
Refining the Undecidability Frontier of Hybrid

Automata

Venkatesh Mysore1 and Amir Pnueli1,2

1 Courant Institute of Mathematical Sciences, NYU, New York, NY, U.S.A.
{mysore,amir}@cs.nyu.edu

2 The Weizmann Institute of Science, Rehovot, Israel

Abstract. Reachability becomes undecidable in hybrid automata (HA)
that can simulate a Turing (TM) or Minsky (MM) machine. Asarin
and Schneider have shown that, between the decidable 2-dim Piece-
wise Constant Derivative (PCD) class and the undecidable 3-dim PCD
class, there lies the “open” class 2-dim Hierarchical PCD (HPCD). This
class was shown to be equivalent to the class of 1-dim Piecewise Affine
Maps (PAM). In this paper, we first explore 2-dim HPCD’s proximity
to decidability, by showing that they are equivalent to 2-dim PCDs with
translational resets, and to HPCDs without resets. A hierarchy of inter-
mediates also equivalent to the HPCD class is presented, revealing sem-
blance to timed and initialized rectangular automata. We then explore
the proximity to the undecidability frontier. We show that 2-dim HPCDs
with zeno executions or integer-checks can simulate the 2-counter MM.
We conclude by retreating HPCDs as PAMs, to derive a simple over-
approximating algorithm for reachability. This also defines a decidable
subclass 1-dim Onto PAM (oPAM). The novel non-trivial transformation
of 2-dim HPCDs into “almost decidable” systems, is likely to pave the
way for approximate reachability algorithms, and the characterization of
decidable subclasses. It is hoped that these ideas eventually coalesce into
a complete understanding of the reachability problem for the class 2-dim
HPCD (1-dim PAM).

1 Introduction

Reachability – the problem of deciding whether a certain continuous state is
reachable from a given initial state, becomes undecidable if the dynamical sys-
tem specifications allow a Turing Machine (TM) to be simulated. This is because
of Alan Turing’s seminal proof, that the problem of deciding whether a given
TM will halt on a given input is in general undecidable [20]. Another conve-
nient formalization is the 2-counter Minsky Machine (MM) [13], which has been
shown to be able to simulate a TM. Hence reachability is undecidable for an
MM, and any dynamical system that can simulate an MM as well. Hybrid Au-
tomata (HA), which can have arbitrary discrete transitions and continuous flows,
correspond to a class of immense computational power. HA very easily become
undecidable for the reachability query, with only extremely stringent restrictions
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leading to decidability. Timed automata [2], multirate automata [1], initialized
rectangular automata [16,7], controllable linear systems [18], some families of
linear vector fields [11] and o-minimal HA [10] have been shown to be decidable
for the reachability query.

The fundamental question continues to be: “What is the simplest class of
dynamical systems for which reachability is undecidable ?”. The conventional
answers to this question have involved proving that a certain decidable class
becomes undecidable, when given some additional computational power. For in-
stance, 2-dimensional Piecewise Constant Derivative (PCD) systems [12] and
Simple Planar Differential Inclusions (SPDIs) [5] are decidable, while 3-dimen-
sional PCDs are undecidable [3]. This paper focuses on the 2-dim Hierarchical
PCD (HPCD) class introduced by Asarin and Schneider [4]. This intermedi-
ate class, between decidable 2-dim PCDs and undecidable 3-dim PCDs, is not
known to be provably decidable or undecidable! Asarin and Schneider proved
that 2-dim HPCDs are equivalent to 1-dim Piecewise Affine Maps (PAM). Since
the reachability problem for 1-dim PAMs is an open question [9], 2-dim HPCD-
reachability is also open. They went a step further, and proved that the HPCD
class, when endowed with a little additional computational power, becomes un-
decidable. Thus, the HPCD 3 class (and equivalently the PAM class) is clearly
on the boundary between decidable and undecidable subclasses of HA.

This paper presents new developments in the analysis of the HPCD class, a
sequel to Asarin and Schneider’s work [4]. We begin this analysis of the prox-
imity to decidability and undecidability in Section 2, with the definitions of
the various subclasses of HA we will encounter in this paper. In Section 3, we
present our main result: 2-dim PCDs with translational resets can simulate a
PAM. We then construct several very interesting subclasses of HPCDs, which
also simulate PAMs. Since PAMs have been shown to be equivalent to HPCDs
[4], it proves that surprisingly, these subclasses are just as powerful as the HPCD
class itself. This reveals the redundancy in the expressive power of the HPCD,
and shows how even closer HPCDs are to decidable systems. In Section 4, we
present some undecidable extensions of HPCDs, very different from Asarin and
Schneider’s constructions. They reveal new dimensions of the fineness of the
line separating HPCDs from undecidability. We present a simple algorithm for
over-approximating reachability in PAMs in Section 5, and show how decidable
subclasses can be identified. We summarize our contributions in Section 6 and
discuss several open research questions.

2 Background: Hybrid Automata and Subclasses

An HA approximates a complicated non-linear system in terms of a model that
is partly discrete and partly continuous [8,15]. An HA is a directed graph of dis-
crete states and transitions, which allows arbitrary: (1) “invariant” expressions
dictating when the system can be in this state; (2) differential equations in the
3 Henceforth, “HPCD” refers to 2-dim HPCD, “PAM” to 1-dim PAM, and “decid-

ability” to decidability of reachability, unless explicitly stated otherwise.
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“flow” expressions, in each discrete state (continuous evolution with time); (3)
conditions controlling when a transition can be taken, in the “guard”; (2) equa-
tions that change the values of the variables, in the “reset” expressions during
each discrete state transition (instantaneous discrete evolution). A computation
of an HA is a series of continuous evolution steps of arbitrary time-length each,
interspersed with an arbitrary number of zero time-length discrete transition
steps.

Before introducing the subclasses, we quickly review some terms frequently
used to describe different restrictions. Let a, b, c, d stand for numerical constants,
and p, q stand for the HA variables. A rectangular guard refers to an expression of
the form a < p < b, while a non-rectangular or comparative guard is of the form
ap + bq + c < 0. A rectangular invariant is of the form a < p < b

∧
c < q < d i.e.

the state represents a rectangular region in the p− q plane. State invariants are
said to be non-overlapping if the regions they represent in their variable-space
do not intersect. A constant reset refers to p′ = c, a translational reset refers to
p′ = p + c and an affine reset to p′ = ap + b. An “initialized” automaton is one
where all variables, whose flow changes after a discrete state transition, are reset
to a constant. An automaton is “timed” if all flow-derivatives are 1.

Among the several formalizations that simplify the reachability problem by
curbing the computational power of the HA, we dwell on the PCD construct. A 2-
dim PCD [12] is an HA in two continuous variables, where (1) All flow-derivatives
are constants; (2) The guards are rectangular i.e. p ∈ I, where I is a numerical
interval; (3) No variable can be reset during transitions i.e., p′ = p ∧ q′ = q;
(4) The discrete states (invariants) correspond to non-overlapping rectangles
in the real plane with non-empty interiors. The trajectories of a 2-dim PCD
are restricted to be broken straight lines, with slopes changing only when a
different polygonal region (new discrete state) is entered. Maler and Pnueli [12]
used the property of planar systems to prove that reachability is decidable for
2-dim PCDs. 3-dim PCDs are the natural extension of 2-dim PCDs with a third
dynamic variable (dimension). Asarin, Maler and Pnueli [3] proved that 3-dim
PCDs are undecidable.

Subsequently, Asarin and Schneider set out to discover an “open” class in
between 2-dim and 3-dim PCDs. They proceeded by studying HA that could sim-
ulate a known open problem - the 1-dim PAM. To understand their equivalence
result, we first introduce PAMs, where computation is modeled as iterative func-
tion evaluation. A PAM [9] is of the form f(x) = aix+bi , x ∈ Ii , i = 1, 2, · · · , n,
where all ai, bi and the ends of the non-overlapping intervals Ii are rational. f is
closed i.e. ∀x, i (x ∈ Ii) ⇒ (∃j, f(x) ∈ Ij). Further, the intervals are in ascend-
ing order. In other words, there are n non-overlapping partitions of the real line
(which may not cover it entirely). The current value of the variable x decides
which interval Ii it falls in, and hence its next value f(x) is uniquely defined. The
reachability problem is also defined in the natural way: “Is the point xf reach-
able from the point x0 by repeated application of the piece-wise affine maps ?”.
Note that unlike HA, there is no non-determinism or choice – the starting point
defines a unique trajectory.
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Recall that a class A simulates a class B if every computational trajectory of
B has a unique counterpart in A. Two classes are equivalent if they simulate each
other: thus if the reachability problem is (un)decidable for one class, so it is for
the other. Asarin and Schneider characterized the PCD extensions necessary to
simulate a PAM, keeping in mind that the resulting HA subclass in turn needed
to be expressible as a PAM. The result was the HPCD class which augmented
a PCD, by allowing comparative guards and affine resets in overlapping regions
of the plane. A 2-dim HPCD [4] is an HA in 2 continuous variables where, (1)
All flow-derivatives are constants; (2) The guards are of the form (ax+ by + c =
0∧x ∈ I ∧y ∈ J) where I and J are intervals and a, b, c and the extremities of I
and J are rational-valued; (3) The reset functions are affine functions: x′ = ax+b;
(4) The state invariant, which could overlap with other state invariants, is the
negation of the union of the guards. The term hierarchical was used originally,
to indicate that an HPCD could also be thought of as a PCD with overlapping
state invariants, where each state was actually a PCD.

q̇ = 1

ṗ = 0

0 ≤ p, q ≤ 1

q = 1 ∧ 0 ≤ p < 1/2
∧

q′ = 0 ∧ p′ = 2p q = 1 ∧ 1/2 ≤ p ≤ 1
∧

q′ = 0 ∧ p′ = 2 − 2p

Fig. 1. One-State Tent Map HPCD

Example 1. Consider the PAM describing the Tent Map [19]:
f(x) = 2x + 0, x ∈ [0, 1/2)(≡ I1)
f(x) = −2x + 2, x ∈ [1/2, 1](≡ I2)
The HPCD simulating this PAM is shown in Figure 1. �

We now summarize the results of Asarin and Schneider [4]. The HPCD class
is equivalent to the PAM class. The restricted class HPCDiso, with translational
instead of affine resets, is also equivalent to the PAM class. The extended classes
HPCD1c (with an additional counter), HPCD∞ (with infinite partitions) and
HPCDx (origin-dependent rates) are undecidable, as they can simulate a TM.

3 Open HPCD Subclasses

Asarin and Schneider’s results thus have two implications: (1) a PAM can capture
an HPCD; (2) an HPCD can capture a PAM. Their first result is clearly the more
significant one, also involving a non-trivial construction. It demonstrates that
a 2-dim HPCD, which seems dramatically more complex than a 1-dim PAM,
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actually has no additional computational power ! Their second result seems
simple in comparison, as HPCDs seem to have more expressivity than necessary,
to capture a PAM. A PAM can be trivially captured by a PCD with just 1
state, with all computations done only using affine resets along self-loops (see for
example, the Tent Map HPCD in Figure 1). Schneider has proved [17] that these
affine resets can be made translational (HPCDiso). However, that construction
uses all the other enhancements. To summarize, PCDs with just affine resets
can simulate a PAM. However, multiple states with overlapping invariants and
comparative guards seem necessary, when only translational resets are allowed.

In this section, we first prove our main result: a 1-dim PAM can be simulated
using a 2-dim PCD, with just translational resets of the form x′ = x + ci.
Comparative guards and affine resets can be done away with by making the
two PCD variables (p and q) take turns simulating the PAM variable (x), while
non-overlapping state invariants become sufficient because the PCD variables
are guaranteed to lie in a bounded region. We then show how 1-dim PAMs can
be simulated by other simple subclasses of HPCDs, each revealing proximity to
a different decidable HA subclass. The following lemma simplify the proof:

Lemma 1. A 1-dim PAM is bounded. �

Lemma 2. Every 1-dim PAM is equivalent to a 1-dim “positive” PAM where
all intervals are positive. �

Now we are ready to prove our main result:

Theorem 1. A 1-dim PAM can be simulated by a 2-dim PCD with translational
resets.

Proof. Consider an equivalent 1-dim positive PAM f(x) = aix + bi , x ∈ Ii(≡
[li, ri)) , i = 1, 2, · · · , n. Let L be a number such that L > rn ∧ ∀i, L > bi.
Corresponding to the i-th function of the PAM, we will have two states Pi and
Qi. In Pi, p flows from p0 = bi to xn+1(≡ bi + aixn) at the rate ṗ = ai. q drops
from q0 = xn to 0 at the rate q̇ = −1. The guard q = 0 thus ensures that the
system spends t = q0 time in this state. This allows the affine term aixn to be
computed, without using comparative guards or affine resets. In the “Q” states,
the roles of p and q are reversed i.e., q uses p’s value to grow to the next iterate,
while p just drops to 0, effectively keeping track of time.

From Pi, there are transitions to each possible state Qj . p retains the value
it just computed, while q is reset to the constant portion (bj) of the next iterate
of x. In Qj, q will accumulate the rest of its target value (aj × x) by flowing for
time x (stored in p) at the rate aj . Similarly, from Qi, there are transitions to
each possible state Pj , while there are no transitions within P -states or within
Q-states.

The above expressions are adjusted, now assuming that each state is associ-
ated with a different large constant “base”. In a state, all numbers are represented
with respect to this base. Thus, x becomes LSi + x in state Si, where LSi is the
base. Even if x increases or decreases to its maximum / minimum possible value,
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p and q will not cross over to an adjoining state. This is because the different
base constants are themselves very far apart. This base-adjustment creates the
translational resets, when the current iterate needs to be remembered and passed
on to a new state. It is to be noted that just constant resets suffice if the state
invariants are allowed to overlap.

We now construct the PCD with translational resets and 2n states:

– Corresponding to the i-th function of the PAM, we have two states Pi and
Qi associated with the constants LPi = 4iL − 3L and LQi = 4iL − L.

– In Pi, p grows at rate ṗ = ai from LPi + p0(= bi) to aiq0(= xn) + bi + LPi ,
while q drops from q0+LPi to LPi at the rate q̇ = −1. q0 denotes the unscaled
previous iterate xn, using which xn+1 is being computed by spending exactly
t = q0 time in this state.

– Qi behaves exactly as above with p and q swapped i.e., this corresponds to
the case where q grows to the next iterate, while p just drops to LQi .

– In Pi and Qi, the values of p and q are both bounded by {(LPi/Qi
−

L, LPi/Qi
+ L)}, which is equal to {(4iL− 4L, 4iL− 2L)} in Pi and {(4iL−

2L, 4iL)} in Qi. Clearly, none of rectangular regions can overlap.
– From Pi, there are transitions to each possible state Qj with guard q =

LPi ∧ p ∈ Ij i.e., “p has reached the next iterate of x” and “p is in the
interval corresponding to the j-th PAM function”. The reset (note: constant
or translational) is p′ = p − LPi + LQj ∧ q′ = LQj + bj i.e., “p, which holds
the current value of x, is translated to the range of the destination state (to
prevent overlap)” and “q is reset to the constant portion (bj) of the next
iterate of x”. The portion proportional to xn (aj × xn) will be gained by
flowing for time xn (stored in p) with slope aj .

– Similarly, from Qi, there are transitions to each possible state Pj . There are
no transitions within P -states or within Q-states.

This PCD with translational resets simulates the PAM, as p and q take turns
simulating x. It can be seen that xf is reachable from x0: (i) if (p = xf +LPi, q =
LPi) and (p = xf + LQj , q = LQj + bj) are reachable; or (ii) if (p = LQi , q =
xf + LQi) and (p = LPj , q = xf + LPj ) are reachable. This needs to hold for
some i and j, such that xf ∈ Ij and one of the pre-images of xf lies in Ii. The
“and” terms are necessary to eliminate intermediate points during continuous
evolution from satisfying the query. The “or” term is necessary because p reaches
only even iterates and q reaches only the odd iterates of x0. The starting state is
(p = x0 + LQk

, q = LQk
+ bk) (or (p = LPk

+ bk, q = LQk
+ x0)), where x0 ∈ Ik.

�

Example 2. We will now construct a PCD with translational resets that sim-
ulates the Tent Map, in two variables p and q and 2 × 2 = 4 states. Setting
L = 3(> max(rn, bi) = 2), we get LP1 = 3, LQ1 = 9, LP2 = 15, LQ2 = 21. The
result is presented in Figure 2. �

Various other intermediates – subclasses of HPCDs, simulate a 1-dim PAM.
We now present some of the interesting cases, which extend known decidable
systems.
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P2
Q2

ṗ = 2

q̇ = −1

P1 Q1

ṗ = −1

q̇ = 2

q̇ = −1

ṗ = −2

q̇ = −2

ṗ = −1

q = 15 ∧ 15.5 ≤ p ≤ 16
∧

q′ = 23 ∧ p′ = p + 6

q = 3 ∧ 3 ≤ p < 3.5
∧

q′ = 9 ∧ p′ = p + 6

p = 9 ∧ 9 ≤ q < 9.5
∧

p′ = 3 ∧ q′ = q − 6

p = 21 ∧ 21.5 ≤ q ≤ 22
∧

p′ = 17 ∧ q′ = q − 6

q
=

15
∧ 15

≤
p

<
15

.5
∧

p
=

9
∧ 9.

5
≤

q
<

10
∧

0 < p, q < 6

12 < p, q < 18 18 < p, q < 24

6 < p, q < 12
p
=

21 ∧
21 ≤

q
<

21.5 ∧

p ′
=

3 ∧
q ′

=
q −

18

q
=

3 ∧
3.5 ≤

p ≤
4 ∧

q ′
=

23 ∧
p ′

=
p
+

18

q
′ =

9
∧ p

′ =
p
−

6

p
′ =

17
∧ q

′ =
q
+

6

Fig. 2. PCD with Translational Resets simulating the Tent Map

Theorem 2. A 1-dim PAM can be simulated by: (1) an HPCD with comparative
guards, 3 different flows +1,−1, 0 and no resets; (2) an initialized PCD, with
comparative guards; (3) an HPCD with rectangular guards i.e. p = 0 ∧ q ∈ Ii,
when simple constant resets of the form q′ = aj ∧ p′ = p are allowed; (4) a PCD
with just clocks, when translational resets and comparative guards are allowed;
and (5) an HPCD with just clocks, when simple constant resets (p′, q′) = (0, q)
or (p, 0) and comparative guards are allowed.

Proof. All the proofs are based on the techniques demonstrated in the proof of
Theorem 1. So, for brevity, we only give a flavor of results (1) and (4).

For result (1), we will construct an HPCD with 4n states of the form P±
j and

Q±
j that simulates this PAM. We will now have p evolving from xn−1 to xn+1,

while q remains stationary at xn. The affine guard condition p = aiq + bi makes
the HA jump to the next state at the correct time. Since xn+1 could be greater or
less than xn−1, the flow will need to be +1 or −1 respectively. Hence, each P (and
Q) state now corresponds to two states: P+ and P−. In the state P+

j , q flows from
q0(∈ some Ii) to q′ = ajp0 + bj, with flow is q̇ = +1. In P−

j , q′ > q0 and q̇ = −1.
ṗ = 0 to ensure that q flows to the correct amount. The transitions are of the form
P+

j → Q±
k , with the guard being q = ajp+bj∧q ∈ Ik∧p < (bk+akbj)/(1−ajak).

The last term will be p ≥ if we are jumping to Q−
k . The Q±

j states are defined
exactly as above, with p and q interchanged. Clearly, the above HPCD without
resets simulates the given PAM. In particular, the reachability query “Is xf

reachable from x0” is true iff (p = xf , q = xf−1) or (p = xf−1, q = xf ) is
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reachable from (p = x0, q = x1), where xf−1 is some pre-image of xf and x1 is
the successor of x0.

For result (4), an HPCD with 2n states of the form Pj and Qj can simulate
the equivalent positive PAM. In state Pj , p flows from p0 to p0 + ajp0 + bj with
ṗ = +1, while q flows from 0 to ajp0 + bj with q̇ = +1. The discrete transitions
will be of the form Pj → Qk with guard ajp − (1 + aj)q + bj = 0 ∧ q ∈ Ik and
reset p′ = 0 ∧ q′ = q. �

4 Undecidable HPCD Extensions

True to its “open” nature, the HPCD class does not present any direct mech-
anism to simulate a TM / MM. Asarin and Schneider [4] have shown that the
HPCD class becomes undecidable when extended with one additional counter
(HPCD1c), with infinite partition (HPCD∞) and with origin-dependent rates
(HPCDx). In this section, we present a new set of extensions of HPCDs that
manage to be undecidable. We proceed by simulating the MM with the least
possible additional work. Recall that an MM uses two (positive) integer coun-
ters m and n. Incrementing and decrementing a counter, and branching based
on equality to zero are the operations that need to be supported.

Any program over a 2-counter MM can be almost trivially captured as an
HPCD, using just the discrete transitions without using the flows. Recall that a
“zeno” system is one where one cannot bound the number of discrete transitions
i.e. potentially all the computation could be done in the resets, in zero time.
Thus:

Theorem 3. Reachability over HPCDs with zeno-paths (HPCDzeno) is unde-
cidable. �

Alternatively, we can capture the value of both the counters m and n using
just one continuous variable x as x = pm

1 pn
2 , where p1 and p2 are two prime num-

bers. Clearly, given the integer product x, there is exactly one way of factoring
it and hence m and n can be extracted. The second variable y is now free to be
used as a temporary variable for computations and to make the system non-zeno.
Incrementing and decrementing the counter correspond respectively, to multi-
plying and dividing by the appropriate prime factor. The problem of simulating
a 2-counter MM over a HPCD now reduces to the problem of checking if m > 0
given the numerical value of x = pm

1 pn
2 , and being able to recover the original

value of x at the end of the procedure. One approach is to divide x by the prime
number corresponding to the counter we wish to check for zero, and then check
if the result of the division is an integer. The problem of simulating a 2-counter
MM over an HPCD thus reduces, to the problem of checking whether a given
number is an integer (!) using the 2-dim HPCD infrastructure, and being able
to recover the original number at the end of the procedure. Surprisingly, there is
no known way of doing this.



Refining the Undecidability Frontier of Hybrid Automata 269

Theorem 4. Reachability over the following HPCD-extensions are undecidable:

1. HPCDfn−int, where the guard can include a function integer(x) that returns
true if the parameter x is an integer

2. HPCDzeno−int, where the integer-check function is now simulated by a zeno
execution of repeatedly subtracting 1 and checking if the number equals 0 �

5 Understanding PAMs

Having refined the decidable and undecidable frontiers of the HPCD class, we
explore one last avenue – treating HPCDs as PAMs, and subjecting them to a
similar extend-restrain analysis. Just like we enhanced a 2-dim HPCD to make
it undecidable, we present the flavor of a similar effort for PAMs.

Theorem 5. 1-dim PAMs that can check if a given number x can be expressed
as p−i (the class “PAMpow”), where p is a given prime number and i is an
unknown positive integer, can simulate an MM. �

We stop with this contrived extension, and move on to restricted subclasses.
The simplest PAM is one where every interval maps exactly on to another in-

terval. Thus the mapping unwinds to a cyclical application of functions, possibly
preceded by a linear sequence.

Definition 1. 1-dim oPAM A 1-dimensional Onto PAM (oPAM) is a 1-
dim PAM where, for every interval Ii in the PAM definition, there is an interval
Ij also in the definition such that {aix + bi|x ∈ Ii} = {x|x ∈ Ij}. �

Next we prove a crucial lemma:

Lemma 3. In a 1-dim oPAM with k intervals, every point has at most 2k unique
successors.

Proof. If interval Ii maps on to Ij , the end points (li, ri) have to map on to
(lj , rj) or to (rj , lj). No other mapping is possible because of our restriction,
that the affine post-image of Ii has to exactly and completely overlap with Ij .
Hence, there are only two possible equations linking xj with xi:

1. Direct (li → lj , ri → rj): xj = lj + xi−li
ri−li

(rj − lj)
2. Flipped (li → rj , ri → lj): xj = lj + ri−xi

ri−li
(rj − lj)

In other words, if we define d = x0−lx0
rx0−lx0

, only the points that are lj +d(rj − lj) or
lj +(1−d)(rj − lj) are ever reachable. Thus, every interval has only two possible
reachable points from a given x0. Since there are k intervals, after 2k iterations
all possible successors would have been explored, and there will be a cycle of
period ≤ 2k in the path. �

Using this observation about exactly onto affine maps over linear intervals,
we can prove that:
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Theorem 6. Reachability is decidable for 1-dim oPAMs. �

Example 3. f(x) = 2x + 1/3, x ∈ [0, 1/3)(≡ I1) and f(x) = 1/2 − x/2, x ∈
[1/3, 1](≡ I2) is a oPAM as f([0, 1/3]) = [1/3, 1] and f([1/3, 1]) = [0, 1/3]. Thus,
all points reachable from x0 = 1/4 are given by x1 = 2/4 + 1/3 = 5/6, x2 =
1/2 − 5/12 = 1/12, x3 = 2/12 + 1/3 = 1/2, x4 = 1/2 − 1/4 = 1/4 = x0 as
expected. �

Reachability is easily semidecidable for PAMs: we just keep iterating x0,
f(x0), f(f(x0)), · · · until xf is reached. If xf is not reachable, this algorithm
will never converge. We now present a simple algorithm for over-approximating
the reachable points (see box below). The idea is to repeatedly partition the
intervals Ii of the PAM, until all the successors (post-images) of points in one
interval map on to exactly one complete interval i.e. domain and range are fully
covered (an extension of this idea was presented in [14]).

Over-Approximation of PAM Reachability

1. Let the initial set of partitions P be the set of PAM intervals {Ii}
2. Pick an interval Pi in P and calculate its post-image P ′

i . Let P ′
i span the intervals

Pl, Pl+1, · · · , Pr−1, Pr.
3. P ′

i induces r−l+1 partitions of Pi: Pi1 · · ·Pir−l+1 such that Pij maps on to Pl+j−1.
It could also partition Pl and Pr in case it maps on to a sub-interval rather than
covering the whole of Pl or Pr. In all, the total number of partitions can increase
by 0 to n + 1.

4. Update P so it now holds the newly induced partitions as well.
5. Repeat steps 2−4 until every interval Pi maps on to exactly one interval Pj already

in P

By treating each interval as a node and connecting Pi and Pj if the post image of Pi is
Pj , we get a graph representation of the PAM. Thus, xf is reachable from x0, if there
is a path from Px0 to Pxf in this graph (where xi ∈ Pxi). �

Clearly, the algorithm is not guaranteed to converge. However, we can ter-
minate after a reasonable number of steps and still use the resultant graph to
approximately decide reachability. Also note that the graph needs to be con-
structed only once no matter how many different reachability queries we need
to answer. A rewarding observation is that a 1-dim oPAM is obtained, if the
above partitioning algorithm converges ! This concurs with the fact that they
are decidable.

6 Discussion

In this paper, we refined the decidability frontier by exploiting the expressive
redundancy of the HPCD class definition. We introduced the “taking-turns”
idea, that the two PCD variables could alternately compute PAM iterations.
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It was pointed out by one of the reviewers that a similar idea was used by
Berard and Duford to prove that the emptiness query is undecidable for timed
automata with four clocks and additive clock constraints [6]. We also showed
how we could exploit the finite range of the PAM to construct non-overlapping
state invariants. These ideas helped show that a 1-dim PAM can be simulated
by a 2-dim PCD with translational resets. Further, resets can be disposed, if
we allow overlapping invariants and comparative guards. We also demonstrated
how decidable classes, like timed and initialized rectangular automata, can be
extended into open problems. On the undecidability front, we showed that zeno
HPCD executions can naturally capture MMs. More interestingly, the ability to
check if a number is an integer was seen to be the computational ability, that
separates an HPCD from universal Turing computability. A simple algorithm
for over-approximating reachability was presented. It revealed that the problem
is decidable, for those PAMs that converge during this iteration (oPAMs). The
current understanding of this undecidability frontier of HA is summarized in
Figure 3.

1−dim oPAM

+overlapping invariants
+overlapping invariants

+translational resets

2−dim PAM*

2−dim PCD*

2−dim TA*

3−dim TA +comparative guards*,
linear resets*
or stop−watches*

3−dim uninitialized* or non−rectangular*

2−dim initialized
rectangular automata*

1−dim PAM* +comparative guards +constant resets
+comparative guards +linear resets

+comparative guards

3−dim PCD*

+non−overlapping invariants

automata

+comparative guards
+non−overlapping invariants

+uninitialized
+overlapping invariants

2-dim HPCDzeno
HPCDfn/zeno−int

HPCD1c*, HPCD∞*, HPCDx*

1-dim PAMpow

2-dim HPCD*

DECIDABLE

UNDECIDABLE

OPEN

Fig. 3. Decidable, Open and Undecidable subclasses of HA (“*” indicates what
was already known; unstarred results are contributions of this paper)

There are many related questions that need to be explored. Using the reduc-
tions of an HPCD to a PCD or initialized rectangular automaton with extensions,
can we identify more interesting decidable subclasses and approximate reacha-
bility algorithms ? One suggestion we offer is to construct the “PCD-graph” of a
1-dim PAM, and then show how planarity can correspond to decidability. Using
the construction in Theorem 1, we can build a graph with a set of nodes cap-
turing each state. Different nodes can correspond to the different intervals, with
an edge corresponding to each reset. We can then check whether it is possible to
rearrange the given PCD-graph into a planar graph, by using the standard graph
drawing literature. Another perspective to be explored is, how discrete chaotic
dynamical systems (like the Tent Map) can have a say in the decidability of
the PAM class. It is hoped that the ideas presented in this paper will aid the
eventual “deciding” of the 1-dim PAM / 2-dim HPCD reachability problem.
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