there is an extension of (T,C)
which is saturated and stable.

Proof. As observed above, we may assume without loss of generality that T already
contains all term variables and C already contains all coterm variables.

Define the maps Φ̃C : ΛR→ ΛL and ΦT : ΛL→ ΛR by

Φ̃C(T) = C∪{μ̃x.c | ∀r ∈ T,c{r/x} is SN}
ΦT(C) = T∪{μα.c | ∀e ∈ C,c{e/α} is SN}

Each of ΦT and Φ̃C is antimonotone. So the map ΦT ◦ Φ̃C : ΛR → ΛR is monotone
(indeed it is continuous).

Let T∗ be any fixed point of (ΦT ◦ Φ̃C); then take C∗ to be Φ̃C(T∗). Since T∗ =
ΦT(Φ̃C(T∗)) we have

T∗ = ΦT(C∗) = T∪{μα.c | ∀e ∈ C∗,c{e/α} is SN} and (1)

C∗ = Φ̃C(T∗) = C∪{μ̃x.c | ∀r ∈ T∗,c{r/x} is SN} (2)

It follows easily that T ⊆ T∗ and C ⊆ C∗ and that (T∗,C∗) is saturated. It remains to
show that (T∗,C∗) is stable.

Since T is a set of SN terms and C �= /0, ΦT(C) is a set of SN terms; similarly
Φ̃C(T) is a set of SN coterms. The key fact is that, since (T,C) was simple, a term μα.c
is in T∗ iff ∀e ∈ C∗,c{e/α}is SN: this is because a μ-term is in T∗ precisely if it is in
ΦT(C∗)\T. Similarly a coterm μ̃x.c is in C∗ if and only if ∀r ∈ T∗,c{r/x} is SN.

So consider any statement � r • e � with r ∈ T∗ and e ∈ C∗; we must show that
this statement is SN. If in fact r ∈ T and e ∈ C then � r • e � is SN since (T,C) was
stable.

So suppose r ∈ (T∗ \T) and/or e ∈ (C∗ \C), and consider any reduction sequence
out of � r • e �. If no top-level (μ- or μ̃-) reduction is ever done then the reduction must
be finite since r and e are individually SN. If a top-level reduction is ever done then
(cf Remark 1) we may promote this to be the first step, so that the reduction sequence
begins � μα.c • e � �� c{e/α} or � r • μ̃x.c � �� c{r/x}. But we observed above
that in these cases the reduced D-expression is SN by definition of (T∗,C∗) and so our
reduction is finite in length. $�

6.1 Pairs and Types

As a preliminary step in building pairs to interpret types we define the following con-
structions on pairs. Script letters will denote pairs, and if P is a pair, PR and PL denote
its component sets of terms and coterms.
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Definition 13. Let P and Q be pairs.

– The pair (P �Q ) is given by:
• (P �Q )

R
= {〈r1, r2〉 | r1 ∈ PR, r2 ∈ QR}

• (P �Q )
L
= {fst[e] | e ∈ PL}∪{snd[e] | e ∈ QL}.

– The pair (P �Q ) is given by:
• (P �Q )

R
= {〈r〉inl | r ∈ PR}∪{〈r〉inr | r ∈ QR}.

• (P �Q )
L
= {[e1, e2] | e1 ∈ PL. e2 ∈ QL}

– The pair P ◦ is given by:
• (P ◦)

R
= {[e]not | e ∈ PL}

• (P ◦)
L
= {not〈r〉 | r ∈ PR}

Note that each of (P �Q ), (P �Q ), and P ◦ is simple.

Lemma 14. Let P and Q be stable pairs. Then (P �Q ), (P �Q ), and P ◦ are each
stable.

Proof. For (P �Q ): Let r ∈ (P �Q )
R

and e∈ (P �Q )
L
. We need to show that � r • e �

is SN. Since P and Q are stable, it is easy to see that each of r and e is SN. So to
complete the argument it suffices to show, again by the fact that top-level reductions
can be promoted to be the first step in a reduction sequence, that the result of a top-level
reduction is SN. Consider, without loss of generality, � 〈r1, r2〉 • fst[e] � → � r1 • e �.
Then r1 ∈ PR and e ∈ PL, and since P is stable � r1 • e � is SN, as desired.

The arguments for (P �Q ) and P ◦ are similar. $�

The following is our notion of reducibility candidates for the dual calculus.

Definition 15. The type-indexed family of pairs S = {S T | T a type } is defined as
follows.

– When T is a base type, S T is any stable saturated extension of (VarR,VarL).
– S A∧B is any stable saturated extension of (S A �S B).
– S A∨B is any stable saturated extension of (S A �S B).
– S¬A is any stable saturated extension of (S A)◦.

The construction of each pair S T succeeds by Lemma 12 and Lemma 14. Note that
by definition of saturation each S T contains all term variables and all coterm variables.

6.2 Strong Normalization

Strong normalization of typeable D-expressions will follow if we establish the fact that
typeable terms and coterms lie in the candidates S .

Theorem 16. If term r is typeable with type A then r is in S A
R ; if coterm e is typeable

with type A then e is in S A
L .

Proof. To prove the theorem it is convenient, as usual, to prove a stronger statement.
Say that a substitution θ satisfies Γ if

∀(x : A) ∈ Γ, θx ∈ S A
R ,

and that θ satisfies Δ if
∀(α : A) ∈ Δ, θα ∈ S A

L .



180 D. Dougherty et al.

Then the theorem follows from the assertion

suppose that θ satisfies Γ and Δ.
– If Γ �

�

�

�

�
r : A ,Δ, then θr ∈ S A

R .

– If Γ,
�

�

�

�
e : A � Δ, then θe ∈ S A

L .

since the identity substitution satisfies every Γ and Δ.
Choose a substitution θ which satisfies Γ and Δ, and a typeable term r or a coterm e;

we wish to show that θr ∈ S T
R or θe ∈ S T

L , as appropriate. We prove the statement above
by induction on typing derivations, considering the possible forms of the typing in turn.
For lack of space we only show a representative sample of cases here.

Case: When the derivation consists of an axiom the result is immediate since θ satisfies
Γ and Δ.

Case: Suppose the derivation ends with rule (∧L). Without loss of generality we ex-
amine fst[ ]:

�

�

�

�
e : A , Γ � Δ

�

�

�

�
fst[e] : A∧B , Γ � Δ

We wish to show that θfst[e]≡ fst[θe] ∈ S A∧B
L . By induction hypothesis θe ∈ S A

L and so
fst[θe] ∈ (S A �S B)L ⊆ S A∧B

L .

Case: Suppose the derivation ends with rule (∧R).

Γ � Δ,
�

�

�

�
r : A Γ � Δ,

�

�

�

�
q : B

(∧R)
Γ � Δ,

�

�

�

�
〈r, q〉 : A∧B

We wish to show that θ〈r, q〉 ≡ 〈θr, θq〉 ∈ S A∧B
R . By induction hypothesis θr ∈ S A

R and
θq ∈ S B

R , and so 〈θr, θq〉 ∈ (S A �S B)R ⊆ S A∧B
R .

Case: Suppose the derivation ends with rule (¬L).

Γ � Δ,
�

�

�

�
r : A

(¬L)�

�

�

�
not〈r〉 : ¬A , Γ � Δ

We wish to show that θnot〈r〉 ≡ not〈θr〉 ∈ S¬A
L . By induction hypothesis θr ∈ S A

R , and
so not〈θr〉 ∈ (S A◦)L ⊆ S¬A

L .

Case: Suppose the derivation ends with rule (μ).

Γ �
�

�

�

�
r : T ,α : A,Δ Γ,

�

�

�

�
e : T � α : A,Δ

(cut)
� r • e � : (Γ � α : A,Δ)

(μ)
Γ �

�

�

�

�
μα.� r • e � : A ,Δ

Note that any application of the typing rule (μ) must indeed immediately follow a cut.
We wish to show that μα.� θr • θe � ∈ S A

R .
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Since S A is saturated, to show this it suffices to show that for each e1 ∈ S A
L

� θr • θe �{e1/α} is SN.

Letting θ′ denote the substitution obtained by augmenting θ with the binding α �→
e1, what we want to show is that � θ′r • θ′e � is SN.

The substitution θ′ satisfies the basis α : A,Δ by hypothesis and the fact that e1 ∈ S A
L .

So θ′r ∈ S T
R and θ′e ∈ S T

L by induction hypothesis, so � θ′r • θ′e � is SN.

Case: When the derivation ends with rule (μ̃) the argument is similar to the (μ) case.
The remaining cases are each similar to one of those above. $�

Theorem 17. Every typeable term, coterm, and statement is SN.

Proof. If t is a term [respectively, e is a coterm] typeable with type A then by Theo-
rem 16 we have t ∈ S A

R [respectively, S A
L ], and each of these consists of SN expressions.

If t = c is a typeable statement then it suffices to observe that, taking α to be any co-
variable not occurring in c, the term μα.c is typeable. $�

6.3 Extensionality and Expansion Rules

The equations of the dual calculus of [31] include a group of equations called “η-equa-
tions” which express extensionality properties. A typical equation for a term of type
A∧B is

(η∧) r = 〈μα.� r • fst[α] �, μβ.� r • snd[β] �〉
and there are similar equations for the other types. In traditional λ-calculus it has been
found convenient to orient such equations from left to right, i.e. as expansions, as a tool
for analyzing the equality relation.

As with all expansions there are obvious situations which allow immediate infinite
application of the rules (see for example [13] or [6] for a discussion in the setting of
the lambda-calculus). For example, we must forbid application of the above expansion
rule to a term already of the form 〈r1, r2〉 to prevent an infinite reduction. Slightly more
subtly, if the term r is already part of a statement whose other side is one of the forms
fst[e] or snd[e] then we can immediately fall into a cycle of (η∧);(β∧) reductions.

But if we forbid only those clearly ill-advised situations, the result is a reduction
relation with all the nice properties one might want. Lack of space forbids a detailed
treatment here but the key points are as follows.

– The constraints on the expansion relation do not change the equalities we can prove,
even under restrictions such as call-by-name or call-by-value, in the sense that if
a term t can be expanded to term t ′ by a “forbidden” expansion, then t ′ can be
reduced to t by one of the “computational” reductions (i.e., those from Figure 1).

– The resulting reduction relation is SN on typed terms.

It is straightforward to verify the first assertion. The second claim is proved by pre-
cisely the same techniques presented in the current section: the notions of saturated
stable pair is robust enough so that there are no conceptual difficulties in accommodat-
ing expansions. Details will appear in the full version of the paper.
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7 Conclusion

We have explored some aspects of the reduction relation on raw expressions of the dual
calculus, and proven strong normalization and confluence results for several variations
on the basic system.

An interesting open problem is to find a characterization of the SN terms, presum-
ably in the form of an extension of the system of simple types studied here. For tradi-
tional λ-calculus, system of intersection types have been an invaluable tool in studying
reduction properties, characterizing strong-, weak- and head-normalization. As shown
in [12], subtle technical problems arise with the interaction between intersection types
and symmetric calculi, so this promises to be a challenging line of inquiry.
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Abstract. The main goal of this paper is to apply rewriting termina-
tion technology —enjoying a quite mature set of termination results and
tools— to the problem of proving automatically the termination of con-
current systems under fairness assumptions. We adopt the thesis that a
concurrent system can be naturally modeled as a rewrite system, and de-
velop a reductionistic theoretical approach to systematically transform,
under reasonable assumptions, fair-termination problems into ordinary
termination problems of associated relations, to which standard rewrit-
ing termination techniques and tools can be applied. Our theoretical
results are combined into a practical proof methodology for proving fair-
termination that can be automated and can be supported by current
termination tools. We illustrate this methodology with some concrete
examples and briefly comment on future extensions.

Keywords: Concurrent programming, fairness, term rewriting, program
analysis, termination.

1 Introduction

This paper is about technology transfer. Our goal is to transfer a mature set
of termination results and tools developed in recent years for term rewriting
systems to prove termination of concurrent systems under fairness assumptions.
This requires both adopting a certain theoretical stance about the modeling
of concurrent systems, and developing new results and techniques to make the
desired technology transfer possible. The theoretical stance in question is the
thesis that a concurrent system can be naturally modeled as a rewrite system.
This has by now been amply demonstrated to hold by theoretical approaches
such as reduction semantics [BB92] and rewriting logic [Mes92], and by quite
exhaustive studies showing that almost any imaginable concurrent system can
be naturally modeled as a rewrite theory (see for example the survey [MM02]).

Once this theoretical stance is adopted, since fairness is a pervasive property
of concurrent systems, needed to establish many properties of interest, the first
thing required is to correctly express the fairness notion within the rewriting
framework. In this regard, the early work of Porat and Francez [PF85, PF86],
and the work of Tison for the ground fair termination case [Tis89], complemented
by the more recent “localized fairness” notion in [Mes05] offer a good basis. As
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we explain in Section 7, other notions of fairness have also been proposed for
rewrite systems, with other, quite different, motivations that make such notions
inadequate for our purposes, namely, modeling concurrent systems. For concur-
rent systems, rewrite rules describe system transitions, and the notion of fair
computation should require that if the rule is infinitely often enabled, then it is
infinitely often taken.

Example 1. Consider the following TRS modeling a scheduler which is respon-
sible for the distribution of processing in a concurrent operating system, where
a number of processes p run independently.

[end] exec(P) -> stop
[execute] schedule(cons(p,PS)) -> schedule(shift(exec(p),PS))
[remove] schedule(cons(stop,PS)) -> schedule(PS)
[round] schedule(cons(exec(P),PS)) -> schedule(shift(exec(P),PS))
[shift1] shift(P,nil) -> cons(P,nil)
[shift2] shift(P,cons(Q,PS)) -> cons(Q,shift(P,PS))

Processes are in one of three different states: ready (p), running (exec(p)), and
finished (stop). A “round robin” fair scheduling strategy is to give each process
a fixed amount of processing time and then shift the activity to the next one in
a list of processes. If a process is ready, then it is executed (rule execute). If it
is running, then the next one is taken (round). If the process stops, then it is
removed from the system (remove). A running process exec(p) finishes when the
rule end is applied. Although the system is clearly nonterminating, computations
following the previous fair strategy will terminate. We will provide a formal proof
of this claim later.

The situation in Example 1 cannot be modeled with other notions of fairness
like the introduced in [KZ05] where fair rewriting computations can only be
nonterminating, which makes any discussion of fair termination impossible.

The question that this paper then addresses, and presents partial answers to,
is: how can rewriting termination techniques and tools be used to automatically
prove the fair termination of a concurrent system? To the best of our knowledge,
except for the quite restricted case of ground term rewriting systems for which
Tison’s tree automata techniques provide a decision procedure [Tis89], this pre-
cise question has not been previously posed or answered in the literature. Yet, we
believe that, given the maturity of methods and tools for termination of rewrite
systems, this is an important problem to attack, both theoretically and be-
cause of its many potential applications. The related question of finding general
methods of proving fair termination of term rewriting systems has indeed been
studied before, particularly by Porat and Francez [PF85, PF86]. However, their
efforts followed the Floyd’s classical approach, which uses predicates on states (in
our setting, ground terms) to achieve termination (see [Fra86–Chapter 2] for a
general description of this approach, and also [LPS81]). In particular, their char-
acterization of fair termination of a rewrite system in terms of the compatibility
of a well-founded ordering with all possible full derivations [PF86–Definition 9]
does not lend itself to mechanization, since it suffers from the same problems
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as the Manna and Ness’s classical termination criterion [MN70], namely, from
the need to check all (infinitely many) full derivations, which makes automatic
proofs of fair-termination quite hard.

Our approach is quite different. It is reductionistic, in the sense that it seeks
reasonable conditions under which fair-termination can be reduced to ordinary
termination of associated relations, for which standard rewriting termination
techniques and tools can be applied. In Section 3, we show that the problem of
proving (rule) fair-termination of a TRS R can be treated (without loss of gener-
ality) as the problem of proving fair-termination of R w.r.t. a subTRS RF ⊆ R
of R. If we take S = R − RF , we show that fair-termination of R w.r.t. RF

can be proved by proving termination of the reduction relations →∗S ◦ →RF

and →!
RF
◦ →S (Section 4). We prove that, if RF is a single-rule TRS, then

this is not only sufficient but also necessary for fair-termination of R w.r.t.
RF . Then, in Section 5 we show how to translate such requirements into more
standard termination problems, namely: proving or disproving termination, in-
nermost termination, and relative termination of TRSs. Fortunately, methods
for addressing such termination problems are currently available in existing ter-
mination tools like AProVE1 and TPA2, among others. Therefore, we get quite
a practical approach for proving fair-termination of TRSs which clearly differs
from more ad-hoc or restrictive approaches like the ones in [PF85, PF86, Tis89].

The results that we propose in this paper, although open to many extensions
and generalizations, do indeed provide a quite practical proof methodology for
proving fair-termination that can be automated and can be supported by current
termination tools. In Section 5.4 we explain how our results can be synergistically
combined into such a unified methodology, which offers different proof strategies
to tackle a fair-termination problem. We show this methodology in action in
proofs of concrete examples in Section 6. We consider the results obtained so far
as encouraging, since they can allow proving fair-termination automatically. As
we further discuss in Section 7, many extensions remain open as interesting re-
search questions. However, our general methodology of reducing fair-termination
to standard termination to try to make such proofs automatic is already a viable
new methodology that we have put into practice using existing tools, and that
we plan to incorporate into the Maude Termination Tool (MTT) [DLMMU04]
and to further perfect as new results become available.

2 Preliminaries

Let R ⊆ A×A be a binary relation on a set A. We denote by R+ the transitive
closure of R and by R∗ its reflexive and transitive closure. An R-sequence is a
finite or countably infinite sequence (i.e., either a1, a2, . . . , an for some n ∈ N,
or a1, a2, . . .) such that for ai, ai+1 two consecutive elements in the sequence, we
have ai R ai+1; we say that such a sequence begins with a1 (if it is finite, we
also say that it ends with an). An element a ∈ A is said to be an R-normal form
1 Available at http://www-i2.informatik.rwth-aachen.de/AProVE
2 Available at http://www.win.tue.nl/tpa
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if there exists no b such that a R b. The set of all R-normal forms is denoted by
NFR. We say that b is an R-normal form of a (written aR!b) if b ∈ NFR and a R∗b.
We say that R is terminating iff there is no infinite sequence a1 R a2 R a3 · · ·.
Given binary relations R and S (on the same set A), we say that S preserves
the R-normal forms if for each a ∈ NFR and b ∈ A, a S b implies that b ∈ NFR.

Throughout this paper, X denotes a countable set of variables, and F denotes
a signature, i.e., a set of function symbols {f, g, . . .}, each having a fixed arity
given by a mapping ar : F → N. The set of terms built from F and X is
T (F ,X ). Terms are viewed as labelled trees in the usual way. Positions p, q, . . .
are represented by chains of positive natural numbers used to address subterms
of t. The set of positions of a term t is Pos(t). The subterm at position p of t is
t|p and t[s]p is the term t with the subterm at position p replaced by s.

A rewrite rule is an ordered pair (l, r), written l → r, with l, r ∈ T (F ,X ),
l �∈ X and Var(r) ⊆ Var(l). The left-hand side (lhs) of the rule is l and r is the
right-hand side (rhs). A TRS is a pair R = (F , R) with R a (possibly infinite)
set of rewrite rules. A term t ∈ T (F ,X ) rewrites to s (at position p), written
t

p→R s (or just t→ s), if t|p = σ(l) and s = t[σ(r)]p, for some rule ρ : l → r ∈ R,
p ∈ Pos(t) and substitution σ. A TRS is terminating if → is terminating. The
set of normal forms of R (R-normal forms) is denoted by NFR.

Given TRSs R = (F , R) and S = (F , S), we denote by R ∪ S the TRS
(F , R ∪ S); also, we write R ⊆ S to indicate that R ⊆ S.

The problem of proving termination of a TRS is equivalent to finding a well-
founded, stable, and monotonic (strict) ordering > on terms (i.e., a reduction
ordering) which is compatible with the rules of the TRS, i.e., such that l >
r for all rules l → r of the TRS. Here, monotonic means that, for all k-ary
symbol f , i ∈ {1, . . . , k}, and t, s, t1, . . . , tk ∈ T (F ,X ), whenever t > s, we have
f(t1, . . . , ti−1, t, . . . , tk) > f(s1, . . . , ti−1, s, . . . , tk). Stable means that, whenever
t > s, we have σ(t) > σ(s) for all terms t, s and substitutions σ.

3 Fairness and Fair Termination

The following definition is analogous to [PF85], but our formulation follows
[Mes05]. Roughly speaking, an R-sequence is fair (w.r.t. a subset of rules of
R) if each rule which is infinitely often enabled during the sequence is infinitely
often taken.

Definition 1 (Rule fairness). Given a TRS R, we say that an R-sequence
A : t1 →R t2 →R · · · is rule fair w.r.t. the rules in RF ⊆ R (abbreviated
RF -fair) if for all rules α : l → r ∈ RF , we have: If the set

IA
α = {i ∈ N | ∃Ci, σi, pi, s.t. ti = Ci[σi(l)]pi}

is infinite, then there is an infinite set JA
α ⊆ IA

α such that, for all j ∈ JA
α ,

tj →l→r tj+1.

As a simple consequence of Definition 1, finite R-sequences are always fair w.r.t.
any RF ⊆ R. Also, all R-sequences are fair w.r.t. RF = ∅.
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Definition 2 (Rule fair-termination). A TRS R is fairly-terminating w.r.t.
RF ⊆ R if there is no infinite RF -fair R-sequence. A TRS R is rule fairly-
terminating if it is fairly-terminating w.r.t. R itself.

Rule fair-termination coincides with Porat and Francez’s [PF85] and the ‘local-
ized’ definition w.r.t. a subset of rules RF ⊆ R is equivalent to [PF86–Definition
17]. Note that ordinary termination of TRSs is subsumed by Definition 2: take
RF = ∅; then all R-sequences are trivially fair w.r.t. RF , and R is fairly-
terminating w.r.t. RF if and only if R is terminating. And, clearly, termination
of R impies rule fair-termination of R. However, the opposite is not true: the
system {a -> b, a -> a} is rule fairly-terminating but not terminating.

In contrast to ordinary termination, fair-termination is not preserved if some
of the rules of the TRS are dismissed: there can be TRSs R which are RF -fairly-
terminating for some RF ⊆ R, whereas they are not R′F -fairly-terminating for
a subset R′F ⊂ RF of RF .

Example 2. Consider the following TRS R [PF85, Tis89]:

a -> f(a)
a -> b

As noticed by Tison, R is rule fairly-terminating (i.e., fairly-terminating w.r.t.
R itself). Let RF be the subTRS of R consisting of the first rule (then take
S = R − RF ). The following infinite R-sequence (as usual, we underline the
contracted redex):

a →RF f(a) →RF f(f(a)) →RF · · ·
is RF -fair. This shows that R is not RF -fairly-terminating.

The key observation is that, given RF ,R′F ⊆ R, the set of RF ∪ R′F -fair se-
quences is the intersection of the sets of RF -fair and R′F -fair sequences. There-
fore, we have the following obvious sufficient condition in the other direction.

Proposition 1. A TRS R is fairly-terminating w.r.t. RF ⊆ R if there is a
subset R′F ⊂ RF , such that R is fairly-terminating w.r.t. R′F .

The subsetR′F in Proposition 1 can be a single rule. For instance, Tison observes
that R in Example 2 is rule fairly-terminating thanks to the rule a -> b. As we
shall see below, this is a specially interesting case. The system in Example 1,
however, is RF -fairly-terminating provided that RF contains all three rules end,
execute, and remove. It is easy to see that the absence of one of them destroys
fair-termination. Proposition 1 will be used later.

4 Reducing Fair Termination to Termination

Termination analysis has recently experimented a remarkable development in the
term rewriting community, leading to the birth of a new generation of promis-
ing methods, tools, and technology transfer. An important goal of this paper is
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giving an appropriate theoretical basis for fair-termination on which machine-
implementable fair-termination techniques can be based. In this section, we in-
vestigate how to reduce a proof of fair-termination to the problem of proving
termination of particular (combinations of) reduction relations.

Intuitively, a sufficient condition forRF -fair-termination of a TRSR = RF∪S
is that: (1) there is no infinite R-sequence performing an infinite number of RF -
steps, and (2) every infinite S-sequence contains anRF -redex. The first condition
corresponds to the termination of the relation→∗S ◦ →RF (which implies termi-
nation of RF ). The second condition can be captured as the termination of the
relation →!

RF
◦ →S . Note, however, that they are not equivalent. For instance,

for S = {a -> a, b -> a} and RF = {a -> b} we have that →!
RF
◦ →S is not

terminating, but (2) holds. Theorem 1 below formalizes this intuition. In order
to prove it, we first need the following.

Proposition 2. Let R = RF ∪ S be a TRS such that RF is finite and →!
RF

◦ →S is terminating. If R is not fairly-terminating w.r.t. RF , then for each
infinite RF -fair R-sequence A there is a rule α : l → r ∈ RF for which IA

α is
infinite.

Proof. We proceed by contradiction. If R is not fairly-terminating w.r.t. RF ,
then there is an infinite RF -fair R-sequence A. Assume that there exists one
such sequence A such that for all rules α : l→ r in RF , IA

α is finite. Then, since
RF is finite, A can be written as follows: A : t1 →∗R tn →S tn+1 →S · · · where
the terms ti contain no RF -redex for i ≥ n. Then, those ti areRF -normal forms.
Since t →!

RF
t for any →RF -normal form t, we can write the subsequence of A

starting from tn as follows: tn →!
RF
◦ →S tn+1 →!

RF
◦ →S · · · This contradicts

the termination of →!
RF
◦ →S . �

Theorem 1. A TRS R = RF ∪ S with RF finite is fairly-terminating w.r.t.
RF if →∗S ◦ →RF and →!

RF
◦ →S are terminating.

Proof. Assume that→∗S ◦ →RF and→!
RF
◦ →S are terminating, and that R

is not fairly-terminating w.r.t. RF . Then there is an infinite RF -fair R-sequence
A. By Proposition 2, there is a rule α : l → r ∈ RF such that IA

α is infinite.
Since, by RF -fairness, JA

α is infinite, A can be written as follows:

A : t1 →∗S ◦ →RF tj1+1 →∗S ◦ →RF tj2+1 →∗S ◦ →RF · · ·

which contradicts termination of →∗S ◦ →RF . �

The following example, however, shows that Theorem 1 does not provide a com-
plete method for proving rule fair termination.

Example 3. Consider the following TRS R [PF85]:
a -> f(a) g(a,b) -> c a -> g(a,b)

which is rule fairly-terminating. It is not difficult to see that R is fairly-termi-
nating w.r.t. RF ⊂ R given by the two rightmost rules above. Since RF is not
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terminating, →∗S ◦ →RF is nonterminating. Therefore, Theorem 1 cannot be
used to prove fair termination ofRw.r.t.RF , even thoughR is fairly-terminating
w.r.t. RF and →!

RF
◦ →S is terminating.

Hence, termination of →∗S ◦ →RF (alone) is not a necessary condition for
fair-termination of R w.r.t. RF . Similarly, one could see that termination of
→!
RF
◦ →S is not a necessary condition either. However, when RF is a single

rule TRS, we have the following characterization.

Theorem 2. Let R = RF ∪ S and RF be a single rule TRS. Then, R is RF -
fairly-terminating if and only if →∗S ◦ →RF and →!

RF
◦ →S are terminating.

Proof. The (⇐) part follows by Theorem 1. To prove the (⇒) part, we
reason by contradiction and assume that either →∗S ◦ →RF or →!

RF
◦ →S

are nonterminating. If →∗S ◦ →RF is nonterminating, then there is an infinite
sequence: A : t1 →∗S t′1 →RF t2 →∗S t′2 →RF · · · which (by RF containing only
one rule) is RF -fair, thus contradicting RF -fair termination of R. If→!

RF
◦ →S

is nonterminating, then there is an infinite sequence t1 →!
RF

t′1 →S t2 →!
RF

t′2 →S · · · which, since RF contains only one rule, is RF -fair: note that either
ti contains no RF -redex (and then t′i = ti) or ti is normalized by RF (hence all
RF -redexes in ti are contracted). �

5 Proving Fair-Termination

According to Theorem 1, if we prove termination of both →∗S ◦ →RF and →!
RF

◦ →S , then fair-termination of R = S ∪ RF follows.
Note that given two reduction relations →1 and →2, the (non)termination

of →∗2 ◦ →1 and →!
1 ◦ →2 do not have any (easy) connection: let →1 and

→2 be relations on A = {a, b, c} such that a →1 b and c →2 c are the only
components of the respective relations. Then,→∗2 ◦ →1 =→1 is terminating but
→!

1 ◦ →2 is not terminating: c →!
1 c →2 c →!

1 c →2 · · ·. On the other hand,
→!

2 ◦ →1 is terminating (since →!
2= {(a, a), (b, b)}, we have →!

2 ◦ →1 =→1),
but →∗1 ◦ →2⊇→2 is not terminating. Thus, in the following, we consider how
to address these two (more standard) termination problems in more detail.

5.1 Termination of →∗
S ◦ →RF

Given binary relations →1 and →2 on an abstract set A, →1 is called relatively
noetherian (or better relatively terminating) with respect to →2 if every infinite
→1 ∪ →2-derivation contains only finitely many →1-steps (see [Ges90–Section
2.1], although the notion goes back to Klop: see also [Klo92–Exercise 2.0.8(11)]).

In his PhD thesis [Ges90], A. Geser has investigated relative termination. In
our setting, this notion is interesting due to the following result.

Proposition 3. [Ges90] Let →1 and →2 be binary relations. Then, →∗2 ◦ →1 is
terminating if and only if →1 is relatively terminating with respect to →2.
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Thus, according to this result, termination of→∗S ◦ →RF can be investigated as
the relative termination of RF w.r.t. S. Fortunately, there are even automatic
tools which can be used to prove relative termination of TRSs.

Example 4. Consider the TRS R in Example 2. Let RF be the subTRS con-
sisting of the rule a -> b and S = R − RF . Now, TPA can be used to prove
termination of→∗S ◦ →RF . Consider again the system R in Example 1 with RF

consisting of the rules end, execute, and remove and S = R − RF . We have
used TPA to obtain an automatic proof of termination of →∗S ◦ →RF .

5.2 Termination of →!
RF

◦ →S

Termination of→!
2 ◦ →1 for binary relations→1 and→2 can also be investigated

as relative termination of →1 w.r.t. →2.

Proposition 4. Let A be a set and →1,→2⊆ A×A be binary relations. If →1
is relatively terminating w.r.t. →2, then →!

2 ◦ →1 is terminating.

Proof. Since relative termination of →1 w.r.t. →2 is equivalent to termina-
tion of →∗2 ◦ →1 (Proposition 3) and, since →!⊆→∗ for all binary relation →,
termination of →∗2 ◦ →1 implies termination of →!

2 ◦ →1. �

Since termination of →∗RF
◦ →S implies termination of S and termination of

→∗S ◦ →RF (which is also required) implies termination of RF , this means that
both RF and S must be terminating (at least as separate TRSs) which is quite
a restrictive setting. The following results are helpful to prove termination of
→!
RF
◦ →S .

Proposition 5. Let R and S be two TRSs. Let S′ = {l → r ∈ S | l ∈ NFR}.
Then, →!

R ◦ →S′ is terminating if and only if →!
R ◦ →S is terminating.

Proof. By definition of S′ and →!
R, we have (→!

R ◦ →S) = (→!
R ◦ →S′). �

Example 5. Consider the TRS R in Example 2 with R = RF ∪S as in Example
4. Since S′ computed as in Proposition 5 is empty, →!

RF
◦ →S is terminating.

Consider again the TRS in Example 1 with RF and S as in Example 4. The
use of Proposition 5 produces a simpler version S′ of S, which consists of the
rules shift1 and shift2. Since RF ∪ S′ can be proved terminating (by using,
e.g., AProVE), we have that→!

RF
◦ →S′ is clearly terminating. By Proposition

5, →!
RF
◦ →S is also terminating.

Proposition 6. Let A be a set and→1,→2⊆ A×A be binary relations. If→2 is
terminating and preserves the →1-normal forms, then →!

1 ◦ →2 is terminating.

Proof. If →!
1 ◦ →2 is nonterminating, then there is an infinite sequence

t = t1 →!
1 t′1 →2 t2 →!

1 t′2 →2 · · ·

and since →2 preserves the →1-normal forms, we can then extract the infinite
sequence t = t′1 →2 t2 →2 · · · which contradicts termination of →2. �

The following example shows the limitations of this approach.
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Example 6. Consider the following TRS R:
f(a) -> a
f(X) -> f(a)

Let RF be the subTRS of R consisting of the first rule and S = R−RF . It is not
possible to apply the results in this section to prove termination of →!

RF
◦ →S

(note that S is nonterminating and the lhs f(X) is an RF -normal form).

In the following section, we introduce a transformation for proving termination
of →!

R ◦ →S for arbitrary TRSs R and S.

5.3 Termination of →!
RF

◦ →S by Transformation

Given TRSs R1 and R2, our idea here is to implement a ‘distributed’ computa-
tion by performing as many→R1-steps as possible (thus obtaining anR1-normal
form) followed by a single→R2 -step. Inspired by the transformations in [GM04]
(which have been developed for a completely different purpose), our transfor-
mation keeps track of each single reduction step issued by R2. This is achieved
by shifting a single symbol active to (non-deterministically) reach the position
where a redex is placed. The application of a rewrite rule changes active into
mark, which is propagated upwards through the term in order to be replaced by a
new symbol active that enables new reduction steps. Given a TRS R = (F , R),
the TRS UR = (F ∪ {active, mark, top}, U) consists of the following rules: for
all l → r ∈ R, f ∈ F such that k = ar(f) > 0, and i ∈ {1, . . . , ar(f)},

active(l)→ mark(r)
active(f(x1, . . . , xi, . . . , xk))→ f(x1, . . . , active(xi), . . . , xk)

f(x1, . . . , mark(xi), . . . , xk)→ mark(f(x1, . . . , xi, . . . , xk))
top(mark(x))→ top(active(x))

We are actually interested in the union R1 ∪ UR2 of R1 and UR2 . In order to
ensure that before starting the application of a rule marked with active (which
belongs to R2), the argument of mark is in R1-normal form, we use innermost
rewriting. We have the following:

Theorem 3. Let R1 = (F , R1) be a confluent and innermost terminating TRS
and R2 = (F , R2) be a TRS. If R1 ∪ UR2 is innermost terminating, then →!

R1

◦ →R2 is terminating.

Proof. By contradiction. Assume that →!
R1
◦ →R2 is nonterminating. Then,

there is an infinite sequence t = t1 →!
R1

s1 →R2 t2 →!
R1

s2 →R2 · · · starting
from a term t. We show that there is an innermost counterpart in R1 ∪ UR2

starting from top(mark(t)):

1. Since R1 is innermost terminating, there is s′1 such that t1
i−→!
R1

s′1; by

confluence, s′1 = s1. Thus, we have top(mark(t1))
i−→!
R1

top(mark(s1)).

Furthermore, top(mark(t1))
i−→!
R1∪UR2

top(mark(s1)).



Termination of Fair Computations in Term Rewriting 193

2. Since s1 is an R1-normal form, there is only one reduction step which can be
issued on top(mark(s1)), i.e., top(mark(s1))

i→R1∪UR2
top(active(s1)).

3. Finally, we have that top(active(s1))
i−→∗ R1∪UR2

top(mark(s2)). The
need of considering the rules in R1 demands some further explanation. Since
s1 is an R1-normal form, all steps issued by the group of rules

active(f(x1, . . . , xi, . . . , xk))→ f(x1, . . . , active(xi), . . . , xk)

which put symbol active deeper and deeper (until reaching the position of
the R2-redex in s1) are clearly innermost. After issuing the reduction step
by using a rule active(l)→ mark(r) for some l → r ∈ R2, new R1-redexes
can appear below symbol mark which signals the position of the recently
contracted redex. The innermost reduction sequence could need to continue,
then, by issuing R1-steps. After this partial innermost R1-normalization, a
rule f(x1, . . . , mark(xi), . . . , xk)→ mark(f(x1, . . . , xi, . . . , xk)) would even-
tually apply as the only (innermost!) reduction step, to push up the symbol
mark. These interleaved process would continue until putting mark immedi-
ately below top, having s2 (in R1-normal form!) as the only argument.

This contradicts innermost termination of R1 ∪ UR2 . �

In our setting, we use Theorem 3 with R1 = RF and3 R2 = S. In practice,
checking innermost termination of RF is not necessary if we have already proved
that →∗S ◦ →RF is terminating because this implies termination of RF .

Example 7. Consider R, RF and S as in Example 6. Termination of→∗S ◦ →RF

can be proved with TPA. Regarding termination of→!
RF
◦ →S , the transformed

system TRS RF ∪ US :

f(a) -> a
active(f(X)) -> mark(f(a))
active(f(X)) -> f(active(X))
f(mark(X)) -> mark(f(X))
top(mark(X)) -> top(active(X))

is innermost terminating (although we were not able to obtain an automatic
proof). Note that RF is clearly confluent. Therefore, by Theorem 3, we conclude
termination of →!

RF
◦ →S . Thus, the system R is fairly-terminating.

5.4 A Methodology for Proving Fair-Termination as Termination

PROBLEM 1: Given a TRS R and a finite subTRS RF ⊆ R, is R fairly-
terminating w.r.t. RF ? We have two lines of attack:

3 The tool mu-term provides an implementation of Giesl and Middeldorp’s
transformation from which US′ is easily obtained. mu-term is available on
http://www.dsic.upv.es/∼slucas/csr/termination/muterm .
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1. Prove termination of R: If R is terminating, then R is fairly-terminating
w.r.t. RF .

2. If RF is not terminating, then look for a terminating subset R′F ⊂ RF of
RF . By Proposition 1 we can change RF be the selected R′F and go to
Problem 2 below to try to prove the new configuration of the problem.

PROBLEM 2: Given a TRS R and a finite and terminating subTRS RF ⊆ R,
is R fairly-terminating w.r.t. RF ?
With S = R − RF , according to Theorem 1, we try to prove termination of

both →∗S ◦ →RF and →!
RF
◦ →S :

1. Prove the relative termination of RF w.r.t. S (see Proposition 3). Termina-
tion tools like TPA can also be used to obtain an automatic proof.

2. Prove termination of →!
RF
◦ →S : first, restrict the TRS S to S′ ⊆ S as

indicated in Proposition 5. Now, we can prove termination of →!
RF
◦ →S′

by using one of the following methods:
(a) If RF ∪S′ is terminating, then (→RF ∪ →S′)+ is terminating and there-

fore →!
RF
◦ →S′ ⊆ (→RF ∪ →S′)+ also is.

(b) If S′ is terminating, then
i. If S′ preserves the RF -normal forms, then by Proposition 6, termi-

nation of →!
RF
◦ →S′ follows.

ii. Prove the relative termination of S′ w.r.t. RF . By Proposition 4,
this implies termination of →!

RF
◦ →S′ .

(c) Otherwise, prove innermost termination of the union of RF and the
transformed TRS US′ . If RF is confluent, by Theorem 3 termination of
→!
RF
◦ →S′ follows.

PROBLEM 3: Is a TRS R rule fairly-terminating? We have two lines of
attack:

1. Prove termination ofR: IfR is terminating, thenR is rule fairly-terminating.
2. According to Proposition 1, we can look for a subTRS RF such that R is

fairly-terminating w.r.t. RF (thus reducing to Problems 1 and 2).

Fortunately, the previous termination problems (proving termination, innermost
termination, and relative termination of TRSs) are currently supported by ex-
isting termination tools like AProVE and TPA, among others.

6 Applications

In this section, we describe two more practical (still simple) examples of nonter-
minating systems which are fairly-terminating and show how to formally prove
this property using our results and the methodology of Section 5.4.
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Lottery
Consider the following scenario: a lottery where a finite number of balls are
rolling inside a container assumed here to be circular. Eventually, a ball will be
removed to pick a number and, of course, the repeated extraction of balls will
make the whole process terminating. The following TRS can be used to model
this process:

[extract] cons(X,XS) -> XS [shift] cons(X,cons(Y,XS))
-> cons(Y,snoc(XS,X)) [circular1] snoc(nil,X) -> cons(X,nil)
[circular2] snoc(cons(X,XS),Y) -> cons(X,snoc(XS,Y))

Here, RF consists of the rule extract, which represents the extraction of a
ball. The remaining rules (shift, circular1 and circular2) are collected into
a nonterminating TRS S which represents a finite list whose elements are shifted
in a circular fashion over and over again.

Let us prove that R is fairly-terminating w.r.t. RF . According to Theorem
2, we have to prove that both →∗S ◦ →RF and →!

RF
◦ →S are terminating.

Regarding termination of →∗S ◦ →RF , by Proposition 3 this is equivalent to
proving that RF is relatively terminating with respect to S. We have used TPA
to obtain an automatic proof of this. Regarding termination of →!

RF
◦ →S , we

can use Proposition 5 to obtain a subTRS S′ of S which only contains circular1.
By Proposition 5, termination of→!

RF
◦ →S is equivalent to termination of→!

RF

◦ →S′ . The TRS S′ is obviously terminating. Since RF ∪S′ is also terminating,
→!
RF
◦ →S′ is terminating and R is fairly-terminating w.r.t. RF .

Noisy Channel
Consider the following scenario: there are three agents A, B, and C. Agents A and
B have to perform tasks a and b (respectively) in a distributed fashion. Agent C
receives information about their completion through a two-component channel.
Agent A (resp. B), writes “a”, (resp. “b”) on the corresponding channel to
communicate to C that his/her task has been finished. Once the tasks performed
by A and B have both terminated, C closes the channel. However, the channel
is noisy in such a way that, when both values are on it, they can get lost. Thus,
both A and B may have to repeat their respective signals before the channel is
closed. The following TRS can be used to model this process:

[A] [null,Y] -> [a,Y]
[B] [X,null] -> [X,b]
[C] [a,b] -> done
[loss] [a,b] -> [null,null]

The key point here is that if rule C is fair, then the system is terminating. Thus,
we consider RF consisting of rule C.

Let us prove that R is fairly-terminating w.r.t. RF . Let S = R−RF , i.e., S
contains the rules A, B and loss (and it is nonterminating). According to Theo-
rem 2, we have to prove that both →∗S ◦ →RF and →!

RF
◦ →S are terminating.

Regarding termination of→∗S ◦ →RF , by Proposition 3 this is equivalent to prov-
ing that RF is relatively terminating with respect to S. Again, we have used
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TPA to obtain an automatic proof of this. Regarding termination of→!
RF
◦ →S ,

we use Proposition 5 to obtain a simpler version S′ of S, namely, S′ contain-
ing rules A and B. Termination of →!

RF
◦ →S is equivalent to termination of

→!
RF
◦ →S′ . The TRS S′ is easily proved terminating. Since RF ∪ S′ is also

terminating, we can conclude now that →!
RF
◦ →S is terminating. Hence, R is

fairly-terminating w.r.t. RF .

7 Related Work and Conclusions

A number of other approaches to fairness within term rewriting have been de-
veloped so far. In particular, the notion of fairness as related to the removal
of (residuals) of redexes rather than concerning the application of rules is well-
known after O’Donnell’s work [O’D77] on the so-called outermost-fair reduction
strategy and the corresponding normalization results [O’D77,HL91]. O’Donnell’s
notion of fairness was intended to provide a basis for computing the normal form
of terms. In those works, a (finite or infinite) reduction sequence t1 → t2 → · · ·
is fair if for all i ≥ 1, and (position of a) redex Δ in ti, there is j > i such that tj
does not contain any residual of Δ [Ter03–Definition 4.9.10] (see also [Klo92]).
It is not difficult to see that this notion of fairness is not comparable to ours.

Following these works, fairness plays a very important role in infinitary rewrit-
ing as an essential ingredient of strategies which intend to approximate infinitary
normal forms [KKSV95]. The introduced notions, however, follow the previous
style and become, then, uncomparable to ours.

Termination techniques have been recently proposed as suitable tools for prov-
ing liveness properties of fair computations [KZ05]. As in our approach, Ko-
prowski and Zantema define fairness as relative to a given TRS. Their formal
notion, however, is quite different: according to [KZ05–Sections 2.2 and 2.3], an
infinite reduction in RF ∪ S is called fair (w.r.t. RF ) if it contains infinitely
many RF -steps. No distinction between enabled and taken steps is made. This,
of course, is a clear difference with the notion of fairness we are interested in.
Moreover, the authors explicitly remark that all fair reductions are infinite.
Thus, apart from the fact that this means that there are fair sequences in our
sense which are not fair in Koprowski and Zantema’s approach (e.g., the finite
ones), no discussion about termination of such fair sequences is even possible!

In summary, we have shown that the problem of proving (rule)
fair-termination of a TRS R w.r.t. a subTRS RF can be reduced to the problem
of proving termination of →∗S ◦ →RF and →!

RF
◦ →S (where S = R−RF ).

We have proven that, if RF is a single-rule TRS, fair-termination of R w.r.t.
RF is equivalent to termination of such relations. We have also investigated how
to prove termination of →!

RF
◦ →S as ordinary termination of TRSs. We can

equivalently consider a subTRS S′ ⊆ S whose left-hand sides are RF -normal
forms and then either prove termination of RF ∪ S′ (or even S′ under some
additional conditions), or transform S′ into a TRS US′ and then prove inner-
most termination of RF ∪ US′ . Therefore, we always obtain (more) standard
termination problems, namely: proving and disproving termination, innermost
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termination, and relative termination of TRSs, which can be addressed by exist-
ing termination tools. We believe that the results that we propose in this paper,
although open to many extensions and generalizations, do indeed provide a quite
practical proof methodology for proving fair-termination.

A number of interesting issues, however, remain to be investigated. For in-
stance, Example 3 (which we cannot manage with our methodology) shows that a
deeper analysis is needed to extend the use of termination techniques (and tools)
for proving fair-termination. Regarding future extensions of our techniques, we
think the following are interesting to consider:

1. The more general setting of localized fairness [Mes05] (also including weaker
fairness notions like justice [Fra86, LPS81]).

2. The analysis of fair-termination modulo a set of equations; this notion has
already been investigated by Porat and Francez [PF86].

3. Another important aspect of fairness is that, in many applications, only
initial expressions satisfying concrete properties are expected to exhibit a
fairly-terminating behavior. Indeed, this can be crucial to achieve fair ter-
mination in some cases.

4. The role of typing information in fair-termination. It is well-known that
types play an important role in termination. As shown in [DLMMU04], it is
possible to deal with termination of sorted TRS by reducing this problem
to the problem of proving termination of a TRS (without sorts). We believe
that a similar treatment could be useful for fair termination.

Of course, the implementation of our techniques in a system like MTT which
is able to use external tools to solve termination problems is also envisaged
(together with more experimentation on practical examples).
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Abstract. We prove that fully-extended, orthogonal infinitary combi-
natory reduction systems with finite right-hand sides are confluent mod-
ulo identification of hypercollapsing subterms. This provides the first
general confluence result for infinitary higher-order rewriting.

1 Introduction

Lazy declarative programming employs several approaches that are well-suited
for description by term rewriting. This is of interest when studying basic con-
structs such as lazy lists:

from(x, y) ← x′ is x + 1, from(x′, z), y = [x|z]

and (lazy) narrowing or residuation, in conjunction with, say, higher-order func-
tions, e.g. the map functional:

map(f, []) = []
map(f, [x|xs]) = [f(x)|map(f, xs)]

Such a combination occurs in several pure functional languages, as well as in
functional logic languages such as Curry [1, 2] and Toy [3].

An extension of term rewriting intended to model lazy computations is infini-
tary rewriting, a formalism allowing for terms and reductions to be infinite [4,5,6].
Technical properties known as strong convergence and compression furnish the
computational intuition for such systems: The limit term of every infinitely long
sequence of computations is also the limit of a sequence of finite computations.
Unfortunately, many desirable properties of ordinary (first-order) term rewriting
systems fail to hold when considering infinitary term rewriting systems (iTRSs).
Furthermore, substantial care and ingenuity is needed to treat bound variables
and applications in the infinitary setting, a fact already evident in infinitary
lambda calculus (iλc) [6, 7].

While many language features require some sort of extension or restriction
on the rewrite relation to model actual computations correctly (e.g. conditional

G. Sutcliffe and A. Voronkov (Eds.): LPAR 2005, LNAI 3835, pp. 199–214, 2005.
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rewriting for logic programming [8,9]), any systematic treatment of such variants
of infinitary rewriting must wait until the basic theory for infinitary higher-order
rewriting has been pinned down. The contribution of this paper is to do exactly
that by proving a general confluence (or Church-Rosser) theorem for infinitary
higher-order rewriting. Our proof follows the general outline of confluence proofs
for more restricted kinds of infinitary rewriting [6], but the crucial methods we
employ are adapted from van Oostrom’s treatment [10] of a method by Sekar
and Ramakrishnan [11]. We work with infinitary combinatory reduction systems
(iCRSs), as introduced in [12].

The outline of the paper is as follows: Section 2 introduces the basic concepts,
Section 3 treats developments of sets of redexes, Section 4 concerns a special class
of troublesome terms: the hypercollapsing ones, and the proof methods needed
to tackle them, while Section 5 provides a proof of the main result.

2 Preliminaries

This section briefly recapitulates basic facts concerning both ordinary and in-
finitary CRSs; the reader is referred to [13] for an account of CRSs, and to [12]
for iCRSs.

Throughout the paper we assume a signature Σ, each element of which has
finite arity. We also assume a countably infinite set of variables, and, for each
finite arity, a countably infinite set of meta-variables. Countably infinite sets are
sufficient, given that we can employ ‘Hilbert hotel’-style renaming. We denote
the first infinite ordinal by ω, and arbitrary ordinals by α, β, γ, . . .. We use N to
denote the set of natural numbers, starting at zero.

The standard way of defining infinite terms in infinitary rewriting is by defin-
ing a metric on the set of finite terms and letting the set of infinite terms be
the completion of the metric space of finite terms [5, 7, 14], an approach also
used in [12]; here, we give a shorter, but equivalent, definition using so-called
“candidate” meta-terms:

Definition 2.1. The set of (infinite) candidate meta-terms is defined by inter-
preting the following rules coinductively:

1. each variable x is a candidate meta-term,
2. [x]s is a candidate meta-term, if x is a variable and s is a candidate meta-

term,
3. Z(s1, . . . , sn) is a candidate meta-term, if Z is a meta-variable of arity n

and s1, . . . , sn are candidate meta-terms, and
4. f(s1, . . . , sn) is a candidate meta-term, if f ∈ Σ has arity n and s1, . . . , sn

are candidate meta-terms.

A candidate meta-term of the form [x]s is called an abstraction. Each occurrence
of the variable x in s is bound in [x]s.

The set of finite meta-terms, a subset of the candidate meta-terms, is the set
inductively defined by the above rules.
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Thus, [x]x, [x]f(Z(x)), Z(Z(Z(. . .))), and Z([x]Z ′([y](Z([x]Z ′) . . .))) are all
candidate meta-terms. Moreover, [x]x and [x]f(Z(x)) are also finite meta-terms.

As usual in rewriting, we define the set of positions of candidate meta-terms
as a set of finite strings over N, with ε the empty string, such that each string
corresponds to the “location” of subterm. For instance, the position of y in
[x]f(x, y) is 01 (‘0’ to get to f(x, y) and ‘1’ to get to the second argument of
f). The set of positions of term s is denoted Pos(s). If p ∈ Pos(s), then we
denote by s|p the subterm of s at p (e.g. [x]f(x, y)|01 = y). The length of a
position p is denoted |p|. There is a natural well-founded (but not necessarily
total) order < on positions such that p < q iff p is a proper prefix of q. If p and q
are incomparable in this order, we write p ‖ q and say that p and q are parallel.

A (one-hole) context is a candidate meta-term over Σ ∪ {�} where � is a
fresh constant that occurs at most once in the term.

We next define the set of meta-terms:

Definition 2.2. Let s be a candidate meta-term. A chain in s is a sequence
of (context,position)-pairs (Ci[�], pi)i<n where n ∈ ω + 1, such that for each
(Ci[�], pi) there exists a term ti with the property that Ci[ti] = s|pi and pi+1 =
pi · q where q is the position of the hole in Ci[�].

A chain of meta-variables is a chain (Ci[�], pi)i<n such that for each i < n it
holds that Ci[�] = Z(t1, . . . , tm) with tj = � for at most one 1 ≤ j ≤ m.

A meta-term is a candidate metaterm s such that no infinite chain of meta-
variables occurs in s.

Observe that � occurs only in Ci[�] if i+1 < n, otherwise Ci[�] = s|pi . More-
over, note that candidate meta-terms such as Z(Z(Z(· · ·Z(· · ·)))) are not meta-
terms. These terms are rejected as meta-terms as the result of applying substitu-
tions to them is generally not well-defined [12]. Note too that [x1]Z1([x2]Z2(. . .))
is a meta-term.

We can now define terms:

Definition 2.3. A term is a meta-term without meta-variables.

As usual, we consider terms modulo α-equivalence. Note that the definition of
meta-terms only restricts meta-terms containing meta-variables, not meta-terms
without meta-variables, i.e. not terms. Substitutions are defined by interpreting
the ordinary rules of substitution coinductively, minding α-conversion when ap-
plicable. We write s[x := t] for the substitution of a vector t of terms for a vector
x of variables (of the same length) in a term s. An n-ary substitute is a mapping
denoted λx1, . . . , xn.s or λx.s, with s a term, such that:

(λx.s)(t1, . . . , tn) = s[x := t] .

A valuation σ̄ is an extension of a function σ which assigns n-ary substitutes to
n-ary meta-variables. The extension maps meta-terms to terms. For instance, if
σ(Z) = [x]f(x), we have σ̄(g(Z, x)) = g([x]f(x), x). As above, it is defined by
interpreting the usual rules for valuations [13] coinductively.
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The following is proved in [12]:

Proposition 2.4. Let s be a meta-term and σ̄ a valuation. There exists a unique
term that is the result of applying σ̄ to s.

2.1 Infinitary Rewriting

Definition 2.5. A finite meta-term is a pattern if each of its meta-variables
has distinct bound variables as its arguments. Moreover, a meta-term is closed
if all its variables occur bound.

Definition 2.6. A rewrite rule is a pair (l, r), denoted l → r, where l is a finite
meta-term and r is a meta-term, such that:

1. l is a pattern and of the form f(s1, . . . , sn) with f ∈ Σ of arity n,
2. all meta-variables that occur in r also occur in l, and
3. l and r are closed.

An infinitary combinatory reduction system (iCRS) is a pair C = (Σ,R) with Σ
a signature and R a set of rewrite rules.

Definition 2.7. A rewrite rule l → r is left-linear, respectively collapsing, if
each meta-variable occurs at most once in l, respectively if r has a meta-variable
as root symbol. An iCRS is left-linear if all its rewrite rules are left-linear.

Definition 2.8. A pattern is fully-extended [15, 16], if, for each of its meta-
variables Z, and each abstraction [x] having Z in its scope, x is an argument of
Z. An iCRS is fully-extended if the left-hand sides of all rewrite rules are.

We now define redexes and rewrite steps.

Definition 2.9. Let l→ r be a rewrite rule. Given a valuation σ̄, the term σ̄(l)
is called a l → r-redex. If s = C[σ̄(l)] for some context C[�] with σ̄(l) a l → r-
redex and p the position of the hole in C[�], then an l → r-redex, or simply a
redex, occurs at position p and depth |p| in s. Moreover, a position q occurs in
the redex pattern, if q ≥ p and if there does not exist q′ such that q ≥ p · q′ and
q′ is the position of a meta-variable in l.

A rewrite step is a pair (s, t), denoted s→ t, such that an l → r-redex occurs
in s = C[σ̄(l)] and such that t = C[σ̄(r)]. A redex or rewrite step is collapsing
if the employed rewrite rule is collapsing. It is root-collapsing if it is collapsing
and if the redex occurs at position ε.

Throughout the paper, sets of redexes are denoted by calligraphic capitals
such as U . We can now define what a transfinite reduction sequence is. The
definition copies the definition from iTRSs and iλc verbatim [5, 7]:

Definition 2.10. A transfinite reduction sequence of ordinal length α is a se-
quence of terms (sβ)β<α+1 such that sβ → sβ+1 for all β < α. For each rewrite
step sβ → sβ+1, let dβ denote the depth of the contracted redex. The reduction
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sequence is weakly convergent or Cauchy convergent if for every ordinal γ ≤ α
the distance between tβ and tγ tends to 0 as β approaches γ from below. The
reduction sequence is strongly convergent if it is weakly convergent and if dβ

tends to infinity as β approaches γ from below.

Notation 2.11. By s �α t, respectively s �≤α t, we denote a strongly conver-
gent transfinite reduction sequence of ordinal length α, respectively of ordinal
length less than or equal to α. By s � t we denote a strongly convergent trans-
finite reduction sequence of arbitrary ordinal length and by s→∗ t we denote a
reduction sequence of finite length. Reduction sequences are usually ranged over
by capitals such as D, S, and T . The concatenation of two reduction sequences
S and T is denoted by S;T . Note that the concatenation of any finite number
of strongly convergent reductions is a strongly convergent reduction.

Lemma 2.12 (See [12]). If s � t, then the number of steps contracting redexes
at depths less than d ∈ N is finite for any d.

As in [5, 7, 6], we consider strongly converging reduction sequences. This en-
sures that we can restrict our attention to reduction sequences of length at most
ω by the so-called compression property:

Theorem 2.13 (Compression, see [12]). For every fully-extended, left-linear
iCRS, if s �α t, then s �≤ω t.

Left-linearity and fully-extendedness ensure no redex is created by either mak-
ing two subterms equal or erasing some variable in an infinite number of steps.
As shown in [12], they cannot be omitted from the theorem. In the remainder
we work exclusively with orthogonal systems; these are defined as in the finite
case:

Definition 2.14. Let R = {li → ri | i ∈ I} be a set of rewrite rules.

1. R is non-overlapping if it holds that:
– each li → ri-redex that occurs at a position p in an lj → rj-redex with

i �= j occurs such that there exists a position q ≤ p with q ∈ Pos(lj) and
root(lj |p) a meta-variable,

– likewise for p �= ε and i = j.
2. R is orthogonal if it is left-linear and non-overlapping.
3. An iCRS is orthogonal if its set of rewrite rules is orthogonal.

As shown in [12], orthogonality suffices for the definition of well-defined de-
scendant and residual relations, i.e. the relations that describe respectively what
“happens to” positions and redexes across reductions.

Notation 2.15. Let s and t be terms such that s � t. Assume that P ⊆ Pos(s)
and that U is a set of redexes in s. We denote descendants of P across s � t,
respectively residuals of U across s � t, by P/(s � t) and U/(s � t). If P = {p}
and U = {u} we also write p/(s � t) and u/(s � t).
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3 Developments

The results in this section apply to orthogonal iCRSs. Orthogonality is required,
as descendants and residuals are only defined in the orthogonal case.

Definition 3.1. Let U be a set of redexes in a term s. A development of U is a
strongly convergent reduction sequence such that each step contracts a residual
of a redex in U . A development s � t is complete if U/(s � t) = ∅.

Notation 3.2. If U is a set of redexes in term s and there is some development
of U that results in term t, we write s ⇒ t, where the arrow is adorned with U
if needed. Observe that there may exist t′ �= t with s ⇒ t′, as the development
s⇒ t need not to be complete.

The following is the main result of [12]:

Theorem 3.3. Let U be a set of redexes in a term s. If U has a complete
development then all complete developments of U end in the same term.

Lemma 3.4. If U has a complete development and if s � t is a development of
U (not necessarily complete), then U/(s � t) has a complete development.

Proof. Immediate by inspection of the proof of Theorem 5.12(1) in [12]. $�

Lemma 3.5. Let U be a set of redexes in a term s, let U have a complete
development, and let u be a redex in s. Then U∪{u} has a complete development.

Proof (Sketch). By the finite chain condition on meta-terms and the variable
convention, residuals of u can only be nested in “finite chains” across a complete
development of U . One can coinductively perform complete developments of
these finite chains in a top-down manner, yielding a complete development of
U ∪ {u}. $�

Corollary 3.6. Let U be a set of redexes in a term s which has a complete
development s � t and let v be a redex of s. The following diagram commutes
(where all developments are complete):

s
v ��

U
��

t

U/(s→t′)
��

t′
v/(s�t)

�� s′

Proof. By Lemmas 3.4 and 3.5, Theorem 3.3 and the fact that (U ∪ {v})/(s→
t′) = U/(s→ t′), respectively (U ∪ {v})/(s � t) = v/(s � t). $�
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4 Hypercollapsingness and Essentiality

From this section onwards we consider only fully-extended, orthogonal iCRSs
where each rewrite rule has a finite right-hand side. Finiteness of the right-hand
sides is essentially used to show that Definition 4.11 is well-defined1.

In this section, we treat a special kind of troublesome term and reduction:

Definition 4.1. A hypercollapsing reduction is a sequence of terms (si)i<ω

such that si → si+1 for all i < ω and such that an infinite number of these
steps are root-collapsing.

Thus, a hypercollapsing reduction is a transfinite reduction sequence of length
ω which is not convergent in any sense and from which the term sω is omitted.

Definition 4.2. A term s is said to be hypercollapsing if, for all terms t with
s � t, there exists a term t′ with t � t′ such that t′ has a collapsing redex at
the root.

The objective of this section is to prove the following lemma:

Lemma 4.3. Let s be a term. If there is a hypercollapsing reduction starting
from s, then s is hypercollapsing.

This result is key for results concerning confluence modulo in iTRSs and
iλc. Alas, the existing proof methods [6] cannot be lifted to the general higher-
order case: For iTRSs, the known proofs hinge on the Strip Lemma, and for
iλc on head reductions, none of which generalise to iCRSs. Instead, we employ
a measure on finite reduction sequences and proof technique as developed by
Sekar and Ramakrishnan [11] and as extended to higher-order rewriting by Van
Oostrom [10].

4.1 Essential Reductions

To define the measure on finite reduction sequences, we first need to define the
notions of contribution and essentiality.

Definition 4.4. Let s and t be terms and s→ t with an l → r-redex contracted
at position p. If q ∈ Pos(s) and P ⊆ Pos(t), then q contributes to P , whenever:

– one or more positions of q/(s→ t) are in P , or
– the position q occurs in the redex pattern of the contracted redex and p is a

prefix of some positions in P .

Contribution is extended to finite reductions of positive length by transitive clo-
sure. If s→= s, then every position in P contributes only to itself.
1 The restriction to finite right-hand sides is crucial to the technique of considering

essentiality that we employ in our proofs. We conjecture that it is possible to lift
the restriction.
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Observe that several distinct positions in s can contribute to a single position
in t. In the case the redex contracted in s → t occurs at position p, at least all
positions in the redex pattern contribute to the position p in t.

Definition 4.5. Let s →∗ t and let P ⊆ Pos(t). A position in any term along
s →∗ t is essential for P (usually the explicit mention of P is suppressed) if it
contributes to P . A set of positions is essential for P if every position in the set
is. A redex is essential for P if its root position contributes to P . A rewrite step
is essential for P if its redex is. A finite reduction is essential for P if all of its
rewrite steps are. A redex is inessential if its root position does not contribute to
P . A rewrite step is inessential if its redex is.

Lemma 4.6. A rewrite step is either essential or inessential.

Proof. By the fact that all positions in a redex pattern contribute to a redex. $�

Definition 4.7. A prefix of a term s is a finite set P ⊆ Pos(s) such that all
prefixes of positions in P are also in P .

Take heed that prefixes are finite.

Lemma 4.8. Let s0 →∗ sn and let P be a prefix of sn. The positions in s0 that
are essential for P form a prefix of s0.

Proof. By induction on n. If n = 0, we are done, since the reduction is empty. If
n = n′ + 1, then P consists of a (possibly empty) set of positions P ′ “created”
by the right-hand side of the redex contracted in the step s′n → sn and a (pos-
sibly empty) set of positions descending from positions Q in sn′ . The positions
contributing to P ′ are exactly the positions that occur in the redex pattern of
the redex contracted in sn′ → sn, and Q consists of any position above or par-
allel to the redex, and of positions in arguments of the redex. The union of all
these positions clearly constitutes a prefix of sn′ . The induction hypothesis now
furnishes the result. $�

By the above lemma, we may consider s0 →∗ sn as a sequence of n prefixes
such that each step either is inside the prefix of its term (and is hence essential),
or is below the prefix (and is hence inessential).

Lemma 4.9. Let s0 →∗ sn and let P be a prefix of sn. There exists a reduction
s0 →∗ s′ � sn where s1 →∗ s′ consists of steps essential for P and s′ � sn

consists of steps inessential for P (hence the prefix P exists in s′).

Proof. It suffices to show that if ti ⇒ t′i → ti+1 where ti ⇒ t′i consists of
a complete development of some set of redexes that contracts only inessential
steps and t′i → ti+1 is an essential step, then ti → t′′i ⇒ ti+1 for some term
t′′i . Observe that since ti ⇒ t′i is inessential, the prefix of ti will not be touched
by any step in ti ⇒ t′i. Hence, the redex contracted in t′i → ti+1 is the unique
residual of an essential redex in ti. By Corollary 3.6 there now exists a term t′′i
such that ti → t′′i ⇒ ti+1. $�
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Notation 4.10. With the notation of the above lemma, we write s0 →∗ s′ as De

(‘e’ for ‘essential’) and s′ � sn as De (‘e’ for ‘inessential’).

Definition 4.11. Let D : s0 ⇒U1 s1 ⇒U2 · · · ⇒Un sn be a reduction consisting
of a finite number of developments of finite sets of redexes (with finite right-
hand sides). The measure, μ(D) of D is the n-tuple (ln, . . . , l1)—note the reverse
ordering!—where li is the maximal length of a development of Ui that contracts
only essential steps. Tuples are compared first by their length and then by their
successive elements (in the natural order). This yields a well-founded order ≺.

Note that the Finite Developments Theorem for ordinary CRSs applies: All
developments of a finite set of redexes (with finite right-hand sides) are finite and
end in the same term, and all maximal developments of such sets are complete
[17]. Hence, each li in the definition is well-defined.

Remark 4.12. Let s0 ⇒ s1 ⇒ · · · ⇒ sn = D1;D2; · · · ;Dn be a finite reduction
consisting of developments of finite sets contracting only redexes essential to
some prefix P of sn. In the remainder of this section we will consider a special
kind of projection of such a reduction across a step u : s0 → t0 contracting a
redex u. By applying the Finite Developments Theorem for finite CRSs to each
single rewrite step in each Di, we can erect the following diagram, in which each
development is finite (but not necessarily complete):

s0
D1 ��

u

��

s1
D2 ��

u/D1

��

·
u/(D1;D2)

��

· Dn �� sn

u/(D1;...;Dn)
��

t0
D1/u

�� t1
D2/(u/D1)

�� · · �� tn

If u is inessential, then it is outside the sequence of prefixes in s0 ⇒∗ sn

contributing to P . Therefore, all bottommost steps in the above diagram are
essential, and P is a prefix of tn.

If u is essential and some residual of the redex of u occurs in Di, then some
of the steps in the development Di/(u/D1; . . . ;Di−1) may be inessential, since
redexes may have been duplicated by u and since not all copies need to be
essential. If this is the case, Lemma 4.9 ensures that we can rearrange t0 ⇒∗ tn
an essential initial part t0 →∗ q and an inessential final part q � tn (such that
P is a prefix of the term q). We can thus “strip away” all inessential steps in the
original projection to obtain an “emaciated” projection t0 →∗ q; observe that,
in this case, we do not necessarily have sn � q.

The above remark ensures that the following definition is meaningful:

Definition 4.13. Let s0 ⇒ s1 ⇒ · · · ⇒ sn = D1;D2; · · · ;Dn be a finite reduc-
tion consisting of developments of finite sets contracting only redexes essential to
some prefix P for sn. Let s0 → t0 contract a redex u. The emaciated projection
of D1; · · ·Dn across u, with respect to P , written D�u is the usual projection
where inessential steps have been stripped out as in Remark 4.12.
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Proposition 4.14. Let D : s0 ⇒∗ sn, let P be a prefix of sn and let s0 → t0
contract a redex u. Then, in the emaciated projection D�u : t0 ⇒∗ q, the term
q contains P as a prefix and D�u contains only essential steps for P .

Proof. This is the content of Remark 4.12. $�

We want to relate the measure of the emaciated projections to the original
reductions. The following two lemmas ensure that this can be done:

Lemma 4.15. If D factors as De;De (according to Lemma 4.9), then μ(De) .
μ(D).

Proof. Inessential steps are not counted by μ. In the proof of Lemma 4.9, the num-
ber of essential steps is constant under the permutation, whence the result. $�

Lemma 4.16. If D : s0 ⇒∗ sn, μ(D) = (ln, . . . , l1), and s0 → t0 contracts an
essential redex u, then μ(D�u) ≺ μ(D).

Proof. If u is essential, then a residual of u that is essential is contracted in one
of the steps si ⇒Ui si+1. Assume that i is the largest index of a set Ui such
that Ui contains a residual u′ of u that is essential. If u′ is the sole redex in Ui,
then the ith component of D/u becomes empty, and μ(D/u) will have length at
least one less than μ(D). By Lemma 4.15 we have μ(D�u) . μ(D/u). Hence,
we obtain μ(D�u) ≺ μ(D).

If u′ is not the sole redex in Ui, then write μ(D�u) = (l′n, . . . , l
′
1) and notice

that u may duplicate redexes from U1, . . . ,Ui−1 Hence, increase the maximal
length of their essential developments, i.e. we may have l′j > lj for j < i. However,
the maximal length of a partial development of Ui that contracts only essential
steps is now at least one less. Hence, l′i < li, and for all lj with j > i we have
l′j = lj . Thus, μ(D�u) ≺ μ(D). $�

Lemma 4.17. Suppose D : s0 →∗ sn is a reduction to a root-collapsing term
and suppose s0 → t0 contracting a redex u is not root-collapsing. Then, t0 reduces
to a root-collapsing term in a finite number of steps.

Proof. We may assume that s0 →∗ sn does not contain any root-collapsing steps
(minimality). This implies that the collapsing redex at the root of s0 is either (1)
created along the reduction, or (2) that it was already at the root in s0 (which
implies n = 0). If it was already in s0, but at some other position than the root,
then a root-collapsing step must occur in s0 →∗ sn (otherwise the root-collapsing
redex can never be at the root), which is impossible by minimality.

Let P be the set of positions in the redex pattern of the root-collapsing redex
of sn, and consider the emaciated projection D�u. Since u is not root-collapsing,
we have in the case of (1) that the final term q in the emaciated projection must
also be root-collapsing. In the case of (2) this is also holds, as the redex contracted
in s0 → t0 must differ from the root-collapsing one in s0, by the assumption on
s0 → t0. $�
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Lemma 4.18. If s � t contains no root-collapsing steps and s reduces to a
collapsing redex, then so does t.

Proof. If s � t is finite, the result follows by repeated application of Lemma
4.17.

If s � t is infinite, we may by compression assume that it has length ω and by
strong convergence that s→∗ sn by a finite reduction D where sn is a collapsing
redex. Let P be the set of positions in the redex pattern of the root-collapsing
redex in sn. By Lemma, 4.8, the set of positions in s that contribute to P form a
prefix Q of s and by Lemma 4.9 the reduction s→∗ sn consists solely of essential
steps. We write s⇒ s1 ⇒ · · · ⇒ sn, and μ(D) = (ln, . . . , l1).

Since s � t is infinite, it consists of a first step s→ t1 contracting a redex u
and an infinite reduction t1 � t. Taking the emaciated projection of s ⇒ s1 ⇒
· · · ⇒ sn over u yields a reduction D�u = t1 →∗ s′n to a collapsing redex. If u is
inessential, then μ(D�v) . μ(D). Otherwise, by Lemma 4.16, μ(D�v) ≺ μ(D).

If, from some ti in s � t onwards, no step is essential, then all steps are outside
the prefix Qi of ti that contributes to P , hence the final term t contains a prefix
that reduces to a collapsing redex in “the same way” as ti does. Assume, for
contradiction, that there are an infinite number of essential steps in s � t. Then,
Lemma 4.16 furnishes that the measure of the emaciated projected sequence
decreases strictly in each of these steps, contradicting well-foundedness of ≺. $�

4.2 Hypercollapsing Reductions Imply Hypercollapsingness

The following is the iCRS analogue of Lemma 12.8.4 in [6] for iTRSs and
strengthening for iλc:

Lemma 4.19. Let s0 be a term. If there exists a hypercollapsing reduction start-
ing from s0, and a rewrite step s0 → t0, then there is a hypercollapsing reduction
starting from t0.

Proof (Sketch). By definition of hypercollapsing reductions we may write:

s0 →∗ s′0 → s1 →∗ s′1 → s2 →∗ · · · ,

with si → si+1 a root-collapsing step and no root-collapsing steps in si →∗ s′i,
for all i ∈ N. By repeated application of Corollary 3.6 we can erect the following
diagram, where u takes on the rôle of the set U when the corollary is first applied:

s0

u

��

∗ �� s′0

U ′
0

��

�� s1

U1

��

∗ �� s′1

U ′
1

��

�� s2

U2

��

∗ �� ·

��
t0 �� �� t′0 �� �� t1 �� �� t′1 �� �� t2 �� �� ·

We write Si for si � s′i � si+1 � · · · and Ti for ti � t′i � ti+1 � · · ·. Note
that Ti may have length greater than ω.
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If it holds for each i ∈ N that a root-collapsing step occurs in Ti, then an infi-
nite number of root-collapsing steps occurs in T0. We show this first. Afterwards,
we extract a hypercollapsing reduction from T0 employing this property.

To show the property we distinguish two cases: either (1) a root-collapsing
step occurs in Si that does not contract a residual of u, or (2) all root-collapsing
steps contract residuals of u. Careful case analysis shows that in both cases, Ti

will contain a root-collapsing step.
To show that a hypercollapsing reduction starting from t0 exists, one repeat-

edly applies the case distinction above to Ti for successively larger i ∈ N. $�

We can now prove Lemma 4.3:

Proof (Lemma 4.3). Let s � t and assume by compression that this reduction
has length at most ω. By strong convergence, we can write s →∗ t′ � t such
that all root-reductions occur in s→∗ t′. By repeated application of Lemma 4.19,
there is a hypercollapsing reduction starting from t′, in particular, t′ reduces to
a collapsing redex. Since t′ � t contains no steps at the root, Lemma 4.18 yields
that t reduces to a collapsing redex, proving that s is hypercollapsing. $�

5 Confluence Modulo

We use the notion of a tiling diagram from [6]:

Definition 5.1. A tiling diagram of two strongly convergent reductions S :
s0,0 →α sα,0 and T : s0,0 →β s0,β is a rectangular arrangement of strongly
convergent reductions:

s0,0 ��

��

s0,1

����

s0,δ ��

����

s0,δ+1

����

s0,β

s1,0 �� �� s1,1 s1,δ �� �� s1,δ+1 s1,β

sγ,0 �� ��

����

sγ,1

����

sγ,δ
Tγ,δ

�� ��

Sγ,δ

����

sγ,δ+1

����

sγ,β

sγ+1,0 �� �� sγ+1,1 sγ+1,δ �� �� sγ+1,δ+1 sγ+1,β

sα,0 sα,1 sα,δ sα,δ+1 sα,β

such that (1) each reduction Sγ,δ : sγ,δ � sγ,δ+1 is a complete development
of a set of redexes of sγ,δ, and conversely with Tγ,δ : sγ,δ � sγ+1,δ, (2) the
topmost horizontal reduction is T and the leftmost vertical reduction is S, and
(3) for each γ, δ, the set of redexes developed in Tγ,δ is the set of residuals of
the redex contracted in s0,δ → s0,δ+1 across the (strongly convergent) reduction
S[0,γ],δ : s0,δ → s1,δ → · · · sγ,δ (symmetrically for Sγ,δ).
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The below is part of Thm. 12.6.5 in [6]:

Theorem 5.2. Let S and T be strongly convergent reductions starting from the
same term. The following are equivalent:

1. The tiling diagram of S and T can be completed, i.e. S/T and T/S are
strongly convergent and have the same limit.

2. S/T is strongly convergent.
3. T/S is strongly convergent.

Proof. The proof in [6] is independent of the details of rewriting. $�

Notation 5.3. By s →out t we denote a rewrite step that does not occur inside
any hypercollapsing subterm of s.

We now prove the analogue of Lemma 12.8.14 in [6]:

Lemma 5.4. If S : s �out t0 and T : s �out t1, then for some term q, we have
t0 � q and t1 � q.

Proof. Let s �out t0 have length α and s �out t1 have length β, respectively.
Assume without loss of generality that α ≤ β, and proceed by induction on
β (the “outer” induction). Each case in this induction is in turn performed by
induction on α (the “inner” induction). Induction ensures that it suffices to give a
proof for α = β = 1, for α = 1 and β = ω (by Compression), and for α = β = ω.

– The case α = β = 1 is covered by Lemma 3.5.
– For the case α = 1 and β = ω, Theorem 5.2 ensures that we need only

prove that S/T is strongly convergent, indeed since S contracts a single
redex u we need only prove that the set u/T has a strongly convergent
complete development. Assume the contrary. Observe that only residuals of
u are contracted in any development of u/T and that the employed rewrite
rule is collapsing (otherwise any development u/T is strongly convergent).
As contracting residuals of u cannot create further nestings of the residuals
that are left, there exists a subterm of t1 with a hypercollapsing reduction
starting from it (obtained by a development of u/T ), say at position p.
In fact, there must exist an infinite chain of nested residuals of u in the
subterm at p. By strong convergence and limit length of T , we can write
T = T ′′ ;T ′ where T ′ : t �out t1 is a non-empty final segment of T that
performs no steps at prefix positions of p. Note that T ′′ is finite, by strong
convergence. Thus, we have t|p �out t1|p. Since there is a hypercollapsing
reduction starting from t1|p, there is also a hypercollapsing reduction starting
from t|p interleaving the steps from t|p �out t1|p and the hypercollapsing
reduction starting from t1|p. But then by Lemma 4.3 we have that t|p is
hypercollapsing, which implies that t|p �out t1|p is empty and that t|p = t1|p.
Thus, t|p contains a set of descendants of u having no complete development
(giving rise to the hypercollapsing reduction from t|p), whence u/T ′′ has no
complete development. Since T ′′ has length less than ω, this contradicts the
(outer) induction hypothesis.
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– When α = β = ω, the argument from the proof of Lemma 12.8.14 in [6] can
be copied verbatim, as it is independent of the details of rewriting. $�

Define s ∼hc t if and only if t can be obtained from s by replacing a number of
hypercollapsing subterms of s by other hypercollapsing terms. By orthogonality,
∼hc is an equivalence relation, which is closed under substitution of terms for
free variables.

Lemma 5.5. If s � t and s ∼hc s
′, then s′ �out t′ and t ∼hc t′.

Proof. Let s �α t and s ∼hc s′. We prove the result by transfinite induction.

– If α = 0, then the result is immediate, as an empty reduction sequence is by
definition one that only contracts redexes outside hypercollapsing subterms.

– If α = β+1, then assume s �α t = s �β q → t. By induction hypothesis we
have that there exist q′ such that s′ �out q′ and q ∼hc q′. There are now two
possibilities for q → t, depending on the contracted redex occurring either
outside or inside a hypercollapsing subterm:
• If the redex occurs outside a hypercollapsing subterm, then we have by
q ∼hc q′ and orthogonality that a redex employing the same rewrite rule
occurs at the same position in q′ and that this redex occurs outside a
hypercollapsing subterm. By definition of∼hc, contracting the redex in q′

yields a term t′ by a reduction outside a hypercollapsing subterm. That
t ∼hc t′ follows by the fact that the same rewrite rule is employed in q → t
and q′ → t′ and the fact that q ∼hc q

′: Clearly, t and t′ are identical at all
positions p that descend from positions not in hypercollapsing subterms
of q or q′. If p′ is the position of a maximal hypercollapsing subterm
of q, it is also the position of a maximal hypercollapsing subterm of q′

and vice versa, and p′ descends to identical positions in t, respectively t′.
Any descendant of the subterm at p′ will be a (not necessarily maximal)
hypercollapsing subterm, and the result then follows by q ∼hc q′ and its
closure under substitution.
• If the redex occurs inside a hypercollapsing subterm, then we have t ∼hc

q. Hence, by transitivity of ∼hc we have t ∼hc q′ and we can define
t′ = q′.

– If α = γ, with γ a limit ordinal, then the result is immediate by strong
convergence and the induction hypothesis. $�

Definition 5.6. An iCRS is said to be confluent modulo an equivalence relation
∼ if s ∼ t, s � s′, and t � t′ imply existence of terms s′′ and t′′ such that
s′ � s′′, t′ � t′′ and s′′ ∼ t′′.

Theorem 5.7. Fully-extended, orthogonal iCRSs with finite right-hand sides
are confluent modulo ∼hc.

Proof. Let s ∼hc t, and assume that s � s′ and t � t′. Consider the following
diagram:
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s

������
��

��
��

∼hc

(1)

t

out
�� ��
��

��
��

��

out
������
��

��
��

(3)

t

�� ��
��

��
��

��

(2)

s′

out
�� ��
��

��
��

��
∼hc t′1

�� ��
��

��
��

��

(4)

t′2

������
��

��
��

(5)

t′

out
������
��

��
��

∼hc

s′′ ∼hc q t′′∼hc

Prisms (1) and (2) follow by Lemma 5.5. Square (3) follows by Lemma 5.4.
The diagram is completed by noting that (4) and (5) follow by Lemma 5.5 The
result now follows by transitivity of ∼hc. $�
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Abstract. We describe a sound, terminating, and complete matching
algorithm for terms built over flexible arity function symbols and con-
text, function, sequence, and individual variables. Context and sequence
variables allow matching to move in term trees to arbitrary depth and
breadth, respectively. The values of variables can be constrained by reg-
ular expressions which are not necessarily linear. We describe heuristics
for optimization, and discuss applications.

1 Introduction

We describe an algorithm to solve matching problems for terms built over flexible
arity function symbols and context, function, sequence, and individual variables.
Context and sequence variables can be constrained by regular expressions. These
four kinds of variables, together with regular constraints, make the term tree
traversal and subterm extraction process very flexible: The algorithm can explore
terms in a uniform way in vertical (via function and context variables) and in
horizontal (via individual and sequence variables) directions.

Context variables may be instantiated with a context—a term with a hole,
while function variables match a single function symbol. Hence, context vari-
ables support “vertical movement” in the tree in arbitrary depth, and function
variables do the same in one depth level only. Sequence and individual variables
can be seen as the “horizontal counterparts” for context and function variables:
Sequence variables match arbitrarily long sequences of terms, and individual
variables match only a single term.

Sequence variables can be constrained by regular expressions over terms. The
values of constrained variables are required to be elements of the corresponding
regular word language. Context variables are constrained by regular expressions
over contexts. The values of constrained context variables should be elements of
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the corresponding regular tree language (it extends the result from [29] where
context variables have been restricted by regular expressions over function sym-
bols). Moreover, regular expressions are not limited to be linear. This gives a
powerful data extraction mechanism. On the other hand, we do not allow recur-
sion in constraints. The algorithm with regular constraints is sound, terminating,
and complete. We show how to optimize the algorithm by early failure detection
and branching reduction heuristics, and discuss possible applications.

The paper is organized as follows: Preliminary notions are introduced in Sec-
tion 2. In Section 3 we describe the Csm algorithm and its optimizations. Csm
with regular expressions is addressed in Section 4. Applications are discussed in
Section 5. Related work is reviewed in Section 6. Section 7 concludes.

Due to space limitations, proofs are given in a technical report [30].

2 Preliminaries

We assume the following mutually disjoint sets of symbols fixed: individual vari-
ables VInd, sequence variables VSeq, function variables VFun, context variables
VCon, and function symbols F . The sets VInd, VSeq, VFun, and VCon are count-
able. The set F is finite or countably infinite. All the symbols in F except a
distinguished constant ◦ (called a hole) have flexible arity. We will use x, y, z for
individual variables, x, y, z for sequence variables, F, G,H for function variables,
C, D, E for context variables, and a, b, c, f, g, h for function symbols. We may
use these meta-variables with indices as well.

Terms are constructed using the following grammar:

t ::= x | x | ◦ | f(t1, . . . , tn) | F (t1, . . . , tn) | C(t).

In C(t) the term t can not be a sequence variable. We will write a for the term
a() where a ∈ F . The meta-variables s, t, r, maybe with indices, will be used for
terms. A function symbol f is called the head of f(t1, . . . , fn). A ground term is
a term without variables. A context is a term with a single occurrence of the hole
constant ◦. To emphasize that a term t is a context we will write t[◦]. A context
t[◦] may be applied to a term s that is not a sequence variable, written t[s], and
the result is the term consisting of t with ◦ replaced by s. We will use C and D,
with or without indices, for contexts.

A substitution is a mapping from individual variables to those terms which are
not sequence variables and contain no holes, from sequence variables to finite,
possibly empty sequences of terms without holes, from function variables to
function variables and symbols, and from context variables to contexts, such that
all but finitely many individual and function variables are mapped to themselves,
all but finitely many sequence variables are mapped to themselves considered as
singleton sequences, and all but finitely many context variables are mapped to
themselves applied to the hole. For example, the mapping {x �→ f(a, y), x �→
�	, y �→ �a, C(f(b)), x	, F �→ g, C �→ g(◦)} is a substitution.1 We will use lower

1 To improve readability we write sequences between the symbols � and 	.
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case Greek letters σ,ϑ, ϕ, and ε for substitutions, where ε denotes the empty
substitution. As usual, indices may be used with the meta-variables.

Substitutions are extended to terms: vσ = σ(v) for v ∈ VInd ∪ VSeq, C(t)σ =
σ(C)[tσ], F (t1, . . . , tn)σ = σ(F )(t1σ, . . . , tnσ), f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ).

A substitution σ is more general than ϑ, denoted σ ≤· ϑ, if there exists a
ϕ such that σϕ = ϑ. A substitution σ is more general than ϑ on a set of
variables V , denoted σ ≤·V ϑ, if there exists a ϕ such that vσϕ = vϑ for all
v ∈ V . A Csm problem is a finite multiset of term pairs (Csm equations), written
{s1 / t1, . . . , sn / tn}, where the s’s and the t’s contain no holes, the s’s are
not sequence variables, and the t’s are ground. We will also call the s’s the query
and the t’s the data. Substitutions are extended to Csm equations and problems
in the usual way. A substitution σ is called a matcher of the Csm problem
{s1 / t1, . . . , sn / tn} if siσ = ti for all 1 ≤ i ≤ n. We will use Γ and Δ to
denote Csm problems. A complete set of matchers of a Csm problem Γ is a set
of substitutions S such that (i) each element of S is a matcher of Γ , and (ii)
for each matcher ϑ of Γ there exist a substitution σ ∈ S such that σ ≤· ϑ. The
set S is a minimal complete set of matchers of Γ if it is a complete set and two
distinct elements of S are incomparable with respect to ≤·.

Example 1. The minimal complete set of matchers for the context sequence
matching problem {C(f(x))/ g(f(a, b), h(f(a), f))} consists of three elements:
{C �→ g(◦, h(f(a), f)), x �→ �a, b	}, {C �→ g(f(a, b), h(◦, f)), x �→ a}, and
{C �→ g(f(a, b), h(f(a), ◦)), x �→ �	}.

3 Matching Algorithm

We now present inference rules for deriving solutions for Csm problems. A system
is either the symbol ⊥ (failure) or a pair Γ ; σ, where Γ is a Csm problem and
σ is a substitution. The inference system I consists of the transformation rules
listed below. The indices n and m are non-negative unless otherwise stated.

T: Trivial

{t � t} ∪ Γ ; σ =⇒ Γ ; σ.

IVE: Individual Variable Elimination

{x � t} ∪ Γ ; σ =⇒ Γϑ; σϑ, where ϑ = {x �→ t}.

FVE: Function Variable Elimination

{F (s1, . . . , sn) � f(t1, . . . , tm)} ∪ Γ ; σ
=⇒ {f(s1ϑ, . . . , snϑ) � f(t1, . . . , tm)} ∪ Γϑ; σϑ, where ϑ = {F �→ f}.

PD: Partial Decomposition

{f(s1, . . . , sn) � f(t1, . . . , tm)} ∪ Γ ; σ
=⇒ {s1 � t1, . . . , sk−1 � tk−1, f(sk, . . . , sn) � f(tk, . . . , tm)} ∪ Γ ; σ,

if f(s1, . . . , sn) �= f(t1, . . . , tm), sk ∈ VSeq for some 1 < k ≤ min(n, m)+1, and si /∈ VSeq

for all 1 ≤ i < k.
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TD: Total Decomposition

{f(s1, . . . , sn) � f(t1, . . . , tn)} ∪ Γ ; σ =⇒ {s1 � t1, . . . , sn � tn} ∪ Γ ; σ,

if f(s1, . . . , sn) �= f(t1, . . . , tn) and si /∈ VSeq for all 1 ≤ i ≤ n.

SVD: Sequence Variable Deletion

{f(x, s1, . . . , sn) � t} ∪ Γ ; σ =⇒ {f(s1ϑ, . . . , snϑ) � t} ∪ Γϑ; σϑ,

where ϑ = {x �→ �	}.

W: Widening

{f(x, s1, . . . , sn) � f(t, t1, . . . , tm)} ∪ Γ ; σ
=⇒ {f(x, s1ϑ, . . . , snϑ) � f(t1, . . . , tm)} ∪ Γϑ; σϑ, where ϑ = {x �→ �t, x	}.

CVD: Context Variable Deletion

{C(s) � t} ∪ Γ ; σ =⇒ {sϑ � t} ∪ Γϑ; σϑ, where ϑ = {C �→ ◦}.

D: Deepening

{C(s) � f(t1, . . . , tm)} ∪ Γ ; σ =⇒ {C(sϑ) � tj} ∪ Γϑ; σϑ,

where ϑ = {C �→ f(t1, . . . , tj−1, C(◦), tj+1, . . . , tm)} for some 1 ≤ j ≤ m, and m > 0.

SC: Symbol Clash

{f(s1, . . . , sn) � g(t1, . . . , tm)} ∪ Γ ; σ =⇒ ⊥, if f /∈ VCon ∪ VFun and f �= g.

AD: Arity Disagreement

{f(s1, . . . , sn) � f(t1, . . . , tm)} ∪ Γ ; σ =⇒ ⊥,

if m �= n and si /∈ VSeq for all 1 ≤ i ≤ n, or m = 0 and si /∈ VSeq for some 1 < i ≤ n.

We may use the rule name abbreviations as subscripts, e.g. Γ1; σ1 =⇒T Γ2; σ2 for
the Trivial rule. SVD, W, CVD, and D are non-deterministic rules. A derivation
is a sequence Γ1; σ1 =⇒ Γ2; σ2 =⇒ · · · of system transformations.

Definition 1. A Csm algorithm M is any program that takes a system Γ ; ε as
input and uses the rules in I to generate a complete tree of derivations, called
the matching tree for Γ , in the following way:

1. The root of the tree is labeled with Γ ; ε.
2. Each branch of the tree is a derivation. The nodes in the tree are systems.
3. If several transformation rules, or different instances of the same transfor-

mation rule are applicable to a node in the tree, they are applied concurrently.
No rules are applicable to the leaves.

The algorithm M was first introduced in [29]. The leaves of a matching tree are
labeled either with the systems of the form ∅; σ or with ⊥. The branches that end
with ∅; σ are successful branches, and those that end with ⊥ are failed branches.
We denote by SolM(Γ ) the solution set of Γ generated by M, i.e., the set of all
σ’s such that ∅; σ is a leaf of the matching tree for Γ .

Theorem 1. The matching algorithm M terminates for any input problem Γ
and generates a minimal complete set of matchers of Γ .
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Moreover, M never computes the same matcher twice. If we are not interested
in bindings for certain variables, we can replace them with the anonymous vari-
ables: “ ” for any individual or function variable, and “ ” for any sequence or
context variable. It is straightforward to adapt the rules in I to such cases: If
an anonymous variable occurs in the rule IVE, FVE, SVD, W, CVD, or D then
the substitution ϑ in the same rule is ε. Strictly speaking, if {s / t} is a Csm
problem where s contains anonymous variables and ϑ is a solution computed by
the adapted version of the algorithm then sϑ is not identical to t (because it still
contains anonymous variables) but is embedded in t.

We can use (the adapted form of) M for multi-slot information extraction
from data by nonlinear queries (cf. e.g. [38]):

Example 2. Solving the Csm problem

{C(F ( , D(f(x)), , E(f(x)), ))/ f(g(b, f(a), f(a)), f(b), f(a))}

by M gives three solutions:

{C �→ ◦, D �→ g(b, ◦, f(a)), E �→ ◦, F �→ f, x �→ a},
{C �→ ◦, D �→ g(b, f(a), ◦), E �→ ◦, F �→ f, x �→ a},
{C �→ f(◦, f(b), f(a)), D �→ ◦, E �→ ◦, F �→ g, x �→ a}.

It extracts contexts under which two equal subtrees of the form f(x) are located.
With the help of function variables one can also extract contexts under which
two equal leaves lie: {C(F ( , D(G()), , E(G()), )) / f(g(a, b), a)} returns
{C �→ ◦, D �→ g(◦, b), E �→ ◦, F �→ f, G �→ a} (remember that a() = a).

The algorithm M can be further optimized by detecting failure early and avoiding
branching whenever possible. Below we consider some of the methods to achieve
this. Let s/ t be a Csm equation where s = f(s1, . . . , sn) and t = f(t1, . . . , tm).
Then s/ t fails if any of the following matching pretests succeeds:

1. The number of symbol occurrences N different from context and sequence
variables in s is greater than that in t. For instance, if s = f(C(a), F (x), y)
and t = f(a, a), then N(s) = 4, N(t) = 3 and, hence, s/ t fails.

2. If s contains a function symbol that does not occur in t like, for instance,
for s = f(x, C(a), b) and t = f(c, b) where a does not occur in t.

3. If the sequence of heads of s’s is not a subsequence of the sequence of heads
of t’s. This is the case, for instance, for s = f(C(a), g(x), x, g(y)) and t =
f(a, g(a), f(a)), where the sequence g, g is not a subsequence of a, g, f .

4. If the minimum depth of s is greater than the depth of t. The minimum depth
of a term is computed as the depth without context variables. For instance,
the minimum depth of s = f(f(C(F (x, f(a)))), g(a, f(x))) is 4, and s does
not match t = f(f(a, f(a)), g(a, f(b))) whose depth is 3.

Various such pretests are known in the term indexing literature; see, e.g. [42].
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Branching is caused by context and sequence variables that permit multiple
bindings. It happens in the rules SVD, W, CVD, and D. In certain cases back-
tracking can be avoided if we can detect the right binding early enough. For
instance, for the matching equation f(x) / f(a, b, c) we can compute the solu-
tion {x �→ �a, b, c	} immediately instead of applying the rule W three times and
then SVD once. Therefore, a good heuristics would be first, to select such equa-
tions as early as possible, and second, to facilitate generating such equations. To
achieve the latter whenever possible, we introduce the following two rules:

Sp: Splitting

{f(x, s1, . . . , si, . . . , sn) � f(t1, . . . , tj , . . . , tm)} ∪ Γ ; σ =⇒
{f(x, s1, . . . , si−1) � f(t1, . . . , tj−1), si � tj ,
f(si+1, . . . , sn) � f(tj+1, . . . , tm)} ∪ Γ ; σ, where head(si) = head(tj).

TlD: Tail Decomposition

{f(x, s1, . . . , si−1, y, si+1, . . . , sn) � f(t1, . . . , tj , . . . , tm)} ∪ Γ ; σ =⇒
{f(x, s1, . . . , si−1, y) � f(t1, . . . , tj), si+1 � tj+1, . . . , sn � tm} ∪ Γ ; σ,

if sk /∈ VSeq for all i < k ≤ n and n − i = m − j.

Note that Sp still introduces branching because there can be several choices of
si and tj . (Branching factor can be reduced by tailoring early failure pretests
into Sp.) Applying Sp and TlD eagerly together with early failure detection tests
and the deterministic rules from I eventually generates Csm problems where se-
quence variables occur in the equations like f(x)/ t and f(x, s1, . . . , sn, y)/ t.
Here s’s are variables or have function or context variables in the topmost
position. The equations of the former type can be solved immediately, while
the latter ones can be attacked either by SVD and W rules, or by eliminat-
ing sequence variables by Diophantine techniques. It can be done as follows:
Let f(s1, . . . , sn)/ f(t1, . . . , tm) be a Csm problem, where x1, . . . , xk are all se-
quence variables among s’s, and Ni is the number of occurrences of xi (at the top-
most level). We associate a linear Diophantine equation

∑k
i=1 NiXi = m−n+k

to each such Csm problem and solve it for X ’s over naturals. If the equation is
unsolvable then the matching attempt fails. Otherwise, a solution li for each Xi

specifies the length of sequence the variable xi can be bound with. Therefore,
we replace f(s1, . . . , sn) / f(t1, . . . , tm) with new matching problems f(si) /
f(tji , . . . , tji+ki) for each 1 ≤ i ≤ n, where j1 = 1, ji+1 = ji +ki +1, jn +kn = m,
ki = li − 1 if si is a sequence variable, and ki = 0 otherwise. Since linear
Diophantine equations can have several solutions, this technique introduces a
branching point. For instance, the matching problem {f(x, y) / f(a, b)} will
lead either to {f(x) / f(), f(y) / f(a, b)}, to {f(x) / f(a), f(y) / f(b)}, or
to {f(x)/ f(a, b), f(y)/ f()}.

Although solving linear Diophantine equations over naturals is NP-complete,
in practice it may still be useful to apply this technique for certain problems.
Hence, in this way a Csm problem can essentially be reduced to matching with
individual, context, and function variables. For such problems we can easily
adapt context matching optimization techniques from [41] and add them to M.
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4 Matching Algorithm with Regular Constraints

Regular expressions provide a powerful mechanism for restricting data values.
The classical approach to regular expression matching is based on automata. In
this section we show that regular expression matching can be easily incorporated
into the rule-based framework of Csm.

Regular expressions on terms are defined by the following grammar:

R ::= t | �	 | �R1, R2	 | R1|R2 | R∗,

where t is a term without holes, �	 is the empty sequence, “,” is concatena-
tion, “|” is choice, and “∗” is repetition (Kleene star). The operators are right-
associative; “*” has the highest precedence, followed by “,” and “|”.

Substitutions are extended to regular expressions on terms in the usual way:
�	σ = �	, �R1, R2	σ = �R1σ, R2σ	, (R1|R2)σ = R1σ|R2σ, and R∗σ = (Rσ)∗. Each
regular expression on terms R defines the corresponding regular language L(R).

Regular expressions on contexts are defined as follows:

Q ::= C | �Q1, Q2	 | Q1|Q2 | Q∗.

Like for regular expressions on terms, substitutions are extended to regular ex-
pressions on contexts in the usual way. Each regular expression on contexts Q
defines the corresponding regular tree language L(Q) as follows:

L(C) = {C}.
L(�Q1, Q2	) = {C1[C2] | C1 ∈ L(Q1) and C2 ∈ L(Q2)}.

L(Q1|Q2) = L(Q1) ∪ L(Q2).
L(Q∗) = {◦} ∪ L(�Q, Q∗	).

Membership atoms are atoms of the form Ts in R or Cv in Q, where Ts is
a finite, possibly empty, sequence of terms, and Cv is either a context or a
context variable. Regular constraints are pairs (p, f) where p is a membership
atom and f is a flag that is a boolean expression (with the possible values 0 or 1).
The intuition behind the regular constraint (Ts in R, f) is that Ts ∈ L(R)\{�	}
for f = 1 and Ts ∈ L(R) for f = 0.2 Similarly, the intuition behind (Cv in Q, g)
is that Cv ∈ L(Q)\{◦} for g = 1 and Cv ∈ L(Q) for g = 0. It will be needed later
to guarantee that the regular matching algorithm terminates. Substitutions are
extended to regular constraints in the usual way. A regular Csm problem is a
multiset of matching equations and regular constraints of the form:

{s1 / t1, . . . , sn / tn, (x1 in R1, f1), . . . , (xm in Rm, fm),

(C1 in Q1, g1), . . . , (Ck in Qk, gk)},

2 Note that (Ts in R∗, 1) does not have the same meaning as (Ts in �R, R∗	, 0): Just
take a∗ as R.
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where all x’s and all C’s are distinct and do not occur in R’s and Q’s.3 We will
assume that all x’s and C’s occur in the matching equations. A substitution σ is
called a regular matcher for such a problem if siσ = ti, fjσ ∈ {0, 1}, Qlσ ∈ {0, 1},
xjσ ∈ L(Rjσ)fjσ, and C lσ ∈ L(Qlσ)glσ for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, and
1 ≤ l ≤ k, where L(R)0 = L(R), L(R)1 = L(R) \ {�	}, L(Q)0 = L(Q), and
L(Q)1 = L(Q) \ {◦}.

A straightforward way to solve regular Csm problems would be first com-
puting matchers and then testing whether the values of constrained variables
satisfy the corresponding constraints. Testing can be done by automata con-
structed from regular expressions for each computed matcher. (Since regular
expressions contain variables that get instantiated during the matching process,
the automata would be different for each matcher.) Below we propose a different
approach that saves the effort of solution testing. We construct an algorithm
that computes the correct answers directly. Another advantage of this approach
is that we are not restricted to linear regular expressions.

We define the inference system IR to solve regular Csm problems. It operates
on systems Γ ; σ where Γ is a regular Csm problem and σ is a substitution. The
system IR includes all the rules from the system I, but SVD, W, CVD, and D
need an extra condition on applicability: For the variables x and C in those rules
there should be no regular constraint (x in R, f) and (C in Q, g) in the matching
problem. There are additional rules in IR for the variables constrained by regular
constraints listed below. For the function symbols NonEmptySeq, NonEmptyCtx,
and ⊕ used in these rules the following equalities hold: NonEmptySeq() = 0 and
NonEmptySeq(r1, . . . , rn) = 1 if ri /∈ VSeq for some 1 ≤ i ≤ n; NonEmptyCtx(◦) =
0 and NonEmptyCtx(C) = 1 if the context C contains at least one symbol different
from context variables and the hole constant; 0 ⊕ 0 = 1 ⊕ 1 = 0 and 1 ⊕ 0 =
0⊕ 1 = 1.

ESRET: Empty Sequence in a Regular Expression for Terms

{f(x, s1, . . . , sn) � t, (x in �	, f)} ∪ Γ ; σ

=⇒ {f(x, s1, . . . , sn)ϑ � t} ∪ Γϑ; σϑ, with ϑ = {x �→ �	} if f = 0,
⊥ if f = 1.

TRET: Term in a Regular Expression for Terms

{f(x, s1, . . . , sn) � t, (x in s, f)} ∪ Γ ; σ
=⇒ {f(x, s1, . . . , sn)ϑ � t} ∪ Γϑ; σϑ, where ϑ = {x �→ s} and s /∈ VSeq.

SVRET: Sequence Variable in a Regular Expression for Terms

{f(x, s1, . . . , sn) � t, (x in y, f)} ∪ Γ ; σ =⇒ {f(x, s1, . . . , sn)ϑ � t} ∪ Γϑ; σϑ,

where ϑ = {x �→ y} if f = 0. If f = 1 then ϑ = {x �→ �y, y	, y �→ �y, y	} where y is a
fresh variable.

ChRET: Choice in a Regular Expression for Terms

{f(x, s1, . . . , sn) � t, (x in R1|R2, f)} ∪ Γ ; σ
=⇒ {f(x, s1, . . . , sn) � t, (x in Ri, f)} ∪ Γ ; σ, for i = 1, 2.

3 This restriction can be relaxed allowing occurrences without cycles.
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CRET: Concatenation in a Regular Expression for Terms

{f(x, s1, . . . , sn) � t, (x in �R1, R2	, f)} ∪ Γ ; σ
=⇒ {f(x, s1, . . . , sn)ϑ � t, (y1 in R1, f1), (y2 in R2, f2)} ∪ Γϑ; σϑ,

where y1 and y2 are fresh variables, ϑ = {x �→ �y1, y2	}, and f1 and f2 are computed
as follows: If f = 0 then f1 = f2 = 0 else f1 = 0 and f2 = NonEmptySeq(y1) ⊕ 1.

RRET1: Repetition in a Regular Expression for Terms 1

{f(x, s1, . . . , sn) � t, (x in R∗, 0)} ∪ Γ ; σ
=⇒ {f(x, s1, . . . , sn)ϑ � t} ∪ Γϑ; σϑ, where ϑ = {x �→ �	}.

RRET2: Repetition in a Regular Expression for Terms 2

{f(x, s1, . . . , sn) � t, (x in R∗, f)} ∪ Γ ; σ
=⇒ {f(x, s1, . . . , sn)ϑ � t, (y in R, 1), (x in R∗, 0)} ∪ Γϑ; σϑ,

where y is a fresh variable and ϑ = {x �→ �y, x	}.

HREC: Hole in a Regular Expression for Contexts

{C(s) � t, (C in ◦, g)} ∪ Γ ; σ

=⇒ {C(s)ϑ � t} ∪ Γϑ; σϑ, with ϑ = {C �→ ◦} if g = 0,
⊥ if g = 1.

CxREC: Context in a Regular Expression for Contexts

{C(s) � t, (C in C, g)} ∪ Γ ; σ =⇒ {C(s)ϑ � t} ∪ Γϑ; σϑ,

where C �= ◦, head(C) /∈ VCon, and ϑ = {C �→ C}.

CVREC: Context Variable in a Regular Expression for Contexts

{C(s) � t, (C in D(◦), g)} ∪ Γ ; σ =⇒ {C(s)ϑ � t} ∪ Γϑ; σϑ,

where ϑ = {C �→ D(◦)} if g = 0. If g = 1 then ϑ = {C �→ F (x, D(◦), y), D �→
F (x, D(◦), y)}, where F, x, and y are fresh variables.

ChREC: Choice in a Regular Expression for Contexts

{C(s) � t, (C in Q1|Q2, g)} ∪ Γ ; σ =⇒ {C(s) � t, (C in Qi, g)} ∪ Γ ; σ,

for i = 1, 2.

CREC: Concatenation in a Regular Expression for Contexts

{C(s) � t, (C in �Q1, Q2	, g)} ∪ Γ ; σ
=⇒ {C(s)ϑ � t, (D1 in Q1, g1), (D2 in Q2, g2)} ∪ Γϑ; σϑ,

where D1 and D2 are fresh variables, ϑ = {C �→ D1(D2(◦))}, and g1 and g2 are compu-
ted as follows: If g = 0 then g1 = g2 = 0 else g1 = 0 and g2 = NonEmptyCtx(D1) ⊕ 1.

RREC1: Repetition in a Regular Expression for Contexts 1

{C(s) � t, (C in Q∗, 0)} ∪ Γ ; σ
=⇒ {C(s)ϑ � t} ∪ Γϑ; σϑ, where ϑ = {C �→ ◦}.

RREC2: Repetition in a Regular Expression for Contexts 2

{C(s) � t, (C in Q∗, g)} ∪ Γ ; σ
=⇒ {C(s)ϑ � t, (D in Q, 1), (C in Q∗, 0)} ∪ Γϑ; σϑ,

where D is a fresh variable and ϑ = {C �→ D(C(◦))}.
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A regular Csm algorithm MR is defined in a similar way to the algorithm M
(Definition 1) with the only difference that the rules of IR are used instead of
the rules of I. From the beginning, each flag in the input problem is set either to
0 or to 1. Note that the rules in IR work either on a selected matching equation,
or on a selected pair of a matching equation and a regular constraint. No rule
selects a regular constraint alone. We denote by SolMR(Γ ) the solution set of Γ
generated by MR. The following theorems show that MR is sound, terminating,
and complete.

Theorem 2 (Soundness of MR). Let Γ be a regular Csm problem. Then every
substitution σ ∈ SolMR(Γ ) is a regular matcher of Γ .

Theorem 3 (Termination of MR). MR terminates on any input.

Theorem 4 (Completeness of MR). Let Γ be a regular Csm problem, ϑ
be a regular matcher of Γ , and V be a variable set of Γ . Then there exists a
substitution σ ∈ SolMR such that σ ≤·V ϑ.

We can adapt MR to anonymous variables like we did for M. However, a remark
has to be made about using anonymous variables in regular expressions with
Kleene star. There they behave differently from named singleton variables and
play a similar role as, for instance, the pattern Any in [24]. The reason is that
the variables that had only one occurrence in the matching problem (in an
expression with Kleene star) will have two occurrences after the application
of the RRET2 and RREC2 rules, while duplicated anonymous variables are not
considered to be the same. It affects solvability. For instance, the regular Csm
problem {f(x)/ f(g(a), g(b)), (x in g( )∗, 0)} has a solution {x �→ �g(a), g(b)	}
while the problem {f(x)/ f(g(a), g(b)), (x in g(x)∗, 0)} is unsolvable because it
is reduced to {f(x)/ f(g(b)), (x in g(a)∗, 0)}. In general, the notion of a regular
matcher for regular Csm problems with anonymous variables has to be redefined:
First, we write s 
 t iff the term s (maybe with holes) whose only variables are
anonymous variables can be made identical to the ground term t (maybe with
holes) by replacing anonymous variables in s with the corresponding expressions
(terms, term sequences, function symbols, contexts) and applying contexts as
long as possible. For instance, f( , ( (◦, , a)), ) 
 f(a, f(b, g(◦, ◦, b, a)), c).
Next, we write �t1, . . . , tn	 ∈· S iff there exists �s1, . . . , sn	 ∈ S such that si 
 ti
for each 1 ≤ i ≤ n. Now, let a regular Csm problem be {s1 / t1, . . . , sn / tn,
(x1 in R1, f1), . . . , (xm in Rm, fm), (C1 in Q1, g1), . . . , (Ck in Qk, gk)}, where
s’s, R’s, and Q’s may contain anonymous variables. A substitution σ is a regular
matcher for such a problem if siσ 
 ti, fjσ ∈ {0, 1}, Qlσ ∈ {0, 1}, xjσ ∈·

L(Rjσ)fjσ, and Clσ ∈· L(Qlσ)glσ for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1 ≤ l ≤
k, where the only variables in siσ, Rjσ, and in Qlσ are anonymous variables.
For instance, {x �→ �g(a), g(b)	, x �→ c, C �→ f(g(◦))} is a regular matcher for
the matching problem {f(x, C(x), ) / f(g(a), g(b), f(g(c)), d), (x in g( )∗, 0),
(C in f( , g(◦), ), 0)}.

Special failure detection tests can be incorporated into MR. For instance, we
can add the rule {f(x, s1, . . . , sn)/ f(), (x in R, 1)} ∪ Γ ; σ =⇒ ⊥.
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Note that for a problem Γ there might be σ,ϑ ∈ SolMR(Γ ) such that vσ = vϑ
for all v in the set of variables of Γ . This is the case, for instance, for {f(x) /
f(a, b, b, a), (x in �a∗, b∗	∗, 0)} and {C(a) / f(g(a), f(a)), (C in (f( , ◦, )∗|
g( , ◦, )∗)∗, 0)}. It can be avoided by replacing regular expressions with the
equivalent “disambiguated” ones like, e.g. star normal forms [5]. Such an equiv-
alent formulation for the matching problems above are {f(x) / f(a, b, b, a),
x in ((a|b)∗, 0)} and {C(a)/ f(g(a), f(a)), (C in (f( , ◦, )| g( , ◦, ))∗, 0)}.

As syntactic sugar for regular context expressions, we let function symbols,
function variables, and context variables be used as the basic building blocks for
regular expressions. Such regular expressions are understood as abbreviations for
the corresponding regular expressions on contexts. For example, �F, f |�C, g	∗	
abbreviates �F ( , ◦, ), f( , ◦, )|�C(◦), g( , ◦, )	∗	. Answer substitutions can
also be modified correspondingly. In this way MR will understand the regular
path expression syntax.

5 Applications

Csm is the main pattern matching mechanism in the rule-based programming
system ρLog [33,35]. ρLog supports strategic programming with deterministic
(labeled) conditional transformation rules, matching with regular constraints,
and is built on top of the Mathematica system. As an example, we show a ρLog
clause (in a conventional notation) that implements rewriting: C(x) →rewrite(z)

C(y) ⇐ x →z y. Assume that we have another clause a →r b that defines the
rule labeled by r. Then the query f(a, a) →rewrite(r) x (read: find such an x
to which f(a, a) can be rewritten by r) succeeds twice: with x = f(b, a) and
x = f(a, b). The order in which these answers are generated (and, hence, the
term traversal strategy) is defined by the order of matching rules in Csm that
compute bindings for C.

Another ρLog example is the program that from a given term selects subterms
whose nodes are all labeled with a. It consists of the following three clauses

(x) →a-subt x ⇐ x →NF[a’s] true, a →a’s true, C(a(a, x)) →a’s C(a(x)),
where NF is the ρLog strategy for a normal form computation.

Csm can be used to achieve more control on rewriting, to match program
schemata with programs (cf. semi-unification [11], see also [9]), in Web site ver-
ification (e.g. in a rewriting-based framework similar to [1]), in Xml querying,
transformation, schema matching, and related areas. For this purpose (especially
for Xml related applications) we would need to extend our matching algorithm
for orderless function symbols. (The orderless property generalizes commutativ-
ity for flexible arity function symbols.) Such functions are important for Xml
querying because the users often are not concerned with the actual order of
elements in an Xml document. A straightforward but inefficient way of deal-
ing with orderless functions is to consider all possible permutations of their
arguments and applying the Csm. To achieve a better performance one can
carry over some known techniques from AC-matching to Csm with orderless
functions.
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In our opinion, a (conditional) rewriting-based query language that imple-
ments Csm with orderless functions would possess the advantages of both nav-
igational (path-based) and positional (pattern-based) types of Xml query lan-
guages. (See [18] for a recent survey on this topic.) It would easily support,
for instance, a wide range of queries (selection and extraction, reduction, nega-
tion, restructuring, combination), parent-child and sibling relations and their
closures, access by position, unordered matching, order-preserving result, par-
tial and total queries, multiple results, and other properties. Moreover, the rule-
based paradigm would provide a clean declarative semantics. As an example, we
show how to express a reduction query. Reduction is one of the query operations
described as desiderata for Xml query languages in [32] and, according to [4], is
a bottleneck for many of them. Let the Xml data (translated into our syntax)
consist of the elements of the form:

manufacturer(mn-name(Mercury), year(1999 ),
model(mo-name(SLT ), front -rating(3 .84 ), side-rating(2 .14 ), rank(9 )), . . .).

The reduction query operation is formulated as follows: From the manufactu-
rer elements drop those model sub-elements whose rank is greater than 10, and
elide the front-rating and side-rating elements from the remaining models. It can
be expressed as a rule manufacturer(x) →NF[Reduce] y that evaluates as follows:
Its left hand side matches the data, the obtained instance is rewritten into the
normal form with respect to the rule Reduce, and the result is returned in y.
Reduce is defined by two conditional rewrite rules:

manufacturer(x1 ,model( , rank(x ), ), x2 )
→Reduce manufacturer(x1 , x2 ) ⇐ x > 10 .

manufacturer(x1 ,model(y1 , front -rating( ), side-rating( ), rank(x ), y2 ), x2 )
→Reduce manufacturer(x1 ,model(y1 , rank(x ), y2 ), x2 ) ⇐ x ≤ 10 .

In general, we believe that such a language would be a good candidate to meet
many of the requirements for versatile Web query languages [7]. At least, the
core principles of referential transparency and answer-closedness, and incomplete
queries and answers can be easily supported. As for dealing with nonhierarchical
relations provided by, e.g. Id/IdRef links (that naturally asks for the graph data
model), one could apply techniques of equational Csm to query such data. As an
equational theory we could specify (oriented) equalities between constants repre-
senting IdRefs and terms that correspond to Ids. If such a theory can be turned
into a convergent rewrite system, it would mean that the data it represents con-
tains no cycles via Id/IdRefs. It would be interesting to study equational Csm
in more details. Another interesting and useful future work would be to identify
the types of matching problems that Csm can solve efficiently.

6 Related Work

Solving equations with context variables has been intensively investigated in
the recent years; see e.g, [13,14,31,39,40,41]. Context matching is NP-complete.
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Decidability of context unification is still an open question. Sequence matching
and unification was addressed, for instance, in [3,20,23,26,27,28,34]. Sequence
unification (and, hence, matching as well) is decidable.

There is a rich literature on matching with regular expressions, especially in
the context of general-purpose programming languages and semistructured data
querying. Regular expressions are supported in Perl, Emacs-Lisp, XDuce [25],
CDuce [2], Xtatic [19], and in the languages based on XPath [12], just to name a
few. Various automata-based approaches have been proposed for Xml querying;
see, e.g. [36,6,37,16,10]. Context matching is closely related to the evaluation of
conjunctive queries over trees [22].

Hosoya and Pierce [25] propose regular expression pattern matching for devel-
oping convenient programming constructs for tree manipulation in a statically
typed setting. Similar in spirit to Ml style pattern matching, their algorithm uses
regular expression types to dynamically match values. Patterns can be recursive
(under certain restrictions that guarantee that the language remains regular).
Recursion allows to write patterns that match, for instance, trees whose nodes are
labeled with the same label. Csm does not allow recursion in regular constraints.
That is why we needed three ρLog clauses above to solve the problem of selecting
terms with all a-labeled nodes. Patterns of Hosoya and Pierce are restricted to be
linear. We do not have such a restriction. In general, non-linearity is one of the
main difficulties for tree automata-based approaches [15]. Niehren et al [38] use
tree automata for multi-slot information extraction from semistructured data.
The automata are restricted to be unambiguous that limits n-ary queries to fi-
nite unions of Cartesian closed queries (Cartesian products of monadic queries),
but this restricted case is processed efficiently. For monadic queries an efficient
and expressive information extraction approach, monadic Datalog, was proposed
by Gottlob and Koch [21].

Simulation unification [8] uses the descendant construct that is similar to
context variables in the sense that it allows us to descend in terms to arbitrary
depth, but it does not allow regular expressions along it. Also, sequence variables
are not present there. However, it can process unordered and incomplete queries,
and it is a full scale unification, not a matching.

Our technique of using flags in constraints to guarantee termination is sim-
ilar to that of Frisch and Cardelli [17] for dealing with ambiguity in matching
sequences against regular expressions.

7 Conclusions

We described a sound, complete and terminating matching algorithm for terms
built over flexible arity function symbols and context, sequence, function, and
individual variables. Values of some context and sequence variables can be con-
strained by regular expressions. The constraints are not restricted to be linear.
We discussed ways to optimize the main algorithm as well as some of the possible
applications. Interesting future developments would be the complexity analysis
of the algorithm and extending Csm for equational case.
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Abstract. In this paper the Recursive Path Ordering is adapted for
proving termination of rewriting incrementally. The new ordering, called
Recursive Path Ordering with Modules, has as ingredients not only a
precedence but also an underlying ordering �B. It can be used for incre-
mental (innermost) termination proofs of hierarchical unions by defining
�B as an extension of the termination proof obtained for the base sys-
tem. Furthermore, there are practical situations in which such proofs can
be done modularly.

1 Introduction

Term rewriting provides a simple (but Turing-complete) model for symbolic com-
putation. A term rewrite system (TRS) is just a binary relation over the set of
terms of a given signature. The pairs of the relation are used for computing
by replacements until an irreducible term is eventually reached. Hence, the ab-
sence of infinite sequences of replacements, called termination, is a fundamental
(though undecidable) property for most applications of rewriting in program
verification and automated reasoning. For program verification, the termination
of a particular rewriting strategy called innermost termination has special inter-
est. In this strategy the replacements are performed inside-out, i.e. arguments
are fully reduced before reducing the function. Therefore, it corresponds to the
“call by value” computation rule of programming languages. This strategy is
also important because for certain classes of TRSs, innermost termination and
termination coincide [12].

Term rewrite systems are usually defined in hierarchies. This hierarchical
structure is very important when reasoning about TRS properties in an incre-
mental manner. Roughly, a property P is proved incrementally for a hierarchical
TRS R = R0 ∪ R1 if we can prove it by using information from the proof of
P for the base system R0. The simplest form of incrementality is modularity,
i.e. proving P for R just by proving P for R0 and R1 independently. However,
termination is not a modular property even for disjoint unions of TRSs [21]. A
stronger form of termination, called CE -termination, and innermost termination,
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are indeed modular for a restricted class of hierarchical unions [17, 14], but not
in general. Therefore, it is of great importance to tackle (innermost) termination
of hierarchical systems using an incremental approach.

Regardless the previous facts, the problem of ensuring termination of a hi-
erarchical union without finding (if possible) an alternate proof for the base
system has received quite few attention. The first and important step was done
by Urbain in [22]. He showed that from the knowledge that a base system is
CE-terminating, the conditions for the termination proof of a hierarchical union
can be relaxed. In the context of the Dependency Pair method (DP) [1] (the
most successful for termination of rewriting) this entails a significant reduction
in the number and the strictness of the DP-constraints. Very recently, Urbain’s
contribution was used for improving the application of the Size-Change Prin-
ciple (SCP) [15] to CE-termination of rewriting [10]. In the latter paper it was
shown that a termination measure for a base system R0 can be used for prov-
ing size-change termination of a hierarchical extension R1, and this guarantees
R0 ∪ R1 is CE -terminating. Using this result, the next TRS is easily (and even
modularly) proved simply terminating.

Example 1. The following hierarchical union (Rplus is taken from [19]) can be
used for computing Sudan’s function1.

Rplus =

⎧⎪⎪⎨⎪⎪⎩
plus(s(s(x)), y) → s(plus(x, s(y)))
plus(x, s(s(y))) → s(plus(s(x), y))

plus(s(0), y) → s(y)
plus(0, y) → y

RF =

⎧⎨⎩
F (0, x, y) → plus(x, y)

F (s(n), x, 0) → x
F (s(n), x, s(y)) → F (n, F (s(n), x, y), s(plus(F (s(n), x, y), y)))

In order to prove termination of R = Rplus ∪ RF (when using the DP-
approach) the whole union must be included in some (quasi-) ordering. ButRplus

requires semantical comparisons while RF needs lexicographic ones. Therefore,
no (quasi-) ordering traditionally used for automated proofs serves for this pur-
pose. However, simple termination ofRplus is easy to prove e.g. using the Knuth-
Bendix Ordering (KBO) [3]. Besides, every size-change graph of RF decreases
w.r.t. the lexicographic extension of KBO. Thus, RF is size-change terminating
w.r.t. KBO and we conclude R is simply terminating.

SCP provides a more general comparison than lexicographic and multiset
ones. But it has as main drawback that it cannot compare defined function
symbols (i.e. those appearing as root of left-hand sides) syntactically.

1 Chronologically, Sudan’s function [7] is the first example of a recursive but not
primitive recursive function. Sudan’s function F (p,m, n) is greater than or equal to
Ackermann’s function A(p,m, n) except at the single point (2, 0, 0). The latter was
used in [19] combined with Rplus.
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Example 2. Let RF ′ = RF ∪{F (s(n), F (s(n), x, y), z)→ F (s(n), x, F (n, y, z))}.
The new rule [6][Lemma 6.7, page 47] can be used for computing an upper bound
of the left-hand side while decreasing the size of the term. But now SCP fails in
proving termination of Rplus ∪RF ′ . This is due to the new rule which demands
a lexicographic comparison determined by a subterm rooted with the defined
symbol F .

When dealing with defined symbols, SCP cannot compete with classical syn-
tactical orderings like the Recursive Path Ordering [8]. Therefore, it would be
nice to adapt RPO in order to prove termination of Rplus ∪ RF ′ and other
hierarchical systems incrementally.

In this paper we present a new RPO-like ordering which can be used for these
purposes, called the Recursive Path Ordering with Modules (RPOM). It has as
ingredients not only a precedence, but also an underlying ordering �B.

Actually RPOM defines a class of orderings that can be partitioned into three
subclasses, RPOM-STAB, RPOM-MON and RPOM-IP-MON, where, under cer-
tain conditions, the first one contains stable orderings, the second one contains
monotonic orderings (or a weak form of monotonocity related to �B), and the
third one contains IP-monotonic orderings.

We use these orderings for proving CE-termination and innermost termination
of a hierarchical union R = R0 ∪ R1 incrementally as follows. The system R0
is known terminating, and perhaps an ordering 0B including the relation →R0

on terms of T (F0,X ) is given. An ordering �B is then constructed, perhaps
as an extension of 0B to T (F ,X ), or perhaps independently of the possible
0B. Three orderings from RPOM-STAB, RPOM-MON and RPOM-IP-MON
are then obtained from �B, satisfying that the one in RPOM-STAB is included
into the one in RPOM-MON under some conditions on �B and R0, and into
the one in RPOM-IP-MON under weaker conditions. Including R1 in RPOM-
STAB will then allow to prove CE -termination or innermost termination of R
depending on the original properties of �B and R0. Note that, in the case of
innermost termination, no condition at all is imposed on �B and R0.

Our results are a first step towards the definition of a general framework
for combining and extending different termination proof methods (this idea of
combining ordering methods was early considered in [18]), and thus obtain ter-
mination proofs of hierarchical unions of TRS’s whose modules have been proved
using different techniques. As a first step, since based on RPO, these results are
still weak to compete with the recent refinements of the DP method in [16, 20].
However, we believe that the extension of these results to more powerful path
orderings, like the Monotonic Semantic Path Ordering in [5], will provide fairer
comparison.

The remainder of the paper is organized as follows. In Section 2 we review ba-
sic notation, terminology and results. In Section 3 we define RPOM and prove its
properties, and the ones corresponding to every subclass RPOM-STAB, RPOM-
MON and RPOM-IP-MON. In Section 4 (resp. Section 5) we show how to use
RPOM for proving CE -termination (resp. innermost termination) incrementally.
We present some concluding remarks in Section 6.
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2 Preliminaries

We assume familiarity with the basics of term rewriting (see e.g. [2]).
The set of terms over a signature F is denoted as T (F ,X ), where X repre-

sents a set of variables. The symbol labelling the root of a term t is denoted as
root(t). The root position is denoted by λ. The set of positions of t is denoted
by Pos(t). The subterm of t at position p is denoted as t|p and t � t|p denotes
the proper subterm relation. A context, i.e. a term with a hole, is denoted as t[ ].
The term t with the hole replaced by s is denoted as t[s], and the term t[s]p
obtained by replacing t|p by s is defined in the standard way. For example, if
t is f(a, g(b, h(c)), d), then t|2.2.1 = c, and t[d]2.2 = f(a, g(b, d), d). We denote
t[s1]p1 [s2]p2 . . . [sn]pn by t[s1, s2, . . . , sn]p1,p2,...,pn . We write p1 > p2 (or, p2 < p1)
if p2 is a proper prefix of p1. In this case we say that p2 is above p1, or that p1
is below p2. We will usually denote a term f(t1, . . . , tn) by the simplified form
ft1 . . . tn.

The notation t̄ is ambiguously used to denote either the tuple (t1, . . . , tn) or
the multiset {t1, . . . , tn}, even in case of t = f(t1, . . . , tn). The number of symbols
of t is denoted as |t| while |t̄| denotes the number of elements in t̄. Substitutions
are denoted with the letter σ. A substitution application is written in postfix
notation.

We say that a binary relation � on terms is variable preserving if s � t
implies that every variable in t occurs in s. It is said that � is non-duplicating
if s � t implies that every variable in t occurs at most as often as in s. If s � t
implies sσ � tσ then � is stable. If for every function symbol f , s � t implies
f(. . . s . . .) � f(. . . t . . .) then � is monotonic. It is said that a relation � is well-
founded if there is no infinite sequence s1 � s2 � s3 � . . .. The transitive and
the reflexive-transitive closure of � are denoted as �+ and �∗ resp. The union
of � and the syntactical equality ≡ is denoted as 1. We say that � is compatible
with �′ if � ◦ �′ ⊆ � and �′ ◦ � ⊆ �.

A (strict partial) ordering on terms is an irreflexive transitive relation. A
reduction ordering is a monotonic, stable and well-founded ordering. A simplifi-
cation ordering is a reduction ordering including the strict subterm relation. A
precedence �F over F is the union of a well-founded ordering 0F and a compat-
ible equivalence relation ≈F . We say that a precedence �F is compatible with
a partition of F if f ≈F g implies that f and g belongs to the same part of F .

The multiset extension of an ordering � on terms to multisets, denoted as
�mul, is defined as s̄ �mul t̄ iff there exists ū ⊂ s̄ such that ū ⊆ t̄ and for all
t′ ∈ t̄− ū there is some s′ ∈ s̄− ū s.t. s′ � t′. The lexicographic extension of �

to tuples, denoted as �lex, is defined as s̄ �lex t̄ iff si � ti for some 1 ≤ i ≤ |s̄|
and sj ≡ tj for all 1 ≤ j < i. These extensions preserve irreflexivity, transitivity,
stability and well-foundedness.

If � is defined on T (F0,X ) and F0 ⊂ F then �F= {(sσ, tσ) | s � t, ∀x ∈
X , xσ ∈ T (F ,X )} is called the stable extension of � to F . The stable exten-
sion of a stable (and well-founded) ordering is also a stable (and well-founded)
ordering [19].
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A term rewrite system over F is denoted as R. Here, we deal with variable
preserving TRSs. Regarding termination, this restriction is not a severe one. A
rewriting step with R is written as s→R t. The notation s→λ,R t is used for a
rewriting step at position λ.

A TRS R is terminating iff →+
R is well-founded. It is said that R is simply

terminating iff R ∪ EmbF is terminating where EmbF = (F , {f(x1, . . . , xn) →
xk | f ∈ F , 1 ≤ k ≤ n}) and x1, . . . , xn are pairwise distinct variables. It is
said that R is CE-terminating iff RE = R ∪ CE is terminating, where CE =
(G, {G(x, y)→ x,G(x, y)→ y}) and G = F 3 {G}.

Given a TRS R, f(t1, . . . , tn) is said to be argument normalized if for all
1 ≤ k ≤ n, tk is a normal form. A substitution σ is said to be normalized if xσ
is a normal form for all x ∈ X . An innermost redex is an argument normalized
redex. A term s rewrites innermost to t w.r.t. R, written s →i t, iff s → t
at position p and s|p is an innermost redex. A term s rewrites innermost in
parallel to t w.r.t. R, written s ‖−→i,R t, iff s →+

i,R t and either s →i,R t at
position λ (denoted as s →i,λ,R) or s = f(s̄), t = f(t̄) and for all 1 ≤ k ≤ |s̄|
either sk ‖−→i,R tk or sk = tk is a normal form (denoted as s̄ ‖−→i,R t̄). A binary
relation � is IP-monotonic w.r.t. R iff ‖−→i,R ⊆ � [11].

A TRS R is innermost terminating iff →+
i,R is well-founded. Alternatively,

we have the following characterization for innermost termination.

Theorem 1. [11] A TRS R is innermost terminating iff there exists a well-
founded relation which is IP-monotonic w.r.t. R.

The defined symbols of a TRS R are D = {root(l) | l → r ∈ R} and the
constructors are C = F − D. The union R0 ∪ R1 is said to be hierarchical if
F0 ∩ D1 = ∅.

3 RPOM

In this section we define RPOM in terms of an underlying ordering �B and show
that it is an ordering. Moreover, we prove that well-foundedness of �B implies
well-foundedness of RPOM.

Actually RPOM defines a class of orderings that depends on three parame-
ters. These are the underlying ordering �B, the (usual in RPO and other or-
derings) statusses of the symbols in the signature, and a last parameter mc ∈
{rmul,mul, set}. Due to mc, this class of orderings can be partitioned into three
subclasses, RPOM-STAB, RPOM-MON and RPOM-IP-MON, where, under cer-
tain conditions, the first one contains stable orderings, the second one contains
monotonic orderings (or a weak form of monotonocity related to �B), and the
third one contains IP-monotonic orderings. At the end of this section we prove
the corresponding properties to every subclass.

Before going into the definition of RPOM, we need some additional notation.
Apart from the multiset extension �mul of an ordering � defined in the prelim-
inaries we need two other extensions of orderings to multisets: the set extension
and the rmul extension.
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Definition 1. Let � be an arbitrary ordering. Given two multisets S and T ,
S �set T if S′ �mul T ′, where S′ and T ′ are obtained from S and T , respectively,
by removing repetitions. S �rmul T if S �= ∅ and for all t ∈ T there is some
s ∈ S such that s � t.

It is easy to see that the relation �rmul is included into �mul and �set, and that it
preserves irreflexivity, transitivity, stability and well-foundedness, whereas �set

preserves all these properties except for stability.
We will use the notation ⊇set and ⊇mul for denoting the inclusion in the sense

of sets and multisets, respectively, in the cases where ⊇ alone is not clear by the
context. For facility of notations, we identify ⊇rmul with ⊇set.

The ordering RPOM is defined as the union of the underlying ordering �B,
and a RPO-like ordering 0. Hence, we need a definition of 0 not in contradiction
(or even more, compatible) with �B. Since �B will be generally obtained as an
extension of an ordering 0B on the base signature B = F0, it seems natural to
demand this ordering to relate pairs of terms where at least one is rooted by a
base symbol (i.e. a symbol in B), but as we see as follows, a more strict condition
is needed for �B.

The definition of s 0 t differs depending on if the roots of s and t are or not
in B. If no root is in B, then we use a classical RPO-like recursive definition. If
some root is in B, we eliminate all the context containing symbols of B, resulting
in two multisets, and compare them with the corresponding extension 0rmul,
0mul or 0set.

Definition 2. Given a signature B, we say that p is a frontier position and
t|p is a frontier term occurrence of t if root(t|p) /∈ B and root(t|p′ ) ∈ B, for
all p′ < p. The multiset of all frontier subterm occurrences of t is denoted as
frtB(t)2.

For example, if B = {f}, then frtB(f(g(a), f(g(f(g(a), g(b))), g(a))) is {g(a),
g(f(g(a), g(b))), g(a)}.

If we want frtB(s) 0rmul frtB(t) or frtB(s) 0mul frtB(t) or frtB(s) 0set

frtB(t) to be not in contradiction with �B, it is necessary to demand that s �B t
implies frtB(s) ⊇rmul frtB(t) or frtB(t) ⊇mul frtB(t) or frtB(s) ⊇set frtB(t),
depending on the case. We call frontier preserving (w.r.t. rmul, mul or set) to
this property.

Definition 3. Let mc ∈ {mul, rmul, set}, B ⊂ F and �F be a precedence over
F − B compatible with the partition of F − B, FMul 3 FLex. Moreover, let �B
be an ordering on T (F ,X ) s.t. s �B t implies frtB(s) ⊇mc frtB(t). Then, the
Recursive Path Ordering with Modules (RPOM) is defined as 0rpom = �B ∪ 0
where s = f(s̄) 0 t iff one of the following conditions holds:

1. f, root(t) /∈ B and s′ 4 t for some s � s′.
2. t = g(t̄), f 0F g and s 0 t′, for all t′ ∈ t̄.
2 Note that these multisets include not only maximal subterms of t rooted by non-base

function symbols, but also variables.
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3. t = g(t̄), f ≈F g, f ∈ FMul and s̄ 0mul
rpom t̄.

4. t = g(t̄), f ≈F g, f ∈ FLex, s̄ 0lex
rpom t̄ and s 0 t′, for all t′ ∈ t̄.

5. f ∈ B or root(t) ∈ B, s �∈ T (B,X ), and frtB(s) 0mc frtB(t).

We define 0rpom−stab, 0rpom−mon and 0rpom−IP−mon to be 0rpom in the
cases where mc is rmul, mul and set, respectively. Analogously, 0stab, 0mon

and 0IP−mon refer to 0.

It is not difficult to show (using induction on the size of s and t) that RPOM
is well-defined. In order to prove that RPOM is an ordering, first we show that
0 is compatible with �B, and then, it suffices to show that 0 is transitive and
irreflexive.

Lemma 1. s 0 t iff s �∈ T (B,X ) and frtB(s) 0mc frtB(t).

Proof. The result holds by definition if root(s) ∈ B or root(t) ∈ B. Otherwise,
root(s), root(t) /∈ B and {s} = frtB(s) 0mc frtB(t) = {t} iff s 0 t. $�

Lemma 2. 0 is compatible with �B.

Proof. It has to be shown that u �B s 0 t �B v implies u 0 v. By the frontier
preserving condition of �B and Lemma 1 we have frtB(u) ⊇mc frtB(s) 0mc

frtB(t) ⊇mc frtB(v). This implies u �∈ T (B,X ) and frtB(u) 0mc frtB(v) by
definition of 0mc. Therefore, using again Lemma 1, u 0 v holds. $�

Lemma 3. If root(s) �∈ B and s � t 4rpom u then s 0 u.

Proof. Either t 1B u and hence frtB(t) ⊇mc frtB(u), or t 0 u and hence, by
Lemma 1, frtB(t) 0mc frtB(u). In both cases, for all u′ ∈ frtB(u), there exists
t′ ∈ frtB(t) s.t. s � t′ 4 u′ holds, and we obtain s 0 u′ by case 1. Thereby,
frtB(s) = {s} 0mc frtB(u) and the required result follows by Lemma 1. $�

Lemma 4. 0 is transitive. More generally, s 0 t(0 ∪ �)u implies s 0 u.

Proof. Assuming that s1 0 s2(0 ∪ �)s3 we prove that s1 0 s3, and we do it by
induction on the multiset {|s1|, |s2|, |s3|} and the multiset extension of the usual
ordering on naturals.

First, note that if s′2 � s3 for some s′2 ∈ frtB(s2), then, s′2 0 s3, and hence,
by Lemma 1 frtB(s2) ⊇mc frtB(s′2) 0mc frtB(s3), which implies frtB(s2) 0mc

frtB(s3), and s2 0 s3 by Lemma 1 again. Therefore, in general we have that
either s2 0 s3 or frtB(s2) ⊇mc frtB(s3).

Assume that some of the symbols root(s1), root(s2) or root(s3) are in B.
By Lemma 1 and previous observation, frtB(s1) 0mc frtB(s2)(0mc ∪ ⊇mc

)frtB(s3). By induction hypothesis, transitivity holds for smaller terms, and
since the extension mc preserves transitivity and is compatible with ⊇mc, we
can conclude that frtB(s1) 0mc frtB(s3). Again by Lemma 1, s1 0 s3.

Hence, from now on we can assume that all root(s1), root(s2) or root(s3) are
not in B, and therefore case 5 of the definition of RPOM does not apply any
more and, moreover, by our first observation, s2 0 s3.
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If s1 0 s2 by case 1, then there exists a proper subterm s′1 of s1 satisfying
s′1 4 s2. Either because s′1 ≡ s2 or by induction hypothesis, s′1 0 s3, and
s1 0 s3 holds by case 1. Hence, from now on assume that s1 0 s2 is not due to
case 1.

At this point it is easy to show that s1 0 s′2 for any proper subterm s′2 of
s2. Note that for such s′2 there is some s′′2 in s2 that contains s′2 as subterm. If
s1 0 s2 is due to case 2 or 4, then s1 0 s′′2 . Otherwise, if it is due to case 3, for
some s′1 in s1, s′1 4rpom s′′2 , and by Lemma 3, we obtain s1 0 s′′2 again. In any
case s1 0 s′′2 , and either s′′2 is s′2 and hence s1 0 s′2 directly, or s′′2 � s′2 and by
induction hypothesis on s1 0 s′′2 � s′2 we obtain s1 0 s′2 again.

If s2 0 s3 by case 1, then there exists a proper subterm s′2 of s2 satisfying
s′2 4 s3. By the previous observation, s1 0 s′2, and by induction hypothesis,
s1 0 s3. Hence, from now on we can assume that case 1 does not apply in
s1 0 s2 0 s3.

Reasoning analogously as before, it is easy to show that s2 0 s′3 for any
proper subterm s′3 of s3. Moreover, by induction hypothesis on s1 0 s2 0 s′3,
we obtain s1 0 s′3 for any of such s′3’s. Hence, if root(s1) 0F root(s3), then
s1 0 s3 by case 2. On the other hand root(s3) 0F root(s1) can not happen since
case 1 does not apply in s1 0 s2 and s2 0 s3. Therefore, from now on we can
assume that root(s1) ≈F root(s3). Again since case 1 does not apply, we have
root(s1) ≈F root(s2) ≈F root(s3).

If such a root symbol is from FMul (FLex) then, since the mul (lex) extension
preserves transitivity, s̄1 0mul

rpom s̄3 (s̄1 0lex
rpom s̄3): note that 0rpom is transitive

on smaller subterms since, by induction hypothesis, 0 is, and, moreover, it is
compatible with �B, which is transitive too. Hence (using that s1 0 s′3 for any
proper subterm s′3 of s3 in the case where the root symbol is from FLex) we
conclude that s1 0 s3. $�

Lemma 5. 0 is irreflexive.

Proof. Obviously, s � s for all s ∈ X . Hence, we proceed by contradiction, using
induction on the size of s. Depending on the case s 0 s holds we consider 3
cases. If s 0 s holds by case 1 then, root(s) ∈ F − B and for some s� s′, s′ 0 s
holds. But by Lemma 3, s 0 s′, and by transitivity s′ 0 s 0 s′ implies s′ 0 s′

contradicting the induction hypothesis. The irreflexivity of 0F is contradicted
if s 0 s holds by case 2. Finally, s 0 s holding by case 3, 4 or 5 implies either
s̄ 0mul

rpom s̄, s̄ 0lex
rpom s̄ or frtB(s) 0mc frtB(s). But �B is irreflexive and, by

the induction hypothesis, 0 is irreflexive for the subterms of s. Hence, since the
multiset and lexicographic extensions preserve irreflexivity we obtain s̄ �0mul

rpom s̄,
s̄ �0lex

rpom s̄ or frtB(s) �0mc frtB(s) which is a contradiction. $�

Well-foundedness of RPO follows from the fact that it is a monotonic ordering
which includes the subterm relation. This is not the case of 0 when mc �= mul:
for example, even if B = {f} and a 0F b, faab �0 fabb. Therefore, we prove its
well-foundedness directly by contradiction.
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Lemma 6. If �B is well-founded then 0 is well-founded.

Proof. Proceeding by contradiction, suppose there is an infinite sequence with 0.
We choose a minimal one w.r.t. the size of the terms involved; that is, the infinite
sequence S = s1, s2, s3, . . . satisfies that for any other sequence t1, t2, t3, . . . with
different sequence of sizes, i.e. with |s1|, |s2|, |s3|, . . . �= |t1|, |t2|, |t3|, . . ., there
exists an i > 0 such that |ti| > |si| and |tj | = |sj | for all j < i.

If there exists a step in S s.t. si 0 si+1 holds by case 1, then the minimality
of S is contradicted. Note that if so, by definition of 0 and Lemma 3 we have
si 0 s′ 4 si+1 for some si � s′. Hence, by transitivity we obtain the sequence
S′ = s1, s2, . . . , si−1, s

′, si+2, . . ., which is smaller than S. This also applies when
si 0 si+1 holds by case 5 and root(si+1) /∈ B. In this case s′ 4 si+1 holds for
some s′ ∈ frtB(si) and when i > 1 by Lemma 4 we have si−1 0 s′. Therefore,
there is at most one step in S s.t. root(si) /∈ B and root(si+1) ∈ B. Thus, any
other step in S holding by case 5 involves terms which are both rooted by a base
symbol.

By the previous facts and since �F is a precedence, we conclude that there is
some i ≥ 1 satisfying that for all j > i, sj 0 sj+1 holds by the same case 3, 4 or
5. In cases 3 and 4, by definition of the multiset and lexicographic extensions,
from the infinite sequence s̄i+1, s̄i+2, s̄i+3, . . . with 0mul

rpom or 0lex
rpom we extract

another infinite sequence t1, t2, t3, . . . with0rpom with t1 ∈ s̄i+1. Since �B is well-
founded and 0 is compatible with �B, from the latter sequence we construct
another infinite sequence s′i+1, s

′
i+2, s

′
i+3, . . . with 0 and where s′i+1 = t1. In

case 5, from the infinite sequence frtB(si+1),frtB(si+2),frtB(si+3), . . . with 0mc

we construct another infinite sequence s′i+1, s
′
i+2, s

′
i+3, . . . with 0 and where

si+1 ∈ frtB(si+1). Thus, we have si+1 � s′i+1 and si 0 s′i+1 holds by Lemma 4.
Therefore, we construct the infinite sequence s1, s2, . . . , si,s′i+1,s

′
i+2,s

′
i+3, . . . with

0 which again contradicts the minimality of S. $�

Corollary 1. 0rpom is an ordering. If �B is well-founded then 0rpom is well-
founded.

3.1 A Stable Subclass of RPOM

In this subsection we show that 0rpom−stab preserves the stability of �B.

Proposition 1. If �B is stable, then 0rpom−stab is stable.

Proof. We just need to show that s 0stab t implies sσ 0stab tσ for every substi-
tution σ. We use induction on the size of s and t.

If s 0stab t holds by a case different from 5 then sσ 0stab tσ is easily obtained
by the same case using the induction hypothesis and the stability of �, �B and
the multiset and lexicographic extensions. In the case where s 0stab t holds by
case 5, note that s �∈ F(B,X ) implies sσ �∈ F(B,X ), and hence frtB(sσ) is not
empty. Besides, every term in frtB(tσ) is either at a position p such that t|p is
in frtB(t) and root(t|p) �∈ B, or at a position of the form p.p′ such that t|p is a
variable x, and tσ|p.p′ ∈ frtB(xσ). In the first case, there is a term s′ ∈ frtB(s)
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such that s′ 0 t|p and root(s′) �∈ B. Hence, s′σ ∈ frtB(sσ) and by induction
hypothesis s′σ 0stab t|pσ. In the second case, there is a term s′ ∈ frtB(s)
with root(s) �∈ B that has x as proper subterm, and hence s′σ ∈ frtB(s) and
s′σ 0stab t|p.p′σ by case 1. Altogether shows that frtB(sσ) 0rmul

stab frtB(tσ), and
hence sσ 0stab tσ holds by case 5. $�

The orderings 0rpom−mon and 0rpom−IP−mon are not stable. This is due
to the terms rooted by base function symbols which are compared by using
the frontier subterms and the multiset extension. Note that, after applying
a substitution, some frontier positions (corresponding to variables) may dis-
appear and thus a strict superset relation (which is included in the multi-
set extension) may become equality. For example, for B = {g, a}, we have
s = g(a, h(x), y) 0mon g(a, a, h(x)) = t but sσ �0mon tσ if yσ is a ground
term of T (B,X ). The same and more complex situations hold for 0IP−mon.

3.2 A Monotonic Subclass of RPOM

In this subsection we show that0mon is monotonic, and0rpom−mon preserves the
monotonicity of �B. Moreover, even if �B is not monotonic, there is a monotonic
relation between 0mon and �B that we define as follows.

Definition 4. A relation � on terms is monotonic on an other relation �′ w.r.t.
a set of symbols F1 if for all f ∈ F1, s � t implies f(. . . , s, . . .) �′ f(. . . , t, . . .).

Proposition 2. 0mon is monotonic, and �B is monotonic on 0mon w.r.t. F −
B.

Proof. Let u = f(. . . , s, . . .), v = f(. . . , t, . . .). If f ∈ B and s 0mon t, then
frtB(s) 0mul

mon frtB(t) by Lemma 1, and hence frtB(u) 0mul
mon frtB(v), which

implies u 0mon v by case 5.
If f /∈ B and either s 0mon t or s �B t, then s 0rpom−mon t. Hence

ū 0mul
rpom−mon v̄ and ū 0lex

rpom−mon v̄. If f ∈ FMul then u 0mon v holds by case
3. If f ∈ FLex then u 0mon v holds by case 4 because by Lemma 3, u 0mon v′

holds for all v′ ∈ v̄. $�

Corollary 2. If �B is monotonic then 0rpom−mon is monotonic.

3.3 An IP-Monotonic Subclass of RPOM

In this subsection we show that, for a given hierarchical TRS R = R0 ∪ R1
and under certain conditions, IP-monotonicity of �B w.r.t. R0 (on terms of
T (F0,X )) implies IP-monotonicity of 0rpom−IP−mon w.r.t. R (on terms of
T (F ,X )). Since �B will usually be an extension from an ordering orienting
R0, it is not expectable to be IP-monotonic on terms on the extended signa-
ture F = F0 ∪ F1. Even more, including ‖−→ i,R0

applied to terms on T (F ,X )
into �B is not possible because then the condition stating that s �B t implies
frtB(s) ⊇set frtB(t) is violated for terms rooted by f /∈ B. Instead of including
the whole relation ‖−→ i,R0

in �B we demand a weaker condition based on the
following definition.
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Definition 5. Let s and t be terms in T (F ,X ). Then we write s ‖−→ i,R0,F0
t

if s ‖−→ i,R0
t and all innermost redexes in s are at positions p such that for all

p′ ≤ p, root(s|p) ∈ F0.

Proposition 3. Let R = R0 ∪R1 be a hierarchical TRS, B = F0 and �B be an
ordering on T (F ,X ) s.t. s �B t implies frtB(s) ⊇set frtB(t), and ‖−→ i,R0,B ⊆
�B. Let →i,λ,R1⊆0IP−mon.

Then 0rpom−IP−mon is IP-monotonic w.r.t. R.

For proving the previous lemma we need the following basic facts concerning
the set extension of any ordering.

Proposition 4. Let � be any ordering.

– S �set T , S′ 1set T ′ and S ∩ S′ = ∅ imply S ∪ S′ �set T ∪ T ′.
– {s1} � T1, . . . , {sn} � Tn implies {s1, . . . , sn} �set T1 ∪ . . . ∪ Tn.

Proof. (of Proposition 3) To prove that s ‖−→ i,Rt implies s 0rpom−IP−mon t,
we prove, by induction on term structure, a more general statement: s ‖−→ i,Rt
implies s 0rpom−IP−mon t and if root(s) /∈ B then s 0IP−mon t. We distinguish
two cases depending on whether or not root(s) is in B.

Assume that root(s) /∈ B. If s →i,λ,R1 t then trivially s 0IP−mon t by the
assumptions of the lemma. Otherwise, s and t are of the form f(s1 . . . sm) and
f(t1 . . . tm), respectively, every sj is either an R-normal form or sj ‖−→ i,Rtj ,
and for some j ∈ {1 . . .m}, sj ‖−→ i,Rtj . By induction hypothesis, every sj

is either a normal form or sj 0rpom−IP−mon tj , and for some j ∈ {1 . . .m},
sj 0rpom−IP−mon tj . If f ∈ FMul, s 0IP−mon t by case 3. If f ∈ FLex, then
s 0IP−mon t holds by case 4 because by Lemma 3 we have s 0IP−mon tj for all
j ∈ {1 . . .m}.

Assume now that root(s) ∈ B. We consider the set containing only the mini-
mal positions from {p | s|p ∈ frtB(s) or s|p is an innermost redex}, i.e. the ones
in this set such that no other is above them. This set is of the form {p1, . . . , pn,
p′1, . . . , p

′
m} where the pj ’s are frontier positions without innermost redexes

above them, and the p′j ’s are redex positions satisfying root(s|p′ ) ∈ B for every
p′ ≤ p′j . Hence, s and t can be written as s[s1, . . . , sn, s

′
1, . . . , s

′
m]p1,...,pn,p′

1,...,p′
m

and s[t1, . . . , tn, t′1, . . . , t
′
m]p1,...,pn,p′

1,...,p′
m

, respectively, where every sj satisfies
root(sj) /∈ B and either sj ‖−→ i,Rtj or sj is a normal form and sj = tj , and ev-
ery s′j satisfies s′j →i,λ,R0 t′j . Moreover, frtB(s) = {s1, . . . , sn}∪ frtB(s′1)∪ . . .∪
frtB(s′m), and frtB(t) = frtB(t1) ∪ . . . ∪ frtB(tn) ∪ frtB(t′1) ∪ . . . ∪ frtB(t′m).
If all the sj’s are normal forms, then s ‖−→ i,R0,Bt, and by our assumptions
s �B t, and hence s 0rpom−IP−mon t holds. Hence, assume that for some
j ∈ {1 . . . n}, sj ‖−→ i,Rtj . By induction hypothesis sj 0IP−mon tj , and by
Lemma 1, {sj} 0set

IP−mon frtB(tj). Similarly, for the rest of j ∈ {1, . . . , n} we
have that either {sj} 0set

IP−mon frtB(tj) or sj = tj , depending on whether or not
sj is a normal form. Since every s′j satisfies s′j →i,λ,R0 t′j , frtB(s′j) ⊇set frtB(t′j),
and hence frtB(s′j) 4set

IP−mon frtB(t′j). By propositon 4, {s1, . . . , sn}∪frtB(s′1)∪
. . . ∪ frtB(s′m) 0set

IP−mon frtB(t1) ∪ . . . ∪ frtB(tn) ∪ frtB(t′1) ∪ . . . ∪ frtB(t′m),
and hence s 0IP−mon t by case 5, and s 0rpom−IP−mon t. $�
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4 Proving CE-Termination Incrementally with RPOM

Assume we have a hierarchical system R = R0 ∪ R1, and we want to prove
it terminating using RPOM. We will usually have a reduction ordering 0B de-
fined on T (F0,X ) orienting R0, or more generally, a well founded ordering 0B
including →R0 on T (F0,X ), and we will want to obtain from it an ordering
0rpom−stab orienting R1. A first simple idea is to extend 0B to some �B for
terms on T (F ,X ) including →R0 on T (F ,X ). But this will not be useful with
RPOM since rewriting with R0 on a term rooted by a symbol f /∈ B does not
preserve the frontier. An alternative idea is then to restrict the extension of 0B
to rewriting steps with R0 not below a symbol f /∈ B. Then, we can take �B=0FB
to this end, which is not monotonic, but preserves well foundedness of 0B (recall
that 0FB is the stable extension of 0B to F).

Definition 6. Let s and t be terms in T (F ,X ). Then we write s →R0,F0 t
if s →R0 t and the involved redex is at a position p such that for all p′ ≤ p,
root(s|p) ∈ F0.

The following theorem combines the use of 0stab and 0mon constructed from
�B. The monotonicity of the second requires �B to be frontier preserving in the
sense of multisets. Therefore, when �B is defined as 0FB , we also need 0B to be
non-duplicating.

Theorem 2. Let R = R0 ∪ R1 be a hierarchical union, B = F0 and �B be a
stable, well-founded on T (F ,X ), such that s �B t implies frtB(s) ⊇mul frtB(t),
and →R0,B ⊆ �B.

If R1 ⊆ 0stab then R is CE -terminating.

Proof. Recall that RE = R ∪ CE . We prove that→RE is included in 0rpom−mon

because then the well-foundedness of0rpom−mon implies termination ofRE . First
note that R1 ∪ CE ⊂ 0stab, and since 0stab is stable, 0stab ⊂ 0mon and 0mon is
monotonic we conclude that→R1∪CE is included in0mon. Now, let s, t ∈ T (F ,X )
be s.t. s →R0 t at position p. If every position above p is rooted by a symbol in
F0 then we have s �B t by the assumptions of the theorem. It remains to see the
case where there exist a context u[ ], a symbol f /∈ F0 and a position q < p s.t.
s = u[f(. . . , s′, . . .)]q, t = u[f(. . . , t′, . . .)]q and s′ →R0 t′ with every position
between q and p rooted by a symbol in F0. In this case s′ �B t′ holds by the
assumptions of the theorem, and s 0mon t is obtained by Proposition 2. $�

Corollary 3. A hierarchical TRS R = R0 ∪ R1 is CE -terminating if there is a
non-duplicating reduction ordering 0B s.t. R0 ⊆ 0B and R1 ⊆ 0stab.

In addition, if 0B is a simplification ordering then R is simply terminating.

Example 3. Simple termination of Rplus ∪ RF ′ in Example 2 is easily obtained
using RPOM. Since Rplus is simply terminating, 0B can be defined as the non-
duplicating part of any simplification ordering including Rplus. The rules of the
extension RF ′ (listed below) are oriented using 0stab with FLex = {F}.
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F (0, x, y) → plus(x, y)

F (s(n), x, 0) → x
F (s(n), x, s(y)) → F (n, F (s(n), x, y), s(plus(F (s(n), x, y), y)))

F (s(n), F (s(n), x, y), z) → F (s(n), x, F (n, y, z))

Note that the first rule, here denoted as l1 → r1, holds by case 5 of the definition
of RPOM. This is because l1 0stab x and l1 0stab y hold by case 1 and therefore
we have frt(l1) = {l1} 0rmul

stab {x, y} = frt(r1). The second rule trivially holds
by case 1. The last two hold by case 4. We detail the proof for the third one,
denoted as l3 → r3. First note that s(t) 0B t for every term t. Thereby, we have
l̄3 0lex

B r̄3. By the former fact and using case 1 we obtain l3 0stab F (s(n), x, y) by
case 4. Finally, l3 0stab s(plus(F (s(n), x, y), y)) holds by case 5 since frt(l3) =
{l3} 0rmul

stab {F (s(n), x, y), y} = frt(s(plus(F (s(n), x, y), y))).

Analogously to the case of SCP, there are situations where the proofs with
RPOM can be done modularly.

Theorem 3. Let R = R0 ∪ R1 be a hierarchical TRS where R0 is non-
duplicating and terminating. Let �B be �F0 where �0 is � on T (F0,X ), and let
R1 ⊆ 0stab.

Then R is CE -terminating.

Proof. The result can be obtained by Theorem 2 if we use �′B= (→R0,F0 ∪ �B)+

and the corresponding 0′stab instead of �B and 0stab. Trivially R1 ⊆0′stab and
→R0,F0⊆ �′B. We just need to show that �′B is frontier preserving, stable and
well-founded. The first two properties follow from the fact that →R0,F0 and �0
are non-duplicating and stable, and the stable extension preserves these proper-
ties. Well-foundedness of �′B follows from the fact that R0 is terminating, and
that any derivation with (→R0,F0 ∪ �B) can be commuted to a derivation with
(→R0,F0) followed by a derivation with �F0 , preserving the number of rewrite
steps. $�

Example 4. Actually, RF ′ in Example 2 is included in 0stab with �B defined as
�F0 . Hence, by Theorem 3, the hierarchical union ofRF ′ and any non-duplicating
base system Rplus is CE -terminating whenever Rplus is so.

Example 5. Consider the following system which describes some properties of
the conditional operator.

Rif =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

if(0, y, z) → z
if(s(x), y, z) → y

if(x, y, y) → y
if(if(x, y, z), x1, x2) → if(x, if(y, x1, x2), if(z, x1, x2))
if(x, if(x, y, x1), z) → if(x, y, z)
if(x, y, if(x, x1, z)) → if(x, y, z)

if(x, plus(y, x1), plus(z, x2)) → plus(if(x, y, z), if(x, x1, x2))
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The rules of Rif are included in RPOM with FLex = {if} and �B defined
as �F0 . The first three rules hold by case 1 and the three next by case 4. The
last rule holds by case 5. Note that plus(x, y) �B x and plus(x, y) �B y hold.
Hence, using case 4 we obtain if(x, plus(y, x1), plus(z, x2)) 0stab if(x, y, z) and
if(x, plus(y, x1), plus(z, x2)) 0stab if(x, x1, x2). Therefore, by Theorem 3 we
conclude that the hierarchical union of Rif and any base system Rplus is CE-
terminating whenever Rplus is non-duplicating and CE -terminating.

We stress that RF ′ and Rif are hierarchical extensions which are not proper
and where SCP cannot be used. Hence, no previous modularity result can be
applied to these examples.

5 Proving Innermost Termination Incrementally with
RPOM

This section proceeds analogously to the previous one. The main difference is
that, for proving innermost termination, �B needs to be frontier preserving only
in the sense of sets. Hence, if �B is constructed from 0B, the non-duplicating
requirement on 0B disappears.

Theorem 4. Let R = R0 ∪ R1 be a hierarchical union, B = F0 and �B be a
stable, well-founded on T (F ,X ), such that s �B t implies frtB(s) ⊇set frtB(t),
and ‖−→ i,R0,B ⊆ �B.

If R1 ⊆ 0stab then R is innermost terminating.

Proof. By the assumptions and Proposition 1, 0rpom−stab is stable. Hence, it
includes →i,λ,R. Since 0rpom−stab ⊆ 0rpom−IP−mon, it follows that →i,λ,R ⊆
0rpom−IP−mon. By the assumptions and Proposition 3, 0rpom−IP−mon is IP-
monotonic w.r.t. R, and by Lemma 6, it is well-founded. Altogether with The-
orem 1 imply that R is innermost terminating. $�

Theorem 5. Let R = R0 ∪ R1 be a hierarchical TRS where R0 is innermost
terminating. Let �B be �F0 where �0 is � on T (F0,X ), and let R1 ⊆ 0stab.

Then R is innermost terminating.

Proof. We use �′B= ( ‖−→ i,R0,F0
∪ �B)+ and the corresponding 0′IP−mon. Note

that �′B and 0′stab are not necessarily stable whereas �B and 0stab are, the
second one by Proposition 1, and hence,0stab includes→i,λ,R1 . Since0rpom−stab

⊆ 0rpom−IP−mon ⊆ 0′rpom−IP−mon, it follows that →i,λ,R ⊆ 0′rpom−IP−mon.
By the definition of �′B, it is IP-monotonic w.r.t. R0 in T (F0,X ). It is also

well-founded since any derivation with ‖−→ i,R0,F0
∪ �B can be commuted to

a derivation with ‖−→ i,R0,F0
followed by a derivation with �F0 , with the same

number of rewrite steps, and the fact that R0 is innermost terminating.
By the assumptions and Proposition 3, 0′rpom−IP−mon is IP-monotonic w.r.t.

R, and by Lemma 6, it is well-founded. Altogether with Theorem 1 imply that
R is innermost terminating. $�
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Example 6. Recall the systems RF ′ in Example 2 and Rif in Example 5 are
included in 0stab with �B defined as �F0 . Hence, by Theorem 5, the hierarchical
union ofRF ′∪Rif and any (possibly duplicating) base systemRplus is innermost
terminating whenever Rplus is innermost terminating.

6 Conclusions

The stable subclass of the RPOM is suitable for proving termination automat-
ically. It is more powerful than RPO since it allows the reuse of termination
proofs. But at the same time it inherits from its predecessor the simplicity and
all the techniques for the automated generation of the precedence. The two main
differences between RPO and RPOM-STAB are the use of �B and the treatment
of terms rooted by base function symbols. But these difference can be easily han-
dled: frontier subterms can be computed in linear time and the decision between
applying case 5 or �B is deterministic. Besides, if �B is defined as 0FB , we can
prove s �B t just by proving sr 0B tr, where sr and tr are obtained by replacing
each occurrence of a frontier subterm of s by the same fresh variable.

As future work we plan to investigate more deeply the use of RPOM for
proving innermost termination incrementally, since for this particular case no
condition need to be imposed on the base TRS. In particular, we will consider the
combination of RPOM with the ideas from [9, 11]. Furthermore, we are interested
in extending the given results to the monotonic semantic path ordering [5, 4]
which will provide a much more powerful framework for combining orderings
and prove termination incrementally.

Finally we are also interested in extending these results to the higher-order
recursive path ordering [13], which will provide necessary results for hierarchical
unions for the higher-order case.
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Abstract. First-order coherent logic (CL) extends resolution logic in
that coherent formulas allow certain existential quantifications. A sub-
stantial number of reasoning problems (e.g., in confluence theory, lattice
theory and projective geometry) can be formulated directly in CL with-
out any clausification or Skolemization. CL has a natural proof theory,
reasoning is constructive and proof objects can easily be obtained. We
prove completeness of the proof theory and give a linear translation from
FOL to CL that preserves logical equivalence. These properties make CL
well-suited for providing automated reasoning support to logical frame-
works. The proof theory has been implemented in Prolog, generating
proof objects that can be verified directly in the proof assistant Coq.
The prototype has been tested on the proof of Hessenberg’s Theorem,
which could be automated to a considerable extent. Finally, we compare
the prototype to some automated theorem provers on selected problems.

1 Introduction

As far as we know, Skolem [20] was the first who used coherent logic (avant la
lettre) to solve a decision problem in lattice theory and to prove the indepen-
dence of Desargues’ Axiom from the other axioms of projective plane geometry.
Modern coherent logic, also called finitary geometric logic, arose in algebraic ge-
ometry, see for example [14–Sect. D.1.1]. Full geometric logic includes infinitary
disjunctions and even a certain fragment of higher-order logic, as argued in [5].
In this paper we define coherent logic (abbreviated by CL) as the fragment of
first-order logic (FOL) consisting of implicitly universally quantified implications
of the following form:

A1 ∧ · · · ∧An → E1 ∨ · · · ∨Em

Here the Ai are first-order atoms. In contrast to resolution logic [19], where the
Ej must also be atoms, they may here be existentially quantified conjunctions
of atoms. Thus the general format of a coherent formula reads:

A1 ∧ · · · ∧An → ∃x1.C1 ∨ · · · ∨ ∃xm.Cm

G. Sutcliffe and A. Voronkov (Eds.): LPAR 2005, LNAI 3835, pp. 246–260, 2005.
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where the Cj are conjunctions of atoms. The special cases n = 0, m = 0 and
no existential quantification, in all possible combinations, are understood to be
included. (If the premiss is empty we leave out the → as well.)

One important reason to be interested in CL is a genuine interest in proofs
and not only in truth. Let us elaborate this point. In resolution logic one reduces
a reasoning problem T |= φ to cl(T ∧ ¬φ) |= ⊥, where cl stands for a clausifica-
tion operation. The latter problem is not equivalent to the former, but the two
problems are ‘equisolvable’ in the sense that the former is solvable if and only
if the latter is refutable by resolution. Though possible in principle (a system
called TRAMP [18] supports this), it is rather unattractive to transform one
solution to the other. This is caused by the fact that the clausification operation
cl relies on classical logic and on some weak instances of the Axiom of Choice
called Skolem axioms. The latter axioms change the meaning of the theory and
classical logic spoils the possible constructivity of the solution to T |= φ. A proof
object for T � φ can be construed on the basis of a resolution refutation (see [4]),
but this is seldom a very appealing one. Even for those who do not care about
proof objects or constructive logic, resolution has some disadvantages: intuitions
do not easily carry over from T |= φ to cl(T ∧ ¬φ) |= ⊥ and back. Regrettably,
your automated reasoning assistant is working on a different problem than you
and you are not able to help when it gets stuck. Moreover you have to truly
believe the soundness of your reasoning assistant.

Another interesting issue in connection with CL is efficiency. CL will never
for any existential conclusion introduce a new witness if there exists already
one. Skolem functions give new witnesses even if there exists already one. As a
simple example, consider the coherent axiom p(x)→ ∃y. p(y). This is, of course,
an easy tautology. CL will never use it since the conclusion is fulfilled whenever
the premiss is true. In clausifying it without thinking one starts by partly spoiling
the dependence of the conclusion on the premiss: ∃y. (p(x) → p(y)). Then one
makes the dependence of y on x explicit by introducing a Skolem function:
p(x) → p(f(x))). This is no longer a tautology, but a clause which makes the
Herbrand universe infinite and can play a complicating role in the proof search.
Of course, in the case above the tautology could easily be detected and removed
at an early stage, but in general this is not possible.

To give a more interesting example, consider a rewrite relation r which is
reflexive and satisfies the diamond property:

r(x, y) ∧ r(x, z)→ ∃u.(r(y, u) ∧ r(z, u))

In CL where we add a witness only if there is no one already available, no new
facts will be generated from r(a, a). From the set of facts

X = {r(a, a), r(b, b), r(c, c), r(a, b), r(a, c)}

only the two new facts r(b, d), r(c, d), for some fresh constant d, will be generated.
In contrast, the Skolemized version:

r(x, y) ∧ r(x, z)→ r(y, f(x, y, z)) ∧ r(z, f(x, y, z))
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would, despite the reflexivity of r, generate r(a, f(a, a, a)) from r(a, a), and in-
finitely many more facts from these. From X one would not only get r(b, f(a, b,
c)), r(c, f(a, b, c)), but also facts involving Skolem terms f(a, c, b), f(a, b, b),
f(a, c, c), f(a, a, b), f(a, b, a), f(a, a, c), f(a, c, a), f(a, a, a), f(b, b, b), f(c, c, c).

This phenomenon explains why a CL prover in interpreted Prolog can prove
the induction step in the proof of Newman’s Lemma in 52 steps, orders of magni-
tude faster than most resolution theorem provers (see [2–readme] and Section 6):
the clausal form of this coherent problem contains two ternary and one binary
Skolem function. (We do not claim that CL is generally faster than resolution.)

A substantial number of reasoning problems (e.g., in confluence theory, lat-
tice theory and projective geometry) can be formulated directly in CL without
any clausification or Skolemization. CL has a natural proof theory, reasoning in
CL is constructive and proof objects can easily be obtained. In summary, the
advantages of this approach are:

– the search space may be smaller in some cases;
– the search for a proof can be guided by intuitions about the problem;
– the proofs are not complicated by a translation of the problem;
– the proof objects can be used in other systems, typically logical frameworks

with greater expressivity but less automation than CL;
– the proofs can be verified independently, algorithms could be extracted.

An illustrative example of a coherent formula is the elimination axiom for
transitive-reflexive closure:

path(x, z)→ equal(x, z) ∨ ∃y.(edge(x, y) ∧ path(y, z)) (∗)

Being (classically) contained in the ∀∃-fragment, there are certainly formulas
that cannot be expressed directly in CL, but fewer than is the case in resolu-
tion logic. Of course, when a problem doesn’t fit into the CL fragment one has
to accept a certain reformulation. A simple example is an implication with a
universal quantification in the premiss: (∀x. p(x)) → q. Such formulas can be
translated linearly into an equivalent set of coherent formulas, see Section 7.

In the next section we provide formal definitions and prove completeness.
Section 3 sketches the easy conversion of proofs in CL to ordinary derivations
in natural deduction. In Section 4 we elaborate a small case study taken from
rewriting theory. Section 5 discusses strategies for finding proofs in CL. In Sec-
tion 6 we show how the method scales up with some fully automated medium-
scale examples and an interactive large-scale example, Hessenberg’s Theorem,
which states that Pappus implies Desargues in projective plane geometry.

2 Formal Definition, Proof Theory and Completeness

In order to keep things as simple as possible we restrict attention to one-sorted
first-order logic without function symbols. The completeness proof can be gen-
eralized to the case with function symbols. Without function symbols, terms are
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either constants or variables. A special category is formed by the parameters,
(eigen)variables that are never to be bound. Alternatively, parameters may be
viewed as new constants, not appearing in any formula of the theory nor in
the formula that is to be proved. Parameters will be used during the inference
process as witnesses for existential formulas. A closed formula or sentence is a
formula without free variables, but possibly with constants and parameters.

Definition 1. A coherent formula is a formula of the form C → D, implicitly
universally closed, where C ≡ A1 ∧ · · · ∧An (with n ≥ 0 and the subscripted A’s
first-order atoms) and D ≡ E1∨· · ·∨Em (m ≥ 0). Here Ei ≡ ∃x1 . . . xk. Ci (k ≥
0), for every 1 ≤ i ≤ m the formula Ci is a conjunction of atoms. The special
cases will be treated as follows: if n = 0, then we may leave out C → altogether;
if m = 0, then we may write ⊥ for D; if k = 0 in Ei, then we leave out
∃ as well. A fact is a closed atom. The formulas C, D, C → D above are
also called coherent conjunction, coherent disjunction and coherent implication,
respectively. A coherent theory is a set of coherent implications.

CL extends resolution logic [19] in that coherent formulas allow an existential
conclusion. A coherent formula without existential quantifiers reduces to one or
more resolution clauses by, first, distributing the disjunctions over the conjunc-
tions in the conclusion and then distributing the implication over the conjunction
of disjunctions. An important special case are the so-called Horn clauses [13],
where the right-hand side D is atomic. If D is a conjunction of atoms, then
C → D is also considered to be a Horn clause, although strictly speaking such a
formula reduces to a set of Horn clauses. Coherent formulas containing ∨ and/or
∃ will be called disjunctive clauses.

In this section we prove the completeness of a consequence relation � which
can be viewed as a breadth-first variant of the more usual relation � from [11,
3, 9]. Completeness of the latter follows then easily.

Completeness here means completeness with respect to truth in all Tarskian
models, which have non-empty domains. Therefore we assume that the signature
contains at least one constant symbol.1 Note that this assumption is also useful
for, e.g., the equivalence of ∃x.(p(x) ∨ q) to the coherent formula (∃x.p(x)) ∨ q.

Definition 2. Let X be a set of facts, also called a state. A closed coherent
conjunction C is true in X, denoted by X |= C (or C ⊆ X), if all conjuncts in
C occur in X. A closed coherent disjunction D is true in X, denoted by X |= D if
for some disjunct ∃x.C of D there exist parameters a such that C[x := a] ⊆ X.

For any open coherent conjunction C, let C denote a closed instance of C with
fresh parameters substituted for the free variables. The usual care in avoiding
name conflicts should be taken here. For example, in expressions like C1∧C2 we
tacitly assume that the fresh parameters are distinct. Thus, for example, C1∧C2
can be different from C1 ∧ C2.

Let X and {F1, . . . , Fm} be finite sets of facts. As usual, we write X,F1, . . . , Fm

for X ∪ {F1, . . . , Fm} and even X,C for X,F1, . . . , Fm when C = F1 ∧ · · · ∧ Fm.
1 In categorical geometric logic there is no such assumption.
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Definition 3. Let T be a finite coherent theory, X a finite set of facts and D
a closed coherent disjunction. We define inductively X �T D, which expresses
that D is a breadth-first consequence in T of the facts in X. Here and below we
simply write � instead of �T whenever T is clear from the context.

– (base case) X � D if D is true in X.
– (induction step) Consider all closed instances Ci → Di of axioms of T such

that Ci is true in X but Di is not. There exist at most finitely many such
instances and we may enumerate all their conclusions by D0, . . . , Dn. Now
assume there is at least one such conclusion and let

Di ≡ · · · ∨ ∃xij . Cij ∨ · · ·

for all 0 ≤ i ≤ n and 1 ≤ j ≤ mi, where mi is the length of Di. In
other words, Cij is the conjunction in the j-th disjunct of Di. The idea is
now to consider all possible combinations of selecting one disjunct from each
Di, taking fresh instances of their conjunctions. The induction step is: infer
X � D from

∀j0 ∈ {1, . . . ,m0} · · · ∀jn ∈ {1, . . . ,mn} (X,C0j0 , . . . , Cnjn � D)

The induction step can be depicted as follows, leading to the usual represen-
tation of �-derivations as finite trees.

. . . . . . X,C0j0 , . . . , Cnjn � D . . . . . .

X � D

����������������������

����������������������

Note that, if some Di ≡ ⊥, then mi = 0 and we have X � D since the
domain of quantification of ji is empty. On the other hand, if there are no
conclusions Di as above, then the induction step doesn’t apply and we only
have X � D if D is true in X.

In the next paragraphs we make a number of remarks on this definition.
The finite sets of facts grow along the branches of a derivation tree. This

growth is strict since the Di are false in X . In the leaves of the tree we have
either X, . . . |= D, or there exists a closed instance C → ⊥ of an axiom in T
such that X, . . . |= C.

In the above induction step, every Di is true in any set X,C0j0 , . . . , Cnjn . This
holds vacuously if some Di ≡ ⊥, since then there are no sets X,C0j0 , . . . , Cnjn .
One could consider this as a base case, but it is more systematic to view it as a
special case of the induction step.

It is possible that both the base case and the induction step apply. In that
case it is normal to cut the detour (‘cutting to truth’) by applying the base case.
The following theorem is in fact a strong but trivial cut-elimination result.
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Theorem 1. A �-derivation is normal if the induction step has been applied
only if the base case doesn’t apply. Any derivation of X � D can be normalized.
Normal derivations of X � D differ only in the names of the parameters.

If the induction step doesn’t apply, then all closed instances of axioms in T
are true in X , so that the set of facts X can be viewed as a Tarskian model MX

of T in the following precise sense. The domain of MX consists of the constant
symbols of T and the parameters occurring in X . The relation symbols are
interpreted in MX such that the facts in X are the only closed atoms that are
true in MX . These models are in fact Herbrand models or term models, with the
Herbrand universe extended with the parameters. We will also use this model
construction when the set of facts is infinite. Note that the facts may not only
contain constants from the fixed signature of T , but also parameters introduced
during the derivation.

The same kind of trees, though possibly infinite, can be used to organize the
search for a normal derivation of X � D. First we check if X |= D. If so, we are
done. Otherwise, we try the induction step. If this is not possible since all axioms
of T are true in X , then MX is a countermodel of T against D and there exists no
derivation of X � D. If we can apply the induction step, we do so and apply this
searchprocedure recursively to all premises. (If there are no premises,we are done.)

For reasons of computability it is important that X and T are finite. Then
all the case distinctions and quantifications in the above procedure are finite.
The search procedure itself is semi-computable, since it is not guaranteed to
terminate. The search procedure terminates successfully if and only if there exist
a normal derivation of X � D.

Actually, the above search procedure terminates successfully if and only if
D is true in all Tarskian models of T,X . The only-if part is soundness and is
obvious. We prove the if-part by contraposition. If the search procedure doesn’t
terminate, then the tree is infinite. Since the tree is finitely branching, it must
have an infinite branch, say β, by König’s Lemma. Starting at the root X � D,
the set of facts is strictly increasing along β. We collect all these facts in an
infinite set B. In the same way as MX above we define a Herbrand model MB

based on the set B. Since X ⊆ B we have that MB is a model of X . We shall
argue that MB is also a model of T . Let Ci → Di be a closed instance of an
axiom in T such that Ci ⊆ B. This means that at some point Y � D on β
we have Ci ⊆ Y . We have Y ⊆ B and hence B |= Di if Y |= Di. We cannot
have Di ≡ ⊥ since β is infinite. But then, by the remark after Definition 3, we
have Z |= Di for any successor Z of Y , so in particular for Z ⊆ B on β. Hence
B |= Di, which completes the proof that MB is a model of T . It follows that
MB is a model of T,X in which D is false since β is infinite. This completes the
proof of the if-part by contraposition and we conclude:

Theorem 2. The consequence relation � is complete with respect to Tarskian
truth.

As a corollary we get that in CL classical provability and intuitionistic prov-
ability coincide. In other words, we don’t miss any classical truths in CL by
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reasoning intuitionistically. We finish this section with some results relating �
and � from [11, 3, 9]. The consequence relation � has almost the same definition
as � but in the induction step only one closed instance C0 → D0 with C0 ⊆ X
is used instead of all invalid ones, see Definition 3.

Lemma 1. For any T , if X � D, then X � D.

Proof. One step in a �-derivation involving n closed instances of axioms in T
corresponds to n steps in the �-derivation involving the same closed instances,
in any arbitrary order.

Corollary 1. The consequence relation � is sound for any semantics for which
� is sound.
The consequence relation � is complete for any semantics for which � is com-
plete.
The consequence relation � is complete with respect to Tarskian truth.

The main differences between completeness here and in [9] are: the completeness
proof here is simple but relies essentially on classical logic; the proof in [9] is
constructive but is based on a more complex notion of satisfaction defined as a
forcing relation. As a result the respective consequence relations are classically
equivalent but not constructively.

3 Natural Deduction Proofs

In this section we show by example how to convert �-derivations to ordinary
derivations in natural deduction. Relying on the well-known Curry-Howard cor-
respondence, it can easily be imagined how to convert our derivations to lambda
terms that can be type checked. This conversion has been implemented for the
proof assistant Coq [8] and all proof terms have successfully been type checked.
For reasons of space we refer the interested reader to the website [2–files *.v].

Example 1. The derivation of p in the coherent theory q(x)→ p, p ∨ ∃x.q(x)

p � p

q(c), p � p

q(c) � p
q(x)→ p

� p
p ∨ ∃x.q(x)

can be converted to the following derivation in natural deduction:

[p]2
[∃x.q(x)]2

[q(c)]1
∀x (q(x)→ p)

q(c)→ p
∀-el

p →-el
p ∃-el1 p ∨ ∃x.q(x)

p ∨-el2

Note that in principle only elimination rules are involved. However, for reasons of
efficiency when scaling up, sharing of identical subderivations requires separate
lemmas whose proofs also involve introduction rules.



Automating Coherent Logic 253

4 A Small Case Study

The theory of confluence of Abstract Rewriting Systems [22–Sect.1.3.1] provides
many simple examples of coherent theories. In order to illustrate the inference
procedure from the previous sections we prove a little result from confluence
theory: the preservation of the diamond property of a rewriting relation under
reflexive closure of the relation. We start by giving the coherent theory which
states that rewrite relation r satisfies the diamond property (1) and defines re
as the reflexive closure of r (2–4), using e for equality (5–7).

1. r(x, y) ∧ r(x, z)→ ∃u.(r(y, u) ∧ r(z, u)) (diamond property of r)
2. re(x, y)→ r(x, y) ∨ e(x, y) (re-elimination)
3. r(x, y)→ re(x, y) (re, r-introduction)
4. e(x, y)→ re(x, y) (re, e-introduction)
5. e(x, x) (reflexivity of e)
6. e(x, y)→ e(y, x) (symmetry of e)
7. e(x, y) ∧ re(y, z)→ re(x, z) (left re-congruence of e)

The last axiom expresses a necessary congruence property. Transitivity of equal-
ity is not needed.

We wish to prove that re satisfies the diamond property:

8. re(x, y) ∧ re(x, z)→ ∃u.(re(y, u) ∧ re(z, u)) (diamond property of re)

We start by instantiating the axiom (8) by introducing three new parame-
ters, say a, b, c and replacing the universally quantified variables x, y, z by these
respective parameters. The goal is then to prove the conclusion

D ≡ ∃u.(re(b, u) ∧ re(c, u))

using the theory and the two assumptions re(a, b) and re(a, c).
The next step is to identify the closed instances of axioms that are invalid

in the initial state consisting of the parameters a, b, c and the facts re(a, b) and
re(a, c). This means that we apply the axioms (1–7) in so far they yield new
information. Axiom (5) yields three new facts e(a, a), e(b, b), e(c, c) and axiom
(2) two disjunctions, r(a, b)∨e(a, b) and r(a, c)∨e(a, c). In total we get four new
states and we can only conclude to D if we can prove D in all these four states.
The four states each contain e(a, a), e(b, b), e(c, c) besides one of the following four
combinations of facts from the two disjunctions, in increasing order of difficulty:
(i) e(a, b), e(a, c); (ii) e(a, b), r(a, c); (iii) r(a, b), e(a, c); (iv) r(a, b), r(a, c). We
elaborate each of these four cases.

(i) In this new state axiom (4) yields the new facts re(a, a), re(b, b), re(c, c)
and axiom (6) e(b, a), e(c, a). In the resulting state axiom (4) yields re(b, a),
re(c, a) and so a is found as witness for D and we are done.

(ii) Again we get re(a, a), re(b, b), re(c, c), e(b, a), but now, unexpectedly, also
axiom (1) has an invalid instance, namely x = a and y = z = c, by r(a, c).
This means that we also have to add a fact r(c, d) for some new parameter d.
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In the new state we have e(b, a) and re(a, c), so axiom (7) yields re(b, c) (in
addition to some other facts by other axioms). In combination with re(c, c)
this allows us to conclude D with witness c. Note that r(c, d) and many
other facts have not been used to obtain the conclusion.

(iii) This case is symmetric to the previous one, with b as witness for D.
(iv) This is the most interesting case, in which r(a, b), r(a, c) have been added

besides the equality facts. From the latter we get re(a, a), re(b, b), re(c, c).
The only other axiom yielding something new is (1), the diamond prop-
erty of r. There are in total four (!) instantiations of axiom (1) that are
false in the current state, namely all four combinations of y, z ∈ {b, c} in
r(a, y)∧r(a, z)→ ∃u.(r(y, u)∧r(z, u)). These combinations are not disjunc-
tive but conjunctive. Hence we get a lot of new information in the form of
the formulas ∃u.(r(b, u)∧r(b, u)), ∃u.(r(b, u)∧r(c, u)), ∃u.(r(c, u)∧r(b, u)),
∃u.(r(c, u) ∧ r(c, u)). (Here the second and the third are of course equiv-
alent, and the first and the fourth follow from the second. This actually
poses an interesting optimization problem: make all conclusions true with
a minimum number of witnesses.) In order to add this partially redundant
information to the current state new parameters d, d′, . . . are introduced
witnessing the existential formulas above. Instantiating them in due or-
der (and omitting those that have become true already by previous in-
stantiations, as a small optimization of the breadth-first strategy) one
adds r(b, d), r(b, d′), r(c, d′). Now axiom (4) yields re(b, d′), re(c, d′) (be-
sides many other facts generated by other axioms) and thus d′ is found as
witness for the goal D.

As all branches have now been completed, this completes the proof of D.

5 Strategies and Implementation

Already Skolem viewed coherent axioms as generating rules (Erzeugungsprinzip-
ien). For resolution logic, that is, without existential quantification, this idea has
been applied in the satisfiability checker and model generator SATCHMO [17].
SATCHMO has a very concise Prolog implementation which has inspired our
implementation of the proof procedure for coherent theories as described above.
The resulting system extends SATCHMO with existential quantifications and
with the generation of proof objects. A related extension of SATCHMO are the
Extended Positive Tableaux from [6]. However, the latter aims at finding finite
models rather than proof objects.

The complete proof procedure described in Definition 3 can be viewed as
breadth-first forward reasoning with case distinction. This approach has some
well-known disadvantages, notably the generation of too many cases and an
astronomical number of irrelevant facts.

In fact � has only been introduced to simplify the completeness proof. A first
step towards a practical proof procedure is to use � instead of �. This is still
complete, but in order to be more efficient than � one needs to know in which
order which instances of the axioms have to be applied.
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Another approach is to give up completeness in favour of a faster procedure
which, though incomplete, may (dis)prove coherent formulas in a substantial
number of practical cases. This is actually also one of the design choices taken in
the programming language Prolog [7, 15, 24] where the completeness of breadth-
first SLD-resolution has been given up in favour of a generally faster but incom-
plete depth-first approach. For the moment we are satisfied with this approach,
which at the same time makes Prolog into a particular natural choice of an im-
plementation language. In the next section we will touch upon proof scripts to
remedy incompleteness.

A depth-first strategy takes the theory as an ordered set of axioms and
searches for the first axiom which is invalid in the current state. The state is
a list of parameters and facts in order of creation and addition, respectively.
The instance that invalidates the axiom is the one using the ‘oldest’ facts. The
depth-first strategy branches on disjunctions immediately after their appearance
as conclusion of the invalidated instance.

In the depth-first strategy, like in Prolog, the order of the axioms of the
theory becomes of crucial importance. In the example of Section 4, a depth-first
strategy would start by applying axiom (2) with re(a, b), inferring r(a, b)∨e(a, b).
Upon examination of the case r(a, b) the behaviour changes dramatically. Then
axiom (1) becomes invalidated and starts generating new r-facts. This doesn’t
stop since axiom (1) is all the time invalidated by the new r-facts generated in
previous rounds. This example shows that the depth-first strategy is incomplete.

In order to make the depth-first stategy ‘more complete’ there is a natural
order in which the Horn clauses precede the disjunctive clauses. Of the latter,
the clauses without existential quantification should precede those with and it
is in many cases advisable to put the clauses that combine existential quan-
tifications with disjunctions last. Then every application of a disjunctive clause
is followed by a finite Horn closure, possibly validating disjunctive clauses that
would otherwise have contributed to the combinatorial explosion. In the example
of Section 4 the depth-first strategy can complete the proof procedure without
any problem when we change the order in which the theory has been listed to
the natural order as described above. However, there are problems for which the
depth-first strategy is incomplete with any order of the axioms (see the second
example below).

A typical example where a depth-first strategy is better than the breadth-
first strategy is when p has to be proven from p ∨ p preceeding lots of other
(irrelevant) disjunctions. A typical example where the breadth-first strategy is
better than a depth-first strategy, with respect to any possible ordering of the
theory, is proving ∃uv.(r(b, u) ∧ s(b, v)) from the facts r(a, b), s(a, b) using two
‘co-routining’ seriality axioms:

r(x, y)→ ∃u.r(y, u)

s(x, y)→ ∃u.s(y, u)

Here the breadth-first strategy succeeds in one round where any depth-first strat-
egy fails.
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6 Scaling Up

On the website [2–see readme] we have collected a number of experiments with
a prototype CL prover. The example in Section 4 is very small and can easily
be done by any theorem prover. Yet it is useful to have a compact proof object
at hand. The relevant files are [2–dpe.*].

A more interesting case is the induction step in the proof of Newman’s Lemma.
This problem has been described at length in [3]. Newman’s Lemma states that
a rewrite relation is confluent whenever it is locally confluent and terminating.
Termination is essentially higher-order but in Huet’s inductive formulation the
whole proof boils down to an induction step which is first-order and even co-
herent. Skolemization would involve two ternary Skolem functions (one for the
induction hypothesis and one for local confluence) and a binary one (for the
elimination axiom for reflexive-transitive closure, see formula (∗), Section 1).
In CL existential quantification is demand-driven and Skolemization is avoided.
The CL prover promptly finds a proof in 52 steps (0.01 sec.), before E (1.7 sec.),
E-SETHEO (30 sec.) and Vampire (44 sec.). The relevant files are [2–nl.* and
readme].

In larger examples it will be necessary to further narrow the proof search by
specifying some instances of axioms that have to be used in some specific order.
The fact that this is not fully automatic can be regretted, but we did find in this
way proofs [2–pd hes and pd cro] where the number of automatic steps is two
orders of magnitude larger than the number of specified steps. As the system
automatically generates proof objects, these proof objects are thus obtained in
a way which requires far less human interaction than normally required in Coq
and other proof assistants.

The largest example is the proof of Hessenberg’s Theorem that Pappus im-
plies Desargues in projective plane geometry. Let us say a few words on this
interesting case. Pappus’ Axiom states that for any two lines l and m and points
a, b, c on l and d, e, f on m, the intersections ((ae)(bd)), ((af)(cd)), ((bf)(ce)) are
collinear. Here we have used (xy) to denote the line through the points x and
y, as well as the intersection of x and y if x and y are lines. In order to be
valid, Pappus’ Axiom requires some side conditions to exclude degenerate cases
in which the intersections are indeterminate. There is some variation in these
side conditions. One variation is to require that a, b, c are not on m and d, e, f
not on l. Another variation is to require that the intersections are determinate.
With x | l denoting that the point x lies on the line l, the latter variation of
Pappus’ Axiom reads:

a | l ∧ b | l ∧ c | l ∧ d | m ∧ e | m ∧ f | m ∧
a | n ∧ e | n ∧ g | n ∧ b | o ∧ d | o ∧ g | o ∧
a | p ∧ f | p ∧ h | p ∧ c | q ∧ d | q ∧ h | q ∧
b | r ∧ f | r ∧ i | r ∧ c | s ∧ e | s ∧ i | s →

n=o ∨ p=q ∨ r=s ∨ ∃t.(g|t ∧ h|t ∧ i|t)
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Thus Pappus’ Axiom is clearly coherent, and so are all the other axioms of
projective plane geometry. The equivalence of the two variations of Pappus’
Axiom is fully automated in [2–p1p2 and p2p1].

Desargues’ Axiom states that, under certain conditions excluding degenerate
cases, two triangles are perspective from a line, whenever they are perspective
from a point. Let the triangles be a1b1c1 and a2b2c2, then perspectivity from
a point o means that there exist lines oa, ob, oc through o, a1, a2, o, b1, b2 and
o, c1, c2, respectively. Perspectivity from a line means that the intersections of
corresponding edges of the respective triangles, that is, the points ((a1b1)(a2b2)),
((a1c1)(a2c2)), ((b1c1)(b2c2)), are collinear. Desargues’ Axiom, including the side
conditions, is again coherent.

The proof of Hessenberg’s Theorem has an interesting history. The original
argument from 1905 contains a gap in that it requires some extra side conditions,
which means that it actually leaves open 8 special cases. The gap was closed by
Cronheim in [10] who first reduces the 8 special cases to 2 and then solves these.

This history makes it interesting to formally verify the proof. The many auxil-
iary points and lines involved make a fully automated proof a real challenge. We
have been able to reconstruct the whole proof in a semi-automatic way, with the
use of proof scripts. These proof scripts are readable and have a size which is a
tiny fraction of the whole proof. For example, the essential part of the script for
Hessenberg’s original argument is a list [line(a1,b2,L0),point(L0,oc,P1),
...,pappus(b2,c2,P5),...] which is to be interpreted as: construct the line
through a1 and b2 and call it L0, construct the intersection of this line with
oc and call it P1, . . . , apply Pappus’ Axiom to prove that b2, c2 and P5 are
collinear, . . . . In this way we had to specify 10 steps on a total of around 1000
steps. The other steps settle the many degenerate cases. The relevant files are
[2–pd hes.*].

No automated theorem prover has been able to generate Hessenberg’s origi-
nal argument (in the correct formulation, with the extra side conditions). Cron-
heim’s reduction of 8 special cases to 2 is easier. This argument is independent
of Pappus and has been fully automated in [2–cro 8 2.*]. Cronheim’s argument
solving the remaining cases has been reconstructed in [2–pd cro.*] with the use
of a proof script specifying 6 steps on a total of 723. Again no automated theo-
rem prover has been able to find this proof. The three formal proofs have been
assembled together in the Coq vernacular file [2–pdmain.v]. This completes a full
formalization of Hessenberg’s Theorem, the proof of which has been automated
to a considerable extent.

The following table shows the performance of some other theorem provers
on problems discussed in this paper. More detailed information can be found in
[2–readme]. All problems have been submitted to the TPTP database [23].

7 A General Translation of FOL into CL

We now provide a general way to transform any first-order problem into a coher-
ent problem. More precisely we associate to any first-order formula φ a coherent
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Table 1. Timings in wall clock seconds, − means: no proof found within 300 sec

system/problem dpe nl p2p1 p1p2 cro_8_2 pd_cro pd_hes
E 0.82 0.0 1.7 16.4 − 257.8 − −
Vampire 7.0 0.0 44.6 − − 8.7 − −
E-SETHEO csp04 0.5 30.2 46.7 − 1.0 − −
SPASS 2.1 0.0 − − − 3.6 − −
CL 0.0 0.01 0.27 2.31 0.4 − −

theory such that φ is a tautology if and only if the corresponding theory is in-
consistent. The idea is simply to express the method of analytic tableaux [21] as
a coherent theory. In the case of resolution logic the method of tableaux to build
a set of clauses from a formula has been used in [1]. The idea of introducing new
predicates to abbreviate subformulas can be traced further back to Skolem [20],
who proved that every theory has a conservative extension which is equivalent
to a ∀∃-theory.

For each subformula ψ(x) of φ we introduce two atomic predicates T (ψ)(x)
and F (ψ)(x) with the following coherent axioms

if ψ(x) is ψ1 ∧ ψ2 then
{
T (ψ)(x)→ T (ψ1)(x) ∧ T (ψ2)(x)
F (ψ)(x)→ F (ψ1)(x) ∨ F (ψ2)(x)

if ψ(x) is ψ1 ∨ ψ2 then
{
T (ψ)(x)→ T (ψ1)(x) ∨ T (ψ2)(x)
F (ψ)(x)→ F (ψ1)(x) ∧ F (ψ2)(x)

if ψ(x) is ψ1 → ψ2 then
{
T (ψ)(x)→ F (ψ1)(x) ∨ T (ψ2)(x)
F (ψ)(x)→ T (ψ1)(x) ∧ F (ψ2)(x)

if ψ(x) is ¬ψ1 then
{
T (ψ)(x)→ F (ψ1)(x)
F (ψ)(x)→ T (ψ1)(x)

if ψ(x) is ∀y.ψ1(x, y) then
{
T (ψ)(x)→ T (ψ1)(x, y)
F (ψ)(x)→ ∃x.F (ψ1)(x, y)

if ψ(x) is ∃y.ψ1(x, y) then
{
T (ψ)(x)→ ∃x.T (ψ1)(x, y)
F (ψ)(x)→ F (ψ1)(x, y)

if ψ(x) is atomic then T (ψ)(x)→ ¬F (ψ)(x) (or: T (ψ)(x) ∧ F (ψ)(x)→ ⊥)

It follows from the method of analytic tableaux that φ is a tautology if and
only if F (φ) → ⊥ is provable in the coherent theory where, for any subformula
ψ(x) of φ, we add the axiom for F (ψ)(x) (resp. for T (ψ)(x)) if ψ(x) occurs
positively (resp. negatively) in φ. Note that the translation is linear.

The surprising fact is that these implications are the only ones needed. For
instance, if ψ = ψ1 ∨ ψ2 is at a positive occurrence, we need only to write

F (ψ)→ F (ψ1) ∧ F (ψ2)

and we don’t need the converse implication

F (ψ1) ∧ F (ψ2)→ F (ψ)
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We give a simple example. The following formula (called the Drinker Paradox
under the interpretation ‘x is drunk’ for d(x), see [2–drinker.in])

φ = ∃x.(d(x)→ ∀y.d(y))

is a tautology. This means that F (φ)→ ⊥ should be derivable from the following
coherent theory, writing ψ for ∀y.d(y):

F (φ)→ T (d)(x) ∧ F (ψ) F (ψ)→ ∃y.F (d)(y) T (d)(x)→ ¬F (d)(x)

Clearly, if we assume F (φ) then we can deduce T (d)(x) and F (ψ) for all x (recall
that coherent formulas are universally closed). If the domain is non-empty we
can infer F (ψ) and hence we have a such that F (d)(a). But then we have T (d)(a)
and F (d)(a) and hence a contradiction.

As a corollary of the translation we get that CL is undecidable. In contrast,
resolution logic with only constants is decidable.

8 Conclusion and Future Research

We have argued that CL is a fragment of first-order logic which is interesting to
consider in relation to (semi-) automated theorem proving. We discussed several
examples with a prototype CL prover. Obvious next steps are: extending CL with
a native equational logic and developing a notion of relevancy for CL. Relevancy
means: if we branch on p ∨ q and in case p prove the goal without using p, then
we can assume the goal to be proved in case q as well, see [16, 12]. In CL we have
in addition: if we prove the goal from ∃x.p(x) without using the new witness,
then the goal can be proved without ∃x.p(x). (The latter optimizes the proof
rather than the search.)
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Abstract. We describe an environment that allows the users of the The-
orema system to flexibly control aspects of computer-supported proof
development. The environment supports the display and manipulation
of proof trees and proof situations, logs the user activities (commands
communicated with the system during the proving session), and presents
(also unfinished) proofs in a human-oriented style. In particular, the user
can navigate through the proof object, expand/remove proof branches,
provide witness terms, develop several proofs concurrently, proceed step
by step or automatically and so on. The environment enhances the ef-
fectiveness and flexibility of the reasoners of the Theorema system.

1 Introduction

In general terms, it is agreed that mechanized theorem proving is about us-
ing computers to find a formal proof [1]. A rough classification of theorem
provers divides them in automatic provers, where close to no human assistance
is needed, and interactive provers, which require human assistance in developing
the proof [18]. An extensive list of both automatic and interactive provers can
be inspected at [3].

The goal of the Theorema project [8] is to provide support to the entire process
of mathematical theory exploration. By default, Theorema tries to solve given
reasoning problems automatically. However, since many mathematical theorems
are hard to prove completely automatically, it is helpful to have an environment
that supports interactive reasoning. This paper describes the current status of an
experimental version of such an environment in Theorema. Although Theorema
has support also for computing and solving, the environment is currently used
only for proof development. It allows a finer grained interaction between a human
user and the system. The environment aims at three groups of users. For the
first one the environment has a didactic value: it can be used to train formal
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proving. In the second group are those users who are already familiar with formal
proving techniques and with the details of Theorema. For them, the environment
enriches the proving power of the system by allowing them to use their creative
ideas and intuition (for example, providing witness terms). The third group of
users is the Theorema developers group, for which the environment is used as a
tool for testing the provers that are still in development.

The first attempts to integrate interactivity into Theorema are described in [9]
and some of those ideas were a starting point for the current interactive envi-
ronment. Prior to this work, in [27] it is shown how interactive proving was to
be integrated in the architecture of Theorema, but no implementation was done.
Another attempt to provide user-system interaction is described in [17] and [16].

Shortly, our main contribution to the previous implementations are improved
proof tree and proof situation management, a schematic representation of the
proof tree, and multiple interconnected views of the underlying data structures.

This paper is organized as follows: In Section 2 we discuss general require-
ments for an interactive proof development environment. Section 3 gives an
overview of the Theorema system and describes the experimental implemen-
tation of the Theorema interactive environment. In Section 4 an example of
interactive proof development in Theorema is given. We overview some related
work in Section 5 and we end with conclusions and future work in Section 6.

2 Requirements for an Interactive Environment for Proof
Development

Design principles for interfaces to (interactive) provers, as well as the function-
alities such interfaces should offer, have already been formulated by a number of
authors; see [6, 12, 13, 28]. We do not intend to give yet another set of principles,
but we will just gather user actions that correspond to the already formulated
principles and classify them into logical and abstract interaction actions.

Our classification is based on the levels of abstraction described in [1]: a
logical, an abstract interaction, and a concrete interaction level are considered
to be necessary to characterise the interaction with an automated reasoning
system. In this paper, we do not consider the actions at the concrete interaction
level. We give, however, some considerations in this respect in Section 3.4. (For
more usage and implementation details see [21].)

At the logical level the user actions are sketched only in terms of logical
concepts [1], like for example the activity of reducing a mathematical expression
to its canonical form. Other actions that are to be included in the class of logical
level activities are providing witness terms, adding and removing formulae from
the list of formulae used during a reasoning session, selecting formulae and/or
proof strategies that are to be used in the next reasoning chain. At this level, a
mathematician using an automated theorem prover must be given the possibility
to save and restore proving sessions, to abandon proof attempts, and to work on
several partial proofs at the same time. Additionally, it is also important that the
user has quick access to information relevant to the development of the proof and
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that she is not burdened with unnecessary information. Proof navigation should
be available and as simple as possible. A bonus for any interactive system is the
presence of a comprehensive help system which gives users hints on how to use
the system’s commands and answers to their actions.

These activities do not assume having a good knowledge about automated
reasoners, but only basic knowledge on doing proofs, which any user with a
background in mathematics is supposed to have.

At the abstract interaction level users manipulate visual objects in order
to communicate with the system. At this level no implementation details are
considered, this is done at the third level, the concrete interaction level (which
will not be discussed in this paper).

To realize the logical actions of the interactive reasoning systems, at the ab-
stract interaction level, we have to provide means for structure manipulation
and we should make use of objects representing logical knowledge. For exam-
ple a directed graph structure can be used for visualising and navigating in
a proof or for representing hierarchically composed theories of mathematical
knowledge. Manipulating such structures requires maintaining connections be-
tween objects as data structures and their displays (tree representation or tex-
tual, user-friendly proof explanation). In order to facilitate users to store and
restore proving sessions, the designer of an interactive proving system will have
to provide mechanisms for script management to record, store, and maintain a
history of user actions. Commands for developing proofs have to offer default
behaviour in case they are incompletely specified. Articulating commands by
various means (mouse clicks, typing, etc.) is also a feature which interactive
proving systems should supply.

Finally, we remark that an action performed at the logical interaction level can
be seen as an explanation and motivation for an action at the abstract level [1].

3 Theorema’s Interactive Environment

3.1 An Overview of the Theorema System

Theorema1 is implemented in the programming language of the Mathematica
system. The development is carried out since mid nineties under the guidance of
Bruno Buchberger. A user exploring theories using Theorema interacts (automat-
ically or semiautomatically) with three blocks of system components: reasoners,
organizational tools, and libraries of mathematical knowledge [8].

Basic building blocks of the system’s reasoners are inference rules that operate
on reasoning situations—goals and knowledge bases. The rules are implemented
as Mathematica functions. They can be grouped into modules and then com-
bined into reasoners by various strategies. The reasoning process is guided by
a common search procedure. The output of this procedure is a global reasoning
object that follows a common structure which allows a homogeneous display of
the output independent of which reasoner was used. The object is an and-or
1 See www.theorema.org
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tree which, during the search procedure, is expanded top-down, and the root
contains the original reasoning situation. Terminal nodes on successful or failed
branches and non-terminal nodes are labeled by (certain encodings of) the rea-
soning steps performed. Terminal nodes on the other branches are labeled by
reasoning situations.2

The language of Theorema is an untyped higher order language extended with
sequence variables. Type (or sort) information is in general handled by unary
predicates or sets (if one decides to work in a set theory). However, particular
reasoners may implement rules to deal with such information in a special way.

Theorema advocates efficient reasoning in special theories—like geometry,
analysis, combinatorics—using algebraic algorithms as black box inference rules.
For this purpose several special reasoners have been developed, e.g. the Pcs
prover [7] (standing for ‘Prove Compute Solve’) which implements a heuristics
for elementary analysis and uses Collins’s Cylindrical Algebraic Decomposition
algorithm [10] as a solver. Another example of a special reasoner is the solver and
simplifier for two-point linear boundary value problems [22]. Theorema currently
contains 19 reasoners and is linked to 11 external reasoning systems and to the
Tptp library; see [8].

During a Theorema session reasoners are accessed by a call of the form

Reason[entity, using → knowledge-base, by → reasoner, options ],

where Reason is Prove, Compute, or Solve; entity is the mathematical entity to
which Reason applies, e.g. a proposition in the case of proving or an expression
in the case of computing; knowledge-base is the knowledge with respect to which
the reasoning should be performed; reasoner is the concrete (internal or exter-
nal) reasoner we want to use. There are two groups of options : those specific to
reasoners, which give means to influence their behaviour, and those that control
the general search mechanism and the eventual post-processing tools (presenta-
tion, simplification, etc.). For convenience default values for each of the options
are available. Information and usages of the available Theorema reasoners and
options can be displayed with the Mathematica ‘?symbol ’ command.

In the sequel we concentrate on proof development only, i.e., the concrete rea-
soners are provers. A sample Theorema proving session consists of the following
steps. First, Mathematica must be started and then Theorema loaded. Next, the
knowledge the user wants to use (e.g. formula, knowledge-base) must be made
available to the system. This can be done either by typing it in a Mathematica
notebook3 and evaluating it, or by loading a previously stored file. Finally, the
corresponding Reason command should be (typed and) evaluated. The output
is given in a separate notebook in a pretty-printed, textbook-style syntax.

If the proof does not succeed the user may re-start the proof search pro-
cess with different premises (additional knowledge, different options of the used
2 Those who are familiar with the NuPRL proof object may notice that the Theorema

reasoning object and the NuPRL proof object are quite similar.
3 Notebooks are part of the Mathematica front end. They are complete interactive

documents combining text, tables, graphics, calculations, and other elements.
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prover, different prover of Theorema). However, we would like to have the possi-
bility to guide the proof search routines during the proof search. For example, we
would like to hint to the prover that it should use certain instances for specific
quantified variables at various points in the proof. In the following sections we
will describe the tools that support such a user-system interaction.

The components of the Theorema interactive interface are working files, win-
dows for displaying messages and logs, and menu-palette windows (toolbars).

The working files are usual Mathematica notebooks in which the users write
and store the mathematical knowledge employed in a reasoning session (inter-
active or not). Special notebooks are The Proof Window, presenting proofs in a
user-friendly style, and The Proof Tree Window which shows the tree structure
of the proof. These two windows are maintained and updated by the system. By
combining selections of cells in The Proof Window, in the working files, selec-
tions in The Proof Tree Window, and button clicks on the toolbars users can
navigate within the proof, introduce new proof variants, give witness terms, etc.

Whenever an action could not be accomplished, the Theorema interactive
interface makes use of notification dialogs with short explanation messages on
why the action could not be performed. Also, a log window is present, where
environment and proof information, actions performed by the user, etc. are dis-
played. The content of this window can be saved but, at the moment, to restore
a proving session the users have to do the actions themselves, as recorded in the
stored log, one by one.

The commands that realize the various actions for the interactive proof de-
velopment can be articulated either with the help of the toolbars or by typing
the commands in the working notebooks and sending them to the Mathematica
kernel for evaluation.

3.2 Managing the Proof Tree

In the non-interactive mode, the Theorema provers apply the inference rules au-
tomatically. The inferences are repeatedly applied until either a proof is obtained
or no further inferences can be applied. The users only see the final output of this
process. In contrast, when searching for proofs in the interactive environment,
the system is compelled to stop after each application of an inference rule, to
present the proof produced so far, and to wait for a decision from the user.

In the interactive mode, the proofs are gradually developed starting from an
initial proof tree: the root node that contains the proof problem as given by the
user (goal formula and assumption formulae, if any) and, additionally, internal
information specific to the provers and to the proof search routines of Theorema.
Initially, the root is an unexplored node, or in Theorema terminology: a pending
node. The information stored in an unexplored node is called a “proof situation”.

The node expansion is done by calling a prover to apply one of its inferences
to the node’s proof situation. An inference rule application will produce none,
one, or more proof situations that are inserted into the proof tree as unexplored
children of the now expanded node. The proof search mechanism will add to the
information stored in the expanded node a trace of the inference rule application.
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When a proof under development has more than one unexplored node the user
can select which one to expand next. If an expansion action is performed but no
prior explicit selection of an unexplored node is made, the system will choose the
leftmost unexplored one. Currently we are working on giving users the possibility
to see a list of inference rules and proof methods that are applicable to a proof
situation, as well as means to choose an inference rule and to select the formulae
the rule should be applied on. The proof tree can be displayed in two variants,
shown in Fig. 1: an english textual explanation produced from the traces of the
inference rule applications, with pretty-printed formulae (in The Proof Window),
or a schematic tree representation (in The Proof Tree Window). In both views,
users can select nodes in the proof. If the selected node is expanded, the user

Fig. 1. The Theorema interactive environment: the working notebook, the most used
menu-palettes, the two proof view windows, and the log window

can choose whether to start a new proof variant by adding a branch to the proof
tree at the selection point, or to abandon the reasoning chain below the selection
point by removing it. Removing a reasoning chain in the proof and continuing
with a different one at the removal point can be seen as an undo operation. Users
can also work on different proofs at the same time. The way this can be done
in the interactive environment of Theorema is the following: For a newly added
branch in the proof tree, the user has the possibility to state a different goal
that is not necessarily derived from the originally given one. The assumptions
available in the prove session when stating the new goal may be used in its proof,
but new assumptions can also be added.
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At the end of the proof development the proof tree will contain the traces of
the user’s actions during interactive development of proofs. However, this data
structure does not record the order these actions were performed.

3.3 Managing the Proof Situation

In the previous sections we have mentioned that Theorema provers’ inference
rules take as input proof situations, i.e., a goal formula, a list of assumption
formulae, and some local context storing facts and additional proof strategy
information used by the provers of the system. For example, one such fact is
keeping track of which formulae in the list of assumptions were matched against
the goal formula. Another example is the storage of the names of the metavari-
ables introduced by certain inference rules and their dependencies.

One of the specific difficulties in algorithmic proof generation is finding appro-
priate instances (at appropriate moments) for quantified variables. Within the
interactive environment of Theorema it is possible to give the system witness
terms which should be used for certain variables. If the variable is existentially
quantified, a user-given instance will be taken into consideration only if the for-
mula in which it occurs is the current goal and the quantifier that binds the
variable is the outermost one. For universally quantified variables, a user-given
instance is accepted only if the formula occurs in the list of current assumptions
and if the quantifier binding the variables is the outermost one.

When we prove a theorem with pen and paper we use, for a start, only few
definitions, properties, etc. of the notions occurring in the theorem we try to
prove. As we proceed with the proof we usually recall other lemmata, properties,
etc. which we use in the attempt to complete the proof. At the same time we
may discard some formulae. Theorema’s interactive interface does allow users to
add and remove formulae from the assumption list of an unexpanded node.

The natural language representation of the proof displays, for each proof
step, the result of inference rule applications, namely, which formulae were used,
which were generated, the used instantiations (if any), etc. Obviously, this does
not reflect all the content of the nodes in the proof. One reason for this is that
part of the information stored in the nodes is not relevant for the user, but only
for the provers of the system. However, it is often the case that we are interested
in the whole content of the proof node. We may want to know, for example,
which are the formulae that are or were available when an inference rule was
applied. The developers of the Theorema system may want to check the prover
specific information to help them to develop and improve their provers. For this
reasons, the interactive interface to Theorema provides access to the additional
information stored in a node.

3.4 Comments on Implementation

Until recently, Theorema was used mainly in an automated mode and no inter-
action with the system during the proof search was possible. The first solution
chosen to provide interaction was to suspend the execution of the proof search
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routine after one inference rule application. This was done by starting a Math-
ematica subprocess that collected the user actions [16].

In the current implementation we have opted for a different, simpler solution.
We have introduced a system-global boolean variable which keeps track of the
current proving mode (interactive or non-interactive), and a step-counter that
controls the number of proof steps to be performed by the proof search routine.

In the non-interactive proving mode, the step-counter variable is ignored and
the proof search routine proceeds until either a successful proof is obtained or no
inference rule can be applied anymore. In the interactive mode, every time the
proof search routine is invoked the step-counter is, first, set to a predefined value.
With each inference rule application this value is decreased by one. As soon as the
step-counter reaches zero, the proof search routine stops, and returns the proof
developed sofar which is, then, presented to the user, in The Proof Window,
The Proof Tree Window being also updated. When the user chooses to further
expand the proof, the search routine will continue with expanding the left-most
unexplored situation in the proof tree, unless otherwise indicated. The default
value of the step-counter in the current implementation is set to 1, which means
that the proof search stops after one inference rule application.

We mention here two important advantages of this solution. One is that only
few modifications of the main proof search routines of the system were nec-
essary: First, a check of the step-counter value was added to the termination
conditions of the proof search routine and, second, certain Theorema specific
variable initialization are by-passed when the proof search is invoked in the in-
teractive mode. (For example, we do not want the proof-tree to be re-initialized,
as in the non-interactive mode, but we want to expand it further). The second
important advantage of the solution chosen by us is that no alteration of the
existing provers of the Theorema system had to be done in order to use them
for proving in the interactive mode.

Until version 5.1, Mathematica did not have facilities for developing user inter-
faces. Therefore, with the exception of buttons, the elements of the interactive
environment interface do not include drop-down lists, dynamic menus, check
boxes, context-sensitive menus, etc. Also, to our knowledge, in Mathematica, we
cannot track the mouse actions. In other words, we cannot determine user inputs
by tracking the mouse clicks and movements. The solution we have chosen to
overcome this difficulty is to (require users to) make selections in notebooks and,
on button clicks, manipulate the notebooks in the Mathematica kernel.

Within any open notebook, the front end always maintains a current selec-
tion (see [30], Section 2.11.3). Selections can be done by user clicks or by issuing
commands from the kernel. Mathematica also provides commands for extracting
the content of a selections in a notebook. So we are able to retrieve user input
when the user makes selections in notebooks. The retrieved input is passed to
the routines implementing the tools of the interactive environment. The rou-
tines process the input correspondingly to the tool they implement, e.g. add
an assumption to the current proof situation, delete a branch in the proof-tree,
provide witness terms, etc.
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4 An Example

Assume now that we, as Theorema users, want to prove that the limit of the sum
of two sequences is the sum of their limits. First, we formalize the proposition
and the corresponding definitions in a Theorema notebook:

Proposition[“Limit of sum”,
∀

f,a,g,b
((limit[f, a] ∧ limit[g, b])⇒ limit[f ⊕ g, a + b]) ].

Definition[“Limit”,
∀

f,a
(limit[f, a]⇔ ( ∀

ε
ε>0

∃
N
∀
n

n≥N

|f[n]− a| < ε))
].

Definition[“Sum of sequences”,
∀

f,g,x
((f ⊕ g)[x] = f [x] + g[x]) ].

This is exactly how it would look in the notebook: Theorema has a human-
oriented, two-dimensional syntax. Next, we activate the interactive proving mode
by evaluating the command StartInteractive[ ] which will open the necessary
menu-palettes (see Fig. 1). We want to prove the proposition by one of the
Theorema provers (PredicateProver), using the given definitions. For this we
type, in a working notebook, the corresponding Prove command, as below, select
it, and press the Start button on the Theorema Interactive palette (see Fig. 1).

Prove[Proposition[“Limit of sum”],
using→{Definition[“Limit”], Definition[“Sum of sequences”]},
by→PredicateProver]

The system will show the user The Proof Window with the following content,
where ‘Pending proof of (formula label)’ represents an unexpanded node:

Prove:

(Proposition(Limit of sum))

∀
f,a,g,b

((limit[f, a] ∧ limit[g, b])⇒ limit[f ⊕ g, a + b])

under the assumptions:

(Definition(Limit)) ∀
f,a

(limit[f, a]⇔ ( ∀
ε

ε>0

∃
N
∀
n

n≥N

|f[n]− a| < ε)),

(Definition(Sum of sequences)) ∀
f,g,x

((f ⊕ g)[x] = f [x] + g[x]).

Pending proof of (Proposition(Limit of sum)).

Here we can simply proceed by clicking the Next button. The prover applies the
first rule applicable to the current proof situation (∀-Right rule). In The Proof
Window the last line (pending proof) is replaced by the following output:
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For proving (Proposition(Limit of sum)) we take all variables arbitrary
but fixed and prove:

(1) limit[f0, a0] ∧ limit[g0, b0]⇒ limit[f0 ⊕ g0, a0 + b0]

Pending proof of (1).

After several default steps this proof attempt will fail. The reason the proof fails
is manifold. The main one, however is that the knowledge we started with is
not sufficient for proving the goal formula. Secondly, the prover we have used is
not strong enough and we would like to use a different one that, implicitly, uses
some special knowledge on real numbers and, in addition, applies a particular
strategy for handling formulae with alternating quantifiers. Therefore, we undo
the proof, with the help of the -Branch button, and start again by using the
Pcs prover. (We could also have started an alternative proof by adding a branch
at a properly chosen point in the proof tree, using the +Branch button, and by
selecting another prover to continue with, e.g., Pcs. In this way the previous
failed attempt would still be present in the proof tree, giving us the possibility
to see how different provers act on the same proof problem.)

From the previous failed proof attempt we, as humans, conclude that addi-
tional knowledge about absolute values and distances between points may help:

Lemma[“Distance of sum”,
∀

x,y,z,t,δ,ε
(|(x + z)− (y + t)| < (δ + ε)) ⇔ (|x − y| < δ ∧ |z − t| < ε) ].

After several proving steps the content of The Proof Window is:

Prove: . . . (The initial proof problem is omitted for space reasons.)
We assume

(1) limit[f0, a0] ∧ limit[g0, b0]

and show

(2) limit[f0 ⊕ g0, a0 + b0].

Formula (1.1), by (Definition(Limit)), implies:

(3) ∀
ε

ε>0

∃
N
∀
n

n≥N

|f0[n]− a0| < ε.

By (3), we can take an appropriate Skolem function such that

(4) ∀
ε

ε>0

∀
n

n≥N1[ε]

|f0[n]− a0| < ε.

Formula (1.2), by (Definition(Limit)), implies:

(5) ∀
ε

ε>0

∃
N
∀
n

n≥N

|g0[n]− b0| < ε.

By (5), we can take an appropriate Skolem function such that
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(6) ∀
ε

ε>0

∀
n

n≥N2[ε]

|g0[n]− b0| < ε.

Formula (2), using (Definition(Limit)), is implied by:

(7) ∀
ε

ε>0

∃
N
∀
n

n≥N

|(f0 ⊕ g0)[n]− (a0 + b0)| < ε.

We assume

(8) ε0 > 0

and show

(9) ∃
N
∀
n

n≥N

|(f0 ⊕ g0)[n]− (a0 + b0)| < ε0.

At this point we, as users, decide to influence the proof by providing an ap-
propriate witness term for N . Selecting the formula (9) and clicking the button
∃ Inst, a dialog window opens where the witness term can be specified. We type
in max[N1[ε0/2], N2[ε0/2]], and the proof proceeds:

Instantiation: N → max[N1[ ε0
2 ], N2[ ε0

2 ]].

The current goal is

(10) ∀
n

((n ≥ max[N1[ ε0
2 ], N2[ ε0

2 ]])⇒ |(f0⊕g0)[n]−(a0+b0)| < ε0).

We assume

(11) n0 ≥ max[N1[ ε0
2 ], N2[ ε0

2 ]]

and show

(12) |(f0 ⊕ g0)[n0]− (a0 + b0)| < ε0.

Formula (12), using (Definition(Sum of sequences)), is implied by:

(13) |(f0[n0] + g0[n0])− (a0 + b0)| < ε0.

Formula (13), using (Lemma(Distance of sum)), is implied by:

(14) ∃
δ,ε

δ+ε=ε0

(|f0[n0]− a0| < δ ∧ |g0[n0]− b0| < ε).

Here we interact again by instantiating δ and ε with ε0/2.

Instantiation: δ → ε0
2 , ε→ ε0

2 .

The current goal is

(15) ε0
2 + ε0

2 = ε0 ∧ |f0[n0]− a0| < ε0
2 ∧ |g0[n0]− b0| < ε0

2 .

Formula (15) is implied by

(16) |f0[n0]− a0| < ε0
2 ∧ |g0[n0]− b0| < ε0

2 .

Formula (16), by (4) is implied by
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(17) ε0
2 > 0 ∧ n0 ≥ N1[ ε0

2 ] ∧ |g0[n0]− b0| < ε0
2 ,

which by (6) is implied by

(18) ε0
2 > 0 ∧ n0 ≥ N1[ ε0

2 ] ∧ n0 ≥ N2[ ε0
2 ].

Formula (18), by (8), is implied by

(19) n0 ≥ N1[ ε0
2 ] ∧ n0 ≥ N2[ ε0

2 ].

Here we notice that another assumption is needed that we add immediately to
the knowledge base used by the proof search routine. To add the assumption we
use the +Assm button. The proof proceeds then as follows:

The user added the assumption:

(Lemma(Max))

∀
m,M1,M2

(m ≥ max[M1,M2]⇒ (m ≥M1 ∧m ≥M2)).

Formula (19), by (Lemma(Max)), is implied by

(20) n0 ≥ max[N1[ ε0
2 ], N2[ ε0

2 ]].

Formula (20) is proved because it is identical to (11).

To summarize, this example demonstrates various ways of interaction with the
system: cutting a branch and backtracking, changing the prover, adding assump-
tions, and providing witness terms.

5 Related Work

A concise historical overview of interactive systems is given in [19]. Though in
most of the cases the design principles listed in [6, 12, 13] or [28] were not specifi-
cally followed, many interfaces have common functionalities. We briefly describe
some of these systems (mathematical assistants), insisting on those features sim-
ilar to the ones present in Theorema. For more details on the described systems
we direct the reader to the literature (e.g. [29], or the forthcoming issue on
Mathematics Assistance Systems of the Journal of Applied Logic [4]).

One of the interactive systems with the largest pool of users is the Hol sys-
tem [14], now at version 4. It is an environment for interactive theorem proving
in higher-order logic and has a wide variety of uses from formalizing mathematics
(see for example [15]) to verification of industrial hardware. It has high degree of
programmability through the meta language Ml which allows extending the sys-
tem to provide more functionality. Thus, packages for proof tree administration,
goal tracking, script save and replay, etc. are available within Hol. As a the-
orem proving system, Hol has a command-line interface. As in Theorema, the
system permits adding assumptions to a proof in development, but no removing
of formulae is possible. The proofs are done in a goal directed style but tacticals
that do forward inferencing are also present in the system. If users decide that
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wrong proof steps were done, they can undo to the previous proof state. There is
also a restart possibility by backtracking to the root. Switching between goals is
possible both in Hol and in Theorema. Several graphical interfaces were imple-
mented for the system, like Tk-Hol [26], xhol [23], and Emacs modes are widely
used. The interfaces provide theory browsing and searching, graphical views of
the proof state (similar to the schematic proof tree representation in Theorema’s
interactive environment), etc.

The Isabelle system [20] is a generic proof assistant which allows defining
different logical calculi and using them for proving. It is closely integrated with
the Proof General [2] for editing and developing proofs and, similar to the Hol
system, allows proof storage and replay, undo and revert operations, proof states
display, etc. (Proof General [2] is a generic tool for proof development that
provides a uniform interface and interaction mechanism not only for Isabelle
but for other proof assistants as well, like Coq, Lego, and, experimentally, with
Hol, Acl2 and λClam.) However, the system does not maintain a proof object
and only one view of the proof is available (the one shown in the Proof General
window). In its latest version, Isabelle provides a tool for searching theorems in
the system’s library of theories by simple patterns.

Coq [5], another logical framework system, is a proof assistant for the Calcu-
lus of Inductive Constructions. It allows the interactive construction of formal
proofs, and also the manipulation of functional programs. A variety of user inter-
faces are provided for it. For example CoqIde is a graphical user interface based
on gtk which allows proof tree navigation, structural editing of formulae and
commands, and has an autocomplete facility for command articulation. Pcoq,
CtCoq, and Proof General are other interfaces for Coq. Lately, an integration of
Coq into TeXmacs is also available.

Ωmega [24] is an interactive proof development system. The system has two
main components: a proof planner, and an integrated collection of tools for
formulating problems, proving subproblems, and proof presentation. LΩui is an
interface for Ωmega which combines features for graphical display of proofs as a
graph, hypertext facilities for term browsing, proof and proof plan presentation in
natural language. It also has an editor for adding and maintaining the knowledge
base, and a command suggestion mechanism; see [25].

NuPRL [11] supports the interactive creation of proofs, formulas, and terms.
Based on Martin-Löf type theory, it is a system for implementing mathematics.
NuPRL has a multi-window graphical environment and a keyboard-based proof
navigation tools.

6 Future Work and Conclusions

The current status of the Theorema interactive environment allows users to se-
lect a proof situation in the proof; inspect the content of a selected proof situ-
ation; add or remove assumptions in a selected proof situation; suggest witness
terms; add or remove branches in the proof tree; model concurrent proof develop-
ment; select one from several provers to continue the proof, eventually change its
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options; make the system expand the proof by one inference rule application; ask
the system to automatically complete the proof.

In future versions of the environment we plan to include a tool for inference
rule selection. Namely, for a selected proof situation, the tool should present,
on request, a list of applicable inference rules. The user can select one or more
inferences to be applied in the next step. Selecting more than one inference from
the list means that the user intends to investigate several proof alternatives
for the given proof situation, one alternative for each inference rule selected.
However, to implement such a inference selection tool, important modifications
of the Theorema system are necessary. For example, inference rules need to be
uniquely identifiable among all the inferences of the system. We also plan to
include facilities for specifying tactics.

Other tools we plan to include in the environment are possibilities to store and
load proof sessions, extracting proof strategies from a proof session. A variant
of the latter tool can be used to help the developers of the Theorema provers
compose new provers based on the sequence of inferences used in an interactive
proof session. To achieve this, we will have to analyze the proofs obtained in the
interactive mode, in order to extract the relevant proof steps and inference rules.
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Abstract. We describe an extension of St̊almarck’s method in First Or-
der Logic. St̊almarck’s method is a tableaux-like theorem proving method
for propositional logic, that uses a branch-and-merge rule known as the
dilemma rule. This rule opens two branches and later merges them, by re-
taining their common consequences. The propositional version does this
with normal set intersection, while the FOL version searches for pairwise
unifiable formulae from the two branches. The proof procedure attempts
to find proofs with as few simultaneously open branches as possible. We
present the proof system and a proof procedure, and show soundness and
completeness. We also present benchmarks for an implementation of the
proof procedure.

1 Introduction

St̊almarck’s method [9] is a method for tautology checking in propositional logic,
that has been successful in many real world verification problems. Its most dis-
tinguishing feature is the dilemma rule, which is a branch-and-merge rule. Simi-
larly to the analytic cut rule, it creates two branches, and assumes that a formula
(called the dilemma formula) is true in one branch, and false in the other one.
If a contradiction is found in one of the branches, the proof method continues
in the other one as usual. The difference from other tableaux calculi is that if
none of the branches leads to a contradiction, then they are merged into one
branch, consisting of the intersection of the two branches. Thereby, all the facts
that were derived in both branches are retained after the merge.

St̊almarck’s method is only complete if we allow arbitrary nesting of dilemmas.
However, it has turned out that many interesting verification problems only
require one or two simultaneous dilemmas. The proof procedure initially searches
for proofs without dilemmas. Thereafter, it searches for proofs with at most one
simultaneously open dilemma, and then two dilemmas, and so on.

In a privately circulated draft, St̊almarck sketched a first order extension
of the proof method. Since then it has been refined several times [7, 2, 3, 4].
Lundgren and Björk have made implementations of different versions of the
proof method.
1 Proofs to some of the theorems in this paper can be found in an appendix, available

at http://www.cs.chalmers.se/˜mab/LPAR05.

G. Sutcliffe and A. Voronkov (Eds.): LPAR 2005, LNAI 3835, pp. 276–291, 2005.
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Figure 1 contains an example proof. The formulae labelled 1 through 3 are the
axioms that we start from. These axioms are consistent, so we will not be able to
derive a contradiction in the example, but it is enough to show how the dilemma
rule works. The numbers within square brackets show the premises for each
derived formula. Formulae 4 to 6 are derived from the axioms, by eliminating
the quantifiers, and replacing the quantified variables with fresh ones. These
variables are universal, and may be unified with anything.

After formula 6, it is not possible to derive anything else with non-branching
rules. Therefore we pick a dilemma formula (P (X,Y ) in this example), create
two branches, and assume that the dilemma formula is true in one branch, and
false in the other one. While the variables in formulae 4 to 6 are universal, the
variables in the dilemma formula are rigid. That means that they cannot be
substituted. They denote arbitrary but fixed values, and must be treated as the
same values in both branches.

The two branches contain relatively simple derivations. Note that we can
introduce more complex formulae from simpler ones (see formula 1.3) if the
resulting formula is an instance of a subformula of an existing formula (in this
case formula 5).

1: ∀x, y.(P (x, y) ↔ Q(y,x)) axiom
2: ∀x, y, z.((P (x, y) ∧ Q(z, x)) → R(y, z)) axiom
3: ∀x, y.(¬P (x, y) → R(x, y)) axiom
4: P (x0, x1) ↔ Q(x1, x0) [1]
5: (P (x2, x3) ∧ Q(x4, x2)) → R(x3, x4) [2]
6: ¬P (x5, x6) → R(x5, x6) [3]

1.1: P (X, Y ) assumption
1.2: Q(Y, X) [1.1, 4]
1.3: P (X, Y ) ∧ Q(Y,X) [1.1, 1.2]
1.4: R(Y, Y ) [1.3, 5]

2.1: ¬P (X, Y ) assumption
2.2: R(X, Y ) [2.1, 6]

7: R(x7, x7) [1.4, 2.2]

Fig. 1. One application of the dilemma rule

When it is time to merge the branches, we are allowed to do more with the
rigid variables. Here, we can substitute them, and in this case it is useful to
unify X and Y , since then both branches contain R(Y, Y ). Furthermore, we
can replace the rigid variables with universal variables, so after the branches
are merged, x7 may be unified with any terms. Note that the rigid variables
weren’t destructively instantiated in the branches, so if it had been possible
to substitute them in other ways to create other conclusions, we could have
done that too: Say, for instance, that the left branch had contained the formula
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R(c, d). Then we could have added R(c, d) to the merged branch, together with
R(x7, x7).

No destructive instantiations are ever performed. If we find that instantiating
a rigid variable may lead further, we memorize that instantiation, and later
repeat the same dilemma, but with the more specific instance. In this way, we
can easily find good candidates for future dilemma formulae.

The rest of this paper is organized as follows: Section 2 describes the proof
system and states the soundness theorem. Section 3 describes two versions of
the proof procedure (one simplified and one efficient), states the completeness
theorems, and outlines the proofs thereof. Section 4 presents benchmarks of an
implementation of the proof method.

The main contributions of this paper, that are previously unpublished, are the
completeness proof, the benchmarks, and some notation that makes the proof
system more readable.

2 The Proof System and Soundness

2.1 A Logic with Universal and Rigid Variables

We define a logic that has two syntactic categories for variables: universal vari-
ables (denoted by x, y, z) and rigid variables (denoted X , Y , Z). In short, we
define the semantics by introducing models (usually denoted by M), that are
pairs 〈D, I〉 consisting of a domain, which is a non-empty set, and an interpre-
tation, which is a function that assigns domain elements to all constant symbols
and rigid variable symbols, n-ary functions to all n-ary function symbols, and
n-ary relations to all n-ary predicate symbols. In addition, we use variable assign-
ments (denoted β), which are functions that assign domain elements to universal
variable symbols. We say that two interpretations I and I ′ are V -variants if they
assign the same values to all symbols, except the ones occurring in the set V
(and similarly for variable assignments).

Given a model M = 〈D, I〉 and a variable assignment β we define the value of
terms and formulae in a standard way. For instance, f(t1, . . . , tn)I,β =
(f I)(tI,β

1 , . . . , tI,β
n ) and XI,β = XI . The value of a formula is either t or f.

For instance we define [A ∧ B]I,β = t iff AI,β = BI,β = t. We say that a model
M = 〈D, I〉 satisfies a set of formulae Δ (denoted M |= Δ) if for all variable
assignments β and all formulae A ∈ Δ, AI,β = t. A set of formulae Δ′ is a logical
consequence of another set of formulae Δ (denoted Δ |= Δ′) if all models that
satisfy Δ also satisfy Δ′.

So, in the semantics of the logic, the rigid variables and the constants have
similar roles. The difference arises when we define substitutions, which are finite
mappings from both universal and rigid variable symbols to terms. Single sub-
stitutions usually only substitute one kind of variables. We denote substitutions
with only universal variables in their support by σ, and substitutions of rigid
variables with τ . We say that a substitution is universal with respect to a set
of formulae Δ if its support only contains universal variables, and it does not
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introduce any variables that occur bound in formulae in Δ. It is straightforward
to show lemmas such as Δ |= Δ ∪Δσ for any given Δ and σ which is universal
w.r.t. Δ.

We say that a set of formulae Δ is contradictory if there are formulae A ∈ Δ
and ¬B ∈ Δ, and a universal substitution σ, such that Aσ = Bσ. Although all
contradictory sets are unsatisfiable, the two concepts are not identical: contra-
diction is a syntactically decidable property, which is an approximation of the
semantical property of undecidability.

We define an operation refresh, which given a set of formulae returns virtu-
ally the same set of formulae, except that some of the free universal variables
occurring in formulae in Δ have been replaced by fresh variables, in such a way
that no universal variable symbol occurs free in more than one formula in the
new set. It is straightforward to show that Δ |= refresh(Δ).

An important lemma states that if a set of formulae holds for all possible val-
uations of some specific rigid variables, then these rigid variables can be replaced
by universal ones. The lemma is formulated as follows:

Lemma 1. Given a model 〈D, I〉, a set of rigid variable symbols V , a set of
formulae Δ, a substitution τ = {X1 �→ x1, . . . , Xn �→ xn}, where X1, . . . , Xn are
the elements of V , and x1, . . . , xn are universal variable symbols not occurring in
formulae in Δ, then if 〈D, I ′〉 |= Δ for all V -variants I ′ of I, then 〈D, I〉 |= Δτ .

2.2 Logical Intersections

As we mentioned before, St̊almarck’s method in propositional logic allows two
branches to be merged, retaining the intersection of the consequences of the two
branches. For soundness and completeness it would be enough to use ordinary
set intersection in the first order version as well. However, it is possible to do
a bit better than that. Consider, for instance, the two sets of formulae {P (x)}
and {P (c0),¬P (c1)}. Clearly, P (c0) is a logical consequence of both the sets,
but the intersection of the two sets is empty. We introduce the notion of logical
intersections of sets of formulae, which are sets consisting of formulae that come
from unifications of formulae in the original sets.

Definition 1. Given three sets of logical formulae Δ1, Δ2, and Δ, we say that
Δ is a logical intersection of Δ1 and Δ2 if for all A ∈ Δ there are formulae
A1 ∈ Δ1 and A2 ∈ Δ2, and a substitution σ which is universal w.r.t. Δ1 ∪Δ2,
such that A = A1σ = A2σ.

As an example, the set {P (g(y)), Q(c, d)} is a logical intersection of the two
sets {P (x), Q(c, z),¬Q(d, d)} and {P (f(x)), P (g(y)), Q(x, d)}. P (f(x)) is not in
the intersection, since that would require unifying x and f(x). We unify P (x)
and P (g(y)) to yield P (g(y)), and Q(c, z) and Q(x, d) to yield Q(c, d). We cannot
unify ¬Q(d, d) with anything, so it does not give rise to any of the formulae in
the intersection.
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2.3 Derivations

We now define derivations, which essentially are sequences of rule applications.
Derivations and rules are defined in terms of each other, and we chose to begin
with the definition of derivations. Rules will be defined immediately afterwards.

Derivations always have a source and a sink, both of which are sets of formulae.
We denote that Π is a derivation with source Δ and sink Δ′ by Π : Δ � Δ′. In
contrast to usual sequent and tableaux calculi, dilemma derivations are always
linear, in the sense that they have one entry point and one exit point. Internally,
they may have several branches though.

Definition 2 (Derivations).

– For any set of formulae Δ, Δ : Δ � Δ. Such derivations are called empty.
– For any two sets of formulae Δ and Δ′, Δ/Δ′ : Δ � Δ′ if Δ/Δ′ is an in-

stance of a simple rule
– For any two sets of formulae Δ and Δ′, and any derivations Π1 and Π2,

Δ
Π1 Π2

Δ′
: Δ � Δ′ if

Δ
Π1 Π2

Δ′
is an instance of the dilemma rule.

– For any sets of formulae Δ1, Δ2, and Δ3, and derivations Π1 and Π2 such
that Π1 : Δ1 � Δ2 and Π2 : Δ2 � Δ3, Π1/Π2 : Δ1 � Δ3.

Derivations are always finite.

2.4 Rules

The proof system consists of a number of non-branching rules (called simple
rules), and a branch-and-merge rule (called the dilemma rule).

The Propositional Propagation Rule. This rule allows us to propagate
information through propositional connectives. If more than one premise is in-
volved, we may need to unify them. This is done with the help of the substitu-
tion σ.

Given two sets of formulae Δ and Δ′, Δ/Δ′ is an instance of the propositional
propagation rule if there are n + 1 formulae A1, . . . , An, A for some positive n,
and a substitution σ such that:

– A1 . . . An ∈ Δ
– σ is universal w.r.t. Δ
– A1σ, . . . , Anσ/Aσ is an instance of

a propositional propagation condi-
tion (see below).

– Δ′ = Δ ∪ {Aσ}

Example:

{¬(P (x) ∧Q(x, y)), P (c)}
{. . . ,¬Q(c, y)}
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Below are all propositional propagation conditions1. A, A1 and A2 are meta-
variables denoting arbitrary formulae, i, j ∈ {1, 2}, and i �= j.

¬¬A/A
A/¬¬A

A1 ∧A2/Ai

¬(A1 ∧A2), Ai/¬Aj

A1, A2/A1 ∧A2
¬Ai/¬(A1 ∧A2)

The ∀-introduction rule. Universal variables are implicitly universally quan-
tified. The ∀-introduction rule allows us to make them explicitly quantified. This
rule, and all other introduction rules, may only be used if the introduced formula
is an instance of a subformula of the original axioms. The expression σx denotes
the same substitution as σ, except that it does not substitute x.

Given two sets of formulae Δ and Δ′, Δ/Δ′ is an instance of the ∀-introduc-
tion rule if there is a formula A, two universal variable symbols x and x0, and
a substitution σ such that:

– A ∈ Δ
– No quantifier in A binds the variable x
– x0 �→ x ∈ σ and σx0 is universal w.r.t. Δ
– Δ′ = Δ ∪ {∀x.Aσ}

Example:

{P (f(x0))}
{P (f(x0)), ∀x.P (f(x))}

The ∀-elimination rule. Just as we can turn free variables into quantified
ones, we can do the opposite, and make universally quantified variables free.

Given two sets of formulae Δ and Δ′, Δ/Δ′ is an instance of the ∀-elimination
rule iff there is a formula A, a universal variable symbol x, and a substitution σ
such that ∀x.A ∈ Δ, σ is universal w.r.t. Δ, and Δ′ = Δ ∪ {Aσ}.

The ¬∀-introduction rule. If we know a formula to be false, we can replace
any of its subterms with a variable, and state that the formula is not true for all
values of that variable.

Given two sets of formulae Δ and Δ′, Δ/Δ′ is an instance of the ¬∀-introduc-
tion rule if there is a formula A, a universal variable symbol x, a term t, and a
substitution σ, such that:

– ¬A{x �→ t} ∈ Δ
– {x �→ t} is universal w.r.t. Δ
– σ is universal w.r.t. Δ
– Δ′ = Δ ∪ {(¬∀x.A)σ}

Example:

{¬P (f(x0, c))}
{¬P (f(x0, c)),¬∀x.P (x)}

The ¬∀-elimination rule. If we know that a formula of the shape ¬∀x.A is
true, then A is false for some value of x. We call such a value a witness. To
eliminate the quantifier, we can give a name to a witness, even if we do not
1 We use a logic that only contains the connectives ∧ and ¬, since all other connectives

can be expressed in terms of these two. It is straightforward to extend the proof
system and the related theorems to also include other connectives. In figure 1, we
assume that these extensions has been made.
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know what value the witness has. If A contains free variables, then the witness
may depend on the value of these variables, so we have to introduce a function
that takes them as argument. This technique is usually called skolemization.

Given two sets of formulaeΔ and Δ′, Δ/Δ′ is an instance of the ¬∀-elimination
rule if there is a formula A, a universal variable symbol x, a substitution σ, and
a term t such that:

– ¬∀x.A ∈ Δ
– σ is universal w.r.t. Δ
– t is a fresh constant symbol if

freevars(¬∀x.A) ∪ rigid(¬∀x.A) = ∅,
otherwise t = f(x1, . . . , xn, X1, . . . , Xm),
where f is a fresh function symbol,
freevars(¬∀x.A) = {x1, . . . , xn} and
rigid(¬∀x.A) = {X1, . . . , Xm}.

– Δ′ = Δ ∪ {¬A{x �→ t}σ}

Example:

{¬(∀x.P (x, x0))}
{. . . ,¬P (f0(x0), x0)}

The Dilemma Rule. The dilemma rule has a different shape than the rules we
have seen so far. It introduces a formula A (called the dilemma formula), that
must not contain any free universal variables, but may contain rigid variables.
We let V denote the set of rigid variables occurring in A, but not in Δ. Each
application of the dilemma rule contains two subderivations Π1 and Π2, that are
the two branches. At the end of the dilemma rule, all rigid variables that were
introduced in the dilemma formula are turned into fresh universal variables by
the substitution τ .

Given sets of formulae Δ, Δ1, Δ2, and Δ′, a formula A, and derivations

Π1 : Δ ∪ {A} � Δ1 and Π2 : Δ ∪ {¬A} � Δ2, then
Δ

Π1 Π2

Δ′
is an instance of

the dilemma rule, if there is a set of rigid variable symbols V , and a substitution
τ such that:

– freevars(A) = ∅
– V = rigid(A) \ rigid(Δ)
– τ = {X1 �→ x1, . . . , Xn �→ xn}, where X1 . . . Xn are the elements of V , and

x1, . . . , xn are fresh universal variables.
– Δ′ is any set of formulae if both Δ1 and Δ2 are contradictory.
– Δ′ = refresh(Δ2τ ) if only Δ1 is contradictory
– Δ′ = refresh(Δ1τ ) if only Δ2 is contradictory
– Δ′ = refresh(Δ∩), where Δ∩ is a logical intersection of Δ1τ and Δ2τ if

neither Δ1 nor Δ2 is contradictory

2.5 Soundness

Basically, the soundness theorem states that if Π : Δ � Δ′ then Δ |= Δ′. But
since the system includes skolemization (the ¬∀-elimination rule), this notion of
soundness does not hold. Instead, the soundness theorem is formulated as:
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Theorem 1 (Soundness). Given two sets of formulae Δ and Δ′, a derivation
Π : Δ � Δ′, and a model M = 〈D, I〉 (for some D and I), such that M |= Δ.
Then there exists a model MΠ = 〈D, IΠ〉 such that MΠ |= Δ′. We call MΠ the
canonical model of M for Π.

The proof of the soundness theorem can be found in the appendix of this
paper (see footnote on title page). It goes through all forms of derivations, and
describes how to construct the canonical model in each case.

The most interesting part is proving the soundness of the dilemma rule when
neither of the branches is contradictory. In essence, we pick an arbitrary formula
B in the logical intersection, and note by the definition of logical intersections
that then there are formulae B1 and B2 in the respective branches, and a substi-
tution σ s.t. B = B1σ = B2σ. We then prove that for any interpretation I and
assignment β, BI,β

1 = t or BI,β
2 = t (this follows by induction). This, in turn,

means that (B1∨B2)I,β = t. Applying σ to this formula preserves its truth, and
since B1σ ∨B2σ = B ∨B, we see that BI,β = t for all I and β.

3 Proof Procedures and Completeness

We now define a proof procedure that applies simple rules as far as possible.
When it cannot do that any more, it applies dilemmas with only simple rules in
the branches. The procedure increases the nesting level of the dilemmas, until a
contradiction has been found. The completeness of the procedure relies on the
fact that the set of derived formulae meets a notion of saturation after each new
nesting level. It can be shown that if a set of formulae has a KE-refutation [5]
of a finite size, then when the set of consequences has reached a certain (finite)
saturation level, it must be contradictory. Since KE is complete, it follows that
our proof procedure is complete.

The first problem is how to define saturated sets. In propositional logic, we
say that a set of formulae is n-saturated if no new consequences can be derived
using simple rules and dilemma rules that are nested at most n levels. A finite
set of propositional formulae always has a finite n-saturated superset, for each
n. That is not the case in FOL; for instance, the smallest 0-saturated superset
of {P (c), P (x)→ P (f(x))} contains all formulae P (f i(c)), for all i. To remedy
this problem, we introduce a notion of term rank, which measures how complex
terms are (and thereby how complex formulae are). There are several possible
ways of defining rank, and we will not present any of them in this paper. The
important thing is that the notion of rank limits the size of the formulae, and
that if we can derive a formula B from the premises A0 and A1, then the rank
of B must be larger than that of A0 as well as of A1.

During proof search, we only use formulae whose rank is less than some pre-
selected maximal rank. The proof procedure is only complete if we select a
maximal rank that is large enough. One could imagine a proof procedure that
applies iterative deepening to find a sufficiently large rank. However, benchmarks
suggest that it is better to fix a rather large maximal rank from the beginning.
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3.1 Preliminaries

Given a set of formulae Γ (typically the set of user supplied formulae that
the proof procedure attempts to refute) and natural number r, we denote by
instances(Γ, r) the set of all formulae Aσ or ¬Aσ, where A is a subformula of a
formula in Γ , and σ is a substitution (that is universal w.r.t. Γ ), that instantiates
the free variables of A with terms consisting only of the function- and constant
symbols found in formulae in Γ , and any rigid and universal variable symbols,
in such a way that the rank of Aσ and ¬Aσ does not exceed r. Similarly, we
denote by gInstances(Γ, r) the set of all ground formulae in instances(Γ, r).

Given a finite set of formulae Γ , and a natural r, the set gInstances(Γ, r) is
finite. The proof of this relies on the observation that gInstances(Γ, r) is a set of
strings that are bounded in size (due to the bounded rank), with symbols from
a finite alphabet (namely the symbols occurring in Γ ). The set instances(Γ, r)
may be infinite, but any variant free subset of it is finite, for similar reasons.

A set of formulae Δ is a context for another set of formulae Γ if Δ is a subset
of instances(Γ, r) for some r. Contexts are used to keep a record of formulae
that are known to be true. The goal is to find a contradictory context.

We say that a formula A is a generalization of a formula B if B = Aσ for
some substitution σ that is universal w.r.t. A. In particular, any formula is a
generalization of itself. If A is a generalization of B, then {A} |= {B}.

We say that a formula A is an immediate consequence of a set of formulae
Δ, if it possible to derive A with only one application of a single rule, and only
formulae from Δ as premises. We call these formulae premises of A. If A is an
immediate consequence of Δ, but there is no generalization of A in Δ, we say
that A is a locally unsaturated point of Δ.

3.2 A Simplified Proof Procedure

We now present a simplified proof procedure, and show that it is complete. The
first simplification is how it selects dilemma formulae. The procedure we present
here simply enumerates all ground formulae with low enough rank. Later in the
paper, we describe a more efficient strategy. The second simplification we have
done is to exclude all introduction rules. We do this since the proof procedure is
complete without them, and it makes the completeness proof simpler.

The proof procedure consists of three parts: propagation, 0-saturation, and n-
saturation. The propagation procedure (below) takes as arguments a context and
a specific formula in the context, and returns all immediate consequences of the
context, that have the specific formula as a premise. The parentsOf (A, context)
operation used on line 3 returns all subformulae of instances of formulae in
context , that have A as an immediate subformula. It also returns the substitu-
tions that creates the right instance. For example, if (P (x)∧Q(y))∧R ∈ context ,
then (P (x) ∧ Q(y), σ) ∈ parentsOf (P (f(z)), context), where σ = {x �→ f(z)},
since (P (x) ∧Q(y))σ is a parent of P (f(z)) . The operation findAllUnif (Δ,A)
returns the set of substitutions σ, such that σ is a most general unifier for A and
some formula in Δ.
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The propagate procedure mainly consists of two parts. The loop on lines 3
to 12 tries to find instances of the propagation condition ¬(A1 ∧ A2), Ai/¬Aj ,
where our A corresponds to Ai in the condition. It does so by first checking
if there is a parent of A that is a conjunction, and then checking if there are
instances of the conjunction that are known to be false. The second part (lines
13-27) finds all applicable elimination rules, that have A as a premise. It does
this by pattern matching on the shape of A.

1. propagate(A, context) =
2. new ← ∅
3. for each (B, σ) ∈ parentsOf (A, context) do
4. switch B
5. case b0 ∧ b1 :
6. for each σ′ ∈ findAllUnif (context,¬Bσ) do
7. if b0σ = A then
8. new ← new ∪ {¬b1σσ′}
9. else
10. new ← new ∪ {¬b0σσ′}
11. case default:
12. skip
13. switch A
14. case B ∧ C :
15. new ← new ∪ {refresh(B), refresh(C)}
16. case ¬(B ∧ C) :
17. for each σ ∈ findAllUnif (context, B) do
18. new ← new ∪ {refresh(¬Cσ)}
19. for each σ ∈ findAllUnif (context, C) do
20. new ← new ∪ {refresh(¬Bσ)}
21. case ∀x.B :
22. new ← new ∪ {refresh(B)}
23. case ¬∀x.B :
24. if findAllUnif (context,¬B) = ∅ then
25. new ← new ∪ {refresh(skolemize(¬B, x))}
26. case ¬¬B :
27. new ← new ∪ {refresh(B)}
28. return new

The 0-saturation procedure repeatedly calls the propagation procedure, until
no more facts can be derived using simple rules (or all such facts have too high
rank). It maintains a queue, unprocessed , which contains all new consequences
that have been added to the context, and that may themselves lead to new
consequences. The caller of saturate must provide the initial state of the queue
(usually all new assumptions). The procedure does not modify the context passed
in the argument (gcontext); it maintains a local context (lcontext), that contains
all new consequences.

1. saturate(0, gcontext, start, maxRank) =
2. lcontext ← ∅
3. unprocessed ← start
4. while hasElement(unprocessed) do
5. A ← dequeue(unprocessed)
6. new ← propagate(A, gcontext ∪ lcontext)
7. for each B ∈ new do
8. if findGenOf (gcontext ∪ lcontext, B) = nothing then
9. if findUnif (gcontext ∪ lcontext, B) �= nothing then
10. return contradiction
11. lcontext ← lcontext ∪ {B}
12. if rank(B) < maxRank then
13. enqueue(B, unprocessed)
14. return lcontext
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The n-saturation procedure iterates through all ground formulae smaller than
the maximal rank, creates two branches for each formula (one where the formula
is assumed to be true, and one where it is false), and recursively calls n − 1-
saturation on the branches. The branches are thereafter combined according to
the dilemma rule. As already mentioned, we later describe a more efficient way
to find dilemma formulae.

1. saturate(n, gcontext, start, maxRank) =
2. candidates ← gInstances(gcontext, maxRank)
3. lcontext ← saturate(n− 1, gcontext, start, maxRank)
4. if gcontext ∪ lcontext = contradiction then
5. return contradiction
6. while hasElement(candidates) do
7. A ← dequeue(candidates)
8. if findGenOf (gcontext ∪ lcontext, A) = nothing and

findGenOf (gcontext ∪ lcontext, A) = nothing then
9. switch(saturate(n− 1, gcontext ∪ lcontext ∪ {A}, {A}, maxRank)

, saturate(n− 1, gcontext ∪ lcontext ∪ {A}, {A}, maxRank))
10. case (contradiction, contradiction) :
11. return contradiction
12. case (context1, contradiction) :
13. lcontext ← lcontext ∪ context1
14. case (contradiction, context1) :
15. lcontext ← lcontext ∪ context1
16. case (context1, context2) :
17. lcontext ← lcontext ∪ intersect(context1, context2)
18. return lcontext

The main

loop of the proof procedure simply applies n-saturation for an increasing value
of n, starting with 0.

1. main(problem, maxRank) =
2. context ← saturate(0, problem, problem, maxRank)
3. level ← 1
4. while not contradictory(context) do
5. context ← context ∪ saturate(level, context, ∅, maxRank)
6. level ← level + 1
7. return contradiction

3.3 Completeness

We now state some important lemmas for the code presented above, and outline
their proofs. The first lemma is about the propagate procedure.

Lemma 2. Given a context Δ for a finite set of formulae Γ , and a formula
A ∈ Δ, then propagate(A,Δ) terminates and returns a finite context for Γ that
contains a generalization of each immediate consequence2 of Δ that has A as
premise.

A proof of this lemma essentially matches the cases in the propagate procedure
with all simple rules. The termination of propagate relies on that parentsOf and
findAllUnif returns finite sets.
2 This is a slightly simplified version of the lemma. A full version must state an

exception: an immediate consequence of Δ, with a premise of the shape ¬∀x.A′

is only required to be present if there are no witnesses of ¬∀x.A′ already in Δ. Some
of the following definitions and lemmas are simplified in the same way.
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We now define what it means for a set of first order formulae to be saturated.
The notion of saturation has three parameters: n, r, and Θ. The parameter n
corresponds to the nesting level of dilemma rules, r to the maximal rank of
formulae, and Θ to the set of formulae that are used as dilemma formulae. It
may be surprising that the definition of saturated sets does not contain a case
corresponding to the fourth case of the dilemma rule, the one where the branches
are merged using the logical intersection. However, even though this case makes
the proof system more powerful, it is not needed for completeness. The proof
procedure would still be complete, although very inefficient, if it never calculated
the intersection of any branches, and only relied on finding contradictions.

Definition 3. Given two sets of formulae Δ and Θ and a natural number r, we
say that Δ is (0, r, Θ)-saturated if each immediate consequence of Δ with rank
less than r has a generalization in Δ.

Given two sets of formulae Δ and Θ and two natural numbers n > 0 and r,
we say that Δ is (n, r,Θ)-saturated if Δ is (n − 1, r, Θ)-saturated, and for all
formulae A ∈ Θ:

– If all (n− 1, r, Θ)-saturated supersets of Δ∪{A} as well as of Δ∪{¬A} are
contradictory, then Δ is contradictory too.

– If all (n−1, r, Θ)-saturated supersets of Δ∪{A} are contradictory, but there
are non-contradictory (n − 1, r, Θ)-saturated supersets of Δ ∪ {¬A}, then
¬A ∈ Δ.

– If all (n − 1, r, Θ)-saturated supersets of Δ ∪ {¬A} are contradictory, but
there are non-contradictory (n−1, r, Θ)-saturated supersets of Δ∪{A}, then
A ∈ Δ.

Any contradictory set is (n, r,Θ)-saturated for all n, r, and Θ.

There is a correspondence between locally unsaturated points and saturated
sets: a (n, r,Θ)-saturated set can only have locally unsaturated points of which
the rank is larger than r. This proposition is related to the following lemma:

Lemma 3. Given a natural number r, a set of formulae Δ that is (0, r, Θ)-
saturated (for some Θ), and another set of formulae Δ′, then any locally un-
saturated point of Δ ∪Δ′ either has a formula in Δ′ as premise, or has a rank
larger then r.

We now come to the most important part of the completeness proof, where we
show that the saturate procedure produces saturated sets. One of the arguments
to the saturate procedure is a queue, start , that must contain at least one premise
of each unsaturated point. Using lemma 3, we can do this by dividing the context
into two parts, where one part is previously saturated. The proof procedure
maintains a saturated context, and calls the saturate procedure after adding
assumptions, so this is in line with how the procedure is used.

Lemma 4. Given a finite queue Q, three finite sets of formulae Δ, Δ′, and Γ ,
and two natural numbers n and r, such that Δ ∪ Δ′ is a context for Γ , Δ is
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(n− 1, r, gInstances(Γ, r))-saturated, and all the elements of Δ′ are in Q. Then
saturate(n,Δ∪Δ′, Q) terminates and returns a finite set Δ� such that Δ∪Δ′∪Δ�

is a (n, r, gInstances(Γ, r))-saturated context for Γ .

Proof. We prove this lemma by induction over n. This comes naturally, since
both the definition of saturated sets and of the saturate procedure are recursive.
We will only outline the proof here.

Base case: For the base case, we assume that n = 0, and look at the code for
0-saturation, which mainly consists of a loop. We show that the loop has the
following invariant: any locally unsaturated point of the set Δ ∪ Δ′ ∪ lcontext
either has a premise in unprocessed or has a rank larger than r. Initially, lcontext
is empty, so the invariant follows from lemma 3. When the loop terminates,
unprocessed is empty, so then the whole base case follows from the invariant.
The termination of the loop follows from the fact that no element can be added
to unprocessed twice, and there are only finitely many possible elements to add.

Step: We assume that n > 0 and that the theorem holds for n− 1. Once again,
the main effort goes into proving a loop invariant: that Δ ∪ Δ′ ∪ lcontext is
(n, r, gInstances(Γ, r)\candidates)-saturated. This invariant holds initially, since
the set gInstances(Γ, r)\candidates is empty. After the loop terminates, it implies
the entire step, since candidates is empty. Termination follows since candidates
is finite, and no elements are ever added to it after initialization.

It is easy to show that in the nth iteration, the loop in the main procedure pro-
duces an (n, r, gInstances(Γ, r))-saturated superset of the problem formulation
Γ . It is also possible to show that any (n, r, gInstances(Γ, r))-saturated superset
of Γ is contradictory, if there is a KE refutation of Γ with depth n, and r is
chosen large enough. However, that proof is beyond the scope of this paper. The
completeness of our proof procedure follows from the completeness of KE:

Theorem 2. Given any unsatisfiable set of first order formulae, Γ , main(Γ, r)
terminates and returns a contradiction, provided r is large enough.

3.4 A More Efficient Proof Procedure

Although this strategy is complete, it is very inefficient due to its naive way
of selecting dilemma formulae. We now describe a more efficient strategy, and
briefly argue for its completeness.

The simplified procedure initializes candidates with all ground formulae up
to a certain rank (see line 2 of the n-saturation procedure). The efficient version
only adds the subformulae of formulae of Γ , with all variables replaced by fresh
rigid variables. This allows us to introduce universal variables, since the dilemma
rule lets us turn rigid variables into universal ones when we merge branches.
Therefore, we may derive more general conclusions early in the proof with this
approach. But that is not the main benefit.
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The proof system does not allow any unification of rigid variables — all sub-
stitutions are universal, except when dilemma branches are merged. But what
we are interested in is finding the instances of the rigid variables that can help
us get further. The way this is done, for instance in Fitting tableaux [6] is to
let the unification algorithms detect when instantiating a variable can allow two
formulae to be unified, and then destructively perform the instantiation in the
whole proof. Our proof procedure detects possible instances of rigid variables in
a similar way, but never performs any destructive updates. Instead of instanti-
ating a variable before the branch ends, the saturate procedure enqueues a new
dilemma formula in the candidates queue. This new dilemma formula is the same
as the one currently used, except that the rigid variables are instantiated the
way the unification algorithm suggested.

In this way, the current dilemma will be finished without any instantiations
being made. Later in the proof, the more specialized version of the same dilemma
will be dequeued and carried out, and will now lead to more conclusions. This
approach also solves the fairness problem in many tableaux calculi; since we can
enqueue several instances of the same dilemma formula, we do not need to select
only one of them. The proof procedure memorizes all dilemma formulae that
have been used in the current branch, so that the identical dilemmas are not
repeated. It is also necessary to limit the rank of the dilemma formulae, or else
we can run into non-termination.

The most important difference in the completeness proof is the new loop
invariant for the n-saturation procedure. It now states that Δ ∪ Δ′ ∪ lcontext
is (n, r, gInstances(Γ, r) \ gInstances([candidates ]τ, r))-saturated, where τ is a
substitution that replaces the rigid variables introduced in the dilemma formula
with universal ones. While the previous version ignores all formulae still in the
candidates queue, this version ignores all instances of the formulae in the queue.

Termination is motivated as follows: in the previous version we relied on the
fact that no new formulae were added to the candidates queue. Now, termination
follows from the observation that the same formula can only be enqueued once,
and the number of possible formulae are bounded by a finite rank.

4 Benchmarks

In 2004, the theorem prover Dilemma was implemented. It implements the more
efficient proof procedure, described in the last section. The implementation is
quite straightforward, and leaves many opportunities for optimizations. It first
ran in late June, and made it first public appearance a couple of weeks later,
when it participated in the FOF division of CASC-J2 [10]. Lacking equality
handling, it performed poorly in the division — 65 of the 88 selected problems
required equality reasoning. Out of the 23 remaining problems, it proved 9. As
a comparison, E-SETHEO proved all 23, while Otter proved 4. However, given
the immature state of Dilemma, we believe the results aren’t too bad. Both
Otter and Dilemma are quite simple implementations of their respective calculi,
and with the right optimizations it would probably be possible to increase the
efficiency of both substantially.
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Benchmarks have been performed on large parts of the TPTP library [11].
We ran the tests on AMD XP 2800+ machines with 1GB RAM and Linux,
and set the timeout to ten minutes. Of the problems in TPTP 2.7.0, Dilemma
proves 192 of the 305 equality free theorems encoded as formulae, 120 of the
974 theorems with equality encoded as formulae, and 733 of the 1290 theorems
without equality encoded as clauses (by parsing the clause sets as formulae).

The TPTP library assigns a rating between 0 and 1 for each problem, where 0
means that all current theorem provers can solve it, and 1 means that no known
theorem prover has managed to prove the problem so far. Out of the 1045 solved
problems, 205 have a non-zero rating, and 20 are rated 0.5 or higher. The four
highest rated problems that dilemma solves have rating 0.78.

5 Future Work

As the benchmarks and results from CASC suggest, the proof procedure could
really benefit from having support for equality. Perhaps the main ideas behind
paramodulation [8] can be incorporated into our proof procedure?

The propositional version of St̊almarck’s method is usually defined using par-
tial equivalence relations (PER) instead of contexts. Instead of just keeping track
of formulae that are known to be true, a PER keeps track of formulae that are
known to be equivalent. This is powerful in combination with the dilemma rule;
complementary conclusions often arise in the two branches, and the fact that
these formulae are equivalent to the dilemma formula holds in both branches.
We want something similar in FOL. Attempts have been made [4], but the prob-
lem is a lot more complex than in propositional logic. Maybe it is only possible to
come up with an approximate solution - perhaps inspired by equality reasoning.

Another highly interesting topic for future work is to find conditions for when
the proof procedure can safely stop, and conclude that no contradiction can be
found, and perhaps even produce a counter example. Such techniques exist for
similar calculi, such as Model Evolution [1].
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Abstract. We prove the completeness of the regular strategy of deriva-
tions for superposition-based calculi. The regular strategy was pioneered
by Kanger in [Kan63], who proposed that all equality inferences take
place before all other steps in the proof. We show that the strategy is
complete with the elimination of tautologies. The implication of our re-
sult is the completeness of non-standard selection functions by which
in non-relational clauses only equality literals (and all of them) are
selected.

1 Introduction

In this work we prove the completeness of regular strategy in derivations in
superposition-based calculi. Introducing the concept of regular derivation for
sequent calculus with equality, Kanger [Kan63] proposed that all equality infer-
ences take place at the beginning of the derivation, so that they precede all other
steps in the proof.

In the case of clause calculi, the possibility to regularize derivations was for-
mulated and proved by Robinson and Wos [RW69b], as a result about the com-
pleteness of paramodulation:

If a functionally reflexive set of clauses S is closed under paramodulation
and factoring, and if S is E-unsatisfiable, then S is unsatisfiable.

This work analyzes regular derivation strategy in clause calculi. Proving com-
pleteness of regular derivations turns out not to be a trivial problem, especially
with showing compatibility with a set of redundancy criteria. The goal is to
prove the following conjecture from [DV01]:

Let S be a set of Horn clauses with respect to equality literals, with the
following property: the arguments of every non-equality atom in S are
variables. Then there exists a refutation of S with redundancy criteria C
in which applications of superposition precede applications of all other
rules 1 (resolution, equality solution and factoring).

1 We try to prove the existence of a more constrained form of derivations, in which
both superposition and equality solution precede all other inferences.
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The statement of the conjecture addresses clauses in which the arguments of
non-equality literals are variables. Even though this may sound as a restriction,
the reason behind is that this way we can eliminate tautologies from derivations.
Focus on the example by Lynch [Ly97].

Example 1. Consider the following set of clauses

→ P (c, b, b)
P (c, c, b), P (c, b, c)→ b ≈ c

P (x, y, y)→ P (x, y, x)
P (x, y, y)→ P (x, x, y)
P (c, c, c)→

and assume an ordering such that b 0 c. If an equality literal is selected in each
clause, it is possible to make exactly two superposition inferences, which both
derive a tautology.

However, this set of clauses can be transformed to a logically equivalent set
of flat clauses, which have the property that all arguments of predicate literals
are variables.

1. x ≈ c, y ≈ b→ P (x, y, y)
2. x ≈ c, y ≈ b, P (x, x, y), P (x, y, x)→ b ≈ c
3. P (x, y, y)→ P (x, y, x)
4. P (x, y, y)→ P (x, x, y)
5. x ≈ c, P (x, x, x)→

Let selection be the same as in the original set of clauses. Inferences that pre-
viously led to tautologies can not be preformed anymore since paramodualtions
into variables are forbidden. As a result, there is a regular derivation without
tautologies.

6. y ≈ b→ P (c, y, y) [es 1]
7. y ≈ b, P (c, c, y), P (c, y, c)→ b ≈ c [es 2]
8. P (c, c, b), P (c, b, c)→ b ≈ c [es 7]
9. y ≈ c, P (c, c, b), P (c, b, c)→ P (c, y, y) [s 8, 6]

10. P (c, c, b), P (c, b, c)→ P (c, c, c) [es 9]
11. P (c, c, c)→ [es 5]
12. → P (c, b, b) [es 6]

The Horn subset consisting of the “relational” clauses 3, 4, 10, 11 and 12 is
unsatisfiable, i.e. is refuted by resolution without tautologies under arbitrary
selection function.

Recall the conjecture from [DV01], quoted earlier in this chapter. We prove,
motivated by the previous example, that the statement of the conjecture holds
taken that the set C contains only one redundancy criterion – tautology
elimination.

In case of superposition calculi like basic superposition (see [BGLS92],
[NR92a]) and strict basic superposition (see [BG97]), it turns out that the
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conjecture holds only if inference rules are applied on clauses that are Horn
with respect to equality literals (for general clauses, it is obvious that some fac-
toring inferences must precede superposition). This, however, is not a restriction,
since any set of general (w.r.t. equality literals) clauses can, by renaming equality
literals using new predicate symbols, be translated into a satisfiability equivalent
set of clauses which are Horn with respect to equality literals.

Example 2. For the following unsatisfiable set of clauses, it is obvious that fac-
toring has to take place before superposition.

→ a ≈ b, a ≈ b
→ a ≈ c, a ≈ c

b ≈ c→

This set of clauses can be modified to a satisfiability equivalent set of clauses
that is Horn with respect to equality literals. For example, it can be done in the
following way.

→ P, a ≈ b
→ Q, a ≈ c

P → a ≈ b
Q→ a ≈ c

b ≈ c→
It is easy to check that using only equality inferences the unsatisfiable set of
“relational” clauses {P → Q, Q → P, P,Q →, → P,Q} can be derived
without applying factorisation on equality literals.

In terms of the latest results in paramodulation-based theorem proving, our
result can be formulated in a few different ways, as a theorem about the com-
pleteness of a superposition-based calculus which:

– employs a special selection strategy by which all equality literals and only
they are selected in non relational clauses;

– employs an ordinary selection strategy, but imposes the order by which equal-
ity literals are always greater then relational literals, i.e. admits t 0 P (t),
where t is a term, P is a predicate symbol, and hence, dismissing the sub-
term property.

Referring to the items listed above, there have been some results in the direction
of refining superposition-based systems either by weakening term and literal
orderings or by allowing arbitrary selection strategies. However, none of them is
wide enough to cover our result. Here we outline such attempts.

Trying to weaken term ordering constraints, Bofill and Rubio (see [BR02])
proved the completeness of ordered paramodulation for Horn clauses that is
based on orderings without the sub-term property. Since their result does not
implement basic strategies, and being restricted to ordered paramodulation (not
superposition), it can not be used to prove our claim. Moreover, it is not certain
if their result can be extended to employ redundancy notions like simplification
and tautology elimination.
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Regarding arbitrary selection strategies, the latest result has been presented
by Aleksić and Degtyarev in [AD05], where they extend the results on the com-
pleteness of arbitrary selection strategies for basic paramodulation on Horn
clauses of Bofill and Godoy given in [BG01]. The result presented in [AD05]
is about the completeness of arbitrary selection strategies for basic superposi-
tion on general constrained clauses, provided there exists a refutation with no
factoring inferences. Our consideration, in strictly equational setting, also ad-
dresses derivations from general clauses but does not require the existence of
a factoring free refutation. For this reason, and for the reason that it does not
support standard redundancy elimination techniques, the result of [AD05] on
arbitrary selection can not be used to cover our claim either.

Overall, the regular derivation strategy defines a framework for some refine-
ments of the state-of-art superposition-based inference systems, which can be
considered non-standard because of the following reasons:

– Superposition-based systems are normally based on reduction orderings.
Regular strategy addresses weakened versions, in particular the orderings
without the sub-term property in the sense given below.

– Classical selection strategies for superposition-based proving are
parametrized by a given ordering on ground terms. Namely, if a positive
atom is selected it has to be maximal in the clause, with respect to the given
ordering. Regular strategy means a refinement of this, since it allows literals
to be selected regardless of their maximality.

– Normally, the application of superposition rules is restricted to the maximal
literals of the premises. Regular strategy enables dropping the literal order-
ing constraints in order to postpone the applications of the inferences on
predicate literals (i.e. resolution and factoring) till the end of the derivation.

Even though our proof is based on transformations of derivation trees, it is
essentially different to the one given by Bofil and Godoy in [BG01], because:

– Their transformation method assumes that the initial derivation employs
eager selection of negative literals, which is not a requirement in our trans-
formations.

– The calculi they use are on Horn clauses. Having to deal with multiple pos-
itive literals in our case produces a plenty of difficult cases in our transfor-
mations.

2 Preliminaries

Here we present only notions and definitions necessary for understanding the
paper. For a more thorough overview, see [NR99]. It is assumed that the reader
has a basic knowledge in substitution and unification.

All formulae are constructed over a fixed signature Σ containing at least one
constant and a binary predicate symbol ≈. In order to distinguish equality from
identity, we use = to denote the latter. By X we denote a set of variables. The
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set of all terms over the signature Σ with variables from X is denoted by TΣ(X)
and the set of ground terms TΣ(∅) by TΣ.

An equation is an expression denoted by t1 ≈ t2 or equivalently t2 ≈ t1. For
dealing with non-equality predicates, atoms P (t1, . . . , tn), where P is a predi-
cate symbol of arity n and t1, . . . , tn are terms, can be expressed by equations
P (t1, . . . , tn) ≈ true, where true is a new symbol. In order for this encoding to
be sound, we use a two-sorted logic, in which the sort of predicate symbols and
the symbol true is different from the sort of the function symbols. A literal is a
positive or a negative equation.

The expression A[s]p indicates that an expression A contains s as a sub-
expression at a position p. A[t]p is a result of replacing the occurrence of s in
A at the position p by t. We assume that the position of t in A is always the
same as the position of s. Therefore we will not explicitly mention positions of
sub-terms within terms, and will write A[s] and A[t] meaning A[s]p and A[t]p.
An instance Aσ of A is the result of applying the substitution σ to A.

A clause is a disjunction of literals, denoted by a formula L1,L2, . . . ,Lm.
This definition allows for multiple occurences of identical literals, i.e. for treating
clauses as multiset of literals. Sometimes, especially in examples to improve read-
ability, we use the sequent notation by which a clause ¬A1, . . . ,¬Ak, B1, . . . Bl

is represented as A1, . . . , Ak → B1, . . . , Bl.
A constraint is a possibly empty conjunction of atomic equality constraints

s = t or atomic ordering constraints s 0 t or s 4 t. The empty constraint is
denoted by 5.

A constrained clause is a pair consisting of a clause C and a constraint T ,
written as C | T . The part C will be referred to as the clause part and T the
constraint part of C | T . A constrained clause C | 5 will be identified with the
unconstrained clause C.

A substitution σ is said to be a solution of an atomic equality constraint s = t,
if sσ and tσ are syntactically equivalent. It is a solution of an ordering constraint
s 0 t (with respect to a reduction ordering > which is total on ground terms),
if sσ > tσ, and a solution of s 4 t if it is a solution of s 0 t or s = t. Generally,
a substitution σ is a solution of a constraint T , if it is a simultaneous solution
to all its atomic constraints. A constraint is satisfiable if it has a solution.

A ground instance of a constrained clause C | T is any ground clause Cσ,
such that σ is a ground substitution and σ is a solution to T .

A tautology is a constrained clause whose all ground instances are tautologies.
There are two forms of tautologies:

C, l ≈ r | T where σ is a solution to T and lσ = rσ

and

C, s �≈ t, l ≈ r | T where σ is a solution to T and lσ = sσ and rσ = tσ.

A contradiction is a constrained clause � | T , with an empty clause part
such that the constraint T is satisfiable. A constrained clause is called void if its
constraint is unsatisfiable. Void clauses have no ground instances and therefore
are redundant.
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A set of constrained clauses is satisfiable if the set of all its ground instances
is satisfiable.

A derivation is a possibly infinite ordered sequence of sets of clauses, where
each set is obtained from the previous one either by adding a clause (conclusion
of an inference) or by deleting a clause by using deletion rules. Further in the
paper, we define a set of inference and deletion rules relevant for this work. A
derivation of the empty clause is differently called a refutation.

Throughout the paper we assume that derivations are in tree-like form, with
constrained clauses as nodes. In the tree representation, premisses of inferences
are children nodes of their conclusions. In a derivation tree, a node can not have
more than one parent. Therefore, if a clause takes part in more than one inference,
the derivation tree contains as many copies of the clause (with the whole sub-
derivation it is a conclusion of). The constrained clause which is the root of the
tree will be referred to as the root of the derivation. Similarly, the inference with
the root clause as its consequence will be called the root inference of the derivation.

A derivation is regular, if all applications of superposition and equality solu-
tion rules in the derivation precede all other inferences. Otherwise, a derivation
is irregular.

A selection strategy is a function from a set of clauses, that maps each clause
to its sub-multiset. If a clause is non-empty, then the selected sub-multiset is
non-empty too. A derivation is compatible with a selection strategy if all the
inferences are performed on the selected literals, i.e. all the literals involved in
the inferences are selected.

3 Regular Transformations

We prove the completeness with tautology elimination of regular derivations in
basic setting by transforming derivation trees, where a transformation step is an
application of a permutation rule, which we define in a later chapter. A similar ap-
proach is used in [dN96], but for derivations by resolution. For paramodulation-
based calculi, in [BG01] the authors use a transformation method to prove
their result on arbitrary selection on Horn clauses. However, our transformation
method is essentially different, for two reasons. First, we address derivations on
general clauses, whereas they restrict themselves to the Horn case. Secondly, op-
posite to our transformation method, the application of their method may cause
the appereance of tautologies in the derivations.

The starting point of our transformations is a refutation by BFP (see [Ly95]).
This is the calculus of choice because, appart from being complete, it is basic,
does not contain a factoring rule and allows for tautology elimination. The ab-
sence of a factoring rule is essential for our result. The transformations method
that we present is based on permuting two consecutive inferences, which is not
always possible in the presence of factoring.

Assume, for a moment, that our calculus of choice contains equality factoring
inference (for example, see [BGLS92], [NR92a]). Consider the following deriva-
tion sequence:
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c ≈ d

a �≈ b, a ≈ c, a ≈ d

a �≈ b, c �≈ d, a ≈ d
(eq fac)

a �≈ b, d �≈ d, a ≈ d
(sup)

and assume that a 0 b 0 c 0 d. Here an application of equality factoring pre-
cedes a superposition inference. Effectively, the application of factoring produces
the literal c �≈ d, which is made up of the smaller terms of the literals a ≈ c and
a ≈ d. To regularize this fragment of derivation, it is necessary to transform the
derivation in a way that superposition precedes factoring. If the two inferences
were to swap positions, it would mean that superposition takes place into the
smallest term of the literal a ≈ c, which is never possible by the definition of
superposition.

The situation is somewhat different if the calculus contains positive factoring,
like it is the case with SBS of [BG97]. Positive factoring does not produce fresh
literals, it removes literals that are sintacticly equivalent. Hence, it is possible to
permute every application of positive factoring with a superposition inference.
As for equality solution inferences, it is also always possible to permute them
with applications of positive factoring rule. This, however, may result in the
appearance of tautologies that did not exist in the original derivation. More
precisely, we can not prove using transformations of derivations, that the calculus
SBS allows for the elimination of tautologies.

3.1 The Calculus EBFP

The calculus EBFP (extended BFP) of constrained clauses consists of the rules:

Factored (positive and negative) overlap

l1 ≈ r1, . . . , ln ≈ rn,Γ1 | T1 s[l]  t,Γ2 | T2

s[r1]  t, . . . , s[rn]  t,Γ1,Γ2 | T1 ∧ T2 ∧ δ

where δ is a shortcut for (l1 0 r1 ∧ . . .∧ ln 0 rn ∧ s 0 t∧ l1 = l ∧ . . .∧ ln = l)
and ∈ {≈, �≈}.

Equality solution2

s �≈ t,Γ | T
Γ | T ∧ s = t

Relational resolution
Γ1, P | T1 Γ2,¬Q | T2

Γ1,Γ2 | T1 ∧ T2 ∧ P = Q

2 In [Ly95] that introduced the calculus BFP , this inference is called “reflection”. We
use the terminology from the papers which present the results that our work is a
continuation of, like [DV01].
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Relational factoring (positive and negative)

Γ,L1,L2 | T
Γ,L1 | T ∧ L1 = L2

where
– L1 and L2 are either both positive or both negative literals;
– L1 and L2 are identical up to variable renaming.

It is assumed that the premises of the above rules have disjoint variables,
which can always be achieved by their renaming.

The calculus EBFP consists of the rules of the calculus BFP (see [Ly95]),
with the addition of the explicitly stated resolution inference rule and relational
factoring (positive and negative). Note that BFP is defined on purely equational
clauses, in which case resolution is expressed by a sequence of steps in which
factored overlap is followed by reflection. Reflection and factored (positive and
negative) overlap inferences will be referred to as equational inferences, while
the ones that take place with predicate literals will be called relational.

The reason for introducing negative relational factoring rule is of a technical
nature – it is only used in the proof of regular transformations and its existence
does not affect the completeness of the calculus. In other words, the calculus
EBFP without the negative factoring rule is complete.

3.2 Permutation Rules

As it has already been mentioned in the introduction, we work with the clauses
that have only variables as arguments of predicate literals (flat clauses). This
property of clauses prevents superposition inferences into arguments of the pred-
icate literals (into variables), which furthermore makes it possible to characterize
the superposition inferences as strictly equational inferences, which proves es-
sential in the definition of the below permutation rules.

The permutation rules are applied to derivation trees, and their effect is in-
verting the order of two consecutive inferences, whenever a relational inference
precedes an equality inference. In the definitions below, wherever the symbol 
is used, it can represent either ≈ or �≈.

res-es rule – Resolution precedes equality solution

Γ1, s �≈ t,¬Q | T1 Γ2, P | T2

Γ1,Γ2, s �≈ t | T1 ∧ T2 ∧ P = Q
(res)

Γ1,Γ2 | T1 ∧ T2 ∧ s = t ∧ P = Q
(sup)

This sequence transforms to:

Γ1,¬Q, s �≈ t | T1

Γ1,¬Q | T1 ∧ s = t
(sup)

Γ2, P | T2

Γ1,Γ2 | T1 ∧ T2 ∧ s = t ∧ P = Q
(res)
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fac-es rule – Relational factoring precedes equality solution

Γ, s �≈ t,L1,L2 | T
Γ, s �≈ t,L1 | T ∧ L1 = L2

(fac)

Γ,L1 | T ∧ s = t ∧ L1 = L2
(es)

where L1 and L2 are either both positive or both negative predicate literals.
Similarly to the previous rule, this sequence transforms to:

Γ,L1,L2, s �≈ t | T
Γ,L1,L2 | T ∧ s = t

(es)

Γ,L1 | T ∧ s = t ∧ L1 = L2
(fac)

This permutation, as well as the previous one, is always possible to make, since
predicate inferences always take place on predicate literals, while equality
solutions are always preformed on equality literals.

res-sup rule – Resolution followed by superposition

Γ11, l1 ≈ r1, . . . , ln ≈ rn,¬Q | T1 Γ12, P | T2

Γ11,Γ12, l1 ≈ r1, . . . , ln ≈ rn | T1 ∧ T2 ∧ P = Q
(res)

Γ2, u[l]  v | T
Γ11,Γ12,Γ2, u[r1]  v, . . . , u[rn]  v | T1 ∧ T2 ∧ T ∧ P = Q ∧ T4

(sup)

where T4 stands for (l1 0 r1 ∧ . . .∧ ln 0 rn ∧ s 0 t∧ l1 = l ∧ . . .∧ ln = l), and
∈ {≈, �≈}. In this case, the sequence transforms to:

Γ11, l1 ≈ r1, . . . , ln ≈ rn,¬Q | T1 Γ2, u[l]  v | T
Γ11,Γ2, u[r1]  v, . . . , u[rn]  v,¬Q | T ∧ T1 ∧ T4

(sup)
Γ12, P | T2

Γ11,Γ12,Γ2, u[r1]  v, . . . , u[rn]  v | T ∧ T1 ∧ T2 ∧ P = Q ∧ T4
(res)

fac-sup rule – Relational factoring followed by superposition

Γ1, l1 ≈ r1, . . . , ln ≈ rn,L1,L2 | T1

Γ1, l1 ≈ r1, . . . , ln ≈ rn | T1 ∧ L1 = L2
(fac)

Γ2, u[l]  v | T
Γ1,Γ2, u[r1]  v, . . . , u[rn]  v | T1 ∧ T2 ∧ T ∧ L1 = L2 ∧ T3

(sup)

where T3 stands for (l1 0 r1 ∧ . . .∧ ln 0 rn ∧ s 0 t ∧ l1 = l ∧ . . . ∧ ln = l) and
∈ {≈, �≈}. L1 and L2 are either both positive or both negative literals. In
this case, the sequence transforms to:

Γ1, l1 ≈ r1, . . . , ln ≈ rn,L1,L2 | T1 Γ2, u[l]  v | T
Γ1,Γ2, u[r1]  v, . . . , u[rn]  v,L1,L2 | T1 ∧ T ∧ T3

(sup)

Γ1,Γ2, u[r1]  v, . . . , u[rn]  v | T1 ∧ T2 ∧ T ∧ L1 = L2 ∧ T3
(fac)

By analyzing the permutation rules res-sup and fac-sup, one can easily
notice that, once applied to derivation trees, they can introduce some tautologies.
In the case of the rule res-sup, this is due to the fact that, different to what it
is in the original derivation, the literal ¬Q, after the transformation, appears in
the same clause with Γ2 (which may contain a literal Q). It is important, at this
point, to note that tautologies introduced this way can only be tautologies with
respect to predicate literals.
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Lemma 1. The above permutation rules modify BFP derivations into BFP
derivations.

Proof. Every permutation rule defines a way of inverting the order of two adja-
cent inference rules in a derivation tree. After changing positions, the inferences
still take place with the same literals at the same positions in terms as it was
in the original derivation. Also, all ordering constraints are kept. Therefore, the
resulting derivation is a valid BFP derivation.

3.3 A Proof by Transformation

In order to prove the completeness of the regular strategy for basic superposition,
we start with a refutation by BFP of an unsatisfiable set of clauses S. Assume
that the root of the refutation is � |T , where T is a satisfiable constraint. Since
the calculus employs constraint inheritance, we can find a solution to T , and ap-
ply it to the whole refutation. Having that our transformations do not introduce
inferences ”from” and ”to” some fresh literals, and that they they do not change
the positions at which the inferences take place, we can consider only ground
instances of the refutation. Further in this work, all the transformations will be
assumed to take place on ground derivations.

A quick word on notation. The compound

Ω
C

denotes a derivation (derivation tree) Ω which is rooted by a clause C. The clause
C is a part of Ω. When it is not important which clause roots a derivation, we
will use only Ω.

Lemma 2. Any derivation by BFP can be transformed to a derivation by EBFP
without introducing new tautologies.

Proof. The statement of the lemma talks about the treatment of predicate lit-
erals. We can chose to treat them as predicate literals or equality atoms. The
calculus BFP treats predicates as equality atoms. On the other hand, to make
our transformations easier we need treat them as predicate literals.

Every factored overlap with a literal of the form P (t) ≈ true (where P is
a predicate symbol of arity n and t is an n-tuple of terms) and can be turned
into a sequence of inferences that consists of a number of positive factoring
steps followed by an application of resolution. It is clear that this transforma-
tion does not introduce new literals to clauses, it may only take some duplicate
positive literals away. It follows that the transformation does not cause appere-
ance of new tautologies. Therefore, if there were no tautologies in the origi-
nal derivation, there will be no tautologies after the transformation has taken
place.
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Lemma 3. Any EBFP derivation Ω of the form:

Π1
¬P,C1

Π2
P,C2

C1, C2
(res) Π3

D

E
(sup)

.... (eq infs)
F

where the inferences that follow res are all equality inferences, can be split into
two derivations Ω1 and Ω2 with conclusions F1 and F2 for which:

– The clause F1 contains the literal P (can be written as F ∗1 , P ) and F2 con-
tains the literal ¬P (can be written as F ∗2 ,¬P ).

– The union of the literals from F ∗1 and F ∗2 contains all the literals that appear
in F and only those literals, with possible duplicates.

Proof. The induction is on the number of (equality) inferences in Ω that take
place after the inference res. Let Ω′ with a conclusion F ′ be a derivation that
is obtained from Ω by cutting off its last inference. By the induction hypothesis,
Ω′ can be split into Ω′1 and Ω′2, rooted by F ′1 and F ′2 respectively.

Focus to the final inference of Ω. It involves one or more literals from the
clause F ′. Let the final inference of Ω, without a loss of generality, be a positive
superposition inference with F ′ as the ”from” clause. Note that the conclusion
of this inference is in fact the clause F .

Γ1, l ≈ r1, . . . , l ≈ rm Γ2, u[l] ≈ v

Γ1,Γ2, u[r1] ≈ v, . . . , u[rm] ≈ v

In case all the literals l ≈ r1, . . . , l ≈ rm belong to (w.l.o.g.) F ′1, we add the
following derivation to Ω′1, thus defining the final form ofΩ1. The added inference
has F ′1 as the ”from” premise:

F ′∗1 , l ≈ r1, . . . , l ≈ rm Γ2, u[l] ≈ v

Γ2, F
′∗
1 , u[r1] ≈ v, . . . , u[rm] ≈ v

There are no added inferences to Ω′2, which is then the same as Ω2. By the
induction hypothesis, the clauses F ′1 and F ′2 contain all the literals form Γ1.
Besides, F ′1 contains the literal P and F ′2 the literal ¬P . Therefore, the conclusion
F1 of Ω1 inherits the literal P from the F ′1, and similarly F2 inherits ¬P from
F ′2, and the union of the literals from F1 and F2 contains only (and all of them)
the literals from Γ1,Γ2.

Otherwise, assume that the literals l ≈ r1, . . . , l ≈ rk appear in F ′1, while the
literals l ≈ rk+1, . . . l ≈ rm appear in F ′2. It is easy to see that, in order to obtain
all the literals that appear in Ω, both F ′1 and F ′2 should paramodulate into the
negative premise of the last inference of Ω. We therefore produce Ω1 and Ω2 by
adding an inference to both Ω′1 and Ω′2. These inferences have the clauses F ′1
and F ′2 as positive premises.
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F ′∗1 , l ≈ r1, . . . , l ≈ rk Γ2, u[l] ≈ v

Γ2, F
′∗
1 , u[r1] ≈ v, . . . , u[rk] ≈ v

and
F ′∗2 , l ≈ rk+1, . . . , l ≈ rm Γ2, u[l] ≈ v

Γ2, F
′∗
2 , u[rk+1] ≈ v, . . . , u[rm] ≈ v

Similarly to the previous case, the statement of the lemma holds. It is worth
pointing out that this case produces duplicate literals in the union of the literals
from the clauses F1 and F2. It due to the fact that the ”to” clause of the final
inference of Ω appears as the ”to” clause of the final inferences of both Ω1 and
Ω2, and therefore the literals from Γ2 are inherited to both F1 and F2.

Note that the same reasoning applies when the last inference of Ω is equality
solution. The consideration then forks in two sub-cases, determined by whether
the literal inferenced upon in Ω appears in both F ′1 and F ′2 or just in one of
them.

It can be seen, from the proof of the previous lemma, that every clause in
the two newly obtained derivations is a clause that contains no other literals
than some clause of the original derivations. Thus, if there are no tautologies in
the original derivation, there will be no tautologies after the transformation has
taken place.

Definition 1. A clause is e-empty if it contains no equality literals (and zero
or more predicate literals). A derivation of an e-empty clause from a set of
clauses which contain both predicate and equality literals is called e-refutation.
An e-refutation that ends with equality inferences is called s-e-refutation (from
short e-refutation). Note that the empty clause is also e-empty. Similarly, every
refutation is also an e-refutation.

Lemma 4. An e-refutation by EBFP can be transformed into a regular EBFP
e-refutation with the same conclusion.

Proof. In a derivation tree, a predicate inference for which there is an equality
inference following it is called a non-terminating predicate inference. Let Ω be
an e-refutation by EBFP with a conclusion R. Without a loss of generality, we
assume that the final inference of Ω is an equality inference. Otherwise, we can
always neglect the predicate inferences at the end of the derivation tree, and
apply the lemma on the sub-derivation obtained this way. Let n be the number
of non-terminating predicate inferences in Ω. Among all the predicate inferences
in the derivation that are not followed by other predicate inferences, pick the one
that is followed by the least number of inferences and call it inf. If the number
of the inferences that follow inf is m, the induction is on the regularity pair
(n,m), where:

(n1,m1) > (n2,m2) if
n1 > n2 or
n1 = n2 and m1 > m2

A regular derivation is assigned the pair (0, 0).
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Assume that inf is a resolution inference. In case of factoring, the discussion
is similar (the difference is in the permutation rules applied) and less complex.
The inference that follows inf can be equality solution. In this case, the rule
res–es applies, which modifies the Ω to a derivation Ω′, which at least has
the second member of the regularity pair lesser than m. This transformation
does not change the conclusion of Ω′. The induction hypothesis applies to the
sub-derivation of Ω′ without the trailing resolution inferences.

Alternatively, the derivation Ω is of the form:

Π1
C1

Π2
C2

Γ1, l ≈ r1, . . . l ≈ rk
(inf) Π3

Γ3, u[l] ≈ v

Γ1,Γ2, u[r1] ≈ v, u[r2] ≈ v, . . . u[rk] ≈ v

If all the literals l ≈ r1, . . . , l ≈ rk belong to either C1 or C2, then similarly to
the previous case, the permutation res–sup can be applied, which also results
in obtaining a derivation with a smaller regularity pair.

If neither of the previous two scenarios apply, then some of the literals l ≈
r1, . . . , l ≈ rk appear in C1, while the others are inherited from C2. In other
words,

C1 = P,Γ1, l ≈ r1, . . . , l ≈ rl and C2 = ¬P,Γ2, l ≈ rl+1, . . . l,≈ rm.

By the previous lemma, the derivation can be split into two e-regular derivations
Ω1 and Ω2. They can be transformed, by the induction hypothesis, to regular
e-refutations Ω′1 and Ω′2 with the conclusions F ′1 and F ′2. The previous lemma
states that the clauses F ′1 and F ′2 contain the literals P and ¬P . This means that,
by performing a resolution inference on F ′1 (= F ′1∗, P ) and F ′2 (= F ′∗2 ,¬P ), the
derivations Ω′1 and Ω′2 can be joined to a derivation with the conclusion F ′∗1 , F ′∗2
that contains all the literals that appear in the conclusion of Ω, with possible
duplicates. However, the duplicates problem can be solved by applying positive
and negative factoring inference rules.

The base of the induction is a derivation with the regularity pair (1, k) where
k ≥ 1. More precisely, in case the previous lemma applies to a derivation with
only one non-terminating predicate inference, k is allowed to be greater than
1. This is because the previous lemma makes it possible to push all predicate
inferences down, below all equality inferences that follow. Otherwise, the base of
the induction is any derivation which can be assigned the pair (1, 1). By applying
a suitable permutation rule, such derivation can be made regular.

Lemma 5. Any set of unsatisfiable clauses has a regular refutation in which
tautologies are redundant.

Proof. Because of its completeness property and compatibility with tautology
elimination, there is always a tautology-free BFP refutation from a set of unsat-
isfiable clauses. Every such refutation is also an e-refutation, and by the previous
lemma, it can be transformed to a regular EBFP refutation. As it has been al-
ready stated, the preformed transformation does not cause the appearance of
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tautologies w.r.t. equality literals. Having a regular derivation means that there
can be derived a set of purely predicate clauses from which the empty clause
can be derived by resolution. Each of those purely predicate clauses is actually
the root of a regular derivation. If there are tautologies w.r.t. predicate clauses
in such regular derivations, the corresponding root will be a tautology, too. As
such, it is not needed in the further refutation by resolution, and can be dis-
carded. By discarding this clause, we discard the whole sub-derivation where
tautologies appeared. This proves that even tautologies w.r.t. predicate literals
can be eliminated.

The following is an instance of the conjecture from [DV01], and is a straight
forward consequence of the previous lemma.

Theorem 1. Let S be a set of Horn with respect to equality literals with the
following property: the arguments of every non-equality atom in S are variables.
Then there exists a refutation of S with tautology elimination in which applica-
tions of superposition precede applications of all other rules (resolution, equality
solution and factoring).

4 Future Work

A topic for further research is whether regular derivations are compatible with
other redundancy elimination techniques, such as simplification. It would be
interesting (and challenging) to implement a theorem prover based on equal-
ity elimination [DV01] (which is based on regular derivations), which would be
competitive with resolution-based provers.
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Abstract. We study the finite satisfiability problem for the guarded
fragment with transitivity. We prove that in case of one transitive predi-
cate the problem is decidable and its complexity is the same as the gen-
eral satisfiability problem, i.e. 2Exptime-complete. We also show that
finite models for sentences of GF with more transitive predicate letters
used only in guards have essentially different properties than infinite
ones.
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1 Introduction

In this paper we study the finite satisfiability problem for the extension of the
guarded fragment of first-order logic with transitivity statements.

The satisfiability problem for a given logic L, Sat(L), is the problem of de-
ciding, for a given sentence φ of the logic, whether φ has a model; the finite
satisfiability problem for L, FinSat(L), is the problem of deciding, for a given
sentence φ, whether φ has a finite model. A logic L enjoys the finite model
property, if every satisfiable sentence of L has a finite model.

The guarded fragment, GF, introduced by H. Andréka, J. van Benthem and
I. Németi [1], has appeared to be a successful attempt to transfer good properties
of modal and temporal logics to a naturally defined fragment of predicate logic.
In the guarded fragment formulas are built as in first-order logic with the only
restriction that quantifiers are appropriately relativized by atoms, i.e. neither the
pattern of alternations of quantifiers nor the number of variables is restricted.

Andréka et al. showed that modal logic can be embedded in GF and that GF
inherits the nice properties of modal logic. E. Grädel [2] proved that Sat(GF) is
complete for double exponential time and complete for exponential time, when
the number of variables is bounded. Moreover, he showed that GF has the finite
model property; hence Sat(GF) and FinSat(GF) coincide.

GF was generalized by van Benthem [3] to the loosely guarded fragment, LGF,
by M. Marx [4] to the packed fragment, PF, and by Grädel [5] to the clique
guarded fragment, CGF, where all quantifiers are relativized by more general
formulas, preserving the idea of quantification only over elements that are close

G. Sutcliffe and A. Voronkov (Eds.): LPAR 2005, LNAI 3835, pp. 307–321, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



308 W. Szwast and L. Tendera

together in the model. Most of the properties of GF generalize to LGF, PF and
CGF. In particular, I. Hodkinson [6] showed that they all enjoy the finite model
property (see also [7] for a simpler and nicer proof of the result).

Two notable extensions of GF that are decidable for satisfiability but do
not enjoy the finite model property are studied in the literature. One is the
extension of GF with fixed point operators, GF+FP, investigated by E. Grädel
and I. Walukiewicz [8]. This fragment captures the modal μ-calculus and has the
same complexity for deciding satisfiability as pure GF.

The second important fragment is the extension of GF with transitive guards,
GF+TG, motivated by the paper [9] by H. Ganzinger, C. Meyer and M. Veanes,
and studied by Szwast and Tendera [10]. In GF+TG some binary predicate
letters are declared to be transitive, so that their interpretation is required to
be transitive, but these transitive predicate letters appear only in guards. This
extension captures many expressive modal and description logics and is decid-
able for satisfiability in double exponential time. Surprisingly, the complexity
stays the same even for the monadic two-variable fragment with one transitive
predicate letter as it was proved by E. Kieroński in [11].

The lack of the finite model property for the above mentioned fragments nat-
urally leads to the question, whether their FinSat problems are decidable. This
question is particularly important, if one would like to use these formalism for
automatic reasoners in practical applications, where the structures investigated
are essentially finite.

A partial answer about the complexity of FinSat for GF+FP is given by
M. Bojańczyk [12], who has shown decidability of the FinSat problem for the
modal μ-calculus with backwards modalities. To the best of our knowledge, the
nice alternating automata on finite graphs introduced in his paper have not yet
been generalized to answer the open question of the decidability of FinSat for
full GF with fixed points.

In our paper we attack the FinSat problem for GF with transitive guards. The
main result is that the problem is decidable if there is one transitive predicate
letter in the signature. In the proof we observe that to check existence of a finite
model it suffices to check existence of an appropriate regular, possibly infinite,
tree-like model. This observation leads to a decision procedure working in double
exponential time.

We also show that we cannot generalize the technique developed for the one
transitive predicate case in a straightforward way. Namely, we show that if we
have more transitive predicate letters, we can describe models that cannot be
obtained from their tree-unravelling in an easy way. In particular, we give an
example of a finitely satisfiable sentence φ that has infinite tree-like models with
transitive cliques of cardinality at most exponential w.r.t. the length of φ, but
whose each finite model contains a transitive clique of double exponential size.

The above observation leads to a conjecture that FinSat(GF+TG)in case of
more transitive predicate letters can be essentially harder than the corresponding
satisfiability problem. It is perhaps worth mentioning that if this conjecture is
true, we would probably have the first natural logic for which the complexity of
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the satisfiability problem and of the finite satisfiability problem do not coincide.
So far, we know examples of decidable logics without the finite model property for
which both Sat and FinSat are of the same complexity; take the description logic
ALCQI, i.e. the ALC augmented with qualifying number restrictions, inverse
roles, and general TBoxes (see [13] for general reasoning and [14] for the finite
case), or the two-variable first-order logic with counting quantifiers (see [15] for
satisfiability and [16] for finite satisfiability) as two remarkable examples.

2 Guarded Fragments

The guarded fragment, GF, of first-order logic with no function symbols is defined
as the least set of formulas such that

1. every atomic formula belongs to GF,
2. GF is closed under logical connectives ¬,∨,∧,→,
3. if x,y are tuples of variables, α(x,y) is an atomic formula containing all

the variables of {x,y} and ψ(x,y) is a formula of GF with free variables
contained in {x,y}, then the formulas

∀y(α(x,y) → ψ(x,y)) and ∃y(α(x,y) ∧ ψ(x,y))

belong to GF.

The atom α(x,y) in the above formulas is called the guard of the quantifier.
A guard that is a P -atom, where P is a predicate letter from the signature, is
called a P -guard.

We denote by FOk the class of first-order sentences with k variables over a
relational signature. By GFk we denote the fragment GF ∩ FOk.

By a transitivity statement we mean an assertion Trans[P ], saying that the
binary relation P is a transitive relation. A binary predicate letter P is called
transitive if Trans[P ] holds.

By GF+TG we denote the guarded fragment with transitive guards that is
the restriction of GF with transitivity statements where all transitive predicate
letters appear in guards only and where the equality symbol can appear every-
where. By GF2+TG we denote the restriction of GF+TG to two variables.

3 Preliminaries

In this paper by σ we denote a signature without function symbols.
Let x = (x1, . . . , xl) be a sequence of variables. An l-type t(x) is a maximal

consistent set of atomic and negated atomic formulas over σ in the variables of
x. A type t is often identified with the conjunction of formulas in t. In this paper
we need 1- and 2-types that, if not stated otherwise, will be types of the variable
x and of the variables x and y, respectively. A 2-type t is proper if t contains the
formula x �= y. If t(x, y) is a proper 2-type such that t(x, y) |= T (x, y)∧ T (y, x),
then we say that t is T -symmetric.
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Let ψ(x) be a quantifier-free formula in the variables of x. We say that a type
t satisfies ψ, t |= ψ, if ψ is true under the truth assignment that assigns true to
an atomic formula precisely when it is a member of t.

We denote σ-structures by Gothic capital letters and their universes by Latin
capitals. If A is a σ-structure with the universe A, and if a is an l-tuple of
elements of A, then we denote by tpA(a) the unique l-type t(x) realized by a in
A. If B ⊆ A then A�B denotes the substructure of A induced on B.

Let A be a σ-structure, P a binary predicate letter in σ and C a substructure
of A. We say that C is a P -clique if C is a one-element set, or for every a, b ∈ C
we have A |= P (a, b). If a predicate letter T has transitive interpretation in a
structure A and a ∈ A, then we denote by [a]AT the maximal T -clique containing
a. Where the structure A (or a predicate letter T ) is understood or not important,
we sometimes omit the letter A (or a predicate letter T ) and write [a].

Let γ be a σ-sentence of the form ∀xα(x) → ∃y φ(x, y), A be a σ-structure
and a ∈ A. We say that an element b ∈ A is a witness of γ for a in A if
A |= α(a)→ φ(a, b). Note that if A �|= α(a), then any element b ∈ A is a witness
of γ for a in A. Similarly, we say that a ∈ A is a witness of γ of the form ∃xφ(x)
in A if A |= φ(a).

Definition 1. A GF+TG-sentence is in normal form if it is a conjunction of
sentences of the following forms:

∃x (α(x) ∧ ψ(x)), (1)
∀x (α(x)→ ∃y (β(x, y) ∧ ψ(x, y))), (2)
∀x∀y (α(x, y)→ ψ(x, y)), (3)

where y �∈ x, α, β are atomic formulas, ψ is quantifier-free and contains no
transitive predicate letter.

The following lemma can be proved in the same way as in [17].

Lemma 1. With every GF+TG-sentence Γ of length n over a signature τ one
can effectively associate a set Δ of GF+TG-sentences in normal form over an
extended signature σ, Δ = {Δ1, . . . , Δd}, such that

1. Γ is (finitely)satisfiable if and only if
∨

i≤d Δi is (finitely) satisfiable,
2. d ≤ O(2n), card(σ) ≤ n and for every i ≤ d, |Δi| = O(n logn),
3. Δ can be computed deterministically in exponential time and every sentence

Δi can be computed in time polynomial with respect to n.

In [10] it was shown that every satisfiable GF+TG-sentence has a regular
model called a ramified model. We recall the definition here.

Definition 2. Let R be a model for a GF+TG-sentence Φ over σ.

– R is singular, if for every a, b ∈ R such that a �= b, there is at most one
transitive predicate letter T such that R |= T (a, b) ∨ T (b, a).
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– R has a clique-bound r, for an integer r, if for every a ∈ R, the cardinality
of [a]RT is bounded by r.

– R is forest-like, if for every transitive predicate letters T, T ′ such that T �= T ′,
for every a, b, c ∈ R, b �= a, c �= a, if b ∈ [a]RT and c ∈ [a]RT ′ then for every
binary predicate letter P ∈ σ we have R �|= P (b, c).

– R is ramified, if R is singular, forest-like and has a clique-bound.

Theorem 1 (Szwast, Tendera [10]). Every satisfiable GF+TG-sentence Φ
in normal form has a ramified model with a clique-bound r = 3 · |Φ| · 2card(σ).

We emphasize that a ramified model is usually an infinite structure. So, for
the purpose of this paper, we have only the following corollary.

Corollary 1. Every (finitely) satisfiable GF+TG-sentence in normal form has
an (infinite) ramified model with exponential cliques.

4 Finite Models. One Transitive Predicate

In this section we prove that the finite satisfiability problem for the two-variable
guarded fragment with one transitive predicate letter is decidable in double
exponential time. We assume that we have a signature σ that contains unary
and binary predicate letters and that T is the only transitive predicate letter in
σ. In this case a GF2+TG normal form sentence is a conjunction of sentences
of the following forms:

∃x (α(x) ∧ ψ(x)), (1)
∀x (α(x)→ ∃y (β(x, y) ∧ ψ(x, y))), (2)
∀x∀y (α(x, y)→ ψ(x, y)). (3)

We additionally assume that any normal form sentence contains exactly one
conjunct of the form (1) (conjuncts of the form (1) can be replaced by sentences
of the form (2)).

The main idea of the proof is to give up working with complicated finite
models and to deal with a special kind of tree-unravellings of finite models in
which every node is a clique of elements. This requires some care since tree-
unravellings are generally infinite.

In the following Definition we emphasize the simple notion of a node.

Definition 3. Let A be a σ-structure in which the interpretation of T is transi-
tive. Every maximal T -clique in A is called an A-node. Denote the set of A-nodes
by N(A) : N(A) = {[a] : a ∈ A}.

Every σ-structure A with transitive T is partitioned into A-nodes.
In the first step (Lemma 2), given a finite model A of a normal form GF2+TG-

sentence Φ over σ, we build a tree-like σ-structure R such that R |= Φ. The
tree-like structure R can be seen as an edge-labelled tree T(R), whose nodes
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are copies of T -cliques from A and where the root contains a witness for the
conjunct of Φ of the form (1). Moreover, for every node B of the tree T(R), for
every b ∈ B and for every conjunct φ of Φ of the form (2), there is a son C of
the node B and an element c ∈ C such that c is a witness of b for φ in R; the
label of the edge from B to C is the pair (b, c).

In our technique cliques are treated in a special way: we consider them only
once when we create a node of a tree, and hence we do not have to consider
symmetric 2-types between elements from distinct nodes later, in particular,
when we define types between elements from nodes of one tree path.

The tree-like models, although they are usually infinite and have arbitrarily
large nodes, have also one good feature: every T -path is finite.

In the next step (Lemma 3 and Theorem 2) we show that in a tree-like model
of a finitely satisfiable sentence Φ we can bound both, the cardinality of nodes
and the length of T -paths, by respectively, exponential and double exponential
numbers (with respect to the length of Φ). This leads to an alternating expo-
nential space decision procedure for FinSat(GF2+TG).

In this section we usually omit the letter T in the notions, and where the
structure A is understood or not important, we sometimes omit the letter A and
speak about nodes.

In the following definition, we introduce tree-like structures formally and recall
a few notions for trees.

Definition 4. Let R be σ-structure in which the interpretation of T is transitive
and let l : N(R) �→ R×R be a function such that tpR(l(D)) is not T -symmetric,
for every D ∈ N(R). The structure R is an l-tree-like structure if the pair
T(R) = (N(R), {(B,C) : l(C) = (b, c)}, [b] = B, [c] = C} is a tree (with the edge
labelling l).

– A tree-path in T(R) is a sequence of pairwise distinct nodes C0, C1, . . . such
that for every i, Ci is either a son or a father of Ci−1.

– A T -path in T(R) is a tree-path C0, C1, . . . such that for every i, if Ci is a
son of Ci−1, then tpR(l(Ci)) |= T (x, y), otherwise tpR(l(Ci−1)) |= T (y, x).

– A T -path from C to C’ is a finite T -path C = C0,C1, . . .Cm = C′.
– An ancestor of a node C is a node Ci �= C of the tree-path C0, C1, . . ., Ci, . . .,

C, where C0 is the root of T(R).
– For C ∈ N(R), tree(C) is the subtree of T(R) rooted at the node C.
– For C,D ∈ N(R), tree(C) ∼= tree(D) if there exists an isomorphism function

i1 between tree(C) and tree(D) and an isomorphism function i2,
i2 : R�{c : c ∈ C′,C′ ∈ tree(C)} �→ R�{d : d ∈ D′,D′ ∈ tree(D)}, such that
for every C′ ∈ tree(C), i1(C′) = i2(C′) and for every C′ ∈ tree(C),C′ �= C, if
l(C′) = (b, c) then l(i1(C′)) = (i2(b), i2(c)).

Definition 5. Let R be a model for a normal form sentence Φ. R is a tree-like
model for Φ if there exists a function l such that R in an l-tree-like structure
and:

1. the number of sons of any node C is not bigger than n2(Φ) · card(C), where
n2(Φ) is the number of conjuncts of Φ of the form (2);
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2. there is a witness of the conjunct of the form (1) in the root;
3. for every conjunct φ=∀x (α(x)→ ∃y (β(x, y) ∧ψ(x, y))) of the form (2) and

every element a ∈ R, if there is no witness of φ for a in [a], then there is a
witness b of φ for a in R such that l([b]) = (a, b) ([b] is a son of [a]);

4. for every two elements a, b ∈ R, R |= T (a, b)∧ ¬T (b, a) iff there is a T -path
from [a] to [b];

5. every T -path in T(R) is finite.

Lemma 2. Every finitely satisfiable sentence Φ in normal form has a tree-like
model.

Proof. Assume A |= Φ, A is finite. We construct a tree-like model R for Φ such
that every node of R is isomorphic to an A-node and the isomorphism is given
by a global function h : R �→ A. Additionally, for every a, b ∈ R it is ensured
that if any of the following cases holds

– [b] is a son of [a] or [a] is a son of [b] in T(R),
– there is a T -path from [a] to [b] or from [b] to [a] in T(R),

then tpR(a, b) = tpA(h(a), h(b)).
We start with finding a witness b ∈ A of the conjunct of Φ of the form (1)

φ = ∃x (α(x) ∧ ψ(x)). Let B ∼= [b]A be an isomorphic structure to the node [b]A

such that B ∩ A = ∅. Define the root of T(R) as B and h : R �→ A as the
isomorphism function of B and [b]A.

Now, assume that we have already defined i levels of the tree T(R). To con-
struct the i + 1-th level, Li+1, for every node B ∈ Li, for every conjunct of the
form (2) φ = ∀x (α(x) → ∃y (β(x, y) ∧ ψ(x, y))) for every b ∈ B, if there is no
witness of φ for b in [b] then

1. find c′ ∈ A such that c′ is a witness of φ for h(b) in A,
2. define C ∼= [c′]A such that C ∩R = ∅, C ∩A = ∅,
3. extend the structures R and T(R) by C in the following way:

(a) extend the function h by the isomorphism function of C and [c′]A,
(b) define l(C) = (b, h−1(c′)) and tpR(b, c) = tpA(h(b), h(c)),
(c) complete R: for every e ∈ C, f ∈ R \ C, such that tpR(e, f) is not de-

fined, if there exists a T -path in T(R) from C to [f ]R or from [f ]R

to C, then define tpR(e, f) = tpA(h(e), h(f)), otherwise define R |=∧
P∈σ ¬P (e, f) ∧ ¬P (f, e).

It is easy to see, that after possibly infinite number of steps, we obtain a
tree-like model R for Φ. In particular, condition 5 of definition 5 is ensured;
otherwise there would exist an infinite T -path in T(R) and then there would
exist a sequence of nodes of N(A) connected by a T -loop, and this is impossible,
when T is transitive. �

Notation. For a sentence Φ in normal form we define the numbers r(Φ) = 3 · |Φ| ·
2card(σ), K(Φ) = 22card(σ)(2r2(Φ)+1) and G(Φ) = K2(Φ) · 24card(σ).

We point out that r(Φ) is exponential w.r.t. |Φ|, whereas K(Φ) and G(Φ) are
double exponential. We use the numbers in the following definition of special
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tree-like models that have a node bound r(Φ), that have bounded length of T -
paths (by 2K(Φ)), and can be constructed recursively from an initial part of
height at most G(Φ). We should note that r(Φ) coincides with the clique bound
that already appeared in Theorem 1. The exact values of K(Φ) and G(Φ) will
become important in the proof of Theorem 2.

Definition 6. We say that a tree-like model R for Φ is special, if the following
conditions hold:

1. R has node-bound r(Φ), that is for every node C ∈ N(R), card(C) ≤ r(Φ),
2. every T -path in T(R) is not longer than 2K(Φ),
3. for every node D at a level Lp, where p > G(Φ), there is an ancestor node

C such that tree(D) ∼= tree(C).

Lemma 3. Every finitely satisfiable sentence Φ in normal form has a tree-like
model with node-bound r(Φ).

Proof. Assume Φ is a finitely satisfiable sentence in normal form, A is a tree-like
model for Φ and l is an edge labelling in T(R) (they exist by Lemma 2). In the
proof we use a technique introduced in [10].

Definition 7. We say that a clique C is a petal of a A-node C′ if

1. card(C) ≤ r(Φ),
2. the set of 1-types realized in C coincides with the set of 1-types realized in C′,
3. the set of 2-types realized in C is a subset of the set of 2-types realized in C′,
4. for every element a′ ∈ C′ and for every conjunct φ of Φ of the form (2), if

there is a witness for a′ of φ in C′, then there is a witness for a of φ in C.

By Lemma 17 of [10], every A-node has a petal.
Assume R is a structure isomorphic to A with an isomorphism function h :

R �→ A. To construct a tree-like model for Φ with node-bound r(Φ) assume that
C′ ∈ N(R) is a node of cardinality bigger then r(Φ). We replace C′ in R by its
petal and appropriately modify R in the following way:

1. let B be the father of C′ in T(R), and l(C′) = (b, c′), where b ∈ B, c′ ∈ C′;
2. define R′ = R�tree(C′) and cut off the subtree tree(C′) from T(R): define

R = R�(R \R′);
3. take a petal C of C′ such that C ∩R = ∅, C ∩A = ∅ and connect C to B in

the following way:
find an element c ∈ C such that tpC′

(c′) = tpC(c),
put tpR(b, c) = tpA(h(b), h(c′)) and define l(C) = (b, c) in T(R);

4. for every a ∈ C:
find an element a′ ∈ C′ (given by condition 4 of Definition 7) such that
tpC(a) = tpC′

(a′) and for every conjunct φ of Φ of the form (2), if there is a
witness for a′ of φ in C′, then there is a witness for a of φ in C,
and extend R by connecting to C every necessary subtree:
for every d ∈ R′ such that l([d]) = (a′, d) in T(R′) define in T(R) l([d]) =
(a, d) and define tpR(a, d) = tpR′

(a′, d);
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5. complete R according to the following cases:
– for elements e, f ∈ R \ C, define tpR(e, f) = tpA(h(e), h(f)),
– for elements e ∈ R \ C, f ∈ C, find f ′ ∈ C′ such that tpC(f) = tpC′

(f ′)
and define tpR(e, f) = tpA(h(e), h(f ′)).

One can check that R is a tree-like model for Φ. Now it suffices to repeat the
above procedure to get a model for Φ in which every node is not bigger than
r(Φ). �

Definition 8. Let R be a tree-like model for a normal-form sentence Φ. A node-
type of an R-node C, denoted by C, is the pair (ism(C), In(C)), where ism(C)
is the isomorphism type of C and In(C) is the set of 1-types realized in R by
elements appearing in nodes on any T -path from a node of T(R) to C.

Notice that if R has a node-bound r(Φ), then card({C : C ∈ N(R)}) ≤ K(Φ).

Theorem 2. For every normal form Φ, Φ is finitely satisfiable if and only if Φ
has a special tree-like model.

Proof. (⇒) Assume A is a tree-like model for Φ with node-bound r(Φ) that exists
by Lemma 3. Then, the number of distinct node-types realized in A is bounded
by K(Φ).

We show how to construct a special tree-like model for Φ from A. Let R be a
structure isomorphic to A with an isomorphism function h : R �→ A

First, distinguish in R the set R′ consisting of all elements c of R such that
there is a T -path from [c] to the root or there is a T -path from the root to [c].
Since A is a tree-like model, condition 5 of Definition 5 ensures that R’ is finite.

Note that for every R′-node C that is not a leaf in T(R′), the node-type of C
in R′ is the same as its node-type in R.

We modify R in a finite number of steps i = 1, . . . , height(R′). At every step
i we modify the structure R′ obtained in the previous step.

Step i. For every node C ∈ Li-level of T(R′):

1. assume B is a father of C and l(C) = (b, c);
2. find in R′ a node D of tree(C) such that D = C and no other node in tree(D)

of T(R′) has a node-type D;
3. cut off the subtree tree(C) from T(R): define R = R�(R \ {a : a ∈ E,E ∈

tree(C)}
4. connect tree(D) to B: find d ∈ D such that tpD(d) = tpC(c), define in T(R)

l([D]) = (b, d) and define tpR(b, d) = tpA(h(b), h(c));
5. Complete R according to the following cases:

– for every e, f ∈ R′, e ∈ tree(D), f �∈ tree(D), if there is a T -path from
[e] to [f ] in T(R′) then find an element E in tree([h(c)] in T(A) and
e′ ∈ E such that tpA(e′) = tpR(e) and there is a T -path from [e′] to
[h(f)] in T(A) (such an element e′ exists since tp(e′) = tp(e) ∈ In(D) =
In(C) = In([h(c)]) ⊆ In([h(f)])) and define tpR(e, f) = tpA(e′, h(f));
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– for every e, f ∈ R′, e ∈ tree(D), f �∈ tree(D), if there is a T -path from
[f ] to [e] in T(R′) then find an element E in tree([h(c)] in T(A) and
e′ ∈ E such that tpA(e′) = tpR(e) and there is a T -path from [h(f)] to
[e′] in T(A) (such an element e′ exists since h(f) ∈ In([h(c)]) = In(C) =
In(D) ⊆ In([e])) and define tpR(e, f) = tpA(e′, h(f));

– for every e, f ∈ R such that tpR(e, f) has not been defined, put R |=∧
P∈σ ¬P (e, f) ∧ ¬P (f, e).

Observe that height(R′) ≤ K(Φ) and every T -path in T(R) starting or ending
at the root is not longer than K(Φ).

We repeat the above construction for every tree(C) of T(R′), where C is at
level Li, starting with i = 1.

To show that condition 3 holds, note that G(Φ) is big enough to ensure that
on every tree-path starting at the root that is longer than G(Φ), there are two
distinct nodes, D and its ancestor C, such that C = D and tpR(l(C)) = tpR(l(D))
and there is no T -path either from C to D or from D to C in T(R). So, it suffices
to construct tree(D) as tree(C). �

(⇐) Assume A is a special tree-like model. For X ⊆ N(A) define T (X ) =
{C : C ∈ X}. Denote by Li = Li ∪ . . . ∪ Li+G(Φ) the layer of A (a fragment of A
starting at level i of T(A) of width G(Φ)).

Observe that for every i > G(Φ), T (Li) = T (
⋃∞

j=i Lj). Moreover, for every i,
there is no T -path starting above the layer Li and ending below the layer.

Due to technical reasons, we assume there is a fixed (usual) ordering on nodes
of A such that the root is the first element, sons of every A-node are consecutive
elements of the ordering and for C,C′ ∈ Li and their sons D,D′: if C < C′ then
D < D′.

Let p be a fixed big enough number and C, C’ be two nodes of A at level p
such that C is the m-th element of the ordering and C′ is m + s + 1-th element
of the ordering, where s = n2(Φ)r(Φ)2K(Φ) is the maximal number of leaves of
a tree of degree n2(Φ)r(Φ) of height 2K(Φ). Then there is no T -path between
C and C’. To construct the finite model of Φ take the substructure R of A
consisting of the first p = G(Φ) + 2s · G(Φ) + 1 levels of T(A). Note that R
consists of the initial part of A of height G(Φ) and 2s consecutive layers of A,
say L0,L0′

,L1,L1′
, . . . ,LG(Φ)−1,LG(Φ)−1′

.
To complete the structure R we bend the edges leading from the nodes from

level p to other elements in A. Assume, C0,C1, . . . is the finite sequence of con-
secutive nodes (in fixed ordering) of level p + 1. For every node Ci at level
p + 1, where i = 0, 1, 2, . . . , find a node Di ∈ Li mod s such that C = D and
tpR(l(Ci)) = tpR(l(Di)) (such a node exists by condition 3 of Definition 6, since
the number of nodes with different node-types and different labels is not bigger
than G(Φ)). Note that there is no T -path between Ci and Di. Let h be the iso-
morphism function such that h : Ci �→ Di. For every a ∈ R, if there is a T -path
between [a] and Ci, then for every c ∈ Ci define tpR(a, h(c)) = tpR(a, c) (note
that before tpR(a, h(c)) |=

∧
P∈σ ¬P (x, y) ∧ ¬P (y, x). �
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Theorem 3. The finite satisfiability problem for GF2 +TG with one transitive
predicate letter is 2Exptime-complete.

Proof. (Sketch) To check if a GF2+TG-sentence Φ in normal form is satisfiable
we need to check if an initial part of height G(Φ) of a special tree-like model
can be constructed. This can be done using an alternating procedure working in
exponential space. In fact we build a single path of a tree that either ends at an
node not needing new witnesses, or is infinite but does not contain any T -path
longer than 2K(Φ). During the construction it suffices to keep node-types of two
consecutive nodes and two counters to count up to G(Φ) and K(Φ), respectively.
This information can be written using exponential space. Details are similar to
the alternating exponential space algorithm for Sat(GF+TG) given in [17].

2Exptime-hardness of the FinSat problem can be shown in a similar way as
done by Kieroński in [11] for the satisfiability problem. �

The same methods can be used to prove the analogous results for the guarded
fragment with unbounded number of variables.

5 Finite Models. More Transitive Relations

In this section we discuss main similarities and differences between finite and
general reasoning for our logic in case we have more transitive predicate letters
in the signature.

First, we give an example of a satisfiable sentence Φ over a signature with a
few transitive predicate letters, such that every finite model of Φ has at least
one clique of double exponential size. This result is rather surprising since by
Corollary 1, Φ has an infinite model with exponential cliques. prove decidability
of FinSat(GF2+TG) with more than one transitive predicate letter, one needs to
use essentially different techniques than for the satisfiability problem in general
and for the one transitive predicate case.

In this section we also note that every finitely satisfiable sentence has a fi-
nite singular model of polynomial size with respect to the original model. We
believe that this is a key observation for an efficient decision procedure for
FinSat(GF+TG) with more transitive predicate letters.

Example 1. We write a sentence Φ describing a model consisting of a full binary
tree of height 2n that is mapped onto a double exponential T -clique that is
disjoint with the tree. The size of the tree enforces the size of the T -clique. In
fact, we cannot ensure that every model of Φ contains exactly one tree or one
clique but, as we will see, in any finite model for Φ at least one T -clique has to
be of double exponential size.

We assume that T , T1, T2, T3, F are transitive predicate letters in the signa-
ture. We also use additional unary predicate letters. In particular, we assume
that there are n unary predicate letters L1, . . ., Ln that are used to encode in
every element a of the structure a number L(a) from 0 to 2n − 1, defined by
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taking the k-th bit of L(a) set to 1, if Li(a) is true. It is easy to express the fol-
lowing properties with formulas of our logic of polynomial length: L(x) = L(y),
L(x) = L(y) + 1, L(x) = k and L(x) ≤ k , for fixed k with 0 ≤ k < 2n.

We define Φ to be the conjunction of the following sentences.
First, we say that the universe of the model contains two disjoint sets C and

D, each of them containing a distinguished element (root in D, and R in C).

∃xR(x) ∧ ∃xRoot(x) (4)
∀xR(x)→ (Cx ∧ L(x) = 0) ∧ ∀xRoot(x)→ (Dx ∧ L(x) = 0) (5)

∀xCx→ ¬Dx ∧ ∀xDx→ ¬Cx (6)

We use F to define a bijection from C to D (here transitivity of F is essential).

∀xCx→ (∃y (Fxy ∧Dy) ∧ ∃y (Fyx ∧Dy)) (7)
∀xDx→ (∃y (Fxy ∧ Cy) ∧ ∃y (Fyx ∧ Cy)) (8)

∀xy Fxy → ((Cx ∧Dy ∨Dx ∧ Cy ∨ x = y) ∧ L(x) = L(y)) (9)

Elements in C are partitioned into T -cliques, each of them containing exactly
one element in R (by transitivity of T ).

∀xCx→ (∃y (Txy ∧Ry) ∧ ∃y (Tyx ∧Ry)) (10)
∀xy Txy → (¬(Rx ∧Ry) ∨ x = y) (11)

Elements in D constitute trees of exponential height, each of them starting at a
root node. The edges in the trees are either T1-, T2- or T3-edges.

We ensure that distinct elements connected by each Ti are located on consec-
utive levels of D.∧
i=1,2,3

(∀xy Tixy →(Dx ∧Dy ∧ (L(x)=L(y)+1 ∨ L(y)=L(x)+1 ∨ x = y))) (12)

To shorten the further formulas we define the following abbreviations:

Father(x, Ti) ≡∃y (Tixy ∧ L(y) + 1 = L(x)) ∧ ∃y (Tiyx ∧ L(y) + 1 = L(x))
Son(x, Ti) ≡∃y (Tixy ∧ ¬Root(y) ∧ L(y) = L(x) + 1)∧

∃y (Tixy ∧ ¬Root(y) ∧ L(y) = L(x) + 1)

Note that for any element a in a structure satisfying (12), if Father(a, Ti) is
true then, by transitivity of Ti, there is a unique element b �= a such that Tiba
is true. The same holds for Son(a, Ti).

Finally, we add to Φ conjuncts describing the sons of elements in the trees.

∀xRoot(x)→(Son(x, T2) ∧ Son(x, T3)) (13)

∀xDx→((L(x) ≥ 1) ∧ (L(x) < 2n)→
((Father(x, T1)→ (Son(x, T2) ∧ Son(x, T3)))∧
(Father(x, T2)→ (Son(x, T1) ∧ Son(x, T3)))∧
(Father(x, T3)→ (Son(x, T1) ∧ Son(x, T2)))))

(14)
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Note that the last formula in the given form is not guarded but can easily be
written as a guarded one.

One can check that Φ has a model in which D constitutes a full binary tree of
height 2n and C is a T -clique of cardinality equal cardinality of the set D, that
is double exponential. Additionally, we can prove the following claim.

Claim. Every finite model of Φ has a T -clique of cardinality at least double
exponential w.r.t. the length of Φ.

Proof (of claim). Let A be a finite model of Φ. Obviously, A contains two
nonempty disjoint sets C and D of the same cardinality. However, there might
be more roots (i.e. elements for which Root(a) is true) and more than one non-
trivial (i.e. of size bigger than one) T -cliques.

Let r be a root in D. Define D(r) as the subset of D consisting of those
elements that are reachable from r by any T1, T2, T3-path.

Observe that for any two roots r1, r2 ∈ D such that r1 �= r2, we have D(r1)∩
D(r2) = ∅. For, assume a ∈ D(r1)∩D(r2) and L(a) = k. Then, there is a unique
path from a to r1 in D(r1) and a unique path from a to r2 in D(r2). One can
prove that the two paths must have the same length. By (14), the predicates
T1, T2, T3 behave as functions, so the two paths coincide. Hence, r1 = r2 - a
contradiction.

Now, let k be the number of elements of A that are roots in D. Then k is
also the number of non-trivial T -cliques in A. The cardinality of every set D(r),
where r is a root is at least double exponential. Hence, since all elements of D(r)
are mapped in a 1-1 way to elements of non-trivial T -cliques, at least one of the
cliques must be of double exponential size. �

We note that the number of transitive predicate letters used in the above example
could be easily reduced to three. To save space and simplify presentation we used
more of them. At the moment it is not clear whether two transitive predicate
letters would also suffice.

From the above Example, in contrast to Corollary 1, we get the following
corollary in the finite model case.

Corollary 2. Not every finitely satisfiable GF 2+TG-sentence in normal form
has a finite ramified model with exponential cliques.

In the last part of this section, if not stated otherwise, we assume that Φ is a
GF2+TG-sentence in normal form over a signature σ with p transitive predicate
letters T0, . . . , Tp−1.

As the last observation in this paper we formulate the following lemma.

Lemma 4. If Φ has a finite model of cardinality n, then Φ has a finite singular
model of cardinality np.

We believe that FinSat(GF+TG) is decidable for any number of transitive
predicate letters and that the above Lemma will be a key tool for the proof.
Since this claim might not be motivated strongly enough, we prove only a weaker
version of the lemma.
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First define the following operations. If t(x, y) is a 2-type, then t ↑ T is the
unique 2-type obtained from t by replacing every two-variable T ′-atom, where
T ′ is a transitive predicate letter, T ′ �= T , by its negation.

Assume that A |= Φ, A = {a0, a1, . . . an−1} and denote by A ↑ T the structure
with the universe {b0, b1, . . . bn−1} such that tpA↑T (bi, bj) = tpA(ai, aj) ↑ T.

We have the following easy observation.

Proposition 1. Let t(x, y) be a proper 2-type.

1. For every conjunct φ of Φ of the form (2): ∀x (α(x) → ∃y (β(x, y)∧ψ(x, y))),
if t |= α(x) ∧ β(x, y)∧ψ(x, y), where β(x, y) is a T -guard or a P -guard with
not transitive P , then t ↑ T |= α(x) ∧ β(x, y) ∧ ψ(x, y).

2. For every conjunct φ of Φ of the form (3): ∀x∀y (α(x, y) → ψ(x, y)) if t |=
α(x, y)→ ψ(x, y), then t ↑ T |= α(x, y)→ ψ(x, y).

3. For every conjunct φ of Φ of the form (3), if t contains no two-variable
atoms, then t |= α(x, y)→ ψ(x, y).

4. If A |= Φ, then for the conjunct φ of Φ of the form (1): ∃x (α(x) ∧ ψ(x)),
for every conjunct φ of the form (2): ∀x (α(x) → ∃y (β(x, y) ∧ ψ(x, y))),
where β(x, y) is a T -guard or a P -guard with not transitive P and for every
conjunct φ of Φ of the form (3), A ↑ T |= φ.

Example 2. Let p = 2, i.e. σ contains exactly two transitive predicate letters
T0 and T1 and let A′ be a finite model for Φ such that card(A) = n. We will
construct a singular model A for Φ of cardinality n2.

Assume A′ = {a0, a1, . . . an−1} and define the universe of the structure A as a
union of pairwise disjoint sets, A =

⋃n−1
k=0 Ak, where Ak = {a0k, a1k, . . . , an−1,k}.

To define A, for k = 0, 1, . . . , n− 1 put

1. tpA(aik, ajk) = tpA′
(ai, aj) ↑ T0,

2. tpA(aik, aj,(k+j−i) mod n) = tpA′
(ai, aj) ↑ T1,

where i = 0, 1, . . . , n− 2, j = i + 1, . . . , n− 1. The partially defined structure is
completed using 2-types containing no two-variable atoms.

Notice that A is singular. To show that A |= Φ, for k = 0, 1, . . . , n− 1 define

Ck = {a0k, a1,(k+1) mod n, . . . , an−1,(k+n−1) mod n}.

Each set Ck contains exactly n elements of A and the family P1 = {C0, C1, . . .,
Cn−1} constitutes a partition of the set A. Moreover, we have card(Ak∩Cl) ≤ 1,
for every k, l = 0, 1, . . . , n− 1, k �= l. Since 2-types of the form 1 appear inside
each subset Ak and 2-types of the form 2 - inside each subset Ck, the structure
A is well-defined (every 2-type was defined once only).

Now observe that for every k = 0, 1, . . . , n− 1 we have

1. tpA(aik, ajk) = tpAk(aik, ajk),
2. tpA(aik, aj,(k+j−i) mod n) = tpC(k−i) mod n(aik, aj,(k+j−i) mod n), where i =

0, 1, . . . , n− 2, j = i, i+ 1, . . . , n− 1.
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Hence, A�Ak
∼= A′ ↑ T0 and A�Ck

∼= A′ ↑ T1, for k = 0, 1, . . . , n − 1. So, by
Proposition 1, A |= Φ.

In case when the signature σ contains p > 2 transitive predicate letters, one
can simply iterate the above procedure to obtain the following corollary.

Corollary 3. If Φ has a finite model of cardinality n, then Φ has a finite singular
model of cardinality n2p−1

.
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Abstract. Separation logic is a subset of the quantifier-free first order logic. It
has been successfully used in the automated verification of systems that have
large (or unbounded) integer-valued state variables, such as pipelined processor
designs and timed systems. In this paper, we present a fast decision procedure
for separation logic, which combines Boolean satisfiability (SAT) with a graph
based incremental negative cycle elimination algorithm. Our solver abstracts a
separation logic formula into a Boolean formula by replacing each predicate with
a Boolean variable. Transitivity constraints over predicates are detected from
the constraint graph and added on a need-to basis. Our solver handles Boolean
and theory conflicts uniformly at the Boolean level. The graph based algorithm
supports not only incremental theory propagation, but also constant time theory
backtracking without using a cumbersome history stack. Experimental results on
a large set of benchmarks show that our new decision procedure is scalable, and
outperforms existing techniques for this logic.

1 Introduction

Separation logic (also called difference logic) is a subset of the quantifier-free first order
logic for which efficient decision procedures exist. It has been successfully used in
the automated verification of systems that have large (or unbounded) integer-valued
state variables, such as pipelined processor designs and timed systems. Since integer
variables and arithmetic operators are not flattened into the bit vector format, separation
logic can model and verify systems at a higher abstraction level than Boolean logic. The
UCLID verifier [4], for instance, relies on the decision procedure for separation logic
as its back-end engine.

A separation logic formula contains the standard Boolean connectives as well as
separation predicates of the form (vi − vj ≤ c) where vi, vj are integer variables and
c is an integer constant. The validity of a separation logic formula can be checked
by translating it to an equi-satisfiable Boolean formula, which in turn is checked by
a Boolean SAT solver. Many existing techniques took this approach to leverage the
recent advances of Boolean SAT algorithms, with differences only in the timing of
the transformation and in the Boolean encoding methods. In particular, they can be
classified as either eager or lazy depending on when the transformation happens.

In the eager approaches [4, 18, 16, 19], separation logic formulae are converted to
equi-satisfiable Boolean formulae in a single step. The two existing encoding methods
used during the transformation are small domain encoding and per constraint encoding.

G. Sutcliffe and A. Voronkov (Eds.): LPAR 2005, LNAI 3835, pp. 322–336, 2005.
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In small domain encoding, integer variables and arithmetic operators are bit-blasted
with a sufficiently large vector size. In per constraint encoding, the formula is abstracted
by replacing each predicate with a Boolean variable, and then augmented by adding all
possible transitivity constraints over predicates. In addition, a hybrid method can be
used to combine the strength of these two encoding schemes. A previous experimental
study [16] showed that per constraint encoding based approach is often faster than small
domain encoding. However, the complete set of transitivity constraints is added in one
shot regardless of whether they are needed or not.

In the lazy approaches [2, 1, 8, 9, 3], transitivity constraints are added only dynami-
cally on a “need-to” basis to augment the Boolean skeleton. Whenever the assignment
to the Boolean skeleton is not consistent with the separation predicates, a transitivity
constraint is added to eliminate the inconsistency before SAT search is resumed. Lazy
approaches exploit the fact that transitivity constraints are often highly redundant and
some of them may never be needed in solving the validity problem.

Deciding separation logic is an NP-complete problem [13]. However, experience
with Boolean SAT solvers shows that practically efficient search heuristics often ex-
ist even for NP-complete problems. For example, the recent advances of DPLL SAT
solvers (Davis-Putnam-Logemann-Loveland [7]) have led to their widespread applica-
tion in industry settings, e.g. in verification of pipelined microprocessors. The two tech-
nical breakthroughs responsible for much of the performance improvement are (1) con-
flict analysis based learning and non-chronological backtracking [17] and (2) watched
literal based fast Boolean Constraint Propagation (BCP) [11, 10]. These two parts, how-
ever, remain the weak links in separation logic solvers based on the lazy approach.

In this paper, we propose a procedure for lazily deciding separation logic by com-
bining a DPLL Boolean SAT procedure with an efficient graph algorithm in the style
of recent SAT Modulo Theory (SMT) solvers. Our emphasis is on the efficient imple-
mentation of conflict analysis (for both Boolean and theory conflicts) and on the data
structure that supports fast theory backtracking. Our method maintains and incremen-
tally updates a constraint subgraph for all active separation constraints. The theory part
only receives assignments from the Boolean part and detects conflicts; it does not per-
form exhaustive theory propagation nor feed back implications. Theory conflicts are
removed by augmenting the Boolean formula with conflicting clauses. Our procedure
is both sound and complete; it terminates as soon as a consistent assignment is found or
all possible cases are explored.

A major contribution of this paper is our fast theory propagation and backtracking
algorithm, which not only prunes theory constraints incrementally, but also performs
constant time backtracking. Unlike the existing techniques in [2, 9, 3, 6], we do not need
expensive book-keeping on the constraint graph for (non-chronological) backtracking,
nor do we need a history stack to store any of its previous states. In fact an analogy ex-
ists between our graph-based constraint propagation (GCP) algorithm and the watched
literal based Boolean constraint propagation (BCP) in Chaff [11], in that both have
constant time backtracking.

In [3], an incremental and layered procedure for deciding linear arithmetic logic was
proposed for the MathSat solver. It includes a separation logic solver based on incre-
mental Bellman-Ford algorithm for detecting theory conflicts, but no further details of
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the algorithm are available in [3] or related papers. In particular, it is not clear how their
theory backtracking is implemented and what the backtracking cost is.

The more recent work by Cotton [6] also has an incremental negative cycle detection
algorithm, but is significantly different from ours in backtracking. In the broader area,
the work by Ramalingam et al. [15] is the first dynamic algorithm for arbitrary edge
weighted graphs that has a per edge complexity bound better than that of Bellman-
Ford. The cycle detection algorithm in our approach has the same complexity bound as
[15]. In addition to incremental cycle elimination, we propose several optimizations for
its tighter integration with the Boolean SAT solver and for fast backtracking.

In [9], a DPLL(T) framework was proposed for SAT modulo theories, but including
only EUF logic. Recently, the DPLL(T) approach has been extended to separation logic
[12]. They perform exhaustive theory propagation, making the algorithm quite differ-
ent from ours. We have implemented a variant of [12] on top of our own solver; our
experiments show that this addition can further improve the performance of our solver
on examples where theory conflicts play a larger role.

We also provide in this paper experimental comparisons of our solver with the latest
versions of both DPLL(T) and MathSAT, as well as other solvers including ICS [8],
UCLID [4], and TSAT++ [1]. The results show that our new algorithm outperforms
these existing techniques, particularly on harder test cases.

The rest of the paper is organized as follows. We give technical background in Sec-
tion 2, describing separation logic, the transformation to SAT, and the constraint sub-
graph. We then give the overall algorithm in Section 3. Our fast GCP and incremental
negative-cycle detection algorithms are described in Section 4. We give experimental
results in Section 6, and then conclude in Section 7.

2 Separation Logic

Definition 1. A separation logic formula consists of the standard propositional con-
nectives and predicates of the form vi − vj ≤ c, where vi and vj are integer variables
and c is a constant.

To canonize the individual predicates, we impose an order on the integer variables such
that i ≤ j for all constraints of the form vi − vj ≤ c. Input formulae that do not meet
this above requirement are normalized through rewriting, before they are given to the
solver. For example, (x − y > 5) is equivalent to ¬(x − y ≤ 5), while (x − y < 5)
is equivalent to (x − y ≤ 4). For predicates in the form of x ≤ c, a common integer
variableZERO can be added to encode the predicates into (x−ZERO ≤ c). Note that
with the implicit order on all integer variables, predicates (x−y ≤ 5) and (y−x ≤ −6)
are mapped to the same Boolean variable (P and ¬P ) instead of two.

The validity of a separation formula can be checked by a Boolean SAT solver via
transformation. The first step is to abstract the original formula φ into a Boolean skele-
ton φbool, by replacing separation predicates with fresh Boolean variables. Since tran-
sitivity constraints among predicates are removed, φbool has all the possible satisfying
assignments of φ, and possibly more. Formula φbool is put into the Conjunctive Normal
Form (CNF) before it is given to the SAT solver. A CNF formula is a conjunction of
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clauses, each of which is a disjunction of literals. A literal is a Boolean variable or its
negation.

An example of a separation logic formula is given as follows,

(x− y ≤ 2 ∨ x− z ≤ 6) ∧ (x − y ≤ 2 ∨ ¬(x− z ≤ 6))∧
(¬(x − y ≤ 2) ∨ y − z ≤ 3) ∧ (¬(x− y ≤ 2) ∨ ¬(y − z ≤ 3) ∨ w − y ≤ 10)
(¬(x − y ≤ 2) ∨w − y ≤ 10) ,

where w, x, y and z are all integer variables. Note that this formula is already in the
CNF format. After replacing the predicates by Boolean variables as follows,

A : (x − y ≤ 2), B : (x− z ≤ 6), C : (y − z ≤ 3), D : (w − y ≤ 10)

φ is abstracted into φbool:

(A ∨B) ∧ (A ∨ ¬B) ∧ (¬A ∨ C) ∧ (¬A ∨ ¬C ∨D) ∧ (¬A ∨D) .

Although the Boolean assignment (A,¬B,C,D) satisfies φbool, the set of correspond-
ing separation constraints do not have a solution. In fact, (x − y ≤ 2 ∧ y − z ≤ 3) →
(x − z ≤ 5). To make the Boolean formula equi-satisfiable to φ, one must augment
φbool with transitivity constraints among separation predicates to rule out inconsistent
assignments. In the above example, we can derive the constraint A∧C → B to augment
the Boolean skeleton.

A set of separation predicates can be mapped to a weighted directed graph, called
the constraint graph. Every negative weight cycle in this graph represents a transitivity
constraint.

Definition 2. The constraint graph G of a set of separation predicates is a weighted
directed graph whose vertices correspond to integer variables and whose edges corre-
spond to predicates and their negations. In particular, (vi − vj ≤ c) corresponds to
the edge (vj , vi) with weight c, and ¬(vi − vj ≤ c) corresponds to (vi, vj) with weight
(−c− 1).

A constraint subgraph contains all the vertices but a subset of the edges of a constraint
graph. A full or partial assignment to φbool induces a constraint subgraph, which has
only those edges corresponding to the active constraints.

Theorem 1. Let Gs be the constraint subgraph induced by a (partial) assignment to
φbool. The assignment is consistent with the set of separation predicates if and only if
Gs does not have a negative weight cycle.

As an example, the constraint graph for the set of predicates {A,B,C,D} is given
in Figure 1. The positive and negative phases of each predicate are mapped to two
different edges. Such a graph implicitly encodes all the possible transitivity constraints.
The constraint subgraph corresponding to the assignment (A,¬B,C,D) is given in
Figure 2, which has a negative weight cycle (x→ z → y → x).

In the lazy approaches, transitivity constraints in Gs are added dynamically when-
ever they are needed. However, this requires a call to the negative cycle detection algo-
rithm every time a full or partial assignment is found. A standard graph-based approach
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Fig. 1. Constraint graph for the predicate set {A, B, C, D}
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¬B : (z − x ≤ −7)
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Fig. 2. Constraint subgraph induced by the assignment (A,¬B, C, D)

for detecting negative cycles is the Bellman-Ford shortest path algorithm, which gives
negative cycles as a by-product. In practice, the number of calls to a negative cycle de-
tection procedure can be extremely large, therefore making it a potential bottleneck for
lazy separation logic solvers.

3 SLICE: The New Solver

We present a new solver called SLICE (for Separation Logic solver with Incremental
Cycle Elimination), which tightly integrates a DPLL style SAT procedure with a fast
graph-based constraint propagation algorithm. The theory part in SLICE is kept quite
passive. It only reports conflicts, but does not propagate implications back as in [12].
However, it is equipped with new data structures that support efficient propagation and
constant time backtracking.

3.1 The Overall Algorithm

The overall algorithm of SLICE can be viewed as a modification of the DPLL procedure
(Figure 3). It takes the Boolean skeleton φbool as input, and initializes the constraint sub-
graph Gs with all the vertices – one for each integer variable – but no edges. Procedure
decide() picks one Boolean variable at a time and assigns it either true or false. When all
Boolean variables are assigned and there is no conflict, it returns with SAT; if a conflict
appears before any decision is made (i.e. the decision level is 0), we declare the formula
UNSAT.
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slice_sat() {
while (1) {

if (decide()) {
while (slice_cp()==CONFLICT) {

level = conflict_analysis();
if (level < 0)
return UNSAT;

else
back_track(level);

}
}else

return SAT;
}

slice_cp() {
if (bcp()==CONFLICT)

return CONFLICT;
else if (gcp()==CONFLICT)) { //propagate constraints on graph

add_conflicting_clause(); //add new constraints on Boolean formula
return CONFLICT;

}else
return NO_CONFLICT;

}

Fig. 3. SLICE: The new decision procedure for separation logic

SLICE only makes Boolean decisions. Implications of these decisions are propa-
gated first by bcp() among Boolean clauses, then by gcp() in the constraint subgraph.
Note that the passing of implications from Boolean to theory part is one-way; there is
no feedback from gcp() to bcp(). BCP is based on unit implication, i.e. when all the
other literals are set to false in a clause, the only remaining one must evaluate to true.
GCP is based on the incremental negative cycle detection algorithm (details in Sec-
tion 4). If either of them detects a conflict, we perform conflict analysis to locate the
decision level at which the conflict is triggered. After adding a conflict clause to rule
out the same assignment in the future, the procedure backtracks non-chronologically to
the appropriate decision level and resumes the search. Procedure slice sat() terminates
as soon as a valid assignment is found or all possible cases have been explored.

3.2 Handling Conflicts

Conflicts from BCP and GCP are both handled at the Boolean level, by the same conflict
analysis procedure. Our Boolean SAT solver is based on Chaff [11], which maintains an
implication graph by recording the clause responsible for each implication (called the
antecedent) and associating it with the implied variable. BCP detects a conflict when it
finds a conflicting clause. During conflict analysis, we start from the conflicting clause
and trace backward in the implication graph, to locate a proper cut-set (e.g. the 1st
UIP in Chaff) between the decision nodes and the conflict. A conflict clause is then
derived and added to the clause database, after which the procedure backtracks non-
chronologically to the decision level where the conflict is triggered.

In GCP, we maintain a constraint subgraph to store all the active predicates, but do
not maintain any data structure to store the implication relation. Every time a predi-
cate is assigned at the Boolean level, its corresponding edge is scheduled to be added
to the constraint subgraph. GCP starts adding and propagating edges only after BCP
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finishes, in order to amortize the cost of GCP (other heuristically driven schemes are
also possible to change the ratio of calls to BCP and GCP). For each negative cycle de-
tected during the propagation, it adds a conflicting clause whose literals are the negation
of the edges on the negative cycle. Note that this particular call sequence guarantees
that the added conflicting clause is always irredundant—otherwise, BCP would have
detected the conflict. When we jump back to the Boolean level, the added conflicting
clause enables us to perform conflict analysis and non-chronological backtracking using
the same procedure, as if the conflict is detected during BCP.

We use the example in Section 2 to illustrate how conflicts are handled. Here we use
¬D@L1 to denote that Variable D is set to false at decision level 1.

– Assume that the SAT procedure makes the following decisions/implications,

¬D@L1; decision
¬A@L1; due to (¬A ∨ D)
¬B@L1; due to (A ∨ ¬B)
(A ∨ B) = false; conflict!

Note that the first line is decision and the rest are implications. By tracing back
from (A ∨ B), we find the 1st UIP (¬A@L1), add the conflict clause (A), and
backtrack to decision level 0. Backtracking restores all the assignments made to
D,A and B.

– The added clause (A) forces the SAT procedure to flip the value of A,

A@L0; due to (A)
D@L0; due to (¬A ∨ D)
C@L0; due to (¬A ∨ C)

¬B@L1; satisfiable assignment!

At this point, BCP finishes without detecting any conflict. This Boolean assignment
induces the constraint subgraph in Figure 2. However, GCP finds a negative weight
cycle due to {A,¬B,C}, and adds a conflicting clause (¬A∨B∨¬C). The added
clause itself represents a conflict in the Boolean part, therefore triggers the 1st UIP
conflict analysis. After adding a conflict clause (B), we backtrack again to decision
level 0.

– The added clause (B) forces the SAT procedure to flip the value of B.

A@L0; due to (¬A);
D@L0; due to (¬A ∨ D);
C@L0; due to (¬A ∨ C);
B@L0; due to (B);

Another call to GCP confirms that this is a consistent assignment; therefore, the
separation logic formula is satisfiable.

We should note that both the conflicting clauses added for negative cycles and the
conflict clauses learned from conflict analysis can be made volatile; that is, they are
allowed to be deleted. In many modern SAT solvers, periodically deleting redundant
clauses has been helpful in solving hard SAT problems. The removal of conflict clauses
does not affect the completeness of the SAT algorithm (for proof, please refer to [20]).
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In practice, however, we choose to make the conflicting clauses added for negative
cycles non-volatile, since they represent the constraints not yet contained in the original
Boolean formula φbool. On the other hand, we make conflict clauses volatile since they
are always redundant (though their existence may help prune the search space).

4 Negative Cycle Elimination

Let the constraint subgraph Gs = (V,E) be a weighted directed graph, w[u, v] be the
weight of edge (u, v), and d[v] be the cost of node v. The following statements are
equivalent: (1) The set of separation constraints has a valid solution {d[v]}; and (2)
there is no negative weight cycle in the corresponding constraint subgraph.

Bellman-Ford solves the single-source shortest-paths problem in graphs where edge
weights can be negative; as a by-product, it also detects negative-weight cycles that
are reachable from the source (cf. [5]). Although several separation logic solvers use
Bellman-Ford to detect theory conflicts, it is not very suitable for a tight on-line inte-
gration with the Boolean SAT solver. This is especially true when the cycle detection
algorithm must be called every time a predicate is assigned. In such a case, even making
Bellman-Ford incremental is not very effective. However, studying Bellman-Ford does
shed some light on how an efficient theory solver can be implemented.

The basic operation in searching for a solution is relax, which operates on edges as
shown below. Here pi[v] represents the edge responsible for the last change to d[v]; it
can be used to retrieve the negative weight cycles.

relax (u,v) {
if (d[v] > d[u] + w[u,v]) {

d[v] = d[u] + w[u,v];
pi[v] = (u,v);

}
}

An edge is stable if relax does not change the cost of its sink node. A solution is
found when all edges are stable. Each solution {d[v]} represents a class of solutions
{d[v] + c}, since (d[v] ≤ d[u] + w[u, v]) implies (d[v] + c ≤ d[u] + c + w[u, v]).
If a solution exists, all edges will become stable after a bounded number of relaxing
operations. When there is no solution (i.e. some negative cycles exist), some edges
can never become stable. This is the basis of many existing negative cycle detection
algorithms, including Bellman-Ford.

However, the original Bellman-Ford algorithm runs n ×m relax operations (where
n and m are the number of nodes and edges, respectively) before checking whether all
edges are stable. The first optimization is to stop relaxing as soon as all edges are stable,
or to stop as soon as possible in the presence of negative cycles.

Bellman-Ford returns more information than needed for negative cycle detection or
finding an arbitrary solution. Assume that Ax ≤ b is a system of m separation con-
straints in n integer variables, Bellman-Ford algorithm gives a solution that maximizes∑n

i=1 xi subject to Ax ≤ b and xi ≤ 0 for all xi ([5]). We recognize and exploit the
fact that if the purpose is to search for an arbitrary solution or simply to detect negative
cycles, we can use an arbitrary set of initial node values as the starting point. Note that
the proof follows Pratt’s theorem in [14] (and also in [5]).
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Proposition 1. For the purpose of detecting negative weight cycles, Bellman-Ford is
sound and complete by starting with an arbitrary set of initial node values (instead of
initializing d[v] to∞).

Although the initial node values do not affect the correctness of the algorithm, they
do affect the run-time in practice. Typically, the closer {d[v]} is to a solution, the less
effort is needed for the relaxing phase to converge. For example, if the current {d[v]} is
already a solution, then no edge needs to be relaxed. Our new GCP algorithm exploits
this fact by updating the subgraph incrementally.

Let the set {di[v]} be the stable node values after adding the i-th edge. The key
invariant to our negative cycle detection algorithm is given as follows:

Theorem 2. If no conflict is detected by the previous call to negative cycle detection,
all edges in the subgraph must have been stable. Therefore, the set {di[v]} of node
values is always a valid solution to the current set of separation constraints.

Since there is no negative cycle in the subgraph, if adding a new edge creates one,
the cycle must go through the new edge. In the relaxing phase, if the new edge is relaxed
more than once, we declare it as a conflict.

The algorithm is given in Figure 4. Initially, the constraint subgraph contains all the
nodes but no edge. Each time a separation predicate is assigned a value, the correspond-
ing edge is scheduled to be added. After each SAT decision (and after BCP finishes),
we search for negative weight cycles in the subgraph. Starting from the newly added
edge (u, v), we propagate the value of the separation predicate. If all edges eventually

gcp()
{

for each predicate assigned at current level {
added edge (u,v);
if (detect_negative_cycle(u,v))

return CONFLICT;
}
return NO_CONFLICT;

}

detect_negative_cycle(u,v)
{

if (d[v]>d[u]+w[u,v]) {
relax (u,v);
enqueue(v);

}
while ((x=dequeue())!=NULL) {

for each edge (x,y) { // sequenced with priority queue
if (d[y]>d[x]+w[x,y]) {
if (u==x && v==y)

return TRUE;
else {

relax (x,y);
enqueue(y);

}
}

}
}
return FALSE;

}

Fig. 4. Incremental negative cycle detection algorithm
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become stable, the FIFO queue becomes empty, meaning that there is no negative cycle.
If there exists a negative cycle, the cycle must go through edge (u, v); therefore we can
detect it when node v is visited again during the constraint propagation. The cycle can
be retrieved by following pi[v] all the way back to edge (u, v).

Given a constraint subgraph with n nodes and k edges, the detection algorithm can
run in O(n log n + k) time per added separation predicate. Since all edges are stable
before adding (u, v), we can sequence our relaxation operations with a Fibonacci heap
based priority queue ordering nodes according to their maximal node value changes
[15] and [6]. If there is no negative weight cycle even after adding (u, v), relaxing will
converge after going through those nodes exactly once. However, it is worth pointing out
that this worst-case complexity bound seldom reflects the performance of the algorithm
in practice.

Unlike Bellman-Ford which recomputes node values each time from scratch, our
new algorithm propagates the constraints incrementally. Since all existing edges are al-
ready stable before the addition of the new edge, the number of edges that need to be
relaxed is often significantly reduced. For example, if the new edge is already stable un-
der the previous {dj [v]} (i.e. node values at the j-th decision level), then no propagation
is needed; if the new edge is not stable but {dj [v]} is already very close to a solution,
then not many edges need to be relaxed. Data in Section 6 show that the reduction in
the number of relax operations can be several orders of magnitude.

5 Efficient Backtracking

Efficient implementation of backtracking on the theory part is important since in prac-
tice the number of backtracks is often very large. This imposes two constraints on de-
signing a backtracking algorithm: First, it should have low runtime overhead; second,
it should be scalable in terms of memory usage. For instance, the approach of storing
the theory solver’s states at all previous decision levels in a history stack does not scale
well in practice. In SLICE, we do not need such a history stack, and we do not need to
restore the theory solver’s state either, even during non-chronological backtracking.

Indeed, the invariant maintained by our algorithm makes a constant-time backtrack-
ing possible. Note that in Chaff’s two-literal watch list based BCP, backtracking in the
Boolean part has already been made a constant time operation – Chaff does not update
during backtracking any of the affected clauses and their watched literals. Similarly,
in SLICE we do not need to update (or restore) any of the node values; the procedure
remains sound and complete as long as all existing edges are stable before every call to
negative cycle detection. We shall show in the following that this invariant is maintained
throughout the solving process.

First, the invariant always holds when we add edges to the subgraph and there is no
conflict in either BCP or GCP. Let {dj [v]} be the node values at the j-th decision level.
If no conflict is detected, {dj [v]} is a solution to the set of separation constraints after
the call to negative cycle detection. Furthermore,

Theorem 3. {dj[v]} is also a solution for the set of separation constraints at any pre-
vious decision level i such that i ≤ j.
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This is because constraint subgraphs at previous levels contain subsets of these
edges—a solution remains valid when some constraints are dropped. We should note
that multiple edges can be added at each decision level, and a conflict detected in GCP
is guaranteed to involve at least one assignment at the current decision level.

Second, if backtracking from decision level j to i is triggered by a conflict in BCP,
the node values right before backtracking are {dj−1[v]} (since GCP has not been per-
formed yet). The only thing we need to do is to delete edges added after decision level
i. However, we do not have to restore the node values from {dj−1[v]} back to {di[v]}.
More often than not, {dj−1[v]} is a better solution than {di[v]} since it satisfies more
separation constraints. In practice, relaxation of edges will be avoided later if some of
the deleted edges are added back.

Third, if backtracking from decision level j to i is triggered by a conflict in GCP,
by the time we detect the negative cycle (i.e. edge (u, v) is revisited), {dj [v]} may no
longer be a valid solution (because some edges may still need to be relaxed). We have
two choices in restoring the invariant. If we keep relaxing the edges other than (u, v)
until convergence, we will get a set {dj [v]} that is a solution at the previous level.
However, if we want to stop the propagation as soon as the first conflict is detected,
backtracking is no longer constant-time since we need to restore a valid solution. We
can record the node value changes during the current cycle detection call and restore
them as soon as we detect the first negative cycle. Note that only local changes in the
current call need to be recorded (as opposed to all the solver states between level i and
level j), even when the backtracking is non-chronological. Finally, none of these two
choices affects the worst-case complexity of negative cycle detection.

The Working Example. Figure 5 shows the constraint subgraphs at different stages of
applying our GCP algorithm. We use the same separation logic formula (from Section 2)
as an example. The initial subgraph is given at the left top, in which all node are initial-
ized to 0. The subgraph at the right top is after the partial assignment (¬D,¬A,B); note
that no constraint propagation is needed when the edges (z, x) and (x, y) are added, be-
cause they are already stable under the existing node values after (w, y) is added. When
backtracking from this partial assignment, we only delete the three edges while leav-
ing the node values unchanged. The right bottom subgraph is under the assignment
(A,¬B,C,D), which has a negative weight cycle. After backtracking and setting B
true, the subgraph is shown at the left bottom. At this point, all Boolean variables are
assigned and there is no conflict, the separation formula is proved to be satisfiable. Note
that the set of {d[v]} values is a solution to the current set of separation constraints.

6 Experiments

We have implemented our new decision procedure on top of the zChaff SAT solver, by
integrating the incremental negative cycle elimination algorithm with the DPLL based
SAT search. During the implementation of our graph algorithm, effort has been made
to make sure that both adding and deleting an edge take constant time.

We have conducted experiments with a set of 385 public benchmark formulae gen-
erated from verification problems and scheduling problems. It includes 159 formulae of
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the MathSAT suite, 99 of the SAL suite, 31 of the DLSAT suite, 60 DTP formulae, and
36 diamonds formulae. All the experiments were run on a workstation with 3.0 GHz
Intel Pentium 4 processor and 2 GB of RAM running Red Hat Linux 7.2. We set the
time limit to 3600 seconds and the memory limit to 1 GB.

(a) initial constraint subgraph
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Fig. 5. Applying the graph based constraint propagation

Table 1 compares SLICE’s Incremental Negative Cycle Detection with Bellman-
Ford. Columns 1-3 show for each set of formulae the suite name, the category and the
number of formulae. Column 4 gives the average percentage of non-Boolean variables
(or separation predicates). Columns 5-8 are from SLICE runs with incremental cycle
detection, which include the average percentage of GCP generated conflicts, the ratio
of BCP calls to GCP calls, the percentage of CPU time spent in GCP, and the aver-
age number of relaxed nodes per negative cycle detection call. Columns 9-10 are from
solver runs with Bellman-Ford, which include the information on CPU time and the
number of relaxed nodes per call to Bellman-Ford. Note that only two columns are pre-
sented for Bellman-Ford, because the percentage of GCP conflicts and the BCP/GCP
ratio stay roughly unchanged with both cycle detection algorithms.

The data show that our incremental graph algorithm significantly reduces the over-
head of GCP. Compared to Bellman-Ford, the reduction in the number of relax opera-
tions can be several orders of magnitude. In fact, except for diamonds, the number of
nodes relaxed per call have been reduced to single digit or less. The hand-made dia-
monds formulae [18] are known to have exponential number of negative cycles, each of
which contains half of the separation constraints in the formulae.
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Table 1. Comparison of Incremental Negative Cycle Detection and Bellman-Ford

Benchmarks Data from SLICE runs
Incremental cycle detection Bellman-Ford

suite name num. of non-Boolean conflicts in num. of time in num. of time in num. of
formulae vars (%) GCP (%) BCP/GCP GCP (%) relax GCP (%) relax

mathsat FISCHER 119 30 1 20 8 2 46 17
PO2 7 40 2 16 0 1 14 13
PO3 9 30 1 14 16 0.4 25 9
PO4 11 20 1 13 9 0.3 46 5
PO5 13 13 1 13 4 0.2 57 4

sal lpsat 20 13 1 10 10 2 62 49
inf-bak 20 50 32 7 30 3 70 294
fischer 59 60 12 21 18 7 80 1186

DLSAT abz5 12 100 32 12 55 7 49 1152
ba-max 19 13 22 8 25 4 84 233

DTP 60 100 62 8 47 0.4 89 205
diamonds 36 100 3 2 66 79 89 1101

We have also conducted experimental comparison of our new algorithm with other
state-of-the-art tools, including UCLID, MathSAT, ICS, TSAT++, and DPLL(T). For all
tools, their latest public available released versions were used. For DPLL(T), it includes
their latest development as described in [12]. For UCLID we used the default “hybrid
method” which combines the strengths of per constraint and small-domain encoding.
The overall result is given in scatter plots in Figure 6. Here the x-axis is the CPU time
of SLICE, while the y-axis is the CPU time for other solvers. For DPLL(T), which is the
closest competitor on this set of benchmarks, we also give the scatter plot in linear scale.

The result shows that SLICE performs significantly better than UCLID, MathSAT,
and ICS on the majority of the benchmarks. The only cases on which UCLID runs
faster are some smaller diamonds formulae. However, SLICE finishes all the 36 dia-
monds formulae within 1 hour, but UCLID times out on 8 larger ones. ICS 2.0 runs
faster than SLICE on several formulae from the MathSAT suite, although overall ICS
2.0 is much less robust. The comparison with TSAT++ shows that SLICE performs sig-
nificantly better on most cases. DPLL(T) is the closest competitor to SLICE on this set
of benchmarks. However, as is shown by the last scatter plot, SLICE tends to do better
on harder cases, therefore seems to be more robust and scalable.

Note that in most of these benchmark examples the percentage of GCP conflicts is
very low, which indicates that computing all theory consequences as in [12] will not
pay off. We have also implemented in our solver a variant of the exhaustive theory
propagation technique of [12], which spends a limited (but not exhaustive) amount of
effort in deriving theory implications. We then conducted controlled experiments on
a set of randomly generated DTP formulae; in these formulae, the number of integer
variables and separation constraints can be carefully controlled. (Due to space limit, we
omit the result table.) Our experiments show that on examples in which GCP conflicts
play a larger role, spending a limited amount of effort in deriving theory implications
can significantly improve the performance of SLICE.
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SLICE vs. UCLID SLICE vs. MathSAT SLICE vs. ICS 2.0

SLICE vs. TSAT++ SLICE vs. DPLL(T) SLICE vs. DPLL(T)

Fig. 6. Performance comparison in scatter plots: The CPU time is in seconds. The x-axis is for
SLICE. Comparison with DPLL(T) is also shown in the linear scale.

7 Conclusions

We have presented a fast decision procedure for separation logic, which has an efficient
theory engine for incremental conflict detection and constant time backtracking. The
graph based theory solver allows fast backtracking without any additional bookkeeping.
Controlled experiments indicate that the incremental algorithm is superior to the naive
approach of Bellman-Ford; it significantly reduces the overhead of graph based con-
straint propagation. Performance evaluation on a set of public benchmarks shows that
our new solver significantly outperforms leading separation logic solvers. For future
work, we want to investigate more efficient ways of handling equality and inequality
relations than translating them into separation predicates.
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Abstract. We consider several questions about monotone AC-tree automata, a
class of equational tree automata whose transition rules correspond to rules in
Kuroda normal form of context-sensitive grammars. Whereas it has been proved
that this class has a decision procedure to determine if, given a monotone AC-tree
automaton, it accepts no terms, other important decidability or complexity results
have not been well-investigated yet. In the paper, we prove that the membership
problem for monotone AC-tree automata is PSPACE-complete. We then study the
expressiveness of monotone AC-tree automata: precisely, we prove that the fam-
ily of AC-regular tree languages is strictly subsumed in that of AC-monotone tree
languages. The proof technique used in obtaining the above result yields the an-
swers to two different questions, specifically that the family of monotone AC-tree
languages is not closed under complementation, and that the inclusion problem
for monotone AC-tree automata is undecidable.

Keywords: equational tree automata, closure properties, decidability, complexity.

1 Introduction

Tree automata [5] have been applied successfully in many areas of computer science,
such as protocol verification [1, 12], type inference [7, 11], checking the sufficient com-
pleteness of algebraic specifications [3, 16], and checking the consistency of semi-
structured documents [17]. This widespread use is due to good closure properties of
tree automata, such as the (effective) closedness under Boolean operations and rewrite
descendant computation, as well as efficient decision procedures. However, the stan-
dard framework of tree automata is not powerful when some algebraic laws such as
associativity and commutativity have to be taken into account. In particular, it is known
that the regularity of tree languages is not preserved for the congruence closure with
respect to an equational theory. To overcome this problem, Ohsaki [23] in 2001 and
Goubault-Larrecq and Verma [14] in 2002 independently proposed extensions of tree
automata. Their ideas in new frameworks are to combine tree automata with equational
theories, and each of their studies considers by coincidence the case in particular where
some of the function symbols have associative (A), commutative (C), and/or some other
equational properties like the identity (I) and nilpotent (U) axioms. The notion of ac-
cepted languages may differ for these two approaches, however, they coincide in the
regular case for any combination of the axioms A, C, I and U.

G. Sutcliffe and A. Voronkov (Eds.): LPAR 2005, LNAI 3835, pp. 337–351, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The AC case is of particular interest since this kind of automata which are able to
deal with AC symbols are closely related to tree automata with arithmetical constraints,
such as multitree automata [21] and Presburger tree automata [29]. Further discussion
on this relationship can be found in our recent paper [2]. It has been shown that for
AC-tree automata good properties of “classical” tree automata remain: the membership
and emptiness are decidable and the closure of automata by Boolean operations can be
computed [23, 30, 31].

Motivated by cryptographic protocol verification, Goubault-Larrecq and Verma pro-
posed to extend AC-tree automata by considering two-way and/or alternating computa-
tions [14]. They proved on one hand that two-way AC-tree automata are not more power-
ful than (one-way) AC-tree automata. On the other hand, the alternation strictly increases
the expressiveness of AC-tree automata while the emptiness problem is undecidable.

Inspired by commutative grammars [13, 27] (alternatively, called multiset grammars
[19]) Ohsaki proposed another extension of AC-tree automata [23], called monotone
AC-tree automata; he proved that both emptiness and membership remain decidable
for monotone AC-tree automata and that the languages defined by these automata are
closed under union and intersection [23, 25]. Furthermore, Ohsaki and Takai develop
the automated system, called ACTAS, manipulating AC-tree automata computation by
using the exact and approximation algorithms [26].

In this paper, we further investigate monotone AC-tree automata. First, we prove
that the membership problem of deciding, “given a term t and an automaton A/AC,
whether t belongs to the language defined by A/AC” is PSPACE-complete: we give
a non-deterministic algorithm running in polynomial space with respect to the size of
the input tree and automaton. For the lower bound, we reduce the validity problem
of quantified Boolean formulas to the membership problem. Then we show that the
class of monotone AC-tree automata is strictly wider than the class of regular AC-tree
automata by exhibiting a tree language accepted by a monotone AC-tree automaton but
that cannot be defined by any regular AC-tree automaton. Following the same ideas, we
prove that the family of AC-monotone tree languages is not closed under complement
while this class is closed under union and intersection. Finally, using similar techniques,
we show that the inclusion problem for monotone AC-tree automata is not decidable.

The paper is organized as follows. Definitions and terminologies concerning equa-
tional tree language theory are introduced in Section 2. The closure properties and the
decidability of equational tree automata are also summarized. In Section 3, we discuss
the complexity of the membership problem for monotone AC-tree automata, proving
that the problem is PSPACE-complete. Section 4 is devoted to the study of the relative
expressiveness of AC-tree automata. Using the proof technique introduced in the pre-
vious section, we show in Section 5 that AC-monotone tree languages are not closed
under complementation. Section 6 contains the proof for the undecidability of the in-
clusion problem. Finally, we conclude by summarizing the results obtained in the paper
that give us the solutions to open questions in [6].

2 Preliminaries

A signature is a finite set F of function symbols together with natural numbers n. A
natural number n associated with f , denoted by arity(f) = n, is the arity of f . Function
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symbols of arity 0 are called constants. We assume the existence of a countable set V
of variables. The set T (F ,V) of terms over F with V is inductively defined as follows:
V ⊆ T (F ,V); f(t1, . . . , tn) ∈ T (F ,V) if arity(f) = n and ti ∈ T (F ,V) for all
1 � i � n. Elements in the set T (F ,∅) are called ground terms. In the paper, we write
T (F) for T (F ,∅).

Let � be a fresh constant, named a hole. Elements in the set T (F ∪ {�},V) of
terms, denoted by C(F ,V), are contexts. The empty context is the hole �. If C is a
context with n holes and t1, . . . , tn are terms, then C[t1, . . . , tn] represents the term
from T (F ,V) obtained from C by replacing the holes from left to right by t1, . . . , tn.
Terms t1, . . . , tn are subterms of C[t1, . . . , tn].

A tree automaton (TA for short) A is a 4-tuple (F ,Q,Qfin , Δ), whose components
are the signature F , a finite set Q of states such that F ∩ Q = ∅, a subset Qfin of Q
consisting of final states, and a finite set Δ of transition rules whose shapes are in one
of the following types:

(TYPE 1) f(p1, . . . , pn)→ q (TYPE 2) f(p1, . . . , pn)→ f(q1, . . . , qn)

for some f ∈ F with arity(f) = n and p1, . . . , pn, q, q1, . . . , qn ∈ Q.
An equational system (ES for short) E is a set of equations s = t, where s, t are

terms over the signature F with the set V of variables. For two terms s, t, we write
s =E t whenever s, t are equivalent modulo the equational system E , i.e. s, t are the
elements in the same equivalence class of the quotient term model T (F ,V)/=E . The
associativity and commutativity axioms for a binary function symbol f in F are the
equations

f(f(x, y), z) = f(x, f(y, z)) f(x, y) = f(y, x),

respectively, where x, y, z are variables in V . In the paper, we write FA for the set of
binary function symbols with associativity laws only, and FAC for the set of binary
symbols equipped with both associativity and commutativity. The ES A consists of the
associativity axioms for each f ∈ FA, and AC is the ES consisting of the associativity
and commutativity axioms for each f ∈ FAC.

An equational tree automaton (ETA for short)A/E is a pair of a TA A and an ES E
over the same signature F . An ETA A/E is called

– regular if it has only rules of TYPE 1,
– monotone if it has rules of TYPE 1 and/or TYPE 2.

We say A/E is a AC-TA (A-TA) if E = AC (resp. E = A). Besides, in the following
discussion, we supposeFA = ∅ when consideringA/AC; likewise, FAC = ∅ forA/A.
The readers are recommended to consult [23] for a more detailed presentation.

We write s →A/E t if there exist s′, t′ such that s =E s′, s′ = C[l], t =E t′ and
t′ = C[r] for some transition rule l → r ∈ Δ and context C ∈ C(F ∪ Q). This
relation→A/E on T (F ∪ Q) is called a move relation of A/E . The transitive closure
and reflexive-transitive closure of→A/E are denoted by→+

A/E and→∗A/E , respectively.

For an ETA A/E with E = ∅, we simply write→A,→+
A and→∗A, instead.

A term t is accepted by A/E if t ∈ T (F) and t →∗A/E q for some q ∈ Qfin .
Elements in the set L(A/E) are ground terms accepted by A/E . A tree language L
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regular
AC-TA

monotone
A-TA

monotone
AC-TA

closure under union, intersection Yes [4] Yes Yes

closure under complement Yes [4] Yes ?

decidability of emptiness Linear No Yes

decidability of membership NP-complete PSPACE-complete ?

decidability of inclusion Yes No ?

Fig. 1. Some closure properties and decidability results

overF is a subset of T (F). A tree language L is E-regular (E-monotone) if there exists
some regular (resp. monotone) E-tree automaton A/E such that L = L(A/E). If L is
E-regular with E = ∅, we say L is regular. Likewise, we say L is monotone if L is
∅-monotone.

Let op be an n-ary mapping from ℘(T (F))n �→ ℘(T (F)). The family of E-regular
(resp. E-monotone) languages is closed under op if whenever L1, . . . ,Ln are E-regular
(resp. E-monotone) languages then so is op(L1, . . . ,Ln). We say that the family of E-
regular (resp. E-monotone) languages is effectively closed under op if there exists an
algorithm which, given regular (resp. monotone) ETA A1/E , . . . ,An/E , computes a
regular (resp. monotone) ETAA/E such thatL(A/E) = op(L(A1/E), . . . ,L(An/E)).
One should note that non-regular and equational tree automata defined in [23] are in
the above monotone case. It is folklore that whenever E = ∅ then ∅-regular and ∅-
monotone languages coincide. Things are different when some equational theory is
taken into account. For instance, it has been shown in [24] that monotone A-TA are
strictly more expressive than regular A-TA. But the question remained open in the case
of AC.

We sum up in the table of Fig. 1 some known results concerning respectively regular
AC-TA, monotone A-TA and monotone AC-TA. The positive results are marked with
“Yes”, and the negative cases are marked with “No”. In case the results are proved in our
previous work, the references are omitted. The complexity of the emptiness for regular
AC-TA is a direct consequence of Lemma 2 in [23] and the result of regular TA [5].
Question marks “?” in the three columns denote open problems registered in [6].

For most of the results described in the present paper, we will consider a rather sim-
ple signature consisting of finitely many constant symbols and a single AC symbol f.
In this case, the regular transition rules f(p1, p2) → q and a → q correspond to the
production rules q → p1 p2 and q → a of context-free grammars in Chomsky nor-
mal form. In case of monotone TA, the additional form f(p1, p2) → f(q1, q2) together
with the previous two forms corresponds to context-sensitive grammar in Kuroda nor-
mal form [20]. Following the same approach for monotone AC-TA, the transition rules
correspond to the production rules of some commutative context-sensitive grammar.
The commutative context-sensitive grammars are known to be close to Petri nets [10].
Therefore, most of our developments are related to Petri nets. For this reason, on the
other hand, the complexity of the emptiness problem for monotone AC-TA is unclear
and may correspond to the reachability problem for Petri nets [8].
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3 The Complexity of the Membership Problem

In this section, we investigate the complexity of the membership problem for mono-
tone AC-tree automata. To show in particular the PSPACE-hardness, we use a proof
technique proposed by Esparza [9] where he shows that the reachability problem for
one-safe Petri nets is PSPACE-hard. Note that Petri nets corresponding to monotone
AC-tree automata are not in general one-safe.

Theorem 1. Given a monotone AC-tree automaton A/AC and a term t, the problem
whether t ∈ L(A/AC) is PSPACE-complete. $�

To show that the membership problem for monotone AC-TA is in PSPACE, it suffices
to prove that the size of any ground term t reachable from an initial term t0 by the move
relation of A/AC is polynomial relative to the size of t0 and A/AC. This allows us to
prove that the existence of a successful run for t0 implies that there exists a “short”
successful run at most exponential with respect to the size of t0 andA/AC. We use this
property to devise a non-deterministic polynomial space algorithm for the membership
problem using that the execution of the move relation can be done in polynomial time.
We appeal to Savitch’s theorem [28] stating that NPSPACE = PSPACE to conclude.

Let us define the special notation of terms. We assume that a term t in this section is
represented by the following grammar:

t ::= f〈t1, . . . , tn〉 | a
where f is a function symbol in F with arity(f) > 0, and a is a constant. Moreover,
〈t1, . . . , tn〉 is a non-empty sequence of terms t1, . . . , tn such that:

1. if f is a non-AC symbol, then n is the arity of f ,
2. if f is an AC symbol, then n � 2 and the root symbol of ti is not f .

Given a subterm position and a rule to be applied at the subterm position, the corre-
sponding transition step by A/AC can be performed on the above term representation
in linear time with respect to the size of a term. In the transition steps, there are two
non-standard cases, that are done by the transitions rules of the form f(p1, p2)→ q and
f(p1, p2) → f(q1, q2) with f an AC symbol. In both of the two cases, instead of the
standard pattern matching, we find p1, p2 among subterms t1, . . . , tn of f〈t1, . . . , tn〉.

By definition of monotone AC-TA, if a term s is reachable from t by →A/AC, the
size |s| is less than or equal to |t| ∗ log(|A/AC|), where |A/AC| is the number of state
symbols of A/AC. Then we can show that for any tree t admitting a successful run
r : t→∗A/AC q with q a final state ofA/AC, there exists a successful run r′ : t→∗A/AC q

reaching the same state q of length at most 2|t|∗log(|A/AC|). In fact, for the proof by
contradiction, we suppose that t →∗A/AC q is the shortest successful run whose length

is strictly greater than 2|t|∗log(|A/AC|). Then terms reachable from t by→A/AC can be
described using a space relative to the size at most |t| ∗ log(|A/AC|). This implies
that the previous shortest run t →∗A/AC q can be represented as t →∗A/AC u →+

A/AC
u →∗A/AC q. By shrinking this run by chopping off the loop of u, one can obtain a
successful run strictly shorter than the original, leading to the contradiction with respect
to the minimality assumption.
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Based on the above observation, let us define (non-deterministic) algorithm to solve
the question if t ∈ L(A/AC). We write in the algorithm apply(u, u′, r) for denoting
to “apply the transition rule r at the position of a subterm u′ of u.” This algorithm
needs for the computation a polynomially bounded space with respect to the size |t| ∗
log(|A/AC|): let t be a term over the signature F and A/AC a monotone AC-TA with
A = (F ,Q,Qfin , Δ).

membership( t , A/AC ) {
c := 1 ; u := t ;

while ( c � 2|t|∗log(|A/AC|) ) {
if ( u ∈ Qfin ) then { return true }
else {

guess r : transition rule in Δ, u′ : subterm of u to which r is applied at the root ;

nu := apply(u, u′, r) ; u := nu }
c := c + 1 }

return false }

Let us estimate the space complexity of this algorithm. One can see that apply runs in
polynomial time, and thus, in polynomial space. For membership we observe that this
procedure requires the space for the counter c and the terms u, u′ and nu. Obviously this
space can be bounded linearly in |t| ∗ log(|A/AC|). So, membership can be executed
by a non-deterministic machine using polynomial space.

Next, to show that the membership problem is PSPACE-hard, we consider the valid-
ity problem for closed quantified Boolean formulas (QBF). This problem is known to
be PSPACE-complete. Every formula ϕ can be represented by the following grammar:

ϕ ::= x | ¬ϕ | ϕ ∧ ϕ | ∃x. ϕ (x : a proposition variable)

This assumption is justified by the fact that any quantified Boolean formula can be
translated into a formula of the above form in linear time. We assume also that each
variable x in the formula occurs in the scope of some quantifier ∃x or ∀x and that each
variable is bounded exactly once in the formula.

We suppose that x1, . . . , xk are variables bounded in ϕ. We show in the following
that we can build from a closed formula ϕ a monotone AC-tree automaton Aϕ/AC
and a term tϕ in polynomial time relative to the size of ϕ such that tϕ is accepted by
Aϕ/AC if and only if ϕ is valid. For this construction, we take the signature {⊕, i, v, e},
where ⊕ is an AC symbol and i, v, e are constants. We denote by tϕ a term consisting
of exactly k constants of v, a constant of i, and a constant of e. For each subformula ψ
of ϕ, we define the state symbols q(ψ,?), q(ψ,T ), and q(ψ,F ). In case of ψ ≡ ∃x. x ∧ x,
the two subformulas x’s are distinguished in this construction. For each variable xi

(1 � i � k), we take the two states qtrue/xi
and qfalse/xi

. The state qfin is the final
state. Let us describe the intended meaning of each state symbol. The truth value of
the formula ϕ is computed recursively in our encoding. Along this idea, the state q(ψ,?)
means that the subformulaψ can be taken into consideration. When the computation for
ψ is performed, the state q(ψ,?) is ”transformed” to either q(ψ,T ) or q(ψ,F ), depending
on the truth value of ψ. The state q(ψ,T ) means that ψ is true, and q(ψ,F ) means that ψ
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is false. The two states qtrue/xi
and qfalse/xi

are the environment to store the information
for the valuation to xi.

Using the above state symbols, next we define the transition rules. For the constants
i, v, e, we take the following transition rules: i→ q(ϕ,?), v→ qv, e→ qe.

The first rule is used to initiate the computation. We define the transition rules for
instantiating a variable xi (1 ≤ i ≤ k) to true or false:

q(xi,?) ⊕ qtrue/xi
→ q(xi,T ) ⊕ qtrue/xi

q(xi,?) ⊕ qfalse/xi
→ q(xi,F ) ⊕ qfalse/xi

The rules for negation are defined as follows: for a subformula ¬ψ of the formula ϕ,

q(¬ψ,?) ⊕ qe → q(ψ,?) ⊕ qe

q(ψ,T ) ⊕ qe → q(¬ψ,F ) ⊕ qe q(ψ,F ) ⊕ qe → q(¬ψ,T ) ⊕ qe.

The first rule decomposes ¬ψ and the last two rules re-construct ¬ψ with the truth
value by using ψ with the truth value. Similarly, the rules for the conjunction can be
defined. For any subformula ψ ∧ ψ′ of the formula ϕ,

q(ψ∧ψ′,?) ⊕ qe → q(ψ,?) ⊕ qe

q(ψ,F ) ⊕ qe → q(ψ∧ψ′,F ) ⊕ qe q(ψ,T ) ⊕ qe → q(ψ′,?) ⊕ qe

q(ψ′,F ) ⊕ qe → q(ψ∧ψ′,F ) ⊕ qe q(ψ′,T ) ⊕ qe → q(ψ∧ψ′,T ) ⊕ qe.

In the above definition, ψ ∧ ψ′ is evaluated in a sequential manner: first we consider
the subformula ψ and evaluate it, and then we take the remaining subformula ψ′. For
the existential quantification ∃xi.ψ, we need to consider both valuations for the bound
variable xi and the computation for ψ:

q(∃xi.ψ,?) ⊕ qv → qtrue/xi
⊕ q(ψ,?)

qtrue/xi
⊕ q(ψ,T ) → q(∃xi.ψ,T ) ⊕ qtrue/xi

qtrue/xi
⊕ q(ψ,F ) → qfalse/xi

⊕ q(ψ,?)
qfalse/xi

⊕ q(ψ,T ) → q(∃xi.ψ,T ) ⊕ qfalse/xi
qfalse/xi

⊕ q(ψ,F ) → q(∃xi.ψ,F ) ⊕ qfalse/xi

In the above definition, we start with the valuation associating the Boolean value true
with xi. If ψ turns out to be true under this valuation, ∃x.ψ is also true; otherwise, the
valuation associating the Boolean value false with xi is tried. The following rules are
used to finalize the computation:

⊕(q(ϕ,T ), qe)→ qfin ⊕ (qtrue/xi
, qfin)→ qfin ⊕ (qfalse/xi

, qfin)→ qfin

We can show that the previous encoding is correct, by using the induction over the
structure of the formula ψ. The remainder of the proof is obtained from the following
observation: Let t(ψ,?) be a term that contains exactly a q(ψ,?), a qe, and nv occurrences
of cv (cv being either the constant v or the state qv, and nv being the number of variables
that do not freely occur in ψ) and for each free variable xi1 , . . . , xi�

, either qtrue/xij

or qfalse/xij
. Suppose δ is the Boolean valuation defined for xi1 , . . . , xi�

such that δ
associates with xij the value true if qtrue/xij

appears in t(ψ,?), and false otherwise.
Then we have:
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– t(ψ,?) →∗Aϕ/AC t(ψ,T ) iff ψ is valid under δ, t(ψ,T ) being the same as t(ψ,?) except

1. q(ψ,?) in t(ψ,?) is replaced by q(ψ,T ),
2. if xil+1 , . . . , xil+m

are bound variables in ψ, then m occurrences of v and qv in
t(ψ,?) are replaced by qb1/xi�+1

, . . . , qbm/xi�+m
with b1, . . . , bm ∈ {true, false}.

– t(ψ,?) →∗Aϕ/AC t(ψ,F ) iff ψ is not valid under δ, t(ψ,F ) being the same as t(ψ,?)
except
1. q(ψ,?) in t(ψ,?) is replaced by q(ψ,F ),
2. if xil+1 , . . . , xil+m

are bound variables in ψ, then m occurrences of v and qv in
t(ψ,?) are replaced by qb1/xi�+1

, . . . , qbm/xi�+m
with b1, . . . , bm ∈ {true, false}.

As is suggested by one of the referees, the proof of PSPACE-hardness for the mem-
bership problem could have been obtained by reduction from the reachability problem
of 1-conservative Petri nets. In this kind of Petri nets, transition does not change the to-
tal number of tokens in the net. We recall that the reachability problem is to decide for
a Petri net N and two configurations m, m′ whether m′ is reachable from m in N . The
reachability problem for 1-conservative Petri nets is PSPACE-complete, and moreover,
this result holds even for nets in which each transition consumes two tokens [18].

Therefore, given a Petri net N in this type, it is encoded in linear time using tran-
sitions in (TYPE 2) of a monotone AC-tree automaton. The initial configuration m is
encoded as an input term tm of the membership problem. Transition rules in (TYPE 1)
of the same automaton verify that m in N reaches the goal m′, by replacing all con-
stants in tm by corresponding states, and by reducing a term corresponding to m′ to a
final state.

4 Expressiveness: Regular vs. Monotone AC-Tree Automata

Obviously, by definition, monotone AC-tree automata are at least as expressive as reg-
ular AC-tree automata. We show in this section that monotone AC-tree automata are
strictly more expressive than regular AC-tree automata. In other words, we are going to
present a monotone AC-tree automaton whose accepted language can not be defined by
any regular AC-tree automaton.

To construct such a tree language, we consider in particular the signature F⊕ =
{⊕ } ∪ F0 consisting of a single AC symbol ⊕ and constant symbols a1, . . . , an (n �
1). We then define the Parikh mapping π ([27]) associated with the signature F⊕ as
follows. For a term t in T (F⊕), π(t) is a vector v in Nn such that the i-th component
v(i) is the number of occurrences of ai in t. For instance, π(⊕(a1,⊕(a3, a1)) ) =
(2, 0, 1, 0, . . . , 0). The Parikh mapping π is homomorphically extended to tree lan-
guages: for a tree language L over F⊕, π(L) is the set of vectors in Nn defined as
π(L) = { π(t) | t ∈ L }.

Proposition 1 ( [4] ). Given an AC-regular tree language L over F⊕, the set π(L) is a
semi-linear set over Nn. $�

The reverse of the above property also holds; for a semi-linear set S, there effectively
exists an AC-regular tree language L with π(L) = S. We recall that a subset S of Nn
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is called a linear set if S = Lin(b, p1, . . . , pk), where b is a vector, called base, in Nn

and p1, . . . , pk are a finite number k of vectors, called periods, such that

Lin(b, p1, . . . , pk) = { b +
k∑

i=1

(λi × pi) | λ1, . . . , λk ∈ N }.

A finite union of such linear sets is called a semi-linear set.

Lemma 1. Suppose F⊕ is defined with 5 constants. There exists a monotone AC-tree
automatonA�/AC over F⊕ defining a tree language L� such that

π(L�) = { (k1, k2, k3, 1, 2) | k3 � k1×k2 for k1, k2, k3 ∈ N }.

Proof. We take a, b, c,#, s for the constants of F⊕. The corresponding Parikh images
are the numbers of these constants in the above order. We define the tree automaton
A� = (F⊕,Q,Qfin , Δ�) overF⊕ whereQ = {pa, pb, pc, p#, ps, pfin , qa, q#, qs, r#},
Qfin = {pfin} and

Δ� : a → pa b → pb c → pc # → p# s → qs qs ⊕ qs → ps

p# ⊕ pa → p# p# ⊕ pa → q# ⊕ qa

q# ⊕ pc → p# p# ⊕ pb → r#

r# ⊕ qa → r# ⊕ pa r# ⊕ ps → p# ⊕ ps p# ⊕ ps → pfin

We denote by |t|α the number of occurrences of a constant α (∈ F0 ∪ Q) in a term t
over F⊕ ∪ Q. We observe that for any term t over F⊕ such that |t|# = 1 and |t|s = 2
and |t|c � |t|a × |t|b, there exists a derivation t →∗A�/AC pfin from t to pfin . In order
to prove this observation, let us define the assertions and the algorithm in Fig.2. The
function apply in the algorithm corresponds to a single application of its argument to a
term in consideration. The derivation of t is the sequence of terms obtained during the
computation. Proofs of correctness and termination easily follow from the annotations.

Conversely, for any term t0 over F⊕ and t over F⊕ ∪ Q, if t0 →∗A�/AC t, it holds
that:
|t0|s = (|t|s + |t|qs) + 2× (|t|pfin + |t|ps) (INV 1)

|t0|# = |t|#+ |t|p#+ |t|q#+ |t|r#+ |t|pfin (INV 2)

|t0|a � |t|a + |t|pa + |t|qa (INV 3)

Moreover, if t0 →∗A�/AC pfin , then by (INV 1), |t0|s = 2 and by (INV 2), |t0|# = 1.

Now we suppose |t0|# = 1. Due to (INV 3), we have

|t0|c − (|t|c + |t|pc) � |t0|a × (|t0|b − (|t|b + |t|pb)) + |t|qa × (1− |t|r#)− |t|q# .

Accordingly, if t0 →∗A�/AC pfin , then |t0|c � |t0|a × |t0|b. Therefore, t0 ∈ L� if and

only if π(t0) = (k1, k2, k3, 1, 2) with k3 � k1 × k2. $�

Theorem 2. The family of AC-regular tree languages is properly included in the family
of AC-monotone tree languages.

Proof. Straightforward from Proposition 1 and Lemma 1, because the Parikh image of
L� is not semi-linear. $�
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/* Given t in T (F⊕) such that |t|# = 1 and |t|s = 2 and |t|c � |t|a × |t|b */

while ( |t|a + |t|b + |t|c + |t|# + |t|s > 0 ) {
apply a → pa, b → pb, c → pc, # → p#, s → qs }

/* INVARIANT :

|t|pc + |t|qa + (|t|pa × |t|r#) � (|t|pa + |t|qa) × (|t|pb + |t|r# ) + |t|q#
|t|p#+ |t|q#+ |t|r# = |t|ps = 1

|t|a + |t|b + |t|c = 0 */

apply qs ⊕ qs → ps ; /* INVARIANT & |t|p# = 1 & |t|qa = 0 */

while ( |t|pb > 0 ) { /* INVARIANT & |t|p# = 1 & |t|qa = 0 */

while ( |t|pa > 0 & |t|pc > 0 ) {
apply p# ⊕ pa → q# ⊕ qa ; apply q# ⊕ pc → p# }

/* INVARIANT & |t|p# = 1 */

apply p# ⊕ pb → r# ;

/* INVARIANT & |t|r# = 1 */

while ( |t|qa > 0 ) {
apply r# ⊕ qa → r# ⊕ pa }

/* INVARIANT & |t|r# = 1 & |t|qa = 0 */

apply r# ⊕ ps → p# ⊕ ps

/* INVARIANT & |t|p# = 1 & |t|qa = 0 */

}
/* |t|p# = 1 & |t|qa = |t|pb = |t|pc = 0 */

while ( |t|pa > 0 ) {
apply p# ⊕ pa → p# }

/* t = p# ⊕ ps */

apply p# ⊕ ps → pfin

/* t = pfin */

Fig. 2. Reduction strategy and the assertions

5 Complementation of AC-Monotone Tree Languages

As is explained in the introduction, monotone rules in tree case correspond to context-
sensitive grammars in word case. In fact, based on this observation, we proved in a pre-
vious paper [24] that A-monotone tree languages are closed under Boolean operations
by reduction from the fact that context-sensitive languages are closed under comple-
mentation. In this section, however, we show that AC-monotone tree languages are not
closed under complementation.
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Theorem 3. There exists an AC-monotone tree language whose complement is not an
AC-monotone tree language.

In the remaining part of this section, we devote to show the proof of Theorem 3. Our
proof proceeds in the way of proof by contradiction.

Lemma 2. SupposeF⊕ is defined with 5 constants. There exists an AC-tree automaton
A</AC over F⊕ defining a tree language L< such that

L< = { (k1, k2, k3, 1, 2) | k3 < k1×k2 for k1, k2, k3 ∈ N }.

Proof. We define the automatonA</AC exactly as is the monotone AC-tree automaton
A�/AC in Lemma 1 except that the rule qs⊕ qs → ps is replaced by the rule qs⊕ qs →
ps ⊕ pc. One can show as we have done for A≤/AC, that for any term t0 in T (F⊕),
t0 →∗A</AC pfin if and only if π(t0) = (k1, k2, k3, 1, 2) with k3 < k1 × k2. $�

Let us consider the tree language L� defined below over the above signature F⊕ =
{⊕ } ∪ { a, b, c,#, s }:

L� = { (k1, k2, k3, 1, 2) | k3 � k1×k2 for k1, k2, k3 ∈ N },

and we take the hypothesis

H : L� is an AC-monotone tree language.

We then state the following property associated to H.

Lemma 3. If H holds, there exists a monotone AC-tree automaton that accepts L=
over F⊕ such that π(L=) = {(k1, k2, k3, 1, 2) | k3 = k1×k2 for k1, k2, k3 ∈ N }.

Proof. Due to the hypothesis H, there exists a monotone AC-tree automaton A�/AC
with L(A�/AC) = L�. It is known that the class of monotone AC-tree automata is ef-
fectively closed under intersection (Thm. 3, [23]). Then we let B/AC be the intersection
ofA�/AC in the previous section and A�/AC. Trivially as (n1 � n2) ∧ (n1 � n2) if
and only if n1 = n2, B/AC accepts L� ∩ L�, and therefore, B/AC accepts L=. $�

Lemma 4. IfH holds, there exists an algorithm that takes as an inputD a diophantine
equation and returns as an output “yes” ifD admits a non-negative solution; otherwise,
“no”.

Proof. Let us assume a finite set of variables x1, . . . , xn ranging over the natural num-
bers N. We consider a system of numerical equations S = {Eq1, . . . ,Eqm}, where each
Eq� (1 � � � m) in S is in one of the following forms:

xi = c (c : a fixed natural number) xi = xj + xk xi = xj × xk

Here i must be different from j and k, i.e. xi does not occur in the right-hand side of the
same equation. But a variable xi may occur in the left hand-sides of different equations.
A solution σ for an equation Eq� is a mapping from { x1, . . . , xn } to N, such that the
structure (N,+, ∗,=) is a model of Eq� under the valuation σ. A solution σ for a system
S is a solution for every equation in S.
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It is well-known that from any diophantine equation D, one can compute a system
of numerical equations S such that D admits a solution if and only if S admits a so-
lution. Now, for each equation Eq� in S, we define a monotone AC-TA AEq�/AC over
the signature F⊕ = {⊕ } ∪ { a1, . . . , an,#, s }, such that for any term t in T (F⊕),
t ∈ L(AEq�

/AC) if and only if |t|# = 1, |t|s = 2 and the valuation σ defined as
σ(xi) = |t|ai (for 1 � i � n) is a solution for Eq�. For each kind of numerical equa-
tions, we define the transition rules of the automaton assuming that pfin is the unique
final state:

– For the constraint equation xi = 0 we define the tree automaton Axi=0 equipped
with the transition rules

{ ps ⊕ ps → qs, qs ⊕ p# → pfin } ∪
{ paj ⊕ pfin → pfin | j �= i and 1 � j � n }

with the rules for constants { aj → paj | 1 � j � n } ∪ {#→ p#, s→ ps }. For
xi = c (c > 0) we additionally take the transition rules

{ pai
⊕ pfin → p1 } ∪ { pai

⊕ pj → pj+1 | 1 � j � c− 2 } ∪
{ pai

⊕ pc−1 → pfin }.
– For the linear equation xi + xj = xk we define the tree automaton Axi+xj=xk

equipped with the transition rules

{ ps ⊕ ps → qs, qs ⊕ p# → pfin } ∪ { pai ⊕ pak
→ p, paj ⊕ pak

→ p } ∪
{ pa�

⊕ pfin → pfin | � �= i and � �= j and � �= k } ∪
{ p⊕ p→ p, p⊕ pfin → pfin }

with the rules for constants { a� → pa�
| 1 � � � n } ∪ {#→ p#, s→ ps }.

– Finally, for a numerical equation xi = xj×xk, we build the automatonAxi=xj×xk
;

let B/AC the automaton defined in the proof of Lemma 3. We assume without loss
of generality that pfin is the unique final state of B/AC. We then defineAxi=xj×xk

by relabeling c by ai, a by aj and b by ak and by adding the transition rules

{ pa�
⊕ pfin → pfin | � �= i and � �= j and � �= k } ∪

{ a� → pa�
| 1 � � � n }.

One should note that for the first two cases, transition rules for # and s are not essential,
but they must be included under our construction if a system S contains an equation Eqk

of the multiplication xi = xj × xk .
Accordingly, for the system S = {Eq1, . . . ,Eqm } of numerical equations, we can

construct a monotone AC-TA AS/AC such that

L(AS/AC) =
⋂

1���m

L(AEq�
/AC)

whose accepted language is non-empty if and only if S admits a solution. Since the
emptiness problem for monotone AC-TA is decidable, there exists an algorithm under
the hypothesis H that takes as an input a diophantine equation D and returns “yes” if
there is a non-negative solution; otherwise, “no”. $�

It is well-known that Hilbert’s 10th problem is undecidable [22], even only in the
case of non-negative solutions to be considered. Thus we obtain the next theorem.



Monotone AC-Tree Automata 349

Theorem 4. There is no monotone AC-tree automaton that accepts L� over the signa-
ture F⊕.

Corollary 1. The class of AC-monotone tree languages is not closed under comple-
mentation.

Proof. Straightforward from Theorem 4, as AC-monotone tree languages are closed
under intersection and L� = (L<)c ∩ { t ∈ T (F⊕) | |t|# = 1 & |t|s = 2 }, where L<

and { t ∈ T (F⊕) | |t|# = 1 & |t|s = 2 } are AC-monotone tree languages. $�

6 The Inclusion Problem for Monotone AC-Tree Automata

Using the previous tree automata construction, we show in this section that the inclusion
problem for AC-monotone tree languages is undecidable. The remainder of this section
is devoted to the proof of the following undecidability result.

Theorem 5. Given two monotone AC-tree automataA1/AC andA2/AC over the same
signature, the problem whether L(A1/AC) ⊆ L(A2/AC) is not decidable.

As we did in the previous section, we consider a system S = {Eq1, . . . ,Eqm } of
numerical equations defined over a finite set of variables { x1, . . . , xn }. One should
note that according to the syntax, Eqi is an equation in the form of xj = e, where e is
either a fixed natural number c, the addition xk +x�, or the multiplication xk×x�, such
that xj �= xk and xj �= x�.

We then define the system S� of inequations obtained by replacing each equation
xi = e by the inequation xi � e. Namely, S� = { xi � e | xi = e ∈ S }.

Finally we define, for each k with 1 � k � m, Sk a system of inequations obtained
from S� by replacing only the k-th inequation xi � ek by the strict inequation xi < ek.

From previous sections, we know that one can effectively associate with each in-
equation Ineqk (being either xj � ek or xj < ek) a monotone AC-tree automaton
AIneqk

such that a term t from T (F⊕) is accepted by an automaton AIneqk
/AC if and

only if |t|# = 1, |t|s = 2 and either Ineqk is of the form

– xi � c and |t|ai
� c (resp. xi < c and |t|ai

< c),
– xi � xv + xw and |t|ai

� |t|av
+ |t|aw

(resp. xi < xv + xw and |t|ai
< |t|av

+
|t|aw

), or
– xi � xv ∗xw and |t|ai

� |t|av
∗|t|aw

(resp. xi < xv ∗xw and |t|ai
< |t|av

∗|t|aw
).

Moreover, we let for all 1 � k � m,

AS�/AC =
⋂

Ineq∈S�

AIneq/AC, ASk
/AC =

⋂
Ineq∈Sk

AIneq/AC

In the above definition,
⋂

Ineq∈S� AIneq/AC represents an AC-TA that accepts the tree
language accepted by AIneq/AC for all Ineq ∈ S.

Lemma 5. L(AS�/AC) �⊆ L(
⋃

1�i�mASi/AC) if and only if S admits a solution. $�

Theorem 5 follows easily from the above Lemma 5 together with the effective closed-
ness under union and intersection of monotone AC-tree automata and the undecidability
of Hilbert’s 10th problem [22].
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7 Concluding Remarks

In this paper, we have shown the 4 new results (Theorems 1, 2, 5 and Corollary 1) for the
class of monotone AC-tree automata. Our proof technique used for showing the expres-
siveness of AC-monotone tree languages explains also a new idea of how to interpret by
AC-tree automata the arithmetic constraints over the natural numbers, while an obser-
vation obtained from this tree automata construction gives rise to the negative closure
property of the complementation and the undecidability of the inclusion problem.

For further research along monotone AC-tree automata, it might be interesting to
consider the question about decision problems concerning regularity, called the regu-
larity problem; it is not clear how to determine, given a monotone AC-tree automa-
ton, whether the accepted tree language can also be accepted by some regular AC-tree
automaton. Useful ideas to solve this decision problem are found in the study about
Petri nets. In fact, it is known that the semi-linearity problem for Petri nets is decidable
[15]. The regularity problem for AC-monotone tree languages can be regarded in some
sense as an generalization of the above semi-linearity problem.

Another interesting question about monotone AC-tree automata is the universality
problem [6]; this problem is known to be decidable for regular AC-tree automata and it
is undecidable for monotone A-tree automata.

Acknowledgments. The authors thank anonymous referees for their detailed comments
and suggestions to improve the early version of the paper.
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Abstract. Recently, linear Logic has been used to specify sequent cal-
culus proof systems in such a way that the proof search in linear logic can
yield proof search in the specified logic. Furthermore, the meta-theory of
linear logic can be used to draw conclusions about the specified sequent
calculus. For example, derivability of one proof system from another can
be decided by a simple procedure that is implemented via bounded logic
programming-style search. Also, simple and decidable conditions on the
linear logic presentation of inference rules, called homogeneous and co-
herence, can be used to infer that the initial rules can be restricted to
atoms and that cuts can be eliminated. In the present paper we intro-
duce Llinda, a logical framework based on linear logic augmented with
inference rules for definition (fixed points) and induction. In this way,
the above properties can be proved entirely inside the framework. To
further illustrate the power of Llinda, we extend the definition of co-
herence and provide a new, semi-automated proof of cut-elimination for
Girard’s Logic of Unicity (LU).

1 Introduction

Logics and type systems have been exploited in recent years as frameworks for
the specification of deduction in a number of logics. Such meta-logics or logical
frameworks have been mostly based on intuitionistic logic (see, for example,
[FM88, NM88,Har93]) or dependent types (see [Pfn89]) in which quantification
at (non-predicate) higher-order types is available. These computer systems have
been used as meta-languages to automate various aspects of different logics.

Features of a meta-logic are often directly inherited by any object-logic. This
inheritance can be, at times, a great asset: for example, the meta-logic treat-
ment of binding and substitution can be exploited directly in specifying the
object-logic. On the other hand, features of the meta-logic can limit the kinds
of object-logics that can be directly and naturally encoded. For example, the
structural rules of an intuitionistic meta-logic (weakening and contraction) are
also inherited and make it difficult to have natural encodings of logics for which
these structural rules are not intended. Also, intuitionistic logic does not have
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an involutive negation and this makes it difficult to address directly dualities
in object-logic proof systems. This lack of dualities is particularly unfortunate
when specifying sequent calculus [Gen69] since they play a central role in the
theory of such proof systems.

Pfenning in [Pfn95, Pfn00] used the logical framework LF to give new proofs
of cut elimination for intuitionistic and classical sequent calculi. His approach is
elegant since many technical details of the cut-elimination proof were aborbed
by the LF. That approach, however, is based on an intuitionistic meta-logic and
is not so suitable for handling the dualities of the sequent calculus.

In [Mil96, MP04, MP02], classical linear logic was used as a meta-logic in or-
der to specify and reason about a variety of proof systems. Since the encodings
of such logical systems are natural and direct, the meta-theory of linear logic can
be used to draw conclusions about the object-level proof systems. More specifi-
cally, in [MP02], the authors present a decision procedure for determining if one
encoded proof system is derivable from another. In the same paper, necessary
conditions were presented (together with a decision procedure) for assuring that
an encoded proof system satisfies cut-elimination. This last result used linear
logic’s dualities to formalize the fact that if the left and right introduction rules
are suitable duals of each other then non-atomic cuts can be eliminated.

In the present paper, we go a step further and introduce Llinda, a logical
framework based on linear logic augmented with inference rules for definition
(fixed points) and induction. In this stronger logic, such properties on an object-
logic as the elimination of non-atomic cuts can be proved entirely inside the
logical framework. In particular, much of the meta-reasoning that appears in
[MP02] can be internalized in Llinda. We also use Llinda to give sufficient and
decidable conditions that guarantee the completeness of the atomic initial rule.
Many consider, as Girard [Gir99], that such a property is a crucial condition
when designing a “good sequent system”. To further illustrate the power of
Llinda as a framework for specifying and reasoning about sequent systems, we
extend the definition of coherence [MP02] and provide a new, semi-automated
proof of cut-elimination for LU, Girard’s Logic of Unicity [Gir93].

The rest of the paper is organized as follows. Section 2 introduces the notion of
flat linear logic and Section 3 extends linear logic with definitions and induction.
Section 4 presents a method for encoding logical rules and Section 5 represents
introduction rules as definitions. Section 6 highlights the role of bipolar formulas
in the specification of sequent systems. Section 7 presents a necessary condition
for characterizing systems having the cut-elimination property while in Section 8
a necessary condition is given that guarantees that initial rules can be restricted
to atomic formulas. Finally, Section 9 presents a semi-automated proof of cut-
elimination for LU.

2 Flat Linear Logic

The connectives of linear logic [Gir87] can be classified as synchronous and asyn-
chronous [And92]: the asynchronous connectives have right-introduction rules
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that are invertible while the right-introduction rules of synchronous connective
are not generally invertible and they usually require “synchronization” between
the introduced formula and its context within a sequent. The de Morgan dual
of a connective in one class yields a connective in the other class.

Although full linear logic is important in this work, we need to consider certain
formulas of rather restricted nesting of synchronous and asynchronous connec-
tives. These restricted formulas will carry the adjective “flat”.

Definition 1. A flat goal is a linear logic formula that contains only occurrences
of the asynchronous connectives (namely �,&,⊥,5, ∀) together with the modal
? which can only have atomic scope. A flat clause is a linear logic formula of the
form:

∀ȳ(G1 ↪→ · · · ↪→ Gm ↪→ A1� · · ·�An), (m,n ≥ 0)

where G1, . . . , Gm are flat goals, A1, . . . , An are atomic formulas and occurrences
of ↪→ represent either −◦ or ⇒. The formula A1� · · ·�An is the head of such a
clause, while for each i = 1, . . . ,m, the formula Gi is a body of this clause. If
n = 0, then we write the head simply as ⊥ and say that the head is empty.

A flat clause is logically equivalent to a formula in uncurried form, namely, a
formula of the form

∀ȳ(B −◦A1� · · ·�An)

where n ≥ 0, ȳ is the list of variables free in the head A1� · · ·�An, all free
variables of B are also free in the head, and B may have outermost occurrences
of the synchronous connectives: 1, ⊕, ⊗, ∃ and !. We will call B an uncurried
flat body.

A formula that is either a flat goal or a uncurried flat body is an example of
a bipolar formula, namely, a formula in which no synchronous connective is in
the scope of an asynchronous connective.

As in Church’s Simple Theory of Types [Chu40], types for both terms and for-
mulas are built using a simply typed λ-calculus. Variables are simply typed that
do not contain the type o, which is reserved for the type of formulas. We will call
types which do not contain the type o object types, and variables and constants
of object types are named object variables and object constant, respectively.
Otherwise types will be referred as meta-level types and formulas will be called
meta-level formulas. We assume the usual rules of α, β, and η-conversion and we
identify terms and formulas up to α-conversion. A term is λ-normal if it contains
no β and no η redexes. All terms are λ-convertible to a term in λ-normal form,
and such a term is unique up to α-conversion. The substitution notation B[t/x]
denotes the λ-normal form of the β-redex (λx.B)t.

3 Llinda: Linear Logic with Definition and Induction

Following the lines described by McDowell and Miller [MM00] and Tiu [Tiu04]
on the proof theoretic notion of definitions, we will extend linear logic by allowing
the definition of atomic formulas.
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Definition 2. A definition D is a finite set of definition clauses, which are ex-
pressions of the form ∀x̄[px̄ �= Bx̄], where p is a predicate constant. The formula
Bx̄ is the body and the atomic formula px̄ is the head of that clause. A predicate
may occur at most once in the heads of the clauses of a definition.

The symbol �= is not a logical connective: it simply marks a definition clause.
Linear logic augmented with such definitions is not consistent if these defini-

tions are not restricted. For instance, if negative occurrences of the exponential !
are allowed in the body of definitions, inconsistencies can be easily constructed.
In order to avoid such inconsistencies, we introduce the notion of level of a for-
mula to define a proper stratification on definitions, as done in [MM00,Tiu04].
To each predicate p we associate a natural number lvl(p), the level of p. The
notion of level is then extended to formulas.

Definition 3. Given a formula B, its level lvl(B) is defined as follows:

1. lvl(pt̄) = lvl(p)
2. lvl(⊥) = lvl(5) = lvl(1) = lvl(0) = 0
3. lvl(!A) = lvl(?A) = lvl(A)
4. lvl(B ⊕ C) = lvl(B�C) = lvl(B & C) = lvl(B ⊗ C) = max(lvl(B); lvl(C))
5. lvl(∀x.A) = lvl(∃x.A) = lvl(A)
6. lvl(A1 −◦A2) = max(lvl(A1) + 1; lvl(A2)).

Definition 4. A definition clause ∀x̄.[px̄ �= B] is stratified if lvl(B) ≤ lvl(p).
A definition is stratified if all its definition clauses are stratified. An occurrence
of a formula A in a formula C is strictly positive if that particular occurrence
of A is not to the left of any implication in C. In this way, the stratification
of definitions implies that for every definition clause all occurrences of the head
predicate in the body are strictly positive.

Observe that stratification excludes the possibility of circular calling through
implications (negations). Since all occurrences of p in B are positive,the existence
of fixed points is always guaranteed. Thus the provability of pt means that t is
in a solution of the corresponding fixed point equation.

Note also that a flat clause that is written in its uncurried form can be seen
as a definition clause since uncurried bodies are uncurried flat goals (and hence
do not contain implications).

Definition 5. A definition clause ∀x̄.[px̄ �= B] is flat if B is an uncurried flat
body. A definition is flat if all its definition clauses are flat.

Given a definition clause ∀x̄[px̄ �= Bx̄], the left and right rules for atoms are

Bt̄,Δ −→ Γ

pt̄,Δ −→ Γ
defL

Δ −→ Bt̄,Γ

Δ −→ pt̄,Γ
defR.

The rules above show that an atom can be substituted by its definition during a
proof. This means that a defined atom can be seen as a generalized connective,
whose behavior is determined by its defining clause.
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Since a predicate may occur at most once in the heads of definitions, explicit
equality must appear as part of the syntax. The rules for the equality pred-
icate makes use of (the standard notion of) substitutions. The left and right
introduction rules for equality are:

{Γ θ −→ Δθ | sθ =β,η tθ, θ ∈ CSU(s, t)}
(s = t),Γ −→ Δ

eqL −→ t = t
eqR.

The set CSU(s, t) is a complete set of unifiers for s and t. In general, CSU(s, t)
can be empty (for non-unifiability), finite, or infinite. Thus the set of sequents as
the premise in the eqL rule should be understood to mean that each sequent in
the set is a premise of the rule. Notice that in the eqL rule, the free variables of
the conclusion can be instantiated in the premises. In the examples in this paper,
the set CSU(s, t) can be taken as being either empty or a singleton, containing
the most general unifier of s and t.

As observed before, a definition ∀x.px �= Bx can be seen as a fixed point
equation, but that fixed point is not necessarily the least or the greatest one.
We now add extra rules for capturing the least fixed point via induction.

Let ∀x̄[px̄ �= Bx̄] be a stratified definitional clause and let S be a closed term
of the same type as p. The left introduction rule for an atom with predicate p
can be strengthed to be

(Bx̄)[S/p] −→ Sx̄ Δ, St̄ −→ Γ

Δ, pt̄ −→ Γ
indL.

The formula S is an invariant of the induction and it is called the inductive pred-
icate. The variables x̄ are new eigenvariables. The expression (Bx̄)[S/p] denotes
the result of replacing the predicate p in Bx̄ with S (and λ-normalizing).

Definition 6. Llinda is linear logic with stratified definition and induction.1

A sequent in Llinda will be represented as D ‖ Δ −→ Γ , meaning the linear
sequent with the set of definitions D. If the definition is empty or when it is clear
from the context, we will write the sequent above as the usual linear sequent
Δ −→ Γ .

We introduce the natural numbers via the type nt, the constants z : nt for zero
and s : nt→ nt for successor function and the inductive predicate nat : nt→ o,
with the following definition clause:

nat x �= [x = z]⊕ ∃y.[x = sy ⊗ nat y].

Proposition 1. The following rules can be derived in Llinda:

−→ B z B i −→ B (s i) B I,Δ −→ Γ

nat I,Δ −→ Γ
natL

1 The word “linda”, in Portuguese, means “extremely beautiful.”



On the Specification of Sequent Systems 357

!Δ −→ B z, ? Γ !Δ,B j −→ B (s j), ? Γ B I, !Δ,Δ′ −→ Γ ′, ? Γ

nat I, !Δ,Δ′ −→ Γ ′, ? Γ

−→ B B,Δ −→ Γ

nat I,Δ −→ Γ
Δ −→ Γ

nat I,Δ −→ Γ ∀n[nat n ≡ ! nat n]

For an example of specifying an object-logic, consider intuitionistic logic over
the following logical connectives: ∩, ∪, fi, and ti for conjunction, disjunction,
false, and true; ⊃ for implication, and ∀i and ∃i for universal and existential
quantification. Now introduce the type bool of intuitionistic formulas and the
inductive predicate formi(·) : bool→ o with the following defined clause:

formi(x) �= [x = ti] ⊕
[x = fi] ⊕
atomic(x) ⊕
∃y, w.[(x = y ∩w) ⊗ formi(y)⊗ formi(w)] ⊕
∃y, w.[(x = y ∪w) ⊗ formi(y)⊗ formi(w)] ⊕
∃y, w.[(x = y ⊃ w)⊗ formi(y)⊗ formi(w)] ⊕
∃X.[(x = ∀iu.X u)⊗ (∀u.formi(X u))] ⊕
∃X.[(x = ∃iu.X u)⊗ (∀u.formi(X u))]

The predicate atomic is given elsewhere as a definition. The indL rule applied to
this definition yields an induction principle for object-level formulas. Following
the same arguments used above for natural numbers, it is possible to derive the
following, more intuitive rule for structural induction.

Proposition 2. The following rule can be derived in Llinda

−→ B ti −→ B fi atomic(x) −→ B x
B x,B y −→ B (x ∩ y) B x, B y −→ B (x ∪ y) B x,B y −→ B (x ⊃ y)

∀u[B (X u)] −→ B (∀iu.Xu) ∀u[B (X u)] −→ B (∃iu.Xu)
B I, Δ −→ C

formi(I),Δ −→ C
formiL.

In fact, we can consider a more general version of this rule, where classical
contexts can be added on both sides of the sequent, like in Proposition 1.

In general, given an object logic L with j connectives 8j of arity greater or
equal to zero and a first order quantifier quant, the predicate formL(·) : bool→ o
is defined as follows:

formL(x) �= atomic(x) ⊕
{∃y1 . . . yn.[x = 8j(y1, . . . , yn)⊗ formL(y1)⊗ . . .⊗ formL(yn)]}j ⊕
∃X.[(x = quant u.X u)⊗ (∀u.formL(X u))]

It is well known that proving cut-elimination for a logic with definitions and
induction is not easy [MM00]. The method developed for cut-elimination of
Llinda (see [Pim05]) is based on some of the ideas present in [Tiu04] and uses a
particular notion of rank of cut formulas that depends on the level of the formula
and on the shape of the derivation itself.
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4 Encoding Sequent Systems

Let bool be the type of object-level propositional formulas and let %·& and �·� be
two meta-level predicates, both of type bool→ o.

We shall encode the object-level sequent B1, . . . , Bn −→ C1, . . . , Cm (n,m ≥
0) as the linear logic formula %B1&� · · ·�%Bn&��C1�� · · ·��Cm�. The %·& and �·�
predicates are used in order to identify which object-level formulas appear on
which side of the sequent arrow.

Encoding structural rules. The structural rules weakening and contraction are
encoded using the ? of linear logic together by the clauses:

∀B(�B� ◦− ?�B�) (Neg) ∀B(%B& ◦− ?%B&) (Pos).

Neg and Pos will be called structural clauses. All object-level two-sided sequents
Δ −→ Γ considered here will be restricted so that Δ and Γ are either multisets
or sets of formulas. Sets are used if the structural rules are implicit; multisets
are used if no structural rule is implicit. We will assume that exchange is always
implicit.

The initial and cut rules. The initial rule, which asserts that the sequent B −→
B is provable, is represented by the following clause, which has a head with two
atoms and no body.

∀B(%B&��B�) (Init)

The cut rule can be specified as following clause with an empty head and two
atomic bodies.

∀B(�B� −◦ %B&−◦ ⊥) (Cut)

Other variations on the cut rule appear in the literature and many of these can
be encoded by changing one or both of the −◦ to ⇒. Since the formula Cut
entails these other variations, so we shall not consider them further.

The Init and Cut clauses together proves that %·& and �·� are duals of each
other: that is, they entail the equivalence ∀B(%B&⊥ ≡ �B�). Notice that this du-
ality of the object-level sequent system becomes a concise equivalence in classical
linear logic via negation.

Encoding inference rules. LetQ be a fixed a set of unary meta-level predicates all
of type bool → o. Object-level logical constants will also be assumed to be fixed.
These constants will have types of order 0, 1, or 2 and all will build terms of type
bool. Object-level quantification is first-order and over one domain, denoted at
the meta-level by i.

Definition 7. An introduction clause is an uncurried closed flat formula of the
form

∀x1 . . .∀xn[q(8(x1, . . . , xn)) ◦− B]

where 8 is an object-level connective of arity n (n ≥ 0) and q is a meta-level
predicate. Furthermore, an atom occurring in B is either of the form p(xi) or
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p(xi(y)) where p is a meta-level predicate and 1 ≤ i ≤ n. In the first case, xi

has a type of order 0 while in the second case xi has a type of order 1 and y is a
variable quantified (universally or existentially) in B (in particular, y is not in
{x1, . . . , xn}).

In the inference systems we shall consider now, the set of meta-level predi-
cates Q is exactly the set {%·&, �·�}. In Section 9, we will consider Girard’s LU
proof system [Gir93] and there we will use some additional meta-level predicates.
See [MP04] for other examples of encodings of sequent systems.

5 Introduction Clauses as Definitions

Given an encoded sequent system P and an object-level connective 8 of arity
n ≥ 0, list all the formulas in P that specify a left-introduction rule for 8 as:

∀x̄(%8(x1, . . . , xi)& ◦− L1) · · · ∀x̄(%8(x1, . . . , xi)& ◦− Lp) (p ≥ 0).

Similarly, list all the formulas in P that specify a right-introduction rule for 8:

∀x̄(�8(x1, . . . , xi)� ◦− R1) · · · ∀x̄(�8(x1, . . . , xi)� ◦− Rq) (q ≥ 0)

All of these p+q displayed formulas can be replaced by the following two clauses

∀x̄(%8(x1, . . . , xi)& ◦− L1 ⊕ · · · ⊕ Lp) and ∀x̄(�8(x1, . . . , xi)� ◦− R1 ⊕ · · · ⊕Rq)

(An empty ⊕ is written as the linear logic additive false 0.)

Definition 8. The formulas

∀x̄(%8(x1, . . . , xi)&
�= L1 ⊕ · · · ⊕ Lp) and ∀x̄(�8(x1, . . . , xi)�

�= R1 ⊕ · · · ⊕Rq)

are said to represent the introduction rules for the object level connective 8 in
their definition form.

Hence introduction clauses of encoded sequent systems form a flat definition.
As an example, Figures 1 and 2 present the definitions LK and LJ , respectively.
Notice that these specifications are identical except for a systematic renaming of
logical constants. To state the formal difference between these two formalisms,
we first introduce the named formulas in Figure 3. Notice that the Cut and Init
rules are encoded not as definitions but as formulas.

The following correctness of the LJ and LK encoding is proved in [MP04–
Prop 4.2]: The definition LJ along with the formulas {Cut, Init,Pos} correctly
represents the provability in LJ, while the definition LK along with the formulas
{Cut, Init,Pos,Neg} correctly represents the provability in LK. Thus, LK and
LJ are distinquished by specifying whether or not structural rules can be applied
to formulas on the right.

An interesting question regarding the formulas appearing in Figure 3 is
whether or not the atom-restricted version of each formula entails its general
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(⇒ L) �A ⇒ B� �=  A! ◦− �B�. (⇒ R)  A ⇒ B! �= �A�� B!.
(∧L) �A ∧ B� �= �A� ⊕ �B�. (∧R)  A ∧ B! �=  A! &  B!.
(∨R)  A ∨ B! �=  A! ⊕  B!. (∨L) �A ∨ B� �= �A� & �B�.
(∀cL) �∀cB� �= �Bx�. (∀cR)  ∀cB! �= ∀x Bx!.
(∃cL) �∃cB� �= ∀x�Bx�. (∃cR)  ∃cB! �=  Bx!.
(fcL) �fc� �= ". (tcR)  tc! �= ".

Fig. 1. Definition LK

(⊃ L) �A ⊃ B� �=  A! ◦− �B�. (⊃ R)  A ⊃ B! �= �A�� B!.
(∩L) �A ∩ B� �= �A� ⊕ �B�. (∩R)  A ∩ B! �=  A! &  B!.
(∪R)  A ∪ B! �=  A! ⊕  B!. (∪L) �A ∪ B� �= �A� & �B�.
(∀iL) �∀iB� �= �Bx�. (∀iR)  ∀iB! �= ∀x Bx!.
(∃iL) �∃iB� �= ∀x�Bx�. (∃iR)  ∃iB! �=  Bx!.
(fiL) �fi� �= ". (tiR)  ti! �= ".

Fig. 2. Definition LJ

APos = ∀A(�A� ◦− ?�A� ◦− atomic(A)). Pos = ∀B(�B� ◦− ?�B�).
ANeg = ∀A( A! ◦− ? A! ◦− atomic(A)). Neg = ∀B( B! ◦− ? B!).
AInit = ∀A(�A�� A! ◦− atomic(A)). Init = ∀B(�B�� B!).
ACut = ∀A(⊥◦− �A� ◦−  A! ◦− atomic(A)). Cut = ∀B(⊥◦− �B� ◦−  B!)

Fig. 3. Some formulas named

version. Proving the entailment ACut � Cut allows us to conclude that non-
atomic cuts can always be reduced to the atomic case. A full cut-elimination
proof then only needs to deal with eliminating atomic cuts. Section 7 provides
conditions on inference rule encodings that ensures that this entailment can be
proved. Dually, the entailment AInit � Init allows us to eliminate non-atomic
initial rules, a property that helps can be used to judge the design of a good
proof system, especially when using synthetic connectives (see [Gir99]). Elimi-
nation of non-atomic initial rules is discussed further in Section 8. Finally, it is
worthy to say that restricting logical rules and axioms to the atomic case also
plays a central role in Calculus of Structures [Gug05].

6 Bipolar Clauses

In this section we shall clarify better the role of bipolar clauses in the specification
of sequent systems.

Since introduction clauses are defined as flat clauses, they are bipolar. It is
interesting to ask, however, if there exist sequent calculus inference rules that
can be encoded in linear logic by a formula that is not necessarily bipolar.
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Suppose that c is the introduction clause ∀x̄.[q(8(x1, . . . , xn)) �= B] corre-
sponds to a sequent calculus specification. This means that, when doing some
meta-level reasoning, backchaining over c:

Π ′
Δ −→ Γ, Bt̄

Δ −→ q(8(t1, . . . , tn)),Γ defR

must mimic exactly the behavior of the inference rule for 8. Hence the body
B must be decomposed at once before some other meta level action can be
done. That is, B cannot interact with any possible context in Π ′. The focussing
property of linear logic guarantees this only if no synchronous connective is in
the scope of an asynchronous connective; that is, if c is bipolar.

Example 1. Consider the following clauses:

�8(A,B,C)� ◦− �A�& (�B� ⊗ �C�) %8(A,B,C)& ◦− %A& ⊕ (%B&�%C&)
Note that the first clause is not bipolar. If they are to correspond to the encoding
of sequent inference rules, the natural candidates would be

Γ1,Γ2 � Δ1, Δ2, A Γ1 � Δ1, B Γ2 � Δ2, C

Γ1,Γ2 � Δ1, Δ2, 8(A,B,C)

Γ, A � Δ

Γ, 8(A,B,C) � Δ

Γ, B, C � Δ

Γ, 8(A,B,C) � Δ

But it turns out that while at the meta level it is possible to prove the sequent
! Init � �A�& (�B�⊗ �C�), %A&⊕ (%B&�%C&) at the object level the two sequent
rules listed above cannot be used to prove 8(A,B,C) � 8(A,B,C). That is, this
object-logic sequent can be proved only a non-atomic instance of the initial rule.
Hence, provability is not the same and the flat clauses above are not adequate
for representing the inference figures.

Once we know that introduction clauses must necessarily be bipolar, the next
question that arises is if every introduction clause is a meta-level representation
of a sequent inference rule. This can be shown by a straightforward case analysis.

Proposition 3. Every introduction clause corresponds to a specification of a
sequent calculus introduction rule.

7 Canonical and Coherent Proof Systems

The purpose of strengthening linear logic with definitions and induction is to
enhance the number of properties about encoded proof systems that can be
formally proved inside the framework. In this section we will present a necessary
condition for characterizing systems having the cut-elimination property.
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Definition 9. A canonical proof system is a set P of flat clauses such that
(i) the initial clause is a member of P, (ii) the cut clause is a member of P,
(iii) structural clauses (Pos and Neg) may be members of P, and (iv) all other
clauses in P are introduction clauses with the additional restriction that, for
every pair of atoms of the form %T & and �S� in a body, the head variable of T
differs from head variable of S. A formula that satisfies condition (iv) is also
called a canonical clause.

Definition 10. Consider a canonical proof system P and an object-level con-
nective, say, 8 of arity n ≥ 0. Let the formulas

∀x̄(%8(x1, . . . , xn)& �= Bl) and ∀x̄(�8(x1, . . . , xn)� �= Br)

be the definition form for the left and right introduction rules for 8. The object-
level connective 8 has dual left and right introduction rules if ! Cut � ∀x̄(Bl −◦
Br−◦ ⊥) in linear logic.

Definition 11. A canonical system is called coherent if the left and right intro-
duction rules for each object-level connective are duals.

The cut-elimination theorem for a particular logic can often be divided into
two parts. The first part shows that a cut involving a non-atomic formula can
be replaced by possibly multiple cuts involving subformulas of the original cut
formula. This process stop when cut formulas are atoms. This part of the proof
works because left and right introduction rules for each logical connective are
duals (formalized here in Definition 10). The second part of the proof argues
how cuts with atomic formulas can be removed. Cut-elimination for coherent
proof systems is proved similarly: Theorem 1 shows that non-atomic cuts can
be reduced to atomic. The remarkable aspect about this is that this part of the
cut-elimination process is done entirely inside the logical framework Llinda.

Proving that atomic cuts can be eliminated requires induction over proofs,
hence the reasoning cannot be done inside Llinda. This was done in [MP02],
where it was also shown that “being coherent” is a general and decidable char-
acterization. Since all the reasoning is done using linear logic, the essence of
cut-elimination can be captured totally at the meta-level. Hence it is, in fact,
independent of the object logic analyzed.

Theorem 1. Let P be a coherent system and let form(·) be the inductive predi-
cate defining object-level formulas. The sequent

P ‖ ! Init, ! ACut, form(B) −→ Cut(B)

is provable in Llinda.

Proof. The proof is by induction where the invariance is λx. ! Cut(x). Consider
the following derivation

! Cut(x1), . . . , ! Cut(xn), Br, Bl −→⊥
! Cut(x1), . . . , ! Cut(xn), %8(x1, . . . , xn)&, �8(x1, . . . , xn)� −→⊥ defL

! Cut(x1), . . . , ! Cut(xn) −→ !Cut(8(x1, . . . , xn))
!R,−◦R
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By definition of coherent systems, the sequent

! Cut(x1), . . . , ! Cut(xn), Br, Bl −→⊥
is provable. The second part is trivial and consists on proving the sequent
λx. ! Cut(x), ! ACut, atomic(B) −→ Cut(B).

8 Homogeneous Systems

Theorem 1 shows that, for coherent systems, the cut rule can be restricted to
the atomic case. A similar problem is that of analyzing when the initial rule can
be also restricted to the atomic case. It turns out that duality is not enough for
this case.

Example 2. Consider the connective 8(A,B,C) with associated rules:

Γ � Δ,A

Γ � Δ, 8(A,B,C)
(8R1)

Γ � Δ,B Γ � Δ,C

Γ � 8(A,B,C)
(8R2)

Γ, A � Δ Γ, B � Δ

Γ, 8(A,B,C) � Δ
(8L1)

Γ, A � Δ Γ, C � Δ

Γ, 8(A,B,C) � Δ
(8L2)

These rules can be specified in Llinda as:

�8(A,B,C)� �= �A� ⊕ (�B�& �C�) %8(A,B,C)& �= (%A&& %B&)⊕ (%A&& %C&)
It is easy to see that ! Cut, �A� ⊕ (�B� & �C�), (%A& & %B&) ⊕ (%A& & %C&) �⊥
holds and hence a system formed with these two defined rules plus initial and
cut is coherent.

However, the sequent ! Init � �A� ⊕ (�B� & �C�), (%A& & %B&) ⊕ (%A& &
%C&) is not provable. This reflects the fact that, at the object-level, the se-
quent 8(A,B,C) −→ 8(A,B,C) has only the trivial proof: the one where the
only rule applied is the initial rule. The formula 8(A,B,C), hence, cannot be
decomposed.

The problem with the system above is that the introduction rules for the
connective 8 are not homogeneous, in the sense that their meta-level behavior is
captured using connectives of different polarities2 (see [Gir99] for an object-level
discussion on syntectic connectives).

Definition 12. A coherent system is homogeneous if all connectives appearing
in a body of a defined rule have the same polarity.

Theorem 2. Let P be a coherent system and let form(·) be the inductive predi-
cate for object-level formulas. If P is homogeneous then the following is provable.

P ‖ ! AInit, form(B) −→ Init(B)

Proof. Let P be a homogeneous system. Since P is coherent, it is easy to see
that all left and right bodies of defined clauses are dual linear logic formulas.
Hence the result follows by structural induction (invariant λx. ! Init(x)).
2 Note that, as Example 2 shows, at the meta-level the encoding of dual rules may

not be dual linear logic formulas.



364 E. Pimentel and D. Miller

9 LU

In [Gir93], Girard introduced the sequent system LU (logic of unity) in which
classical, intuitionistic, and linear logics appear as fragments. In this logic, all
three of these logics keep their own characteristics but they can also communicate
via formulas containing connectives mixing these logics. The key to allowing
these logics to share one proof system lies in using polarities. In terms of the
encoding we have presented here, polarities allow the meta-level atom %B& be
replaced by ?%B& if B is positive and the meta-level atom �B� be replaced
by ?�B� if B is negative. This possibility of replacement is in contrast to the
examples of classical and intuitionistic sequent proof systems presented earlier
where %·& and �·� atoms are either all preceded by the ? modal or all are not
so prefixed. The neutral polarity is also available and corresponds to the case
where this replacement with a ? modal is not allowed. Many of the LU inference
rules for classical and intuitionistic connectives are specified in Figure 4. The
definition of the predicates pos(·), neg(·), and neu(·) can be directly obtained
from the various polarity tables given in [Gir93]. These definitions, together with
the ones in Figure 5 will be denoted by P .

Proving cut-elimination for LU is not at all easy: there are some rules con-
cerning polarities that have an empty head and bodies with an erase function.
In this particular case, moving the cut up is not possible for some proofs, and
the usual cut-elimination proof doesn’t work.

LU is not canonical since the side conditions in its rules require meta-level
predicates other than simply %·& and �·�. On proving cut-elimination for coherent
systems, it was essential to restrict the predicates to left and right since the cut
rule is a rule about duality of these two predicates. In the case of allowing some
other predicates one have to be careful on reasoning about proofs where rules
concerning these predicates are applied.

Proposition 4. The following clauses can be proved in Llinda

∀B.(pos(B)⇒ neg(B)⇒ 0). ∀B.(pos(B)⇒ neu(B)⇒ 0).
∀B.(neg(B)⇒ neu(B)⇒ 0).

These clauses play the role of the Cut rule on determining the dual predicates
for polarities. Let L be the set of clauses above. The following is easily proved
(the proof can be automated in the same way as described in [MP02]).

Proposition 5. For every connective 8 of LU, if the left and right introduc-
tion clauses for 8 in their definition form are ∀x̄(%8(x1, . . . , xi)& ◦− Bl) and
∀x̄(�8(x1, . . . , xi)� ◦− Br) then

P ‖ !L, ! Init, ! Cut, ! Pos, ! Neg � ∀x̄(Bl −◦Br−◦ ⊥) (1)

in linear logic, where Neg is the third and Pos the fourth clause in Figure 4.

This suggests that such an entailment might be used as a natural generaliza-
tion of coherence to this setting. In fact, we have the following results:
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Identity and structure
�B���B�. ⊥◦− �B� ◦− �B�.
�N� ◦− ?�N� ⇐ neg(N). �P� ◦− ?�P� ⇐ pos(P ).

Conjunction
�A ∧ B� �

= !�A� ⊗ !�B� ⊗ !(pos(A)⊕ pos(B)). �A ∧ B� �
= �A� & �B� ⊗ !(notpos(A) & notpos(B)).

�A ∧ B� �
= ?�A�� ?�B� ⊗ !(pos(A)⊕ pos(B)). �A ∧ B� �

= �A� ⊕ �B� ⊗ !(notpos(A) & notpos(B)).

Intuitionistic implication
�A ⊃ B� �

= ?�A���B�. �A ⊃ B� �
= !�A� ⊗ �B�.

Quantifiers
�∀A� �

= ∀x ?�Ax�. �∀A� �
= !�Ax�.

�∃A� �
= !�Ax�. �∃A� �

= ∀x ?�Ax�.

Disjunction
�A ∨ B� �

= !�A� ⊕ !�B� ⊗ !(notneg(A) & notneg(B)).

�A ∨ B� �
= ?�A�� ?�B� ⊗ !((pos(A) & neg(B))⊕ (neg(A) & notneu(B))).

�A ∨ B� �
= �A�� ? !�B� ⊗ !(neg(A) & neu(B)).

�A ∨ B� �
= ? !�A���B� ⊗ !(neu(A) & neg(B)).

�A ∨ B� �
= ?�A� & ?�B� ⊗ !(notneg(A) & notneg(B)).

�A ∨ B� �
= !�A� ⊗ !�B� ⊗ !((pos(A) & neg(B))⊕ (neg(A) & notneu(B))).

�A ∨ B� �
= �A� ⊗ ! ?�B� ⊗ !(neg(A) & neu(B)).

�A ∨ B� �
= ! ?�A� ⊗ �B� ⊗ !(neu(A) & neg(B)).

Classical implication
�A ⇒ B� �

= ?�A�� ?�B� ⊗ !((neg(A) & neg(B))⊕ (pos(A) & notneu(B))).

�A ⇒ B� �
= �B� ⊕ �A� ⊗ !(neg(A) & pos(B)).

�A ⇒ B� �
= �A� & �B� ⊗ !(neg(A) & pos(B)).

�A ⇒ B� �
= !�A� ⊗ !�B� ⊗ !((neg(A) & neg(B))⊕ (pos(A) & notneu(B))).

Fig. 4. LU rules

notpos(A)
�
= (neu(A)⊕ neg(A)). notneg(A)

�
= (neu(A)⊕ pos(A)).

notneu(A)
�
= (neg(A)⊕ pos(A)).

Fig. 5. Polarities

Theorem 3. Let LU be the encoding for LU (including the polarity table and
definitions in Figure 5). The following is provable in Llinda:

LU ‖ !L, ! Init, ! APos, ! ANeg, ! ACut→ Pos⊗Neg⊗ Cut.

Theorem 4. Let B be the encoding of an object-level LU formula. If

LU ‖ !L, ! Init, ! Cut, ! Pos, !Neg→ B

is provable then there is a proof of the same sequent without backchaining over
the Cut clause.

10 Conclusion

We have illustrated how object-level sequent calculus proof systems can be en-
coded into linear logic in such a way that the meta-theory of linear logic helps to
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establish formal meta-theoretic properties of the object-logic proof system. By
strengthening linear logic with a form of induction, much of this meta-theory can
be captured entirely in the meta-logic. We illustrated our approach by showing
how such a meta-level approach can be used to establish cut-elimination for LU.
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Verifying and Reflecting Quantifier Elimination
for Presburger Arithmetic
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Abstract. We present an implementation and verification in higher-
order logic of Cooper’s quantifier elimination for Presburger arithmetic.
Reflection, i.e. the direct execution in ML, yields a speed-up of a factor of
200 over an LCF-style implementation and performs as well as a decision
procedure hand-coded in ML.

1 Introduction

This paper presents a formally verified quantifier elimination procedure for Pres-
burger arithmetic (PA) in higher-order logic. There are three approaches to deci-
sion procedures in theorem provers: unverified code (which we ignore), LCF-style
proof procedures programmed in a meta-language (ML) that invoke the inference
rules of the kernel, and reflection, where the decision procedure is formalized and
proved correct inside the system and is executed not by inference but by direct
computation.

The LCF-style requires no formalization of the meta-theory but has a num-
ber of disadvantages: (a) it requires intimate knowledge of the internals of the
underlying theorem prover (which makes it very unportable); (b) there is no way
to check at compile type if the proofs will really compose (which easily leads to
run time failure and thus incompleteness); (c) it is inefficient because one has to
go through the inference rules in the kernel; (d) if the prover is based on proof
objects this can lead to excessive space consumption (proofs for PA may require
super exponential space [7, 16]).

For all these reasons we have formalized and verified Cooper’s quantifier elimi-
nation procedure for PA [5]. Our development environment is Isabelle/HOL [14].
An experimental feature allows reflective extensions of the kernel: computations
of ML code generated from HOL functions [3] are accepted as equality proofs.
Such extensions are sound provided the code generator is correct. Coq uses a
fast internal λ-calculus evaluator for the same purpose [8].

We found that reflection leads to a substantial performance improvement.
This is especially marked when proof objects [2] are involved: reflective subproofs
are of constant size, which is particularly important for proof carrying code
applications, where the size of full PA proofs is prohibitive.

The main contributions of our work are: (a) the first-time formalization and
verification of Cooper’s decision procedure in a theorem prover; (b) the most
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substantial (5000 lines) application of reflection in any theorem prover to date
(as far as we are aware); (c) a formalization that is easily portable to other
theorem provers supporting reflection (in contrast to LCF-tactics); (d) perfor-
mance figures that show a speed-up of up to 200 w.r.t. a comparable LCF-style
implementation; (e) a first demonstration of reflection in Isabelle/HOL. We also
provide a nice example of how reflection allows to formalize duality/symmetry
arguments based on syntax (function mirror in 4.2).

Related Work. PA has first been proven decidable by Presburger [17] whose
(inefficient) algorithm was improved by Cooper [5]. Harrison [12] implemented
Cooper’s procedure as an oracle as well as partially reflected in HOL Light. In
[4] we presented an LCF-style implementation of Cooper’s algorithm for PA,
which is our point of reference. Harrison [10] has also studied the general issue
of reflection in LCF-like theorem provers and bemoans the lack of a natural ex-
ample where reflection yields a speed-up of more than a constant factor. This
is true for PA as well, but a constant factor of 200 over an LCF-style tactic is
worth it. Norrish [15] discusses implementations for both Cooper’s algorithm (in
tatic style) and Omega [18] (checking a reflected “proof trace”). Pierre Crgut
[6] presents a reflective version of the Omega test written for Coq, where an op-
timized proof trace is interpreted to solve the goal. Unlike the other references
his implementation only deals with quantifier-free PA and is incomplete. Pres-
burger’s original algorithm has been formalized in Coq by Laurent Thry and is
available on the Coq web site.

The problem of programming errors in decision procedures has recently been
addressed by several authors using dependent types [13, 1]. But it seems unlikely
that anything as complex as PA can be dealt with automatically in such a
framework. Nor does this approach guarantee completeness: missing cases and
local proofs that fail are not detected.

Notation. Datatypes are declared using datatype. Lists are built up from the
empty list [] and consing ·; the infix @ appends two lists. For a list l, {{l}} denotes
the set of elements of l, and l!n denotes its nth element. The data type α option
with the constructors ⊥ : α option and %.& : α→ α option models computations
that can fail.

The rest of this paper is structured as follows. In 2 we give a brief overview
of reflection. The actual decision procedure and its verification is presented in
3 and 4. In 5 we discuss some design decisions and alternatives. Performance
results are shown in 6.

2 Reflection

2.1 An Informal Introduction

Reflection means to perform a proof step by computation inside the logic. How-
ever, inside the logic it is not possible to write functions by pattern matching
over the syntax of terms or formulae because two syntactically distinct formulae
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may be logically equivalent. Hence the relevant fragment of formulae must be
represented (reflected) inside the logic as a datatype, sometimes also called the
shadow syntax [11]. Let us call this type rep, the representation.

Then there are two functions: interp, a function in the logic, maps an element
of rep to the formula it represents; convert, an ML function, maps a formula to
its representation. The two functions should be inverses of each other: taking
the ML representation of a formula P and applying convert to it yields an ML
representation of a term p of type rep such that the theorem interp p = P can
be proved by by rewriting with the equations for interp.

Typically, the formalized proof step is some equivalence P = P ′ where P is
given and P ′ is some simplified version of P (e.g. the elimination of a quantifier).
This transformation is now expressed as a recursive function simp of type rep→
rep and it is proved (typically by induction on rep) that simp preserves the
interpretation:

interp p = interp(simp p).

To apply this theorem to a given formula P we compute (in ML) p = convert P ,
substitute it into our theorem, and compute the value P ′ of interp(simp p). The
latter step should be done as efficiently as possibly. In our case it is performed by
an ML computation using the code automatically generated from the defining
equations for simp and interp. This yields the theorem interp(simp p) = P ′.
Combining it (by symmetry and transitivity) with interp p = P and interp p =
interp(simp p) we obtain the theorem P = P ′.

2.2 Reflection of PA

PA is reflected as follows. The syntax is represented by the data types ι for
integer expressions and φ for formulae.

datatype ι = înt | vnat |− ι | ι + ι | ι − ι | ι ∗ ι
datatype φ = ι < ι | ι > ι | ι ≤ ι | ι ≥ ι | ι = ι | ι dvd ι

| T | F | ¬ φ | φ ∧ φ | φ ∨ φ | φ → φ | φ = φ |∃ φ |∀ φ

The bold symbols +, ≤, ∧ etc are constructors and reflect their counterparts
+, ≤, ∧ etc in the logic. The integer constant i in the logic is represented by
the term î. Bound variables are represented by de Bruijn indices: vn represents
the bound variable with index n (a natural number). Hence quantifiers need not
carry variable names.

Throughout the paper p and q are of type φ.

The interpretation functions ([[.]].ι and [[.]].) in Fig. 1 map the representations
back into logic. They are parameterized by an environment is which is a list of
integer expressions. The de Bruijn index vn picks out the nth element from that
list.

The definition of ι-terms is too liberal since it allows to express nonlinear
terms. Hence we will impose conditions during verification which guarantee that
terms have certain syntactic shapes.
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[[i]]isι = i
[[vn]]isι = is!n
[[− a]]isι = −[[a]]isι
[[a + b]]isι = [[a]]isι + [[b]]isι
[[a − b]]isι = [[a]]isι − [[b]]isι
[[a ∗ b]]isι = [[a]]isι ·[[b]]isι

[[T ]]is = T rue
[[F ]]is = False
[[a < b]]is = ([[a]]isι < [[b]]isι )
[[a > b]]is = ([[a]]isι > [[b]]isι )
[[a ≤ b]]is = ([[a]]isι ≤ [[b]]isι )
[[a ≥ b]]is = ([[a]]isι ≥ [[b]]isι )
[[a = b]]is = ([[a]]isι = [[b]]isι )

[[¬p]]is = (¬[[p]]is)
[[p ∧ q]]is = ([[p]]is ∧ [[q]]is)
[[p ∨ q]]is = ([[p]]is ∨ [[q]]is)
[[p → q]]is = ([[p]]is → [[q]]is)
[[p = q]]is = ([[p]]is = [[q]]is)
[[∃ p]]is = (∃x.[[p]]x·is)
[[∀ p]]is = (∀x.[[p]]x·is)

Fig. 1. Semantics of the shadow syntax

3 Quantifier Elimination

A generic quantifier elimination function is implemented by qelimφ (Fig. 2). Its
parameter qe is supposed to eliminate a single ∃ and qelimφ applies qe to all
quantified subformulae in a bottom-up fashion. We allow quantifier elimination
to fail, i.e. return ⊥. This is necessary in case the input formula is not linear,
i.e. involves multiplication by more than just a constant. To deal with failure we
define two combinators for lifting arbitrary nary functions f to f⊥ and f⊥:

f⊥ %x1& . . . %xn& = f x1 . . . xn

f⊥ %x1& . . . %xn& = %f x1 . . . xn&

If any of the arguments are ⊥, f⊥ and f⊥ return ⊥.
Let qfree p (not shown) formalize that p is quantifier-free. We can prove

by structural induction that if qe takes a quantifier-free formula q and returns
a quantifier-free formula q′ equivalent to ∃ q, then qelimφ qe is a quantifier-
elimination procedure:

(∀q, q′, is. qfree q ∧ qe q = %q′& → qfree q′ ∧ [[∃ q]]is = [[q′]]is)

→ qelimφ qe p = %p′& → qfree p′ ∧ [[p]]is = [[p′]]is.
(1)

Note that qe must eliminate the innermost bound variable v0, otherwise [[∃ q]]is =
[[q′]]is will not hold.

The goal of 4 is to present cooper, an instance of qe fulfilling the premise
of (1).

qelimφ qe (∀ p) = ¬⊥(qe⊥(¬⊥(qelimφ qe p)))
qelimφ qe (∃ p) = qe⊥(qelimφ qe p)
qelimφ qe (p ∧ q) = (qelimφ qe p)∧⊥(qelimφ qe p)
qelimφ qe (p ∨ q) = (qelimφ qe p)∨⊥(qelimφ qe p)
qelimφ qe (p → q) = (qelimφ qe p)→⊥(qelimφ qe p)
qelimφ qe (p = q) = (qelimφ qe p)=⊥(qelimφ qe p)
qelimφ qe p = �p�

Fig. 2. Quantifier elimination for φ-formulae
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4 Cooper’s Algorithm

Like many decision procedures, Cooper’s algorithm [5] for eliminating one ∃
follows a simple scheme:

– Normalization of input formula (4.1).
– Calculation of some characteristic data from the formula (4.2).
– Correctness theorem proving that ∃ p is semantically equivalent to a simpler

formula p′ involving the data from the previous step (Cooper’s theorem in
4.3).

– Construction of p′ (4.4).

4.1 Normalization

Normalization goes trough three steps: the N-step puts the formula into NNF
(negation normal form), the L-step linearizes the formula and the U-step sets
the coefficients of v0 to 1̂ or −̂1.

The N-Step. We omit the straightforward implementation of nnf : φ→ φ and
isnnf : φ→ bool. Property isnnf p expresses that p is in NNF and that all atoms
are among ≤, = and dvd and that negations only occur in front of dvd or =.
We prove that nnf is correct and that it implies quantifier-freedom:

[[p]]is = [[nnf p]]is isnnf(nnf p) isnnf p→ qfree p

The L-Step. An ι-term t is linear if it has the form

ĉ1 ∗ vi1 + · · · + ĉn ∗ vin + ĉn+1

where n ∈ N, i1 < · · · < in and ∀j ≤ n.cj �= 0. Note that ĉn+1 is always present
even if cn+1 = 0. The implementation is easy:

islinnι n0 î = True

islinnι n0 (̂i ∗ vn + r) = i �= 0 ∧ n0 ≤ n ∧ islinnι (n + 1) r
islinnι n0 t = False

islinι t = islinnι 0 t

A formula p is linear (islinφ p) if it is in NNF, all ι-terms occurring in it are
linear, and its atoms are of the form t ≤ 0̂, t = 0̂ or d̂ dvd t where d �= 0. The
formal definition is omitted.

The goal of the L-step is to transform a formula into an equivalent linear one.
Due to the unrestricted use of ∗ in the input syntax ι this may fail. Function
linι (Fig. 3) tries to linearize an ι-term using lin+, lin∗ and lin−. These operate
on linear ι-terms, preserve linearity and behave semantically like addition, mul-
tiplication by a constant integer and multiplication by −1 , respectively. This is
expressed by the following theorems provable by induction:
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lin+ (k ∗ vn + r) (l ∗ vm + s) =
if n = m then
if k + l = 0 then lin+ r s else k̂ + l ∗ vn + lin+ r s

else if n ≤ m then k ∗ vn + lin+ r (l ∗ vm + s)
else l ∗ vm + lin+ (k ∗ vn + r) s

lin+ (k ∗ vn + r) b = k ∗ vn + lin+ r b

lin+ a (l ∗ vn + s) = l ∗ vn + lin+ s a

lin+ k l = k̂ + l

linι c = �c�
linι vn = �(1 ∗ vn + 0)�
linι (− a) = lin−⊥(linι a)
linι (a + b) = lin+⊥(linι a) (linι b)
linι (a − b) = lin+⊥(linι a) (linι (− b))
linι (a ∗ b) =
case (linι a, linι b) of

(�c�, �b′�) ⇒ �lin∗ c b′�
(�a′�, �c�) ⇒ �lin∗ c a′�
(x, y) ⇒ ⊥

Fig. 3. linearization of ι-terms

islinι a ∧ islinι b→ islinι(lin+ a b) ∧ ([[lin+ a b]]isι = [[a + b]]isι )

islinι a→ islinι(lin∗ i a) ∧ ([[lin∗ i a]]isι = [[̂i ∗ a]]isι )
islinι a→ islinι(lin− a) ∧ ([[lin− a]]isι = [[− a]]isι )

The implementations of lin∗ and lin− are omitted for space limitations.
Linearization of φ-formulae (linφ, not shown) lifts linι. We have proved that

it also preserves semantics and linearizes its input:

isnnf p ∧ linφ p = %p′& → [[p]]is = [[p′]]is ∧ islinφ p′

Since full linearization is not really part of Presburger arithmetic, we keep
matters simple and do not try to cancel arbitrary monomials: linι(v0 ∗ v0 −
v0 ∗ v0) = ⊥ although one could also return %0̂&. Such simplifications could be
performed by a specialized algebraic preprocessor.

The U-Step. The key idea in this step is to multiply the terms occurring in
atoms by appropriate constants such that the (absolute values of) coefficients of
v0 are the same everywhere, e.g. the lcm of all coefficients of v0. The equivalence

(∃x. P (l·x)) = (∃x. l dvd x ∧ P (x)). (2)

will allow us to obtain a formula where all coefficients of v0 are 1̂ or −̂1. Function
lcmφ takes a formula p and computes lcm{c | ĉ ∗ v0 occurs in p}. Predicate
alldvd l p checks if all coefficients of v0 in p divide l. Both functions are defined
in the following table where lcm computes the positive least common multiple
of two integers.
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p lcmφ p alldvd l p
ĉ ∗ v0 + r ≤ ẑ |c| c dvd l
ĉ ∗ v0 + r = ẑ |c| c dvd l

d̂ dvd ĉ ∗ v0 + r |c| c dvd l
¬p lcmφ p alldvd l p

p ∧ q lcm (lcmφ p) (lcmφ q) (alldvd l p) ∧ (alldvd l q)
p ∨ q lcm (lcmφ p) (lcmφ q) (alldvd l p) ∧ (alldvd l q)

1 True

The correctness of these functions is expressed by the following theorem:

islinφ p → alldvd (lcmφ p) p ∧ lcmφ p > 0

The main part of the U-step is done by the function adjust. It takes a positive
integer l and a linear formula p (assuming that alldvd l p holds) and produces
a linear formula p′ s.t. the coefficients of v0 are set to either 1̂ or −̂1. Function
unity performs the U-step:

unity p =
let l = lcmφ p ; p′ = adjust l p in
if l = 1 then p′ else (l̂ dvd 1̂ ∗ v0 + 0̂) ∧ p′

The resulting formula is said to be unified (unified p′). We omit the definition
of adjust and unified. Note that unified p → islinφ p. We can prove that adjust
preserves semantics and its result is unified

islinφ p ∧ alldvd l p ∧ l > 0→
[[p]]i·is = [[adjust l p]](l·i)·is ∧ unified(adjust l p)

and with (2) the correctness of unity follows:

islinφ p → [[∃ p]]is = [[∃ (unity p)]]is ∧ unified(unity p) (3)

4.2 Calculation

In the next subsection we need to compute for a given p a pair of a set (repre-
sented as a list) of coeffcients in p and a modified version of p. More precisely, we
need to compute (bset p, p−) or (aset p, p+), which are dual to each other. Fig. 4
shows how to perform these computations recursively and it should be seen as
the definition of four functions bset, aset, minusinf and plusinf. We use p− and
p+ as shorthands for minusinf p and plusinf p. Before we start proving proper-
ties about bset and minusinf we formalize the duality between (bset p, p−) and
(aset p, p+). Theorems about bset and minusinf will then yield theorems about
aset and plusinf. Syntactically the duality is expressed by the function mirror
(Fig. 5) which negates all coefficients of v0. The following intuitive relationships
between a formula and its mirrored version can be proved:

unified p → [[p]]i·is = [[mirror p]](−i)·is ∧ unified (mirror p)
[[∃ p]]is = [[∃ (mirror p)]]is (4)
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p aset p bset p p− p+

q ∧ r aset q @ aset r bset q @ bset r q− ∧ r− q+ ∧ r+

q ∨ r aset q @ aset r bset q @ bset r q− ∨ r− q+ ∨ r+

1 ∗ v0 + a ≤ 0 [− a,− a + 1] [− a − 1] F T

−1 ∗ v0 + a ≤ 0 [a − 1] [a, a − 1] T F

1 ∗ v0 + a = 0 [− a + 1] [− a − 1] F F

−1 ∗ v0 + a = 0 [a + 1] [a − 1] F F

¬ 1 ∗ v0 + a = 0 [− a] [− a] T T

¬ −1 ∗ v0 + a = 0 [a] [a] T T
[] [] p p

Fig. 4. Definition of aset p, bset p, p− and p+

mirror (c ∗ v0 + r ≤ z) = (−c ∗ v0 + r ≤ z)
mirror (c ∗ v0 + r = z) = (−c ∗ v0 + r = z)
mirror (d dvd c ∗ v0 + r) = (d dvd −c ∗ v0 + r)
mirror (¬d dvd c ∗ v0 + r) = (¬d dvd −c ∗ v0 + r)
mirror (¬c ∗ v0 + r = z) = (¬−c ∗ v0 + r ≤ z)
mirror (p ∧ q) = (mirror l p) ∧ (mirror l q)
mirror (p ∨ q) = (mirror l p) ∧ (mirror l q)
mirror p = p

Fig. 5. Mirroring a formula

Furthermore we have the following dualities:

islinφ p→ [[plusinf p]]i·is = [[minusinf(mirror p)]](−i)·is

unified p→ aset p = map lin− (bset (mirror p)) (5)

We will also need to compute δp = lcm{d | d̂ dvd ĉ ∗ v0 + r occurs in p}. Its
definition is very similar to that of lcmφ p. Finally let the predicate alldvddvd l p
be the analogue of alldvd l p which ensures islinφ p→ alldvddvd δp p. The definition
of both functions is obvious and omitted.

4.3 Cooper’s Theorem

Our proof sketch of Cooper’s theorem (10) follows [15]. The conclusion of
Cooper’s theorem is of the form A = (B ∨ C) and we prove B → A, C → A
and A ∧ B → C. We first prove (by induction on p) that any unified p behaves
exactly like minusinf p for values that are small enough, cf. (6), and that this
behaviour is periodic, cf. (7).

unified p→ ∃z.∀x.x < z → ([[p]]x·is = [[minusinf p]]x·is) (6)
unified p→ ∀x, k.[[minusinf p]]x·is = [[minusinf p]](x−k·δp)·is (7)
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Using (6) and (7) we can prove the first implication (8), i.e. any witness j for
p− provides a witness for p. According to (7) we can keep on decreasing j by δ
until we reach the limit z of (6). This proof is based on induction over integers
bounded from above. Note also that (8) holds for all d.

unified p ∧ (∃j ∈ {1..d}.[[minusinf p]]j·js)→ [[∃ p]]js (8)

The second implication is trivial: given b ∈ {{bset p}} and j ∈ {1..δp} such that
[[p]][[i·is]]

b
ι+j we have a witness for p. If there is no such b and j then p behaves

periodically and hence any witness for p must be a witness for p−. Hence (9)
proves with (6) and (7) the last implication and Cooper’s theorem (10) follows
directly using (8).

unified p→ ∀x.(∃j ∈ {{1..δp}}.∃b ∈ {{bset p}}.[[p]]([[b]]i·is
ι +j)·is)

→ [[p]]x·is → [[p]](x−δp)·is (9)

unified p→ ([[∃ p]]is = ((∃j ∈ {1..δp}.[[minusinf p]]j·is) ∨
(∃j ∈ {1..δp}.∃b ∈ {{bset p}}.[[p]]([[b]]i·is

ι +j)·is)))
(10)

This expresses that an existential quantifier is equivalent with a finite disjunc-
tion. The latter is still expressed with existential quantifiers, but we will now
replace them by executable functions.

4.4 The Decision Procedure

In order to compute the rhs of Cooper’s theorem (10) we need substitution for
v0 in ι-terms (substι) and φ-formulae (substφ) such that

[[substι r t]]i·isι = [[t]][[r]]i·is
ι ·is

ι

[[substφ r p]]i·is = [[p]][[r]]i·is
ι ·is

Let nov0ι t and nov0φ p express that v0 does not occur in t and p, and let
decrι t and decrφ p denote t and p where all variable indices are decremented
by one. The implementation of substι, substφ, nov0ι, nov0φ, decrι and decrφ is
simple and omitted. The following properties are easy:

nov0ι t→ nov0ι (substι t r) ∧ nov0φ (substφ t p)
nov0ι t→ [[t]]i·isι = [[decrι t]]isι
nov0φ p→ [[p]]i·is = [[decrφ p]]is

To generate the disjunction
∨

t∈{{ts}} substφ t p we use explode∨ ts p (Fig. 6).
Function simp evaluates ground atoms and performs simple propositionsal sim-
plifications. We prove

qfree p ∧ (∀t ∈ {{ts}}.nov0ι t)→
nov0φ(explode∨ ts p) ∧ (∃t ∈ {{ts}}.[[substφ t p]]i·is = [[explode∨ ts p]]i·is)
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explode∨ [] p = F
explode∨ (i · is) p =
case (simp (substφ i p), explode∨ is p) of

(T , ) ⇒ T
(F , pis) ⇒ pis

( , T ) ⇒ T
(pi, F ) ⇒ pi

(pi, pis) ⇒ pi ∨ pis

Fig. 6. Generate disjunctions

explode−∞ (p, B) =
case (explode∨ [1..δp] p−, explode∨ (all+ δp B) p) of

(T , ) ⇒ T
(F , r2) ⇒ r2

(r1, T ) ⇒ T
(r1, F ) ⇒ r1

(r1, r2) ⇒ r1 ∨ r2

all+ d [] = []
all+ d (i · is) = (map (lin+ i) [1..d]) @ (all+ d is)

Fig. 7. The rhs of Cooper’s theorem

unify p =
let q = unity p ; (A, B) = (remdups aset q, remdups bset q)
in if |B| ≤ |A| then (q, B) else (mirror q, A)

cooper p = (λf.decrφ(explode−∞ (unify f)))⊥ (linφ (nnf p))

pa = qelimφ cooper

Fig. 8. The decision procedure for linearizable φ-formulae

We implement explode−∞ (Fig. 7) and prove that it computes the right hand
side of Cooper’s theorem, cf. (11). It uses all+ d ts to generate all the sums of
an element of {{ts}} and of some î where 1 ≤ i ≤ d, cf. (12).

unified p ∧ {{B}} = {{bset p}}
→ ([[∃ p]]is = [[decrφ(explode−∞ (p,B))]]is) (11)

∃i ∈ {1..d}.∃b ∈ {{ts}}.P (lin+ b î) = ∃t ∈ {{all+ d ts}}.P t (12)

Let us now look at the implementation of the decision procedure in Fig. 8.
Function unify performs the U-step but also prepares the application of Cooper’s
theorem. For efficiency, both aset and bset are computed. Depending on their
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size, either the unified term and its bset or the mirrored version and its aset are
passed to explode−∞ to compute the rhs of Cooper’s theorem. Function cooper
composes all the normalization steps, the elimination of v0 by unify, and the
decrementation of the remaining de Bruijn indices. Function pa applies generic
quantifier elimination to Cooper’s algorithm.

Using (3), (4) and (5) we can prove

islinφ p ∧ unify p = (q,B)→
[[∃ p]]is = [[∃ q]]is ∧ unified q ∧ {{B}} = {{bset q}} (13)

and with (11) this implies

islinφ p → [[∃ p]]is = [[decrφ(explode−∞(unify p))]]is

which implies the correctness of cooper directly

qfree q ∧ cooper q = %q′& → qfree q′ ∧ [[∃ q]]is = [[q′]]is

and hence, using (1), the correctness of the whole decision procedure pa:

pa p = %p′& → [[p]]is = [[p′]]is ∧ qfree p′.

5 Formalization Issues

Normal Forms. Cooper’s decision procedure transforms the input formula into
successively more specialized normal forms, which is typical for many decision
procedures. In our formalization these different normal forms are specified by
predicates on the input languages φ and ι. This has the advantage that we do
not need to define new languages and translations between languages. Instead we
need to add preconditions to our theorems (e.g. islinι a) and end up with more
complicated function definitions (see below). Highly tuned code may require
special representations of certain normal forms even using special data structures
for efficiency. (e.g. [9]). For Cooper’s algorithm such optimizations do not promise
substantial gains.

Recursive Functions. The advantages of defining recursive functions by pat-
tern matching are well known and it is used extensively in our work. Isabelle/
HOL supports such definitions [19] by lists of equations. However, it is not al-
ways possible to turn each equation directly into a theorem because an equation
is only applicable if all earlier equations are inapplicable. Hence Isabelle instan-
tiates and possibly duplicates equations to make them non-overlapping. In the
case of function mirror, the given list of 8 equations leads to 144 equations after
disambiguation. This blow-up is the result of working with the full language
φ even when a function operates only on a certain normal form. These non-
overlapping theorems are later exported to ML, which may influence the quality
of the code generated by the ML compiler.
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Tailored Induction. Isabelle/HOL derives a tailored induction rule [19] from a
recursive function definition which simplifies proofs enormously. This may seem
surprising since the induction rule for mirror has 144 cases. However, most of
the cases are irrelevant if the argument is assumed to be linear. These irrelevant
cases disappear by simplification.

6 Performance

We tested three implementations on a batch of 64 theorems, where the distri-
bution of quantifiers is illustrated by Fig. 9. The 64 formulae contain up to five
quantifiers and three quantifier alternations. The number nq in Fig. 9 represents
the number of formulae with q quantifiers. The number of quantifier alternations
is also given by the nqi’s. We have nq = nq0 + nq1 + nq2 + nq3, where nqi is the
number of formulae containing q quantifiers and i quantifier alternation. The
column ĉmax gives the maximal constant occurring in the given set of formulae.
Finally the last column gives the speed up factor achieved.

The adaptation of Harrison’s implementation [12] (the current oracle in Is-
abelle/HOL) took 3.91 seconds to solve all goals. Our adaptation of this imple-
mentation to produce full proofs based on inference rules [4] took 703.08 seconds.
The ML implementation obtained by Isabelle’s code generator from the formally
verified procedure presented above took 3.48 seconds, a speed-up of a factor of
200. All timings were carried out on a PowerBook G4 with a 1.67 GHz processor
running OSX. The reason why the hand coded version is slightly slower than the
generated one is that it operates on a symbolic binary representation of integers
whereas the generated one uses (arbitrary precision!) ML-integers.

q nq nq0 nq1 nq2 nq3 cmax speedup
1 3 3 0 0 0 24 10
2 27 20 7 0 0 13 101
3 21 2 19 0 0 129 420
4 6 1 0 0 5 6 99
5 5 3 0 5 0 12 103

Fig. 9. Number of quantifiers ans speedup in the test-formulae

7 Conclusion

We presented a formally verified procedure for quantifier elimination in PA.
Generating ML code from it we achieved substantial performance improvements
over an LCF-style implementation. Decision procedures developed this way are
much easier to maintain and especially to share. Other systems supporting re-
flection should be able to import our work fairly directly, especially if they are
of the HOL family as well.
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Abstract. The paper presents a combination of interactive and auto-
matic tools in the area of software verification. We have integrated a
newly developed software model checker into an interactive verification
environment for imperative programming languages. Although the prob-
lems in software verification are mostly too hard for full automation, we
could increase the level of automated assistance by discharging less in-
teresting side conditions. That allows the verification engineer to focus
on the abstract algorithm, safely assuming unbounded arithmetic and
unlimited buffers.

1 Introduction

Our work is part of the Verisoft project.1 This large, coordinated project aims
at the pervasive formal verification of entire computer systems consisting of
hardware, compiler, operating system, communication system, and applications.
To the best of our knowledge, the last attempt to deal with such an ambitious
topic has been the famous CLI stack [5] back in 1989—even though the principal
researcher of the famous CLI stack project, J. S. Moore [8], declared that the
formal verification of a system ‘from transistor to software level’ is a grand-
challenge problem. However, basic research in the area of formal verification has
greatly evolved during the last 15 years. A major goal of the Verisoft project is
to solve that challenge by integrating and improving the existing technology.

Like in the CLI-stack project, we have several layers of abstraction. However,
for the vast majority of our software, we employ a single verification environment.
It was implemented on top of the general-purpose theorem prover Isabelle as an
instance of the well-known Hoare calculus. Within this environment, we plan to
verify the different software layers, starting from considerable parts of the micro
kernel, via the operating system, up to the application level.

An interesting observation is that, by far, most of the problems of today’s soft-
ware are not caused by a malicious algorithm but by overlooked corner cases in
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the specific implementation: Bounded arithmetic and limited buffers lead to un-
intended over- or underflows. Hence we conclude that programmers—and quite
likely verification engineers—focus primarily on the abstract algorithm when
implementing, respectively verifying, software and tend to neglect the machine
dependent limitations.

Of course, the verification engineer has to address these issues at some point.
Our experience in the Verisoft project is, however, that the corner cases are
usually perceived as distraction from the “real”—the functional—verification
goal and addressed at last.

Furthermore, a maximum degree of automation is crucial for such an ambi-
tious project as Verisoft. However, our verification environment yet provided an
interactive-only user interface. Hence we have integrated a model checker for
the automatic pre-verification of side conditions as they arise due to the finite-
ness of the underlying machine. This integration allows verification engineers to
concentrate on the abstract problem with virtually unbounded arithmetic and
unlimited buffers.

The rest of the paper is organized as follows: Section 2 presents related work
in this area. Section 3 introduces Isabelle and the Hoare Logic module. Fur-
thermore, it gives an idea of the checked side conditions and illustrates our
verification environment by a small example. In Section 4, we present our newly
developed software model checker for reachability analysis in C programs. Sec-
tion 5 reports on the integration of this model checker into our verification en-
vironment. We describe certain aspects of the novel swmc-guards tactic, which
implements the user interface to our model checker. Moreover, we discuss some
enhancements of the model checker to simultaneously test the reachability of
multiple locations. In Section 6, we give an estimation of the speed-up to expect
from the use of our tool. Finally, Section 7 concludes the paper.

2 Related Work

Several works for combining verification techniques have been proposed in the
literature, including different ways of integrating automatic approaches into in-
teractive theorem proving. Pisini et al [4] integrated the MDG tool, which sup-
ports model checking and equivalence checking, into the HOL system, a theorem
prover for higher order logic, for the verification of hardware. They introduced
two tactics, MDG COMB TAC and MDG SEQ TAC, to generate the adequate
input files so that the MDG system can complete the proof.

Similarly in the context of hardware verification, Joyce and Seger [7] pro-
posed a link between symbolic trajectory evaluation and interactive theorem
proving. Their technique consists in introducing a new proof procedure, called
VOSS TAC, through which the Voss system is invoked for checking the validity
of assertions, and returning the result to the theorem prover.

Rajan et al [10] described an approach where a BDD-based model checker
for the propositional mu-calculus was used as a decision procedure within the
framework of the PVS proof checker.
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Our integration approach is quite similar to the one proposed by Pisini et
al [4]. However, while all systems mentioned above aim at hardware verification,
our integration approach concerns software verification. Software is more com-
plex than hardware in the sense that it includes more language constructs and
a larger variety of data types.

3 Verification Environment

Isabelle is a generic proof assistant. It provides a framework to declare deduc-
tive systems, rather than to implement them from scratch. Currently the best
developed object logic is HOL [9], higher order logic, including an extensive
library of (concrete) mathematics, as well as various packages for advanced def-
initional concepts like (co-)inductive sets and types, primitive and well-founded
recursion etc. To define an object logic, the user has to declare the syntax and
the inference rules of the object logic. By employing the built-in mechanisms
of Isabelle/Pure, higher-order unification and resolution in particular, one al-
ready gets a decent deductive system. Moreover, Isabelle follows the well-known
LCF system approach, which allows us to write arbitrary proof procedures in
ML without breaking system soundness since all those procedures are expanded
into primitive inferences of the logical kernel. To integrate trusted external pro-
grams, the mechanism of oracles can be employed. An oracle produces a the-
orem without breaking its proof down to primitive inferences. The software
model checker is integrated as such an oracle into a Hoare Logic module of
Isabelle/HOL.

The Hoare Logic module [11] is built on top of Isabelle/HOL. An imperative
programming language is defined as HOL data-type together with an operational
semantics and a Hoare calculus for partial and total correctness. Programs are
specified as Hoare triples and verified using a verification condition generator. A
Hoare triple has the format Γ� P c Q where Γ is the procedure environment that
maps procedure names to their bodies, c is a code fragment and P and Q are
assertions. Intuitively, the formula states that if P holds before the execution of
c then Q will hold afterwards. In this paper we only focus on partial correctness.
For total correctness, we are about to integrate a termination checker in a similar
fashion.

Runtime faults are modeled as explicit guards within the program c. Such a
guard formulates constraints on the current program state. The semantics of the
Hoare Logic ensures that every such guard must hold under the precondition
P. Formally assertions and guards are sets of program states. The states are
represented as records in HOL. As example, the assertion {| í ≤ N |} abbreviates
the set comprehension {s. i s ≤ N}, where i is a record selector. The abstraction
on state s is hidden in assertions, and the application to s is abbreviated by the
prefixed acute symbol (´).

Many runtime errors can occur during the execution of a program due to the
violation of some constraints imposed by the definition of the data types used in
the program. Examples of errors are overflow and underflow exceptions and array
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out-of-bound access. The programming language used in the Verisoft project is
called C0. It is a type-safe subset of C with an exact specified semantics, which
is also formalized in Isabelle/HOL. Numeric expressions in C0 are evaluated
using bounded modulo arithmetic with silent over- and underflows. However
for specifying and reasoning about programs, we want to “think unbounded”.
Therefore we regard over- and underflows as runtime errors on the level of the
Hoare Logic and use ordinary unbounded arithmetic.

To prove the absence of such runtime errors, we have to identify which expres-
sions can potentially cause which errors. We have formalized the error conditions.
Table 1 shows a non-exhaustive list of expressions that might cause runtime er-
rors. For each of these expressions, the table lists a set of guards. The evaluation
of an expression causes a runtime error if and only if the conjunction of its guards
evaluates to false. The guards are automatically generated by Isabelle through
the parsing process of the program code.

Table 1. The table shows some expressions causing runtime errors together with their
respective guards (top) and the ranges for the basic integer types (bottom)

expression e guards runtime error
e1 + e2

e1 − e2 e ≤ (max type(e)) overflow
− e1 e ≥ (mintype(e)) underflow
e1 ∗ e2

e1 / e2 e2 �= 0 division by zero
e ≤ (max type(e)) overflow
e ≥ (mintype(e)) underflow

e1 [ e2 ] e2 < size(e1) above bounds of e1

e2 ≥ 0 below bounds of e1

type T minT maxT

int − 231 231 − 1
unsigned 0 232 − 1
char − 27 27 − 1

Figure 1 on the next page illustrates the program representation in our ver-
ification environment. It shows the proof goal for the correctness theorem of a
bubble-sort implementation. The code fragment sorts the first árray-size values
contained in an array variable named árray.

4 The Model Checker ACSAR

ACSAR (Automatic Checker of Safety properties based on Abstraction Refine-
ment) is a software model checker for C programs that we developed in the spirit
of Magic [1] and Blast [2, 3]. Most data types of the C language are handled by
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σ. Γ� {|σ. 0 < árray-size ∧ árray-size ≤ length árray |}
{|1 ≤ árray-size|}�→ í := árray-size − 1 ;
WHILE 0 < í
DO j́ := 0 ;

WHILE j́ < í
DO {| j́ + 1 ≤ max-nat ∧

j́ + 1 < length árray ∧ j́ < length árray |}
�→ IF árray [ j́ + 1 ] < árray [ j́ ]

THEN {| j́ < length árray |}�→ t́emp := árray [ j́ ];
{| j́ < length árray ∧

j́ + 1 ≤ max-nat ∧ j́ + 1 < length árray |}
�→ árray [ j́ ] := árray [ j́ + 1 ];
{| j́ + 1 ≤ max-nat ∧ j́ + 1 < length árray |}
�→ árray [ j́ + 1 ] := t́emp

FI ;
{| j́ + 1 ≤ max-nat|}�→ j́ := j́ + 1

OD ;
{|1 ≤ í |}�→ í := í − 1

OD ;
ŕes := 0
{|∀ j < σarray-size. ∀ i < j . árray [i ] ≤ árray [j ]|}

Fig. 1. An external representation of code with guarded commands within our verifi-
cation environment. A guarded command consists of a list of guard conditions and the
affected command. The conditions are enclosed in braces: {| |}. The guard conditions
are separated from the command by �→. The term σarray-size refers to the old value of
array-size before the execution of the program fragment.

ACSAR, including integer types, arrays and structs. Furthermore, ACSAR sup-
ports all control structures of the C language. Function calls are handled by
inlining the body of each function into the corresponding call site. Local vari-
ables are renamed to avoid name conflicts. Thus, after inlining all the functions,
we obtain a unique global control-flow graph. The obtained control flow graph
contains only two types of nodes: branches and updates. In the following, we
explain the basic verification algorithm of ACSAR.

4.1 Translating Programs to Transition Constraints

A transition constraint tc is a tuple (l, g, u, d) where l and d are the values of the
program counter before and after performing the transition, g is the transition
condition and u is the variable update. Consecutive assignments are considered
as one simultaneous update. We illustrate the translation procedure considering
the function three times as example:
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Example 1.

1 void three times(int n)
2 {
3 int s = 0, i=0, result ;
4 while (i != n) {
5 s = s + 3;
6 i = i + 1;
7 }
8 result = s;
9 }

Function three times can be represented by the following system of transition
constraints:

(1, True, [s ← 0, i ← 0], 4) (1)
(4, i �= n, [i ← i + 1, s ← s + 3], 4) (2)
(4, i = n, [result ← s], 10) (3)

Upon translation, lines 1-3 are merged into transition constraint (1). Transition
constraint (2) models the case where the control enters the loop (lines 4-8) and
transition (3) represents the case where the control proceeds with the instruction
after the loop (line 9) because the loop condition does not hold.

4.2 Abstraction

ACSAR uses the predicate abstraction technique [6] to automatically abstract an
infinite system by a finite one. The idea of predicate abstraction is to represent
a set of states by a logical formula built from a set of predicates. This logical
formula represents an abstract state. ACSAR uses a backward search to explore
the set of abstract states. Formally, we introduce:

– The set of program states S, the set of error states Serr, the set of predicates
P (initially empty) and the set of transition constraints Tc. A state s is
provided as a logical formula s = (x1 = v1 ∧ x2 = v2 ∧ · · · ∧ xn = vn), where
xi are program variables and vi their values (i ∈ [1, n]).

– the abstraction function α : L→ L with α(s) =
∧
p such that (p ∈ P ∧ s⇒

p), where L is the set of quantifier-free first-order logic formulas restricted
to program variables.

– the operator Pre# that returns the previous abstract state: Pre#(a, tc) =
α(wp(a, tc)), where a is an abstract state provided as a logical formula,
tc ∈ Tc is some transition constraint, and wp(a, tc) is the exact weakest
precondition of a with respect to tc. Intuitively, the Pre# operator provides
the abstract state that reaches the state a after performing the transition tc.

Now, we can build the abstract system. We start with the abstract error
state α(Serr) and try to compute the least fixpoint of Pre#. Either we find the
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least fixpoint or a counter example. If we find a counter example, we have to
test its validity using a SAT solver. In case of a spurious counter example, our
abstraction has been too coarse, and we have to refine it.

4.3 Refinement

When an abstraction is too coarse, i. e. we have found a spurious counter exam-
ple, ACSAR rebuilds a more precise abstraction by inferring new predicates. It
increases only the relevant part of the abstract system. This concept of laziness
is inspired by the work of Henzinger et al [2]. If the backward search reaches the
initial state SI , the path leading from Serr to SI is analyzed by using the exact
weakest precondition wp to check the validity of transitions that constitute the
path. If the analysis indicates that this path is a real counter example, the path
is returned as witness to the user. Otherwise, we obtain a formula showing the
invalidity of the path. Predicates appearing in this formula are used to refine the
system.

5 Integrating ACSAR into the Verification Environment

As shown in Table 1 on page 384, the guards are expressed as assertions in
quantifier-free first-order logic. Software model checkers deal efficiently with such
properties. In order to take advantage of the efficiency and automation of model
checking, we integrated our tool ACSAR into Isabelle.

In Figure 1 on page 385, we have already seen the external representation
of a bubble-sort implementation. At that point, we would like to discharge the
guards automatically with ACSAR. We have integrated the model checker via a
new tactic, called swmc-guards. To deal with multiple guards, we have extended
the verification procedure of ACSAR.

When the verification engineer applies swmc-guards, the current proof goal
is converted into a reachability problem and presented to ACSAR. The model
checker generates a reachability check report. The tactic evaluates this report
and forms a new proof goal from the old one and the new results from the model
checker. In the next sections, we describe this process in detail.

5.1 Conversion of the Original Proof Goal

In Isabelle, the proof goal is basically a Hoare triple with a code fragment that
contains guards. The model checker, however, expects a C program with labelled
error locations. Hence we have to convert the original problem. For the check
against runtime faults, only the precondition and the actual code fragment with
the guard conditions are of interest. Quantifier-free conditions can easily be
formulated as C expressions, and the conversion of the basic commands like
WHILE or IF is straightforward.

The conversion of the code fragment is primarily a syntax transformation.
However, the internal representation in Isabelle is quite opulent. Hence we de-
cided to introduce an intermediate language and implemented the transformation
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in two stages. This intermediate language is much more compact and was tai-
lormade to represent usual imperative programming languages. We expect that
this approach will simplify the integration of similar tools.

The conceptual core of the conversion is the representation of precondition
and guards. The precondition is an assumption, hence the guard conditions have
only to be checked if the precondition holds. We represent this fact by enclosing
the whole code fragment in an if command that has the precondition as branch
condition. For each guard condition g, we introduce a distinct error location
r and generate a conditional jump to this error location for the case that the
condition does not hold. Consequently, r is reachable if and only if g is satisfiable.

5.2 Checking Reachability of Multiple Error Locations

Initially, ACSAR was designed to check the reachability of only one error location
at a time. To deal with multiple error locations, one has the choice between
two options. The first option is to invoke ACSAR several times from Isabelle.
This approach is simple in the sense that no major changes are needed. Its
drawback is the time consumed by communications between the theorem prover
and the model checker. The second option, that we adopted, is to extend the
checking algorithm of ACSAR to deal with multiple error locations. All guards
are transmitted at once to the model checker rather than transmitting one guard
at a time.

Therefore we have to extend the translation algorithm above. We assume
a finite set G of guards and a finite set L of control locations. Furthermore
there should be a control location li ∈ L associated to each guard gi ∈ G.
Now we introduce a new error location ri for each guard such that the set of
error locations R will be distinct from the control locations and from each other,
i. e.

L ∩R = ∅ ∧ ∀gi, gj. ri = rj −→ gi = gj

Finally, we have to introduce a transition constraint tci = (li,¬gi,−, ri) for each
guard gi ∈ G, and can state:

∀g ∈ G. ∃!r ∈ R such that (r is reachable) ←→ (¬g can hold)

Figure 2 on the facing page illustrates the resulting C code of the previous
bubble-sort example after its translation into a reachability problem and adding
the necessary error locations.

Verification Approach. In the verification phase, we check the validity of each
guard in isolation. With this approach, the verification engineer might be able
to find several bugs at a time. In order to avoid the influence between guards,
we have to disable all but the currently processed guard. Consider the following
example:
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int array [10];
unsigned int i, j , array size ;
int temp, res;

5 int main () {
if (((0 < array size ) && (array size <= 10))) {

if (!(1 <= array size )) goto ERROR 1;
i = (array size − 1);
while (0 < i) {

10 j = 0;
while (j < i) {

if (!(( j + 1) <= max nat)) goto ERROR 2;
if (!(( j + 1) < 10)) goto ERROR 3;
if (!( j < 10)) goto ERROR 4;

15 if ((array[( j + 1)] < array[ j ])) {
if (!( j < 10)) goto ERROR 5;
temp = array[j];
if (!( j < 10)) goto ERROR 6;
if (!(( j + 1) <= max nat)) goto ERROR 7;

20 if (!(( j + 1) < 10)) goto ERROR 8;
array[ j ] = array[( j + 1)];
if (!(( j + 1) <= max nat)) goto ERROR 9;
if (!(( j + 1) < 10)) goto ERROR 10;
array[( j + 1)] = temp;

25 }
if (!(( j + 1) <= max nat)) goto ERROR 11;
j = (j + 1);

}
if (!(1 <= i )) goto ERROR 12;

30 i = (i − 1);
}
res = 0;

}
goto end;

35
ERROR 12: goto end;
ERROR 11: goto end;
ERROR 10: goto end;

/∗ ... ∗/
40 ERROR 1: goto end;

end: ;
}

Fig. 2. Result of the translation (input to ACSAR). Note: For better readability, we
have replaced the numerical upper limit of unsigneds with max nat.
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Example 2.

int a [6], b [4], i , j ,k;
i = 5;
j = i − 1;

4 if ( j+2 > 5) goto ERROR 1;
a[ j+2] = 3;
k = j + 1;
if (k > 4) goto ERROR 2;

8 b[k] = 1;
goto end;
ERROR 1: goto end;
ERROR 2: goto end;

12 end: ;

If the guard leading to label ERROR 1 is not disabled when checking the next
guard, we can not find out whether label ERROR 2 is reachable because the
expression ( j+2 > 5) at line 4 is always true.

Let us now consider a program in terms of a set of transition constraints Tc.
We introduce the subset Tcerr containing the transition constraints tci that lead
to error locations. For each transition constraint tci = (li,¬gi,−, ri) ∈ Tcerr,
there exists a transition constraint tc′i = (li, gi, ui, ki) ∈ Tc corresponding to the
case that guard gi holds.

We disable all currently not concerned guards gj in the following way: We
build a transition constraint tc′′j from tc′j by removing the guard condition gj

and keeping all other fields unchanged: tc′′j = (lj ,True, uj, kj). Now, we remove
the transition constraints tcj and tc′j from the set of transition constraints Tc,
and add tc′′j to Tc.

Introducing Assumptions. In the previously described approach, each guard
is checked in isolation from the other guards. This is equivalent to having each
time a program Pi containing only the guard gi that we want to prove. This
approach can be improved by exploiting results for previous guards in the ver-
ification of the actual guard. When a guard is proven to hold, we use it as an
assumption for the verification of other guards. Formally, we remove tc′i for each
proven guard gi and keep tci as we know that the error location ri is never
reachable. This approach is described in Figure 3 on the next page.

Table 2 on the facing page presents a performance comparison between the
approach when we use valid guards as assumptions and the approach without as-
sumptions. We have measured the execution times of the software model checker
for the already presented bubble-sort example and an implementation of the more
naive selection-sort algorithm. In both cases, the execution time is substancially
shorter if we keep proven guards as assumptions.

5.3 Returning the Results to Isabelle

Our interface is implemented as a so called oracle. In this way, we can introduce
a theorem into the verification process without giving a proof for it. In our case,
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Input:

– the set Tc of all transition constraints
– the set Tcerr of transition constraints leading to error locations
– the set G of guards

Output:

– a report rep specifying for each guard whether it is valid, invalid or unknown.

begin
Tc′

err = {tc′i such that tci ∈ Tcerr};
Tc′′

err = {tc′′i such that tci ∈ Tcerr};
Tc = (Tc − (Tcerr ∪ Tc′

err)) ∪ Tc′′
err;

for each guard gi such that gi ∈ G do
Tc = (Tc − {tc′′i }) ∪ {tci, tc

′
i};

res = check reach(err loc(gi),Tc);
switch (res)

case unreachable:
store in report(rep, gi, valid); Tc = Tc − tc′i;

case reachable:
store in report(rep, gi, invalid); Tc = (Tc − {tci, tc

′
i}) ∪ tc′′i ;

otherwise:
store in report(rep, gi, unknown); Tc = (Tc − {tci, tc

′
i}) ∪ tc′′i ;

init();
return(rep);
end

Legend:

– The function err loc takes a guard as argument and returns the corresponding
error location.

– The function check reach returns either (a) unreachable if the guard is valid,
(b) reachable if the guard is invalid, or (c) unknown if no definite decision on
the validity of the guard can be made.

– The function init reinitializes the system by erasing states generated so far.
– The function store in report stores the result of the verification concerning the

guard in a report file. The report is returned to the theorem prover.

Fig. 3. Multiple error verification by exploiting assumptions

Table 2. Model checking time of programs with and without using assumptions

Program number of verification time (in seconds)
guards without assumptions with assumptions

selection-sort 14 5.918 2.729
bubble-sort 12 140.189 29.622
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a Hoare triple with annotated guard conditions is returned as theorem. The
annotation expresses whether guards will not fail. This Hoare triple is used as
premise of an Hoare rule that allows us to regard the proven guards as granted
for the remaining verification.

In this section we discuss how this rule is formally justified within the Hoare
calculus. Within our verification environment, validated guards are decorated
with

√
as shown in Figure 4.

σ. Γ�/{True} {|σ. 0 < árray-size ∧ árray-size ≤ length árray |}
{|1 ≤ árray-size|}√�→ í := árray-size − 1 ;
WHILE 0 < í
DO j́ := 0 ;

WHILE j́ < í
DO {| j́ + 1 ≤ max-nat |}√, {| j́ + 1 < length árray |}√,

{| j́ < length árray |}√

�→ IF árray [ j́ + 1 ] < árray [ j́ ]
THEN {| j́ < length árray |}√�→ t́emp := árray [ j́ ];
{| j́ < length árray |}√, {| j́ + 1 ≤ max-nat |}√,
{| j́ + 1 < length árray |}√

�→ árray [ j́ ] := árray [ j́ + 1 ];
{| j́ + 1 ≤ max-nat |}√, {| j́ + 1 < length árray |}√

�→ árray [ j́ + 1 ] := t́emp
FI ;

{| j́ + 1 ≤ max-nat |}√�→ j́ := j́ + 1
OD ;
{|1 ≤ í |}√�→ í := í − 1

OD ;
ŕes := 0
{|∀ j < σarray-size. ∀ i < j . árray [i ] ≤ árray [j ]|}

Fig. 4. The bubble-sort example after calling the software model checker. All validated
guard conditions are decorated with

√
.

To integrate the notion of discharging a guard into the Hoare calculus, the
guarded command of the programming-language model described by Schirmer
[11] is augmented with a flag: Guard f g c, where f is the kind of fault that the
guarded command will raise if the guard condition g for command c fails. The
syntax in the examples g �→ c is an abbreviation for Guard False g c, and g

√ �→
c for Guard True g c. A comma-separated list of guard conditions before the �→
abbreviates nested guarded commands. The state of the programming language
is a polymorphic HOL data-type with two constructors:

datatype ( ′f, ′s) state = Normal ′s | Fault ′f ,

where ′s is a type variable for the raw state and ′f for the faults. The operational
big-step semantics has the format Γ� 〈c, s〉 ⇒ t, where Γ is the procedure
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environment that maps procedure names to their bodies. The meaning is that
execution of command c in the initial state s ends in final state t. The big-step
semantic rules for guarded commands are the following:

s ∈ g Γ� 〈c, Normal s〉 ⇒ t
Γ� 〈Guard f g c, Normal s〉 ⇒ t

s /∈ g

Γ� 〈Guard f g c, Normal s〉 ⇒ Fault f

The guard condition g is modeled as a set of states. If it holds, execution is
continued otherwise the error is signaled. For the integration of the software
model checker, the flag f is Boolean. The flag True indicates that the guard is
proven. But as the semantic rules above indicate, the value of the flag is not
considered to decide whether the guard holds or not. It is only used in the Hoare
calculus. The Hoare triples are extended with a set of faults F that are regarded
as proven. Validity of a Hoare triple Γ |=/F P c Q is defined as partial correctness
modulo faults in F :

Γ |=/F P c Q ≡ Γ� 〈c, Normal s〉 ⇒ t −→ s ∈ P −→ t /∈ Fault ‘ F −→
t ∈ Normal ‘ Q

Here ‘ denotes the set image operation, e.g. f ‘ M can be rewritten as set com-
prehension: {f s. s ∈ M}. Given an execution of command c from an initial state
s satisfying the precondition P, provided that the final state t is not a fault in
set F, then the final state will satisfy postcondition Q. An empty set of faults F
can be omitted, since this is the ordinary case. It ensures that no runtime faults
will occur. The Hoare calculus is proven sound with respect to this notion of
validity [12].

Theorem 1. Γ�/F P c Q −→ Γ |=/F P c Q

To integrate the results of the software model checker, we derive a rule that
allows us to switch from an empty set F to the set {True}, which means that all
guards marked with True can be assumed as correct. Here are the Hoare Logic
rules for guards:

Γ�/F P c Q
Γ�/F (g ∩ P) (Guard f g c) Q

f ∈ F Γ�/F P c Q
Γ�/F {s. s ∈ g −→ s ∈ P} (Guard f g c) Q

The left rule is the ordinary rule for guarded commands. The guard g has to hold
in the precondition. On the right hand side, however, the guard can be taken
as assumption for the precondition P, since validity of Hoare triples assumes
that no fault in F can occur. For interactive verification this means that guards
marked with a fault in F can be taken as assumptions whereas the other ones
have to be proven. To illustrate the integration of the software model checker,
consider the following situation. The current proof goal is a Hoare triple of the
form Γ�/{} P c Q, where all guards in c are marked with False. The goal is to
reduce this to a new proof state Γ�/{True} P c ′′ Q, where c ′′ contains the same
guards as c, but some may be marked as True. The software model checker has
to prove that those guards that are marked with True actually hold. Formally
the oracle returns a Hoare triple of the form Γ�/{} P c ′ UNIV, where UNIV
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is the universal set that denotes the trivial postcondition, and c ′ only contains
the guards of c ′′ that are marked with True. The guards marked with False are
missing, since those are the guards that are not provable by the model checker.
Referring to the semantics of Hoare triples, the result of the oracle describes
that no guard in c ′ will fail. This is exactly what the model checker claims. The
following rule implements this strategy:

Γ�/{True} P c ′′ Q Γ�/{} P c ′ UNIV
c ′ = strip-guards {False} c ′′ c = mark-guards False c ′′

Γ�/{} P c Q

The conclusion is the current Hoare triple that is verified (e.g. Figure 1 on
page 385). The first premise is the subgoal that remains for verification after the
tactic swmc-guards is finished (e.g. Figure 4 on page 392). The second assump-
tion denotes the result of the software model checker and is the only part that
is provided as an oracle. The effect of the model checker is clearly integrated
into the Hoare Logic proof. The side-conditions on c, c ′ and c ′′ are solved by Is-
abelles simplifier. The auxiliary HOL functions mark-guards and strip-guards are
defined recursively on the HOL data-type of commands. The relevant equations
for Guard f g c are:

mark-guards f ′ (Guard f g c) = Guard f ′ g (mark-guards c)
strip-guards F (Guard f g c) = if f ∈ F then strip-guards F c

else Guard f g (strip-guards F c)

In the context of total correctness the tactic swmc-guards basically works
the same. The Hoare triple returned by the oracle is of course still an partial
correctness one. Hence the termination proof is left to the user.

6 Evaluation

It is hard to give a general measure of the speed-up that verification engineers
gain by the use of the integrated model checker because it depends on the con-
sidered problem. For the shown bubble-sort implementation, for example, our
verification condition generator could subsume all but two guard conditions. It
took just 5 tactics to verify these conditions by hand.

However, our example is very light-weight: The interesting part of the proof
consists of just about 40 tactics. Nevertheless, when employing the software
model checker, we could use a simpler invariant for the while loop. Finding a
suitable invariant is usually one of the most time consuming tasks during the
verification process. This does especially apply to nested while loops.

7 Conclusion and Future Work

We have developed the new software model checker ACSAR, which is—in our
application field—more powerful than competing tools. For example, if the code
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of our bubble-sort example is presented to the model checker Blast, it only
reports that the first and the last error location are not reachable. Presently we
are tackling aliasing problems in order to deal with pointer dereferencing. We
expect to essentially improve the treatment of pointers in the near future.

We have integrated the model checker into our verification environment. It
turned out to be very helpful that we have developed our own model checker
instead of integrating a standard tool. So we were able to adopt ACSAR to check
multiple error locations at a time.

The translation mechanism implemented by the swmc-guards tactic works in
two stages in order to facilitate the integration of similar automatic tools. One
such tool is a termination checker, which is already integrated; other tools might
follow.

Furthermore, we plan to translate properties with quantifiers. Though the
side conditions in guards are always quantifier-free, quantifiers might occur in
preconditions. Currently, these preconditions are not transferred to the model
checker. Moreover, we examine how the integration can be improved in order to
enable the model checker to reason about simple proof goals.
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Abstract. There are several algorithms for producing the canonical DFA from
a given NFA. While the theoretical complexities of these algorithms are known,
there has not been a systematic empirical comparison between them. In this work
we propose a probabilistic framework for testing the performance of automata-
theoretic algorithms. We conduct a direct experimental comparison between Hop-
croft’s and Brzozowski’s algorithms. We show that while Hopcroft’s algorithm
has better overall performance, Brzozowski’s algorithm performs better for
“high-density” NFA. We also consider the universality problem, which is tra-
ditionally solved explicitly via the subset construction. We propose an encoding
that allows this problem to be solved symbolically via a model-checker. We com-
pare the performance of this approach to that of the standard explicit algorithm,
and show that the explicit approach performs significantly better.

1 Introduction

Over the last 20 years automata-theoretic techniques have emerged as a major paradigm
in automated reasoning, cf. [39]. The most fundamental automata-theoretic model is
that of non-deterministic finite automata (NFA) [24]. (While the focus in automated
reasoning is often on automata on infinite objects, automata on finite words do play a
major role, cf. [28].) There are two basic problems related to NFA: finding the canon-
ical minimal deterministic finite automaton (DFA) that accepts the same language as
the original automaton (cf. [1] for an application in verification), and checking whether
a given automaton is universal (i.e., accepts all words, corresponding to logical valid-
ity). Both problems have been studied extensively (eg. [40, 41]) and several algorithms
for their solution have been proposed. For the canonization problem, two classical al-
gorithms are by Hopcroft [23], which has the best asymptotic worst-case complexity
for the minimization step, and by Brzozowski [10], which is quite different than most
canonization algorithms. The standard way to check for universality is to determinize
the automaton explicitly using the subset construction, and check if a rejecting set is
reachable from the initial state. We call this the explicit approach. In addition to the
explicit approach, we introduce in this paper a novel method, which reduces the univer-
sality problem to model checking [17], enabling us to apply symbolic model checking
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algorithms [12]. These algorithms use Binary Decision Diagrams (BDDs) [8], which
offer compact encoding of Boolean functions.

The complexities of Brzozowski’s and Hopcroft’s algorithms are known [40], but
there has not been a systematic empirical comparison between them. (A superficial eval-
uation in [20] claimed superiority of Hopcroft’s algorithm.) Similarly, the universality
problem is known to be PSPACE-complete [35], but a symbolic approach to universal-
ity has not been pursued. The comparison is complicated by the fact that there are no
really good benchmarks for automata-theoretic algorithms and it is not even clear what
types of automata should be included in such benchmarks.

We propose here evaluating automata-theoretic algorithms based on their perfor-
mance on randomly generated NFA. This is inspired by recent work on randomly gen-
erated problem instances [14], for example random 3-SAT [37]. We can vary the hard-
ness of the instances by controlling their density. In the case of NFA, there are two
densities to control: the density of the accepting states (i.e., ratio of accepting states to
total states) and the density of transitions (i.e., density of transitions per input letter to
total states). For both densities we are interested in constant ratios, which yields linear
densities. This is analogous to the model used in random 3-SAT problems [37]. (For
simplicity here we assume a unique initial state.)

It is not a priori clear that the linear-density model is an interesting model for study-
ing automata-theoretic algorithms. We show empirically that this probability model
does yield an interesting problem space. On one hand, the probability of universality
does increase from 0 to 1 with both acceptance density and transition density. (Unlike
the situation with random 3-SAT, the probability here changes in a smooth way and no
sharp transition is observed.) On the other hand, the size of the canonical DFA does
exhibit a (coarse) phase transition with respect to the transition density of the initial
NFA, peaking at density 1.25. (It is interesting to note that random directed graphs with
linear density are known to have a sharp phase transition with respect to connectivity at
density 1.0 [26].) The scaling of the size of the canonical DFA depends on the transi-
tion density, showing polynomial behavior for high densities, but super-polynomial but
subexponential behavior for low densities.

Once we have established that the linear-density model is an interesting model for
studying automata-theoretic algorithms, we go on to study the canonization and uni-
versality problems for that model. We first compare Hopcroft’s and Brzozowski’s can-
onization algorithms. Both algorithms’ running times display coarse phase transitions
that are similar to that for the size of the canonical DFA. Interestingly, however, while
Brzozowski’s algorithm peaks at transition density 1.25, Hopcroft’s algorithm peaks an
density 1.5. We show empirically that while Hopcroft’s algorithm generally performs
better than Brzozowski’s, the latter does perform better at high transition densities.

The universality problem can be solved both explicitly and symbolically. The ex-
plicit approach applies the classical subset construction (determinization) and after that
searches for a rejecting reachable set, i.e. a reachable set that doesn’t contain an accept-
ing state [35]. To solve universality symbolically, we observe that the determinized
automaton can be viewed as a synchronous sequential circuit. The reachability-of-
rejecting-set condition can be expressed as a temporal property of this digital system.
Thus, the universality problem can be reduced to a model-checking problem and solved
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by a symbolic model checker; we used two versions of SMV–Cadence SMV [13] and
NuSMV [15]. To get the best possible performance from the model checker, we con-
sidered several optimization techniques, including the encoding of the determinized
automata as a digital system, the representation of the transition relation, and the order
of the BDD variables. In our experiments we used the configuration that led to the best
performance.

The conventional wisdom in the field of model checking is that symbolic algorithms
typically outperform explicit algorithms on synchronous systems, while the latter out-
perform on asynchronous systems. In view of that, we expected our optimized symbolic
approach to outperforms the explicit, rather straightforward approach. Surprisingly, our
empirical results show that the conventional wisdom does not apply to the universality
problem, as the explicit algorithm dramatically outperformed the symbolic one.

The paper is organized as follows. In Section 2 we describe the random model and
examine its properties. In Section 3 we compare the performance of Hopcroft’s and
Brzozowski’s algorithms for the canonization problem. In Section 4 we compare the
performance of the explicit and symbolic algorithms for the universality problems. Our
conclusions are in Section 5.

2 The Random Model

We briefly introduce the notation used throughout this paper. Let A = (Σ,S, S0, ρ, F )
be a finite nondeterministic automaton, where Σ is a finite nonempty alphabet, S is a
finite nonempty set of states, S0 ⊆ S is a non-empty set of initial states, F ⊆ S is the
set of accepting states, and ρ ⊆ S ×Σ × S is a transition relation. Recall that A has a
canonical, minimal DFA that accepts the same language [24]. The canonization prob-
lem is to generate this DFA. A is said to be universal if it accepts Σ∗. The universality
problem is to check if A is universal.

In our model the set of initial states S0 is the singleton {s0} and the alphabet Σ is
the set {0, 1}. For each letter σ ∈ Σ we generate a random directed graphDσ on S with
k edges, corresponding to transitions (s, σ, s′). Hereafter, we refer to the ratio r = k

|S|
as the transition density for σ (intuitively, r represents the expected outdegree of each
node for σ). In our model the transition density of D0 and D1 is the same, and we refer
to it as the transition density of A. The idea of using a linear density of some structural
parameter to induce different behaviors has been quite popular lately, most notably in
the context of random 3-SAT [37].

Our model for Dσ is closely related to Karp’s model of random directed graphs [26];
for each positive integer n and each p with 0 < p < 1, the sample space consists of all
labeled directed graphs Dn,p with n vertices and edge probability p. Karp shows that
when n is large andnp is equal to a constant greater than 1, it is very likely that the graph
contains one large strongly connected component and several very small components.
When np < 1, the expected size of the set of reachable nodes is very small.

It is known that random graphs defined as in [26] in terms of their edge probability or
defined as here in terms of the number of edges display essentially the same behavior
[7]. Thus, Karp’s np = 1 corresponds to density 1 in our model. While Karp’s con-
siders reachability, which would correspond to non-emptiness [24], we consider here
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canonization and universality. Karp’s phase transition at density 1 seems to have no ef-
fect on either canonization or universality. The density of the directed graphs underlying
our automata is 2r, but we see no interesting phenomenon at r = 0.5.

In our model the number of final states m is also a linear function of the total number
of states, and it is given by a final state density f = m

|S| . The final states themselves are
selected randomly, except for the initial state, which is always chosen to be an accepting
state1. This additional restriction avoids the cases when an automaton is trivially non-
universal because the initial state is not accepting. (One may also consider a model with
a fixed number of accepting states rather than with a linear density; we found that such
a model behaves similarly to the one we consider here).

In Figure 12 we present the probability of universality as a function of r and f . To
generate each data point we checked the universality of 200 random automata with
|S| = 30. The behavior here is quite intuitive. As transition and acceptance densities
increase, the automaton has more accepting runs and is therefore more likely to be
universal. Note that even if all states are accepting (f = 1), the automaton is still not
guaranteed to be universal. This follows from the fact that the transition relation is not
necessarily total, and the missing transitions are replaced by an implicit transition to a
rejecting sink state.
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A completely different pattern emerges when we look at the size of canonical mini-
mized DFA (mDFA) corresponding to the input NFA A (Figure 2). For each data point
on the graph we determinized and minimized 200 random automata and took the me-
dian of the size of the minimized DFA (we chose to report the median rather than the
mean because the median is less affected by outlying points). We refer to the latter as
the canonical size. While the effect of the acceptance density on the canonical size is
not too dramatic, transition density does have a dramatic effect on canonical size. The
latter rises and then falls with tradition density, peaking at r = 1.25. We see that the
canonical size has a coarse phase transition at that density.

1 We thank Ken McMillan for this suggestion.
2 We recommend viewing the figures in this paper online: www.cs.rice.edu/∼vardi/papers/
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Finally, we investigated how the canonical size scales with respect to the size of
the input NFA A. Since the values of f do not have a large effect on the canonical
size, we fixed f = 0.5 here. Figure 3 shows that canonical size scales differently at
different transition densities. The scaling curves exhibit a range of behaviors. For r ≤
1.25 they grow super-polynomially but subexponentially (in fact, a function of type

ab
√
|S| provides a very good approximation), for r = 1.5 the growth is polynomial,

and for higher transition densities they remain almost constant. Interestingly, though in
the worst case the canonical size may scale exponentially [34], we do not observe such
exponential scaling in our probabilistic model.
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Based on these results we argue that our proposed model allows for “interesting”
behavior as we vary r, f , and the size of the input NFA. In the next sections we use this
model to study the performance of algorithms for canonization and universality.

3 Canonization

The canonization problem consists of constructing the minimal DFA that accepts the
same language as a given (possibly non-deterministic) finite automaton. In addition
to its theoretical appeal, this problem has an array of applications, from compilers to
hardware circuit design to verification [40].

There are two different approaches to canonization. The first approach involves a
two-step process: first, determinize the NFA, and second, minimize the resulting DFA.
To complete the first step, we use the subset construction, which we present briefly
here (see eg. [31] for a detailed description). Let A = (Σ,S, S0, ρ, F ) be an NFA.
We construct Ad = (Σ, 2S , {S0}, ρd, Fd), where Fd = {T ∈ 2S : T ∩ F �= ∅}
and ρd(T1, a, T2) ⇐⇒ T2 = {t2 ∈ S : ρ(t1, a, t2) for some t1 ∈ T1}. The subset
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construction can be applied on the fly: starting with the initial state S0, we determine
the “next” state for each letter, and then recur. The automaton Ad is deterministic and
accepts exactly the same language as A. For the second step, Watson [40] presents 15
algorithms that can be used to minimize a DFA, including one of the simplest (Huff-
man’s [25]), and the one with the best known worst-case complexity (Hopcroft’s [23]).
The second approach to canonization, due to Brzozowski [10], avoids the minimization
step, but applies the determinization step twice. In our study we compare the two ap-
proaches by evaluating the performance of Hopcroft’s and Brzozowski’s algorithms on
randomly generated automata.

We present briefly the idea of the two algorithms. Let L(A(p)) be the language ac-
cepted by the automaton A starting from the state p. Given a DFA, Huffman’s and
Hopcroft’s algorithms construct an equivalence relation E ⊆ S × S with the following
property: (p, q) ∈ E ⇔ L(A(p)) = L(A(q)). The equivalence relation E is computed
as the greatest fixed point of the equation

(p, q) ∈ E ⇔ (p ∈ F ⇔ q ∈ F )∧(∀a ∈ Σ,(p, a, p′) ∈ ρ,(q, a, q′) ∈ ρ : (p′, q′) ∈ E).

In Huffman’s algorithm all states are assumed equivalent until proven otherwise.
Equivalence classes are split repeatedly until a fixpoint is reached. The algorithm runs
in asymptotic time O(|S|2). Hopcroft made several clever optimizations in the way
equivalence classes are split, which allowed him to achieve the lowest known running
time O(|S| log |S|) [21, 23]. Hopcroft’s algorithm also significantly outperforms Huff-
man’s algorithm in practice, so we can ignore Huffman’s algorithm from this point on.
Strictly speaking, Hopcroft’s algorithm is just the DFA minimization algorithm, but we
take it here to refer to the canonization algorithm, with determinization in the first step
and minimization in the second step. Because the subset construction is applied in the
first step, the worst-case complexity of this approach is exponential.

Brzozowski’s algorithm is a direct canonization algorithm, and it does not use mini-
mization, but, rather, two determinization steps. To describe the algorithm, we introduce
some notation. If A is an automaton (Σ,S, S0, ρ, F ), then reverse(A) is the automaton
AR = (Σ,S, F, ρR, S0), where ρR ⊆ S ×Σ ×S and (s2, a, s1) ∈ ρR ⇔ (s1, a, s2) ∈
ρ. Intuitively, reverse switches the accepting and the initial states, and changes the di-
rection of the transitions. Let determinize(A) be the deterministic automaton obtained
from A using the subset construction, and let reachable(A) be the automaton A with
all states not reachable from the initial states removed.

Theorem 1 (Brzozowski). Let A be an NFA. Then

A′ = [reachable ◦ determinize ◦ reverse]2(A)

is the minimal DFA accepting the same language as A.

It is not immediately obvious what the complexity of Brzozowski’s algorithm is. The
key to the correctness of the algorithm is, however, the following lemma.

Lemma 1. Let A = (Σ,S, {s0}, ρ, F ) be a DFA with the property that all states in S
are reachable from s0. Then reachable(determinize(reverse(A))) is a minimal-state
DFA.
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Since the canonical size is at most exponential in the size of the input automaton and
since reachable and determinize can be combined to generate only reachable sets
(which is exactly what we do in Hopcroft’s algorithm), it follows that the worst-case
complexity of Brzozowski’s algorithm is also exponential.

For our experimental study we used the tool dk.brics.automaton [32], developed by
Anders Møller. All experiments were performed on the Rice Terascale Cluster3, which
is a large Linux cluster of Itanium II processors with 4 GB of memory each.

We first study performance on fixed-size automata. Again, our sample contains 200
random automata per (r, f) pair, and median time is reported (as we mentioned earlier,
median time is less affected by outlying points than the mean. These, and all subse-
quent timing data, refer to the median). To generate each data point in Figure 4, we
determinized and then minimized with Hopcroft’s algorithm each automaton; we mea-
sured combined running time for both steps. Note that Figure 4 is similar to Figure 2,
but the two peaks occur in different densities (r = 1.5 and r = 1.25, respectively). As
in Figure 2, for a fixed transition density, the impact of acceptance density on running
time is not large.
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Fig. 5. Canonization using Brzozowski

For Brzozowski’s algorithm, we measured the total time to perform the two
reachable ◦ determinize ◦ reverse steps. The results are presented in Figure 5.
The peak for Brzozowski’s algorithm coincides with the peak of Figure 2 (r = 1.25).
For a fixed transition density, the impact of acceptance density on running time is much
more pronounced that in Hopcroft’s algorithm.

Our experiments indicate that neither Hopcroft’s nor Brzozowski’s algorithm dom-
inates the other across the whole density landscape. In Figure 6 we show the running
times of both algorithms for fixed f = 0.5. In Figure 6(a) the areas under both curves
are 691 for Hopcroft and 995.5 for Brzozowski, and in Figure 6(b) the areas are 1900 for
Hopcroft and 5866 for Brzozowski, so Hopcroft’s algorithm has a better overall perfor-
mance, but for r > 1.5 Brzozowski’s algorithm is consistently faster. The conclusion is
that Hopcroft’s algorithm is faster for low-density automata, while Brzozowski’s algo-
rithm is better for high-density automata. It remains to be seen if this conclusion applies
also for automata that arise in practical applications, e.g, [1].

3 http://support.rtc.rice.edu/
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Fig. 6. Comparison between Hopcroft’s and Brzozowski’s algorithms for fixed f = 0.5

Similar to the approach of [36], we also investigated how Hopcroft’s and Brzozow-
ski’s algorithms scale with automaton size. We fixed the acceptance density at f = 0.5,
because its effect on the running time is less dramatic than that of the transition den-
sity. The results (Figure 7) indicate that none of the algorithms scales better than the
other over the whole landscape. Brzozowski’s algorithm has an edge over Hopcroft’s for
r ≥ 1.5, and the opposite is true for the lower densities. At the peak, Hopcroft’s algo-
rithm scales exponentially, but generally the algorithms scale subexponentially. Again
we see that Hopcroft’s algorithm is better at low densities, while Brzozowski’s algo-
rithm is better at high densities.
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4 Universality

The straightforward way to check for universality of an NFA A = (Σ,S, S0, ρ, F ) is to
determinize it, using the subset construction, and then verify that every reachable state
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is accepting and that the transition relation is total. We optimize this by modifying the
subset construction algorithm slightly. When a “next” state is generated, the algorithm
first checks whether it is accepting, and if this is not the case the algorithm terminates
early, indicating that the automaton is not universal.

An alternative approach is to view the determinized automaton Ad = (Σ, 2S, {S0},
ρd, Fd), with Fd = {T ∈ 2S : T ∩ F �= ∅} and ρd(T1, a, T2) ⇐⇒ T2 = {t2 ∈
S : ρ(t1, a, t2) for some t1 ∈ T1}, as a sequential circuit (SC). An SC [22] is a tuple
(I,L, δ, α) where I is a set of input signals, L is a set of registers, δ : 2L × 2I → 2L is
the next-state function, describing the next assignment of the of the registers given their
current assignment and an input assignment, and α ∈ 2L is an initial assignment to the
registers. (Usually we also have output signals and an output function, but this is not
needed here.) The alphabet Σ = {0, 1} corresponds here to a single input signal. The
state set S can be viewed as the register set L; a set in 2S can be viewed as a Boolean
assignment to the state in S, using the duality between sets and their characteristic
functions. The intuition is that every state in S can be viewed as a register that is either
“active” or “inactive”. The initial state s0 correspond to an initial assignment, assigning
1 to s0 and 0 to all other registers, as only s0 is active, initially. Finally, the transition
relation ρd, which is really a function, correspond to the next-state function, where
δ(P, σ) = Q when ρd(P, a,Q) holds (note that we view here subsets of S as Boolean
assignments to S). Universality of A now correspond to an invariance property of Ad,
expressed in CTL as AG(

∨
s∈F s). Thus, we can check universality using a model

checker.
In our evaluation we used two symbolic model checkers, both referred to as SMV:

Cadence SMV [33] and NuSMV [15]. SMV is based on binary decision diagrams
(BDDs) [8, 9], which provide a canonical representation for Boolean functions. A BDD
is a rooted, directed acyclic graph with one or two terminal nodes labeled 0 or 1, and
a set of variable nodes of out-degree two. The variables respect a given linear order
on all paths from the root to a leaf. Each path represents an assignment to each of the
variables on the path. Since there can be exponentially more paths than vertices and
edges, BDDs are often substantially more compact explicit representations, and have
been used successfully in the verification of complex circuits [12]. To encode the SC
for Ad in SMV, we use the states in S as state variables, corresponding to the regis-
ters. The SC is defined via the init and next statements: init(s) = 1 iff s = s0, and
next(s) = 1 iff

∨
ρ(t,σ,s) t, when the input is σ; we provide an example in Figure 8. We

use a Boolean array to encode the registers, and a variable input to encode the input
symbol. The specification in the example is the universality property. The NFA A is
universal iff the sequential circuit corresponding to Ad satisfies the specification.

In order to improve the running time of the model checkers we considered several
optimization techniques.

Sloppy vs. Fussy Encoding. Actually, to check universality we need not determinize A.
Instead, we can construct the non-deterministic automatonAn = (Σ, 2S, {S0}, ρn, Fd),
with Fd = {T ∈ 2S : T ∩ F �= ∅} and ρn(T1, a, T2) ⇐⇒ T2 ⊆ {t2 ∈
S : ρ(t1, a, t2) for some t1 ∈ T1}. It is easy to see that A is universal iff every
reachable state in An is accepting. Intuitively, An allows more states to be active
in the subset construction. Unlike Ad, we cannot view An as an SC, since it is not
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MODULE main
VAR
state: array 0..3 of boolean; input: boolean;

ASSIGN
init(state[0]) := 1; init(state[1]) := 0;
init(state[2]) := 0; init(state[3]) := 0;

next(state[0]) := ((state[1] & input) |
(state[2] & ! input) | (state[3] & input));

next(state[1]) := (state[2] & ! input);
next(state[2]) := (state[3] & input);
next(state[3]) := (state[0] & ! input);

SPEC
AG ( state[0] | state[3] );

Fig. 8. A simple automaton and its encoding in SMV

deterministic. SMV, however, can also model non-deterministic systems. Rather than
require that next(s) = 1 iff

∨
ρ(t,σ,s) t, when the input is σ, we requite that next(s) = 1

if
∨

ρ(t,σ,s) t, when the input is σ (the “iff” is replaced by “if”). We refer to the initial
encoding as fussy and to this encoding as sloppy. In an explicit construction the sloppy
approach would generate more subsets, but in a symbolic approach the sloppy approach
uses “looser” logical constraints (trans, rather than assign), which might result in
smaller BDDs. See Figure 9 for a sloppy encoding of the previous example.

...
TRANS

((state[1] & input) | (state[2] & (! input)) |
(state[3] & input)) -> next(state[0]);

(state[2] & (! input)) -> next(state[1]);

(state[3] & input) -> next(state[2]);

(state[0] & (! input)) -> next(state[3]);

Fig. 9. Sloppy encoding of the automaton in Figure 8

Monolithic vs. Conjunctive Partitioning. In [11] Burch, Clarke and Long suggest an
optimization of the representation of the transition relation of a sequential circuit. They
note that the transition relation is the conjunction of several small relations, and the
size of the BDD representing the entire transition relation may grow as the product of
the sizes of the individual parts. This encoding is called monolithic. The method that
Burch et al. suggest represents the transition relation by a list of the parts, which are
implicitly conjuncted. Burch et al. call their method conjunctive partitioning, which has
since then become the default encoding in NuSMV and Cadence SMV.

Conjunctive partitioning introduces an overhead when calculating the set of states
reachable in the next step. The set of transitions has to be considered in some order, and
choosing a good order is non-trivial, because each individual transition may depend on
many variables. In large systems the overhead is negligible compared to the advantage
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of using small BDDs [11]. However, in our models the transitions are fairly simple, and
it is not immediately clear whether monolithic encoding is a better choice.

Variable Ordering. When using BDDs, it is crucial to select a good order of the vari-
ables. Finding an optimal order is itself a hard problem, so one has to resort to different
heuristics. The default order in NuSMV corresponds to the order in which the variables
are first declared; in Cadence SMV it is based on some internal heuristic. The orders that
we considered included the default order, and the orders given by three heuristics that
are studied with respect to tree decompositions: Maximum Cardinality Search (MCS),
LEXP and LEXM [27]. In our experiments MCS proved to be better than LEXP and
LEXM, so we will only report the results for MCS and the default order.

In order to apply MCS we view the automaton as a graph whose nodes are the states,
and in which two nodes are connected iff there is a transition between them. MCS
orders [38] the vertices from 1 to |S| according to the following rule: The first node is
chosen arbitrarily. From this point on, a node that is adjacent to a maximal number of
already selected vertices is selected next, and so on. Ties can be broken in various ways
(eg. minimize the degree to unselected nodes [3] or maximize it [5], or select one at
random), but none leads to a significant speedup. For our experiments, when we used
MCS we broke ties by minimizing the degree to the unselected nodes.

Traversal. In our model the safety condition is of the form AGα: i.e. α is a property that
we want to hold in all reachable states. CTL formulas are normally evaluated backwards
in NuSMV [16], via the greatest fixpoint characterization:

AGα = gfpZ [α ∧ AXZ]

This approach (“backwards traversal”) can be sometimes quite inefficient. As an opti-
mization (only for AGα formulas), NuSMV supports another strategy: calculate the set
of reachable states, and verify that they satisfy the property α (“forward traversal”). In
Cadence SMV, forward traversal is the default mode, but backwards traversal is also
available. We considered forward and backwards traversal for both tools.
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Fig. 10. Optimizing the running times of NuSMV and Cadence SMV
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Fig. 11. Optimizing NuSMV and Cadence SMV (scaling)

Evaluating The Symbolic Approach. Generally, running times of the various symbolic
approaches increase with both transition density and acceptance density. In Figure 10
we present the effect of the first three optimizations (for this set of experiments forward
traversal direction was used) to the running times of NuSMV and Cadence SMV for
fixed size automata. No single configuration gives the best performance throughout
the range of transition density. Nevertheless, we can make several conclusions about
the individual optimizations. Ordering the variables with MCS is always better than
using the default ordering. Monolithic encoding is better than conjunctive partitioning
for low transition density; the threshold varies depending on the tool and the choices
for the other optimizations. Sloppy encoding is better than fussy when used together
with monolithic encoding; the opposite is true when using conjunctive partitioning. The
only exception to the latter is sloppy monolithic encoding in NuSMV, which gives the
worst performance. Overall, for both tools, the best performance is achieved by using
monolithic-MCS-sloppy up to r = 1.3, and conjunctive-MCS- thereafter (the results
for sloppy and fussy are too close to call here).

In order to fine-tune the two tools we next looked at their scaling performance (Fig-
ure 11). We considered automata with f = 0.9 and r = 2.5 (our choice is explained
later). We fixed the transition encoding to conjunctive and variable order to MCS, and
varied traversal direction and sloppy vs. fussy encoding. For both tools backwards
traversal is the better choice, not surprisingly, since 90% of the states are accepting
and a fixed point is achieved very quickly. When using backwards traversal, sloppy en-
coding gives better performance, and the opposite is true when using forward traversal.
Overall, the best scaling is achieved by Cadence SMV with backwards traversal and
sloppy encoding, and this is what we used for comparison with the explicit approach.

Comparing The Explicit and Symbolic Approaches. We compared the performance of
the explicit and the symbolic approaches on a set of random automata with a fixed initial
size. For each data point we took the median of all execution times (200 sample points).
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Fig. 12. Median time to check for universality with the explicit algorithm

Our results indicate that for small automata the explicit algorithm is much faster than the
symbolic. In fact, even when using automata with initial size |S| = 100, the median of
the execution time is 0 almost everywhere on the landscape (see Figure 12). In contrast,
even for automata with |S| = 30 the symbolic algorithm takes non-negligible time
(Figure 10).
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Fig. 13. Scaling comparison of the symbolic and the explicit algorithms

As before, we also investigated which algorithm scales better as we increase the
initial size of the automata. For this set of experiments, we fixed the densities of the
final states and the transitions at f = 0.9 and r = 2.5 (i.e. on of the furthest edge of
the landscape). We chose this point because almost everywhere else the median exe-
cution time of the explicit algorithm is 0 for small automata. We varied the initial size
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of the automata between 5 and 600. The results are presented on Figure 13. The sym-
bolic algorithm (Cadence SMV) is quite slower than the explicit throughout the whole
range. All algorithms scale sub-exponentially; however, the symbolic algorithm scales

2O(
√
|S|) worse than the explicit one (Figure 13(b)). We also present data for NuSMV,

which scales the worst of the three algorithms and is the slowest for |S| > 20. We note
that at lower transition and/or acceptance density, the advantage of the explicit approach
over the symbolic approach is much more pronounced.

5 Discussion

In this paper we proposed a probabilistic benchmark for testing automata-theoretic al-
gorithms. We showed that in this model Hopcroft’s and Brzozowski’s canonization al-
gorithms are incomparable, each having an advantage in a certain region of the model.
In contrast, the advantage of the explicit approach to universality over the symbolic
approach is quite clear.

An obvious question to raise is how “realistic” our probabilistic model is. There
is no obvious answer to this question; partly because we lack realistic benchmarks of
finite automata. Since automata represent finite-state control, it is hard to see why ran-
dom directed graphs with linear density do not provide a realistic model. Hopefully,
with the recent increase in popularity of finite-state formalisms in industrial tempo-
ral property specification languages (c.f., [4, 6]), such benchmarks will become avail-
able in the not-too-far future, enabling us to evaluate our findings on such benchmarks.
While our results are purely empirical, as the lack of success with fully analyzing re-
lated probabilistic models indicates (cf. [19, 18, 2]), providing rigorous proof for our
qualitative observations may be a very challenging task. At any rate, gaining a deeper
understanding why one method is better than another method is an important chal-
lenge. Another research direction is to consider minimization on the fly, as, for example,
in [30].

Our most surprising result, we think, is the superiority of the explicit approach to
universality over the symbolic approach. This runs against the conventional wisdom
in verification [12]. One may wonder whether the reason for this is the fact that our
sequential circuits can be viewed as consisting of “pure control”, with no data compo-
nent, unlike typical hardware designs, which combine control and data. This suggests
that perhaps in model checking such designs, control and data ought to be handled by
different techniques. Another possible explanation is that the sequential circuits corre-
sponding to the determinized NFA have registers with large fan-in, while realistic cir-
cuits typically have small-fan-in registers. We believe that these point deserve further
study.

In future work we plan to extend the comparison between the explicit and symbolic
approaches to universality to automata on infinite words, a problem of very direct rel-
evance to computer-aided verification [29]. It is known that complementation of such
automata is quite intricate [29], challenging both explicit and symbolic implementation.

Acknowledgments. We are grateful to Andreas Podelski for raising the question of
comparing Hopcroft’s and Brzozowski’s algorithms.
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Abstract. This paper presents a methodology for automatically val-
idating program transformation rules that are part of a calculus for
Java source code verification. We target the Java Dynamic Logic cal-
culus which is implemented in the interactive prover of the KeY system.
As a basis for validation, we take an existing SOS style rewriting logic
semantics for Java, formalized in the input language of the Maude sys-
tem. That semantics is ‘lifted’ to cope with schematic programs like the
ones appearing in program transformation rules. The rewriting theory
is further extended to generate valid initial states for involved program
fragments, and to check the final states for equivalence. The result is used
in frequent validation runs over the relevant fragment of the calculus in
the KeY system.

1 Introduction

In our work we relate two formal artifacts dealing with the programming lan-
guage Java. The first is a sequent calculus for Java Dynamic Logic (JavaDL),
a program logic for Java source code. This calculus [2] is implemented in the
interactive prover of the KeY system [1]. The other artifact is a rewriting logic
semantics [11, 10] for Java, written as a rewrite theory RJava in the input lan-
guage of the Maude system [5]. The objective of the work is to achieve an auto-
matic validation of certain parts of the JavaDL calculus with respect to RJava ,
taking advantage of the executability of RJava .

The particular calculus rules we want to validate with this approach are pro-
gram transformation rules of the form (cf. Sect. 2)

Γ � 〈Π ′ rs〉 φ,Δ
Γ � 〈Π rs〉 φ,Δ (1)
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Roughly speaking, this proof rule replaces, in the beginning of a list of Java
statements, a match of Π by the corresponding instance of Π ′. (rs stands for
the list of remaining statements.) Even if this appears as a very special case, a
large and important part of the Java related rules of the JavaDL calculus (about
45%) is of exactly that kind! Note that the applicability of rules of this particular
shape does not depend on the logical context, as Γ , Δ, and φ match arbitrary
(lists of) formulae. Neither is the context affected by the rule application. The
soundness of such a rule only depends on Π and Π ′. Therefore, validating the
rule reduces to showing semantical equivalence of Π and Π ′.

It is important to note that one cannot simply ‘run’ RJava , in spite of its
executability, on Π and Π ′. The reason is that the statements in Π and Π ′ are
not in plain Java syntax, but schemata for Java code. An example for a program
transformation rule is

Γ � 〈typeof(e) v1 = e; typeof(n) v2 = n; l = v1 ∗ v2; rs〉 φ,Δ
Γ � 〈l = e ∗ n; rs〉 φ,Δ (2)

Here, l, e, n, rs, v1, and v2 are schema variables, matching certain syntactical cat-
egories (Sect. 2), and typeof delivers the static type of its argument. Comparing
such schematic program fragments raises several issues.

First of all, RJava is made for computing with concrete entities, like concrete
memory locations, concrete (primitive) values, concrete object references, and
so forth. It is an essential part of this work to have extended RJava to a lifted
Java semantics, RJavalift , executing also schematic, i.e. abstract, Java code. Some
central ingredients are the storage of conditional values in the memory, and pa-
rameterizing the values of abstract expressions by snapshots of the dynamic
parts of the execution state. One can easily imagine that such an abstract exe-
cution would explode beyond feasibility if applied to longer program schemata.
However, the pragmatics of program transformation rules (used for verification)
make the considered program fragments short enough to keep the execution by
RJavalift feasible.

Another issue is that the syntactical categories of schema variables, while
sufficient for the proof rule, are not detailed enough to induce a unique execution
by RJava , which for instance would need to distinguish between local variables
and object fields as instances of l. This problem is addressed by the generation
of all possible (and often very many) combinations.

One of the potential errors in a transformation rule is that certain instan-
tiations are forgotten, namely those in which the instance of different schema
variables coincide. The validation takes care of this by creating all possible uni-
fying combinations of variables before checking for equivalence.

Besides our restriction to transformation rules, we are further constrained by
the fact that RJava , in its current form, does not support all features of sequen-
tial Java. In spite of those restrictions, we could apply the automated validation
to 56 rules, three of which turned out to be incorrect. We also discovered some
errors in the semantics. As noted in [10], the whole process can be understood
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as a mutual debugging, which we consider very natural in a context where the
ultimate reference (here the Java language specification [7]) is informal.

In general, what we needed for our purpose was a semantic formalism which is
executable yet abstract. Rewriting logic, with its special support for associativity
and commutativity, suited this purpose well. For instance, we need to represent
a memory and all we know is that it maps a location L to a value V. The
memory can be represented by [L,V] rm, with rm being a constant representing
the arbitrary rest of the memory, and the juxtaposition with empty syntax being
the associative and commutative multiset union, allowing us to abstract away
from the concrete position of the location L in the memory. Such abstractions are
heavily used in semantics formulated in a rewriting logic framework [10], where
states are concrete but left hand sides of rewrite rules are abstract. We need
abstraction even more, as in our lifted semantics even the states are abstract.

The paper is structured as follows. In the next two sections we present the
two formalisms which we are concerned with: the program transformation rules
of the JavaDL calculus (Sect. 2) and the rewriting logic which we use as basis for
the validation (Sect. 3). Our approach to validate program transformation rules
is then described in Sect. 4. In Sect. 5 we explain our lifting of the semantics. In
Sect. 6, our implementation and experiences are sketched, before we conclude in
Sect. 7 with a comparison to other approaches.

2 A Calculus for Java Source Code Verification

The KeY system aims at the deductive verification of sequential Java programs.
The verification is based on a sequent calculus for JavaDL, which covers, among
the propositional and first-order rules, full sequential Java1.

Java Dynamic Logic (JavaDL) is a multi-modal logic, described in detail in [2].
For the purpose of this paper it is sufficient to state roughly that sub-formulae
can be of the shapes [π]φ and 〈π〉φ, where π is a sequence of Java statements
and φ is again a formula. The intuitive meaning of [π]φ is that, if π terminates
normally φ holds in the final state; 〈π〉φ means that π must terminate and
afterwards φ must hold. The logic is closed under the usual first-order quantifiers
and junctors, so the typical Hoare triple {ψ}π{φ} is formalized as ψ → [π]φ. In
the following we only consider formulae with modality 〈·〉, the other modality is
treated exactly the same way.

Example 1. For local variables i and j of type int, the following JavaDL for-
mula, which is valid in all states, says that after executing the piece of Java code
in angled brackets j ∗ j equals i:

〈i=(j=i)∗(i++);〉 j ∗ j .= i (3)

The JavaDL calculus rules that work on sequents consisting of JavaDL for-
mulae can be divided into the following categories:
1 More precisely, the target language is JavaCard, but the calculus covers a larger

fragment of Java which can be characterized as Java with exactly one thread and
without garbage collection.
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1. axiomatic program transformation rules,
2. axiomatic rules connecting the program and first order logic,
3. axiomatic first-order or theory specific rules,
4. derived rules, i.e. rules whose application could be simulated by applying a

series of axiomatic rules,
5. axiomatic rules that apply state changes (updates) on first order formulae.

The basic concept behind the JavaDL calculus is the paradigm of symbolic ex-
ecution. In order to resolve a formula 〈π1 . . . πn〉 φ (with statements π1, . . . , πn),
π1 is taken into focus first. If it contains complex expressions, like
i=(j=i)∗(i++);, rules of group 1 transform it into less complex expressions, in
our example to int eval1=(j=i); int eval2=i++; i=eval1*eval2;. Other-
wise the state change of the first statement is, by applying rules of group 2, mem-
orized as an update written in front of the modality. E.g., (3) is transformed—
by several rule applications—into the equivalent formula U 〈〉 j ∗ j .= i where
U = {i := i ∗ i, j := i} is an update capturing the effect of the considered
code as a parallel assignment to i and j. When code in a modality is completely
worked off, rules of group 5 make the formula pure first order, by simplifying
and executing the accumulated updates.

All of the rules from the groups 1 to 4 are implemented as taclets [3]. Taclets
are representations of traditional rule schemes, but additionally have an oper-
ational meaning. Also, they embody a precise notion of schematic expressions.
This work is only concerned with taclets of group 1. These taclets are mostly
concerned with correctly reflecting the sophisticated evaluation order of com-
plex Java expressions. Due to this non-trivial task and the sheer number (see
Sect. 6) of rules of this kind, correctness checks are highly desired. In the sequel,
we will detail only those parts of taclets which are relevant for this work.

A program transformation rule is written as a taclet as follows:

find(〈Π rs〉 b) varcond(new T1v1, . . . , Tnvn) replacewith(〈Π ′ rs〉 b) (4)

where Π,Π ′ are (schematic) sequences of Java statements. We call taclets which
comply with this shape program transformation taclets (PTT). Intuitively, such
taclets implement the concept of rewrite rules: when they are applied during
proof construction, an occurrence of a formula 〈Π rs〉φ is rewritten to 〈Π ′ rs〉φ.
Π ′ may contain new program variables declared in the varcond section.

Example 2. This is a PTT:

find(〈l = e ∗ n; rs〉 b)
varcond(new typeof(e) v1, typeof(n) v2)
replacewith(〈typeof(e) v1 = e; typeof(n) v2 = n; l = v1 ∗ v2; rs〉 b)

(5)

Traditionally, one would denote the represented sequent rule as (2). Note how-
ever, that—in contrast to that rule—the taclet is applicable on both sides of
the sequent, and even on sub-formulae of sequent formulae. Most importantly
however, side conditions on the instantiations of the rule schema are explicitly
defined with taclets.
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Table 1. Schema variable sorts and instantiations for Example 3

Schema variable sort Conditions on instantiations ι
Schema var.
in (5) ι in (3)

Formula ι is a formula b j ∗ j .= i
Expression ι is an expression e (j=i)
Lefthandside ι is a local variable or a field with

either no prefix or a prefix not
possibly causing side-effects

l i
v1 eval1
v2 eval2

NonSimpleExpression ι is an expression but does not sat-
isfy the Lefthandside condition and
is not a (possibly negated) literal

n i++

RemainingStatements arbitrary sequence of statements rs (empty)

Clearly, a taclet must be interpreted as a pattern: For instance, (5) should
be applicable for all formulae b, for all Java expressions l, e, n, v1, v2 which
satisfy certain criteria, and for all sequences of Java statements rs. Expressions
in taclets usually contain schema variables (printed in sans-serif here) to capture
this need for genericity. When a taclet is applied, schema variables are instan-
tiated with concrete expressions. Schema variables are assigned conditions and,
in a special declaration section, sorts. Conditions and sorts determine which
concrete expressions are legal instantiations for the schema variable. A taclet
is applicable if there are legal and consistent instantiations of all the schema
variables of the taclet. Table 1 gives an overview of the most important schema
variable sorts. All terminology in this table refers to [7]. For PTTs, there is only
the condition varcond(new T1v1, . . . , Tnvn), which requires instances of v1, . . . , vn

to be fresh and of the (Java) types T1, . . . , Tn.

Example 3. Consider Table 1. Let the schema variables of the taclet (5) be de-
clared as shown in the third column. The instantiations in the last column sat-
isfy the conditions imposed by the second column and by the varcond condition
of (5). Thus, taclet (5) is applicable to formula (3).

Taclets can be applied in a proof through either user interaction or the auto-
mated deduction engine. The effect of an application of a PTT is quite intuitive:
the occurrence in the formula matching the find part of the taclet is replaced by
the instantiated version of the replacewith part.

There is another bit to make the description of PTTs complete: The typeof(·)
construct provides taclets with the static types of (instantiated schematic) ex-
pressions. This meta construct [3] allows for introducing declarations into the
results of taclet applications as the following example demonstrates.

Example 4. When the taclet (5) is applied to (3) the following formula results:

〈int eval1=(j=i); int eval2=i++; i=eval1*eval2;〉 j ∗ j .= i

Because of the variable condition in (5) two new variables of type int have been
introduced since the expressions j=i and i++ are both of that type.
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3 The Rewriting Logic Semantics of Java

In this section, we introduce the semantics we validate against, and the frame-
work in which it is formalized.

3.1 Rewriting Logic and Maude

Rewriting logic [9] is the logical framework in which the semantics of Java we
want to use is given. A (simplified) rewrite theory is a triple (Σ,E,R) where
(Σ,E) is an equational theory with the signature Σ of operations and sorts
and the set E of equations, and R is a set of rewrite rules. The equations and
rewrite rules can also be conditional. The rewrite rules are always used modulo
the equations. A rewrite rule t ⇒ t′, with t and t′ terms over the signature Σ,
is an inference from a logical point of view while from a computational point of
view it is a concurrent transition of states.

Maude [5] is a high performance implementation of rewriting logic. Equations
in Maude theories are directed, have to be terminating and need to have the
Church-Rosser property. In Maude we mostly work on multisets as data struc-
tures due to the possibility of using the internal associativity, commutativity
and identity axioms which are declared as attributes for an operator.

3.2 The Maude Rewriting Semantics of Java RJava

The rewrite theory for Java semantics2, calledRJava in the sequel, was developed
by Feng Chen at the University of Illinois at Urbana-Champaign and presented
in the paper [6]. This rewriting logic theory is given as an executable specifica-
tion in Maude, thus it gives us a Java interpreter for free. The semantics uses
continuation-passing style (CPS) to keep track of the code which is to be exe-
cuted. Continuations can roughly be seen as an executable stack of statements
which can be restored anytime. The semantics uses an explicit environment and
memory model, i.e. variables are mapped to locations inside the environments
and those locations are mapped to values in the memory. We call the whole state
information, including the memory and environments, configuration from now
on. As is usual within such rewriting logic specifications most rewrite rules and
equations can be used locally and do not need to specify precisely the rest of the
state in which they can be used. There is no documentation by the developers
of this Java semantics but to get an impression on how it is structured we rec-
ommend the paper [11] where a (simpler) semantics for a CaML-like language
has been developed in great detail. For a more general account of the design of
such semantics, and on Maude as a semantic framework, see [10].

In Fig. 1 we present the configuration parts of RJava in Maude-style notation.
With code1 and code2 being code pieces which shall be executed sequentially,
the continuation looks like (a): k wraps a continuation so it can later be used
inside a multiset. The environment (b), wrapped by e, maps variable names
Xi to locations Li. The continuation, environment, and additionally the current
2 This Maude theory can be downloaded from http://fsl.cs.uiuc.edu/javafan/
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object currObj, constitute one part of the overall configuration, the context (c).
Moreover, explicit memory (d) is needed, mapping locations Li to values Vi. The
next free location in the memory is denoted by an integer I. Other parts of the
configuration are the static environment staticEnv and the list listOfClasses of all
classes, used for instance in method lookups.

(a) Continuation: k(code1 −> code2 −> . . .)
(b) Environment: e([X1, L1] [X2, L2] . . .)
(c) Context: c(k(code1 −> code2 −> . . .), e([X1,L1] [X2, L2] . . .), o(currObj))
(d) Memory: m([L1, V1] [L2, V2] . . .), n(I)
(e) Static env.: s( staticEnv)
(f) List of classes: cl ( listOfClasses )

Fig. 1. Important parts of an RJava configuration

These items (and a few more which we omit here) are put together under the
run operator. Any such configuration can be executed by RJava .

run(c(k (...), e (...), o (...)), m (...), n (...), s (...), cl (...))

Note that the comma ‘ ,’ here is a multiset-union operator, both inside run and
inside c. As an example of a rewrite rule operating on such a configuration, we
show the rule for writing to the memory:

=> c(k(change(V, L) −> K), Cnt),
=> m([L, V’] M)
=> c(k(K), Cnt),
=> m([L, V] M)

In this rule the actual Java code has been evaluated long enough to have been
reduced to change(V, L). K matches the rest of the continuation. The context
Cnt matches the subset of all other components wrapped inside c, apart from
the explicitly given k. In the memory at location L there is a value V’ which is
overwritten. The rest M of the memory remains unchanged and the change code
has disappeared from the continuation after its execution.

3.3 Limitations of RJava and Improvements

RJava is a prototypic formalization of the Java semantics, and therefore has a
couple of limitations, which restrict the number of transformation rules to which
we can apply our approach (see Sect. 6). Some interesting Java features are not
modeled, such as abrupt termination, switch, conditional expressions, method
overloading, and static class initialization. Some other features were realized
in an incomplete or faulty manner. During the realization of our approach, we
fixed several of these shortcomings. Finally, we have added additional features
to RJava by introducing type checks for assignments and type casts. More on
the improvements to the original RJava can be found in [12].
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4 Validating Program Transformation Rules

The style of semantics formalized in the rewriting logic framework partly builds
on the tradition of structural operational semantics (SOS)3. One central para-
digm is to include a ‘still-to-be-executed’ program in the state of execution
which is modified as execution proceeds. In SOS, one notationally separates
the program π from the rest of the state, by writing (π, s). Correspondingly,
by (π0, s0) → (π1, s1) we mean that there is a number of steps after which the
execution of the program π0, when started in s0, results in the program π1 to
be executed from state s1.4 A special case is (ππrs , s0) → (πrs , s1), where the
second program πrs (remaining statements) is a suffix of the first, and a certain
number of execution steps will resolve π completely, while πrs is still untouched.

Now, a transformation rule of the shape (1) (or a corresponding PTT (4))
is sound if the following holds for all programs π matching the schema Π ,
all programs π′ matching the schema Π ′, all arbitrary programs πrs , and all
states s0 being ‘admissible’ w.r.t. ππrs and π′πrs : If (ππrs , s0) → (πrs , s1) and
(π′πrs , s0)→ (πrs , s

′
1), then s1 and s′1 are ‘equivalent’. We defer a discussion of

state equivalence to Sect. 5.3. A state is called admissible w.r.t. some programs
if those programs can possibly be executed starting from this state. For instance,
the state must, in its environment, map all variables in π to some locations, and
in its memory, map all those locations to values.

The above statement is quantified over infinitely many programs π, π′, πrs

and states s0. The goal is, however, to have an executable criteria for the state-
ment. In short, the idea is to define a lifted semantics, executing the schematic
programs Π and Π ′ directly, working on generic states. With such a semantics
at hand, the ‘universally quantified’ soundness criteria given above reduces to
showing: If (Π rs, sΠ,Π′ ) → (rs, s) and (Π ′ rs, sΠ,Π′) → (rs, s′), then s and
s′ are equivalent, where sΠ,Π′ is the generic state being admissible w.r.t. Π and
Π ′, and rs is a generic constant representing the ‘remaining statements’, not
being executed. For instance, validating the PTT (5) (or equivalent the rule (2))
amounts to executing both

– l = e * n; and
– typeof(e) v1 = e; typeof(n) v2 = n; l = v1 * v2;

from the generic state admissible for both, and comparing the results.
The realization of this approach is elaborated in the next section.

5 Lifting the Semantics

In order to enable the execution of schematic code, we can first of all turn several
less problematic schema variables into generic constants, allowing the rewrite
rules to perform symbolic computation. This, together with the complication
of meaningful typing, is discussed in Sect. 5.1. Schematic expressions, however,
3 See [10] for the similarities and differences.
4 The usage of → instead of ∗→ conforms with rewriting logic rather than with SOS.
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require some extra effort. Instances of schematic expressions might have arbi-
trary side effects on the state, but we do not know which. Moreover, the same
schematic expression can appear more than once in schematic code, with the dif-
ferent appearances having different results and different side effects. Therefore,
evaluating schematic expressions requires extra constructs, which we introduce
in Sect. 5.2. Problems concerning fresh variables introduced by PTTs are solved
in Sect. 5.3, and in Sect. 5.4 we refine our analysis by nondeterministically iden-
tifying different schema variables.

5.1 Schema Variables Versus Generic Constants

When preparing a piece of schematic code (like l = e * n;) for execution, we
model side-effect free schema variables as generic constants, with the effect that
the rules of the rewriting semantics will perform symbolic computation. Such
a generic constant is a true constant only to rewriting logic, i.e. on a technical
level. Intuitively, however, it acts as a representative of any fitting expression.
By side-effect free schema variables, we mean those where instantiations are
restricted to expressions which, by their syntactic nature, cannot possibly have
a side-effect. Luckily, the taclet language provides this information, among other
things, by sorts (which we have not spelled out in taclet (5), but indicated in
the first column of Table 1). It is actually the very purpose of sorts in the taclet
language, to constrain the applicability of taclets during proof construction. It
is not surprising that, for the sound application of certain rules, it matters a
lot whether or not side-effects can arise. Here, the needs of theorem proving
match well with the needs of symbolic computation, where side-effects matter
even more. In the example, l is of sort Lefthandside, a sort which happens to
embody side-effect freeness. Therefore, l can in principle be turned into a generic
constant.

Unfortunately, we also have to deal with a certain mismatch between program
logic rules and symbolic computation via a rewrite semantics. The latter is,
even if symbolic, yet more concrete. For instance, a schema variable of type
Lefthandside can be instantiated with either of: a local variable, a static field, or
a field of the current object. As the rewriting semantics executes these different
possibilities each in a different way, our approach requires to test out all of them.
As we usually have several schema variables in a taclet, all possible combinations
must be checked in the validation. This leads to an explosion of combinations.
Fortunately, programs in PTTs are by their very nature quite small, containing
usually at most five schema variables, which is why this approach is feasible.

5.2 Computing with the Unknown

Even with the help of generic constants, RJava per se does not provide means to
‘execute’ arbitrary unknown expressions possibly having side-effects, like those
matching the sorts Expression or NonSimpleExpression. To be able to treat
those, we liftRJava to a rewrite theory for schematic Java (RJavalift ) as described
in this section. First of all, we note that the same expression, when executed



Automatic Validation of Transformation Rules 421

twice in different states, can have different side-effects and results. On the other
hand, when executed twice but starting in the same state, side-effects and result
will be identical. Therefore we introduce snapshots of the state capturing those
parts of the configuration which both side-effects and result can depend on.
This allows to compare two states in which such an expression is executed,
and to decide whether the side-effects and results of two evaluations are the
same.

We demonstrate the concept of snapshots by an example configuration in
Fig. 2.a. All the sans-serif typed elements are operators of the semantics whereas
the others represent elements of the appropriate types.

(a) run(c(k(Code), e(Localenv ),
o(Currentobject )),
m(Memory), n(Nextfreememcounter ),
s(Staticenv ), cl(Listofclasses),
nextSnapshot(Natnextsnapcounter ),
snapshots(Snapshotlist), ...)

(b) (snap(Natnextsnapcounter ),
c(e(Localenv), o(Currentobject )),
m(Memory))

Fig. 2. An example configuration (a) and a fitting snapshot (b)

Fig. 2.a shows that we extend the structure of configurations by a Snapshotlist
and a Natnextsnapcounter (syntactically wrapped by snapshots or nextSnapshot,
respectively). The snapshot taken for this very configuration is depicted in
Fig. 2.b. Its first element (snap(Natnextsnapcounter ) in this case) acts as a name
for the snapshot, to be used as a parameter elsewhere (see below). After such a
snapshot is taken, it is added to the Snapshotlist , and the Natnextsnapcounter is
incremented. Using snapshots, we can now represent the state-dependent evalu-
ation of unknown expressions. For that, what remains is to model the effect of
an arbitrary side-effect on the memory.

The side-effects of any expression can be viewed in the following way: a num-
ber n of memory locations L1, . . . ,Ln is updated with certain values V1, . . . , Vn.
We however do not know any of L1, . . . ,Ln or V1, . . . , Vn, nor even the number n
of affected memory locations. Therefore, when modeling the side-effects of a sym-
bolic expression e, to be evaluated in a symbolic state s, we represent L1, . . . ,Ln

by the symbolic location list Ll(e, s), parameterized over e and s. Accordingly,
V1, . . . , Vn is represented by the symbolic value list Vl(e, s). Furthermore, we ac-
tually do not use the full (symbolic) state for s, but only the name of the state’s
snapshot.

Now, when executing the so represented symbolic side-effects on the memory,
we replace the value of each memory location with a ‘kind of’ conditional term,
called extended conditional value. (Simple conditional terms are insufficient for
this task.) Suppose that, before executing e, some particular symbolic memory
location L holds the particular value V . The execution of e triggers that V is
rewritten to the extended conditional value

L in Ll(e, s) ?? Vl(e, s) :: V
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This construct represents the new value and has the following meaning: if L is a
member of the list Ll(e, s) then the resulting value is the corresponding element
in the list Vl(e, s). Otherwise the result is V , which was the old value. Note that
this replacement is performed at each location/value pair in the memory, but
everywhere using the according L and V .

Extended conditional values cannot be further evaluated (since expressions e
are symbolic) but instead remain in the memory as they are, which is fine since
we just aim at comparing two resulting states.

We illustrate the lifted semantics with the help of the following example:

Example 5. The following taclet is a slight variation of (5) but it is unsound
since the order of evaluation is wrongly simulated:

find(〈l = e ∗ n; 〉 b)
varcond(new typeof(e) v1, typeof(n) v2)
replacewith(〈typeof(n) v2 = n; typeof(e) v1 = e; l = v1 ∗ v2; rs〉 b)

After processing both programs as described above, we end up with the following
two values as memory contents at the location that l is mapped to. To simplify
the presentation, we omit certain complications of purely syntactical kind here.
i stands for the initial snapshot counter.

– ( resultof e in snap(i ) ) ∗ ( resultof n in snap(i+1) )
– ( resultof e in snap(i+1) ) ∗ ( resultof n in snap(i ) )

A further analysis of the snapshots with names snap(i ) and snap(i+1), which
could in principle be equal but are different in this case, finally reveals that the
two considered programs are in fact different in result and side-effects. To better
understand the actual side-effects, just imagine we had in our memory any other
location, say, l1, with value v1. Executing both programs would then lead to
replacing v1 by one of the following new values, respectively:

– l1 in Ll(n, snap(i+1)) ?? Vl(n, snap(i+1)) ::
( l1 in Ll(e, snap(i )) ?? Vl(e, snap(i )) :: v1)

– l1 in Ll(e, snap(i+1)) ?? Vl(e, snap(i+1)) ::
( l1 in Ll(n, snap(i )) ?? Vl(n, snap(i )) :: v1)

5.3 State Equivalence

Recall that, after ‘running’ (Π rs, sΠ,Π′) → (rs, s) and (Π ′ rs, sΠ,Π′) →
(rs, s′), we require s and s′ to be equivalent. We now explain what we mean
by that. The states s and s′ are considered equivalent if they are equal modulo
new variables. A variable is called new if it is introduced by the transformation,
and thus only appears in Π ′, and is freshly declared therein. Examples of such
new variables are v1 and v2 in rule (2) and PTT (5).

The need for an extended notion of equivalence is obvious: variables newly
introduced in Π ′ appear in the configuration representing s′, but not in the



Automatic Validation of Transformation Rules 423

configuration representing s, which is why these configurations cannot possibly
be entirely equal. However since new variables cannot appear in the remaining
code rs, they could just as well be removed before executing rs. This is however
not what the semantics does, as it is not designed for being aware of variables
appearing anymore or not. Instead, we realize a certain removal of new variables
within the ‘comparison modulo’ of resulting states. This is part of the rewrite
theory for validating transformation rules, RJavavalTransf

5, which further extends
RJavalift .

To get a handle on when to perform the comparison modulo we use a new
marker, the pause operator, to indicate where the ‘interesting’ part of the program
(either of Π or Π ′) is over, with only some ‘uninteresting’ rest rs left. Note that
the following rewriting logic rule, which triggers the comparison modulo, only
matches continuations starting with pause:

= compareResultsModNewVars(run(c(k(pause −> K), context), state),
= compareResultsModNewVars(run(c(k(pause −> K), context’), state’))
= compareResult(removeNewVarsLocs(run(c(k(pause −> K), context), state)),
= compareResult(removeNewVarsLocs(run(c(k(pause −> K), context’), state’)))

= compareResult(run(c(k(pause −> K), context), state) ,
= compareResult(run(c(k(pause −> K), context’), state’) )
= == run(c(k(pause −> K), context), state)
= == run(c(k(pause −> K), context’), state’)

First, the new variables are removed from environments and memories in the ac-
tual state and in the snapshots. The ‘cleaned’ resulting states are then compared
using Maude’s default equality check ==.

5.4 Identical Instantiation of Different Schema Variables

As mentioned in Sect. 1, it can easily be forgotten that, in situations where a
PTT applies, different schema variables can match the same instantiation.

Stenzel [13] remarks that a transformation x=y++; � x=y; y=y+1; is wrong
since an assignment x=x++; leaves x unchanged, while x=x; x=x+1; increments
x (according to [7]). Stenzel discovered the erroneous transformation, which was
part of his calculus, by an ‘on paper’ verification of the rules. Remarkably, the
calculus we investigate here carried the same error, in the form of the taclet:

find(〈l1=l2++; rs〉 b) replacewith(〈l1=l2; l2=l2+1; rs〉 b)

Our automatic validation detects errors of this kind by means of nondeterministic
rewrite rules for the generation of configurations, and using the Maude support
for exhaustively trying out all branches. In our example, l1 and l2 are identified
on the one branch, and distinguished on the other. Note that the whole idea of
‘running’ a schema Π instead of its instances π (Sect. 4) would be unsound if
we forced constants representing unknowns to be different.

5 Available at http://i12www.ira.uka.de/∼aroth/download/maude/.
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6 Automated Validation and Results

Our approach to validate the PTTs of KeY is implemented as a completely
automated process. It consists of two steps: (1) Using the taclet infrastructure
of KeY, the code transformation of each PTT is extracted and Maude code is
generated which triggers the generation of start configurations and (2) Maude
builds the actual start configurations and executes them as input toRJavavalTransf .

In the first step two tasks are accomplished: The Java syntax of the PTTs
is transformed to that used by RJava (and RJavavalTransf ), which slightly differs
from the standard syntax. More importantly, schema variables are replaced by
concrete generic constants as described in Sect. 5.1. Depending on the schema
variable sort several start configurations are generated, each containing another
generic constant. If there is more than one schema variable in the considered
programs, all combinations of their generic instantiations are generated.

KeY currently contains around 210 PTTs (of around 480 Java related rules).
We could not check all of them mainly because of the prototypic nature of the
Maude Java semanticsRJava (Sect. 3.3) and because some (37) contain advanced
meta constructs which capture program transformations not expressible by pure
schematic means. Despite these restrictions, 56 PTTs are currently treatable.

Our checker identified three unsound taclets, one as reported in Sect. 5.4, one
for the analog case of the decrement operation, and one which was caused by
evaluating a side-effect twice. With the help of logging output, one could quite
easily find out in which cases problems occurred. After correcting the three rules,
we were able to validate all of the 56 PTTs. The runs are sufficiently fast (around
3 minutes), thus confirming our estimations from Sect. 5.1 that the combinato-
rial explosion of cases is irrelevant for our purposes. Our implementation is now
already used in practice within the KeY project. Nightly runs ensure that acci-
dentally introduced mistakes in the rules are detected as soon as possible.

7 Conclusions and Related Work

The described approach achieves a completely automated validation of program
transformation rules of the JavaDL calculus against a semantics in rewriting
logic, a high level declarative formalism. The validation machinery is almost
entirely defined in rewriting logic itself. For the purpose of validating transfor-
mations, we exploited (a) the precise formalization of the JavaDL rule schemas
as taclets and (b) the executability of the rewrite semantics. As a major contri-
bution, we lifted the Java rewrite semantics to deal with schematic programs.
Moreover, we solved the issues arising from a certain mismatch in the typing sys-
tems of both formalisms, from newly introduced variables, and from potentially
identical instantiations of different schema variables.

There is extensive literature relating program logic calculi and language se-
mantics. We restrict ourselves to works targeted at similarly complete calculi over
similarly complex languages (which actually happens to further narrow down to
calculi over Java only).
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We start with work targeting the same calculus. [4] describes how a taclet-
specific mechanism ensures the soundness of derived rules (group 4 in Sect. 2).
It creates correctness proof obligations from taclets, rendered in the object logic.
In contrast to our work on axiomatic transformation rules, the justification of
derived rules does not involve a definition of the (Java) semantics. In that respect,
what comes closer is the work of K. Trentelman [14] on three JavaDL rules of
group 2 (which connect the program and the logic part of sequents). Those taclets
are proven correct w.r.t. a formalization of Java in Isabelle/HOL, called Bali. The
whole metatheory for relating both formalisms is explicitly formalized within
Isabelle/HOL. The correctness proofs of the taclets are therefore completely
formal, and machine checked, but require non-trivial interaction.

In the LOOP project [8], a denotational semantics of Java is formalized as
a PVS theory. Java programs are compiled into semantical objects, and proofs
are performed in the PVS theory directly. On top of that, a Hoare-style and
a wp style calculus are formalized as a PVS theory, and verified against the
semantics within PVS. As opposed to ‘usual’ Hoare-style or wp calculi, these
ones work on the semantical objects, not on the syntax of Java.

In [13], K. Stenzel reports on an ‘on paper’ verification of his dynamic logic
calculus for Java against a big-step semantics for Java he developed as well. He
found three mistakes in the calculus, one of which was also present in two rules
of the calculus we consider here (see Sect. 5.4). We profitted from that work in
the sense that it made us aware of the identical-schema-variable-instantiations
problem. As a result, our mechanism can (and did) detect mistakes which are of
this nature.

Except from [4], all these approaches have in common that the rule verification
is performed by interacting with a proof system, or even by hand. In contrast
to this, our approach is much more lightweight, as the ‘mental reasoning’ which
determines for instance our lifting of the semantics, is not captured by a formal
meta theory of any kind, thereby gaining a lower level of certainty. On the other
hand, we achieve a fully automatic validation of more than 50 rules though
the used semantics does not cover all features of (sequential) Java yet. We will
however need to investigate whether our ‘lifting features’ are already sufficient
or need further extension when the coverage is extended.

Another future work is to weaken the now very restrictive form of transfor-
mation rules, to also cope with simple dependencies from the logical context of
the programs. This would allow for handling certain branching rules as well.

We consider it a strength of the approach (and the same holds for [14]) that
the two artifacts, calculus and semantics, are defined in very different formalisms,
by different people, for different purposes. We believe that some of the certainty
which we lose by not performing formal meta reasoning is regained by the dif-
ferent origins of the formalisms we use for cross-validation.
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in JavaFAN. In R. Alur and D. Peled, editors, CAV, volume 3114 of Lecture Notes
in Computer Science, pages 501–505. Springer, 2004.

7. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification
Second Edition. Addison-Wesley, Boston, Mass., 2000.

8. B. Jacobs and E. Poll. Java program verification at Nijmegen: Developments and
perspective. In K. Futatsugi, F. Mizoguchi, and N. Yonezaki, editors, Software
Security – Theories and Systems, LNCS 3233, pages 134–153. Springer, 2004.

9. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliography. Theor.
Comput. Sci., 285(2):121–154, 2002.
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Abstract. We consider automated reasoning about recursive partial
functions with decidable domain, i.e. functions computed by incompletely
defined but terminating functional programs. Incomplete definitions pro-
vide an elegant and easy way to write and to reason about programs
which may halt with a run time error by throwing an exception or print-
ing an error message, e.g. when attempting to divide by zero. We inves-
tigate the semantics of incompletely defined programs, define an inter-
preter for those programs and discuss the termination of incompletely
defined procedures. We then analyze which problems need to be solved if
a theorem prover designed for verification of completely defined programs
is modified to work for incompletely defined programs as well. We also
discuss how to reason about stuck computations which arise when calling
incompletely defined procedures with invalid arguments. Our method of
automated reasoning about incompletely defined programs has been im-
plemented in the verification tool �eriFun . We conclude by discussing
experiences obtained in several case studies with this implementation
and also compare and relate our proposal to other work.

1 Introduction

Programs which halt with a run time error by throwing an exception or printing
an error message are ubiquitous in the use of computers. Division by zero is
a common example of such a fault that programming beginners soon become
familiar with. Formally, the program computes a partial function, where the
argument causing the failure is not in the domain of that function. For other
arguments not in the domain, the program may even run forever, for example if
an interpreter is called with a non-terminating program.

But there is an important difference between these two cases of partiality: In
the former case, the domain of the computed function is decidable. Therefore a
program may check whether an argument is not in the domain and then react
appropriately. In the latter case, however, the domain may be undecidable, and
then there is no cure to prevent looping.

If the domain of a function computed by some procedure is decidable, a pro-
cedure can be “completed” by returning arbitrary results for stuck arguments,
i.e. arguments not in the original domain. However, stipulating artificial results
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for a procedure applied to stuck arguments spoils the readability of programs.
One immediately starts to think about whether the program’s author had a spe-
cific reason to define the result in the way he did, or just gave some arbitrary
return value (as the result does not matter at all). Also statements which ob-
viously are senseless may become true and can be proved. E.g., one may prove
hd(empty)=last(empty) if hd maps a non-empty list 〈n1, . . . , nk〉 of numbers to
the leftmost list element n1, last maps such a list to the rightmost list element nk

and hd(empty) := last(empty) := 0. Finally, problems arise if polymorphic data
types are used. E.g., we cannot complete the definition of hd and last applied to
empty if hd and last map lists list[τ ] of any type τ to elements of τ .

A remedy to these problems is the use of partially determined functions, i.e.
functions with indetermined results if applied to stuck arguments. For example,
we may have a total but only partially determined function last , such that the
value of last(empty) is defined, because last is total, but is indetermined, because
last is only partially determined. Hence (1) ∀l:list ∃n:nat. last(l)=n is a true
statement about last from which we soundly conclude (2) ∃n:nat. last(empty)=n.
But we cannot give a number n such that last(empty)=n holds.

2 Completely Defined Programs

Syntax. We use a programming language in which data structures are defined
in the spirit of (free) algebraic data types. A data structure s is defined by
stipulating the constructors of the data structure as well as a selector for each
argument position of a constructor. The set of all constructor ground terms
built with the constructors of s then defines the elements of the data struc-
ture s. For example, truth values are represented by the set T ({true, false}) =
{true, false} and the set of natural numbers is represented by the set T ({0, succ})
= {0, succ(0), succ(succ(0)), . . .}, both given by data structures bool and nat of
Fig. 1.1 Likewise, the data structure list of Fig. 1 represents the set of linear lists
of natural numbers, with e.g. add(succ(0), add(0, empty)) ∈ T ({0, succ, empty,
add}). The selectors act as inverses to their constructors, since e.g. hd(add(n, k))
= n and tl(add(n, k)) = k is demanded. Each definition of a data structure s
implicitly introduces an equality symbol =s : s× s→ bool (where s �= bool) and
a function symbol if s : bool× s× s→ s for conditionals.

A procedure, which operates on these data structures, is defined by giving
the procedure name, say f , the formal parameters and the result type in the
procedure head. The procedure body is given as a first-order term over the set
of formal parameters, the function symbols already introduced by some data
structures and other procedures plus the function symbol f to allow recursive
definitions, cf. Fig. 1 where “‖ *” in the procedure bodies should be ignored.

A finite list P of data structure and procedure definitions—always beginning
with the data structure definitions of bool and nat as given in Fig. 1—is called a
1 T (Σ,V)s denotes the set of terms of type s over a signature Σ for function symbols

and a set V of variable symbols, T (Σ)s is the set of ground terms of type s over Σ,
and F(Σ,V) is the set of all closed first-order formulas over Σ and V.
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structure bool <= true, false
structure nat <= 0, succ(pred:nat)
structure list <= empty, add(hd:nat,tl:list)

function minus(x,y:nat):nat <= function remainder(x,y:nat):nat <=
if y=0 if y=0
then x then 0 ‖ *
else if x=0 else if y>x

then 0 ‖ * then x
else minus(pred(x),pred(y)) else remainder(minus(x,y),y)

end end
end end

Fig. 1. Data structures and completely ‖ incompletely defined procedures

completely defined functional program. We define Σ(P ) as the set of all function
symbols of the data structures and procedures of P , and Σ(P )c ⊂ Σ(P ) is the
set of all constructor function symbols given by the data structures of P .

Computation. An interpreter evalP for a (completely defined functional) pro-
gram P evaluates terms of T (Σ(P )) to “values”, i.e. terms of T (Σ(P )c). The
interpreter computes calls f(t1, . . . , tn) of a procedure function f(x1:s1, . . . ,
xn:sn):s <= Rf call-by-value, i.e. by replacing each formal parameter xi in
the procedure body Rf by the computation t′i of the actual parameter ti, and
then continuing with the computation of the instantiated procedure body ob-
tained, cf. Fig. 2 where all expressions in · · · should be ignored. The interpreter
also respects the definitions of the data structures by computing, for instance,
false for 0=succ(t) and q for pred(succ(t)), provided evalP (t) = q for some
q ∈ T (Σ(P )c). For selectors sel : s → s′ applied to constructors cons to which
they do not belong, so-called witness terms ωsel [x] ∈ T (Σ(P ), {x})s′ with x ∈ Vs

are assigned in P to sel, and then we define evalP (sel(cons(q1, . . . , qn))) :=
evalP (ωsel[cons(q1, . . . , qn)]). Hence, for example, evalP (hd(empty)) = 0 and
evalP (tl(empty)) = empty if ωhd [x] := 0 and ωtl [x] := x for the selectors of
data structure list, cf. Fig. 1.

Termination and Semantics. Since P may contain non-terminating proce-
dures, evalP is a partial mapping only, i.e. evalP : T (Σ(P )) �→ T (Σ(P )c).

Definition 1. (Termination) A procedure function f(x1:s1, . . . , xn:sn):s <=
. . . of a completely defined program P terminates in P iff evalP (f(q1, . . . , qn)) ∈
T (Σ(P )c) for all qi ∈ T (Σ(P )c)si . P terminates iff (i) each procedure of P ter-
minates in P and (ii) evalP (ωsel[q]) ∈ T (Σ(P )c)s′ for each selector sel : s→ s′

and for all q ∈ T (Σ(P )c)s.

If a completely defined program P terminates, then evalP is a total mapping,
i.e. evalP : T (Σ(P )) → T (Σ(P )c). The semantics of terminating functional
programs is now defined by:
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Definition 2. (Standard Model MP , Theory ThP ) Let P be a completely de-
fined and terminating program. Then the standard model MP of P is a Σ(P )-
algebra MP = (T (Σ(P )c), φ) such that φf (q1, . . . , qn) = evalP (f(q1, . . . , qn))
for all f ∈ Σ(P )s1,...,sn,s and all qi ∈ T (Σ(P )c)si .

The theory ThP of P is defined as {ϕ ∈ F(Σ(P ),V) | MP � ϕ}. A verifica-
tion system for P is sound iff ϕ ∈ ThP for each ϕ ∈ F(Σ(P ),V) verified by the
system.

Theorem 1. Let P be a completely defined and terminating program, t1, t2 ∈
T (Σ(P )) and b ∈ T (Σ(P ), {x1, . . . , xn})bool . Then

1. evalP (t1)=evalP (t2)⇒ [t1=t2] ∈ ThP , 3. P has exactly one standard model,
2. [t1=t2] ∈ ThP ⇒ evalP (t1)=evalP (t2), 4. ThP is complete, and
5. [∀x1:s1, . . . , xn:sn. b] ∈ ThP ⇔ evalP (θ(b))=true for each θ with θ(xi) ∈
T (Σ(P )c)si .2

When we formulate proof obligations of the form “ϕ ∈ ThP ” for completely
defined programs P , we assume the availability of some “sound verification sys-
tem for P”, cf. e.g. [3],[4],[5],[17],[18],[23], to compute a proof for ϕ. Such a
system is also used to verify the termination of procedures, cf. [25],[27].

3 Incompletely Defined Programs

Syntax. Partially determined (recursive) functions are computed by incom-
pletely defined programs, also called loose specifications [19] or underspecifica-
tions [11]. A data structure s is incompletely defined by not stipulating witness
terms for the selectors of s. For defining a procedure f incompletely, we use a
wildcard * to stipulate the result when calling f with a stuck argument. E.g.,
procedure minus of Fig. 1 is incompletely defined if “0 ‖” is ignored in the pro-
cedure body, and the value of minus(n,m) is only determined if n ≥ m. Also
procedure remainder of Fig. 1 is incompletely defined when ignoring “0 ‖”, and
the value of remainder(n,m) is determined iff m �= 0.

Formally, we assume a constant symbol *s /∈ Σ(P ) for each data structure
s in a functional program P , and we demand upon the extension of P by a
new procedure function f(x1:s1, . . . , xn:sn):s <= Rf , that Rf ∈ T (Σ(P ) ∪
{f, *s} , {x1, . . . , xn}) be ∗-correct, i.e. Rf = * or * is only used as a (direct)
argument in the alternatives of an if -conditional.

Termination and Semantics. For defining the termination of incompletely
defined programs, the notion of a fair completion is needed:

Definition 3. (Fair Completions) Let P be an incompletely defined program.
Then P̂ denotes the set of all fair completions P ′ of P , where each P ′ ∈ P̂ is a
completely defined program satisfying

2 We refer to [25] for omitted proofs.
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1. for each definition Ds of a data structure s in P , P ′ contains a data struc-
ture definition obtained from Ds by stipulating a witness term ωsel [x] ∈
T (Σ(P ), {x})s′ for each selector sel :s→s′in Ds such that (i) evalP (ωsel[q])∈
T (Σ(P )c)s′ for all q ∈ T (Σ(P )c)s, and

2. for each procedure function f(x1:s1, . . . , xn:sn):s <= Rf in P , there is
some procedure function f(x1:s1, . . . , xn:sn):s <= R′f in P ′ such that
(i) Rf = R′f [π1 ← ∗, . . . , πk ← ∗] where Occ∗(Rf ) = {π1, . . . , πk},3 and
(ii) evalP ′(θ(AND(Cπ

f ))) = true⇒ evalP ′(f(q1, . . . , qn)) ∈ T (Σ(P )c)s for all
π ∈ Occ∗(Rf ) and all qi ∈ T (Σ(P )c)si , where Cπ

f is the clause under
which Rf |π appears in Rf and θ = {x1/q1, . . . , xn/qn}.4

Each procedure function f(x1:s1, . . . , xn:sn):s <= Rf of an incompletely
defined program P coincides with a procedure function f(x1:s1, . . . , xn:sn):s
<= R′f of any fair completion P ′ of P except for the indetermined ∗-cases, cf.
2(i) of Definition 3. Almost any result may be stipulated for those cases in a
fair completion P ′, however the fairness requirements 1(i) and 2(ii) of Defini-
tion 3 demand that the termination of procedure f in P ′ not be spoiled just
because procedure f was completed by a non-terminating result in a ∗-case or a
non-terminating witness term was assigned to a selector.

For the procedures minus of Fig. 1, for example, a fair completion of a pro-
gram containing the incompletely defined minus may contain the completely
defined minus. Also the occurrence of * in the incompletely defined procedure
minus may be replaced by succ(y) or 13 or minus(x, pred(y)) etc. in a fair com-
pletion P ′ of P . But we may not replace * by minus(x, y) or by loop(y), where
function loop(x:nat):nat <= succ(loop(x)) is a procedure of P ′, as this
violates the fairness requirement 2(ii) of Definition 3.

Using the notion of a fair completion, termination of incompletely defined
programs and in turn the semantics of those programs now can be defined:

Definition 4. (Termination) A procedure function f(x1:s1, . . . , xn:sn):s <=

Rf of an incompletely defined program P terminates in P iff for each P ′ ∈ P̂
procedure function f(x1:s1, . . . , xn:sn):s <= R′f of P ′ terminates in P ′. P ter-
minates iff each procedure of P terminates in P .

Definition 5. (Standard Model MP , Theory ThP ) Let P be an incompletely
defined and terminating program. Then a standard modelMP of P is a Σ(P )-
algebra MP = (T (Σ(P )c), φ) such that some P ′ ∈ P̂ exists with φf (q1, . . . , qn)
= evalP ′(f(q1, . . . , qn)) for all f ∈ Σ(P )s1,...,sn,s and all qi ∈ T (Σ(P )c)si .5

The theory ThP of P is defined as {ϕ ∈ F(Σ(P ),V) | MP � ϕ for each
standard modelMP of P}. A verification system for P is sound iff ϕ ∈ ThP

for each ϕ ∈ F(Σ(P ),V) verified by the system.
3 t [π1 ← r1, . . . , πk ← rk] originates from t by replacing each subterm t|πi

of t at
position πi ∈ Occ(t) by ri, and Occ∗(t) := π ∈ Occ(t) | t|π = * .

4 AND(C) denotes the conjunction and OR(C) denotes the disjunction of the elements
in C represented by if -conditionals.

5 We cannot use MP ′ since termination of P does not entail termination of P ′ ∈ P .
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Theorem 2. Let P be an incompletely defined and terminating program and
t1, t2 ∈ T (Σ(P )). Then

1. P has infinitely many standard models, 2. ThP is not complete, and
3. [t1=t2] ∈ ThP ⇔ evalP ′(t1) = evalP ′(t2) for each P ′ ∈ P̂ .

By Definition 5, incompletely defined procedures (and selectors) are under-
stood as loose specifications [19] of total functions. The standard models for in-
completely defined (and terminating) programs differ only in the interpretation
of functions applied to stuck arguments, but coincide for all other function appli-
cations. So, for instance, if P contains the incompletely defined procedure minus
of Fig. 1, one standard model M1

P of P may assign 25 to minus(2, 4) whereas
another standard model M2

P of P may yield 0. However, MP (minus(0, n)) =
MP (minus(succ(m), succ(m+1)(n))) andMP (minus(succ(m+1)(n),succ(m))) =
n for each standard model MP of P , hence

• [ minus(2, 4)=25 ] /∈ ThP ,
• [ minus(2, 4)=/25 ] /∈ ThP ,
• [ ∀n,m:nat. minus(0, n)=minus(succ(m), succ(m+1)(n)) ] ∈ ThP , and
• [ ∀n,m:nat. minus(succ(m+1)(n),succ(m))=n ] ∈ ThP .

Computation. When defining an interpreter evalP for computing P -expres-
sions of an incompletely defined program P , we demand that evalP return its
argument if applied to a procedure which is called with a stuck argument, but
computation of this procedure call does not result in a recursive call. For instance,
evalP simply returns remainder (3, 0) upon computation of remainder (3, 0).
Upon computation of minus(2, 4), minus(1, 3) is obtained in an intermediate
step, yielding minus(0, 2) as the final result of the computation, cf. Fig. 1.

For recognizing stuck arguments in procedure calls, a so-called exception guard
is associated with each procedure:

Definition 6. (Exception Guard) Let function f(x1:s1, . . . , xn:sn):s <= Rf

be a procedure of an incompletely defined program, and let Cπ
f be the clause

under which Rf |π appears in Rf .
Then procedure f is assigned the exception guard

except f [x1, . . . , xn] := OR(
⋃

π∈Occ*(Rf )AND(C
π
f )) .

An exception guard except f represents all conditions which trigger the throw-
ing of an exception upon computation of a procedure call f(. . .). For exam-
ple, exceptminus [x, y] = if (y=0, false, x=0) for the incompletely defined procedure
minus of Fig. 1 and except log [x] = if (x=0, true, if (pred(x)=0, false , if (even(x),
false, true))) for procedure log of Fig. 5. Now we demand that the computa-
tion of a call f(t1, . . . , tn) of procedure function f(x1:s1, . . . , xn:sn):s <= Rf

by evalP simply stop—yielding a stuck computation—if except f [t1, . . . , tn] is not
falsified by evalP . In this way, a stuck computation is the formal representation
of an exceptional event caused by applying a procedure to a stuck argument, for
example upon division by zero.
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The computation of procedure calls is formally defined by the computation
rules (a), (b.1)–(b.3) of Fig. 2. Computation rule (a) implements the call-by-
value parameter passing discipline, hence this rule is the same as for the com-
putation of procedure calls in completely defined programs. Also computation
rule (b.1) coincides with the computation in completely defined programs, but
with the additional requirement that no exception is raised. Otherwise a stuck
computation is obtained by computation rule (b.2), and a stuck computation
results too if (b.3) the computation of some actual parameter gets stuck. Com-
putation rule (b.3) guarantees that the computation of procedure calls is strict
wrt. stuck arguments, which has to be demanded, because one cannot conclude
that a term t denotes a value from a halting computation of t, cf. Example 1.

(a) evalP (f(t1, . . . , tn)) := evalP (f(t1, . . . , tj−1, evalP (tj), tj+1, . . . , tn)) ,
if j−1

i=1 evalP (ti) = ti ∧ evalP (tj) �= tj ;

(b.1) evalP (f(t1, . . . , tn)) := evalP (σ(Rf )) (with σ = {x1/t1, . . . , xn/tn})
if n

i=1 evalP (ti) = ti ∈ T (Σ(P )c) ∧ evalP (except f [t1, . . . , tn]) = false ;

(b.2) evalP (f(t1, . . . , tn)) := f(t1, . . . , tn) ,
if n

i=1 evalP (ti) = ti ∈ T (Σ(P )c) ∧ evalP (except f [t1, . . . , tn]) �= false ;

(b.3) evalP (f(t1, . . . , tn)) := f(t1, . . . , tn) ,
if n

i=1 evalP (ti) = ti ∧ tj /∈ T (Σ(P )c) for some j .

Fig. 2. Computation of procedure calls in [in]completely defined programs

Upon computation of selector calls, we consider each term t with evalP (t) = t
as a stuck argument for each selector sel, i.e. evalP (sel(t)) := sel(t), if (i) t is
a non-constructor ground term or (ii) t is a constructor ground term of form
cons(. . .) such that sel does not belong to cons. Hence evalP (t) returns t if e.g.
t = hd(empty), t = tl(empty), t = pred(hd(empty)) or t = hd(tl(empty)). The
computation of equality and conditionals is modified by stipulating evalP (t) = t
if t = r=r′ , t = r′=r or t = if (r, . . . , . . .) and evalP (r) = r /∈ T (Σ(P )c).

Formally, evalP is a partial mapping evalP : T (Σ(P )) �→ T (Σ(P )). If an in-
completely defined program P terminates, then evalP ′ : T (Σ(P ))→ T (Σ(P )c)
for each P ′ ∈ P̂ , and evalP is a total mapping, i.e. evalP : T (Σ(P ))→ T (Σ(P )).

Theorem 3. If P is an incompletely defined program, t, t1, t2 ∈ T (Σ(P )) and
b ∈ T (Σ(P ), {x1, . . . , xn})bool , then

1. P terminates ⇒ (evalP (t1) = evalP (t2)⇒ [t1=t2] ∈ ThP),
2. evalP (t) ∈ T (Σ(P )c)⇔ (evalP (t) = evalP ′(t) for each P ′ ∈ P̂ ), and
3. P terminates ⇒ (evalP ′(θ(b)) = true for each θ with θ(xi) ∈ T (Σ(P )c)si

and each P ′ ∈ P̂ ⇔ [∀x1:s1, . . . , xn:sn. b] ∈ ThP).

As for completely defined programs P , evalP is also sound for incompletely
defined functional programs P , cf. Theorems 1(1) and 3(1). But evalP is complete
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only for completely defined programs P , cf. Theorem 1(2), and only the weaker
properties (3) of Theorems 2 and 3 hold for incompletely defined programs,
compare with Theorem 1(5) and see Section 5 for further discussions.

Termination and Semantics (cont.) For completely defined programs P ′,
termination is defined in terms of halting evalP ′ computations, which entails
that each terminating procedure computes a total function, cf. Definitions 1 and
2. But by the presence of stuck computations in incompletely defined programs
P , one cannot conclude that a procedure of P computes a total function from
the fact that all evalP computations halt.

function unknown(x:nat):nat <= *

function zero(x:nat):nat <=
if unknown(x)=unknown(x)

then 0
else zero(x)

end

function null(x:nat):nat <=
if x=0

then *
else null(null(pred(x)))

end

function undef(x:nat):nat <=
if unknown(x)=succ(unknown(x))
then 0
else succ(undef(x))

end

function times(x,y:nat):nat <=
if x=0
then 0
else plus(times(pred(x),y),y)

end

Fig. 3. Terminating and non-terminating incompletely defined procedures

Example 1. For the procedures of Fig. 3, we find for each q ∈ T (Σ(P )c)nat

• evalP (unknown(q)) = unknown(q),
• evalP (zero(q)) = if (unknown(q)=unknown(q), 0, zero(q)),
• evalP (null(q)) ∈

{
null(0), null(q+q)(0)

}
, and

• evalP (undef (q)) = if (unknown(q)=succ(unknown(q)), 0, succ(undef (q))),
where unknown and zero are terminating but null and undef are non-termina-
ting procedures.6 In particular, although computation of undef (q) halts for each
q ∈ T (Σ(P )c)nat, there is no total function satisfying the definition of undef. �

Example 1 reveals in particular that one cannot conclude anything about
whether total functions satisfying the definitions of an incompletely defined pro-
cedure f (as well as the procedures called in the body of f) exist from the fact
that evalP (f(q1, . . . , qn)) ∈ T (Σ(P )) for all qi ∈ T (Σ(P )c). This observation
motivates our Definition 4 for the termination of incompletely defined programs.
But as a consequence, evalP is incomplete because e.g. [times(0, unknown(0))=0]
6 Consider any fair completion of procedure null with null(0) > 0 for justifying non-

termination of procedure null, and a fair completion of procedure unknown with
unknown(q) = q for justifying non-termination of procedure undef.
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(a) s-evalP (f(t1, . . . , tn)) := s-evalP (f(t1, . . . , tj−1, s-evalP (tj), tj+1, . . . , tn)),
if j−1

i=1 s-evalP (ti) = ti ∧ s-evalP (tj) �= tj ;

(b.1) s-evalP (f(t1, . . . , tn)) := s-evalP (σ(Rf )) (with σ = {x1/t1, . . . , xn/tn})
if n

i=1 s-evalP (ti) = ti ∧ execute?[f(t1, . . . , tn)]
∧ s-evalP (except f [t1, . . . , tn]) �= true ;

(b.2) s-evalP (f(t1, . . . , tn)) := f(t1, . . . , tn) ,
if n

i=1 s-evalP (ti) = ti ∧ ¬execute?[f(t1, . . . , tn)] ;

(b.3) s-evalP (f(t1, . . . , tn)) := f(t1, . . . , tn)
if n

i=1 s-evalP (ti) = ti ∧ s-evalP (except f [t1, . . . , tn]) = true .

Fig. 4. Symbolic evaluation of procedure calls in [in]completely defined programs

∈ ThP , but evalP (times(0, unknown(0))) = times(0, unknown(0)) �= 0, cf.
Figs. 2 and 3 as well as Example 1.7

But despite these different definitions of termination, termination of proce-
dures in incompletely defined programs can be proved like for procedures of
completely defined programs, cf. [25]. This means in particular that one need
not consider all fair completions when proving termination of an incompletely
defined procedure (see also [27] for a method to prove termination of incom-
pletely defined procedures by machine).

4 Verification

We briefly illustrate those parts of the �eriFun system [1] that have to be modi-
fied to be prepared for reasoning about incompletely defined programs, and we
refer to [23],[26] for a sketch and a more detailed account of the system.

Theorems are proved in �eriFun using a sequent calculus, called the HPL-
calculus (abbreviating Hypotheses, Programs and Lemmas). Some of the HPL-
proof rules, called computed proof rules, invoke the symbolic evaluator. This is a
first-order theorem prover—implementing the system’s main inference engine—
which proves statements about programs or simplifies them at least. Symbolic
execution of a call of procedure function f(x1:s1, . . . , xn:sn):s <= Rf in some
proof obligation is controlled in the symbolic evaluator by the evaluation rules of
Fig. 4 (ignoring all expressions in · · · ). Here execute? denotes a system routine
deciding whether it is heuristically meaningful to “open up” the procedure call
f(t1, . . . , tn). Like in the non-symbolic case of Fig. 2, (a) all actual parameters
must be evaluated—where differently to non-symbolic evaluation, s-evalP (t) = t
does not entail t ∈ T (Σ(P )c)—before the procedure is “opened up” by (b.1) or
symbolic evaluation stops by (b.2), because the execute?-heuristic refuses the
symbolic execution of the procedure call.

7 Computation of times(0,unknown(0)) gets stuck by the strictness requirement (b.3 )
of Fig. 2. If requirement (b.3 ) was removed, then evalP (times(0, unknown(0))) = 0
but evalP (times(0,undef (0))) = 0 as well.
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function half(x:nat):nat <=
if x=0

then 0
else if pred(x)=0 then * else succ(half(pred(pred(x)))) end

end

function log(x:nat):nat <=
if x=0

then *
else if pred(x)=0

then 0
else if even(x) then succ(log(half(x))) else * end

end
end

Fig. 5. Incompletely defined procedures (cont.)

Similarly, symbolic execution of procedure calls in incompletely defined pro-
grams is implemented by the evaluation rules of Fig. 4, obtained from the com-
putation rules given in Fig. 2. Also here, (a) all actual parameters must be
evaluated before the procedure either is “opened up” by (b.1), or symbolic eval-
uation stops by (b.2), because the execute?-heuristic refuses symbolic execution
of the procedure call, or gets stuck by (b.3), because the presence of a stuck ar-
gument can be proved. Compared with non-symbolic evaluation, the strictness
requirement (b.3) of Fig. 2 has no symbolic counterpart. This is because strict-
ness is not required upon symbolic evaluation, as only terminating programs are
considered, and therefore each term denotes.

These moderate modifications are enough to upgrade the system to reason-
ing about incompletely defined programs. We believe that only similar slight
changes are needed to adapt (almost) any verifier to work for incompletely de-
fined programs too. The only exception from this claim we can think of relates to
reasoning methods which for some reasons presume that the procedures of a pro-
gram compute totally determined functions, as e.g. reasoning based on implicit
induction [6],[15],[16]. In case of �eriFun, the system’s routine for automated
termination analysis fails to work soundly, and has to be modified as well [27].

5 Reasoning About Stuck Computations

Reasoning about partial functions has a long history in the fields of programming
methodology, formal logic and automated reasoning. A lot of proposals for model-
ling partial functions exist, and various logics have been developed to capture this
notion adequately, see [2],[7],[8],[9],[11],[12],[13],[14],[15],[16],[17],[20],[21],[25] for
a discussion of various logics and further references.

As observable from the literature, logics coping with partial functions cannot
be obtained without accepting certain disadvantages. Hence it seems appropriate
to check what our proposal yields in this respect and what we can do about it.



Reasoning About Incompletely Defined Programs 437

By Definition of ThP and evalP , we find e.g. for procedures times and log
of Figs. 3 and 5

1. [times(1, log(1))=log(1)] ∈ ThP 3. evalP (times(1, log(1))) = evalP (log(1)),
2. [times(1, log(0))=log(0)] ∈ ThP 4. evalP (times(1, log(0))) �= evalP (log(0)),

because evalP (times(1, log(1))) = 0 = evalP (log(1)) but evalP (log(0)) = log(0),
hence evalP (times(1, log(0))) = times(1, log(0)). So obviously, the problem with
statement (2.) is that a system user could erroneously conclude evalP (t) =
evalP (r) if the verifier comes up with a proof of t=r. However, this is a misinter-
pretation because stuck computations are not reflected by theory membership.

While the interpreter evalP ′ of a completely defined program P ′ is complete
in the sense that identical values from T (Σ(P )c) are computed for expressions
from T (Σ(P )) denoting identical values, cf. Theorem 1(2), the interpreter of an
incompletely defined program P is incomplete, i.e. evalP may compute different
expressions for expressions denoting identical values, cf. (2.) and (4.) above. For
incompletely defined programs P , only a weaker completeness result holds, viz.
that identical values are computed for expressions denoting identical values by
the interpreter evalP ′ of any fair completion P ′ ∈ P̂ , cf. Theorem 2(3).

As a consequence, a system user must be aware of this incompleteness when
drawing conclusions about the results computed by evalP from the fact that a
statement is verified. We therefore synthesize so-called domain procedures ∇f

for procedures f to provide machine support for reasoning about stuck-freeness :

Definition 7. (Determination guard ∇t, Domain procedures ∇f ) Let P be an
incompletely defined program and assume ∇f ∈ Σ(P )s1,...,sn,bool for each f ∈
Σ(P )s1,...,sn,s. Then the determination guard∇t ∈ T (Σ(P ),V)bool of a ∗-correct
term t ∈ T (Σ(P ) ∪ {*} ,V) is defined (assuming f �= if and v ∈ V) by

1. ∇*:= false, 3. ∇f(t1, . . . , tn) := if (AND(∇t1, . . . ,∇tn),∇f (t1, . . . , tn), false),
2. ∇v:= true, 4. ∇if (t1, t2, t3) := if (∇t1, if (t1,∇t2,∇t3), false).

We assign each procedure function f(x1:s1, . . . , xn:sn):s <= Rf in P the do-
main procedure function ∇f (x1:s1, . . . , xn:sn):bool <= ∇Rf . Further on, we
assign each selector seli of a data structure definition structure s <= . . .
cons(sel1:s1, . . . , seln:sn) . . . the domain procedure function ∇seli(x:s):bool
<= ?cons(x), where ?cons(x) abbreviates x=cons(sel1(x), . . . , seln(x)). All
other function symbols are assigned a domain procedure with body “true”.

Theorem 4. Let P be an incompletely defined program and let f ∈Σ(P )s1,...,sn,s.
Then for all t ∈ T (Σ(P )) and for all qi ∈ T (Σ(P )c)si

1. procedure f terminates ⇔ procedure ∇f terminates,
2. evalP (∇t)=true⇔ evalP (t) ∈ T (Σ(P )c),
3. evalP (∇t) ∈ T (Σ(P ))⇔ evalP (∇t) ∈ {true, false},
4. evalP (∇f (q1, . . . , qn)) ∈ T (Σ(P ))⇔ evalP (∇f (q1, . . . , qn)) ∈ {true, false},
5. evalP (∇f (q1, . . . , qn))=true⇔ evalP (f(q1, . . . , qn)) ∈ T (Σ(P )c).

By Theorem 4(1), each domain procedure ∇f terminates iff its “mother” pro-
cedure f terminates. By proposition (2), the determination guard∇t provides an
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equivalent requirement that the computation of t does not get stuck. By propo-
sition (3), the computation of the determination guard ∇t yields a truth value
whenever the computation of ∇t succeeds. Consequently, (4) each domain proce-
dure computes a totally determined function, and (5) equivalently characterizes
whether the computation of a procedure call results in a stuck computation.

Since domain procedures are tail recursive and compute a truth value, the
optimization techniques developed in [22] (for so-called difference procedures)
apply to domain procedures as well: Having generated a domain procedure ∇f ,
the body of ∇f is simplified in a first optimization step, and then it is tried
to eliminate recursive calls in the simplified procedure body. Recursion elimi-
nation is particularly important, because proofs are more easily obtained if the
procedures “called” in a proof obligation have no unnecessary recursive calls.

Example 2.
(i) function ∇minus(x,y:nat):bool <=

if y=0
then true
else if x=0 then false else ∇minus(pred(x),pred(y)) end

end

is computed as the optimized domain procedure for the incompletely defined
procedure minus from Fig. 1, and we find ∇minus(n,m) = true iff n ≥ m.
(ii) function ∇remainder(x,y:nat):bool <=

if y=0 then false else true end

is computed as the optimized domain procedure for the incompletely defined
procedure remainder from Fig. 1, and ∇remainder(n,m) = true iff m �= 0.
(iii) function ∇log(x:nat):bool <=

if x=0
then false
else if pred(x)=0

then true
else if even(x) then ∇log(half(x)) else false end

end
end

is computed as the optimized domain procedure for procedure log from Fig. 5,
and we find ∇log(n) = true iff n = 2k for some k ∈ N.
(iv) function ∇half(x:nat):bool <=

if x=0
then true
else if pred(x)=0 then false else ∇half(pred(pred(x))) end

end

is computed as the optimized domain procedure for procedure half from Fig. 5,
and we find ∇half(n) = true iff n is even. �

Domain procedures are used for reasoning about stuck-freeness in the follow-
ing way: If [t=r] ∈ ThP , then (*) evalP ′(t) = evalP ′(r) for any fair completion
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P ′ ∈ P̂ by Theorem 2(3). Now assume that [∇(t= r)] ∈ ThP holds as well. Then
evalP (t) = evalP ′(t) as well as evalP (r) = evalP ′(r) for any fair completion
P ′ ∈ P̂ by Definition 7, Theorems 3(2,3) and Theorems 4(2,3), and consequently
evalP (t) = evalP (r) by (*). Hence we obtain

Theorem 5. Let P be an incompletely defined and terminating program, and let
t, r ∈ T (Σ(P )). Then [t=r] ∈ ThP ⇒ ( [∇(t=r)] ∈ ThP ⇒ evalP (t) = evalP (r)).

So [∀ . . . ∇ϕ] ∈ ThP has to be verified additionally for guaranteeing stuck-
freeness for each constructor ground instance of a verified statement [∀ . . . ϕ].

For example, for statements (1.) and (2.) from the beginning of this sec-
tion, ∇ (times(1, log(1))=log(1)) is obtained as ∇log(1), which is trivially veri-
fied, whereas ∇(times(1, log(0))=log(0)) is obtained as ∇log(0), which is trivially
falsified, cf. Example 2(iii). Hence statement (3.) has been proved by Theorem
5 without running evalP , and the presence of a stuck computation in statement
(2.) has been verified by (contraposition of) Theorem 4(2).

As a more general example, consider statement ϕ = [l=/empty → hd(rev(l))=
last(l)] for which ∇ϕ = [l=/empty → ∇hd(rev(l))] is generated (after optimiza-
tion), expressing that the reversal of a non-empty list is not empty. Having
verified [∀l:list. ϕ] as well as [∀l:list. ∇ϕ], Theorem 5 guarantees that evalP
yields true for each constructor ground instance of ϕ, i.e. evalP (hd(rev(q))) =
evalP (last(q)) ∈ T (Σ(P )c)nat must hold for all q ∈ T (Σ(P )c)list \ {empty}.

In conclusion, the problem of misinterpretations raised by incompleteness of
evalP is the price we have to pay for keeping our reasoning method as simple
as possible. But fortunately, using domain procedures we can cope with this
problem by verifying the absence of stuck computations explicitly.8

6 Experiences and Conclusion

There is no royal road to reasoning about partial functions, as each proposal
bringing strength in one respect shows weakness in another. The literature,
see Section 5, provides a lot of challenges for a näıve logic user, e.g. different
forms of equality in the same logic, strong and weak forms of relational opera-
tors, non-standard interpretations for logical operators, invalidity of the law of
excluded middle, non-associativity of equivalence, “unusual” theorems and non-
theorems, non-compositional computation, notationally awkward languages and
calculi, user-provided witness procedures etc., and we added to this list (while
avoiding these problems) proving termination, thus excluding reasoning about
functions with undecidable domain, as well as incompleteness of the interpreter,
raising the need for proving the absence of stuck computations.

Generally, logics for verification of programs computing partial functions are
more complicated than logics for verification of programs computing total func-
tions only. However, if only the “harmless” cases of partiality have to be dealt

8 Domain procedures are also used for program [25] and termination analysis [27] and
for reasoning about partial termination of completely defined procedures [9],[10],[24].
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with, i.e. all functions computed by a program have a decidable domain, logics
for verification of programs computing total functions can be used also in this
case. Our proposal allows to avoid overspecifications by not forcing a program-
mer to stipulate results for don’t care arguments, e.g. when dividing by zero or
computing the minimum of an empty list, and supports the use of polymorphic
data types. It has been integrated and proved successful in �eriFun, a semi-
automated verifier for functional programs [23],[26] which is obtainable from
the web [1]. Several case studies reveal that the system’s reasoning performance
is not spoiled by upgrading the system for incompletely defined programs. Of
course, rather than proving more statements than before, the system proves less
as senseless statements like hd(empty)=last(empty) do not hold in an incom-
pletely defined program.

However, we observed that generally proofs become more complicated if in-
completely defined procedures f having a recursively defined domain procedure
∇f are involved in a statement. This is because verifying the absence of stuck
computations may add some burden to the verifier in those cases. Therefore
one should use e.g. the incompletely defined procedure minus of Fig. 1 in-
stead of its completely defined counterpart only if there is a specific reason
in a case study to have the incompletely defined version. Also the induction
schemes suggested by procedures may become more specific which may com-
plicate proofs too. For instance, procedure remainder of Fig. 1 (being it com-
pletely or incompletely defined) suggests an induction with a step case of form
∀x, y:nat. y �= 0 ∧ x �= 0 ∧ ∀y∗:nat. φ [minus(x, y), y∗] → φ [x, y] if proce-
dure minus is completely defined, whereas the weaker step formula ∀x, y:nat.
y �= 0 ∧ x ≥ y ∧ ∀y∗:nat. φ [minus(x, y), y∗] → φ [x, y] results for the incom-
pletely defined version of minus. So also here, an incomplete definition should
be used only if it is explicitly required by a specification. Finally, recursion elimi-
nation of domain procedures may become quite expensive in realistic case studies
although there are some optimizations that reduce costs.9 However, we do not
consider these problems as a lack of our proposal, but as the price which has to
be paid when reasoning about partial functions.
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Abstract. Answer Set Programming (ASP) has been demonstrated as
an effective tool in various application areas, including formal verifica-
tion. In this paper we present Bounded Model Checking (BMC) of Ab-
stract State Machines (ASMs) based on ASP. We show how to succinctly
translate an ASM and a temporal property into a logic program and
solve the BMC problem for the ASM by computing an answer set for the
corresponding program. Experimental results for our method using the
answer set solvers SMODELS and CMODELS are also given.

1 Introduction

Answer Set Programming (ASP) (see e.g., [11]) is a declarative logic program-
ming paradigm for solving combinatorial search problems. In ASP, a problem
is represented as a logic program whose answer sets stand for the solutions to
the problem. A solution is determined by computing an answer set for the logic
program using an answer set solver.

Model Checking [4] is a highly effective approach to formal verification of
finite systems. It is mainly used to detect errors that are difficult to uncover
through testing and simulation. The first widely used method of model checking
is symbolic model checking [12], in which states and transitions are represented as
boolean functions using Ordered Binary Decision Diagrams (BDDs). However,
some operations cannot be represented compactly as BDDs, and the size of the
BDD representation of a boolean function is sensitive to the variable ordering.
As a result, methods based on propositional satisfiability (SAT) emerged due to
the better space efficiency of SAT procedures. In particular, SAT-based Bounded
Model Checking (BMC) [2] is regarded as a complement to BDD-based model
checking. The idea of BMC is to search for a counterexample for a property
whose length is bounded by an integer. A BMC problem can be translated into
a SAT problem and solved with SAT checking techniques.

The motivation to achieve a succinct encoding of BMC brought the develop-
ment of ASP-based BMC. Its idea is to describe models and properties in logic
programs and reduce BMC problems to finding answer sets for logic programs.
This approach realizes a linear encoding in the size of the model, the property
and the bound. In [9], it was shown to be competitive to the SAT-based BMC
with the well-known model checker NuSMV.

G. Sutcliffe and A. Voronkov (Eds.): LPAR 2005, LNAI 3835, pp. 443–458, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In this paper we present a method of applying answer set programming to the
bounded model checking of Abstract State Machines (ASMs) [3]. The language
of ASMs is a high-level formal specification tool that is used in both industrial
and academic settings and in various application domains. It enables designers
to precisely capture system requirements and facilitates modelling on different
levels of abstraction. Since the language of ASMs is popular for system mod-
elling, and verification is important as it focuses on ensuring system quality, it
is worthwhile to develop an efficient method of checking ASM models. Our con-
tribution lies in combining the notions of ASP, BMC and ASMs to develop a
novel verification approach.

The rest of this paper is organized as follows. In Section 2 we provide the
necessary mathematical background for answer set programming. In Section 3
we introduce bounded model checking as well as temporal logic. In Section 4 we
introduce abstract state machines. In Section 5 we explain in detail our ASP-
based BMC of ASMs. Section 6 reports our experimental results. We discuss
related work in Section 7 and finish with our conclusions in Section 8.

2 Answer Set Programming

In ASP, a normal logic program consists of a set of normal logic rules which have
the form

a ← a1, ..., am, not am+1, ..., not an (1)

where a is called the head of the rule, and a1, ..., am, not am+1, ..., not an

is called the body of the rule. The symbols a, a1, ..., and an are propositional
atoms. A literal is an atom or its negation. A set of atoms X satisfies an atom
a if a∈X and a negative literal not a if a /∈X. X satisfies a rule of the form (1)
if it satisfies the head a whenever it satisfies the body (i.e., all of a1, ..., am, not
am+1, ..., and not an). X satisfies a program Π if it satisfies every rule of Π .

The reduct of a program Π with respect to a set of atoms X is the program
ΠX derived from Π by removing every rule with a literal not a in its body if
a∈X and removing all negative literals from the bodies of the remaining rules.
The program ΠX contains no negation, which implies that there exists a unique
minimal set of atoms that satisfies it [7]. A set of atoms X is an answer set of
a program Π if it is the unique minimal set of atoms that satisfies ΠX .

We employ two extensions to normal logic rules. A constraint is a rule without
the head. A set of atoms X satisfies a constraint iff X does not satisfy the body.
A cardinality expression has the form

l { a1, ..., am, not am+1, ..., not an } u. (2)

The symbols l and u are integers called the lower and upper bound. Cardinality
expressions can be placed in the head and the body of a rule, just like literals.
They are useful for expressing choices. Intuitively, a set of atoms X satisfies a
cardinality expression of the form (2) iff the number of literals satisfied by X is
between l and u inclusive.
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3 Bounded Model Checking

In model checking, a model is described as a Kripke structure M=(S,I,T,L). S
is the set of states, I⊆S is the set of initial states, T⊆S×S is the transition
relation (assumed to be total), and L: S→2A is the labelling function, where A
is the set of atomic propositions and L(s) is the set of those that are true in state
s. A path π of M is a finite or infinite state sequence (s0,s1,...), where T (si,si+1)
holds for all 0 ≤ i < |π|-1 with |π| denoting the length of π. The symbol π(i)
stands for the i-th state si of the path, and πi represents the suffix of π starting
at si. If π(0)∈I, π is called an initialized path.

In model checking, properties are specified in temporal logic. We concentrate
on Linear Temporal Logic (LTL). The syntax of LTL formulas is given as follows:

ψ ::= p∈A | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | Gψ | Fψ | Xψ.

We omit binary temporal operators such as U and refer readers to [4] for details.
The relation that a path π satisfies an LTL formula ψ (π |= ψ) is defined below:

π |= p iff p∈L(π(0)). π |= ¬ψ iff π �|= ψ.
π |= ψ1 ∧ ψ2 iff π |= ψ1 and π |= ψ2. π |= ψ1 ∨ ψ2 iff π |= ψ1 or π |= ψ2.
π |= Gψ iff π is infinite and πi |= ψ for all 0 ≤ i < |π|.
π |= Fψ iff πi |= ψ for some 0 ≤ i < |π|.
π |= Xψ iff π(1) exists and π1 |= ψ.

A Kripke structure M satisfies ψ iff all its initialized paths satisfy ψ. Our defini-
tion of the semantics of LTL is somewhat different from the traditional version,
such as the one in [4], in which paths are defined to be infinite. Here we take
finite paths into account. As explained below, we consider finite prefixes of paths
in bounded model checking, and such a prefix can be a finite or infinite path.

The idea of bounded LTL model checking is as follows. Given a Kripke struc-
ture M, an LTL formula ψ and a bound k, we search in M for a finite prefix
(s0,s1,...,sk) of an initialized path that satisfies ¬ψ. Such a prefix is a coun-
terexample for ψ. In practice, we start with a small value for k and increase it
until a counterexample is found, a pre-determined upper bound is reached, or
the problem becomes intractable.

A finite prefix (s0,...,sk) corresponds to an infinite path if it contains a loop
transition from state sk−1 to a state si, where 0 ≤ i ≤ k -1 (i.e., sk is equivalent
to si). In some cases, a loop is necessary for a prefix to be a counterexample.
For example, for the formula Fp, even if p does not hold in any state from s0 to
sk, without a loop, it is unknown whether p actually holds in any state beyond
sk. Consequently, the prefix is not sufficient to be a counterexample for Fp.

4 Abstract State Machines

An abstract state machine is defined over a signature Σ, which consists of a
set of sorts and a set of functions [14]. Each function can be classified as a
static function which has a fixed interpretation, a controlled function whose
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interpretation can only be changed by the ASM, or a monitored function whose
interpretation can only be modified by the environment. A constant is a static
nullary function. A signature also has the sort Boolean, the constants true, false
and undef, and the operators =, ¬, ∧ and ∨. The constant undef represents an
undetermined element that is the default interpretation of a function.

A state s of a signature Σ is a set of universes and the interpretations of
the functions in Σ over the universes. Each universe Ds

i is associated with a
sort Di in Σ. The interpretation of each function f : D1×...×Dn→Dp is given by
a function fs: Ds

1×...×Ds
n→Ds

p. The super-universe Ds of s is the union of all
universes, {undef } and the reserve, which has the infinite set of new elements
that can be dynamically imported to extend universes.

A signature has a collection of variables V. A variable assignment over a state
s is a function ζ: V→Ds such that a variable of sort Di is mapped to an element
in the universe Ds

i . We denote with ζ(v �→a) the assignment that is identical to
ζ except that it maps the variable v to the element a.

A term is a syntactic expression which has a value given a state s and a
variable assignment ζ. We define a term t and its value Vals,ζ(t) as follows:

– A variable is a term. If t is a variable v, then Vals,ζ(t)=ζ(v).
– If f : D1×...×Dn→Dp is a function, and t1, ..., and tn are terms of sorts D1,

..., and Dn, respectively, then f (t1,...,tn) is a term of Dp. If t is f (t1,...,tn),
then Vals,ζ(t)=f s(Vals,ζ(t1),...,Vals,ζ(tn)).

– If v is a variable of sort Di, and g(v) and s(v) are boolean terms, then
(∀v :g(v)) s(v) and (∃v :g(v)) s(v) are first-order terms with head variable v,
guard g(v) and body s(v). The range of the guard g(v) in a state s consists
of all elements a in Ds

i such that Vals,ζ(v �→a)(g(v))=true.
If t is (∀v :g(v)) s(v), then Vals,ζ(t)=true iff Vals,ζ(v �→a)(s(v))=true for

all a in the range of g(v). If t is (∃v :g(v)) s(v), then Vals,ζ(t)=true iff
Vals,ζ(v �→a)(s(v))=true for some a in the range of g(v).

A location of a state s is a pair (f, ā), where f : D1×...×Dn→Dp is a controlled
or monitored function and ā is an n-tuple in Ds

1×...×Ds
n. The value of (f, ā) is

f s(ā). An update of s is a pair (loc, val), where loc is a location of a sort Di and
val is an element in Ds

i or undef. The value of loc is set to val when the update
is fired. An update set is fired when all its updates are fired simultaneously.

The behaviour of an ASM is defined by transition rules. The semantics of a
transition rule R is given by its update set Δs,ζ(R). We focus on skip, update,
block, conditional and do-forall rules, whose semantics is defined as follows:

Δs,ζ(skip) = ∅.
Δs,ζ(f (t1,...,tn) := tp) = { ((f, (Vals,ζ(t1),...,Vals,ζ(tn))), Vals,ζ(tp)) }.
Δs,ζ(block R1 ... Rn endblock) = Δs,ζ(R1) ∪ ... ∪ Δs,ζ(Rn).
Δs,ζ(if g then R1 else R2 endif) = Δs,ζ(R1) if Vals,ζ(g)=true.
Δs,ζ(if g then R1 else R2 endif) = Δs,ζ(R2) if Vals,ζ(g)=false.
Δs,ζ(do forall v : g(v) R(v) enddo) =⋃

a∈Ran Δs,ζ(v �→a)(R(v)), where Ran is the range of g(v) in s.
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The keywords block and endblock in a block rule can be omitted, and the else-
part in a conditional rule is optional. The evaluation of the transition rules in a
state s results in the update set of s. An execution of an ASM is called a run,
which is a state sequence (s0,s1,...) such that s0 is an initial state and si+1 is
obtained by firing the update set of si for all i ≥ 0.

We give an ASM for the dining-philosophers problem1. Its signature has
the sorts Philosopher associated with the set of constants {p1,p2,p3}, Chop-
stick with {c1,c2,c3}, and Boolean. The static functions are leftchop: Philoso-
pher→Chopstick and rightchop: Philosopher→Chopstick, the controlled func-
tions are eating: Philosopher→Boolean and free: Chopstick→Boolean, and the
monitored functions are me: →Philosopher and hungry: Philosopher→Boolean.
The behaviour of the ASM is defined by the following two conditional rules:

if hungry(me)=true ∧ if eating(me)=true ∧
free(leftchop(me))=true ∧ hungry(me)=false then
free(rightchop(me))=true then free(leftchop(me)) := true
free(leftchop(me)) := false free(rightchop(me)) := true
free(rightchop(me)) := false eating(me) := false
eating(me) := true endif

endif

5 Mapping BMC to ASP

Given an ASM M, an LTL formula ψ and a bound k, we encode the behaviour of
M up to k steps as a logic program Π(M,k) and the negation of ψ as Π(¬ψ,k).
We look for a counterexample for ψ by computing an answer set for the pro-
gram Π(M,k)∪Π(¬ψ,k). We let DP be the name of the ASM for the dining-
philosophers problem in the previous section and use it to illustrate our method.

We first introduce two predicates that will be used extensively in the rest of
this section: valid state, which is true for the states up to k transitions away
from an initial state, and has next state, which is true for the states that have a
successor in a prefix. For each 0 ≤ i ≤ k, add the rule valid state(i) ←. If k >
0, then for each 0 ≤ j ≤ k -1, include the rule has next state(j ) ←.

5.1 Constructing Program Π(M,k)

Let the signature of M be ΣM . We assume that each sort in ΣM is associ-
ated with a fixed universe and dynamic extension of universes is not allowed.
We divide the task of constructing the program Π(M,k) into four parts: sorts,
functions, terms and transition rules.

1 A dining-philosophers problem describes a multi-processing environment with shared
resources. There are N philosophers sitting at a round table and sharing N chop-
sticks. One chopstick is placed between two philosophers. A philosopher needs both
chopsticks on his sides to eat, and thus no two adjacent philosophers can be eating
at the same time. We assume that exactly one philosopher is active at any time.
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Sorts. Each sort Dp in ΣM is associated with a universe Up. Let {cp1,...,cpm}
be a set of constants such that each element in Up is the interpretation of exactly
one cpj , where 1 ≤ j ≤ m. For each cpj , add the rule dp(cpj) ←. The predicate
dp stands for the sort Dp. Consider the sort Philosopher in DP, for which we
add the rules

philosopher(p1) ← philosopher(p2) ← philosopher(p3) ←.

Functions. Each function f : D1×...×Dn→Dp in ΣM is static, controlled or
monitored. We differentiate the three cases as follows:

– If f is static, and Vals,ζ(f (c1,...,cn))=Vals,ζ(cpj) for every state s and vari-
able assignment ζ, where each ci is a constant of sort Di for 1 ≤ i ≤ n
and cpj is a constant of sort Dp, add the rule f (c1,...,cn,cpj) ←. The ar-
ity of the predicate f is n+1, as opposed to n for the function f, because
of the extra parameter for the value of f (c1,...,cn). In DP, if the chop-
stick on the left of philosopher p1 is c1 and the one on the right is c2
(i.e., Vals,ζ(leftchop(p1))=Vals,ζ(c1) and Vals,ζ(rightchop(p1))=Vals,ζ(c2)),
we include the rules

leftchop(p1 ,c1) ← rightchop(p1 ,c2) ←.

– If f is controlled, and Vals0,ζ(f (c1,...,cn))=Vals0,ζ(cpj) in every initial state
s0 of M, add the rule f (c1,...,cn,cpj ,0) ←. The last parameter ‘0’ indicates
the state, and thus the arity of the predicate f is n+2. In DP, suppose
all philosophers are not eating initially (i.e., Vals0,ζ(eating(p))=false for all
philosophers p). Then we add the rules

eating(p1,0,0) ← eating(p2,0,0) ← eating(p3,0,0) ←.

Note that we use ‘1’ and ‘0’ for true and false, respectively.
If no fixed initial value is given to f (c1,...,cn), add the following rule which

chooses one constant of sort Dp to be equal to f (c1,...,cn) in an initial state:

1 { f (c1,...,cn,cp1,0), ..., f (c1,...,cn,cpm,0) } 1 ←
where cpj is a constant of Dp for 1 ≤ j ≤ m.

If the value of a location of f is not updated in state si, it remains
unchanged for state si+1, where 0 ≤ i ≤ k -1. For each constant cpj of Dp,
where 1 ≤ j ≤ m, include the rule

f (X1,...,Xn,cpj ,I+1) ←
not f (X1,...,Xn,cp1,I+1), ..., not f (X1,...,Xn,cpj−1,I+1),
not f (X1,...,Xn,cpj+1,I+1), ..., not f (X1,...,Xn,cpm,I+1),
f (X1,...,Xn,cpj ,I ), d1(X1), ..., dn(Xn), has next state(I ).

Therefore, for the function eating in DP, we add the rules

eating(X1,1,I+1) ← not eating(X1,0,I+1), eating(X1,1,I ),
philosopher(X1), has next state(I )

eating(X1,0,I+1) ← not eating(X1,1,I+1), eating(X1,0,I ),
philosopher(X1), has next state(I ).
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The symbols X1, ..., Xn and I are variables, which must be capital, while
d1, ..., dn and has next state are called domain predicates. A domain pred-
icate restricts the range of values that a variable can take. Before answer
sets are computed, all variables are substituted by the values given by the
corresponding domain predicates. This process is called grounding.

– If f is monitored, the initial value of f (c1,...,cn) is handled in the same way as
a controlled function. A monitored function changes non-deterministically.
To encode this behaviour, add the rule

1 { f (X1,...,Xn,cp1,I+1), ..., f (X1,...,Xn,cpm,I+1) } 1 ←
d1(X1), ..., dn(Xn), has next state(I ).

For example, for the function me in DP, we introduce the rule

1 { me(p1,I+1), me(p2,I+1), me(p3,I+1) } 1 ← has next state(I ).

Terms. Let the transformation of terms be a function Et, which takes two
parameters: a term t and an integer i identifying a state that is i transitions
away from an initial state.

– A variable v of sort Dp is transformed into a logic program variable:

Et(v,i) = X for all i,

where X acts as a placeholder for the value of v. The transformation also
creates the atom dp(X ). We refer to the atoms introduced during the trans-
formation of a term as ‘side atoms’. If a logic program variable which repre-
sents the value of a term appears in a logic rule, the side atoms for the term
must be present in the body of the rule.

The choice of the name for the logic program variable is not unrestricted.
If two distinct terms are translated into variables that appear in the same
logic rule, then they must have different names.

– For a function application f (t1,...,tn), if f is a static nullary function, i.e. a
constant c, then f (t1,...,tn) is not affected by the transformation:

Et(c,i) = c for all i.

If f : D1×...×Dn→Dp is not a constant, f (t1,...,tn) is transformed into a logic
program variable:

Et(f (t1,...,tn),i) = X for all i,

where X holds the value of f (t1,...,tn). If f is static, the side atoms are
f (Et(t1,i),...,Et(tn,i),X ) and dp(X ). If f is controlled or monitored, the side
atoms are f (Et(t1,i),...,Et(tn,i),X,i) and dp(X ).

For example, the transformation of the term eating(me) results in a vari-
able X as well as the side atoms eating(Et(me,i),X,i) and boolean(X ).
Et(me,i) produces a variable Y with the side atoms me(Y,i) and philoso-
pher(Y ).
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– An application of a function that is supported by the chosen answer set tool
should be transformed into the appropriate syntax of the tool. These func-
tions, which we call built-in functions, include the operators =, ∧, ∨ and ¬.
For instance, to translate the guard eating(me)=true ∧ hungry(me)=false in
the second conditional rule in DP, we first introduce two atoms q1(i) and q2(i),
which are defined by the rules:

q1(i) ← Et(eating(me)=true,i), <side atoms>
q2(i) ← Et(hungry(me)=false,i), <side atoms>.

The symbol <side atoms> stands for the set of side atoms created during the
transformation of the terms in a rule, and thus its two occurrences above refer
to the side atoms from Et(eating(me)=true,i) and Et(hungry(me)=false,i),
respectively. We assume that ‘==’ is the equality operator in the chosen
answer set tool. Then the two rules above become

q1(i) ← X==1, eating(Y,X,i), boolean(X ), me(Y,i), philosopher(Y )
q2(i) ← X==0, hungry(Y,X,i), boolean(X ), me(Y,i), philosopher(Y ).

The result of the transformation is an atom q(i), supported by the rule

q(i) ← q1(i), q2(i).

We generalize the transformation of a term t which is t1=t2, t1∧t2, t1∨t2
or ¬t1. In t1=t2, t1 and t2 are variables, constants or function applications
that are transformed into logic program variables. In t1∧t2, t1∨t2 and ¬t1,
t1 and t2 are equalities, conjunctions, disjunctions, negations or first-order
terms. Then Et(t,i) returns an atom q(i) with the following auxiliary rule(s):

q(i) ← Et(t1,i)==Et(t2,i), <side atoms> if t is t1=t2,
q(i) ← Et(t1,i), Et(t2,i) if t is t1∧t2,
q(i) ← Et(t1,i) and q(i) ← Et(t2,i) if t is t1∨t2, and
q(i) ← not Et(t1,i) if t is ¬t1.

– A first-order term (∃v :g(v)) s(v) is transformed as follows. We say that a
first-order term tf ‘encloses’ another one tf ′ if tf ′ appears in the guard or the
body of tf . Let v1, ..., and vn be the head variables of the first-order terms
enclosing (∃v :g(v)) s(v). The variables v1, ..., vn and v range over sorts D1,
..., Dn and Dp and are transformed into logic program variables X1, ..., Xn

and Xp, respectively.
We assume that each of the guard g(v) and the body s(v) is an equality,

conjunction, disjunction, negation or first-order term, and thus Et(g(v),i)
and Et(s(v),i) are atoms qg(i) and qs(i), respectively. We add X1, ..., Xn

and Xp to qg(i) and qs(i) as parameters and also add them to the head of
each auxiliary rule created by Et(g(v),i) and Et(s(v),i) as parameters.

The term (∃v :g(v)) s(v) is represented by an atom q(X1,...,Xn,i), which
is true if both qg(X1,...,Xn,Xp,i) and qs(X1,...,Xn,Xp,i) are true:
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q(X1,...,Xn,i) ← qg(X1,...,Xn,Xp,i), qs(X1,...,Xn,Xp,i),
d1(X1), ..., dn(Xn), dp(Xp).

A first-order term (∀v :g(v)) s(v) is handled by first converting it into its
equivalence ¬((∃v :g(v)) ¬s(v)).

Transition Rules. Let the transformation of transition rules be a function Er,
which takes a transition rule as a parameter and returns a set of logic rules.

– A skip rule does nothing, so Er(skip) is the empty set.
– An update rule is translated into the logic rule:

Er(f (t1,...,tn) := tp) =
f (Et(t1,I ),...,Et(tn,I ),Et(tp,I ),I+1) ← <side atoms>,

has next state(I ).

In this case, <side atoms> contains all side atoms from Et(t1,I ), ..., Et(tn,I )
and Et(tp,I ). For example,

Er(eating(me) := false) =
eating(Et(me,I ),Et(false,I ),I+1) ← <side atoms>,

has next state(I ).

The rule eventually becomes

eating(X,0,I+1) ← me(X,I ), philosopher(X ), has next state(I ).

– A block rule is transformed into the union of the sets of logic rules for all
the sub-rules:

Er(block R1 ... Rn endblock) = Er(R1) ∪ ... ∪ Er(Rn).

– For a conditional rule with guard g, suppose that Et(g,I ) is an atom q(I ).
We add q(I ) to the body of each rule in Er(R1) (then-part) and not q(I )
to the body of each rule in Er(R2) (else-part). In the following, the notation
Er(R)[+lit ] denotes the set of rules obtained by adding the literal lit to the
body of each rule in Er(R):

Er(if g then R1 else R2 endif) = Er(R1)[+q(I )] ∪ Er(R2)[+not q(I )].

Consider the second conditional rule in DP. We have translated the guard
eating(me) ∧ hungry(me) for some i into an atom q(i). To do it for all 0
≤ i ≤ k -1, we replace i by I in the rules that define q, q1 and q2 and add
has next state(I ) to their bodies. The update rule eating(me) := false is in
the then-part of the conditional rule. Therefore, we add q(I ) to the body of
the rule resulting from the transformation of eating(me) := false:

eating(X,0,I+1) ← q(I ), me(X,I ), philosopher(X ), has next state(I ).

– A do-forall rule is treated as follows. We assume that its head variable v is of
sort Dp and is transformed into a logic program variable X. The guard g(v)
is translated by Et(g(v),I ) into an atom q(I ). We add X as a parameter to
q(I ) and the head of each auxiliary rule from Et(g(v),I ). Then we include
the atoms q(X,I ) and dp(X ) in the body of each rule in Er(R(v)), where
R(v) is the sub-rule of the do-forall rule:

Er(do forall v : g(v) R(v) enddo) = (Er(R(v))[+q(X,I )])[+dp(X )].
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5.2 Constructing Program Π(¬ψ,k)

Recall that a prefix (s0,s1,...,sk) of a path may have a loop. The existence of
a loop is indicated by the equivalence between the last state sk in the prefix
and some previous state si, where 0 ≤ i ≤ k -1. Two state s1 and s2 of M are
equivalent iff for each location, its values in s1 and s2 are equal.

Let h be a formula obtained by converting ¬ψ into negation normal form
in which negations only appear in front of atomic propositions. The method
to construct the program Π(¬ψ,k), which is partly derived from [9]2, is as
follows:

– Let the atom el(i) represent the equivalence between states sk and si, where
0 ≤ i ≤ k -1. There is at most one i such that el(i) can be true because a
prefix has at most one loop. Therefore, we add the rule

0 { el(0), ..., el(k -1) } 1 ←.

s0 s1  si, sk sk-1 
 el(i) il(k-1) il(k-2) nl(i+1) 
 il(k)  il(i+1) 

Fig. 1. Loop-related atoms

– For each controlled or monitored function f : D1×...×Dn→Dp in ΣM , include
the constraint

← el(I ), f (X1,...,Xn,Xp,I ), not f (X1,...,Xn,Xp,k),
d1(X1), ..., dn(Xn), dp(Xp), has next state(I ).

The idea is that if sk is equivalent to si, and Valsi,ζ(f (c1,...,cn)) is equal to
Valsi,ζ(cp), where each cj is a constant of sort Dj for j=1, ..., n and p, then
Valsk,ζ(f (c1,...,cn)) must also be equal to Valsk,ζ(cp).

– Define the atoms le, nl(i) and il(i). A loop exists if le is true. The state si

is the ‘next state’ of the last state sk if nl(i) is true, and it is inside the loop
if il(i) is true (see Fig. 1 for an example). Add the rules

le ← el(I ), has next state(I ) nl(I+1) ← el(I ), has next state(I )
il(I+1) ← el(I ), has next state(I ) il(I+1) ← il(I ), has next state(I ).

– Recursively translate the formula h by adding the rules in Table 1. In the end,
we require that a prefix of a run in M satisfy h by including the constraint

← not h(0).
2 The temporal operator X is not treated in [9].
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Table 1. Translation of an LTL formula

Formula h Translation
atomic proposition h(I ) ← f (c1,...,cn ,cp), valid state(I ) if f is static
f (c1,...,cn)=cp h(I ) ← f (c1,...,cn ,cp,I ), valid state(I ) otherwise
¬(f (c1,...,cn)=cp) h(I ) ← not f (c1,...,cn ,cp), valid state(I ) if f is static

h(I ) ← not f (c1,...,cn ,cp,I ), valid state(I ) otherwise
h1 ∧ h2 h(I ) ← h1(I ), h2(I ), valid state(I )
h1 ∨ h2 h(I ) ← h1(I ), valid state(I )

h(I ) ← h2(I ), valid state(I )
Gh1 h(I ) ← h1(I ), h(I+1), valid state(I )

h(k+1) ← le, not q
q ← il(I ), not h1(I ), valid state(I )

Fh1 h(I ) ← h1(I ), valid state(I )
h(I ) ← h(I+1), valid state(I )
h(k+1) ← nl(I ), h(I ), valid state(I )

Xh1 h(I ) ← h1(I+1), has next state(I )
h(k) ← nl(I ), h1(I ), valid state(I )

5.3 Correctness of Method

Given an ASM M, an LTL formula ψ and a bound k, we have the following
soundness and completeness results for the program Π(M,k)∪Π(¬ψ,k)3:

Theorem 1 (Soundness). If Π(M,k)∪Π(¬ψ,k) has an answer set, then there
exists a run (s0,...,sk) of M which satisfies ¬ψ.

Theorem 2 (Completeness). If there exists a run (s0,...,sk) of M which sat-
isfies ¬ψ, then Π(M,k)∪Π(¬ψ,k) has an answer set.

6 Experiments

We have implemented a bounded model checker for ASMs based on the method
described in the previous section. It accepts an ASM written in ASM-SL [5]. The
choice of ASM-SL makes it easier for us to compare our approach to the one
based on NuSMV, since it is the input language of the ASM-to-SMV translator
developed by Winter [14], and NuSMV is a reimplementation and extension of the
BDD-based model checker SMV.

We compared the ASP solvers SMODELS 2.284 and CMODELS 3.545 to the
SAT-based bounded model checker (NuSMV/BMC) and the BDD-based checker
(NuSMV/BDD) in NuSMV 2.3.06. SMODELS computes the answer sets of a program
3 An extended version of this paper with proofs of the theorems is available at
http://www.sfu.ca/∼ctang/LPAR-05-extended.pdf.

4 http://www.tcs.hut.fi/Software/smodels/
5 http://www.cs.utexas.edu/users/tag/cmodels.html
6 http://nusmv.irst.itc.it/



454 C.K.F. Tang and E. Ternovska

as its stable models [13], while CMODELS is based on the relationship between
answer set semantics and completion semantics [1] and uses a SAT solver to
find answer sets. Both ASP solvers require the preprocessor LPARSE 1.0.157,
whose primary task is grounding. The SAT solver invoked by both CMODELS and
NuSMV/BMC was zChaff 2004.11.158. We set a limit of 3600 seconds for each
tool. For BMC, we initialized the bound to 10 and increased it by 5 when no
counterexample was found. All experiments were conducted on a Linux PC with
a 2.8GHz CPU and 1024MB RAM.

For the first batch of our experiments, we chose the FLASH Cache Coherence
Protocol used by Winter as a case study in [14]. The protocol supports sharing
of memory among interconnected processors. Memory is divided into lines, each
of which is associated with a host processor. A processor that wants to access
a line sends a request to its host. We modified Winter’s correct ASM to repro-
duce some of the errors she detected and formulated the following properties in
LTL:

– P1: No two processors have exclusive access to the same line at any time.
– P2: Every request will eventually be acknowledged.
– P3: Whenever a processor obtains shared access to a line, it will be marked

as a sharer of the line.

The experimental results are shown in Table 2. The first column gives the
model parameters: the number of processors (P), the number of lines (L), and
the size of the message queue of each processor (Q). In the columns SMODELS,
CMODELS and NuSMV/BMC, ‘k=n, t ’ reports the time t in seconds taken for the
corresponding tool to find a counterexample within the bound n. For SMODELS
and CMODELS, the time for grounding is included. If no counterexample was found,
‘k>n, t ’ reports the time taken to prove the absence of counterexamples within
the largest bound n before the time limit was exceeded. The question mark ‘?’
means that the tool did not terminate within the time limit for the initial bound
10. The last column reports the time taken for NuSMV/BDD to complete, with ‘?’
indicating that it failed to finish within the time limit.

In the second batch of experiments, we tried to detect the ‘livelock error’
in an early version of the i-Protocol. The i-Protocol is an optimized sliding
window protocol and has been used as a benchmark for various model checkers
in [6]. We modelled the erroneous version of the i-Protocol as an ASM. Based
on the error scenario described in [6], we specified the following property in
LTL:

– P4: If a data packet from the sender has been accepted by the receiver,
and eventually no packets will be dropped or corrupted, then the next data
packet from the sender will eventually be accepted by the receiver.

This property will be violated if the livelock error is present. The model parame-
ter is the window size (W). The experimental results are given in Table 3. In the
7 http://www.tcs.hut.fi/Software/smodels/
8 http://www.princeton.edu/∼chaff/zchaff.html
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Table 2. LTL Model Checking Experiments for FLASH Cache Coherence Protocol

Model Parameters Property SMODELS CMODELS NuSMV/BMC NuSMV/BDD
P=2, L=1, Q=1 P1 k=20, 43.7 k=20, 3.8 k=20, 1007.6 ?

P2 k=15, 10.8 k=15, 9.1 k=15, 266.6 ?
P3 k>20, 248.2 k>50, 1341.2 k>20, 1153.1 ?

P=2, L=2, Q=1 P1 k=20, 620.1 k=20, 13.3 k>10, 470.3 ?
P2 k=15, 7.2 k=15, 8.7 k>10, 375.6 ?
P3 k>15, 404.6 k>40, 1745.6 k>10, 118.9 ?

P=3, L=1, Q=2 P1 k=20, 619.4 k=20, 17.5 ? ?
P2 k>15, 140.1 k=25, 2675.2 ? ?
P3 k>20, 2441.8 k>45, 2429.1 ? ?

table, ‘×’ indicates the lack of result because Winter’s ASM-to-SMV translator
failed to produce an NuSMV model due to a run-time error.

Both SMODELS and CMODELS outperformed NuSMV. In each case, they found
a counterexample faster or reached a higher bound without exceeding the time
limit. Both CMODELS and NuSMV converted their inputs into propositional formu-
las in conjunctive normal form (CNF). We noticed that the CNF formulas gen-
erated by CMODELS were much smaller. For example, at bound 20 for property P1
with parameters P=2, L=1 and Q=1, the CNF formula created by CMODELS had
14379 atoms and 47601 clauses, compared to 176566 atoms and 655268 clauses
in the one by NuSMV. The difference can be partly attributed to the fact that the
NuSMV models from the ASM-to-SMV translator were unnecessarily large and
consequently affected the performance of NuSMV.

Table 3. LTL Model Checking Experiments for i-Protocol

Model Parameter Property SMODELS CMODELS NuSMV/BMC NuSMV/BDD
W=1 P4 k=15, 7.0 k=15, 1.9 k=15, 310.0 ?
W=2 P4 k=15, 12.0 k=15, 2.8 × ×
W=4 P4 k=20, 1362.0 k=20, 39.6 × ×

One benefit of using ASP in the model checking of ASMs is the ease of trans-
forming ASMs into logic programs. Easier transformation of the given model can
certainly lower the overall model checking effort. In our ASP-based approach, no
‘location unfolding’ is needed during the transformation. To see what location
unfolding is, consider the update rule InMess(Self ) := noMess in the ASM for
the FLASH Cache Coherence Protocol, where InMess : AGENT→TYPE is a
controlled function, Self : →AGENT is a monitored function, and noMess is a
constant of sort TYPE. In order to use NuSMV, the parameter Self has to be
‘unfolded’ into every value it can have, and the update rule is unfolded into a
set of conditional rules:
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InMess(Self ) := noMess ⇒ if Self =a1 then InMess a1 := noMess endif
...
if Self =an then InMess an := noMess endif

where a1, ..., and an are constants of sort AGENT. The unnecessarily large
NuSMV models in our experiments were caused by redundant location unfolding.
With ASP, the translation of the update rule always produces one logic rule:

inmess(X,noMess,I+1) ← self (X,I ), agent(X ), has next state(I ).

In general, to translate an ASM into the language of a model checker with no
support for parameterized functions, every location that occurs as a parameter
of a non-built-in function must be unfolded into every possible value. In ASP,
parameterized functions can easily be handled with parameterized atoms and
variables. Note that location unfolding is not totally eliminated, since variables
in a logic program must still be replaced by their possible values during ground-
ing. Rather, it is taken out of the transformation algorithm and handled by
an efficient grounding program like LPARSE. The result is a more compact and
natural encoding of an ASM that requires less effort to produce.

As for the comparison between the two ASP solvers, CMODELS outperformed
SMODELS in all but one case. The former appears to be more scalable in the
size of the model and the bound. The superior results by CMODELS largely co-
incide with other experimental results which compare the solvers on computing
one answer set, such as those in [10]. In our experiments, they were config-
ured to compute one answer set which would suffice to show the violation of a
property.

The ASM models, LTL formulas, logic programs and NuSMV models used in all
experiments are available at http://www.sfu.ca/∼ctang/experiments.html.

7 Related Work

Answer set programming has been applied to model checking before. Heljanko
and Niemelä introduced in [9] bounded LTL model checking of 1-safe Petri nets
with ASP. Their approach is similar to ours in that 1-safe Petri nets and LTL
formulas are translated into logic programs such that BMC problems become
tasks of finding answer sets. A notable difference between the two approaches is
that ours requires a much more extensive use of variables in logic programs in
order to encode terms in ASMs.

Several ASM model checking methods based on existing model checkers are
available in the literature. In [14], Winter showed how to transform ASMs into
SMV code. She also proposed a way to verify ASMs using the model checker MDG.
MDG is based on Multiway Decision Graphs and supports abstract data types
and uninterpreted functions. The transformations into SMV and MDG both require
location unfolding so that the given ASM is unfolded into a set of conditional
rules with only nullary functions. In [8], the authors presented a way to encode an
ASM in the language of Spin, which is an LTL model checker in which reachable
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states are represented as enumerable elements. However, they did not address
non-nullary functions, first-order terms and do-forall rules.

8 Conclusions

We present the application of answer set programming to bounded LTL model
checking of abstract state machines. We introduce a mapping from a BMC prob-
lem to a problem of answer set computation through a compact encoding of the
given ASM and LTL formula in a logic program. The compact encoding is real-
ized by the power of logic rules to succinctly represent the transition behaviour
of ASMs and the recursive evaluation of LTL formulas. Our experimental results
show that the application of ASP is promising in BMC of ASMs. As ASP is
a research area of high interest, we believe that better answer set solving and
grounding techniques will emerge. Our future directions include exploring ways
to optimize our logic program encoding and studying the possibility of applying
ASP to unbounded model checking.
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Abstract. We propose a characterization of provability in BI’s Pointer Logic
(PL) that is based on semantic structures called resource graphs. This logic has
been defined for reasoning about mutable data structures and results about mod-
els and verification have been already provided. Here, we define resource graphs
that capture PL models by considering heaps as resources and by using a labelling
process. We study provability in PL from a new calculus that builds such graphs
from which proofs or countermodels can be generated. Properties of soundness
and completeness are proved and the countermodel generation is studied.

1 Introduction

Separation logics are logics for reasoning about mutable data structures in which the
pre- and postconditions are written in a logic enriched with specific forms of conjunc-
tion or implication. In this context, Reynolds has proposed an intuitionistic logic ex-
tended with a separation connective ∗ [12] and Ishtiaq and O’Hearn have investigated
the same approach from the point of view of the logic of Bunched Implications (BI)
[10]. A key point of BI logic is its joint treatment of intuitionistic implication → and
conjunction∧ (additive connectives) and linear implication−∗ and conjunction ∗ (mul-
tiplicative connectives). BI’s semantics allows statements to be made using standard
connectives and then to combine them in a modular way using −∗ and ∗. The resource
interpretation of the connectives, where ∗ decomposes the current resource into pieces
and −∗ talks about new and fresh resource, is central. BI’s pointer logic (PL) provides
a concrete way of understanding the connectives in the context of program verification
apart from logical concerns [6] . It is a possible worlds model of Boolean BI (BBI) where
additives are classical that validates the axioms for Hoare triples. PL being used as an
assertion language for mutable data structures, it appears essential to provide a proof
theory and related proof search methods in order to check PL assertions.

In this paper we propose a characterization of provability in PL that is based on
semantic structures, called resource graphs, and a new labelled calculus that builds such
graphs from which proofs or countermodels can be generated. A similar approach has
been developed for BI with intuitionistic additives [3, 4] but it cannot be directly applied
to BBI and its classical additives. The key point consists in defining resource graphs
that capture PL models by considering heaps as resources and by using an appropriate
labelling process. Such graphs allow to capture semantic information essential for the
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provability analysis [5]. Having defined PL resource graphs, we propose a calculus with
labels and constraints for a propositional fragment of PL, called PL �→, in a tableau style
that is adapted to countermodel extraction. Soundness and completeness of the related
proof search method are proved and countermodel generation from resource graphs is
analyzed. Finally, extensions of the calculus and results to PL can be developed.

2 BI’s Pointer Logic

BI’s Pointer Logic (PL) is a logic for reasoning about mutable data structures [6]. Some
problems about pointer management, including aliasing, are difficult to deal with. Re-
cent works have provided logics with a spatial form of conjunction ∗ that splits the heap
into distinct subheaps and with a form of assertion, the points-to relation �→, to make
statements about the contents of heap cells [9, 12]. It leads to simple axioms and cap-
tures the intuitive operational locality of assignment. They are based on BI logic that
includes two implication connectives → and −∗ with two conjunction connectives ∧
and ∗ [10]. BI’s semantics allow statements to be made using standard (additive) con-
nectives and then to combine them using the (multiplicative) connectives.

Here, we consider PL that is a model of Boolean BI (with classical additives) [6]
and summarize its key notions and results. First, we have a set of values Val that can
be integers or locations, a set of variables Var and a countable set of locations Loc.
A stack s : Var ⇀ f in Val is a finite partially defined function that associates values to
variables and a heap h : Loc ⇀ f in Val×Val is a finite partially defined function that
associates pairs of values to locations. An expression E can represent a variable, called
a stack variable, an integer or a constant that is interpreted w.r.t. a stack s as a value
(�E�s ∈Val).

Definition 2.1. The language of PL consists of the predicates �→ and =, the connectives
of BI, the existential quantifier and two countable sets of variables of stacks and values.
The set of formulae is inductively defined as follows:

– At ::= (E �→ E1,E2) | E1 = E2 where E, E1 and E2 are expressions,
– φ ::= At | I | φ∗φ | φ−∗φ | 5 | ⊥ | φ∧φ | φ→ φ | φ∨φ| ∃x.φ.

Moreover, we can define ¬φ by ¬φ≡ φ→⊥ and use it to define connectives rather
than taking them as primitives. The predicate (x �→ a,b) allows to represent the state of
the memory: there exists a variable x in a stack s such that there exists a location l in a
heap h such that �E�s = l and h(l) = 〈a,b〉. The actual use of PL consists in describing
states about resources with the language and in proving properties about these resources
with the logic. The semantics of the formulae is given by a satisfaction relation of the
form s,h |= φ that asserts that φ is true in stack s ∈ S and heap h ∈ H. It is required that
the free variables of φ are included in the domain of s.

Definition 2.2. The semantics of the formulae is defined as follows:

– s,h |= E1 = E2 iff �E1�s = �E2�s
– s,h |= (E �→ E1,E2) iff dom(h) = {�E�s} and h(�E�s) = 〈�E1�s,�E2�s 〉
– s,h |= 5 always
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– s,h |= ⊥ never
– s,h |= φ∧ψ iff s,h |= φ and s,h |= ψ
– s,h |= φ∨ψ iff s,h |= φ or s,h |= ψ
– s,h |= φ→ ψ iff if s,h |= φ then s,h |= ψ
– s,h |= I iff h is the empty heap
– s,h |= φ∗ψ iff ∃h1,h2. h1#h2, h1 ·h2 =h, s,h1 |= φ and s,h2 |= ψ
– s,h |= φ−∗ψ iff ∀h1. i f h1#h and s,h1 |= φ then s,h1 ·h |= ψ
– s,h |= ∃x.φ iff ∃v ∈Val. [s|x �→ v],h |= φ

In the previous definition, h1#h2 means that the domains of heaps h1 and h2 are
disjoint and h1 ·h2 denotes the union of disjoint heaps (union of functions with disjoint
domains). Composition of non-disjoint heaps is undefined so that heap composition
is only partial. Moreover, the semantic consequence relation φ |= ψ between formulae
holds if and only if for all s,h, if s,h |= φ then s,h |= ψ.

In this model, the worlds are heaps (collections of cons cells in storage) and the
conjunction φ ∗ψ is true just when the current heap can be split into two components,
one of which makes φ true and the other which makes ψ true. The implication φ−∗ψ
talks about new or fresh pieces of heap, disjoint from the current heap. It says that,
whenever we have a new heap that makes φ true, the combined new and current heap
will make ψ true. The other connectives are interpreted pointwise. For instance, the
formula (x �→ 3,5) ∗ ((x �→ 7,5)−∗P) says that x denotes a cell which holds (3,5) in
the current heap and that if we update the car to 7 then P will be true. The semantics
of ∗ splits the heap into two parts, one where (x �→ 3,5) holds and another where the
location x is dangling. Then the semantics of −∗ and �→ ensures that P must be true
when the second heap is extended by binding x’s location to (7,5).

Main concepts and results about the use of PL as an assertion language are given
in [6]. As an interesting result, we can mention an operation that disposes of memory,
by creating dangling pointers, through the command dispose(E) which deallocates a
location. From a semantic point of view, it removes a location from the heap and is
defined by the following axiom: {P∗∃ a b.(E �→ a,b)} dispose(E) {P}, where a,b are
not free in E . Reasoning backwards from 5 we can find cases under which a program
is safe to execute. With a double dispose we obtain ⊥ for the precondition as expected,
indicating that the program is not safe to execute for any start state:

{⊥}
{5∗∃ a b.(x �→ a,b)∗∃ c d.(x �→ c,d)}

dispose(x)
{5∗∃ a b.(x �→ a,b)}

dispose(x)
{5}

We first study a propositional fragment of PL, denoted PL �→, restricted to atomic
formulae (l �→ a,b) in which l,a,b are constants, meaning that at location l there is a
cell containing (a,b). Then, we can forget the stack variables in the semantic clauses
corresponding to this fragment.
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3 Heaps, Labels and Resource Graphs

Purely syntactic proof methods (in sequent or natural deduction style) usually deal with
a great amount of operational overhead (structural rules, permutabilities of inferences)
which is mainly irrelevant w.r.t. the provability of a formula. On the other hand, purely
semantic methods often abstract away too much of the operational aspects to be signif-
icant and helpful for countermodel construction. In the case of PL, we have a complete
semantics based on partial monoids of heaps, and then syntactic and semantic conse-
quence relations (provability and validity) coincide 1. Therefore, the main properties of
heap composition and of PL semantic consequence relation can be reflected at a syntac-
tic level using labels, constraints and a specific closure operator [5] in order to define a
resource driven proof method for PL.

3.1 Labels and Constraints

Definition 3.1 (labels). The labelling language consists of a countable set of constant
symbols c0,c1, · · · and a binary symbol ◦. The set L of labels is the smallest set which
contains constants ci (i ∈ N) (atomic labels) and such that x ◦ y is a (compound) label
whenever x, y are labels which do not share any constant symbol.

The constants are intended to reflect heaps, while ◦ is intended to reflect heap com-
position. We view labels as unordered sequences of symbols, i.e., ◦ is interpreted as
an associative and commutative operation on labels. For example, we consider the two
labels c1 ◦ (c2 ◦ (c3 ◦ c4)) and (c2 ◦ c1) ◦ (c4 ◦ c3) as equal and we do not distinguish
between the two of them. Since order and association are irrelevant, we frequently omit
the symbol ◦ and simply write xyz instead of x◦ y◦ z.

More formally, we first say that a label x is a sublabel of a label y if any constant
occuring in x also occurs in y, i.e., x≤y iff (∀ci ∈ x)(ci ∈ y). Then, we define x = y
iff x≤y and y≤ x. The length |x| of a label x is the number of constants it contains.
Moreover, we define x− y as the label z obtained from x by discarding all the constants
in y that also occur in x, eventually setting z to c0 if there is no constant left in x. We then
define label constraints as expressions of the form yz� x, Zx, Ux, Ax that respectively
reflect that a heap can be decomposed into two sub-heaps, may contain no cell (Zero),
may contain exactly one cell (Unit) and may contain at least one cell (Aggregate).

Definition 3.2 (constraints). A label constraint is an expression of the form x�y or of
the form Tx, where x and y are labels and T ∈ {Z,U,A}.

Moreover we need to capture the various resource interactions that occur in PL mod-
els and we do it through a closure operator (·)† on sets of labels and constraints. Let us
note that when we write x∈ X†, x being a label, we do not intend x to be a member of X†

explicitly, we only require that X† contains some label y such that y = x, i.e., we slightly
abuse our notations to work with equivalence classes of labels modulo the equality =
induced by the associativity and commutativity of label composition. Given a constraint
k (y �x, Zx, Ux or Ax), we say that k holds in X , written X � k, if k ∈ X†. The domain
D(X) of a set X of labels and constraints is defined as the restriction of X† to its labels.

1 This is not the case for Boolean BI, for which there is currently no known complete monoid-
based semantics.
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Definition 3.3 ((·)†-closure). Let X be set of labels and label constraints. We define X†

as the smallest set containing X ∪{c0,Zc0 } such that

– x ∈ X† and y≤x⇒ y ∈ X† (saturation),
– x � y ∈ X†⇒ x,y ∈ X† (�-completion),
– Zx ∈ X† or Ux ∈ X†⇒ x ∈ X† (ZU-completion),
– x ∈ X†⇒ x � x ∈ X† (reflexivity),
– x � y ∈ X† and y � z ∈ X†⇒ x � z ∈ X† (transitivity),
– x � y ∈ X† and yz ∈ X†⇒ xz� yz ∈ X† (�-propagation),
– Zx ∈ X† and y≤ x⇒ Zy ∈ X† (Z-decomposition),
– Ux ∈ X† and y≤x and Uy ∈ X†⇒ Z(x− y) ∈ X† (U-decomposition),
– Tx ∈ X† and (y � x or x � y) ∈ X†⇒ Ty ∈ X† (T-propagation).

The reflexivity, transitivity and �-propagation conditions simply capture the fact that
in PL, the validity relation satisfies φ |= φ, φ |= ψ and ψ |= χ imply φ |= χ, and φ |= ψ
implies φ∗χ |= ψ∗χ. The Z-decomposition condition reflects that all sub-heaps of an
empty heap are empty. The U-decomposition condition reflects that if x stands for a
heap having exactly one location and if y represents a sub-heap with only one location
also, then any sub-heap of x disjoint from y must be empty. Finally, the T-propagation
condition simply explains how the properties of being an empty heap, a one-location
heap, or an aggregate heap are propagated through heap composition. For example, let
us set T = Z, x = c1 and y = c2c3, then, the condition means that if c1 represents an
empty heap (Zc1) which may be obtained by composition of the two heaps c2 and c3

(c2c3 � c1), then c2c3 also represents an empty heap (Zc2c3).

3.2 Resource Graphs

In this subsection, we explain how labels and constraints give rise to a specific semantic
structure, called a resource graph, which is a graphical representation of the (·)†-closure
operator.

Definition 3.4. Let X be set of labels and constraints, the resource graph associated to
X and denoted G(X) is a directed graph [N,E].
The set of nodes N is derived from the labels occurring in X† (the domain of X) by
decorating each label x with a tag Γ which is a (possibly empty) subset of {Z,U,A}
such that, for any T ∈ {Z,U,A}, if X � Tx then T ∈ Γ.
The set of arrows E is such that there is an arrow Γx�Δy from the node Γx to the node
Δy iff the constraint x � y holds in X, i.e., X � x � y.

Let us illustrate the previous definition with some examples. Firstly, we consider the
set X = {Zc0,c2c3 � c1,Uc2,Uc2c3 }. In order to obtain X†, we must add the constraint
Zc3 to satisfy the (U-decomposition) of Definition 3.3 since we have Uc2, Uc2c3 and
c3≤ c2c3. Furthermore, due to the presence of c2c3 � c1 and Uc2c3, (U-propagation)
leads to the addition of Uc1 so that X† = {Zc0,c2c3 � c1,Uc2,Uc2c3,Zc3,Uc1 }.
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Secondly, beginning with the set Y = {Zc0,c2c3 � c1,Uc2,Uc3,Zc1}, the applica-
tion of (Z-propagation) and (Z-decomposition) on the constraints c2c3 � c1 and Zc1 lead
to Y † = {Zc0,c2c3 � c1,Uc2,Uc3,Zc1,Zc2c3,Zc2,Zc3 }. The resource graphs G0(X)
and G0(Y ), respectively associated to X and Y , then look as follows 2:

G0(X) : Zc0 Zc3 Uc1 Uc2

Uc2c3

G0(Y ) : Zc0 ZUc3 Zc1 ZUc2

Zc2c3

3.3 Normalizing Resource Graphs

In order to reduce the size of the resource graphs, we need to remove nodes that are
semantically redundant. For that, we define a normalization process on resource graphs
that takes into account that there is only one empty heap which is moreover the unit of
heap composition. Therefore, we only keep the node Zc0 to represent the empty heap
and discard all other nodes of the form Zx. Let G(X) = [N,E] be the resource graph
associated with a set X of labels and constraints. Labels x ∈ D(X) such that X � Zx
are called Z-labels, or Z-constants when x is a constant symbol. Since such labels are
assumed to behave as units w.r.t. label composition ◦, we define an equivalence relation
: on X such that x:y iff (∀ci)(X �� Zci ⇒ (ci ∈ y⇔ ci ∈ x)), i.e., the labels x and
y are equivalent upto : if they have the same non-zero constants. We write X � x: y
to mean that x: y holds in X . In terms of the resource graph G(X), Γx:Δy holds in
G(X), written G(X) � Γx:Δy, iff x:y holds in X3. For example, Uc2c3:Uc2 holds
in G0(X) because Zc3 holds in G0(X).

In order to put a resource graph G(X) = [N,E] in normal form, the first step is to
gather all labels that are equivalent upto :, i.e., for all labels x, its equivalence class
modulo: is given by x = {y |X � x: y}. For the equivalence classes of labels modulo
: to give rise to the nodes N of a resource graph in normal form, we need to decorate
them with appropriate tags. Therefore, the second step of the normalization process
is to merge the tags associated to the labels populating an equivalence class using set
union. Thus, for all classes x, we compute the set ϕ =

Δy∈N,y∈x
Δ. The tag associated to

x, denoted Φ, is then obtained from ϕ by discarding the A letter whenever the U letter
is already a member of ϕ, i.e., Φ = ϕ−{A} if {U,A} ⊆ φ and Φ = ϕ otherwise 4.
Finally, in order to give rise to the edges E of the normal resource graph associated
to G(X)[N,E], we add an arrow Φx � Ψy going from a node Φx to a node Ψy iff
Γu�Δv ∈ E for some u ∈ x and v ∈ y. Keeping the label with a minimum length as the
witness for its equivalence class modulo:, the previous examples lead to the following
normal resource graphs:

2 For simplicity, we do not explicitly represent reflexive and transitive arrows.
3 In the rest of the paper, we define relations α either in terms of labels, or in terms of nodes,

the link between the two forms is such that X � x α y iff G(X) � Γx α Δy.
4 This is semantically justified by the fact that it is no use knowing that a heap contains at least

one cell when one already knows it contains exactly one.
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Gn(X) : Zc0 Uc1

Uc2

Gn(Y ) : ZUc0

3.4 Points-to Predicate Distributions

Given a resource graph G(X) = [N,E], we consider distributions of points-to predicates
over nodes of the form Ux. For example, in the previous resource graph Gn(X), we
associate (l �→ a,b) and (k �→ c,d) to the node Uc2. Such a distribution is denoted as
follows: Pto(Uc2) = {(l �→ a,b),(k �→ c,d)}.

Gn(X) : Zc0 Uc1

Uc2
k �→ c,d
l �→ a,b

Gn(Y ) : ZUc0
k �→ c,d
l �→ a,b

Let us define the new relation ≈ as the smallest equivalence on X generated by
(� ∪ :). Then, in order to keep track of which locations are defined in a given heap,
we associate multisets of points-to predicates called loc-sets to the nodes of a resource
graph. The loc-set Loc(Γx) associated to a node Γx is such that Pto(Γx)⊆ Loc(Γx) and
if G(X) � Γx≈Δyz for some Σ1y, Σ2z ∈ N, then Loc(Σ1y)∪Loc(Σ2z) ⊆ Loc(Γx). In
other words, loc-sets inherit points-to predicates via label composition and arrows of
the resource graphs. Finally, we say that Loc(Γx) and Loc(Δy) are compatible, denoted
Loc(Γx)# Loc(Δy), or more shortly x # y, if they share no location l.

Let us illustrate the previous notions with the following resource graph:

Δx

UzUy Γyz

k �→ c,d
l �→ a,b

k �→ e, f
l �→ a,b

Here, the points-to distribution is such that Pto(Uy) = {(l �→ a,b),(k �→ c,d)} and
Pto(Uz) = {(l �→ a,b),(k �→ e, f )}. The loc-set associated with the node Δx is such
that Loc(Δx) = {(l �→ a,b),(l �→ a,b),(k �→ c,d),(k �→ e, f )}. Notice that (l �→ a,b)
occurs twice in Loc(Δx), the first occurence coming from Pto(Uy) and the second com-
ing from Pto(Uz). Therefore Loc(Uy) and Loc(Uz) are not compatible since they share
the location l (and the location k too).

3.5 Structural Consistency

Let us define the notion of a structural consistency for (normal) resource graphs, which
intuitively means that a resource graph indeed represents a “real” model of PL. We first
introduce the notion of well-formed resource graphs.

Definition 3.5. A normal resource graph G(X) = [N,E] is well-formed iff for all Γx ∈
N, the set Γ contains at most one element.
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Then, we introduce the notion of complexity measure on the nodes of a resource graph.
The role of such a notion is to unambiguously determine how many cells are assumed to
be in the heap represented by a given node. The information conveyed by the constraints
of type Ax is only a rough abstraction (at least one cell) that needs to be completed if
we have to extract countermodels from resource graphs as explained later in Section 5.

Definition 3.6. Given a well-formed normal resource graph G(X) = [N,E], a com-
plexity measure on G(X) is a total function Comp : N→ N such that

– Comp(Zx) = 0, Comp(Ux) = 1, Comp(Ax)≥ 1,
– Comp(Γxy) = Comp(Δx)+Comp(Σy),
– G(X) � Γx≈Δy⇒Comp(Γx) = Comp(Δy).

Definition 3.7. Given a measure of complexity Comp on a well-formed resource graph
G(X) and a distribution Pto, G(X) is structurally consistent w.r.t. (Pto,Comp) iff:

– ∀Zx ∈ N, Loc(Zx) is the empty set (SC1),
– ∀Ux ∈ N, Loc(Ux) is a singleton set (SC2),
– ∀Γx,Δy ∈ N, Σxy ∈ N⇒ Loc(Γx)# Loc(Δy) (SC3),
– ∀Γx, Cardinal(Loc(Γx))≤Comp(Γx) (SC4).

G(X) is structurally consistent w.r.t. a distribution Pto iff there exists some complexity
measure Comp for which it is structurally consistent w.r.t. (Pto,Comp).

The previous conditions simply reflect that a heap with no cell should have no location,
that a heap with one cell should have exactly one location, that heaps must not share
locations if they are to be composed and that there should not be more locations in a
heap than there are cells. In the rest of the paper, since a label x uniquely determines a
node Γx in a resource graph, we shall sometimes write Loc(x) and Comp(x) instead of
Loc(Γx) and Comp(Γx).

4 Resource Graphs and Provability

In this section, we propose a tableau-based calculus for PL that builds resource graphs.
The choice of a tableau proof-search method is motivated by its well-known ability to
propose countermodel extraction facilities [2], but our notions of labels, constraints and
resource graphs can be integrated to connection-based, or sequent-based calculi [3], in
order to characterize provability in PL.

Definition 4.1. A signed formula is an expression S φ : x, where S ∈ {F,T} is a sign, φ
is a PL �→ formula and x is a label.

Definition 4.2. Let χ be a formula in PL �→. A tableau for χ is a binary tree T whose root
node is labelled with the signed formula F χ : c0, all other nodes being either labelled
with a signed formula, or with a constraint, and which is built (respecting the structure
of χ) according to the rules depicted on Figure 1.
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F φ→ ψ : x

T φ : x
F ψ : x

T φ∧ψ : x

T φ : x
T ψ : x

F φ∨ψ : x

F φ : x
F ψ : x

T φ→ ψ : x
����

F φ : x T ψ : x

F φ∧ψ : x
����

F φ : x F ψ : x

T φ∨ψ : x
����

T φ : x T ψ : x

T φ∗ψ : x

as : cic j � x

T φ : ci
T ψ : c j

F φ−∗ψ : x

T φ : ci

F ψ : xci

T (l �→ a,b) : x

as : Ux

T I : x

as : Zx

F I : x

as : Ax

F φ∗ψ : x

rq : yz � x
����

F φ : y F ψ : z

T φ−∗ψ : x

rq : x # y
����

F φ : y T ψ : xy

(1) with ci,c j being new constants
(2) with y,z being existing labels

Fig. 1. Tableaux rules for TPL�→

Given a branch B , As(B) is the set of its assertions and Rq(B) the set of its require-
ments. The domain of a branch B , denoted D(B), is the restriction of the set As(B)†

to its labels. We shall see that assertions behave as known facts while requirements
behave as goals that must be achieved using assertions. The application of expansion
rules of Figure 1 leads to the (incremental) construction of a resource graph, denoted
G(B), that is induced by the (·)†-closure of the assertions occuring in B . Moreover, the
points-to predicate distribution is given by the signed formulae of the branch with sign
T, i.e., G(B) is the resource graph G(As(B)†)[N,E] such that, for all nodes Ux ∈ N,
Pto(Ux) = {(l �→ a,b) |T (l �→ a,b) : x ∈ B }.

Having resource graphs associated to tableau branches and built from the assertions
we relate them to the requirements generated by the F φ∗ψ : x and T φ−∗ψ : x signed
formulae. This leads to the notion of admissible tableau.

Definition 4.3. A requirement is admissible in a branch B of a tableau T if it holds in
the ((·)†-closure of the) assertions that occur (in B) closer to the root of T than this
requirement. A branch B is admissible if all its requirements are admissible in B and a
tableau T is admissible if all its branches are admissible.

Before we proceed with the notion of logical consistency, which intuitively means
that a formula of PL �→ can be falsified, we need to introduce an equivalence relation
on the nodes of a resource graph. Given a complexity measure Comp on the resource
graph G(B) of a branch B , we say that the relation Γx∼Δy holds in G(B), written
G(B) � Γx∼Δy (or more shortly B � x∼ y), iff either G(B) � Γx≈Δy or Comp(Γx) =
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√
1 F ((l �→ a,b)∗ ((l �→ a,b)−∗ (k �→ c,d)))−∗ (h �→ e, f ) : c0

√
2 T (l �→ a,b)∗ ((l �→ a,b)−∗ (k �→ c,d)) : c1

F (h �→ e, f ) : c1(= c0c1)

as1 : c2c3 � c1

T (l �→ a,b) : c2√
3 T (l �→ a,b)−∗ (k �→ c,d) : c3��������
F (l �→ a,b) : c2

×

T (k �→ c,d) : c2c3

×

Fig. 2. Tableau for ((l �→ a,b)∗ ((l �→ a,b)−∗ (k �→ c,d)))−∗ (h �→ e, f )

Comp(Δy), Loc(Γx) = Loc(Δy) and Cardinal(Loc(Γx)) = Comp(Γx). In other words,
two nodes are equivalent upto∼ if they represent heaps having the same cells (with the
same content) and the same locations.

Definition 4.4. A branch B is logically inconsistent w.r.t. to a complexity measure
Comp on G(B) if it satisfies one of the following conditions:

– T (l �→ a,b) : x, F (l �→ a,b) : y ∈ B and B � x∼ y (CL1);
– F I : x ∈ B and Comp(Γx) = 0 (CL2);
– F5 : x ∈ B (CL3);
– T⊥ : x ∈ B (CL4).

A tableau is logically inconsistent w.r.t. Comp if it has a branch that is logically incon-
sistent w.r.t. Comp.

Definition 4.5. A branch B is open if it is logically consistent and if its resource graph
G(B) is structurally consistent w.r.t. some complexity measure Comp on G(B), other-
wise it is closed. A tableau T is open if it has an open branch.

Definition 4.6. Let φ be a formula of PL �→, a tableau T is a TPL-proof of φ if there is a
sequence of tableaux (Ti)1≤i≤n such that
1. T1 is the one-node tableau the root of which is labelled with F φ : c0,
2. Ti+1 is obtained from Ti by a decomposition rule of Figure 1,
3. Tn = T , T is closed and admissible.
A formula φ is provable in TPL if there exists a TPL-proof of φ.

Let us illustrate these closure conditions. The tableau of Figure 2 has a left branch
which is not logically consistent (condition (CL1) on (l �→ a,b) and c2). In the right
branch, we have to capture the semantics of �→. For instance, if a heap forces (l �→
a,b) then this heap has only one cell that is at location l and contains the values
〈a,b〉. The resource graph associated to this branch is G0(X), given in subsection 3.2,
that after normalization is not structurally consistent because the loc-set Loc(Uc2) =
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{(l �→ a,b),(k �→ c,d)} is not a singleton set as required by condition (SC2) of Defini-
tion 3.7. Then this branch is closed (marked with a ×).

√
1 F ((l �→ a,b)∗ (l �→ c,d))−∗⊥ : c0

√
2 T (l �→ a,b)∗ (l �→ c,d) : c1

F⊥ : c1

as1 : c2c3 � c1

√
3 T (l �→ a,b) : c2√
4 T (l �→ c,d) : c3

as3 : Uc2

as4 : Uc3

×

Zc0 Uc2 c1 Uc3

Γc2c3

l �→ a,b l �→ c,d

Fig. 3. Tableau for ((l �→ a,b)∗ (l �→ c,d))−∗⊥.

Figure 3 gives a tableau for the formula ((l �→ a,b) ∗ (l �→ c,d))−∗⊥ that means
that we cannot have two cells in a heap that are at the same location. We could deduce
the existence of two heaps (represented by c2 and c3) that respectively force (l �→ a,b)
and (l �→ c,d), but then their composition (represented by c2c3) is not defined since
they are not disjoint and thus cannot force (l �→ a,b) ∗ (l �→ c,d). We observe that
the associated resource graph in normalized form is not structurally consistent since
Loc(Uc2) = {(l �→ a,b)} and Loc(Uc3) = {(l �→ c,d)}, so that Loc(c2c3) = Loc(c1) =
{(l �→ a,b),(l �→ c,d)}, which contradicts condition (SC3) of Definition 3.7 because
the loc-sets Loc(Uc2) and Loc(Uc3) are not compatible (they share location l). Then
this branch is closed.

5 Countermodel Construction and Completeness

Before we study the completeness we prove the soundness of TPL by introducing the
size of a heap h, denoted Size(h), that is the number of locations it contains.

Definition 5.1 (realization). Let B be a branch. A realization of B is a mapping ‖–‖ :
D(B)→ Heaps that satisfies:

– ‖x◦ y‖ = ‖x‖ · ‖y‖, B � Zx⇒‖x‖ = e,
– B � Ux⇒ Size(‖x‖) = 1, B � Ax⇒ Size(‖x‖)≥ 1,
– yz� x ∈ As(B)⇒‖x‖ · ‖y‖ = ‖z‖, B � x≈y⇒‖x‖ = ‖y‖,
– T φ : x ∈ B ⇒ ‖x‖ |= φ and F φ : x ∈ B ⇒ ‖x‖ �|= φ.

A branch B is realizable if there exists a realization of B . A tableau T is realizable if it
contains a realizable branch.
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Lemma 5.1. A closed tableau is not realizable.

Proof. By analysis of the (·)†-closure rules.

Lemma 5.2. The rules of TPL preserve realizability.

Proof. We show that, for all realizable tableaux T , if T ′ is a tableau obtained from T
by application of a TPL rule, then T ′ is realizable.

Theorem 5.1 (soundness). Let φ be a formula of PL �→. If there exists a TPL-proof of φ
then φ is valid in PL �→ semantics.

Proof. Let (Ti)1≤i≤n be a TPL-proof of φ. Suppose that φ does not hold in PL �→ seman-
tics, then e �|= φ. Consequently, ‖c0‖ = e is a trivial realization of T0. Lemma 5.2 then
entails that all tableaux in (Ti)1≤i≤n are realizable. This is a contradiction because, by
definition of a TPL-proof, Tn is closed, which implies, by Lemma 5.1, that Tn is not
realizable.

Definition 5.2. A signed formula S φ : x is analyzed in a branch B , denoted B 	S φ : x,
iff S φ : y ∈ B for some label y such that B � x≈ y.

Definition 5.3. A signed formula S φ : x is completely analyzed or fulfilled in a branch
B , denoted B �S φ : x, if it matches one of the following cases:

– B �T I : x iff B 	T I : x and B � Zx,
– B �F I : x iff B 	F I : x and B � Ax,
– B �T (l �→ a,b) : x iff B � Ux,
– B �F ψ∧χ : x iff B 	F ψ : x or B 	F χ : x,
– B �T ψ∧χ : x iff B 	 T ψ : x and B 	T χ : x,
– B �F ψ∨χ : x iff B 	F ψ : x and B 	F χ : x,
– B �T ψ∨χ : x iff B 	 T ψ : x or B 	T χ : x,
– B �F ψ→ χ : x iff B 	 T ψ : x and B 	F χ : x,
– B �T ψ→ χ : x iff B 	F ψ : x or B 	T χ : x,
– B �F ψ∗χ : x iff (∀y,z ∈D(B))(B � yz≈ x⇒ (B 	F ψ : y or B 	F χ : z)),
– B �T ψ∗χ : x iff (∃y,z ∈D(B))(B � yz≈ x and B 	T ψ : y and B 	 T χ : z),
– B �F ψ−∗χ : x iff (∃y ∈D(B))(xy ∈D(B) and B 	 T ψ : y and B 	 F χ : xy),
– B �T ψ−∗χ : x iff (∀y ∈D(B))(xy ∈D(B)⇒ (B 	 F ψ : y or B 	T χ : xy)).
– for all other cases, B �S φ : x iff B 	S φ : x.

Definition 5.4. A branch B is complete iff it is open and all signed formulae in B are
fulfilled. A tableau T is complete iff it contains a complete branch.

It is standard to define a tableau construction procedure that builds either a closed
tableau or a complete tableau [2]. Let us now explain how to construct a countermodel
from an complete branch using the tableau depicted on Figure 4. In this example, the re-
source graph induces a complexity mesure such that Comp(Uc3)=Comp(Uc5)= 1. On
the other hand, we have Loc(c1) = Loc(c2c3) = Loc(c4c5) = {(l �→ a,b),(k �→ a,b)},
which implies Comp(c1) = Comp(c2c3) = Comp(c4c5)≥ 2.
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F (5∗ (l �→ a,b))∧ (5∗ (k �→ a,b))−∗ (l �→ a,b) : c0

T (5∗ (l �→ a,b))∧ (5∗ (k �→ a,b)) : c1
F (l �→ a,b) : c1

T5∗ (l �→ a,b) : c1
T5∗ (k �→ a,b) : c1

as : c2c3 � c1

T5 : c2
T (l �→ a,b) : c3

as : c4c5 � c1

T5 : c4
T (k �→ a,b) : c5

Zc0 c1

c2 Uc3 c4 Uc5

c2c3 c4c5

l �→ a,b k �→ a,b

Fig. 4. Open tableau for (5∗ (l �→ a,b))∧ (5∗ (k �→ a,b))−∗ (l �→ a,b)

After having solved the linear system of equations induced by the definition of a
complexity measure, we can deduce Comp(c2) = Comp(c4) = 1. Moreover, we have
Loc(c2) = Loc(c4) = /0, so that Cardinal(Loc(c2)) = Cardinal(Loc(c4)) = 0. Then the
branch is logically and structurally consistent. However, condition (SC4) of Definition
3.7 only requires Cardinal(Loc(Γx))≤Comp(Γx) for all nodes Γx. Therefore, in order
to obtain a countermodel, we need to find a completion of all loc-sets such that for all
nodes Γx, Cardinal(Loc(Γx)) = Comp(Γx).

A completion of all loc-sets can be achieved using set unification on the equations
induced by the resource graph and the definition of Loc. Here, we obtain four equations:

– Loc(c2)∪Loc(Uc3) = Loc(c2c3) = {(l �→ a,b),(k �→ a,b)},
– Loc(c4)∪Loc(Uc5) = Loc(c4c5) = {(l �→ a,b),(k �→ a,b)},
– Loc(Uc3) = {(l �→ a,b)},
– Loc(Uc5) = {(k �→ a,b)}.

From this, we get Loc(c2) = {(k �→ a,b)} and Loc(c4) = {(l �→ a,b)}, so that all
locations in Loc(c2) and Loc(c4) are fully determined by the system of Loc equa-
tions, but in the general case it is sometimes necessary to add special locations, not
occurring in the resource graph and pointing to any content. For example, if we re-
place (k �→ a,b) by (l �→ a,b) in the formula of Figure 4, then we must complete
Loc(c2) and Loc(c4) with a location that does not occur in the heap, for instance,
Loc(c2) = Loc(c4) = {(m �→ ?,?)}. The question marks mean that the content of the
cell associated to the additional location does not matter.

The last step of the countermodel construction process is to derive a partial monoid
of heaps from the labels in the resource graph. We proceed as follows: for all nodes Γx ,
we define a heap hx : Loc→Val×Val such that hx(l) = 〈a,b〉 iff (l �→ a,b)∈ Loc(Γx).
Then, we define H = (H, ·,hc0) as the structure such that H = {hx |Γx ∈ G(B)}, know-
ing that heap composition is given by the union of disjoint partial functions.



472 D. Galmiche and D. Méry

Lemma 5.3. If B is a complete branch then H = (H, ·,hc0) is a PL �→-model such that
a) if B 	 T φ : x, then (∃Γz ∈ G(B))(B � z∼ x and hz |= φ) and b) if B 	 F φ : x, then
(∃Γz ∈ G(B))(B � z∼ x and hz �|= φ).

Proof. We show that condition (SC1) of Definition 3.7 implies that hc0 is the empty
heap and that condition (SC3) implies that whenever there exists Δz in the resource
graph such that B � z∼ xy then hx · hy = hz. The two properties a) and b) are deduced
by induction on φ w.r.t. conditions of Definition 5.3.

Theorem 5.2 (completeness). Let φ be a formula of PL �→. If φ is valid in PL �→ seman-
tics, then there exists a TPL-proof of φ.

Proof. Let φ be a valid PL �→ formula. Suppose that φ has no TPL-proof, then, there
exists no sequence of tableaux (Ti)1≤i≤n such that Tn is closed. Therefore, any (fair)
tableau construction procedure results in a tableau containing a complete branch B
from which we can build the structure H = (H, ·,hc0). Since B 	 F φ : c0, Lemma 5.3
entails that H is a PL �→-model such that hc0 �|= φ, which contradicts the validity of φ.

6 Extension to PL

We can extend these results for PL �→ in order to deal with the predicate E1 = E2 and the
formula ∃x.φ. Here, �→ associates a cell to a stack variable and such variables are in the
scope of quantifiers and then the formulae are closed.

In order to deal with ∃, we can use a standard technique that eliminates existential
quantifiers by instantiating the variables with constants depending on the sign of the
signed formulae [2]. When the sign is T one generates a new constant and when it is F
we reuse a constant already generated. Here, the constants are locations and we need to
memorize the variable instantiations for countermodel construction. The corresponding
expansion rules look as follows:

∗T ∃x.φ(x) : y

T φ(c) : y

F ∃x.φ(v) : y

F φ(l) : y

*:c is a new constant.

Notice that the previous expansion rules do not concern labels because, from the se-
mantics, we observe that we consider stack variables and not heaps that are the actual
resources. Coming back to the example about double dispose in Section 2, we can use
the tableau method to prove that ⊥↔5∗∃ a b.(x �→ a,b) ∗ ∃ c d.(x �→ c,d) and then
to conclude that the program is not safe to execute for any start state.

Finally, in order to deal with the predicate = we have the same rules but need to
extend the tableau closure conditions. Having a signed formula T X = Y : x with con-
stants X and Y syntactically equal, because of semantics S (X �→ a,b) : x is duplicated
as S (Y �→ a,b) : x. For F X = Y : x, we need to check if constants X and Y are syntac-
tically equal. In this case we have a contradiction with the semantics since the formula
is signed by F.
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7 Conclusions and Perspectives

Separation logics provide verification formalisms for pointer programs and allow to
express properties about data structures with shared mutable state [6, 12]. We study
proof-theoretic foundations for such logics, by focusing first on PL, the BI’s pointer
logic [6]. We mainly define a characterization of provability in PL through so-called
resource graphs and provide a new calculus with labels and constraints that builds re-
source graphs from which countermodels can be extracted. We expect to develop the
same approach for the affine variant of PL [6] with intuitionistic additives that allows
to prove interesting properties about sharing. Some spatial logics for trees or graphs
[1] are related to PL as extensions of Boolean BI and we aim to study these logics from
our proof-theoretic perspective. Moreover, comparisons with existing works on theorem
proving dedicated to pointer programs [7, 8, 11] could be fruitful for some refinements.
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Abstract. One of the challenges in verifying systems level code is the
low-level, untyped view of the machine state that operating systems have.
We describe a way to faithfully formalise this view while at the same time
providing an easy-to-use, abstract and typed view of memory where pos-
sible. We have used this formal memory model to verify parts of the
virtual memory subsystem of the L4 high-performance microkernel. All
formalisations and proofs have been carried out in the theorem prover
Isabelle and the verified code has been integrated into the current im-
plementation of L4.

1 Introduction

L4 is a second generation, general purpose microkernel [13] that provides the
traditional advantages of microkernels while overcoming the performance lim-
itations of previous generations. With implementations in the order of 10,000
lines of C++/assembler it is an order of magnitude smaller than Mach and two
orders of magnitude smaller than Linux. The small size and minimalistic design
bring L4 into the reach of formal specification and verification and lead to the
unique opportunity of bringing the rigour and trustworthiness of formal verifi-
cation to the very foundation of practical systems that are in current, industrial
use. In this paper, we give an overview of a pilot project testing the feasibility
of this idea and present a general solution to the problem of verifying low level
pointer modifications in system level code.

During this pilot project we encountered a number of OS code specific ver-
ification problems. Among them is the question of how to deal with pointer
arithmetic and low level memory modifications, as they are common in system
level code. Verifying high-level imperative pointer programs is already considered
a hard problem. Recent case studies like Mehta and Nipkow’s formalisation of
the Schorr-Waite graph marking algorithm [14] show that the complexity of the
problem can be reduced to an acceptable level for interactive verification if the
right abstractions are used. They exploit the idea that in a type safe language a
write to memory position of type S cannot influence another memory position of
a different type T (ignoring subtypes for the moment), thus drastically reducing
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the number of cases that need to be considered for each write. Unfortunately,
the implementation language of operating systems (C/C++/assembler) usually
is not type safe, and despite a plethora of available safe subsets of C, none of
them have caught on in the OS community. This is not entirely for the sake of
convenience; there are often good reasons to deliberately break the type safety
of the implementation language, among them performance and hardware pre-
scribed data structures. Performance enjoys an especially high priority in the
microkernel area: a few cache misses and some hundred processor cycles can
make the difference between a practical and impractical system. On the other
hand, not all OS code is deliberately type unsafe, in fact the vast majority of
it is perfectly fine. The approach presented in this paper enables us to achieve
a level of abstraction similar to the one of Mehta and Nipkow for these parts,
and at the same time (in the background) to use a very detailed memory model
that can faithfully formalise the few occasions of indispensable bit-level oper-
ations and pointer arithmetic expressions. The formalisation itself is relatively
straightforward (with a twist) — the contribution is that it can conveniently
describe both levels of abstraction at the same time and do so with minimal
overhead for concrete program verification, exploiting Isabelle/HOL’s automatic
type inference to avoid reasoning about explicit typing predicates for pointers.
As mentioned above the approach is not merely academic, but has been tried
out in a larger verification project.

After reviewing related work in section 2 and introducing notation in section 3,
we present our formalisation of a typed memory abstraction of untyped memory
in section 4 together with a small example. In section 5 we give a rough overview
of the verification project in which the technique was used to formally verify parts
of the L4 microkernel.

2 Related Work

Earlier work on OS verification includes PSOS [16] and UCLA Secure Unix [24].
Later, KIT [2] describes verification of process isolation properties down to object
code level, but for an idealised kernel with far simpler and less general abstrac-
tions than modern microkernels. A number of case studies [6, 5, 23] describe the
IPC and scheduling subsystems of microkernels in PROMELA and verify them
with the SPIN model checker. Manually constructed, these abstractions are not
necessarily sound, and so while useful for discovering concurrency bugs, they
cannot provide guarantees of correctness. The VeriSoft project [8] is attempting
to verify a whole system stack, including hardware, compiler, applications, and
a simplified microkernel called VAMOS that is inspired by, but not very close
to, L4. While the simplifications are appropriate for the goals of VeriSoft, it
is doubtful that the VAMOS kernel will show the necessary performance to be
relevant for industrial use.

The idea to use separate heaps for separate pointer types and structure fields
goes back to Burstall [4]. On the abstract level, our formalisation is most closely
related to Bornat [3] and Mehta and Nipkow’s [14] work in Isabelle, although we
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exploit Isabelle’s type inference in a different way. The Caduceus tool [7] supports
Hoare logic verification of C programs, including the type safe part of pointer
arithmetic. Like all of the above, we do not use any special purpose logics [19,
10], but stay with standard Hoare logic, in our case Schirmer’s flexible Hoare
logic implementation in Isabelle/HOL [20]. On the concrete level, Norrish [18]
presents a very thorough and detailed memory model of C. Our formalisation
has similarities to exploratory work on C++ in the VFiasco project [9]. The
latter two provide a more precise machine model, while the former allows for
more convenient and efficient reasoning. Our model provides both.

Type-safe C variants like CCured [15] also take a dual approach to mem-
ory type-safety, by statically detecting safe pointer usage and adding runtime
checks for those cases where this cannot be verified. Our approach is oriented to-
wards interactive theorem proving, and does not require any change in language
semantics or runtime behavior.

3 Notation

Our meta-language Isabelle/HOL conforms largely to everyday mathematical
notation. This section introduces further non-standard notation and in particular
a few basic data types along with their primitive operations.

The space of total functions is denoted by ⇒. Type variables are written ′a,
′b, etc. The notation t :: τ means that HOL term t has HOL type τ .

datatype ′a option = None | Some ′a

adjoins a new element None to a type ′a. We use ′a option to model partial
functions in the setting of HOL. For succinctness we write %a& instead of Some
a. The underspecified inverse the of Some satisfies the %x& = x. Function update
is written f (x := y) where f :: ′a ⇒ ′b, x :: ′a and y :: ′b. Implication is
denoted by =⇒ and [[ A1; . . .; An ]] =⇒ A abbreviates A1 =⇒ (. . . =⇒ (An =⇒
A). . .). Isabelle theories can be augmented with LATEX text which may contain
references to Isabelle theorems (by name — see chapter 4 of [17]). We use this
presentation mechanism to generate the text for most of the definitions and all
of the theorems in this paper directly from the Isabelle proofs.

4 A Typed Heap on Untyped Memory

There are a number of approaches to describing the state space of a program
embedded in a theorem prover. In the simple case, without pointers, one most
commonly either treats variable names as first-class HOL values, in which case
the state may be a function name ⇒ value, or treats the state as a tuple or
record type vara-typ × var b-typ × var c-typ. . . When embedding pointer pro-
grams it is convenient to use a model similar to the first for memory address-
able by pointers. Introducing pointers however also introduces the problem of
aliasing [3]. Consider a C program fragment with a long pointer foo and a
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bool pointer bar where you want to show *foo = 1 after the program fragment
*foo = 1; *bar = true. The most basic approach is to model the pointers as
values of type addr and the heap1 as a function addr ⇒ value, where value is
a datatype with alternatives for long, bool, etc. Ignoring fancy syntax, this for-
mally equates to something like hp foo := Long 1; hp bar := Bool True, where
hp is a heap function. If we evaluate this in standard Hoare logic, we need the
precondition foo �= bar to show that hp foo = Long 1 in the end.

In a type safe language, on the other hand, this precondition is an unneces-
sary overhead. We already know implicitly that foo �= bar, because they have
different types. In the literature [3, 14], this is modelled by a state space in which
each language type has its own heap. For the example above, that means we now
have functions boolh :: addr ⇒ bool and longh :: addr ⇒ long and we can show
the Hoare triple {|True|} longh foo := 1; boolh bar := True {|longh foo = 1|} au-
tomatically and without preconditions. The example is simplified, of course. In
a more realistic setting we would still have preconditions and invariants about
heap layout and pointers being not null. The key point, however, is that there
is no need to state pair-wise aliasing conditions on all pointers anymore.

As argued in the introduction, OS code does not normally use a type safe
language and does not restrict itself to a type safe subset, so we are forced to
use a model of the state space close to that of the underlying hardware memory
model if we want to preserve soundness. One such extreme treatment of the heap
would be to consider it simply as a function mapping addresses to bits, bytes
or words. This has the significant advantage that the hardware abstraction step
is very small and the model is amenable to reasoning about the type unsafe
operations sometimes present in low-level systems code. On the other hand, this
complicates the aliasing problem even further, because the pointers could also
alias by pointing into the middle of an encoding. Hohmuth et al [9] provide a
semantics for C++ types in such a setting.

What we want to achieve is a low-level heap view when necessary, and the
more convenient abstraction of multiple typed heaps when possible. Following
the reasoning that different types mean unaliased pointers in the type-safe frag-
ment, we require several things. First we need to know which memory locations
should correspond to which types. We then need to know that the memory lay-
out provides a disjoint layout of values. Finally, we need a means of using this
information to transform the untyped heap into multiple typed heaps, one for
each language type, together with rules to reason about updates of the heap
when they conform to the state’s type information. All this should be provided
in such a way that the complexity of encoding, decoding, typing etc, stays under
the hood at least for the common case of safe operations. The rest of this section
presents our formalisation of such a model together with a mechanisation that
aids in proofs about pointer programs when they can be shown to be type-safe,
while still allowing us to break type safety when necessary.

1 In this section we refer to a heap model since this is where valid pointers are restricted
to in the rest of our work, but the setting should be generalisable to a model for the
entire memory, including local variables.
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4.1 The Model

We begin with Hohmuth et al’s [9] treatment of C++ types and extend it to
work with a heap abstraction that allows for effective reasoning about both
typed and untyped views of the heap and the effects of updates on the heap.
The emphasis is on mechanising the proof process, for example taking advantage
of the rewriting support in Isabelle and existing record update rules provided for
Isabelle record types, to reduce the proof burden on the program verifier. In this
discussion we avoid talking about a specific language embedding with the goal
of generality, however our main application is clearly C or a C-like language.

The following type synonyms describe the heap state:

addr = word32
heap-mem = addr ⇒ word32
heap-typ-desc = addr ⇒ typ-tag option
heap-state = heap-mem × heap-typ-desc

where word32 is a type representing 32-bit words2 imported from the HOL4
system and typ-tag is a type with a value for each language type3 used by the
program. For example, a program operating only on boolean, integer and pointer
types would have:

datatype typ-tag = BoolTag | IntTag | PtrTag typ-tag

Each language type has both a distinct Isabelle type and a distinct typ-tag value,
which we refer to as its type tag below. A good reason for doing things this way
is that in a shallow embedding we can avoid reasoning about possibly ill-typed
expressions, e.g. 3.14 / &foo. Instead, Isabelle’s type checker and type inference
can prevent us from even writing down such invalid expressions. The tag value
allows for explicit referencing of language types in Isabelle terms, and is bound
to its corresponding Isabelle type later, as described below. We require this to
maintain an explicit record of the type of each value stored in memory. Every
language type has a fixed size, given by the function typ-size :: typ-tag ⇒ nat.

The heap-typ-desc component of the heap state is a partial function that
describes the memory layout. We call it the heap type description. A tag t at
address a indicates that a is the base of the memory footprint for a value of type t.
Type safe programs respect the program’s memory layout in both read and write
operations. The heap type description is purely a proof convenience, a history
variable, and while it may be affected by, does not itself affect the semantics of
successful heap operations and should not be confused with hardware support
for tagged memory. The heap type description may be updated anywhere in the
program, for example by calls to malloc or free, or if we were to model local and
global variables in the program’s initial conditions on function call and return.

2 In this work we use 32-bit addresses and words but this could be generalised to n-bit
address spaces or finer/coarser granularity of addressing fairly easily.

3 We distinguish between language types of the programming language and Isabelle
types.
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Fig. 1. Well-formed heap layout

The predicate wf-heap :: heap-typ-desc ⇒ bool states the well-formedness in-
variant on the heap type description that is required to establish non-interference
of heap updates:

wf-heap d ≡
∀ x y t . d x = �t� ∧ 0 < y ∧ y < typ-size t −→ d (n2w (w2n x + y)) = None

The type conversions w2n and n2w transform from word32 to nat and vice
versa. Examples of well-formed and not well-formed heap layouts are illustrated
in Figure 1.

Each Isabelle type associated with a language type must be an instance of
the type class ′a::c-type. The class declares three new constants:

to-word :: ′a::c-type ⇒ word32 list
from-word :: word32 list ⇒ ′a::c-type option
typ-tag :: ′a::c-type itself ⇒ typ-tag

The functions to-word and from-word convert between Isabelle values and
lists of words suitable for writing to or reading from the raw heap state. The
function typ-tag associates a type tag with each ′a::c-type. The type ′a itself
consists of a single element denoted by TYPE ( ′a). This sounds unusual at first,
but is easily achieved and part of the Isabelle standard library: since HOL types
are non-empty, we can create a polymorphic ′a itself by taking any element of
the type parameter ′a as the single occupant of ′a itself. For each fixed ′a, any
constant of type ′a itself, say TYPE, then refers to this one element. The term
TYPE (bool) is merely another way of writing the type restriction TYPE ::bool.

The size of the memory footprint of values of a ′a::c-type is given by size-of
:: ′a::c-type itself ⇒ nat :

size-of t ≡ typ-size (typ-tag t)

The following conditions, captured in the axiomatic type class ′a::mem-type,
must hold for any ′a::c-type we want to use in our heap abstraction below.

from-word (to-word (x :: ′a)) = %x&
|to-word (x :: ′a)| = size-of TYPE( ′a)

Finally, we introduce a distinct Isabelle pointer type for each Isabelle type.
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datatype ′a ptr = PtrVal addr

The additional ′a on the left-hand side can now be used to associate the pointer
type information with pointer values in Isabelle’s type system. The destructor
ptr-val retrieves the address from a pointer value. The pointer types themselves
can again be shown to be instances of ′a::mem-type.

We now come to the typed heap abstraction as used by embedded programs.
The function lift :: heap-mem ⇒ ′a::c-type ptr ⇒ ′a turns the raw heap into
multiple typed heaps — one for each ′a.

heap-list :: heap-mem ⇒ addr ⇒ nat ⇒ word32 list
heap-list h p 0 = []
heap-list h p (Suc n) = h p # heap-list h (p + 1) n

h-val :: heap-mem ⇒ ′a::c-type ptr ⇒ ′a option
h-val h p ≡ from-word (heap-list h (ptr-val p) (size-of TYPE( ′a)))

lift :: heap-mem ⇒ ′a::c-type ptr ⇒ ′a
lift h ≡ λp. the (h-val h p)

As stated earlier, program expressions operate on the raw heap, ignoring the
type tags. This on its own may not be sufficient to faithfully express a language’s
semantics; lift h p will give the value at p where the semantics say a heap access
is valid, but we need to establish this validity first. This will usually require a
guard or precondition on the statement containing the expression. For example,
in C, we would need to know that the memory location had a value of the type in
consideration written to it at some earlier point, and that the pointer is correctly
aligned. This of course is not limited to this model and also applies to even a
simple standard model with multiple typed heaps.

Heap updates are performed with heap-update :: heap-mem ⇒ ′a::c-type ptr
⇒ ′a ⇒ heap-mem:

heap-update-list h p [] = h
heap-update-list h p (x # xs) = heap-update-list (h(p := x )) (p + 1) xs

heap-update h p v ≡ heap-update-list h (ptr-val p) (to-word v)

Again, heap update statements should be suitably guarded.
We exploit the polymorphism in Isabelle’s type system here to avoid explicit

definitions of heap abstraction functions for each language type. This may seem
a slight gain, but it also enables the simplification rules presented below to be
stated once for all types, instead of being reproved for each pair of types.

4.2 The Typed View

So far we are able to dereference pointers in our embedded programs, and may
be able to do first simple proofs. However, proofs will still have to consider un-
necessary aliasing concerns on lifted heaps if we do not know which pointers
respect the heap type description. For example, pointers of different types may
still be aliasing the same location, or pointers of the same type may have over-
lapping memory footprints. The standard way of ruling out these possibilities
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is an invariant, or ad hoc history variables indicating what the valid pointers of
different types are.

Even if we know which pointers are valid, the effect of updates on the lifted
heap can only be expressed point-wise: we can determine that pointer p is not
affected by an update of pointer q if both are valid. We cannot determine that
if the bool incarnation of the lifted heap changes, the whole long incarnation, as
a function, is unaffected.

This means, that if we had, for instance, a heap invariant or abstraction
function for a linked list structure that only uses the long incarnation of the
lifted heap, we would need to prove a separate rule for that abstraction function
to show that it remains unchanged under bool updates — even if the abstraction
function explicitly states that all its pointers are valid.

Utilising the heap type description information we can provide a typed heap
abstraction for use in proofs that only depends on the values of the heap at
locations valid for the type. We can then prove simplification rules for reasoning
about updates to typed heaps once for all language types.

First we introduce the notion of pointer validity. A pointer p of type ′a ptr
is said to be valid under a heap type description d according to the following
definition:

d �t p ≡ d (ptr-val p) = %typ-tag TYPE ( ′a)&

It should be noted that this predicate does not explicitly mention the language
type, instead the type is determined automatically by Isabelle’s type inference.
We found this greatly enhancing the clarity of specifications and proofs.

The heap abstraction function liftc hides updates to heap locations not cor-
responding to the valid pointers for a particular typed heap:

liftc :: heap-state ⇒ ′a::c-type ptr ⇒ ′a option
liftc (h, d) ≡ λp. if d �t p then h-val h p else None

Like lift h, liftc h is polymorphic and returns a heap abstraction of type ′a
typ-heap = ′a ptr ⇒ ′a option. The program text itself can continue to use the
functions lift and heap-update, while pre/post conditions and invariants use the
stronger liftc to make more precise statements. The following conditional rewrite
connects the two levels.

liftc (h, d) p = %x& =⇒ lift h p = x

We have proved two further significant rewrite rules that support reasoning
about the effects of heap updates on liftc. The first rule states how an ′a ptr
update affects an ′a typ-heap, the second rule shows that an ′a ptr update does
not affect a ′b typ-heap if ′a is different from ′b.

[[wf-heap d ; d �t p]] =⇒ liftc (heap-update h p v , d) = liftc (h, d)(p �→ v)
[[wf-heap d ; d �t p; typ-tag TYPE ( ′a) �= typ-tag TYPE ( ′b)]]
=⇒ liftc (heap-update h p v , d) = liftc (h, d)
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These are added to a simplification set, with other heap related lemmas, in
our work, and do not require manual application. Isabelle’s simplifier can resolve
the typ-tag TYPE ( ′a) �= typ-tag TYPE ( ′b) condition automatically, as long as
the type tag definitions for language types are also in the default simplification
set. The heap type description changes relatively infrequently and therefore the
proof overhead in showing wf-heap d is low.

For any program that respects the heap type description, we can thus auto-
matically simplify away the fact that the heap is shared and pretend to work
on multiple typed heaps. At the same time, we can still capture the semantics
of type unsafe operations. In this case things are no longer automatic, and we
are required to provide rules for how the lifted heaps changed during the oper-
ation. This is a small price to pay for the flexibility and convenience gained on
the abstract level. It may even be possible to derive a set of rules that capture
common type unsafe operations, for example physical subtyping, although we
have not done so in our application.

We can also use type tags to write Isabelle expressions over language types.
For example, one might want to express in a specification that only heaps of
certain types can change during execution. For this we define the predicate
h-id-except :: typ-tag set ⇒ heap-state ⇒ heap-state ⇒ bool which satisfies the
following lemma for lifted heaps of type ′a typ-heap:

[[h-id-except ts s s ′; typ-tag TYPE ( ′a) /∈ ts ]] =⇒ liftc s = liftc s ′

4.3 Example

Picking up the example from the introduction to this section, we show below
how it is expressed in our setting.

The state space is now a global program heap of type heap-state with two
pointers foo :: long ptr and bar :: bool ptr. It is easy to show that long and
bool are instances of the type class mem-type by defining the constants to-word,
from-word and typ-tag and proving that they satisfy the axioms stated in sec-
tion 4.1. Using Isabelle’s syntax mechanisms to abbreviate liftc (h,d) p = %v&
to ∗p = v and h := heap-update h p v to ∗p := v, the Hoare triple we can then
state and prove automatically, is the following:

{|wf-heap d ∧ d �t foo ∧ d �t bar |} ∗foo := 1; ∗bar := True {|∗foo = 1|}

The three preconditions in this statement present only a very small overhead. As
long as the program stays in a safe fragment of the language, e.g., when pointers
are used like Java references without pointer arithmetic, there is never need to
unfold their definition. They can also easily be propagated by the verification
condition generator. In contrast to explicit statements of pointer aliasing, they
also only talk about one pointer at a time, not pairwise distinctness or, as it would
be applicable in this more detailed setting, distinctness of encoding regions.

While structures can be treated like any other language type in this setting,
the formalisation presented here does not yet provide a separate heap for each
field of each structure as Bornat does. It is possible to achieve this by another,
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analogous lifting step on top of liftc that takes field names into account. We have
recently formalised this in Isabelle, but have not used it in our case study yet.

5 The L4 Virtual Memory Manager

In this section we describe the case study which motivated the development of
this memory model: the virtual memory (VM) management system, one of the
three main abstractions L4 provides. Our approach is a classic and pragmatic re-
finement methodology. We start out from an abstract model of the kernel that we
then formally refine towards an implementation. The last step consists of gener-
ating C code that implements the same functionality as the original OS code. We
based our formalisation on the L4 X.2 API [12] and used the L4Ka::Pistachio [21]
implementation on the ARM architecture to resolve ambiguities in addition to
discussions with the developers on the pistachio-core mailing list.

5.1 The Abstract Model

The VM subsystem of L4 provides a flexible, hierarchical way of manipulating the
mapping from virtual to physical memory pages at user-level. Below we sketch
our formalisation and show the definition of unmap, one of the VM operations.

This model is still a simplification of the current L4 API because the API
stipulates two regions per address space (the kernel interface page and user
thread control blocks) that we have not modelled, and because the mapping
operations in L4 can work on regions of the address space rather than individual
pages.

Fig. 2 illustrates the concept of hierarchical mappings. The example maps
virtual page v1 in space n1, as well as v2 in n2, and v4 in n4 to the physical
page r1. Formally, we use the types R for the physical pages, V for virtual pages,
and N for names of address spaces.

Fig. 2. Address Spaces

Mappings M, i.e. positions in this picture, are uniquely determined either by
a page V in a virtual address space N, or by a physical page. An address space
is a function from pages V to mappings together with a set of access rights,
determining how the mapped page may be used from inside the address space.
On a concrete architecture, these will be rights like read/write/execute — here
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we use the abstract type AR. The machine state is then a partial map from
address space names to address spaces.

datatype M = Virtual N V | Real R
types space = V ⇒ M × AR set

state = N ⇒ space option

The concept of paths relates these functions to the arrows in Fig. 2: s � x �1 y
means that in state s there is a direct path from x to y. For this to be true, x
must be of the form Virtual n v, the address space n must be defined in state s
and it must map the virtual page v to y:

s � x �1 y = (∃n v ar σ. x = Virtual n v ∧ s n = %σ& ∧ σ v = (y, ar))

We write � �∗ for the reflexive, transitive closure of the direct path relation.
The operation unmap n v ar reduces the access rights of all pages leading to

Virtual n v by ar (a set of access rights). If ar happens to be U (the universal
set) the operation makes these pages inaccessible. In the definition we use a
function clear that, given a name n, a page v, a set of access rights ar and an
address space σ in state s, returns σ where the access rights of all v ′ leading to
Virtual n v have been reduced by ar.

unmap :: N ⇒ V ⇒ AR set ⇒ state ⇒ state
unmap n v ar s ≡ λn ′. case s n ′ of None ⇒ None | �σ� ⇒ �clear n v ar s σ�

clear n v ar s σ ≡
λv ′. let (m, ar ′) = σ v ′ in if s � m �∗ Virtual n v then (m, ar ′ − ar) else (m, ar ′)

The other operations of the VM subsystem (flush, map, grant, create, and
memory lookup) are modelled in a similar way, modifying paths and access rights
accordingly. See our earlier work [11, 22] for details on the same formalisation
which we have extended with access rights here.

We have shown a number of properties about the reachable states of the VM
system, among them that access rights can never increase when a page is mapped
to another address space, that there are no loops in the path structure, and that
address lookup is a total function. The latter is quite literally an important
safety property. Overheating and physical damage may result if two conflicting
TLB entries are present for the same virtual address [1–p. B3-26].

5.2 The Concrete Model

The concrete implementation of the address spaces abstraction in L4 is based on
two data structures, the page tables and the mapping database (MDB), as well as
the algorithms for their traversal and manipulation. This is because performance,
and in the case of ARM, the hardware, dictates that an efficient translation from
virtual to physical addresses and corresponding access rights be available. The
page tables are used to achieve the translation, while the MDB keeps track of
the mapping relation for the purpose of revocations like the unmap operation
shown in the previous section.
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The state space consists of the heap-state together with some local and static
global variables. The page table and MDB data structure abstractions are induc-
tively defined on this raw state, i.e. they are a function and relation that take a
′a typ-heap as a parameter and when used in pre/post-conditions and invariants
this takes on a value of liftc in the current state. A complete description of the
semantics of the concrete operations, specifications and proofs is well beyond the
scope of this paper, with the raw theory files alone consisting of over 5000 lines
of Isabelle/HOL definitions and proofs. Instead we present the MDB definitions
and one example operation here to provide a flavour of the level of detail in the
model.

The MDB is a doubly linked list representing the pre-order traversal of a
mapping tree, which is essentially the tree described in the abstract model with
the arrow directions reversed. Nodes in the MDB are of type map-node:

record map-node = map-next :: word32
map-prev :: word32
map-pte :: pte ptr
map-depth :: word32

We use the integer representation of pointer addresses for next and previous
pointers as the type map-node ptr is not available until after this declaration.
The map-pte field stores a pointer to the corresponding page table entry and
map-depth contains the depth of the node in the tree for the pre-order tree
representation.

A subtree relation is defined on a typed heap s :: map-node typ-heap. The
term s � a �T b states that b is in a’s subtree. This is defined as:

s � x �→ y = (∃m. s x = %m& ∧ get-next ′ m = %y&)
[[s � m �→ m ′; get-depth ′ (s m) < get-depth ′ (s m ′)]] =⇒ s � m �T m ′

[[s � m �T m ′; s � m ′ �→ ma; get-depth ′ (s m) < get-depth ′ (s ma)]]
=⇒ s � m �T ma

where get-next ′ m and get-depth ′ m act as expected, returning the next pointer
and depth respectively for a given map-node.

It should be clear that proofs about the MDB are localised to just the
map-node typ-heap and procedures operating on just the MDB can be easily
shown not to affect other typed heaps using the previous section’s lemmas.
wf-heap is part of the global invariant in our model.

An example of a procedure in our concrete model’s MDB is map-unlink used
during unmapping to remove a node from the linked list:

procedures map-unlink(m,mq) =
nm := cast TYPE(map-node ptr) (lift h mq ·map-next);
h := heap-struct-update h m map-next-update (cast TYPE(word32) nm);
IF nm �= Null THEN

h := heap-struct-update h nm map-prev-update (cast TYPE(word32) m)
FI ;
CALL map-free(mq)
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where

heap-struct-update h p f v ≡ heap-update h p (f v (lift h p))

An abstraction relation that relates the state spaces of the abstract and con-
crete models is defined based on the page table and MDB abstractions. We
have done most of the simulation proofs to show refinement between these levels
in other work, but we still have a small gap to fill prior to having the proofs
integrated and completed for the models described here.

5.3 Generating High Performance C Code

On a semantic level our concrete model is intended to be faithful to the semantics
of C as understood by our compiler, but we require a simple translation step to
turn these Isabelle/HOL definitions into C source code suitable for compilation.
This involves traversing the abstract syntax tree of the Isabelle/HOL terms for
procedures, generating real C syntax and is fairly straightforward. The number
of lines of ML code required to do this is less than 400; hence we have reasonable
confidence in this step, which might otherwise be seen as a source of soundness
concerns. The generated C source for the map-unlink example is:

extern "C" inline void
map_unlink(struct map_node* m, struct map_node* mq) {
struct map_node* nm;
nm = (map_node *)((*(mq)).map_next);
(*(m)).map_next = (word32)(nm);
if ((nm) != (NULL)) {

(*(nm)).map_prev = (word32)(m);
}
map_free(mq);

}

The generated code is suitable for passing to gcc and with the addition of
stub code in the existing L4Ka::Pistachio kernel has been linked to the kernel
and can replace the modelled part of the VM subsystem.

The investment for the virtual memory part of this verification pilot project
was about 1.5 person years. All specifications and proofs together run to about
14,000 lines. This is significantly more than the effort invested in the VM sub-
system in the first place, but it includes exploration of alternatives, determining
the right methodology, etc. Our final goal is a verified, high performance imple-
mentation of L4, and the results so far have been encouraging.

6 Conclusion

We have presented a novel way of modelling memory for imperative pointer
programs that allows us to reason abstractly and conveniently about those parts
of the program that are type safe and at the same time correctly and precisely
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about those parts that are not. Both kinds of reasoning can be freely intermixed,
using a standard Hoare logic framework.

On the abstract level we can directly express language types inside Isabelle’s
type system and can therefore enjoy the advantages of type inference as well as
avoid explicit type information in specifications and invariants. While we think
our model is complete on the low level, we only have shown basic types, pointers
and structs on the abstract level. We expect more language features like tagged
unions to be expressable.

The model introduces a slight overhead for reasoning about type unsafe oper-
ations. Our experience so far in applying the technique to OS kernel verification
suggests that this is the right trade-off to make — especially since a model with
only low-level reasoning usually very quickly introduces invariants similar to our
well-formedness condition.

We showed some important aspects of verifying the VM subsystem of the L4
microkernel in which this technique was applied. We have sketched our abstract
model of address spaces with access right restrictions and shown some aspects of
refining these operations down to directly executable, high performance C code.

A nice side effect of our memory model is that reasoning about the malloc and
free library functions in C becomes possible. In an abstract setting, their spec-
ification is easy: pointers become valid or invalid. Proving their implementation
correct, however, is impossible, because they necessarily break the abstraction
barrier. In our setting, the specification remains simple, but we are now able to
prove in the same framework that their often considerably complex implementa-
tion satisfies this specification. We have not done so yet, but are looking forward
to taking this on as future work.

Acknowledgements. We thank Rafal Kolanski, Nicolas Magaude, Michael Nor-
rish, Norbert Schirmer, and Simon Winwood for discussing drafts of this paper.
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The treewidth of a graph measures how close the graph is to a tree. Many problems that
are intractable for general graphs, are tractable when the graph has bounded treewidth.
Recent works study the complexity of model checking for state transition systems of
bounded treewidth. There is little reason to believe, however, that the treewidth of
the state transition graphs of real systems, which we refer to as global treewidth, is
bounded. In contrast, we consider in this paper concurrent transition systems, where
communication between concurrent components is modeled explicitly. Assuming
boundedness of the treewidth of the communication graph, which we refer to as local
treewidth, is reasonable, since the topology of communication in concurrent systems is
often constrained physically.

In this work we study the impact of local treewidth boundedness on the complexity
of verification problems. We first present a positive result, proving that a CNF formula
of bounded treewidth can be represented by an OBDD of polynomial size. We show,
however, that the nice properties of treewidth-bounded CNF formulas are not preserved
under existential quantification or unrolling. Finally, we show that the complexity of
various verification problems is high even under the assumption of local treewidth
boundedness. In summary, while global treewidth boundedness does have computa-
tional advantages, it is not a realistic assumption; in contrast, local treewidth bounded-
ness is a realistic assumption, but its computational advantages are rather meager.

1 Introduction

The treewidth of a graph measures how close the graph is to a tree (trees have treewidth
1). Many problems that are intractable (e.g. NP-hard, PSPACE-hard) for general graphs,
are polynomial or linear-time solvable when the graph has bounded treewidth (see
[5–7] for an overview). For example, constraint-satisfaction problems, which are NP-
complete, are PTIME-solvable when the variable-relatedness graph has bounded tree-
width [11, 14].

In [15, 22] the complexity of the model-checking problem is studied under the hy-
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system, whose underlying graph has bounded treewidth. Bounding treewidth yields a
large class of tractable model-checking problems. For example, while it is not known
whether model checking μ-calculus formulas is in PTIME [18], it is in PTIME under
the bounded treewidth assumption [22].

We refer to the treewidth of the state transition graphs of transition systems as the
global treewidth. The global treewidth-boundedness assumption used in [15, 22] is not,
in our opinion, useful to describe real-world verification problems. There is little rea-
son to believe that the global treewidth of real-world systems is bounded. For example,
it is easy to see that the graphs underlying systems with two counters are essentially
grids, which are known to have high treewidth [26]. In verification practice, real-world
systems are often modeled as concurrent transition systems, where communication be-
tween concurrent components is modeled explicitly. When we consider the communi-
cation graph between the concurrent components (the component are the nodes, and an
edge exists between each pair of communicating nodes), assuming treewidth bounded-
ness is not unreasonable. Indeed, the topology of communication in concurrent systems
is often constrained physically; for example, by the need to layout a circuit in silicon.
Such topological constraints are studied, for example, in [20, 23]. In [20] the width of a
Boolean circuit is related to the size of its corresponding OBDD, while in [23] bounded
cutwidth is used to explain why ATPG, an NP-complete verification problem, is so easy
in practice. Cutwidth boundedness is used also to improve symbolic simulation and
Boolean satisfiability in [4, 29]. These various notions of bounded width are assumed
because of the constrained topology of communication in concurrent systems.

In this paper, we refer to treewidth of the component communication graph as local
treewidth and study the impact of local-treewidth boundedness on the complexity of
verification problems. We believe that because the component communication graph
is often constrained physically, as noted above, assuming local treewidth boundedness
is natural and realistic. (In fact, the assumption of treewidth boundedness is less severe
than related assumption that are often made, such as pathwidth boundedness or cutwidth
boundedness [5–7]).

We first present a positive result. We prove that a CNF formula of bounded treewidth
can be represented by an OBDD of polynomial size (treewidth here is defined on the
primal graph of the formula, where vertices represent variables and edges represent the
co-occurance of the variables in the same clause). Thus, if a transition relation of a
concurrent transition system is specified by a CNF formula with bounded treewidth,
then there is an OBDD of polynomial size representing it. In contrast, the OBDD of
transition relations often blow up, requiring symbolic model-checking techniques that
avoid building these OBDDs [2].

We then show that bounded local treewidth offers little computational advantage
for verification in general. First, we show that the small-OBDD property of bounded
treewidth CNF formulas is destroyed as soon as we apply existential quantification,
which is a basic operation in symbolic model checking, since the image operations
involves existential quantification [20]. We then show that treewidth boundedness of
a transition relation is not preserved under unrolling, which is a basic operation in
SAT-based bounded model checking (BMC) [3]. (Note that while satisfiability of CNF
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formulas is NP-complete, satisfiability of bounded-treewidth CNF formulas can be
solved in polynomial time, cf. [1]).

Finally, we show that the complexity of various verification problems are high even
under the assumption of local treewidth boundedness. We review several verification
problem for concurrent systems, including model checking, simulation, and contain-
ment, and show that the known lower bounds (PSPACE-complete, EXPTIME-
complete, and EXPSPACE-complete, respectively [16, 19]) hold also under the assump-
tion of local treewidth boundedness. (Our results are robust: the lower bound apply even
under pathwidth boundedness or cutwidth boundedness.)

In summary, while global treewidth boundedness does have computational advan-
tages, it is not a realistic assumption. In contrast, local treewidth boundedness is a real-
istic assumption, but its computational advantages are rather meager.

The paper is organized as follows: In Section 2 we prove the small-OBDD property
for transition relations of bounded treewidth, but then show that this property does not
help in symbolic model checking and in bounded model checking. Finally, in Section 3
we show that lower bound for model checking, simulation, and containment hold also
under the assumption of local treewidth boundedness.

2 Transition Relation: OBDDs Size and BMC

The notions of treewidth and pathwidth were introduced in [25, 26].

Definition 2.1. A tree decomposition of a graph G = (V,E) is a pair (T,X), where
T = (I, F ) is a tree whose node set is I and edge set is F , and X = {Xi|i ∈ I} is a
family of subsets of V , one for each node of T , such that:

–
⋃

i∈I Xi = V .
– for every edges (v, w) ∈ E, there exists an i ∈ I with {v, w} ⊆ Xi.
– for all i, j, k ∈ I: if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj .

The width of a tree decomposition (T,X) is maxi∈I |Xi| − 1. The treewidth of a
graph G is the minimum width over all possible tree decompositions of G. The notions
of path decomposition and pathwidth are defined analogously, with the tree T in the tree
decomposition restricted to be a path. By Corollary 24 in [7], we know that for a graph
G with n vertices we have that pathwidth(G) = O(treewidth(G) · log n). Clearly,
treewidth(G) ≤ pathwidth(G).

Definition 2.2. The Gaifman graph of a CNF formula is a graph having one vertex for
each variable and an edge (v1, v2) if the variables v1 and v2 occur in the same clause
of the formula. By treewidth (pathwidth) of a CNF formula we refer to the treewidth
(pathwidth) of its Gaifman graph.

Ordered Boolean decision diagrams (OBDDs) [8] are a canonical form represen-
tation for Boolean formulas. An OBDD is a rooted, directed acyclic graph with one
or two terminal nodes labeled 0 or 1, and a set of variable nodes of out-degree two.
The variables respect a given linear order on all paths from the root to a leaf. Each
path represents an assignment to each of the variables on the path. Since there can be
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exponentially more paths than vertices and edges, OBDDs can be substantially more
compact than traditional representations like CNF. In many case, however, going from
CNF representation to OBDD representation may cause an exponential blow-up [2].
We now show that this is not the case when the CNF formula has bounded treewidth.

Theorem 2.1. A CNF formula C with n variables and pathwidth q has an OBDD of
size O(n2q).

Proof. Let the path decomposition of C be (P,L). Assume without loss of generality
that P = {1, . . . , k}. We construct a variable order from the path decomposition as
follows: Define First(x) = min({p ∈ P | v ∈ L(p)}) and Last(x) = max({p ∈
P | v ∈ L(p)}). Now sort the variables in increasing lexicographic order according
to (First(x),Last(x)); that is, define the variable order so that if x < y, then either
First(x) < First(y) or First(x) = First(y) and Last(x) < Last(y). We show
that, using this variable order, there are at most 2q nodes per level. The claim then
follows.

For each clause c, we define min(c) as the index of the lowest ordered variable in
c and correspondingly for max(c). Consider level i of the OBDD, corresponding to
the variable xi. The clause set C can be partitioned into three classes with respect to
level i, Cended = {c | max(c) < i}, Ccur = {c | min(c) ≤ i < max(c)}, and
Cuntouched = {c | i < min(c)}.

A node u at level i corresponds to a set Au of partial assignments to variables, where
each partial assignment a ∈ Au is an element in 2{x1...xi−1}. For a partial assignment
a and a clause set D, we write a |= D if a is a model of D, i.e, for each clause
c ∈ D, a satisfies some literal in c. From the semantics of OBDDs, we know that
all partial assignments a in Au are equivalent with respect to extensions, i.e., given
a′ ∈ 2{xi,...,xn} and a ∈ Au, we have that a ∪ a′ |= C iff for every a′′ ∈ Au,
a′′ ∪ a′ |= C. If for a ∈ Au, a �|= Cended, then we know that for every extension a ∪ a′

of a we have that a ∪ a′ �|= Cended, so a ∪ a′ �|= C. Thus, the node u is identical to
Boolean 0 and should not exist at level i. It follows that for every a ∈ Au, a |= Cended.
We also know that all clauses in Cuntouched have none of their variables assigned by
a ∈ Au.

Each partial assignment a at level i can be associated with a subset Ma ⊆ Ccur

where Ma = {c | c ∈ Ccur, a |= c}, i.e., the clauses in Ccur that are already satisfied
by a before reading the variable xi. We know that none of the clauses in Ccur have
failed (all literals assigned to false) so far, since by definition of Ccur all such clauses
have literals with variables beyond xi−1. Suppose that for two distinct nodes u and v
at level i there exists au ∈ Au and av ∈ Av such that Mau = Mav . Since u and v are
distinct, there is a partial assignment a ∈ 2{xi,...,xn} that distinguishes between u and
v; say, au ∪ a |= C and av ∪ a �|= C. Since au and av , however, both satisfy Cended,
both are undefined on the variables of Cuntouched, and we also have, by assumption,
that Mau = Mav , we must have that au ∪ a |= C iff av ∪ a |= C – a contradiction. It
follows that Mau �= Mav .

Let j = First(xi). We know that L(j) contains at most q + 1 variables, including
xi. Let V ari = L(j)∩{x1, . . . , xi−1}, then V ari has at most q variables. Suppose that
u and v are two nodes at level i such that there exists au ∈ Au and av ∈ Av where
au and av agree on V ari. We show then Mau = Mav . Consider a clause c ∈ Ccur.
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We know that all the variables of c occur in L(k) for some k. We cannot have k < j,
since then we’d have c ∈ Cended, so k ≥ j. If xh occurs in c for some h < i, then
by construction xh ∈ L(j′) for some j′ ≤ j. By the property of path decompositions
it follows that xh ∈ L(j). Since au and av agree on V ari, it follows that they agree
on c. We showed that if u and v are distinct, then for every au ∈ Au and av ∈ Av ,
Mau �= Mav . It follows that au and av cannot agree on V ari. Since V ari has at most
q variables, there can be at most 2q nodes at level i. The claim follows since the OBDD
as n levels.

The relationship described in Theorem 2.1 between pathwidth and OBDD size was
first shown in [17]. The proof there goes via a variant of a DPLL-based satisfiability
algorithm. Our argument here is direct and show how to obtain an OBDD variable
order from a path decomposition.

Recall that we know that for a graph G that contains n vertices we have that
pathwidth(G) = O(treewidth(G) · log n).

Corollary 2.1. A CNF formula C with n variables and treewidth width q has an OBDD
of size polynomial in n and exponential in q.

While Theorem 2.1 suggests that OBDD-based algorithms are tractable on bounded
width problems, typical model-checking algorithms do more than just build OBDDs
that correspond to CNF formulas. OBDDs are often used to perform symbolic image
operations, which requires applying existential quantification to OBDDs [20]. While it
is often claimed that fixed-parameter tractability implies tractability for the bounded-
parameter case, the constant factor resulting from the blowup of the parameter needs to
be considered on a case-by-case basis. Often, super-exponential blowups in the param-
eter indicates that the problem is not practically tractable. The following theorem shows
that Theorem 2.1 is not likely to be useful in model checking, since using quantification
on bounded-width formulas leads to such a super-exponential blowup on the constant
factor that is based on the parameter.

Theorem 2.2. There exists a formula C in CNF with n variables and pathwidth q, and
a subset of variables X such that (∃X)C under every variable order does not have a
OBDD of size n2f(q), for a sub-exponential function f .

Proof. We consider the hidden-weighted bit (HWB) function, which is shown in [9] to
have a OBDD size of Ω(1.14m) under arbitrary variable order, where m is the number
of input bits. The HWB function is a Boolean function 2m → {0, 1}, where for an
m-bit input vector A, the output is the wth bit of A, w being the number of 1s in A (the
bit count of A). The OBDD is defined on the set of variables A[0] to A[m− 1].

We consider the case where m = 2k, k > 3, and use a CNF formula to represent the
HWB function. Clearly, from the upper bounds shown in Corollary 2.1, a direct transla-
tion can not result in bounded pathwidth; we use (m + 1)k + 1 additional existentially
quantified variables to facilitate the CNF encoding. In the additional variables, there are
m + 1 counters (at k bits each), which we call X0, . . . Xm, and a single bit witness
w. Each Xi is used to guess the number of 1s occurring after A[i]. The bit witness w
guesses the value of A[X0]. We use CNF constraints to check the correctness of our
guesses. The CNF formula C is the conjunction of all the following constraints. (= and
+ are short hand defined on bit vectors of size k):
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– For each 0 ≤ i < m, we define C1
i := (A[i]→ Xi = Xi+1 +1)∧ (¬A[i]→ Xi =

Xi+1). This asserts that if Xi is a correct guess iff Xi+1 is a correct guess.
– For each 0 ≤ i < m, we define C2

i := (X0 = i) → (A[i] ↔ w). This asserts that
w is a correct guess if X0 is a correct guess.

– Cg := w. Since we are building the OBDD representing inputs where the HWB
function returns 1, w is asserted to true.

– The well-formedness constraint is Cwf := Xm = 0. This asserts that Xm is a
correct guess. Combined with the C1

i s, they assert that all Xis are correct guesses.

The only shorthand we used above is = and + on bit vectors of length k, both of
which can be written out in CNF with no additional variables and O(k2) clauses. Now,
(∃X0) . . . (∃Xm)(∃w)C characterizes the HWB function.

Next we show there is a path decomposition of C of width 3k+1. There is one node
per bit in A, ordered from 0 to m−1. Each node contains the support for the constraints
C1

i and C2
i (the last node also contains Cg and Cwf with no additional variables). In

turn, each node i contains the variables A[i], w, X0, Xi, and Xi+1, giving a pathwidth
of 3k + 1.

Consider the relationship between the size of the OBDD and the pathwidth. As-
sume we have a BDD of size n2f(q), where the pathwidth is q and the number of
variables is n, and f is a sub-exponential function. Here, q = 3k + 1 and n = (m +
1)k + 1 + m = (2k + 1)(k + 1). The size of the OBDD S is then ((2k + 1)(k +
1))2f(3k+1) < 2(k+3)2f(3k+1) = 2f(3k+1)+k+3 = 2g(k). Since f is sub-exponential, g
is sub-exponential as well. But from [9], the lower bound for the size of such OBDDs
is Ω(1.14m) = Ω(2log 1.14×2k

), which contradicts with g being sub-exponential. So
such small OBDDs cannot exist.

Next we show that our construction is almost worst case, i.e., there is a closely related
upper-bound.

Theorem 2.3. For a CNF formula C =
∧
c on n variables with pathwidth q and a

subset of variables X , the formula (∃X)C has an OBDD of size O((n− |X |)22q

).

Proof. To get the upper bound, we use the same approach as the Theorem 2.1, i.e., we
show an upper bound of 22q

nodes for nodes at each level i by counting the number of
equivalence classes.

We use supp(C) to denote the set of variables that occur in C, and define Y =
supp(C) − X as the set of free variables in (∃X)C. We use the same variable order
as Theorem 2.1, and name the variables in Y as y1, y2. . . ym according to the variable
order. For a set Z ⊆ supp(C), we use Z<i to denote the subset that appears before yi

in the variable order. Also, Zj is used to denote the subset of Z that occurs in path-
decomposition node j. Each node u corresponding to a variable yi represents a set of
assignments Au to Y<i, encoded by the paths to the node from the root of the OBDD.
Consider an assignment a ∈ Au. For each assignment b ∈ 2X<i to the quantified
variables occurring before yi, we have a corresponding set of clauses in C that are
satisfied by a∪b. Assume that yi occurs in node k of the path decomposition ofC. Recall
that C can be partitioned into Cended, Ccur, and Cuntouched based on the variable yi.
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Define the function Fa : 2Xk,<i → {⊥} ∪ 2Ccur such that for each assignment b to
Xk,<i, Fa(b) = ⊥ if there is no extension b′ (on X<i) of b such that a ∪ b′ |= Cended;
otherwise, Fa(b) = S where S ⊆ Ccur is the clauses in Ccur satisfied by a∪b. Now, we
show that two distinct nodes u and v corresponding to yi do not contain assignments
au in Au and av in Av such that Fau = Fav . Assume the contrary. Since u and v
are distinct, w.l.o.g., there is an assignment a to Y≥i such that au ∪ a |= (∃X)C and
av ∪ a �|= (∃X)C. Take an assignment b on X where au ∪ a ∪ b |= C. Let b′ be
a restriction of b to the variables in Xk ∪ X≥i, and let b′′ be a restriction of b to the
variables in Xk,<i. It is clear that a ∪ b′ |= Cuntouched. We know that Fau(b′′) �= ⊥,
since b restricted to X<i, which we call bau , satisfies au ∪ bau |= Cended. Since Fau =
Fav , Fav (b′′) = Fau(b′′) �= ⊥. Again, we have an extension bav (from the definition of
Fav ) of b′′ to X<i where av ∪ bav |= Cended. For a clause c ∈ Ccur, if c ∈ Fau(b′′),
then c ∈ Fav (b′′), so av ∪ bav |= c. Otherwise, a ∪ b′ |= c, since au ∪ a ∪ b |= c and
au ∪ b′′ �|= c. So, av ∪ bav ∪ a∪ b′ |= Ccur. In summary, av ∪ a∪ bav ∪ b′ |= C, which
contradicts with av ∪ a �|= (∃X)C.

Now we count the number of possible functions for Fa. For each b ∈ 2Xk,<i , the
number of possible choices of Fa(b) is 1 + 2|Yk,<i| since the satisfaction of clauses in
Ccur depends only on b and assignments to Yk,<i. Thus, the number of possible such

Fas is (1 + 2|Yk,<i|)2
|Xk,<i| ≤ (2|Yk,<i|+1)2

|Xk,<i|
= 2(|Yk,<i|+1)2|Xk,<i| ≤ 22q

since
q ≥ |Xk,<i|+ |Yk,<i|.

The combination of the possible count of Fas and the fact that distinct nodes induce
distinct Fas gives us a bound of 22q

nodes at each level, i.e., a size bound of (n−|X |)22q

for the whole OBDD.

The double exponential blowup for the OBDD size of quantified bounded path-
width formulas on the pathwidth prevents us from using the property pathwidth(G) =
O(treewidth(G)log n) to achieve a polynomial size OBDD for quantified bounded
treewidth formulas. Whether a non-polynomial lower bound exists for the OBDD size
of quantified bounded treewidth formulas is left for future research.

Let us now consider the effect of the local bounded treewidth on the complexity of
Bounded Model Checking (BMC). In bounded model checking, variable substitutions
are used to create distinct copies of the system. Given a formula f with support set
V = {v1, v2, . . . vn}, and a substitution variable set V ′ = {v′1, v′2, . . . v′n}, we write
f [V/V ′] to represent a copy of f where each vi in f is replaced with v′i. To unroll a
system to k iterations, we create k + 1 copies of the state variable set V , which we
call V 0, V 1, . . . V k. The transition relation is a formula over V ∪ V ′, where V is the
current state variables and V ′ is the next state variables. The BMC unrolling would
contain

∧
0≤i≤k−1 TR[V/V i, V ′/V i+1], in addition to initial and property constraints.

In the following theorem, we show that BMC unrolling does not preserve the bounded
treewidth.

Theorem 2.4. Even though the transition relation of a concurrent transition system,
represented by a CNF TR(V, V ′), has bounded treewidth, its unrolling can have un-
bounded treewidth.

Proof. As an example, we take the case where the state variable set V is {x1, x2, . . . xw}
and the transition function is defined by x′i := (xi−1 ↔ xi) ↔ xi+1. The CNF for



496 A. Ferrara, G. Pan, and M.Y. Vardi

transition relation TR(V, V ′) clearly has bounded pathwidth (where each path de-
composition node consists of the variables xi, xi+1, x

′
i, x

′
i+1), and, in turn, bounded

treewidth.
Now we considering Gaifman graph of the unrolling. An example where two copies

are unrolled is shown in Figure 1. The state variable for xi at iteration j is denoted as
xj

i . We can see clearly that if we unroll, say, w+ 2 copies, the Gaifman graph will have
a w × w grid as a minor, which implies unbounded pathwidth (and treewidth) [12].

x1
1 x1

2 x1
3 x1

n

x2
1 x2

2 x2
3 x2

n

x3
1 x3

2 x3
3 x3

n

Fig. 1. The TR(k) in Theorem 2.4, for k = 3

3 Model Checking, Containment, Simulation

We now introduce definitions of non-deterministic transition systems with bounded
concurrency [16]. A non-deterministic transition system with bounded concurrency
(concurrent transition system for short) is a tuple P = 〈O,P1, . . . , Pn〉 consisting of a
finite set O of observable events and n components P1, . . . , Pn for some n ≥ 1. Each
component Pi is a tuple 〈Oi,Wi,W

0
i , δi,Li〉, where:

– Oi ⊆ O is a set of local observable events. The Oj are not necessarily pairwise dis-
joint; hence, observable events may be shared by several components. We require
that

⋃n
j∈I Oj = O.

– Wi is a finite set of states, and we require that the Wj be pairwise disjoint. Also we
let W =

⋃n
j∈I Wj .

– W 0
i ⊆Wi is the set of initial states.

– δi ⊆ Wi × β(W ) ×Wi is a transition relation, where β(W ) denotes the set of all
Boolean propositional formulae over W .

– Li : Wi → 2Oi is a labeling function that labels each state with a set of local
observable events. The intuition is that Li(w) are the events that occur, or hold, in
w.

Since states are labeled with sets of elements from O, we refer to Σ = 2O as the
alphabet of P . While each component of P has its local observable events and its own
states and transitions, these transitions depend not only on the component’s current state
but also on the current states of the other components. Also, as we shall now see, the
labels of the components are required to agree on shared observable events.
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A configuration of P is a tuple c = 〈w1, w2, . . . , wn, σ〉 ∈W1×W2×· · ·×Wn×Σ,
satisfying Li(wi) = σ∩Oi for all 1 ≤ i ≤ n. Thus, a configuration describes the current
state of each of the components, as well as the set of observable events labeling these
states. The requirement on σ implies that these labels are consistent, i.e., for any Pi and
Pj , and for each o ∈ Oi∩Oj , either o ∈ Li(wi)∩Lj(wj) (in which case, o ∈ σ), or o �∈
Li(wi) ∪ Lj(wj) (in which case, o �∈ σ). For a configuration c = 〈w1, w2, . . . , wn, σ〉,
we term 〈w1, w2, . . . , wn〉 the global state of c, and we term σ the label of c, and denote
it by L(c). A configuration is initial if for all 1 ≤ i ≤ n, we have wi ∈ W 0

i . We use C
to denote the set of all configurations of a given system P , and C0 to denote the set of
all its initial configurations. We also use c[i] to refer to Pi’s state in c.

For a propositional formula θ in B(W ) and a global state p = 〈w1, w2, . . . , wn〉, we
say that p satisfies θ if assigning true to states in p and false to states not in p makes θ
true. For example, s1∧ (t1∨ t2), with s1 ∈W1 and {t1, t2} ⊆W2, is satisfied by every
global state in which P1 is in state s1 and P2 is in either t1 or t2. We shall sometimes
write disjunctions as sets, so that the above formula can be written {s1} ∧ {t1, t2}.
Formulas in B(W ) that appear in transitions are called conditions.

Given two configurations c = 〈w1, w2, . . . , wn, σ〉 and c′ = 〈w′1, w′2, . . . , w′n, σ′〉,
we say that c′ is a successor of c in P , and write succP (c, c′), if for all 1 ≤ i ≤ n there
is 〈wi, θi, w

′
i〉 ∈ δi such that 〈w1, w2, . . . , wn〉 satisfies θi. In other words, a successor

configuration is obtained by simultaneously applying to all the components a transition
that is enabled in the current configuration. Note that by requiring that successors are
indeed configurations, we are saying that transitions can only lead to states satisfying
the consistency criterion, to the effect that they agree on the labels for shared observable
events.1

Given a configuration c, a c-computation of P is an infinite sequence π = c0, c1, . . .
of configurations, such that c0 = c and for all i ≥ 0 we have succP (ci, ci+1). A
computation of P is a c-computation for some c ∈ C0. The computation c0, c1, . . .
generates the infinite trace ρ ∈ Σω, defined by ρ = L(c0) ·L(c1) · · · . We use T (P c) to
denote the set of all traces generated by c-computations, and the trace set T (P ) of P is
then defined as

⋃
c∈C0

T (P c). In this way, each concurrent transition system P defines
a subset of Σω. We say that P accepts a trace ρ if ρ ∈ T (P ). Also, we say that P is
empty if T (P ) = ∅; i.e., P has no computation, and that P is universal if T (P ) = Σω;
i.e., every trace in Σω is generated by some fair computation of P .

The size of a concurrent transition system P is the sum of the sizes of its compo-
nents. Symbolically, |P | = |P1|+· · ·+|Pn|. Here, for a componentPi = 〈Oi,Wi,W

0
i ,

δi,Li, αi〉, we define |Pi| = |Oi|+|Wi|+|δi|+|Li|+|αi|, where |δi| =
∑
〈w,θ,w′〉∈δi

|θ|,
|Li| = |Oi| · |Wi|, and |αi| is the sum of the cardinalities of the sets in αi. Clearly, P
can be stored in space O(|P |).

When P has a single component, we say that it is a sequential transition system.
Note that the transition relation of a sequential transition system can be really viewed
as a subset of W × W , and that a configuration of a sequential transition system is
simply a labeled state.

Now, we introduce the definitions about the local and global treewidth, and the de-
gree of a graph.

1 This requirement could obviously have been imposed implicitly in the transition relation.
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Definition 3.1. The communication graph of a concurrent transition system P is a
graph having one vertex for each component and an edge (vi, vj) if either the com-
ponent for vi and the component for vj share observable events or if the transition
relation of one of the components for vi or vj refer to the variables of the other.

Definition 3.2. The local treewidth of the concurrent transition system P is the tree-
width of its communication graph.

By the Theorem 2.2 in [16], every concurrent transition system P can be translated into
a sequential transition system of size 2O(|P |).

Definition 3.3. The global treewidth of the concurrent transition system P is the tree-
width of its equivalent sequential transition system.

Definition 3.4. The degree of a graph the maximum vertex degree, in other words, the
maximum count of arcs connected to a single vertex in the graph.

A graph with bounded pathwidth and bounded degree has bounded cutwidth [28]. The
pathwidth bound implies many other structural restrictions [27].

Example 3.1. We construct a concurrent transition system P to encode a (ripple-carry)
binary counter; it can count up to 2n using n components. Each componentPi is used to
store the i-th bit (the bit with weight 2i−1), so P1 is the least significant bit and Pn is the
most significant bit. The observable events are the bit-values stored by each component,
and the counter works by ripple-carry propagation.

Formally, given the number n of bits, P is 〈{bit1, . . . , bitn}, P1, . . . , Pn〉, where
Pi = 〈{biti}, {si

00, s
i
01, s

i
10}, {Ii}, δi,Li〉. For each state si

jk, the subscript j represent
the carry status, and the subscript k represent the bit state; for example, the state si

10
represents the case where the value of bit i is 0 and a carry is propagated toward bit
i + 1. Ii is an initial state, described below.

In Figure 2 we show the process Pi. The edges are labeled by the condition of the
transition relation: ci−1 means that the carry of the process Pi−1 is 1, and it corresponds
to si−1

10 , ¬ci−1 means that the carry of Pi is 0 and it corresponds to si−1
00 ∨ si−1

01 .
We remark that P1 corresponds to the least significant bit of the counter, and the c0

is always 1. We define δi and Li as follows:

– δi = {〈si
00,¬ci−1, s

i
00〉, 〈si

00, ci−1, s
i
01〉, 〈si

01,¬ci−1, s
i
01〉, 〈si

01, ci−1, s
i
10〉,

〈si
10,¬ci−1, s

i
00〉, 〈si

10, ci−1, s
i
01〉, }.

– Li(si
00) = Li(si

10) = ∅, Li(si
01) = {biti}.

Note if we start with si
00 for all states, the ripple-carry nature of the counter would

take 2n+n−1 cycles to flip the carry state of the most significant bit, so we initialize the
counter with the binary representation of n−1 to ensure the carry on the most significant
bit will happen after exactly 2n cycles. The communication graph of this counter have
constant pathwidth, since each component Pi interacts only with the components Pi−1
and Pi+1, thus forming a path.

In the following, we introduce the definitions for the verification problems that we
consider here: model checking, containment, simulation.
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s00

s01 s10

ci−1 ¬ci−1

ci−1

ci−1

¬ci−1

¬ci−1

Fig. 2. A cell of the counter

The temporal logics [24] often used in the model checking are CTL and LTL, which
are fragments of CTL∗. The logic CTL∗ combines both branching-time and linear-time
operators [13]. For the sake of simplicity, we consider LTL (Linear-Time Temporal
Logic). It has three unary modal operators (X ,G, andF ) and one binary modal operator
(U ). Their meaning is: Xφ is true in particular state if and only if the formula φ is true in
the next state; Gφ is true if and only φ is true from now on; Fφ is true if φ will become
true at some time in the future; φUψ is true if ψ will eventually become true and φ stays
true until then. The semantics of LTL is based on computations of transition systems.
Intuitively, Fφ is true in a state of a transition system if φ is true in some following
state, that is the transition system reaches a state in which φ is true. In modal logic
literature, transition systems are called Kripke structure, and computations of Kripke
structure are called Kripke models [10]. The model checking problem is to decide if all
runs of a transition system satisfy the LTL formula. In formal verification, we encode
the behavior of a system as a concurrent transition system, and a property we want to
check as an LTL formula.

The problems that formalize correct trace-based and tree-based implementations of a
system are containment and simulation, respectively. These problems are defined below
with respect to two concurrent transition systems P = 〈O,P1, . . . , Pn〉 and P ′ =
〈O′, P ′1, . . . , P ′m〉 with O ⊇ O′, and with possibly different numbers of components.
For technical convenience, we assume that O = O′. The containment problem for P
and P ′ is to determine whether T (P ) ⊆ T (P ′). That is, whether every trace accepted
by P is also accepted by P ′. If T (P ) ⊆ T (P ′), we say that P ′ contains P and we
write P ⊆ P ′. While containment refers only to the set of computations of P and
P ′, simulation refers also to the branching structure of the systems. Let c and c′ be
configurations of P and P ′, respectively. A relation H ⊆ C×C′ is a simulation relation
from 〈P, c〉 to 〈P ′, c′〉 iff the following conditions hold [21].

1. H(c, c′).
2. For all configurations a ∈ C and a′ ∈ C′ with H(a, a′), we have L(a) = L(a′).
3. For all configurations a ∈ C and a′ ∈ C′ with H(a, a′) and for every configura-

tion b ∈ C such that succP (a, b), there exists a configuration b′ ∈ C′ such that
succP ′(a′, b′) and H(b, b′).



500 A. Ferrara, G. Pan, and M.Y. Vardi

A simulation relation H is a simulation from P to P ′ iff for every c ∈ C0 there exists
c′ ∈ C′0 such that H(c, c′). If there exists a simulation from P to P ′, we say that P
simulates P ′ and we write S . S′. Intuitively, it means that the system P ′ has more
behaviors than the system P . In fact, every tree embodied in P is also embodied in P ′.
The simulation problem is, given P and P ′, to determine whether S . S′.

In this section we consider the complexity of the reachability, containment and sim-
ulation problems for concurrent transition systems, under the hypothesis of bounded
treewidth both in the communication graph and in each component. The complexity
of these problems has been studied in [16, 19]. We show that these problems have the
same complexity of the general case, even if each component has constant size (and
thus bounded treewidth and degree) and the communication graph has bounded path-
width and degree (and hence bounded treewidth). Our results are then robust; in fact a
bounded pathwidth implies many other structural restrictions [27].

In [19], the model-checking problem for temporal logics (e.g. CTL, LTL, CTL*) is
shown to be PSPACE-hard, also in the reachability case. The reachability case is when
the formula specifies an event that the transition system has to reach. For example in
LTL, it is simply Fψ, where ψ is a Boolean formula. From the characteristic of the
concurrent transition system used in the proof, the following theorem holds.

Theorem 3.1. The CTL, LTL, and CTL* model checking for concurrent transition sys-
tems is PSPACE-hard also in the reachability case, and remains PSPACE-hard even
if each component is fixed and the communication graph has bounded pathwidth and
bounded degree.

In [16] the simulation problem is shown to be EXPTIME-complete; from the char-
acteristic of the concurrent transition systems used in the proof, the following theorem
holds.

Theorem 3.2. The simulation problem for concurrent transition systems is EXPTIME-
hard, and remains EXPTIME-hard even if each component is fixed and the communi-
cation graph has bounded pathwidth and bounded degree.

In [16] the containment problem is shown to be EXPSPACE-complete, but the con-
current transition systems used in the proofs have communication graphs with un-
bounded pathwidth and unbounded degree.

Theorem 3.3. The containment problem for concurrent transition systems is
EXPSPACE-hard, and remains EXPSPACE-hard even if each component has fixed size
and the communication graph has bounded pathwidth and bounded degree.

Proof. To prove hardness, we carry out a reduction from deterministic exponential-
space-bounded Turing machines. Given a Turing machine T and input u of length n, we
want to check whetherT accepts the word u in space 2n. we denote byΣ an alphabet for
encoding runs of T (the alphabet Σ and the encoding are defined later). We write u′ to
represent the initial tape-encoding of u, i.e., if u is u1u2 . . . un, u′ is (q0, u1)u2 . . . un.
We then construct a transition system PT over the alphabet Σ ∪ {$}, for some $ �∈ Σ,
such that (i) the size of PT is polynomial in |T | and linear in n, and (ii) #u(Σω +
(Σ∗ · $ω)) ⊆ T (PT ) iff T does not accept the word u. The crucial point is that using
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bounded concurrency, we can handle the exponential size of the tape by n components
that count to 2n.

We assume, without loss of generality, that once T reaches a final state it loops
there forever. The transition system PT accepts all traces in Σω, and accepts a trace
w · $ω ∈ Σ∗ · $ω if either
1. w is not an encoding of a prefix of a legal computation of T ,
2. w is an encoding of a prefix of a legal computation of T , but, within this prefix, the

computation still has not reached a final state, or
3. w is an encoding of a prefix of a legal, but rejecting, computation of T over any

input.

Thus, PT rejects a trace w · $ω iff w encodes a prefix of a legal accepting computation
of T and the computation has already reached a final state. Hence, PT accepts all traces
in #u(Σω + Σ∗ · $ω) iff T does not accept the word u.

Now to the details of the construction. Let T = 〈Γ, Q, �→, q0, Facc, Frej〉, where
Γ is the alphabet, Q is the set of states, and �→: (Q × Γ ) → (Q × Γ × {L, R}) is
the transition function. We write (q, a) �→ (q′, b, δ) for �→ (q, a) = (q′, b, δ), with the
meaning that when in state q and reading a in the current tape cell, T moves to state q′,
writes b in the current tape cell and moves its head one cell to the left or right, depending
on δ. Finally, q0 is T ’s initial state, Facc ⊆ Q is the set of final accepting states, and
Frej ⊆ Q is the set of final rejecting states.

We encode a configuration of T by a string in #Γ ∗(Q× Γ )Γ ∗, of the form #γ1γ2
. . . (q, γi) . . . γ2n). The meaning of this is that the j’th cell, for 1 ≤ j ≤ 2n, is labeled
γj , T is in state q and its head points to the i’th cell.

We encode a computation of T by a sequence of configurations, which is a word over
Σ = {#}∪Γ ∪(Q×Γ ). Let #σ1 . . . σ2n#σ′1 . . . σ

′
2n be two successive configurations

of T in such a sequence. (Here, each σi is in Σ.) If we set σ0 = σ2n+1 = # and
consider a triple 〈σi−1, σi, σi+1〉, for 1 ≤ i ≤ 2n, it is clear that the transition function
of T prescribes σ′i. In addition, along the encoding of the entire computation, # must
repeat exactly every 2n +1 letters. Let next(σi−1, σi, σi+1) denote our expectation for
σ′i. That is, with the γ’s denoting elements of Γ , we have:

– next(γi−1, γi, γi+1) = next(#, γi, γi+1) = next(γi−1, γi, #) = γi.

– next((q, γi−1), γi, γi+1)=next((q, γi−1), γi, #)=
γi if (q, γi−1) �→ (q′, γ′

i−1, L)
(q′, γi) if (q, γi−1) �→ (q′, γ′

i−1, R)
– next(γi−1, (q, γi), γi+1) = next(#, (q, γi), γi+1) = next(γi−1, (q, γi), #) = γ′

i,
where (q, γi) �→ (q′, γ′

i, δ). 2

– next(γi−1, γi, (q, γi+1))=next(#, γi, (q, γi+1))=
γi if (q, γi+1) �→ (q′, γ′

i+1, R)
(q′, γi) if (q, γi+1) �→ (q′, γ′

i+1, L)
– next(σ2n , #, σ′

1) = #.

A necessary and sufficient condition for a trace to encode a legal computation of T on
the word u is that consecutive configurations are compatible with next.

Now for the construction of PT . PT is a concurrent process with n+ 1 components.
The first component, PM is the master process that accept all the traces Σω, and accept

2 We assume that T ’s head does not “fall” from the right or the left boundaries of the tape.
Thus, the case where i = 1 and (q, γi) �→ (q′, γ′

i, L) and the dual case where i = 2n and
(q, γi) �→ (q′, γ′

i, R) are not possible.
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all non-accepting traces in Σ∗ · $ω. The other componentsP1, · · · , Pn, are used by PM

and their only task is perform the count as in Example 3.1; each of these processes is
associated with a bit (P1 with the least significant, Pn the most significant).

Let us describe the process PM . In spirit, PM follows the outline of the master pro-
cess in [16]. In the construction of PM , we use the following block of states GΣ3 ,
which is used to generate sequences of triples (σi−1, σi, σi+1) ∈ Σ3. GΣ3 have |Σ3|
states, each representing a triple, and labeled by the middle state. For two triples
(u, u′, u′′) and (v, v′, v′′), there is an transition from the first to the second iff u′ = v
and u′′ = v′. PM can either start in a clique of Σ states to generate Σω, or it can start
in a block of states (which we call Init) to generate non-accepting traces. All edges in
Init have condition true. From a state s in Init, we can reach a corresponding suc-
cessor state, which represents the same triple as the successors of s in Init, in a new
block of states Bs, of which every state asserts c0 to start the count in the component
P1. In other words, c0 =

∨
t∈Bs|s∈Init t. All edges into states in Bs have condition

true, except those that go into states with label next(s). As PM progresses in Bs, the
counter is counting to 2n. The edges into the state labeled with next(s) have condition
¬sn

10, and from every state in Bs, we can move to a state which is a self loop labeled
$ with condition sn

10. This asserts that the trace we are generating is not a prefix of a
legal computation over T . Alternatively,PM can also start in a clique of size |Σ′|where
Σ′ = {#} ∪ Γ ∪ {(Q − Facc) × Γ}, i.e., all the non-accepting symbols in Σ. Each
edge in the clique have condition true, and each state in the clique can go to the self
loop on $ on condition true. This captures all the (legal or illegal) non-accepting traces
on T .

It is easy to see that |PT | is polynomial in |T | and linear in n. The processes
PM , P1, · · · , Pn have constant size. PM interacts only with P1 and with Pn, the generic
Pi interacts only with Pi−1 and Pi+1: the communication graph is a ring and then it has
bounded pathwidth and degree.

Now, given the word u = u1u2 . . . un, we construct P to be a concurrent transition
system that generates the language #(q0, u1)u2 . . . un(Σω + (Σ∗ · $ω)). In fact, P can
be easily taken to be a concurrent transition system with n + 1 components, each with
|Σ| + 1 states, implemented as a shifter. In other words, the next state of component i
is the current state of component i+ 1, and component n+ 1 can non-deterministically
generate Σω + (Σ∗ · $ω). Obviously, each component is of constant size, and the con-
current transition system is of bounded pathwidth and bounded degree. It follows that
T does not accept the word u iff P ⊆ PT . By taking T to be an universal Turing
machine, we showed that the containment problem for concurrent transition systems is
EXPSPACE-hard even if each component has fixed size and the communication graph
has bounded pathwidth and bounded degree.
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Abstract. Model checking is a useful method to verify automatically the
correctness of a system with respect to a desired behavior, by checking
whether a mathematical model of the system satisfies a formal specifi-
cation of this behavior. Many systems of interest are open, in the sense
that their behavior depends on the interaction with their environment.
The model checking problem for finite–state open systems (called module
checking) has been intensively studied in the literature. In this paper,
we focus on open pushdown systems and we study the related model–
checking problem (pushdown module checking, for short) with respect to
properties expressed by CTL and CTL∗ formulas. We show that push-
down module checking against CTL (resp., CTL∗) is 2Exptime-complete
(resp., 3Exptime-complete). Moreover, we prove that for a fixed CTL∗

formula, the problem is Exptime-complete.

1 Introduction

In the last decades significant results have been achieved in the area of formal de-
sign verification of reactive systems. In particular, a meaningful contribution has
been given by algorithmic methods developed in the context of model-checking
([CE81, QS81, VW86]). In this verification method, the behaviour of a system,
formally described by a mathematical model, is checked against a behavioural
constraint specified by a formula in a suitable temporal logic, which enforces
either a linear model of time (formulas are interpreted over linear sequences cor-
responding to single computations of the system) or a branching model of time
(formulas are interpreted over infinite trees, which describe all the possible com-
putations of the system). Traditionally, model checking is applied to finite-state
systems, typically modelled by labelled state-transition graphs.

In system modelling, we distinguish between closed and open systems. For a
closed system, the behavior is completely determined by the state of the system.
For an open system, the behaviour is affected both by its internal state and by
the ongoing interaction with its environment. Thus, while in a closed system all
the nondeterministic choices are internal, and resolved by the system, in an open
system there are also external nondeterministic choices, which are resolved by
the environment [Hoa85]. Model checking algorithms used for the verification of
closed systems are not appropriate for the verification of open systems. In the
latter case, we should check the system with respect to arbitrary environments
and should take into account uncertainty regarding the environment.

In [KVW01], Kupferman, Vardi, and Wolper extend model checking from
closed finite–state systems to open finite-state systems. In such a framework, the

G. Sutcliffe and A. Voronkov (Eds.): LPAR 2005, LNAI 3835, pp. 504–518, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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open finite-state system is described by a labelled state-transition graph called
module whose set of states is partitioned into a set of system states (where the
system makes a transition) and a set of environment states (where the envi-
ronment makes a transition). The problem of model checking a module (called
module checking) has two inputs: a module M and a temporal formula ψ. The
idea is that an open system should satisfy a specification ψ no matter how the
environment behaves. Let us consider the unwinding of M into an infinite tree,
say TM . Checking whether TM satisfies ψ is the usual model-checking problem
[CE81, QS81]. On the other hand, for an open system, TM describes the in-
teraction of the system with a maximal environment, i.e. an environment that
enables all the external nondeterministic choices. In order to take into account
all the possible behaviours of the environment, we have to consider all the trees
T obtained from TM by pruning subtrees whose root is a successor of an environ-
ment state (pruning these subtrees correspond to disable possible environment
choices). Therefore, a module M satisfies ψ if all these trees T satisfy ψ.

Note that for the linear-time paradigm, module checking coincides with the
usual model checking, since for linear temporal formulas ψ we require that all
the possible interactions of the system with its environment (corresponding to
all computations of M , i.e. to all possible full-paths in TM ) have to satisfy ψ.
Therefore, while the complexity of model checking for closed and open finite–
state systems coincide using linear time logics, when using branching time logics,
model checking for open finite–state systems is much harder than model check-
ing for closed finite–state systems. In particular, it is proved in [KVW01], that
the problem is Exptime–complete for specifications in CTL and 2Exptime–
complete for specifications in CTL∗. Moreover, the complexity of this problem
in terms of the size of the module is Ptime-complete.

Recently, the investigation of model-checking techniques has been extended
to infinite-state systems. An active field of research is model-checking of closed
infinite-state sequential systems. These are systems in which each state carries a
finite, but unbounded, amount of information e.g. a pushdown store. The origin
of this research is the result of Muller and Schupp that the monadic second-
order theory of context-free graphs is decidable [MS85]. Concerning pushdown
systems, Walukiewicz [Wal96] has shown that model checking these systems with
respect to modal μ-calculus is Exptime-complete. Even for a fixed formula in the
alternation-free modal μ-calculus, the problem is Exptime-hard in the size of
the pushdown system. The problem remains Exptime-complete also for the logic
CTL [Wal00], which corresponds to a fragment of the alternation-free modal μ-
calculus. However, the exact complexity in the size of the system (for a fixed CTL
formula) is an open problem: it lies somewhere between Pspace and Exptime
[BEM97]. To the best of our knowledge, the pushdown model checking problem
for CTL∗ has not been investigated so far. However, since CTL∗ formulas can be
translated to modal μ-calculus with an exponential blow-up [BC96], we obtain
that the problem is, at worst, in 2Exptime. The situation is quite different for
linear-time logics. Model-checking with LTL and the linear-time μ-calculus is
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Exptime-complete [BEM97]. However, the problem is polynomial in the size of
the pushdown system.

In the literature, verification of open systems has been also formulated as two-
players games. For pushdown systems, games with parity winning conditions are
known to be decidable [Wal96]. More recently, in [LMS04], it is shown that
pushdown games against LTL specifications are 3Exptime-complete.

This paper contributes to the investigation of model checking of open infinite-
state systems by introducing Open Pushdown systems (OPD) and considering
model checking with respect to CTL and CTL∗. An OPD is a pushdown system
augmented with finite information that allow to partition the set of configu-
rations (in accordance with the control state and the symbol on the top of the
stack) into a set of system configurations and a set of environment configurations.

As an example of closed and open pushdown systems, we can consider two
drink-dispensing machines (obtained as an extension of the machines defined in
[Hoa85]). The first machine repeatedly boils water for a while, makes an inter-
nal nondeterministic choice and serves either tea or coffee, with the additional
constraint that coffee can be served only if the number of coffees served up to
that time is smaller than that of teas served. Such a machine can be modelled
as a closed pushdown system (the stack is used to guarantee the inequality be-
tween served coffees and teas). The second machine repeatedly boils water for a
while, asks the environment to make a choice between coffee and tea, and deter-
ministically serves a drink according to the external choice, with the additional
constraint that coffee can be served only if the number of coffees served up to
that time is smaller than that of teas served. Such a machine can be modelled
as an open pushdown system. Both machines can be represented by a pushdown
system that induces the same infinite tree of possible executions, nevertheless,
while the behavior of the first machine depends on internal choices solely, the
behavior of the second machine depends also on the interaction with its environ-
ment. Thus, for instance, for the first machine, it is always possible to eventually
serve coffee. On the contrary, for the second machine, this does not hold. Indeed,
if the environment always chooses tea, the second machine will never serve coffee.

We study module checking of (infinite–state) modules induced by OPD w.r.t.
the branching-time logics CTL and CTL∗. As in the case of finite-state sys-
tems, pushdown module checking is much harder than pushdown model checking
for both CTL and CTL∗. Indeed, we show that pushdown module checking is
2Exptime-complete for CTL and 3Exptime-complete for CTL∗. We also show
that for CTL∗, the complexity of pushdown module checking in terms of the size
of the given OPD is Exptime-complete. For the upper bounds of the complexity
results, we exploit the standard automata-theoretic approach. In particular, for
CTL (resp., CTL∗) we propose an exponential time (resp., a double-exponential
time) reduction to the emptiness problem of nondeterministic pushdown tree
automata with parity acceptance conditions. The latter problem is known to be
decidable in exponential time [KPV02]. Finally, the lower bound for CTL (resp.,
CTL∗) is shown by a technically non-trivial reduction from the word problem for
Expspace–bounded (resp., 2Expspace–bounded) alternating Turing Machines.
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2 Preliminaries

2.1 Module Checking for Branching Temporal Logics

In this subsection we define the module checking problem for CTL and CTL∗

[KVW01]. First, we recall syntax and semantics of CTL and CTL∗.
Let N be the set of positive integers. A tree T is a prefix closed subset of N∗.

The elements of T are called nodes and the empty word ε is the root of T . For
x ∈ T , the set of children of x (in T ) is children(T, x) = {x · i ∈ T | i ∈ N}.
For k ≥ 1, the (complete) k-ary tree is the tree {1, . . . , k}∗. For x, y ∈ N∗,
we write x ≺ y to mean that x is a proper prefix of y. For x ∈ T , a (full)
path π of T from x is a minimal set π ⊆ T such that x ∈ π and for each
y ∈ π such that children(T, y) �= ∅, there is exactly one node in children(T, y)
belonging to π. For y ∈ π, we denote by πy the (suffix) path of T from y given
by {z ∈ π | y . z}. For an alphabet Σ, a Σ-labelled tree is a pair 〈T, V 〉 where
T is a tree and V : T → Σ maps each node of T to a symbol in Σ.

The logic CTL∗ is a branching–time temporal logic [EH86], where a path
quantifier, E (“for some path”) or A (“for all paths”), can be followed by an
arbitrary linear-time formula, allowing boolean combinations and nesting, over
the usual linear temporal operators X (“next”), U (“until”), F (“eventually”),
and G (“always”). There are two types of formulas in CTL∗: state formulas,
whose satisfaction is related to a specific state (or node of a labelled tree), and
path formulas, whose satisfaction is related to a specific path. Formally, for a
finite set AP of proposition names, the class of state formulas ϕ and the class
of path formulas θ are defined by the following syntax:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | A θ | E θ
θ := ϕ | ¬ θ | θ ∧ θ | Xθ | θ U θ

where p ∈ AP . The set of state formulas ϕ forms the language CTL∗. The other
operators can be introduced as abbreviations in the usual way: for instance, Fθ
abbreviates true U θ and Gθ abbreviates ¬F¬θ.

The Computation Tree Logic CTL [CE81] is a restricted subset of CTL∗,
obtained restricting the syntax of path formulas θ as follows: θ := Xϕ |ϕ U ϕ.
This means that X and U must be immediately preceded by a path quantifier.

We define the semantics of CTL∗ (and its fragment CTL) with respect to
2AP -labelled trees 〈T, V 〉. Let x ∈ T and π ⊆ T be a path from x. For a state
(resp., path) formula ϕ (resp. θ), the satisfaction relation (〈T, V 〉, x) |= ϕ (resp.,
(〈T, V 〉, π) |= θ), meaning that ϕ (resp., θ) holds at node x (resp., holds along
path π) in 〈T, V 〉, is defined by induction. The clauses for proposition letters,
negation, and conjunction are standard. For the other constructs we have:

– (〈T, V 〉, x) |= A θ iff for each path π in T from x, (〈T, V 〉, π) |= θ;
– (〈T, V 〉, x) |= E θ iff there exists a path π from x such that (〈T, V 〉, π) |= θ;
– (〈T, V 〉, π) |= ϕ (where π is a path from x) iff (〈T, V 〉, x) |= ϕ;
– (〈T, V 〉, π) |= Xθ iff π \ {x} �= ∅ and (〈T, V 〉, π \ {x}) |= θ;1

1 Note that π \ {x} is a path starting from the unique child of x in π.
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– (〈T, V 〉, π) |= θ1 U θ2 iff there exists y ∈ π such that (〈T, V 〉, πy) |= θ2 and
(〈T, V 〉, πz) |= θ1 for all z ∈ π such that z ≺ y.

Given a CTL∗ (state) formula ϕ, we say that 〈T, V 〉 satisfies ϕ if (〈T, V 〉, ε) |= ϕ.
In this paper we consider open systems, i.e. systems that interact with their

environment and whose behavior depends on this interaction. The (global) be-
havior of such a system is described by an open Kripke structure (called also
module [KVW01]) M = 〈AP,Ws,We, R, w0, μ〉 where AP is a finite set of atomic
propositions, Ws ∪We is a countable set of (global) states partitioned into a set
Ws of system states and a set We of environment states (we use W to denote
Ws∪We), R ⊆W×W is a (global) transition relation, w0 ∈W is an initial state,
and μ : W → 2AP maps each state w to the set of atomic propositions that hold
in w. For (w,w′) ∈ R, we say that w′ is a successor of w. We assume that the
states in M are ordered and the number of successors of each state w, denoted
by bd(w), is finite. For each state w ∈ W , we denote by succ(w) the ordered
tuple (possibly empty) of w’s successors. We say that a state w is terminal if
it has no successor. When the module M is in a non-terminal system state ws,
then all the states in succ(ws) are possible next states. On the other hand, when
M is in a non-terminal environment state we, then the possible next states (that
are in succ(we)) depend on the current environment. Since the behavior of the
environment is not predictable, we have to consider all the possible sub-tuples
of succ(we). The only constraint, since we consider environments that cannot
block the system, is that not all the transitions from we are disabled.

The set of all (maximal) computations of M starting from the initial state
w0 is described by a W -labelled tree 〈TM , VM 〉, called computation tree, which is
obtained by unwinding M in the usual way. The problem of deciding, for a given
branching-time formula ψ over AP , whether 〈TM , μ ◦ VM 〉 satisfies ψ, denoted
M |= ψ, is the usual model-checking problem [CE81, QS81]. On the other hand,
for an open system, 〈TM , VM 〉 corresponds to a very specific environment, i.e.
a maximal environment that never restricts the set of its next states. There-
fore, when we examine a branching-time specification ψ w.r.t. a module M , ψ
should hold not only in 〈TM , VM 〉, but in all the trees obtained by pruning from
〈TM , VM 〉 subtrees whose root is a child (successor) of a node corresponding to an
environment state. The set of these trees is denoted by exec(M), and is formally
defined as follows. 〈T, V 〉 ∈ exec(M) iff V (ε) = w0 and the following holds:

– For x ∈ T with V (x) = w ∈ Ws and succ(w) = 〈w1, . . . , wn〉, it holds that
children(T, x) = {x · 1, . . . , x · n} and for 1 ≤ i ≤ n, V (x · i) = wi.

– For x ∈ T with V (x) = w ∈ We and succ(w) = 〈w1, . . . , wn〉, there exists a
sub-tuple 〈wi1 , . . . , wip〉 of succ(w) such that p ≥ 1 if succ(w) is not empty,
children(T, x) = {x · i1, . . . , x · ip} and for 1 ≤ j ≤ p, V (x · ij) = wij .

Intuitively, each tree in exec(M) corresponds to a different behavior of the
environment. In the following, we consider the trees in exec(M) as 2AP -labelled
trees, i.e. taking the label of a node x to be μ(V (x)).

For a module M and a CTL∗ (resp., CTL) formula ψ, we say that M satisfies
ψ, denoted M |=r ψ, if all the trees in exec(M) satisfy ψ. The problem of deciding
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whether M satisfies ψ is called module checking [KVW01]. Note that M |=r ψ
implies M |= ψ (since 〈TM , VM 〉 ∈ exec(M)), but the converse in general does
not hold. Also, note that M �|=r ψ is not equivalent to M |=r ¬ψ. Indeed,
M �|=r ψ just states that there is some tree 〈T, V 〉 ∈ exec(M) satisfying ¬ψ.

2.2 Pushdown Module Checking

In this paper we consider Modules induced by Open Pushdown Systems (OPD,
for short), i.e., Pushdown systems where the set of configurations is partitioned
(in accordance with the control state and the symbol on the top of the stack) in
a set of environment configurations and a set of system configurations.

An OPD is a tuple S = 〈AP,Γ, P, p0, α0, Δ,L, Env〉, where AP is a finite
set of propositions, Γ is a finite stack alphabet, P is a finite set of (control)
states, p0 ∈ P is an initial state, α0 ∈ Γ ∗ · γ0 is an initial stack content (where
γ0 �∈ Γ is the stack bottom symbol), Δ ⊆ (P × (Γ ∪ {γ0})) × (P × Γ ∗) is a
finite set of transitions, L : P × (Γ ∪ {γ0}) → 2AP is a labelling function, and
Env ⊆ P × (Γ ∪ {γ0}) is used to specify the set of environment configurations.
A configuration is a pair (p, α) where p ∈ P is a control state and α ∈ Γ ∗ · γ0
is a stack content. We assume that the set P × Γ ∗ is ordered and for each
(p,A) ∈ P × (Γ ∪ {γ0}), we denote by nextS(p,A) the ordered tuple (possibly
empty) of the pairs (q, β) such that ((p,A), (q, β)) ∈ Δ.

The size |S| of S is |P |+ |Γ |+ |α0|+ |Δ|, with |Δ| =
∑

((p,A),(q,β))∈Δ |β|.
An OPD S induces a module MS = 〈AP,Ws,We, R, w0, μ〉, where:

– Ws ∪We = P × Γ ∗ · γ0 is the set of pushdown configurations;
– We is the set of configurations (p,A · α) such that (p,A) ∈ Env;
– w0 = (p0, α0);
– ((p,A ·α), (q, β)) ∈ R iff there is ((p,A), (q, β′)) ∈ Δ such that either A ∈ Γ

and β = β′ · α, or A = γ0 (in this case α = ε) and β = β′ · γ0 (note that
every transition that removes the bottom symbol γ0 also pushes it back);

– For all (p,A · β) ∈ Ws ∪We, μ(p,A · β) = L(p,A).

The pushdown module checking problem for CTL (resp., CTL∗) is to decide,
for a given OPD S and a CTL (resp., CTL∗) formula ψ, whetherMS |=r ψ.

3 Tree Automata

In order to solve the pushdown module checking problem for CTL and CTL∗,
we use an automata theoretic approach; in particular, we exploit the formalisms
of Nondeterministic (finite–state) Tree Automata (NTA for short) [Buc62] and
Nondeterministic Pushdown Tree Automata (PD-NTA for short) [KPV02].

Nondeterministic (finite–state) Tree Automata (NTA). Here we describe
NTA over (complete) k-ary trees for a given k ≥ 1. Formally, an NTA is a tuple
A = 〈Σ,Q, q0, δ, F 〉, where Σ is a finite input alphabet, Q is a finite set of states,
q0 ∈ Q is an initial state, δ : Q×Σ → 2Qk

is a transition function, and F is an



510 L. Bozzelli, A. Murano, and A. Peron

acceptance condition. We consider here Büchi and parity acceptance conditions
[Buc62, EJ91]. In the case of a parity condition, F = {F1, . . . , Fm} is a finite
sequence of subsets of Q, where F1 ⊆ F2 ⊆ . . . ⊆ Fm = Q (m is called the index
of A). In the case of a Büchi condition, F ⊆ Q.

A run of A on a Σ-labelled k-ary tree 〈T, V 〉 (where T = {1, . . . , k}∗) is a
Q-labelled tree 〈T, r〉 such that r(ε) = q0 and for each x ∈ T , we have that
〈r(x · 1), . . . , r(x · k)〉 ∈ δ(r(x), V (x)). For a path π ⊆ T , let infr(π) ⊆ Q be
the set of states that appear as the labels of infinitely many nodes in π. For a
parity acceptance condition F = {F1, . . . , Fm}, π is accepting if there is an even
1 ≤ i ≤ m such that infr(π) ∩ Fi �= ∅ and for all j < i, infr(π) ∩ Fj = ∅. For
a Büchi condition F ⊆ Q, π is accepting if infr(π) ∩ F �= ∅. A run 〈T, r〉 is
accepting if all its paths are accepting. The automaton A accepts an input tree
〈T, V 〉 iff there is an accepting run of A over 〈T, V 〉. The language of A, denoted
L(A), is the set of Σ-labelled (complete) k-ary trees accepted by A.

The size|A| of an NTA A is |Q|+ |δ|+ |F | with |δ| =
∑

(q,σ)∈Q×Σ |δ(q, σ)|.
It is well-known that formulas of CTL and CTL∗ can be translated to tree

automata (accepting the models of the given formula). In particular, we are in-
terested in optimal translations to parity NTA. Concerning a CTL (resp., CTL∗)
formula ψ, given k ≥ 1, first we build according to [KVW00] a Büchi (resp., par-
ity2) alternating tree automata A with O(|ψ|) (resp., O(2|ψ|)) states and size
O(k · |ψ|) (resp., size O(k ·2|ψ|) and index O(|ψ|)) accepting exactly the complete
k-ary trees satisfying ψ. Then, according to [Var98], we can translate A into an
equivalent parity NTA whose size is O(k ·2O(|ψ| log |ψ|)) (resp., O(k ·22O(|ψ|)

)) and
whose index is O(|ψ|) (resp., O(2|ψ|)).

Lemma 1 ([KVW00,Var98]). Given a CTL (resp., CTL∗) formula ψ over
AP and k ≥ 1, we can construct a parity NTA of size O(k · 2O(|ψ| log |ψ|)) (resp.,
O(k · 22O(|ψ|)

)) and index O(|ψ|) (resp., O(2|ψ|)) that accepts exactly the set of
2AP -labelled complete k-ary trees that satisfy ψ.

Remark 1. Vardi in [Var98] gives a translation from (two-way) alternating par-
ity tree automata A to parity NTA A′. Note that the size of the parity NTA A′ is
exponential in k. This depends on the fact that Vardi considers arbitrary mem-
oryless strategies of the form τ : {1, . . . , k}∗ → 2Q×{1,...,k}×Q where Q is the set
of states of A. On the other hand, if A corresponds to a CTL or CTL∗ formula,
then any formula of B+({1, . . . , k} × Q) occurring in the transition function of
A (see [KVW00,Var98] for the definition of the transition function of an alter-
nating tree automata) is a positive boolean combination of sub-formulas either of
the form

∧i=k
i=1(i, q) or of the form

∨i=k
i=1(i, q) for some q ∈ Q. This means that

we can limit ourselves to consider strategies τ such that the following holds for
each x ∈ {1, . . . , k}∗ and (q, i, p) ∈ τ(x): either (q, j, p) /∈ τ(x) for each j �= i
or (q, j, p) ∈ τ(x) for each 1 ≤ j ≤ k. This simple observation applied to the
algorithm in [Var98] provides the desired complexity linear in k. This is impor-
tant, since, as we will see in the next section, k depends on the size of the given
2 [KVW00] gives a translation from CTL∗ to Hesitant alternating tree automata which

are a special case of parity alternating tree automata.



Pushdown Module Checking 511

pushdown system. Moreover, note that classical translations [VW86, EJ88] from
CTL and CTL∗ to NTA lead to NTA whose sizes are exponential in k.

Nondeterministic Pushdown Tree Automata (PD-NTA). Here we de-
scribe PD-NTA (without ε-transitions) over complete k-ary labelled trees. For-
mally, an PD-NTA is a tuple P = 〈Σ,Γ, P, p0, α0, ρ, F 〉, where Σ is a finite input
alphabet, Γ is a finite stack alphabet, P is a finite set of (control) states, p0 ∈ P
is an initial state, α0 ∈ Γ ∗ ·γ0 is an initial stack content, ρ : P×Σ×(Γ ∪{γ0})→
2(P×Γ ∗)k

is a transition function, and F is an acceptance condition over P . In-
tuitively, when the automaton is in state p, reading an input node x labelled
by σ ∈ Σ, and the stack contains a word A · α in Γ ∗.γ0, then the automaton
chooses a tuple 〈(p1, β1), . . . , (pk, βk)〉 ∈ ρ(p, σ,A) and splits in k copies such that
for each 1 ≤ i ≤ k, a copy in state pi, and stack content obtained by removing
A and pushing βi, is sent to the node x · i in the input tree.

A run of the PD-NTA P on a Σ-labelled k-ary tree 〈T, V 〉 (with T={1, . . . , k}∗)
is a (P ×Γ ∗.γ0)-labelled tree 〈T, r〉 such that r(ε) = (p0, α0) and for each x ∈ T
with r(x) = (p,A · α), there is 〈(p1, β1), . . . , (pk, βk)〉 ∈ ρ(p, V (x), A) such that
for all 1 ≤ i ≤ k, r(x · i) = (pi, βi · α) if A �= γ0, and r(x · i) = (pi, βi · γ0)
otherwise (note that in this case α = ε).

As with NTA, we consider Büchi and parity acceptance conditions over P .
The notion of accepting path π is defined as for NTA with infr(π) defined as
follows: infr(π) ⊆ P is the set such that p ∈ infr(π) iff there are infinitely many
x ∈ π for which r(x) ∈ {p} × Γ ∗ · γ0. A run 〈T, r〉 is accepting if every path
π ⊆ T is accepting. The PD-NTA P accepts an input tree 〈T, V 〉 iff there is
an accepting run of P over 〈T, V 〉. The language of P , denoted L(P), contains
all trees accepted by P . The emptiness problem for PD-NTA is to decide, for a
given PD-NTA P , whether L(P) = ∅.
Proposition 1 ([KPV02]). The emptiness problem for a parity PD-NTA of
index m with n states, and transition function ρ can be solved in time exponential
in n ·m · |ρ| with |ρ| =

∑
〈(p1,β1),...,(pk,βk)〉∈ρ(p,σ,A) |β1|+ . . . + |βk|.

PD-NTA are closed under intersection with NTA.

Proposition 2. For a Büchi PD-NTA P = 〈Σ,Γ, P, p0, α0, ρ, F 〉 with F = P
and a parity NTA A = 〈Σ,Q, q0, δ, F

′〉, there is a parity PD-NTA P ′ such that
L(P ′) = L(P) ∩ L(A). Moreover, P ′ has |P | · |Q| states, the same index of A,
and the size of the transition relation is bounded by |ρ| · |δ|.

4 Deciding Pushdown Module Checking

In this section we solve Pushdown Module Checking for CTL and CTL∗.

4.1 Upper Bounds

We fix an OPD S = 〈AP,Γ, P, p0, α0, Δ,L, Env〉 and a formula ψ. We decide
pushdown module-checking for S against ψ using an automata-theoretic ap-
proach: we construct a parity PD-NTA PS×¬ψ as the intersection of two tree
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automata. Essentially, the first automaton, denoted by PS , is a Büchi PD-NTA
that accepts the trees in exec(MS), and the second automaton is a parity NTA
that accepts the set of trees that do not satisfy ψ. Thus, MS |=r ψ iff L(PS×¬ψ)
is empty. The construction proposed here follows (and extends) that given in
[KVW01] for solving the module-checking problem for finite-state open systems.
The extensions concern the handling of terminal states and the use of pushdown
tree automata.

In order to define PS , we consider an equivalent representation of exec(MS)
by complete k-ary trees with k = max{bd(w) | w ∈ Ws ∪ We} (note that
for a pushdown system S, k is finite and can be trivially computed from the
transition relation Δ of S). Recall that each tree in exec(MS) is a 2AP -labelled
tree that is obtained from 〈TMS , VMS 〉 by suitably pruning some of its subtrees.
We can encode the tree 〈TMS , VMS 〉 as a 2AP∪{t} ∪ {⊥}-labelled complete k-
ary tree (where ⊥ and t are fresh proposition names not belonging to AP ) in
the following way: first, we add the proposition t to the label of all leaf nodes
(corresponding to terminal global states) of the tree TMS ; second, for each node
x ∈ TMS with p children x ·1, . . . , x ·p (note that 0 ≤ p ≤ k), we add the children
x · (p + 1), . . . , x · k and label these new nodes with ⊥; finally, for each node x
labelled by ⊥ we add recursively k-children labelled by ⊥. Let 〈{1, . . . , k}∗, V ′〉
be the tree thus obtained. Then, we can encode a tree 〈T, V 〉 ∈ exec(MS) as
the 2AP∪{t} ∪ {⊥}-labelled complete k-ary tree obtained from 〈{1, . . . , k}∗, V ′〉
preserving all the labels of nodes of 〈{1, . . . , k}∗, V ′〉 that either are labelled
by ⊥ or belong to T , and replacing all the labels of nodes (together with the
labels of the corresponding subtrees) pruned in 〈T, V 〉 with the label ⊥. In this
way, all the trees in exec(MS) have the same structure (they all coincide with
{1, . . . , k}∗), and they differ only in their labelling. Thus, the proposition ⊥ is
used to denote both “disabled” states and “completion” states. Moreover, since
we consider environments that do not block the system, for each node associated
with an enabled non-terminal environment state, at least one successor is not
labelled by ⊥. Let us denote by êxec(MS) the set of all 2AP∪{t} ∪ {⊥}-labelled
k-ary trees obtained from 〈{1, . . . , k}∗, V ′〉 in the above described manner. The
Büchi PD-NTA PS = 〈Σ,Γ, P ′, (p0,5), α0, ρ, P

′〉, which accepts all and only the
trees in êxec(MS), is defined as follows:

– Σ = 2AP∪{t} ∪ {⊥};
– P ′ = P×{⊥,5,�}. From (control) states of the form (p,⊥), PS can read only

the letter ⊥, from states of the form (p,5), it can read only letters in 2AP∪{t}.
Finally, when PS is in state (p,�), then it can read both letters in 2AP∪{t}

and the letter ⊥. In this last case, it is left to the environment to decide
whether the transition to a configuration of the form ((p,�), α) is enabled.
The three types of (control) states are used to ensure that the environment
enables all transitions from enabled system configurations, enables at least
one transition from each enabled non-terminal environment configuration,
and disables transitions from disabled configurations.

– The transition function ρ : P ′×Σ× (Γ ∪{γ0})→ 2(P ′×Γ )k

is defined as fol-
lows. Let p ∈ P and A ∈ Γ ∪{γ0} with nextS(p,A) = 〈(p1, β1), . . . , (pd, βd)〉



Pushdown Module Checking 513

(where 0 ≤ d ≤ k). Then, for m ∈ {5,�,⊥} and σ ∈ Σ, ρ((p,m), σ, A) �= ∅
iff one of the following holds (where α = A if A ∈ Γ , and α = ε otherwise):

• σ = ⊥ and m ∈ {�,⊥}. In this case we have

ρ((p,m),⊥, A) = {〈 ((p,⊥), α), . . . , ((p,⊥), α)︸ ︷︷ ︸
k pairs

〉}

That is, ρ((p,m),⊥, A) contains exactly one k-tuple. In this case all the
successors of the current configuration are disabled.
• σ �= ⊥, m ∈ {�,5}, and nextS(p,A) is empty (i.e., d = 0). In this case
σ = L(p,A) ∪ {t} (i.e., the current configuration is terminal) and

ρ((p,m),L(p,A) ∪ {t}, A) = {〈((p,⊥), α), . . . , ((p,⊥), α) 〉}

• σ �= ⊥, (p,A) /∈ Env, m ∈ {�,5}, and nextS(p,A) is not empty (i.e.,
d ≥ 1). In this case σ = L(p,A) and ρ((p,m),L(p,A), A) is given by

{〈((p1,5), β1), . . . , ((pd,5), βd), ((p,⊥), α), . . . , ((p,⊥), α)︸ ︷︷ ︸
k−d pairs

〉}

• σ �= ⊥, (p,A) ∈ Env, m ∈ {�,5}, and nextS(p,A) is not empty (i.e.,
d ≥ 1). In this case σ = L(p,A) and ρ((p,m),L(p,A), A) is given by

{ 〈((p1,"), β1), ((p2,�), β1), . . . , ((pd,�), βd), ((p,⊥), α), . . . , ((p,⊥), α)〉,
〈((p1,�), β1), ((p2,"), β1), . . . , ((pd,�), βd), ((p,⊥), α), . . . , ((p,⊥), α)〉,

...
〈((p1,�), β1), ((p2,�), β1), . . . , ((pd,"), βd), ((p,⊥), α), . . . , ((p,⊥), α) 〉}.

That is, ρ((p,m),L(p,A), A) contains d k-tuples. When the automa-
ton proceeds according to the ith tuple, the environment can disable
the transitions to all successors of the current configuration, except the
transition associated with the pair (pi, βi), which must be enabled.

Note that PS has 3 · |P | states, and |ρ| is bounded by k(|P | · |Γ |+ |Δ|). Assuming
that |P | · |Γ | ≤ |Δ|, we have that |ρ| ≤ k · |Δ|.

We recall that a node labelled by ⊥ stands for a node that actually does not
exist. Thus, we have to take this into account when we interpret CTL∗ or CTL
formulas over trees 〈T, V 〉 ∈ êxec(MS) (where T = {1, . . . , k}∗). This means that
we have to consider only the paths in 〈T, V 〉 (that we call “legal” paths) that
either never visit a node labelled by ⊥ or contain a terminal node (i.e. a node
labelled by t). Note that a path is not “legal” iff it satisfies the formula ¬t U ⊥.
In order to achieve this, as in [KVW01] we define a function f : CTL∗ formulas
→ CTL∗ formulas such that f(ϕ) restricts path quantification to only “legal”
paths (the function f we consider extends that given in [KVW01], since we have
to consider also paths that lead to terminal configurations). The function f is
inductively defined as follows:

• f(p) = p for any proposition p ∈ AP ;
• f(¬ϕ) = ¬f(ϕ);
• f(ϕ1 ∧ ϕ2) = f(ϕ1) ∧ f(ϕ2);
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• f(Eϕ) = E((G¬⊥) ∧ f(ϕ)) ∨ E((F t) ∧ f(ϕ));
• f(Aϕ) = A((¬t U ⊥) ∨ f(ϕ));
• f(Xϕ) = X(f(ϕ) ∧ ¬⊥);
• f(ϕ1 U ϕ2) = (f(ϕ1) ∧ ¬⊥) U (f(ϕ2) ∧ ¬⊥).

When ϕ is a CTL formula, the formula f(ϕ) is not necessarily a CTL formula,
but it has a restricted syntax: its path formulas have either a single linear-
time operator or two linear-time operators connected by a Boolean operator. By
[KG96], such formulas have a linear translation to CTL.

By definition of f , it follows that for each formula ϕ and 〈T, V 〉 ∈ êxec(MS),
〈T, V 〉 satisfies f(ϕ) iff the 2AP -labelled tree obtained from 〈T, V 〉 removing
all the nodes labelled by ⊥ (and removing the label t) satisfies ϕ. Therefore,
module–checking S against formula ψ is reduced to check the existence of a tree
〈T, V 〉 ∈ êxec(MS) = L(PS) satisfying f(¬ψ) (note that |f(¬ψ)| = O(|¬ψ|)).
We reduce the latter to check the emptiness of a parity PD-NTA PS×¬ψ that is
defined as the intersection of the Büchi PD-NTA PS with a parity NTA A¬ψ =
〈Σ,Q, q0, δ, F 〉 accepting exactly the Σ-labelled complete k-ary trees that are
models of f(¬ψ) (recall that Σ = 2AP∪{t} ∪ {⊥}). By Lemma 1, if ψ is a CTL
(resp., CTL∗) formula, then A¬ψ has size O(k·2O(|ψ| log |ψ|)) (resp., O(k·22O(|ψ|)

))
and index O(|ψ|) (resp., O(2|ψ|)). Therefore, by Proposition 2 the following holds:

– If ψ is a CTL formula, then PS×¬ψ has O(k · |P | · 2O(|ψ| log |ψ|)) states, index
O(|ψ|), and transition relation bounded by O(k2 · |Δ| · 2O(|ψ| log |ψ|)).

– If ψ is a CTL∗ formula, then PS×¬ψ has O(k · |P | · 22O(|ψ|)
) states, index

O(2|ψ|), and transition relation bounded by O(k2 · |Δ| · 22O(|ψ|)
).

Therefore, by Proposition 1 we obtain the main result of this subsection.

Theorem 1.
(1) The pushdown module-checking problem for CTL is in 2Exptime.
(2) The pushdown module-checking problem for CTL∗ is in 3Exptime.
(3) For a fixed CTL or CTL∗ formula, the pushdown module-checking problem

is in Exptime.

4.2 Lower Bounds

In this section we give lower bounds for the considered problems that match the
upper bounds of the algorithm proposed in the previous subsection. The lower
bound for CTL (resp., CTL∗) is shown by a reduction from the word problem for
Expspace–bounded (resp., 2Expspace–bounded) alternating Turing Machines.
Without loss of generality, we consider a model of alternation with a binary
branching degree. Formally, an alternating Turing Machine (TM, for short) is
a tuple M = 〈Σ,Q,Q∀, Q∃, q0, δ, F 〉, where Σ is the input alphabet, which
contains the blank symbol #, Q is the finite set of states, which is partitioned
into Q = Q∀∪Q∃, Q∃ (resp., Q∀) is the set of existential (resp., universal) states,
q0 is the initial state, F ⊆ Q is the set of accepting states, and the transition
function δ is a mapping δ : Q×Σ → (Q×Σ × {L, R})2.
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Configurations ofM are words in Σ∗ ·(Q×Σ)·Σ∗. A configuration η ·(q, σ)·η′
denotes that the tape content is ηση′, the current state is q, and the reading
head is at position |η| + 1. When M is in state q and reads an input σ ∈ Σ
in the current tape cell, then it nondeterministically chooses a triple (q′, σ′, dir)
in δ(q, σ) = 〈(ql, σl, dirl), (qr, σr , dirr)〉, and then moves to state q′, writes σ′ in
the current tape cell, and its reading head moves one cell to the left or to the
right, according to dir. For a configuration c, we denote by succl(c) and succr(c)
the successors of c obtained choosing respectively the left and the right triple
in 〈(ql, σl, dirl), (qr , σr, dirr)〉. The configuration c is accepting if the associated
state q belongs to F . Given an input x ∈ Σ∗, a computation tree ofM on x is a
tree in which each node corresponds to a configuration. The root of the tree cor-
responds to the initial configuration associated with x. A node that corresponds
to a universal configuration (i.e. the associated state is in Q∀) has two succes-
sors, corresponding to succl(c) and succr(c), while a node that corresponds to
an existential configuration (i.e. the associated state is in Q∃) has a single suc-
cessor, corresponding to either succl(c) or succr(c). The tree is accepting iff all
its paths (from the root) reach an accepting configuration. An input x ∈ Σ∗ is
accepted byM iff there exists an accepting computation tree of M on x.

If M is Expspace–bounded (resp., 2Expspace–bounded), then there is a
constant k ≥ 1 such that for each x ∈ Σ∗, the space needed byM on input x is
bounded by 2k·|x| (resp., 22k·|x|

). It is well-known [CKS81] that 2Exptime (resp.,
3Exptime) coincides with the class of all languages accepted by Expspace–
bounded (resp., 2Expspace–bounded) alternating Turing Machines.

In the following we fix an input word x and let n = k · |x|.
Theorem 2.
(1) The pushdown module checking problem for CTL is 2Exptime–hard.
(2) The pushdown module checking problem for CTL∗ is 3Exptime–hard.

Proof. Here we sketch the proof for CTL. Given the Expspace–bounded alter-
nating Turing Machine M = 〈Σ,Q,Q∀, Q∃, q0, δ, F 〉 and the input x, we build
an OPD S and a CTL formula ϕ whose sizes are polynomial in n and in |M|
such that M accepts x iff there is a tree 〈T, V 〉 ∈ exec(MS) such that 〈T, V 〉
satisfies ϕ, i.e. iff MS �|=r ¬ϕ. Some ideas in the proposed reduction are taken
from [KTMV00], where there are given lower bounds for the satisfiability of
extensions of CTL and CTL∗.

Note that any reachable configuration ofM over x can be seen as a word in
Σ∗ · (Q×Σ) ·Σ∗ of length exactly 2n. If x = σ1 . . . σr (where r = |x|), then the
initial configuration is given by (q0, σ1)σ2 . . . σr ## . . .#︸ ︷︷ ︸

2n−r

.

Each cell of a TM configuration is coded using a block of n symbols of the
stack alphabet of S. The whole block is used to encode both the content of the
cell and the location (the number of cell) on the TM tape (note that the number
of cell is in the range [0, 2n − 1] and can be encoded using n bits). The stack
alphabet is given by (Σ∪(Q×Σ))×2{b,fc,e,cn,l} where b is used to mark the first
element of a TM block, fc to mark the initial TM configuration, e to mark the
first element of the first block of a TM configuration, cn to encode the number



516 L. Bozzelli, A. Murano, and A. Peron

of cell, and l to mark a left TM successor. Moreover, Σ ∪ (Q × Σ) is used to
encode the cell content. The pushdown system S proceeds in two phases.

Phase 1. Starting from the initial configuration (with empty stack content), S
generates nondeterministically by push transitions a sequence of TM configura-
tions on the stack. S ensures that the first TM configuration is the initial TM
configuration (corresponding to the input x). Moreover, the following conditions
are satisfied for any generated TM configuration c:
– S ensures that the symbols b, fc, and e are used properly. Moreover, S

ensures that the last block of c is the unique block in c that has number of
cell 2n − 1 (i.e, all its elements are marked by the proposition cn).

– All global states of S associated with all elements of c except the last element
are environment states. S keeps track of the TM state q associated with c
by its finite control. If c is not accepting (i.e., q /∈ F ), then the global state s
associated with the last element of c is a system state if c is a TM universal
configuration (i.e., q ∈ Q∀), and it is an environment state otherwise. In
such a state s, S without modifying the stack content chooses a letter 0/1 to
encode the choice of the transition. According to such a choice all elements
of the next TM configuration will be marked by the corresponding choice
symbol. In particular, we use the proposition l to mark all elements of a TM
left successor (this means that ¬l is associated with right TM successors).

Note that S does not ensure that the number of blocks of any generated TM con-
figuration is exactly 2n, that the cell numbers are updated correctly, and the gen-
erated configuration sequence is consistent with the transition function ofM.

Phase 2. When S finishes to generate an accepting configuration, it reaches
a system global state in which chooses between two possible options opt1 and
opt2 (without changing the stack content). When S selects opt1, then it sim-
ply empties deterministically the stack by a sequence of pop transitions. The
corresponding subtree of the computation tree of MS reduces to a finite linear
path that corresponds to the sequence ν of “pseudo” TM configurations gener-
ated in the first phase in reversed order. We use this subtree together with a
CTL formula ϕopt1 to check that the cell numbers of the sequence ν are encoded
correctly (this also implies that each configuration of ν has exactly length 2n).

When S selects opt2, then it empties the stack by a sequence of pop transitions
with the additional ability to generate at most at one block (corresponding to
a TM cell) the symbol check1 and successively at most at one block the symbol
check2. Therefore, a computation in this phase corresponds to the sequence ν of
“pseudo” TM configurations generated in the first phase in reversed order with
at most one block marked by check1 and with at most one block marked by
check2. Any global state of S in this phase is an environment state and has at
most two successors. Let 〈T, V 〉 be the corresponding subtree of the computation
tree of MS . We use this subtree 〈T, V 〉 together with a CTL formula ϕopt2 in
order to check that ν is faithful to the evolution ofM.

In order to understand how this can be done, let c = a1 . . . a2n be a TM
configuration. For any 1 ≤ i ≤ 2n, the value a′i of the i-th cell of succl(c) (resp.,
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succr(c)) is completely determined by the values ai−1, ai and ai+1 (taking a2n+1
for i = 2n and a0 for i = 1 to be some special symbol). As in [KTMV00], we de-
note by nextl(ai−1, ai, ai+1) (resp., nextr(ai−1, ai, ai+1)) our expectation for a′i
(these functions can be trivially obtained from the transition function ofM).

Let exec(〈T, V 〉) be the set of the trees obtained by pruning from 〈T, V 〉
subtrees whose root is a child of a node corresponding to an environment state.
Then, ϕopt2 will capture all trees 〈T ′, V ′〉 ∈ exec(〈T, V 〉) satisfying the following:

– For each block bl of ν, there is a path in T ′ (from the root) such that the
sequence of nodes associated with bl is labelled by check1.

– For each u ∈ T ′ labelled by check1, there is exactly one path in T ′ from u.
– Each path π of T ′ from a node u labelled by check1 (and such that u cor-

responds to some element of a block bl1 of ν not belonging to the first TM
configuration) contains a block bl2 marked by check2 having the same num-
ber of cell of bl1 and belonging to the previous TM configuration w.r.t. ν
(we use the proposition e that marks the first element of the first block
of a TM configuration to check this last condition). Moreover, denoting by
σ(bl) the Σ ∪ (Q × Σ)-value of a block bl, ϕopt2 will check that σ(bl1) is
consistent with nexts(σ(blsucc), σ(bl2), σ(blprec)), where s ∈ {l, r}, blsucc

and blprec represent the blocks soon after and soon before bl2 along π,
and s = l iff the TM configuration associated with bl1 is a left successor
(i.e. all nodes of bl1 are labelled by proposition l).
It is clear that assuming that the cell numbers of ν are encoded correctly
(this is guaranteed by formula ϕopt1), then ν is a legal sequence of TM con-
figurations iff there is 〈T ′, V ′〉 ∈ exec(〈T, V 〉) satisfying ϕopt2 .

By considerations above, it is clear that M accepts x iff there is 〈T, V 〉 ∈
exec(MS) such that each path of T (from the root) reaches a node u corre-
sponding to the last element of an accepting TM configuration and the following
holds: the subtree associated with the opt1-child (resp., opt2-child) of u satisfies
formula ϕopt1 (resp., ϕopt2). Therefore, formula ϕ is defined as follows:

AF
(
EX(opt1 ∧ ϕopt1) ∧ EX(opt2 ∧ ϕopt2)

)
�

Now, we can prove the main result of this paper.

Theorem 3.
(1) The pushdown module-checking problem for CTL is 2Exptime-complete.
(2) The pushdown module-checking problem for CTL∗ is 3Exptime-complete.
(3) The pushdown module-checking problem for CTL∗ is Exptime-complete in

the size of the given OPD.

Proof. Claims 1 and 2 directly follow from Theorems 1 and 2. Now, let us con-
sider Claim 3. First, we note that model checking pushdown systems corresponds
to module checking the class of OPD in which there are not environment configu-
rations. Moreover, pushdown model checking against alternation-free μ-calculus
is known to be Exptime-complete also for a fixed formula [Wal96]. Since CTL∗

subsumes the alternation-free mu-calculus, Claim 3 follows from Theorem 1.
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Abstract. We discuss a collection of mechanized formal proofs of sym-
metric key block encryption algorithms (AES, MARS, Twofish, RC6,
Serpent, IDEA, and TEA), performed in an implementation of higher
order logic. For each algorithm, functional correctness, namely that de-
cryption inverts encryption, is formally proved by a simple but effective
proof methodology involving application of invertibility lemmas in the
course of symbolic evaluation. Block ciphers are then lifted to the en-
cryption of arbitrary datatypes by using modes of operation to encrypt
lists of bits produced by a polytypic encoding method.

1 Introduction

Symmetric-key block ciphers represent an important part of today’s security in-
frastructure. Besides their main application, information hiding, block ciphers
are also used in the implementation of pseudo-random number generators, mes-
sage authentication protocols, stream ciphers, and hash functions. There are
two main properties that a cipher should have: first, Functional Correctness,
namely that decryption should invert encryption; second, Security, namely that
the cipher should be hard to break. In this paper, we focus solely on the first
property.

The formal methods community has, to date, paid surprisingly little atten-
tion to the functional correctness of block ciphers. This is a pity, since these
algorithms provide an application area in which the algorithms are heavily used,
security-critical, often well-specified, and well within the scope of theorem prov-
ing methods. In this paper, we formalize seven block ciphers and prove their
functional correctness.

We have undertaken our proofs in a theorem proving environment: we wanted
to see if the seemingly impossible task of brute force analysis of cipher correct-
ness (there would be 2128 cases to consider for most of the ciphers we consider)
could be avoided by a symbolic analysis. Indeed, it can; we found that the proofs
are often quite simple. A major side benefit—which may outweigh the assurance
provided by the proofs—is that descriptions of ciphers in higher order logic
are elegant and unambiguous. The descriptions are also mathematical and exe-
cutable. Thus in this work higher order logic is used as a specification language
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for ciphers and its implementation provides a symbolic execution and theorem
proving environment. That has two benefits: when prototyping the ciphers, we
can use deductive steps to evaluate ciphers on test cases and check results; and
we re-use those definitions in the correctness proofs.

In practice, ciphers are used to encrypt compound user-defined data such
as numbers, lists, trees, and records. Modes of operation [6] can be used to
apply a block cipher to the task of encrypting a list of blocks; however, there
still remains the issue of how to encrypt higher level datatypes. Often support
for this is provided by language-specific libraries. In our work, we have used
polytypism [11] to implement datatype encryption: elements of datatypes are
reduced by polytypic encoders to lists of bits which are then encrypted by a
mode of operation instantiated with a particular block cipher. The correctness
proofs of block ciphers can be combined with the correctness of encoders to
obtain the correctness of data encryption.

This work was initiated in 2002 [17] with a verification of the functional cor-
rectness of the then-recent AES standard. We subsequently extended the work
to modes of operation, padding, and user-defined datatypes. After that, we were
left wondering if the (relative) ease with which AES was verified also held for
other block ciphers. Case studies with the other block ciphers mentioned above
do seem to indicate that the proof methodology used on AES is widely appli-
cable. The approach (discussed more fully in the sequel) amounts to symbolic
evaluation of the formula

∀key plaintext . decrypt key (encrypt key plaintext) = plaintext

coupled with simplification by inversion lemmas, which show that round opera-
tions performed during encryption are inverted by their counterparts in decryp-
tion. This methodology worked successfully on all our verifications. However,
it seems not to be generally automatable: at times, the verification of inver-
sion lemmas can be quite difficult. For example, our proof of invertibility of the
column-mixing operation in AES is based on a collection of ad hoc, user-specified,
lemmas, each proved by brute force. Another example is the verification of IDEA,
in which Euclid’s extended algorithm needed to be formalized and applied in or-
der to prove invertibility of a special-purpose multiplication operation.

Our verifications1 have been carried out in HOL-4,2 an implementation of
higher order logic [12]. We have made heavy use of Anthony Fox’s HOL-4 library
for generating theories and proof tools for fixed-width n-bit words. We use an
ML-like functional programming notation to present algorithms in this paper.

2 Encryption Algorithms

Block ciphers usually operate on a fixed, small, amount of data called a block
which is repeatedly transformed for a number of rounds. For example, a block in
1 Accessible at the webpage http://www.cs.utah.edu/~slind/papers/lpar05.
2 Accessible at the webpage http://hol.sourceforge.net.
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AES is a 16-tuple of word8 (8 bit bytes) and each block undergoes ten rounds of
transformation. Conceptually, decryption is just ‘running encryption in reverse’,
but often that is not obvious, since decryption round operations can seem quite
unrelated to encryption round operations. Although ciphers can have quite com-
plex mathematical underpinnings, their implementations usually require only the
most primitive computational objects, found in most machine instruction sets:
namely, boolean and arithmetic operations on machine words.

A block cipher takes two inputs: the plaintext and a key. In many cases,
before encryption starts, the key is used to generate a key schedule, which may
be thought of as a list of keys, which get used as encryption proceeds. It is
interesting to note that, in many cases, the key schedule calculation is more
complex than the actual encryption. We have formalized the computation of key
schedules, but have noticed that the actual values in the key schedule are not
relevant to functional correctness, at least for the ciphers we have examined. In
other words, the key schedule seems to be important for security, and not for
functional correctness.

The block ciphers we will examine are symmetric key ciphers, which means
that the key used for encryption must be used in decryption. Many, but not all,
symmetric key ciphers are based on the notion of a Feistel network, which divides
the plaintext into two halves and repeatedly applies the round function for a
number of rounds. In each round, the left half of the plaintext is transformed
based on the right half, and then the right half is transformed based on the
transformed left half. The round function usually applies several basic linear
and non-linear operations: boolean operations such as exclusive-or, substitution
(via so-called S-boxes), permutation, and modular arithmetic. An S-box is often
implemented by an array, but is mathematically just a total function.

In the years previous to 2001, the United States National Institute of Stan-
dards (NIST) held a competition to select a successor to the aging DES (Dig-
ital Encryption Standard). Among a number of entries, five (MARS, Rijndael,
Twofish, Serpent, and RC6) were chosen as finalists, and Rijndael was the even-
tual winner. Rijndael has since been named AES (Advanced Encryption Stan-
dard) and should become widely used in the years ahead.

We have formalized all of the AES finalists, plus a few more ciphers, and
proved their functional correctness. In the following, we will introduce each al-
gorithm and discuss any interesting aspects of the correctness proof. Further
details on the algorithms can be found in the cited literature.

2.1 AES

The AES block cipher is described in the NIST standards document [13] and in
a book [5] by the authors of the cipher. AES is defined for three keylengths: 128,
192, and 256 bits. Our verification is for a keylength of 128, but changing to the
other keylengths would be straightforward and involve no changes to the proofs.
In the formalization, the original imperative pseudo-code for describing the ci-
pher was converted to a purely functional form which served as an executable
model, and also as the code verified in the correctness proof. We followed this
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practice for the other ciphers as well. We can define the encryption (AES) and
decryption (AES_INV) functions using function composition as follows:

AES keys = from_state ◦ Round 9 (TL keys)
◦ AddRoundKey (HD keys) ◦ to_state

AES_INV keys = from_state ◦ InvRound 9 (TL keys)
◦ AddRoundKey (HD keys) ◦ to_state

AES takes a key schedule (a list of keys) and AES_INV takes the reversed key
schedule. The encryptor works by copying the input block into the state, ‘xors’
the state with the first key, then performs 10 rounds of processing. In each round,
one key from the key schedule is consumed. After the rounds of processing are
finished, the state is copied to the output. This is formalized as follows: blocks,
states, and keys are each represented by 16-tuples of word8. The processing of
an arbitrary number of rounds is defined by a recursive function named Round:

(Round 0 [key] state = AddRoundKey key (ShiftRows (SubBytes state))) ∧
(Round (n+1) (key::keys) state =

Round n keys
(AddRoundKey key

(MixColumns
(ShiftRows (SubBytes state)))))

AddRoundKey (the names are taken from the original Rijndael documenta-
tion) is just pairwise exclusive-or; SubBytes applies an S-box to each element
of the state; and ShiftRows performs a simple permutation on the block. The
most complex operation is MixColumns; it treats the state as a 4× 4 matrix and
applies a specialized transformation on each column of the matrix. Mathemati-
cally, each column in the state is treated as a four-term polynomial over GF(28)
and multiplied modulo x4 + 1 with a fixed polynomial. When encrypting, the
fixed polynomial is a(x) = 03x3 + 01x2 + 01x + 02, while decryption uses the
polynomial a−1(x) = 0Bx3 +0Dx2 +09x+0E. In the implementation, column
multiplication during encryption is implemented by

MultCol (a,b,c,d) =
((02 • a) ⊕ (03 • b) ⊕ c ⊕ d, (* F1 *)
a ⊕ (02 • b) ⊕ (03 • c) ⊕ d, (* F2 *)
a ⊕ b ⊕ (02 • c) ⊕ (03 • d), (* F3 *)
(03 • a) ⊕ b ⊕ c ⊕ (02 • d)) (* F4 *)

where (− •−) is the finite field multiplication and ⊕ is exclusive-or. The actual
appplication of MultCol to the block is by the following function (where we have
arranged the state tuple so as to suggest a matrix):

MixColumns (b1, b2, b3, b4,
b5, b6, b7, b8,
b9, b10,b11,b12,
b13,b14,b15,b16) =

let (b1’,b5’,b9’,b13’) = MultCol (b1,b5,b9,b13)
and (b2’,b6’,b10’,b14’) = MultCol (b2,b6,b10,b14)
and (b3’,b7’,b11’,b15’) = MultCol (b3,b7,b11,b15)



Functional Correctness Proofs of Encryption Algorithms 523

and (b4’,b8’,b12’,b16’) = MultCol (b4,b8,b12,b16)
in
(b1’,b2’, b3’,b4’,b5’,b6’,b7’,b8’,
b9’,b10’,b11’,b12’,b13’,b14’,b15’,b16’)

Decryption also uses MixColumns, except that MultCol has been replaced by
InvMultCol:

InvMultCol (a,b,c,d) =
((0E • a) ⊕ (0B • b) ⊕ (0D • c) ⊕ (09 • d), (* G1 *)
(09 • a) ⊕ (0E • b) ⊕ (0B • c) ⊕ (0D • d), (* G2 *)
(0D • a) ⊕ (09 • b) ⊕ (0E • c) ⊕ (0B • d), (* G3 *)
(0B • a) ⊕ (0D • b) ⊕ (09 • c) ⊕ (0E • d)) (* G4 *)

Verification. Functional correctness, namely

∀keys block. INV_AES (reverse keys) (AES keys block) = block

is proved as follows: the variable block is split into a 16-tuple of word8 vari-
ables. Then all the definitions used to define AES and AES_INV are expanded
by symbolic evaluation. This results in (conceptually) a long string of function
compositions:

from_state ◦ .... ◦ to_state ◦ from_state ◦ ... ◦ to_state

and then we need merely simplify with inversion lemmas, showing that each
operation used in encryption inverts its counterpart in decryption. Most of the
inversion lemmas for AES are quite easy to prove: from_state inverts to_state
(and vice versa), ⊕ inverts itself, the S-boxes are inverses, when regarded as
functions, and so on. However, the inversion lemma for column mixing

InvMixColumns (MixColumns s) = s

is difficult to prove. Naive attempts at this led to overly large goals, and we were
forced to much more basic steps. To see the problem, let us consider the action
on a column (a, b, c, d). In the forward direction, MixColumns applies transfor-
mations F1 · · ·F4 to the column

a′ = F1(a, b, c, d)
b′ = F2(a, b, c, d)
c′ = F3(a, b, c, d)
d′ = F4(a, b, c, d)

and in the reverse InvMixColumns applies transformations G1 · · ·G4 to the re-
sulting column

a′′ = G1(a′, b′, c′, d′)
b′′ = G2(a′, b′, c′, d′)
c′′ = G3(a′, b′, c′, d′)
d′′ = G4(a′, b′, c′, d′)

and we then wish to show that a = a′′, b = b′′, c = c′′, d = d′′. Consideration of
a should illustrate the strategy.
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a′ = (02 • a) ⊕ (3 • b) ⊕ c ⊕ d
b′ = a ⊕ (02 • b) ⊕ (03 • c) ⊕ d
c′ = a ⊕ b ⊕ (02 • c) ⊕ (03 • d)
d′ = (03 • a) ⊕ b ⊕ c ⊕ (02 • d)

Thus a′′ is
(0E • a′) ⊕ (0B • b′) ⊕ (0D • c′) ⊕ (09 • d′)

which expands to

(0E • ((02 • a) ⊕ (03 • b) ⊕ c ⊕ d)) ⊕
(0B • (a ⊕ (02 • b) ⊕ (03 • c) ⊕ d)) ⊕
(0D • (a ⊕ b ⊕ (02 • c) ⊕ (03 • d))) ⊕
(09 • ((03 • a) ⊕ b ⊕ c ⊕ (02 • d)))

By use of associativity and commutativity of ⊕ and distribution of • over ⊕,
we can separate the expression into four subexpressions each involving only one
variable. Each subexpression is then simplified by case analysis on the 256 ways
of forming a word8 quantity. The subexpression involving a is simplified to a, and
the subexpressions for b, c, d all simplify to 0, leading to the conclusion a′′ = a.
Such a proof was carried out for each of a, b, c, d. The potential tedium of this
was eased by HOL’s rewriter, which can perform permutative rewriting (in this
case using the associativity and commutativity of ⊕).

Enhancements and Optimizations. Working in a theorem prover means that
program transformations and optimizations can be easily applied, once proved.
For example, in [17], an optimization to the decryption process is verified, and
the resulting decryptor is proved to be mathematically equal to the original. As
another example, the multiplication used in AES may be specified recursively,
iteratively, or as a lookup table (feasible since all multiplications have one argu-
ment fixed to one of a small set of constants). In our development, we prove the
iterative and recursive functions equal, and generate the tables by proof from
the recursive algorithm, achieving high assurance. Thus multiple implementa-
tions can be spawned, by proof, from a single source.

In summary, the functional correctness of AES was straightforward, except
for one lemma, which required ingenuity in the decomposition. One question we
have is whether the difficulty of the proof of invertibility of column mixing is
instrinsic, or whether it would be easier as a general argument at the level of
finite fields and polynomials. It may also be a good challenge for SAT methods.

2.2 Verifying the Other Ciphers

We now discuss the other ciphers, omitting much detail since the basic ideas
have been established in the discussion of AES.

MARS. [4] was IBM’s candidate in the AES competition. It has 128 bit blocks
(a 4-tuple of word32) and a variable keysize ranging from 128 to 448 bits (we
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chose 128). The key schedule is a 40-tuple of word32s. Encryption in MARS
takes place in three phases: eight rounds of forward mixing, sixteen rounds in
the cryptographic core, and eight rounds of backwards mixing. Decryption ap-
plies counterparts of these three phases. MARS uses a 512 element S-box. Al-
though the formalization of MARS is quite complex, the basic operations are
simple boolean operations and addition plus application of the S-boxes. Inver-
sion lemmas for mixing and the cryptographic core are quite easy; again symbolic
evaluation plus rewriting with inversion lemmas and some basic word identities
(algebraic properties of exclusive-or, for example) sufficed for the final theorem.

Twofish. [16] was also an AES competitor. It has a block size of 128 bits and key
sizes up to 256 bits. Twofish’s distinctive features are the use of pre-computed
key-dependent S-boxes, and a relatively complex key schedule. Twofish is a 16-
round Feistel network. We used word4, word8, and word32 in the formalization.
A block is a 4-tuple of word32, and the key schedule is a 40-tuple of word32,
computed from 32 word8s. Twofish uses several multiplication operations, which
are similar to that of AES. It uses these in column multiplication, also much like
that of AES. However, unlike AES, the correctness proof for Twofish is almost
comically easy.

RC6. [15] is a block cipher based on RC5 and designed by Rivest, Sidney, and
Yin for RSA Security. RC6 is a parameterized algorithm where the block size,
the key size, and the number of rounds are variable; the upper limit on the
key size is 2040 bits. In our formalization, we have fixed on a internal block
size of 176 bits (a 6-tuple of word32), a key size of 64 (a pair of word32), and
twenty rounds. RC6 uses integer multiplication to increase the diffusion achieved
per round so that fewer rounds are needed and the speed of the cipher can be
increased. The algorithm also wraps the round computations in ‘pre-whitening’
and ‘post-whitening’ steps. RC6 does not use S-boxes. In spite of the fact that
multiplication is used, the verification of RC6 was extremely simple, reducing to
simple identities on words.

TEA. (Tiny Encryption Algorithm) [22] is a very compact cipher designed by
David Wheeler and Roger Needham. TEA operates on 64-bit blocks and uses
a 128-bit key. TEA has has a trivial key schedule (the same four keys are used
throughout); it also does not use an S-box. It has Feistel structure, using addition
and subtraction as the reversible operators rather than exclusive-or. A dual shift
causes all bits of the key and data to be mixed repeatedly. The number of rounds
before a single bit change of the data or key has spread very close to 32 is
at most six, so that sixteen cycles may suffice and the authors suggest 32 (we
implemented 32 rounds). The verification of TEA was again an easy application
of our methodology.

Serpent. [1] is a 128-bit block cipher designed by Ross Anderson, Eli Biham
and Lars Knudsen. It placed second in the AES competition. The authors de-
signed Serpent to provide users with the highest practical level of assurance
that no shortcut attack will be found. To achieve this, the cipher uses twice
as many rounds (32) as are sufficient to block all currently known shortcut
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attacks. Despite this intentional ‘overdesign’, Serpent supports a very efficient
bitslice implementation. We have verified both the bitslice implementation and
a more conventional reference implementation. Perhaps surprisingly, the bitslice
implementation was far easier to verify than the reference version! The reference
implementation of Serpent uses tables for S-boxes, linear transformations, and
permutations. The specification used lists of indices, and we had to derive func-
tions, which were more tractable in later proofs, from them. Several transcription
errors were caught in the later invertibility proofs.

IDEA. [8] is used in the popular PGP (Pretty Good Privacy) package. IDEA
operates on 64-bit blocks using a 128-bit key, and consists of seventeen rounds.
The processes for encryption and decryption are similar. IDEA derives much of
its security by interleaving operations from different algebraic groups: exclusive-
or, addition modulo 216, and multiplication modulo 216 + 1 (a prime), where 0
is treated as 216. The internal operations of IDEA use word16, so the state is a
4-tuple of word16 and the input key is treated as an 8-tuple of word16. The key
schedule is a 52-tuple of word16.

The verification of IDEA is straightforward, much like the others, except for
proving the invertibility of the multiplication. The difficulty comes from the
fact that the native multiplication in word16 is modulo 216, and not modulo
216 + 1. So we had to define our own multiplication and give an implementation
for its inverse. This required some new formalization work: we had to define
the generalized Euclid’s algorithm, develop relevant properties, and show that
the algorithm does find multiplicative inverses modulo 65537 for all numbers
from 1 to 65536 inclusive. A further complication is that, since 65537 can not be
represented in 16 bits, we had to map multiplications out to a larger type, and
then map back. A full account is given in [23].

In summary, the verification of IDEA has much in similarity with that of
AES: mostly the proof was easy, except for one complex operation.

3 Data Encryption

We now turn from block ciphers to techniques for encrypting data. The first step
is to formalize so-called modes of operation. A mode of operation extends a cipher
from single blocks to arbitrary block sequences. Some acronyms of the commonly
used modes are ECB, CBC, CFB, OFB, and CTR [6]. In this paper, we chose to
work with CBC (Cipher Block Chaining). In CBC, the previous ciphertext block
is ‘xor’ed with the current plaintext before encryption. We formalize CBC (see
Fig. 1) as a pair of recursive functions being parameterized by block encryptors
and decryptors enc and dec. The parameter xor represents an ‘xor’ function:
since we do not know a priori what the actual type of blocks will be (different
ciphers have different representations for blocks), we simply fill xor in later.3 In
the actual formalization, block is just a type variable in the HOL logic, to be
instantiated to the block type of a particular cipher.

3 A logic with dependent types could avoid this extra parameterization.
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CBC xor enc [ ] = [ ] : block list
CBC xor enc v (h :: t) = let x = enc (xor h v) in x :: CBC xor enc x t

CBC−1 xor dec [ ] = [ ] : block list
CBC−1 xor dec v (h :: t) = xor (dec h) v :: CBC−1 xor dec h t

Fig. 1. Cipher Block Chaining

Both CBC and CBC−1 have the type

(block→ block→ block)→ (block→ block)→ block→ block list→ block list .

The correctness of CBC using arbitrary inverting encryptors and decryptors

� ∀� xor v encrypt decrypt .
(decrypt ◦ encrypt) = I ∧
(∀x y. (x xor y) xor y = x)
⇒
∀k. CBC−1 (xor) (decrypt k) v (CBC (xor) (encrypt k) v �) = �

is proved very easily by induction on �. From there, support for data encryption
is provided by adding in functions for encoding and decoding arbitrary data, as
can be seen in the following trivial consequence:

� ∀(encode : α→ bool list) (decode : bool list→ α)
(block : bool list→ block list) (unblock : block list→ bool list)
(encrypt : block→ block) (decrypt : block→ block) xor .

(decode ◦ encode = I) ∧
(∀k. decrypt k ◦ encrypt k = I) ∧
(unblock ◦ block = I) ∧
(∀x y. (x xor y) xor y = x)
⇒ ∀v key .

(decode ◦ unblock ◦ (CBC−1 (xor) (decrypt key) v)) ◦
(CBC (xor) (encrypt key) v ◦ block ◦ encode) = I

(1)

In other words, provided that inverting encoder/decoder, blocker/unblocker, and
encryptor/decryptor are provided, then (a) encoding the data to a list of bits
then (b) chunking the list into blocks then (c) using CBC to encrypt the blocks
can be inverted by applying the inverse operations in the correct order. Note
that there is a hidden complexity, in that the action of turning a list of bits into
a list of fixed length blocks requires padding the bits to get a list the length of
which is a multiple of the block size. Moreover, padding must be implemented
in such a way that the extra padding can be dropped off when mapping back
from a block to a list of bits.

We have now finished the abstract development. To see how it may be in-
stantiated, we turn our attention to type-directed construction of encoders and
decoders.
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3.1 Encoding and Decoding Datatypes

A common task in computer science is to package up high-level data as flat
strings of bits, and correspondingly, to unpack strings of bits in order to recover
the high-level data. When this is done to send data over a communication net-
work, it is called marshalling or serialization but we will use encoding/decoding
or simply coding. A type-directed approach to coding, based on an interpreta-
tion of higher order logic types into higher order logic terms, is given in [18].
An encoding function can be thought of simply as an injective function of type
τ → bool list mapping elements of type τ to lists of booleans. The injectiv-
ity condition prevents two elements of τ being encoded as the same list of
booleans, and so guarantees that if a list can be decoded then the decoding
will be unique.

Encoding functions can be automatically defined when a new datatype is
declared; the interpretation is used to calculate the form of the encoder from
the declaration of the type. Mutually recursive datatypes and datatypes with
recursion under existing type operators (so-called nested datatypes) are cleanly
handled. Encoding and decoding of polymorphic types is dealt with by abstrac-
tion: an encoder for a polymorphic type is parameterized by encoders for types
that may be substituted for the type variables.

Without going into the details of encoding, which may be found in [18], each
constructor for a datatype is assigned a marker list, which serves to distinguish
it from other constructors for the type. Lists have two constructors, and so the
marker lists have length one. A datatype with eight constructors would need
marker lists of length three.

For example, the encoding function for the datatype α list of polymorphic
lists is the following:

encode list f [ ] ≡ [F] ∧
encode list f (h :: t) ≡ T :: f h @ encode list f t

where f : α → bool list is the parameter encoder. Lists have two constructors,
which are distinguished by the prepending of marker lists [F] and [T].

Although encoders are automatically defined for every datatype declared in
HOL, a user may wish to override the automatic definition with an alternative
version, or to provide an encoder for a non-datatype e.g., for finite sets. A custom
encoder for natural numbers4 is the following:

encode num n ≡ if n = 0 then [T; T]
else if even n then F :: encode num ((n− 2) div 2)
else T :: F :: encode num ((n− 1) div 2)

A typical environment for encoding functions would include at least the following
bindings:

4 Built up from 0 using two successor functions: 2n + 1 and 2n + 2.
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type encoder
τ1 ∗ τ2 encode prod f g (x, y) ≡ f x @ g y
τ1 + τ2 encode sum f g (INL x) ≡ F :: f x

encode sum f g (INR y) ≡ T :: g y
bool encode bool x ≡ [x]
option encode option f NONE ≡ [F]

encode option f (SOME x) ≡ T :: f x
num encode num (defined above)
τ list encode list (defined above)

Encrypting Data. For an example, we will see how to synthesize encryption
routines for the type (num∗bool option)list. Given a typical encoder environment,
traversing the type structure and emitting the corresponding encoders yields the
following function in the HOL logic:

encode_list (encode_prod encode_num (encode_option encode_bool))

Applying it to the list [(1,NONE); (13,SOME T); (257,SOME F)] yields the the-
orem

|- encode_list (encode_prod encode_num (encode_option encode_bool))
[(1,NONE); (13,SOME T); (257,SOME F)]

= [T; T; F; T; T; F; T; T; F; F; F; T; T; T; T; T; T; F;
F; T; F; T; F; T; F; T; F; T; F; T; F; T; T; T; F; F]

If we instantiate CBC with the TEA block cipher, the key (1w,2w,3w,4w) and
the initial value (5w,10w) for v, and prepend encoding, padding, and blocking,
we can deductively evaluate the expression to obtain a theorem giving the result
of encrypting our specific input list:

|- (CBC XORB (TEAEncrypt (1w,2w,3w,4w)) (5w,10w) o BLOCK o PAD o
encode_list (encode_prod encode_num (encode_option encode_bool)))
[(1,NONE); (13,SOME T); (257,SOME F)]

= [(3008902428w,1274536877w)]

Decrypting Data. A decoder for type τ is an algorithm that takes as input a
list of booleans and returns an element of type τ . It is also possible to build and
compose decoders in a type-directed way. The key is to think of a decoder for
type τ as a monadic parser [21] :

decode τ : bool list→ (τ × bool list) option

Such a function tries to parse an input list of booleans into an element of type
τ , and if it succeeds then it returns the element of τ , together with the list of
booleans that were left over. If it fails to parse the input list, it signals this by
returning NONE. (A decoding function of the expected type bool list → τ can
be easily recovered when decoding is expected to succeed.) As an example, the
following is the decoding function for lists:
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wf_decoder d ⇒
(decode_list d [] = NONE) ∧
(decode_list d (F::t) = SOME ([],t)) ∧
(decode_list d (T::t) =

case d t
of NONE -> NONE
|| SOME (x, t’) ->

case decode_list d t’
of NONE -> NONE
|| SOME (xs, t’’) -> SOME (h::xs, t’’))

Thus, given a parameter decoder d, one decodes to an empty list, provided
the marker at the head of the bits list is F; otherwise, the marker must be T,
and we expect to be able to use d to deliver the head of the original list x and
remaining bits t′. We then recurse to get the rest of the original list xs, and
the remaining bits t′′. As HOL is a logic of total functions, this function is only
well-defined if d does not increase the length of the list of bits; this is enforced
by the constraint wf decoder d.

In our current formalization, a decoding function also has an attached do-
main predicate, in order to deal with subsets of types. We have omitted the
domain predicates since they hamper readability, and are not actually used in a
significant way in our experiments so far.

Returning to our example, suppose we have a decoder context containing at
least decoders for the types num, list, option, and bool, then a type-directed
traversal of (num ∗ bool option) list yields the following decoding function.

decode_list (decode_prod (decode_num (decode_option decode_bool)))

In order to formally apply the abstract inversion theorem (1) for data en-
cryption, we need to show that the synthesized decoder inverts the synthesized
encoder. This is relatively easy to automate by backchaining with pre-proved
theorems relating basic coders/decoders already in the coder and decoder con-
texts. Thus we ultimately have that

(decode_list (decode_prod (decode_num (decode_option decode_bool))) o
UNPAD o UNBLOCK o CBC_DEC XORB (TEADecrypt (1w,2w,3w,4w)) (5w,10w))
o
(CBC XORB (TEAEncrypt (1w,2w,3w,4w)) (5w,10w) o BLOCK o PAD o
encode_list (encode_prod encode_num (encode_option encode_bool)))

is the identity function. In summary, compound encoders and decoders can
be formally synthesized and their invertibility property proved in the theorem
prover; this property can then be used to show that data encryption for the
specified type is invertible.

4 Related Work

Probably the earliest application of a proof assistant to cryptography is the
use of Boyer and Moore’s Nqthm to verify the invertibilty of encryption in the
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RSA public-key algorithm [14]. Whereas their goal seemed to be to check an
interesting piece of (then) recently-announced mathematics, we have been more
interested in getting an overview of how hard proofs are for a gamut of algorithms
in this area.

In [17] we verified the functional correctness of Rijndael, and in [23] we pro-
vide further detail on the functional correctness of the IDEA cipher. Toma and
Borrione report on an ACL2 verification of an implementation of the SHA-1
hash algorithm in [20]. Higher level security protocol specification and verifica-
tion has received much more attention than ciphers, and this work is starting to
mature: see [2] for example. It would be interesting to explore links between our
correctness proofs and that body of work. Finally, the Cryptol language [9] is
a domain-specific language, based on functional programming principles, aimed
at cryptographers. Cryptol provides a uniform stream-based view of all the data
involving in encryption, and supports that view with an interesting type sys-
tem reflecting how functions manipulate streams. C code can be generated from
Cryptol programs, and there is also a path to FPGAs.

5 Conclusions and Further Work

This paper summarizes some case studies in the verification of block ciphers for-
malized in higher order logic. A simple proof methodology successfully supports
functional correctness proofs of these algorithms. Although some ciphers are for-
mulated in terms of concepts from abstract algebra and number theory, we found
that in most cases (IDEA was the sole exception) higher mathematics could be
avoided in the proofs. We also showed how ciphers can be lifted from blocks
to arbitrary user-defined datatypes by use of modes of operation and polytypic
encoding techniques.

This activity takes place inside the theorem prover, and although it is en-
couraging to see that bespoke data encryption can be supported in such an
environment, it would be a useful next step to generate executable models in
real programming languages from our formal models. In fact, we can already do
that in HOL-4, generating standalone ML code from the formal specifications.
In principle, the generated code could be compiled in with other code to build an
application with a formally-justified security component. It would also be useful
to input or output code in mainstream languages such as C or Java, as a way of
developing a path from verification environments to security applications devel-
opment. The paper [3] appears to provide an interesting framework in which to
work.

We have also been investigating the automatic synthesis of hardware from our
specifications using a prototype deduction-based compiler [7]. At present, we are
able to generate netlists from the HOL-4 specification of AES, and we plan to
further develop and test our prototype on the other ciphers presented here.

Invertibility proofs, as we have seen, are in many cases quite straightforward.
It would therefore be interesting to see how much of these proofs could be auto-
mated. However, as in AES and IDEA, there can be round operations that have
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hard to prove inversion lemmas, but that itself is interesting information about
a cipher.

An interesting point is that key schedule generation algorithms can be more
difficult than the actual encryption core. This means that mistakes can be more
easily made when implementing them. In our work, we formalized these algo-
rithms, but proved little about them, other than a few facts about how long the
resulting schedule would be, for example. Therefore, correctness properties of
key schedules, if such exist and are amenable to mechanized formal proof, could
lead to even higher levels of assurance.

We are currently investigating links between HOL-4 and Cryptol. Since Cryp-
tol is a stream-processing language, and its semantics document is not yet in the
public domain, we are basing the work on a HOL theory of lazy lists, due to
Michael Norrish (based on original work by John Matthews [10]). Several of the
ciphers have been ported to work over the new type, and we have been encour-
aged, since the functional correctness proof of the new algorithm can be reduced
with a few simple lemmas to that of the old. A longer-term goal would be to
provide a HOL shallow embedding of an interesting subset of Cryptol.

Another operation sometimes used with encryption is compression. It would
be interesting to incorporate a formally verified compression algorithm. Since
compression, being invertible, is similar to encryption, there may be common-
alities in the two formal exercises. A verification of Huffman’s algorithm has
recently been carried out in the Coq system [19], and there are many other
important compression algorithms that could be tackled.

Finally, the investigation of security properties of block ciphers in theorem
provers seems to be an obvious area for future work.
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Abstract. The mechanisation of proofs for probabilistic systems is par-
ticularly challenging due to the verification of real-valued properties that
probability entails: experience indicates [12, 4, 11] that there are many
difficulties in automating real-number arithmetic in the context of other
program features.

In this paper we propose a framework for verification of probabilistic
distributed systems based on the generalisation of Kleene algebra with
tests that has been used as a basis for development of concurrency control
in standard programming [7]. We show that verification of real-valued
properties in these systems can be considerably simplified, and moreover
that there is an interpretation which is susceptible to counterexample
search via state exploration, despite the underlying real-number domain.

1 Introduction

Recent developments in mechanised theorem-proving approaches to the verifica-
tion of probabilistic programs [12, 4, 11] have highlighted at once both the ben-
efits and drawbacks of proof-based techniques. On the plus side, we see clearly
that proofs provide more general solutions (which can be re-used and easily
checked) than do other forms of automated verification such as probabilistic
model checking [17] (which, unlike standard model checking, does not compute
counterexamples). On the minus side, however, experience has shown that there
remain difficulties in automating real arithmetic in the context of other program
features, a necessity whenever typical properties are quantitative such as “the
probability that the program terminates is at least 0.7”.

The infinite domain (of reals) needed for quantitative analysis also implies
other limitations when compared to qualitative analysis. For example, it prevents
the provision of counterexample search via state exploration [28]. Counterexam-
ple search is an effective technique in the activity of mathematical proof, as it
leads to the debugging of conjectures, often by directing the prover to strengthen
the hypotheses under which the consequent should follow. In program verifica-
tion this debugging process corresponds to reformulations of specifications under
which a proposed refinement is valid, or to the redesign of a suggested imple-
mentation. Such debugging strategies have been employed to great effect in tools
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such as Alloy [13]. Given the above however, it appears at first sight that the
task of quantitative verification cannot be enhanced straightforwardly by coun-
terexample search.

Nevertheless, the benefits of mechanised proof provide a strong motivation to
look for methods that will alleviate the drawbacks. In this paper we present a
proof system which reduces the overhead of arithmetic in automated proof, as
well as supporting counterexample search. As far as we are aware, this is the
first proof system for probabilistic programs to do so.

As our principal context we take probabilistic distributed systems — such
systems are particularly difficult to verify, as the interaction of probability with
other system features can lead to unexpected behaviour [26, 2]. In these cases,
much of the verification is devoted to showing that, under certain simple hy-
potheses, a highly distributed architecture is equivalent to a serialised one. In
fact a proof of such an equivalence can often be done without appeal to prob-
ability at all, even though the systems and their correctness depend on explicit
quantitative properties. This has the effect of reducing any quantitative reason-
ing to validation of the hypotheses for a particular concrete system, in general
a significantly simpler problem than analysing the two architectures directly.
Cohen’s work [7, 6] on the practical use of Kleene algebra for verification in
loosely-coupled (but non-probabilistic) systems provides ample evidence that
a Kleene-style algebra is a good candidate for this kind of reasoning, and the
evidence applies even when probability is introduced.

Our first contribution is to show how a model for probabilistic systems LS
(for given state space S) [10, 23] can be interpreted over a Kleene-style program
algebra [16], so that explicit probabilistic reasoning is significantly reduced.

Next we turn to the feasibility of counterexample search in probabilistic
Kleene algebra. For this we propose an abstraction of the probabilistic model
that preserves the important limiting features of standard probability, and at
the same time yields genuinely finite models which are thus amenable to state
exploration techniques similar to those for non-probabilistic systems [28].

Our second contribution is a model of abstract probabilities KS that is sus-
ceptible to complete semantic exploration, yielding counterexamples even for the
probabilistic model LS. This appears to be the first facility for counterexample
search for probabilistic systems.

In Sec. 2 we set out the probabilistic model LS, together with, in Sec. 2.1,
an interpretation in the Kleene-style algebra. Next, in Sec. 3 we set out the
abstract model KS and show that the the interpretation in Kleene algebra is a
homomorphic image of the interpretation in LS, and in particular that equalities
over Kleene algebra expressions are preserved. Finally in Sec. 4 we show how state
exploration techniques within KS can be used to generate counterexamples even
within LS. In Sec. 5 we summarise other research in this area and suggest further
topics for investigation.
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The notational conventions used are as follows. Function application is repre-
sented by a dot, as in f.x. If K is a set then K is the set of discrete probability
distributions over K, that is the normalised functions from K into the real in-
terval [0, 1] (i.e. function f is normalised if

∑
s:K f.s = 1). A point distribution

centered at a point k is denoted by δk. The (p, 1−p)-weighted average of distribu-
tions d and d′ is denoted dp⊕d′; more generally we write p1d

1+ . . .+pnd
n for the

(p1, . . . , pn) weighted average over distributions d1, . . . , dn. If K is a subset, and
d a distribution, we write d.K for

∑
s:K d.s. The power set of K is denoted ℘K.

2 Probabilistic Systems

Given a (discrete) state space S, the set of functions S → ℘S, from (initial)
states to subsets of distributions over (final) states, is the basis for the transition-
system style model now generally accepted for probabilistic systems [19] though,
depending on the particular application, the conditions imposed on the sub-
sets of (final) probability distributions can vary [23, 10]. Briefly the idea is that
probabilistic systems comprise both quantifiable arbitrary behaviour (such as
the chance of winning an automated lottery) together with unquantifiable arbi-
trary behaviour (such as the precise order of concurrent events). The functions
S → ℘S model the quantifiable events as probability distributions — effectively
probabilistic transitions (hence the range of semantic functions includes distri-
butions in S). On the other hand, the unquantifiable events are modelled as a
subset of distributions (hence the range of semantic functions can be a subset of
distributions).

For example, a program that simulates a fair coin is modelled by a function
that maps an arbitrary state s to the distribution weighted evenly between the
point distributions representing heads and tails (but see below):

s �→ {δhead 1/2⊕ δtail} . (1)

In contrast a program that simulates a possible bias favouring heads of at
most 2/3, is modelled by a function which takes an arbitrary state to a subset
of distributions specifying the precise limits on the bias:

s �→ {δhead 1/2⊕ δtail , δhead 2/3⊕ δtail} . (2)

In setting up the details, we follow Morgan et al.[23] and take a domain the-
oretical approach, restricting the result sets of the semantic functions according
to an underlying order on the state space. An innovation, however, is to distin-
guish specially “miraculous” or infeasible behaviour from ordinary behaviour —
miracles are used in program semantics to simplify calculations [21, 20], to model
“tests” [16] and, here, they will work well with our simple algebra of programs
to come. In the semantics, miracles will be associated with a special introduced
state 5, and our program model is defined over the probabilistic power domain
[14] based on the underlying (flat) domain (S#,�), where S# is S conjoined
with the special state 5, and the order � is constructed so that 5 dominates all
(proper) states in S, which are otherwise unrelated.
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Definition 1. A probabilistic power domain is a pair (S#,�D), where S# is
the set of normalised functions from S# into the real interval [0, 1], and �D is
induced from � on S# so that

d �D d′ iff (∀K ⊆ S · d.K + d.5 ≤ d′.K + d′.5) .

Probabilistic programs (with miracles) are now modelled as the set of func-
tions from initial S# to sets of final distributions over S#, where the result sets
are restricted by so-called healthiness conditions characterising viable probabilis-
tic behaviour, and motivated in detail elsewhere [19]. By doing so the semantics
accounts for specific features of probabilistic programs. In this case (again fol-
lowing Morgan) we impose up-closure (the inclusion of all �D-dominating dis-
tributions), convex closure (the inclusion of all convex combinations of distribu-
tions), and Cauchy closure (the inclusion of all limits of distributions according
to the standard Cauchy metric on real-valued functions [23]). Thus, by con-
struction, viable computations are those in which miracles dominate (refine) all
other behaviours (implied by up-closure), nondeterministic choice is refined by
probabilistic choice (implied by convex closure), and classic limiting behaviour
of probabilistic events (such as so-called “zero-one laws” 1 ) is also accounted for
(implied by Cauchy closure). An additional bonus is that program refinement is
simply defined as reverse set-inclusion. We observe that probabilistic properties
are preserved with increasing order.

Definition 2. The space of probabilistic programs 2 is given by (LS,�L) where
LS is the set of functions from S# to the power set of S#, restricted to subsets
which are Cauchy- , convex- and up closed with respect to �D. All programs are
5-preserving (mapping 5 to {δ#}). The order between programs is defined

P �L P ′ iff (∀s:S · P.s ⊇ P ′.s) .

Thus in the examples above, taking the closure conditions into account, we
see that up-closure implies that the result set at (1) would also contain the
distributions aδhead + bδtail + cδ# for a, b, c satisfying the conditions 1/2 ≤ a+ c,
and 1/2 ≤ b+c. Similarly convex-closure implies that the result set at (2) should
also include all (p, 1−p)-weighted distributions of the form (δhead 2/3⊕ δtail/3) p⊕
(δhead 1/2⊕ δtail), for any 0 ≤ p ≤ 1.

In Fig. 1 we define some mathematical operators on the space of programs,
which will be used to interpret our language. Informally composition P ;P ′ corre-
sponds to a program P being executed followed by P ′, so that from initial state
s, any result distribution d of P.s can be followed by an arbitrary distribution of
P ′.3 The probabilistic operator takes the weighted average of the distributions of
its operands, and the nondeterminism operator takes their union. To illustrate,
1 An easy consequence of a zero-one law is that if a fair coin is flipped repeatedly,

then with probability 1 a head is observed eventually. See the program ‘coin’ inside
an iteration, which is discussed below.

2 This particular “Lamington” model was first suggested by Carroll Morgan [22].
3 Compare composition in Markov Decision Processes [9].
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Identity Id.s =̂  {δs}! ,
top ".s =̂ {δ
} ,
composition (P ;P ′).s =̂ { u:S�(d.u) × d′

u | d ∈ P.s; d′
u ∈ P ′.u} ,

choice (if B then P else P ′).s =̂ if B.s, then P.s, otherwise P ′.s
probability (P p⊕ P ′).s =̂  {d p⊕ d′ | d ∈ r.s; d′ ∈ r′.s}! ,
nondeterminism (P ( P ′).s =̂  {d | d ∈ (P.s ∪ P ′.s)}! ,
iteration P ∗ =̂ (νX · P ; X ( Id) .

In the above definitions s is a state in S and  K! is the smallest up-, convex- and
Cauchy-closed subset of distributions containing K. Programs are denoted by P and
P ′, and the expression (νX · f.X) denotes the greatest fixed point of the function f —
in the case of iteration the function is the monotone )L-program-to-program function
λX · (P ; X ( Id). All programs map " to {δ
}.

Fig. 1. Mathematical operators on the space of programs [19]

let S be the set of integers, and consider the following transition πk.s =̂ {δs+k}.
Thus πk.s is the transition that adds k to s. Next we can define more complicated
transitions using the operators, for example

Π.s =̂ if (s ≥ 0) then (π−1 1
2
⊕ (Id 1

2
⊕ π−2)).s else Id.s (3)

The transition at (3) essentially maps initial states with value at least 0 to
the weighted sum of point distributions, namely 1

2 × δs−1 + 1
4 × δs + 1

4 × δs−2,
and otherwise leaves the state alone.

Iteration is the most intricate of the operations — operationally P ∗ represents
the program that can execute P an arbitrary number of finite times. In the
probabilistic context, as well as generating the results of all “finite iterations”
of (P $ Id) (viz, a finite number of compositions of (P $ Id)), imposition of
Cauchy closure acts as expected on metric spaces, in that it generates all limiting
distributions as well — i.e. if d0, d1, . . . are distributions contained in a result set
M which converge to d, then d is contained in M as well. To illustrate, consider
the transition at (3) inside an iteration Π∗ corresponding to a transition system
which can (but does not have to) reduce s indefinitely until its value falls below
zero. For states with value less than zero the iteration does nothing to the state
(i.e. we are considering “skipping forever” to be the the same as terminating).
Now it is easy to see that from initial s = 0, after n iterations of the program
at (3) the distribution over the results s = 0,−1 or −2 is pnδ0 + qnδ−1 + rnδ−2,
where pn = 1/(4n), qn = 2(1 − pn)/3 and rn = (1 − pn)/3. But observe now
the limits limn→∞ pn = 0, limn→∞ qn = 2/3, and limn→∞ rn = 1/3, and that
Cauchy closure implies the limit distribution 2δ−1/3+ δ−2/3 is contained in the
result set of the iteration Π∗ as well.

More generally we will need to characterise the limiting distributions in terms
of distributions contained in the result sets of finite iterations. (Recall that a
finite iteration of program Q is of the form Qn for some n, where Q0 =̂ Id,
and Qn+1 =̂ Q;Qn.) The following lemma provides conditions, in the context
of finite state spaces, that a distribution be generated by an iteration. For any
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distribution d, let supp.d be the smallest subset K ⊆ S# with d.K = 1, and for
iteration (P ∗) let PN be the set of distributions generated by finite iterations
of (Id $ P ). Further, we say that “subset K can be reached with probability 1
from state s via executions of program Q” if there exists a sequence (possibly
finite) of distributions di with each di ∈ Qi.s, such that limi≥0 di.K = 1. (Note
that distributions contained in finite executions are a special case.)

Lemma 1. Let P be a program in LS, and let S be finite. If distribution d is
in P ∗.s, then supp.d can be reached from s with probability 1 via executions of
(Id $ P ). Alternatively if K is a subset of supp.d′ for some d′ in P ∗.s, and can
be reached with probability 1 via executions of (Id$P ) from all s in supp.d′, then
there is some d in P ∗.s with supp.d = K.

Proof. By the greatest fixed point definition, P ∗ = �limn≥0(Id $ P )n�, thus the
first condition follows. Alternatively if distribution d′ is in the result set of P ∗.s,
then the nondeterminism in subsequent executions of (Id $ P ) can be exploited
to produce a distribution with support K, since if s′ �∈ K, the branch P can be
selected until K is established with probability 1, which (if P itself has no non-
determinsim) yields an appropriate distribution d. The case that P is nondeter-
ministic reduces to the latter case since it has been shown elsewhere [19, 8] that
P ∗ = $i:IP

∗
i , where we are using $i:IP

∗
i to mean the nondeterministic choice

over the programs in the index set I, which in this case ranges over all determin-
istic refinements of P . The result now follows since d is a convex combination
of distributions within the P ∗i .s.

Now we have introduced a model for general probabilistic contexts, our next
task is to investigate its program algebra. That is the topic of the next section.

2.1 Kleene Algebra for Probabilistic Systems

Kleene algebra consists of a sequential composition operator (with a distin-
guished identity (1) and zero (0)); a binary plus (+) and unary star (∗). Terms
are ordered by ≤ defined by + (see Fig. 2), and both binary as well as the unary
operators are monotone with respect to it. Sequential composition is indicated by
the sequencing of terms in an expression so that ab means the program denoted
by a is executed first, and then b. The expression a+ b means that either a or b
is executed, and the Kleene star a∗ represents an arbitrary number of executions
of the program a. In Fig. 2 we set out the rules for the probabilistic Kleene alge-
bra, pKA. We use early letters (a, b, c) to denote expressions (constructed from
application of the operators) and late letters (x, y, z) to denote variables (within
expressions). In an interpretation of a pKA expression the variables are mapped
to specific (probabilistic) programs. The next definition sets out the details.

Definition 3. The semantic mapping from pKA expressions to LS is given by

|[1]|ρ =̂ Id , |[0]|ρ =̂ 5
|[ab]|ρ =̂ |[a]|ρ; |[b]|ρ , |[a + b]|ρ =̂ |[a]|ρ $ |[b]|ρ , |[a∗]|ρ =̂ |[a]|∗ρ
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(i) 0 + a = a (viii) ab + ac ≤ a(b + c) (†)
(ii) a + b = b + a (ix) (a + b)c = ac + bc

(iii) a + a = a (x) a ≤ b iff a + b = b
(iv) a + (b + c) = (a + b) + c
(v) a(bc) = (ab)c (xi) a∗ = 1 + aa∗

(vi) 0a = a0 = 0 (xii) a(b + 1) ≤ a ⇒ ab∗ = a
(vii) 1a = a1 = a (xiii) ab ≤ b ⇒ a∗b = b

Programs are denoted by a, b and c. Note that the rule (†) is weaker than the corre-
sponding rule in standard Kleene algebra [7]; this is because of the well-documented
[19, 27] interaction of probability and nondeterminism.

Fig. 2. Rules of Probabilistic Kleene algebra, pKA

Here ρ gives the precise interpretation corresponding to the variables in the ex-
pressions a and b, so that for variable x, we have |[x]|ρ is a specific (fixed) prob-
abilistic program ρ.x in LS.

We use ≥ for the order in pKA, which we identify with �L from Def. 2; the
next result shows that Def. 3 is a valid interpretation for the rules in Fig. 1, in
that theorems in pKA apply in general to probabilistic programs.

Theorem 1. Let ρ be an interpretation as set out at Def. 3. The rules at Fig. 2
are all satisfied, namely if a ≤ b is a theorem of pKA set out at Fig. 2, then
|[b]|ρ �L |[a]|ρ.

Proof. Follows from Def. 3, and the fact that P ∗ = �
⋃

n≥0(Id $ P )n�.

Next in Lem. 2 we illustrate some proofs within Kleene algebra of some simple
properties of programs. The first two theorems are basic technical equalities; the
third equality, on the other hand, is of independent interest as it forms the basis
for many “separation”-style theorems common in distributed systems [7], and
indeed generalises similar theorems to the probabilistic context.

Lemma 2.

a∗a∗ = a∗ (4)
a∗(b + c) = a∗(a∗b + a∗c) (5)

a(b + 1) ≤ ca + d ⇒ ab∗ ≤ c∗(a + db∗) (6)

Proof. For (4) we observe from (xi) that a∗ = 1 + aa∗, thus aa∗ ≤ a∗, and the
result follows from (xiii).

For (5) we reason as follows:

a∗(a∗b + a∗c) ≥ a∗(b + c) = a∗a∗(b + c) ≥ a∗(a∗b + a∗c) ,

where the first inequality follows since 1 ≤ a∗; the inequality from (4), and the
final inequality from (viii).
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Finally for (6) we show first that

c∗(a + db∗)(b + 1) ≤ c∗(a + db∗) ,

reasoning as follows.

c∗(a + db∗)(b + 1)
= c∗(a(b + 1) + db∗(b + 1)) (ix)
≤ c∗(ca + d + db∗(b + 1)) hypothesis
≤ c∗(ca + db∗ + db∗) 1, (b + 1) ≤ b∗; (4)
= c∗(ca + db∗) (iii)
≤ c∗(c∗a + c∗db∗) 1, c ≤ c∗

= c∗(a + db∗) . (5)

From this inequality we now appeal to the induction rule at (xii) to deduce that
c∗(a+db∗)b∗ ≤ c∗(a+db∗), and the result now follows since ab∗ ≤ c∗(a+db∗)b∗.

The rules in Fig. 2 purposefully treat probabilistic choice implicitly, and it
is only the failure of the equality at (viii) which implies that probability may
be present in an interpretation |[a]|ρ: in fact it is this property that characterises
probabilistic-like models, separating them from those which contain only pure
demonic nondeterminism. 4 The use of implicit probabilities fits in well with
our applications, where probability is usually confined to statements within a
distributed protocol and nondeterminism refers to the arbitrary sequencing of
actions that is controlled by a so-called adversarial scheduler [27]. For example,
if a and b correspond to atomic program fragments (containing probability), then
the expression (a+b)∗ means that either a or b (possibly containing probability)
is executed an arbitrary number of times (according to the scheduler), in any
order — in other words it corresponds to the concurrent execution of a and b.
Typically a verification of a distributed protocol might involve transformation of
a simple, serialised specification architecture, such as a∗b∗ (first a executes for an
arbitrary number of times, and then b does), into a distributed implementation
architecture, such as (a+b)∗ using general hypotheses, such as ab = ba (program
fragments a and b commute). For instance a typical conjecture might be the
following transformation

ab ≤ ca ⇒ ab∗ ≤ c∗a , (7)

which says that if a and b are programs such that running a followed by b
is a refinement of c followed by a, then it should be the case that a followed
by running b for an arbitrary number of times is a refinement of running c
similarly for an arbitrary number of times followed by a. Were this result to be
proved generally within the proof system then for a particular example where a,
b and c were specific programs typically containing precise probabilistic choices,

4 Programming models that include angelic nondeterminism as well as demonic non-
determinism satisfy (viii), and not the stronger equality [3]; however those models
do not satisfy the special limiting properties of probabilistic programs.
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only the simple hypothesis ab ≤ ca would need to be checked (i.e. that |[ca]|ρ �L
|[ab]|ρ) instead of constructing brute force the concrete model for the whole of the
(iterative) programs |[ab∗]|ρ and |[c∗a]|ρ and then comparing the results explicitly.

Though plausible, unfortunately the particular conjecture at (7) turns out to
be invalid in the probabilistic model (though it is valid in the standard model)
and so any attempt to prove otherwise using pKA is bound to fail. To see that
let ρ be the interpretation such that

|[a]|ρ = |[b]|ρ = |[c]|ρ = x: = 0 1
2
⊕ x: = 1 (8)

so that |[ab∗]|ρ = x: = 0 $ x: = 1 and |[c∗a]|ρ = x: = 0 1
2
⊕ x: = 1. Were (7) to

be true generally, it would assert (in this case, since x: = 0 $ x: = 1 �L x: =
0 1

2
⊕ x: = 1 is generally true) the equality of the programs x: = 0 $ x: = 1 and

x: = 0 1
2
⊕ x: = 1. But the result set of the latter program does not contain the

point distributions δ0 and δ1, whereas the result set of the former does.
Such false conjectures are a common pitfall in the activity of proof, and can

be seen as intermediate stages of a validation. Once the error is discovered, the
solution is usually clear, and in the case of (7) is fixed by strengthening the
hypothesis to a(b + 1) ≤ ca so that the correct theorem becomes

a(b + 1) ≤ ca ⇒ ab∗ ≤ c∗a , (9)

which can indeed be verified within the proof system. 5 And the above interpre-
tation at (8) is no longer a counterexample for (9) since the new hypothesis now
fails to hold.

Determining which conjectures are false can however be a very time consum-
ing and ad hoc process, thus any automated tool to prompt the user with a
counterexample is an invaluable resource. Unfortunately automated counterex-
ample searchers normally use some kind of exhaustive search through models of
finite size, but this is not possible for the real-number domain needed to model
probability distributions. In the next section we consider an abstraction which,
overcomes this problem.

3 Abstract Probabilistic Systems

In this section we propose an abstraction of LS which yields genuinely finite
models. The basic idea is to replace a probability distribution d by a simple
set, in fact its support supp.d, which contains only the information of which
transitions are probabilistic, and the range over which each probabilistic transi-
tion extends. We call such a subset the abstract distribution associated with d.
This abstraction (mapping distributions to their abstract counterparts) induces
an order on subsets of S#: two subsets (abstract distributions) are defined to
be comparable only if there exist corresponding probability distributions which
are comparable under �D. The next definition reformulates that idea without
referring to distributions at all.
5 Indeed it is a special case of (6) at Lem. 2 above with d set to 0.
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Definition 4. Given a distribution d, its associated abstract distribution is de-
fined to be supp.d. Abstract distributions K and K ′ are ordered as follows 6

K �A K ′ iff (K = K ′) ∨ ((5 ∈ K ′)⇒ K ′ ⊆ K).

The space of abstract programs now uses abstract distributions. The closure
conditions are suitable abstractions of those used in Def. 2; in particular union-
closure is an abstraction of convex closure.

Definition 5. The space of abstract probabilistic programs is the pair (KS,�K)
where KS is the set of functions S# → ℘℘S#, restricted to subsets which are
union- and up closed with respect to �A. The order between programs is defined

U �K U ′ iff (∀s:S · U.s ⊇ U ′.s) .

Next we define a projection which maps probabilistic programs to abstract
probabilistic programs, so that it preserves order.

Definition 6. The abstraction projection ε : LS → KS is defined ε.P.s =̂
{supp.d | d ∈ P.s}.

Lemma 3. For probabilistic programs P, P ′:LS, if P �L P ′ then ε.P �K ε.P ′.

Proof. Follows from the definitions of ε, �D and �A.

In Fig. 3 we define some mathematical operators over the space of abstract
probabilistic programs — they have been chosen so that they correspond via
ε to the operators for the probabilistic model given at Fig. 1. We say that if
K is a subset of abstract distributions then |�K�| is the smallest �A-up- and
union-closed containing K.

Identity Id.s =̂ | {{s}}!| ,
top ".s =̂ {{"}} ,
composition (U ;; U ′).s =̂ { u:K K′

u | K: U.s; K′
u: U ′.u} ,

probability (U ⊕ U ′).s =̂ | {K ∪ K′ | K: U.s; K′: U ′.s}!| ,
nondeterminism (U []U ′).s =̂ | {K | K: (U.s ∪ U ′.s)}!| ,

Here s is a state in S, and U , U ′ are programs, and if K is a subset of abstract
distributions then | K!| is the smallest )A-up- and union-closed subset containing K.
We deal with iteration below.

Fig. 3. Mathematical operators on abstract probabilistic programs

By construction the abstraction projection preserves (homomorphically) com-
position and nondeterminism. In particular it is easy to see that ε.(P ;P ′) ≡K
ε.P ;; ε.P ′ and that ε.(P $ P ′) ≡K ε.P []ε.P ′. Our next task is to do the same for

6 This is actually the well-known Hoare order on subsets based on ) for S
.
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iteration — here, as for composition and nondeterminism, our goal is to define
the abstract version so that the abstract distributions in the result set of the
iteration can be determined by those in the underlying abstract program —
even when they correspond to limit distibutions. For example, a probabilistic
program modelling of a fair coin, say coin =̂ head 1

2
⊕ tail, has the result

that its iteration (coin∗) includes both output distributions δhead and δtail though
neither point distribution is a result of any finite number of iterations of coin —
it is Cauchy closure that guarantees their inclusion. To see that, we imagine that
the implicit “$” inside of the definition of coin∗ acts like a “demon” which can
see the value established by the flipped coin after every execution of coin, and
can terminate the iteration at any moment — since the laws of probability assert
that a fair coin flipped for an arbitrary number of times must with probability
1 flip a head eventually, the demon can use this to his advantage to wait only
long enough until that head appears. The overall effect is that the iteration can
terminate with probability 1 in the state head, which is the same as saying that
coin∗ outputs the point distribution δhead. A similar argument holds for tail.

Thus we need to define the abstract iteration so that ε.(coin∗) contains the
corresponding abstract distributions {head} and {tail}.
Definition 7. For abstract program A in KS, we define A∗ as follows. Subset
K ⊆ A∗.s if there exists a probabilistic program P in LS such that ε.P = A and
K = supp.d for some distribution d in P ∗.s.

Our next task is to reformulate Def. 7 so that A∗ can be determined without
referring to any probabilities at all (in an underlying probabilistic program, P
say). Fortunately, for finite state spaces S, Lem. 1 implies that the images in
ε of limit distributions can be characterised in terms of abstract probabilistic
properties alone, which is precisely what we need. The next two lemmas set out
the details.

Lemma 4. For any program P in LS, with S finite, we have the equality
ε.(P ∗) = (ε.P )∗.

Proof. Follows immediately from Lem. 1 which implies that supports of distribu-
tions in iterations are independent of the probabilistic weights of the transitions.

Whilst Lem. 4 implies that the actual numeric values of underlying programs
P are irrelevant for determining A∗ (provided that they are non zero), the next
result shows how to compute A∗ without referring to the underlying probabilistic
programs at all, but only their abstractions. We say that K is reachable with
probability 1 via executions of A if K is reachable with probability 1 for some
program P in LS such that ε.P = A. It is well-known that in finite state spaces
there exist algorithms to compute such probability 1 reachability sets using only
the information provided by the abstract transitions; for example de Alfaro et
al. provide such an algorithm [8] with complexity quadratic in the size of the
underlying transition system, and we discuss its relevance in the next section.

Lemma 5. Given abstract program A in KS, where S is a finite state space we
can compute A∗ as follows. Subset K is in A∗.s if
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1. K ⊆ (Id [] A)n for some n ≥ 0;
2. or there is some K ′ ⊆ A∗.s such that K ⊆ K ′ and for all k ∈ K ′ it is possible

to reach K with probability 1 from k via executions of (Id [] A).

Proof. Let P be any program in LS such that ε.P = A. The result now follows
from Lem. 1.

Finally we can define an interpretation of pKA over abstract probabilistic
programs so that the two interpretations correspond homomorphically.

Definition 8. The semantic mapping from pKA terms to the abstract proba-
bilistic semantics is given by 7

(|1|)ρ =̂ Id , (|0|)ρ =̂ 5
(|ab|)ρ =̂ (|a|)ρ ;; (|b|)ρ , (|a + b|)ρ =̂ (|a|)ρ [] (|b|)ρ , (|a∗|)ρ =̂ (|a|)∗ρ

Here ρ gives the precise interpretation corresponding to the variables in the ex-
pressions a and b, so that for variable x, we have (|x|)ρ is a specific (fixed) abstract
probabilistic program ρ.x in KS.

The next lemma gives states the relationship between interpretations in LS
and in KS.

Lemma 6. Let e be any expression in pKA, and let ρ be an interpretation in
LS, so that all variables are mapped to programs in LS, and Def. 3 is used to
interpret the operators. The equality ε.|[e]|ρ = (|e|)ε.ρ holds, where ε.ρ denotes the
interpretation in KS where all variables are mapped to the images under ε of the
programs defined by ρ, and Def. 8 is used to interpret the operators.

Proof. Structural induction, Def. 8 and Lem. 5.

In this section we have set up a model for abstract probabilistic programs
in which the precise weights attached to the probabilistic transitions have been
suppressed, whilst retaining the limiting properties of probability theory.

4 Towards a Framework for Counterexample Search

In this next section we show how KS can be used to find counterexamples in LS
using a strategy based on state exploration over finite abstract models.

Lemma 7. Let e and f be expressions in the Kleene algebra. If e �= f is satis-
fiable within KS then it is also satisfiable within LS.

7 Note that we do not claim that the Kleene rules are satisfied by this definition;
indeed (xiii) fails to hold. The abstract program s0 �→ {{s0, s1}}; s1 �→ {{s1}}
denoting both a and b is a counterexample.
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Proof. Let the variables in e and f be x1, . . . xn. Let ρ be an interpretation which
maps each xi to abstract program Ai within KS so that (|e|)ρ �= (|f |)ρ — this is
possible since, by assumption, the inequality is satisfiable in KS. We note that for
each Ai there is a corresponding probabilistic model A′i such that ε.A′i = Ai (let
each abstract distribution K in Ai.s be replaced by the uniform distribution over
K). It now follows immediately from Lem. 3 and Lem. 6 that the interpretation
defined by the A′i demonstrates that the inequality is satisfiable in LS as well.

Finally we have our main result — that if a counterexample exists in KS to
a conjectured equality, it is not provable in pKA.

Corollary 1. Let e and f be expressions in the Kleene algebra. If e �= f is
satisfiable within KS then the equality e = f it is not provable by probabilistic
Kleene algebra rules.

Proof. By Lem. 7, the inequality e �= f is satisfiable within LS, and by Thm. 1
interpretations in LS satisfy the probabilistic Kleene rules.

To see Lem. 7 in action, consider the assertion at (7). In a two state-space
{s0, s1}, we define Ai.s =̂ |�{{s0, s1}}�| for i = 1, 2, 3; the resulting interpretation
with a, b, c mapped to A1, A2, A3 respectively show that the negation of (7) is
satisfiable in KS. And indeed the construction described in the proof of Lem. 7
shows that it is not satisfiable in LS either, recovering the counterexample in
LS given at (8).

4.1 Mechanisation of Counterexample Search

Lem. 7 implies that automated counterexample search for equalities within LS
can be based on state exploration of finite models in KS, and Lem. 5 implies
that we can use existing reachability algorithms for finite probabilistic systems
to compute (within KS) all instances of a∗.

Based on the model KS we have implemented a counterexample search using
the SAT solving facility [29] of the Isabelle theorem proving environment [25], by
translating the pKA expressions into CNF. For very small state spaces, the trans-
lation into propositional logic creates an explicit representation of the ∗ operator,
where a∗ is precomputed for every abstract program a. Due to the number of
possible models, this approach is infeasible for larger state spaces, though, fortu-
nately, in practice, counterexamples do appear to be exhibited within very small
state spaces. Here however partial evaluation is employed instead to compute a∗

symbolically, using an appropriate version of de Alfaro’s algorithm applied to
the propositional representation of the abstract program a under consideration.
Still the size of the resulting CNF formula limits the size of the models that
can be handled. On-the-fly simplification can be used to reduce the size of the
formula when a partially known program is considered. Consequently a hybrid
approach, where enumeration of models is performed partially by the SAT solver
(to reduce the search space) and partially before translation to SAT (to simplify
the translation) might prove to be even more efficient.
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The fact that the implementation of ∗ is challenging seems to be the case in
other systems using SAT solving in the context of ∗-like operators [13].

Finally we note that the proposed procedure for discovering counterexamples
outlined above does not, in general, work well for theorems with hypotheses.
That is because the abstraction function does not preserve inequalities. However,
experience with the Kleene algebra has shown that many universal equalities are
needed within any proof, thus automated support extending only to equalities
is still an important resource.

That said, there are some interesting special cases for which this approach
still applies such as hypotheses of the form p = 0 [5].

5 Conclusions and Comparisons with Other Approaches

This work represents the first step towards automated reasoning tools for prob-
abilistic distributions systems. Future work will also explore the use of optimi-
sations and heuristics for mechanised search within KS, other strategies to treat
hypotheses, and the use of other generalisations of Kleene algebra, to include
termination properties [7].

Other techniques for verifying probabilistic systems separate probabilistic
from standard reasoning [27], but unlike our algebraic approach the standard
reasoning only includes properties that are insensitive to the underlying proba-
bilities, and thus only weak properties (typically non probabilistic) can be veri-
fied in this way. Other approaches that combine model checking and reasoning
to yield parametrised properties include that of Pnueli et al. [1]. There is an
extensive literature on probabilistic semantics, for example, [18, 27, 15] but as
far as we are aware none of this work can support automated counterexample
search.
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Abstract. Many security protocols fundamentally depend on the al-
gebraic properties of cryptographic operators. It is however difficult to
handle these properties when formally analyzing protocols, since basic
problems like the equality of terms that represent cryptographic mes-
sages are undecidable, even for relatively simple algebraic theories. We
present a framework for security protocol analysis that can handle al-
gebraic properties of cryptographic operators in a uniform and modular
way. Our framework is based on two ideas: the use of modular rewriting
to formalize a generalized equational deduction problem for the Dolev-
Yao intruder, and the introduction of two parameters that control the
complexity of the equational unification problems that arise during pro-
tocol analysis by bounding the depth of message terms and the operations
that the intruder can perform when analyzing messages. We motivate the
different restrictions made in our model by highlighting different ways
in which undecidability arises when incorporating algebraic properties of
cryptographic operators into formal protocol analysis.

1 Introduction

Motivation. Many security protocols fundamentally depend on the algebraic
properties of cryptographic operators [17]. For example, protocols based on
the Diffie-Hellman key-exchange, such as the Station-to-Station, IKE, and JFK
protocols, exploit the property of modular exponentiation that (gx)y mod p =
(gy)x mod p. Without this property, these protocols could not even be executed.

A number of approaches have been proposed for formally analyzing security
protocols in the presence of an active intruder. Independent of which formalism is
adopted, one of the core problems is the intruder deduction problem: given a state
of the protocol execution, can the intruder derive a given message M? Derivation
here is relative to the terms the intruder currently knows, i.e. relative to the
closure under a set of deduction rules of his initial knowledge augmented with
the messages that he has observed. The intruder deduction problem provides the
basis for solving a number of practically relevant protocol analysis problems. We
can, for instance, use it to determine whether the intruder is able to construct a
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message of the form that some honest agent is expecting to receive, or whether
he is able to obtain a message that is intended to be a secret, e.g. a key shared
by two honest agents.

In this paper, we focus on the intruder deduction problem in the presence
of algebraic equations that express properties of cryptographic operators. The
underlying intruder model we employ is that of Dolev and Yao [19], in which
the intruder observes all network traffic and can generate new messages, imper-
sonating other agents, but cannot break cryptography. Although the Dolev-Yao
intruder model is very commonly used, most analysis approaches based on this
model are also based on the free algebra assumption. Under this assumption,
two terms are equal if and only if they are syntactically equal. But, as we noted
above, this is inappropriate for protocols that rely on algebraic properties.

Relaxing the free algebra assumption is however nontrivial: even for rela-
tively simple sets of equations, the most basic problem, the unifiability prob-
lem (i.e. the equality of terms under substitutions for their variables), is only
semi-decidable [4, 6, 23]. Moreover, even for those theories where unification is
decidable, the intruder deduction problem may still be undecidable [1, 2].

Solutions for the intruder deduction problem have been given for individual
algebraic theories of cryptographic operators, such as those formalizing different
properties of modular exponentiation or bitwise exclusive or [12, 13, 27]. However,
even though these approaches are specialized to particular algebraic properties,
the algorithms and correctness proofs are quite complex and usually must be
revised or completely re-designed when new properties are added. More general
approaches have been recently proposed [14, 24, 26] and we compare our work
with them in the concluding section §5.

Contributions. Our principal contribution in this paper is a framework for proto-
col analysis that is general and can handle algebraic properties of cryptographic
operators in a uniform and modular way. In doing so, we pave the way for imple-
menting analysis tools that are not specialized to particular algebraic theories
and thereby allow users to declare new operators and properties as part of the
protocol specifications. Of course, given the undecidability of the relevant prob-
lems, this goal cannot be achieved in full, without any restrictions. We now
briefly describe the main ideas and restrictions of our proposed approach.

Our framework is based on two ideas. The first idea is to use modular rewrit-
ing to formalize a generalized equational deduction problem for the Dolev-Yao
intruder. In doing so, we exploit the fact that we can distinguish two kinds
of equational theories associated with security protocols: cancellation theories
(where equations express that certain operations cancel each other out, such as
encryption and decryption with the same symmetric key) and finite equivalence
class theories (which are theories that induce finite equivalence classes for all
terms). We show how our use of modular rewriting leads to efficient solutions to
the intruder deduction problem.

The second idea is to introduce two “depth parameters” that bound the depth
of message terms and the operations that the intruder can use to analyze mes-
sages (i.e. decompose messages based on his current knowledge, under perfect
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cryptography). These bounds control the complexity of the equational unifica-
tion problems that arise, transforming undecidable problems into decidable ones.
Moreover, these bounds effectively serve as search parameters that can be used
to control the search over the space of messages.

Our framework is thus parameterized by algebraic theories of the two kinds
above and provides a general algorithm for the algebraic intruder deduction
problem when the depth of message terms and the analysis operations of the
intruder are bounded. Our framework allows us to identify several sub-problems
of the intruder deduction problem (e.g. the reduction of terms to their normal
forms) and provide general algorithms for them. Along the way, we also show
that the problems considered become undecidable when any of the restrictions
made in our framework are removed.

Two remarks are in order to help put into context our use of depth parame-
ters. First, rather than considering specialized theories of algebraic properties
of cryptographic operators, the focus of our work is to provide a general and
flexible framework that supports a large class of such theories. However, in this
generality, many problems are undecidable unless we introduce some restric-
tions. Our work shows that bounding the term depth and the message analysis
by the intruder simplifies many of the problems that arise and turns undecidable
problems into decidable ones. Moreover, many protocol analysis methods require
bounds on messages in the first place, e.g. methods based on typed models.

Second, our algorithms are less efficient than those algorithms, when they
exist, that are specialized to particular algebraic theories, e.g. [12, 13, 27], which
usually work without bounds. Our framework is open to the integration of such
specialized algorithms, albeit under the restriction of bounded message depth.
In this way, we can benefit from research advances for specialized theories, while
being able to fall back on general algorithms when specialized ones are not
available.

Finally, we note that our framework is not biased towards a particular protocol
analysis method. It can be used as a basis for handling algebraic equations when
employing different types of formalisms (such as strand spaces, process calculi,
or rewriting) or techniques (such as abstractions or the symbolic lazy intruder
technique employed in our protocol model-checker OFMC [8, 10]).

Organization. We proceed as follows. In §2 we provide background for our ap-
proach. In §3 we introduce a concrete equational theory as a running example
and give an overview of our framework, presenting the central definitions and
theorems. In §4 we focus on how the intruder can analyze messages. In §5 we
compare with related work and draw conclusions.

Due to lack of space, discussions, examples, and proofs have been shortened
or omitted; details can be found in the extended version of this paper [9].

2 Background

Messages and Cryptography. As is standard, we represent protocol messages as
terms built over a finite signature Σ. We write Σn, for n ≥ 0, to denote function
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symbols of arity n. Terms in Σ0 are constants (i.e. nullary function symbols) and
represent atomic messages like agent names or nonces. We define the depth of a
term t as the number of nodes in the longest path from the root to a leaf in its
tree representation, and the size of t as the number of nodes (both inner nodes
and leaves). We write T (Σ, V ) to denote the set of terms that can be generated
using symbols of Σ and variables from a set V , and we write T (Σ) for the set
of ground terms.

Algebraic Properties of Cryptographic Operators. Most approaches to protocol
analysis follow the free algebra assumption, under which two ground terms are
equal iff they are syntactically equal. Many protocols, however, do actually de-
pend on algebraic properties of cryptographic operators, in the sense that the
properties are required for the agents to carry out the steps prescribed by their
protocol roles. Hence, unlike the practice of abstracting from the concrete be-
havior of cryptography, we cannot ignore the algebraic properties on which the
protocol to be analyzed is based. For example, as we noted above, protocols
based on the Diffie-Hellman key-exchange, such as the Station-to-Station, IKE,
and JFK protocols (see the web-page of the IETF [21]), exploit the property of
modular exponentiation that (gx)y mod p = (gy)x mod p. As another example,
note that many protocols combine two secrets into one using associative and
commutative (AC) operators like bitwise exclusive or (xor) · ⊕ ·. Given such a
composed secret, every agent who knows one of the two secrets can also find out
the other one, but no other agent can. For instance, if an agent knows x⊕ y and
x, then he can exploit the properties of ⊕ to compute y as (x ⊕ y)⊕ x.

Equational Theories. The formal analysis of protocols like those above requires
explicitly reasoning about the relevant properties of the cryptographic oper-
ators employed. We address in this paper those properties that are formal-
izable by finite sets of equations of the form t ≈ s, where t, s ∈ T (Σ, V ).
For example, the property required for the Diffie-Hellman key-exchange is that
exp(exp(g, x), y)mod p ≈ exp(exp(g, y), x)mod p.

We assume that notions like substitution, matching, unification, and unifia-
bility are defined as standard, e.g. as in [4, 6]. Term positions are represented as
sequences of natural numbers, which are partially ordered by the prefix order-
ing. We define the equational theory ≈E induced by a set E of equations to be
the least congruence on the term algebra that is closed under substitution and
contains E. We define the equivalence class [t]≈E of a term t as {s | t ≈E s}.
Given a set E of equations, we interpret terms of T (Σ, V ) in the quotient alge-
bra of the term algebra with the congruence on terms, written T (Σ, V )/≈E . In
this algebra, two terms are equal iff they are equivalent due to ≈E . The ground
word problem for a theory E is the problem of deciding s ≈E t for arbitrary
s, t ∈ T (Σ). Note that, for brevity, we often refer to a set E of equations as a
“theory”, meaning the equational theory ≈E induced by E.

We say that a substitution σ is an instance of a substitution θ modulo E,
and write σ �E θ, iff there is a substitution λ such that xσ ≈E xθλ for all x ∈
domain(θ). Given a set S of substitutions, S0 is a complete set of substitutions
of S under E iff for all σ ∈ S there is a θ ∈ S0 with σ �E θ.
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Definition 1. Let vars(t) denote the variables of a term t. A rewrite rule is an
equation l ≈ r, where l is not a variable and vars(l) ⊇ vars(r). In this case, we
may write l → r instead of l ≈ r. A term-rewriting system (TRS) is a set of
rewrite rules. A TRS C and an equational theory E induce a modular rewriting
relation on E-equivalence classes of terms as follows: [t]≈E →C/E [s]≈E iff there
are terms t′ and s′ such that t ≈E t′, t′ →C s′, and s′ ≈E s.

Let →+ and →∗ denote the transitive and the transitive-reflexive closure of a
binary relation →. Given →, we say that t is reducible (and we call t a redex)
iff t→ s for some s. t1 and t2 are joinable, denoted by t1 ↓ t2, iff there is some
s such that t1 →∗ s and t2 →∗ s. t is a normal form iff it is not reducible, and s
is a normal form of t iff t→∗ s and s is a normal form. We denote the normal
form of t by t↓, when it is unique. We say that → is confluent iff t →∗ t1 and
t →∗ t2 implies that t1 ↓ t2. Finally, → is convergent iff it is confluent and
terminating.

Although →C/E is defined on equivalence classes of terms, for notational
simplicity we will also write t→C/E s, for terms s and t, rather than [t]≈E →C/E

[s]≈E . Employing the same convention, we will also write t↓C/E for [t]≈E↓C/E .
Note that for a convergent relation →, every term has a unique normal form,
and hence t↓C/E is always defined.

The definition of modular rewriting works directly on E-equivalence classes,
rather than defining a special notion of convergence modulo E. However, while
theoretically appealing, this definition is algorithmically difficult to work with.
Therefore many approaches to modular rewriting employ a weaker but more
tractable variant →C,E of the relation →C/E , namely s →C,E t iff ∃(u → v) ∈
C. ∃σ. s ≈E uσ∧t = vσ. For→C,E , there is a completion method [7, 22], and it is
not necessary to explore the entire E-equivalence class of a term t in order to de-
termine if t is a redex. While we consider here the relation→C/E , we remark that
all constructions and algorithms in this paper can be adapted to →C,E as well.

A standard result tells us that we can solve the ground word problem for
terms in the theory C ∪ E by normalizing the terms under C and checking the
results for equality modulo E. Formally, if→C/E is convergent and t1 and t2 are
ground terms, then t1 ≈C∪E t2 iff [t1]≈E↓C/E = [t2]≈E↓C/E.

The Dolev-Yao Intruder. The standard Dolev-Yao model [19] formalizes the
abilities of an intruder who controls the communication network. The intruder
can analyze messages, decomposing them into submessages, and synthesize new
messages from their subparts. In our formalization of this, we assume we are
given a set of function symbols O ⊂ Σ that describe the ways of constructing
messages (e.g. pairing or cryptographic operations like encryption or hashing).
We also call the set O the set of intruder-accessible operators. For readability, we
will however avoid displaying the set O as an explicit parameter of the intruder
deduction problem.

Definition 2. Given a finite set of ground terms IK (for “intruder knowledge”)
and an equational theory E, we define DYE(IK ) (for “Dolev-Yao”) as the least
set that is closed under the rules
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t ∈ DYE(IK )
AX (t ∈ IK ) ,

t1 ∈ DYE(IK )
t2 ∈ DYE(IK )

EQ (t1 ≈E t2) ,

t1 ∈ DYE(IK ) · · · tn ∈ DYE(IK )
op(t1, . . . , tn) ∈ DYE(IK )

OP (op ∈ O) .

The (Dolev-Yao) intruder deduction problem with respect to the equational
theory E is the problem of deciding whether t ∈ DYE(IK ) for ground terms t
and finite sets of ground terms IK .

Note that in this formalization we do not have analysis rules for decomposing
terms. For example, the decryption rule for symmetric encryption

{|m|}k ∈ DYE(IK ) k ∈ DYE(IK )
m ∈ DYE(IK )

is subsumed by the equation {|{|m|}k|}k ≈ m: whenever the intruder has {|m|}k
and k, he can compose them to construct {|{|m|}k|}k, which is equal under ≈E

to m.
The intruder deduction problem is the core deduction problem in protocol

analysis. Consider a trace of messages exchanged between honest agents and
an intruder. For each message m that is sent by the intruder in this trace, the
intruder must be able to derive m, i.e. m ∈ DYE(IK ), where E is the equational
theory considered and IK is the intruder knowledge consisting of the initial
intruder knowledge and all messages the intruder has observed so far. Note
that in many state-of-the-art approaches to protocol analysis (see [15] for an
overview), the term m may contain variables and the resulting symbolic trace
represents the set of traces that are obtained by substituting for the variables
arbitrary terms from DYE(IK ). The use of symbolic terms avoids the näıve
enumeration of all terms that the intruder can generate from his knowledge.

3 A Framework for Algebraic Properties

While equational reasoning is a general paradigm, our focus in this paper is on
its application to security protocol analysis. Let us begin with a concrete exam-
ple: an algebraic theory formalizing relevant properties used in many protocols,
including those based on the Diffie-Hellman key-exchange.

Example 1. Let Σex = (Σ0
ex, Σ

1
ex, Σ

2
ex), where Σ0

ex is a countable set of constants;
Σ1

ex = {inv(·), ·−1}, where inv(t) and t−1 are the inverses of a message term t
for asymmetric encryption and exponentiation, respectively, and the symbols in
Σ2

ex = {{·}·, {|·|}·, 〈·,·〉, exp(·, ·), · ⊕ ·} denote asymmetric encryption {t2}t1 and
symmetric encryption {|t2|}t1 of a message t2 with a message t1, concatenation
〈t1,t2〉 of two messages t1 and t2, modular exponentiation exp(t1, t2) of a message
t1 with a message t2, and bitwise xor t1 ⊕ t2 of a message t1 with a message t2
(with identity element e). Our example theory Eex is induced by the following
equations over Σex (where the xi are variables from a set disjoint from Σex):
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x1 ⊕ x2 ≈ x2 ⊕ x1 (1)
(x1 ⊕ x2)⊕ x3) ≈ x1 ⊕ (x2 ⊕ x3) (2)

exp(exp(x1, x2), x3) ≈ exp(exp(x1, x3), x2) (3)
exp(exp(x1, x2), x2

−1) ≈ x1 (4)
inv (inv(x1)) ≈ x1 (5)

(x1
−1)

−1 ≈ x1 (6)

{{x2}x1}inv(x1) ≈ x2 (7)
{{x2}inv(x1)}x1 ≈ x2 (8)
{|{|x2|}x1 |}x1 ≈ x2 (9)

x1 ⊕ x1 ≈ e (10)
x1 ⊕ e ≈ x1 (11)

We split Eex into two subtheories: Fex is induced by the equations (1)–(3), and
Cex is induced by the equations (4)–(11). $�

Note that, as is often done, we leave implicit the modulus of exponentiation in
Eex: instead of gx mod p (i.e. exp(g, x)mod p) we write simply gx (i.e. exp(g, x)),
assuming that exponentiation is always performed using the same (publicly
known) modulus. Note also that Eex does not contain redundant equations
(which are entailed by the given equations) such as e⊕ x1 ≈ x1.

3.1 Two Kinds of Theories

Our framework is based on modular rewriting and exploits the fact that we can
distinguish two kinds of equational theories associated with security protocols:
cancellation theories and modulo theories. Cex is an example of a cancellation
theory, which is a theory whose equations express that certain operations (such
as encryption followed by decryption with the same key) cancel each other out.
Such equations can usually be described by a convergent TRS and we can thus
apply these equations to rewrite all terms into normal form. The advantage of
separating out a convergent subtheory is that we can then neglect its equations
during subsequent equality reasoning when all terms are normalized.

Definition 3. A cancellation theory is a theory induced by cancellation rules
of the form op(t1, . . . , tn) ≈ s, with s a constant or a subterm of one of the ti.

Fex is an example of a modulo theory, which is a theory that comprises equa-
tions that cannot be oriented into terminating rewrite rules; the standard ex-
amples from rewriting are the equations for properties like associativity and/or
commutativity. It is common for these equations to form a “background theory”
used when applying other rewrite rules (such as the cancellation equations); that
is, one performs rewriting modulo the equations of a modulo theory.

Here we will not restrict ourselves to a particular modulo theory, like AC, but
rather work with a class of theories, namely finite equivalence class theories.

Definition 4. An equational theory E is a finite equivalence class (FEC) theory
if the equivalence class [t]≈E = {t′ | t′ ≈E t} is finite for all terms t ∈ T (Σ, V ).

We can then, for example, prove that Fex is an FEC theory and Cex is a
cancellation theory. In the following, we will use C and F to denote cancellation
and FEC theories, respectively. Note also that FEC and cancellation theories
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are disjoint theory classes as for a cancellation theory, there are always terms
with an infinite equivalence class.

As is standard, the equational matching problem for a theory E is the ques-
tion of whether, given a ground term t and a term s with variables, there is a
substitution σ such that t ≈E sσ. From the definition of FEC theories, we have:

Theorem 1. The equational matching problem for an FEC theory F is decid-
able. In particular, there is a terminating algorithm that returns a complete set
of matches modulo F for a given instance of the problem.

A special case of equational matching is the ground word problem (when s is
also ground), and hence this problem is also decidable for FEC theories.

As we will see below, our framework relies on the decidability of matching
for FEC theories. In contrast, the unification problem (where both terms may
contain variables) for FEC theories is undecidable. Consider the theory of dis-
tributivity and associativity D�+A+ = {x (y+z) ≈ (x y)+(x z), x+(y+z) ≈
(x+y)+z}. Unifiability in this theory is undecidable as shown in [28]. As equiva-
lence classes in D�+A+ are finite, we thus have that unifiability modulo an FEC
theory is in general undecidable.

In §4 we will use the following important property of FEC theories, namely
that they cannot contain equations that introduce new variables:

Lemma 1. If l ≈ r is an equation of an FEC theory, then vars(l) = vars(r).

Hence, l ∈ V implies l = r, so that such trivial equations can be safely omitted.
We conclude this subsection by observing the relevance of these two kinds

of theories to security protocol analysis. As we will see, cancellation rules are
closely related to the analysis (e.g. decryption) of terms by the intruder and
honest agents, and therefore have a distinguished role in deductions. We will
namely define a normal form of the intruder knowledge as a state where the
applications of cancellation rules do not give him any “new” terms (in a sense
to be precisely defined later).

3.2 Restriction to a Bounded Variable Depth Model

As unifiability modulo an FEC theory is undecidable, we must introduce a re-
striction under which unification becomes decidable. We achieve this by introduc-
ing bounds on messages. There are several ways to do this, e.g. by bounding the
number of operations that the intruder can perform to synthesize new messages
from his knowledge, or by limiting the depth of terms that may be substituted
for variables in the rules formalizing the steps of a protocol execution. We take
the second approach here and bound the depth of message terms. To this end,
we first define a subset of the variable symbols with an associated depth bound,
and we then define which substitutions are permissible for these variables.

Definition 5. We call a bounded variable a variable for which only terms with
bounded depth can be substituted. Let VB ⊆ V be the set of bounded variables
such that every variable v has an associated depth bound depth(v) ∈ N. We
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extend the function depth(·) to arbitrary terms as follows: depth(v) = ∞ for
v ∈ V\VB, depth(c) = 0 for c ∈ Σ0, depth(op(t1, . . . , tn)) = 1+maxn

i=1 depth(ti)
for op ∈ Σn, with n > 0. We say that a substitution σ respects the depth restric-
tions of the variables in a term t, and write respect depth(σ, t), iff depth(vσ) ≤
depth(v) for all v ∈ vars(t).

We call the bounded variable depth model (BVDM) the restricted protocol analy-
sis model in which only substitutions are allowed that respect the depth of vari-
ables.

The following lemma tells us that any computable function on ground terms
can be extended to a computable function on terms with bounded variables.
This will allow us, in the rest of this paper, to restrict ourselves to the ground
case while all results can be carried over to terms with bounded variables.

Lemma 2. Let f be a computable function that takes as input n terms that may
contain variables and m ground terms, and which returns a finite set of terms.
Then the following function f ′ is also computable. f ′ takes as input n terms that
may contain (arbitrary) variables and m terms that may contain only bounded
variables, and returns a finite set of terms and substitutions such that:

∀s1, . . . , sn ∈ T (Σ, V ). ∀t1, . . . , tm ∈ T (Σ,VB). ∀σ.
[ground(t1σ) ∧ . . . ∧ ground(tmσ) ∧ domain(σ) ⊆ VB∧

respect depth(〈s1, . . . , sn, t1, . . . , tm〉, σ)] =⇒
[(r, σ) ∈ f ′(s1, . . . , sn, t1, . . . , tm) ⇐⇒ rσ ∈ f(s1σ, . . . , snσ, t1σ, . . . , tmσ)] .

Lemma 2 allows us, for instance, to easily lift the matching algorithm for FEC
theories F to a unification algorithm where one of the two input terms contains
only bounded variables.

Note that the depth of messages is often bounded in protocol analysis. For in-
stance, many model-checking approaches bound terms to obtain a finite-state
system, e.g. [3, 25]. Moreover, when other parameters of the model are un-
bounded, like the number of sessions, then restricting the message depth is essen-
tial for decidability [20]. Note also that [11] presents an approach that similarly
bounds the depth of message terms in order to tackle the problem of algebraic
properties in intruder deductions; the approach of [11] is however specialized to
a particular algebraic theory.

3.3 Matching and Unification in FEC Theories in the BVDM

We have shown that for every FEC theory F , we can decide the matching prob-
lem. By Lemma 2, when the variables are bounded on one side, we can reduce an
F -unification problem to a finite number of F -matching problems, which we can
solve by Theorem 1. The algorithms that we can obtain from the constructive
proof of Theorem 1 however have poor complexity. Moreover, there exist more
efficient, specialized algorithms for some of the theories that are relevant for the
analysis of security protocols, e.g. [12, 13, 27].
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We give a solution to handle F -unification efficiently in the bounded case and
which allows for the straightforward integration of existing unification algorithms
for disjoint subtheories of F . Due to lack of space, we briefly sketch this solution
here and refer to [9] for details. The basic idea is the following. In a free algebra,
every term op(t1, . . . , tn) can be decomposed into an operator and its arguments
in only one way. Modulo a theory E, however, there may be other ways to
decompose a term. For instance, in our example theory Eex, exp(exp(g, x), y) may
be decomposed into the exponentiation of exp(g, x) with y or the exponentiation
of exp(g, y) with x as these two terms are equal modulo Eex.

For FEC theories, there are only finitely many ways to decompose a ground
term, since its equivalence class is finite. For the BVDM, in [9] we show that given
a complete decomposition algorithm for an FEC theory F , we can construct
a complete one-side-bounded F -unification algorithm. The advantage of this
unification algorithm is that it does not explore the entire equivalence class of
terms, but rather just what different decompositions are possible at the topmost
level of the term.

Moreover, we can show that FEC-decomposition has a nice compositionality
property in the BVDM.1 Let the FEC theory F be composed from disjoint
subtheories F1 and F2 (i.e. subtheories that have no constant or function symbols
in common). Consider F -unifying the two terms t = op(t1, . . . , tn) and s =
op′(s1, . . . , sm). For the unification to succeed, op and op′ must belong to the
same subtheory, say F1. Then, the unification problem t ≈F s can be broken
into the “smaller” unification problems t ≈F1 op′(s′1, . . . , s

′
m) and s′j ≈F sj

for 1 ≤ j ≤ m. That is, t ≈F s can be reduced to an F1-problem together
with F -problems for the subterms (which may belong to different subtheories).
This allows us to construct an F -unification algorithm from the Fi-unification
algorithms for the disjoint subtheories Fi.

3.4 Intruder Deduction Modulo F

So far we have considered the problem of unification and matching modulo an
FEC theory F . We now turn to the intruder deduction problem modulo F , i.e.
whether t ∈ DYF (IK ) holds for a ground term t and a set of ground terms IK .

Lemma 3. If F is an FEC theory, then the problem t ∈ DYF (IK ) is decidable
for a term t and a set of terms IK .

In the following, we will consider the generalization of the problem t ∈
DYF (IK ), where the term t may contain variables. This is an important question
even for a model with only ground terms, since we will later consider intruder
derivations modulo F ∪ C. In particular, given a set IK of ground terms, we
must decide whether there is some ground instance tσ of the left-hand-side t of
a cancellation rule of C such that tσ can be derived modulo F from IK (note
that t is here a term with unbounded variables). As shown in [9]:
1 Note that, as we discuss in more detail in [9], standard compositionality results for

disjoint theories, e.g. [5], are not applicable in the BVDM since that would give rise
to unbounded unification problems.
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Lemma 4. There is an FEC theory F such that it is undecidable for a term t
and a set of ground terms IK , whether there exists a substitution σ such that tσ
is ground and tσ ∈ DYF (IK ).

Hence, to decide the intruder deduction problem for terms with variables,
we must make further restrictions. By Lemma 2, the problem is decidable if t
contains only bounded variables.

4 Cancellation Equations

We now turn to the cancellation equations such as {|{|x2|}x1 |}x1 ≈ x2. Such an
equation cannot be formalized as part of an FEC theory like Fex since all equiva-
lence classes are infinite. As introduced in §2, we will now consider rewriting for
cancellation theories C modulo an FEC theory F . Note that every cancellation
theory is a rewrite theory as every cancellation equation l ≈ r has the property
that vars(l) ⊇ vars(r).

The principal property that we require is that the modular rewriting relation
→C/F is convergent, which is the case for our example →Cex/Fex , as we show
in [9]. As a direct consequence of our assumption that →C/F is convergent and
since we can decide matchability modulo an FEC theory F by Theorem 1, we
have that the ground word problem modulo F ∪C is decidable in our framework:

Theorem 2. Let F be an FEC theory and C a cancellation theory, and let
→C/F be convergent. Then the ground word problem for F ∪ C is decidable.

By Lemma 2, it follows that we can construct a unification algorithm modulo
F ∪ C for terms with bounded variables. In particular, this implies that the
unifiability problem modulo F ∪C for terms with bounded variables is decidable.

4.1 Cancellation as Analysis

The results that we have presented so far allow us to decide, for ground terms
or terms with bounded variables, the equality of terms modulo an FEC theory
F and a cancellation theory C, as well as the intruder deduction problem in the
theory F . We now consider how to solve the intruder deduction problem in the
theory F ∪ C. In §4.2, we will see that this problem is in general undecidable,
so to obtain a decidable problem we must further restrict our model: we bound
the number of operations that the intruder can perform.

The idea that we put forth here to solve the intruder deduction problem with
respect to F ∪ C is to distinguish synthesis (or composition) and analysis (or
decomposition) of messages by the intruder. Observe that these two aspects of
intruder deduction are not completely independent; for instance, if the intruder
knows the messages {|m|}〈k1,k2〉 and k1 and k2, then he can analyze the encrypted
message, but only after synthesizing the key 〈k1,k2〉. We now define a general
notion of analysis based on an arbitrary cancellation theory C.



560 D. Basin, S. Mödersheim, and L. Viganò

Intuitively, we speak of synthesis when the intruder applies the OP rule to
compose terms, excluding the case when the resulting composed term is a re-
dex according to the cancellation theory C (as we can then reduce it to a
simpler term). We speak of analysis when the intruder applies the OP rule
to obtain a redex whose normal form cannot be composed from his current
knowledge. We can then formalize the notion of the intruder knowledge be-
ing completely analyzed based on the notion of cancellation rules present in
our framework: we say that the intruder has analyzed his knowledge as far as
possible if, by applying the cancellation rules, the intruder can only derive mes-
sages (except redices in C) that he can also derive without cancellation rules.
Formally:

Definition 6. Let C be a cancellation theory convergent modulo an FEC theory
F . We say that a finite set of ground terms IK is analyzed with respect to C
modulo F if t↓C/F ⊆ DYF (IK ) for each t ∈ DYF (IK ).

As an example, consider again Fex and Cex. The set IK = {{|m|}k, k} is
not analyzed with respect to Cex modulo Fex as the intruder can generate t =
{|{|m|}k|}k ∈ DYFex(IK ), and t↓Cex/Fex= [m]≈Fex

, but m /∈ DYFex(IK ). However,
IK ′ = IK ∪ {m} is analyzed since all messages that can be obtained only by
normalizing terms in DYFex(IK

′) are already contained in DYFex(IK
′).

We thus have a characterization of analyzed intruder knowledge as a set that
contains all messages that can be derived underDYF∪C(·) but not underDYF (·).
The idea is that when the set of messages known by the intruder is analyzed,
then there is no need to consider the cancellation theory in the derivations of the
intruder. Hence we can decide the intruder deduction problem DYF∪C(·) when
the intruder knowledge is analyzed:

Theorem 3. Let F be an FEC theory and C a cancellation theory, and let
→C/F be convergent. Further, let t be a ground term and IK be a finite set of
ground terms analyzed with respect to C modulo F . Then it is decidable whether
t ∈ DYF∪C(IK ).

By Lemma 2, it follows that the intruder deduction problem is decidable for
terms with bounded variables when the intruder knowledge is analyzed.

4.2 Undecidability of Analysis

The previous method for solving the intruder deduction problem is restricted to
the case where the intruder knowledge is analyzed. The central question thus
is how to transform an arbitrary intruder knowledge into an analyzed one. As
we show in [9], based on the fact that unification modulo an FEC theory is
undecidable in general, it follows that it is undecidable whether a given intruder
knowledge is analyzed or not:

Theorem 4. There is an FEC theory F and a cancellation theory C, where
→C/F is convergent, such that it is undecidable whether a finite set of ground
terms IK is analyzed with respect to C modulo F . Moreover, the intruder deduc-
tion problem t ∈ DYF∪C(IK ) is also undecidable.
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Note that [1, 2] have shown that the intruder deduction problem in a theory
E can be undecidable even if unification in E is decidable. Our theorem is
incomparable to this result as it does not require E to be decidable.

We thus need to make further restrictions to obtain a general procedure for
analyzing the intruder knowledge. We proceed by limiting the operations that
the intruder can perform when analyzing a single message (i.e. the number of
steps before he obtains a new redex). We define a bounded derivation of the
intruder as follows:

Definition 7. Given a finite set IK of ground terms and an algebraic theory E,
we define the k-bounded intruder model as the least set DYk

E(IK ) that is closed
under the rules

t ∈ DYk
E(IK )

AXk (t ∈ IK , k ≥ 0) ,
t1 ∈ DYk

E(IK )

t2 ∈ DYk
E(IK )

EQk (t1 ≈E t2) ,

t1 ∈ DYk
E(IK ) · · · tn ∈ DYk

E(IK )

op(t1, . . . , tn) ∈ DYk+1
E (IK )

OPk (op ∈ Σn) .

Note that, under the EQk rule, the use of an equivalence from E does not count
as a step, i.e. it does not increase the counter k.

Definition 8. Let F be an FEC theory and C a cancellation theory, and let
→C/F be convergent. Given a constant k ∈ N, we say that the intruder knowledge
IK , which is a finite set of ground terms, is k-analyzed (with respect to C modulo
F ) iff t↓C/F ⊆ DYk

F (IK ) for each t ∈ DYk
F (IK ).

Theorem 5. Let F be an FEC theory and C a cancellation theory, let →C/F

be convergent, and let k ∈ N. Then it is decidable if a finite set of ground terms
IK is k-analyzed (with respect to C modulo F ).

Note, however, that given a finite set of ground terms IK , there does not
always exist a finite superset IK ′ of ground terms that is (k-)analyzed. Con-
sider, for example, the theories F = {f(x) = g(h(x))} and C = {g(X) = X}.
Clearly, F is a FEC theory, C is a cancellation theory, and →C/F is conver-
gent. Furthermore, let O = {f} be the set of functions that the intruder can
access, and let IK be a finite set of ground terms that contains a constant c. We
then, for instance, have that h(c), h(h(c)), . . . ∈ DYF∪C(IK ). Thus, there is no
finite set IK ′ ⊇ IK such that IK ′ is analyzed. For the bounded case, observe
that g(t) ∈ DYk

F∪C(IK ∪ t) for any ground term t, k ≥ 1, and n ∈ N. Thus,
any k-analyzed superset of IK must also contain gn(c) for any n ∈ N, so it
must be infinite. Hence, to complete our framework, we must be able to check
bounded derivability without first computing an analyzed intruder knowledge.
The following theorem tells us that this is possible:

Theorem 6. Let F be an FEC theory and C a cancellation theory, let →C/F be
convergent, and let k ∈ N. Then it is decidable if a ground term t can be derived
from a finite set of ground terms IK , i.e. whether t ∈ DYk

F∪C(IK ).
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Together with the fact that, by Lemma 2, all problems over terms with bounded
variables can be reduced to problems over ground terms, we have now the basis
for protocol analysis modulo algebraic theories. Namely, we can check whether a
term with bounded variables — representing the set of messages that some agent
in its current state can receive as a valid protocol message — can be derived from
a ground intruder knowledge under the bounds that we have introduced.

5 Related Work and Concluding Remarks

We have presented a framework for security protocol analysis that can handle
algebraic properties in a uniform and modular way. It is not specialized to any
particular algebraic theory and thereby allows users to declare new operators
and properties as part of the protocol specification. Our framework is based
on the use of modular rewriting to formalize a generalized equational deduc-
tion problem for the Dolev-Yao intruder, and on bounding the depth of message
terms and the analysis operations of the intruder to control the complexity of the
equational unification problems that arise. These bounds allow us to give gen-
eral algorithms for the equational unification and intruder deduction problems.
Moreover, under these bounds, our framework is also open to the integration
of more efficient algorithms that are specialized to particular algebraic theories
(and which usually work without such bounds), e.g. [12, 13, 27].

The idea of providing a general approach for integrating equational properties
into security protocol analysis has recently attracted considerable attention. [18]
presents an approach based on standard rewriting that supports the specification
of properties like the cancellation theories of our framework. However it does
not allow for properties like AC, which are handled by our FEC theories. The
approach of [14] has aims similar to ours: to provide a general framework that
is open to the integration of existing algorithms. This approach, however, is
based on a different idea, namely ordered rewriting, and is therefore applicable
to classes of theories that are incomparable to the ones that are supported by
our framework. The approaches of [2, 16, 24, 26] are the most closely related to
ours as they also employ modular rewriting. They differ from our work in that
they are more restrictive in terms of the kinds of modulo theories that can be
considered; namely they consider a fixed modulo theory (or, similarly, assume
given a unification procedure for the modulo theory), or they require that the
unification problems are finitary. These restrictions, however, allow them to work
without the bounds required by our approach.

Our framework is not biased towards a particular analysis method, and thus
can be used as a basis for handling algebraic equations when employing different
types of formalisms or techniques for protocol analysis. As a concrete example, we
have begun integrating our framework into our protocol model-checker OFMC [8,
10]. In this integration, the message and analysis bounds become parameters of
the protocol analysis problem, along with other parameters like the number of
sessions. We can then use different search techniques (like iterative deepening)
to effectively search the resulting multi-dimensional search space.
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The equational reasoning problems that we considered in this paper are in
general undecidable and hence one must introduce restrictions to regain decid-
ability. The restrictions that we have introduced are motivated by the practical
problems in security protocol analysis and we have begun investigating whether
and how they can be applied to other equational reasoning problems.
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28. J. Siekmann and P. Szabó. The undecidability of the DA unification problem.
Journal of Symbolic Computation, 54(2):402–414, 1989.



Satisfiability Checking for PC(ID)�
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Abstract. The logic FO(ID) extends classical first order logic with
inductive definitions. This paper studies the satisifiability problem for
PC(ID), its propositional fragment. We develop a framework for model
generation in this logic, present an algorithm and prove its correctness.
As FO(ID) is an integration of classical logic and logic programming,
our algorithm integrates techniques from SAT and ASP. We report on a
prototype system, called MidL, experimentally validating our approach.

1 Introduction

The logic FO(ID), or Inductive Definition Logic (ID-logic) [7], extends classical
first order logic (FO) with a language primitive that allows a uniform repre-
sentation of inductive definitions. In general, inductive definitions cannot be
represented in first order logic (FO). The semantics of this primitive is based on
the well-founded semantics of logic programming [28]; indeed, as argued in [6, 8],
it correctly formalizes the semantics of inductive definitions.

While definitions are common in mathematics, they are also crucial in declara-
tive Knowledge Representation. Not only non-inductive definitions are frequent
in common-sense reasoning as argued in the seminal paper [2], also inductive
definitions are. In [10], the situation calculus is given a very natural and gen-
eral representation as an iterated inductive definition in the well-ordered set of
situations and [16] observes that inductive definitions are present in many ap-
plications of Answer Set Programming (ASP) [12]. In short, definitions are a
distinctive and important form of knowledge that can be naturally represented
in FO(ID).

The goal of this paper is to present algorithms to solve SAT(PC(ID)), the
satisfiability problem for PC(ID)1, the propositional fragment of FO(ID), or
equivalently, generate models for theories in this fragment. This problem is an
extension of SAT, the satisfiability problem of propositional CNF formulas. Cur-
rent SAT solvers exhibit impressive performance on many industrial instances.
Unfortunately, SAT is a rather poor modeling language, and substantial effort is
often required to encode a problem. PC(ID) is a major enhancement of the ex-
pressivity [19]. Solvers for SAT(PC(ID)) are also strongly related to ASP solvers

� Works supported by FWO-Vlaanderen, IWT-Vlaanderen, European Framework 5
Project WASP, and by GOA/2003/08.

1 PC(ID) stands for “Propositional Calculus, extended with Inductive Definitions”.
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such as Smodels [21] and DLV [4]. These solvers use the fixpoint operator of the
well-founded semantics as a boolean propagation mechanism for rule sets.

Viable approaches for building a solver for SAT(PC(ID)) are:

1. A native approach that integrates inference techniques for inductive defini-
tions with SAT inference techniques.

2. Mapping PC(ID) theories to CNF theories and applying off-the-shelf SAT
solvers as in [23].

3. Mapping PC(ID) theories to equivalent general logic programs and then
applying off-the-shelf ASP solvers. Using results from [16], it is easy to ac-
complish, but it completely bypasses PC(ID)’s relation with SAT.

The first approach, explored in this paper, is the most promising in the long
run. It will improve our understanding of how to compute with inductive defi-
nitions and is best suited to integrate language extensions such as aggregates,
constraints and open functions.

Despite the semantical differences, the computational tasks of our algorithm
are very similar to those of algorithms like Smodels’ Expand [21] and DLV’s
DetCons [4]. Its novelty lies in the use of justification semantics [9], which offers
a different view on the computational task involved:

– One can locally test whether the well-founded operator is required.
– One can use a watched literal technique for propagations, very similar to the

Two Watched Literal technique used in SAT [20].

We introduce PC(ID) in Section 2 and the semantic foundations of our al-
gorithm in Section 3. We present the algorithm and argue its correctness in
Section 4. Its implementation, MidL, and a comparison with other approaches
are described in Section 5. We finish with conclusions and related work.

2 Preliminaries

2.1 PC(ID)

The semantics of FO(ID) ([7]) is here redefined for the propositional fragment
PC(ID). A vocabulary Σ is a set of atom symbols. A definition D is a set of
rules of the form (P ← ϕ), where P ∈ Σ is called the head of the rule, and the
body of the rule, ϕ, is a propositional formula in Σ. We denote by Def(D) the
set of atoms that appear in the heads of the rules of D. The set Σ \Def(D) is
called the set of open symbols of D and is denoted by Open(D). A literal is an
atom P or its negation ¬P ; it is defined if P ∈ Def(D), otherwise it is open. A
PC(ID) theory T in Σ is a set of propositional formulas and definitions in Σ.

A three-valued Σ-interpretation I is a function from Σ to the set {f ,u, t} of
truth values; a two-valued interpretation maps to {f , t} instead. Truth values
are ordered by the truth order, defined as f < u < t, and the precision order,
given by u <p t and u <p f . We also have f−1 = t, u−1 = u and t−1 = f . We
denote the projection of I on the atoms in a set S by I|S .
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The semantics can be defined by means of the well-founded semantics [28]:
Given a definition D and an interpretation I|Open(D) of the open atoms of D,
there is a unique well-founded model of D extending I|Open(D), which we denote
by wfmD(I|Open(D)). An interpretation I is a model of definition D, denoted I |=
D, iff I is two-valued and I = wfmD(I|Open(D)); I is a model of a PC(ID) theory
T iff I is two-valued and is a model of every definition and every propositional
formula in T . An equivalent characterisation is provided by Corollary 1 below.

Example 1. Consider the definition D1 = {P ← Q}. Then P ∈ Def(D1), Q ∈
Open(D1). The models of D1 are {P,Q} and ∅. They are also the models of
D2 = {Q ← P}. Hence, T1 = {{P ← Q}, {Q ← P}} which consists of two
definitions has models {P,Q} and ∅. However, T2 = {{P ← Q,Q ← P}} consists
of a single definition and has only ∅ as model.

The theory T3 = {{P ← Q}, {P ←},¬Q ∨R} has two definitions for P and
one propositional formula; the first definition has two models (as D1), while the
second one has only {P} as its model and {P,Q,R} is the only model of T3.

2.2 MidL Normal Form

Definition 1 (MidL normal form). A PC(ID) theory T is in MidL normal
form iff T = C ∪ {D} ∪ E where C is a set of clauses without defined literals,
E is a set of equivalences P ≡ Q where P is an open and Q a defined atom,
and D is a definition (a set of rules), with for each atom Q in Def(D) exactly
one rule with Q in the head. Moreover for all rules R in D, R is in the form
Q ← L1 ∧ . . . ∧ Ln or Q ← L1 ∨ . . . ∨ Ln, where n ≥ 1 and Li are literals.

Example 2. TMidL
3 = {{PDA ← Q,PDB ←},¬Q ∨ R,P ≡ PDA , P ≡ PDB} is

the MidL normal form equivalent to T3 in Example 1: the models of TMidL
3 ,

restricted to T3’s vocabulary, are the models of T3.

Defined atoms whose body is a disjunction respectively conjunction are called
disjunctive respectively conjunctive atoms. Let S be a set of literals; then we
abbreviate

∧
L∈S L by

∧
S and

∨
L∈S L by

∨
S.

A straightforward transformation (time linear in the size of the input) that
maps a PC(ID) theory T to an equivalent theory in MidL normal form by
introducing new atoms, is given in [17]. As the above example shows, the head
of a definition P ← . . . becomes a defined atom PD which is linked to the original
atom P through an equivalence.

3 Semantic Background

This section introduces semantical concepts borrowed from [9].

Definition 2 (Direct justification). Let D be a definition in MidL normal
form and Jd a set of literals. Jd is a direct justification for a defined atom P iff:

– either P ← L1 ∧ . . . ∧ Ln ∈ D and Jd = {L1, . . . ,Ln};
– or P ← L1 ∨ . . . ∨ Ln ∈ D and Jd = {Li} for some i ∈ 1 . . . n.
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Jd is a direct justification for a defined literal ¬P iff:

– either P ← L1 ∧ . . . ∧ Ln ∈ D and Jd = {¬Li} for some i ∈ 1 . . . n;
– or P ← L1 ∨ . . . ∨ Ln ∈ D and Jd = {¬L1, . . . ,¬Ln}.

Example 3. Consider D1 = {P ← Q ∧ ¬R,Q ← ¬P ∨ R}. The set {Q,¬R} is
a direct justification for P and {P,¬R} for ¬Q; both {¬P} and {R} are direct
justifications for Q and both {¬Q} and {R} for ¬P .

Consider D2 = {P ← Q,Q ← P ∨R,R ← ¬P ∧ S}. Though {Q} is a direct
justification for P and {P} for Q, the truth of P doesn’t justify the truth of Q
or vice versa, as illustrated by the model wfmD({Sf}) = {P f , Qf , Rf , Sf}.

A direct justification is insufficient to infer the truth of a literal in the well-
founded model. We need to consider graphs of direct justifications. A leaf of a
graph is a node without outgoing edges.

Definition 3 (Justification). A justification J of a definition in MidL normal
form is a directed graph where the nodes are literals, such that for each internal
node L, L is a defined literal and the set of its children, ChJ(L), is a direct
justification for L. A justification is total if none of its leaves are defined literals.

Example 4. D2 from Example 3 has many justifications. Examples are:

J0 = ∅, J1 =

⎡⎢⎣ P

��
Q

��
⎤⎥⎦, J2 =

⎡⎢⎣ P �� Q �� R

��

�� S

¬R

��

¬Q		 


¬P��

⎤⎥⎦, J3 =

⎡⎢⎣ ¬P��
¬Q

��

�� ¬R

⎤⎥⎦.

Here J0, J1 and J2 are total, but J3 is not since ¬R is a defined leaf.

As the example shows, justifications can contain cycles. We distinguish be-
tween positive. negative and mixed cycles. They consist of repectively only posi-
tive (as in J1), only negative (as in J3) and both kind of literals (as in J2).

A justification is an argument for the truth value of its literals. Its value
depends on the structure of the justification and the truth value of its leaves.

Definition 4 (VI(J), the value of a justification). Let J be a justification,
and I an interpretation.

– VI(J) = f if J contains either a leaf L with I(L) = f or a positive cycle.
– VI(J) = u if VI(J) �= f and J contains either a leaf L with I(L) = u or a

mixed cycle (or both).
– VI(J) = t otherwise (all leaves are t and cycles, if any, are negative).

Example 5. Continuing Example 4. Independent of I, VI(J0) = t and, because
J1 has a positive cycle, VI(J1) = f . Now, let I = {P t, Qt, Rf , St}. VI(J2) = u,
indeed, although the only leaf (S) is t, J2 contains a mixed cycle; and finally
VI(J3) = t, because the only leaf is t and the only cycle is negative.
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The value of a total justification J depends only on its cycles and the in-
terpretation of its open symbols. JL, the restriction of J to L, denotes the
subgraph with L as root. A defined literal L is justified in a justification J if JL

is non-empty and total. The supported value SVI(L) of a defined literal L in an
interpretation I is the maximal value in the truth order of its justifications i.e.,
SVI(L) = max≤{VI(J)|J is a justification and L is justified in J}.

It was proven in [9] that in the well-founded model M , the interpretation of
defined literals agrees with the supported values, i.e., M(L) = SVM (L). Fur-
thermore, [5] proved that SVM (L) = SVM (¬L)−1 for any defined literal L.

Example 6. Continuing from Example 4, let I ′ be an interpretation with I ′(S) =
f . Then SVI′(P ) = f , since for any justification J in which P is justified, either
S is a leaf in JP , or JP = J1. And indeed, let J ′ be the total justification obtained
from J3 by adding the edge (¬R,¬S); then SVI′(¬P ) ≥ VI′(J ′¬P ) = VI′(J ′) = t.

Hence one can compute the well-founded model by computing for each literal
its supported value. However, searching over all justifications for the best one is
infeasible. Fortunately, attention can be restricted to a subclass of justifications.

Definition 5 ((strict) support, positive residue). Let J be a justification
and I an interpretation. J supports I if I(L) ≤p I(

∧
ChJ(L)) and J strictly

supports I if I(L) = I(
∧
ChJ (L)) for each internal node L of J .

The positive residue of J in I consists of the atoms that would be strictly
supported if true but are undefined, i.e., I(L) = u and I(

∧
ChJ(L)) = t.

Definition 6 (Cycle-safe). Let J be a justification and I an interpretation. J
is cycle-safe in I if J contains neither mixed cycles with literals that are true in
I nor positive cycles.

Definition 7 (v-total). Let J be a justification, I an interpretation, and v a
truth value, i.e., v ∈ {f ,u, t}. Then J is v-total in I if for each defined literal
L such that I(L) = v, L is justified in J .

Note that if a justification J is f -, u- and t-total w.r.t. an interpretation I,
then J is total, but a total justification might not be f -, u- or t-total w.r.t. any
interpretation, because not every literal occurs in J .

Theorem 1. Let I be an interpretation and J a justification. If the following
conditions hold:

(i1) J strictly supports I;
(i2) J is cycle-safe in I;
(i3) J is t-total in I;
(i4) J is u-total in I,

then for every defined literal L it holds that I(L) = SVI(L).

Corollary 1. Let I and J satisfy (i1)-(i4). Then wfmD(I|Open(D)) = I.

In the next section we introduce an algorithm that incrementally constructs
and maintains a 3-valued interpretation I and a justification J that satisfy the
conditions (i1)-(i4).
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Initialize I and J (see Section 4.4);1

while there is an open atom A with I(A) = u do2

Select open atom A with I(A) = u;3

Choose S := {A} or S := {¬A};4

% Boolean Propagation:
while true do5

if S �= ∅ then6

Direct Propagation(I, J,S); % Can initiate backtracking7

if there is an L with I(L) = u and ChJ (L) = ∅ then select such a L;8

else Break;9

S := Justify(I, J, L);10

if I is 2-valued then Return Satisfiable;11

else Backtrack;12

Algorithm 1. MidL(T )

4 Algorithm

4.1 Structure of the Algorithm

The progenitor of our algorithm is the DLL algorithm [3], which is also the basis
of most of today’s SAT solvers. The DLL algorithm incrementally constructs an
interpretation I that satisfies an input CNF theory T . In each stage, a choice
literal is selected and is made true, after which boolean propagation is applied on
the current assignment to infer other true literals. In particular, unit propagation
makes the last non-false literal of a clause true. In case of conflict, backtracking
returns to the last choice point. There, the alternative choice is made.2

Algorithm 1, the backbone of our algorithm is similar to the DLL algorithm.
The input is a PC(ID) theory in MidL normal form. However, the choice literal
is an open one and boolean propagation is extended to include propagations
according to the well-founded semantics by maintaining a 3-valued assignment
I and a justification J . The aim of Steps 1 and 1 is to establish the conditions
(i1)-(i4), as well as the following invariant:

(i5) For each clause C ∈ T , I(C) ≥ u;

If so, obviously, I is a model when Step 1 returns Satisfiable. The “Boolean
Propagation” (Step 1) is the core of the algorithm; it consists of two components:

Direct Propagation. The input consists of I and J , the current interpretation
and justification and the set of literals S to be made true. The latter are
made true, unit propagation on the clauses and propagation from body to
head in the rules of the definitions are applied. This establishes the invariants
(i1)-(i3) and (i5) unless a conflict is detected and backtracking is initiated.

2 Unsatisfiable is returned when no more backtrackings are possible.
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Justify. The input consists of the current I and J , and a literal L that violates
invariant (i4) (u-totality) (L is a unknown defined literal that has no justi-
fication). The procedure tries to adjust J into a justification J ′ in which all
literals of J ′L are strictly supported. In case this fails, an unfounded set [28]
is found. The involved atoms must become false, their negation is returned
in the set S for processing by the direct propagation.

The u-totality invariant is satisfied when the while loop exits in Step 1. It
terminates because Direct Propagation extends the interpretation I and Justify
either reduces the number of unknown defined literals without justification or
finds a unfounded set that leads to an extension of I in the next iteration. Hence:

Theorem 2. Steps 1-1 of Algorithm 1 terminate; when they do via Step 1 then
invariants (i1)-(i5) are satisfied.

4.2 Direct Propagation (Algorithm 2)

The Direct Propagation algorithm uses the following data structures:

– A data structure dj which associates with each defined literal L a direct
justification of L. While dj(L) is constant for conjunctive atoms and the
negation of disjunctive atom, it consists of a selected literal (the watched
literal) in the other cases.

– A boolean data structure just over defined literals, indicating whether or
not the literal’s direct justification belongs to the current justification3.

The data structures dj and just together determine a justification J in the
following way: if just(L), then ChJ (L) = dj(L); otherwise, ChJ(L) = ∅.

Making a literal in S true (Step 2) invalidates invariant (i1); however, the
following weaker invariants are maintained:

(i6) J supports I;
(i7) the positive residue of J in I is a subset of S; for all defined literals

L ∈ S: VJL(I) = t; i.e., there exists a justification for making L true.

From invariant (i7), it follows that there is no positive residue when S becomes
empty, hence (i1) is restored. Also (i2) and (i3) are preserved:

t-totality (i3): A defined literal can only be made true in step Step 2 of Al-
gorithm 2.4 Therefore, if a defined literal L has I(L) = t, we know by (i6)
that it has children in J that are all also true. By induction over all literals
in JL, JL must be total and invariant (i3) holds.

3 Hence L is justified if just(L) and the literals in ChJ (L) are justified.
4 This explains both the restriction in Step 1 of Algorithm 1 to open literals, and the

requirement in Definition 1 that the CNF formula cannot contain defined literals.
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Assert: (i1), (i2), (i3) and (i5)
repeat1

Pop L from S ;2

if I(L) = f then backtrack (to choice point in Alg. 1);3

if I(L) �= t then4

I(L) := t;5

if L is defined then Push its original on S (using the equivalences);6

if L is open then for every clause c of T containing ¬L do7

if c has exactly one non-false literal L′ then Push L′ on S ;8

for every unknown literal L′ for which {L} is a direct justification do9

just(L′) := t; dj(L′) := {L}; Push L′ on S ;10

for every unknown literal L′ such that ¬L ∈ dj(L′) do11

case L′ = P with P ← ¬L ∧ · · · ∈ T , or L′ = ¬P with12

P ← L ∨ · · · ∈ T
dj(¬L′) := {L}; just(¬L) := t; Push ¬L′ on S ;13

case L′ = ¬P with P ← L ∧ · · · ∈ T14

if P has no unknown body literals left then Push P on S ;15

else16

Select an unknown body literal L′′ of P ; dj(L′) := {¬L′′};17

just(L′) := t ;

case L′ = P with P ← ¬L ∨ · · · ∈ T18

if P has no unknown body literals left then Push ¬P on S ;19

else20

if P has unknown open or negative body literal L′′ then21

dj(L′) := {L′′}; just(L′) := t;22

else23

Select an unknown defined body atom Q;24

dj(L′) := {Q}; just(L′) := f ;25

until S = ∅;26

Algorithm 2. Direct Propagation(I, J,S)

Cycle-safeness (i2): By (i3) and (i6), true literals are justified, hence taking
a true literal as the direct justiciation of a unknown literal cannot create
a mixed cycle containing true literals.We must also verify that none of the
steps in Algorithm 2 creates a positive cycle in J . Steps 2-2 don’t change
J . In the case of Step 2 ChJ (L′) is only changed for a negative literal L′,
in the case of Step 2 J is either not changed, or only for a negative literal.
Finally, in the case of Step 2 a positive cycle might be created in J when the
direct justification of the atom P is changed to a positive defined atom. This
is prevented by removing it from J (just(L′) := f implies ChJ(L′) := ∅).
Consequently, u-totality, invariant (i4), is violated.

Making an unknown literal true can violate invariant (i5) on the clauses.
Step 2 not only performs unit propagation (not all clauses containing ¬L are
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inspected but the Two Watched Literal technique is used) but also restoration
of the invariant. By pushing the last non-false literal on the stack, a violation of
the invariant will finally result in the uncovering of a conflict in Step 2.

Example 7. Let T = {{PD ← QD ∨ A, QD ← PD ∧ RD ∧ ¬B, RD ← C},
PD ≡ P, QD ≡ Q, RD ≡ R}, I = ∅, and

J =

⎡⎢⎣ PD

��

QD		

��

�� RD

��

¬PD
��

��

¬QD
 ¬R

��
A ¬B C ¬A ¬C

⎤⎥⎦. Suppose Step 1 in Al-

gorithm 1 chooses S := {B}. Then Step 2 makes B true; subsequently Step 2
changes ChJ (¬QD) from ¬PD to B, and pushes ¬QD on S. In a next iteration
of the repeat loop, ¬QD is made true, and ¬Q is pushed on S in Step 2.

Suppose that orginally S := {¬A} is chosen. After making A false, the algo-
rithm ends up in Step 2. dj(PD) is changed from A to QD. In addition just(PD)
is set to f . Note that otherwise a positive cycle PD ↔ QD would have been
created.

The Direct Propagation algorithm can be understood as performing a watched
literal technique for rules, similar to the Two Watched Literals (2WL) technique
in SAT [20]. Every literal in a singleton direct justification (i.e., of a positive
disjunctive atom, or of a negative conjunctive atom) is “watched”: when the
literal becomes false, the corresponding rule has to be visited. When any other
literal in that body becomes false, we don’t need to visit the rule yet, since the
“watched literal” is still unknown and thus might still justify the head.

Interpreting the head of each rule as a second watched literal, it can be seen
that the Direct Propagation algorithm actually has the same behaviour as the
2WL scheme has on the completion of the definition.

4.3 Justify (Algorithm 3)

Algorithm 3 tries to adjust J so that JP is a total justification for the unknown
atom P . If dj(P ), the direct justification of P , can be added to the current justi-
fication J (by setting Just(P ) to t) without creating a positive cycle (involving
P ) then we are done. This is tested in Step 3. This is a fairly simple test; how-
ever, if it fails, we will have to adjust the direct justification of P to construct a
total justification.

The next step then is to find an overestimation of all unknown defined atoms
that can potentially contribute to some JP that is a total justification of P . Note
that the unknown open literals and unknown negative literals can be used as valid
leaves in a total justification, so they need not be included. This overestimation
is computed in Step 3 and stored in E . It consists of all atoms reachable from P
in the dynamic positive dependency graph. The latter is defined as follows:

Definition 8 (dynamic positive dependency graph). Let D be a definition
in MidL normal form, I a partial interpretation. The dynamic positive depen-
dency graph of D in I is a directed graph (V,E) of atoms. P ∈ V iff P is defined
in D and I(P ) = u. (P,Q) ∈ E iff {P,Q} ⊆ V and P is the head of a rule and
the atom Q occurs in its body.
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Assert: (i1), (i2), (i3) and ChJ (P ) = ∅
Result: a set of negative literals S ;
if IsCycleSafe(P, dj) then just(P ) := t; Return ∅;1

E := FindSet(I,P );2

B := FindBottomSeeds(I, E); E := E \ B;3

while B �= ∅ do4

Select Q from B; B := B \ {Q};5

for disjunctive atoms Q′ ∈ E such that Q occurs in the body of Q′ do6

dj(Q′) := {Q}; just(Q′) := t; Move Q′ from E to B;7

for conjunctive atoms Q′ ∈ E such that dj(¬Q′) = {¬Q} do8

if there exists a Q′′ ∈ E in the rule of Q′ then dj(¬Q′) := {¬Q′′};9

else just(Q′) := t; Move Q′ from E to B;10

Return {¬Q|Q ∈ E};11

Algorithm 3. Justify(I, J, P )

Observe that E not only includes atoms without direct justification such as P
itself, but also atoms with direct justification. In order to justify P , however, it
may be necessary to update the direct justification of such atoms.In other words,
E is the set of endangered atoms: atoms, whose direct justification may have to
be revised.

In the following steps, the algorithm tries to construct justifications for el-
ements in E . In Step 3, it collects in B elements from E that have a trivial
justification:

– conjunctive atoms C ∈ E which have no elements from E in their body (the
unknown literals in their body are either open or negative)

– disjunctive atoms D ∈ E which have an unknown open or negative literal L
in their body (their direct justification is set to that literal).

In the while loop, elements from B are used one by one as seeds to construct
justifications for other elements in E . In Step 3, the direct justification of a
disjunctive atom is set to the seed and in Step 3, a conjunctive atom is justified
and removed from E once it has no other body atoms in E . In both steps,
the newly justified atoms are added to the seeds. Observe that negative literals
returned in Step 3 are justified; their direct justifications have been set in Step 3.

When exiting the while loop, all seeds have been used and what remains is
an unfounded set of atoms. They have to be made false, hence their negation is
returned by Justify.

This algorithm is an adaptation from [15] to the context of justifications.

Example 8. Continuing from Example 7, where we initially chose S := {¬A}.
In Step 1 of Algorithm 1, Justify(I, J,QD) will be called. Since dj(QD) = {PD}
and dj(PD) = {QD}, IsCycleSafe(QD , dj) fails. E = {PD, QD, RD} is computed
in Step 3. In the next step we find B = {RD} and therefore E = {PD, QD},
meaning that RD might still justify PD and/or QD becoming true.
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Since RD only occurs in a conjunctive body (QD), but dj(¬QD) �= {¬RD},
RD cannot justify anything, and the while-loop stops. Finally Justify returns
{¬PD,¬QD} which are the negated literals from the unfounded set {PD, QD}.

Let J be a justification, then we define TJ as the set {L|L ∈ J∧ChJ (L) = ∅∧L
is defined}, i.e. the defined leaves of J .

Proposition 1. Let I, J and P satisfy the requirements in Algorithm 3. Let
J ′ be the justification after termination of Algorithm 3 and S the resulting set.
Then either S is empty and TJ′ ⊆ TJ \ {P}, or S is not empty and contains
the negated literals from an unfounded set: for each ¬Q ∈ S, ¬Q is justified and
VJ¬Q(I) = t.

Proposition 2. Algorithm 3 preserves invariants (i1), (i2), (i3) and (i5).

These propositions formalize our claim in Section 4.1 that after each call to
Justify either I is constant and the number of unknown defined leaves of J
decreases, or I can be extended by the set returned by Justify.

4.4 Correctness, Initialization and Optimization Issues

Soundness and Completeness. Soundness has been argued in Section 4.1: I is
a model when Algorithm 1 returns Satisfiable. Completeness follows from
the completeness of the DLL algorithm and the observation that our Boolean
Propagation extends unit propagation of DLL and computes after each choice
point the well-founded model extending the interpretation of the open literals.

Initialization. Step 1 of Algorithm 1 should initialize an interpretation I and a
partial justification J such that invariants (i1)-(i5) are satisfied. To do this, we
initialize I to the empty interpretation and dj(L) to an arbitrary direct justifica-
tion of L, for every defined literal. To avoid positive cycles, we set just(P ) := f
for every defined atom P . Then the set of unit clauses is collected in S, and the
initialisation executes the same while loop as described in Step 1 of Algorithm 1.

Backtracking. Backtracking restores I and J to some old value, say Ib and Jb.
The invariants (i1)-(i5) hold for Ib and Jb. In fact, with exception of (i4), they
also hold for Ib and J . Indeed, a conflict arises at a moment when (i2), (i3)
and (i6) all hold. After restoring I to a previous level, for every defined literal
L it holds that I(L) = I(

∧
dj(L)), and hence (i6) still holds, i.e., J supports

I. Since (i1)-(i3), (i5) are sufficient pre-conditions for Boolean Propagation, the
justification need not be restored upon backtracking.

Endangered Atoms. After an unsuccessful cycle-safety check (which is in fact
optional), the first step of Justify is a call to FindSet to produce E , the set of
atoms endangered by the modified direct justification of P . There are a number
of alternative possibilities. For example, the algorithm would remain correct if
FindSet would return all unknown atoms in Def(D) instead. However, one could
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also compute a smaller set of endangered atoms: Those in the strongly connected
component (SCC) of P in the dynamic positive dependency graph. An SCC is
a set S of atoms, such that every element of S can reach every other element
of S via the directed edges. Tarjan’s algorithm searches for strongly connected
components in time linear in the size of the graph [26, 22]. Also the SCC of
the static positive dependency graph, which we define as the dynamic positive
dependency graph after the initialization (Step 1 in Algorithm 1), could be used.
The smaller the set of endangered atoms, the faster it is processed. However,
there is a trade-off between the work spent to compute the endangered atoms
and that spent on processing them.

5 Experimental Results

We have made a prototype implementation, called MidL, of the algorithm de-
scribed in the previous section. We have compared MidL to Smodels [21] and
idsat(zChaff) [23, 29]. We have thus a representative for each of the three ap-
proaches mentioned in Section 1. Note that the input to Smodels is handcoded
and hence behaves possibly better than what one would obtain by an automatic
mapping from PC(ID) to ASP. We used two classes of problems: N -queens and
Hamiltonian cycles5. All the experiments were run on 863 MHz P-III with 254
MB of RAM. In Table 1 timings to find the first model (averaged over 5 runs)
are given in seconds.

Since MidL doesn’t enjoy the fine-tuned optimizations of a state of the art
SAT or ASP solver, we don’t expect comparable effiencies. Most notably, MidL’s
data structures are not yet minimized, which can be expected to lead to serious
losses in cache usage. Also its heuristics are very crude.

Indeed, the results show poor scaling. However, observe that MidL outper-
forms the other solvers on some of the smaller problems. Remarkably, zChaff
cannot cope with several Hamiltonian cycle problems; as they contain a lot of
induction, idsat increased the size of these problems 20-fold. This confirms the
usefulness of our native approach with respect to a translation to SAT. For an
important class of problems, MidL is currently the best PC(ID) model generator.

In Table 2 we compare timings6, the total number of atoms found to be in an
unfounded set (U) and the total number of endangered atoms considered (E)
for some variants of MidL: in MidL- and MidL SCC-, the optional Step 1 of
Algorithm 3 is disabled, in MidL SCC and MidL SCC- the FindSet procedure
returns the SCC of the dynamic positive dependency graph, as described in
Section 4.4. The first important observation is that the cycle-safety check almost
consistently yields faster results. A second observation is that MidL SCC is
doing more intelligent work: it uses less endangered atoms, and it also finds
5 We denote the Hamiltonian cycle problems by “H-#vertices-#nodes”. Encodings are

taken from http://asparagus.cs.uni-potsdam.de/; randomly generated graphs
were used.

6 To save space, we’ve selected but a few example problems; other problems exhibit
the same behaviour.
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Table 1. Timings (sec) of MidL,
idsat using zChaff, and Smodels.
# = >10min.

MidL idsat+zCh Smod.
9-queens 0.08 0.56+0.02 0.05
11-queens 1.49 0.79+0.21 0.18
13-queens 10.77 1.18+0.13 0.43
15-queens 296.91 1.67+0.16 1.85
H-20-200 0.32 61.19+7.62 0.10
H-25-200 0.06 96.5+82.2 0.10
H-30-200 1.97 98.5+137 0.13
H-35-200 3.65 #+# 0.18
H-20-400 0.12 72.87+# 0.35
H-25-400 0.20 128.0+# 0.55
H-30-400 0.18 209.2+# 0.56
H-35-400 # #+# 0.87

Table 2. Comparison of unfounded set sizes
(U) vs. number of “endangered atoms” (E) and
timings (sec) for different variants of MidL

MidL MidL- MidL
SCC

MidL
SCC-

H-20-
200

U 1427 1461 1022 1433
E 4570 20327 2535 11363

time 0.32 0.34 3.52 1.57

H-30-
200

U 1933 2013 474 1976
E 10567 116186 2708 62460

time 1.97 2.87 1.20 3.62

H-20-
400

U 248 283 112 179
E 1112 6573 785 4435

time 0.12 0.17 0.25 0.24

H-30-
400

U 209 231 85 180
E 2002 31618 2031 22975

time 0.18 1.70 0.32 1.77

much less unfounded sets, i.e., finds falsity of atoms through Direct Propagation
more often. Still, MidL outperforms MidL SCC, suggesting that a more careful
implementation that removes some overhead of the SCC computation might be
beneficial.

6 Conclusions, Related and Future Work

This work is one of the first attempts to build a SAT(PC(ID)) system. We have
chosen for a direct implementation, in contrast to a mapping to ASP, or to
propositional logic, as was done in [23]. The latter approach is similar to ASP
systems such as ASSAT [14] and Cmodels [13].

Despite semantical differences between PC(ID) and ASP, the algorithms pre-
sented here share a lot of structure with those of Smodels and DLV. The main
novelties of our approach come through the use of justifications:

– this enables us to do the beneficial cycle-safety check;
– it integrates nicely with a watched literal technique for rules;
– the justification graph can be seen as a straightforward extension of the

implication graph, which is used for Clause Learning [18]. In the near future,
we intend to include this important SAT technique in MidL.

Another strongly related system is dcs [11]. This system can be viewed as a
model generator for a fragment of FO(ID). The system takes as input a function
free FO theory and an inductive definition consisting of Horn rules, and computes
Herbrand models of this theory.

In future work, we plan to re-implement MidL, investigating a variety of tech-
niques from SAT, logic programming and ASP. Interesting recent optimizations
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to SAT solvers are described in [20, 24, 18, 29]. Potentially relevant techniques
for computing the well-founded semantics are described in [27, 1, 15, 25].

Finally, we mention some issues that will be investigated in the near future:

– The current solver uses rules only in a bottom up propagation. In some
situations it is definitely worthwhile to also exploit proagation from head to
body.

– As shown in [20, 24], the quality of the search algorithm strongly depends
on the heuristics. Now that our search algorithm is more or less fixed, we
should start to evaluate different heuristics for the system.

– A major task in the project is to build an efficient grounder which reduces
a FO(ID) theory to a propositional theory by grounding it with respect to
the Herbrand universe.
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Abstract. PoolResolution for propositionalCNF formulas is introduced.
Its relationship to state-of-the-art satisfiability solvers is explained. Ev-
ery regular-resolution derivation is also a pool-resolution derivation. It
is shown that a certain family of formulas, called NT∗∗(n) has poly-
nomial sized pool-resolution refutations, whereas the shortest regular
refutations have an exponential lower bound. This family is a variant
of the GT(n) family analyzed by Bonet and Galesi (FOCS 1999), and
the GT′(n) family shown to require exponential-length regular-resolution
refutations by Alekhnovitch, Johannsen, Pitassi and Urquhart (STOC
2002). Thus, Pool Resolution is exponentially stronger than Regular
Resolution. Roughly speaking a general-resolution derivation is a pool-
resolution derivation if its directed acyclic graph (DAG) has a depth-first
search tree that satisfies the regularity restriction: on any path in this
tree no resolution variable is repeated. In other words, once a clause is
derived at a node and used by its tree parent, its derivation is forgotten,
and subsequent uses of that clause treat it as though it were an input
clause. This policy is closely related to DPLL search with recording of
so-called conflict clauses. Variations of DPLL plus conflict analysis cur-
rently dominate the field of high-performance satisfiability solving. The
power of Pool Resolution might provide some theoretical explanation for
their success.

1 Introduction

The reader is assumed to be generally familiar with the propositional satisfia-
bility problem, CNF formulas, and resolution derivations. Some definitions are
briefly reviewed in Section 2, but are not comprehensive.

The history of propositional resolution is interesting. In 1960, Davis and Put-
nam published an algorithm for deciding whether a propositional CNF formula
is unsatisfiable [11]. They did not use the term “resolution” but after Robinson
introduced the term in 1965, subsequent literature recognized that what Davis
and Putnam were doing was a particular policy for propositional resolution. In
1962, Davis, Logemann and Loveland published the search algorithm that is well
known today [10]. Interestingly, they described it as an optimization of the 1960
algorithm to conserve memory.

It appears to have been “folklore” in the theory community that it is possi-
ble to extract a resolution refutation from the 1962 search algorithm of Davis,

G. Sutcliffe and A. Voronkov (Eds.): LPAR 2005, LNAI 3835, pp. 580–594, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Logemann and Loveland. This fact was probably known to Tseitin in 1968 and to
Galil soon after, although we are not able to pinpoint any published statement.
About this time, the 1962 search algorithm began to be referred to as the “Davis-
Putnam algorithm” or simply “DP” in the literature. This must have been rather
irritating to Logemann and Loveland, particularly since the wrong 1960 paper was
consistently cited as the source. This misnomer was not discovered until the 1990s,
when the 1962 paper was rediscovered and the acronym DPLL was proposed for
the search algorithm “to recognize the contributions of all four authors.”

In any case, Tseitin introduced the regularity restriction on resolution deriva-
tions, that no variable may be resolved upon more than once on any path in the
derivation, and demonstrated a super-polynomial lower bound for regular reso-
lution [23]. Both DP (resolution) and DPLL (search with resolution extracted)
fell under the umbrella of regular resolution.

In the 1980’s practical experience emerged that showed that DPLL (then
called DP) performed unexpectedly well as a propositional decision procedure in
comparison to known published strategies for resolution [20, 21]. In the 1990’s
further practical experience showed that DPLL performed poorly when used “as
is” but could be greatly enhanced with additional “preorder” reasoning [14].
Meanwhile, it was recalled or rediscovered that DPLL was able to extract a
resolution refutation from its search [16].

The last decade has apparently seen theory and practice marching in opposite
directions. DPLL produces a resolution derivation that is tree-like, whereas DP
produces a resolution derivation that is a directed acyclic graph (DAG) and also
is ordered (i.e., clashing variables appear in the same order along every DAG
path). Although DP has achieved very little practical success [12], DPLL has
been the work-horse for high performance satisfiability solvers [24, 3, 18, 19, 25,
13]. Yet theory has shown that the best tree-like resolution derivation may be
exponential in length when a DAG resolution derivation is polynomial in length
[5, 6]; indeed the separation holds even when the DAG resolution derivation is
required to be ordered or regular [7, 8].

1.1 Summary of Results

The purpose of this paper is to show that the practice of satisfiability solving has
unknowingly been moving in the direction indicated by proof complexity theory,
away from the limitations of tree-like computations.

We introduce and formalize a new resolution strategy, called Pool Resolution.
We show that pool resolution is “exponentially stronger” than regular resolution.
Specifically, we show that pool resolution can linearly simulate regular resolu-
tion on all formulas. Then we exhibit a family of formulas for which there are
polynomial-length pool refutations, but only exponential-length regular refuta-
tions. The exponential lower bound for regular refutations on this family was al-
ready shown by Alekhnovitch, Johannsen, Pitassi and Urquhart [1]; this paper
demonstrates the existence of polynomial-length pool refutations. Beame, Kautz,
and Sabharwal provide an excellent discussion on comparing reasoning systems
through proof complexity and how it applies to DPLL with “clause learning” [4].
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Based on proof-complexity comparisons, it was known that exponential sepa-
rations supported the following strict order: tree-like < regular < general resolu-
tion. This paper shows that regular < pool ≤ general resolution. Finally, we show
that pool resolution provides a framework that encompasses most, if not all, of
the well-known satisfiability solvers based on DPLL and some form of conflict
analysis, also known as “clause learning,” “clause recording,” “nonchronological
backtracking,” “postorder lemmas,” and similar terms. The main difference is
that pure pool resolution remembers all derived clauses so they are available
for re-use, whereas implemented satisfiability solvers only remember some of
their derived clauses. A longer version of this paper, with proofs, is available at
ftp://ftp.cse.ucsc.edu/pub/avg/lpar12long.pdf.

2 Preliminaries

2.1 Notation

This section collects notations and definitions used throughout the paper. Stan-
dard terminology for conjunctive normal form (CNF) formulas is used. Notations
are summarized in Table 1. Although the general ideas of resolution and deriva-
tions are well known, there is no standard notation for many of the technical
aspects, so it is necessary to specify our notation in detail. As usual, a finite set
of propositional variables is assumed (variables for short) and a literal is either
a variable or a negated variable.

Definition 2.1. (clause, formula, Lits, mention) A clause is either a reg-
ular clause or the unique tautologous clause, denoted by 5. A regular clause is
a (possibly empty) consistent set of literals, which are logically connected dis-
junctively. A regular clause C is said to mention a literal q if either q ∈ C or
¬q ∈ C. A CNF formula (formula for short) is a finite (possibly empty) sequence
of clauses, which are logically connected conjunctively. The set of all literals that
can be constructed from the variables in formula F is denoted by Lits(F). This
set is assumed to have some fixed linear order. $�

There are technical reasons for defining a formula as a sequence, rather than
a set, of clauses. First, this permits duplicate clauses. Second, when a procedure
derives clauses sequentially, some or all of the derived clauses can be appended to
the input formula, the structure remains a formula, and the order of derivation
is preserved.

Definition 2.2. (assignment, satisfaction, model) A partial assignment is
a partial function from the set of variables into {false, true}. This partial func-
tion is extended to literals, clauses, and formulas in the standard way. If the
partial assignment is a total function, it is called a total assignment, or simply
an assignment.

A clause or formula is satisfied by a partial assignment if it is mapped to true;
A partial assignment that satisfies a formula is called a model of that formula. $�
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Table 1. Summary of notations

a, . . . , z Literal; i.e., propositional variable or negated propositional variable.
¬x Complement of literal x; ¬¬x is not distinguished from x.
|x| The propositional variable in literal x; i.e., if a is a variable, |a| =

|¬a| = a.
A, . . . , Z Disjunctive clause, or set of literals, depending on context.
A, . . . ,H CNF formula, or set of literals, depending on context.
π Resolution derivation DAG.
σ Total assignment, represented as the set of true literals.
[p1, . . . , pk] Clause consisting of literals p1, . . . , pk.
⊥ The empty clause, which represents false.
" The tautologous clause, which represents true ; (see Definition 2.3).
α, . . . , δ Subclause, in the notation [p, q, α], denoting a clause with literals p,

q, and possibly other literals, α.
C− Read as “C, or some clause that subsumes C”.
p Where context makes it clear, [p] may be abbreviated to p.
C, p In a context where a formula is expected, {C} may be abbreviated to

C and {[p]} may be abbreviated to p.
res(q, C, D) Resolvent of C and D, where q and ¬q are the clashing literals (see

Definition 2.3).

A partial assignment is conventionally represented by the (necessarily consis-
tent) set of unit clauses that are mapped into true by the partial assignment.
Note that this representation is a very simple formula.

2.2 Resolution as a Total Function

The standard definition of resolution is a binary operation on two clauses that
contain a distinguished pair of clashing literals; i.e., one clause contains x and the
other contains ¬x. It is convenient to extend the definition to all pairs of clauses
and all literals, making resolution a total function. Recall that all tautologous
clauses are considered to be indistinguishable and are denoted by 5.

Definition 2.3. (resolution, subsumption, useless clause) Resolution is
an operation that takes as parameters a literal, called the clashing literal, and
two clauses; it produces a clause as its result, called the resolvent. In all cases,
the resolvent is independent of the order of the clause operands C and D, and
is independent of the polarity of the clashing literal q:

res(q, C,D) = res(q,D,C) = res(¬q, C,D) = res(¬q,D,C).

The variable |q| is called the clashing variable and ¬q is also called the clashing
literal.

IfC=[q, α] andD=[¬q, β] are two regular clauses (α and β are subclauses), then

res(q, C,D) =
{

[α ∪ β] if α ∪ β is consistent;
5 otherwise.

This defines the standard resolution operation.
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Resolution is extended to include 5 as an identity element:

res(q, C,5) = C.

Resolution is further extended to apply to any two regular clauses and any
literals, as follows. Fix a total order on the clauses definable with the current set
of propositional variables such that ⊥ is smallest, 5 is largest, and wider clauses
are “bigger” than narrower clauses. The smaller of two equally wide clauses is
the one whose literals are lexicographically smaller in the fixed literal ordering
(recall Definition 2.1).

If C = [α] does not contain q and does not contain ¬q, and D = [¬q, β] or
D = [q, β], then

res(q, C,D) = [α] .

If C = [α] and D = [β] and neither contains q or ¬q, then

res(q, C,D) = the smaller of C and D.

If clause C ⊂ D, we say C properly subsumes D; if C ⊆ D, we say C subsumes
D. Also, any regular clause properly subsumes 5. Notation D− is read as “D, or
some clause that subsumes D”. Alternatively, D− may be read as “some clause
that logically implies D”.

A clause is said to be useless for formula F if it is subsumed by a clause in
F ; 5 is always useless. (Normally, tautologous resolvents are discarded.) $�

Definition 2.4. (derivation, refutation) A derivation (short for
propositional resolution derivation) from formula F is a directed acyclic graph
(DAG) in which each vertex is labeled with a clause and possibly with a clash-
ing literal. Let D be the clause label of vertex v. If D = C ∈ F , then v has
no out-edges and no clashing literal, and is called a leaf. Otherwise v is called
a resolution vertex, has two out-edges, say to vertices with clause labels D0 and
D1. The edge to D1 is labeled with some literal, say q, and the edge to D0 is
labeled with ¬q. The vertex v is also labeled with the clashing literal q and the
clause D such that

D = res(q,D0, D1),

where res is the total function defined in Definition 2.3. When the derivation
contains ⊥, it is called a refutation. $�

In most analyses a derivation is a rooted DAG, and a derivation is said to
derive its root clause. In actual computation, some clauses might be derived
that turn out to be useless, yet remain in the DAG. In much of the discussion,
vertices are referred to by their clause labels. However, it is possible for the
same clause to label several vertices and in such cases further specification of
the vertex is needed.
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3 The Pool Resolution Procedure

In its general form, pool resolution can be regarded as a procedure PoolRes that
takes a clause P , called the current pool, and an input formula F as parameters,
and determines whether F |= P (F logically implies P ). Of course, F |= ⊥
means that F is unsatisfiable.

For simplicity of description, PoolRes(P,F) operates on a global proof struc-
ture G. If F |= P , PoolRes modifies G to be a derivation of some clause D ⊆ P
and returns D. Otherwise, PoolRes creates a (global) partial assignmentA that
demonstrates that P is not logically implied by F and returns the special value
SAT that is not a clause. Note that PoolRes might not be able to derive P
exactly, but can derive P− whenever F |= P .

The global proof structure G is a resolution DAG (Definition 2.4) that initially
consists of one vertex Ci for each clause in F and no edges. This is the state of
G when the top-level call PoolRes(P,F) occurs. To produce a refutation, the
top-level call is PoolRes(⊥,F). The procedure modifies G as the computation
proceeds. Pseudocode for a recursive implementation of PoolRes is shown in
Figure 1.

PoolRes(P,F)
1) If F has no eligible clauses:
2) construct partial assignment A = ¬(P );
3) return SAT.
4) If G contains an acceptable clause D ⊆ P :
5) return some such clause D.

6) // (If no base case applies, expand the pool P .)
7) Choose a clashing literal q not mentioned in P .

8) D0 = PoolRes([P,¬q] ,F).
9) If D0 = SAT, return SAT.

10) If ¬q �∈ D0, return D0.

11) D1 = PoolRes([P, q] ,F).
12) If D1 = SAT, return SAT.
13) // (If q �∈ D1, res(q, D0, D1) = D1.)

14) Create a new vertex for G labeled with D = res(q, D0, D1).
Create an edge labeled ¬q from D to D0 and an edge labeled q from D to D1.

15) Return D.

Fig. 1. Pseudocode for the general version of PoolRes. To produce a refutation, the
top-level call is PoolRes(⊥,F). A clause C is eligible with respect to pool P if C∪P is
consistent. For “pure” PoolRes all clauses are acceptable; other options are discussed
in the text.
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Several remarks about PoolRes may be made before analyzing its complete-
ness and performance.

1. An arbitrary clause C is said to be eligible with respect to pool P if C ∪P is
consistent; otherwise, it is ineligible with respect to P . The idea is that only
eligible clauses might be useful to PoolRes for deriving P−. For a clause
C to be useful to PoolRes for deriving P−, it must eventually play the
role of D on line 4 in the current procedure invocation or in some recursive
invocation. The first parameter of PoolRes is called the pool parameter.
But all pool parameters for these invocations are consistent supersets of P
(possibly P itself), so no clause containing a literal that is complementary to
some literal of P can be a subset of P or the pool parameter of any recursive
invocation.

Note that the set of eligible clauses shrinks as recursion depth increases.
For example, when ¬q is added to the pool at line 8, all clauses containing
q become ineligible in that recursive call.

2. At line 1, suppose there are no eligible clauses in F . Then A = ¬(P ) satisfies
all clauses of F . By the soundness of resolution A must satisfy all clauses
in G, so every clause in G has some literal that is complementary to some
literal of P , and there are no eligible clauses in G, either.

3. There are many possible policies for what is an acceptable clause on line
4. Bookkeeping not shown in the pseudocode might be needed to decide
whether a clause is “acceptable” under a particular policy. As discussed
above, D ⊆ P is possible only if D is eligible with respect to P , so it does not
matter whether ineligible clauses are “acceptable.” For “pure” PoolRes, all
clauses in G are “acceptable.” To force tree-like derivations to be produced,
make all derived clauses unacceptable.

The only restriction on acceptable-clause policies needed to ensure com-
pleteness is that, if all variables are mentioned in P and there are any eligible
clauses, then some eligible clause must be acceptable.

By formulating PoolRes to allow an arbitrary policy for “acceptable”
clauses, it is easier to show that some instantiation of PoolRes is able to
simulate, or imitate, other reasoning systems. With this flexibility, PoolRes
is able to reject clauses that would generate a base case, and continue to line
7 to derive a better clause.

4. Line 10 is an optimization. Due to resolution being a total function, line 14
would define D to be either D0 or D1 if line 10 were omitted.

5. At line 14, if q �∈ D1, then D is in a separate vertex from the vertex of D1,
even though D and D1 are the same clause. In this case, the vertex containing
D has an edge to the vertex containing D0. This technicality ensures that
the final G is rooted (unless SAT is returned).

6. At line 5, there might be several clauses that could be returned. The selection
could greatly influence the future course of the computation.

7. At line 7, there are normally many variables to choose among, then two
polarities for the literal to be called q. The policy for this choice is the
major determinant of the procedure’s practical ability to construct small
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derivations. The theoretical (non-deterministic) power of pool resolution is
determined (in part) by assuming this choice is always made optimally.

It is quite straightforward to show that PoolRes behaves “correctly”; that
is, it is sound and complete.

Theorem 3.1. Let F be a formula; let G be a resolution DAG with the clauses
of F as leaves; let P be a regular clause, P ⊂ Lits(F). Then PoolRes(P,F) as
given in Figure 1 returns a clause P− if and only if F |= P . $�

4 Pool Resolution Graphs

By the time the pool resolution procedure PoolRes given in Figure 1 has exited
at top level, assuming it did not return SAT, it has produced a rooted resolution
DAG G. Essentially, all rooted resolution DAGs can be characterized according
to whether some instantiation of a pool resolution procedure could produce them.
For analysis, we are only concerned with refutation DAGS, i.e., those whose
root is ⊥. This section shows that there is a close connection, and an important
difference, between refutation DAGs produced by regular resolution and those
produced by pool resolution.

Definition 4.1. A rooted resolution DAG based on input formula F is called
a pool resolution DAG if it can be produced by some sequence of choices in the
pool resolution procedure PoolRes given in Figure 1. These choices include:

1. Which clauses are “acceptable” at line 4 (without loss of generality, we can
assume at most one clause is deemed “acceptable” each time line 4 is exe-
cuted);

2. Which literal to choose as q at line 7.
$�

Definition 4.2. Let G be a subgraph of a resolution DAG (but not necessarily
a resolution DAG in its own right). A path in G is a regular path if no clashing
variable occurs twice among the vertices of the path. The subgraph G is said to
be a regular DAG if every path in G is regular. $�

As defined by Tseitin [23], regular resolution is the resolution system that
produces resolution DAGs that are regular DAGs, in accordance with Defini-
tion 4.2. Our use of the term regular is simply extended to include DAGs that
are not resolution derivations.

Theorem 4.3. If a rooted resolution refutation DAG G (based on input formula
F) is a pool resolution DAG, then there is some depth-first search of G (beginning
at its root) whose depth-first search tree (DFST) is a regular DAG. $�

Theorem 4.4. Let G be a rooted resolution refutation DAG (based on input
formula F) that contains only standard resolution operations (i.e., the clashing
literal q is present in one operand and ¬q is present in the other operand and
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5 never occurs). If there is some depth-first search of G (beginning at its root)
whose depth-first search tree (DFST) is a regular DAG, then G is a pool reso-
lution DAG. $�

Corollary 4.5. Let G be a rooted resolution refutation DAG (based on input
formula F) that contains only standard resolution operations (i.e., the clashing
literal q is present in one operand and ¬q is present in the other operand and
5 never occurs). If G was produced by regular resolution, then G is a pool
resolution DAG. $�

5 Exponential Separation of Pool Resolution from
Regular Resolution

In this section we consider a family of graphs NT∗(n), which has N = n(n− 1)
variables. It is known that there is a positive constant α such that any regu-
lar refutation DAG for NT∗(n) has more than 2αn vertices, for large enough
n, whereas general refutations of length Θ(n3) are known (see discussion of
Theorem 5.7 below). An empirical test indicates that zChaff [25] takes time
proportional to e0.75 n on this family, although it is not limited by the regularity
restriction. We introduce a related family NT∗∗(n) whose regular refutations are
at least as long, but has a pool refutation DAG with O(n3) vertices. The name
NT is an abbreviation for “no triangles.”

5.1 The Family NT∗(n) and Related Formulas

The definition of the family NT∗(n) is facilitated by some terminology. For all
of the formulas considered, there is an underlying semantic interpretation that
guides our understanding. We suppose there is a set W whose elements are
denoted wi, 1 ≤ i ≤ n. The propositional variables of NT∗(n) and related
formulas correspond to possible directed edges between distinct elements of this
set. A variable is true if the edge is present.

Definition 5.1. Let 〈i, j〉, where i and j are distinct integers in the range [1, n]
(1 through n) denote a propositional variable (the semantic interpretation is
wi → wj). Define V = {〈i, j〉}. $�

Definition 5.2. A qualifying triple is an ordered triple of distinct positive inte-
gers (i, j, k) in the range 1 through n, such that i is the maximum of the three;
i.e., 1 ≤ j < i ≤ n, 1 ≤ k < i, and j �= k. The set of all qualifying triples is
denoted by Q. There are n(n− 1)(n− 2)/3 qualifying triples.

An integer-valued function f(i, j, k) : Q→ [0, N−1] is called β-fair if it maps
at least β n qualifying triples into each value in its range. $�

Definition 5.3. Let π : V → [0, N − 1] be the permutation of V that arranges
its elements in lexicographical order. Define s : [0, N − 1]→ V by the equation
s(x) = π−1(x). For example, s(0) = 〈1, 2〉, s(2n) = 〈3, 4〉, etc. (The results hold
for π(〈i, j〉) being any permutation of V , but this degree of generality is not
important.) $�
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Definition 5.4. Clauses are named as follows for indexes indicated. In clause
types A0 and A1 r(i, j, k) is some function whose range is [0, N − 1] (see Defini-
tion 5.2 and (8) for particulars).

C(j) ≡ [〈1, j〉, . . . , 〈j − 1, j〉, 〈j + 1, , j〉, . . . , 〈n, j〉] 1 ≤ j ≤ n (1)
B(i, j) ≡ [¬〈i, j〉,¬〈j, i〉] 1 ≤ i < j ≤ n (2)

B+(i, j) ≡ [〈i, j〉, 〈j, i〉] 1 ≤ i < j ≤ n (3)
A0(i, j, k) ≡ [¬〈i, j〉,¬〈j, k〉,¬〈k, i〉,¬s(r(i, j, k))] (i, j, k) ∈ Q (4)
A1(i, j, k) ≡ [¬〈i, j〉,¬〈j, k〉,¬〈k, i〉, s(r(i, j, k))] (i, j, k) ∈ Q (5)
A(i, j, k) ≡ [¬〈i, j〉,¬〈j, k〉,¬〈k, i〉] (i, j, k) ∈ Q (6)
T (i, j, k) ≡ [¬〈i, j〉,¬〈j, k〉,¬〈k, i〉] 1 ≤ i, j, k ≤ n and i, j, k distinct. (7)

The C(j) are called long clauses ; the others are short clauses. $�

Definition 5.5. Formulas are named as follows:

Formula name Clauses included
NT∗(n) C(j), B(i, j), B+(i, j), A0(i, j, k), A1(i, j, k)
NT(n) C(j), B(i, j), B+(i, j), A(i, j, k)
GT(n) C(j), B(i, j), T (i, j, k)

$�

Note that A0(i, j, k) and A1(i, j, k) can be resolved to produce A(i, j, k), after
which A0(i, j, k) and A1(i, j, k) are subsumed and can be discarded. Further
resolutions with B+ clauses produce transitivity clauses T (i, j, k) for all distinct
(i, j, k) triples. Thus any model of the short clauses of NT∗(n) must be a complete
linear order, where x→ y is interpreted as x > y. The same holds for the short
clauses of NT(n) and the short clauses of GT(n). But with this interpretation,
C(j) states that wj is not a maximal element. Thus NT∗(n), NT(n) and GT(n)
are unsatisfiable. The earlier work on the proof complexity of these families is
reviewed here.

Theorem 5.6. ([22, 8, 1]) The families GT(n) and NT(n) have regular refuta-
tions of length O(n3). $�

The family NT∗(n) is a variant of the family GT′(n) invented by Alekhnovitch,
Johannsen, Pitassi and Urquhart [1]; the modifications are introduced to avoid
some possible minor technical problems with the original definitions. They prove
very ingeniously that if r(i, j, k) is β-fair, then any regular refutation of NT∗(n)
requires at least 20.1 β n resolution steps. They define (in effect—their notation is
different) a particular r(i, j, k) and claim that it is 1-fair; but the claim was not
proved and turns out to be incorrect.1 However, the idea of the proof is perfectly
sound and only needs to be adjusted for an achievable value of β.

1 Their function was actually 0-fair, as it did not map any distinct triples to n or
2n + 1, among other values.
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Theorem 5.7. ([1]) Any regular refutation of NT∗(n) requires at least 20.02 β n

resolution steps.

Proof. (Sketch) The following function can be shown to be β-fair for β = 0.2
and n ≥ 50:

r(i, j, k) = ((n + 1) i + 2n j + k) mod N (8)

To show that any x in the range [0, N−1] is mapped to by at least β n qualifying
triples, it is convenient to consider four cases according to whether %x/n& < n/2
and whether x mod n < n/2. Then the analysis of each case is straightforward.
The rest of the proof is the same as in the cited paper [1]. $�

5.2 The Family NT∗∗(n)

To demonstrate an exponential separation between regular resolution and pool
resolution, we introduce the family of formulas NT∗∗(n), inspired by Beame et
al. [4]. The formula NT∗∗(n) contains all variables in NT∗(n), plus the variables
xi,j,k and yi,j,k for each qualifying triple (i, j, k) ∈ Q. The formula NT∗∗(n)
consists of all clauses in NT∗(n), plus the following

[xi,j,k,¬yi,j,k] ; [¬xi,j,k, yi,j,k] ;
[xi,j,k, 〈i, j〉] ; [xi,j,k, 〈j, k〉] ; [xi,j,k, 〈k, i〉] ; (i, j, k) ∈ Q (9)

The variables xi,j,k are called proof-trace variables [4]. The clauses containing
yi,j,k are added so that the xi,j,k are not pure literals.

Theorem 5.8. Any regular refutation of NT∗∗(n) requires at least 20.02 β n res-
olution steps. $�

The idea for the polynomial-length pool refutation of NT∗∗(n) is to use the
proof-trace variables xi,j,k to derive A(i, j, k) from A0(i, j, k) and A1(i, j, k) for
all (i, j, k) ∈ Q without leaving any variables of NT(n) in the pool. Then the pool
refutation can proceed as it would for NT(n) (no asterisks), treating A(i, j, k)
as input clauses. The resulting entire refutation is not regular because some
non-tree paths leading to A(i, j, k) have r(s(i, j, k)) or ¬r(s(i, j, k)) as a clashing
literal.

Theorem 5.9. The formula NT∗∗(n) has a pool refutation with O(n3) steps.
$�

6 Relation of Pool Resolution to DPLL with Clause
Learning

Recall the pseudocode of PoolRes in Figure 1. Any execution of a DPLL-style
search, including popular methods of “clause learning,” can be simulated by
PoolRes by following two basic principles:
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1. True assigned literals in DPLL are the negations of pool literals in PoolRes.
2. “Learned clauses” in the DPLL version are the same as (a subset of) clauses

derived by PoolRes.

Assignment of a literal q = 1 as a “decision” (backtrackable “guess,” use of split-
ting rule) in DPLL corresponds to adding ¬q to the pool at line 8. Backtracking
to the assignment q = 0 in DPLL corresponds to adding q to the pool at line 11.

When DPLL deletes clauses that are satisfied, this corresponds to such clauses
becoming ineligible in PoolRes. When DPLL shortens clauses due to comple-
ments of true literals, the remaining literals are just the nonpool literals in
PoolRes.

Unit clause propagation in DPLL, say assigning x = 1, following a “guess” or
“backtrack” assignment to q is simulated in PoolRes by adding x to the pool
at line 8 and adding ¬x to the pool at line 11. See Section 6.1.

Several clause learning schemes have been analyzed by Zhang et al. [25], and
more formally by Beame et al. [4]. They are primarily outgrowths of the GRASP
scheme [18], and much of the terminology originates from that paper. Please see
these papers for details. We show how pool resolution can simulate them.

6.1 Unit Nonpool Clauses

Recall the pseudocode of PoolRes in Figure 1. As mentioned, the policy for
choosing q at line 7 is crucial for both theoretical and practical performance. It
is useful, at least in practice, to define the nonpool literals in an eligible clause
C to be those literals in C that are not in the pool P . The nonpool count for C
is the number of such nonpool literals, i.e., |C − P |. If the nonpool count is 0
(and C is “acceptable”), the base case of lines 4 and 5 applies.

If the nonpool count is 1, C is analogous to a unit clause in DPLL. In this
case, let ¬q be the sole nonpool literal of C and choose q as the clashing lit-
eral at line 7. The recursive call at line 8 returns immediately. Then for the
second recursive call, at line 11, the set of eligible clauses is reduced by dis-
carding all clauses containing ¬q. Thus the problem has been simplified without
branching. A similar practical strategy is analogous to the pure literal rule of
DPLL.

6.2 Correspondence with RelSat Learning

The learning procedure of RelSat [3] has the simplest correspondence with
PoolRes. Say q = 1 was a “decision” assignment and ⊥ was derived, possibly
after some additional assignments by unit-clause propagation. RelSat “learns”
a clause of the form [¬q, α] where the subclause α consists of complements of
(some of the) literals that were assigned true before the q = 1 “decision.” Us-
ing the straightforward simulation described above, PoolRes derives the same
clause in the procedure invocation where q was chosen as the clashing literal at
line 7.



592 A. Van Gelder

6.3 Correspondence with GRASP, First UIP

Marques-Silva and Sakallah [18] introduced the term unique implication point
(UIP) to refer to a vertex, say x, in their implication graph such that all paths
from the decision literal, say q, to ⊥ pass through x.

If x is a UIP, then a clause [¬x, α] can be inferred from the implication graph,
where subclause α consists of complements of (some of the) literals that were
assigned true before the q = 1 “decision.” This clause is called the UIP clause.
The decision literal is always a UIP and gives rise to the RelSat clause, as in
Section 6.2.

Marques-Silva and Sakallah studied the scheme consisting of learning the
UIP clause of the first UIP, i.e., the one closest to ⊥ in the implication graph.
Suppose q = 1 is the decision literal, x �= q is the first UIP, and [¬x, α] is the UIP
clause. Using the straightforward simulation described above, PoolRes derives
the same clause in the procedure invocation that chooses ¬x as the clashing
literal at line 7, to simulate the unit-clause propagation assignment x = 1 in
DPLL. The call at line 8 returns the same D0 that was used for the antecedent
edges of x in the implication graph; this applies to all literals that DPLL assigns
through unit-clause propagation. Then ¬x is added to the pool and D1 = [¬x, α]
is derived and returned at line 11.

However, GRASP and some other search engines have an option to learn only
the first UIP clause. When x �= q, this means they do not backtrack to the
assignment q = 0. Instead, they erase all assignments at the current “decision
level,” i.e., those at and after q = 1, then they learn (assert) the first UIP clause,
[¬x, α]. At this point all literals of α are false, so ¬x becomes a failure driven
assertion.

For PoolRes to simulate first UIP, it needs to “look ahead” at the point
where q = 1 is the “decision” and anticipate that x will become the first UIP.
So PoolRes skips choosing q as the clashing literal, and skips subsequent steps
until x = 1 is assigned by unit-clause propagation. At this point it chooses x as
the clashing literal. That is, ¬x is added to the pool at line 8 as though x were a
decision variable in DPLL. Next it “plugs in” the same derivation that occurred
in the RelSat style simulation, except that ¬x was added to the pool at line 11
in that simulation, as described a few paragraphs above. Thus D0 = [¬x, α] is
derived and returned. Then it adds x to the pool at line 11, which simulates
GRASP’s failure-driven assertion of ¬x.

6.4 Correspondence with Decision Learning

The decision learning strategy requires the learned clause to contain only the
negations of “decision” literals. For PoolRes to simulate this strategy, it only
simulates “decision” assignments, and defers all unit-clause propagations until a
decision assignment has been made that allows unit-clause propagation to derive
⊥. Suppose that decision is q = 1. The decision-literal UIP clause can be derived,
and contains only decision literals. All derived clause are available for later use,
so those that depend only on decision literals at early levels can potentially be
used in many branches.
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6.5 Correspondence with FirstNewCut

The First New Cut strategy was proposed recently by Beame et al. [4]. We refer
the reader to that paper for details. Relying on their Proposition 4, the clause
specified as First New Cut, can be derived by what they define as a trivial
resolution. This involves a series of resolution steps in a chain each one with a
different clashing literal.

Such a trivial resolution is easy to simulate with pool resolution: just add the
clashing literals to the pool in the reverse order of the trivial resolution, and
derive the clauses on the way back out of the recursions.

The idea to simulate the First New Cut strategy is to simulate only the decision
assignments. The pool P contains their complements. When a contradiction can
be derived, say after the decision q = 1, let the pool be [P,¬q]. Simulate the
implication graph by adding literals to the pool in a topological order consistent
with the implication graph, such that all literals on the opposite side of the cut
from the empty clause are added before any on the same side. This policy derives
the First New Cut clause.

7 Conclusion

We introduce a system called pool resolution and show that it simulates regu-
lar resolution linearly and has exponentially shorter refutations on at least one
family of formulas. This paper draws heavily on earlier work in proof complexity
[1, 4]. Thus pool resolution is one of the strongest known refinements of gen-
eral resolution. Whether it has the full power of general resolution (within a
polynomial factor) is unknown, but seems unlikely.

We also show that pool resolution is able to simulate several strategies for
clause learning within DPLL. These simulations are natural enough that they
provide some hope that most of the power of pool resolution can be realized, at
least on practical problems, by some form of DPLL with clause learning. Beame
et al. have obtained related results for their First New Cut learning strategy [4].
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Abstract. Local search algorithms are one of the effective methods for solving
hard combinatorial problems. However, a serious problem of this approach is that
the search often traps at local optima. At AAAI 2004, Fang and Ruml proposed
a novel approach which makes local optima disappeared. The basic idea is that,
at each local optimal point during the search, the value of the objective function
(a local gradient function) at that point is changed by adding some information
into the database. Once no more local optima exist, the local search can always
find a global optimal. In this paper, along the same approach of Fang and Ruml,
we propose a different objective function based on an ordering of propositional
variables. Based on this ordering, ordered resolution is performed at each local
optimal point and the resolvent is added into the database. This resolvent always
increases the value of the objective function so that the local optimal point dis-
appears after a finite number of steps. Preliminary experimental results show that
our method and Fang and Ruml’s method have better performances in different
areas.

1 Introduction

Local search algorithms are one of the standard methods for solving hard combinatorial
problems. The general idea is to examine the search space by starting from a solution
candidate and iteratively move from one point to a neighboring position where the de-
cision on each step is based on a local gradient (or objective) function. For some large
propositional satisfiability problems (SAT), local search algorithms are very effective in
practice. Another category of algorithms for SAT is based on a systematic search, which
explores a tree containing all possible variable assignments. The systematic search is
complete because it can implicitly prove that a problem is unsatisfiable by traversing
the entire tree without finding a solution. Local search methods are incomplete: They
are not guaranteed to find a satisfying assignment, if one exists, in finite time. They
will fail to terminate on unsatisfiable problems and are not guaranteed to solve a satisfi-
able problem. There is great interest in understanding how systematic search and local
search methods can be hybridized and whether it might be possible to design a com-
plete local search algorithm [SKM1995, KS2003]. Fang and Ruml [FR2004] showed
a basic complete local search framework and applied it to propositional satisfiability
problem. Their approach is based on using a novel objective function to compute the

� Supported in part by NSF under grant CCR-0098093.

G. Sutcliffe and A. Voronkov (Eds.): LPAR 2005, LNAI 3835, pp. 595–605, 2005.
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local gradient. When a local minimum is reached, they generate new implied clauses
from the current point. The addition of the new clauses dynamically increases the value
of the objective function at that point and the current local optimal point will disappear.
A new neighbor assignment may become a local optimal. However, after several steps,
this process will incrementally smooth the search space and local optimal points will
disappear. They proved that their schema is complete [FR2004].

Clause learning is a very effective technique for popular SAT solvers. For com-
plete SAT solvers based on the DPLL method [DP1960, DLL1962], clause learning be-
comes an indispensable technique for modern SAT solvers (see [MS1999, Z1997] and
[M2001]). For local search, some researchers tried to increase the weights of clauses to
escape local minima [M1993, SW1997]. Cha and Iwama [CI1996] and Yokoo [Y1997]
suggested that adding implied clauses explicitly is better than adding duplicate clauses.
Morris [M1993] also pointed out that explicitly recording and increasing the cost of vis-
ited local minimum can force the search to eventually solve a satisfiable instance, but
cannot easily detect unsatisfiable instance. It is Fang and Ruml [FR2004] who firstly
showed the local search can become complete without embedding it in a tree-like frame-
work.

In this paper, we will take the same approach of Fang and Ruml by using a new
objective function and a new clause generation schema. Comparing to Fang and Ruml’s
objective function, our objective function is easier to compute. Moreover, our clause
generation schema will never generate duplicate clauses as the schema in [FR2004]
may generate duplicate clauses.

Our new objective function is based on a well-founded ordering on propositional
variables and our clause generation schema is a special case of ordered resolution
[BG2002]. It is well-known that ordered resolution is a very effective method for first-
order theorem proving [BG2002]. However, for propositional satisfiability, ordered res-
olution still suffers the same problem as general resolution does by generating too many
new clauses. While the soundness of our clause generation schema comes from that
of ordered resolution, the completeness of our method implies that a very restricted
use of ordered resolution can generate the empty clause when the input clauses are
unsatisfiable.

After presenting our algorithm for complete local search, we will compare our ap-
proach and experimental results with [FR2004]. Then we will discuss the implementa-
tion issues for performance improvement.

2 Preliminary

We assume that the reader is familiar with the standard definitions of propositional
satisfiability, such as variable, literal, clause, CNF, etc. For every literal x, we use
variable(x) to denote the variable appearing in x. That is, variable(x) = x for positive
literal x and variable(x) = x for negative literal x. If c is a clause, then variable(c) =
{variable(x) | x is a literal in c}. Let F be a formula in CNF with n variables V =
{x1, ..., xn} and m clauses, then F can be written as c1 ∧ . . . ∧ cm, where c1, . . . , cm

are clauses. An assignment is a mapping σ from V to {0, 1}, where 0 means false
and 1 means true, and may be represented by a set of literals such that each variable
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appearing exactly once and each literal in the set is assigned to be true. A model for F
is an assignment σ such that σ(F ) = 1. A propositional satisfiability problem (SAT) is
concerned with finding a model of F or proving that the formula has no model.

Given a one-to-one mapping π from V to {1, 2, ..., |V |}, an ordering <π over V
is defined as follows: for any x, y ∈ V , x <π y if and only if π(x) < π(y), where
π(x) is said to be the order number of x under π. Obviously, <π is a well-found, total
order on V . We then extend π to be a mapping from literals (clauses, sets of clauses) to
{0, 1, 2, ..., |V |,∞} as follows:

– For any literal x, π(x) = π(variable(x)).
– If a clause c is empty, then let π(c) =∞; otherwise, π(c) = min{π(x) | x ∈ c}.
– If a set S of clauses is empty, then π(S) = 0; otherwise π(S) = max{π(c) | c ∈
S}.

For example, if S = {x1 ∨ x2, x2 ∨ x3, x3 ∨ x4}, and π(xi) = i, then π(x1 ∨ x2) = 1,
π(x3 ∨ x4) = 3 and π(S) = 3.

Accordingly, the ordering <π can be extended to be an ordering over literals and
clauses: For any clauses c, c′, c <π c′ iff π(c) < π(c′), where π(c) is the order number
of c under π.

In a typical local search algorithm for SAT, a neighbor of an assignment σ is another
assignment which flips the value of a single variable of σ. Typically, local search al-
gorithms make use of an objective function mapping each search space position onto a
real or integer number in such a way, that the global optima of the objective function
correspond to the solutions. For SAT, the situation is a little bit different, since some
SAT problems are unsatisfiable, in other word, there is no solution for those problems.
For most local search algorithms for SAT, the global optima correspond to assignments
satisfied most clauses. Only when the global optima are equal to a particular value (in
most case it is 0), the global optima can correspond to the solutions.

3 A Complete Local Search Algorithm

The outline of our approach is very similar to the one in [FR2004], shown in Figure 1.
As in most local search algorithms for SAT, the search procedure starts from an initial
(random) assignment σ (step 1). If σ is a model, we will end the while loop and return
σ, otherwise we will continue the while loop. If there is a neighboring assignment σ′

which is better than σ according to the objective function (step 4), then move to σ′.
Any neighboring assignment which yields a better objective value can be chosen. In
our implementation, we choose the first one we meet along the search. If there is no
such adjacent assignment, we have reached a local minimum. A new implied clause
γ is then derived from the current local minimum (step 6). If the newly added clause
is an empty clause, the instance is unsatisfiable (step 8); otherwise add the new clause
into the current formula F (step 10). The newly added clause will change the result
of the objective function and force the search algorithm move out of the current local
minimum.

The parameters of function Utility1(F, σ) are the input formulaF and the current as-
signmentσ, and it will return an integer. Formally, let Utility1(F, σ) = π(False(F, σ)),
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function Utility1(F, σ)
return π(False(F,σ))

end function

function GenerateClause1(F, σ)
Let c1 ∈ core(F, σ)
Let c2 ∈ core(F, σ)
c′ := resolution(c1, c2)
return c′

end function

function CompleteLocalSearch(F )
1 σ := InitialAssignment(F );
2 while σ does not satisfy F do
3 if ∃σ′ ∈ Neighbor(σ), Utility1(F, σ′) < Utility1(F, σ)
4 σ := σ′;
5 else
6 γ := GenerateClause1(F, σ)
7 if γ is an empty clause
8 return unsatisfiable
9 else
10 F := F ∧ γ
11 end if
12 end if
13 end while
14 return σ
end function

Fig. 1. A complete local search algorithm

where False(F, σ) is the set of false clauses in F under the assignment σ and π is a
mapping from V to {1, . . . , |V |} and is extended to be a mapping from set of clauses
to {0, 1, . . . , n,∞} as said in the previous section.

Lemma 1. The objective function Utility1(F, σ) returns 0 if and only if σ is a model of
formula F ; and it returns∞ if and only if F has an empty clause.

The empty clause in F may come from GenerateClause1(F, σ) and is a witness to
show that the input clauses are unsatisfiable as long as GenerateClause1(F, σ) is sound
in the sense that if c = GenerateClause1(F, σ) then c is a logical consequence of F .
Since in our approach GenerateClause1(F, σ) is based on resolution, its soundness is
obvious.

Assuming the empty clause is not in False(F, σ), let frontier(F, σ) be the literal
y in False(F, σ) such that π(y) = π(False(F, σ)). Let

core(F, σ) = {c ∈ False(F, σ) | π(c) = π(frontier(F, σ))}
core(F, σ) = {y ∨ c′ ∈ F | y = frontier(F, σ), π(y) = π(y ∨ c′), σ(c′) = 0}.
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For example, assume we have clauses F = (1 ∨ 2 ∨ 3) ∧ (2 ∨ 6) ∧ (3 ∨ 5) ∧
(3 ∨ 4) ∧ (3 ∨ 6) ∧ (5 ∨ 6), and the current assignment σ = {1, 2, 3, 4, 5, 6}. Clauses
(1 ∨ 2 ∨ 3) and (3 ∨ 5) are false under σ. So False(F, σ) contains these two clauses,
frontier(F, σ) = 3, core(F, σ) = {(3∨ 5)} and core(F, σ) = {(3∨ 4), (3∨ 6)}. σ is
a local minimum.

Lemma 2. The clause generated by GenerateClause1(F, σ) is a logical consequence
of F .

In resolution, clauses such as x ∨ c′1 and x ∨ c′2 are combined to yield a new clause
c′ = c′1 ∨ c′2. The particular variable and clauses that are selected can be decided in
many ways. For ordered resolution, the selected variables must be maximum under a
partial ordering (in our case, the resolution is done actually on minimum variables). In
the algorithm GenerateClause1(F, σ), however, we may have multiple choices for c1
and c2, but only one resolution is possible between c1 and c2 because of the definitions
of core(F, σ) and core(F, σ).

We select one clause c1 in core(F, σ) and one clause c2 in core(F, σ). Since c1 = y∨
c′1 and c2 = y ∨ c′2, where π(y) = π(False(F, σ)), we can generate a new clause c′ =
c′1∨c′2. To be able to generate this new clause, the set core(F, σ) and the set core(F, σ)
cannot be empty. Theorem 1 shows that both core(F, σ) and core(F, σ) must contain
some clauses while σ is a local minimum. Theorem 2 shows that the resolvent clause
c′ is always a new clause and π(c′) > π(False(F, σ)). Hence, the current objective
value will increase if c′ is added into F . Since the objective value cannot be greater
than |V | unless an empty clause is generated, the current local minimum will disappear
eventually. The theorems thus show that we can always smooth the search space by
adding a new clause at a local minimum.

Theorem 1. If σ is a local minimum with respect to Utility1(F, σ) and 0 < Utility1
(F, σ) <∞, then core(F, σ) �= ∅ and core(F, σ) �= ∅.

Proof. When we call function GenerateClause1(F, σ), we are at a local minimum and
the current assignment σ is not a model yet. There are some unsatisfied clauses, i.e., the
set False(F, σ) is not empty. From the definition of core(F, σ) = {c ∈ False(F, σ) |
π(c) = π(False(F, σ))}, core(F, σ) is not empty.

Assume core(F, σ) is empty. Let π(x) = Utility1(F, σ), where the literal x ap-
pears in F . If we flip the value of literal x, then the clauses in core(F, σ) will become
true, and since the set core(F, σ) is empty, all clauses whose least literal is x will be-
come true. Moreover, there is no clause c′ in False(F, σ) such that π(c′) > π(x) =
π(False(F, σ)). That means we can always flip the value of x in σ to obtain σ′ such
that Utility1(F, σ′) < Utility1(F, σ). This contradicts with the local minimum precon-
dition. Now, we can say that core(F, σ) �= ∅ if σ is a local minimum. $�

Theorem 2. If σ is a local minimum with respect to Utility1(F, σ). The clause c′ gen-
erated by function GenerateClause1(F, σ) is a new clause, σ(c′) = 0 and π(c′) >
π(False(F, σ)).

Proof. From Theorem 1, we know core(F, σ) and core(F, σ) are not empty. Let y =
frontier(F, σ) such that π(y) = π(False(F, σ)), c1 ∈ core(F, σ) is of the form:
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y ∨ c′1, π(c′1) > π(y), and σ(c′1) = 0. c2 ∈ core(F, σ) is of the form: y ∨ c′2, π(c′2) >
π(y), and σ(c′2) = 0. Now apply resolution rule to c1 and c2, we get c′ = c′1∨ c′2. Since
σ(c′1) = σ(c′2) = 0, we have σ(c′) = 0, and since π(c′1) > π(y) and π(c′2) > π(y), we
get π(c′) > π(y) = π(False(F, σ)). Since σ(c′) = 0 and π(c′) > π(False(F, σ)), c′

must be a new clause, otherwise frontier(F, σ) could not be y. $�

Theorem 3. For any one-to-one mappingπ from V to {1, 2, ..., |V |}, the algorithm rep-
resented by CompleteLocalSearch(F ) is sound and complete for the satisfiability of F .

Proof. The soundness comes from Lemmas 1 and 2. There are two cases for the
completeness.

First case: the formulaF is unsatisfiable. Since every time when the algorithm moves
to a local minimum it will generate a new clause, the algorithm will generate the empty
clause because the number of distinct clauses generated by resolution is finite.

Second case: the formula F is satisfiable. To show the algorithm is complete, we
need only consider the situation in which all possible implied clauses have already been
generated. Assume we are at a local minimum, then the algorithm will call function
GenerateClause1(F, σ). From Theorem 2 this function will return a new clause. Since
all possible clauses are already added, the assumption is not correct, hence there are
only global minima and the algorithm will always give a model. $�

4 Comparison with Fang and Ruml’s Approach

As said earlier, we take the same approach of [FR2004] as illustrated in Figure 1. The
major difference lies on objective functions. Let Utility0(F, σ) be the objective function
used in [FR2004]. Instead of returning a single integer, Utility0(F, σ) returns a tuple
〈dn, ..., d0〉 of integers, where di is the number of clauses in False(F, σ) of length
i. An assignment σ′ is better than another assignment σ if and only if Utility0(F, σ′)
is lexicographically smaller than Utility0(F, σ). That is, Utility0(F, σ′) must have a
smaller entry at the leftmost position where the two tuples differ.

Another difference is about the way to generate new clauses. For the completeness
of Fang and Ruml’s algorithm, a new clause must be always added at line 10. However,
since there is no way to tell how a resolvent is new, Fang and Ruml’s algorithm may
have to try many possible resolutions in order to generate a new clause. In the exceed-
ingly rare case in which a new resolvent cannot be generated, a long clause of length
|V | (i.e., the clause corresponding to the negation of the current assignment) is added
instead.

Because of these differences, our algorithm is different from Fang and Ruml’s algo-
rithm in the following ways.

1. It is easier to compute Utility1(F, σ) than to compute Utility0(F, σ). The number
of distinct values for Utility1(F, σ) is |V | while the number of distinct values for
Utility0(F, σ) is O(2|F |).

2. Adding (or deleting) duplicate clauses into F will cause the change in value of
Utility0(F, σ), but not Utility1(F, σ). If both c and c′ are in False(F, σ) and c
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subsumes c′, then Utility1(F, σ) = Utility1(F − {c′}, σ). In other words, our al-
gorithm allows the use of popular simplification rules such as subsumption without
compromising the completeness of our algorithm.

3. Our algorithm always generates new clauses by resolution while Fang and Ruml’s
algorithm may generate duplicate clauses at a local minimum and needs extra effort
to obtain a new clause: In case no new resolvents can be generated, a long clause
from the negation of the current assignment is added.

In [FR2004], Fang and Ruml showed that their implementation compares competi-
tively with the prize winners from 2003 and 2002 SAT competition, including both com-
plete and incomplete systems. Their implementation surpasses all of the local search-
based solvers from the 2003 competition on the primary competition measure, number
of series solved, both overall and in each category, as well as on the number of in-
stances solved overall. These results show convincingly that this complete local search
approach is of practical interest. We have implemented our algorithm in C++ and the
preliminary results look promising. The test bed is a Pentium 4 2.4GHz linux machine
with 1GB memory. Table 1 presents the performance of [FR2004]’s complete local
search together with our new algorithm on some SATLIB [HS2000] problems. From
the table, we can see that our algorithm performs better on several classes of problems
while Fang and Ruml’s algorithm works better on other problems.

Table 1. Experimental results on SAT problem. FR denotes [FR2004]’s complete local search
algorithm, NEW denotes our new algorithm. #Inst denotes the number of instances in the cate-
gory. #TOut denotes the number of unsolved instances after 600 seconds. sec denotes the average
running time in second.

Problem #Inst FR NEW
#TOut sec #TOut sec

DIMACS/AIM 72 0 < 0.1 0 0.15
DIMACS/BF 4 0 11 1 0.2
DIMACS/II 41 0 0.16 6 32
DIMACS/JNH 50 2 18 0 3.15
DIMACS/PARITY 30 20 0.02 20 0.05
DIMACS/PHOLE 5 5 N/A 2 15
DIMACS/PRET 8 0 2.7 0 0.4
DIMACS/SSA 8 0 1.53 0 24
AIS 4 1 31 0 32
BMC 13 10 79 10 87
PLANNING 11 0 1.3 2 5.2
QG 22 18 25 16 43

5 Implementation Issues

The framework of our CompleteLocalSearch algorithm is very simple. While the per-
formance of our algorithm is orthogonal to that of Fang and Ruml’s, we expect that



602 H. Shen and H. Zhang

additional techniques can be incorporated into the algorithm to improve the perfor-
mance. In this section, we will address these issues by considering different objective
functions and resolution schema. We also notice that random restart is a very important
technique.

5.1 Utility Function

The objective function we used in the algorithm is Utility1(F, σ) = π(False(F, σ)). To
speedup the computation of this objective function, we can compute it incrementally.
After getting the initial assignment and compute the first objective value, each time
when we flip one variable’s value, we use a tuple to compute it incrementally. Let D be
a tuple 〈dn, ..., d1〉, where di is the number of clauses whose π(c) = i. By monitoring
the false clauses while flipping value, we can compute the tuple incrementally. Given
two tuples D = 〈dn, . . . , dk, . . . , d1〉 and D′ = 〈d′n, . . . , d′j , . . . , d′1〉, assume dk is the
leftmost nonzero element of D and d′j is the leftmost nonzero element of D′, then D
is bigger than D′ if k > j. Tuple D′ is better than tuple D if D′ < D. This objective
function also help to limit our choice of candidates for flipping variables. A variable
not appearing in core(F, σ) will not improve the value of objective function. Only the
variables that appear in every clause of core(F, σ) can improve the value of objective
function. So we can limit our selection to the set

{x | ∀c ∈ core(F, σ), x ∈ variable(c)}.

Using the tupleD, we can define a more fine-grain objective function named Utility2
for comparing assignments: σ is better (smaller) than σ′ if and only ifD is lexicograph-
ically (from left to right) smaller than D′. That is to say D must have a smaller entry
at the leftmost position where the two tuples differ. The new objective function will not
change the completeness of our algorithm. We will exam the performance of this new
objective function in future experiments.

5.2 Learning Schema

The function GenerateClause1 in the figure 1 returns one clause. Let CoreGenerate(F,
σ) be the set of all clauses which can be generated from core(F, σ) and core(F, σ).
We can use any one of the clauses in CoreGenerate(F, σ). In our implementation,
we tested many different schema. We can add the shortest clause, or the clause c with
the smallest π(c) value, or all the clauses in CoreGenerate(F, σ). Our experimental
result shows that the adding shortest clause schema is the best overall because adding
shortest clause has better chance to generate unit clauses or the empty clause. The last
schema, i.e., computing all the new clauses in CoreGenerate(F, σ), sometimes can
give a better result. To add all the clauses, one thing needs a notice: we may generate a
new clause more than once. For example, a∨ b, a∨ c, a∨ b, and a∨ c can generate four
clauses: b, c, b ∨ c, and c ∨ b. The last two new clauses are duplicate clauses.

There is another clause generation method GenerateClause2, which is much more
aggressive. Before presenting this schema, let’s define the set Critical(a) for literal a.
Assume σ is the current assignment, and we are at a local minimum, frontier(F, σ) =
y. For a literal a, π(a) ≥ y, let
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Critical(a) = {c ∈ F | c = a ∨ c′, σ(a) = 1, σ(c′) = 0, π(c) ≥ π(y)}.

This means a is the only true literal in the clauses of Critical(a).
This schema will add one clause to the current formula. First we select a shortest

clause c in core(F, σ). For a literal a in the clause c, Critical(a) is not empty, since
if it is empty, we can always improve the current assignment by flipping the value of
a. Select one shortest clause in Critical(a) for each literal a in clause C, and store
them in a set R = {c1, . . . , ck}. Now we can do resolution between these clauses. The
resolution schema is similar with hyper-resolution [BG2002]. First doing resolution
between c and c1, we can get c′1. Then doing resolution between c′1 and c2 get c′2, and
so on. Finally we can get c′k.

The second clause generation method is more powerful. In many cases, when we at
a local minimum, using the first schema will only move the assignment from one local
minimum to another local minimum. Sometimes we need several steps to move out a
trap. The proposed aggressive learning method can speedup this procedure.

There is a possible extension of GenerateClause2a, which is more aggressive. First
we select a shortest clause c in core(F, σ). Select a literal a in c such that Critical(a)
is not empty. Select a shortest clause c′ in Critical(a) and let cr = resolution(c, c′).
Let c = cr, if there is a literal a in c such that Critical is not empty, then go back to
the previous resolution step and do resolution, otherwise stop and return c.

While using Utility2, we can have a variation version of GenerateClause2, called
GenerateClause3. let’s define the set Critical1(a) for literal a.

Critical1(a) = {c ∈ F | c = a ∨ c′, σ(a) = 1, σ(c′) = 0, π(c) ≥ π(a)}.

All literals inCritical(a) are bigger than y = frontier(F, σ), while inCritical1(a)
these literals are bigger than a. The selection of false clauses are not limited to those
in core(F, σ); any false clause in False(F, σ) can be chosen. We can select the short-
est false clause or using some other heuristic technique to do the selecting. By using
Critical1(a) to replace Critical(a), the rest part is similar with GenerateClause2.

5.3 Restart and Ordering

To overcome or avoid search stagnation, many DPLL based solvers and local search
based solvers make use of a restart mechanism that re-initializes the search process
whenever a restart condition is satisfied. For example, all GSAT and WalkSAT algo-
rithm restart the search periodically [HS2005]. And for DPLL based algorithm like
Chaff [M2001], SATO [], BerkMin [GN2002], and Jerusat [N2002], they restart the
search periodically or restart after some steps which determined by a heuristic method.

In our complete local search algorithm, we also employ a restart technique which
is different from others. In our algorithm, after each restart, we first reorder the order
of variables by doing an random renaming. For example, for variables 1, 2, 3, we may
rename them by mapping 1→ 3, 2→ 1, 3→ 2. After that, we will generate a random
assignment and do the search. We also tried a restart schema without random reorder-
ing, but the performance is not as good as the one with random reordering. The reason
is that while the algorithm is complete with any variable ordering, the ordering plays
an important role in the performance of the algorithm. Random ordering reduces the
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effect of poor choice of an ordering. In fact, we have tried several ordering techniques.
For instance, we have tried the ordering of variables according to their occurrences in
F (either from big to small or from small to big). While testing various ordering tech-
niques, we could not find a superior ordering technique. Now in our implementation,
we first use the nature ordering (variable n is before variable n + 1). When restarting,
we change the ordering by randomly renaming the variables.

6 Conclusion

Following Fang and Ruml’s approach of complete local search, we proposed to use
a different objective function which is based on a variable ordering and has different
features than Fang and Ruml’s objective function. The implied clause generation in our
algorithm is a special case of ordered resolution and guarantees that only new clauses
will be generated. A preliminary experimental result shows that the two algorithms
work orthogonally on benchmark problems. There are many issues in how to implement
our algorithm efficiently and we will investigate them in the future study.
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Abstract. We present new careful semantics within Dung’s theory of argumen-
tation. Under such careful semantics, two arguments cannot belong to the same
extension whenever one of them indirectly attacks a third argument while the
other one indirectly defends the third. We argue that our semantics lead to a better
handling of controversial arguments than Dung’s ones in some settings. We com-
pare the careful inference relations induced by our semantics w.r.t. cautiousness;
we also compare them with the inference relations induced by Dung’s semantics.

1 Introduction

Argumentation is a general approach to model defeasible reasoning, in which the two
main issues are the generation of arguments and their exploitation so as to draw some
conclusions based on the way arguments interact (see e.g., [1–4]).

Among the various theories of argumentation pointed out so far (see e.g., [5–16])
is Dung’s theory [5]. Dung’s theory is quite influential since it encompasses many ap-
proaches to nonmonotonic reasoning and logic programming as special cases; as such,
it has been refined and extended by several authors, including [17–21] In Dung’s ap-
proach, no assumption is made about the nature of an argument. Dung’s theory of argu-
mentation is not concerned with the generation of arguments; arguments and the way
they interact w.r.t. the attack relation are considered as initial data of any argumentation
framework, which can thus be viewed as a labeled digraph.

Several inference relations can be defined within Dung’s theory. Usually, inference
is defined at the argument level: an argument is considered derivable from an argu-
mentation framework AF when it belongs to one (credulous consequence) (resp. all
(skeptical consequence)) extensions of AF under some semantics, where an extension
of AF is an admissible set of arguments (i.e., a conflict-free and self-defending set) that
is maximal for a given criterion (made precise by the semantics under consideration).
While skeptical derivability can be safely extended to the level of sets of arguments,
this is not the case for credulous derivability. Indeed, it can be the case that arguments
a and b are (individually) derivable from an argumentation framework AF while the
set {a, b} is not included in any extension of AF . Now, defining derivability for sets
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of arguments as inclusion into some (resp. all) extensions under Dung’s semantics does
not always lead to expected conclusions.

Consider the following scenario: in a public meeting, a political activist presents
the motivations of her policy using arguments and counter-arguments: “One should
really decrease taxes (a); of course, this requires to cut staff in public services (b), but
that is not so dramatic: privatizing some activities will lead to better services since
free trading is good for it (c); furthermore, I am confident that we should reduce our
economical exchanges with other foreign countries (d); this is antagonistic to promoting
free trading, but, anyway, the productivity of our public services is definitely bad (e)”.
This sounds quite strange as a political speech since the speaker admits that she is in
favour of conflicting arguments; a political opponent could easily point out the presence
of such a conflict and concludes that such a policy is just non-sense; in order to convince
the audience that a, d and e should be accepted, a more skillful speech would be: “One
should really decrease taxes (a); of course, this requires to cut staff in public services
(b), but the productivity of our public services is definitely bad (e); furthermore, I’m
confident that we should reduce our economical exchanges with other foreign countries
(d)”.

From an abstract point of view, the scenario can be encoded in Dung’s setting using
the following argumentation framework:

Example 1. Let AF1 = 〈A,R〉 with A = {a, b, c, d, e} and R = {(b, a), (e, b), (c, b),
(d, c)}. The digraph for AF1 is depicted on Figure 1.

a

b

c

d

e

Fig. 1. The digraph for AF1

If our clumsy political activist adheres to Dung’s semantics, she cannot realize that
her first speech must be avoided; indeed, AF1 has a single extension {a, d, e} whatever
the semantics among Dung’s ones, hence a, d and e are considered jointly derivable,
which is just what she wants.

One way to cope with this problem is to ask for more demanding notions of absence
of conflicts than the one considered in Dung’s theory. In this paper, we define and
study new semantics for Dung’s framework based on the idea that an admissible set
S of arguments should not include controversies, i.e. it should not be the case that an
element s1 of S indirectly attacks another argument s whenever a second element s2 of
S indirectly defends s. On Example 1, this prevents from deriving the set of arguments
{a, d, e} as a whole; nevertheless, {d} and {a, e} remain derivable separately.
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The specific case when s1 = s2 corresponds to the notion of controversial argu-
ments, as introduced by Dung. While some controversial arguments can be inferred
using Dung’s standard semantics, they are systematically rejected when our careful se-
mantics are considered.

We believe that such prudent semantics can prove helpful to reason with arguments
from domains like politics or justice, where a strong notion of “coherence” on the sets
of arguments pointed out makes sense.

In the following, we compare the inference relations induced by our new semantics
with Dung’s ones and show that in many cases one obtains more cautious notions of
derivability.

The rest of this paper is organized as follows. We first recall the main definitions and
results pertaining to Dung’s theory of argumentation. Then, we present our new, careful
semantics for argumentation frameworks. In a third section, a comparison of the various
notions of acceptability (including Dung’s ones) is provided. A final section concludes
the paper and gives a few perspectives.

2 Dung’s Theory of Argumentation

Let us present some basic definitions at work in Dung’s theory of argumentation [5].
We restrict them to finite argumentation frameworks.

Definition 1 (finite argumentation frameworks). A finite argumentation framework
is a pair AF = 〈A,R〉 where A is a finite set of so-called arguments and R is a binary
relation over A (a subset of A×A), the attacks relation.

Clearly enough, the set of finite argumentation frameworks is a proper subset of
the set of Dung’s finitary argumentation frameworks, where every argument must be
attacked by finitely many arguments. The definition above clearly shows that a finite
argumentation framework is nothing but a finite, labeled digraph.

The main issue is the inference one, i.e., charactering the sets of arguments which
could be reasonably derived from a given argumentation framework. Formally, we shall
note AF |∼ S where AF = 〈A,R〉 is a finite argumentation framework and S ⊆ A,
to state that S is a consequence of AF under |∼. An inference relation |∼ is typically
based on a notion of extension, and an inference principle (credulous or skeptical),
so that AF |∼ S holds if and only if S is included in all (skeptical) or at least one
(credulous) extension of AF .

In order to define a notion of extension, a first important notion is the notion of ac-
ceptability: an argument a is acceptable w.r.t. a set of arguments whenever it is defended
by the set, i.e., every argument which attacks a is attacked by an element of the set.

Definition 2 (acceptable sets). Let AF = 〈A,R〉 be a finite argumentation framework.
An argument a ∈ A is acceptable w.r.t. a subset S of A if and only if for every b ∈ A
s.t. (b, a) ∈ R, there exists c ∈ S s.t. (c, b) ∈ R. A set of arguments is acceptable w.r.t.
S when each of its elements is acceptable w.r.t. S.

A second important notion is the notion of absence of conflicts. Intuitively, two ar-
guments should not be considered together whenever one of them attacks the other one.
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Definition 3 (conflict-free sets). Let AF = 〈A,R〉 be a finite argumentation frame-
work. A subset S of A is conflict-free if and only if for every a, b ∈ S, we have
(a, b) �∈ R.

Requiring the absence of conflicts and the form of autonomy captured by self-
acceptability leads to the notion of admissible set.

Definition 4 (admissible sets). Let AF = 〈A,R〉 be a finite argumentation framework.
A subset S of A is admissible if and only if S is conflict-free and acceptable w.r.t. S.

The significance of the concept of admissible sets is reflected by the fact that ev-
ery extension of an argumentation framework under the standard semantics introduced
by Dung (preferred, stable, complete and grounded extensions) is an admissible set,
satisfying some form of optimality:

Definition 5 (extensions). Let AF = 〈A,R〉 be a finite argumentation framework.

– A subset S of A is a preferred extension of AF if and only if it is maximal w.r.t. ⊆
among the set of admissible sets for AF .

– A subset S of A is a stable extension of AF if and only if it is conflict-free and for
every argument a from A \ S, there exists b ∈ S s.t. (b, a) ∈ R.

– A subset S of A is a complete extension of AF if and only if it is admissible and it
coincides with the set of arguments acceptable w.r.t. itself.

– A subset S of A is the grounded extension of AF if and only if it is the least element
w.r.t. ⊆ among the complete extensions of AF .

Dunne and Bench-Capon gave a sufficient condition for the unicity of preferred ex-
tensions:

Proposition 1. Cor. 9 in [22]
Let AF = 〈A,R〉 be a finite argumentation framework. If AF has no even-length cycle,
then AF has a unique preferred extension.

Example 1 (cont’ed). Let E = {a, d, e}. E is the grounded extension of AF1, the
unique preferred extension of AF1, the unique stable extension of AF1 and the unique
complete extension of AF1.

Formally, complete extensions of AF can be characterized as the fixed points of its
characteristic function FAF :

Definition 6 (characteristic functions). The characteristic function FAF of an argu-
mentation framework AF = 〈A,R〉 is defined as follows:

FAF : 2A −→ 2A

FAF (S) = {a | a is acceptable w.r.t. S}.

Among the complete extensions of AF , the grounded extension of AF is the least
element w.r.t. set inclusion [5].

Dung has shown that every argumentation framework AF has a (unique) grounded
extension and at least one preferred extension, while it may have zero, one or many
stable extensions. These extensions are linked up as follows:
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Proposition 2. Theorem 25 in [5]
Let AF be an argumentation framework.

1. Every preferred (resp. stable, complete) extension of AF contains the grounded
extension of AF .

2. The grounded extension of AF is included in the intersection of all the complete
extensions of AF .

The purest argumentation frameworks AF in Dung’s theory are those for which all
the notions of acceptability coincide. Dung has provided a sufficient condition for an
argumentation framework AF to satisfy this requirement, called the well-foundation of
AF ; in the finite case, it can be stated as follows:

Definition 7 (well-foundation). Let AF = 〈A,R〉 be a finite argumentation frame-
work. AF is well-founded if and only if there is no cycle in the digraph 〈A,R〉.

Proposition 3. Theorem 30 in [5]
A well-founded argumentation framework AF has exactly one complete extension,
which is also the unique preferred extension, the unique stable extension and the groun-
ded extension of AF .

Example 1 (cont’ed). AF1 has no cycle. Hence AF1 is well-founded.

Dung has also shown that every stable extension is preferred and every preferred exten-
sion is complete; however, none of the converse inclusions holds. When all the preferred
extensions of an argumentation framework are stable ones, the framework is said to be
coherent:

Definition 8 (coherence). Let AF = 〈A,R〉 be an argumentation framework. AF is
coherent if and only if every preferred extension of AF is also stable.

Coherence is a desirable property. Dung gave a sufficient condition for it based on
the notion of controversial argument:

Definition 9 (controversial arguments).
Let AF = 〈A,R〉 be an argumentation framework.

– Let a, b ∈ A. a indirectly attacks b if and only if there exists an odd-length path
from a to b in the digraph for AF .

– Let a, b ∈ A. a indirectly defends b if and only if there exists an even-length path
from a to b in the digraph for AF . The length of this path is not zero.

– Let a, b ∈ A. a is controversial w.r.t. b if and only if a indirectly attacks b and a
indirectly defends b.

– AF is uncontroversial if and only if there is no pair a, b of arguments of A such
that a is controversial w.r.t. b.

– AF is limited controversial if and only if there is no infinite sequence of arguments
a0, . . . , an, . . . of A s.t. ai+1 is controversial w.r.t. ai.

Dung has shown the following theorem:

Proposition 4. Theorem 33 in [5]
Every uncontroversial or limited controversial argumentation framework is coherent.
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3 Careful Extensions

Let us now present our new semantics for Dung’s argumentation frameworks. They are
based on the notion of super-controversial pair of arguments:

Definition 10 (super-controversial arguments). Let AF = 〈A,R〉 be a finite argu-
mentation framework and let a, b, c ∈ A. (a, b) is super-controversial w.r.t. c if and only
if a indirectly attacks c and b indirectly defends c.

Example 1 (cont’ed). In AFl, (d, e) is super-controversial w.r.t. a.

Obviously enough, the notion of super-controversial pair of arguments extends the
notion of controversial arguments since a is controversial w.r.t. c if and only if (a, a) is
super-controversial w.r.t. c.

In order to address Example 1 in a more satisfying way, we need to reinforce Dung’s
notion of conflict-free set of arguments; we consider in addition the notion of
controversial-free set of arguments:

Definition 11 (controversial-free sets). Let AF = 〈A,R〉 be a finite argumentation
framework. S ⊆ A is controversial-free for AF if and only if for every a, b ∈ S and
every c ∈ A, (a, b) is not super-controversial w.r.t. c.

Definition 12 (c-admissible sets). Let AF = 〈A,R〉 be a finite argumentation frame-
work. S ⊆ A is c(areful)-admissible for AF if and only if every a ∈ S is acceptable
w.r.t. S and S is conflict-free and controversial-free for AF .

Example 1 (cont’ed). {d}, and {a, e} and its subsets except {a} are the c-admissible
sets for AF1.

From Definition 12, the next lemma follows immmediately:

Lemma 1. Let a, b be two arguments of a finite argumentation framework AF . If a is
controversial w.r.t. b, then {a} cannot be included in a c-admissible set for AF .

Obviously, the absence of controversial arguments within a set is only necessary
to ensure that the set is controversial-free, hence potentially c-admissible (as Exam-
ple 1 shows, this is not a sufficient condition). Since every argument belonging to
an odd-length cycle of AF is controversial w.r.t. any argument of the cycle [23], no
such argument can belong to a c-admissible set. In this respect, our approach departs
from [18, 19] who consider that odd-length and even-length cycles in an argumentation
framework should be handled in the same way.

On this ground, one can define several notions of careful extensions, echoing Dung’s
ones. Let us start with preferred c-extensions:

Definition 13 (preferred c-extensions). Let AF = 〈A,R〉 be a finite argumentation
framework. A c-admissible set S ⊆ A for AF is a preferred c-extension of AF if and
only if �S′ ⊆ A s.t. S ⊂ S′ and S′ is c-admissible for AF .

Example 1 (cont’ed). {a, e} and {d} are the preferred c-extensions of AF1.
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We have the following easy proposition:

Proposition 5. Let AF = 〈A,R〉 be a finite argumentation framework. For every c-
admissible set S ⊆ A for AF , there exists at least one preferred c-extension E ⊆ A of
AF s.t. S ⊆ E.

Since ∅ is c-admissible for any AF , we obtain as a corollary:

Corollary 1. Every finite argumentation framework AF = 〈A,R〉 has a preferred c-
extension.

What can be found in preferred c-extensions? Though every argument which is not
attacked belongs to at least one preferred c-extension of AF , it is not the case (in gen-
eral) that it belongs to every preferred c-extension of AF (see Example 1). In this re-
spect, c-preferred extensions hardly contrast with preferred extensions.

Let us now consider the notion of stable c-extension:

Definition 14 (stable c-extensions).
Let AF = 〈A,R〉 be a finite argumentation framework. A conflict-free and contro-

versial-free subset S of A is a stable c-extension of AF if and only if S attacks (in a
direct way) every argument from A \ S.

Example 1 (cont’ed). AF1 has no stable c-extension.

Every finite argumentation framework has at least one preferred c-extension, and
zero, one or many stable c-extensions.

Finally, as for Dung’s extensions, we have:

Lemma 2. Every stable c-extension of a finite argumentation framework AF also is a
preferred c-extension of AF . The converse does not hold.

Here is a more complex example for illustrating those notions:

Example 2. Let AF2 = 〈A,R〉 with A = {a, b, c, d, i, n} and R = {(i, n), (n, a),
(b, a), (c, a), (d, c), (b, d), (d, b)}. The digraph for AF2 is depicted on Figure 2.

a

b

d

c

i n

Fig. 2. The digraph for AF2

E1 = {i, a, d} and E2 = {i, b, c} are the two preferred (and stable) extensions of
AF2. E1 is the unique stable c-extension of AF2. E1 and E3 = {b, c} are the two
preferred c-extensions of AF2.
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Let us now explain how c-extensions can be characterized using some fixed point
construction:

Definition 15 (c-characteristic functions). The c-characteristic function Fc
AF of a fi-

nite argumentation framework AF = 〈A,R〉 is defined as follows:

Fc
AF : 2A −→ 2A

Fc
AF (S) = {a | a is acceptable w.r.t. S and S ∪ {a} is conflict-free

and controversial-free for AF}.
We immediately get that:

Lemma 3. Let AF = 〈A,R〉 be a finite argumentation framework and let S ⊆ A be a
conflict-free and controversial-free set for AF . S is c-admissible for AF if and only if
S ⊆ Fc

AF (S).

Contrariwise to the characteristic function of an argumentation framework, Fc
AF is

in general nonmonotonic w.r.t.⊆ (and this is also the case for its restriction to the set of
all c-admissible subsets of A). Accordingly, we cannot define a notion of c-grounded
extension corresponding to the grounded one.

Let us now introduce a notion of complete c-extension:

Definition 16 (complete c-extensions). Let AF = 〈A,R〉 be a finite argumentation
framework and let S be a c-admissible set for AF . S is a complete c-extension of AF
if and only if every argument a which is acceptable w.r.t. S and such that S ∪ {a} is
conflict-free and controversial-free for AF belongs to S.

Example 1 (cont’ed). {a, e} is a complete c-extension of AF1.

From the definition, it comes immediately that:

Lemma 4. A conflict-free and controversial-free set of arguments S is a complete c-
extension of AF if and only if Fc

AF (S) = S.

Let us now define several inference relations based on our careful semantics for
argumentation frameworks:

Definition 17 (careful inference relations). |∼q,s
c denotes the careful inference rela-

tion obtained by considering a careful semantics s (where s = P (referred), s =
S(table)) and q is an inference principle, either credulous (q = ∃) or skeptical (q = ∀).

For instance, S ⊆ A is a consequence of AF w.r.t. |∼∀,P
c , noted AF |∼∀,P

c S,
indicates that S is included in every preferred c-extension of AF .

We have compared all the careful inference relations induced by the different seman-
tics w.r.t. cautiousness. We have focused on the case of finite argumentation frameworks
with a stable c-extension (otherwise, both |∼∀,S

c and |∼∃,S
c trivialize). We have obtained

the following results:

Proposition 6. The cautiousness relations reported in Table 1 hold for every finite ar-
gumentation framework which has a stable c-extension (Each time a cell contains a ⊆,
it means that for every AF = 〈A,R〉 and every S ⊆ A, if S is a consequence of AF
w.r.t. the inference relation indexing the row, then S is a consequence of AF w.r.t. the
inference relation indexing the column).
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Table 1. Cautiousness links between careful inference relations for AFs with a stable c-extension

|∼∃,P
c |∼∃,S

c |∼∀,P
c |∼∀,S

c

|∼∃,P
c = �⊆ �⊆ �⊆

|∼∃,S
c ⊆ = �⊆ �⊆

|∼∀,P
c ⊆ ⊆ = ⊆

|∼∀,S
c ⊆ ⊆ �⊆ =

One can note that the cautiousness picture for careful inference relations is similar
to the one for the inference relations induced from Dung’s semantics (assuming that the
argumentation frameworks under consideration have stable extension(s)):

|∼∀,P
c ⊂|∼∀,S

c ⊂|∼∃,S
c ⊂|∼∃,P

c .

4 Comparisons with Dung’s Framework

Let us now compare our careful semantics with Dung’s ones. Let us start with a com-
parison in terms of extensions.

4.1 Comparing Extensions

First of all, we immediately obtain the following easy result:

Proposition 7. Every c-admissible set for a finite argumentation framework AF is also
admissible for AF . The converse does not hold.

Clearly, this does not imply that every preferred c-extension is a preferred extension
which is conflict-free and controversial-free since maximality w.r.t. set inclusion is re-
quired among c-admissible sets. Nevertheless, as a consequence of Proposition 7, we
have:

Corollary 2. Let AF = 〈A,R〉 be a finite argumentation framework. For every pre-
ferred c-extension Ec of AF , there exists at least one preferred extension E of AF s.t.
Ec ⊆ E.

Example 2 (cont’ed). In AF2, E3 ⊂ E2.

This corollary shows in particular that when AF has a unique preferred extension E
(especially, when AF is well-founded or without even-length cycle, or trivial – i.e.,
when the unique preferred extension of it is empty), E includes every preferred c-
extension of AF .

However, unlike preferred extensions, a well-founded argumentation framework AF
can have more than one preferred c-extension (see Example 1).

It can also be the case that a preferred extension of AF does not include any of the
preferred c-extensions of AF . Furthermore, the presence of even-length cycles in AF
does not prevent it from having a unique preferred c-extension. Those two points are
illustrated by the following example:
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e

c

b

a i n

Fig. 3. The digraph for AF3

Example 3. Let AF3 = 〈A,R〉with A = {a, b, c, e, n, i} and R = {(b, e), (b, c), (c, e),
(b, a), (a, i), (n, i), (i, n)}. The digraph for AF3 is depicted on Figure 3.

E1 = {b, n} and E2 = {b, i} are the preferred (and stable) extensions of AF3.
E3 = {n} is the unique preferred c-extension of AF3. We have E3 �⊆ E2. Observe
that though the digraph for AF3 has an even-length cycle, AF3 has a unique preferred
c-extension.

Another easy consequence of Proposition 7 is:

Corollary 3. Let AF = 〈A,R〉 be a finite argumentation framework. If AF is trivial,
then AF is c-trivial, i.e., the unique preferred c-extension of AF is empty. The converse
does not hold.

Let us now turn to stable c-extensions:

Lemma 5. Every stable c-extension of a finite argumentation framework AF also is a
stable extension of AF . The converse does not hold.

As a direct consequence, we obtain that every stable c-extension of a finite argumen-
tation framework AF also is a preferred extension of AF . However, the converse does
not hold.

While every well-founded argumentation framework has a stable extension, it is not
the case that every well-founded argumentation framework has a stable c-extension;
furthermore, it is also not the case that every argumentation framework which is un-
controversial has a stable c-extension. Example 1 is a counter-example for both cases.
In the same vein, a finite argumentation framework AF that is both well-founded and
uncontroversial is not always c-coherent (i.e., such that every preferred c-extension of
AF is a stable c-extension of AF ). In particular, it is not the case that a coherent finite
argumentation framework AF is always c-coherent as well (see Example 1).

It turns out that argumentation frameworks AF with a stable c-extension are partic-
ularly interesting. Indeed, whenever AF has a stable c-extension, we have:

Proposition 8. Let AF = 〈A,R〉 be a finite argumentation framework. If AF has a
stable c-extension, the grounded extension of AF and the intersection of all preferred
extensions of AF coincide (i.e., AF is relatively grounded).

Proposition 9. Let AF = 〈A,R〉 be a finite argumentation framework. If AF has a
stable c-extension, the intersection of all preferred c-extensions of AF is included in
the grounded extension of AF .
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Subsequently, if AF has a stable c-extension, the intersection of all preferred c-
extensions of AF is included in the intersection of all preferred extensions of AF ;
hence, it is also included in the intersection of all stable extensions of AF .

Now, what’s about controversies? We have the two following lemmata:

Lemma 6. Let AF = 〈A,R〉 be a finite argumentation framework. AF is limited con-
troversial if and only if AF has no odd-length cycle.

Lemma 7. Let AF = 〈A,R〉 be a finite argumentation framework. If AF has a stable
c-extension, then AF is limited controversial.

Thanks to Proposition 4, we obtain the following corollary:

Lemma 8. Let AF = 〈A,R〉 be a finite argumentation framework. If AF has a stable
c-extension, then AF is coherent.

We also have:

Proposition 10. Let AF = 〈A,R〉 be a finite argumentation framework s.t. AF has a
stable c-extension. For every preferred c-extension Ec of AF , there exists at least one
stable extension S of AF s.t. Ec ⊆ S.

Finally, we can show that the set of complete extensions of AF and the set of com-
plete c-extensions of AF are not comparable w.r.t. ⊆.

4.2 Comparing Inference Relations

We have compared our careful inference relations with the ones induced by Dung’s se-
mantics w.r.t. cautiousness. Let |∼q,s denote the inference relation obtained by consider-
ing Dung’s semantics s (where s = P (referred), s = S(table) or s = G(rounded))
and q is an inference principle, either credulous (q = ∃) or skeptical (q = ∀).

Since the presence of a stable c-extension changes the picture, we have first consid-
ered this specific case, then the general case. We have obtained the following results:

Proposition 11. The cautiousness relations reported in Table 2 hold for every finite
argumentation framework which has a stable c-extension.

Table 2. Cautiousness links between careful relations and Dung’s ones for AFs with a stable
c-extension

|∼∃,P
c |∼∃,S

c |∼∀,P
c |∼∀,S

c

|∼∃,P �⊆, ⊇ �⊆, ⊇ �⊆, ⊇ �⊆, ⊇
|∼∃,S �⊆, ⊇ �⊆, ⊇ �⊆, ⊇ �⊆, ⊇
|∼∀,P ⊆, �⊇ ⊆, �⊇ �⊆, ⊇ ⊆, �⊇
|∼∀,S ⊆, �⊇ ⊆, �⊇ �⊆, ⊇ ⊆, �⊇
|∼.,G ⊆, �⊇ ⊆, �⊇ �⊆, ⊇ ⊆, �⊇
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|∼.,G=|∼∀,P =|∼∀,S |∼∃,S=|∼∃,P

|∼∀,P
c |∼∀,S

c |∼∃,S
c |∼∃,P

c

�
�

�
��	




� �




Fig. 4. Cautiousness links between inference relations for AF s with a stable c-extension

|∼.,G |∼∀,P |∼∃,P |∼∃,P
c |∼∀,P

c
� � � �

Fig. 5. Cautiousness links between inference relations

Tables 1 and 2 are summarized on Figure 4 (Each arrow can be read as “strictly more
cautious than”).

In the light of Figure 4, one can observe that the most cautious inference relation
among those considered here is |∼∀,P

c and the least cautious ones are |∼∃,S=|∼∃,P . Fur-
thermore, strict cautiousness is a complete ordering over the set of inference relations
considered in this paper.

Let us now turn to the general case, i.e., argumentation frameworks which do not
have necessarily a stable c-extension, or even a stable extension. We do not put poten-
tially trivial relations into the picture (i.e., |∼∀,S

c , |∼∃,S
c , |∼∀,S , |∼∃,S are not considered

hereafter):

Proposition 12. The cautiousness relations reported in Tables 3 and 4 hold for every
finite argumentation framework.

Tables 3 and 4 are summarized on Figure 5.
Proposition 12 shows that the lack of a stable c-extension does not question the way

|∼∃,P
c and |∼∀,P

c are linked up (see Proposition 6). Contrastingly, when the existence
of a stable c-extension is not guaranteed, the cautiousness links between our careful
relations and Dung’s ones are heavily modified. Compared with the results reported on
Figure 4, one can observe that in the general case, it is not guaranteed that |∼.,G and
|∼∀,P coincide, that |∼∀,P

c is more cautious than |∼.,G and that |∼∀,P is more cautious
than |∼∃,P

c .

Table 3. Cautiousness links between careful re-
lations

|∼∃,P
c |∼∀,P

c

|∼∃,P
c = �⊆

|∼∀,P
c ⊆ =

Table 4. Cautiousness links between careful re-
lations and Dung’s ones

|∼∃,P
c |∼∀,P

c

|∼∃,P �⊆, ⊇ �⊆, ⊇
|∼∀,P �⊆, �⊇ �⊆, �⊇
|∼.,G �⊆, �⊇ �⊆, �⊇
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5 Some Complexity Issues

Before concluding the paper, let us consider some complexity issues. Indeed, in an
AI perspective, it is important to determine how hard are the new inference relations
we pointed out w.r.t. the computational point of view. We assume the reader acquainted
with basic notions of complexity theory, especially the complexity classes P, NP, coNP
and the polynomial hierarchy (see e.g. [24]).

We have shown in a previous paper [25] that considering sets of arguments (in-
stead of single arguments) as input queries for the inference problem does not lead to
a complexity shift when Dung’s inference relations are considered (the purpose is to
determine whether such sets are derivable from a given finite argumentation framework
AF ). As to the careful inference relations, the same conclusion can be drawn.

First of all, it is easy to show that, given a finite argumentation framework AF ,
deciding whether a given argument indirectly attacks (resp. indirectly defends) a given
argument is in P, and deciding whether a set of arguments is controversial-free is in P.
Accordingly, deciding whether a given set of arguments is c-admissible for AF is in P.
As a consequence, deciding whether a given set of arguments is a stable c-extension of
AF is in P as well. Therefore, deciding whether a given set of arguments S is included
in every stable c-extension of AF is in coNP (in order to show that the complementary
problem is in NP, it is sufficient to guess a set E ⊆ A and to check in polynomial time
that E is a stable c-extension of AF and that S is not included in E).

Besides, deciding whether a set of arguments S is a preferred c-extension of AF is
in coNP (in order to show that the complementary problem is in NP, it is sufficient to
guess a proper superset S′ of S and to check in polynomial time that S′ is c-admissible
for AF ). As a consequence, deciding whether a given set of arguments S is included in
every preferred c-extension of AF is in Πp

2 (in order to show that the complementary
problem is in Σp

2 , it is sufficient to guess a set E ⊆ A and to check in polynomial time
using an NP oracle that E is a preferred c-extension of AF and that S is not included
in E).

Finally, deciding whether a given set of arguments is included in a preferred c-
extension (resp. a stable c-extension) of AF is in NP. To be more precise:

Definition 18. C-CA(AF, S) is defined as follows:
 Input AF = 〈A,R〉 a finite argumentation framework, and S ⊆ A.
 Quest Is S included in a preferred c-extension of AF?

Proposition 13. C-CA(AF, S) is NP-complete.

Definition 19. IN-C-STAB(AF, S) is defined as follows:
 Input AF = 〈A,R〉 a finite argumentation framework, and S ⊆ A.
 Quest Is S included in a stable c-extension of AF?

Proposition 14. IN-C-STAB(AF, S) is NP-complete.

Accordingly, our careful inference relations are not computationally more complex
that the corresponding ones based on Dung’s semantics (see [26, 27]).
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6 Conclusion

We have presented new careful semantics within Dung’s theory of argumentation. Un-
der such careful semantics, two arguments cannot belong to the same extension when-
ever one of them indirectly attacks a third argument, while the second one indirectly
defends it. In particular, controversial arguments are always rejected. This seems to be
highly desirable in domains where controversies can be interpreted as contradictions, as
we exemplified it. We have also compared our careful inference relations with Dung’s
ones and considered some complexity issues, showing that our inference relations are
not more complex than the corresponding ones based on Dung’s semantics.

Our work calls for some perspectives. A first perspective consists in developing spe-
cific algorithms for computing careful extensions, based on algorithms for computing
extensions like those described in [28, 29, 30]. A second perspective consists in com-
bining the notion of safe extension introduced recently [31] with the notion of careful
extension.
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Abstract. Defeasible Logic is extended to programming languages for cognitive
agents with preferences and actions for planning. We define rule-based agent the-
ories that contain preferences and actions, together with inference procedures. We
discuss patterns of agent types in this setting. Finally, we illustrate the language
by an example of an agent reasoning about web-services.

1 Introduction

This paper combines two perspectives: (a) a cognitive account of agents that specifies
their mental attitudes; (b) modelling agents’ behaviour by means of normative concepts.
For the first approach, our background is the belief-desire-intention (BDI) architecture,
where mental attitudes are taken as primitives to give rise to a set of Intentional Agent
Systems [16, 3]. This view is interesting especially when the behaviour of agents is the
outcome of a rational balance among their (possibly conflicting) mental states. The nor-
mative aspect is rather based on the assumption that normative concepts play a role to
characterize the idea of social co-ordination of autonomous agents [15]. The combina-
tion of these perspectives leads to an account of agents’ deliberation and behaviour in
terms of the interplay between mental attitudes and normative (external) factors such as
obligations.

Given this background, several rule-based approaches are available for programming
cognitive agents [5, 9, 4]. In this paper we extend the Defeasible Logic (DL) approach.
As is well-known, DL is based on a logic programming-like language and it is a sim-
ple, efficient but flexible non-monotonic formalism able to deal with many different
intuitions of non-monotonic reasoning and recently applied in many fields. In addi-
tion, several efficient implementations have been developed [14, 2]. Here we propose a
non-monotonic logic of agency, based on the framework of [1], which extends the pre-
liminary work we presented in [7]. Indeed, DL is one of the most expressive languages
that allows for the definition of large sets of patterns called agent types. Moreover, it
is flexible to incorporate ideas from other languages, such as extension generation and
selection from BOID [5], or deliberation languages from 3APL [9, 6].

However, as we argued in [7], it has two limits. First, DL, as well as its rival rule
based programming languages, is based on a uniform representation of rules, whereas

G. Sutcliffe and A. Voronkov (Eds.): LPAR 2005, LNAI 3835, pp. 621–636, 2005.
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in artificial intelligence and in practical reasoning other complex structures have been
proposed. Most importantly, rule-based approaches are based on conditionals, whereas
an alternative approach is based on comparative notions. Examples are preference log-
ics and CP nets instead of logics of desires and goals, ordered disjunctions instead of
default logics, betterness logics instead of logics of ideality, logics of sub-ideality in
deontic logic, etc. Second, it is not immediate how DL can deal with complex actions
discussed in action languages such as 3APL [9] and in recent incarnations of the BOID
architecture [8].

Some issues on agent programming languages should be addressed: how to detect
and resolve conflicts that include such preferences, and which kind of agent types can
be introduced to deal with preferences. We contribute to cognitive agent programming
languages by addressing the following question: How to use DL extended with actions
and graded preferences? This question breaks down in the following sub-questions: (a)
How to introduce preferences and actions for planning in DL? (b) How to detect and
resolve conflicts using preferences and actions? (c) How to define agent types based on
preferences and actions?

We provided in [7] some first intuitions on the question which kind of preferences
can be introduced in DL. In particular, we reconsidered the introduction of the⊗ opera-
tor of [11] in DL, given its advantages over other comparative notions. First, we argued
that it can be integrated with a rule based formalism (see also [10]). Second, it has
been applied to complicated problems in deontic logic [11]. Third, it allows to clearly
distinguish between conflicts and violations [10, 11]. In fact, though these notions may
conflate, conflicts and violations have in general to be kept separate. Suppose you have
an agent doing B while an obligation states OBL¬B. Since the logic for OBL is usually
not reflexive1, the scenario does not lead necessarily to a logical conflict but a violation:
conflict-resolution strategies may require that OBL¬B is not overridden. This paper pro-
vides a further step as it provides a more extensive treatment of conflict-detection and
-resolution strategies. In addition, it discusses a more comprehensive classification of
agent types.

A second substantial step of this work is that it shows how DL can embed a machin-
ery for dealing with planning agents. In this regard, to attack the questions with respect
to complex actions in BOID, [8] separate conflict-detection from -resolution. They ask
the question whether two plans are conflicting or not, and they ask the question how to
resolve conflicts between plans. Analogously, we use the distinction between conflict-
detection and -resolution for the ⊗ constructions too. This asks for another way to deal
with the notion of conflict.

We will distinguish between goal (desires, intentions, obligations) generation and
plan generation. The goal generation generates goals based on existing beliefs, desires,
intentions and obligations, and the plan generation generates sequences of actions based
on these goals. As for the first aspect, rules will allow the derivation of new motivational
factors of an agent. We will divide the rules into rules for beliefs, desires, intentions,
and obligations. Provability for beliefs will not generate goals, since in our view they
concern the knowledge an agent has about the world: beliefs may contribute to derive

1 As is well-known, in a non-reflexive modal logic A does not follow from X A, where X is a
modal operator.
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goals (desires, intentions, and obligations), but they are not in themselves motivations
for action. As for the second aspect, the inference mechanism will be used to deduce
sequences of actions (plans) to achieve goals.

The layout of this paper is as follows. In Section 2 we introduce agents with prefer-
ences and actions in DL, and in Section 3 we show how to infer goal conclusions from
rules with preferences. In Section 4 we discuss how to integrate the previous frame-
work to reason about plans in DL. Finally, in Section 5 we extensively discuss conflicts
among rules and patterns called agent types.

2 Agents in Defeasible Logic

We focus on how mental attitudes and obligations jointly interplay in modelling agent’s
deliberation and behaviour.

Accordingly the formal language contains modal literals, preferences, and actions,
and is defined as follows:

Definition 1 (Language). Let M = {BEL,DES, INT,OBL} be a set of modal opera-
tors, P a set of propositional atoms, and Act = {α,β , . . .} a set of basic actions. The
set of literals is defined as L = P∪{¬p|p ∈ P}. If q is a literal,∼q denotes the comple-
mentary literal (if q is a positive literal p then ∼q is ¬p; and if q is ¬p, then ∼q is p).

– The goal language Lgoal is the smallest set containing modal literals Xl and ¬Xl
when l ∈ L is a literal and X ∈M is a modal operator, and⊗-expressions l1⊗ . . .⊗ ln
when l1, . . . , ln ⊆ L are n≥ 1 literals.

– The plan language Lplan is the smallest set containing Act (basic action plan), l?
for all literals l (test action plan), Achieve(ψ) for ψ ∈ L (abstract action plan), ε
(empty plan), and if π ,π ′ ∈ Lplan, then π ;π ′ (first do π then π ′), π |π ′ (choose either
π or π ′), π ‖ π ′ (do π and π ′ simultaneously), π∗ (repeat doing π) are in Lplan

(composite plans). As usual we assume ∀π ∈ Lplan : ε;π = π ;ε = π .

An abstract action plan, Achieve(ψ), can be considered as the representation of a plan
which will achieve the goal ψ when it is executed. Moreover, we call a plan π a partial
plan if an abstract action occurs in π . A plan in which no abstract action occurs is called
a total plan. When the difference is irrelevant, we use the term plan to indicate either a
partial or a total plan.

For X ∈ {BEL, INT,DES,OBL}, we have that φ1, . . . ,φn→X ψ is a strict rule such
that whenever the premises φ1, . . . ,φn are indisputable so is the conclusion ψ . φ1, . . . ,
φn ⇒X∪{p} ψ is a defeasible rule that can be defeated by contrary evidence. A rule
φ1, . . . ,φn �X ψ is a defeater that is used to defeat some defeasible rules by supporting
evidence to the contrary.

Definition 2 (Rules). A rule r consists of its antecedent (or body) A(r) (A(r) may be
omitted if it is the empty set), an arrow (→ for a strict rule,⇒ for a defeasible rule, and
� for a defeater), and its consequent C(r) (or head). In addition the arrow is labelled
either with a modal operator X ∈ {BEL,DES, INT,OBL} or p (only for defeasible
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rules2). If the arrow is labelled with BEL the rule is for belief, and similarly for the
other modal operators; if it is labelled with p, then the rule is a planning rule.

– A goal rule is a rule r, where A(r) is a set of literals or modal literals, and C(r) is
a literal for strict rules, and an ⊗-expression for defeasible rules and defeaters.

– A planning rule is a defeasible rule of the form φ1, . . . ,φn : ψ⇒p π where π ∈ Lplan,
and φ1, . . . ,φn,ψ ∈ Lgoal are literals or modal literals.

– Given a set R of rules, we denote the set of all strict rules in R by Rs, the set of strict
and defeasible rules in R by Rsd, the set of defeasible rules in R by Rd, and the set
of defeaters in R by Rdft. R[q] denotes the set of rules in R with consequent q. For
some i, 1≤ i≤ n, such that ci = q, R[ci = q] and rX

d [ci = q] denote, respectively, the
set of rules and a defeasible rule of type X with the head⊗n

i=1ci.

The purpose of goal generation is to derive modalised literals (with the exception of
rules for beliefs, which are meant to constitute the reasoning core of the system). For
example, the application of p⇒INT q permits to infer INTq.

Accordingly, modalities will not occur in the consequents of rules to keep the system
manageable. We also impose that action symbols may occur only in planning rules.

Definition 3 (Defeasible agent theory). A defeasible agent theory is a structure D =
(F,RBEL,RDES,RINT,ROBL,Rp,>) where F is a finite set of facts, RBEL is a finite set of
rules for belief, RDES is a finite set of rules for desire, RINT is a finite set of rules for
intention, ROBL is a finite set of rules for obligation, Rp is a set of planning rules, and
>, the superiority relation, is a binary relation over the set of rules.

The superiority relation > says when one rule may override the conclusion of another
rule. Facts are indisputable statements.

Beside the superiority relation, which is used when we have contradictory or con-
flicting conclusions, we can establish a preference over and within complex conclusions
by using the operator⊗.

In fact, the intuitive reading of a sequence like a⊗b⊗ c is that a is preferred, but if
¬a is the case, then b is preferred; if ¬b is the case, given ¬a, then the third choice is c.

Definition 4 (Preference operator). A preference operator ⊗ is a binary operator
satisfying the following properties: (1) a⊗ (b⊗ c) = (a⊗ b)⊗ c (associativity); (2)

2 We assume that planning rules are only defeasible. Since their intuitive role is to infer the
plans that allow the achievement of the goals of their antecedents, it may seem odd that
planning rules may be defeaters, e.g., rules that only block inferences. Indeed, it could be
argued that a defeater φ1, . . . ,φn : ψ � π intuitively can be just used to prevent the conclusion
of a plan π ′ that is is incoherent with regard to another plan which would lead to ψ . But the
conceptual plausibility of this reading strongly depends on the precise account we provide
for the notion of coherence of plans. Since we do not not commit ourselves to any specific
interpretation of this notion, we prefer not to consider this case here. We also assumed that
planning rules cannot be strict. Suppose to have two planning rules with the same antecedent
a but with consequents α and β . Intuitively, we could expect that these rules generate a new
rule with the antecedent a and with the consequent α|β . However, we will not discuss these
cases to keep the system manageable.
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⊗n
i=1 ai = (

⊗k−1
i=1 ai)⊗ (

⊗n
i=k+1 ai) where exists j such that a j = ak and j < k (dupli-

cation and contraction on the right).

The general idea of degree of preferences and ⊗ formulas are interpreted as prefer-
ence formulas like in [11] and are here extended to cover all motivational components
(but ⊗-expressions will not occur in planning rules). Let us see some examples to see
the intuitive meaning of such extension:

For beliefs, rule ¬SunShining⇒BEL Raining⊗ Snowing says that the agent believes
that it is raining, but if it is not raining then it is snowing as the sun is not shining;

For desires, rule TimeForHoliday⇒DES GoToAustralia⊗GoToSpain means that, if it
is time for holiday, the agent has the primary desire to go to Australia, but, if this is
not the case, her desire is to go to Spain;

For intentions, rule SunShining⇒INT Jogging⊗Walking says that the agent intends to
do jogging if the sun is shining, but, if, for some other reasons, this is not the case,
then she will have the intention to have a walk;

For obligations, rule Order ⇒OBL Pay⊗ PayInterest says that, if the agent sends a
purchase order, then she will be obliged to pay, but, in the event this is not done,
she will have to pay interest.

According to the reading proposed for⊗, suppose we have a rule for obligation such as
a⇒OBL b⊗ c: if a is given, it says that b is obligatory; but, if ¬b, then c is obligatory.
A similar intuition applies to the other types of rules.
Example 1. (Running example) Suppose an agent desires an application server. She can
buy two products from X or Y . She prefers X but, for working with Linux, she does not
intend to order X’s product. X requires a payment, within 2 days, of 300$, otherwise
X forbids to download the software. Y requires a payment of 600$ within 1 day, or,
as a second choice, a payment of 660$. The agent does not intend to pay to Y 660$.
Agent’s financial resources amount to 700$, which are available in 4 days. We also
know that the agent is a Linux user, and has a credit card and a bank account. With
X ∈ {BEL,DES, INT,OBL}, this piece of theory is used to derive goals.

F = {BAccount,CCard,700$In4days,UseLinux,DESApplserver}
RX = {r1 : 700$In4days⇒BEL ¬PayY600$1days, r2 : 700$In4days⇒BEL ¬PayX300$2days,

r3 : DESApplserver⇒INT OrderX⊗OrderY , r4 : UseLinux⇒INT ¬OrderX

r5 : INTOrderY ⇒INT ¬PayY660$, r6 : INTOrderY⇒OBL PayY600$1days⊗PayY660$,

r7 : INTOrderX⇒OBL PayX300$2days⊗¬DownloadApplserverX}
>= {r4 > r3}

Making an order requires to send the order. However, the plan theory does not specify
how to achieve this goal with X . On the other hand, sending an order to Y requires
to provide agent’s data and send them. Y allows to pay either by bank transfer, which
requires to provide a digital signature, bank data of Y and to specify the amount of 660$,
or by credit card, which requires to send credit card data and specify the amount. It is
not possible to pay by a bank transfer and by credit card. The following piece of theory
is considered for generating agent’s plans (bold symbols denote actions):
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Rp = {r8 :5 : OrderX⇒p Achieve(SendOrderX), r9 :5 : OrderY ⇒p Achieve(SendOrderY)

r10 :5 : SendOrderY ⇒p ProvData;SendDataToY

r11 : BAccount : PayY660$⇒p Achieve(TransferY660$) ‖ ¬Achieve(Pay660$CCard)

r12 : CCard : PayY660$⇒p ¬Achieve(TransferY660$) ‖ Achieve(Pay660$CCard)

r13 :5 : TransferY660$⇒p DigitalSign;ProvBankDataY;Spec660$

r14 :5 : Pay660$CCard⇒p SendToYCreditCardData ‖ Spec660$}
>= {r11 > r12}

3 Goal Generation: Inference with Preferences

Definition 5 (Proofs). Given an agent theory D, a proof in D is a linear derivation, i.e,
a sequence of labelled formulas of the type +ΔX q, −ΔX q, +∂X q and −∂X q, where the
proof conditions defined in the rest of this section hold.

The meaning of the proof tags +Δ , −Δ , +∂ and −∂ is as follows: +ΔXq means that q
is provable using only facts and strict rules for X , −ΔX q means that it has been proved
that q is not definitely provable, +∂X q that q is defeasibly provable in D and −∂X q that
q is not defeasibly provable.

We start with some terminology. As explained in the previous section, the following
definition states the special status of belief rules, and that an introduction of a modal
operator corresponds to being able to derive the associated literal using the rules for the
modal operator.

Definition 6. Let # ∈ {Δ ,∂}, and P = (P(1), . . . ,P(n)) be a proof in D. A literal q is
#-provable in P if there is a line P(m) of P such that either

1. q is a literal and P(m) = +#BELq or
2. q is a modal literal X p and P(m) = +#X p or
3. q is a modal literal ¬X p and P(m) =−#X p.

A literal q is #-rejected in P if there is a line P(m) of P such that either

1. q is a literal and P(m) =−#BELq or
2. q is a modal literal X p and P(m) =−#X p or
3. q is a modal literal ¬X p and P(m) = +#X p.

The first type of tagged literals, denoted by ΔX , correspond to strict rules. The definition
of ΔX describes just forward chaining of strict rules:

+ΔX : If P(i+1) = +ΔX q then
(1) q ∈ F or
(2) ∃r ∈ RX

s [q] ∀a ∈ A(r) a is Δ -provable or
(3) ∃r ∈ RBEL

s [q] ∀a ∈ A(r) Xa is Δ -provable.

−ΔX : If P(i+1) =−ΔX q then
(1) q /∈ F and
(2) ∀r ∈ RX

s [q] ∃a ∈ A(r) : a is Δ -rejected and
(3) ∀r ∈ RBEL

s [q] ∃a ∈ A(r) Xa is Δ -rejected.

For a literal q to be definitely provable we need to find a strict rule with head q, whose
antecedents have all been definitely proved previously. And to establish that q cannot
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be proven definitely we must establish that for every strict rule with head q there is at
least one of antecedent which has been shown to be non-provable. Condition (3) says
that a belief rule can be used as a rule for a different modal operator in case all literals in
the body of the rules are modalised with the modal operator we want to prove. Thus, for
example, given the rule p,q→BEL s, we can derive +ΔY s if we have +ΔY p and +ΔY q.

Conditions for ∂X are more complicated since we have to consider ⊗-expressions.
We define when a rule is applicable or discarded. A rule for a belief is applicable if all
the literals in the antecedent of the rule are provable with the appropriate modalities,
while the rule is discarded if at least one the literals in the antecedent is not provable.
For the other types of rules we have to take complex derivations into account called
conversions [12]. In this paper we say there is a conversion from X to Y if a X rule
can also be used as a Y rule. We have thus to determine conditions under which a rule
for X can be used to directly derive a literal q modalised by Y . Roughly, the condition
is that all the antecedents a of the rule are such that +∂Y a. We represent all allowed
conversions by a conversion relation c (see also Section 5).

Definition 7. Let a conversion relation c be a binary relation between {BEL, INT,DES,
OBL}, such that c(X ,Y ) stands for the conversion of X rules into Y rules.

– A rule r in RBEL is applicable iff ∀a ∈ A(r), +∂BELa ∈ P(1..n) and ∀Xa ∈ A(r),
where X is a modal operator, +∂X a ∈ P(1..n).

– A rule r ∈ Rsd [ci = q] is applicable in the condition for ±∂X iff

1. r ∈ RX and ∀a ∈ A(r), +∂a ∈ P(1..n) and ∀Ya ∈ A(r) +∂Y a ∈ P(1..n), or

2. r ∈ RY and ∀a ∈ A(r), +∂X a ∈ P(1..n).

– A rule r is discarded if we prove either −∂BELa or −∂X a for some a ∈ A(r).

Example 2. Rule a, INTb⇒BEL c is applicable if we can prove +∂BELa and +∂INTb.

Remark 1. The notion of conversion is not strange. In many formalisms we can convert
from one type of conclusion into a different one. Take for example the right weaken-
ing rule of non-monotonic consequence relations, where it is possible to combine non-
monotonic consequence with classical consequences: B � C and A |∼B imply A |∼C
[13]. Here, conversions will simply allow to obtain conclusions modalised by a certain
X through the application of rules which are not modalised by X .

Example 3. If we have a type of agent that allows a deontic rule to be converted into
a rule for intention, c(OBL, INT), then the definition of applicable in the condition
for ±∂INT is as follows: a rule r ∈ Rsd [ci = q] is applicable iff (1) r ∈ RINT and ∀a ∈
A(r), +∂a ∈ P(1..n) and ∀Xa ∈ A(r), +∂X a ∈ P(1..n), (2) or r ∈ RO and ∀a ∈ A(r),
+∂INTa ∈ P(1..n). In this second case, for example, given the rule p,q⇒OBL s, we can
derive +∂INTs if we have +∂INT p and +∂INTq.
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Proof conditions for±∂X are thus as follows:

+∂X : If P(n+1) = +∂X q then
(1)+ΔX q ∈ P(1..n) or

(2.1) −ΔX∼q ∈ P(1..n) and
(2.2) ∃r ∈ Rsd [ci = q] such that r is applicable, and ∀i′ < i, −∂BELci′ ∈ P(1..n); and
(2.3) ∀s ∈ R[c j =∼q], either s is discarded, or∃ j′ < j such that +∂X c j′ ∈ P(1..n), or
(2.3.1) ∃t ∈ R[ck = q] s.t. r is applicable and

∀k′ < k, −∂BELck′ ∈ P(1..n) and t > s
−∂X : If P(n+1) =−∂X q then
(1) −ΔX q ∈ P(1..n)) and either

(2.1) +ΔX∼q ∈ P(1..n) or
(2.2) ∀r ∈ Rsd[ci = q], either r is discarded or∃i′ < i such that +∂BELci′ ∈ P(1..n), or
(2.3) ∃s ∈ R[c j =∼q], such that s is applicable and∀ j′ < j, −∂X c j′ ∈ P(1..n) and
(2.3.1) ∀t ∈ R[ck = q] either t is discarded, or

∃k′ < k such that +∂BELck′ ∈ P(1..n) or t �> s

For defeasible rules we deal with ⊗ formulas. To show that q is provable defeasibly we
have two choices: (1) We show that q is already definitely provable; or (2) we need to
argue using the defeasible part of a theory D. For this second case, three (sub)conditions
must be satisfied. First, we require that there must be a strict or defeasible rule for
q which can be applied (2.1). Second, we need to consider possible reasoning chains
in support of ∼q, and show that ∼q is not definitely provable (2.2). Third, we must
consider the set of all rules which are not known to be inapplicable and which permit
to get ∼q (2.3). Essentially each such a rule s attacks the conclusion q. For q to be
provable, s must be counterattacked by a rule t for q with the following properties:
(i) t must be applicable, and (ii) t must be stronger than s. Thus each attack on the
conclusion q must be counterattacked by a stronger rule. In other words, r and the
rules t form a team (for q) that defeats the rules s. −∂X q is defined in an analogous
manner.

Goals are obtained as +∂G or +ΔG, G ∈ {DES, INT,OBL}. As it was said, provabil-
ity for beliefs does not directly generate goals.

Example 4 (Running example; continued). Let us assume that the agent is realistic,
namely that beliefs override all motivational components (see Section 5). Below is the
set C of all conclusions we get using the rules in RX :

C = {¬PayY600$1days, ¬PayX300$2days, INTOrderY,

INT¬OrderX, INT¬PayY660$}

Since the agent desires an application server, from r3, r4, r4 > r3 and ⊗-elimination,
we have +∂INTOrderY . This makes r6 and r5 applicable, while r7 is not. However, the
agent will have 700 $ available within 4 days and so, since the agent is realistic, from r1

we get +∂BEL¬PayY600$1days, which is a violation of the primary obligation in r6. We
would obtain +∂OBLPayY660$, but this not the case since the theory does not provide
criteria for resolving the conflict between this conclusion and that of r5.
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4 Plan Generation

A planning rule φ1, . . . ,φn : ψ ⇒p π may be intuitively read as a rule that allows for
the derivation of a plan π that permits to achieve a single goal ψ , given the beliefs
φ1, . . . ,φn. In other words, such a rule can be applied if φ1, . . . ,φn are believed, i.e. if they
are derivable from the agent’s beliefs, and ψ should be achieved, i.e. if ψ is derivable
from the agent’s goals. This implies that we will have various conclusions for goal
formulae and thus the following tagged literals: +ΔG p,−ΔG p, +∂G p,−∂G p where G∈
{DES, INT,OBL}. Similar to the definition of derivations of tagged literals, we define
the notion of provability of plans. In the following, we use AB(r) to denote the belief
conditions of the planning rule r, and AG(r) to denote its goal condition. For example,
for the planning rule r = φ : ψ ⇒p π , we have φ ∈ AB(r) and AG(r) = ψ . A plan π is
derivable if no plan π ′ is derivable which is incoherent with π . The notion of coherence
of plans is the counterpart of the notion of consistency of logical formulae which is used
for the provability of literals. The notion of coherence can be defined, for example, in
terms of resource conflicts or possibility of plan execution. We will not enter here into a
detailed discussion of this issue. However, we can formulate a very minimal condition
for compatible plans in terms of the belief and goal conditions of rules that generate
them. In particular, two plans are compatible iff the belief and goal conditions of the
rules applied to their derivations are consistent. This fact is already embedded in our
framework because the goal generation phase described in this paper provides criteria
for deriving consistent goals. The only exceptions are when facts (not derived goals) are
inconsistent or, we will see in Section 5, when the agent type adopted permits to obtain,
for example, that +∂OBLa and +∂INT¬a. In these cases, the superiority relation that
may apply specifically to planning rules can be decisive. In fact, given the possibility to
obtain +∂OBLa and +∂INT¬a, two planning rules5 : a⇒p π and5 :¬a⇒p π ′ turn out
to be both applicable. However, although for certain agent types +∂OBLa and +∂INT¬a
do not correspond to a conflict (OBLa and INT¬a are not necessarily in contradiction),
it may be argued that the plans leading to achieve a and ¬a are incoherent (intuitively
incompatible). Notice also that the plan language introduced in Section 2 does not admit
the negation of action symbols. So, in theory, logical inconsistency is not relevant as
regards the derivation of plans (the consequents of planning rules). However, we may
also have partial plans that include special abstract actions to achieve goals. In this case,
logical consistency of derived plans and the corresponding conflict resolution may play
a role as in the phase of goal generation.

Let us see first the basic proof conditions for the generation of total plans, i.e., plans
in which no abstract actions occur.

+Π : If P(i+1) = +Ππ then
(1) ∃r ∈ Rp[π] such that
(1.1) φ1, . . . ,φn ∈ AB(r) and AG(r) = ψ , and
(1.2) ∀k,1≤ k ≤ n, +∂BELφk ∈ P(1..i) and +∂Gψ ∈ P(1..i), and

(2) ∀s ∈ Rp[π ′] such that incoherent(π , π ′) either
(2.1) ∃φ ′ ∈ AB(s) :−∂BELφ ′ ∈ P(1..i) or
(2.2) ψ ′ ∈ AG(s) :−∂Gψ ′ ∈ P(1..i) or
(2.3) ∃t ∈ Rp[π] such that t > s and ∀φ ′′ ∈ AB(t) : +∂BELφ ′′ ∈ P(1..i) and

ψ ′′ ∈ AG(t) : +∂Gψ ′′ ∈ P(1..i).
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Thus, a total plan is defeasibly derivable if the conditions (1) and (2) hold. Condition
(1) states that a total plan π is defeasibly derivable at derivation step P(i + 1) if there
exists a planning rule with π as its consequent such that its belief and goal conditions
are defeasibly provable at derivations P(1..i). Condition (2) states that if there exists a
planning rule s such that its consequent is the total plan π ′ which is incoherent with plan
π , then either the belief and goal conditions of rule s are not defeasibly derivable or there
exists a preferred planning rule t with plan π as its consequent for which its beliefs and
goals are defeasibly derivable. Note that we assume that a planning rule is applicable
if its belief and goal conditions are defeasibly provable. We may also consider the case
where the belief and goal conditions are definitely provable.

Analogously, we define the non-provability of total plans−Ππ as follows:

−Π : If P(i+1) =−Ππ then
(1) ∀r ∈ Rp[π] either

(1.1) ∃φ ∈ AB(r) and −∂BELφ ∈ P(1..i) or
(1.2) AG(r) = ψ and −∂Gψ ∈ P(1..i), or

(2) ∃s ∈ Rp[π ′] such that incoherent(π ,π ′) and
(2.1) ∀φ ′ ∈ AB(s) : +∂BELφ ′ ∈ P(1..i) and
(2.2) ψ ′ ∈ AG(s) : +∂Gψ ′ ∈ P(1..i) and
(2.3) ∀t ∈ Rp[π] either t �> s or ∃φ ′′ ∈ AB(t) :−∂BELφ ′′ ∈ P(1..i) or

ψ ′′ ∈ AG(t) :−∂Gψ ′′ ∈ P(1..i).

Thus, a total plan is not defeasibly provable if one of the conditions (1) or (2) holds.
Condition (1) states that a total plan π is not defeasibly derivable at derivation step
P(i+1) if the belief or goal conditions of all planning rules with π as its consequent are
not defeasibly provable at derivations P(1..i). Condition (2) states that if there exists a
planning rule (s) such that its consequent is the total plan π ′ which is incoherent with
plan π , then its belief and goal conditions are defeasibly derivable and, moreover, for
all more preferred planning rules t with the total plan π as its consequent it is the case
that their beliefs or goals are not defeasibly derivable.

This definition of plan provability should be modified to allow the derivation of
plans that are obtained from the application of planning rules to refine an existing par-
tial plan. In order to define this notion of plan provability, we first assume the function
occurs(ψ ,π), which returns true if the abstract action Achieve(ψ) occurs in the par-
tial plan π , and the function sub(ψ ,π ′,π ′′), which returns a plan by substituting the
abstract action Achieve(ψ) in π ′ with plan π ′′. For example, consider the partial plan
π = α;Achieve(ψ);β . Then, occur(ψ ,π) = true and sub(ψ ,π ,γ|δ ) = α;(γ|δ );β . The
definition of defeasible provability of plans which involve abstract actions, indicated by
+Ωπ , can be defined as follows:

+Ω : If P(i+1) = +Ωπ then either
(1) +Ππ ∈ P(1..i), or
(2) +Ωπ ′ ∈ P(1..i) such that
(2.1) ∃r ∈ Rp[π ′′] and
(2.2) φ1, . . . ,φn ∈ AB(r) and AG(r) = ψ , and
(2.3) ∀k,1≤ k ≤ n, +∂BELφk ∈ P(1..i) and +∂Gψ ∈ P(1..i) and
(2.4) occurs(ψ,π ′) and sub(ψ,π ′,π ′′) = π .
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Thus, a plan is defeasibly provable if one of the conditions (1) or (2) holds. Condition
(1) states that a plan is provable if it is provable directly by applying planning rules.
Condition (2) states that a plan is derivable if there exists a partial plan which can be
refined by applying a rule.

Analogously, for plans that involve abstract actions we define the non-provability of
plans −Ωπ as follows:

−Ω : If P(i+1) =−Ωπ then
(1) −Ππ ∈ P(1..i), and
(2) +Ωπ ′ ∈ P(1..i) such that
(2.1) occurs(ψ,π ′) and sub(ψ,π ′,π ′′) = π and
(2.2) ∀r ∈ Rp[π ′′] :
(2.2.1) φ1, . . . ,φn ∈ AB(r) and ∃k, 1≤ k ≤ n, −∂BELφk ∈ P(1..i) or
(2.2.2) AG(r) = ψ and −∂Gψ ∈ P(1..i).

Thus, a plan is not defeasibly provable if the conditions (1) or (2) hold. Condition (1)
states that a plan is not provable if it is not directly provable and condition (2) states
that the plan is not provable through applications of planning rules to partial plans.

Example 5 (Running example; continued). Given the conclusions derived in Section 3,
let us consider the only positive goal, namely +∂INTOrderY. However, assume, as we
will do in Example 6, to have also +∂OBLPayY660$ and +∂INTPayY660$. These goals
make planning rules r9, r11 and r12 applicable, whereas INT¬OrderX makes r8 non-
applicable. r9 includes an abstract plan to be specified. This is possible via r10. On the
other hand, the agent has to pay 660$ to Y , but has to choose between two incompatible
plans: paying using the credit card of by bank transfer. Here r11 and r12 provide each
simultaneous partial plans that dictate to make a bank transfer and not paying by credit
card or the opposite. Since r11 > r12, the agent prefers the latter option. The derived
total plans are then

{ProvData;SendDataToY, DigitalSign;ProvBankDataY;Spec660$}

Finer criteria for dealing with provability in plans may be introduced when finer criteria
are used in the goal generation. If the agent is realistic and 1-stable, as we will see in
Section 5, then −∂INTOrderY; thus we cannot derive, too, any plan.

5 Conflict Resolution and Agent Types

At which phase do agent types intervene in the treatment of conflicts, and how can they
be generalised to incorporate⊗ formulas? Classically, agent types are characterised by
stating conflict resolution types in terms of orders of overruling between rules [5, 12].
For example, an agent is realistic when rules for beliefs override all other components;
she is social when obligations are stronger than the other motivational components with
the exception of beliefs. Agent types can be characterised by stating that, for any types
of rules X and Y , for every r and r′ such that r ∈ RX [ci = q] and r′ ∈ RY [di = ∼q], we
have that r > r′.

Let us assume to work with realistic agents, namely, with agents for which, for every
r and r′, r ∈ RBEL[ci = q] and r′ ∈ RY [di = ∼q], Y ∈ {DES, INT,OBL} we have that
r > r′. Then let us see the agent types that can be identified in the framework we have
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defined so far. Table 1 shows all possible cases and, for each kind of rule, indicates all
attacks on it. It should be read as follows. Each of the three main columns identifies a
possible kind of conflict between two types X ,Y of applicable rules that would permit to
infer the literals p and ∼p labelled by X and Y respectively. The first two sub-columns
in each main column indicate whether both literals are derived (i.e., there is no real
conflict, which is indeed a logical possibility since we are dealing with modalities which
do not enjoy reflexivity), or whether we have conflict where one rule prevails over the
other, or where the two rules defeat each other. Finally, the third sub-column defines
the agent type for which each conflict-detection and -resolution policy is appropriate.
Since we have to consider three kinds of rules for generating goals, we have to analyse
twelve combinations. (To save space, in Table 1 “s-” is an abbreviation for “strongly-”;
“indep.” abbreviates “independent”.)

Table 1. Agent Types: Basic Attacks

rOBL
d [ci = p]/ rINT

d [c j =∼p] rOBL
d [ci = p]/ rDES

d [c j =∼p] rINT
d [ci = p]/ rDES

d [c j =∼p]
+∂OBL p +∂INT∼p s-indep. +∂OBL p +∂DES∼p indep. +∂INT p +∂DES∼p unstable
+∂OBL p −∂INT∼p s-social +∂OBL p −∂DES∼p social +∂INT p −∂DES p stable
−∂OBL p +∂INT∼p s-deviant −∂OBL p +∂DES∼p deviant −∂INT p +∂DES∼p selfish
−∂OBL p −∂INT∼p s-pragmatic −∂OBL p −∂DES∼p pragmatic −∂INT p −∂DES∼p slothful

Independent and strongly-independent agents are free respectively to adopt desires
and intentions in conflict with obligations. As expected, for social and strongly-social
agents obligations override desires and intention. For pragmatic and strongly-pragmatic,
no derivation is possible and so the agent’s generation of goals is open to any other
course of action other than those specified in the rules considered. Stable and selfish
agents are those for which, respectively, intentions override desires or the opposite.
Unstable agents are free to adopt desires in conflict with intentions, while, for slothful
agents, conflicting desires and intentions override each other.

Table 1 does not cover all possible types of agent. In fact, the table focuses on pos-
sible attacks that involve only two rules; in addition we will assume that belief rules
are always stronger than intentions, desires and obligations. This is motivated by the
intuition that belief rules describe specification of the environment where the agent is
situated. Table 2 completes the scenario and provides all possible combinations when
we deal with three rules, in particular, we consider all possible relationships between
obligation rules on one side and intention and desire rules on the other side. For example
we consider agent types where an obligation rule can be defeated by an intention rule
and, at the same time, it can defeat a desire rule (social-strongly social). This allows for
the specification of new agent types based on the basic types defined in Table 1.

However, this taxonomy can be enriched thanks to the role that may be played by
⊗-expressions. In fact, in traditional rules-based systems, conflict-detection returns a
boolean: either there is a conflict, or there is not. For⊗ constructs, it seems that we may
need a finer distinction. For example, we can have degrees of violation. Of course, if
we define a conflict detection function that returns no longer booleans but a more com-
plex structure (e.g., an integer that returns 0 if no violation, 1 if violation of primary
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Table 2. Agent Types: Other Attacks

rOBL
d [ci = p]/rINT

d [c j =∼p]/rDES
d [ck =∼p]

+∂OBL p +∂INT∼p +∂DES∼p hyper-independent
+∂OBL p +∂INT∼p −∂DES∼p social-strongly-independent
+∂OBL p −∂INT∼p +∂DES∼p social-independent
+∂OBL p −∂INT∼p −∂DES∼p hyper-social
−∂OBL p +∂INT∼p +∂DES∼p hyper-deviant
−∂OBL p +∂INT∼p −∂DES∼p social-strongly-deviant
−∂OBL p −∂INT∼p +∂DES∼p social-deviant
−∂OBL p −∂INT∼p −∂DES∼p hyper-pragmatic

obligation, 2 if violation of secondary obligation), then we have to write conflict reso-
lution methods which can somehow deal with this. Section 3 provides criteria to solve
conflict between rules including ⊗ constructions. In this perspective, the role of ⊗ can
be made fruitful. In particular, the introduction of ⊗ is crucial if we want to impose
some constraints on the number of violations in deriving a goals. Goal generation can
be constrained, so that provability of a goal g is permitted only if getting g does not
require more than m violations for each rule with g in the head:

Definition 8 (Violation constraint on goals). Let m and X be an integer and a type of
rule, respectively. A theory D will be m-X-constrained iff, given the definition of +∂ ,
for all literals q, +∂X q iff (1) i′ ≤ m; and (2) if 1≤ j′ ≤ j and s ∈ RX , then j′ ≤m; and
(3) k′ ≤ m. Otherwise, −∂X q.

Similar intuitions are applicable to directly constraint agent types, thus introducing
graded agent types: e.g., for any two rules r1 : rOBL

d [ci = p] and r2 : rDES
d [c j = ∼p]

we may reframe the type “social” of Table 1 stating that an m-social agent is such that

+∂OBL p/− ∂DES∼p iff i≤ m

Thus the idea of agent type can also be generalised taking into account⊗ constructs.
It is possible to integrate the above classifications by referring to the notion of con-

version [12]. Conversions do not have a direct relation with conflict resolution because
they simply affect the condition of applicability of rules. However, they indeed con-
tribute to define the cognitive profile of agents because they allow to obtain conclusions
modalised by a certain X through the application of rules which are not modalised by
X . According to this view, for example, we may have agent types for which, given
p⇒OBL q and +∂INT p we can obtain +∂INTq. Of course, this is possible only if we as-
sume a kind of norm regimentation, by which we impose that all agents intend what
is prescribed by deontic rules. This conversion, in particular, seems appropriate to
characterize some kinds of social agent. Other conversions, which, on the contrary,
should hold for all realistic agents are, for example, those that permit to obtain +∂Xq,
X ∈ {DES, INT,OBL}, from p⇒BEL q and +∂X p [12]. Table 3 shows the conversions
and specify the agent types with respect to which each conversion seems to be appro-
priate. We assume to work at least with realistic agents. Since conversions are used only
indirectly for conflict resolution but are conceptually decisive for characterising agents,
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Table 3. Conversions

c(BEL,OBL) realistic c(BEL, INT) realistic c(BEL,DES) realistic
c(OBL,DES) c-social c(OBL, INT) c-strongly-social c(DES,OBL) c-deviant
c(INT,DES) c-stable c(DES, INT) c-selfish c(INT,OBL) c-strongly-deviant

they provide criteria to specify new agent types. Not all conversion types make sense
and so we consider only 9 cases out of 12 possible combinations.

At which phase do agent types intervene in the treatment of conflicts? Classic agent
types, violation constraints and conversions play their role mainly in the goal genera-
tion phase, because all these features mainly contribute to characterize the motivational
profile of the agent. Notice, however, that we could also introduce ⊗ in plans. With
plans, in fact, we would need as well a finer distinction than just assuming that either
two plans conflict or they do not; for example, in [8] no finer distinction was made.
In particular, ⊗ in planning rules could express non-deterministic effects of actions.
However, we prefer here not to do this, to keep the system manageable. This does not
mean that we cannot introduce finer criteria for dealing with provability in plans, but
this can be simply made just referring to derivation of the goals that occur, as results,
in the planning rules. As we have seen, a planning rule φ1, . . . ,φn : ψ ⇒p π permits to
infer plan π , a plan that is meant to produce the goal ψ given beliefs φ1, . . . ,φn. Plan π
is conceptually the condition for obtaining ψ . Thus, Definition 8 will allow the agent to
obtain π only if ψ or φ1, . . . ,φn do not require more than m violations for each X rule.

Example 6 (Running example; continued). Suppose the agent be strongly-social and
c-strongly-social, namely, that obligations override intentions and that we accept con-
version c(OBL, INT). So, we obtain the following additional goals:

{OBLPayY660$, INTPayY660$}

Since r6 is now stronger than r5, we obtain OBLPayY660$, while the second goal is de-
rived via r6 and conversion c(OBL, INT). This second means that we drop the previous
conclusion obtained in Example 4, i.e. that the agent intends the opposite.

Assume now that the theory is also 0-X-constrained, for X ∈ {INT,OBL}. This
means that no violation is permitted. If so, no new intention or obligation can be derived.

Finally, suppose the agent is realistic and 1-stable. Let us add to RX the rule r′ :
a⇒DES ¬OrderY , and to F the fact a. Thus we would obtain DES¬OrderY , which is
in conflict with the conclusion that can be obtained from r3. Indeed this is the case since
an intention overrides a conflicting desire only if the former is a primary intention.

6 Conclusions

In this paper we extend DL with preferences and actions. We show how to detect and re-
solve conflicts using preferences and actions. Rule based languages follow the tradition
of production rules in knowledge based systems and logic programming. The extension
of production rules is based on the use of rule based systems in cognitive attitudes in
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practical reasoning. Indeed, the new issue is the interaction among mental attitudes. Ex-
amples are Thomason’s BDP, programming languages based on the BOID architecture,
3APL, etc. In general, conditional approaches and preference based approaches have
been traditionally defined in terms of each other. For example, “if A then B” has been
defined as “A and B is preferred to A without B”, and “A is preferred to B” has been
defined as “if A or B, then A”. However, it may be unnatural to define preferences in
terms of conditionals, and it is more natural to define them directly. Moreover, special
preference-based formalisms may be more efficient, such as CP nets. Finally, the kind
of preferences which can be expressed in terms of conditionals is only limited to spe-
cial kinds. This explains why comparative notions are now a major topic of concern in
artificial intelligence and practical reasoning.

Let us summarise some requirements for programming cognitive agents. First, the
interaction among mental attitudes needs fine-grained mechanisms to represent and re-
solve conflicts among rules. Second, the programming language has to distinguish be-
tween an abstract language that deals with interaction among mental attitudes, called
a deliberation language, and low level procedures to deal with definitions of conflicts
based on temporal and causal reasoning, resources, scheduling, and the like. Third,
ways to resolve conflicts must be described abstractly. Fourth, patterns of ways to deal
with conflicts and more generally patterns of agent behaviour must be described. Such
patterns have been called agent types. Fifth, the interaction between mental attitudes
and semantics of MAS communication–as defined e.g. by FIPA–should be realised.

In this paper we assumed that we can use the same deliberation language with prefer-
ences as has been used by Dastani and van der Torre [8]. Moreover, we did not address
the issue of MAS communication, because the mental attitudes approach to communi-
cation has been attacked recently by social commitment approaches; a careful reconsid-
eration of this issue is beyond the scope of this paper [17] and is left for future research.
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Abstract. There is now an incredible wealth of data about individuals,
businesses and organisations. This data is freely available over the Inter-
net to almost anyone willing to pay for it, independently of whether they
are identity thieves or credit card scam artists or legitimate users. This
has led to a growing need for privacy. In this paper, we first present a
simple logical model of privacy. We then show that the problem of pri-
vacy may be reduced to that of brave reasoning in default logic theories,
thus reducing this important problem to a well understood reasoning
paradigm. By leveraging this reduction, we are able to develop an effi-
cient privacy preservation algorithm and a set of complexity results for
privacy preservation. Efficient systems based on answer set programming
are available to implement our algorithm.

1 Introduction

The privacy of individuals is under attack as never before. In the wake of recent
terrorist events, various government agencies worldwide are seeking to acquire all
kinds of private information about individuals in an effort to preserve national
security. Another area where potential privacy disasters loom is in the area of
medical data—many hospitals post some seemingly innocuous data on web sites
(e.g. about births) but it is often possible to infer private health information
about individuals. A third need for privacy mechanisms is because of poor access
control and network security mechanisms that may allow outsiders to get into
supposedly secure networks. In this case, there is a need to maintain privacy of
data even from insiders (both genuine insiders and hackers).
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Most databases have only weak privacy mechanisms—these mechanisms by
and large boil down to saying certain columns of the database are hidden from
certain types of users. However, the reality of life is that many users can infer
information designated private by asking queries that do not involve private
information and then making common sense inferences from the answers to infer
private information.

The primary goal of this paper is to show that there is a close connection
between the problem of providing privacy preserving answers to queries and the
problem of computing extensions of certain kinds of default theories. In particu-
lar, we define a linear time and linear space transformation trans of the privacy
preservation problem to the problem of computing extensions of default logic
theories. We prove that there is a one-to-one correspondence between privacy
preserving answers and the extensions of the default logic theory (restricted to
the query) obtained by translating the privacy preservation problem into default
logic via trans. Leveraging this translation, we are able to derive a suite of re-
sults on the complexity of maintaining privacy. Finally, we present an algorithm
to check for privacy.

2 The Privacy Preservation Problem (P3)

In this section, we provide a simple formulation of the privacy preservation prob-
lem (P3 for short).

We start by assuming the existence of some finite set U of users. Each member
of U is a string denoting a userid.

We assume the existence of some finite set of constant symbols, function sym-
bols and predicate symbols as well as an enumerable set of variables x1, x2, . . ..
As usual, a term is inductively defined as follows: (i) Each constant is a term, (ii)
Each variable is a term, and (iii) if f is an n-ary predicate symbol and t1, . . . , tn
are terms, then f(t1, . . . , tn) is a term. A ground term is any term that contains
no variable symbols. Similarly, if p is an n-ary predicate symbol and t1, . . . , tn
are terms, then p(t1, . . . , tn) is an atom. A ground atom is any atom that con-
tains no variable symbols. A well formed formula (wff) is inductively defined as
follows. (i) Every atom is a wff, (ii) If F,G are wffs then so are (F ∧ G), (F ∨ G)
and ¬F . As usual, we use F → G as an abbreviation for ¬F ∨G. WFF denotes
the set of all well formed formulas in our language.

Definition 1 (logic database). A logic database LDB is a finite set of ground
atoms.

Note that any standard relational database can be viewed as a logic database—if
tuple t is a tuple in a relation r, then r(t) is a ground atom.

Example 1. We may have a small medical database containing information about
the symptoms and diseases that a person p may have. Such a database may
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contain two predicates symptom and disease. The database may contain the
following facts:

symptom(john, s1) disease(jane, aids)
symptom(john, s2) disease(john, cancer)
symptom(john, s3) disease(ed, polio)
symptom(jane, s1)
symptom(jane, s4)

This little database, which we will call MedDB will be used as a motivating
example in this paper.

The database may contain information about various individuals, businesses
and organisations. These entities may wish to designate some (or all) of this
information as private. For example, John and Jane may want their diseases
kept private.

In addition, at any given instance t in time, each user u has some set of
background knowledge. This background knowledge may be elicited in many ways
- one such source is the set of all information disclosed to the user by the system.
For example, a hospital accountant may not be allowed to see patient diagnoses,
though she may see billing information about them.

Definition 2 (user model). We assume the existence of a family of functions
BKt : U → 2WFF for each t in time, and a function Priv : U → 2WFF.

As usual, 2X is used here to denote the power set of some set X .
Intuitively, BKt(u) denotes the background knowledge of user u (which we

assume to be consistent) at time t, while Priv(u) is the set of all formulas that the
user wants to keep secret. Note that BKt(u) varies as t varies. For example, as the
database discloses answers to the user u, his background knowledge may increase.
Throughout most of this paper, we will assume that t is arbitrary but fixed and
we address the problem of preserving privacy at time t. As a consequence, we
will usually write BK(u) and drop the superscript t.

Example 2. Returning to the case of MedDB, John may want to keep the atom
disease(john, cancer) private, while Jane may want to keep disease(jane, aids)
private. In this case, Priv(john) = {disease(john, cancer)}, while Priv(jane) =
{disease(jane, aids)}.

Likewise, consider the user acct (denoting the accountant). This person may
have the following background knowledge.

symptom(X, s1) ∧ symptom(X, s4)→ disease(X, aids)
symptom(X, s2) ∧ symptom(X, s3)→ disease(X, cancer)

Definition 3 (query). If A1, . . . , An are all atoms, then (∃)(A1 ∧ · · · ∧ An) is
a query.

For example, disease(john,D) is a query asking what disease D John has.
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Definition 4 (answer). The answer, ANS(Q), to query Q w.r.t. a logic database
LDB is the set {Qθ |Qθ is ground and LDB |= Qθ} where, as usual, the symbol
“|=” denotes logical consequence.

Example 3. Returning to our MedDB example, posing the query disease(john,X),
we would get as an answer the set {disease(john, aids)}. Likewise, the answer to
the query symptom(john,X) is the set {symptom(john, s1), symptom(john, s2),
symptom(john, s3)}.

In our example, we considered the case when John and Jane want their diseases
kept private. However, the accountant can violate John’s privacy by asking the
query symptom(john,X). The answer she would get back is {symptom(john, s1),
symptom(john, s2), symptom(john, s3)}. However, recall that the accountant has
some background information - this background information includes the rule
symptom(X, s2) ∧ symptom(X, s3)→ disease(X, cancer). Using this rule and the
answer to her query above, the accountant can easily infer that John has cancer.
The notion of a privacy preserving answer given below is intended to avoid such
situations.

Definition 5 (privacy preserving answer). Suppose LDB is a logic database,
U is a set of users, u0 ∈ U , and suppose the functions BK and Priv are specified.
Suppose Q is a query. A set X ⊆ WFF is a privacy preserving answer w.r.t.
(LDB,U ,BK,Priv, u0, Q) iff:

1. X ⊆ ANS(Q) and
2. For all u ∈ U − {u0} and for all p ∈ Priv(u), if BK(u0) �|= p then X ∪

BK(u0) �|= p and
3. There is no X ′ such that X ⊂ X ′ satisfies the previous two conditions.

Intuitively, a privacy preserving answer to a query posed by user u0 is a subset
of the actual answer to the query that does not allow him to use his background
knowledge to infer any new private information about any other user. Note that
when user u0 poses a query, we are only interested in preserving private infor-
mation about other users u - clearly, the user u0 can know private information
about herself, as she, presumably, is the one who decides what information about
her is to be kept private.

Example 4. Let us return to the MedDB example, and consider the case of the
obnoxious accountant. If the system knows that she has the background knowl-
edge listed earlier, when she asks the query symptom(john,X), then it could
return either of the following privacy preserving answers.

Ans1 = {symptom(john, s1), symptom(john, s2)}
Ans2 = {symptom(john, s1), symptom(john, s3)}

Either of these two answers returns as much of the real answer as possible without
making it possible for the user to infer that John has cancer.
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Let us suppose that the above query was asked at time t. In this case, the
accountant’s background knowledge at time t + 1 should be updated so that
it includes all his previous background knowledge, plus the additional knowl-
edge that John has symptoms s1 and s3. Thus, BKt+1(acct) = BKt(acct) ∪
{symptom(john, s1), symptom(john, s2)} (assuming the answer returned by the
system in response to John’s query at time t is Ans1 above). For the sake of
simplicity, throughout the rest of this paper, we assume that t is arbitrary but
fixed, and that we are only interested in preserving privacy at time t.

Example 5. Suppose now that the system somehow knows that the accoun-
tant already had disease(john, cancer) in his background knowledge at time
t (e.g. the system might know this because a doctor included the accountant
on a list of people notified about John’s health). In this case, revealing the
entire answer {symptom(john, s1), symptom(john, s2), symptom(john, s3)} to
the query symptom(john,X) to the accountant would not violate John’s pri-
vacy as the answer does not allow the accountant to infer any private facts
that she did not already know. As a consequence, were the accountant’s back-
ground knowledge to include the rules mentioned earlier and the additional
fact disease(john, cancer), then there is only one privacy preserving answer, viz.
{symptom(john, s1), symptom(john, s2), symptom(john, s3)}.

We emphasize that the above definition allows the background knowledge to
contain some private information. A simpler definition would be to drop the
“if BK(u0) �|= p then” part in (2) above. But then there would be no privacy
preserving answers at all if BK(u0) contained some private information.

We are now ready to state the Privacy Preservation Problem (P3).

Problem 1 (P3(LDB,U ,BK,Priv, u0, Q)). Suppose LDB is a logic database, U is
a finite set of users, BK is a background knowledge function, Priv is a privacy
function, u0 is a user in U who is posing query Q to the logic database LDB.
The privacy preservation problem is to find a privacy-preserving answer w.r.t.
(LDB,U ,BK,Priv, u0, Q).

The following proposition says that there is always a privacy preserving
answer.

Proposition 1. Every privacy preservation problem P3(LDB,U ,BK,Priv, u0, Q)
has at least one privacy preservation answer.

Proof. If no X ⊆ ANS(Q) exists such that X �= ∅ and ∀u ∈ U − {u0} and
∀p ∈ Priv(u) BK(u0) �|= p implies X ∪ BK(u0) �|= p, then ∅ is a privacy preserving
answer.

Obviously, ∅ ⊆ ANS(Q) holds trivially, and BK(u0) �|= p implies BK(u0) �|= p
is a tautology for arbitrary p. Moreover, no superset of ∅ is a privacy preserving
answer by assumption. $�
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A database system that seeks to preserve privacy can use the following algo-
rithm to answer queries posed by user u0.

algorithm PrivAns(P3(LDB,U ,BK,Priv, u0, Q))

1. Find a privacy preserving answer ANS(Q) to query Q
w.r.t. (LDB,U ,BK,Priv, u0, Q).

2. Update BK(u0) = BK(u0) ∪ ANS(Q).
3. Return ANS(Q) to user u0 and halt.

The key step in this algorithm is step (1). The rest of this paper develops
methods to implement step (1).

3 Translating P3 to Default Logic

In this section, we provide a translation trans which takes as input, a privacy
preservation problem P3(LDB,U ,BK,Priv, u0, Q), and returns as output, a de-
fault logic theory Δ = (D,W ) such that there is a one-to-one correspondence
between the solutions to the privacy preservation problem and the extensions
of the default theory (restricted to the query) returned by the translation [1].
The consequence of this translation is that standard (and well studied) methods
to evaluate default logic theories may be used to preserve privacy effectively,
efficiently, and elegantly.

Definition 6 (translation trans). Let P3(LDB,U ,BK,Priv, u0, Q) be a pri-
vacy preservation problem. The translation, trans(LDB,U ,BK,Priv, u0, Q) of
a privacy preservation problem into default logic is the theory Δ = (D,W )
where:

W = BK(u0).

D = { : f

f
| f ∈ LDB}

⋃
{p :
¬p | (∃u ∈ U − {u0}) p ∈ Priv(u) and BK(u0) �|= p}.

We now present an example to show what the result of transforming the privacy
preservation problem into default logic looks like.

Example 6. Let us return to the case of the accountant. In this case, W consists
of the two rules

symptom(X, s1) ∧ symptom(X, s4)→ disease(X, aids)
symptom(X, s2) ∧ symptom(X, s3)→ disease(X, cancer).
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In addition, D consists of the following defaults:

: symptom(john,s1)
symptom(john,s1)

: symptom(john,s2)
symptom(john,s2)

: symptom(john,s3)
symptom(john,s3)

: symptom(jane,s1)
symptom(jane,s1)

: symptom(jane,s4)
symptom(jane,s4)

: disease(ed,polio)
disease(ed,polio)

: disease(jane,aids)
disease(jane,aids)

: disease(john,cancer)
disease(john,cancer)

disease(jane,aids) :
¬disease(jane,aids)

disease(john,cancer) :
¬disease(john,cancer)

Note that we are assuming here that Ed has not marked his disease as being
a private fact.

Note that this translation uses linear space. The time complexity of the trans-
lation depends on the complexity of checking entailment. For example, assuming
a finite number of constants in our language (reasonable) and assuming that all
rules in BK are definite clauses, then the translation is implementable in poly-
nomial time. But if BK can consist of arbitrary first order formulas, then the
translation can take exponential time.

Before presenting our central theorem, linking privacy preserving answers and
extensions of default theories, we remind the reader of some basic terminology
associated with default theories. Given a default d = α:β

γ , we use the notation
pre(d) to denote α, j(d) to denote β and c(d) to denote γ. In addition, given any
default theory Δ = (D,W ), we may associate with Δ, a mapping ΓΔ which maps
sets of wffs to sets of wffs. ΓΔ(Y ) = CN(W ∪ {pre(d)→ c(d) | j(d) is consistent
with Y }. As usual, the function CN(X) denotes the set of all first order logical
consequences of X . A set Y of wffs is an extension of Δ iff Y = ΓΔ(Y ).

We are now ready to present a key result linking the privacy preservation
problem and default logic extensions. Suppose we consider any privacy preser-
vation problem. The privacy preserving answers to that privacy preservation
problem are in a one-one correspondence with the consistent extensions of the
translation (restricted to the query) of the privacy preservation problem into
default logic (using the translation trans shown in Definition 6).

Theorem 1. Suppose that A is an atom, that P3(LDB,U ,BK,Priv, u0, A) is a
privacy preservation problem and trans(LDB,U ,BK,Priv, u0, A) = Δ = (D,W ).
Then: X is a solution to the above privacy preservation problem iff there is a
consistent extension E of Δ = (D,W ) such that X = {Aθ |Aθ ∈ E ∩ LDB}.

In order to prove Theorem 1, we first formulate a useful abstract lemma.

Lemma 1. Let W , LDB and P be consistent sets of formulae s.t. W ∪LDB is
consistent as well. Let DP = { p :

¬p : p ∈ P} and DLDB = { : f
f : f ∈ LDB}.
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Then the consistent extensions of the theory (DP ∪ DLDB,W ) are the sets
Cn(W ∪ {f : f ∈ F}) where F is a subset of LDB that is maximal wrt. set
inclusion (i.e. there is no larger set F ′ such that W ∪ {f : f ∈ F ′} �|= p for all
p ∈ P ).

Proof. Clearly the sets Cn(W ∪ {f : f ∈ F}) where F is a maximal subset of
LDB are extensions of the default theory: the defaults in DP do not apply and
we are left with a supernormal default theory (the result follows from well-known
characterizations in default logic, see eg. [2, 3]).

Conversely, let E be a consistent extension. Then no default in DP applies.
Because extensions are grounded and we are dealing with a supernormal theory,
E must have the form Cn(W ∪ {f : f ∈ F}) for a subset F of LDB. Because E
is maximal (no other extension can contain E), the set Cn(W ∪ {f : f ∈ F}) is
maximal in the sense defined in the lemma. $�

Now we are able to prove Theorem 1:

Proof. The proof of Theorem 1 is an application of Lemma 1. Suppose X is a
solution to P3(LDB,U ,BK,Priv, u0, A) and let trans(LDB,U ,BK,Priv, u0, A) =
Δ = (D,W ). Then we let F := X , W := BK(u0) and P := {p : (∃u ∈ U −{u0})
p ∈ Priv(u) and BK(u0) �|= p} and apply our lemma. The set Cn(W ∪ {f : f ∈
F}) is an extension (it is maximal because of (3) and (2) in the definition of a
privacy preserving answer).

Conversely let a consistent extension E of trans(LDB,U ,BK,Priv, u0, A) be
given and consider X := {Aθ | Aθ ∈ E ∩ LDB}. Our lemma implies that X is a
subset of LDB that is maximal. Therefore X is also a privacy preserving answer
(if there were a larger X ′ satisfying (2) in the definition of pp answer, then E
would not be maximal and thus not be an extension). $�

The preceding theorem applies to atomic queries. A straightforward extension
of the above proof gives us the following corollary, which applies to arbitrary
queries.

Corollary 1. Suppose that P3(LDB,U ,BK,Priv, u0, Q) is a privacy preserva-
tion problem and that trans(LDB,U ,BK,Priv, u0, Q) = Δ = (D,W ). Then: X
is a solution to the above privacy preservation problem iff there is a consistent
extension E of Δ = (D,W ) such that X = {Qθ |Qθ ∈ E ∩ LDB}.

In order to illustrate this theorem, we revisit the example privacy preservation
problem and its default logic translation that we presented earlier.

Example 7. Let us return to the MedDB example. Consider the privacy preser-
vation problem of Example 4 and the default logic translation shown in Figure 6.
As seen in Example 4, there are two privacy preserving answers to this problem.
They are:

Ans1 = {symptom(john, s1), symptom(john, s2)}
Ans2 = {symptom(john, s1), symptom(john, s3)}
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The default logic translation of this privacy preservation problem shown in Ex-
ample 6 has exactly four consistent extensions E1, . . . , E4.

E1 = CN(W ∪ {symptom(john, s1), symptom(john, s2),

symptom(jane, s1), disease(ed, polio)})
E2 = CN(W ∪ {symptom(john, s1), symptom(john, s3),

symptom(jane, s1), disease(ed, polio)})
E3 = CN(W ∪ {symptom(john, s1), symptom(john, s2),

symptom(jane, s4), disease(ed, polio)})
E4 = CN(W ∪ {symptom(john, s1), symptom(john, s3),

symptom(jane, s4), disease(ed, polio)})

However, if we restrict our interest to answers to the query symptom(john,X) in
the above extensions, then extensions E1, E4 only contain {symptom(john, s1),
symptom(john, s2)} while E2, E3 yield {symptom(john, s1), symptom(john, s3)}.
These restrictions of the extensions are in a one-one correspondence with the
privacy preserving answers to the query posed by the accountant.

4 Complexity of Privacy Preservation

In this section, we analyze the complexity of the privacy preservation problem.
Computing a privacy-preserving answer typically involves “guessing” a subset

of answers, and subsequently checking it with respect to privacy preservation
and maximality. Intuitively, this computational task has a correspondence to
common non-monotonic reasoning tasks, because the maximality condition for
privacy-preserving answers has its counterpart as minimality conditions in non-
monotonic semantics, while guessing a model candidate and checking it on a set
of formulae is even more closely related.

It therefore does not come as a surprise that a non-monotonic logic allows for
an apt representation of the privacy preservation problem. Concerning the com-
plexity analysis, we can indeed leverage the translation trans to use well-known
results concerning the complexity of default logic in order to prove membership
of various subclasses of P3.

As already shown in [4], default reasoning involving function symbols is un-
decidable. Note that Definitions 5 and 6 involve checking BK(u0) �|= p, which
is clearly undecidable for arbitrary first-order formulae. We will therefore focus
on decidable fragments. In particular, we will assume in our analysis below that
problems are restricted to those for which deciding BK �|= p, p ∈ Priv is feasible
in polynomial time. We will focus on theories in a Datalog setting, the data
complexity of which corresponds to propositional default theories.

Then, membership can be seen by virtue of trans and the structure of for-
mulae in BK and Priv. In particular, brave reasoning for non-disjunctive default
theories is NP-complete (see e.g. [5, 6] for such classes), while brave reasoning
for arbitrary default theories is ΣP

2 -complete, see [7] and [8].
We thus consider P3s with the following restrictions:
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1. We vary BK(u) to be an arbitrary theory, a non-disjunctive theory, and a
set of facts.

2. We vary Priv(u) to be a set of arbitrary formulas, a non-disjunctive theory,
and a set of facts.

Table 1 summarizes our results on the complexity of privacy preservation in
the Datalog case.

Table 1. Data Complexity of Privacy Preservation Problems

Priv/BK Facts Non-disjunctive Arbitrary
Facts P P ΣP

2

Non-disjunctive NP NP ΣP
2

Arbitrary ΣP
2 ΣP

2 ΣP
2

Theorem 2. The data complexity for P3 problems without function symbols
under various syntactic restrictions are as reported in Table 1. Completeness
holds for NP and ΣP

2 results.

Next, we will prove some of the hardness results.

Corollary 2. P3 with BK containing non-disjunctive rules and Priv made of
facts is hard for NP.

Proof. We show NP-hardness by a reduction from 3SAT to a P3 in which BK
contains only rules with negation on LDB predicates and in which Priv contains
only one fact: Given a CNF φ =

∧n
i=1 Li,1 ∨ Li,2 ∨ Li,3, we create a P3 with

LDB = {ci | ci is an atom in φ} ∪ {q}, two users u0, u1, BK(u0) = {L′i,1 ∧ L′i,2 ∧
L′i,3 → unsat}, where (¬x)′ = x and x′ = ¬x. Finally, Priv(u1) = {unsat}, and
Q = q. It is not hard to see that q is an answer iff φ is satisfiable: If q is an answer,
then a truth assignment can be obtained from the subset X ⊆ LDB in which
exactly the ci in X are interpreted as true. Since unsat does not hold for this
X , no conjunct in φ evaluates to false under this assignment, which therefore
satisfies φ. Conversely, if φ is satisfiable, each cardinality maximal satisfying
truth assignment induces an X ⊆ LDB, such that X ∪BK(u0) �|= unsat. $�

Corollary 3. P3 with empty BK and arbitrary Priv is hard for ΣP
2 .

Proof. We show ΣP
2 -hardness by a reduction from a QBF2,∃ to a P3 in which

BK is empty and Priv contains arbitrary formulae. Consider an arbitrary QBF2,∃
formula ψ = ∃x1 · · · ∃xn∀y1 · · · ∀ymφ, where φ is a propositional formula. We cre-
ate a P3 with LDB = {x1, . . . , xn}∪{q}, two users u0, u1, Priv(u1) = {¬E}, and
Q = q. An answer X induces a valuation ν of the existentially quantified vari-
ables. Then, no extension ν′ of ν to the universally quantified variables can exist
such that E is false, hence ψ is valid. Conversely, if ψ is valid, each cardinality
maximal satisfying truth assignment for x1, . . . , xn induces an answer. $�



The Relationship Between Reasoning About Privacy and Default Logics 647

This proof can easily be adapted such that BK(u0) contains the arbitrary
formula (¬E)→ unsat and Priv(u1) contains only unsat.

All complexity results above refer to propositional theories or data complexity,
in our setting this means that only LDB is considered as input, while especially
BK and Priv are considered to be fixed. For considering program complexity, we
can adapt the data complexity results by using techniques from [9]. Due to space
constraints, we do not present proofs.

Theorem 3. The program complexity for P3 problems without function symbols
under various syntactic restrictions are as reported in the Table 2.

Table 2. Program Complexity of Privacy Preservation Problems

Priv/BK Facts Non-disj. Arbitrary
Facts EXPTIME EXPTIME NEXPTIMENP

Non-disj. NEXPTIME NEXPTIME NEXPTIMENP

Arbitrary NEXPTIMENP NEXPTIMENP NEXPTIMENP

To summarize, the results in this section confirm that default logic is indeed
a suitable choice to represent P3s.

5 Privacy Preservation Algorithm

In this section, we describe an algorithm to preserve privacy that leverages our
translation of the privacy preservation problem to default logic. First and fore-
most, we recall the important observation of [10] that Reiter’s ΓΔ operator is
anti-monotonic - hence, the operator Γ 2

Δ that applies ΓΔ is monotonic. As a con-
sequence, Γ 2

Δ has both a least fixpoint and a greatest fixpoint, denoted lfp(Γ 2
Δ)

and gfp(Γ 2
Δ) respectively.

Theorem 4 ([10]). Recall the following properties:

1. If Y1 ⊆ Y2 then ΓΔ(Y2) ⊆ ΓΔ(Y1).
2. Γ 2

Δ has a least and a greatest fixpoint, denoted respectively as lfp(Γ 2
Δ) and

gfp(Γ 2
Δ).

3. ΓΔ(lfp(Γ 2
Δ)) = gfp(Γ 2

Δ).

An immediate consequence of the above theorem is that one can compute ex-
tensions of default theories by first computing lfp(Γ 2

Δ) and gfp(Γ 2
Δ). Anything

in lfp(Γ 2
Δ) is true in all extensions, while anything not in gfp(Γ 2

Δ) is false in all
extensions. We can therefore start by computing both lfp(Γ 2

Δ) and gfp(Γ 2
Δ). If

lfp(Γ 2
Δ) is not an extension, we nondeterministically add things in gfp(Γ 2

Δ) to
the default theory and iteratively compute the least fixpoint of Γ 2

Δ w.r.t. the
modified theory. This algorithm for arbitrary default theories gives rise to the
specialization for computing privacy preserving answers depicted in Figure 1.
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P3Alg(LDB,U , BK, Priv, u0, Q)

Δ = trans(LDB,U , BK, Priv, u0, Q) = (D, W );
Todo = LDB ∩ (gfp(Γ 2

Δ) \ lfp(Γ 2
Δ));

if lfp(Γ 2
Δ) = ΓΔ(lfp(Γ 2

Δ)) then

done = true;

while Todo �= ∅ ∧ ¬done do

Nondeterministically select an a ∈ Todo;
Let Δ = (D, W ∪ {a});
if lfp(Γ 2

Δ) = ΓΔ(lfp(Γ 2
Δ)) then

done = true;
else

Todo = Todo \ {a};
% end-while

return LDB ∩ lfp(Γ 2
Δ);

Fig. 1. Algorithm computing privacy preserving answers

The algorithm proceeds as follows: First the problem is translated to a de-
fault theory using trans. Subsequently, the least and greatest fixpoint of Γ 2

Δ are
computed. Anything which is in the greatest, but not in the least fixpoint can or
cannot be true in some extension, so we store it in Todo to nondeterministically
assume its truth.

The crucial point here is that we restrict these nondeterministic choices to
LDB, which can dramatically decrease the search space. Then we enter the non-
deterministic phase of the algorithm, in which a truth assignment for Todo is
generated until a fixpoint (i.e., an extension) is reached, if at all. As a final step,
a projection of the extension onto LDB is generated.

The following proposition states that the above algorithm is always guaran-
teed to return the correct answer.

Proposition 2. Let P3(LDB,U ,BK,Priv, u0, Q) be a privacy preservation prob-
lem. Then the algorithm P3Alg(LDB,U ,BK,Priv, u0, Q) returns X iff X is a
privacy preserving answer to P3(LDB,U ,BK,Priv, u0, Q).

We have thus given an effective and also efficient (w.r.t. to general algorithms
computing answers to default theories) algorithm for computing privacy preserv-
ing answers.

6 Related Work and Conclusions

Security and privacy of information are closely related. There has been extensive
work on privacy and security for many years now [11, 12, 13, 14]. A body of work
in the field [11, 12] set up the security problem as that of inferring a maximal
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subset of the answer to a query so that no secrets are violated. Algorithms were
also given to determine how to update the database so that security and privacy
are preserved. Another body of work [14] determines how to generalize answers
(rather than choose a subset). Our work is related to the former category.

Many other works focus on enforcing authorization on various levels of detail,
for example in [15], a query rewriting method has been worked out, which avoids
the disclosure of data to a user who is not entitled to see it. A similar approach
has been described in [16], where classified data will basically be substituted by
null-values. Both approaches are quite different from ours with respect to the
problem addressed and the methodology employed: These works do not provide
methods for modelling users’ knowledge; rather, it is needed to determine in
advance and to specify extensionally what data is to be hidden from the user.
Moreover, both works do not employ logical frameworks for solving this problem.

In contrast to the above body of work, we are not aware of any works that ties
well known nonmonotonic logic formalisms such as default logic to the privacy
preservation problem. This paper is a first step in this regard. As shown by the
P3Alg algorithm and the complexity results derived in this paper, the relation-
ships between privacy preservation and default logics can lead to results in one
domain being applicable and beneficial to another. Our future work will focus
on leveraging the relationship between default logic and privacy even further so
that the rich experience gained in implementing default logics can be applied
fruitfully to the privacy domain.

In particular, we would like to investigate whether we can utilize Answer Set
Programming (ASP) [17] engines like DLV [18], Smodels [19], cmodels [20], or
ASSAT [21] to this end. The formalism of these systems (logic programs under
the answer set semantics) is comparatively close to default logic, and also the
complexity bounds match.
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Abstract. The notion of comparative similarity ‘X is more similar or
closer to Y than to Z’ has been investigated in both foundational and
applied areas of knowledge representation and reasoning, e.g., in concept
formation, similarity-based reasoning and areas of bioinformatics such as
protein sequence alignment. In this paper we analyse the computational
behaviour of the ‘propositional’ logic with the binary operator ‘closer to
a set τ1 than to a set τ2’ and nominals interpreted over various classes
of distance (or similarity) spaces. In particular, using a reduction to the
emptiness problem for certain tree automata, we show that the satisfi-
ability problem for this logic is ExpTime-complete for the classes of all
finite symmetric and all finite (possibly non-symmetric) distance spaces.
For finite subspaces of the real line (and higher dimensional Euclidean
spaces) we prove the undecidability of satisfiability by a reduction of the
solvability problem for Diophantine equations. As our ‘closer’ operator
has the same expressive power as the standard operator > of conditional
logic, these results may have interesting implications for conditional logic
as well.

1 Introduction

There are two main approaches to defining and classifying concepts in computer
science and artificial intelligence. One of them is logic based. It uses formalisms
like description logics to define concepts by establishing relationships between
them, for example,

Mother ≡ Woman $ ∃hasChild.Person

The main tool for analysing and using such definitions (e.g., to compute the
concept hierarchy based on the subsumption relation) is reasoning.
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Another approach is based on similarity.1 Using various techniques (such as
alignment algorithms) we compute suitable similarity measures on (part of) the
application domain and then define concepts in terms of similarity, for example,

Reddish ≡ {Red}⇔ {Green, . . . ,Black}

which reads ‘a colour is reddish iff it is more similar (with respect to the RGB,
HSL or some other explicit or implicit colour model) to the prototypical colour
Red than to the prototypical colours Green, . . . , Black.’ The established tools
for dealing with concepts of this sort are numerical computations (say, with the
help of Voronoi tessellations, nearest neighbour or clustering algorithms).

As more and more application areas—like bioinformatics and linguistics—use
both of these ways of defining concepts, we are facing the problem of integrating
them. In particular, we need formalisms that are capable of reasoning about
concepts defined in terms of (explicit or implicit) similarity in the same way as
this is done in description logic (DL).

In [6, 17, 8, 18] we presented and investigated rudimentary DL-like formalisms
for reasoning about concepts and similarity with concept constructors of the
form ∃<aτ , that is, ‘in the a-neighbourhood of τ ,’ where a ∈ Q≥0. The apparent
limitation of these languages is that they can only operate with concrete degrees
of similarity a ∈ Q≥0, and so require substantial expert knowledge in order to
define concepts.

In this paper we propose a purely qualitative logic CSL for knowledge repre-
sentation and reasoning about comparative similarity. Its main ingredients are
the binary closer operator ⇔ as in the example above and individual constants
(nominals) for representing prototypical objects (we refer the reader to [7, 16]
for a discussion of relations like ‘X more similar to Y than to Z’). The logic is
interpreted in various natural classes of distance (or similarity) spaces such as
finite metric spaces, finite metric spaces without symmetry (see, e.g., [14] for an
argumentation that similarity measures are not necessarily symmetric) as well
as the finite subspaces of the Euclidean space Rn, n ≥ 1 (natural similarity
measures for weight, length, etc.).

The computational behaviour of CSL over the class of finite metric spaces
(with or without symmetry) turns out be similar to the behaviour of standard
description logics: the satisfiability problem is ExpTime-complete which can be
established by a reduction to the emptiness problem for certain tree automata.
However, it was a great surprise for us to discover that over finite subspaces of
the real line R (as well as any higher dimensional Euclidean space or any Zn)
the logic turns out to be undecidable. This result is proved by a reduction of the
(undecidable) solvability problem for Diophantine equations.

Because of the space limit some proofs in this paper are only sketched,
some are omitted. For a detailed exposition the reader is referred to the full
version [11].

1 “There is nothing more basic to thought and language than our sense of similarity;
our sorting of things into kinds.” Quine (1969).
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2 The Logic of Comparative Similarity

The logic CSL of comparative similarity we consider in this paper is based on
the following language:

τ ::= pi | {�i} | ¬τ | τ1 $ τ2 | τ1 ⇔ τ2

where the pi are atomic terms, the �i are object names, and ⇔ is the closer
operator. We call {�i} a nominal and τ a CSL-term or simply a term.

The intended models for CSL are based on distance (or rather similarity)
spaces D = (Δ, d), where Δ is a nonempty set and d is a map from Δ × Δ to
the set R≥0 of nonnegative real numbers such that, for all x, y ∈ Δ, we have
d(x, y) = 0 iff x = y. If the distance function d satisfies two additional properties

d(x, y) = d(y, x) (sym)
d(x, z) ≤ d(x, y) + d(y, z) (tr)

then D is a standard metric space. The distance d(X,Y ) between two nonempty
sets X and Y of Δ is defined by taking

d(X,Y ) = inf{d(x, y) | x ∈ X, y ∈ Y }.

If one of X , Y is empty then d(X,Y ) =∞. Finally, if we actually have

d(X,Y ) = min{d(x, y) | x ∈ X, y ∈ Y } (min)

for any nonempty X and Y , then the distance space D is called a min-space.
Every finite distance space is clearly a min-space.
CSL-models are structures of the form

I =
(
ΔI, dI, �I

1 , �
I
2 , . . . , p

I
1 , p

I
2 , . . .

)
, (1)

where
(
ΔI, dI

)
is a distance space, the pI

i are subsets of ΔI, and �I
i ∈ ΔI for

every i. We call such models min-models, symmetric or satisfying the triangle
inequality if the underlying distance space satisfies (min), (sym) or (tr), respec-
tively. If both (sym) and (tr) are satisfied then I is called a metric CSL-model.

The interpretation of the Boolean operators ¬ and $ in I is as usual (we will
use �, →, ⊥ (for ∅), and 5 (for the whole space) as standard abbreviations),
{�}I = {�I}, and

(τ1 ⇔ τ2)I = {x ∈ ΔI | dI(x, τI
1 ) < dI(x, τI

2 )}. (2)

A term τ is satisfied in I if τI �= ∅. More precisely, we say that x ∈ ΔI

satisfies τ whenever x ∈ τI. τ is satisfiable in a class C of models if it is satisfied
in some model from C. Finally, τ is valid in I if τI = ΔI.

The seemingly simple logic CSL turns out to be quite expressive. First, the
operator ∃τ = (τ ⇔ ⊥) is interpreted by the existential modality (in the sense
that ∃τ is the whole space iff τ is not empty); its dual, the universal modality, will
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be denoted by ∀. Thus the term ∀(τ1 → τ2) expresses in CSL the subsumption
relation τ1 � τ2 which is usually used in description logic knowledge bases. Note
also that the following definable operator � means ‘at the same distance:’

τ1 � τ2 = ¬(τ1 ⇔ τ2) $ ¬(τ2 ⇔ τ1). (3)

Second, in metric models the operator � defined by taking �τ = (5 ⇔ ¬τ)
is actually interpreted by the interior operator of the induced topology. Thus,
CSL contains the full logic S4u of topological spaces, and so can be used for
spatial representation and reasoning (see, e.g., [1]). The topological aspects of
CSL will be considered elsewhere.

Finally, it is to be noted that the operator ⇔ is closely related to the ‘implica-
tion’ > of conditional logics. According to Lewis’ [7] semantics for conditionals,
propositions are interpreted in a set W of possible worlds that come together
with orderings .w ⊆ W ×W , for w ∈ W , which can be understood as follows:
w′ .w w′′ if w′ is more similar or closer to w than w′′. A formula ϕ > ψ is true at
w iff, for every .w-minimal v with v |= ϕ, we have v |= ψ. Various authors (see,
for example, [3, 10]) have considered the case where the relations .w are induced
by min-spaces (Δ, d) (in conditional logic, the requirement (min) is often called
the limit assumption) by setting

w′ .w w′′ iff d(w,w′) ≤ d(w,w′′).

Under this interpretation the operators ⇔ and > have exactly the same expres-
sive power: for every min-model I =

(
ΔI, dI, pI

1 , p
I
2 , . . .

)
we have

(p1 > p2)I =
(
(p1 ⇔ (p1 $ ¬p2)) � ∀¬p1

)I

and, conversely,

(p1 ⇔ p2)I =
(
((p1 � p2) > p1) $ (p1 > ¬p2) $ ¬(p1 > ⊥)

)I
.

Relations .w induced by symmetric distance spaces have not been considered
in the conditional logic literature. According to the classification of [5], our
(nominal-free) logic of arbitrary min-spaces corresponds to the conditional logic
of frames satisfying the normality, reflexivity, strict centering, uniformity and
connectedness conditions.

3 Main Results

In this paper, our main concern is the computational behaviour of CSL over
natural classes of min-models, in particular, finite models.

Theorem 1. Let C be the class of all min-models satisfying any combination of
the properties (sym) and (tr), in particular, neither of them. Then the satisfi-
ability problem for CSL-terms in C is ExpTime-complete. Moreover, a term is
satisfiable in C iff it is satisfiable in a finite model from C.
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Remark 1. For the nominal-free fragment of CSL over arbitrary min-models,
Theorem 1 was essentially proved in [5] in the framework of conditional logic.
We provide a new proof here because it serves as a preparation for the more
sophisticated proof for the class of symmetric min-models.

Remark 2. It is to be noted that in fact the language of CSL cannot distinguish
between models with and without (tr). To see this, let us suppose that τ is
satisfied in a model I of the form (1) which does not satisfy (tr). Take any
strictly monotonic function f : R≥0 → (9, 10), where (9, 10) is the open interval
between 9 and 10. Define a new model I′ which differs from I only in the distance
function: dI′

(x, y) = f(dI(x, y)) for all x �= y and dI′
(x, x) = 0 for all x. Clearly,

I′ satisfies the triangle inequality. It is easily checked that τ is satisfied in I′.

Remark 3. On the other hand, CSL can distinguish between models with and
without (sym). Consider, for example, the term

p $ ∀
(
(p→ (q ⇔ r)) $ (q → (r ⇔ p)) $ (r → (p ⇔ q))

)
.

One can readily check that it is satisfiable in a three-point model without (sym),
say, in the one depicted below where the distance from x to y is the length of
the shortest directed path from x to y.

• •
•

������������
p q

r

However, this term is not satisfiable in any symmetric min-model. On the other
hand, it can be satisfied in the following subspace of R which is not a min-space:

. . . • • • • • • . . .
q r p q r p

42

32
4
3 1 3

4
32

42

Our second main result is quite surprising: CSL turns out to be undecidable
when interpreted in finite subspaces of R. More precisely, we are going to prove
the following:

Theorem 2. For each n ≥ 1, the satisfiability problem for CSL-terms is un-
decidable in the class of finite models and the class of min-models based on
subspaces of Rn, or only Zn.

Theorem 1 will be proved in the next section: for the lower bound we use
a reduction of the global consequence relation for the modal logic K, while
the upper bound is established by reduction to the emptiness problem for tree
automata. Theorem 2 is proved in Section 5 by reduction of the solvability
problem for Diophantine equations (and, for n ≥ 2, the Z× Z tiling problem).
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4 Proof of Theorem 1

The ExpTime lower bound is proved by a reduction of the global consequence
relation for the modal logic K which is known to be ExpTime-hard [12]. A
detailed proof can be found in [11]. We now show how to establish the ExpTime
upper bound and the finite model property with respect to the given class C of
models.

Given a term τ , denote by cl τ the closure under single negation of the set
consisting of all subterms of τ , the term ⊥, and the term ∃ρ = ρ ⇔ ⊥ for every
subterm ρ of τ . A type t for τ is a subset of cl τ such that ⊥ /∈ t and the following
Boolean closure conditions are satisfied:

– τ1 $ τ2 ∈ t iff τ1, τ2 ∈ t, for every τ1 $ τ2 ∈ cl τ ,
– ¬ρ ∈ t iff ρ /∈ t, for every ¬ρ ∈ cl τ .

Clearly, |cl τ | is a linear function of the length |τ | (say, the number of subterms)
of τ .

A ‘typical’ type is given by an element w ∈ ΔI from a model I of the form
(1), namely,

tI(w) = {ρ ∈ cl τ | w ∈ ρI}.
A τ -bouquet is a pair B = (TB,≤B), where TB is a set of types for τ such that

2 ≤ |TB| ≤ |cl τ |, and ≤B is a transitive, reflexive, and connected relation on
TB with a unique minimal element tB ∈ TB for which the following conditions
hold:

– τ1 ⇔ τ2 ∈ tB iff there exists some t ∈ TB such that τ1 ∈ t and τ2 /∈ t′ for
any t′ ≤B t,

– ∃ρ ∈ t for some t ∈ TB iff ∃ρ ∈ t for all t ∈ TB.

We use the following notation:

t ∼B t′ iff t ≤B t′ and t′ ≤B t

t <B t′ iff t ≤B t′ and t �∼B t′.

The intended meaning of a τ -bouquet B is to encode the local requirements in
order to realise the type tB. A ‘typical’ τ -bouquet can be obtained by taking a
point w from I above and then selecting, for every term τ1 ⇔ τ2 from tI(w), a
point w′ such that dI(w,w′) is minimal with w′ ∈ τI

1 . Denote by V the set of
all selected points. Clearly, |V | < |cl τ | and we can assume that tJ(w1) �= tJ(w2)
for any two distinct w1, w2 from V . If |V | ≥ 1, then we define the τ -bouquet
(T I

V (w),≤w) induced by w and V in I by taking

T I
V (w) = {tI(w)} ∪ {tI(w′) | w′ ∈ V },

tI(w′) ≤w tI(w′′) iff dI(w,w′) ≤ dI(w,w′′).

Notice that if we require a certain type t satisfied in I to be a member of the
bouquet then we can add to V a point w′ such that d(w,w′) is minimal with
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t = tI(w′) and form the bouquet induced by w and V ∪ {w′}. In particular,
if I satisfies at least two distinct types, then we can always find a set V such
that w and V induce a bouquet. In what follows we will only be working with
models satisfying at least two distinct types. This is the interesting case because
the problem of checking satisfiability in a model with only one type is clearly
decidable in NP.

4.1 Non-symmetric Case

First we establish the finite model property and the ExpTime upper bound for
satisfiability in min-models that are not necessarily symmetric. Let N be the set
of nominals occurring in τ . A set B τ -bouquets is said to be nominal ready if
there is a set {t� | � ∈ N} of types for τ such that whenever {�} ∈ t ∈ TB, for
some B ∈ B, then t = t�.

Let k = |cl τ |. We remind the reader that the full k-ary tree over the set
{1, . . . , k}∗ (of finite sequences of elements of {1, . . . , k}) contains the empty
sequence ε as its root, and the immediate successors (children) of each node α
are precisely the nodes αi, where 1 ≤ i ≤ k. Given some set L (of labels), a
function K : {1, . . . , k}∗ → L will be called an L-labelled tree over {1, . . . , k}∗.

A Hintikka tree satisfying τ is a B-labelled tree K over {1, . . . , k}∗, for some
nominal ready set B of τ -bouquets, such that the following conditions are satis-
fied (where, as before, tK(α) denotes the unique ≤K(α)-minimal element of the
set of types TK(α) in the bouquet K(α)):

– τ ∈ tK(ε),
– for every nominal � ∈ N , there exists a type in K(ε) containing {�},
– for every α ∈ {1, . . . , k}∗, K(α) is a bouquet such that

TK(α) \ {tK(α)} = {tK(αi) | 1 ≤ i ≤ k}

and tK(α) ∈ TK(αi), for 1 ≤ i ≤ k.

Lemma 1. For every term τ , the following conditions are equivalent:

(a) τ is satisfiable in some min-model (with at least two distinct types);
(b) there exists a Hintikka tree satisfying τ over {1, . . . , k}∗, where k = |cl τ |;
(c) τ is satisfiable in a finite model (with at least two distinct types).

Proof. (a)⇒ (b) Suppose that τI �= ∅ in some model I ∈ C of the form (1) with
at least two distinct types. We define a Hintikka tree K satisfying τ by induction
as follows. First take some w ∈ τI and set

K(ε) = (T I
Vε

(w),≤w),

where (T I
Vε

(w),≤w) is a bouquet induced by w and a suitable set Vε ⊆ W

containing {�}I for all � that occur in τ . Here and in what follows we assume
that we construct the underlying sets of the bouquet as described above in the
introduction of bouquets.
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Suppose now that we have already defined K(α), for some α ∈ {1, . . . , k}∗:

K(α) = (T I
Vα

(wα),≤wα),

where (T I
Vα

(wα),≤wα) is induced by wα and a suitable set Vα. Take some sur-
jective map s : {1, . . . , k} → Vα. For each j, 1 ≤ j ≤ k, let

K(αj) = (T J
Vαj

(s(j)),≤s(j))

where (T I
Vαj

(s(j)),≤s(j)) is the bouquet induced by s(j) and a suitable set Vαj

which contains a w′ such that tJ(w′) = tJ(wα).
It is easy to see that the resulting K is a Hintikka tree satisfying τ .
(b) ⇒ (c) Suppose that K : {1, . . . , k}∗ → B with

K(α) = (Tα,≤α)

is a Hintikka tree satisfying τ over a nominal ready set B of τ -bouquets. First
we define a distance space (Δ0, d0) with the domain Δ0 = {1, . . . , k}∗ in the
following way. Take a finite subset I of the interval (0, 1) and, for each α ∈ Δ0,
a map

fα : (TK(α) \ {tK(α)})→ I

for which t <K(α) t
′ iff fα(t) < fα(t′). Now set

– d0(α, αi) = fα(tK(αi)) for all α ∈ Δ0 and 1 ≤ i ≤ k,
– d0(α, α) = 0 and,
– d0(α, β) = 1 for β /∈ {α, α1, . . . , αk}.

It is not difficult to see that (Δ0, d0) is a (non-symmetric) min-space.
For every type t such that t = tK(α) for some α ∈ Δ0, we fix exactly one α

with this property. Let Δ be the set of the selected α. Construct a finite distance
model from C

I = (Δ, d, �I
1 , . . . , p

I
1 , . . . )

by taking pI
i = {α ∈ Δ | pi ∈ tK(α)}, �I

i = α for the unique α ∈ Δ with
{�i} ∈ tK(α), and, for α, β ∈ Δ,

d(α, β) = d0(α, {β′ ∈ Δ0 | tK(β′) = tK(β)}).

Now, given a subterm ρ of τ , one can prove by induction on the construction of
ρ that α ∈ ρI iff ρ ∈ tK(α). Therefore, τ is satisfied in I.

The implication (c) ⇒ (a) is clear.

We are now in a position to prove the ExpTime upper bound by a reduction
to the emptiness problem for finite looping tree automata; see [15, 13]. Recall
that a finite looping tree automaton A for infinite k-ary trees is a quadruple
(Σ,Q,Γ, Q0), where

– Σ is a (nonempty) finite alphabet,
– Q is a (nonempty) finite set of states of the automaton,
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– Γ ⊆ Σ ×Q×Qk is a transition relation,
– Q0 ⊆ Q is a (nonempty) set of start states of the automaton.

Let T be a Σ-labelled tree over {1, . . . , k}∗. A run of A on T is a function
R : {1, . . . , k}∗ → Q such that

– R(ε) ∈ Q0, and
–

(
T (α), R(α), (R(α1), . . . , R(αk))

)
∈ Γ for all nodes α of T .

A accepts T if there exists a run R ofA on T . The following emptiness problem for
looping automata is decidable in polynomial time [13]: given a looping automaton
for k-ary trees, decide whether the set of trees it accepts is empty.

To reduce the satisfiability problem for CSL-terms in C, we associate with
every term τ and every nominal ready set B of τ -bouquets a finite looping
automaton AB

τ = (Σ,Q,Γ, Q0) which is defined as follows:

– Σ is the set of types occurring in bouquets from B,
– Q = B,
– Q0 = {B ∈ B | τ ∈ tB, B contains a type containing �, for every � in τ},
–

(
t,B0, (B1, . . . ,Bk)

)
∈ Γ iff tB0 = t, TB0 \ {tB0} coincides with the set

{tBi | 1 ≤ i ≤ k}, and tB0 ∈ TBi , for 1 ≤ i ≤ k.

It follows immediately from Lemma 1 and the given definitions that the runs of
AB

τ on Σ-labelled trees are exactly the B-labelled Hintikka-trees satisfying τ .

Lemma 2. A term τ is satisfiable in a min-model (with at least two types) iff
there exists a nominal ready set B such that AB

τ accepts at least one tree.

As there are only exponentially many different nominal ready sets B and as
AB

τ is only exponential in |cl τ |, the satisfiability problem in min- (and finite)
models is decidable in ExpTime.

4.2 Symmetric Case

The construction is more involved if we deal with the class of symmetric CSL-
models. Suppose that B is a nominal ready set of τ -bouquets, |cl τ | = k, and
K : {1, . . . , k}∗ → B is a B-labelled Hintikka tree with K(α) = (Tα,≤α) and
tα = tK(α), for α ∈ {1, . . . , k}∗.

We ‘paint’ each node of K in one of three ‘colours:’ inc (for increasing), const
(for constant), and dec (for decreasing). The colour of a node α will be denoted
by c(α). It is defined by induction as follows. The root ε and its immediate
successors are painted with the same colour, say, c(ε) = c(1) = · · · = c(k) = inc.
Suppose now that we have already defined c(αi). Then, for 1 ≤ j ≤ k, we set

– c(αij) = const iff tαij ∼αi tα,
– c(αij) = dec iff tα >αi tαij ,
– c(αij) = inc iff tα <αi tαij .



660 M. Sheremet et al.

Intuitively, the colours determine whether in the symmetric space (Δ0, d0) to
be constructed from {1, . . . , k}∗ we have d0(α, αi) = d0(αi, αij) (the constant
case), d0(α, αi) < d0(αi, αij) (the increasing case), or d0(α, αi) > d0(αi, αij)
(the decreasing case).

We call K a min-tree if its every branch with infinitely many dec nodes also
contains infinitely many inc nodes.

We require two simple observations; see [11] for proofs. First, the Hintikka
tree K constructed in the proof of Lemma 1 starting from a symmetric min-
model I is a min-tree. And second, if there is a sequence α, αi1, . . . , αi1 · · · in+1
(for 1 ≤ ij ≤ k) of nodes of K such that

(K(α),K(αi1)) = (K(αi1 · · · in),K(αi1 · · · in+1))

then by ‘cutting off’ the nodes α, . . . , αi1 · · · in−1 we obtain again a B-labelled
Hintikka tree such that the colours of the (renamed) nodes do not change.

We are now in a position to prove a symmetric analogue of Lemma 1.

Lemma 3. For every term τ , the following conditions are equivalent:

(a) τ is satisfiable in some symmetric min-model (with at least two distinct
types);

(b) there exists a Hintikka min-tree satisfying τ over {1, . . . , k}∗, where k =
|cl τ |;

(c) τ is satisfiable in a finite symmetric model (with at least two different types).

Proof. (a) ⇒ (b) is established in precisely the same way as in the proof of
Lemma 1 using the first observation above that if we start with a symmetric
model then the resulting Hintikka tree is a min-tree. (c) ⇒ (a) is again trivial.

(b) ⇒ (c) Suppose that K : {1, . . . , k}∗ → B is a Hintikka min-tree satisfying
τ with

K(α) = (Tα,≤α) and tα = tK(α).

By the second observation above, without loss of generality we may assume
that if no node in a path of the form α, αi1, . . . , αi1 · · · in is inc then no two
dec nodes βij and β′ij in it can have predecessors (β, βi) and (β′, β′j) such
that (K(β),K(βi)) = (K(β′),K(β′j)). It follows that there is a number nτ

(exponential in |cl τ |) which bounds the numbers of dec nodes in each such path.
Now we define a symmetric distance space (Δ0, d0) with Δ0 = {1, . . . , k}∗

(symmetry means that d0(α, αi) = d0(αi, α) for α ∈ Δ0 and 1 ≤ i ≤ k). First
we take a set D ⊂ (9, 10) of cardinality nτ × |cl τ |. For all 1 ≤ i ≤ k we
define d0(ε, i) to be the maximal numbers in D such that we can satisfy the
constraint: d0(ε, i) < d0(ε, j) iff tK(i) <ε tK(j), for 1 ≤ i, j ≤ k. Suppose now
that d0(α, αi) ∈ D is defined. Then we define d0(αi, αij) to be the maximal
number in D such that we can satisfy the constraints

– d0(αi, αij) = d0(α, αi) for tK(αij) = tK(α) and
– d0(αi, αij) < d0(αi, αij′) iff tK(αij) <αi tK(αij′), for 1 ≤ j, j′ ≤ k.
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Notice that this is possible by the definition of nτ . Finally, set d0(α, α) = 0 and
d0(α, β) = 10 for all remaining α �= β.

Now construct a finite symmetric model I = (Δ, d, pI
1 , . . . , �

I
1 , . . . ) as follows.

Let∼ be the equivalence relation on Δ0 defined by taking α ∼ β iff tK(α) = tK(β).
Then we set

[α] = {β ∈ Δ0 | α ∼ β}, Δ = {[α] | α ∈ {1, . . . , k}∗}, d([α], [β]) = d0([α], [β])

and [α] ∈ pI
i iff pi ∈ tK(α), and �I

i = [α] for the uniquely determined [α] such that
{�i} ∈ tK(α). We leave it to the reader to check that this model is as required.

A single complemented pair automaton A on infinite k-ary trees is a tuple
(Σ,Q,Γ, Q0, F ), where

– (Σ,Q,Γ, Q0) is a looping tree automaton as defined in Section 4.1,
– F is a pair of disjoint sets of states from Q; it will be convenient for us to

assume that F = (dec, inc) and dec, inc ⊆ Q.

A accepts a Σ-labelled tree T over {1, . . . , k}∗ iff there exists a run R of A on T
such that, for every path i0i1 . . . in T , if R(i0i1 . . . ij) ∈ dec for infinitely many
j, then R(i0i1 . . . ij) ∈ inc for infinitely many j as well.

As was shown in [4], the emptiness problem for single complemented pair
automata is decidable in polynomial time. We show now how to reduce the sat-
isfiability problem for CSL-terms in symmetric models to the emptiness problem
for these automata.

A coloured τ-bouquet is a pair (B, c) where B = (TB,≤B) is a τ -bouquet and
c is a function from TB to {dec, inc, const}.

With every term τ and every nominal ready set B of coloured τ -bouquets
we associate a single complemented pair automaton AB

τ = (Σ,Q,Δ,Q0, F ) by
taking

– Σ to be the set of types occurring in coloured bouquets of B,
– Q = B,
– Q0 = {(B, c) ∈ B | τ ∈ tB, B contains a type with � for every � in τ},
– dec = {(B, c) ∈ B | c(tB) = dec},
– inc = {(B, c) ∈ B | c(tB) = inc},
–

(
t, (B0, c0), (B1, c1), . . . , (Bk, ck)) ∈ Γ iff tB0 = t,

TB0 \ {tB0} = {tBi | 1 ≤ i ≤ k},

tB0 ∈ TBi\{tBi}, ci(tBi) = c0(tBi) for 1 ≤ i ≤ k, and for all t′ ∈ TBi\{tBi},
• ci(t′) = inc iff t <Bi t

′,
• ci(t′) = const iff t′ ∼Bi t,
• ci(t′) = dec iff t′ <Bi t.

It follows immediately from Lemma 3 and the given definitions that the runs
of AB

τ on Σ-labelled trees are exactly the B-labelled Hintikka-trees satisfying τ .
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Lemma 4. A term τ is satisfiable in a symmetric min-model (with at least two
distinct types) iff there exists a nominal ready set B of coloured τ-bouquets such
that AB

τ accepts at least one tree.

As there are only exponentially many different nominal ready sets B of
coloured τ -bouquets and as AB

τ is only exponential in |cl τ |, the satisfiability
problem in symmetric min-models is decidable in ExpTime.

This completes the proof of Theorem 1.

5 Proof of Theorem 2

Here we only discuss the idea of the proof; see [11] for details. The proof is
by reduction of the decision problem for Diophantine equations (Hilbert’s 10th
problem) which was shown to be undecidable by Matiyasevich–Robinson–Davis–
Putnam (see [9, 2] and references therein). More precisely, we will use the fol-
lowing (still undecidable) variant of this problem:

given arbitrary polynomials g and h with coefficients from N \ {0, 1}, decide
whether the equation g = h has a solution in the set N \ {0, 1}.

Observe first that we can always deal with models based on one-dimensional
spaces. Indeed, let I be based on Rn. Then, for nominals �0 and �1, the term
({�0} � {�1}) $ ∀¬({�0} $ {�1}), if satisfiable, defines an affine subspace of
dimension n− 1. By iterating this construction we can reduce dimension to 1.

Let R be the class of min-models based on subspaces of R. We begin by
considering the satisfiability problem for CSL-terms in R; then we discuss how
to deal with finite models only. It is easy to see that any polynomial equation
can be rewritten equivalently as a set of elementary equations of the form

x = y + z, x = y · z, x = y, x = n, (4)

where x, y, z are variables and n ∈ N \ {0, 1}. Now we are facing the following
three tasks:

(a) to ensure that a given model is based on a space similar to Z;
(b) to define in such a model sets of the form {lk + j | k ∈ Z} that will be used

to encode the number l;
(c) to encode addition and multiplication on such sets.

For (a) we set Base(p) to be the term

∃p0 $ ∃p1 $ ∃p2 $ ∀(p0 � p1 � p2) $ ∀


i<3

(
pi → ¬pi�1 $ (pi�1 � pi�1)

)
,

where p is stands for p0, p1, p2, and �, � denote addition and subtraction mod-
ulo 3. Then a model I ∈ R satisfies Base(p) iff I coincides (modulo an affine
transformation) with a model Z such that ΔZ = Z and pZ

i = {3k + i | k ∈ Z},
i < 3. Now we can simulate the functions ‘+1’ and ‘−1’ with the following
analogues of the ‘next-time’ operator and its inverse (τ is an arbitrary term):
�τ =



i<3

(
pi → (pi�1 � (pi�1$τ))

)
, �−1τ =



i<3

(
pi → (pi�1 � (pi�1$τ))

)
.
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Next, to fix an origin and an orientation for our model we take a fresh atom
p and consider the term ∃(p2 $ ¬p $ �p) $ ∀(p→ �p). It is satisfied in a model
Z of the above form iff pZ = {k, k + 1, . . . } for some k ∈ Z, k ≡ 0(mod 3). Thus
we can assume that pZ = N. Then Zero = p $ �−1¬p defines {0}.

For (b) we take the term

Seq(q) = ∀


i<3

(
qi → ¬qi�1 $ (qi�1 � qi�1)

)
$ ∃

(
q0 $ p $ (q2 ⇔ (q2 $ p))

)
which is satisfied in Z iff qZ

i = {lk + j | k ≡ i(mod 3)}, i < 3, for some j < l in
N. We say in this case that q (and {lk+ j | k ∈ Z}) encodes l with indent j. For
each term τ , we let τ̂ = τ $ p. If q encodes l with indent j then j, j + l, j + 2l
are the nearest points to 0 satisfying q̂0, q̂1 and q̂2, respectively. Clearly, two sets
encode the same number iff they either coincide or strictly alternate. This can
be expressed by the term

Alt(q,q′) = ∀


i<3

(
(qi → (q′i ⇔ qi�1)) $ (q′i → (qi ⇔ q′i�1))

)
in conjunction with Seq(q) and Seq(q′). Note also that to encode a number n
we can use the term Seq(q) $ ∀(Zero→ (q̂1 � �−nZero)).

For (c), let q, r, s encode, respectively, the numbers u, v, w with indent 0.
Let v < w (which can be expressed by ∀(Zero→ (r̂1 ⇔ ŝ1)) ). Then the term

Seq(s′) $ Alt(s, s′) $ ∀(Zero→ (ŝ′0 � r̂1) $ (ŝ′1 � q̂1))

(with some fresh s′) says that s′ encodes w with indent v and that v + w = u.
The case w < v is symmetrical, while the case v = w, i.e., u = v + v, can be
expressed by ∀(Zero→ (ŝ1 � r̂1)$ (ŝ2 � q̂1)). To encode multiplication, we use

Fact 1. Let v, w be integer numbers with 0 < v < w − 1. Then

1) u = vw is the least solution to u ≡ 0(mod w), u ≡ v(mod (w−1)).
2) u = (w−1)w is the least positive solution to u ≡ 0(mod w), u ≡ 0(mod (w−1)).
3) u = w2 is the least solution to u ≡ 0(mod w), u ≡ 1(mod (w−1)), x > w.

Suppose that v < w − 1. Take fresh s′, s′′ and consider the term

Seq(s′) $ Seq(s′′) $ Alt(s′, s′′) $ ∀
(
Zero→ s′0 $ (ŝ′1 � �ŝ1)$ (ŝ′′0 � r̂1)

)
(5)

saying that s′ and s′′ encode the same number, this number is w− 1, s′ encodes
it with indent 0, while s′′ with indent v. Let s∗ = s0 � s1 � s2, s′′∗ = s′′0 � s′′1 � s′′2 .
Then, in view of Fact 1 (1), term (5) means that v · w is the nearest point to 0
satisfying ŝ∗$ ŝ′′∗ . Therefore, ∀

(
Zero→ (q̂1 � (ŝ∗$ ŝ′′∗))

)
in conjunction with (5)

ensures that u = v · w.
For the cases v = w − 1, v = w we use similar constructions by applying

Fact 1 (2,3). Thus we can encode any elementary equation from (4), and so the
whole system of such equations representing the given polynomial equation.

In the finite case, we modify the terms Base(p), Seq(q), Alt(q,q′) to take
care of the endpoints. And to ensure that two encoding sets represent the same
number, we require additionally that they are sufficiently long.
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In fact, the undecidability for min-subspaces of Rn, n ≥ 2, can be proved by
reduction of the Z× Z tiling problem. To simulate the Z× Z grid we use

τ = ∃p0 $ ∃p1 $ ∀

{

pi → ¬pi�1 $ (pi�1 � pj) | i, j < 7, j �= i, i�1
}
,

where ⊕ is addition modulo 7. Let T be a min-model satisfying τ and based on
a subspace of R2, and let Pi = pT

i (i < 7). Then one can show that P0 ∪ · · · ∪P6
forms a grid as in (6a).

a)

• •

• • •

• •

b)

• • •

• • • •

• • •

u6 x0 x1

u1 x2 x3 v4

x4 x5 v6
c)

• • • •

• • • • •

• • • • •

• • • •

P4 P5 P6 P0

P6 P0 P1 P2 P3

P1 P2 P3 P4 P5

P4 P5 P6 P0

(6)

To encode tilings, we need to fix some concrete partition of this grid into the
sets P0, . . . , P6. First we note that, in fact, it suffices to fix such a partition for
a few points only. Indeed, suppose that x0 ∈ P0, . . . , x5 ∈ P5 are located as
in (6b). Then we have u1 ∈ P1, v4 ∈ P4, u6, v6 ∈ P6. This means that neither
of the two six-point figures u6, x0, x1, x2, x3, v4 and u1, x2, x3, x4, x5, v6 contain
a pair of points from the same Pi. It follows that the entire grid is as in (6c).

To ensure that such x0, . . . , x5 exist, we set, for distinct i, j, k < 7,

μijk = (pi � pj) $ (pi � pk) $


{pi ⇔ pl | l < 7, l �= i, j, k}.

Then x ∈ T satisfies μijk iff x is the centre of some small triangle xixjxk with
xi ∈ Pi, xj ∈ Pj , xk ∈ Pk. Consider now the term σ = μ103 $ (μ032 � p3). Then
σ is satisfied in T iff there exist small triangles x1x0x3, x′0x

′
3x2 (xi, x

′
i ∈ Pi) in

our grid such that their centres x and x′ belong to T, and the distances from x
to x3 and x′ coincide. This can only be possible if x0 = x′0, x3 = x′3. Using this
idea one can easily construct a term τ1 that enforces a configuration of points
x0 ∈ P0, . . . , x5 ∈ P5 as in (6b). Then every model satisfying τ $ τ1 will contain
a grid of the form (6c), and we can encode the Z× Z tiling problem.

6 Outlook

In this paper, we have investigated the computational complexity of the basic
logic CSL for comparative similarity. The final verdict is that this logic be-
haves similarly to standard description logics (is ExpTime-complete) over gen-
eral classes of (finite or min-) distance spaces, but becomes undecidable when
interpreted over (finite or min-) subspaces of Euclidean spaces.

Starting from the positive results, one can now investigate combinations of CSL
with ‘quantitative’ similarity logics from [17, 8] as well as with description logics.
On the other hand, it would be interesting to find out how one can avoid the ‘neg-
ative’ results for subspaces of Rn. One promising route is to impose restrictions
on the interpretations of set variables. For example, in many applications it seems
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natural to assume that variables are interpreted as intervals in (subspaces of) R.
In this case decidability would follow immediately. Another related question is
whether the computational behaviour of the logics depends on the ‘crisp’ truth-
conditions. Exploring more relaxed ‘non-punctual’ truth-conditions could be im-
portant as well in order to take into account unprecise measurements, vagueness,
and paradoxes of similarity such as the Sorites paradox.
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Abstract. We present tableau calculi for some logics of default reason-
ing, as defined by Kraus, Lehmann and Magidor. We give a tableau proof
procedure for preferential and cumulative logics. Our calculi are obtained
by introducing suitable modalities to interpret conditional assertions.
Moreover, they give a decision procedure for the respective logics and
can be used to establish their complexity.

1 Introduction

In the early 90’ [11] Kraus, Lehmann and Magidor (from now on KLM) pro-
posed a formalization of non-monotonic reasoning that was early recognized as
a landmark. Their work stemmed from two sources: the theory of nonmonotonic
consequence relations initiated by Gabbay [6] and the preferential semantics pro-
posed by Shoham [13] as a generalization of Circumscription. Their works lead to
a classification of nonmonotonic consequence relations, determining a hierarchy
of stronger and stronger systems.

According to the KLM framework, defeasible knowledge is represented by
a (finite) set of nonmonotonic conditionals or assertions of the form A |∼ B
whose reading is normally (or typically) the A’s are B’s. The operator ”|∼”
is nonmonotonic, in the sense that A |∼ B does not imply A ∧ C |∼ B. For
instance, a knowledge base K may contain the following set of conditionals:
adult |∼ work, adult |∼ taxpayer, student |∼ adult, student |∼ ¬work, student |∼
¬taxpayer, retired |∼ adult, retired |∼ ¬work, whose meaning is that adults typ-
ically work, adults typically pay taxes, students are typically adults, but they
typically do not work, nor do they pay taxes, and so on. Observe that if |∼
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were interpreted as classical (or intuitionistic) implication, we simply would get
student |∼ ⊥, retired |∼ ⊥, i.e. typically there are not students, nor retired peo-
ple, thereby obtaining a trivial knowledge base. One can derive new conditional
assertions from the knowledge base by means of a set of inference rules.

In KLM framework, the set of adopted inference rules defines some funda-
mental types of inference systems, namely, from the weakest to the strongest:
Cumulative (C) , Loop-Cumulative (CL), Preferential (P) and Rational logic
(R). All these systems allow one to infer new assertions from K without incur-
ring in the trivialising conclusions of classical logic: regarding our example, in
none of them, one can infer student |∼ work or retired |∼ work. In cumulative
logics (both C and CL) one can infer adult ∧ student |∼ ¬work (giving prefer-
ence to more specific information), in Preferential logic P one can also infer that
adult |∼ ¬retired (i.e. typical adults are not retired). In the rational case R, if
one further knows that adult �|∼ ¬married (i.e. it is not the case the adults are
typically unmarried), one can also infer that adult ∧married |∼ work.

From a semantic point of view, to the each logic (C, CL, P, R) corresponds
one kind of models, namely, possible-world structures equipped with a preference
relation among worlds or states. More precisely, for P we have models with a
preference relation (an irreflexive and transitive relation) on worlds. For the
stronger R the preference relation is further assumed to be modular. For the
weaker logic CL, the preference relation is defined on states, where a state can
be identified, intuitively, with a set of worlds. In the weakest case of C, the
preference relation is on states, as for CL, but it is no longer assumed to be
transitive. In all cases, the meaning of a conditional assertion A |∼ B is that B
holds in the most preferred worlds/states where A holds.

In KLM framework the operator ”|∼” is considered as a meta-language oper-
ator, rather than as a connective in the object language. However, it has been
readily observed that KLM systems P and R coincide to a large extent with the
flat (i.e. unnested) fragments of well-known conditional logics, once we interpret
the operator ”|∼” as a binary connective [3], [2], [10].

A recent result by Halpern and Friedman [4] has shown that preferential
and rational logic are quite natural and general systems: surprisingly enough,
the axiom system of preferential (likewise of rational logic) is complete with
respect to a wide spectrum of semantics, from ranked models, to parametrized
probabilistic structures, ε-semantics and possibilistic structures. The reason is
that all these structures are examples of plausibility structures and the truth in
them is captured by the axioms of preferential (or rational) logic. These results,
and their extensions to the first order setting [5] are the source of a renewed
interest in KLM framework.

Even if KLM was born as an inferential approach to nonmonotonic reasoning,
curiously enough, there has not been much investigation on deductive mecha-
nisms for these logics. In short, the state of the art is as follows:

- Lehmann and Magidor [12] have proved that validity in P is coNP-complete.
Their decision procedure for P is more a theoretical tool than a practical al-
gorithm, as it requires to guess sets of indexes and propositional evaluations.
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They have also provided another procedure for P that exploits its reduction
to R. However, the reduction of P to R breaks down if boolean combinations
of conditionals are allowed, indeed it is exactly when such combinations are
allowed that the difference between P and R arises.

- A tableau proof procedure for C has been given in [1]. Their tableau proce-
dure is fairly complicated; it uses labels and it contains a cut-rule. Moreover,
it is not clear how it can be adapted to CL and P.

- In [7] it is defined a labelled tableau calculus for the conditional logic CE
whose flat fragment (i.e. without nested conditionals) corresponds to P.
That calculus needs a fairly complicated loop-checking mechanism to ensure
termination. It is not clear if it matches complexity bounds and if it can be
adapted in a simple way to CL.

- Finally, decidability of P and R has also been obtained by interpreting
them into standard modal logics, as it is done by Boutilier [2]. However, his
mapping is not very direct and natural, as we discuss below.

- To the best of our knowledge, for CL no decision procedure and complexity
bound was known before the present work.

In this work we begin our investigation of tableau procedures for KLM logics,
by considering the cases of P and CL. The investigation of tableau calculi for
the weakest C and the strongest R is left for future work. Our approach is
based on a novel interpretation of P into modal logics. As a difference with
previous approaches (e.g. Lamarre [3] and Boutillier [2]), that take S4 as the
modal counterpart of P, we consider here modal logic G. Our tableau method
provides a sort of run-time translation of P into modal logic G.

The idea is simply to interpret the preference relation as an accessibility
relation: a conditional A |∼ B holds in a model if B is true in all A-worlds w that
are minimal. An A-world is minimal if all smaller worlds are not A-worlds. The
relation with modal logic G is motivated by the fact that we assume, following
KLM, the so-called smoothness condition, which is related to the well-known
limit assumption. This condition ensures indeed that A-minimal worlds exist, by
preventing an infinitely descending chain of worlds. This condition is therefore
ensured by the finite-chain condition on the accessibility relation (as in modal
logic G). Therefore, our interpretation of conditionals is different from the one
proposed by Boutilier, who rejects the smoothness condition and then gives a
less natural (and more complicated) interpretation of P into modal logic S4.

However, we do not give a formal translation of P into G, we appeal to the
correspondence as far as it is needed to derive the tableau rules for P. For
deductive purposes, we believe that our approach is more direct, intuitive, and
efficient than translating P into G and then using a calculus for G.

We are able to extend our approach to the case of CL by using a second
modality which takes care of states. More precisely, we show that we can map
CL-models into P-models with an additional modality. The very fact that one
can interpret CL into P by means of an additional modality does not seem to
be previously known and might be of independent interest. In both cases, P
and CL, we can define a decision procedure and obtain also a complexity bound
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for these logics, namely that they are both coNP-complete. In case of CL this
bound is new, to the best of our knowledge.

2 KLM Logics

We briefly recall the axiomatizations and semantics of the two KLM systems we
consider: P and CL. For a complete picture of KLM systems, see [11].

2.1 Preferential Logic P

The language of KLM logics consists just of conditional assertions A |∼ B.
We consider a richer language allowing boolean combinations of assertions and
propositional formulas. Our language L is defined from a set of propositional
variables ATM , the boolean connectives and the conditional operator |∼. We
use A,B,C, ... to denote propositional formulas, whereas F,G, ... are used to de-
note all formulas (even conditionals); Γ, Δ, ... represent sets of formulas, whereas
X,Y, ... denote sets of sets of formulas. The formulas of L are defined as follows:
if A is a propositional formula, A ∈ L; if A and B are propositional formulas,
A |∼ B ∈ L; if F is a boolean combination of formulas of L, F ∈ L.

The axiomatization of P consists of all axioms and rules of propositional
calculus together with the following axioms and rules (notice that � denotes
provability in the propositional calculus):

• REF. A |∼ A (reflexivity)
• LLE. If � A↔ B, then (A |∼ C)→ (B |∼ C) (left logical equivalence)
• RW. If � A→ B, then (C |∼ A)→ (C |∼ B) (right weakening)
• CM. ((A |∼ B) ∧ (A |∼ C))→ (A ∧B |∼ C) (cautious monotonicity)
• AND. ((A |∼ B) ∧ (A |∼ C))→ (A |∼ B ∧ C)
• OR. ((A |∼ C) ∧ (B |∼ C))→ (A ∨B |∼ C)

The semantics of P is defined by considering possible world structures with
a preference relation (a strict partial order) w < w

′
whose meaning is that w

is preferred to w
′
. We have that A |∼ B holds in a model M if B holds in all

minimal worlds (with respect to the relation <) where A holds. This definition
makes sense provided minimal worlds for A exist whenever there are A-worlds.
This is ensured by the smoothness condition in the next definition.

Definition 1 (Semantics of P, Definition 16 in [11]). A preferential model
is a triple M = 〈W , <, V 〉 where: W is a non-empty set of items called worlds;
< is an irreflexive and transitive relation on W; V is a function V : W �−→
pow(ATM ), which assigns to every world w the set of atoms holding in that
world. We define the truth conditions for a formula F as follows:

• If F is a boolean combination of formulas, M, w |= F is defined as for
propositional logic;

• Let A be a propositional formula; we define Min<(A) = {w ∈W | M, w |= A
and ∀w′

.w
′
< w implies M, w

′ �|= A};
• M, w |= A |∼ B if for all w

′ ∈Min<(A) we have M, w
′ |= B.
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The relation < satisfies the following condition, called smoothness: ifM, w |= A
then w ∈Min<(A) or ∃w′ ∈Min<(A) such that w

′
< w.

We say that a formula F is valid in a model M, denoted with M |= F , if
M, w |= F for every w ∈ W. A formula is valid if it is valid in every model M.

Notice that the truth conditions for conditional formulas are given with re-
spect to single possible worlds for uniformity sake. Since the truth value of a con-
ditional only depends on global properties ofM, we have that: M, w |= A |∼ B
iffM |= A |∼ B.

Now we introduce the language LP of the calculus introduced in the next
section. LP extends L by formulas of the form �A, where A is propositional,
whose intuitive meaning is as follows: �A holds in a world w if A holds in all
the worlds w

′
such that w

′
< w:

Definition 2 (Truth condition of modality �). We define the truth condi-
tion of a boxed formula as follows:

M, w |= �A if for every w
′ ∈ W if w

′
< w then M, w

′ |= A

It is easy to see that � has the properties of the modal system G: the acces-
sibility relation (defined as xRy if y < x) is transitive and does not have infinite
ascending chains. From definition of Min<(A) in Definition 1 above, and Defi-
nition 2, it follows that for any formula A, w ∈Min<(A) iffM, w |= A ∧�¬A.

2.2 Loop Cumulative Logic CL

The next KLM logic we consider is CL, weaker than P. The axiomatization of
CL can be obtained from the axiomatization of P by removing the axiom OR
and by adding the following infinite set of axioms LOOP:

(LOOP ) (A0 |∼ A1) ∧ (A1 |∼ A2)...(An−1 |∼ An) ∧ (An |∼ A0)→ (A0 |∼ An)

Notice that these axioms are derivable in P.

Definition 3 (Loop-cumulative models, Definition 13 in [11]). A loop-
cumulative model is a tuple M = 〈S, l, <, V 〉. S is a set, whose elements are
called states. Given a set U of possible worlds, l : S �→ 2U is a function that
labels every state with a nonempty set of worlds. < is an irreflexive and transitive
relation on S. V is a valuation function V : U �−→ pow(ATM ), which assigns to
every world w the atoms holding in that world. For s ∈ S and A propositional,
we let s |≡ A if ∀w ∈ l(s), w |= A. Let Min<(A) be the set of minimal states
s such that s |≡ A. We define M, s |≡ A |∼ B if ∀s′ ∈ Min<(A), s

′ |≡ B. We
assume that < satisfies the smoothness condition.

Here again, we define satisfiability of conditionals with respect to states rather
than to models for uniformity reasons. Indeed, a conditional is satisfied by a state
of a model only if it is satisfied by all the states of that model, hence by the
whole model. We show that we can map loop-cumulative models into preferen-
tial models extended with an additional accessibility relation R. We call these
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preferential models CL-preferential structures. The idea is to represent states as
sets of possible worlds related by R in such a way that a formula is satisfied
in a state s just in case it is satisfied in all possible worlds w

′
accessible from

its corresponding w. The syntactic counterpart of the extra accessibility relation
R is a modality L. Given a loop-cumulative model M and the corresponding
CL-structureM′

, M, s |≡ A iff for its corresponding w, M′
, w |= LA.

As we will see, this mapping enables us to use a variant of the tableau calculus
for P to deal with system CL. As for P, the tableau calculus for CL will use
boxed formulas. Thus, the formulas that appear in the tableau for CL belong
to the language LL obtained from L as follows: (i) if A is propositional, then
A ∈ LL; LA ∈ LL; �¬LA ∈ LL; (ii) if A, B are propositional, then A |∼ B ∈ LL;
(iii) if F is a boolean combination of formulas of LL, then F ∈ LL. Observe
that the only allowed combination of � and L is in formulas of the form �¬LA
where A is propositional.

We can map loop-cumulative models into preferential structures with an ad-
ditional accessibility relation as defined below:

Definition 4 (CL-preferential structures). A model has the form M =
〈W , R,<, V 〉 where: W, <, and V are defined as in Definition 1, and R is a
serial accessibility relation. We add to the truth conditions for preferential mod-
els in Definition 1 the following clause:

M, w |= LA if for all w
′
wRw

′
implies M, w

′ |= A

Moreover, we need to change the truth condition for conditional formulas as
follows: M, w |= A |∼ B if for all w

′ ∈Min<(LA) we have M, w
′ |= LB.

We can prove the following proposition:

Proposition 1. A set of conditional formulas {(¬)A1 |∼ B1, . . . , (¬)An |∼ Bn}
is satisfiable in a loop-cumulative model 〈S, l, <, V 〉 iff it is satisfiable in a CL-
preferential model 〈W,R,<, V 〉.

3 The Tableau Calculus for Preferential Logic P

In this section we present a tableau calculus for P called T P, then we analyze
it in order to obtain a decision procedure for this logic. We also give an explicit
complexity bound for P.

Definition 5 (The calculus T P). The rules of the calculus manipulate sets
of formulas Γ . We write the shorthand Γ, F to denote Γ ∪{F}. Moreover, given
Γ we define the following notation:

– Γ � = {�A | �A ∈ Γ} −Γ �↓
= {A | �A ∈ Γ} −Γ |∼+

= {A |∼ B | A |∼ B ∈ Γ}
– Γ |∼−

= {¬(A |∼ B) | ¬(A |∼ B) ∈ Γ} − Γ |∼± = Γ |∼+ ∪ Γ |∼−

The tableau rules are given in Figure 1. Due to space limitations, we only give
propositional rules for ¬ and ∧. We say that a tableau is closed if all its leaves
contain both F and ¬F , for a formula F ∈ LP .
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(AX) Γ, F,¬F (¬)
Γ,¬¬F

Γ, F

(|∼+)
Γ, A |∼ B

Γ,¬A, A |∼ B Γ,¬�¬A, A |∼ B Γ, B, A |∼ B

(|∼−)
Γ,¬(A |∼ B)

A, �¬A,¬B, Γ |∼±
(�−)

Γ,¬�¬A

Γ �, Γ �↓
, Γ |∼±, A, �¬A

(∧+)
Γ, F ∧G

Γ, F, G
(∧−)

Γ,¬(F ∧G)

Γ,¬F Γ,¬G

Fig. 1. Tableau system T P

Fig. 2. A derivation of ((adult |∼ work) ∧ (retired |∼ adult) ∧ (retired |∼ ¬work)) →
(adult |∼ ¬retired). For readability, we use a to denote adult, r for retired, and so on.

Our tableau calculus T P is based on a runtime translation of conditional
assertions into modal logic G. As we have seen this allows a characterization
of the minimal worlds satisfying a formula A (i.e., the worlds in Min<(A))
as the worlds w satisfying the formula A ∧ �¬A. It is tempting to provide a
full translation of the conditionals in the logic G, and then to use the standard
tableau calculus for G. To this purpose, we can exploit the transitivity properties
of G frames to capture the fact that conditionals are global to all worlds by
the formula �(A ∧ �¬A → B). Hence, the overall translation of a conditional
formula A |∼ B could be the following one: (A∧�¬A→ B)∧�(A∧�¬A→ B).
However, there are significant differences between the calculus resulting from the
translation and our calculus.

Using the standard tableau rules for G on the translation, we get the rule
(|∼+) as a derived rule. Instead, the rule for dealing with negated conditionals
(which are translated in G into a disjunction of two formulas, namely (A∧�¬A∧
¬B) ∨�(A ∧�¬A ∧ ¬B)), is rather different.
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Let us first observe that the rule (|∼−) we have introduced precisely cap-
tures the intuition that: (1) conditionals are global (all conditionals are kept
in the conclusion of the rule) and (2) when moving to a new minimal world,
all the boxed formulas (positive and negated) are removed. Conversely, when
the tableau rules for G are applied to the translation of the negated condition-
als, we get two branches (due to the disjunction). None of the branches can
be eliminated. In both branches all the boxed formulas are kept, while negated
conditionals are erased. This is quite different from our rule (|∼−), and it is not
that obvious that the calculus obtained by the translation of P conditionals in
G is equivalent to T P.

Also observe that, from the semantic point of view, the model extracted from an
open tableau has the structure of a forest, while the model constructed by applying
the tableau for G to the translation of conditionals has the structure of a tree.
This difference is due to the fact that the above translation of P in G uses the
same modality � both for capturing the minimality condition and for modelling
the fact that conditionals are global. For this reason, a translation to G as the one
proposed above for P, would not be applicable to the cumulative logic C, as the
relation< is not transitive in C. Moreover, the treatment of both the logics C and
CL would anyhow require the addition to the language of a new modality to deal
with states. The advantage of the runtime translation we have adopted is that of
providing a uniform approach to deal with the different logics.

The system T P is sound and complete with respect to the semantics.

Theorem 1 (Soundness of T P). The system T P is sound with respect to the
semantics, i.e. if there is a closed tableau for a set Γ , then Γ is unsatisfiable.

To prove the completeness of T P we have to show that if F is unsatisfiable,
then there is a closed tableau starting with F . We prove the contrapositive, that
is: if there is no closed tableau for F , then there is a model satisfying F . This
proof is inspired by [8]. First of all, we distinguish static and dynamic rules.
The rules (|∼−) and (�−) are called dynamic, since their conclusion represents
another world with respect to the premise; the other rules are called static, since
the world represented by premise and conclusion(s) is the same. Moreover, we
have to introduce the saturation of a set of formulas Γ . Given a set of formulas
Γ , we say that it is saturated if all the static rules have been applied.

Definition 6 (Saturated sets). A set of formulas Γ is saturated with respect
to the static rules if the following conditions hold:

– if F ∧G ∈ Γ then F,G ∈ Γ ;
– if ¬(F ∧G) ∈ Γ then ¬F ∈ Γ or ¬G ∈ Γ ;
– if ¬¬F ∈ Γ then F ∈ Γ ;
– if A |∼ B ∈ Γ then ¬A ∈ Γ or ¬�¬A ∈ Γ or B ∈ Γ .

Lemma 1. Given a consistent finite set of formulas Γ , there is a consistent,
finite, and saturated set Γ

′ ⊇ Γ .



674 L. Giordano et al.

By Lemma 1, we can think of having a function which, given a consistent
set Γ , returns one fixed consistent saturated set, denoted by SAT(Γ ). Moreover,
we denote by APPLY(Γ, F ) the result of applying to Γ the rule for the principal
connective in F . In case the rule for F has more conclusions (the case of a branch-
ing), we suppose that the function APPLY chooses one consistent conclusion in
an arbitrary but fixed manner.

Theorem 2 (Completeness of T P). T P is complete with respect to the se-
mantics.

Proof. As mentioned above, we assume that no tableau for Γ0 is closed, then we
construct a model for Γ0. We build X , the set of worlds of the model, as follows:

1. initialize X = {SAT(Γ0)};
while X contains unresolved nodes do

2. choose an unresolved Γ from X;
3. for each formula ¬(A |∼ B) ∈ Γ

3a. let Γ¬(A|∼B) =SAT(APPLY(Γ,¬(A |∼ B)));
3b. if Γ¬(A|∼B) �∈ X then X = X ∪ {Γ¬(A|∼B)};

4. for each formula ¬�¬A ∈ Γ , let Γ¬�¬A =SAT(APPLY(Γ,¬�¬A));
4a. add the relation Γ¬�¬A < Γ ;
4b. if Γ¬�¬A �∈ X then X = X ∪ {Γ¬�¬A}.

5. mark Γ as resolved;
endWhile;

This procedure terminates, since the number of possible sets of formulas that
can be obtained by applying T P’s rules to an initial finite set Γ is finite. We
construct the model M = 〈X,<X , V 〉 for Γ as follows:

• <X is the transitive closure of the relation <;
• V (Γ ) = {P | P ∈ Γ ∩ ATM }

In order to show thatM is a preferential model for Γ , we prove the following:

Fact 1. The relation <X is acyclic.

Fact 2. For all formulas F and for all sets Γ ∈ X we have that:

(i) if F ∈ Γ then M,Γ |= F ; (ii) if ¬F ∈ Γ then M,Γ �|= F .

By the above Facts the proof of the completeness of T P is over, since M is
a model for the initial set Γ0. �

A relevant property of the calculus that will be useful to estimate the com-
plexity of logic P is the so-called disjunction property of conditional formulas:

Proposition 2 (Disjunction property). If there is a closed tableau for Γ,¬(A
|∼ B),¬(C |∼ D), then there is a closed tableau either for Γ,¬(A |∼ B) or for
Γ,¬(C |∼ D).

The reason why this property holds is that the (|∼−) rule discards all the other
formulas that could have been introduced by its previous application.
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3.1 Decision Procedure for P

In general, non-termination in tableau calculi can be caused by two different
reasons: 1. some rules copy their principal formula in the conclusion, thus can
be reapplied over the same formula without any control; 2. dynamic rules can
generate infinitely-many worlds, creating infinite branches.

Concerning the second source of non-termination (point 2.) we show that
the generation of infinite branches due to the interplay between rules (|∼+) and
(�−) cannot occur. Indeed, as we will see, the application of (�−) to a formula
¬�¬A (introduced by (|∼+)) adds the formula �¬A to the conclusion, so that
(|∼+) can no longer consistently introduce ¬�¬A. This is due to the properties
of � in G, which do not hold in other systems as K4. Furthermore, the (|∼−)
rule can be applied only once to a given negated conditional on a branch, thus
infinitely-many worlds cannot be generated on a branch.

Concerning point 1. the above calculus T P does not ensure a terminating
proof search due to (|∼+), which can be applied without any control. We ensure
the termination by putting some constraints on T P. The intuition is as follows:
one does not need to apply (|∼+) on the same conditional formula A |∼ B more
than once in the same world, therefore we keep track of positive conditionals
already used by moving them in an additional set Σ in the conclusions of (|∼+),
and restrict the application of this rule to unused conditionals only. The dynamic
rules re-introduce formulas from Σ in order to allow further applications of (|∼+)
in the other worlds. This machinery is standard.

(|∼+)
Γ, A |∼ B; Σ

Γ,¬A; Σ, A |∼ B Γ,¬�¬A; Σ, A |∼ B Γ, B; Σ, A |∼ B

(|∼−)
Γ,¬(A |∼ B); Σ

Σ, A, �¬A,¬B, Γ |∼±; ∅
(�−)

Γ,¬�¬A;Σ

Σ, Γ �, Γ �↓
, Γ |∼±, A, �¬A; ∅

Fig. 3. The calculus T PT. Propositional rules are as in Figure 1 addicting Σ.

Theorem 4 below shows that no additional machinery is needed to ensure
termination. Notice that this would not work in other systems (for instance, in
K4 one needs a more sophisticated loop-checking as described in [9]).

The terminating calculus T PT is presented in Figure 3. The calculus T PT is
sound and complete with respect to the semantics: the soundness is immediate,
and the completeness easily follows from the fact that two successive applications
of (|∼+) to the same conditional in the same world are useless.

Theorem 3 (Soundness and completeness of T PT). The calculus T PT is
sound and complete w.r.t. the semantics.
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In order to prove that T PT ensures a terminating proof search, we define
a complexity measure on a set of formulas Γ and the corresponding set of
positive conditionals already used Σ, denoted by m(Γ ;Σ), which consists of four
measures c1, c2, c3 and c4 in a lexicographic order. We write A |∼ B ∈+ Γ (resp.
A |∼ B ∈− Γ ) if A |∼ B occurs positively (resp. negatively) in Γ , where positive
and negative occurrences are defined in the standard way. We also denote by
cp(F ) the complexity of a formula F .

Definition 7 (Lexicographic order). We define m(Γ ;Σ) = 〈c1, c2, c3, c4〉
where: c1 =| {A |∼ B ∈− Γ} |, c2 =| {A |∼ B ∈+ Γ ∪ Σ | �¬A �∈ Γ} |,
c3 =| {A |∼ B ∈+ Γ} |, and c4 =

∑
F∈Γ cp(F ). We consider the lexicographic

order given by m(Γ ;Σ).

Intuitively, c2 represents the number of positive conditionals which can still
create a new world. The application of (�−) reduces c2: indeed, if (|∼+) is applied
to A |∼ B, this application introduces a branch containing ¬�¬A; when a new
world is generated by an application of (�−) on ¬�¬A, it contains A and �¬A.
If (|∼+) is applied to A |∼ B once again, then the conclusion where ¬�¬A is
introduced is closed, by the presence of �¬A in that branch. c3 is the number
of conditionals not yet considered in that branch.

Theorem 4 (Termination of T PT). T PT ensures a terminating proof search.

Proof sketch. Let Γ
′
;Σ

′
be obtained by an application of a rule of T PT to a

premise Γ ;Σ. It can be easily proved that m(Γ
′
;Σ

′
) < m(Γ ;Σ). �

We conclude this section with a complexity analysis of T PT, in order to
prove that validity in P is coNP-complete. First of all, notice that we could
take advantage of the disjunction property (Proposition 2). By this property we
can reformulate the (|∼−) rule as follows:

Γ,¬(A |∼ B);Σ
(|∼−)

Σ,A,�¬A,¬B,Γ |∼
+
; ∅

This rule reduces the length of a branch at the price of making the proof
search more non-deterministic.

We give a non-deterministic algorithm for testing satisfiability in P that: (i)
takes a set of formulas Γ as input; (ii) returns SAT iff Γ is satisfiable.

By the disjunction property, we can consider a negated conditional at a time.
Indeed, for Γ,¬(A |∼ B),¬(C |∼ D) to be satisfiable, it is sufficient that both
Γ,¬(A |∼ B) and Γ,¬(C |∼ D), separately considered, are satisfiable. For each
negated conditional, the algorithm GENERAL-CHECK applies the rule (|∼−) to it,
and calls the algorithm CHECK on the resulting set of formulas. CHECK is a non-
deterministic algorithm that tests satisfiability in P of a set of formulas not
containing negated conditionals. One can see that, when a negated conditional at
a time is considered, a set of formulas is satisfiable in a preferential model if and
only if it is satisfiable in a linearly ordered model (this can be proven directly, by
transforming our canonical model in Theorem 2 into a linearly ordered model,
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and has also been proved in [12]). The algorithm CHECK verifies if there is a
linearly ordered model satisfying the initial set of formulas. To this purpose, it
makes use of a stronger version of the rule (�−) in which, roughly speaking,
each branch coming from the conclusion represents a possible linear model of
the premise. The strengthened version of (�−) is the following (we use Γ �−

−i to
denote {¬�¬Aj ∨Aj | ¬�¬Aj ∈ Γ ∧ j �= i}):

Γ,¬�¬A1,¬�¬A2, ...,¬�¬An
(�−)

Γ |∼±,Γ �,Γ �↓
, A1,�¬A1,Γ

�−
−1 | ... | Γ |∼±,Γ �,Γ �↓

, An,�¬An,Γ
�−
−n

An important feature of this reformulation with respect to the original (�−)
rule is that no backtracking on the choice of the formula ¬�¬Ai is needed as all
alternatives are kept in the conclusion.

We call LT PT the calculus obtained by replacing in T PT the initial rules
(|∼−) and (�−) with the ones reformulated above. We can prove that LT PT

is sound and complete w.r.t. the preferential models by proving the following
proposition:

Proposition 3. There is a closed tableau for Γ in T PT iff there is a closed
tableau for Γ in LT PT.

Let EXPAND(Γ ) be a procedure that returns one saturated expansion of Γ
w.r.t. all static rules. In case of a branching rule, EXPAND nondeterministically
selects (guesses) and applies one conclusion of the rule. The algorithm is defined
below; in brackets we give the complexity of each operation, considering that
n =| Γ |.

CHECK(Γ )
1. Γ ←− EXPAND(Γ ); (O(n))
2. if Γ contains an axiom then return UNSAT; (O(n2))
3. if {¬�¬A | ¬�¬A ∈ Γ} = ∅ then return SAT;
4. else if ({¬�¬A | ¬�¬A ∈ Γ} �= ∅) then

4a. let {¬�¬A1, . . . ,¬�¬Ak} be all the negated boxed conditionals in Γ ;
4b. choose i = 1, . . . , k;
4c. CHECK(APPLY(Γ,¬�¬Ai));

The above procedure allows to decide the satisfiability of a set of formulas
(not containing negated conditionals). To see that the decision problem is in
NP, observe that: (1) the complexity of each call to the procedure EXPAND is
polynomial. Indeed, as the number of different subformulas is at most O(n),
EXPAND makes at most O(n) applications of the static rules. (2) The test that a
set Γ (of size O(n)) of formulas contains an axiom has at most complexity O(n2).
(3) The number of recursive calls to the procedure CHECK is at most O(n), since
in a branch the rule (�−) can be applied only once to each formula ¬�¬Ai, and
the number of different negated box formulas is at most O(n).

Let us now define a procedure to decide whether an arbitrary set of formulas
Γ (possibly containing negated conditionals) is satisfiable:
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GENERAL-CHECK(Γ )
1. Γ ←− EXPAND(Γ ); (O(n))
2. let ¬(A1 |∼ B1), . . . ,¬(Ak |∼ Bk) be all negated conditionals in Γ ;

2.1. for all i = 1, . . . , k result[i] ←− CHECK(APPLY(Γ,¬(Ai |∼ Bi))) ;
3. if for all i = 1, . . . , n result[i]==SAT then return SAT;

else return UNSAT;

By the subformula property, the number of negated conditionals which can
occur in Γ is at most O(n). Hence, the procedure GENERAL-CHECK calls to the
algorithm CHECK at most O(n) times.

Theorem 5 (Complexity of P). The problem of deciding validity for prefer-
ential logic P is coNP-complete.

Proof. The procedure GENERAL-CHECK allows the satisfiability of a set of formu-
las of logic P to be decided in nondeterministic polynomial time. The validity
problem for P is therefore in coNP. As coNP-hardness is immediate (this logic
includes classical propositional logic), we conclude that the validity problem for
logic P is coNP-complete. �

This result matches with the known complexity results for logic P [12]. Due to
the coNP lower bound, the above method provides a computationally optimal
reasoning procedure for logic P.

4 The Tableau Calculus for Loop Cumulative Logic CL

In this section we develop a tableau calculus T CL for CL, and we show that
it can be turned into a terminating calculus. This provides a decision procedure
for CL and a coNP-membership upper bound for validity in CL.

The calculus T CL can be obtained from the calculus T P for preferential
logics, by adding a suitable rule for dealing with the modality L. We define
Γ L↓

= {A | LA ∈ Γ}. Our tableau system T CL for CL is shown in Figure 4
and is obtained by introducing the new modality L in the rules of T P and by
adding the new rule (L−). Observe that rules (|∼+) and (|∼−) have been changed
as they introduce the modality L in front of the propositional formulas A and
B in their conclusions. The new rule (L−) is a dynamic rule.

The proof of the completeness of the calculus can be done as for the preferen-
tial case, provided we suitably modify the procedure for constructing a model for
a finite consistent set of formulas Γ of LL. First of all, we modify the definition
of saturated sets as follows:

• if A |∼ B ∈ Γ then ¬LA ∈ Γ or ¬�¬LA ∈ Γ or LB ∈ Γ

For this notion of saturated set of formulas we can still prove Lemma 1 for
language LL.

Theorem 6 (Completeness of T CL). T CL is complete with respect to the
semantics.
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(|∼+)
Γ, A |∼ B

Γ,¬LA, A |∼ B Γ,¬�¬LA, A |∼ B Γ, LB, A |∼ B
(|∼−)

Γ,¬(A |∼ B)

LA, �¬LA,¬LB, Γ
|∼±

(L−)
Γ,¬LA

where either {¬LA} �= ∅ or Γ L↓ �= ∅
Γ L↓

,¬A
(�−)

Γ,¬�¬LA

Γ �, Γ �↓
, Γ |∼±, LA, �¬LA

Fig. 4. Tableau system T CL. If ¬LA is not in the premise of (L−) (i.e. {¬LA} = ∅)
the rule allows to step from Γ to Γ L↓

. The boolean rules are omitted.

Proof. We define a procedure for constructing a model satisfying a set of formulas
Γ0 ∈ LL by modifying the procedure for the preferential logic P. We add to the
procedure two new steps 4’ and 4”, between step 4 and step 5 as follows:

4’. if {¬LA | ¬LA ∈ Γ} �= ∅ then
for each ¬LA ∈ Γ , let Γ¬LA =SAT(APPLY(Γ,¬LA));

4’ a. add the relation Γ R Γ¬LA;
4’ b. if Γ¬LA �∈ X then X = X ∪ {Γ¬LA};

4”. else if Γ L↓ �= ∅ then, let Γ ′ =SAT(APPLY(Γ, L−));
4” a. add the relation Γ R Γ ′;
4” b. if Γ ′ �∈ X then X = X ∪ {Γ ′};

This procedure terminates. We construct the modelM = 〈X,RX , <X , V 〉 by
defining <X and V as in the case of P and by letting RX the relation obtained
from R above augmented with all the pairs (Γ,Γ ) such that Γ ∈ X and Γ has
no R-successor. It is easy to show that the following properties hold forM:

• for all Γ,Γ
′ ∈ X , if (Γ,Γ

′
) ∈ RX and LA ∈ Γ then A ∈ Γ

′
;

• for all formulas F and for all sets Γ ∈ X we have that: (i) if F ∈ Γ
then M,Γ |= F ; (ii) if ¬F ∈ Γ then M,Γ �|= F . �

4.1 Decision Procedure for CL

Let us now analyze the calculus T CL in order to obtain a decision procedure
for CL logic. First of all, we reformulate the calculus as we made for P, ob-
taining a system called T CLT: we reformulate the (|∼+) rule so that it ap-
plies only once to each conditional in each world, by adding of an extra set Σ.
We reformulate the other rules accordingly. Notice that the rule (L−) does not
need to be further reformulated since it can only be applied a finite number of
times. Exactly as we made for P, we consider a lexicographic order given by
m(Γ ;Σ) =< c1, c2, c3, c4 >, and easily prove that each application of the rules
of T CLT reduces this measure. Thus, T CLT ensures termination. Furthermore,
the decision algorithm for P described in section 3 can be adapted to CL. The
procedure CHECK has to be modified by introducing the following steps 4’ and
4” between steps 2 and 3:
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4’. else if {¬LA | ¬LA ∈ Γ} �= ∅ then
4’a. for all ¬LAi ∈ Γ do CHECK(APPLY(Γ, ¬LAi));

4”. else if {LA | LA ∈ Γ} �= ∅ then
4”a. CHECK(APPLY (Γ, L−));

Observe that the two recursive calls of CHECK in 4’a and 4”a do not generate
further recursive calls. By this reason, one obtains the following result:

Theorem 7 (Complexity of CL). The problem of deciding validity for CL is
coNP-complete.

5 Conclusions

In this paper, we have presented tableau calculi for some of the KLM logical
systems for default reasoning. We have given a tableau calculus for preferential
logic P and for loop-cumulative logic CL. The calculi presented give a decision
procedure for the respective logics, whose complexity is coNP for both P and
CL. We will make a detailed comparison with existing works ([1], [7], [12]) in a
full paper.

We plan to extend our calculi to the other KLM systems, namely to the weaker
C and to the stronger R. For C we conjecture that a complete calculus is given
by a variant of T CL in which the (�−) rule is weakened so that it does not
enforce the transitivity of the preferential relation <. Another development of
our work will be the extension to the first order case. The starting point will be
the analysis of first order preferential and rational logics by Friedman, Halpern
and Koller in [5].

Acknowledgements. We are grateful to the anonymous referees for their very
helpful comments.
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Abstract. Gödel-Dummett logic LC and its finite approximations LCn

are the intermediate logics complete w.r.t. linearly ordered Kripke mod-
els. In this paper, we use LCn logics as a tool to bound resource consump-
tion in some process calculi. We introduce a non-deterministic process
calculus where the consumption of a particular resource denoted • is
explicit and provide an operational semantics which measures the con-
sumption of this resource. We present a linear transformation of a process
P into a formula f of LC. We show that the consumption of the resource
by P can be bounded by the positive integer n if and only if the for-
mula f admits a counter-model in LCn. Combining this result with our
previous results on proof and counter-model construction for LCn, we
conclude that bounding resource consumption is (linearly) equivalent to
searching counter-models in LCn.

1 Introduction

Gödel-Dummett logic LC and its finitary versions (LCn)n>0 are the intermediate
logics (between classical logic CL and intuitionistic logic IL) characterized by
linear Kripke models. LC was introduced by Gödel in [1] and later axiomatized
by Dummett in [2]. It is now one of the most studied intermediate logics and
has been recognized recently as one of the fundamental t-norm based fuzzy log-
ics [3]. Proof-search in LC has benefited from the development of proof-search in
intuitionistic logic IL with two important seeds: the contraction-free calculus of
Dyckhoff [4,5,6] and the hyper-sequent calculus of Avron [7,8]. Two recent con-
tributions propose an alternative approach based on a set of local and strongly
invertible proof rules (for either sequent [9] or hyper-sequent [7,10] calculus) and
a semantic criterion to decide irreducible (hyper)-sequents and eventually build
a counter-model.

In our previous work, we proposed a new approach to the decision problem in
LC [11]. We transform a formula (or a sequent) of LC into a conditional bi-colored
graph of the same size. Then, we search counter-models of the initial formula by
looking for chains of a certain kind in the graph. We call those chains alternating
chains. This method constitutes a decision procedure for LC and LCn, thus we
have a linear transformation of the decision problem for LC (and also LCn)
into the search for alternating chains problem in conditional graphs. Moreover,

G. Sutcliffe and A. Voronkov (Eds.): LPAR 2005, LNAI 3835, pp. 682–696, 2005.
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we propose a procedure based on matrix computation to solve the search of
alternating chains [12].

In this paper, we study the reverse transformation. First, we characterize the
search for alternating chains in conditional graphs as a resource use bounding
problem in some particular process calculus: the processes have non-deterministic
branching, conditional branching, consume some particular resource, and can be
recursive. The conditions are expressed by boolean formulae. We show how to nor-
malize process systems being thus able to view theses processes as conditional
graphs. We relate resource consumption by processes to the search for alternating
chains in conditional graphs.

Then we show how to encode a conditional graph into a formula of LC (of size
linear w.r.t. the size of the graph). We prove the equivalence of the existence of
a counter-model for this formula and the existence of an alternating chain into
the conditional graph. Therefore we obtain a linear transformation of the search
for alternating chains problem in conditional graphs into a decision problem for
the family of logics LCn.

Moreover, this result establishes a characterization of the family of Gödel-
Dummett logics LCn as resource use bounding logics for some particular process
calculus. This is the main goal of this paper: to shed some new light of LC
and to relate it with processes and resource consumption. In particular, the
process calculus we introduce here should not be viewed as a real tool to model
complex systems. However, it could be extended or integrated to other process
calculi like CCS [13] so as to exploit the LC logic for specifying resource related
properties.

2 Logical Syntax for CL and LC

In this section we present the syntax we use for logical formulae. We either use
formulae of classical propositional logic CL or formulae of propositional Gödel-
Dummett logic LC. Fortunately they share the same syntax, even though their
semantics differ.

The set of propositional formulae, denoted Form, is defined inductively, start-
ing from a set of propositional variables, denoted by LVar, with an additional
bottom constant ⊥ denoting absurdity and using the connectives ∧, ∨ and ⊃:

Form : f ::= ⊥ | x | f ∧ f | f ∨ f | f ⊃ f where x ∈ LVar

We use the abbreviations ¬f ≡ f ⊃ ⊥ and 5 ≡ ¬⊥. In conditional graphs (see
sections 4 and 6), we even use the notation x ≡ ¬x but only for propositional
variables. The semantics of classical formulae is as usual: given a valuation (or
interpretation) of propositional variables σ : LVar→ {0, 1}, the semantic value
of f denoted by [[f ]]σ ∈ {0, 1} is defined inductively on the structure of f , the
connectives ⊥, ⊃, ∧ and ∨ being respectively interpreted by their corresponding
boolean operator. The semantics of the formulae of LC will be defined later in
section 5.1.
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3 Resource Consuming Processes

In this section, we present a calculus for processes which consume resources.
This calculus features non-determinism, choices, recursion and of course resource
consumption. We only model one kind of resources in our calculus, denoted by
a big dot •. The processes only consume resources, they do not produce them,
neither do they transform them into another kind of resources. So the behavior
of processes is characterized by how they consume resources.

Let us consider a set of process variables denoted PVar. We define the set of
processes Proc as follows:

Proc : P ::= X | <f>P | •P | [P + · · ·+ P ] where f ∈ Form, X ∈ PVar

The process •P should be viewed as the process which consumes one resource
• and then, behaves as P . The process [P + Q] should be understood as the
non-deterministic sum of P and Q, i.e. the process that behaves either as P or
Q. In particular, the process [ ] does nothing, i.e. does not consume any resource.
Given a boolean condition f , the process <f>P is the process which behaves
like P if the condition f is fulfilled, and does nothing otherwise.

Non-determinism and conditions are sufficient to represent the if-then-else
construct: if f then P else Q ≡ [<f>P + <¬f>Q]. We insist on the fact that
the boolean value of the condition f does not evolve during the execution of
processes: it is fixed once and for all before the execution starts. And as we
are going to describe the operational semantics of processes, it should be noted
that conditions (like f) are external : even though they influence the behavior of
processes, they cannot change because of that behavior.

3.1 Process Systems and Recursion

To represent recursion, i.e. the possibility for processes to become themselves
again after having consumed some resources, we use (sets of) recursive equations:

Definition 1 (Process system). A process system is a pair (E ,V) where E =
{X1 = P1, . . . , Xn = Pn} is a finite set of process equations. X1, . . . , Xn are
supposed are to be n distinct process variables and V ⊆ {X1, . . . , Xn} is a subset
of relevant variables. P1, . . . , Pn are processes. The variables occurring in E
but not in V are called private variables. A sub-process of E is either one of
X1, . . . , Xn or a sub-term of one of P1, . . . , Pn.

As an example, consider the system

V = {X}

E =

⎧⎨⎩X = •<a>Y
Y = [<b>X + <¬a> •Z + Z]
Z = [ ]

[<b>X + <¬a> •Z + Z]

X <b>X [ ]
Y <a>Y •<a>Y
Z •Z <¬a> •Z

The sub-processes are listed on the right-hand side. Intuitively, X is the process
which consumes one resource and if a is true becomes Y . Y becomes either X
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if b is true, or if a is false consumes one resource and then becomes Z, or Y
becomes Z. Z is the process that does nothing.

This calculus should not be viewed as useful for representing real or complex
systems. It has too few features for that. But it could be viewed as an abstraction
calculus: either one could abstract a complex system into our simple formalism to
prove resource consumption related properties for this particular system, or one
could extend our calculus with further constructs to model more sophisticated
systems directly.

3.2 Operational Semantics for Resource Consumption

Given a set of process equations E and a valuation σ : LVar→ {0, 1} of boolean
variables, we define the ternary relation −[·, σ, E ]−• ⊆ Proc × N × Proc by the
set of deduction rules presented in figure 1. As the reader might notice, σ and
E are not modified by the application of those rules but they occur in the side
conditions of rules [Eq] and [Con], restricting the applicability of those rules.
When E or σ are understood in the context, we might simplify the notation
P −[n, σ, E ]−• Q into P −[n, σ]−• Q or even P −[n]−• Q. Intuitively, P −[n]−• Q
should be read as: the process P has an execution path to Q which consumes
exactly n times the resource •.

P −[0, σ, E ]−• P
[Id]

Pi −[n, σ, E ]−• Q

[ · · · + Pi + · · · ] −[n, σ, E ]−• Q
[Sum]

P −[n, σ, E ]−• Q

•P −[n + 1, σ, E ]−• Q
[Res]

P −[n, σ, E ]−• Q X = P ∈ E
X −[n, σ, E ]−• Q

[Eq]

P −[n, σ, E ]−• Q [[f ]]σ = 1

<f> P −[n, σ, E ]−• Q
[Con]

Fig. 1. Deduction system for resource consumption

Lemma 1. The [Cut] rule is admissible:

P −[m]−• Q Q −[n]−• R
P −[m + n]−• R

[Cut]

Proof. We prove the result by induction on the length of the deduction of
P −[m]−• Q. If P −[m]−• Q is obtained by the axiom [Id], then Q ≡ P and
m = 0, thus P −[0 + n]−• R is identical to Q −[n]−• R. If P −[m]−• Q is ob-
tained by the [Res] rule then P ≡ •P ′ and we have a shorter (sub-)deduction of
P ′ −[m− 1]−• Q. By induction, P ′ −[m− 1 + n]−• R is deducible and then, ap-
plying rule [Res], we obtain •P ′ −[m− 1 + n + 1]−• R, thus P −[m + n]−• R. If
the last rule is [Eq], then P ≡ X with X = P ′ ∈ E and we have a sub-deduction
of P ′ −[m]−• Q. Thus, by induction, we obtain a deduction of P ′ −[m + n]−• R.
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Applying rule [Eq], we obtain a deduction of P −[m + n]−• R. The cases of rules
[Sum] and [Con] are similar.

$�
Definition 2 (Boundable resource use). A process system (E ,V) has a re-
source use boundable by n if there exists a valuation σ : LVar→{0, 1} such that
for any X,Y ∈ V and k ∈ N, if X −[k, σ, E ]−• Y holds then k � n.

This definition means that the resource use can be bounded in some context,
modeled by the valuation σ. The resource use is not necessarily bounded in every
context.

3.3 Normalization

We define the equivalence of process systems and a normalization procedure so
that the systems appear in a shape suitable for further transformations. The
process systems (E ,V) and (F ,V) are equivalent if for any valuation σ, the
relations −[·, σ, E ]−• and −[·, σ,F ]−• have identical restrictions to V × N× V .

Definition 3 (Normality). A process equation is normal if it contains no
nested construct, i.e. it has one of the following forms: X = • Y , X = <f>Y
or X = [Y1 + · · · + Yn] where Y and the Yi’s are process variables. A process
system is normal if all its equations are normal.

Lemma 2 (Normalization). Let (E ,V) be a process system of size k. There
exists a normal process system (E ′,V) of size O(k) which is equivalent to (E ,V).

Proof. Let (E ,V) be a process system of size k. We build the set of equations
of the system E ′. Let us introduce a new process variable XP for each strict
(i.e. not a process variable) sub-process P of E . For process variables P ≡ Y
occurring in E , we choose XY ≡ Y , so there is no new process variable for
atomic sub-processes. Let P be a sub-process of E . If P ≡ •Q, we add the
equation XP = •XQ to E ′. If P ≡ <f>Q, we add XP = <f>XQ and if
P ≡ [Q1 + · · · + Qk], we add XP = [XQ1 + · · ·+ XQk

]. Finally, if Y = P is an
equation of E , we add the equation Y = [XP ] to E ′.

Obviously (E ′,V) is a normal system and its size (number of symbols) is linear
in the size of (E ,V). It is a bit tedious but obvious to show that for any sub-
process P,Q ∈ E , σ : LVar→ {0, 1} and n ∈ N, P −[n, σ, E ]−• Q holds if and
only if XP −[n, σ, E ′]−• XQ holds. The proof can be done by induction on the
length of deductions. Then, since for any variable Y of V we have the property
XY ≡ Y , the relation −[·, σ, E ]−• and −[·, σ, E ′]−• have identical restrictions to
V × N× V . $�

The result of the normalization procedure described previously applied to the
example presented in section 3.1 is the following:

X = [K6] Z = [K5] K2 =<b>X K4 = •Z K1 = [K2 + K7 + Z]
Y = [K1] K6 = •K3 K3 =<a>Y K5 = [ ] K7 =<¬a>K4
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4 Conditional Bi-colored Graphs

In this section, we introduce the notion of conditional graphs. Then we show
how to transform a normal process system into a conditional graph and the
relation between the existence of some chains in those graphs and the operational
semantics of the process system.

4.1 Graphs and Instance Graphs

A bi-colored graph is a (finite) directed graph with two kinds of arrows: green
arrows denoted by → and red arrows denoted by ⇒.

Definition 4 (alternating chain). A n-alternating chain is a chain of the
form (→�⇒)n.

So a chain contains a n-alternating chain if and only if it contains at least n
red arrows ⇒.

Definition 5 (Conditional graph). A conditional bi-colored graph is a bi-
colored graph where green arrows → may be indexed with the (propositional)
boolean expressions of Form.

Considering boolean expressions as representatives for boolean functions and
given a valuation σ : LVar→{0, 1}, a boolean expression e is instantiated to the
boolean value [[e]]σ ∈ {0, 1}. We obtain an instance graph: an arrow indexed with
a boolean expression e belongs to this instance if and only if [[e]]σ = 1. The case
of an unconditional (i.e. not indexed) arrow can be treated by considering that
it has an implicit boolean conditional which is the tautology 5 (and then always
evaluates to 1) and non-existing arrows have the implicit boolean condition ⊥
that always evaluates to 0.

Definition 6 (Instance graph). Let G be a conditional bi-colored graph and
σ be a valuation of boolean variables in {0, 1}. We define the instance graph Gσ

as the bi-colored graph that one obtains when one evaluates boolean expressions
indexing arrows and keeping exactly those whose valuation equals 1.

4.2 From Normal Process Systems to Conditional Graphs

We describe how to build a conditional bi-colored graph from a normal set
of process equations. Let E be a finite set of normal process equations. The
equations are of one of the following forms: X = •Y , X = <f>Y or X =
[Y1 + · · ·+ Yk] where Y and the Yi’s are process variables.

We build the graph GE (simply denoted G here). It has the process variables
occurring in E as vertices. We associate to each (normal) equation of E a set of
arrows:

– for the equation X = •Y , we associate the arrow X⇒ Y ;
– for X = <f>Y , we associate the arrow X →f Y ;
– for X = [Y1 + · · ·+ Yk], we associate the arrows X→ Y1, . . . , X → Yk.
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Obviously, the graph G ≡ GE is a conditional bi-colored graph and its size is
linear in the size of E . As an example, we display the graph associated with the
example of normal process system obtained in section 3.3:

X K2 K1 K7 K4

K6 K3 Y K5 Z

b

a

a

4.3 Chains and Resource Consumption

In this section, we relate the consumption of the resource • by the processes of
E to the alternating chains of GE .

Theorem 1. Let E be a normal set of process equations and G = GE be its
associated conditional graph. Let σ : LVar→ {0, 1} be a valuation. Then for any
process variables X,Y ∈ E and any n ∈ N, X −[n, σ]−• Y holds if and only if
there exists a chain X (→�⇒)n→� Y in the instance graph Gσ.

Proof. Let us fix E and σ : LVar→ {0, 1}. We consider the conditional graph
GE and its instance Gσ. Let X ⇒ Y be an arrow of Gσ. By construction of GE ,
there is an equation X = •Y in E . Thus, X −[1]−• Y holds. Now let us consider
an arrow X → Y of Gσ: either there exists an equation X = <f>Y in E s.t.
[[f ]]σ = 1 or there exists an equation X = [ · · · + Y + · · · ] in E . In either case,
X −[0]−• Y holds. Then by using the derived [Cut] rule of lemma 1, from a
chain X (→�⇒)n→� Y containing exactly n red arrows ⇒, we can deduce that
X −[n]−• Y holds.

Conversely, let us show how to transform a deduction of X −[n]−• Y into a
chain of the form X (→�⇒)n→� Y in Gσ, by induction on the length of the
deduction. Suppose it ends with the [Id] rule. Then Y ≡ X and n = 0. Thus
X →0 Y is a zero length chain. Considering other rules, we remark that a de-
duction of X −[n]−• Y cannot end with rules [Sum], [Res] or [Con] since X is a
process variable. We consider the last remaining case where the deduction ends
with rule [Eq]. Then there exists an equation X = P in E . As E is normal, P is
in one of the following forms: •Z, <f>Z or [Z1 + · · · + Zk], where Z and the
Zi are process variables:

– if P ≡ •Z then there is a (sub-)deduction of •Z −[n]−• Y and therefore a
(sub-)deduction of Z −[n− 1]−• Y . By induction on deductions, we obtain
of chain Z (→�⇒)n−1→� Y in Gσ. Moreover, as X = •Z ∈ E , we have an
arrow X ⇒ Z in Gσ. Thus there exists a chain X (→�⇒)n→� Y in Gσ;

– if P ≡ <f>Z, then we have a sub-deduction of <f>Z −[n]−• Y . It is
necessary that the last rule of this sub-deduction is [Cond] and then [[f ]]σ = 1.
We have a sub-deduction of Z −[n]−• Y . By induction, there is a chain
Z (→�⇒)n→� Y in Gσ. Since X = <f>Z ∈ E and [[f ]]σ = 1, there is an
arrow X → Z in Gσ. Thus there exists a chain X (→�⇒)n→� Y in Gσ;
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– if P ≡ [Z1+· · ·+Zk], then we have a sub-deduction of [Z1+· · ·+Zk] −[n]−• Y .
It is necessary that the last rule of this sub-deduction is [Sum] and thus, there
exists i ∈ [1, k] and a sub-deduction of Zi −[n]−• Y . By induction, we obtain
a chain Zi (→�⇒)n→� Y . Since X = [Z1 + · · ·+ Zk] ∈ E , there is an arrow
X → Zi in Gσ, and there exists a chain X (→�⇒)n→� Y in Gσ. $�

Corollary 1. Let E be a normal set of process equations, V the set of variables
of E, G its associated conditional graph and n ∈ N. The process system (E ,V)
has a resource use boundable by n if and only if there is an instance graph Gσ

with no (n + 1)-alternating chain.

Proof. If (E ,V) has a resource use boundable by n, there exists a valuation
σ : LVar→ {0, 1} s.t. for any X,Y ∈ V and k ∈ N, if X −[k, σ]−• Y holds then
k � n. Suppose there exists a (n + 1)-alternating chain X0 (→�⇒)n+1 Y0 in the
instance graph Gσ. Then, by theorem 1, X0 −[n + 1, σ]−• Y0. But X0, Y0 ∈ V
so we get n + 1 � n, that leads to a contradiction. Conversely, let X0, Y0 ∈ V
and k ∈ N satisfying X0 −[k, σ]−• Y0. Then, by theorem 1, there is a chain
X0 (→�⇒)k→� Y0 in the instance graph Gσ. If k > n then this chain contains a
sub-chain of the form X0 (→�⇒)n+1 Y1, contradiction. Consequently k � n. $�

4.4 From Conditional Graphs to Normal Process Systems

We have proved that a normal process system can be transformed into a condi-
tional graph of the same size. Now we present the converse transformation. We
show how to recover a process system from a conditional graph.

There is only a slight problem to be addressed: the construction described
in section 4.2 does not generate a configuration like for example X → Y and
X ⇒ Z where these two arrows have the same source X . This can only be
generated when these two arrows are green→ using the [ · · ·+ · · · ] construct. To
overcome this difficulty, we propose the following trick: every red arrows⇒ (resp.
conditional arrow →f ) is split into two arrows →⇒ (resp. →→f ) introducing
a new intermediary node for each red ⇒ and conditional →f arrow. These two
splits preserve n-alternating chains.

Using such a transformation on a conditional graph G, we obtain a new con-
ditional graph G′ with the following property: every node which is the source
of multiple arrows is the source of only unconditional green arrows→ since the
source of a red ⇒ (resp. conditional →f ) arrow is the intermediary node which
is specifically introduced for this particular arrow.

The graph G′ can be transformed into a normal set of process equations. Let
V be a set of process variables, one Xv for each vertex v of G′. We build E as
follows. We consider each vertex as a source for some arrows and associate an
equation to each vertex:

– if v is the source of a red arrow v⇒w then v is the source of no other arrow1

and we add Xv = •Xw to E ;
1 v is new and has been introduced in G′ specifically for this purpose.
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– if v is the source of a conditional green arrow v→f w then v is the source of
no other arrow and we add Xv = <f>Xw to E ;

– otherwise v is the source of k (unconditional) green arrows v→w1, . . . , v→wk

(k could be 0) and we add Xv = [Xw1 + · · ·+ Xwk
] to E .

E being built this way, it is obvious that it is a normal set of process equations and
that G′ appears as the conditional graph associated with E by the construction
described in section 4.2, i.e. G′ = GE .

Theorem 2. Let G be a conditional graph of size k. There exists a process
system (E ,V) of size O(k) with the following property: for any n ∈ N, (E ,V)
has a resource use boundable by n if and only if there is an instance graph Gσ

with no (n + 1)-alternating chain.

Proof. Obviously, the size of the graph G′ described earlier in this section is less
than 2k. The size of E is the same as the size of G′, so is less than 2k. Let V be
the set of process variables occurring in E . The size of (E ,V) is less than 3k. Then
it is clear that for any σ : LVar→ {0, 1}, there is a one-to-one correspondence
between a (n+ 1)-alternating chain of Gσ and a (n+ 1)-alternating chain of G′σ,
since the splits ⇒�→⇒ and→f �→→f preserve alternating chains in every
instance. As the identity G′ = GE holds, we finish by an application of corollary 1
to E . $�

5 From Conditional Graphs to LC

In this section, we introduce the algebraic semantics of the family of propositional
Gödel-Dummett logics LCn. The value n belongs to the set N

�
= {1, 2, . . .}∪{∞}

of strictly positive natural numbers with its natural order �, augmented with a
greatest element ∞. In the case n = ∞, the logic LC∞ is also denoted by LC:
this is the usual Gödel-Dummett logic.

After having defined the semantics of LCn, we show how to transform a con-
ditional graph into a formula2 of LCn and we relate the existence of a counter-
model for this formula to the alternating chains of the initial graph, and thus to
resource consumption.

5.1 The Semantics of LCn

IL denotes the set of formulae that are provable in any intuitionistic propositional
calculus (see [4]) and CL denotes the classically valid formulae. As usual an
intermediate propositional logic [6] is a set of formulae L satisfying IL ⊆ L ⊆ CL
and closed under the rule of modus ponens (if A ∈ L and A ⊃ B ∈ L then
B ∈ L) and under arbitrary substitution (if A ∈ L and ρ is any substitution
then Aρ ∈ L.)

2 In fact, into a sequent which can straightforwardly be transformed into an equivalent
formula, see proposition 1.
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For any n ∈ N
�
, the Gödel-Dummett logic LCn is an intermediate logic. On

the semantic side, it is characterized by the linear Kripke models of size n, see [2].
The following strictly increasing sequence holds:

IL ⊂ LC = LC∞ ⊂ · · · ⊂ LCn ⊂ · · · ⊂ LC1 = CL

In the particular case of LC, the logic has a simple Hilbert axiomatic system:
(X ⊃ Y ) ∨ (Y ⊃X) added to the axioms of IL.

In this paper, we will use the algebraic semantic characterization of LCn [7]
rather than the Kripke semantics. Let us fix a particular n ∈ N

�
. The algebraic

model is the set [0, n) = [0, . . . , n[∪{∞} composed of n+1 elements.3 A valuation
(or interpretation) on propositional variables σ : LVar → [0, n) is inductively
extended to formulae:

[[⊥]]σ = 0
[[x]]σ = σx

[[a ∨ b]]σ =max(a, b)
[[a ∧ b]]σ =min(a, b) [[a⊃ b]]σ = a � b

where the operator � is defined by a� b = if a � b then ∞ else b. A formula f
is valid for the valuation σ if the equality [[f ]]σ = ∞ holds. This interpretation
is complete for LCn. A counter-model of a formula f is a valuation σ such that
[[f ]] <∞.

A sequent is a pair Γ � Δ where Γ and Δ are multisets of formulae. Γ, Δ
denotes the sum of the two multisets and if Γ is the empty multiset, we write
�Δ. Given a sequent Γ �Δ and an interpretation [[·]] of variables, we interpret
Γ ≡ a1, . . . , an by %%Γ && = min{[[a1]], . . . , [[an]]} and Δ ≡ b1, . . . , bp by ��Δ�� =
max{[[b1]], . . . , [[bp]]}. This sequent is valid with respect to the interpretation [[·]]
if %%Γ && � ��Δ�� holds. On the other hand, a counter-model to this sequent is an
interpretation [[·]] such that ��Δ�� < %%Γ &&, i.e. for any pair (i, j), the inequality
[[bj ]] < [[ai]] holds.

Proposition 1. The sequent a1, . . . , an�b1, . . . , bp has the same counter-models
as the formula (a1 ∧ · · · ∧ an)⊃ (b1 ∨ · · · ∨ bp).

The proof of this proposition is trivial. Let f be a propositional formula. It
can either be viewed as a boolean formula, or a formula of LCn. We relate the
two semantic interpretations using the double negation. We define the mappings
φ : {0, 1}→ [0, n) and ψ : [0, n)→{0, 1} by φ0 = 0, φ1 =∞, ψ0 = 0 and ψx =∞
for x > 0.

Proposition 2. Let f be a propositional formula and σ : LVar→ [0, n) be an
interpretation of variables. The identity [[¬¬f ]](σ) = φ

(
[[f ]](ψ ◦ σ)

)
holds.

Proof. Let us denote ¬¬f by f�. We remark that φ commutes with the inter-
pretation of the connectives ∧, ∨ and ⊃; for instance max(φx, φy) = φ(x ∨ y).
Then, the following logical identities hold in LCn:

3 With the convention [0,∞) = N ∪ {∞}. With our particular representation, the
algebraic models [0, n) form a strictly increasing sequence of subsets of N.
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[[⊥�]]σ = [[⊥]]σ [[(a ∨ b)�]]σ = max([[a�]]σ, [[b
�]]σ)

[[(a⊃ b)�]]σ = [[a�]]σ � [[b�]]σ [[(a ∧ b)�]]σ = min([[a�]]σ, [[b
�]]σ)

We prove [[f�]](σ) = φ
(
[[f ]](ψ ◦ σ)

)
by induction on f :

– if f ≡ ⊥, we obtain [[⊥�]]σ = [[⊥]]σ = 0 and φ([[⊥]](ψ ◦ σ)) = 0;
– if f ≡ x, then [[x�]]σ = 0 if σx = 0 and [[x�]]σ = ∞ if σx > 0. So [[x�]]σ =

φ(ψ(σx)). On the other hand, φ([[x]](ψ ◦ σ)) = φ(ψ ◦ σ(x)) = φ(ψ(σx));
– if f ≡ a ∨ b, then [[(a ∨ b)�]]σ = [[a� ∨ b�]]σ = max(φ([[a]](ψ ◦ σ)), φ([[b]](ψ ◦

σ))) = φ(max([[a]](ψ ◦ σ), [[b]](ψ ◦ σ))) = φ([[a ∨ b]](ψ ◦ σ));
– the cases f ≡ a ∧ b and f ≡ a⊃ b are similar. $�

5.2 Transforming Conditional Graphs into Formulae

Let us consider a conditional graph G. There may be some conditional formulae
on green arrows like →f . We consider all these formulae and the propositional
variables they contain. For each vertex v of G we introduce a new propositional
variable xv, so that the propositional variables occurring in conditional formulae
and the newly introduced xv do not overlap. We build a sequent SG = Γ �Δ by
adding one formula to either Γ or Δ for each arrow of G:
– if v→ w is green arrow of G, we add xv ⊃ xw to Γ ;
– if v→f w is conditional green arrow of G, we add (¬¬f) ⊃ (xv ⊃ xw) to Γ ;
– if v⇒ w is a red arrow of G, we add xw ⊃ xv to Δ.

Theorem 3. Let G be a conditional graph, SG its associated sequent and n ∈ N.
There exists a valuation σ : LVar→ {0, 1} such that the instance graph Gσ does
not contain a (n + 1)-alternating chain if and only if the sequent SG has a
counter-model in LCn.

Proof. First, let us suppose that there exists a valuation σ : LVar→{0, 1} s.t. the
instance graph Gσ does not contain a chain of type (→�⇒)n+1. By theorem 4
of [11], there exists a height h s.t. for every vertices v, w of G (or Gσ, they have
the same vertices), hv ∈ [0, n], if v→w ∈ Gσ then hv � hw and if v⇒w ∈ Gσ then
hv < hw. We define h′v = n � v, i.e. h′v = hv if hv < n and h′v = ∞ if hv = n.
We define a valuation σ′ : LVar→ [0, n). If x ≡ xv is a variable corresponding
to one of the vertices of G then σ′xv

= h′v. Otherwise we define σ′x = φ(σx). We
recall that the xv do not overlap with the variables occurring in the conditional
formulae of G. We prove that σ′ is a counter-model of SG ≡ Γ �Δ:

– consider the formula xv ⊃ xw occurring in Γ . Then [[xv ⊃ xw]]σ′ = [[xv]]σ′ �
[[xw ]]σ′ = σ′(xv) � σ′(xw) = h′v � h′w = ∞ because h′v � h′w since v→ w
occurs in Gσ. Thus [[xv ⊃ xw ]]σ′ =∞;

– consider the formula (¬¬f)⊃ (xv⊃xw) occurring in Γ . Then [[(¬¬f)⊃(xv⊃
xw)]]σ′ = [[¬¬f ]]σ′ � [[xv ⊃ xw]]σ′ . [[¬¬f ]]σ′ = φ([[f ]](ψ ◦ σ′)) = φ([[f ]](ψ ◦
φ ◦ σ)) = φ([[f ]]σ). If [[f ]]σ = 0 and in this case [[¬¬f ]]σ′ � [[xv ⊃ xw]]σ′ =
0 � [[xv ⊃ xw]]σ′ = ∞. On the other hand, if [[f ]]σ = 1, then v→ w occurs
in Gσ, and thus h′v � h′w. So [[¬¬f ]]σ′ � [[xv ⊃ xw ]]σ′ =∞� [[xv ⊃ xw]]σ′ =
[[xv ⊃ xw]]σ′ = h′v � h′w =∞. In either case, [[(¬¬f)⊃ (xv ⊃ xw)]]σ′ =∞;
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– consider the formula xw ⊃ xv occurring in Δ. Then v ⇒ w occurs in Gσ.
[[xw ⊃ xv]]σ′ = h′w � h′v = h′v since h′v < h′w. Moreover, as h′v < h′w, we
deduce h′v <∞ and then [[xw ⊃ xv]]σ′ <∞.

Then ��Δ��σ′ <∞ and that %%Γ &&σ′ =∞. So σ′ is a counter-model of SG .

Conversely, consider σ : LVar→ [0, n) a counter-model of SG . We define σ′ =
ψ ◦ σ. Let us consider a conditional arrow v→f w of G. We compute [[¬¬f ]]σ =
φ([[f ]]σ′). [[f ]]σ′ = 1 if and only if there is an arrow v→w in Gσ′ . If [[f ]]σ′ = 1 then
φ([[f ]]σ′) =∞ and [[(¬¬f)⊃(xv⊃xw)]]σ =∞� [[xv⊃xw]]σ = [[xv⊃xw]]σ. On the
other hand, if [[f ]]σ′ = 0, then [[(¬¬f)⊃(xv⊃xw)]]σ = 0�[[xv⊃xw]]σ =∞. Let use
denote Γ ′ the multiset where we have replaced the formula (¬¬f)⊃(xv⊃xw) by
xv⊃xw when [[f ]]σ′ = 1 and by nothing (i.e. we simply erase it) when [[f ]]σ′ = 0.
It is clear that %%Γ ′&&σ = %%Γ &&σ. So σ is also a counter-model in LCn of the
implicational sequent Γ ′�Δ corresponding to the instance graph Gσ′ . According
to theorem 6 of [11], since the implicational sequent Γ ′ �Δ has a counter-model
in LCn, its instance graph Gσ′ does not contain a chain of type (→�⇒)n+1. $�

It is obvious that the size of SG is linear in the size of G (of course, the
size of G should account for the size of conditional formulae). So there exists a
linear transformation of the problem of resource consumption bounding into the
decision problem in LCn.

Corollary 2. Let E be a normal set of process equations of size k and V the
set of variables of E. There exists a formula fE of LC of size O(k) such that
for any n ∈ N, (E ,V) has a resource use boundable by n if and only if fE has a
counter-model in LCn.

Proof. Let G be the conditional graph associated to E (see corollary 1), S be the
sequent associated to G (see theorem 3). Then fE is a formula logically equivalent
to S, see proposition 1. $�

6 Counter-Models of LCn and Resource Consumption

In this section, we briefly recall some of our previous results which provide the
proof of the converse of corollary 2. Given a formula f of LC, we explain how to
build a conditional graph Gf of size linear w.r.t. the size of f which represents the
proof-search process on f and on which it is possible to either prove f or extract
counter-models of f . For an explanation of the construction in full details, the
reader is invited to consult [12].

Let f be a formula of LC. We build a conditional graph Gf based on the de-
composition tree of f , i.e. the set of sub-formula occurrences of f . An occurrence
of a sub-formula r can be identified with the root node of the sub-tree corre-
sponding to r. Each node is polarized starting with polarity − for the root f−

and propagated the following way: the connectives ∨ and ∧ preserve the polarity
while the connective ⊃ preserves the polarity on the right hand side and inverses
it on the left-hand side.
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Fig. 2. Counter-model search system for LC

We add a supplementary node for each propositional variable v occurring in
f . This is one node per variable, not per occurrence: two occurrences of the
same variable only produce one supplementary node. These added nodes are not
polarized. Two more nodes are added: ♦ and . Intuitively, ♦ represents the
semantic value ∞ whereas  represents the semantic value 0.

Before we describe how we build the arrows of Gf , we precise that we will
sometimes introduce new conditional variables denoted x and use either x or its
negation x ≡ ¬x as a condition indexing some green arrows like→x or→x. Now
we describe how we build the arrows of Gf :

– for the root f−, we add a red arrows f ⇒♦;
– for every added node v corresponding to a propositional variable occurring

in f , we add a green arrow → v;
– for a positive occurrence v+ of a variable in f , we add a green arrow v+→v;
– for a negative occurrence v− of a variable in f , we add a green arrow v→v−;
– for a positive occurrence of ⊥+ in f , we add a green arrow ⊥+→;
– for a negative occurrence of ⊥− in f , we add a green arrow →⊥−.

All these rules correspond to the left part of figure 2. Now we describe what we
do with internal nodes, which corresponds to the right part of figure 2:

– for each negative occurrence of a sub-formula r− ≡ a− ∧ b−, we introduce
a new conditional variable x and we add the two conditional green arrows
a−→x r− and b−→x r−;

– for each positive occurrence of a sub-formula r+ ≡ a+ ∧ b+, we add the two
green arrows r+→ a+ and r+→ b+;

– for r− ≡ a− ∨ b−, we add the two green arrows a−→ r− and b−→ r−;
– for r+ ≡ a+ ∨ b+, we introduce a new variable x and add the two arrows

r+→x a+ and r+→x b+;
– for r− ≡ a+ ⊃ b−, we introduce a new variable x and a new node k and the

five arrows b−→x k, k⇒ a+, k→ r−, k⇒♦ and ♦→x r−;
– for r+ ≡ a− ⊃ b+, we introduce a variable new x and add the two arrows

r+→x b+ and a−→x b+.
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The construction of Gf is finished after each internal node has been processed.
The order in which they are processed is indifferent. We recall the main result4

of [11], which relates conditional graphs and LCn:

Theorem 4. Let f be a formula of LC, G ≡ Gf be the conditional graph asso-
ciated to f by the construction described in this section and n ∈ N. Then f has
a counter-model in LCn if and only if there exists a valuation σ such that the
instance graph Gσ has no (n + 1)-alternating chain.

Corollary 3. Let f be a formula of LC of size k. There exists a process system
(E ,V) of size O(k) such that for any n ∈ N, (E ,V) has resource use boundable
by n if and only if f has a counter-model in LCn.

Proof. Let f be a formula of LC. We apply theorem 4 and obtain a conditional
graph Gf . The size of Gf is linear w.r.t. the size of f . Then we apply theorem 2
and obtain a process system (E ,V). The size of (E ,V) is linear w.r.t. the size of
Gf , thus also w.r.t. the size of f . (E ,V) has resource use boundable by n if and
only if Gf has no (n+ 1)-alternating chains if and only if f has a counter-model
in LCn. $�

7 Conclusion

We have defined a process calculus and an operational semantics that measures
resource consumption. We establish a correspondence between normal process
systems and conditional bi-colored graphs: a process system has resource use
boundable by an integer n if and only if the corresponding graph has no (n+1)-
alternating chain. Then we show how the absence of (n + 1)-alternating chain
in a graph can be expressed by the refutability of a formula of LCn. Combining
the two results, we get a linear transformation of a resource bounding problem
in a process calculus into a decision problem in LCn.

We recall our previous result on counter-model search in LC [11] and relate it
to the process formalism we introduced. Thus, we have a linear transformation
of a decision problem in LCn into a resource bounding problem in a process
calculus. This establishes the linear equivalence of the two problems. So LC
could be viewed as a logic for specifying some resource related properties. This
sheds some new lights on LC.

In further studies, we want to use the process calculus defined in this paper
as an abstraction of more complex calculi: by keeping only the basic constructs
present in our calculus and abstracting the other constructs. Counter-model
search in LC could be used as a tool to bound resource consumption in some
specified complex systems.

4 To be precise, the construction of Gf we present here, and the associated theorem 4
are a slight but obvious modification of the cited result, to integrate the case of the
⊥ logical constant and to avoid generating conditional red arrows like ⇒x or ⇒x.
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Abstract. In [2] Gentzen calculi for intuitionistic logic extended with
an existence predicate were introduced. Such logics were first introduced
by Dana Scott, who provided a proof system for it in Hilbert style. The
logic seems particularly useful in settings where non constant domain
Kripke models play a role. In this paper it is proved that these systems
have interpolation and the Beth definability property.

Keywords: Intuitionistic logic, existence predicate, Gentzen calculus,
interpolation, Beth definability, cut-elimination, Skolemization, truth-
value logics, Gödel logics, Scott logics, Kripke models.

1 Introduction

In this paper we prove that existence logics have interpolation and satisfy the
Beth definability property (Corollary 2 and Theorem 5). Existence logics are
extensions of intuitionistic predicate logic IQC with an existence predicate E,
where the intuitive meaning of Et is that t exists1.

Recall that we say that a single conclusion Gentzen calculus L has interpola-
tion if whenever L � Γ1,Γ2 ⇒ C, there exists an I in the common language of
Γ1 and Γ2 ∪ {C} such that

Γ1 �L I and I,Γ2 �L C.

In the context of existence logics, the common language of two multisets Γ1 and
Γ2, denoted by L(Γ1,Γ2), consists of all variables, 5, ⊥ and E, and all predicates
and non-variable terms that occur both in Γ1 and Γ2.

We say that a Gentzen calculus L satisfies the Beth definability property if
whenever A(R) is a formula with R an n-ary relation symbol in a language L,
and R′, R′′ are two relation symbols not in L such that

L � A(R′) ∧A(R′′)⇒ ∀x̄(R′x̄ ↔ R′′x̄),

� Supported by the Austrian Science Fund FWF under project P17503.
1 For a more computational view replace “t exists” by “the evaluation of t terminates”.

Universal (existential) statements express consequently weak (strong) correctness
properties.

G. Sutcliffe and A. Voronkov (Eds.): LPAR 2005, LNAI 3835, pp. 697–711, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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then there is a formula S in L such that

L �⇒ ∀x̄(Sx̄ ↔ R′x̄).

Existence logic IQCE was first introduced by D. Scott in [12], where he pre-
sented a Hilbert style proof system for the logic. The motivation behind these
logics is that in the context of intuitionistic logic it is natural to be able to de-
note whether a term exists or not. In this system both variables and terms range
over arbitrary objects while the quantifiers are assumed to range over existing
objects only. Existence logic in which terms range over all objects while quan-
tifiers as well as variables only range over existing objects is denoted by IQCE+

and has e.g. been used by M. Beeson in [4]. M. Unterhalt thoroughly studied
the Kripke semantics of these logics and proved respectively completeness and
strong completeness for the systems IQCE and IQCE+ in [18]. In [2] Gentzen
calculi for existence logics were introduced and proved to have cut-elimination.
Completeness results for these systems are presented in [1]. Applications that
use existence logic are discussed below.

The Gentzen calculi that we introduce in this paper are called LJE and
LJE(ΣL), which is LJE extended by axioms ΣL, to be defined below. LJE corre-
sponds to Scott’s IQCE, and for a specific ΣL the calculus LJE(ΣL) corresponds
to IQCE+ as explained in Section 4.2.

1.1 Applications

Existence logic has many applications, and sometimes leads to surprising so-
lutions of problems that do not seem solvable in pure intuitionistic logic. We
do not describe these applications in full detail here, but we try to explain the
general idea and give pointers to the literature.

Truth-Value Logics and Linear Frames. One application of the existence
predicate is in the context of truth-value logics. These are logics based on truth-
value sets V , i.e. closed subsets of the unit interval [0, 1], also called Gödel sets.
One can, for a given Gödel set V , interpret formulas by mapping them to el-
ements of V . The logical symbols receive a meaning via restrictions on these
interpretations, e.g. by stipulating that the interpretation of ∧ is the infimum
of the interpretations of the respective conjuncts, or that the interpretation of
∃xAx is the supremum of the values of Aa for all elements a in the domain.
Given these interpretations, one can associate a logic with such a Gödel set V :
the logic of all sentences that are mapped to 1 under any interpretation on V .

Gödel logics GV are an example of truth value logics. Without going into the
precise definition of these logics here, we only want to mention that these logics
naturally correspond to the logics of linear frames. As has been shown by A.
Beckmann and N. Preining this correspondence takes the following form.

Theorem 1. (A. Beckmann and N. Preining [3]) For every countable linear
frame F there exists a Gödel set V such that
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GV |= A ⇔ A holds in all Kripke models on F with constant domains, (1)

and vice versa: for every Gödel set V there exists a countable linear frame F
such that (1).

In [9] so-called Scott logics SV are introduced which correspond to linear frames,
but now for possibly non constant domains. That is, we have

Theorem 2. [9] For every countable linear frame F there exists a Gödel set V
such that

SV |= A ⇔ A holds in all Kripke models based on F , (2)

and vice versa: for every countable Gödel set V there exists a countable linear
frame F such that (2).

In the same paper it is shown that there is a natural and faithful translation
from Scott logics into Gödel logics. This translation (·)e, that makes use of the
existence predicate, allows to transfer properties about Gödel logics to Scott
logics. (·)e is defined as follows.(

P (t̄)
)e = P (t̄) for atomic P and terms t̄,

(·)e commutes with the connectives,
(∃xA(x))e = ∃x

(
Ex ∧ (A(x))e

)
,

(∀xA(x))e = ∀x
(
Ex→ (A(x))e

)
.

Given this translation we then have the following theorem.

Lemma 1. [9] For any Gödel set V , (·)e is a faithful translation of SV into GV ,
i.e. for all L-sentences A

SV |= A ⇔ Ge
V |= Ae.

Skolemization. Another application of the existence predicate is in the set-
ting of Skolemization. As is well-known, the classical Skolemization method of
replacing strong quantifiers in a formula by fresh function symbols and thus ob-
taining a equiconsistent formula, is not complete with respect to IQC. That is,
there are formulas that are underivable, but for which their Skolemized version
is derivable in IQC. For example,

IQC �� ∀x(Ax ∨B)→ (∀xAx ∨B) IQC � ∀x(Ax ∨B)→ (Ac ∨B).

In [1] an alternative Skolemization method called eSkolemization is introduced
and is shown to be sound and complete with respect to IQC for a class of formulas
larger than the class of formulas for which standard Skolemization is sound and
complete. This eSkolemization method makes use of the existence predicate. It
replaces negative occurrences of existential quantifiers ∃xBx by (Ef(ȳ)∧Bf(ȳ)),
and positive occurrences of universal quantifiers ∀xBx by (Ef(ȳ)→ Bf(ȳ)). For
example, the eSkolemization of the displayed formula above is

IQCE �� ∀x(Ax ∨B)→ ((Ec→ Ac) ∨B).
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We will not proceed with the topic of eSkolemization here but refer the interested
reader to [1] instead.

Note the similarity between the different applications of the existence pred-
icate: the translation (·)e does a similar thing to quantifiers as eSkolemization
does. Essentially, it all has to do with the fact that an existence predicate allows
us in a Kripke model to name objects that do not exist in the root but come
into existence only at a later stage in the model. Both [1] and [9] describe this
intuition in more detail.

2 Preliminaries

We consider languages L ⊆ L′ for intuitionistic predicate logic plus the existence
predicate E, without equality. For convenience we assume that L contains at least
one constant and no variables, and that L′ contains infinitely many variables.
The languages may or may not contain functional symbols: the results in this
paper hold for all cases. The reason for this has to do with the semantics for the
Gentzen calculi; a topic we will not proceed with here, but which is discussed
in [1].

The languages contain ⊥, and ¬A is defined as A→ ⊥. A,B,C,D,E, .. range
over formulas in L′, s, t, .. over terms in L′. Γ, Δ,Π range over multisets of
formulas in L′. Sequents are expressions of the form Γ ⇒ C, where Γ is a finite
multiset. A sequent is in L if all its formulas are in L. And similarly for L′. A
formula is closed when it does not contain free variables. A sequent Γ ⇒ C is
closed if C and all formulas in Γ are closed. For terms t and s A[t/s] denotes
the result of substituting t for all occurrences (for all free occurrences if s is
a variable) of s in A. If for a formula A(x) we write A(t), this indicates the
result of replacing some, possibly not all, occurrences of x in A with t. This is
a subtlety overlooked in most textbooks, but not in [14], when defining e.g. the
right introduction of ∃ as

Γ ⇒ A(t)
Γ ⇒ ∃xA[x/t]

In such a system, R(t, t) ⇒ ∃xR(x, t) is not derivable. Because of this most
proofs of interpolation, although correct, seem to overlook that subtle point.

In one of the final proof systems, (⇒ Et ) will hold for the terms in L, but not
necessarily for the terms in L′\L. TL denotes the set of terms in L, FL denotes
the set of formulas in L, SL denotes the set of sequents in L, and similarly for L′.

In order not to drown in brackets we often write Ax for A(x).

3 The Proof System

In this section we define the system LJE, a conservative extension of LJ for L′ that
covers the intuition that Et means t exists . Such a system was first introduced
by Dana Scott in [12], but then in a Hilbert style axiomatization, and called
IQCE. The Gentzen calculus for this system was first introduced in [2].
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Given an existence predicate, terms, including variables, typically range over
existing as well as non-existing elements, while the quantifiers range over existing
objects only. Proofs are assumed to be trees.

The system LJE

Ax Γ, P ⇒ P P atomic L⊥ Γ,⊥ ⇒ C

Γ, A,B ⇒ C
L∧

Γ, A ∧B ⇒ C
Γ ⇒ A Γ ⇒ BR∧

Γ ⇒ A ∧B

Γ, A⇒ C Γ, B ⇒ C
L∨

Γ, A ∨B ⇒ C

Γ ⇒ AiR∨ i = 0, 1
Γ ⇒ A0 ∨A1

Γ, A→ B ⇒ A Γ, B ⇒ C
L→

Γ, A→ B ⇒ C

Γ, A⇒ B
R→

Γ ⇒ A→ B

Γ, ∀xAx,At⇒ C Γ, ∀xAx⇒ Et
L∀

Γ, ∀xAx⇒ C

Γ, Ey ⇒ Ay
R∀ ∗

Γ ⇒ ∀xA[x/y]

Γ, Ey,Ay ⇒ C
L∃ ∗

Γ, ∃xA[x/y]⇒ C

Γ ⇒ At Γ ⇒ EtR∃
Γ ⇒ ∃xAx

Γ ⇒ A Γ, A⇒ C
Cut

Γ ⇒ C

Where (∗) denotes the condition that y does not occur free in Γ and C.
The principal formula of a rule is defined as usual. In the Cut rule the formula

A is called the cut formula, and it is the principal formula of the Cut rule. The
formulas Et and Ey are not principal in respectively L∀, R∃ and R∀, L∃.

We write LJE � S if the sequent S is derivable in LJE. For a set of sequents X
and a sequent S, we say that S is derivable from X in LJE, and write X �LJE S,
if S is derivable in the system LJE to which the sequents in X are added as
initial sequents. We also denote this system by LJE(X).

In the system LJE no existence of any term that is not a variable is assumed.
This implies e.g. that we cannot derive ∀xPx ⇒ Pt, but only ∀xPx,Et ⇒ Pt.
Note however that the former is derivable in LJE from (⇒ Et). This is the reason
why we consider derivations from extra axioms, especially axioms of the form
(⇒ Et). Therefore, we define the following sets of sequents

ΣL ≡def {Γ ⇒ Et | t ∈ TL,Γ a multiset}.
Note that because of the assumptions on L, ΣL contains at least one sequent
and for all sequents Γ ⇒ Et in ΣL, t is a closed term. Given two languages
L ⊆ L′, we write
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LJE(ΣL) ≡def {S ∈ SL′ | ΣL �LJE⇒ S}.

The L′ is not denoted in LJE(ΣL), but most of the time it is clear what is the
“larger” language L′ of which L is a subset.

Example 1.
��LJE⇒ ∃xEx �LJE⇒ ∀xEx.

�LJE(ΣL)⇒ ∃xEx ∧ ∀xEx.

Lemma 2. For all sequents S in L that do not contain E:

LJ � S implies LJE(ΣL) � S.

Proof. Since S is a sequent in L, we may assume w.l.o.g. that when S is provable
in LJ it has a cut free proof in which all terms that are not eigenvariables are
terms in L. Denote this set of terms by X . Clearly, Xs = {Γ ⇒ Et | t ∈ X} is a
subset of ΣL. At every application of R∃ or L∀, add the appropriate Γ ⇒ Et as
the right hypothesis. At every application of R∀ or L∃ add the appropriate Ey
to the antecedent. This gives a proof of Γ ⇒ A in LJE(ΣL).

Later on, in Proposition 1, we will see that the converse of the above lemma
holds too.

4 Cut Elimination

In this section we recall some results from [2] that show that LJE and LJE(ΣL)
have a restricted form of cut elimination and have weakening and contraction.
Some of these results we will need later on, the others are recalled to show that
the systems we consider are well-behaved. The proofs of these results are more
or less straightforward, where the ECut theorem, which shows that the systems
allow some partial cut-elimination, is the most involved, as usual.

Lemma 3. (Substitution Lemma)
For L ∈ {LJE(ΣL), LJE}:
If P is a proof in L of a sequent S in L′ and y is a free variable in P , and t is
a term in L′ that does not contain eigenvariables or bound variables of P , then
P [t/y] is a proof of S[t/y] in L.

In case L = LJE the same holds for any term s instead of y.

Lemma 4. ([2]) (Weakening Lemma)
For L ∈ {LJE(ΣL), LJE}: L � Γ ⇒ C implies L � Γ, A⇒ C.

Lemma 5. ([2]) (Contraction Lemma)
For L ∈ {LJE(ΣL), LJE}: L � Γ, A,A⇒ C implies L � Γ, A⇒ C.

Theorem 3. ([2]) (ECut theorem)
For L ∈ {LJE(ΣL), LJE}: Every sequent in L′ provable in L has a proof in L in
which the only cuts are instances of the ECut rule:
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Γ ⇒ Et ∈ ΣL Γ, Et⇒ C
ECut:

Γ ⇒ C

In particular, LJE has cut-elimination.

Corollary 1. ([2]) LJE(ΣL) is consistent.

The cut elimination theorem allows us to prove the following correspondence
between LJ and LJE(ΣL).

Proposition 1. ([2]) For all closed sequents S in L not containing E:

LJ � S if and only if LJE(ΣL) � S.

4.1 Uniqueness

Observe that given another predicate E′ that satisfies the same rules of LJE as
E′, it follows that

LJE(ΣL) � Et⇒ E′t ∧ LJE(ΣL) � E′t⇒ Et.

Namely, LJE(ΣL) � (⇒ (∀xEx ∧ ∀xE′x)), and LJE(ΣL) � (∀xEx,E′t ⇒ Et)
and LJE(ΣL) � (∀xE′x,Et ⇒ E′t). Finally, two cuts do the trick. This shows
that the existence predicate E is unique up to provable equivalence.

4.2 IQCE and IQCE+

As remarked above, given an existence predicate, terms typically range over
existing as well as non-existing elements, while quantifiers range over existing
objects only. As to the choice of the domain for the variables, there have been
different approaches. Scott in [12] introduces a system IQCE for the predicate
language with the distinguished predicate E, in which variables range over all
objects, like in LJE and LJE(ΣL). On the other hand, Beeson in [4] discusses a
system in which variables range over existing objects only.

The formulation of the system IQCE in [12], where logic with an existence
predicate was first introduced was in Hilbert style, where the axioms and rules
for the quantifiers are the following:

∀xAx ∧ Et→ At

...
B ∧Ey → Ay

*
B → ∀xAx

...
Ay ∧ Ey → B

*∃xAx→ B

At ∧ Et→ ∃xAx

Here ∗ are the usual side conditions on the eigenvariable y.
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The following formulation of IQCE in natural deduction style was given in
[16]. We call the system NDE (Natural Deduction Existence). It consists of the
axioms and quantifier rules of the standard natural deduction formulation of IQC
(as e.g. given in [16]), where the quantifier rules are replaced by the following
rules:

[Ey]
...
Ay

∀I *∀xAx

...
∀xAx

...
Et∀E

At

...
At

...
Et∃I ∃xAx

...
∃xAx

[Ay][Ey]
...
C∃E *

C

Again, the ∗ are the usual side conditions on the eigenvariable y. It is easy to

see that the following holds.

Fact. ∀A ∈ FL′ : �IQCE A if and only if �NDE A if and only if �LJE⇒ A.

Existence logic in which terms range over all objects while quantifiers and vari-
ables only range over existing objects is denoted by IQCE+ and has e.g. been
used by M. Beeson in [4]. The logic is the result of leaving out Ey in the two
rules for the quantifiers in IQCE given above and adding Ex as axioms for all
variables x. A formulation in natural deduction style is obtained from NDE by
replacing the ∀I and ∃E by their standard formulations for IQC and adding Ex
as axioms for all variables x. We call the system NDE+. In this case we have the
following correspondence.

Fact. ∀A ∈ FL′ :
�IQCE+ A iff �NDE+ A iff {Γ ⇒ Ex | x a variable, Γ a multiset} �LJE(ΣL)⇒ A.

M. Unterhalt in [18] thoroughly studied the Kripke semantics of these logics and
proved respectively completeness and strong completeness for the systems IQCE
and IQCE+. Similar results for the Gentzen calculi presented here can be found
in [1].

5 Interpolation

In this section we prove that the calculus LJE and LJE(ΣL) have interpolation.
To this end we use a calculus LJE′ that is equivalent to LJE but in which the
structural rules are not hidden.
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The system LJE′

Ax P ⇒ P P atomic L⊥ ⊥ ⇒ C

Γ ⇒ CLW
Γ, A⇒ C

Γ, A,A⇒ C
LC

Γ, A⇒ C

Γ, A,B ⇒ C
L∧

Γ, A ∧B ⇒ C
Γ ⇒ A Γ ⇒ BR∧

Γ ⇒ A ∧B

Γ, A⇒ C Γ, B ⇒ C
L∨

Γ, A ∨B ⇒ C

Γ ⇒ AiR∨ i = 0, 1
Γ ⇒ A0 ∨A1

Γ ⇒ A Γ, B ⇒ C
L→

Γ, A→ B ⇒ C

Γ, A⇒ B
R→

Γ ⇒ A→ B

Γ, At⇒ C Γ ⇒ Et
L∀

Γ, ∀xAx⇒ C

Γ, Ey ⇒ Ay
R∀ ∗

Γ ⇒ ∀xA[x/y]

Γ, Ay,Ey ⇒ C
L∃ ∗

Γ, ∃xA[x/y]⇒ C

Γ ⇒ At Γ ⇒ EtR∃
Γ ⇒ ∃xAx

Γ ⇒ Et ∈ ΣL Γ, Et⇒ C
ECut:

Γ ⇒ C

The calculus LJE′(ΣL) is the system LJE′ extended by the axioms ΣL (Sec-
tion 3).

Lemma 6. For all formulas A in L′:

LJE � A ⇔ LJE′ � A LJE(ΣL) � A ⇔ LJE′(ΣL) � A.

Proof. Use Theorem 3 and Lemmas 4 and 5.

Recall that we write L(Γ1,Γ2) for the common language of Γ1 and Γ2, i.e. the
language consisting of the predicates and non-variable terms that occur both in
Γ1 and Γ2, plus 5, ⊥ and E and the variables.

Theorem 4. LJE′ and LJE′(ΣL) have interpolation.

Proof. We first prove the theorem for LJE′ and then for LJE′(ΣL) by showing
how this case can be reduced to the LJE′ case. We write � for �LJE′ in this
proof. Assume � Γ1,Γ2 ⇒ C. We look for a formula I in the common language
L(Γ1,Γ2 ∪ {C}) of Γ1 and Γ2 ∪ {C} such that

� Γ1 ⇒ I � I,Γ2 ⇒ C. (3)
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We prove the theorem with induction to the depth d of P . Recall that the depth
of a sequent in a proof is inductively defined as the sum of the depths of its
upper sequents plus 1. Thus axioms have depth 1. The depth of a proof is the
depth of its endsequent.

d = 1: P is an instance of an axiom. When the axiom is Ax we have Γ1Γ2, Q⇒
Q, where Q is an atomic formula. There are two cases: we look for interpolants
I and J such that

� Γ1, Q⇒ I � I,Γ2 ⇒ Q and � Γ1 ⇒ J � J,Q,Γ2 ⇒ Q.

This case is trivial: take I = Q and J = 5. The case that P is an instance
of L⊥ is equally simple: again there are two possibilities, like above, and the
interpolants are 5 and ⊥.

d > 1. We distinguish by cases according to the last rule applied in P . If it is
a LC, the last lines of P look as follows.

Γ1Γ2, A,A⇒ C

Γ1Γ2, A⇒ C

Again there are several cases: we look for interpolants

� Γ1, A⇒ I � I,Γ2 ⇒ C and � Γ1 ⇒ J � J,A,Γ2 ⇒ C.

By the induction hypothesis there are interpolants I ′ and J ′ such that the se-
quents Γ1, A,A ⇒ I ′ and I ′,Γ2 ⇒ C, and Γ1 ⇒ J ′ and J ′, A,A,Γ2 ⇒ C are
derivable. Moreover, I ′ is in L(Γ1∪{A},Γ2∪{C}), and J ′ is in L(Γ1,Γ2∪{A,C}).
Hence taking I = I ′ and J = J ′ and applying contraction gives the desired result.
The case LW is equally trivial.

The connective cases are equal to their treatment in proofs of interpolation
for LJ. For completeness sake we sketch the proof for the case that the last rule
is L→. Then the last lines of the proof look as follows.

Γ1Γ2 ⇒ A Γ1Γ2, B ⇒ C

Γ1Γ2, A→ B ⇒ C

We have to find I in L(Γ1∪{A→ B},Γ2∪{C}) and J in L(Γ1,Γ2∪{A→ B,C})
such that

� Γ1, A→ B ⇒ I � I,Γ2 ⇒ C and � Γ1 ⇒ J � J,A→ B,Γ2 ⇒ C.

We teat the case I and leave J to the reader. For I, note that by the induction
hypothesis there are I ′ ∈ L(Γ2,Γ1 ∪ {A}) and I ′′ ∈ L(Γ1 ∪ {B},Γ2 ∪ {C}) such
that � Γ2 ⇒ I ′, � I ′,Γ1 ⇒ A, � Γ1, B ⇒ I ′′ and � I ′′,Γ2 ⇒ C. Hence we can
take I = I ′ → I ′′.

The case of the existential quantifier is more or less similar to the correspond-
ing case for LJ. Suppose the last rule is L∃. Then the last two lines of the proof
are

Γ1Γ2, Ey,Ay ⇒ C

Γ1Γ2, ∃xA[x/y]⇒ C
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We write ∃xAx for ∃xA[x/y]. Note that y is not free in Γ1Γ2 and C. We have
to find I ∈ L(Γ1 ∪ {∃xAx},Γ2 ∪ {C}) and J ∈ L(Γ1,Γ2 ∪ {∃xAx,C}) such that

� Γ1, ∃xAx⇒ I � I,Γ2 ⇒ C and � Γ1 ⇒ J � J,∃xAx,Γ2 ⇒ C.

For I, use that the induction hypothesis gives a I ′ such that

� Γ1, Ey,Ay ⇒ I ′ � I ′,Γ2 ⇒ C.

Observe that we have

� Γ1, Ey,Ay ⇒ ∃zI ′[z/y] � ∃zI ′[z/y],Γ2 ⇒ C,

because we also have � I ′(y),Γ2, Ey ⇒ C by the weakening lemma. An appli-
cation of L∃ to Γ1, Ey,Ay ⇒ ∃zI ′[z/y] shows that we can take I = ∃zI ′[z/y] as
interpolant. Of course, if y is not free in I ′ we can take I = I ′ as well.

For J , use that the induction hypothesis gives a J ′ such that

� Γ1 ⇒ J ′ � J ′,Γ2, Ey,Ay ⇒ C.

Observe that whe have

� Γ1 ⇒ ∀zJ ′[z/y] � ∀zJ ′[z/y],Γ2, Ey,Ay ⇒ C,

because we also have

� Γ1, Ey ⇒ J ′ ∀zJ ′[z/y], J ′,Γ2, Ey,Ay ⇒ C ∀zJ ′[z/y],Γ2, Ey,Ay ⇒ Ey

by the weakening lemma. An application of L∃ to ∀zJ ′[z/y],Γ2, Ey,Ay ⇒ C
shows that we can take J = ∀zJ ′[z/y] as interpolant. Of course, if y is not free
in J ′ we can take J = J ′ as well.

Suppose the last rule is R∃:
...

Γ1Γ2 ⇒ At

...
Γ1Γ2 ⇒ Et

Γ1Γ2 ⇒ ∃xAx

We have to find I ∈ L(Γ1,Γ2 ∪{ExAx}) such that � Γ1 ⇒ I and � I ⇒ ExAx.

By the induction hypothesis there are I1 and I2 such that

� Γ1 ⇒ I1 � I1,Γ2 ⇒ At � Γ1 ⇒ I2 � I2,Γ2 ⇒ Et.

Thus we can take I = I1 ∧ I2 as interpolant.
Finally, we treat the universal quantifier, the most complicated case. Suppose

the last rule is R∀:
...

Γ1Γ2, Ey ⇒ A(y)
Γ1Γ2 ⇒ ∀xA[x/y]
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By the induction hypothesis there is a interpolant I ∈ L(Γ1,Γ2 ∪ {Ey,A(y)})
for the upper sequent: � Γ1 ⇒ I and � I, Ey,Γ2 ⇒ A(y). In case y is not free
in I the sequent I,Γ2 ⇒ ∀xA[x/y] is derivable too. Hence we can take I as an
interpolant of the lower sequent and are done. Therefore, suppose y occurs free
in I. By the side conditions y is not free in Γ1Γ2. Hence we have the following
derivation:

...
Γ1, Ey ⇒ I

Γ1 ⇒ ∀zI[z/y]

Thus the following derivation shows that ∀zI[z/y] is an interpolant for the lower

sequent:
...

I, Ey,Γ2 ⇒ A(y) Ey,Γ2 ⇒ Ey

∀zI[z/y], Ey,Γ2⇒ A(y)
∀zI[z/y],Γ2 ⇒ ∀xA[x/y]

Finally, we treat L∀, when the last lines of the proof are:

Γ1Γ2, A(t)⇒ C Γ1Γ2 ⇒ Et

Γ1Γ2, ∀xA(x)⇒ C

We have to find I ∈ L(Γ1∪{∀xA(x)},Γ2∪{C}) and J ∈ L(Γ1,Γ2∪{∀xA(x), C})
such that

� Γ1, ∀xA(x)⇒ I � I,Γ2 ⇒ C and � Γ1 ⇒ J � J,∀xA(x),Γ2 ⇒ C.

First we treat the case J . Note that by the induction hypothesis there are three
formulas I ′ ∈ L(Γ1,Γ2 ∪ {A(t), C}), J ′ ∈ L(Γ1,Γ2 ∪ {Et}) and H ′ ∈ L(Γ2,Γ1 ∪
{Et}) such that

� Γ1 ⇒ I ′ � I ′, A(t),Γ2 ⇒ C and � Γ1 ⇒ J ′ � J ′,Γ2 ⇒ Et (4)

� Γ2 ⇒ H ′ � H ′,Γ1 ⇒ Et.

Note that I ′, J ′ and H ′ may contain t. If t does not occur in I ′ and J ′ or it occurs
in L(Γ1,Γ2∪{∀xA(x), C}), then I ′, J ′ ∈ L(Γ1,Γ2∪{∀xA(x), C}). Moreover, (4)
implies

� Γ1 ⇒ I ′ ∧ J ′ � I ′ ∧ J ′, ∀xA(x),Γ2 ⇒ C.

Thus in this case we can take J = I ′ ∧ J ′.
On the other hand, if t does occur in I ′ or J ′ and not in L(Γ1,Γ2∪{∀xA(x), C}

we proceed as follows. Either t does not occur in Γ1 or t does not occur in Γ2 ∪
{∀xA(x), C}. In the first case, it follows that t does not occur in I ′ and not in J ′,
contradicting our assumptions. Thus t occurs in Γ1 but not in Γ2∪{∀xA(x), C}.
Hence t does not occur in H ′. Note that we have a derivation
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...
H ′,Γ1 ⇒ I ′ ∧ J ′

...
H ′,Γ1 ⇒ Et

H ′,Γ1 ⇒ ∃x(I ′ ∧ J ′)[x/t]

Γ1 ⇒
(
H ′ → ∃x(I ′ ∧ J ′)[x/t])

)
Now note something important: because t does not occur in ∀xA(x), this im-
plies that ∀xA(x) = ∀xA[x/t] (for the difference between A(x) and A[x/t] see
the preliminaries, Section 2). Thus also ∀x(A[y/t])[x/y] = ∀xA(x). And because
t does not occur in Γ2 or C, by the substitution lemma, Lemma 3, we also have
a derivation for a variable y not occurring in P of

...
Γ2 ⇒ H ′

...
(I ′ ∧ J ′)[y/t], Ey,A[y/t], Γ2 ⇒ C

...
Ey, (I ′ ∧ J ′)[y/t], Γ2 ⇒ Ey

Ey, (I ′ ∧ J ′)[y/t],∀xA(x),Γ2 ⇒ C

∃x(I ′ ∧ J ′)[x/t],∀xA(x),Γ2 ⇒ C

H ′ → ∃x(I ′ ∧ J ′)[x/t] ,∀xA(x),Γ2 ⇒ C

Hence we can take J =
(
H ′ → ∃x(I ′ ∧ J ′)[x/t]

)
and we are done.

The last case we have to treat is the one where we look for the interpolant
I ∈ L(Γ1 ∪ {∀xA(x)},Γ2 ∪ {C}) such that

� Γ1, ∀xA(x)⇒ I � I,Γ2 ⇒ C. (5)

Note that by the induction hypothesis there are I ′ ∈ L(Γ1 ∪ {A(t)},Γ2 ∪ {C}),
J ′ ∈ L(Γ2,Γ1 ∪ {Et}) and H ′ ∈ L(Γ2,Γ1 ∪ {Et}) such that

� Γ1, A(t)⇒ I ′ � I ′,Γ2 ⇒ C and � Γ2 ⇒ J ′ � J ′,Γ1 ⇒ Et

� Γ1 ⇒ H ′ � H ′,Γ2 ⇒ Et.

Observe that whence we have � (J ′ → I ′),Γ2 ⇒ C. Furthermore, we have a
derivation

...
J ′, A(t),Γ1 ⇒ I ′

...
J ′,Γ1 ⇒ Et

J ′, ∀xA(x),Γ1 ⇒ I ′

∀xA(x),Γ1 ⇒ J ′ → I ′

Thus, in case t belongs to the common language L(Γ1 ∪{∀xA(x)},Γ2 ∪{C}) we
can take I = (J ′ → I ′) and we are done. Therefore, assume t does not belong
to the common language. In case it does not belong to Γ2 ∪ {C}, it follows that
both I ′ and J ′ cannot contain t and we can again take I = (J ′ → I ′). Therefore,
assume t does not belong to Γ1∪{∀xA(x)}. Hence H ′ does not contain t. But then
we can infer, by Lemma 3, for a fresh variable y, from � ∀xA(x),Γ1 ⇒ J ′ → I ′

above, that we have the following derivation
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...
∀xA(x), Ey,Γ1 ⇒ (J ′ → I ′)[y/t]
∀xA(x),Γ1 ⇒ ∀z(J ′ → I ′)[z/t]

...
Γ1 ⇒ H ′

∀xA(x),Γ1 ⇒ ∀z(J ′ → I ′)[z/t] ∧H ′

On the other hand we also have

...
H ′, J ′ → I ′,Γ2 ⇒ C

...
H ′, J ′ → I ′,Γ2 ⇒ Et

H ′, ∀z(J ′ → I ′)[z/t],Γ2 ⇒ C

H ′ ∧ ∀z(J ′ → I ′)[z/t],Γ2 ⇒ C

Hence we take I = H ′ ∧ ∀z(J ′ → I ′)[z/t] as the interpolant.
It is interesting to note that (5) also holds for I = (Et→ I ′)∧H ′. But in this

case I does not in general belong to the common language.
Finally, we show that LJE′(ΣL) has interpolation too, by reducing this case

to the case LJE′ in the following way. Given a proof P of Γ1Γ2 ⇒ C in LJE′(ΣL)
we consider all axioms of the form Π ⇒ Et ∈ ΣL that occur in P . Suppose
there are n of them: Π1 ⇒ Et1, . . . , Πn ⇒ Etn. Note that all ti have to be
closed. Clearly, there is a proof of Et1, . . . , Etn,Γ1Γ2 ⇒ C in LJE′ by replacing
the axioms Πi ⇒ Eti by the logical axioms Πi, Eti ⇒ Eti. Now we consider the
following partition Γ ′1Γ

′
2 ⇒ C of Et1, . . . , Etn,Γ1Γ2 ⇒ C:

Γ ′1 = Γ1 ∪ {Etj | j ≤ n, tj occurs in Γ1 or not in Γ1 ∪ Γ2}.

Γ ′2 = Γ2 ∪ {Etj | j ≤ n, tj occurs in Γ2}.
By the interpolation theorem for LJE′ there exists an interpolant I such that
�LJE′ Γ ′1 ⇒ I and �LJE′ I,Γ ′2 ⇒ C where I is in the common language of Γ ′1 and
Γ ′2 ∪ {C}. It is not difficult to see that whence I is in the common language of
Γ1 and Γ2 ∪ {C} too. By cutting on the Eti’s we obtain

�LJE′(ΣL) Γ1 ⇒ I �LJE′(ΣL) I,Γ2 ⇒ C.

This proves that LJE′(ΣL) has interpolation too.

Corollary 2. LJE and LJE(ΣL) have interpolation.

5.1 Interpolation of Fragments

We say that a Gentzen calculus L interpolates for the fragment F where F is a
set of formulas, if whenever L � Γ1,Γ2 ⇒ C, there exists an I ∈ F in the common
language of Γ1 and Γ2 ∪ {C} such that

�L Γ1 ⇒ I �L I,Γ2 ⇒ C.

As is well-known, the fragment consisting of formulas containing no other logical
symbols as ∧,∨, ∀, ∃, interpolates for LJ. We conjecture that LJE and LJE(ΣL)
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do not interpolate for this fragment because of the L∀ case in the proof of the
interpolation theorem above.

5.2 Beth’s Theorem

Following standard proofs for the Beth definability property of LJ, it is easy to
prove the following theorem.

Theorem 5. LJE and LJE(ΣL) satisfy the Beth definability property.
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Abstract. Integrity checking is an essential means for the preservation
of the intended semantics of a deductive database. Incrementality is the
only feasible approach to checking and can be obtained with respect to
given update patterns by exploiting query optimization techniques. By
reducing the problem to query containment, we show that no procedure
exists that always returns the best incremental test (aka simplification
of integrity constraints), and this according to any reasonable criterion
measuring the checking effort. In spite of this theoretical limitation, we
develop an effective procedure allowing general parametric updates that,
for given database classes, returns ideal simplifications and also applies to
recursive databases. Finally, we point out the improvements with respect
to previous methods based on an experimental evaluation.

1 Introduction

Semantic information in databases is conventionally represented under the form
of integrity constraints (ICs), i.e., properties that must always be satisfied for the
data to be considered consistent. Besides simple forms of predefined constraints,
of which primary and foreign keys are the most common examples, real-world
applications may involve nontrivial integrity requirements that capture complex
data dependencies and “business logic”. The need for advanced integrity veri-
fication tools is testified by the introduction of several standard constructs for
integrity support in the SQL language, such as check constraints and assertions.
However, in spite of a long recognition of the importance of such practices, which
are part of the SQL standard since 1992, today’s DBMSs still lack the ability of
efficiently handling non-predefined constraints.

Maintaining compliance of data wrt ICs is an essential requirement: if data
lack integrity, answers to queries cannot be trusted; furthermore, satisfaction
of ICs can be exploited to improve query evaluation performance by means of
so-called semantic query optimization. Databases, however, usually contain very
large collections of data that quickly evolve over time. In this regard, DBMSs
need to be extended with the ability to automatically verify, in an incremental
way, that database updates do not introduce any violation of integrity.

Today’s practices based on triggers (at the database level) or hand-coding of
tests (at the application level) are clearly unsatisfactory, since, by their procedu-
ral and ad hoc nature, they are prone to errors and difficult to maintain. The need
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for automated integrity maintenance methods has attracted much research in the
database as well as the logic programming and artificial intelligence communities.
Main approaches to efficient integrity checking that have been proposed since the
early eighties include extensions of the SLD(NF) proof procedure [18, 6], partial
evaluation [10], update propagation [11], incremental view maintenance [7] and
several others. The way we pursue here is the so-called simplification of ICs — a
principle that has been recognized for more than two decades, dating back to at
least [16], and then elaborated by several other authors, e.g., [11, 17, 4, 6, 20, 5].
Our work is an attempt to reconcile and generalize such ideas in a systematic
way that may promote applications of deductive databases for use with current
database management technology.

Simplification means to generate a set of ICs whose satisfaction in the current
state implies the satisfaction of the original constraints in the updated state. The
input of the procedure is a set of ICs to be maintained on the database as well as
an update pattern describing a typology of updates that the database can receive;
the produced output is the set of simplified ICs that should be checked upon
reception of an update matching the given pattern. We find it important that a
proposed simplification algorithm can work on parametric update patterns, not
only specific updates. This means that such patterns can be simplified at design
time, when only the schema exists and not yet any database state. At runtime
the simplified ICs can be instantiated wrt the specific updates and tested in the
actual state. The main interest of the simplification process is that the output
set of ICs is as easy to evaluate as possible. In this sense, simplification proper
is only feasible by assuming satisfaction of ICs in the state prior to the update.

We identify as “ideal” a simplification procedure that outputs a set of ICs
that is minimal wrt an ordering that represents an approximation of the cost of
evaluating the constraints. Although there is no ultimate criterion that, inde-
pendently of the actual database state, perfectly measures the evaluation effort,
natural requirements can be imposed that should be met by any sensible ordering
— in particular, that “nothing to check” is the best possible simplification one
can hope for. With this assumption, it can be proved that ideal simplification
is equivalent to decidability of query containment, which is known not to hold
in general (query containment is not decidable, e.g., already for pure datalog
without negation). In fact, ideal simplification is possible in a class of databases
if and only if query containment is decidable in that class.

In spite of this limitation, it can be argued on an experimental basis that
simplification procedures that are “almost ideal” can still be of practical use
and certainly improve upon non-optimized integrity checking.

2 The Simplification Problem

We adopt the notation and terminology of deductive databases, and focus on
datalog with stratified negation [1] (aka datalog¬). Our results are, thus, also
applicable in the relational setting. Predicates are divided into three pairwise
disjoint sets: intensional, extensional, and built-in predicates. We use vector



714 H. Christiansen and D. Martinenghi

notation to indicate sequences of terms, e.g., $t. Substitutions are written as
{ $X/$t} in order to indicate which variables are mapped to which terms. A clause
is a formula A ← L1∧· · ·∧Ln where A is an atom and L1, . . . ,Ln are literals and
with the usual understanding of variables being implicitly universally quantified;
A is called the head and L1∧· · ·∧Ln the body of the clause. If the head is missing
(understood as false) the clause is called a denial. A rule is a clause whose head
is intensional, and a fact is a clause whose head is extensional and ground and
whose body is empty (understood as true). Clauses are assumed to be range
restricted, i.e., all clause variables must occur in a positive database literal in
the body.

As mentioned, ICs need to be specialized for update patterns rather than
for specific updates. For this purpose, we use parameters (written in boldface:
a,b, . . .) that can appear anywhere in a formula where a constant is expected.
Parameters behave like variables that are universally quantified at a metalevel;
they are not expected to be part of any actual database nor of any query or
update actually given to a database, but we may have parametric expressions
of these categories. Unique name axioms are assumed for (non-parametric) con-
stants, i.e., distinct constants denote distinct values. A parameter substitution
is a mapping from parameters to constants; whenever E is an expression con-
taining parameters, and π is a parameter substitution for those, Eπ is called a
parametric instance of E.

Definition 1. A schema S is a pair 〈IDB, IC〉, where IDB (the intensional
database) is a finite set of rules and IC a finite set of denials called a constraint
theory. A database D on S is a pair 〈IDB,EDB〉, where EDB (the extensional
database) is a finite set of facts; D is based on IDB. Any set L ⊆ S, where S is
the set of all schemata, is called a database language.

We express our definitions and operators on schemata, so that ICs are always in
the context of an IDB ; however, when the IDB is understood, the schema may
be identified with IC and the database with EDB . When considering different
schemata, we assume that they are compatible, i.e., they do not redefine each
other’s predicates. We focus on stratified databases [2], that do not allow mixing
negation and recursion. We refer to the semantics of the standard model, and
write D |= φ, where D is a database and φ is a closed formula, to indicate that
φ holds in D’s standard model. The notation A |= B is extended to parametric
expressions with the meaning that it holds for all its parametric instances; simi-
larly for ≡ and “iff”. We say that a database D = 〈IDB ,EDB〉 is consistent with
IC whenever D |= IC (and thus with schema S = 〈IDB , IC 〉, written D |= S).

Definition 2. Given an IDB and an intensional predicate p defined in it by
the rules {p($t1) ← F1, . . . , p($tn) ← Fn}, where the $ti’s are sequences of terms
and the Fi’s are conjunctions of literals, the defining formula of p is (F1 ∧ $X =
$t1)ρ1 ∨ . . . ∨ (Fn ∧ $X = $tn)ρn, where $X is a sequence of new distinct variables
and each ρi is a renaming giving fresh new names to the variables of Fi not in
$X.The variables in $X are the distinguished variables of the defining formula; all
other variables in it are the non-distinguished variables.
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For convenience, we include queries in intensional predicates; when no ambiguity
arises, a given query may be indicated by means of its defining formula (instead of
the predicate name). The extension of a database predicate p in a given database
D is defined as the set of tuples {$a | D |= p($a)}; if p is a query, we refer also to
the extension as the answer to p in D and denote it Ap

D.

Definition 3. A predicate update for an extensional predicate p is an expres-
sion of the form p( $X)⇐ p′( $X) where⇐ p′( $X) is a query; p is said to be affected
by the update. An update is a set of predicate updates for distinct predicates. For
a given database D and an update U , the updated database DU is as D, but for
every extensional predicate p affected by a predicate update p( $X)⇐ p′( $X) in U ,
the subset {p($t) | D |= p($t)} of EDB is replaced by the set {p($t) | D |= p′($t)}.

This definition subsumes others that separately specify the added and deleted
parts of a predicate. As mentioned, updates can be parametric as input to the
transformations to follow.

Example 1. Update U1 = {p(X) ⇐ p(X) ∨ X = a} describes the addition of
fact p(a), whereas U2 = {r(X,Y )⇐ (r(X,Y ) ∧X �= a) ∨ (r(a, Y ) ∧X = b)} is
parametric and means “change any r(a, X) into r(b, X)”. Update U3 = {p(X)⇐
q(X), q(X)⇐ p(X)} exchanges the contents of p and q.

To simplify notation, we write in the following p($a) as a shorthand for p( $X)⇐
p( $X) ∨ $X = $a and ¬p($a) for p( $X)⇐ p( $X) ∧ $X �= $a.

The constraint verification problem asks, given a database D, a constraint
theory Γ , such that D |= Γ , and an update U , whether DU |= Γ holds. Since
checking DU |= Γ may be too expensive, a suitable reformulation of the prob-
lem is called for. With our approach we look for a constraint theory Γ U such
that DU |= Γ iff D |= Γ U and Γ U is easier to evaluate than Γ . In other words,
condition Γ U , called a simplification of the original constraints Γ , should spe-
cialize the original Γ , as specific information coming from U is available, and
avoid redundant checks by exploiting the fact that D |= Γ holds. We observe
that reasoning about the future database state DU with a condition (Γ U ) that is
tested in the present state D, complies with the deferred semantics of IC check-
ing1 and allows avoiding the execution of illegal updates completely. Formally,
this is captured by the notions of conditional weakest precondition (CWP) and
weakest precondition (WP).

Definition 4. Consider compatible schemata S = 〈IDB,Γ 〉, S′ = 〈IDB′,Γ ′〉
and update U . S′ is a WP (resp., CWP) of S wrt U whenever D |= Γ ′ iff DU |=
Γ for any database D based on IDB ∪ IDB′ (resp., and consistent with Γ ).

A CWP is a necessary and sufficient condition for consistency of a database in
the updated state to be checked in the state prior to the update (i.e., a pre-test).
Among the CWPs, WPs do not exploit the initial consistency of the database.
1 An update can be imagined as a sequence of operations modifying the state. With

the deferred semantics, satisfaction of ICs is required after the whole update has
executed, but not in the intermediate states.
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Thus, to qualify as a simplification, a CWP must be at least as good as any WP.
For this purpose, we assume, for any schema S and update U , the existence of
a reference schema S̄U representing a WP of S wrt U ; we show the construction
of such a WP in section 4. We further assume an ordering to sort the different
CWPs so that a smallest element in this ordering represents an optimum.

Definition 5. An ordering between schemata is a reflexive and transitive binary
relation . such that, for any two schemata S and S′:

1. 〈∅, ∅〉 . S and it is decidable whether S . S′.
2. If S �= S′, either S ≺ S′ or S′ ≺ S (S ≺ S′ means S . S′ but not S′ . S).
3. For a given S, {S′′ | S′′ . S} is finite and its schemata can be enumerated.

It is essential, for definition 5, to consider as identical expressions that differ only
by renaming and orders of operands of commutative and associative connectives.

Definition 6. Given a schema S and an update U , schema S′ is a simplification
of S wrt U if S′ . S̄U and S′ is a CWP for S wrt U . A procedure with input
S,U and output S′, written SimpU (S) = S′, is a simplification procedure. The
procedure is ideal if, for any S and U , there is no other simplification S′′ of S
wrt U s. t. S′′ ≺ S′.

According to this definition, any CWP that is at least as small as S̄U in the .
ordering is considered a simplification; the minimal ones, among those, are the
ideal simplifications. This distinction makes sense because, as we shall see, it
is not always possible to obtain an ideal simplification in all cases, but even a
non-ideal simplification can be a significant improvement wrt a non-optimized
CWP. This is particularly important when the ordering somehow reflects the
effort of checking the satisfaction of the constraint theory in any database state:
ideal simplifications do then express the best possible way of checking ICs.

The basic idea is to start with the reference schema and optimize it as much
as possible wrt the hypotheses S. For compatible schemata S, S1, S2, we write

S1
S≡ S2 to indicate that D |= S1 iff D |= S2 in any D consistent with S.

Definition 7. Schema S2 is an optimization of schema S1 wrt schema S if

S1
S≡ S2 and S2 . S1. A procedure with input S1, S and output S2, written

OptimizeS(S1) = S2, which is idempotent in the sense that OptimizeS(S2) = S2,
is an optimization procedure. The procedure is ideal if, for any S and S1, there
is no other optimization S3 of S1 wrt S s. t. S3 . S2.

Obviously, OptimizeS(S̄U ) is a simplification procedure for S,U , which is ideal

if Optimize is ideal, since for all CWPs S1, S2 of some S, we have S1
S≡ S2.

3 Achieving Ideal Simplification

Given two queries ⇐ p( $X) and ⇐ q( $X), the query containment problem (QC)
asks whether Ap

D is contained in Aq
D for all database D. QC is already undecid-
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able for datalog without negation [21], and, thus, also for datalog¬. There is
a direct correspondence between the problem of ideal simplification and QC.

Theorem 1. For any database language L, QC is decidable in L if and only if
L admits an ideal simplification procedure2.

The only-if part of the proof enumerates all theories that are smaller than the
reference WP and tests, by QC, whether they are CWPs until one is found.
This may be impractical (although we assumed that there were finitely many
such theories) so a different strategy is described at the end of this section.
Analogously, an ideal optimization procedure can be constructed from a QC
decision procedure (if it exists) using enumeration.

Theorem 2. There exists an ideal optimization procedure for a language L if
and only if QC is decidable in L.

In order to characterize a transformed IC as an optimal simplification, it must
represent a minimum in some ordering that reflects the effort of actually eval-
uating it. This can only be an estimate, as the actual execution times depend
on the database state, which is not available at the time of the simplification
process. Furthermore, it is highly dependent on the applied database technology
that may perform optimizations that cannot be included in a general definition.

Several different criteria can be defined. A natural choice is a syntactic order
based on the number of literals: the optimal theories are those in which this
number is minimal (and when the number is the same, another standard order-
ing, such as the alphabetical ordering, is used). This ordering, indicated as ≺�,
may appear a bit coarse, as the number of literals in, say, ← 1 = 2, ← p(a), and
← p(X) is the same. However, it applies within the class of CWPs of the input.

Semantic orderings are also possible (e.g., the weaker the theory, the better),
but testing precedence is generally undecidable and it can be argued that this
does not correctly reflect the evaluation effort either. The notion of checking
space is sometimes used [17], i.e., the portion of the Herbrand base that affects
the evaluation of a given constraint theory: the smaller the checking space, the
better the CWP. However, there may be infinitely many theories (e.g., those
that differ by tautologies) having the same checking space. For these reasons,
and since no ordering can perfectly capture the notion of efficiency, we adhere to
the simpler ≺� ordering. We stress that any criterion can only approximate opti-
mality. For example, a syntactically minimal query does not necessarily evaluate
faster than an equivalent non-minimal query in all database states; the amount
of computation required to answer a query can be reduced, e.g., by adding a join
with a very small relation. Several refinements can be considered, such as prefer-
ring more specific constraints. However, for all such improvements there will be
cases in which efficiency is not measured precisely. For example, ← p(X)∧ q(Y )
is likely to be evaluated faster than the more specific ← p(X) ∧ q(X), as the
former can be checked by verifying that either p or q are empty, whereas the
latter introduces a join that potentially requires that all tuples in p be looked
2 Theorems 1 and 2 and propositions 1, 2, and 3 are proved in [13].
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up in q. Even if we limit such criterion to the preference of ground literals to
non-ground ones, we still do not capture the notion of efficiency correctly. For
example, ← p(X) will typically run faster than ← p(a), as for the former it is
sufficient to verify that p is empty, whereas for the latter a lookup in p is needed.

As mentioned, finding an ideal simplification, although feasible in some cases,
may be costly. We may thus less ambitiously content ourselves with a local
minimum, i.e., a constraint theory such that no set of subclauses of its clauses is
a simplification. A general procedure to find a local minimum of a given CWP
Γ wrt hypotheses Δ consists in repeating the following steps as long as possible.

1. If there exists φ ∈ Γ such that Δ ∪ (Γ \ φ) |= φ then φ is removed from Γ .
2. If there exists ← L1 ∧ . . . ∧ Ln = φ ∈ Γ such that Δ ∪ Γ |=← L1 ∧ . . . ∧

Li−1 ∧Li+1 ∧ . . .∧Ln = ψ for some i s. t. 1 ≤ i ≤ n then φ is replaced by ψ.

After each step we still have a CWP and a local minimum is eventually found.

Example 2. Consider the following constraint theories.

Δ = { ← ¬p(X) ∧ q(X) ∧ r(X), ← p(X) ∧ ¬q(X), ← p(X) ∧ ¬r(X) },
Γ = { ← s(X) ∧ q(X) ∧ r(X) }, Σ = {← s(X) ∧ p(X) }.

We have Σ
Δ≡ Γ , as Δ is an encoding of the equivalence between p(X) and

q(X) ∧ r(X). Both Γ and Σ are local minima of Γ ∪Σ wrt Δ; Σ is the global
minimum.

In practice there is often one local minimum. However, when particular depen-
dencies are encoded in the ICs, such as equivalences between (sets of) predicates,
like in example 2, then they may differ. The procedure depicted in this section
is, however, based on entailment, which is in general undecidable; furthermore,
sound and complete proof procedures, based, e.g., on resolution, are not guar-
anteed to terminate.

Next, we describe a simplification framework implementing a practically rele-
vant approximation of this strategy in which entailment is replaced by specialized
sound and terminating proof procedures.

4 A Concrete Simplification Procedure

We now show how to construct the reference WP, given a schema and an update,
which was only supposed to exist in the previous section.

Definition 8. Let S = 〈IDB,Γ 〉 be a schema and U an update such that, for
each predicate update p( $X)⇐ pU ( $X) in U , pU is defined in IDB.

– Let us indicate with Γ U a copy of Γ in which any atom p($t) whose predicate is
affected by a predicate update p( $X)⇐ pU ( $X) in U is simultaneously replaced
by the expression pU ($t) and every intensional predicate q is replaced by a new
intensional predicate qU defined in IDBU below.
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– Similarly, let us indicate with IDBU a copy of IDB in which the same re-
placements are simultaneously made, and let IDB∗ be the biggest subset of
IDB ∪ IDBU including only definitions of predicates on which Γ U depends.

We define AfterU (S) = 〈IDB∗,Γ U 〉.

The IDBU used in the construction of definition 8 indicates auxiliary views
that are needed in order to properly characterize the resulting constraint theory.
Often no such views are strictly necessary, whereas, in some other cases (e.g., in
the presence of recursion), they cannot be avoided; in the former case, we will
omit the specification of the intensional database and refer to the unfolding3 of
the constraint theory wrt IDB∗.

Proposition 1. For any schema S and updateU, AfterU (S) is a WP of S wrtU .

In the construction of After we did not use the hypothesis that the initial con-
straint theory was satisfied in the state before the update. Since the result of
After also refers to the same state, we use an optimization procedure receiving
as input After’s output theory and, as hypotheses, After’s input theory. In other
words, After’s result is non-optimized and we can pose S̄U = AfterU (S). We im-
plement Optimize in terms of sound and terminating rewrite rules that remove
from the input theory all denials and literals that can be proved redundant.

Given a denial φ, we indicate as φ− its reduction [4], i.e., a copy of it in which
all tautological (non)equalities are removed and all failing (non)equalities replace
φ by true; variable-term equalities are also removed and cause the variable to
be replaced by the equalled term. For example, (← X = a ∧ p(X))− =← p(a).
Conversely, expansion [4] of a denial φ, indicated φ+, replaces every constant
in a database predicate (or variable already occurring elsewhere in database
predicates) by a new variable, and equals it to the replacing item. For example
let (← p(X, a,X))+ = ← p(X,Y, Z)∧ Y = a∧Z = X . Obviously, for any denial
φ we have φ− ≡ φ ≡ φ+. We write Γ �R φ if there is a resolution derivation of
a denial ψ from the constraint theory Γ+ such that in each resolution step the
resolvent has at most n literals and ψ− subsumes φ, where n is the number of
literals of the largest denial in Γ+. The boundedness on the size of resolvents
guarantees termination, as Γ is function-free.

Definition 9. Given the schemata SΔ, SΓ based on IDB, let Δ,Γ be the re-
spective unfolding of their constraint theories wrt IDB; OptimizeSΔ(SΓ ) is the
schema 〈IDB, Σ〉, where Σ is the result of applying on Γ the following rules as
long as possible; φ, ψ are denials, Γ ′ is a constraint theory.

{φ} ∪ Γ ′ ⇒ Γ ′ if φ− = true
{φ} ∪ Γ ′ ⇒ Γ ′ if (Γ ′ ∪Δ) �R φ
{φ} ∪ Γ ′ ⇒ {φ−} ∪ Γ ′ if φ �= φ− �= true
{φ} ∪ Γ ′ ⇒ {ψ−} ∪ Γ ′ if ({φ} ∪ Γ ′ ∪Δ) �R ψ and ψ− strictly subsumes φ

3 The replacement of each nonrecursive intensional predicate with its defining formula,
until only extensional or recursive predicates remain; see [13] for details.
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The first two rules attempt the removal of a whole denial, while the last two
try to remove literals from a denial, according to the strategy shown in the
previous section. The described Optimize implements a terminating optimization
procedure that can be used, with After, to compose a simplification procedure
SimpU (S) = OptimizeS(AfterU (S)) for any schema S and an update U .

Example 3. We have Simp{p(a)}({← p(X) ∧ q(X)}) = {← q(a)}.

Each step in Optimize reduces the number of literals or instantiates them. The
high complexity of Simp does not affect the quality of the approach, as sim-
plification takes place at design time. This is possible thanks to the following
property.

Proposition 2. Let S, S′ be schemata, U an update and π a param. substitution
for U ’s parameters. If S′ is a CWP of S wrt U then S′π is a CWP of S wrt Uπ.

We argue that a syntactic ordering such as the one induced by the strategy
for finding local minima captures efficiency for most cases, as will be demon-
strated in our experiments. Besides, simplification also conforms to the strategy
of specializing ICs as much as possible, in that variable/constant equalities are
removed by substituting the variable by the constant. So, for example, a denial
such as φ =← X = a∧p(X,Y )∧q(Y ) is not transformed into ← p(X,Y )∧q(Y ),4

which has fewer literals but is arguably less efficient to evaluate than φ, but to
← p(a, Y ) ∧ q(Y ), which contains fewer literals and is more specialized than φ.

4.1 Refinements for Recursion

For some of the most commonly used recursive patterns (such as left- and right-
linear recursion [15]), simplification can be refined by possibly eliminating the
introduction of new recursive views; work in this direction was done in [14]. A
predicate r is right-linear if it is defined by the exit rule r( $X, $Y ) ← q( $X, $Y ) and
by the recursive rule r( $X, $Y ) ← p( $X, $Z) ∧ r($Z, $Y ). There may in principle be
several exit and recursive rules for the same predicate r, but they can always be
reduced to one by introducing suitable new views.

The definition of r can always be decomposed in two parts: a nonrecursive
definition {r( $X, $Y ) ← q( $X, $Y ), r( $X, $Y ) ← rp( $X, $Z)∧q($Z, $Y )} and a transitive
closure definition {rp( $X, $Y ) ← p( $X, $Y ), rp( $X, $Y ) ← p( $X, $Z) ∧ rp($Z, $Y )}. The
construction is symmetric when r is left-linear.

All occurrences of r in a constraint theory can now be unfolded wrt these
definitions, which introduce q and rp, the latter being the transitive closure of
p (which can be thought of as a path in a directed graph of p-edges). Upon the
addition U of tuple p($a, $b), all added rp paths are those that pass by the new
p-arc and that were not there before the update. If δ+

U rp( $X, $Y ) indicates that
there is a new path from $X to $Y after update U , this can be expressed as:

4 Unless a constraint such as ← X �= a∧p(X,Y ) is known to hold, which could then be
used by a query optimizer to evaluate ← p(X,Y )∧ q(Y ) as fast as ← p(a, Y )∧ q(Y ).
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δ+
U rp( $X, $Y ) ← (rp( $X,$a) ∨ $X = $a) ∧ (rp($b, $Y ) ∨ $Y = $b) ∧ ¬rp( $X, $Y ).

We can define δ−U rp in a similar way and unfold, in After, predicate rU
p wrt the

definition rU
p ( $X) ← (rp( $X) ∧ ¬δ−U rp( $X)) ∨ δ+

U rp( $X).
Similarly, Simp can be extended to use as extra hypotheses all transitive

closure rules in S rewritten as denials, e.g., ← ¬rp( $X, $Y ) ∧ p( $X, $Y ) and ←
¬rp( $X, $Y ) ∧ p( $X, $Z) ∧ rp($Z, $Y ), for a predicate rp.

Generally, δ−U rp requires the evaluation of ¬rU
p , but often δ−U rp is simplified

away. If both the new and the old state are available, as in some trigger im-
plementations, rU

p can be evaluated as “rp in the new state”. However, these
are precisely the cases where the simplification was, to some extent, unsuccess-
ful, as accessing or simulating the new state with a view clearly requires extra
work.

Example 4. Consider a schema S representing paths and edges of a directed
graph {p(X,Y ) ← e(X,Y ), p(X,Y ) ← e(X,Z) ∧ p(Z, Y )} for which we impose
acyclicity {← p(X,X)}. Let U = {e(a,b)} be an update pattern that adds an
arc. We have SimpU (S) = {← p(b, a),← a = b}. Note that SimpU (S) is a much
simpler test than S’s IC, as it basically requires to check whether there exists a
path between two given nodes, whereas the latter implies testing the existence
of a cyclic path for all the nodes in the graph.

4.2 Ideality of Simp

Definition 9 gives an approximation of the procedure described in section 3.The
quality of the result depends on how well the described proof procedure imple-
ments entailment. It is known that for certain classes of languages, such as the
monadic class, Herbrand’s class and the one-variable class, sound and complete
procedures based on resolution refinements are guaranteed to terminate. In these
cases an ideal simplification can be found. The principles of subsumption and
reduction are, in practice, sufficient for most cases of denial elimination, and
resolution proper is only needed when the ICs encode circularity.

There are other cases in which entailment can be replaced by a terminating
proof procedure. We recall that a clause is Horn if, when expressed as a dis-
junction of literals, it contains at most one positive literal. Then, for a set Γ of
Horn denials containing no non-nullary function symbol, no parameters and no
equalities, there is a terminating procedure that produces Γ ’s local minimum.

Proposition 3. The Optimize procedure always returns a local minimum when
the inputs are view-less, Horn, parameter-free theories with no equalities.

This result is in accordance with the decidability of QC for nonrecursive datalog
[1]; it extends to Horn theories with equalities and parameters provided that
proper equality axioms are added to the input set.5 However, QC is already
5 Actually, reduction takes care of reflexivity and expansion provides substitutivity,

whereas symmetry was assumed to be an implicit syntactic property of equality;
however, the transitivity axiom (← X �= Y ∧ X = Z ∧ Z = Y ) needs to be added.
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undecidable for nonrecursive datalog¬ [1], so we cannot hope for an ideal pro-
cedure in these cases. As for complexity, QC is known to be decidable in exponen-
tial time for nonrecursive datalog and subsumption is NP-complete in general
[8]. The search for a local minimum in these cases is thus also exponential, since
it may require solving n+m QC problems, where n is the number of literals and
m is the number of denials in the constraint theory. This would suggest that the
problem is intractable; however, the complexity is here measured wrt the size
of the query and not of the data in the database. Furthermore, simplification is
a static process, therefore it is worthwhile to invest resources for compiling the
constraints at design time so as to improve run time efficiency.

5 Experiments

In order to demonstrate the effectiveness of the simplification procedure, we
have tested it on more complex examples. We show here our experimental
results for the nonrecursive case6; we refer to [14] for an analysis of the re-
cursive case. The random data sets used for the tests were generated before-
hand, so that the different procedures under analysis could run on exactly the
same data and thus be compared fairly. All tests were repeated 20 times, so
as to have an average measure of the execution time. The symbolic simplifica-
tions shown here were obtained with an implementation of the simplification
procedure [12].

We first consider the tests presented in [19] where the method of the so-called
inconsistency indicators (II) was shown to run more efficiently than previous
methods, namely [18, 11] and naive constraint checking (i.e., with no simplifica-
tion). We show that, on their examples, we obtain better performance (indeed,
ideal simplifications). Let S1 be the following schema7:

〈{ mother(X,Y ) ← husband(Z, X) ∧ father(Z, Y ),
parent(X,Y ) ← father(X,Y ) ∨ mother(X,Y ),

wife(X, Y ) ← husband(Y,X),
married(X,Y ) ← husband(X, Y ) ∨ wife(X, Y ),

employed(X) ← occup(X, serv),
student(X) ← occup(X, stud),

dependent(X,Y ) ← parent(Y,X) ∧ employed(Y ) ∧ student(X),
dependent(X,Y ) ← married(Y,X) ∧ employed(Y ) ∧ ¬employed(X),

self(X) ← married(Y,X) ∧ ¬employed(Y ),
guardian(X,Y ) ← dependent(Y,X) },

{ ← guardian(X,Y ) ∧ ¬sponsor(X,Y ),
← married(X1, Y1) ∧ student(X1),
← occup(X2, Y2) ∧ occup(X2, Z) ∧ Z �= Y2 }〉

6 All tests were run on a machine with a 2.4 GHz processor, 1 GB of RAM and 80 GB
of hard disk. For compatibility with the compared method, the tests are run under
a Prolog system (SICStus Prolog 3.11).

7 We use disjunctions for compactness.
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The distribution of facts in the initial database considered in [19] is as follows:
177 father facts, 229 husband facts, 620 occup facts and 59 sponsor facts. We
considered additions of tuples to the father and husband relations. To test
whether an update U1 = {father(a,b)} leads to inconsistency, the II method
proposes the following tests (rewritten with our notation):

{← ¬sponsor(a,b) ∧ guardian(a,b), ← guardian(X,b) ∧ ¬sponsor(X,b) }.
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Fig. 1. Comparing Simp to the Inconsistency Indicators method

These can be checked by asserting the update as a Prolog fact father(a,b)
and calling the Prolog query inconsistent(father(a,b)) on the Prolog
program:

inconsistent(father(X,Y)) :- \+ sponsor(X,Y), guardian(X,Y).
inconsistent(father(Z,Y)) :- guardian(X,Y), \+ sponsor(X,Y).

Their checking strategy is therefore: assert the update, then retract if inconsis-
tency was detected. The simplification given by SimpU1(S1) is more specialized
and refers only to the extensional predicates:

{ ← occup(a, serv) ∧ occup(b, stud) ∧ ¬sponsor(a,b),
← husband(a, X) ∧ occup(X, serv) ∧ occup(b, stud) ∧ ¬sponsor(X,b)}.

Our strategy is: first test, then assert the update if inconsistency was not de-
tected. To see whether the approaches “scale”, we ran our tests on databases that
are bigger than the initial one by a given factor. Figures 1(a) and 1(b) report this
factor on the X-axis and the measured average execution times (in milliseconds)
for the additions of 177 father facts and 229 husband facts, respectively, with
both approaches. In both tests, the performance worsens very quickly with the
II method, whereas it basically remains constant with our approach.
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The last example of [19] refers to the following schema S2:

〈{ parent(X,Y ) ← father(X, Y ) ∨ mother(X,Y ),
mother(X, Y ) ← father(Z, Y ) ∧ husband(Z, X),

age(X,Y ) ← civilst(X, Y, P, Q),
dependent(X,Y ) ← parent(Y,X) ∧ occup(Y, serv) ∧ occup(X, stud),

occup(X, Y ) ← civilst(X, P, Q, Y ) },

{ ← civilst(X, Y1, Z1, t1) ∧ civilst(X, Y2, Z2, t2) ∧ ¬(Y1 = Y2 ∧ Z1 �= Z2 ∧ t1 �= t2),
← father(X1, Y ) ∧ father(X2, Y ) ∧ X1 �= X2,
← husband(X1, Y ) ∧ husband(X2, Y ) ∧ X1 �= X2,
← husband(X, Y1) ∧ husband(X, Y2) ∧ Y1 �= Y2,
← civilst(X, Y, Z, Tax) ∧ (¬(X > 0 ∧ X < 100000 ∧ Y > 0 ∧ Y < 125)

∨(Z �= m ∧ Z �= f) ∨ (Tax �= stud ∧ Tax �= ret ∧ Tax �= biz ∧ Tax �= serv)),
← (civilst(X, Y, Z, stud) ∧ ¬(Y < 25)) ∨ (civilst(X, Y, Z, ret) ∧ ¬(Y > 60)),
← father(X, Y ) ∧ (civilst(X, P, S, Q) ∨ civilst(Y, P, S, Q)) ∧ S �= m,
← husband(X, Y ) ∧ (civilst(X, P, S, Q) ∧ S �= m) ∨ (civilst(Y, P, S, Q) ∧ S �= f),
← husband(X, Y ) ∧ age(X,P ) ∧ age(Y,Q) ∧ (P < 20 ∨ Q < 20),
← civilst(X, Y, Z, Tax) ∧ Y < 20 ∧ Tax �= stud,
← dependent(X,Y ) ∧ ¬tax(Y,X) }〉.

The update in question is a transaction of the form:

U2 = { civilst(a,pa, m,oa), civilst(b, pb, f, ob), civilst(c, pc, sc, stud),
husband(a,b), father(a,c), tax(a,c) }

We observe that in the example it is explicitly assumed that the added family
facts were not already in the database; let us indicate this extra hypothesis
as Δ. The simplification given by the II method consists of one set of simplified
constraints for every single update in U2. Instead, the simplification wrt the
whole transaction given by OptimizeΔ(SimpU2(S2)) returns 〈∅, ∅〉. The results of
[19] have execution times that vary roughly linearly wrt the size of the database.
Our simplified theory (∅) is clearly a great improvement over these results, since
it executes in virtually no time and guarantees, without further checking, that
this transaction pattern cannot affect integrity. This example was also used in
[10], where the authors, unfortunately, only compared their method to [11], but
not to [19]. However, our transactional simplification is clearly unbeatable.

The same author reconsidered in [20] some of the redundancies of [19]. For
the extended example discussed in [20], the schema S3 is as follows.

〈 { mother(X, Y ) ← husband(Z, X) ∧ father(Z, Y ),
parent(X,Y ) ← father(X, Y ) ∨ mother(X, Y ),
agediff (X, Y, n) ← age(X,n1) ∧ age(Y,n2) ∧ minus(n, n1, n2)},

{ ← parent(X,Y ) ∧ agediff (X, Y, n) ∧ n < 15 } 〉

We tested this on the addition of father facts on a distribution similar to that
considered for S1. In this case our simplifications basically correspond to the
unfolding of their so-called revised inconsistency indicators (RII), so there is
almost no observable difference in the execution times of the two methods. We
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stress, however, that the method of [20] has a much more restricted expressive
power, in that the updates are limited to singleton insertions and no negations
are allowed in the database. Furthermore, in this case the update was simple, so
the computational effort required for assertion and retraction of facts was little;
however, our approach based on early recognition of inconsistency proves yet
more efficient for cases in which updates lead to illegal states (dramatically, if
the transactions are complex). To see this effect we updated a small database
(2 father facts and 2 age facts) with schema S3 with an illegal father insertion
and measured, with the RII method, an answer time approximately four times
bigger than with the method based on Simp. This behavior is amplified as the
database grows (and it is thus more expensive to add facts for the DBMS):
attempting 10000 times the insertion of an illegal father fact on a database
with approximately 5000 father facts took about 1s with the RII method, but
only 70ms with Simp. This reflects the fact that with our strategy, upon an illegal
update, we just perform a test, whereas the RII method requires to execute the
update, perform a consistency test and then roll back the update.

The figures do not report the time employed to obtain a simplification, as this
is a design time task. Yet, in our tests (with up to 20 rules, 20 ICs, 10 literals
per IC and 5 literals per update) no simplification took more than 500 ms.

5.1 More on Related Work

As mentioned, the ability to check consistency of a possibly updated database be-
fore execution of the transaction under consideration allows avoiding inconsistent
states completely, and thus rollbacks, which may require costly bookkeeping in
order to restore the old state. Several approaches to simplification do not comply
with this requirement [16, 11, 18, 4, 6, 19, 10]; [19] showed that his II method was
more efficient than [11, 18] and we gave evidence of great improvements obtained
with Simp wrt II. Methods that as ours, are based on pre-tests are, e.g., [17, 9].
However, the former does not allow more than one update action in a transaction
to operate on the same relation; furthermore, no mechanism corresponding to
parameters is present, thus requiring to execute the procedure for each specific
update. The latter provides low-cost pre-tests which are sufficient conditions that
guarantee the integrity of the database; however, if the pre-tests fail (as, e.g.,
in simple recursive cases), nothing can be concluded about consistency and an
exact test, such as ours, needs to be made. Simplification of integrity constraints
with respect to given parametric update patterns resembles the notion of pro-
gram specialization, which is the process of creating a specialized version of a
given program with respect to known input data. In [10], a partial evaluation of a
meta-interpreter is used to produce logic programs that correspond to simplified
constraints. However, loop checks needed to ensure termination in the presence
of recursion do not partially evaluate satisfactorily, resulting in an explosion of
(possibly unreachable) alternatives. Integrity checking is often regarded as an
instance of materialized view maintenance: integrity constraints are defined as
views that must always remain empty for the database to be consistent; the
book [7] provides insightful discussion on the subject. In [5], it is shown how to
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implement integrity constraint checking by translating first-order logic specifica-
tions into SQL triggers. It is interesting to note that the result of our transforma-
tions can be combined with similar translation techniques and thus integrated
in an active database system. In this way the advantages of declarativity are
combined with the efficiency of execution. The idea of embedding integrity con-
trol via semi-automatic generation of triggers (without semantic optimization)
is originally due to [3].

6 Conclusion and Future Work

We applied program transformation operators to the generation of simplified
ICs. A procedure was constructed that makes use of these transformations and
produces the simplification searched for according to a criterion of minimality. An
important contribution of this paper is the definition of the notion of ideality of a
simplification procedure, its connection with the QC problem, and the analysis of
different minimality criteria that can be used to characterize an ideal procedure.
In particular, we showed that, in any sensible ordering in which true represents
a minimal element, ideality of simplification corresponds to decidability of QC.

We described an implementation in terms of rewrite rules based on resolu-
tion, subsumption and replacement of specific patterns. The ability of produc-
ing a necessary and sufficient condition for checking integrity before a database
update, together with the generality of the update language, constitutes the
main advantage of our method with respect to earlier approaches. This was also
demonstrated through a series of experiments. This work could be extended to
identify more cases for which useful differential expressions exist and to integrate
in the framework rewrite techniques reducing recursive problems to easier ones.
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Abstract. We present an algorithm for the conversion of very weak alternating
Büchi automata into nondeterministic Büchi automata (NBA), and we introduce
a local optimization criterion for deleting superfluous transitions in these NBA.
We show how to use this algorithm in the translation of LTL formulas into NBA,
matching the worst-case upper bounds of other LTL-to-NBA translations. We
compare the NBA resulting from our translation to the results of two popular al-
gorithms for the translation of LTL to generalized Büchi automata: the translation
of Gerth et al. of 1995 (resulting in the GPVW-automaton), and the translation
of Daniele et al. of 1999 (resulting in the DGV-automaton), which improves on
the GPVW algorithm. We show that the redundancy check by syntactical impli-
cation used in the construction of the DGV-automaton is covered by our local
optimization, that is, all transitions removed by the redundancy check will also
be removed according to our local optimization criterion. Moreover, for a fixed
input formula in next normal form, our locally optimized NBA from LTL and the
locally optimized GPVW- and DGV-automaton are all essentially the same. Both
these results give a “structural” explanation for the syntactic approaches by Gerth
et al. and Daniele et al. We show that a bottom-up variant of our algorithm allows
to pass simplifications of NBA for subformulas on to the NBA for the entire LTL
formula.

1 Introduction

Propositional linear time temporal logic (LTL for short) [17] is a popular language
for the specification of system properties. In the standard way of model checking an
LTL specification against a system [20, 21], it is necessary to translate the negation of
the specification into an equivalent nondeterministic Büchi automaton, which incurs an
exponential blow-up in the worst case. Minimizing such a Büchi automaton is com-
putationally difficult: Even testing universality for nondeterministic finite automata on
finite strings is PSPACE-hard [10]. This implies that approximating a minimum-size ω-
automaton up to a constant factor (or even up to a logarithmic factor [14]) is impossible
in polynomial time unless P = PSPACE.

Practical algorithms therefore use various heuristics for the state-space reduction of
the resulting automata. Many implementations, e. g., Etessami’s TMP [4] and Wring [1]
of Somenzi and Bloem, use a tableau-based algorithm of Daniele, Giunchiglia and
Vardi [2], which is based on an algorithm of Gerth, Peled, Vardi and Wolper [12], as
the starting point for the construction of nondeterministic Büchi automata from LTL.
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The result of this algorithm is a generalized Büchi automaton with propositional labels
on the states rather than on the transitions and with multiple initial states. This requires
a further processing of the result, to change the acceptance condition and to allow a
fruitful application of heuristics like simulation quotienting.

We analyze the automaton resulting from the algorithms of Gerth et al. (henceforth
called the GPVW-automaton) and of Daniele et al. (the DGV-automaton) and show that
there is a strong connection between these automata and approaches based on alter-
nating automata [11, 7]. To this end, we first present an algorithm for the conversion
of a very weak alternating Büchi automaton [18, 15] with n states into an equivalent
nondeterministic automaton with at most (n + 1)2n states (Section 3). This algorithm
is a specialized and optimized variant of the de-universalization algorithm of Miyano
and Hayashi [16] for alternating Büchi automata. As a distinctive feature of our algo-
rithm, an integer counter to check the Büchi condition is an integral part of the states
of our automata and the automata construction. We also introduce a simple rule for the
deletion of superfluous transitions in the constructed nondeterministic automata, called
local optimization.

We then turn our de-universalization algorithm into an algorithm to translate an LTL
formula of length n into an equivalent nondeterministic Büchi automaton with at most
(n + 1)2n states (Section 4).

To analyze the GPVW-automaton and the DGV-automaton (which results from an
improved version of the GPVW-algorithm), we then give a new presentation of the au-
tomata resulting from the GPVW- and DGV-algorithms in Section 5; in contrast, the
focus of [12, 2] is on the pseudo-code presentation of the algorithms and their correct-
ness. We adapt the GPVW-automaton and the DGV-automaton to the format of our
Büchi automaton of Sections 3 and 4 (cf. [13] for similar adaptations), and we then
show that the redundancy check by syntactical implication, which is an important step
in the construction of the DGV-automaton, is covered by our local optimization. That
is, if a transition is not constructed because of a successful redundancy check, then it
will be removed according to our local optimization criterion. Moreover, the locally
optimized versions of the adapted GPVW- and DGV-automaton and of the automaton
resulting from our de-universalization are exactly the same for all input formulas in next
normal form.

We then discuss the possibility to use our algorithm for the inductive construction of
nondeterministic automata from LTL (Section 6). That is, we show that a nondetermin-
istic Büchi automaton for an input formula, e. g., ψ U ρ, can be constructed by merging
the automata for the subformulas ψ and ρ into an automaton for ψ U ρ. This merging
process allows us to turn simplifications of the automata for ψ and ρ into simplifications
of the new (ψ U ρ)-automaton. This is interesting if a thorough simplification for the
larger formula would be too time-consuming. Our concept of inductive construction can
be seen as a specifically tailored variant of temporal logic with automata connectives,
cf. [22, 21].

A technical report containing all the proofs is available as [8].
We hope that these results are helpful in the future design of translation algorithms

and automata simplification heuristics. The shown tight connection between the
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tableau-based approach and the automata construction via alternating automata should
help to concentrate on the core aspects of these algorithms and ease their analysis.

2 Basic Definitions

By convention, we identify an integer n with the set {0, . . . ,n−1}. We define max /0 = 0,
i. e., the maximum of the empty set is 0. For an infinite sequence (qi)i<ω, Inf((qi)i<ω)
is the set of elements appearing infinitely often in the sequence, i. e., Inf((qi)i<ω) = {q |
∀i < ω∃ j > i : q = q j}.

A nondeterministic Büchi automaton (NBA) over an alphabet Σ is a tuple Q =
(Q,Σ,qI ,Δ,F) where Q is a finite set of states, qI ∈ Q is an initial state, Δ⊆ Q×Σ×Q
a transition relation, and F ⊆ Q a set of accepting states.

Such an automaton Q accepts a word w : ω→ Σ if and only if there is a sequence
of states (qi)i<ω ∈ Qω such that q0 = qI , (qi,w(i),qi+1) ∈ Δ for every i < ω, and
Inf((qi)i<ω)∩F �= /0. The language of Q is L(Q) = {w ∈ Σω |Q accepts w}.

An alternating Büchi automaton (ABA) over an alphabet Σ is defined like an NBA
over Σ, but additionally there is a partition of Q into the sets E and U of existential
and universal states, respectively. A run of an ABA is not just a sequence of states
but a computation tree in which all possible successors of a universal state have to be
incorporated. Such a computation tree is accepting if all its infinite branches fulfill the
Büchi acceptance condition. See, e. g., [9] for more details, and see [19] for alternating
automata with transitions defined via positive Boolean formulas.

We will also use automata over finite, nonempty sets of propositions. If Q is an
automaton over a set of propositions1 Σ, then the language of Q is a set of infinite
sequences of subsets of Σ, i. e., a word of the language is an element of (2Σ)ω. And,
following [5], the transitions of automata over a set of propositions are labeled by so-
called terms over the set of propositions. A term is the (possibly empty) conjunction of
literals, i. e., positive and negative propositions. That is, the set of terms over Σ is

termΣ = {
p∈M

p∧
q∈N

¬q |M,N ⊆ Σ} . (1)

For a term t ∈ termΣ, lit(t) is the set of literals appearing in t, and for a set of literals
L, term(L) is the term

l∈L
l. That is, t ≡ term(lit(t)). We say that a set M ⊆ Σ satisfies a

term t ∈ termΣ (written as M |= t) if (term(M)∧
a∈Σ\M

¬a)→ t is a tautology.

Note that tt ∈ termΣ (empty conjunction), and M |= tt for every M ⊆ Σ. On the other
hand, if t is contradictory, i. e., t ≡ ff , then M �|= t for all M ⊆ Σ.

An NBA Q = (Q,Σ,qI ,Δ,F) over a set of propositions Σ is defined like an NBA over
an alphabet, with the difference that the transition relation Δ is a subset of Q× termΣ×
Q. Such an automaton Q over a set of propositions Σ accepts a word w : ω→ 2Σ if and
only if there is a sequence of states (qi)i<ω of Q such that q0 = qI and for every i < ω,
there is a ti ∈ termΣ such that (qi,ti,qi+1) ∈ Δ and w(i) |= ti, and Inf((qi)i<ω)∩F �= /0.

1 We will use the letter Σ both for alphabets and sets of propositions. There is no danger of
confusion, because automata over alphabets are only used in Section 3, and automata over sets
of propositions are not used in that section.
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LTL formulas over a set of propositions Σ are defined inductively by (1) tt and a are
LTL formulas for every a ∈ Σ, and (2) if ψ and ρ are LTL formulas, then so are ¬ψ,
ψ∨ρ, Xψ and ψ U ρ. LTL formulas are interpreted over infinite sequences of subsets
of Σ. For every such word w : ω→ 2Σ, we define the relation |= by

w |= tt , (2)

w |= a iff a ∈ w(0) , (3)

w |= ¬ψ iff w �|= ψ , (4)

w |= ψ∨ρ iff w |= ψ or w |= ρ , (5)

w |= Xψ iff w[1..] |= ψ , (6)

w |= ψ U ρ iff ∃i(w[i..] |= ρ ∧ ∀ j < i(w[ j..] |= ψ)) , (7)

where w[i..] is defined by w[i..](n) = w(i+n) for every n < ω. The language of an LTL
formula ϕ is L(ϕ) = {w ∈ (2Σ)ω | w |= ϕ}.

As usual, we will use derived logical operators like ff , ∧, →, and the temporal op-
erators R, F, G defined by ψ R ρ = ¬(¬ψ U ¬ρ), Fψ = tt U ψ and Gψ = ff R ψ. See
also [3] for the semantics of LTL.

The set of subformulas of an LTL formula ϕ is denoted sub(ϕ). Literals are regarded
as atomic subformulas, i. e., sub((¬a) U (¬b)) = {(¬a) U (¬b),¬a,¬b}. The length of
an LTL formula ϕ, denoted |ϕ|, is its number of symbols, not counting negations and
brackets.

An LTL formula ϕ is in negation normal form if every subformula ¬ψ of ϕ is of the
form ¬a for some a ∈ Σ. The formula ϕ is in next normal form if every subformula Xψ
is of the form XXψ′, Xa or X¬a for some a ∈ Σ. Using the operators ff, ∧ and R and
the equivalence ¬Xψ ≡ X¬ψ, we can compute an equivalent negation normal form for
every LTL formula in linear time. Throughout this paper, we will assume LTL formulas
to be in negation normal form. The next normal form can be computed in linear time by
exploiting the equivalences X(ψ U ρ)≡ (Xψ) U (Xρ) and X(ψ∨ρ)≡ (Xψ)∨ (Xρ).

3 De-universalization of Very Weak Alternating Büchi Automata

Let Q = (Q,Σ,qI ,Δ,E,U,F) be an alternating Büchi automaton over the alphabet Σ
such that there is an injective mapping ν : Q→ω such that (q,a,q′) ∈ Δ implies ν(q)≤
ν(q′) for all q,q′ ∈ Q,a ∈ Σ. We say that Q is very weak, cf. [18, 15, 11].

Let P = {q ∈ Q | q /∈ F and ∃a ∈ Σ : (q,a,q) ∈ Δ}, k = |P| and z a bijection P→
{1, . . . ,k}. That is, P contains those states in Q in which a run of Q can “get stuck”
without accepting.

For Q, we construct an equivalent nondeterministic Büchi automaton as follows.
Let

Qnd = (2Q× (k + 1),Σ,({qI},z(qI)),Δnd ,2
Q×{0}) , (8)

where z(qI) = 0 if qI /∈ P. To define Δnd , we first define the notion of a successor set of
a set M ∈ 2Q for a ∈ Σ. A set M′ ∈ 2Q is a successor set of M for a if there is a mapping
sa : Q→ Q such that, for every q ∈M∩E , sa(q) ∈ Δ(q,a) and

M′ =
q∈M∩U

Δ(q,a)∪{sa(q) | q ∈M∩E} . (9)
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That is, a successor set M′ of M for a contains all a-successors of the universal states in
M and an a-successor for every existential state in M.

For M,M′ ∈ 2Q and a ∈ Σ, we will write sucset(M,a,M′) if M′ is a successor set of
M for a, i. e., sucset is a relation over 2Q×Σ×2Q.

We will usually write sucset(M,a) instead of {M′ ∈ 2Q | sucset(M,a,M′)} and
sucset(M) instead of {(a,M′) ∈ Σ×2Q | sucset(M,a,M′)}.

We further define the function next: 2Q× (k + 1)→ k + 1 by

next: (M, i) �→max{z(p) | p ∈M∩P, z(p) < i} . (10)

The function next describes the behavior of the counter component. We use a de-
creasing counter to keep track of the Büchi acceptance condition. In the following, we
are only interested in states (M, i) ∈ 2Q× (k + 1) with i = 0 or z−1(i) ∈M. We say that
these states are consistent.

The relation Δnd is the smallest set that contains the following transitions, for con-
sistent states (M, i) ∈ 2Q× (k + 1).

1. If M′ is a successor set of M for a, then ((M,0),a,(M′,max{z(p) | p ∈M′ ∩P})) ∈
Δnd .

2. If M′ is a successor set of M \{z−1(i)} for a, N′ is a successor set of {z−1(i)} for a
and z−1(i) /∈ N′, then ((M, i),a,(M′ ∪N′,next(M′ ∪N′, i))) ∈ Δnd .

3. If M′ is a successor set of M \{z−1(i)} for a, N′ is a successor set of {z−1(i)} for a
and z−1(i) ∈ N′, then ((M, i),a,(M′ ∪N′, i)) ∈ Δnd .

That is, every reachable state is consistent.
Intuitively, if a run π of Qnd is in a state (M, i), then the respective run tree of Q

which is compatible with the nondeterministic choices in π, is in all of the states in M
simultaneously. The value i of the counter component indicates that, in order to get an
accepting run, we currently have the obligation to show that the computation branch
which is currently in z−1(i) will not stay there forever (because in that case, the run tree
is not accepting). As soon as this computation branch leaves the state z−1(i), the counter
is decreased to the next smaller P-state in the current NBA state (our obligation jumps
to another computation branch), or to 0, if there is no such state. The counter value 0
indicates that an NBA state is accepting (we have met all obligations), so the counter is
reset to point to the z-largest P-state in the next step of the NBA run.

Theorem 1. Let Q be a very weak alternating Büchi automaton with n states, k of
which belong to its set P. Then L(Q) = L(Qnd), and Qnd has at most (k + 1)2n states.

Note that for a very weak ABA Q with n states, the usual de-universalization ac-
cording to [16] results in a nondeterministic automaton with Ω(4n) states in the worst
case.

We now give a simple rule for the deletion of superfluous transitions in nondeter-
ministic Büchi automata constructed from very weak alternating Büchi automata as de-
scribed above. In Section 5, we will see that this local optimization of Büchi automata
plays a crucial role in the comparison to the GPVW- and DGV-automaton.

Definition 1 (local optimization). Let Q be a very weak alternating Büchi automa-
ton. For two transitions ((M, i),a,(N, j)) and ((M, i),a,(N′, j′)) of Qnd, we say that
((M, i),a,(N′, j′)) is a better transition than ((M, i),a,(N, j)), if N′ ⊆ N and j′ ≤ j.
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The locally optimized automaton Qlo
nd is defined like Qnd, only the set of transitions

is different. The set of transitions of Qlo
nd is

Δlo
nd = Δnd \ {((M, i),a,(N, j)) | ∃((M, i),a,(N′, j′)) ∈ Δnd :

((M, i),a,(N′, j′)) is better than ((M, i),a,(N, j))} . (11)

That is, Qlo
nd only contains “optimal” transitions. It can be shown that local optimiza-

tion is correct in the following sense.

Theorem 2. Let Q be a very weak alternating Büchi automaton. Then L(Q)=L(Qnd)=
L(Qlo

nd).

4 Application to the Construction of Büchi Automata from LTL

The above construction can be used in a straightforward manner to construct nondeter-
ministic Büchi automata from LTL formulas via very weak alternating Büchi automata,
demonstrating that this two-phase construction can yield automata of the same worst-
case size as tableau-based constructions.

This approach leads to a top-down construction: For an LTL formula ϕ of length n
with k (syntactically distinct) subformulas of the form ψ U ρ or Fψ, first a very weak
alternating Büchi automaton Q(ϕ) is constructed, cf. [19, 7]. This automaton has at
most n + 1 states, k of which belong to its set P ⊆ Q as defined above. The above
de-universalization construction can then be applied to Q(ϕ); the result is a nondeter-
ministic Büchi automaton Q(ϕ)nd with at most 2n · (k + 1) states.

In fact, it is not necessary to use alternating automata explicitly. For an LTL formula
ϕ in negation normal form over a set of propositions Σ, we can directly define a nonde-
terministic Büchi automaton. The following construction for this top-down automaton
will be used in Section 5.

Let Pϕ be the set of U- and F-formulas in sub(ϕ), and let kϕ =
∣∣Pϕ

∣∣. Let z be a
bijection Pϕ→{1, . . . ,kϕ}. We then define a nondeterministic Büchi automaton Qtd(ϕ)
with L(Qtd(ϕ)) = L(ϕ) by

Qtd(ϕ) = (Qϕ,Σ,qϕ
I ,Δ

td ,Fϕ) (12)

where Qϕ = 2sub(ϕ)× (kϕ + 1), Δtd ⊆Qϕ× termΣ×Qϕ, and Fϕ = 2sub(ϕ)×{0}.
In the state set, formulas of the form ϕ0 ∧ϕ1 are identified with the union of the

conjunctive subformulas, i. e., a state (M, i) with ϕ0 ∧ϕ1 ∈ M is identified with (M ∪
{ϕ0,ϕ1}\{ϕ0∧ϕ1}, i). Especially, the formula tt is identified with the empty conjunc-
tion, i. e., ({tt},0) is identified with ( /0,0). In this sense, the initial state of Qtd(ϕ) is
qϕ

I = ({ϕ},max{z(ψ) | ψ ∈ {ϕ}∩Pϕ}).
We now define the notion of a successor set for a term t ∈ termΣ, i. e., sucset now is a

relation over 2sub(ϕ)× termΣ×2sub(ϕ). The transitions in Δtd are then defined as in Sec-
tion 3, enumeration items 1 to 3, where the function next is defined as in Equation (10)
with P = Pϕ.
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The relation sucset is the smallest relation that satisfies the following.

– sucset( /0,tt, /0)
– For singleton sets, we distinguish the following cases.
• The set {ff} does not have successor sets. If ϕ = a or ϕ = ¬a for some a ∈ Σ,

then sucset({ϕ},ϕ, /0). (The set {tt} is identified with /0.)
• For all t ∈ termΣ, sucset({ψ∨ρ}, t) = sucset({ψ}, t)∪ sucset({ρ}, t). (The set
{ψ∧ρ} is identified with {ψ,ρ}.)
• sucset({Xψ},tt,ψ)
• sucset({ψ U ρ}) = {(t,N∪{ψ U ρ}) | sucset({ψ}, t,N)}∪ sucset({ρ})

(This also covers the case Fρ ≡ tt U ρ.)
• sucset({ψ R ρ}) = {(t ′,N′ ∪ {ψ R ρ}) | sucset(t ′,N′,{ρ})}

∪ {(t ∧ t ′,N∪N′) | sucset(t,N,{ψ}),sucset(t ′,N′,{ρ})}
(This also covers the case Gρ ≡ ff R ρ.)

– If M ∈ 2sub(ϕ) such that |M|> 1, suppose that M = {ϕ0, . . . ,ϕr−1}.
Then sucset(M) = {(

i<r
ti,

i<r
Ni) | ∀i < r : sucset(ti,Ni,{ϕi})}.

Theorem 3. Let ϕ be an LTL formula in negation normal form. Then L(ϕ)=L(Qtd(ϕ)).

We can adapt the local optimization of Definition 1 to this setting by adding a condi-
tion regarding the term labels of the transitions. That is, for transitions ((M, i), t,(N, j))
and ((M, i), t ′,(N′, j′)) of Qtd(ϕ), we say that ((M, i),t ′,(N′, j′)) is a better transition
than ((M, i), t,(N, j)) if N′ ⊆ N, j′ ≤ j and also t → t ′. The locally optimized automa-
ton Qlo(ϕ) then is defined in analogy to Definition 1.

5 A Comparison of LTL-to-NBA Constructions

In this section, we show that the GPVW-automaton and the DGV-automaton are in
most aspects equivalent to our construction. We first give a conversion of the GPVW-
automaton and the DGV-automaton to our format in a straightforward manner. We then
show that the redundancy check by syntactical implication of [2] is, in effect, almost
equivalent to our local optimization. We also show that our locally optimized automaton
and the locally optimized GPVW-automaton are the same for input formulas in next
normal form.

5.1 The GPVW-Automaton

The GPVW-automaton differs from our top-down automaton in some basic aspects.
Let ϕ be an LTL formula in negation normal form, and let A(ϕ) = (Qϕ,Σ, I,→,F ,L)
be the GPVW-automaton for an LTL formula ϕ. Then A(ϕ) is a generalized Büchi
automaton, i. e., the acceptance condition F is given as F = {F0, . . . ,Fn−1} ⊆ 2Qϕ such
that a run π = (qi)i<ω ∈ Qω

ϕ of A(ϕ) is accepting if and only if Inf(π)∩Fi �= /0 for all
i < n. Moreover, I ⊆ Qϕ is a set of initial states rather than a single initial state, and the
terms which are used as labels of the transitions in our construction are labels of the
states in the GPVW-automaton while there are no labels on the transitions. That is, L
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is a labeling function Qϕ→ termΣ, and a sequence (qi)i<ω ∈Qω
ϕ is a run of the GPVW-

automaton on a word w ∈ (2Σ)ω if and only if q0 ∈ I, (qi,qi+1) ∈→ and w(i) |= L(qi),
for all i < ω.

In the algorithmic definition of the GPVW-automaton in [12], a state of the automa-
ton is described as an object with the fields Name, Incoming, New, Old, Next and Fa-
ther. Of these, only Old and Next are necessary to describe a node while the other
fields contain auxiliary data. Both Old and Next are sets of subformulas of the input
formula. Consequently, we will describe a state of the GPVW-automaton as an element
of 2sub(ϕ)× 2sub(ϕ), with the first component representing the Old-field and the second
component representing the Next-field. There is an accepting run for a word w ∈ (2Σ)ω

starting from such a state if w satisfies all formulas in the Old-field and w[1..] satisfies
all formulas in the Next-field.

To define the transition relation of the GPVW-automaton, we first define the relation
�⊆ 2sub(ϕ)× (2sub(ϕ)×2sub(ϕ)). We have N � (M′,N′) if there is a t ∈ termΣ such that
sucset(N, t,N′) and M′ = lit(t)∪N. As in Section 4, we identify a subset {ψ∧ρ} with
{ψ,ρ}.

The GPVW-automaton A(ϕ) is now defined by

→ = {((M,N),(M′,N′)) ∈ (2sub(ϕ))4 | N � (M′,N′)} , (13)

Qϕ = {(M,N) ∈ 2sub(ϕ)×2sub(ϕ) | ( /0,{ϕ})→+ (M,N)} , (14)

I = {(M,N) ∈ Qϕ | {ϕ}� (M,N)} , (15)

L : (M,N) �→
α ∈M a literal

α . (16)

To define the set F of accepting sets, let z be a bijection of the set Pϕ of F- and U-
formulas in sub(ϕ) to {1, . . . ,kϕ}. We have F = {F1, . . . ,Fkϕ}, where

Fi = {(M,N) ∈Qϕ | (z(ψ U ρ) = i∧ψ U ρ ∈M)→ ρ ∈M} , (17)

for 1≤ i≤ kϕ; here, a formula Fρ is regarded as tt U ρ.

5.2 The Adjusted GPVW-Automaton

We now adjust the GPVW-automaton to our format. The states of this adjusted GPVW-
automaton Aad(ϕ) are elements of 2sub(ϕ)× (kϕ + 1), as for our top-down automaton.
Also as for the top-down automaton, (1) the new single initial state of Aad(ϕ) is qad

I =
({ϕ},max{z(ψ) | ψ ∈ {ϕ}∩Pϕ}).

The following definition condenses several steps: (2) The labels of states in Qϕ be-
come labels of the incoming transitions. Consequently, the Next-field of the states now
does not give the formulas which are true in the next step, but those which are true
now. The Old-field’s remaining function then is in describing the acceptance condition.
Since we also (3) switch from a generalized to a normal Büchi condition by introducing
a counter, (4) the new states have an integer component instead of an Old-field, such
that they are in fact elements of 2sub(ϕ)× (kϕ + 1). In a sense, the states in Qϕ are thus
split and merged in a new fashion.

We now define the set of reachable states Qad
ϕ of Aad(ϕ) and its set of transitions Δad

inductively as follows.
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– qad
I ∈ Qad

ϕ , and if qad
I = (NI , i) and (M,N) ∈ I is an initial state of A(ϕ), then there

is a transition (qad
I ,L(M,N),(N, j)) ∈ Δad such that j = max{l ≤ kϕ | (M,N) /∈

Fl and i �= 0→ l ≤ i}, and (N, j) ∈Qad
ϕ .

– If (N, i) ∈ Qad
ϕ , then there is a transition ((N, i), t,(N′, j)) ∈ Δad and (N′, j) ∈ Qad

ϕ
if the following holds: There are sets M,M′ ∈ 2sub(ϕ) such that (M,N)→ (M′,N′),
t ≡ L(M′,N′), and j = max{l ≤ kϕ | (M′,N′) /∈ Fl and i �= 0→ l ≤ i}.

The set of accepting states is Fad = Qad
ϕ ∩ (2sub(ϕ)×{0}).

Note that a “jumping” decreasing counter as used here and in our definition of op-
timized de-universalization is similar to the jumping (yet increasing) counter discussed
in [13]. Giannakopoulou and Lardi also discuss the translation of term labels to the
incoming transitions.

5.3 The DGV-Automaton

An important difference between the DGV-automaton (i. e., the result of the algorithm
LTL2AUT in [2]) and the GPVW-automaton is the use of the concept of syntactical im-
plication in defining the acceptance sets and for redundancy and contradiction checks.
We introduce the notion of syntactical implication following [13].

Definition 2 (syntactical implication, cf. [2, 13]). For sets A, B of LTL formulas over
Σ, SI(A,B) is the set of LTL formulas over Σ defined inductively as follows.

1. tt ∈ SI(A,B),
2. ϕ ∈ SI(A,B), if ϕ ∈ A,
3. ϕ ∈ SI(A,B), if one of the following holds:

– ϕ = Xψ and ψ ∈ B, 2 or
– ϕ = ψ∨ρ and (ψ ∈ SI(A,B) or ρ ∈ SI(A,B)), or
– ϕ = ψ∧ρ and {ψ,ρ} ⊆ SI(A,B), or
– ϕ = ψ U ρ and (ψ ∈ SI(A,B) and ϕ ∈ B, or ρ ∈ SI(A,B)), or
– ϕ = ψ R ρ and (ρ ∈ SI(A,B) and ϕ ∈ B, or {ψ,ρ} ⊆ SI(A,B)).

If ϕ ∈ SI(A,B), we say that ϕ is syntactically implied by A and B, or that ϕ is
syntactically redundant w. r. t. A and B.

Obviously, if A′ ⊆ A and B′ ⊆ B, then SI(A′,B′) ⊆ SI(A,B). As an intuition, if for
w ∈ (2Σ)ω, we have w |= ϕ for all ϕ ∈ A and w[1..] |= ϕ′ for all ϕ′ ∈ B, then w |= ϕ′′ for
all ϕ′′ ∈ SI(A,B).

Ignoring redundancy and contradiction checks (which are discussed in the next sub-
section), the difference to the GPVW-automaton can be described as follows.

– For the DGV-automaton, we have N � (M′,N′) if there is a t ∈ termΣ such that
sucset(N, t,N′) and M′ = lit(t).

– The acceptance sets in the generalized Büchi condition are Fi = {(M,N) ∈ Qϕ |
(z(ψ U ρ) = i∧ψ U ρ ∈ SI(M,N))→ ρ ∈ SI(M,N)}, for 1≤ i≤ kϕ.

All other definitions and the adjustments are as for the GPVW-automaton. We write
Bad(ϕ) for the adjusted DGV-automaton for an input formula ϕ.

Note that the states of Aad(ϕ) and Bad(ϕ) are consistent. For Bad(ϕ), this is because
ψ U ρ ∈ SI(M,N) and ρ /∈ SI(M,N) implies ψ U ρ ∈ N.

2 We add this rule for technical reasons. It is not included in the definition of [13].
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5.4 Local Optimization and Syntactical Implication

At this stage, Aad(ϕ), Bad(ϕ) and Qtd(ϕ) are not the same automaton. For exam-
ple, if the input formula is ϕ = (a U b)∧ Gb, then Aad(ϕ) has a transition (({a U
b,Gb},1),a∧ b,({a U b,Gb},0)) while Qtd(ϕ) has a transition (({a U b,Gb},1),a∧
b,({a U b,Gb},1)) instead. In this example, one can observe that, in both automata, the
(a∧ b)-labeled transitions are not locally optimal—there is a better transition (({a U
b,Gb},1),b,({Gb},0)) in both automata. We also have a U b ∈ SI({b},{Gb}), i. e.,
a redundancy check as in [2] can3detect that a U b is syntactically redundant in {a U
b,Gb}, with the effect that the transition (({a U b,Gb},1),a∧b,({a U b,Gb},0)) is not
added to the DGV-automaton.

This example suggests that there is a connection between syntactical implication
and local optimization. This connection is described by the following lemma. Intu-
itively, part 1 of Lemma 1 says the following: If a successful redundancy check w. r. t.
syntactical implication detects that ϕ is redundant in N with the result that a transition
from M to N is not constructed, then, for every possible i such that (M, i) is a state in
our automaton, a transition to (N, j) with any possible j is not locally optimal and will
be deleted. In this sense, redundancy checks by syntactical implication are covered by
local optimization.

Lemma 1. Let ((M, i),t,(N, j)) be a transition of the nondeterministic Büchi automata
Qtd(ϕ0), Aad(ϕ0) or Bad(ϕ0), respectively, for an LTL formula ϕ0. Let ϕ ∈ M such
that for (t ′,N′) ∈ sucset(M \ {ϕ}) and (t ′′,N′′) ∈ sucset({ϕ}), we have t ≡ t ′ ∧ t ′′ and
N = N′ ∪N′′.

1. If ϕ ∈ SI(lit(t ′),N′) such that also ϕ /∈ N′ if ϕ is an U-formula4, then there is a
transition ((M, i), t ′,(N′, j′)) in Qtd(ϕ0), Aad(ϕ0) or Bad(ϕ0), respectively, which
is as least as good as ((M, i), t,(N, j)).

2. If there is a j′ such that ((M, i),t ′,(N′, j′)) is a transition of Qtd(ϕ0), Aad(ϕ0)
or Bad(ϕ0), respectively, which is at least as good as ((M, i), t,(N, j)), then ϕ ∈
SI(lit(t ′),N′).

In the following, let A lo(ϕ) and B lo(ϕ) be the locally optimized versions of Aad(ϕ)
and Bad(ϕ), respectively. By Lemma 1, all possible effects of the redundancy checks in
the construction of the DGV-automaton are covered by the local optimization. We do
not elaborate on the contradiction checks by syntactical implication of [2]; obviously, a
set of formulas is contradictory if and only if no accepting run starts from the respective
automaton state.

In the example, we have A lo(ϕ) = Qlo(ϕ) (and also B lo(ϕ) = Qlo(ϕ)), because the
(a∧ b)-labelled transitions and, consequently, the state ({a U b,Gb},0) of Aad(ϕ) are
deleted. We claim that our observation for the example is not a coincidence: The ad-
justed and locally optimized GPVW-automaton and DGV-automaton and the locally

3 In fact, the redundancy checks in [2] are performed during the construction of the transitions
starting from a state in such a way that their effect depends on the order in which the formulas
are processed. That is, it may happen that a formula is processed although it is redundant.

4 This special rule for U-formulas is in analogy to the special treatment of U-formulas in the
redundancy checks of [2, 13].
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({ϕ}, 0)

({ϕ, a U b}, 0)

({ϕ, a U b}, 1)

tt
b

a
b

a

({ϕ}, 0)

({ϕ, a U b}, 1)

({ϕ, a U b}, 0)

tt
a

b a, b

Fig. 1. A lo(ϕ) (left) and Qlo(ϕ) (right) for ϕ = GX(a U b)

optimized top-down automaton are the same for all LTL formulas in next normal form,
provided that the same bijection z is used for the set of U- and F-subformulas. We write,
e. g., Qtd

z (ϕ) for the top-down automaton of ϕ based on a fixed bijection z.

Theorem 4. Let ϕ be an LTL formula in next normal form over a set of proposi-
tions Σ. Let Pϕ be the set of U- and F-subformulas of ϕ, and let z be a bijection
Pϕ→{1, . . . ,

∣∣Pϕ
∣∣}.

Then A lo
z (ϕ) = B lo

z (ϕ) = Qlo
z (ϕ).

The transition structure of the three locally optimized automata can be different if
the input formula is not in next normal form. For example, with the input formula
ϕ = GX(a U b), A lo

z (ϕ) and Qlo
z (ϕ) are different (see Figure 1), and for ϕ = a∧X(a U b),

A lo
z (ϕ) and B lo(ϕ) are different. In fact, it is sufficient to require that no U- or F-

subformula is within the scope of an X-operator in the input formula.
To proof Theorem 4, it is crucial to observe that for a transition ((M, i), t,(N, j)) in

one of the locally optimized automata resulting from an input formula in next normal
form, the value j is determined by i and N only.

Lemma 2. Let ϕ be an LTL formula in next normal form. Let ((M, i), t,(N, j)) be a
transition of Qlo

z (ϕ), A lo
z (ϕ) or B lo

z (ϕ), respectively.
If there is a formula ϕ′ ∈ N ∩Pϕ such that z(ϕ′) ≤ i, then z(ϕ′) ≤ j ≤ i, else j = 0.

More precisely, j = max{z(ϕ′)≤ i | ϕ′ ∈ N∩Pϕ}.

6 Inductive Bottom-Up NBA Construction from LTL

It is also possible to construct an NBA from an LTL formula in a bottom-up fashion, by
defining nondeterministic automata inductively over the structure of the formula. For a
given LTL formula, the inductive construction described below and the top-down ap-
proach of Section 4 yield the same nondeterministic automaton (up to the order induced
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on the states in Pϕ by the bijection z). The main advantage of the bottom-up construction
is the possibility to make use of simplifications of automata for subformulas. That is,
we can first construct automata for the subformulas and simplify these automata. Then
we can merge these automata into an automaton for the whole formula in such a way
that this larger automaton inherits the simplifications of the subautomata. For example,
the size of Qtd(ψ U ρ) may be quadratic in the size of both Qtd(ψ) and Qtd(ρ). It may
be too time-consuming to substantially simplify Qtd(ψ U ρ), but it may be possible to
simplify Qtd(ψ) and Qtd(ρ).

We will first give an inductive construction and then give a sketch of how to apply
this construction for simplified subautomata.

We inductively define, for every LTL formula ϕ in negation normal form over a set
of propositions Σ, an equivalent nondeterministic Büchi automaton

Qbu(ϕ) = (Qϕ,Σ,q
ϕ
I ,Δ

bu,Fϕ) (18)

where the components Qϕ, qϕ
I and Fϕ are defined as in Section 4. Again, Pϕ is the set of

U- and F-subformulas in ϕ and kϕ =
∣∣Pϕ

∣∣.
The transition structure of the defined automaton will be similar to the structure

of the top-down automaton defined in Section 4, that is, there is a bijection z : Pϕ →
{1, . . . ,kϕ} such that every transition of the automaton Qbu(ϕ) defined here is also a
transition of the automaton Qtd

z (ϕ) constructed via the top-down approach and vice
versa. This underlying bijection z = zϕ will be defined inductively together with Qbu(ϕ).

The construction is as follows. If ϕ is an atomic formula tt, ff, a or ¬a with a ∈ Σ,
we take Qbu(ϕ) = Qtd(ϕ). The mapping zϕ is empty.

We now assume that the automata Qbu(ψ) and Qbu(ρ) and the bijections zψ and zρ
are already defined. Due to space constraints, we only give the construction of Qbu(ϕ)
and zϕ for the case ϕ = ψ U ρ in this extended abstract. This also covers the case ϕ =
Fρ≡ tt U ρ.

The initial state of Qbu(ϕ) is qϕ
I = ({ϕ},kϕ), with kϕ = kψ + kρ + 1.

The bijection zϕ : Pϕ→ {1, . . . ,kϕ} is defined by

– zϕ(ϕ) = kϕ,
– zϕ(p) = zψ(p) for p ∈ Pψ,
– zϕ(p) = zρ(p)+ kψ for p ∈ Pρ.

To define the set of transitions Δbu of Qbu(ϕ), let (Mϕ, i) ∈ 2sub(ϕ)× (kϕ + 1) be a
state of Qbu(ϕ).

– If (Mϕ, i) is the initial state of Qbu(ϕ), i. e., (Mϕ, i) = ({ϕ},kϕ), then
• (({ϕ},kϕ), t,({ϕ}∪Nψ,kϕ)) ∈ Δbu for every transition (qψ

I ,t,(Nψ, j)) ∈ Δψ,
• (({ϕ},kϕ), t,(Nρ,0)) ∈ Δbu for every transition (qρ

I , t,(Nρ,0)) ∈ Δρ, and
• (({ϕ},kϕ), t,(Nρ, j + kψ)) ∈ Δbu for every transition (qρ

I , t,(Nρ, j)) ∈ Δρ such
that j > 0.

– Now let (M, i) be some state of Qbu(ϕ) other than the initial state. Let Mψ = M∩
2sub(ψ), Mρ = M∩ 2sub(ρ) and Mϕ = M \ (Mψ ∪Mρ), i. e., either Mϕ = /0 or Mϕ =
{ϕ}. (For simplicity in notation, we assume that (( /0,0),tt,( /0,0)) ∈ Δbu∩Δψ∩Δρ).
Then there is a transition ((M, i), tϕ ∧ tψ ∧ tρ,(Nϕ ∪Nψ ∪Nρ, j)) if the terms tϕ, tψ
and tρ, the sets Nϕ, Nψ and Nρ and the integer j satisfy the following.
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• ((Mϕ,max{z(ψ) | ψ ∈Mϕ∩Pϕ}),tϕ,(Nϕ, jϕ)) ∈ Δbu

• If i = kψ + kρ + 1 then ((Mψ,0), tψ,(Nψ, jψ)) ∈ Δψ
and ((Mρ,0), tρ,(Nρ, jρ)) ∈ Δρ.
• If 0≤ i≤ kψ then ((Mψ, i),tψ,(Nψ, jψ)) ∈ Δψ

and ((Mρ,0), tρ,(Nρ, jρ)) ∈ Δρ.
• If kψ < i≤ kψ + kρ then ((Mψ,0),tψ,(Nψ, jψ)) ∈ Δψ

and ((Mρ, i− kψ),tρ,(Nρ, jρ)) ∈ Δρ.
• j′ρ = jρ + kψ if jρ �= 0, else j′ρ = 0.
• j = max{0 < l ≤ i | l ∈ { jϕ, jψ, j′ρ}}

Theorem 5. Let ϕ be an LTL formula in negation normal form. Then L(ϕ) = L(Qbu(ϕ)).

The basic idea for the propagation of simplifications now is to replace Qbu(ψ) and
Qbu(ρ) in the above construction by simplified automata S(ψ) and S(ρ). Obviously,
it is necessary that these simplified automata still have the same inner structure as the
bottom-up automaton, i. e., their state set must be a subset of, e. g., 2sub(ψ)× (kψ + 1),
the behavior of the counter component and the set of accepting states must be similar
etc.

This can be achieved if S(ψ) is a quotient automaton of Qbu(ψ) w. r. t. to an appropri-
ate simulation relation ≡, i. e., ≡ may be direct or delayed simulation equivalence [6].
In this case, the states of S(ψ) are equivalence classes of the states of Qbu(ψ), i. e.,
subsets of 2sub(ψ)× (kψ +1). It is then possible to use a quotient automaton S(ψ) in the
above construction by using some standard representatives of its states (classes) instead
of its states during the construction. The technical details have to be omitted in this
extended abstract; see [8] for an exhaustive treatment.

7 Conclusion

Starting from an optimized de-universalization algorithm for very weak alternating
Büchi automata, we have developed an algorithm for the translation of an LTL formula
to an equivalent nondeterministic Büchi automaton which matches the bounds of other
LTL-to-NBA translations. The resulting automata feature a clear separation between
the locally valid subformulas and the check of the Büchi acceptance condition via an
integrated counter component. They allow a natural deletion of superfluous transitions
by local optimization.

We have analyzed the automata resulting from the standard tableau-based algo-
rithm of Gerth, Peled, Vardi and Wolper and from the improved algorithm of Daniele,
Giunchiglia and Vardi. We have shown that the redundancy check of Daniele et al. is
covered by our local optimization, and that, for all LTL formulas in next normal form,
the results of these algorithms are essentially equivalent to the results of our algorithm.

We have outlined how to use a variant of our algorithm for an inductive construction
in such a way that simplifications of subautomata are inherited by the superautomaton.
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