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Abstract. Technological advances in experimental and computational molecu-
lar biology have revolutionized the whole fields of biology and medicine. 
Large-scale sequencing, expression and localization data have provided us with 
a great opportunity to study biology at the system level. I will introduce some 
outstanding problems in genome expression and regulation network in which 
better modern statistical and machine learning technologies are desperately 
needed.  

Recent revolution in genomics has transformed life science. For the first time 
in history, mankind has been able to sequence the entire human own genome. 
Bioinformatics, especially computational molecular biology, has played a vital 
role in extracting knowledge from vast amount of information generated by the 
high throughput genomics technologies. Today, I am very happy to deliver this 
key lecture at the First International Conference on Pattern Recognition and Ma-
chine Intelligence at the world renowned Indian Statistical Institute (ISI) where 
such luminaries as Mahalanobis, Bose, Rao and others had worked before. And it 
is very timely that genomics has attracted new generation of talented young statis-
ticians, reminding us the fact that statistics was essentially conceived from and 
continuously nurtured by biological problems. Pattern/rule recognition is at the 
heart of all learning process and hence of all disciplines of sciences, and compari-
son is the fundamental method: it is the similarities that allow inferring common 
rules; and it is the differences that allow deriving new rules. 

Gene expression, normally referring to the cellular processes that lead to pro-
tein production, is controlled and regulated at multiple levels. Cells use this elabo-
rate system of “circuits” and “switches” to decide when, where and by how much 
each gene should be turned on (activated, expressed) or off (repressed, silenced) 
in response to environmental clues. Genome expression and regulation refer to 
coordinated expression and regulation of many genes at large-scales for which 
advanced computational methods become indispensable. Due to space limitations, 
I can only highlight some of the pattern recognition problems in transcriptional 
regulation, which is the most important and best studied. 

Currently, there are two general outstanding problems in transcriptional regu-
lation studies: (1) How to find the regulatory regions, in particular, the promoters 
regions in the genome (throughout most of this lecture, we use promoter to refer 
to proximal promoters, e.g. ~ 1kb DNA at the beginning of each gene); (2) How 
to identify functional cis-regulatory DNA elements within each such region. 
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1   Introduction 

Recent revolution in genomics has transformed life science. For the first time in his-
tory, mankind has been able to sequence the entire human genome. Bioinformatics, 
especially computational molecular biology, has played a vital role in extracting 
knowledge from vast amounts of information generated by high throughput genomics 
technologies. Today, I am very happy to deliver this key lecture at the First Interna-
tional Conference on Pattern Recognition and Machine Intelligence at the world re-
nowned Indian Statistical Institute (ISI) where such luminaries as Mahalanobis, Bose, 
Rao and others have worked before. And it is very timely that genomics has attracted 
a new generation of talented young statisticians, reminding us of the fact that statistics 
was essentially conceived from and is continuously nurtured by biological problems. 
Pattern/rule recognition is at the heart of all learning processes and hence, of all disci-
plines of sciences, and comparison is the fundamental method: It is the similarities 
that allow inferring common rules and it is the differences that allow deriving new 
rules. 

Gene expression (normally referring to the cellular processes that lead to protein 
production) is controlled and regulated at multiple levels. Cells use this elaborate sys-
tem of “circuits” and “switches” to decide when, where and by how much each gene 
should be turned on (activated, expressed) or off (repressed, silenced) in response to 
environmental clues. Genome expression and regulation refer to coordinated expres-
sion and regulation of many genes of large-scales for which advanced computational 
methods become indispensable. Due to space limitations, I can only highlight some 
pattern recognition problems in transcriptional regulation, which is the most important 
and best studied. Currently, there are two general outstanding problems in transcrip-
tional regulation studies: (1) how to find the regulatory regions, in particular, the 
promoters (throughout most of this lecture, we use promoter to refer to proximal pro-
moter, e.g. ~ 1kb DNA at the beginning of each gene) regions in the genome; (2) how 
to identify functional cis-regulatory DNA elements within each such region. 

2   Finding Promoter and First Exon (FE) of a Multi-exon Gene in 
Vertebrate Genome 

Transcription is the process of pre-mRNA (a gene transcript) synthesis. A typical 
vertebrate pre-mRNA contains about 9 exons, the intervening sequences (introns) 
between exons are spliced out during RNA processing to produce a matured RNA 
(mRNA). Most of the regulatory elements are found in the flanking regions of the 
FE of the target gene. Finding the FE is therefore the key for locating the transcrip-
tional regulatory regions. Promoter upstream of (and overlapping with) FE func-
tionally directs RNA polymerase II (PolII) to the correct transcriptional start site 
(TSS, the first base of FE) and the core promoter extending ~35bp on either side of 
TSS plays a central role in regulating initiation of transcription of pre-mRNA tran-
scripts [35]. As the most important regulatory region, promoter is enriched by many 
transcription factor binding sites (TFBSs). They form so-called modules, each of 
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which is acting relatively autonomously and responding to a specific set of TFs. 
Core promoter may be regarded as a general module and is the docking region for 
the Pre-Initiation Complex (PIC) of largely basal TFs and PolII itself. Core pro-
moter contains one or more of the following cis-elements: TFIIB Recognition Ele-
ment (BRE: ~-37SSRCGCC) and TATA-box (TBP-site: ~-31TATAWAAR) at 
about -35 upstream of the TSS, Initiator (Inr: -2YYANWYY) at the TSS and 
Downstream Core Promoter Element (DPE: +28RGWYV). Although these four 
elements are relatively position specific (with respect to TSS) and they have been 
used for TSS prediction [46], they are not enough for accurate TSS prediction at the 
genome-scale because many core promoters may only have one or two such ele-
ments and many such putative sites may occur frequently by chance in a large ge-
nome. One could use a large-scale promoter finder, such as CpG_Promoter [20, 47] 
or PromoterInspector [32]. 

Three general promoter/TSS recognition approaches, briefly described below, may 
represent the current state-of-the-art; they all are based on some specific statistical 
pattern learning/prediction procedures. The first is called Dragon Promoter Finder 
(DPF) [2, 3]. Its algorithm uses sensors for three functional regions (promoters, exons 
and introns) and an Aritficial Neural Network (AAN) for integrating signals. The sec-
ond is called Eponine [14]. Its algorithm uses a hybrid of Relevance Vector Machine 
(RVM) [41] and Monte Carlo sampling from extremely large model space of possible 
motif weight matrices and Gaussian position distributions. The third is called First 
Exon Finder (FirstEF) [13]. Its algorithm uses two-level discriminant analysis: At the 
first level filtering, it computes a Quadratic Discriminant Analysis (QDA) score for 
the splice donor site from several 3’-sensors and another QDA score for the promoter 
from several 5’-sensors; at the second level, it integrates these flanking region sensors 
with additional exon-sensors using yet another QDA to arrive at the a posteriori prob-
ability p(FirstExon|data). It has been demonstrated recently that addition of ortholog 
comparison with other evolutionarily related species can further improve the predic-
tion accuracy [44]. FirstEF not only can provide promoter/TSS predictions, but also 
predict the 5’ splice site (donor site) of the first intron, which also often contains 
many regulatory cis-elements. 

Currently, promoter prediction has been hampered by very limited training data 
and poor understanding of molecular details of regulation mechanisms. The per-
formance of even the best prediction programs are still far from satisfactory [4], 
leaving ample room for further improvements. Because of high false-positives when 
predicting promoters in the whole genome, it should always locate the beginning 
(ATG) of protein coding regions first [48]. Multiple comparisons of evolutionarily 
related genomic DNA sequences can be very useful for finding conserved promot-
ers. Some open problems are: (1) identification of alternative promoters [21]; (2) 
identification of non-CpG island related promoters [13]; (3) tissue/developmental 
specific classification and lineage relationship [38]; (4) epigenetic controls [16]; (5) 
coupling to RNA processing [27]; (6) good cross-species promoter alignment algo-
rithms [31, 40]; (7) promoter evolution [43]; (8) gene regulation networks [23] and 
dynamics [26]. 
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3   Identifying TFBSs in Vertebrate Promoters 

Once approximate regulatory regions, such as promoters, are located, the next task is 
to identify cis-regulatory elements (largely TFBSs) within such regions. A single 
TFBS pattern (also called motif) can be characterized by either IUPAC consensus (as 
given above for the core promoter motifs) or position weight matrix (PWM), although 
more complicated models, such as WAM [45], HMM [24], ANN [30], VOBN [6], 
etc., are also possible, but less popular. Here I will focus on PWM model as it is the 
most useful and is directly related to protein-DNA binding affinity measurements [7]. 
There are many different PWM definitions, all of which are derived from frequency 
weight matrixes (FWM). 

The three classical methods for promoter motif discovery are all based on multiple 
sequence alignment [49]: (1) CONSENSUS based on a greedy algorithm [37]; (2) 
MEME based on Expectation-maximization (EM) of likelihood for a mixture model [1]; 
(3) Gibbs sampling based on a simple Monte Carlo Markov Chain model [22]. In the 
mixture model, it is assumed that in the motif region, the base-pairs are generated with 
probabilities specified by P(x, Bx) (x is the position within the motif and Bx is the base-
pair at x) for which the matrix elements of FWM are the maximum likelihood estimator; 
outside the motif region, the base-pairs are generated according to a uniform random 
background model P0(B) which can be estimated by the composition of B (If B were a 
word of length k, the background model would be a Markov model of order k-1.). The 
mixing coefficient and motif starting positions will be the model parameters to be opti-
mized by maximizing the Log-likelihood function. All of these three methods have 
since been further improved with more functionalities and user-friendliness. Better ini-
tial seeding may be done by word-based motif-finding methods [5]. 

The above motif-finding methods are used when the motif is known to be enriched 
in a given set of sequences. To increase specificity and sensitivity, it is better to con-
struct two input sequence sets: One is the positive (foreground) and the other is the 
negative (background). Then the interesting problem is to find motif(s) that can 
maximally discriminate/classify the positive set from the negative set. For example, 
the positive set may be the genes that are co-regulated or bound by a TF and the nega-
tive set contains the genes that are not regulated or bound by the TF. If the consensus 
pattern (word or spaced words) are good enough for motif description, a very fast 
Discriminate Word Enumerator (DWE) algorithm [38] can be used in which all pos-
sible words are efficiently enumerated and ranked by the p-values derived from hy-
per-geometric function (Fisher exact test). The first discriminant matrix method 
ANN-Spec [42] is based on a perceptron (a single layer ANN) and uses a Gibbs sam-
pling to optimize parameters (matrix elements) for maximum specificity (differential 
binding of the positive set vs. the negative set) through local multiple sequence 
alignment. Since the positives and the negatives are usually not linearly separable, the 
simple perceptron maybe generalized by nonlinear models using SVM [29] or Boost-
ing approaches [19]. More recently, a novel matrix-centric approach – Discriminate 
Matrix Enumerator (DME) [36] has also been developed, which allows to exhaus-
tively and efficiently enumerate and rank all possible motifs (satisfying user specified 
minimum information-content requirement) in the entire (discretized) matrix space 
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(hence guaranteeing global optimality). This binary classification problem may be 
generalized to multi-classification problems [33]. 

If one has a continuous quality score for each gene (such as fold-change in expres-
sion microarray data or binding probability in ChIP-chip data), one can further gener-
alize the classification/discrimination problem to a regression one. The first successful 
application of linear regression for motif finding algorithm in yeast is REDUCE [10], 
using MobyDick [9] to build the initial word motifs. A similar method Mo-
tif_Regressor [11], but using MDscan [25] as a feature extraction tool, can improve 
the sensitivity and specificity due to matrix-based motifs. Recently, nonlinear regres-
sion methods, such as, MARS_Motif [12] based on Multiple Adaptive Regression 
Splines [17], have also been developed, that can model synergistic motifs with a cis-
regulatory module (CRM). Regression methods are very powerful. They can either be 
used for selecting functional motifs or for predicting mRNA expression levels. 

Some open problems are: (1) identification of distal enhancers/silencers [28, 8]; (2) 
identification of tissue/developmental specific CRMs [23]; (3) higher order structural 
constraints [34]; (5) TFBS evolution [18]. 

4   Future Directions 

I have only touched upon one special (albeit an important) area of genome expression 
and regulation. Even for protein-coding gene transcription, there are also many other 
regulatory steps (such as: promoter escape, pausing, elongation and termination in ad-
dition to chromatin remodeling and initiation), let alone those for many other RNA 
genes [15]. There are yet many steps of post-transcription control and regulation, such 
as, Capping, RNA splicing, polyadenylation, RNA transport, in the nucleus; and vari-
ous translational regulation and post-translational modifications [27, 50]. The future 
challenge will include integration of data coming from various levels, especially how 
DNA, RNA (including miRNAs, or ncRNA in general) and protein are interrelated in 
the gene regulation networks. 

Acknowledgements 

My Lab is supported by grants from NIH and NSF. I would like to thank present and 
past members who have contributed to various methods discussed in this text. 

References 

1. Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover mo-
tifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. (1994) 2:28-36. 

2. Bajic VB, Seah SH, Chong A, Zhang G, Koh JL, Brusic V. Dragon Promoter Finder: Recog-
nition of vertebrate RNA polymerase II promoters. Bioinformatics. (2002) 18(1):198-199. 

3. Bajic VB, Brusic V. Computational detection of vertebrate RNA polymerase II promoters. 
Methods Enzymol. (2003) 370:237-250. 



36 M.Q. Zhang 

4. Bajic VB, Tan SL, Suzuki Y, Sagano S. Promoter prediction analysis on the whole human 
genome. Nat Biotechnol. (2004) 22(11):1467-1473. 

5. Barash Y, Bejerano G, Friedman N. A simple hyper-geometric approach for discovering 
putative transcription factor binding sites. In: Gascuel O, Moret BME (eds): Algorithms in 
Bioinformatics. Proc First Intl Wksp, #2149 LNCS. (2001) 278-293. 

6. Ben-Gal I, Shani A, Gohr A, Grau J, Arviv S, Shmilovici A, Posch S, Grosse I. Identifica-
tion of transcription factor binding sites with variable-order Bayesian networks. Bioinfor-
matics. (2005) 21(11):2657-2666. 

7. Berg OG, von Hippel PH. Selection of DNA binding sites by regulatory proteins. Statisti-
cal-mechanical theory and application to operators and promoters. J Mol Biol. (1987) 
191(4):723-750. 

8. Boffelli D, Nobrega MA, Rubin EM. Comparative genomics at the vertebrate extremes. 
Nat Rev Genet. (2004) 5(6):456-465. 

9. Bussemaker HJ, Li H, Siggia ED. Building a dictionary for genomes: Identification of pre-
sumptive regulatory sites by statistical analysis. Proc Natl Acad Sci U S A. (2000) 
97(18):10096-10100. 

10. Bussemaker HJ, Li H, Siggia ED. Regulatory element detection using correlation with ex-
pression. Nat Genet. (2001) 27(2):167-171. 

11. Conlon EM, Liu XS, Lieb JD, Liu JS. Integrating regulatory motif discovery and genome-
wide expression analysis. Proc Natl Acad Sci U S A. (2003) 100(6):3339-3344. 

12. Das D, Banerjee N, Zhang MQ. Interacting models of cooperative gene regulation. Proc 
Natl Acad Sci U S A. (2004) 101(46):16234-16239. 

13. Davuluri RV, Grosse I, Zhang MQ. Computational identification of promoters and first 
exons in the human genome. Nat Genet. (2001) 29(4):412-417. Erratum: Nat Genet. 
(2002) 32(3):459. 

14. Down TA, Hubbard TJ. Computational detection and location of transcription start sites in 
mammalian genomic DNA. Genome Res. (2002) 12(3):458-461. 

15. Eddy SR. Computational genomics of noncoding RNA genes. Cell. (2002) 109(2):137-
140. 

16. Fazzari MJ, Greally JM. Epigenomics: Beyond CpG islands. Nat Rev Genet. (2004) 
5(6):446-455. 

17. Friedman MJ. Multivariate adaptive regression splines. Ann Stat. (1991) 19:1-67. 
18. Gasch AP, Moses AM, Chiang DY, Fraser HB, Berardini M, Eisen MB. Conservation and 

evolution of cis-regulatory systems in ascomycete fungi. PloS Biol. (2004) 2(12):e398. 
19. Hong P, Liu XS, Zhou Q, Lu X, Liu JS, Wong WH. A boosting approach for motif model-

ing using ChIP-chip data. Bioinformatics. (2005) 21(11):2636-2643. 
20. Ioshikhes IP, Zhang MQ. Large-scale human promoter mapping using CpG islands. Nat 

Genet. (2000) 26(1):61-63. 
21. Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu Y, Green RD, Ren 

B. A high-resolution map of active promoters in the human genome. Nature. (2005) [e-pub 
ahead of print]. 

22. Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, Wootton JC. Detecting 
subtle sequence signals: A Gibbs sampling strategy for multiple alignment. Science. 
(1993) 262(5131):208-214. 

23. Levine M, Davidson EH. Gene regulatory networks for development. Proc Natl Acad Sci 
U S A. (2005) 102(14):4936-4942. 

24. Li W, Meyer CA, Liu XS. A hidden Marcov model for analyzing ChIP-chip experiments 
on genome tiling arrays and its application to p53 binding sequences. Bioinformatics. 
(2005) 21 Suppl 1:i274-i282. 



 Computational Molecular Biology of Genome Expression and Regulation 37 

25. Liu XS, Brutlag DL, Liu JS. An algorithm for finding protein-DNA binding sites with ap-
plications to chromatin-immunoprecipitation microarray experiments. Nat Biotechnol. 
(2002) 20(8):835-839. 

26. Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF. Dynamics of Drosophila embry-
onic patterning network perturbed in space and time using microfluidics. Nature. (2005) 
434(7037):1134-1138. 

27. Maniatis T, Reed R. An extensive network of coupling among gene expression machines. 
Nature. (2002) 416(6880):499-506. 

28. Nobrega MA, Ovcharenko I, Afzal V, Rubin EM. Scanning human gene deserts for long-
range enhancers. Science. (2003) 302(5644):413. 

29. Pavlidis P, Furey TS, Liberto M, Haussler D, Grundy WN. Promoter region-based classifi-
cation of genes. Pac Symp Biocomput. (2001) 151-163. 

30. Pedersen AG, Engelbrecht J. Investigations of Escherichia coli promoter sequences with 
artificial neural networks: New signals discovered upstream of the transcriptional start-
point. Proc Int Conf Intell Syst Mol Biol. (1995) 3:292-299. 

31. Prakash A, Tompa M. Statistics of local multiple alignments. Bioinformatics (2005) 21 
Suppl 1:i344-i350. 

32. Scherf M, Klingenhoff A, Werner T. Highly specific localization of promoter regions in 
large genomic sequences by PromoterInspector: A novel contact analysis approach. J Mol 
Biol. (2000) 297(3):599-606. 

33. Segal E, Barash Y, Simon I, Friedman N, Koller D. From promoter sequence to expres-
sion: A probabilistic framework. Proc 6th Intl Conf Res Comp Mol Biol. (2002) 263-272. 

34. Siggers TW, Silkov A, Honig B. Structural alignment of protein-DNA interfaces: Insights 
into the determinants of binding specificity. J Mol Biol. (2005) 345(5):1027-1045. 

35. Smale ST, Kadonaga JT. The RNA Polymerase II core promoter. Annu Rev Biochem. 
(2003) 72:449-479. 

36. Smith AD, Sumazin P, Zhang MQ. Identifying tissue-selective transcription factor binding 
sites in vertebrate promoters. Proc Natl Acad Sci U S A. (2005) 102(5):1560-1565. 

37. Stormo GD, Hartzell GW 3rd. Identifying protein-building sites from unaligned DNA 
fragments. Proc Natl Acad Sci U S A. (1989) 86(4):1183-1187. 

38. Sumazin P, Chen G, Hata N, Smith AD, Zhang T, Zhang MQ. DWE: Discriminating word 
enumerator. Bioinformatics. (2005) 21(1):31-38. 

39. Taatjes DJ, Marr MT, Tjian R. Regulatory diversity among metazoan co-activator com-
plexes. Nat Rev Mol Cell Biol. (2004) 5(5):403-410. 

40. Tharakaraman K, Marino-Ramirez L, Sheetlin S, Landsman D, Spouge JL. Alignments 
anchored on genomic landmarks can aid in the identification of regulatory elements. Bio-
informatics. (2005) 21 Suppl 1:i440-i448. 

41. Tipping ME. Space Bayesian learning and the relevance vector machine. J Machine Learn-
ing Res. (2001) 1:211-244. 

42. Workman CT, Stormo GD. ANN-Spec: A method for discovering transcription factor 
binding sites with improved specificity. Pac Symp Biocomput. (2000) 467-478. 

43. Wray GA. Transcriptional regulation and the evolution of development. Int J Dev Biol. 
(2003) 47(7-8):675-684. 

44. Xuan Z, Zhao F, Wang JH, Chen GX, Zhang MQ. Genome-wide promoter extraction and 
analysis in human, mouse and rat. Genome Biol. (2005) In Press. 

45. Zhang MQ, Marr TG. A weight array method for splicing signal analysis. Comput Appl 
Biosci. (1993) 9(5):499-509. 

46. Zhang MQ. Identification of human gene core promoters in silico. Genome Res. (1998) 
8(3):319-326. 



38 M.Q. Zhang 

47. Zhang MQ. Discriminant analysis and its application in DNA sequence motif recognition. 
Brief Bioinform. (2000) 1(4):331-342. 

48. Zhang MQ. Computational prediction of eukaryotic protein-coding genes. Nat Rev Genet. 
(2002) 3(9):698-709. 

49. Zhang MQ. Computational methods for promoter recognition. In: Jiang T, Xu Y, Zhang 
MQ, (eds.): Current Topics in Computational Molecular Biology, MIT Press Cambridge, 
Massaschusetts (2002) 249-268. 

50. Zhang MQ. Inferring gene regulatory networks. In: Lengquer, T. (ed.) Bioinformatics – 
from Genome to Therapies. Wiley-VCH. (2005) Submitted. 


	Introduction
	Finding Promoter and First Exon (FE) of a Multi-exon Gene in Vertebrate Genome
	Identifying TFBSs in Vertebrate Promoters
	Future Directions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




