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1 Introduction

Frequent Pattern Mining (FPM) is a very powerful paradigm which encom-
passes an entire class of data mining tasks. The specific tasks encompassed
by FPM include the mining of increasingly complex and informative patterns,
in complex structured and unstructured relational datasets, such as: Itemsets
or co-occurrences [I] (transactional, unordered data), Sequences [2I8] (tempo-
ral or positional data, as in text mining, bioinformatics), Tree patterns [J]
(XML /semistructured data), and Graph patterns [4J56] (complex relational
data, bioinformatics). Figure [Il shows examples of these different types of pat-
terns; in a generic sense a pattern denotes links/relationships between several
objects of interest. The objects are denoted as nodes, and the links as edges. Pat-
terns can have multiple labels, denoting various attributes, on both the nodes
and edges.

We have developed the Data Mining Template Library (DMTL) [I0], a
generic collection of algorithms and persistent data structures for FPM, which
follows a generic programming paradigm[3]. DMTL provides a systematic solu-
tion for the whole class of pattern mining tasks in massive, relational datasets.
DMTL allows for the isolation of generic containers which hold various pat-
tern types from the actual mining algorithms which operate upon them. We
define generic data structures to handle various pattern types like itemsets, se-
quences, trees and graphs, and outline the design and implementation of generic
data mining algorithms for FPM, such as depth-first and breadth-first search.
It provides persistent data structures for supporting efficient pattern frequency
computations using a tightly coupled database (DBMS) approach. One of the
main attractions of a generic paradigm is that the generic algorithms for min-
ing are guaranteed to work for any pattern type. Each pattern is characterized
by inherent properties that it satisfies, and the generic algorithm exploits these
properties to perform the mining task efficiently. Full details of the DMTL ap-
proach appear in [10]. Here we selectively highlight its main features.
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Fig.1. FPM Instances

2 DMTL: Data Structures and Algorithms

DMTL is a collection of generic data mining algorithms and data structures.
In addition, DMTL provides persistent data and index structures for efficiently
mining any type of pattern or model of interest. The user can mine custom
pattern types, by simply defining the new pattern types, but the user need not
implement a new algorithm - the generic DMTL algorithms can be used to mine
them. Since the mined models and patterns are persistent and indexed, this
means the mining can be done efficiently over massive databases, and mined

results can be retrieved later from the persistent store.

Containers: Figure 2 shows the different DMTL container classes and the rela-
tionship among them. At the lowest level are the different kinds of pattern-types
one might be interested in mining. A pattern is a generic container instanti-
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Fig. 2. DMTL Container Hierarchy
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ated for one of the pattern-types. There are several pattern family types (such
as pvector, plist, etc.) which together with a persistency manager class make
up different pattern family classes. In DMTL a pattern is a generic container,
which can be instantiated as an itemset, sequence, tree or a graph, specified
as Pattern<class P> by means of a template argument called Pattern-Type
(P). A generic pattern is simply a Pattern-Type whose frequency we need to
determine in a larger collection or database of patterns of the same type. A
pattern type is the specific pattern to be mined, e.g. itemset, and in that sense
is not a generic container. DMTL has the itemset, sequence, tree and graph
pattern-types defined internally; however the users are free to define their own
pattern types, so long as the user defined class provides implementations for the
methods required by the generic containers and algorithms. In addition to the
basic pattern classes, most pattern mining algorithms operate on a collection
of patterns. The pattern family is a generic container PatternFamily <class
PatFamType> to store groups of patterns, specified by the template parameter
PatFamType. PatFamType represents a persistent class provided by DMTL, that
provides seamless access to the members, whether they be in memory or on disk.
This class provides the required persistency in storage and retrieval of patterns.
DMTL provides several pattern family types to store groups of patterns. Each
such class is templatized on the pattern-type (P) and a persistency manager
class PM. An example is pvector <class P, class PM>, a persistent vector
class. It has the same semantics as a STL vector with added memory manage-
ment and persistency. Another class is plist<P,PM>. Instead of organizing the
patterns in a linear structure like a vector or list, another persistent family type
DMTL class, partial-order <P,PM>, organizes the patterns according to the
sub-pattern/super-pattern relationship.

Algorithms: The pattern mining task can be viewed as a search over the pattern
space looking for those patterns that match the minimum support constraint.
For instance in itemset mining, the search space is the set of all possible sub-
sets of items. Within DMTL we attempt to provide a unifying framework for
the wide range of mining algorithms that exist today. DMTL provides generic
algorithms which by their definition can work on any type of pattern: Itemset,
Sequence, Tree or Graph. Several variants of pattern search strategies exist in
the literature, depth-first search (DFS) and breadth-first search (BFS) being the
primary ones. BFS has the advantage of providing better pruning of candidates
but suffers from the cost of storing all of a given level’s frequent patterns in mem-
ory. Recent algorithms for mining complex patterns like trees and graphs have
focused on the DFS approach, hence it is the preferred choice for our toolkit as
well. Nevertheless, support for BFS mining of itemsets and sequences is provided.

3 DMTL: Persistency and Database Support

DMTL employs a back-end storage manager that provides the persistency and
indexing support for both the patterns and the database. It supports DMTL
by seamlessly providing support for memory management, data layout, high-
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performance I/0, as well as tight integration with database management sys-
tems (DBMS). It supports multiple back-end storage schemes including flat files,
embedded databases, and relational or object-relational DBMS. DMTL also pro-
vides persistent pattern management facilities, i.e., mined patterns can them-
selves be stored in a pattern database for retrieval and interactive exploration.

Vertical Attribute Tables. To provide native database support for objects in the
vertical format, DMTL adopts a fine grained data model, where records are stored
as Vertical Attribute Tables (VATSs). Given a database of objects, where each ob-
ject is characterized by a set of properties or attributes, a VAT is essentially the
collection of objects that share the same values for the attributes. For example,
for a relational table, cars, with the two attributes, color and brand, a VAT for
the property color=red stores all the transaction identifiers of cars whose color
is red. The main advantage of VATs is that they allow for optimizations of query
intensive applications like data mining where only a subset of the attributes need
to be processed during each query. These kinds of vertical representations have
proved to be useful in many data mining tasks [{I89]. In DMTL there is one VAT
per pattern-type. Depending on the pattern type being mined the vat-type class
may be different. Accordingly, their intersection shall vary as well.

Storage & Persistency Manager. The database support for VATs and for the hor-
izontal family of patterns is provided by DMTL in terms of the following classes,
which are illustrated in Figure[3 Vat-type is a class describing the vat-type that
composes the body of a VAT, for instance int for itemsets and pair<int,time>
for sequences. VAT<class V> is the class that represents VATs. This class is com-
posed of a collection of records of vat-type V. Storage<class PM> is the generic
persistency-manager class that implements the physical persistency for VATs and

MetaTable<V, PM>

VAT<V> VAT<V>
Storage<PM> Storage<PM>

3 3
P < P <

Buffer<v>

Intersect (VAT &vl, VAT &v2)
Get_Vats()

DB<V, PM> y Get_vat_Body()

Fig. 3. DMTL: High level overview of the different classes used for Persistency
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other classes. The class PM provides the actual implementations of the generic
operations required by Storage. For example, PM metakit and PM gigabase are
two actual implementations of the Storage class in terms of different DBMS like
Metakit (http://www.equid.com/metakit/)), a persistent C++ library that na-
tively supports the vertical format, and Gigabase (http://sourceforge.net/
projects/gigabase), an object-relational database. Other implementations can
easily be added as long as they provide the required functionality.

Buffer<class V> provides a fixed-size main-memory buffer to which VATs
are written and from which VATSs are accessed, used for buffer management to
provide seamless support for main-memory and out-of-core VATs (of type V).
MetaTable<class V, class PM> represents a collection of VATSs. It stores a list
of VAT pointers and the adequate data structures to handle efficient search for
a specific VAT in the collection. It also provides physical storage for VATs. It is
templatized on the vat-type V and on the Storage implementation PM. In the
figure the H refers to a pattern and B its corresponding VAT. The Storage class
provides for efficient lookup of a particular VAT object given the header. DB<class
V, class PM> is the database class which holds a collection of Metatables. This
is the main user interface to VATs and constitutes the database class DB referred
to in previous sections.

4 Experiments

Templates provide a clean means of implementing our concepts of genericity of
containers and algorithms; hence DMTL is implemented using the C++ Stan-
dard Template Library [3]. We present some experimental results on different
types of pattern mining. We used the IBM synthetic database generator [I] for
itemset and sequence mining, the tree generator from [9] for tree mining and the
graph generator by [5], with sizes ranging from 10K to 500K (or 0.5 million)
objects. The experiment were run on a Pentium4 2.8Ghz Processor with 6GB of
memory, running Linux.

Figure [ shows the DMTL mining time versus the specialized algorithms for
itemset mining (ECLAT [7]), sequences (SPADE [§]), trees (TreeMiner [9]) and
graphs (gSpan [6]). For the DMTL algorithms, we show the time with different
persistency managers/databases: flat-file (Flat), metakit backend (Metakit) and
the gigabase backend (Gigabase). The left hand column shows the effect of min-
imum support on the mining time for the various patterns, the column on the
right hand size shows the effect of increasing database sizes on these algorithms.
Figures and contrast performance of DMTL with ECLAT over vary-
ing supports and database sizes, respectively. As can be seen in, Figure
DMTL(Metakit) is as fast as the specialized algorithm for larger database sizes.
Tree mining in DMTL (figures and substantially outperforms TreeM-
iner; we attribute this to the initial overhead that TreeMiner incurs by reading
the database in horizontal format, and then converting it into the vertical one.
For graph and sequence patterns, we find that DMTL is at most, within a factor
of 10 as compared to specialized algorithms and often much closer (Figure.
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Overall, the timings demonstrate that the performance and scalability bene-
fits of DMTL are clearly evident with large databases. For itemsets, our experi-
ments reported that ECLAT breaks for a database with 5 million records, while
DMTL terminated in 23.5s with complete results.

5 Conclusions

The generic paradigm of DMTL is a first-of-its-kind in data mining, and we
plan to use insights gained to extend DMTL to other common mining tasks like
classification, clustering, deviation detection, and so on. Eventually, DMTL will
house the tightly-integrated and optimized primitive, generic operations, which
serve as the building blocks of more complex mining algorithms. The primitive
operations will serve all steps of the mining process, i.e., pre-processing of data,
mining algorithms, and post-processing of patterns/models. Finally, we plan to
release DMTL as part of open-source, and the feedback we receive will help drive
more useful enhancements. We also hope that DMTL will provide a common
platform for developing new algorithms, and that it will foster comparison among
the multitude of existing algorithms. For more details on DMTL see [10].
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