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Abstract. We consider a generalization of the set cover problem, in which el-
ements are covered by pairs of objects, and we are required to find a minimum
cost subset of objects that induces a collection of pairs covering all elements.
Formally, let U be a ground set of elements and let S be a set of objects, where
each object i has a non-negative cost wi. For every {i, j} ⊆ S , let C(i, j) be the
collection of elements in U covered by the pair {i, j}. The set cover with pairs
problem asks to find a subset A ⊆ S such that

⋃
{i,j}⊆A C(i, j) = U and such

that
∑

i∈A wi is minimized.
In addition to studying this general problem, we are also concerned with develop-
ing polynomial time approximation algorithms for interesting special cases. The
problems we consider in this framework arise in the context of domination in
metric spaces and separation of point sets.

1 Introduction

Given a ground set U and a collection S of subsets of U , where each subset is associated
with a non-negative cost, the set cover problem asks to find a minimum cost subcollec-
tion of S that covers all elements. An equivalent formulation is obtained by introducing
a covering function C : S → 2U , that specifies for each member of S the subset of U
it covers. Set cover now becomes the problem of finding a subset A ⊆ S of minimum
cost such that

⋃
i∈A C(i) = U .

We consider a generalization of this problem, in which the covering function C
is defined for pairs of members of S, rather than for single members. Formally, let
U = {e1, . . . , en} be a ground set of elements and let S = {1, . . . , m} be a set of
objects, where each object i ∈ S has a non-negative cost wi. For every {i, j} ⊆ S, let
C(i, j) be the collection of elements in U covered by the pair {i, j}. The objective of
the set cover with pairs problem (SCP) is to find a subset A ⊆ S such that C(A) =⋃

{i,j}⊆A C(i, j) = U and such that w(A) =
∑

i∈A wi is minimized. We refer to the
special case in which each object has a unit weight as the cardinality SCP problem.

SCP is indeed a generalization of the set cover problem. A set cover instance with
U = {e1, . . . , en} and S1, . . . , Sm ⊆ U can be interpreted as an SCP instance by
defining C(i, j) = Si ∪ Sj for every i �= j. Therefore, hardness results regarding set
cover extend to SCP, and in particular the latter problem cannot be approximated within
a ratio of (1 − ε) ln n for any ε > 0, unless NP ⊂ TIME(nO(log log n)) [4].

� Due to space limitations, most proofs are omitted from this extended abstract. We refer the
reader to the full version of this paper [8], in which all missing proofs are provided.
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1.1 Applications

In addition to studying the SCP problem, we are concerned with developing polynomial
time approximation algorithms for interesting special cases, that arise in the context of
domination in metric spaces and separation of point sets.

Remote Dominating Set. Let M = (V, d) be a finite metric space, and let r1 ≤ r2 be
two covering radii. We refer to the elements of V = {v1, . . . , vn} as points or vertices,
and assume that each v ∈ V is associated with a non-negative cost cv . A subset of
points S ⊆ V is called a remote dominating set if for every v ∈ V there is a point
u ∈ S within distance r1 of v, or a pair of points u1 �= u2 ∈ S within distance r2 of
v each. The remote dominating set problem (RDS) asks to find a minimum cost remote
dominating set in M .

RDS can be interpreted as a special case of SCP: The set of elements to cover is
V , which is also the set of covering objects, and the collection of points covered by
u �= v ∈ V is

C(u, v) = {w ∈ V : min {d(u, w), d(v, w)} ≤ r1 or max {d(u, w), d(v, w)} ≤ r2} .

When d(u, v) ∈ {1, 2} for every u �= v and r1 = r2 = 1, RDS reduces to the standard
dominating set problem. Therefore, hardness results regarding set cover extend to RDS,
as the dominating set problem is equivalent to set cover with regard to inapproximabil-
ity.

We also consider two special cases of this problem, for which significantly better
approximation algorithms are possible. In the cardinality RDS on a tree problem, the
metric d is generated by a tree T = (V, E) with unit length edges, and the covering
radii are r1 = 1 and r2 = 2. In the cardinality Euclidean RDS problem, V is a set of
points in the plane, and d(u, v) = ‖u − v‖2.

Group Cut on a Path. Let P = (V, E) be a path, in which each edge e ∈ E has
a non-negative cost ce, and let G1, . . . , Gk be k groups, where each group is a set of
at least two vertices. A group Gi is separated by the set of edges F ⊆ E if there is
a representative vi ∈ Gi such that no vertex in Gi \ {vi} belongs to the connected
component of P −F that contains vi. The objective of the group cut on a path problem
(GCP) is to find a minimum cost set of edges that separates all groups.

Given a GCP instance we may assume without loss of generality that any optimal
solution contains at least two edges. This assumption implies that GCP is a special case
of SCP: The elements to cover are the groups G1, . . . , Gk, and the covering objects are
the edges. The groups covered by pairs of edges are defined as follows. Let v1, . . . , vr

be the left-to-right order of the vertices in Gi, and let [vi, vj ] be the set of edges on the
subpath connecting vi and vj . The group Gi is covered by a pair of edges e′ �= e′′ ∈ E
if {e′, e′′}∩ ([v1, v2]∪ [vr−1, vr]) �= ∅ or if e′ ∈ [vt−1, vt] and e′′ ∈ [vt, vt+1] for some
2 ≤ t ≤ r − 1.
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1.2 Our Results

In Section 2 we study a natural extension of the greedy set cover algorithm [1,11,13] to
approximate SCP. We define a class of functions, called feasible maps, that assign the
elements in U to pairs of objects in the optimal solution, and characterize them by max
and mean properties. We then present a conditional analysis of the greedy algorithm,
based on the existence of such maps. Specifically, we prove an approximation guarantee
of αHn for the weighted and cardinality versions of the problem, given the existence of
feasible maps whose max and mean are at most α, respectively. We also prove that the
unconditional approximation ratio for cardinality SCP is O(

√
n log n).

We continue the discussion with indications for the hardness of SCP. First, although
the set cover problem becomes trivial when each subset contains a single element, we
show that the corresponding special case of SCP, where each pair of objects covers at
most one element, is at least as hard to approximate as set cover. Second, the analysis
of the greedy set cover algorithm in [13] shows that the integrality gap of the natural
LP-relaxation of set cover is O(log n). However, we demonstrate that this property does
not extend to SCP, for which the integrality gap is Ω(n).

As a first attempt at attacking the RDS problem, one might consider using the
greedy SCP algorithm. However, we show in Section 3 that the approximation guar-
antee of this algorithm is Ω(

√
n), mainly due to the observation that there are instances

of RDS in which non-trivial feasible maps do not exist. Nevertheless, we provide a
2Hn-approximation algorithm that constructs a remote dominating set by approximat-
ing two dependent set cover problems.

In Section 4 we proceed to the cardinality RDS problem on a tree T = (V, E).
Although this problem can be solved to optimality in O(|V |3) time using dynamic
programming techniques [8], we demonstrate that it can be well approximated much
faster. We first show how to map a subset of “problematic” vertices of T to a small
collection of pairs in the optimal solution. We then exploit the special structure of this
map to present a linear time 2-approximation algorithm, and illustrate that in general
graphs this algorithm does not guarantee a non-trivial approximation ratio.

In Section 5 we present a polynomial time approximation scheme for the Euclidean
RDS problem. Although we follow the general framework of Hochbaum and Maass for
covering and packing problems in Euclidean spaces [10], our analysis is more involved.
This is due to the use of two covering radii and the restriction that the set of points we
choose must be a subset of V , instead of any set of points in the plane.

Finally, in Section 6 we discuss the hardness of approximating GCP, and in par-
ticular prove that this problem is as hard to approximate as set cover. Moreover, we
identify the exact point at which GCP becomes NP-hard, by showing that this problem
is polynomial time solvable when the cardinality of each group is at most 3, but as hard
to approximate as vertex cover when the bound on cardinality is 4. On the positive side,
we prove the existence of a feasible map whose max is at most 2. This result enables us
to show that the approximation ratio of the greedy SCP algorithm for this special case
is 2Hk, where k is the number of groups to be separated.
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2 Set Cover with Pairs

In this section we suggest a natural extension of the greedy set cover algorithm to ap-
proximate SCP, and present a conditional analysis based on the existence of a map-
ping of the elements in U to pairs of objects in the optimal solution, that satisfies cer-
tain properties. We then make use of these results to prove an approximation ratio of
O(

√
n log n) for cardinality SCP. We also prove that the special case in which each pair

of objects covers at most one element is at least as hard to approximate as set cover, and
demonstrate that the integrality gap of the natural LP-relaxation of SCP is Ω(n).

2.1 A Greedy Algorithm

The greedy SCP algorithm iteratively picks the most cost-effective object or pair of
objects until all elements are covered, where cost-effectiveness is defined as the ratio
between the objects costs and the number of newly covered elements. Let GR be the set
of objects already picked when an iteration begins, where initially GR = ∅. We define:

1. For every i ∈ S \ GR, the current covering ratio of i is

wi

|C(GR ∪ {i})| − |C(GR)| .

2. For every i �= j ∈ S \ GR, the current covering ratio of {i, j} is

wi + wj

|C(GR ∪ {i, j})| − |C(GR)| .

In each iteration we augment GR by adding a single object i ∈ S \ GR or a pair of
objects i �= j ∈ S \ GR, whichever attains the minimum covering ratio. The algorithm
terminates when U is completely covered.

2.2 Conditional Analysis

Let F ⊆ S be a feasible solution, that is, a set of objects that covers the elements of
U , and let P (F ) = {{i, j} ⊆ F : i �= j}. A function M : U → P (F ) is a feasible
map with respect to F if the pair of objects M(e) covers e, for every e ∈ U . Given a
feasible map M, for every {i, j} ∈ P (F ) we use IM(i, j) to indicate whether at least
one element is mapped to {i, j}. We define:

max(M, F ) = max
i∈F

∑

j �=i

IM(i, j) , mean(M, F ) =
1
|F |

∑

i∈F

∑

j �=i

IM(i, j) .

In other words, max(M, F ) ≤ α if each object i ∈ F belongs to at most α pairs
to which elements are mapped. Similarly, mean(M, F ) ≤ α if the average number
of pairs, to which elements are mapped, an object belongs to is at most α. Clearly,
mean(M, F ) ≤ max(M, F ).

In Lemma 1 we show that given the existence of a feasible map M with respect to
an optimal solution OPT, for which max(M, OPT) ≤ α, the greedy SCP algorithm
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constructs a solution whose cost is within factor αHn of optimum. In Lemma 2 we
show that to obtain an approximation guarantee of αHn for cardinality SCP, the weaker
condition of mean(M, OPT) ≤ α is sufficient.

Lemma 1. If there exists an optimal solution OPT and a feasible map M such that
max(M, OPT) ≤ α, then w(GR) ≤ αHn · w(OPT).

Proof. For every {i, j} ∈ P (OPT), let M−1(i, j) = {e ∈ U : M(e) = {i, j}}. By
definition of M, {M−1(i, j) : {i, j} ∈ P (OPT)} is a partition of U . In each iteration
of the algorithm, we distribute the cost of the newly picked object or pair of objects
among the new covered elements: If x new elements are covered, each such element
is charged wi

x or wi+wj

x , depending on whether a single object or a pair of objects are
picked.

LetM−1(i, j) = {e′1, . . . , e′k}, where the elements ofM−1(i, j) are indexed by the
order they were first covered by the greedy algorithm, breaking ties arbitrarily. Consider
the iteration in which e′l was first covered. One possibility of the greedy algorithm was
to pick {i, j} (or if one of i and j was already picked, then take the other one), covering
the elements e′l, . . . , e

′
k, and possibly other elements as well. Therefore, each element

that was covered in this iteration is charged at most wi+wj

k−l+1 , and the total cost charged
to the elements of M−1(i, j) satisfies

charge(M−1(i, j)) =
k∑

l=1

charge(e′l) ≤
k∑

l=1

wi + wj

k − l + 1
≤ (wi + wj)Hn .

Since w(GR) is charged to e1, . . . , en, we have

w(GR) =
n∑

j=1

charge(ej)

=
∑

{i,j}∈P (OPT)

charge(M−1(i, j))

≤ Hn

∑

{i,j}∈P (OPT)

(wi + wj)IM(i, j)

= Hn

∑

i∈OPT

wi

∑

j �=i

IM(i, j)

≤ αHn

∑

i∈OPT

wi

= αHn · w(OPT) ,

where the last inequality holds since
∑

j �=i IM(i, j) ≤ max(M, OPT) ≤ α for every
i ∈ OPT. �

Lemma 2. If there exists an optimal solution OPT for cardinality SCP and a feasible
map M such that mean(M, OPT) ≤ α, then |GR| ≤ αHn · |OPT|.
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2.3 Approximation Ratio for Cardinality SCP

The conditional analysis in Lemma 2 is based on the existence of a feasible map M with
respect to the optimal solution with small mean(M, OPT). In Lemma 3 we demon-
strate that there are instances of cardinality SCP in which a non-trivial map does not
exist, and show that the approximation ratio of the greedy SCP algorithm might be
Ω(

√
n). However, in Theorem 4 we prove that the cardinality of the solution con-

structed by the greedy algorithm is within factor
√

2nHn of the minimum possible.

Lemma 3. The approximation guarantee of the greedy algorithm for cardinality SCP
is Ω(

√
n).

Theorem 4. |GR| ≤ √
2nHn · |OPT|.

Proof. We first observe that |GR| ≤ 2n, since in each iteration of the algorithm at least
one element is covered using at most two objects. In addition, any feasible map M with
respect to OPT certainly satisfies mean(M, OPT) ≤ |OPT|, since

mean(M, OPT) ≤ max(M, OPT) ≤ |OPT| .

By Lemma 2 we have |GR| ≤ Hn · |OPT|2, and it follows that

|GR| ≤ min
{
2n, Hn · |OPT|2} ≤ (

2n
) 1

2
(
Hn · |OPT|2) 1

2 =
√

2nHn · |OPT| .

�

2.4 The Hardness of SCP: Additional Indications

The Case |C(i, j)| ≤ 1. The set cover problem becomes trivial when each subset
contains a single element. However, in Theorem 5 we prove that SCP remains at least as
hard to approximate as set cover when each pair of objects covers at most one element.
We refer to this special case as SCP1.

Theorem 5. For any fixed ε > 0, a polynomial time α-approximation algorithm for
SCP1 would imply a polynomial time (1 + ε)α-approximation algorithm for set cover.

Proof. Given a set cover instance I , with a ground set U = {e1, . . . , en} and a col-
lection S = {S1, . . . , Sm} of subsets of U , we construct an instance ρ(I) of SCP1 as
follows.

1. Let k =
⌈

n
ε

⌉
.

2. The set of elements is
⋃k

t=1{et
1, . . . , e

t
n}.

3. The set of objects is (
⋃k

t=1{St
1, . . . , S

t
m}) ∪ {y1, . . . , yn}.

4. For t = 1, . . . , k, i = 1, . . . , m and j = 1, . . . , n, the pair {St
i , yj} covers et

j if
ej ∈ Si.

5. Other pairs do not cover any element.
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Let S∗ ⊆ S be a minimum cardinality set cover in I . Given a polynomial time α-
approximation algorithm for SCP1, we show how to find in polynomial time a set cover
with cardinality at most (1 + ε)α|S∗|, for any fixed ε > 0.

The construction of ρ(I) guarantees that the collection of objects {St
i , y1, . . . , yn}

covers the set of elements {et
j : ej ∈ Si}, for every t = 1, . . . , k. Therefore, since S∗

is a set cover in I , the objects (
⋃k

t=1{St
i : Si ∈ S∗})∪ {y1, . . . , yn} cover all elements

of ρ(I). It follows that OPT(ρ(I)) ≤ k|S∗|+ n, and we can find in polynomial time a
feasible solution S̃ to ρ(I) such that |S̃| ≤ α(k|S∗|+n). Let t′ be the index t for which
|S̃ ∩ {St

1, . . . , S
t
m}| is minimized. Then S′ = {Si : St′

i ∈ S̃ ∩ {St′
1 , . . . , St′

m}} is a set
cover in I with cardinality

|S′| = min
t=1,...,k

|S̃ ∩ {St
1, . . . , S

t
m}| ≤ |S̃|

k
≤ α(k|S∗| + n)

k
≤ (1 + ε)α|S∗| .

�

Integrality Gap of LP-Relaxation. In contrast with the set cover problem, for which
the integrality gap of the natural LP-relaxation is O(log n) [13], we show in Theorem 6
that the integrality gap of the corresponding relaxation of SCP is Ω(n).

SCP can be formulated as an integer program by:

minimize
∑

i∈S
wixi

subject to
∑

{i,j}:e∈C(i,j)

y{i,j} ≥ 1 ∀ e ∈ U (2.1)

y{i,j} ≤ xi ∀ i �= j ∈ S (2.2)

xi, y{i,j} ∈ {0, 1} ∀ i �= j ∈ S (2.3)

The variable xi indicates whether the object i is chosen for the cover, whereas y{i,j}
indicates whether both i and j are chosen. Constraint (2.1) guarantees that for each
element e ∈ U we pick at least one pair of objects that covers it. Constraint (2.2)
ensures that a pair of objects cannot cover any element unless we indeed pick both
objects. The LP-relaxation of this integer program, (LP), is obtained by replacing the
integrality constraint (2.3) with xi ≥ 0 and y{i,j} ≥ 0.

Theorem 6. The integrality gap of (LP) is Ω(n), even for cardinality SCP.

Proof. Consider the instance of cardinality SCP with U = {e1, . . . , en} and S =
{1, . . . , 2n}. The elements covered by pairs of objects in S are:

1. C(i, n + 1) = C(i, n + 2) = · · · = C(i, 2n) = {ei}, i = 1, . . . , n.
2. Other pairs do not cover any element.

Since any integral solution must pick the objects 1, . . . , n and at least one of the
objects n + 1, . . . , 2n, |OPT| ≥ n + 1. We claim that the fractional solution x′

i = 1
n

and y′
{i,j} = 1

n for every i �= j is feasible for (LP). Clearly, this solution is non-negative
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and satisfies constraint (2.2). In addition,
∑

{i,j}:e∈C(i,j) y′
{i,j} = 1 for every e ∈ U ,

since the left-hand-side contains exactly n summands, each of value 1
n . It follows that

the cost of an optimal fractional solution is at most 2, and the integrality gap of (LP) is
at least n+1

2 . �

3 Remote Dominating Set

In the following we show that there are instances of the problem in which a non-trivial
map does not exist, and demonstrate that the greedy algorithm might construct a solu-
tion for RDS whose cost is Ω(

√
n) times the optimum. On the positive side however, we

provide a 2Hn-approximation algorithm for RDS that constructs a remote dominating
set by approximating two dependent set cover problems.

3.1 The Greedy SCP Algorithm for RDS

According to our interpretation of the RDS problem as a special case of SCP, the greedy
algorithm picks in each iteration a single point or a pair of points, whichever attains the
minimum ratio of cost to number of newly covered points. By modifying the construc-
tion in Lemma 3, we prove in Lemma 7 that the approximation ratio of this algorithm
is Ω(

√
n).

Lemma 7. The approximation guarantee of the greedy algorithm for RDS is Ω(
√

n).

3.2 A 2Hn-Approximation Algorithm

Despite these negative results regarding the performance of the greedy SCP algorithm
for the RDS problem, we show that this problem can still be approximated to within a
logarithmic factor. Our algorithm constructs a remote dominating set by approximating
two dependent set cover problems, (SC1) and (SC2).

For v ∈ V , let Nv = {u ∈ V : d(v, u) ≤ r2}. Using the greedy set cover algorithm,
we construct an RDS in two phases:

1. We first approximate (SC1): The set of elements to cover is V ; the covering sets
are S = {Nv : v ∈ V }; the cost of Nv is cv . Let S1 be the cover we obtain. V can
now be partitioned into two sets: V1, points within distance r1 of some point in S1

or within distance r2 of two points in S1, and V2 = V \ V1.
2. We then approximate (SC2): The set of elements to cover is V2; the covering sets

are S = {Nv : v ∈ V \ S1}; the cost of Nv is cv . Let S2 be the cover we obtain.

Theorem 8. Let OPT be a minimum cost RDS. Then

1. S1 ∪ S2 is an RDS.
2. c(S1 ∪ S2) ≤ 2Hn · c(OPT).
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4 Cardinality RDS on a Tree

In this section we consider the minimum cardinality RDS problem on a tree T = (V, E)
with unit length edges and covering radii r1 = 1 and r2 = 2. It would be convenient to
work directly with the tree representation of the problem, instead of working with the
related metric space.

We constructively show that a minimum cardinality dominating set in T is a 2-
approximation, by exploiting special properties of a partial map we find. We also prove
that this bound is tight, and demonstrate that in general graphs a minimum cardinality
dominating set does not guarantee a non-trivial approximation ratio.

4.1 The Existence of Acyclic Mapping Graphs

Let S be an RDS that contains at least two vertices. We denote by L ⊆ V the set of
vertices that are not covered by a single vertex in S. In other words, v ∈ L if there is no
vertex in S within distance 1 of v. Given a partial map ML : L → P (S), its mapping
graph G(ML) is defined by:

1. The set of vertices of G(ML) is S.
2. For u �= v ∈ S, (u, v) is an edge of G(ML) if there is a vertex w ∈ L such that

ML(w) = {u, v}.

Lemma 9. There is a partial map ML : L → P (S) whose mapping graph G(ML) is
acyclic.

4.2 A 2-Approximation Algorithm

Based on the existence of a partial map whose mapping graph is acyclic, in Lemma 10
we constructively show that for every remote dominating set S in T there is a dominat-
ing set of cardinality at most 2|S| − 1.

Lemma 10. Let S be an RDS in T . Then there is a dominating set of cardinality at
most 2|S| − 1.

A minimum cardinality dominating set D∗ in T can be found in linear time [2], and
in the special case we consider, this set is also an RDS. Lemma 10 proves, in particular,
the existence of a dominating set whose cardinality is at most 2|OPT|−1, where OPT
is a minimum cardinality RDS in T . We have as a conclusion the following theorem.

Theorem 11. |D∗| ≤ 2|OPT| − 1.

In Lemma 12 we show that the bound given in Theorem 11 is tight, by providing
an instance with |D∗| = 2|OPT| − 1. We also demonstrate that in general graphs a
minimum cardinality dominating set does not guarantee a non-trivial approximation
ratio.

Lemma 12. There are instances in which |D∗| = 2|OPT| − 1. In addition, when the
underlying graph is not restricted to be a tree, there are instances with |OPT| = O(1)
and |D∗| = Ω(n).
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5 Euclidean RDS

In this section we present a polynomial time approximation scheme for the Euclidean
RDS problem, following the general framework suggested by Hochbaum and Maass
for covering and packing problems in Euclidean spaces [10]. The unifying idea behind
their shifting strategy is to repeatedly apply a simple divide-and-conquer approach and
select the best solution we find.

To simplify the presentation, we denote by P = {p1, . . . , pn} the set of points to be
covered, and let D = r2. We also assume that P is bounded in a rectangle I , where the
length of the long edge of I is nD. Otherwise, we can partition P into sets for which
this property is satisfied, and separately use the algorithm for each set.

The Vertical Partitions. We divide I into pairwise disjoint vertical strips of width D.
Given a shifting parameter l, the partition V0 of I consists of strips of width lD. For
every i = 1, . . . , l − 1, let Vi be the partition of I obtained by shifting V0 to the right
over distance iD.

For each partition Vi we define a set of points OPT(Vi) as follows. For every strip
J in the partition Vi, let OPT(Vi, J) be a minimum cardinality set of points in P that
covers the points PJ , where PJ is the set of points in P located in the strip J . Then
OPT(Vi) =

⋃
J∈Vi

OPT(Vi, J). Clearly, OPT(Vi) is an RDS.

Lemma 13. Let OPT be a minimum cardinality Euclidean RDS, then

min
i=0,...,l−1

|OPT(Vi)| ≤
(

1 +
2
l

)

|OPT| .

The Horizontal Partitions. We are now concerned with the problem of finding a small
set of points in P that covers PJ , for a given strip J . We divide J into pairwise disjoint
horizontal strips of height D. The partition H0 of J consists of strips of height lD. For
every i = 1, . . . , l − 1, let Hi be the partition of J obtained by shifting H0 up over
distance iD.

For each partition Hi we define a set of points OPT(Hi) as follows. For every strip
R in the partition Hi, let OPT(Hi, R) be a minimum cardinality set of points in P
that covers the points PR, where PR is the set of points in P located in the strip R.
Then OPT(Hi) =

⋃
R∈Hi

OPT(Hi, R). Clearly, OPT(Hi) is a set of points in P that
covers PJ .

Lemma 14. Let OPTJ be a minimum cardinality set of points in P that covers PJ ,
then

min
i=0,...,l−1

|OPT(Hi)| ≤
(

1 +
2
l

)

|OPTJ | .

Optimal Solution in an lD × lD Square. Lemmas 13 and 14 show that in order
to obtain a polynomial time approximation scheme for Euclidean RDS, it is sufficient
to optimally solve the following problem: Given R, an lD × lD square in I , find a
minimum cardinality set of points in P that covers PR. The next lemma allows us to
perform an exhaustive search for an optimal solution to this problem in time O(nO(l2)).
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Lemma 15. There is a set of points S ⊆ P , |S| = O(l2), that covers PR.

Theorem 16. There is a polynomial time approximation scheme for the Euclidean RDS
problem.

6 Group Cut on a Path

In this section we first discuss the hardness of approximating GCP, and prove that this
problem is as hard to approximate as set cover. We also identify the exact point at which
GCP becomes NP-hard. We then present a simple proof for the existence of a feasible
map M with respect to the optimal solution for which max(M, OPT) ≤ 2. This result,
combined with Lemma 1, enables us to show that the approximation ratio of the greedy
SCP algorithm for this special case is 2Hk.

6.1 Hardness Results

By describing an approximation preserving reduction, we prove in Theorem 17 that
GCP is as hard to approximate as set cover. A special case of this reduction also shows
that GCP is as hard to approximate as vertex cover even when the cardinality of each
group is at most 4. In addition, we prove in Lemma 18 that when the bound on cardi-
nality is 3, the problem is polynomial time solvable.

Theorem 17. A polynomial time approximation algorithm for the GCP problem with
factor α would imply a polynomial time approximation algorithm for the set cover
problem with the same factor.

Note that vertex cover is a special case of set cover in which each element belongs
to exactly two sets. Therefore, the proof of Theorem 17 can be modified to show that
GCP is as hard to approximate as vertex cover even when the cardinality of each group
is at most 4.

Lemma 18. GCP is polynomial time solvable when |Gi| ≤ 3 for every i = 1, . . . , k.

6.2 A Feasible Map with Small Max

Let F ⊆ E be any feasible solution, with |F | ≥ 2. In Lemma 19 we prove the existence
of a feasible map M : {G1, . . . , Gk} → P (F ) for which max(M, F ) ≤ 2.

Lemma 19. There is a feasible map M : {G1, . . . , Gk} → P (F ) with

max(M, F ) ≤ 2 .

Let OPT be a minimum cost set of edges that separates G1, . . . , Gk, and without
loss of generality |OPT| ≥ 2. The next theorem follows from Lemmas 1 and 19.

Theorem 20. The greedy SCP algorithm constructs a solution whose cost is at most
2Hk · c(OPT).
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7 Concluding Remarks

There is a huge gap between the upper bound for approximating the cardinality SCP
problem, that was established in Theorem 4, and the logarithmic lower bound that fol-
lows from the observation that SCP contains set cover as a special case. The first, and
probably the most challenging, open problem is to obtain either an improved hardness
result or an improved approximation algorithm. Another open problem in this context
is to provide a non-trivial algorithm for the general problem.

In addition, it would be interesting to study the seemingly simple special case, in
which each pair of objects covers at most one element. We proved that this problem is
at least as hard to approximate as set cover, but we do not know how to significantly
improve the approximation guarantee. Moreover, we consider this case to demonstrate
the main difficulty in approximating SCP, as it shows that the objective is to choose a
dense set of objects that covers all elements.

We suggest for future research the partial SCP problem, a variant of SCP in which
we are given an additional parameter k, and the objective is to cover at least k elements
with minimum cost. This problem is closely related to the dense k-subgraph problem,
that required to find in a given graph G = (V, E) a set of k vertices whose induced sub-
graph has maximum number of edges. This problem is NP-hard, and the currently best
approximation guarantee in general graphs is O(n−δ), for some constant δ < 1

3 , due
to Feige, Kortsarz and Peleg [5]. The next theorem relates these problems, and shows
that the approximation guarantee of dense k-subgraph can be improved by developing
an o(nδ/2)-approximation algorithm for partial SCP.

Theorem 21. A polynomial time α(k)-approximation algorithm for partial SCP would
imply a randomized polynomial time 1

α2(k2)(1+ε) -approximation algorithm for dense
k-subgraph, for any fixed ε > 0.
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