

Lecture Notes in Computer Science 3821
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

R. Ramanujam Sandeep Sen (Eds.)

FSTTCS 2005:
Foundations of
Software Technology
and Theoretical
Computer Science

25th International Conference
Hyderabad, India, December 15-18, 2005
Proceedings

13

Volume Editors

R. Ramanujam
The Institute of Mathematical Sciences
CIT Campus, Taramani, Chennai 600 113, India
E-mail: jam@imsc.res.in

Sandeep Sen
Indian Institute of Technology, Kharagpur 721302, India
E-mail: ssen@cse.iitkgp.ernet.in

Library of Congress Control Number: 2005937124

CR Subject Classification (1998): F.3, D.3, F.4, F.2, F.1, G.2

ISSN 0302-9743
ISBN-10 3-540-30495-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30495-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11590156 06/3142 5 4 3 2 1 0

Preface

This year marks a milestone in the history of FST&TCS, which first took place
in 1981. We would like to take this opportunity to express our appreciation of
the foresight and commitment to excellence shown by the early organizers of the
conference. The conference is now organized by IARCS (Indian Association for
Research in Computing Science), and the conference has been the foundation on
which the IARCS community has been built.

To commemorate the Silver Jubilee of FST&TCS, we had an extra day to
accommodate special sessions and a larger number of invited speakers. As in
previous years, we were fortunate to have a number of highly eminent researchers
giving plenary talks. It gives us great pleasure to thank Manindra Agrawal,
Tom Henzinger, Russell Impagliazzo, Raimund Seidel, Natarajan Shankar, Joel
Spencer and Igor Walukiewicz for agreeing to give talks and for contributing to
this volume.

This year’s conference attracted 167 submissions with authors from 29 coun-
tries. Except for some papers which were deemed to be out of scope by the
Program Committee (PC), each submission was reviewed by at least three mem-
bers of the PC, with help from many external reviewers. With 466 reviews at
hand, the PC deliberated for more than two weeks before finally selecting the
38 papers included in this volume. We thank all the reviewers for their invalu-
able help. The PC members put in a great deal of hard work to select the best
papers from the submissions. We express our gratitude to all PC members for
doing an excellent job. Special thanks are due to Kamal Lodaya for managing
the conference software as well.

FST&TCS included two pre-conference workshops: one on Algorithms in Net-
working coordinated by Amit Kumar (IIT Delhi) and Aravind Srinivasan (Uni-
versity of Maryland), and another on Software Verification coordinated by P.
Madhusudan (University of Illinois at Urbana Champaign) and Sriram Raja-
mani (Microsoft Research). We thank the organizers as well as the speakers at
the workshops for contributing so significantly to the program.

The conference was held at the International Institute of Information Tech-
nology, Hyderabad, and the satellite workshops at the adjoining campus of the
University of Hyderabad. We thank the Organizing Committee for taking on the
responsibility. We gratefully acknowledge the infrastructural help provided by
our institutes, the Institute of Mathematical Sciences, Chennai, and the Indian
Institute of Technology, Kharagpur.

We thank Springer for their continued support of FST&TCS over the years
in publishing the proceedings.

December 2005 R. Ramanujam and Sandeep Sen
Co-chairs, Program Committee,

FST&TCS 2005

VI 25 Years of FST&TCS

25 Years of FST&TCS VII

25 Years of FST&TCS

This Conference . . . is the first of its kind being held in India and it is
hoped that this would be the start of a series of such conferences to serve
as a forum for discussing at an advanced level . . .

Thus began the foreword to the proceedings of FST&TCS 1981. The conference
aimed to provide a forum for computer science in India, a window to the rest
of the world and, above all, a challenging environment in which critical analysis
would ensure that high quality was scrupulously maintained. FST&TCS has
fulfilled these early hopes, and may also claim to have set a standard for other
computer science conferences in the region.

In 1981, there were many unknowns and neither the financial requirements
nor participation from peers was assured. R. Narasimhan of Tata Institute of
Fundamental Research (TIFR) provided unstinted support in all forms includ-
ing funds and encouragement. Robin Milner looked past our shaky start (with
flaky microphones and a projector that worked some of the time) and urged us
to persevere. Maurice Nivat, the Keynote Speaker of FST&TCS 1981 and also
Editor-in-Chief of the journal Theoretical Computer Science at that time, offered
to bring out special issues of the journal from selected papers from the confer-
ence: this brought academic rigor as well as international visibility. From 1984
onwards, the proceedings have been published in the LNCS series by Springer.
Many distinguished computer scientists have been invited speakers and have also
contributed as reviewers.

Over the years, the series has redefined its goals. The focus has moved away
from some of the areas that were seen as important 20 years ago. There is today
altogether less focus on software technology and a great deal more on founda-
tions. FST&TCS has also been an important step in the growth of many careers
in India: many of the research students who hesitatingly submitted papers and
even more hesitatingly presented them are now senior computer scientists with
established reputations. In many ways, the maturing of FST&TCS has mir-
rored the maturing of computer science in India. The satellite workshops of the
conference on state-of-the-art topics and special tutorial workshops have greatly
helped to further research in India, especially for graduate students whose ability
to travel abroad for conferences is limited.

Finally, we must thank all those (from India and abroad) who submitted
papers, for sharing with us the belief that a conference like this was worth
having and long overdue.

Thus ended the preface in 1981 and initiated the long journey that has taken us
to 2005 with no fears of faltering.

December 2005 Mathai Joseph and R.K. Shyamasundar
Editors, FST&TCS 1981 Proceedings

VIII Organization

Organization

The 25th (Silver Jubilee) FST&TCS conference was held at the International
Institute of Information Technology, Hyderabad during December 15–18, 2005.
The associated workshops were held at the University of Hyderabad, India on
December 13 and December 14, 2005.

Program Committee

Luca Aceto, Aalborg/Reykjavik University
Mikhail Atallah, Purdue University
Anuj Dawar, Cambridge University
Paul Gastin, École Normale Supérieure de Cachan
Dimitra Giannakopoulou, NASA Ames Research Center
Sudipto Guha, University of Pennsylvania
Venkatesan Guruswami, University of Washington
Sariel Har Peled, University of Illinois at Urbana-Champaign
Samir Khuller, University of Maryland
Amit Kumar, Indian Institute of Technology Delhi
Kamal Lodaya, Institute of Mathematical Sciences, Chennai
P. Madhusudan, University of Illinois at Urbana-Champaign
Yossi Matias, Tel Aviv University
Anca Muscholl, Université Paris 7
Tobias Nipkow, Technische Universität München
Greg Plaxton, University of Texas at Austin
Sanjiva Prasad, Indian Institute of Technology Delhi
Jaikumar Radhakrishnan, TIFR, Mumbai and TTI, Chicago
G. Ramalingam, IBM Research
Rajeev Raman, University of Leicester
R. Ramanujam, Institute of Mathematical Sciences, Chennai (Co-chair)
Mark Reynolds, University Western Australia, Perth
Sandeep Sen, Indian Institute of Technology Kharagpur (Co-chair)
Santosh Vempala, Massachusetts Institute of Technology

Local Organizing Committee

R.K. Bagga, IIIT, Hyderabad
R. Govindarajulu, IIIT, Hyderabad
Prosenjit Gupta, IIIT, Hyd. (Chair)
H. Mohanty, Univ. of Hyderabad

Atul Negi, Univ. of Hyderabad
Arun K. Pujari, Univ. of Hyderabad
Kannan Srinathan, IIIT, Hyderabad
V.Ch. Venkaiah, IIIT, Hyderabad

Organization IX

Referees

Parosh Abdulla
Bharat Adsul
Klaus Aehlig
Pankaj Agarwal
Rajeev Alur
Boris Aronov
Christel Baier
Mohua Banerjee
Paul Beame
Arnold Beckmann
Eli Ben-Sasson
Béatrice Bérard
Mark de Berg
Binay Bhattacharya
Bruno Blanchet
Mikolaj Bojanczyk
Benedikt Bollig
Ahmed Bouajjani
Patricia Bouyer
Guillaume Brat
Mario Bravetti
Michele Bugliesi
Andrei Bulatov
Franck Cassez
Ilaria Castellani
Rohit Chadha
Amine Chaieb
Supratik Chakraborty
Timothy M. Chan
Krishnendu Chatterjee
Soma Chaudhuri
Chandra Chekuri
Meir Cohen
Hubert Comon
Graham Cormode
Giovanna D’Agostino
Deepak D’Souza
Victor Dalmau
Anupam Datta
Rowan Davies
Kalyanmoy Deb
Carole Delporte-Gallet
Stéphane Demri
X. Deng

Ewen Denney
Alin Dobra
Bruce Donald
Gilles Dowek
Alon Efrat
Zoltán Ésik
François Fages
Tomás Feder
Kaspar Fischer
Lance Fortnow
Cédric Fournet
Martin Fränzle
Tim French
Nicola Galesi
Naveen Garg
Rahul Garg
Blaise Genest
Thomas Genet
Hugo Gimbert
Leslie Goldberg
Dimitar Guelev
Rachid Guerraoui
Vladimir Gurvich
Stefan Haar
Boulos Harb
Ramesh Hariharan
Rafi Hassin
Nevin Heintze
Tom Henzinger
Miki Hermann
Thomas Hildebrandt
John Hitchcock
Michael Hoffmann
Lisha Huang
Joe Hurd
Hans Hüttel
Anna Ingólfsdóttir
Radu Iosif
François Irigoin
Franjo Ivančić
Radha Jagadeesan
Kamal Jain
David Janin
Marcin Jurdziński

Sanjiv Kapoor
Deepak Kapur
Srinivas Kashyap
Krishnaram Kenthapadi
Delia Kesner
Astrid Kiehn
David Kirkpatrick
Vladlen Koltun
Stefan Kreutzer
M.R.K. Krishna Rao
Karl Krukow
Michal Kunc
Orna Kupferman
Dietrich Kuske
Salvatore La Torre
V.S. Lakshmanan
Ralf Lämmel
Cosimo Laneve
François Laroussinie
Martin Leucker
Jean-Jacques Lévy
Nutan Limaye
Christof Löding
Markus Lohrey
Alessio Lomuscio
Etienne Lozes
Meena Mahajan
Mohammad Mahdian
Narciso Mart́ı-Oliet
Jean Mayo
Richard Mayr
David McAllester
Ron van der Meyden
Gatis Midrijanis
Peter Bro Miltersen
Alexandre Miquel
Bud Mishra
Mike Mislove
Joseph S.B. Mitchell
Mark Moir
Larry Moss
Asish Mukhopadhyay
Madhavan Mukund
Andrzej Murawski

X Organization

S. Muthukrishnan
K. Narayan Kumar
Rolf Niedermeier
Susana Nieva Soto
Yoshio Okamoto
S.P. Pal
Vinayaka Pandit
Paritosh Pandya
Amit Paradkar
Frank Pfenning
Reinhard Pichler
Val Pinciu
Amir Pnueli
Teresa Przytycka
Shaz Qadeer
Balaji Raghavachari
Sriram Rajamani
Edgar Ramos
Jean-François Raskin
Julian Rathke
Anders P. Ravn
Noam Rinetzky
Grigore Rosu
Tim Roughgarden
Yogish Sabharwal
Prahlad Sampath

Rahul Santhanam
Sudeshna Sarkar
Jayalal Sarma
Alan Schmitt
Gerardo Schneider
Philippe Schnoebelen
Falk Schreiber
Stefan Schwoon
Carsten Schürmann
Luc Segoufin
Géraud Sénizergues
Peter Sewell
Natarajan Shankar
Priti Shankar
Nikolay V. Shilov
Janos Simon
Sunil Simon
Aravinda Sistla
Milind Sohoni
Maria Sorea
Christoph Sprenger
Jiri Srba
Frank Stephan
Colin Stirling
C.R. Subramanian
S.P. Suresh

Fabien Tarissan
David Teller
Denis Thérien
P.S. Thiagarajan
Mitul Tiwari
Tayssir Touili
Stavros Tripakis
Kasturi Varadarajan
Moshe Vardi
Vinodchandran Variyam
Björn Victor
Mitchell Wand
Pascal Weil
Jennifer Welch
Ryan Williams
James Worrell
Bożena Woźna
Hiroaki Yamamoto
Noson S. Yanofsky
Nobuko Yoshida
Francesco Zappa Nardelli
Marc Zeitoun
Lisa Zhang
Wies�law Zielonka

Table of Contents

Invited Papers

Semiperfect-Information Games . 1
Krishnendu Chatterjee and Thomas A. Henzinger

Computational Complexity Since 1980 . 19
Russell Impagliazzo

Developments in Data Structure Research During the First 25 Years
of FSTTCS . 48
Raimund Seidel

Inference Systems for Logical Algorithms . 60
Natarajan Shankar

From Logic to Games . 79
Igor Walukiewicz

Proving Lower Bounds Via Pseudo-random Generators 92
Manindra Agrawal

Erdős Magic . 106
Joel Spencer

Contributed Papers

No Coreset, No Cry: II . 107
Michael Edwards and Kasturi Varadarajan

Improved Bounds on the Union Complexity of Fat Objects 116
Mark de Berg

On the Bisimulation Congruence in χ-Calculus . 128
Taolue Chen, Tingting Han, and Jian Lu

Extending Howe’s Method to Early Bisimulations for Typed Mobile
Embedded Resources with Local Names . 140
Jens Chr. Godskesen and Thomas Hildebrandt

Approximation Algorithms for Wavelength Assignment 152
Vijay Kumar and Atri Rudra

The Set Cover with Pairs Problem . 164
Refael Hassin and Danny Segev

XII Table of Contents

Non-disclosure for Distributed Mobile Code . 177
Ana Almeida Matos

Quantitative Models and Implicit Complexity . 189
Ugo Dal Lago and Martin Hofmann

The MSO Theory of Connectedly Communicating Processes 201
P. Madhusudan, P.S. Thiagarajan, and Shaofa Yang

Reachability of Hennessy-Milner Properties for Weakly Extended PRS . . 213
Mojmı́r Křet́ınský, Vojtěch Řehák, and Jan Strejček

Decision Procedures for Queues with Integer Constraints 225
Ting Zhang, Henny B. Sipma, and Zohar Manna

The Directed Planar Reachability Problem . 238
Eric Allender, Samir Datta, and Sambuddha Roy

Dimensions of Copeland-Erdös Sequences . 250
Xiaoyang Gu, Jack H. Lutz, and Philippe Moser

Refining the Undecidability Frontier of Hybrid Automata 261
Venkatesh Mysore and Amir Pnueli

When Are Timed Automata Weakly Timed Bisimilar to Time Petri
Nets? . 273
Beatrice Bérard, Franck Cassez, Serge Haddad, Didier Lime, and
Olivier H. Roux

Subquadratic Algorithms for Workload-Aware Haar Wavelet Synopses . . 285
S. Muthukrishnan

Practical Algorithms for Tracking Database Join Sizes 297
Sumit Ganguly, Deepanjan Kesh, and Chandan Saha

On Sampled Semantics of Timed Systems . 310
Pavel Krčál and Radek Pelánek

Eventual Timed Automata . 322
Deepak D’Souza and M. Raj Mohan

Causal Closure for MSC Languages . 335
Bharat Adsul, Madhavan Mukund, K. Narayan Kumar, and
Vasumathi Narayanan

Reachability Analysis of Multithreaded Software with Asynchronous
Communication . 348
Ahmed Bouajjani, Javier Esparza, Stefan Schwoon, and Jan Strejček

Table of Contents XIII

Probabilistic Analysis for a Multiple Depot Vehicle Routing Problem . . . 360
Andreas Baltz, Devdatt Dubhashi, Libertad Tansini, Anand Srivastav,
and Sören Werth

Computing the Expected Accumulated Reward and Gain for a Subclass
of Infinite Markov Chains . 372
Tomáš Brázdil and Antońın Kučera

Towards a CTL* Tableau . 384
Mark Reynolds

Bisimulation Quantified Logics: Undecidability . 396
Tim French

Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues
and Stacks . 408
Prasad Jayanti and Srdjan Petrovic

Monitoring Stable Properties in Dynamic Peer-to-Peer Distributed
Systems . 420
Sathya Peri and Neeraj Mittal

On the Expressiveness of TPTL and MTL . 432
Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey

Modal Strength Reduction in Quantified Discrete Duration Calculus 444
Shankara Narayanan Krishna and Paritosh K. Pandya

Comparing Trees Via Crossing Minimization . 457
Henning Fernau, Michael Kaufmann, and Mathias Poths

On Counting the Number of Consistent Genotype Assignments for
Pedigrees . 470
Jǐŕı Srba

Fixpoint Logics on Hierarchical Structures . 483
Stefan Göller and Markus Lohrey

The Equivalence Problem for Deterministic MSO Tree Transducers
Is Decidable . 495
Joost Engelfriet and Sebastian Maneth

Market Equilibrium for CES Exchange Economies: Existence,
Multiplicity, and Computation . 505
Bruno Codenotti, Benton McCune, Sriram Penumatcha, and
Kasturi Varadarajan

Testing Concurrent Systems: An Interpretation of Intuitionistic Logic 517
Radha Jagadeesan, Gopalan Nadathur, and Vijay Saraswat

XIV Table of Contents

Proofs of Termination of Rewrite Systems for Polytime Functions 529
Toshiyasu Arai and Georg Moser

On the Controller Synthesis for Finite-State Markov Decision Processes . . 541
Antońın Kučera and Oldřich Stražovský

Reasoning About Quantum Knowledge . 553
Ellie D’Hondt and Prakash Panangaden

Author Index . 565

Semiperfect-Information Games

Krishnendu Chatterjee1 and Thomas A. Henzinger1,2

1 University of California, Berkeley, USA
2 EPFL, Switzerland

{c krish,tah}@eecs.berkeley.edu

Abstract. Much recent research has focused on the applications of
games with ω-regular objectives in the control and verification of reactive
systems. However, many of the game-based models are ill-suited for these
applications, because they assume that each player has complete infor-
mation about the state of the system (they are “perfect-information”
games). This is because in many situations, a controller does not see
the private state of the plant. Such scenarios are naturally modeled by
“partial-information” games. On the other hand, these games are in-
tractable; for example, partial-information games with simple reachabil-
ity objectives are 2EXPTIME-complete.

We study the intermediate case of “semiperfect-information” games,
where one player has complete knowledge of the state, while the other
player has only partial knowledge. This model is appropriate in con-
trol situations where a controller must cope with plant behavior that
is as adversarial as possible, i.e., the controller has partial informa-
tion while the plant has perfect information. As is customary, we as-
sume that the controller and plant take turns to make moves. We
show that these semiperfect-information turn-based games are equiv-
alent to perfect-information concurrent games, where the two play-
ers choose their moves simultaneously and independently. Since the
perfect-information concurrent games are well-understood, we obtain
several results of how semiperfect-information turn-based games dif-
fer from perfect-information turn-based games on one hand, and from
partial-information turn-based games on the other hand. In particular,
semiperfect-information turn-based games can benefit from randomized
strategies while the perfect-information variety cannot, and semiperfect-
information turn-based games are in NP ∩ coNP for all parity objectives.

1 Introduction

Games on graphs. Games played on graphs play a central role in many areas
of computer science. In particular, when the vertices and edges of a graph repre-
sent the states and transitions of a reactive system, then the synthesis problem
(Church’s problem) asks for the construction of a winning strategy in a game
played on a graph [2,17,16,15]. Game-theoretic formulations have also proved
useful for the verification [1], refinement [11], and compatibility checking [6] of
reactive systems. Games played on graphs are dynamic games that proceed for

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 1–18, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 Krishnendu Chatterjee and Thomas A. Henzinger

an infinite number of rounds. In each round, the players choose moves; the moves,
together with the current state, determine the successor state. An outcome of
the game, called a play, consists of the infinite sequence of states that are visited.

Strategies and objectives. A strategy for a player is a recipe that describes
how the player chooses a move to extend a play. Strategies can be classified as
follows: pure strategies, which always deterministically choose a move to extend
the play, vs. randomized strategies, which may choose at a state a probability
distribution over the available moves; memoryless strategies, which depend only
on the current state of the play, vs. memory strategies, which may depend on
the history of the play up to the current state. Objectives are generally Borel
measurable functions [14]: the objective for a player is a Borel set B in the
Cantor topology on Sω (where S is the set of states), and the player satisfies
the objective iff the outcome of the game is a member of B. In verification,
objectives are usually ω-regular languages. The ω-regular languages generalize
the classical regular languages to infinite strings; they occur in the low levels of
the Borel hierarchy (they lie in Σ3 ∩Π3) and they form a robust and expressive
language for determining payoffs for commonly used specifications. The simplest
ω-regular objectives correspond to “safety” (the closed sets in the topology of Sω)
and “reachability” (the open sets).

Classification of games. Games played on graphs can be classified according to
the knowledge of the players about the state of the game, and the way of choosing
moves. Accordingly, there are (a) perfect-information games, where each player
has complete knowledge about the history of the play up to the current state,
and (b) partial-information (or incomplete-information) games, where a player
may not have complete knowledge about the current state of the game and the
past moves played by the other player. According to the way of choosing moves,
the games on graphs can be classified into turn-based and concurrent games. In
turn-based games, in any given round only one player can choose among multiple
moves; effectively, the set of states can be partitioned into the states where it is
player 1’s turn to play, and the states where it is player 2’s turn. In concurrent
games, both players may have multiple moves available at each state, and the
players choose their moves simultaneously and independently.

Perfect-information versus partial-information games. The perfect-
information turn-based (PT) games have been widely studied in the computer-
science community, and also have deep connections with mathematical logic.
For the algorithmic analysis of PT games with ω-regular objectives see, for ex-
ample, [9,10,19,12,20]. On the other hand, the perfect-information concurrent
(PC) games (also known as Blackwell games) have been studied mainly in the
game-theory community. Only recently has the algorithmic analysis of PC games
caught interest [7,5,8,3]. It is, however, the partial-information games which pro-
vide the most natural framework for modular verification and control. In prac-
tice, a process or a controller does not have access to the internal or private
variables of the other processes or the plant, and partial-information games are
the adequate model for such scenarios. Nonetheless, partial-information games
have received little attention in computer science, perhaps be due to the high

Semiperfect-Information Games 3

computational complexity of such games. Reif [18] showed that the decision
problem for partial-information turn-based games, even for simple reachability
objectives, is 2EXPTIME-complete (the same problem can be solved in linear
time for PT games, and lies in NP ∩ coNP for PC games [4]).
Semiperfect-information turn-based games. In this paper, we study a
subclass of partial-information turn-based games, namely, the semiperfect-
information turn-based (ST) games, where one player (player 1) has incomplete
knowledge about the state of the game and the moves of player 2, while player 2
has complete knowledge about the state and player 1 moves. The semiperfect-
information games are asymmetric, because one player has partial information
and the other player has perfect information. These games provide a better
model for controller synthesis than the perfect-information games. In controller
synthesis, the controller cannot observe the private variables of the plant and
hence has limited knowledge about the state of the game. However, the controller
ought to achieve its objective against all plant behaviors, and this uncondition-
ally adversarial nature of the plant is modeled most adequately by allowing the
plant to have complete knowledge about the game.
Semiperfect-information versus perfect-information games. The ST
games differ considerably from the PT games. In the case of PT games, for
every Borel objective Φ for player 1 and complementary objective Φ for player 2,
the determinacy result of Martin [13] establishes that for every state in the game
graph, either player 1 has a pure strategy to satisfy the objective Φ with cer-
tainty against all strategies of player 2; or player 2 has a pure strategy to satisfy
the objective Φ with certainty against all strategies of player 1. We show that,
in contrast, in ST games, in general the players cannot guarantee to win with
certainty, and randomized strategies are more powerful than pure strategies.

Example 1 (ST games). Consider the game shown in Fig. 1. The game is a
turn-based game, where the � states are player 1 states (where player 1 moves),
and the � states are player 2 states (where player 2 moves); we will follow this
convention in all figures. The game is a semiperfect-information game, as player 1
cannot distinguish between the two states in P1 = { s1, s2 }. Informally, if the
current state of the game is in P1, then player 1 knows that the game is in P1

but does not know whether the current state is s1 or s2. At state s0 player 2,
can choose between s1 and s2, which is indicated by the edge from s0 to P1. The
objective for player 1 is to reach the state s3, and the set of available moves for
player 1 at the states in P1 is { a, b }. Consider a pure strategy σ for player 1.
Consider the counter-strategy π for player 2 as follows: each time player 1 plays
move a, player 2 places player 1 at state s2 in the previous round, and the play
reaches s0; and each time player 1 plays move b, player 2 places player 1 at state
s1 in the previous round, and the play again reaches s0. Hence for every pure
strategy σ for player 1 there is a counter-strategy π for player 2 such that the
state s3 is never reached.

Now consider a randomized memoryless strategy σm for player 1 as follows:
σm plays the moves a and b each with probability 1/2. Given any strategy π for
player 2, every time P1 is reached, it reaches s3 with probability 1/2 and goes

4 Krishnendu Chatterjee and Thomas A. Henzinger

b

a

s3 s4

Rs2

s1

P1

a

b

s0

Fig. 1. A semiperfect-information turn-based game.

back to s0 with probability 1/2. Hence state s3 is reached with probability 1/2
for each visit to P1, and thus s3 is eventually reached with probability 1. Given
the strategy σm, consider a counter-strategy π for player 2 which always places
player 1 at state s1 every time the play reaches s0. Given the strategies σm and
π, there exist paths that never reach s3; however, the measure for the set of
those paths is 0. Hence, although player 1 can win with probability 1 from state
s0, she cannot win with certainty.

Semiperfect-information versus partial-information games. The class
of ST games is considerably simpler than the full class of partial-information
turn-based games. While the decision problem for partial-information turn-based
games with reachability objectives is 2EXPTIME-complete, we show that for ST
games the corresponding decision problem is in NP ∩ coNP for reachability and
also for general parity objectives (the parity objectives are a canonical represen-
tation for ω-regular objectives). This shows that the ST games can be solved
considerably more efficiently than general partial-information turn-based games.

Outline of our main results. We show that though ST games differ from
PT games, there is a close connection between ST (turn-based) games and PC
(concurrent) games. In fact, we establish the equivalence of ST games and PC
games: we present reductions of ST games to PC games, and vice versa. The PC
games have been proposed as a framework for modeling synchronous interactions
in reactive systems [7,1]. Our reductions show that such games also provide a
framework for analyzing ST games. We obtain several results on ST games from
the equivalence of ST games and PC games. The main results are as follows:

– The optimum value for a player for an objective Φ is the maximal proba-
bility with which the player can ensure that Φ is satisfied. We establish the
quantitative determinacy for ST games with arbitrary Borel objectives: for
all ST games with objective Φ for player 1 and complementary objective Φ
for player 2, the sum of the optimum values for the players at all states is 1.

– The optimum values of ST games with parity objectives can be approxi-
mated, for any given error bound, in NP ∩ coNP. We give an example show-
ing that the optimum values may be irrational in ST games with reachability
objectives; this indicates that optimum values can only be approximated.

Semiperfect-Information Games 5

– We analyze, for various classes of parity objectives, the precise memory re-
quirements for strategies to ensure the optimal values of ST games within a
given error bound.

2 Definitions

In this section we define semiperfect-information turn-based games, strategies,
objectives, and values in such games. We later define perfect-information con-
current games and the corresponding notion of strategies, objectives, and values.

2.1 Semiperfect-Information Turn-Based Games

A turn-based game is played over a finite state space by two players (player 1
and player 2), and the players make moves in turns. In games with perfect infor-
mation each player has complete knowledge about the state and the sequence of
moves made by both players. In contrast, in games with semiperfect information
player 1 has partial knowledge about the state and the moves of player 2, whereas
player 2 has complete knowledge about the state and the moves of player 1.
Turn-based game structures. A turn-based game structure G =
((S1, S2),≈,M, Γ1, Γ2, δ) is a tuple with the following components:

1. Two finite, disjoint sets S1 and S2 of states. The state space S of the game
structure is their union, i.e., S = S1∪S2. The states in S1 are player 1 states
and the states in S2 are player 2 states.

2. An equivalence relation≈ on S. The restriction of ≈ to S1 induces a partition
P1 of the set S1 of player 1 states, and the restriction of ≈ to S2 induces a
partition P2 of S2. Let P = P1 ∪ P2 be the corresponding partition of the
entire state space S.

3. A finite set M of moves for the two players.
4. Two functions Γ1: S1 → 2M\∅ and Γ2: S2 → 2M\∅. Each function Γi, for

i = 1, 2, assigns to every state s ∈ Si a nonempty set Γi(s) ⊆ M of moves
that are available to player i at state s.

5. Two functions δ1: S1×M → S2 and δ2: S2×M → S1. The transition function
δ1 for player 1 gives for every state s ∈ S1 and available move a ∈ Γ1(s) a
successor state δ1(s, a) ∈ S2. The transition function δ2 for player 2 gives for
every state s ∈ S2 and move b ∈ Γ2(s) a successor state δ2(s, b) ∈ S1.

Semiperfect-information turn-based games. In semiperfect-information
turn-based (ST) games player 1’s view of the game structure is only partial:
player 1 knows the ≈-equivalence class of the current state, but not the precise
state in that class. We formalize this by separating the visible and invisible parts
of player 2’s moves and transitions.

– The move assignment Γ2 for player 2 consists of two parts: Γ vis
2 assigns to

every state s ∈ S2 a nonempty set Γ vis
2 (s) ⊆ M of available visible moves

for player 2 at state s; and Γ inv
2 assigns to every equivalence class P ∈ P1

6 Krishnendu Chatterjee and Thomas A. Henzinger

a nonempty set Γ inv
2 (P) ⊆M of available invisible moves for player 2 at P .

Intuitively, player 1 can observe the set of visible moves of player 2, but she
cannot observe the invisible moves of player 2.

– The transition function δ2 for player 2 consists of two parts: the visible
transition function δvis

2 : S2×M → P1 gives for every state s ∈ S2 and move
a ∈ Γ vis

2 (s) a successor class δvis
2 (s, a) ∈ P1; and the invisible transition

function δinv
2 : P1 ×M → S1 gives for every equivalence class P ∈ P1 and

move a ∈ Γ inv
2 (P) a successor state δinv

2 (P, a) ∈ P .

Note that the definition of ST games reduces to classical perfect-information
turn-based games if ≈ is equality, i.e., if each equivalence class of ≈ is a singleton.

Example 2 (Games with variables). A game with variables between player 1 and
player 2 consists of a four-tuple (V pvt

1 , V pub
1 , V pvt

2 , V pub
2) of boolean variables.

The set V pvt
i , for i = 1, 2, is the set of private variables for player i, which player i

can observe and update, but the other player can neither observe nor update. The
set V pub

i is the set of public variables for player i, which both players can observe
but only player i can update. A state of the game is a valuation of all variables
in V = V pvt

1 ∪ V pub
1 ∪ V pvt

2 ∪ V pub
2 . Player 1 and player 2 alternately update the

variables in V1 = V pvt
1 ∪V pub

1 and in V2 = V pvt
2 ∪V pub

2 , respectively. For player 1,
a nondeterministic update function u1 is given by its private component upvt

1 :
[V1 ∪ V pub

2] → 2[V pvt
1] and its public component upub

1 : [V1 ∪ V pub
2] → 2[V pub

1],
where [U] is the set of valuations for the variables in U . The nondeterministic
player 2 update function is given similarly. We consider the special case that
V pvt

1 = ∅, i.e., player 1 has no private variables, and hence player 2 has complete
knowledge of the state. This special class of games with variables can be mapped
to ST games as follows:

– Two states are equivalent if they agree on the valuation of the variables in
V pub

1 ∪ V pub
2 . This defines the equivalence relation ≈.

– The update function upub
1 is represented by the move assignment Γ1 and

transition function δ1 for player 1. The update function upub
2 is represented

by the visible move assignment Γ vis
2 and visible transition function δvis

2 for
player 2. The update function upvt

2 is represented by the invisible move as-
signment Γ inv

2 and invisible transition function δinv
2 for player 2.

These games provide a model for controller synthesis: player 1 is the controller
and player 2 represents the plant. The private plant state is unknown to the
controller, but the plant has complete knowledge about the state. If both V pvt

1

and V pvt
2 are empty, we have perfect-information turn-based games.

Remarks. For technical and notational simplicity we make two simplifying as-
sumptions. First, we assume that for all equivalence classes P ∈ P1, if s, s′ ∈ P ,
then Γ1(s) = Γ1(s′), i.e., player 1 has the same set of moves available in all
states of an equivalence class. This restriction does not cause any loss of gener-
ality. Suppose that choosing a move a 	∈ Γ1(s) at a state s causes player 1 to
lose immediately. For P ∈ P1, if the sets of available moves are not identical

Semiperfect-Information Games 7

for all states s ∈ P , let A =
⋃
s∈P Γ1(s). Then the equivalence class P can be

replaced by P ′ such that the sets of states in P and P ′ are the same, and the set
of available moves for all states in P ′ is A. For a state s ∈ P and a move a ∈ A
with a 	∈ Γ1(s), in the new equivalence class P ′, the successor state δ1(s, a) is
losing for player 1.

Second, we assume that for all equivalence classes P ∈ P1 and all states
s ∈ P , there exists a move a ∈ Γ inv

2 (P) such that δinv
2 (P, a) = s. In other words,

in each equivalence class P player 2 has the choice to move to any state in P .
Hence, if P = {s1, . . . , sk }, then Γ inv

2 (P) = {1, . . . , k} and δinv
2 (P, j) = sj for all

j ∈ {1, . . . , k}. In games with variables, this corresponds to the assumption that
player 2 can update the variables in V pvt

2 in all possible ways, i.e., player 1 has no
knowledge about the moves of player 2. We now argue that also this restriction
does not result in a loss of generality in the model. Given a ST game structure
G, suppose that for some state s ∈ S2, the possible transitions to states in an
equivalence class P ∈ P1 target a strict subset Z � P . We transform the game
structure G as follows: (a) add a copy of the subset Z of states; (b) the states
in the copy Z are player 1 states and Z is an equivalence class; (c) the visible
transition of player 2 goes from state s to Z instead of P ; and (d) the transition
function for player 1 for the states in Z follow the transition function for the
corresponding states of the original structure G. Observe that the number of
subsets of states that are added by this transformation is bounded by the size of
the transition function of the original game structure. Hence the blow-up caused
by the transformation, to obtain an equivalent ST game structure that satisfies
the restriction, is at worst quadratic in the size of the original game structure.
Notation. The partial-information (or hiding) function ρ: S → P maps every
state s ∈ S to its equivalence class, i.e., ρ(s) = P ∈ P if s ∈ P . The set E of
edges is defined as follows:

E = { (s, s′) | s ∈ S1, s
′ ∈ S2, (∃a ∈ Γ1(s))(δ1(s, a) = s′) }

∪ { (s, s′) | s ∈ S2, s
′ ∈ S1, (∃a ∈ Γ vis

2 (s))(δvis
2 (s, a) = P and s′ ∈ P) }.

A play ω = 〈s0, s1, s2, . . .〉 is an infinite sequence of states such that for all j ≥ 0,
we have (sj , sj+1) ∈ E. We denote by Ω the set of all plays. Given a finite se-
quence 〈s0, s1, . . . , sk〉 of states, we write ρ(〈s0, s1, . . . , sk〉) for the corresponding
sequence 〈ρ(s0), ρ(s1), . . . , ρ(sk)〉 of equivalence classes. The notation for infinite
sequence of states is analogous.

For a countable set A, a probability distribution on A is a function μ: A →
[0, 1] such that

∑
a∈A μ(a) = 1. We denote the set of probability distributions

on A by D(A). Given a distribution μ ∈ D(A), we denote by Supp(μ) = {x ∈
A | μ(x) > 0} the support of μ.
Strategies. A strategy for player 1 is a recipe of how to extend a play. Player 1
does not have perfect information about the states in the play; she only knows
the sequence of equivalence classes where the given play has been. Hence, for
a finite sequence 〈s0, s1, . . . , sk〉 of states representing the history of the play
so far, the view for player 1 is given by ρ(〈s0, s1, . . . , sk〉). Given this view of
the history, player 1’s strategy is to prescribe a probability distribution over

8 Krishnendu Chatterjee and Thomas A. Henzinger

the set of available moves. Formally, a strategy σ for player 1 is a function σ:
ρ(S∗ · S1) → D(M), such that for all finite sequences 〈s0, s1, . . . , sk〉 of states
such that sk ∈ S1, and for all moves a ∈ M , if σ(ρ(〈s0, s1, . . . , sk〉))(a) > 0,
then a ∈ Γ1(sk). The strategy σ for player 1 is pure if for all 〈s0, s1, . . . , sk〉 such
that sk ∈ S1, there is a move a ∈ Γ1(sk) with σ(ρ(〈s0, s1, . . . , sk〉))(a) = 1, i.e.,
for all histories the strategy deterministically chooses a move. The strategy σ is
memoryless if it is independent of the history of the play and only depends on
the current state. Formally, a memoryless strategy σ for player 1 is a function σ:
ρ(S1) → D(M). A strategy is pure memoryless if it is both pure and memoryless,
i.e., it can be represented as a function σ: ρ(S1) →M .

A strategy for player 2 is a recipe for player 2 to extend the play. In contrast
to player 1, player 2 has perfect information about the history of the play and
precisely knows every state in the history. Given the history of a play such that
the last state is a player 2 state, player 2 chooses a probability distribution
over the set of available visible moves to select an equivalence class P ∈ P1, and
also chooses a probability distribution over the set of available invisible moves to
select a state in P . Formally, a strategy π for player 2 consists of two components:

– a function πvis: S∗ ·S2 → D(M) such that for all 〈s0, s1, . . . , sk〉 with sk ∈ S2,
if πvis(〈s0, s1, . . . , sk〉)(a) > 0, then a ∈ Γ vis

2 (sk);
– a function πinv: S∗ · S2 · P1 → D(M) such that for all 〈s0, s1, . . . , sk, Pk+1〉

with sk ∈ S2 and Pk+1 ∈ P1, if πinv(〈s0, s1, . . . , sk, Pk+1〉)(a) > 0, then
a ∈ Γ inv

2 (Pk+1).

The strategy π for player 2 is pure if both component strategies πvis and πinv

are pure. Similarly, the strategy π is memoryless if both component strategies
πvis and πinv are memoryless; and it is pure memoryless if it is pure and mem-
oryless. We denote by Σ and Π the sets of strategies for player 1 and player 2,
respectively. We write ΣP , ΣM , and ΣPM for the sets of pure, memoryless, and
pure memoryless strategies for player 1, respectively. The analogous classes of
strategies for player 2 are defined similarly.

Objectives. We specify objectives for the two players by providing sets Φi ⊆ Ω
of winning plays for each player i. In this paper we study only zero-sum games,
where the objectives of the two players are strictly competitive. In other words,
it is implicit that if the objective of one player 1 is Φ1, then the objective of
player 2 is Φ2 = Ω \ Φ1. In the case of semi-perfect information games, the
objective Φ1 of player 1 is specified as a subset of Pω, rather than an arbitrary
subset of Sω; this is because player 1 cannot distinguish between the states of
an equivalence class. In the setting of games with variables (Example 2), this
means that the objective of player 1 gives a property of the traces over the public
variables of both players. Given an objective Φ ⊆ Pω, we write Ω \ Φ, short for
the complementary objective {ρ(ω) | ω ∈ Ω} \ Φ.

A general class of objectives are the Borel objectives [13]. A Borel objective
Φ ⊆ Pω is a Borel set in the Cantor topology on Pω. In this paper we consider
ω-regular objectives [19], which lie in the first 21/2 levels of the Borel hierarchy.
The ω-regular objectives, and subclasses thereof, can be specified in the following

Semiperfect-Information Games 9

forms. For a play ω = 〈s0, s1, s2, . . .〉 ∈ Ω, we define Inf(ρ(ω)) = { ρ(s) ∈ P |
sk = s for infinitely many k ≥ 0 } to be the set of equivalence classes that occur
infinitely often in ω.

– Reachability and safety objectives. Given a set T ⊆ P of “target” equivalence
classes, the reachability objective requires that some equivalence class in T be
visited. The set of winning plays is Reach(T) = {ρ(ω) | ω = 〈s0, s1, s2, . . .〉 ∈
Ω, and ρ(sk) ∈ T for some k ≥ 0 }. Given a set F ⊆ P , the safety objec-
tive requires that only equivalence classes in F be visited. Thus, the set of
winning plays is Safe(F) = { ρ(ω) | ω = 〈s0, s1, s2, . . .〉 ∈ Ω, and ρ(sk) ∈
F for all k ≥ 0 }.

– Büchi and coBüchi objectives. Given a set B ⊆ P of “Büchi” equiva-
lence classes, the Büchi objective requires that B is visited infinitely of-
ten. Formally, the set of winning plays is Büchi(B) = { ρ(ω) | ω ∈
Ω and Inf(ρ(ω))∩B 	= ∅}. Given C ⊆ P , the coBüchi objective requires that
all equivalence classes that are visited infinitely often, are in C. Hence, the
set of winning plays is coBüchi(C) = { ρ(ω) | ω ∈ Ω and Inf(ρ(ω)) ⊆ C }.

– Parity objectives. For c, d ∈ N, let [c..d] = { c, c + 1, . . . , d }. Let p: P →
[0..d] be a function that assigns a priority p(P) to every equivalence class
P ∈ P , where d ∈ N. The even-parity objective is defined as Parity(p) =
{ρ(ω) | ω ∈ Ω and min

(
p(Inf(ρ(ω)))

)
is even}, and the odd-parity objective

is coParity(p) = { ρ(ω) | ω ∈ Ω and min
(
p(Inf(ρ(ω)))

)
is odd }. Note that

for a priority function p: P → { 0, 1 }, the even-parity objective Parity(p) is
equivalent to the Büchi objective Büchi(p−1(0)), i.e., the Büchi set consists
of the equivalence class with priority 0.

We say that a play ω satisfies an objective Φ ⊆ Pω if ρ(ω) ∈ Φ. Given a state
s ∈ S and strategies σ ∈ Σ, π ∈ Π for the two players, the outcome of the game
is a probability distribution over the set Ω of plays, and every Borel objective Φ
is a measurable subset. The probability that the outcome of the game satisfies
the Borel objective Φ starting from state s following the strategies σ and π is
denoted Prσ,πs (Φ).
Values of the game. Given an objective Φ for player 1 and a state s, the
maximal probability with which player 1 can ensure that Φ is satisfied from
s, is called the value of the game at s for player 1. Formally, we define the
value functions 〈〈1〉〉val and 〈〈2〉〉val for players 1 and 2 as follows: 〈〈1〉〉val (Φ)(s) =
supσ∈Σ infπ∈Π Prσ,πs (Φ); and 〈〈2〉〉val (Ω\Φ)(s) = supπ∈Π infσ∈Σ Prσ,πs (Ω\Φ). A
strategy σ for player 1 is optimal from state s for objective Φ if 〈〈1〉〉val (Φ)(s) =
infπ∈Π Prσ,πs (Φ). The strategy σ for player 1 is ε-optimal, for a real ε ≥ 0, from
state s for objective Φ if infπ∈Π Prσ,πs (Φ) ≥ 〈〈1〉〉val (Φ)(s) − ε. The optimal and
ε-optimal strategies for player 2 are defined analogously.
Sure, almost-sure, and limit-sure winning strategies. Given an objec-
tive Φ, a strategy σ is a sure winning strategy for player 1 from a state s
for Φ if for every strategy π of player 2, every play ω that is possible when
following the strategies σ and π from s, belongs to Φ. The strategy σ is an
almost-sure winning strategy for player 1 from s for Φ if for every strategy π

10 Krishnendu Chatterjee and Thomas A. Henzinger

of player 2, Prσ,πs (Φ) = 1. A family ΣC of strategies is limit-sure winning for
player 1 from s for Φ if supσ∈ΣC infπ∈Π Prσ,πs (Φ)(s) = 1. See [7,5] for formal
definitions. The sure, almost-sure, and limit-sure winning strategies for player 2
are defined analogously. The sure winning set 〈〈1〉〉sure(Φ), the almost-sure win-
ning set 〈〈1〉〉almost (Φ), and the limit-sure winning set 〈〈1〉〉limit (Φ) for player 1 for
objective Φ are the sets of states from which player 1 has sure, almost-sure, and
limit-sure winning strategies, respectively. The sure winning set 〈〈2〉〉sure(Ω \Φ),
the almost-sure winning set 〈〈2〉〉almost (Ω \ Φ), and the limit-sure winning set
〈〈2〉〉limit (Ω \ Φ) for player 2 are defined analogously.

Observe that the limit-sure winning set is the set of states with value 1,
which is the classical notion of qualitative winning. It follows from the defini-
tions that for all game structures and all objectives Φ, we have 〈〈1〉〉sure(Φ) ⊆
〈〈1〉〉almost (Φ) ⊆ 〈〈1〉〉limit (Φ) and 〈〈2〉〉sure(Ω \ Φ) ⊆ 〈〈2〉〉almost (Ω \ Φ) ⊆
〈〈2〉〉limit (Ω \ Φ). Computing sure, almost-sure, and limit-sure winning sets and
strategies is referred to as the qualitative analysis of games; computing values,
as the quantitative analysis.
Sufficiency of a family of strategies. Given a family ΣC of player 1 strategies,
we say that the family ΣC suffices with respect to an objective Φ on a class G
of game structures for

– sure winning if for every game structure G ∈ G and state s ∈ 〈〈1〉〉sure(Φ),
there is a player 1 sure winning strategy σ ∈ ΣC from s for Φ;

– almost-sure winning if for every structure G ∈ G and state s ∈ 〈〈1〉〉almost (Φ),
there is a player 1 almost-sure winning strategy σ ∈ ΣC from s for Φ;

– limit-sure winning if for every structure G ∈ G and state s ∈ 〈〈1〉〉limit (Φ),
supσ∈ΣC infπ∈Π Prσ,πs (Φ) = 1;

– ε-optimality, for ε ≥ 0, if for every game structure G ∈ G and state s
of G, there is a player 1 strategy σ ∈ ΣC such that 〈〈1〉〉val (Φ)(s) − ε ≤
infπ∈Π Prσ,πs (Φ). Sufficiency for optimality is the special case of sufficiency
for ε-optimality with ε = 0.

Theorem 1 (Perfect-information turn-based games). The following as-
sertions hold for all perfect-information turn-based (PT) games:

1. [13] For all Borel objectives Φ, the sets 〈〈1〉〉sure(Φ) and 〈〈2〉〉sure(Ω \Φ) form
a partition of the state space.

2. [13] The family ΣP of pure strategies suffices for sure winning with respect
to all Borel objectives.

3. [9] The family ΣPM of pure memoryless strategies suffices for sure winning
with respect to all parity objectives.

It follows from Theorem 1 that in the case of PT games the values can be
either 1 or 0. We show that, in contrast, ST games can have values other than 1
and 0. Example 1 shows that in general we have 〈〈1〉〉sure(Φ) � 〈〈1〉〉almost (Φ) in
ST games, even for reachability objectives Φ. The next example shows that in
general 〈〈1〉〉almost (Φ) � 〈〈1〉〉limit (Φ) in ST games, again for reachability objec-
tives Φ. We also show that sure determinacy (Part 1 of Theorem 1) does not

Semiperfect-Information Games 11

a

b a

b

R R

a
b

a

b

(a) (b)

s5 s6 s5

P1

P3

P1

P3

s0

s4s3

s0

s3 s4 s6

s1 s2 s1 s2

P2 P2

Fig. 2. Values and limit-sure winning states in ST games.

hold for ST games, and that randomized strategies are more powerful than pure
strategies in ST games.

Example 3 (Values and limit-sure winning in ST games). Consider the two
games shown in Fig. 2(a) and Fig. 2(b). The two state partitions for player 1
are Pa1 = Pb1 = { P1, P2, P3 } with P1 = { s1, s2 }, P2 = { s5 }, and P3 = { s6 }.
In both games, the set of moves available to player 1 in P1 = { s1, s2 } is { a, b }.
The transitions are shown in the figures. The game starts at the state s0 and
the objective for player 1 is to reach the state s3, i.e., Reach({ s3 }).
Values. Consider the game shown in Fig. 2(a). For every pure strategy σ ∈ ΣP for
player 1, consider a counter-strategy π for player 2 as follows: if player 1 chooses
move a, then player 2 places player 1 at state s2; and if player 1 chooses move b,
then player 2 places player 1 at state s1. Hence the game reaches s4 and player 1
looses. The player 1 strategy σ ∈ ΣM that plays move a and b with probability
1/2, reaches state s3 with probability 1/2 against all strategies for player 2. For
every player 1 strategy σ that chooses move a with greater probability than
move b, the counter-strategy for player 2 places player 1 at state s2; and for
every player 1 strategy σ that chooses move b with greater probability than
move a, the counter-strategy for player 2 places player 1 at state s1. It follows
that the value for player 1 at state s0 is 1/2. Thus the sure-determinacy result
for PT games does not extend to ST games.
Limit-sure winning. Consider the game shown in Fig. 2(b). For ε > 0, con-
sider the memoryless player 1 strategy σε ∈ ΣM that plays move a with prob-
ability 1 − ε, and move b with probability ε. The game starts at s0, and in
each round, if player 2 chooses state s2, then the game reaches s3 with prob-
ability ε and comes back to s0 with probability 1 − ε; whereas if player 2
chooses state s1, then the game reaches state s3 with probability 1 − ε and
state s4 with probability ε. Hence, given the strategy σε for player 1, the
game reaches s3 with probability at least 1 − ε against all strategies π for
player 2. Therefore s0 ∈ 〈〈1〉〉limit (Reach({ s3 })). However, we now argue that

12 Krishnendu Chatterjee and Thomas A. Henzinger

s3 	∈ 〈〈1〉〉almost (Reach({ s3 })), and thus also s0 	∈ 〈〈1〉〉sure(Reach({ s3 })). To
prove this claim, given a strategy σ for player 1, consider the following counter-
strategy π for player 2: for k ≥ 0, in round 2k + 1, if player 1 plays move a with
probability 1, then at round 2k player 2 chooses state s2 and ensures that s3 is
reached with probability 0, and the game reaches s0 in round 2k + 2; otherwise,
if player 1 plays move b with positive probability in round 2k + 1, then player 2
in round 2k chooses state s1, and the game reaches s4 with positive probability.
It follows that s0 	∈ 〈〈1〉〉almost (Reach({ s3 })).

2.2 Perfect-Information Concurrent Games

In contrast to turn-based games, where the players make their moves in turns,
in concurrent games both players choose their moves simultaneously and inde-
pendently of each other.

Perfect-information concurrent game structures. A perfect-information
concurrent (PC) game structure G = (S,M, Γ1, Γ2, δ) is a tuple that consists of
the following components:

– A finite state space S and a finite set M of moves.
– Two move assignments Γ1, Γ2: S → 2M \∅. For i = 1, 2, the move assignment

Γi associates with each state s ∈ S a nonempty set Γi(s) ⊆ M of moves
available to player i at state s.

– A deterministic transition function δ: S × M × M → S which gives the
successor state δ(s, a, b) from state s when player 1 chooses move a ∈ Γ1(s)
and player 2 chooses move b ∈ Γ2(s).

Strategies, objectives, and values. A strategy σ for player 1 is a function
σ: S+ → D(M) such that for all 〈s0, s1, . . . , sk〉 if σ(〈s0, s1, . . . , sk〉)(a) > 0,
then a ∈ Γ1(sk). The strategies for player 2 are defined similarly. The classes
of pure, memoryless, and pure memoryless strategies are defined as in the case
of ST games. The definitions for objectives and values are also analogous to
the definitions for ST games. Concurrent games satisfy a quantitative version of
determinacy formalized in the next theorem.

Theorem 2 (Quantitative determinacy [14]). For all PC games, Borel
objectives Φ, and states s, we have 〈〈1〉〉val (Φ)(s) + 〈〈2〉〉val (Ω \ Φ)(s) = 1.

3 Equivalence of ST Games and PC Games

In this section we show the equivalence of ST games and PC games. We first
present a reduction from ST games to PC games.

From ST games to PC games. Consider an ST game structure G =
((S1, S2),≈,M, Γ1, Γ2, δ). We construct a PC game structure α(G) =
(Ŝ, M̂ , Γ̂1, Γ̂2, δ̂) as follows:

Semiperfect-Information Games 13

(a,1) (b,1)

(a,2)

(a,2)
(b,1)(b,2)

(a,1)

ŝ0

P̂1

P̂2 ŝ3 ŝ4 P̂3

ŝ0

P̂1

P̂2 ŝ3 ŝ4 P̂3

(b,2)

(b)(a)

Fig. 3. PC games for the ST games of Fig. 2.

– State space. Let Ŝ = { ŝ | s ∈ S2 } ∪ { P̂ | P ∈ P1 }. For a state s ∈ S,
we write α(s) for ρ̂(s) ∈ Ŝ, i.e., if s ∈ S2, then α(s) = ŝ; and if s ∈ S1 and
s ∈ P ∈ P1, then α(s) = P̂ . Also, given a state ŝ ∈ Ŝ, we define a map β(ŝ)
as follows: if s ∈ S2 and α(s) = ŝ, then β(ŝ) = s; else β(ŝ) = s′ for some
s′ ∈ P with ŝ = P̂ .

– Move assignments. For every state s ∈ S2, let Γ̂2(ŝ) = Γ vis
2 (s) and Γ̂1(ŝ) =

{⊥}. For every equivalence class P ∈ P1 with P = {s1, . . . , sk }, let Γ̂1(P̂) =
Γ1(s1) and Γ̂2(P̂) = Γ inv

2 (P) = { 1, . . . , k }. Let M̂ =
⋃
ŝ∈Ŝ

(
Γ̂1(ŝ) ∪ Γ̂2(ŝ)

)
.

– Transition function. For every state ŝ ∈ Ŝ and all moves (a, b) ∈ Γ̂1(ŝ) ×
Γ̂2(ŝ), let

δ̂(ŝ, a, b) =

{
α(δvis

2 (β(ŝ), b)) if β(ŝ) ∈ S2,

α(δ1(sb, a)) if ŝ = P̂ for P = { s1, . . . , sk } ∈ P1.

Intuitively the concurrent state P̂ captures the following idea: player 2
chooses the move b ∈ Γ inv

2 (P) to place player 1 at the state sb ∈ P ; and
player 1 chooses a move from Γ1(s) for s ∈ P . The joint moves a for player 1
and b for player 2, together with the player 1 transition function δ1, deter-
mines the transition function δ̂ of the concurrent game.

Example 4. Fig. 3 shows the PC game structures that correspond to the ST
game structures of Fig. 2, mainly illustrating the reduction for the equivalence
class P1 = { s1, s2 }.

Strategy maps. Let Σ̂ and Π̂ be the sets of player 1 and player 2 strategies in
the game structure α(G). Given two strategies σ ∈ Σ and π ∈ Π in the ST
structure G, we define corresponding strategies α(σ) ∈ Σ̂ and α(π) ∈ Π̂ in the
PC structure α(G) as follows:

α(σ)(〈ŝ0, ŝ1, . . . , ŝk〉) =

{
play ⊥ with probability 1 if β(ŝk) ∈ S2,

σ(ρ(〈β(ŝ0), β(ŝ1), . . . , β(ŝk)〉)) otherwise;

14 Krishnendu Chatterjee and Thomas A. Henzinger

α(π)(〈ŝ0, ŝ1, . . . , ŝk〉) =

{
πvis(〈β(ŝ0), β(ŝ1), . . . , β(ŝk)〉) if β(ŝk) ∈ S2,

πinv(〈β(ŝ0), β(ŝ1), . . . , ρ(β(ŝk))〉) otherwise.

Similarly, given strategies σ̂ ∈ Σ̂ and π̂ ∈ Π̂ for the two players in the concurrent
structure α(G), we define corresponding strategies β(σ̂) ∈ Σ and β(π̂) ∈ Π in
the turn-based structure G as follows:

β(σ̂)(ρ(〈s0, s1, . . . , sk〉)) = σ̂(〈α(s0), α(s1), . . . , α(sk)〉) if sk ∈ S1;
β(π̂)vis(〈s0, s1, . . . , sk〉) = π̂(〈α(s0), α(s1), . . . , α(sk)〉) if sk ∈ S2;

β(π̂)inv(〈s0, s1, . . . , sk, Pk+1〉) = π̂(〈α(s0), α(s1), . . . , α(sk), P̂k+1〉).

Given an objective Φ ⊆ Pω for the ST game structure G, we denote by
α(Φ) ⊆ Ŝω the corresponding objective for the PC game structure α(G), which
is formally defined as α(Φ) = { 〈ŝ0, ŝ1, ŝ2, . . .〉 | ρ(〈β(ŝ0), β(ŝ1), β(ŝ2), . . .〉) ∈ Φ}.

Lemma 1 (ST games to PC games). For all ST game structures G with
Borel objectives Φ,

1. for all player 1 strategies σ and player 2 strategies π in G, and for all states
s of G, we have Prσ,πs (Φ) = Prα(σ),α(π)

α(s) (α(Φ));
2. for all player 1 strategies σ̂ and player 2 strategies π̂ in the PC game struc-

ture α(G), and all states ŝ of α(G), we have Prσ̂,π̂ŝ (α(Φ)) = Prβ(σ̂),β(π̂)
β(ŝ) (Φ).

From PC games to ST games. Consider a PC game structure
G = (S,M, Γ1, Γ2, δ). We construct an ST game structure γ(G) =
((S̃1, S̃2), (P̃1, P̃2), M̃ , Γ̃1, Γ̃2, δ̃) as follows:

Every state s ∈ S with Γ1(s) = A and Γ2(s) = { 1, . . . , k } is replaced by
a gadget consisting of a player 2 state s̃ with an edge to an equivalence
class P̃ ∈ P̃1 such that P̃ = { s̃1, . . . , s̃k } and
1. Γ̃ vis

2 (s̃) = { b}, Γ̃ inv
2 (P̃) = { 1, . . . , k }, and Γ̃1(s̃j) = A for all s̃j ∈ P̃ ;

2. δ̃vis
2 (s̃, b) = P̃ , δ̃inv

2 (P̃ , j) = s̃j , and δ̃1(s̃j , a) = γ(δ(s, a, j)), where
given a state s ∈ S, we denote by γ(s) the state s̃ ∈ S̃2.

For a state pair (s̃, s̃′) ∈ S̃2, let λ(s̃, s̃′) be the state s ∈ S with γ(s) = s̃.

Example 5. Consider the PC game shown in Fig. 4(a). The set of available
moves for player 1 at the states s2 and s3 is { a, b }, and for player 2, it is
{ 1, 2 }. Fig. 4(b) shows an equivalent ST game, illustrating the translation of
the concurrent states s2 and s3.

Given an objective Φ ⊆ Sω for the PC game structure G, we define the cor-
responding objective γ(Φ) ⊆ P̃ω for the ST game structure γ(G) as γ(Φ) =
{ ρ(〈s̃0, s̃1, s̃2, . . .〉) | 〈λ(s̃0, s̃1), λ(s̃2, s̃3), . . .〉 ∈ Φ }. Similar to the previous re-
duction, there exist simple translations γ: Σ → Σ̃ and γ: Π → Π̃ mapping
strategies in the game structure G to strategies in γ(G), and reverse translations
λ: Σ̃ → Σ and λ: Π̃ → Π mapping strategies in γ(G) to strategies in G such
that the following lemma holds.

Semiperfect-Information Games 15

b

a

a

b

a b
a

b

(b)

es0

es1

es2

es3

es
1
2

es
2
2

es
1
3 es

1
3

s1
(b,1)

s2

(a,2)
(b,1)

s3

(a,2)

(a,1)
(b,2)

(a,1)
(b,2)

s0

(a)

Fig. 4. A PC game with irrational values and the corresponding ST game.

Lemma 2 (PC games to ST games). For all PC game structures G with
Borel objectives Φ,

1. for all player 1 strategies σ and player 2 strategies π in G, and for all states
s of G, we have Prσ,πs (Φ) = Prγ(σ),γ(π)

γ(s) (γ(Φ));
2. for all player 1 strategies σ̃ and player 2 strategies π̃ in the ST game structure

γ(G), and for all states s̃ of γ(G), we have Prσ̃,π̃s̃ (γ(Φ)) = Prλ(σ),λ(π)
λ(s̃,s̃) (Φ).

The following theorem follows from Lemma 1 and Lemma 2.

Theorem 3 (Equivalence of ST and PC games).

1. For every ST game structure G, there is a PC game structure α(G) such
that for all Borel objectives Φ and all states s of G, we have 〈〈1〉〉val (Φ)(s) =
〈〈1〉〉val (α(Φ))(α(s)).

2. For every PC game structure G, there is an ST game structure γ(G) such
that for all Borel objectives Φ and all states s of S, we have 〈〈1〉〉val (Φ)(s) =
〈〈1〉〉val (γ(Φ))(γ(s)).

Example 6 (ST games with irrational values). Consider the PC game shown in
Fig. 4(a). The objective of player 1 is to reach the state s0. Recall that the set
of available moves for player 1 at the states s2 and s3 is {a, b}, and for player 2,
it is { 1, 2 }. Let the value for player 1 at state s2 be x. The player 1 strategy σ
that plays the moves a and b with probability 1/2 at s3 ensures that the value for
player 1 at state s3 is at least x/2. Similarly, the player 2 strategy π that plays
the moves 1 and 2 with probability 1/2 at s3 ensures that the value for player 1
at state s3 is at most x/2. Hence, the value for player 1 at state s3 is x/2. It
follows from the characterization of the values of concurrent games as fixpoints
of values of matrix games [8] that

x = min max
[

1 x
2

0 1

]

16 Krishnendu Chatterjee and Thomas A. Henzinger

where the operator min max denotes the optimal value in a matrix game. The
solution for x is achieved by solving the following optimization problem:

minimize x subject to c +
(
(1 − c) · x

)
/2 ≤ x and 1− c ≤ x.

Intuitively, c is the probability to choose move a in an optimal strategy. The
solution to the optimization problem is achieved by setting x = 1 − c. Hence,
c + (1 − c)2/2 = (1 − c), which implies (1 + c)2 = 2. Since c must lie in the
interval [0, 1], we conclude that c =

√
2− 1. Thus the value for player 1 at state

s2 is x = 2−
√

2. By Theorem 3 it follows that the player 1 value at state s̃3 is
also x/2, which is irrational.

Values and determinacy of ST games. Example 3 shows that the sure
determinacy of PT games does not extend to ST games. Example 6 shows
that the values in ST games can be irrational even for reachability objectives.
Theorem 2 and Theorem 3 establish the quantitative determinacy for ST games.

Corollary 1 (Values and determinacy of ST games).

1. There exists an ST game with a reachability objective Φ and a state s such
that s 	∈ (〈〈1〉〉sure(Φ) ∪ 〈〈2〉〉sure(Ω \ Φ)).

2. There exists an ST game with a reachability objective Φ and a state s such
that the value 〈〈1〉〉val (Φ)(s) for player 1 at s for Φ is irrational.

3. For all ST games, all Borel objectives Φ, and all states s, we have
〈〈1〉〉val (Φ)(s) + 〈〈2〉〉val (Ω \ Φ)(s) = 1.

Computational complexity of ST games. The result of [18] shows that
computing sure winning sets in the general case of partial-information turn-
based games, which correspond to games with variables (Example 2) where all
four variable sets V pvt

1 , V pub
1 , V pvt

2 , and V pub
2 are nonempty, is 2EXPTIME-

complete for reachability objectives. Even in the simpler case when V pub
1 = ∅ or

V pub
2 = ∅, the problem is still EXPTIME-complete. We show that ST games,

which correspond to the subclass of games with variables with V pvt
1 = ∅, can

be solved considerably more efficiently. The approach to solve a ST game by
a reduction to an exponential-size PT game, using a subset construction, only
yields the sure winning sets. However, solving ST games by our reduction to PC
games allows the arbitrarily precise and more efficient computation of values.

Corollary 2 (Complexity of ST games). For all ST games, all parity ob-
jectives Φ, and all states s,

1. whether s ∈ 〈〈1〉〉sure(Φ) or s ∈ 〈〈1〉〉almost (Φ) or s ∈ 〈〈1〉〉limit (Φ) can each be
decided in NP ∩ coNP;

2. for all rational constants r and ε > 0, whether 〈〈1〉〉val (Φ)(s) ∈ [r − ε, r + ε]
can be decided in NP ∩ coNP.

Proof. For all ST games the reduction to PC games is achieved in linear time.
The complexity for computing qualitative winning sets (Part 1 of the corollary)
follows from the results of [5]. The complexity for approximating values (Part 2)
follows from the results of [3].

Semiperfect-Information Games 17

Table 1. Family of strategies for various objectives, where ΣPM denotes the fam-
ily of pure memoryless strategies, ΣM denotes the family of randomized memo-
ryless strategies, and ΣHI denotes the family of randomized history-dependent,
infinite-memory strategies.

objective sure almost-sure limit-sure ε-optimal

safety ΣPM ΣPM ΣPM ΣM

reachability ΣPM ΣM ΣM ΣM

coBüchi ΣPM ΣM ΣM ΣM

Büchi ΣPM ΣM ΣHI ΣHI

parity ΣPM ΣHI ΣHI ΣHI

Sufficiency of strategies for ST games. Our reduction of ST games to PC
games and the characterization of memory requirements for PC games with
parity objectives [5,3] gives the following corollary.

Corollary 3 (ε-optimal strategies for ST games). The most restrictive
family of strategies that suffices for sure, almost-sure, and limit-sure winning,
and for ε-optimality with ε > 0, for ST games with respect to different classes
of parity objectives is given in Table 1.

4 Conclusion

We introduced and analyzed ST (semiperfect-information turn-based) games,
the subclass of partial-information turn-based games where one player has par-
tial knowledge about the state of the game and the other player has complete
knowledge. These games provide a better model for controller synthesis than PT
(perfect-information turn-based) games, by allowing the plant to have private
variables that are inaccessible to the controller, and they can be solved at much
lower computational costs than the full class of partial-information turn-based
games. We established the equivalence of ST games and PC (perfect-information
concurrent) games and thus precisely characterize the class of ST games.

Semiperfect-information turn-based stochastic games. The class of ST
stochastic games is the generalization of ST games where the transition function
is probabilistic rather than deterministic. Similarly, the PC stochastic games
are the generalization of PC games with probabilistic transition functions. The
equivalence of ST games and PC games extends to the stochastic case in a
straight-forward manner, i.e., the ST stochastic games can be reduced to PC
stochastic games, and vice versa. The reductions are similar to the reductions
for the nonstochastic case. Consequently, results analogous to Theorem 3, Corol-
lary 1, Corollary 2, and Corollary 3 follow for ST stochastic games.

Acknowledgments. This research was supported in part by the AFOSR MURI
grant F49620-00-1-0327 and the NSF ITR grant CCR-0225610.

18 Krishnendu Chatterjee and Thomas A. Henzinger

References

1. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49:672–713, 2002.

2. J.R. Büchi and L.H. Landweber. Solving sequential conditions by finite-state
strategies. Transactions of the AMS, 138:295–311, 1969.

3. K. Chatterjee, L. de Alfaro, and T.A. Henzinger. The complexity of quantitative
concurrent parity games. In SODA 06. ACM Press, 2006.

4. K. Chatterjee, R.Majumdar, and M. Jurdziński. On Nash equilibria in stochastic
games. In CSL 04, volume 3210 of LNCS, pages 26–40. Springer, 2004.

5. L. de Alfaro and T.A. Henzinger. Concurrent omega-regular games. In LICS 00,
pages 141–154. IEEE Computer Society Press, 2000.

6. L. de Alfaro and T.A. Henzinger. Interface theories for component-based design.
In EMSOFT 01, volume 2211 of LNCS, pages 148–165. Springer, 2001.

7. L. de Alfaro, T.A. Henzinger, and O. Kupferman. Concurrent reachability games.
In FOCS 98, pages 564–575. IEEE Computer Society Press, 1998.

8. L. de Alfaro and R. Majumdar. Quantitative solution of omega-regular games. In
STOC 01, pages 675–683. ACM Press, 2001.

9. E.A. Emerson and C. Jutla. The complexity of tree automata and logics of pro-
grams. In FOCS 88, pages 328–337. IEEE Computer Society Press, 1988.

10. E.A. Emerson and C. Jutla. Tree automata, mu-calculus, and determinacy. In
FOCS 91, pages 368–377. IEEE Computer Society Press, 1991.

11. T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. Information
and Computation, 173:64–81, 2002.

12. M. Jurdzinski. Small progress measures for solving parity games. In STACS 00,
volume 1770 of LNCS, pages 290–301. Springer, 2000.

13. D.A. Martin. Borel determinacy. Annals of Mathematics, 102:363–371, 1975.
14. D.A. Martin. The determinacy of Blackwell games. The Journal of Symbolic Logic,

63:1565–1581, 1998.
15. R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied

Logic, 65:149–184, 1993.
16. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL 89,

pages 179–190. ACM Press, 1989.
17. P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-event

processes. SIAM Journal of Control and Optimization, 25:206–230, 1987.
18. J.H. Reif. Universal games of incomplete information. In STOC 79, pages 288–308.

ACM Press, 1979.
19. W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages,

volume 3, chapter 7, pages 389–455. Springer, 1997.
20. J. Vöge and M. Jurdziński. A discrete strategy improvement algorithm for solving

parity games. In CAV 00, volume 1855 of LNCS, pages 202–215. Springer, 2000.

Computational Complexity Since 1980

Russell Impagliazzo�

Department of Computer Science
University of California, San Diego

La Jolla, CA 92093-0114
russell@cs.ucsd.edu

1 Introduction

The field of computational complexity is reaching what could be termed mid-
dle age, with over forty years having passed since the first papers defining the
discipline. With this metaphor in mind, the early nineteeneighties represented
the end of adolescence for the area, the time when it stopped wondering what it
would be when it grew up. During the childhood period of the sixties, research
centered on establishing the extent to which computational complexity, or the
inherrent computational resources required to solve a problem, actually existed
and was well-defined.

In the early seventies, Cook (with contributions from Edmonds, Karp and
Levin) gave the area its central question, whether P equals NP . Much of this
decade was spent exploring the ramifications of this question. However, as the
decade progressed, it became increasingly clear that Pvs.NP was only the
linking node of a nexus of more sophisticated questions about complexity. Re-
searchers began to raise computational issues that went beyond the time com-
plexity of well-defined decision problems by classical notions of algorithm.

Some of the new questions that had arisen included:

– Hardness of approximation: To what extent can NP -hardness results be
circumvented? More precisely, which optimization problems can be efficiently
solved approximately?

– Average-case complexity: Does NP -hardness mean that intractible instances
of a problem actually arise? Or can we devise heuristics that solve typical
instances? Which problems can be solved on “most” instances?

– Foundations of cryptography: Can computational complexity be used as
a foundation for cryptography? What kind of computational hardness is
needed for such a cryptography? ([DH], [RSA])

– Power of randomness: What is the power of randomized algorithms? Should
randomized algorithms replace deterministic ones to capture the intuitive
notion of efficient computation? ([Ber72],[Rab80], [SS79], [Sch80], [Gill]).

� Research supported by NSF Award CCF0515332, but views expressed here are not
endorsed by the NSF.

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 19–47, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

20 Russell Impagliazzo

– Circuit complexity: Which problems require many basic operations to com-
pute in non-uniform models such as Boolean or arithmetic circuits? How
does the circuit complexity of problems relate to their complexity in uni-
form models?

– Constructive combinatorics: Many mathematically interesting objects, such
as from extremal graph theory, are proved to exist non-constructively, e.g.,
through the probabilistic method. When can these proofs be made construc-
tive, exhibiting explicit and easily computable graphs or other structures
with the desired properties?

This is a very incomplete list of the issues that faced complexity theory. My
choice of the above topics is of course biased by my own research interests and by
the later history of the area. For example, at the time, any list of important ar-
eas for complexity would include time-space tradeoffs and parallel computation,
which I will have to omit out of my own concerns for time and space. However,
it is fair to say that all of the topics listed were and remain central questions in
computational complexity.

It is somewhat sad that we still do not know definitive answers to any of these
questions. However, in the last twenty-five years, a number of significant and, at
the time, highly counter-intuitive, connections have been made between them.
The intervening period has made clear that, far from being six independent
issues that will be addressed separately, the questions above are all interwoven
to the point where it is impossible to draw clear boundaries between them. This
has been established both by direct implications (such as, “If any problem in
E requires exponential circuit size, then P = BPP”) and by the transferance
of issues and techniques that originated to address one question but ended up
being a key insight into others.

In the following, we will attempt to trace the evolution of some key ideas in
complexity theory, and in particular highlight the work linking the above list of
questions. Our central thesis is that, while the work of the sixties showed that
complexity theory is a well-defined field of mathematics, and that of the seventies
showed how important this field is, the work since then has demonstrated the
non-obvious point that complexity theory is best tackled as a single, united field,
not splintered into specialized subareas. Of course, due to the clarity of hindsight,
we may be biased in picking topics that support this thesis, but we feel that the
existence of so many interrelated fundamental questions is prima facia evidence
in itself.

2 Some Key Techniques in Complexity

A common complaint about complexity theory used to be that complexity the-
orists took an ad hoc approach to their field, rather than developing a set of
unifying and deep techniques. We will attempt to show that this complaint, if it
were ever true, is obsolete. In particular, we will trace a few fundamental techni-
cal approaches that have evolved to become essential tools that span complexity.

Computational Complexity Since 1980 21

1. Arithmetization Complexity studies mainly Boolean functions, with discrete
zero-one valued inputs and outputs. In essence, arbitrary Boolean functions
are just strings of bits, and hence have no fundamental mathematical prop-
erties. The technique of arithmetization is to embed or interpolate a Boolean
function within a algebraic function, such as a polynomial. This can be used
algorithmically (to perform operations on functions), or conceptually (to
reason about the nature of functions computable with low complexity).
While introduced as a tool for proving lower bounds on circuits, arithmeti-
zation has evolved into a fundamental approach to complexity, and is now
essential in the study of interactive proofs, hardness of approximation, learn-
ing theory, cryptography, and derandomization.

2. Error-correcting codes As mentioned before, a Boolean function can be iden-
tified with a string of bits. The process of arithmetization became understood
as computing a code on this string, to obtain a version of the function that
codes the original function redundantly. Many of the applications of arith-
metization are in fact consequences of the good error-correction properties
of this coding. This made decoding algorithms of various kinds essential to
complexity.

3. Randomness Complexity theorists frequently view the hardness of a problem
as a contest between a solver (trying to solve instances of the problem) and
an unknown adversary, trying to create intractible instances. Game theory
suggests that the best strategies for such a game might have to be random-
ized. Perhaps this is one reason why randomness plays such a huge role in
complexity. In any case, randomized computation has become the default
model for reasoning in complexity, even when reasoning about deterministic
algorithms or circuits.

4. Pseudo-randomness and computational indistinguishability The flip side of
randomness is pseudo-randomness. As mentioned earlier, randomness often
comes into the arguements even when we want to reason about determin-
istic computation. We then want to eliminate the randomness. When does
a deterministic computation look “random enough” that it can be safely
substituted for the randomness in a computation? More generally, when do
two distributions look sufficiently “similar” that conclusions about one can
be automatically tranferred to another? The core idea of computational in-
distinguishablity is that, when it is computationally infeasible to tell two
distributions apart, then they will have the same properties as far as effi-
cient computation is concerned. This simple idea originating in cryptography
has percolated throughout complexity theory. Different contexts have differ-
ent answers to what is “random enough”, based on the type of computation
that will be allowed to distinguish between the two.

5. Constructive extremal graph theory Randomness had a similar role in com-
binatorics. In particular, randomly constructed graphs and other structures
often had desireable or extreme combinatorial properties. This raised the
challenge of coming up with specific constructions of structures with similar
properties. This can be thought of as particular cases of derandomization,
which links it to the previous topic. In fact, there are connections both

22 Russell Impagliazzo

ways: “derandomizing” the probabilistic constructions of extremal graphs
gives new constructions of such graphs; constructions of such graphs give
new ways to derandomize algorithms.

3 The Challenges to Complexity as of 1980

During the 1970’s, it became clear (if it wasn’t already) that the field had to
go beyond deterministic, worst-case, time complexity, and beyond techniques
borrowed from recursion theory. “Traditional” complexity was challenged by the
following results and issues:

Circuit complexity Circuit complexity, the number of Boolean operations
needed to compute functions, was a major impetus to much foundational
work in complexity. Riordan and Shannon ([RS]) had introduced circuit
complexity in 1942, and had shown, non-constructively, that most Boolean
functions require exponential circuit size. However, there were no natural
functions that were known to require large circuits to compute. The first
challenge that lay before complexity theory was to find examples of such
functions.
A related challenge is the circuit minimization problem. This is circuit com-
plexity viewed algorithmically: given a Boolean function, design the circuit
computing the function that uses the minimum number of gates. This seems
harder than proving a lower bound for a specific function, since such an al-
gorithm would in some sense characterize what makes a function hard. In
his Turing Award lecture ([K86]), Karp reports that it was in attempting
to program computers to solve circuit minimization that he became aware
of the problem of exponential time. In the Soviet Bloc, Yablonski ([Yab])
was motivated by this problem to introduce the notion of perebor, usually
translated as “brute-force search”. (Unfortunately, he also falsely claimed to
have proved that perebor was necessary for this problem.)
There was much work in circuit complexity before 1980; see [We87] for ref-
erences. However, for natural Boolean functions, the hardness results were
relatively minor, in the sense of proving only small polynomial bounds on
circuit size, and only for restricted models. Even now, no one knows any
super-linear bound for a function computable in strictly exponential (2O(n))
time. (It is possible to simply define a Boolean function as “The lexico-
graphically first Boolean function that requires exponential circuit size”.
This function will be in the exponential hierarchy, so functions hard for EH
will require exponential size circuits. In his 1974 thesis, Stockmeyer gave a
specific function, true sentences of weak monadic second-oder theory of the
natural numbers with successor, whose circuit size is almost the maximum
possible. However, the proof is by showing that this function is hard for
EXPSPACE. To make the lower bound challenge precise, we can formalize
a “natural” function as one that has reasonably low uniform complexity.)

Cryptography In [DH], Diffie and Hellman pointed towards basing cryptogra-
phy on the inherrent computational intractibility of problems. Shortly after-

Computational Complexity Since 1980 23

wards, [RSA] gave a suggestion of a public-key cryptosystem based on the
intractibility of factoring. This raised the question, how hard are factoring
and other number-theoretic problems? Are they NP -complete? More impor-
tantly, is it relevant whether they are NP -complete? One of the main chal-
lenges of cryptography is that, while intractibility is now desireable, hard-
ness is no longer simply the negation of easiness. In particular, worst-case
hardness is not sufficient for cryptography; one needs some notion of reli-
able hardness. While [DH] discusses the difference between worst-case and
average-case complexity, a formal notion was not fully described. The chal-
lenge presented to complexity-theory circa 1980 was to clarify what kinds
of hardness constituted useful hardness for cryptography, and what kinds of
evidence could be used to argue that specific problems had such hardness.

Randomized algorithms A phenomenon that arose during the 1970’s was the
use of random choices in designing efficient algorithms. In 1972, Berlekamp
gave a probabilistic algorithm to factor polynomials ([Ber72]). Later, Solovay
and Strassen [SS79] and Rabin [Rab80] gave such algorithms for the classical
problem of primality. A third example was the Schwartz-Zippel polynomial-
identity testing algorithm ([Sch80], [Zip79]). Another interesting randomized
algorithm was given in [AKLLR], where it is shown that a sufficiently long
random walk in an undirected graph visits all nodes within the connected
component of the starting node. This shows reachability in undirected graphs
can be computed in logarithmic space by a randomized algorithm.

These algorithms presented a challenge to the then recently adopted stan-
dard that (deterministic) polynomial-time captured the intuitive notion of
tractible computation, the so-called time-bounded Church’s Thesis. Should
deterministic or randomized polynomial time be the default standard for
efficient computation? This question was formalized by Gill ([Gill]), who
defined the now standard complexity classes corresponding to probabilis-
tic algorithms with different error conditions, P ⊆ ZPP ⊆ RP ⊆ BPP ⊆
PP ⊆ PSPACE. Of course, it could be that the above notions are identical,
that P = ZPP = RP = BPP . Unlike for P vs NP , there was no consensus
about this. On the one hand, in his 1984 NP -completeness column ([J84]),
Johnson refers to the above containments and states “It is conjectured that
all of these inclusions are proper.” In contrast, Cook in his 1982 Turing
Award lecture ([C83]) says, “It is tempting to conjecture yes [that RP = P]
on the philisophical grounds that random coin tosses should not be of much
use when the answer sought is a well-defined yes or no.” (It should be noted
that neither is willing to actually make a conjecture, only to discuss the
possibiltiy of conjectures being made.)

If the two models are in fact different, then it still needs to be decided which
is the right model of computation. If one is interested in computation possible
within the physical world, this then becomes a question of whether random
bits are physically obtainable. Of course, quantum mechanics suggests that
the universe is inherrently probabilistic. (We can knowingly realize the ge-
nie that this consideration will eventually let out of the bottle.) However,

24 Russell Impagliazzo

this does not mean that fair random bits are physically obtainable, another
question which will grow in importance.

Random-like graphs and structures Meanwhile, in combinatorics, random-
ness has long played a role in showing that objects exist non-constructively.
Erdos’s probabilistic method is perhaps the most important tool in the area.
In particular, there are certain very desireable properties of graphs and other
structures which hold almost certainly under some simple probability distri-
bution, but where no specific, constructive example is known. For example,
random graphs were known to be good expanders and super-concentrators.
Deterministic constructions could come close to the quality of random graphs
([GG]) but didn’t match them.
If we use the standard for “constructive” as polynomial-time computable (in
the underlying size), these properties of random graphs can be thought of
as examples of the power of randomized algorithms. A coin-tossing machine
can easily construct graphs with these properties, but no deterministic ma-
chine was known to be able to. More subtly, question of whether randomized
algorithms can be derandomized can be viewed as a special case of the con-
struction of “quasi-random objects”. Let S = {x1, ..xm} be a (multi)-set of
n bit strings. We call S an n, s hitting set if for any circuit C with n inputs
and at most s gates, if Probx[C(x) = 1] > 1/2 then ∃i, C[xi] = 1. In other
words, a hitting set can produce witnesses of satisfiability for any circuit
with ample numbers of such witnesses. Adleman ([Adl78]) proved that RP
had small circuits by giving a construction via the probabilistic method of
a small (m = poly(n, s)) hitting set. If we could deterministically produce
such a set, then we could simulate any algorithm in RP by using each mem-
ber of the hitting set (setting s equal to the time the randomized algorithm
takes and n as the number of random bits it uses) as the random choices
for the algorithm. We accept if any of the runs accepts. (More subtly, it was
much later shown in [ACRT] that such a hitting set could also derandomize
algorithms with two-sided error, BPP .)
A similar notion was introduced by [AKLLR]. A n node universal traversal
sequence is a set of directions to take so that following them causes a walk
in any n-node undirected graph to visit the entire connected component of
the starting place. They showed that random sequences of polynomial length
were universal. Constructing such a sequence would place undirected connec-
tivity in L. Heintz and Schnorr HS introduced the notion of perfect test set,
a set of input sequences to an arithmetic circuit one of which would disprove
any invalid polynomial identity. They showed a probabilistic construction
(for identities over any field, and whose size is independent of the field size.)
In fact, we can also view the problem of constructing a hard function for
circuit complexity as another example of making the probabilistic method
constructive. Riordan and Shannon’s proof established that almost all func-
tions require exponential circuit complexity. If we construct such a function
in polynomial-time (in, say, its truth-table size, 2n), this would produce a
hard function in E.

Computational Complexity Since 1980 25

To close the circle, observe that constructing a polynomial-size hitting set
would also produce a hard function. Let S(n, s) = {x1, ..xm} be a hitting set
constructed in poly(s) time. Then let k = logm + 1 = O(log s) and define a
Boolean function f(y) on k bit inputs by: f(y) = 1 if and only if y is not a
prefix of any xi. With the choice of k as above, f(y) = 1 with probability at
least 1/2, so if C computed f with less than s gates, C′(y1..yn) = C(y1..yk)
would have to be 1 for some xi in S, which contradicts the definition of f . f is
computable in time poly(s) = 2O(k), so f ∈ E and requires s = 2Ω(k) circuit
complexity. This simple proof does not seem to appear in print until the late
nineties. However, the analagous result for aritmetic circuit complexity (a
perfect hitting set construction implies an arithmetic circuit lower bound) is
in [HS].

4 Meeting the Challenges

We can see that even before 1980, there were a number of connections apparrent
between these questions. As complexity went forward, it would discover more
and deeper connections. In the following sections, we will attempt to highlight a
few of the discoveries of complexity that illustrate both their intellectual periods
and these connections.

5 Cryptography, the Muse of Modern Complexity

As mentioned earlier, the growth of modern cryptography motivated a new type
of complexity theory. In fact, many of the basic ideas and approaches of modern
complexity arose in the cryptographic literature. Especially, the early 1980’s were
a golden age for cryptographic complexity.

Complexity theory and modern cryptography seemed a match made in heaven.
Complexity theorists wanted to understand which computational problems were
hard; cryptographers wanted to use hard problems to control access to infor-
mation and other resources. At last, complexity theorists had a reason to root
for problems being intractible! However, it soon became clear that cryptography
required a new kind of complexity. Some of the issues complexity was forced to
deal with were:

Reliable intractibility: Complexity theory had followed algorithm design in
taking a conservative approach to definitions of tractibility. A problem being
tractible meant that it was reliably solved by an algorithm that always ran
quickly and always produced the correct result. This is a good definition of
“easy computational problem”. But the negation of a conservative definition
of “easy” is a much too liberal to be a useful notion of “hard”, especially
when even occasional easy instances of a problem would compromise security
completely. To handle this, complexity theory had to move beyond worst-case
complexity to an understanding of distributional or average-case complexity.
Once complexity moved to the average-case, it was necessary

26 Russell Impagliazzo

Randomized computing: A deterministic algorithm is equally accessible to
everyone, intended user and attacker alike. Therefore, cryptographic prob-
lems must be generated randomly. This made randomized computation the
default model for cryptography. Randomized algorithms moved from being
viewed as an exotic alternative to the standard model.

Going beyond completeness: Most of the computational problems used in
cryptography fall within classes like NP ∩ Co − NP or UP that do not
seem to have complete problems. Cryptosystems that were “based” on NP -
complete problems were frequently broken. This had to do with the gap
between worst-case and average-case complexity. However, even after Levin
introduced average-case complete problems ([Lev86]), it was (and is) still
unknown whether these can be useful in cryptography. Complexity theory
had to have new standards for believable intractibility that were not based
on completeness.

Adversaries and fault-tolerant reductions: While the notion of complete-
ness was not terribly helpful, the notion of reduction was essential to the
new foundations for cryptography. However, it needed to be dramatically
altered. When talking about reductions between average-case problems, one
needed to reason about oracles that only solved the problem being reduced
to some fraction of the time (while believing that no such oracles actually
are feasible). Since we don’t know exactly what function this oracle performs
the rest of the time, it seems the only safe approach is to view the oracle
as being created by an “adversary”, who is out to fool the reduction. Thus,
what is needed is a fault-tolerant approach to reductions, where the small
fraction of true answers can be used despite a large fraction of incorrect
answers. This would link cryptography with other notions of fault-tolerant
computation, such as error-correcting codes.

Computation within an evolving social context: In traditional algorithm
design, and hence traditional complexity, the input arrived and then the
problem had to be solved. In cryptography, there had to be communication
between the parties that determined what the problem to be solved was.
Cryptography was in essence social and interactive, in that there was almost
always multiple, communicating parties performing related computations.
In particular, this meant that an attacker could partially determine the in-
stance of the problem whose solution would crack the system. Complexity
theory had to go beyond reasoning about the difficulty of solving problems
to understand the difficulty of breaking protocols, patterns of interleaving
communication and computation.

In retrospect, it is astonishing how quickly a complexity-theoretic founda-
tions for cryptography that addressed all of these issues arose. Within a decade
of Diffie and Hellman’s breakthrough paper, complexity-based cryptography had
established strong, robust definitions of security for encryption and electronic sig-
natures, and had given existence proofs that such secure cryptographic functions
existed under reasonable assumptions. Moreover, complexity-theoretic cryptog-
raphy unleashed a wave of creativitiy, that encompassed such avant garde notions

Computational Complexity Since 1980 27

as oblivious transer, zero-knowledge interactive proofs, and secure distributed
“game” playing, aka, “mental poker”. Complexity would never be the same.

We’ll look at some landmark papers of 80’s cryptography, that were not only
important for their role in establishing modern cryptography, but introduced
fundamental ideas and tools into general complexity theory.

5.1 Cryptographic Pseudo-randomness

In 1982, Blum and Micali ([BM]) introduced the notion of cryptographic pseu-
dorandomness. Shortly thereafter, Yao ([Yao82]) strengthened their results con-
siderably and explored some of the ramifications of this concept. Together, these
two papers presented a dramatic rethinking of information theory, probability,
and the likely power of randomized algorithms in the face of complexity theory.
(In addition, of course, they gave cryptography one of its most important tools.)

Blum and Micali’s paper introduced what would become the gold standard
for “hard” Boolean function, unpredictability. A function b is computationally
unpredictable (given auxilliary information f) if, over choice of a random x, the
probability that an adversary, given f(x), can predict b(x) is only negligibly
more than a random coin toss. Intuitively, this means that b looks like a random
coin to any feasible adversary, and this intution can frequently be made formal.

Blum and Micali give an example of such a function, assuming the difficulty
of finding discrete logarithms. The bit they show is hard, is, given gxmodp,
determine whether x mod p − 1 ≤ (p − 1)/2. Let’s call this function b(x). The
way they prove that b(x) is unpredictable is also, in hindsight, prescient. In
fact, a recent paper by Akavia, Goldwasser, and Safra ([AGS]) gives the modern
insight into why this bit is hidden. There argument combines the random self-
reducibility of the discrete logarithm and a list-decoding algorithm for a simple
error-correcting code. The original proof of Blum and Micali is close in spirit,
but also uses the ability to take square roots mod p, so the corresponding code
would be more complex. First, we observe that, given g, gxmodp, and z1, z2,
we can compute (gx)z1gz2 = gxz1+z2modp−1. This means that a predictor for
b(x) given gx also gives us a predictor for b(xz1 + z2modp − 1). Consider the
exponentially long code C(x) that maps x to the sequence b(xz1 + z2) for each
z1, z2 ∈ Zp−1. Note that for x − y relatively prime to p − 1 and random z1, z2,
xz1 + z2 and yz1 + z2 take on all possible pairs of values mod each odd prime
factor of p−1. It follows that C(x) and C(y) will be almost uncorrelated, so the
code has large distance, at least for almost all pairs.

A predicting algorithm P (gr), which guesses b(r) given gr with probability
1/2 + ε determines the flawed code word C where Cz = P (gxz) which has
relative hamming distance 1/2− ε from C. Is that enough information to recover
the message x? Not completely, but it is enough to recover a polynomial number
of possible x’s, and we can then exponentiate each member of this list and
compare to gx to find x. The final step is to do this list-decoding algorithmically.
However, since the code-word itself is exponentially long, we can only afford
to look at the code in a small fraction of positions. This means that we need
a local list decoding algorithm for this code, one that produces such a list of

28 Russell Impagliazzo

possible messages using a polynomial (or poly-log in the size of the code word)
number of random access queries to bits of the codeword. [AGS] provide such
an algorithm. The original proof of Blum and Micali would provide such an
algorithm for a more complex code. Locally-decodeable error-correcting codes of
various kinds will arise repeatedly in different guises, before finally being made
explicit in the PCP constructions. Intuitively, they arise whenever we need to
use an adversarial oracle only correlated with a function to compute a related
function reliably. The oracle will correspond to a corrupted code-word, and the
message will correspond to the related function.

Yao’s sequel paper (citeYao82) is perhaps even more prescient. First, it shows
that the unpredictibility criterion of Blum and Micali is equivalent to a compu-
tational indistinguishability criterion. Two computational objects (strings, func-
tions, or the like) are computationally indistinguishable, informally, if no feasible
algorithm, given a random one of the two objects, can determine which object
it has been given significantly better than random guessing. Thus, it is a type
of computational Turing test: if no feasible algorithm can tell two things apart,
for purposes of effective computation, they are the same. This notion, implicit
in Yao’s paper, and made explicit in the equally revolutionary [GMR], is inde-
spensible to modern complexity. The proof of equivalence also introduced the
hybrid method, of showing two objects are indistinguishable by conceptualizing
a chain of objects, each indistinguishable from the next, that slowly morph one
object into another.

Second, this paper introduces the possibility of general derandomization based
on a hard problem. This is the use of sufficiently hard problems to transform ran-
domized algorithms into deterministic ones. What makes this counter-intuitive
is that intractibility, the non-existence of algorithms, is being used to design al-
gorithms! However, once that logical leap is made, derandomization results make
sense. Yao proved that a Blum-Micali style pseudo-random generator transforms
a relatively small number of random bits into a larger number of bits compu-
tationally indistinguishable from random bits. Thus, these pseudo-random bits
can replace truly random bits in any algorithm, without changing the results,
giving a randomized algorithm that uses far fewer random bits. The algorithm
can then be made deterministic at reduced cost by exhaustive search over all
possible input sequences of bits to the pseudo-random generator. There was one
caveat: to derandomize algorithms in the worst-case, Yao needed the generator
to be secure against small circuits, not just feasible algorithms. This was due to
the fact that the randomized algorithm using pseudo-random bits might only be
incorrect on a vanishingly small fraction of inputs; if there were no way to locate
a fallacious input, this would not produce a distinguishing test. However, such
inputs could be hard-wired into a circuit.

In fact, the set of possible outputs for a pseudo-random generator in Yao’s
sense is a small discrepancy set, in that, for any small circuit, the average value of
the circuit on the set is close to its expected value on a random input. This implies
that it is also a hitting set, and we saw that such a set implies a circuit lower
bound. So it seems for a Yao-style derandomization, assuming hardness versus

Computational Complexity Since 1980 29

circuits is necessary. But this leaves open whether other types of derandomization
could be performed without such a hardness assumption.

A third basic innovation in Yao’s paper was the xor lemma, the first of a
class of direct product results. These results make precise the following intuition:
that if it is hard to compute a function b on one input, then it is harder to
compute b on multiple unrelated inputs. In particular, the xor lemma says that,
if no small circuit can compute b(x) correctly for more than a 1 − δ fraction of
x, and k = ω(logn/δ), then no small circuit can predict b(x1) ⊕ ...b(xk) with
probability 1/2 + 1/nc over random sequences x1...xk. There are a huge number
of distinct proofs of this lemma, and each proof seems to have applications and
extensions that others don’t have. Ironically, the most frequently proved lemma
in complexity was stated without proof in Yao’s paper, and the first published
proof was in [Lev87].

Again invoking hindsight, as suggested in [Tre03] and [I03], we can view the
xor lemma as a result about approximate local list decoding. Think of the original
function b as a message to be transmitted, of length 2n, whose x’th bit is b(x).
Then the code Hk(b) (which we’ll call the k-sparse Hadamard code) is the bit
sequence whose (x1, ..xk)th entry is b(x1)⊕b(x2)...⊕b(xk). In the xor lemma, we
are given a circuit C that agrees with Hk(b) on 1/2 + ε fraction of bit positions,
and we wish to reconstruct b, except that we are allowed to err on a δ fraction of
bit possitions. This allowable error means that we can reduce the traditional error
correction goal of recovering the message to the weaker condition of recovering
a string that agrees with the message on all but a δ on bits. In fact, it is easy to
see that it will be information-theoretically impossible to avoid a Ω(log 1/ε/k)
fraction of mistakes, and even then, it will only be possible to produce a list
of strings, one of which is this close to the message. Fortunately, this weaker
goal of approximately list decoding the message is both possible and sufficient
to prove the lemma. Each member of the list of possible strings produced in
a proof of the xor lemma can be computed by a relatively small circuit (using
C as an oracle), and one such circuit is guaranteed to compute b with at most
a δ fraction of errors, a contradiction. This description of what a proof of the
xor lemma is also gives an indication of why we need so many different proofs.
Each proof gives a slightly different approximate list decoding algorithm, with
different trade-offs between the relevant parameters, ε, δ, the total time, and the
size of the list produced. (The logarithm of the size of the list can be viewed as
the non-uniformity, or number of bits of advice needed to describe which circuit
to use.)

Finally, Yao’s paper contains a far-reaching discussion of how computational
complexity’s view of randomness differs from the information-theoretic view.
For example, information theoretically, computation only decreases randomness,
whereas a cryptographic pseudo-random generator in effect increases computa-
tional randomness.

An important generalization of cryptographic pseudo-random generator was
that of pseudo-random function generator introduced by Goldreich, Goldwasser,
and Micali ([GGM]), who showed how to construct such a function generator

30 Russell Impagliazzo

from any secure pseudo-random generator. A pseudo-random function generator
can be thought of as producing an exponentially long pseudo-random string.
The string is still computable in polynomial-time, in that any particular bit
is computable in polynomial time. It is indistinguishable from random by any
feasible adversary that also has random access to its bits. Luby and Rackoff
([LR]) showed that a pseudorandom function generator could be used to con-
struct a secure block cipher, the format for conventional private-key systems. It is
ironic that while public-key encryption motivated a complexity based approach
to cryptography, the complexity of private-key cryptography is well understood
(combining the above with [HILL]), but that of public-key cryptography remains
a mystery ([IR], [Rud91]).

Skipping fairly far ahead chronologically, there is one more very important pa-
per on pseudo-randomness, by Goldreich and Levin ([GL89]). This paper shows
how to construct a unpredictable bit for any one-way function. Like Blum and
Micali’s, this result is best understood as a list-decoding algorithm. However,
without knowing any properties of the one-way function, we cannot use random
self-reducibility to relate the hidden bit on one input to a long code-word. In-
stead, [GL89] use a randomized construction of a hidden bit. Technically, they
define f ′(x, r) = f(x), r as a padded version of one-way function f , and define
b(x, r) as the parity of the bits in x that are 1 in r, or the inner product mod 2 of
x and r. Thus, fixing x, a predictor for b(x, r) can be thought of as a corrupted
version of the Hadamard code of x, H(x), an exponentially long string whose
r’th bit is < x, r >, the inner product of x and r mod 2. Their main result is a
local list-decoding algorithm for this code, thus allowing one to reconstruct x (as
one member of a list of strings) from such a predictor. The claimed result then
follows, by simply comparing f(x) with f(y) for each y on the list. More gener-
ally, this result allows us to convert a secret string x (i.e., hard to compute from
other information) to a pseudo-random bit, < x, r >, for a randomly chosen r.

5.2 Interactive Proofs

A second key idea to arise from cryptography grew out of thinking about com-
putation within the context of protocols. Security of protocols was much more
complex than security of encryption functions. One had to reason about what
an adversary could learn during one part of a protocol and how that affected the
security of later parts. Frequently, an attacker can benefit by counter-intuitive
behaviour during one part of a protocol, so intuition about “sensible” adversaries
can be misleading. For example, one way for you to convince another person of
your identity is to decrypt random challenges with your secret key. But what if
instead of random challenges, the challenges were chosen in order to give an at-
tacker (pretending to question your identity) information about your secret key?
For example, using such a chosen cyphertext attack, one can easily break Rabin
encryption. To answer such questions, Goldwasser, Micali, and Rackoff ([GMR])
introduced the concept of the knowledge leaked by a protocol. Their standard for
saying that a protocol only leaked certain knowledge was simuability: a method
should exist so that, with the knowledge supposed to be leaked, for any strategy

Computational Complexity Since 1980 31

for the dishonest party, the dishonest party could produce transcripts that were
indistinguishable from participating in the protocol without further interaction
with the honest party. This meant that the knowledge leaked is a cap on what
useful information the dishonest party could learn during the protocol.

In addition, [GMR] looked at a general purpose for protocols: for one party
to prove facts to another. NP can be characterized as those statements which a
prover of unlimited computational power can convince a skeptical polynomial-
time verifier. If the verifier is deterministic, there is no reason for the prover to
have a conversation with the verifier, since the prover can simulate the verifier’s
end of the line. But if verifiers are allowed to be randomized, as is necessary
for zero-knowledge, then it makes sense to make such a proof interactive, a
conversation rather than a monologue. [GMR] also defined the complexity classes
IP of properties that could be proved to a probabilistic verifier interactively.
Meanwhile, Babai (in work later published with Moran, [BMor]) had introduced
a similar but seemingly more limited complexity class, to represent probabilistic
versions of NP . Goldwasser and Sipser ([GS]) eventually proved that the two
notions, IP and AM , were equivalent.

Once there was a notion of interactive proof, variants began to appear.
For example, Ben-Or, Goldwasser, Micali and Wigderson ([BGKW]) introduced
multiple prover interactive proofs (MIP), where non-communicating provers
convinced a skeptical probabilistic verifier of a claim. Frankly, the motivation
for MIP was somewhat weak, until Fortnow, Rompel and Sipser showed that
MIP was equivalent to what would later be known as probabilistically check-
able proofs. These were languages with exponentially long (and thus too long
for a verifier to look at in entirety) proofs, where the validity of the proof could
be verified with high probability by a probabilistic polynomial-time machine
with random access to the proof. Program checking ([BK], [BLR], [Lip91]) was
a motivation for looking at interactive proofs from a different angle. In program
checking, the user is given a possibly erroneous program for a function. What-
ever the program is, the user should never output an incorrect answer (with high
probability), and if the program is correct on all inputs, the user should always
give the correct answer, but the user may not output any answer if there is an
error in the program. The existence of such a checker for a function is equivalent
to the function having an interactive proof system where the provers strategy
can be computed in polynomial-time with an oracle for the function. A sim-
ple “tester-checker” method for designing such program checkers was described
in [BLR], which combined two ingredients: random-self reducibility, to reduce
checking whether a particular result was fallacious to checking whether the pro-
gram was fallacious for a large fraction of inputs; and downward self-reducibility,
to reduce checking random inputs of size n to checking particular inputs of size
n− 1.

32 Russell Impagliazzo

6 Circuit Complexity and Arithmetization

The history of circuit complexity is one of dramatic successes and tremendous
frustrations. The 1980’s were the high point of work in this area. The decade be-
gan with the breakthrough results of [FSS, Aj83], who proved super-polynomial
lower bounds on constant-depth unbounded fan-in circuits. For a while subse-
quently, there was a sense of optimism, that we would continue to prove lower
bounds for broader classes of circuits until we proved P 	= NP via lower bounds
for general circuits. This sense of optimism became known as the Sipser program,
although we do not believe Sipser ever endorsed it in writing. With Razborov’s
lower bounds for monotone circuits ([Raz85]), the sense that we were on the
verge of being able to separate complexity classes became palpable. Unfortu-
nately, the switching lemma approach seemed to be stuck at proving better
lower bounds for constant depth circuits ([Yao85, Has86]) and the monotone re-
striction seemed essential, since, in fact, similar monotone lower bounds could be
proved for functions in P ([Tar88]). While there have been numerous technically
nice new results in circuit complexity, it is fair to say that there have been no real
breakthroughs since 1987. This lack of progress is still a bitter disappointment
and a mystery, although we will later see some technical reasons why further
progress may require new techniques.

However, in its death, circuit complexity bequeathed to us a simple technique
that has gone on to produce one amazing result after another. This technique is
arithmitization, conceptually (or algorithmically) interpolating a Boolean func-
tion into a polynomial over a larger field. Actually, it is more correct to say this
technique was rediscovered at this time. Minsky and Pappert had used a version
of arithmitization to prove lower bounds on the power of perceptrons, majori-
ties of circuits that depended on small numbers of inputs ([MP]); their aim was
to understand the computational power of neurons. Also, some papers on us-
ing imperfect random sources ([CGHFRS]) used similar ideas. However, it was
Razborov ([Raz87]) and Smolensky ([Smol87]) that really showed the power and
beauty of this idea. The result they proved seems like a small improvement over
what was known. Parity was known not to be computable with small constant-
depth circuits; what if we allowed parity as a basic operation? Razborov and
Smolensky proved that adding parity gates, or, more generally, counting mod-
ulo any fixed prime, would not help compute other fundamental functions, like
majority or counting modulo a different prime. This is a technical improvement.
The revolution was in the simplicity of the proof. They showed how to approx-
imate unbounded fan-in Boolean operations with low degree polynomials over
any finite field. Each such gates then contributed a small amount to the error,
and each layer of such gates, a small factor to the degree. Choosing the field of
characteristic equal to the modular gates in the circuit, such gates had no cost
in error or degree, translating directly to linear functions. An equally elegant
argument showed that counting modulo another prime was in some sense “com-
plete” over all functions for having small degree approximations, which led to a
contradiction via a counting argument.

Computational Complexity Since 1980 33

A direct use of the ideas in these papers is part of Toda’s Theorem, that
PH ⊆ P#P ([Toda]). The polynomial hierarchy has the same structure as a
constant-depth circuit, with existential quantifiers being interpretted as “Or”
and universal as “And”. A direct translation of the small degree approximation
of this circuit gives a probabilistic algorithm that uses modular counting, i.e., an
algorithm in BPP⊕P . The final step of Toda’s proof, showing BPP⊕P ⊆ P#P ,
also uses arithimetization, finding a clever polynomial that puts in extra 0’s
between the least significant digit and the other digits in the number of solutions
of a formula.

The power of arithimetization is its generality. A multilinear polynomial is
one where, in each term, there is no variable raised to a power greater than one,
i.e., it is a linear combination of products of variables. Take any Boolean function
and any field. There is always a unique multilinear polynomial that agrees with
the function on 0, 1 inputs. We can view the subsequent “multi-linearization” of
the function as yet another error-correcting code. The message is the Boolean
function, given as its truth table, and the code is the sequence of values of the
multi-linearization on all tuples of field elements. (This is not a binary code,
but we can compose it with a Hadamard code to make it binary.) Beaver and
Feigenbaum ([BF90]) observed that every multilinear function is random-self-
reducible, by interpolating its values at n+1 points along a random line passing
through the point in question. This can be viewed as a way to locally error
correct the code, when there is less than a 1/(n + 1) fraction of corruptions
in the code word. Lipton ([Lip91]) made the same observation independently,
and observed that the permanent function, which is complete for #P , is already
multi-linear. Thus, he concluded, if BPP 	= #P , then the permanent is hard in
the average-case (with non-negligible probability.) Since the multi-linearization
can be computed in logspace given the truth table for the function, PSPACE,
EXP and similar classes are closed under multi-linearization. Therefore, the
same conclusion holds for these classes and their complete problems.

These observations about the complexity of multi-linear functions are rela-
tively straight-forward, but they would soon lead to deeper and deeper results.

7 The Power of Randomized Proof Systems

The most stunning success story in recent complexity is the advent of hardness
of approximation results using probabilistically checkable proofs. The most sur-
prising element of this story is that it was surprising. Each move in the sequence
of papers that produced this result was almost forced to occur by previous pa-
pers, in that each addressed the obvious question raised by the previous one.
(Of course, much work had to be done in finding the answer.) But no one had
much of an idea where this trail of ideas would end until the end was in sight.
We will not be able to present many technical details of this series of results,
but we want to stress the way one result built on the others. The following is
certainly not meant to belittle the great technical achievments involved, but we
will have to slur over most of the technical contributions.

34 Russell Impagliazzo

The ideas for the first step were almost all in place. As per the above, we
all knew the permanent was both random-self-reducible and downward self-
reducible. [BLR] had basically shown that these two properties implied a pro-
gram checker, and hence membership in IP. However, it took [LFKN92] to put
the pieces together, with one new idea. The random self-reducibility of the per-
manent reduces one instance to several random instances, and the downward
self-reducibility to several smaller instances. The new idea involved combining
those several instances into one, by finding a small degree curve that passed
through them all. The prover is asked to provide the polynomial that represents
the permanent on the curve, which must be consistent with all of the given
values, and is then challenged to prove that the formula given is correct at a
random point. This gave the result that PH ⊆ P#P ⊆ IP . What made this
result exciting is that few had believed the inclusion would hold. The rule of
thumb most of us used was that unproven inclusions don’t hold, especially if
there are oracles relative to which they fail, as in this case ([AGH]).

The next obvious question, was this the limit of IP ’s power? The known
limit was PSPACE, and many of the techniques such as random-self reduction
and downwards self-reduction were known to hold for PSPACE. So we were all
trying to prove IP = PSPACE, but Adi Shamir ([Sha92]) succeeded. His proof
added one important new element, degree reduction, but it was still similar in
concept to [LFKN92]. Once the power of IP was determined, a natural question
was to look at its generalizations, such as multi-prover interactive proofs, or
equivalently, probabilistically checkable proofs of exponential length. Since such
a proof could be checked deterministically in exponential time, MIP ⊆ NEXP .
[BFL91] showed the opposite containment, by a method that was certainly more
sophisticated than, but also clearly a direct descendent of, Shamir’s proof.

Now, most of the [BFL91] proof is not about NEXP at all; it’s about 3-SAT.
The first step they perform is reduce the NEXP problem to a locally define-
able 3-SAT formula. Then they arithmetize this formula, getting a low degree
polynomial that agrees with it on Boolean inputs. They also arithmetize a pre-
sumed satisfying assignment, treated as a Boolean function from variable names
to values. Using the degree reduction method of Shamir to define intermediate
polynomials, the prover then convinces the verifier that the polynomial, the sum
of the unsatisfied clauses, really has value 0. There was only one reason why it
couldn’t be interpreted as a result about NP rather than NEXP : the natural
resource bound when you translate everything down an exponential is a verifier
running in poly-logarithmic time. Even if such a verifier can be convinced that
the given string is a valid proof, how can she be convinced that it is a proof of the
given statement (since she does not have time to read the statement)? [BFLS91]
solved this conundrum by assuming that the statement itself is arithmetized,
and so given in an error-corrected format.

However, later work has a different interpretation. We think of the verifica-
tion as being done in two stages: in a pre-processing stage, the verifier is allowed
to look at the entire input, and perform arbitrary computations. Then the prover
gives us a proof, after which the probabilistic verifier is limited in time and access

Computational Complexity Since 1980 35

to the proof. When we look at it this way, the first stage is a traditional reduc-
tion. We are mapping an instance of 3-SAT to an instance of the problem: given
the modified input, produce a proof that the verifier will accept. Since the verifier
always accepts or rejects with high probability, we can think of this latter prob-
lem as being to distinguish between the existence of proofs for which almost all
random tapes of the verifier lead to acceptance, and those where almost all lead
to rejection. In other words, we are reducing to an approximation problem: find
a proof that is approximately optimal as far as the maximum number of random
tapes for which the verifier accepts. So in retrospect, the connection between
probabilistically checkable proofs and hardness of approximation is obvious. At
the time of [FGLSS], it was startling. However, since [PY88] had pointed to the
need of a theory of just this class of approximation problems, it also made it
obvious what improvements were needed: make the number of bits read con-
stant, so the resulting problem is MAX−kSAT for some fixed k, and make the
number of random bits used O(log n) so the reduction is polynomial-time, not
quasi-polynomial. The papers that did this ([AS98, ALM+98]) are tours de force,
and introduced powerful new ways to use arithmetization and error-correction.

They were followed by a series of papers that used similar techniques tuned
for various approximation problems. For many of these problems, the exact
threshold when approximation became hard was determined. See e.g., [AL] for
a survey. This area remains one of the most vital in complexity theory. In ad-
dition to more detailed information about hardness of approximation, the PCP
theorem is continually revisited, with more and more of it becoming elementary,
with the most elegant proof so far the recent work of Dinur ([D05]).

8 The Combinatorics of Randomness

As mentioned earlier, many problems in constructive extremal combinatorics
can be viewed as derandomizing an existence proof via the probabilistic method.
However, it became clear that solving such construction problems also would give
insight into the power of general randomized algorithms, not just the specific one
in question. For example, Karp, Pippenger, and Sipser ([KPS]) showed how to
use constructions of expanders to decrease the error of a probabilistic algorithm
without increasing the number of random bits it uses. Sipser ([Sip88]) shows
how to use a (then hypothetical) construction of a graph with strong expansion
properties to either get a derandomization of RP or a non-trivial simulation
of time by space. Ajtai, Komlos and Szemeredi ([AKS87]) showed how to use
constructive expanders to simulate randomized logspace algorithms that use
O(log2 n/ log logn) random bits in deterministic logspace.

Later, results began to flow in the other direction as well. Solutions to prob-
lems involving randomized computation lead to new constructions of random-like
graphs. A basic question when considering whether randomized algorithms are
the more appropriate model of efficient computation is, are these randomized
algorithms physically implementable? Although quantum physics indicates that
we live in a probabilistic world, nothing in physics guarantees the existence of

36 Russell Impagliazzo

unbiased, independent coin tosses, as is assumed in designing randomized algo-
rithms. Can we use possibly biased sources of randomness in randomized algo-
rithms? Van Neummann ([vN51]) solved a simple version of this problem, where
the coin tosses were independent but had an unknown bias; this was generalized
by Blum ([B86]) to sequences generated by known finite state Markov processes
with unknown transition probabilities. Santha and Vazirani ([SV]) proved that
from more general unknown sources of randomness, it is impossible to obtain
unbiased bits. (Their source was further generalized by [Z90] to sources that had
a certain min-entropy k, meaning no one string is produced with probability
greater than 2−k. However, there were some loopholes: if one is willing to posit
two independent such sources, or that one can obtain a logarithmic number of
truly random bits that are independent from the source, it is then (information-
theoretically) possible to extract nearly k almost unbiased bits from such a
source. For the purpose of a randomized algorihtm, it is then possible to use the
source to simulate the algorithm by trying all possible sequences in place of the
“truly random one”. The idea of such an extractor was implicit in [Z90, Z91],
and then made explicit by Nisan and Zuckerman ([NZ]).

We can view such an extractor as a very uniform graph, as follows. Let n be
the number of bits produced by the source, s the number of random, k the min-
entropy guarantee, and m the length of the nearly unbiased string produced, so
the extractor is a function Ext : {0, 1}n× {0, 1}s← {0, 1}m. View this function
as a bipartite graph, between n bit strings and m bit strings, where x ∈ {0, 1}n
and y ∈ {0, 1}m are adjacent if there is an r ∈ {0, 1}s with Ext(x, r) = y. Since
the extractor, over random r, must be well-distributed when x is chosen from
any set of size at least 2k, this means that the number of edges in the graph
between any set of nodes on the left of size 2k or greater and any set of nodes
on the right, is roughly what we would expect it to be if we picked D = 2s

random neighbors for each node on the left. Thus, between all sufficiently large
sets of nodes, the numbers of edges looks like that in a random graph of the
same density. Using this characterization, Nisan and Zuckerman used extractors
to construct better expanders and superconcentrators.

While we will return to extractors when we discuss hardness vs. randomness
results, some of the most recent work has shown connections between random-
ized algorithms and constructions of random-like graphs in suprising ways. For
example, the zig-zag product was introduced by Reingold, Vadhan and Wigder-
son to give a modular way of producing expander graphs. Starting with a small
expander, one can use the zig-zag and other graph products to define larger and
larger constant degree expanders. However, because it is modular, products make
sense starting with an arbitrary graph. Reingold showed, in effect, that graph
products can be used to increase the expansion of graphs without changing their
connected components. He was able to use this idea to derandomize [AKLLR]
and give the first logspace algorithm for undirected graph reachability.

A different connection is found in [BKSSW], where a new construction of
bipartite Ramsey graphs (which have no large complete or empty bipartite sub-
graphs) used techniques from [BIW], where a method was given for combining

Computational Complexity Since 1980 37

multiple independent sources into a single almost unbiased random output. That
method was itself based on results in combinatorics, namely results in additive
number theory due to Bourgain, Katz, and Tao ([BKT], and Konyagin ([Kon]).

9 Converting Hardness to Pseudorandomness

As we saw earlier, Yao showed that a sufficiently hard cryptographic function
sufficed to derandomize arbitrary algorithms. Starting with Nisan and Wigderson
([NW94]), similar results have been obtained with a weaker hardness condition,
namely, a Boolean function f in E that has no small circuits computing it.
What makes this weaker is that cryptographic problems need to be sampleable
with some form of solution, so that the legitimate user creating the problem is
distinguished from the attacker. Nisan and Wigderson’s hard problem can be
equally hard for all.

To derandomize an algorithm A, it suffices to, given x, estimate the fraction
of strings r that cause probabilistic algorithm A(x, r) to output 1. If A runs in
t(|x|) steps, we can construct an approximately t(|x|) size circuit C which on
input r simulates A(x, r). So the problem reduces to: given a size t circuit C(r),
estimate the fraction of inputs on which it accepts. Note that solving this circuit-
estimation problem allows us to derandomize Promise−BPP as well as BPP ,
i.e., we don’t use a global guarantee that the algorithm either overwhelmingly
accepts or rejects every instance, only that it does so on the particular instance
that we are solving.

We could solve this by searching over all 2t t-bit strings, but we’d like to be
more efficient. Instead, we’ll search over a specially chosen small low discrepancy
set S = {r1, ...rm} of such strings, as defined earlier. The average value over
ri ∈ S of C(ri) approximate the average over all r’s for any small circuit C.
This is basically the same as saying that the task of distinguishing between a
random string and a member of S is so computationally difficult that it lies
beyond the abilities of size t circuits. We call such a sample set pseudo-random.
Pseudo-random sample sets are usually described as the range of a function called
a pseudo-random generator. For cryptographic purposes, it is important that
this generator be easily computable, say polynomial-time in its output length.
However, for derandomization, we can settle for it to be computable in poly(m)
time, i.e., in exponential time in its input size. Since such a slow process is
hardly describable as a generator, we will avoid using the term, and stick to low
discrepancy set.

We will take an algorithmic point of view, where we show explicitly how to
construct the discrepancy from the truth table of a hard function f . To show
the relationship, we will denote the set as Sf .

9.1 The Standard Steps

The canonical outline for constructing the low discrepancy set from f was first
put together in [BFNW93]; however, each of their three steps was at least implicit

38 Russell Impagliazzo

in earlier papers, two of which we’ve alredy discussed. Later constructions either
improve one of the steps, combine steps, or apply the whole argument recursively.
However, a conceptual break-through that changed the way researchers looked
at these steps is due to [Tre01] and will be explored in more detail in the next
subsection.

1. Extension and random-self-reduction. Construct from f a function f̂ so that,
if f̂ has a circuit that computes its value correctly on almost all inputs, then
f has a small circuit that is correct on all inputs. This is usually done by the
multilinearization method of [BF90] or variants, that we discussed previously
in the context of arithmetization. However, the real need here is that f̂ be
a locally decodeable error-correcting code of message f . Then, if we have a
circuit that computes f̂ most of the time, we can view it as a corrupted code
word, and “decode” it to obtain a circuit that computes f all of the time.
The key to efficiency here is to not make the input size for f̂ too much
larger than that for f , since all known constructions for Sf depend at least
exponentially on this input size. This corresponds to a code with as high a
rate as possible, although inverse polynomial rate is fine here, whereas it is
terrible for most coding applications.

2. Hardness Amplification: From f̂ , construct a function f on inputs of size η
so that, from a circuit that can predict f with an ε advantage over guessing,
we can construct a circuit that computes f̂ on almost all inputs.
The prototypical example of a hardness amplification construction is
the exclusive-or lemma [Yao82, Lev86], that we have discussed. Here
f(y1 ◦ y2... ◦ yk) = f̂(y1)⊕ f̂(y2)...⊕ f̂(yk). As mentioned earlier, the gener-
alization is to use any approximate local list decodeable code. Again, the key
to efficiency is to minimize the input size, which is the same as maximizing
the rate of the code. This is rather tricky, since direct products seem to need
multiple inputs. [I95, IW97] solve this by using correlated inputs that are
still “unrelated” enough for a direct product result to hold.

3. Finding quasi-independent sequences of inputs. Now we have a function f
whose outputs are almost as good as random bits at fooling a size-limited
guesser. However, to determine a t bit sequence to put in S, we need t output
bits that look mutually random. In this step, a small sets of input vectors
V is constructed so that for (v1, ...vt) ∈U V , guessing f on vi is hard and in
some sense independent of the guess for vj .
Then the sample set will be defined as: S = {(f(v1), ...f(vt))|(v1, ...vt) ∈ V }
The classical construction for this step is from [NW94]. This construction
starts with a design, a family of subsets D1, ..Dt ⊆ [1, ..μ], |Di| = η, and
|Di ∩ Dj | ≤ Δ for i 	= j. Then for each w ∈ {0, 1}μ we construct v1, ...vt,
where vi is the bits of w in Di, listed in order. Intuitively, each vi is “al-
most independent” of the other vj , because of the small intersections. More
precisely, if a test predicts f̂(vi) from the other vj , we can restrict the parts
of w outside Di. Then each restricted vj takes on at most 2Δ values, but
we haven’t restricted vi at all. We can construct a circuit that knows these
values of f̂ and uses them in the predictor.

Computational Complexity Since 1980 39

The size of Sf is 2μ, so for efficiency we wish to minimize μ. However, our
new predicting circuit has size 2Δpoly(t), so we need Δ ∈ O(log t). Such
designs are possible if and only if μ ∈ Ω(η2/Δ). Thus, the construction will
be poly-time if we can have η = O(η) = O(log t).

[BFNW93] use this outline to get a low-end hardness-randomness tradeoff,
meaning the hardness assumption is relatively weak and so is the derandomiza-
tion result. They prove that, if there’s a function in EXP that requires more
than polynomial-sized circuit size, then (promise)-BPP problems are solvable in
deterministic sub-exponential time. [IW97] prove a pretty much optimal high-end
hardness-randomness tradeoff. If there is an f ∈ E that requires exponential-
sized circuit size, then (promise)-BPP = P . [STV01] obtains a similar high-end
result, but combines the first two steps into a single step by using algebraic lo-
cal list-decodeable codes directly, rather than creating such a code artificially by
composing a local decodeable code for low noise (multivariate extension, etc.)
with a local approximately list-decodeable code for high noise (xor lemma).

9.2 Extractors and Hardness Vs. Randomness

At this point, Trevisan ([Tre01]) changed our perspective on hardness vs. ran-
domness and extractors entirely. He observed that these two questions were fun-
damentally identical. This observation allowed ideas from one area to be used in
the other, which resulted in tremendous progress towards optimal constructions
for both.

Look at any hardness to randomness construction. From a function f we
create a set Sf . If we have a test T that distinguishes a random element of Sf
from random, then there is a small circuit using T as an oracle that computes
f . Look at the extractor that, treats the output of the flawed source as f and
uses its random seed to pick an element of Sf . If the resulting distribution were
not close to random, there would be a test T that would be far from random for
many Sf ’s from our source. Then each such f would be computable by a small
circuit using T as an oracle. Since there are not many such circuits, there must
be such an f with a relatively high probability of being output from the source.
Contrapositively, this means that any sufficiently high min-entropy source the
extracted string will be close to random.

Trevisan used this observation to use variants of the [BFNW93] and [IW97]
as new constructions of extractors with better parameters than previous ones.
This started a flurry of work culminating in asymptotically optimal extractors
([SU01]) for all min-entropies and optimal hardness-randomness constructions
for all hardness functions ([Uma02]).

10 Hardness from Derandomization

Recently, derandomization has caused our supply of natural examples where
randomness seems to help to dwindle. For example, Agrawal, Kayal, and Sax-
ena ([AKS02]) have come up with a deterministic polynomial-time algorithm for

40 Russell Impagliazzo

primality, and Reingold has a deterministic logspace algorithm for undirected
connectivity. Is it possible that we can simply derandomize all probabilistic al-
gorithms without any complexity assumptions?

In particular, are circuit lower bounds necessary for derandomization? Some
results that suggested they might not be are [IW98] and [Kab01], where average-
case derandomization or derandomization vs. a deterministic adversary was pos-
sible based on a uniform or no assumption. However, intuitively, the instance
could code a circuit adversary in some clever way, so worst-case derandomization
based on uniform assumptions seemed difficult. Recently, we have some formal
confirmation of this: Proving worst-case derandomization results automatically
prove new circuit lower bounds.

These proofs usually take the contrapositive approach. Assume that a large
complexity class has small circuits. Show that randomized computation is un-
expectedly powerful as a result, so that the addition of randomness to a class
jumps up its power to a higher level in a time hierarchy. Then derandomization
would cause the time hierarchy to collapse, contradicting known time hierarchy
theorems.

An example of unexpected power of randomness when functions have small
circuits is the following result from [BFNW93]:

Theorem 1. If EXP ⊆ P/poly, then EXP = MA.

This didn’t lead directly to any hardness from derandomization, because MA
is the probabilistic analog of NP , not of P . However, combining this result
with Kabanet’s easy witness idea ([Kab01]), [IKW01] managed to extend it to
NEXP .

Theorem 2. If NEXP ⊆ P/poly, then NEXP = MA.

Here, MA is the class of problems with non-interactive proofs certifiable by
a probabilistic polynomial-time verifier. It is easy to show that derandomizing
Promise − BPP collapses MA with NP . It follows that full derandomization
is not possible without proving a circuit lower bound for NEXP .

Corollary 1. If Promise−BPP ⊆ NE, then NEXP 	⊆ P/poly.

Kabanets and Impagliazzo [KI] used a similar approach to show that we can-
not derandomize the classical Schwartz-Zippel ([Sch80] [Zip79]) algorithm for
polynomial identity testing without proving circuit lower bounds. Consider the
question: given an arithmetic circuit C on n2 inputs, does it compute the perma-
nent function? This problem is in BPP , via a reduction to polynomial identity
testing. This is because one can set inputs to constants to set circuits that should
compute the permanent on smaller matrices, and then use the Schwartz-Zippel
test ([Sch80], [Zip79]) to test that each function computes the expansion by
minors of the previous one. Then assume Perm ∈ AlgP/poly. It follows that
PH ⊆ PPerm ⊆ NPBPP , because one could non-deterministically guess the al-
gebraic circuit for Perm and then verify one’s guess in BPP . Thus, if BPP = P
(or even BPP ⊆ NE) and Perm ∈ AlgP/poly, then PH ⊆ NE. If in addition,

Computational Complexity Since 1980 41

NE ⊆ P/poly, we would have Co −NEXP = NEXP = MA ⊆ PH ⊆ NE, a
contradiction to the non-deterministic time hierarchy theorems. Thus, if BPP ⊆
NE, either Perm 	∈ AlgP/poly or NE 	⊆ P/poly. In either case, we would obtain
a new circuit lower bound, although it is not specified whether the bound is for
Boolean or arithmetic circuits.

Thus, the question of derandomization and circuit lower bounds are inex-
tricably linked. We cannot make substantial progress on one without making
progress on the other.

11 Natural Proofs

If we cannot eliminate the need for circuit lower bounds, can we prove them?
Why did circuit complexity fizzle in the late 80’s?

The natural proofs paradigm of Razborov and Rudich ([RR97]) explains why
the approaches used then died out, and give us a challenge to overcome in prov-
ing new lower bounds. An informal statement of the idea of natural proofs is that
computational hardness might also make it hard to prove lower bounds. When
we prove that a function requires large circuits, we often characterize what makes
a function hard. In other words, insight into an existence of hard functions often
gives us insight into the computational problem of recognizing hard functions.
On the other hand, if cryptographic pseudo-random function generators can be
computed (in a class of circuits), then it is computationally hard to recognize
hard functions reliably. By definition, a pseudo-random function is easy to com-
pute any bit, for an algorithm knowing the seed (also called the key). Thus,
hardwiring the key, each such function has low complexity. However, random
functions have high complexity. If we could reliably, given the truth table of
functions, compute their complexity, this would give a way to distinguish be-
tween pseudo-random functions and truly random functions, contradicting the
definition of pseudo-randomness. Unfortunately, for almost all circuit classes
where we don’t have lower bounds, there are plausibly secure pseudorandom
function generators computable in the class. That means that our lower bounds
for these classes will either have to be less constructive (not giving an effective
characterization), or tailored to a specific hard function and so not give a general
classification of hard functions.

Optimistically, there is no known analog of natural proofs for arithmetic
circuits. Maybe we (as Valliant suggests in [Val92]) should strive for arithmetic
circuit lower bounds first, before tackling Boolean circuits.

12 Conclusion

Recently, I told a long-time friend who isn’t a mathematician what I was working
on. His shocked reply was that that was the exact same topic I was working on my
first month of graduate school, which was very close to the truth. The classical
challenges that have been with us for over two decades remain. We know so
much more about the questions, but so little about the answers. (Of course,

42 Russell Impagliazzo

I have shortchanged the genuinely new areas of complexity, such as quantum
complexity, in my pursuit of links with the past.)

The more we study these problems, the closer the links between them seem to
grow. On the one hand, it is hard to be optimistic about our area soon solving any
one of these problems, since doing so would cut through the Gordian knot and
lead to progress in so many directions. It seems that randomness does not make
algorithms more powerful, but that we need to prove lower bounds on circuits
to establish this. On the other hand, it seems that if cryptographic assumptions
hold, proving circuit lower bounds is difficult.

On the other hand, it is hard to be pessimistic about an area that has pro-
duced so many fascinating and powerful ideas. It is hard to be pessimistic when
every year, substantial progress on another classical complexity progress is made.
There are no safe bets, but if I had to bet, I would bet on the longshots. The real
progress will be made in unexpected ways, and will only be perfectly reasonable
in hindsight.

References

[Adl78] L. Adleman Two Theorems on Random Polynomial Time. FOCS, 1978,
pp. 75-83.

[AGH] W. Aiello, S. Goldwasser, and J. Hstad, On the power of interaction.
Combinatorica, Vol 10(1), 1990, pp. 3-25.

[AKS02] M. Agrawal, N. Kayal, and N. Saxena, Primes is in P . Annals of Mathe-
matics, Vol. 160, No. 2, 2004, pp. 781-793.

[Aj83] M. Ajtai. Σ1,1 formulas on finite structures. Annals of Pure and Applied
Logic, 1983

[AKS87] M. Ajtai, J. Komlos, and E. Szemeredi, Deterministic Simulation in
LOGSPACE. 19’th STOC, 1987, pp. 132-140.

[AGS] A. Akavia, S. Goldwasser, and S. Safra, Proving Hard-core Predicates
Using List Decoding. FOCS, 2003, pp. 146-156.

[AKLLR] R. Aleliunas, R. Karp, R. Lipton, L. Lovasz, and C. Rackoff, Random
Walks, Universal Traversal Sequences, and the Complexity of Maze Prob-
lems 20th FOCS, 1979, pp. 218-223.

[ACR98] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim. A new general deran-
domization method. Journal of the Association for Computing Machinery,
45(1):179–213, 1998. (preliminary version in ICALP’96).

[ACRT] A. Andreev, A. Clementi, J. Rolim, and L. Trevisan, “Weak random
sources, hitting sets, and BPP simulation”, 38th FOCS, pp. 264-272,
1997.

[AL] S. Arora and C. Lund, Hardness of Approximations In, Approximation
Algorithms for NP-hard Problems, D. Hochbaum, editor, PWS Publishing,
1996.

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof ver-
ification and the hardness of approximation problems. Journal of the
Association for Computing Machinery, 45(3):501–555, 1998. (preliminary
version in FOCS’92).

[AS97] S. Arora and M. Sudan. Improved low-degree testing and its applications,
In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory
of Computing, pages 485–495, 1997.

Computational Complexity Since 1980 43

[AS98] S. Arora and S. Safra. Probabilistic checking of proofs: A new charac-
terization of NP. Journal of the Association for Computing Machinery,
45(1):70–122, 1998. (preliminary version in FOCS’92).

[BFLS91] L. Babai, L. Fortnow, L. A. Levin, M. Szegedy, Checking Computations
in Polylogarithmic Time 23rd STOC, 1991, pp. 21-31

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time
has two-prover interactive protocols. Computational Complexity, 1:3–40,
1991.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexpo-
nential time simulations unless EXPTIME has publishable proofs. Com-
plexity, 3:307–318, 1993.

[BMor] L. Babai and S. Moran Arthur-Merlin games: a randomized proof system,
and a hierarchy of complexity class JCSS, Vol 36, Issue 2, 1988, pp.
254-276.

[BIW] B. Barak, R. Impagliazzo, and A. Wigderson, Extracting Randomness
Using Few Independent Sources, 45th FOCS, 2004, pp. 384-393.

[BKSSW] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson, Sim-
ulating independence: new constructions of condesnsors, ramsey graphs,
dispersers and extractors. 37th STOC, 2005, pp. 1-10.

[BF90] D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries.
In Proceedings of the Seventh Annual Symposium on Theoretical Aspects
of Computer Science, volume 415 of Lecture Notes in Computer Science,
pages 37–48, Berlin, 1990. Springer Verlag.

[BGKW] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson Multi-Prover
Interactive Proofs: How to Remove Intractability Assumptions. STOC,
1988, pp. 113-131.

[Ber72] E.R. Berlekamp. Factoring Polynomials. Proc. of the 3rd Southeastern
Conference on Combinatorics, GRAPH THEORY AND COMPUTING
1972, pp. 1-7.

[B86] M. Blum Independent Unbiased Coin Flips From a Correlated Biased
Source: a Finite State Markov Combinatorica, Vol. 6, No. 2, 1986, pp.
97-108. Chain FOCS 1984: 425-433

[BK] M. Blum and S. Kannan, Designing Programs That Check Their Work.
STOC, 1989, pp. 86-97.

[BLR] M. Blum, M. Luby, and R. Rubinfeld Self-Testing/Correcting with Ap-
plications to Numerical Problems. J. Comput. Syst. Sci. Vol 47(3), 1993,
pp. 549-595.

[BM] M. Blum and S. Micali. “How to Generate Cryptographically Strong Se-
quences of Pseudo-Random Bits”, SIAM J. Comput., Vol. 13, pages 850–
864, 1984.

[BKT] J. Bourgain, N. Katz, and T. Tao, A sum-product estimate in finite fields,
and applications Geometric and Functional Analysis, Vol. 14, 2004, pp.
27-57.

[DH] W. Diffie and M. Hellman, New Directions in Cryptography, IEEE Trans-
actions on Information Theory, Vol. IT-22, No. 6, 1976, pp. 644-654.

[CGHFRS] B. Chor, O. Goldreich, J. Hstad, J. Friedman, S. Rudich, R. Smolensky
The Bit Extraction Problem of t-Resilient Functions. FOCS, 1985, pp.
396-407.

[C83] S. Cook, An Overview of Computational Complexity. Communications
of the ACM, Volume 26, Number 3, pp. 401-407.

44 Russell Impagliazzo

[D05] I. Dinur, The PCP Theorem by gap amplification. ECCC tech. report
TR05-046, 2005.

[FGLSS] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy, Approxi-
mating Clique is Almost NP -complete. FOCS, 1991, pp. 2-12.

[For01] L. Fortnow. Comparing notions of full derandomization. In Proceedings
of the Sixteenth Annual IEEE Conference on Computational Complexity,
pages 28–34, 2001.

[FSS] M. Furst, J. B. Saxe, and M. Sipser. Parity, Circuits, and the Polynomial-
Time Hierarchy. Mathematical Systems Theory, 17(1), 1984, pp. 13-27.

[GG] O. Gabber and Z. Galil. Explicit Constructions of Linear-Sized Supercon-
centrators. J. Comput. Syst. Sci. Vol. 22(3), 1981, pp. 407-420.

[Gill] J. Gill. Computational complexity of proabilistic Turing machines. SIAM
J. Comput., Vol. 6, 1977, pp. 675-695.

[GL89] O. Goldreich and L.A. Levin. “A Hard-Core Predicate for all One-Way
Functions”, in ACM Symp. on Theory of Computing, pp. 25–32, 1989.

[GGM] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random
functions. J. ACM, Vol. 33(4), 1986, pp. 792-807.

[GS] S. Goldwasser and M. Sipser, Private Coins versus Public Coins in Inter-
active Proof Systems STOC, 1986, pp. 59-68.

[GMR] S. Goldwasser, S. Micali, and C. Rackoff The Knowledge Complexity of
Interactive Proof Systems. SIAM J. Comput. 18(1), 1989, pp. 186-208.

[Has86] J. Hstad Almost Optimal Lower Bounds for Small Depth Circuits. STOC,
1986, pp. 6-20.

[HILL] J. Hstad, R. Impagliazzo, L. A. Levin and M. Luby. A Pseudorandom
Generator from any One-way Function. SIAM J. Comput., 28(4), 1999,
pp. 1364-1396.

[HS] J. Heintz and C.-P. Schnorr. Testing Polynomials which Are Easy to
Compute. STOC, 1980, pp. 262-272.

[I95] R. Impagliazzo, “Hard-core Distributions for Somewhat Hard Problems”,
in 36th FOCS, pages 538–545, 1995.

[I03] R. Impagliazzo. Hardness as randomness: a survey of universal derandom-
ization. CoRR cs.CC/0304040, 2003.

[IKW01] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy wit-
ness: Exponential time vs. probabilistic polynomial time. In Proceedings
of the Sixteenth Annual IEEE Conference on Computational Complexity,
pages 1–11, 2001.

[IR] R. Impagliazzo and S. Rudich Limits on the Provable Consequences of
One-Way Permutations. STOC, 1989, pp. 44-61.

[IW97] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential
circuits: Derandomizing the XOR Lemma. In Proceedings of the Twenty-
Ninth Annual ACM Symposium on Theory of Computing, pages 220–229,
1997.

[IW98] R. Impagliazzo and A. Wigderson. Randomness vs. time: De-
randomization under a uniform assumption. In Proceedings of the Thirty-
Ninth Annual IEEE Symposium on Foundations of Computer Science,
pages 734–743, 1998.

[J84] D. Johnson, The NP-completeness column: An ongoing guide. (12th arti-
cle) Journal of Algorithms, Vol. 5, 1984, pp. 433-447.

[Kab01] V. Kabanets. Easiness assumptions and hardness tests: Trading time
for zero error. Journal of Computer and System Sciences, 63(2):236–252,
2001. (preliminary version in CCC’00).

Computational Complexity Since 1980 45

[Kab02] V. Kabanets. Derandomization: A brief overview. Bulletin of the Euro-
pean Association for Theoretical Computer Science, 76:88–103, 2002. (also
available as ECCC TR02-008).

[KI] V. Kabanets and R. Impagliazzo, Derandomizing Polynomial Identity
Tests Means Proving Circuit Lower Bounds Computational Complexity,
Vol. 13, No. 1-2, 2004, pp. 1-46.

[Kal92] E. Kaltofen. Polynomial factorization 1987–1991. In I. Simon, editor,
Proceedings of the First Latin American Symposium on Theoretical In-
formatics, Lecture Notes in Computer Science, pages 294–313. Springer
Verlag, 1992. (LATIN’92).

[K86] R. M. Karp. Combinatorics, Complexity, and Randomness. Commun.
ACM, Vol. 29(2), 1986, pp. 97-109.

[KL] R. M. Karp and R. J. Lipton, “Turing Machines that Take Advice”,
L’Ensignment Mathematique, 28, pp. 191–209, 1982.

[KPS] R. M. Karp, N. Pippenger, and M. Sipser, A time randomness tradeoff
AMS Conference on Probabilistic Computational Complexity, 1985.

[Kon] S. Konyagin, A sum-product estimate in fields of prime order Arxiv
technical report 0304217, 2003.

[Lev87] L. A. Levin, One-Way Functions and Pseudorandom Generators. Combi-
natorica, Vol. 7, No. 4, pp. 357–363, 1987.

[Lev86] L. A. Levin, Average Case Complete Problems. SIAM J. Comput. Vol.
15(1), 1986, pp. 285-286.

[Lip91] New directions in testing. Distributed Computing and Cryptography,
1991.

[LR] M. Luby and C. Rackoff How to Construct Pseudorandom Permutations
from Pseudorandom Functions. SIAM J. Comput. 17(2), 1988, pp. 373-
386.

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for
interactive proof systems. Journal of the Association for Computing Ma-
chinery, 39(4):859–868, 1992.

[Lip91] R. Lipton. New directions in testing. In J. Feigenbaum and M. Merrit, ed-
itors, Distributed Computing and Cryptography, pages 191–202. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, Vol-
ume 2, AMS, 1991.

[MP] M. Minsky and S. Pappert, Perceptrons: An Introduction to Computa-
tional Geometry, MIT Press, Cambridge, MA, 1969. (Expanded edition,
1988.)

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Com-
puter and System Sciences, 49:149–167, 1994.

[NZ] N. Nisan and D. Zuckerman. Randomness is Linear in Space. JCSS, Vol
52, No. 1, 1996, pp. 43-52.

[Pap94] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, Read-
ing, Massachusetts, 1994.

[PY88] C.H. Papadimitriou and M. Yannakakis. Optimization, Approximation,
and Complexity Classes STOC, 1988, pp. 229-234. Computational Com-
plexity. Addison-Wesley, Reading, Massachusetts, 1994.

[Rab80] M. O. Rabin. Probabilistic Algorithm for Testing Primality. Journal of
Number Theory, 12:128–138, 1980.

46 Russell Impagliazzo

[Raz85] A.A. Razborov, Lower bounds for the monotone complexity of some
Boolean functions, Doklady Akademii Nauk SSSR, Vol. 281, No 4, 1985,
pages 798-801. English translation in Soviet Math. Doklady, 31:354-357,
1985.

[Raz87] A.A. Razborov, Lower bounds on the size of bounded-depth networks
over a complete basis with logical addition. Mathematicheskie Zemetki,
Vol. 41, No 4, 1987, pages 598-607. English translation in Notes of the
Academy of Sci. of the USSR, 41(4):333-338, 1987.

[RR97] A.A. Razborov and S. Rudich. Natural proofs. Journal of Computer and
System Sciences, 55:24–35, 1997.

[RS] J. Riordan and C. Shannon, The Number of Two-Terminal Series-Parallel
Networks. Journal of Mathematics and Physics, Vol. 21 (August, 1942),
pp. 83-93.

[RSA] R. Rivest, A. Shamir, and L. Adleman, A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems, Communications of the ACM,
Vol.21, No. 2, 1978, pp.120-126.

[Rud91] S. Rudich The Use of Interaction in Public Cryptosystems. CRYPTO,
1991, pp. 242-251.

[SV] M. Santha and U. V. Vazirani, Generating Quasi-Random Sequences from
Slightly Random Sources, 25th FOCS, 1984, pp. 434-440.

[Sch80] J.T. Schwartz. Fast probabilistic algorithms for verification of polyno-
mial identities. Journal of the Association for Computing Machinery,
27(4):701–717, 1980.

[SU01] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a
new pseudo-random generator. In Proceedings of the Forty-Second Annual
IEEE Symposium on Foundations of Computer Science, pages 648–657,
2001.

[Sha92] A. Shamir. IP=PSPACE. Journal of the Association for Computing Ma-
chinery, 39(4):869–877, 1992.

[Sip88] M. Sipser Extractors, Randomness, or Time versus Space. JCSS, vol 36,
No. 3, 1988, pp. 379-383.

[Smol87] R. Smolensky, Algebraic Methods in the Theory of Lower Bounds for
Boolean Circuit Complexity. STOC, 1987, pp. 77-82.

[SS79] R. Solovay and V. Strassen, A fast Monte Carlo test for primality SIAM
Journal on Computing 6(1):84-85, 1979.

[STV01] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without
the XOR lemma. Journal of Computer and System Sciences, 62(2):236–
266, 2001. (preliminary version in STOC’99).

[Sud97] M. Sudan. Decoding of Reed Solomon codes beyond the error-correction
bound. Journal of Complexity, 13(1):180–193, 1997.

[Tar88] É. Tardos The gap between monotone and non-monotone circuit com-
plexity is exponential. Combinatorica 8(1), 1988, pp. 141-142.

[Toda] S. Toda, “On the computational power of PP and ⊕P”, in 30th FOCS,
pp. 514–519, 1989.

[Tre01] L. Trevisan. Extractors and pseudorandom generators. Journal of the
Association for Computing Machinery, 48(4):860–879, 2001. (preliminary
version in STOC’99).

[Tre03] L. Trevisan, List Decoding Using the XOR Lemma. Electronic Colloquium
on Computational Complexity tech report 03-042, 2003.

Computational Complexity Since 1980 47

[Uma02] C. Umans. Pseudo-random generators for all hardnesses. In Proceedings
of the Thirty-Fourth Annual ACM Symposium on Theory of Computing,
2002.

[Val92] L. Valiant. Why is Boolean complexity theory difficult? In M.S. Paterson,
editor, Boolean Function Complexity, volume 169 of London Math. Society
Lecture Note Series, pages 84–94. Cambridge University Press, 1992.

[vN51] J. von Neumann, Various Techniques Used in Relation to Random Digits
Applied Math Series, Vol. 12, 1951, pp. 36-38.

[We87] I. Wegener The Complexity of Boolean Functions. Wiley-Teubner, 1987.
[Yab] S. Yablonski, The algorithmic difficulties of synthesizing minimal switch-

ing circuits. Problemy Kibornetiki 2, 1959, pp. 75-121.
[Yao82] A.C. Yao. Theory and applications of trapdoor functions. In Proceedings of

the Twenty-Third Annual IEEE Symposium on Foundations of Computer
Science, pages 80–91, 1982.

[Yao85] A.C. Yao. Separating the Polynomial-Time Hierarchy by Oracles. FOCS,
1985, pp. 1-10.

[Zip79] R.E. Zippel. Probabilistic algorithms for sparse polynomials. In Proceed-
ings of an International Symposium on Symbolic and Algebraic Manipula-
tion (EUROSAM’79), Lecture Notes in Computer Science, pages 216–226,
1979.

[Z90] D. Zuckerman, General Weak Random Sources 31st FOCS, 1990, pp.
534-543.

[Z91] D. Zuckerman, Simulating BPP Using a General Weak Random Source,
FOCS, 1991, pp. 79-89.

Developments in Data Structure Research

During the First 25 Years of FSTTCS

Raimund Seidel

Universität des Saarlandes
Fachrichtung Informatik

Im Stadtwald
D-66123 Saarbrücken, Germany

rseidel@cs.uni-sb.de

Abstract. We survey and highlight some of the developments in data
structure research during the time of the first 25 years of the FSTTCS
conference series.

1 Introduction

When Sandeep Sen, co-chairman of FSTTCS 2005, kindly invited me to give
a plenary talk at this conference and suggested as topic “the development of
data structure research during the last 25 years,” (i.e. during the lifetime of
the FSTTCS conference series) I felt honored — and challenged. So much has
happened in data structures during this time! A recent “handbook”[1] on this
subject contains about 60 articles spread over about 1400 pages, and still those
articles are just surveys that for the most part cannot claim complete coverage.
How could I make a selection of topics to present from such a large body of
work? How could I do justice to all the neat and interesting ideas developed in
this area? How could I do justice to all the authors who have come up with those
ideas? How can I do all this and stay within one hour of presentation time, or a
few pages of conference proceedings text?

I had to make a few decisions: First, this talk (article) is intended explicitly
for the non-experts, for researchers whose main interests lie outside the area
of data structures, algorithms, and their performance analysis. Second, in this
talk (article) I will try to convey only the main ideas that have been developed
over approximately the last 25 years and I will talk about very few definite data
structures explicitly. When I say “main ideas” I should correct this immediately
to “what I consider to be main ideas.” The selection is certainly affected by my
personal preferences and my own research topics. Surely some of my colleagues
would present a different selection of ideas and topics, although I hope there
still would be some large agreement. Third, I forego any claim to any complete-
ness; many topics and I ideas I will not cover at all (data structures for string
manipulations or for graphs, to name a few).

It is my hope that non-experts will be able to walk away from this talk not
just with some data structuring buzzwords, but with sufficient meaning and

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 48–59, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Developments in Data Structure Research 49

interpretation attached to those words, so that it will be possible to strike the
right connections and associations to the data structuring world in case the need
to do so arises.

2 Amortization

Amortization was initially just a new convenient way of talking about and de-
scribing the performance of some data structures. In time this way of thinking
influenced the way how new data structures were designed, paving the way for
structures like splay trees [2], Fibonacci heaps [3], and many others.

Consider a data structure with two operations, say, query and insert. The
traditional way of describing the performance characteristics of such a structure
would be in terms of the following three quantities:

S(n) the space needed in the worst case when the structure holds at most n
items;

Q(n) the time a query needs in the worst case when the structure holds at most
n items;

I(n) the time an insertion needs in the worst case when the structure holds at
most n items;

Let us forget about the space bound S(n) for the time being. In this setup
any sequence of mI insert operations interspersed with mQ query operations is
guaranteed to take time at most

mII(n) + mQQ(n) ,

assuming that the maximum number of items in the data structure at any point is
n. However, this may be a very pessimistic bound. If for instance most insertions
take only O(1) time and very rarely some insertion takes O(n) time, then in this
setup one needs to put Q(n) = O(n) and one gets an O(mI · n) upper bound
for the total insertion cost in the sequence, although the true total cost may be
much lower, due to the infrequency of expensive insertions1 .

Consider the following example, which will be used in several sections: We
want to maintain a set A of keys from an ordered universe under insert operations
and membership queries. We will do this in the following non-standard way. We
partition A into disjoint subsets whose sizes are distinct powers of 2 (the binary
representation of n = |A| yields those subset sizes). Each of those subsets we store
in a sorted array. Thus such a subset of size 2k can be queried for membership in
O(k) time via binary search. A membership query in the entire set can then be
realized by querying in each of the subsets leading to a worst case time bound
for the entire query of

Q(n) =
∑

0≤k≤log2 n

O(k) = O(log2 n) .

1 We use the word “cost” here as synonymous with the word ”time.” See the “bank
account method” below for more about this correspondence.

50 Raimund Seidel

How do we realize insertions? When inserting element x we first create a new
subset of size 20 = 1 holding just x, and then as long as we have two subsets of
the same size in the partition, we join them to one of double size (each of those
“joins” amounts to merging two sorted arrays into one and can be done in linear
time). Note that with this strategy inserting an element into a set of even size
takes only O(1) time, since no merging needs to be done at all, whereas inserting
an element into a set of size n = 2�−1 will take O(n) time. Thus most insertions
(at least half of them) are very cheap, whereas some are very expensive.

But it is quite easy to see (and we’ll sketch three proofs below) that any
sequence of mI = n insertions into an initially empy set will take time O(n log n)
overall. Thus the “average” insertion cost is actually only O(log n), where the
average is taken over the sequence of operations.

We say that a data structure has amortized query performance QA(n) and
amortized insertion performance IA(n) if for every mQ and mI every sequence
of mI insertions interspersed with mQ queries takes total time at most

mQQA(n) + mIIA(n) ,

where n is the maximum size of the data structure2. This definition can be gen-
eralized in an obvious way if there are further operations on the data structure,
like deletions, etc.

Thus amortized complexity of an operation is its worst case average cost,
where the average is taken over a sequence of operations. In our running example
we have

QA(n) = O(log2 n) and IA = O(log n) .

The bound for QA(n) is clear, since obviously worst case complexity is always an
upper bound to amortized complexity. For the the second bound we now sketch
three proof methods.

Aggregate Method: We try to argue holistically. In a sequence of n inser-
tions into an initially empty set our method will cause �n/2k� merges producing
arrays of size 2k. Each such merge costs time O(2k). Thus the total cost will be∑

k>0

�n/2k�O(2k) = O(n log n) .

Bank Account Method: We conceptually equate time and money. Money
can be stored for later use, which is easier to imagine than “storing time” for
later use. Each constant time primitive operation thus costs money, say one
dollar. Each insertion operation brings �log2 n� dollars into the system that
are conceptually kept in a “bank account” at the inserted key. In every merge
operation every involved key pays one dollar from its account to defray the time
costs of this merge. Since every key can be involved in at most �log2 n� merges
(the size of its containing array doubles every time) no account will ever be
overdrawn and the n�log2 n� dollars brought into the system in total can pay for
2 In some cases, like when not starting with an empty structure, one needs to relax

the conditions, and require this to be true only for sufficiently large mQ and mI .

Developments in Data Structure Research 51

all primitive operations. The amortized time of an insertion operation can now
be measured by the amount of money it has to bring into the system, which in
our example is O(log n).

Potential Method: One defines a “potential function” Φ mapping the state
of the data structure to a real number. Let Φi denote the value of Φ after the
i-th insertion, and let ai be the actual cost of the i-th insertion. Now suppose
we can prove that for every i we have

ai + Φi − Φi−1 ≤ f(n) .

Then we have⎛⎝ ∑
1≤i≤n

ai

⎞⎠+ (Φn − Φ0) =
∑

1≤i≤n
(ai + Φi − Φi−1) ≤ n · f(n) ,

and therefore ∑
1≤i≤n

ai ≤ n · f(n)− (Φn − Φ0) .

If in addition Φi > Φ0 holds for all i, then this last inequality implies that the
total sum of all n actual insertion times is upper bounded by n · f(n), which
means f(n) is an upper bound to the amortized insertion cost.

The potential method relies heavily on a clever choice of a potential function
Φ. In the case of our example we can choose

Φ =
∑

k: there is a subset of size 2k

(log2 n− k) · 2k

and the desired O(log n) amortized insertion complexity bound can be shown to
follow. This is not surprising since the chosen potential function is essentially the
sum of all the bank accounts of the previous method. Such a transfer of view is
always possible. However, there are situations, as for instance with splay trees,
where the myopic view of individual bank accounts is inadequate and a global
view in form of a potential function makes amortized analysis much easier.

Amortization has proven to be an extremely useful way of looking at data
structures. Although it had been used implicitly before, this way analyzing data
structure was made explicit only in the mid 80’s, see for instance the article of
Tarjan [4]. By now the concept is treated already in many textbooks.

3 Automatic Dynamization

There are situations where it is easy to build a static data structure for some
query problem that admits fast querying, but that does not readily admit fast
updates. Inserting a new item into the structure or deleting an existing item may
be as expensive as rebuilding the entire structure from scratch. In the early 80’s
there was considerable research in designing more or less automatic ways that

52 Raimund Seidel

create out of a static data structure, i.e. one that does not easily admit updates,
a dynamic data structure, i.e. one that admits insertions and deletion [5,6].

These methods apply mostly to data structuring problems that are in some
sense decomposable, i.e. the answer to a query to the entire set can be cheaply
obtained from the answers to queries to some collection of subsets. This is for in-
stance true for the set membership problem, the example in the previous section:
x ∈ A iff x ∈ Aj for some j ∈ J , provided

⋃
j∈J Aj = A. For such decomposable

problems a natural way to make a static data structure dynamic is to break the
problem into disjoint blocks, perform a query by making queries in each of the
blocks and combining the answers, and to perform an update by rebuilding the
data structure for just one block (or few blocks). For the querying strategy it
is advantageous to have few blocks, for the updates it is advantageous to have
small blocks.

There are two ways to reconcile the “small” and “few” requirements. The first
is the so-called equal block method, which keeps all blocks of approximately the
same size. The second is the so-called logarithmic block method, which keeps
blocks of different sizes, say all have size a power of two and no two blocks have
the same size.

As an example for the equal block method consider nearest neighbor
searching in the plane: One is to store a set P of n sites in the plane, so that
given a query point q in the plane one can determine quickly its nearest site,
i.e. the site p ∈ P that is closest to q. For the static case there is a classic so-
lution via so-called Voronoi diagrams and planar subdivision search, which has
preprocessing time O(n log n), space usage O(n), and query time O(log n). This
method can be dynamized by breaking P into about n1/2 blocks, each contain-
ing about n1/2 sites. A query can now be performed by querying in each of the
n1/2 blocks, yielding an O(n1/2 logn) query time overall. An insertion of a new
site p can be performed by rebuilding the static data structure for the smallest
block (but now including p). Similarly the deletion of site p can be performed by
rebuilding the structure for the block that contains p (but now without p). This
yields an update time of O(n1/2 logn). Some additional care needs to be taken
to ensure that the blocks stay of about the same size. Note the possible tradeoff
between query time and update time depending on the number of blocks.

An example for the logarithmic block method was given in the previous
section, where the data structure “sorted array” was dynamized: The idea is to
break the problem into a logarithmic number of blocks whose sizes are distinct
powers of two. Inserting a new element works by first creating an additional
block of size 1 for the new element, and then, as long as there are two block
of the same size 2k destroying them and building from scratch a data structure
for the union of those two blocks, which has size 2k+1. A construction time
of O(n log n) and query time O(log n) for a static problem then yields a worst
case query time of O(log2 n) and amortized insertion time of O(log2 n) for the
dynamic problem (if no deletions are allowed). Note that these bounds also
apply to the nearest neighbor searching problem of the previous paragraph. A
speedup of the insertion time is possible if the data structure for the union of two

Developments in Data Structure Research 53

equal sized blocks can be constructed from the data structures of the individual
blocks in a faster manner than brute-force new construction from scratch. This is
easily seen to be the case in the set membership example of the previous section
(merging two sorted list into a single sorted list can be done in linear time), it
happens to be the case for the nearest neighbor searching problem also (see [7]).

In general the logarithmic block method does not admit easy deletions: If
the element to be deleted happens to be in the largest block, and the only way
to achieve the deletion is to rebuild the data structure for the largest block from
scratch without the deleted element, then such a delete operation is expensive
indeed. This applies to our nearest neighbor searching example. However, for the
set membership example so-called weak deletions are possible. The simple idea
is to mark elements as deleted, without actually removing them from the data
structure. This is obviously possible in our set memberhip example, and does not
hurt the insertion and query time (and space requirements) too much, as long as
not too many, say, more than half of the elements are marked as deleted. What
should one do in that case? Simply rebuild the entire structure from scratch,
of course without the deleted elements. In our example of the set membership
problem this actually yields a logarithmic amortized deletion time.

A detailed study of those issues can be found in Overmars’ book [6], which
also discusses other general ideas, like e.g. turning the outlined general amortized
bounds into worst case bounds. Although the techniques of automatic dynamiza-
tion are for the most part not particularly deep or difficult, they can be very
useful and in many cases lead to quick and dirty solutions that are surprisingly
efficient.

4 Fractional Cascading

A sorted list L of � = |L| reals breaks the real line into � + 1 intervals. Assume
that some “answer” is associated with each of those intervals, and consider the
query problem, where given a query number q one would like to determine the
“answer” associated with the interval that contains q. Using binary search such a
query problem can easily be solved in logarithmic query time using linear space.

Now suppose we have m such sorted lists L1, . . . , Lm and for a given query
number q the containing interval and its associated answer is to be found and
reported for every one of those m lists. A natural and straightforward solution
is to perform independent binary searches in each of those lists, yielding a query
time of O(m log �) using space O(N), where N =

∑
1≤i≤m �i and � = maxi �i.

Another approach would be to combine the m lists into one list L of size N and
storing with each of the N+1 intervals the sequence of m answers, one from each
Li. This results in faster query time of O(logN +m) (the summand m accounts
the reporting of the m answers), but in a space requirement of O(Nm).

Is there a way of achieving O(logN +m) query time, using just O(N) space?
Fractional cascading provides a positve answer to this question. The basic idea is
as follows: Set L′m = Lm, and for k = m−1 down to 1 obtain list L′k by inserting,
say, every fourth element of L′k+1 into Lk. If you now know the placement of a

54 Raimund Seidel

query point q in list L′k, then you know q’s placement in Lk and moreover it just
takes a constant number of additional comparisons to find q’s placement in L′k+1

(after all, there at most 4 possible choices of intervals). This of course assumes
appropriate “bridging” information, which however is not too hard to achieve.

A query can now indeed by answered in time O(logN + m): In O(logN)
time find the placement of q in L′1, from this find in constant time the proper
placement of q in L1 and also the placement of q in L′2, and then iterate.

The space requirement is proportional to
∑

1≤k≤m |L′k|. Since∑
1≤k≤m

|L′k| = |Lm|+
∑

1≤k<m
(|Lk|+ |L′k+1|/4) ≤

∑
1≤k≤m

|Lk|+
∑

1≤k≤m
|L′k|/4

we obtain ∑
1≤k≤m

|L′k| ≤= (4/3) ·
∑

1≤k≤m
|Lk| = O(N) ,

and hence the space requirement is indeed O(N).
The observant reader will surely have noticed one application of fractional

cascading: We can apply it to our solution to the set membership problem. Since
m, the number of lists, there is O(log n) and N , the sum of the list sizes, is n,
we obtain an O(log n) worst case time bound for querying in this structure,
improving upon the O(log2 n) bound that we had established so far. If a little
bit of care is taken, then the logarithmic amortized time bounds for insertions
and deletions that we have established already can be maintained in the presence
of fractional cascading also.

This basic idea of fractional cascading can be generalized to situations where
the lists are not just arranged in a linear sequence but where lists are associated
to the nodes of a directed acyclic graph and one wishes to query in all lists along
some directed path in the graph. Fractional cascading has a surprising number of
applications, in particular in computational geometry. It was originally proposed
by Chazelle and Guibas [8,9], although some similar ideas had appeared before
(see e.g. [10]). For further work see for instance [11,12].

5 Persistence

Imagine a data structure undergoing a sequence of updates, each generating a
new, current version of the data structure. What does one need to do so that
any point in time one can perform a query in one of the previous versions of
the data structure. Such a data structure is called persistent (in contrast to
ephemeral). Generating an entirely new structure with every update certainly
would allow such queries in the past to be performed efficiently. However, the
update costs, and maybe more importantly, the space costs would be formidable.
So the question is how should the various versions of the data structure be
related, what substructures should they share, so that fast queries in the past
are possible but the overall additional cost in update time and space usage is
small.

Developments in Data Structure Research 55

For our example of section 2 for the set membership problem (without frac-
tional cascading) there is a rather straightforward solution to this problem: sim-
ply keep around any sorted array that is ever created. With proper book keeping
queries of past versions can then be performed easily, and still in O(log2 n) time.
The amortized insertion cost is still O(log n), just the space usage increases from
O(n) to O(n log n). An interesting question now is whether something like this
can be achieved without the increase in space costs.

A quite general positive answer to this question was produced by Driscoll et
al. [13] for the case when the data structures can be modelled as graphs. For the
sake of definiteness it may be best to think about balanced search trees. One
way of making such a search tree persistent is the following: all that essentially
changes in a search tree during an update is a path from the root to some
treenode. So just create a new copy of this path and share the subtrees that are
to hang off this path with the previous structures. If one wants to perform a
query in a past version then simply locate the appropriate past root node r and
start the usual tree search from there. So the query time does not change at all
(except for the additional time to identify r). However the space usage will go
up by a logarthmic factor since with every update O(log n) new nodes need to
be created for the new path.

In contrast to this path copying method there is also another method that
is sometimes referred to as fat node method. Every pointer field is now replaced
by an array of pointers, where each enry is endowed with time-stamps telling
at which point in time this particular pointer was valid. If during a tree update
a pointer is to be changed to a new target, this is achieved by adding a new
entry to the corresponding array, together with the appropriate time stamp
information. The total space that is used by this method is proportional to the
total number of pointer changes during all the updates. There are balancing
scheme for search trees that guarantee a constant number of pointer changes per
update (either in the amortized or the expected sense). Using such a balancing
scheme the total space for this fat node persistent structure is proportional to
the size of the ephemeral structure plus the number of update operations, which
is the best what we can hope for. However, the query time bound may increase
by a factor of O(logm), where m is the number of updates. Why? When we
want to follow a pointer during a query we first need to identify the time-correct
version of this pointer, which we can only do by (binary) searching the array
of the corresponding pointer field. Thus the cost of following one pointer is not
constant any more, but logarithmic.

Driscoll et al. invented an interesting way of combining the path copying and
the fat node method. The idea is to grow nodes only to some constant “fatness,”
and after that split the node. This is somewhat reminiscent of fractional cascad-
ing. Interestingly this simple idea suffices to create a persistent search tree with
logarithmic update time, logarithmic query time in the presence and the past,
and only linear space usage.

There are additional research issues regarding persistence [14], for instance
the idea of allowing not just queries but also updates in the past (so-called

56 Raimund Seidel

full persistence). This immediately causes the phenomenon of non-linear time,
i.e. time is not a total order any more, but a partial order, and it becomes difficult
to specify for queries in the past which “past” is actually intended. One of the
most outstanding applications of persistent search trees is so-called planar point
location [15].

6 Randomization

25 years ago randomization was not particularly prevalent in computer science.
Nowadays it is ubiquitous and appears in almost all subfields of computing, es-
pecially in algorithms, and of course in data structures. There is a multitude of
data structures that rely on randomization, especially in comptuational geom-
etry. We will discuss only two particularly simple randomized data structure,
which as Ketan Mulmuley pointed out in his book [16] exemplify two particular
approaches to applying randomization. Both of these data structures realize the
abstract data type “sorted sequence.” The first one are so-called skip lists [17],
the second one are randomized search trees [18], also sometimes called treaps.

Skip lists: Consider a sorted sequence S of n keys stored in a singly linked
list L0. Searching for a key in L0 would take time O(n) in the worst case. To
speed this up take a random sample of expected pn elements of S (p some
constant between 0 and 1), and arrange them in sorted order in a simply linked
list L1. Connect the elements of L1 to the corresponding element in L0. Now
consider a search for some key x: first search for it in L1; if you find it there,
you are done; if you don’t find it you identify two consecutive nodes u and v in
L1 whose keys span an interval that contains x; the expected number of nodes
in L0 between the nodes corresponding to u and v is 1/p − 1 = O(1). Thus
after having “located” x in L1 it only takes expected constant additional effort
to locate x in L0. How do you locate x in L1? If L1 has constant size, then by
sequential search, otherwise you apply the same sampling method recursively.

Thus skip lists can be viewed as a logarithmic height tower of coarser and
coarser random samples, and a search starts at the coarsest level and repeatedly
descends to the next finer level with constant expected effort, resulting in an
O(log n) expected overall search effort. This approch has been transferred to
many other query problems, e.g. [19]. Skip lists allow various update operations
with similarly fast expected performance. They admit rather simple implemen-
tations.

Randomized Search Trees: It is well known that if a sequence of n keys is
inserted in an initially empty binary search tree via the usual insertion algorithm
and this sequence is in random order, then the resulting tree can be expected to
be reasonably balanced. How can this “random insertion order” be simulated for
every order? Imagine that in the above setup every inserted key stores with it
also its insertion time. It can easily be seen that now the resulting tree must be
a min-heap with respect to the insertion times and a search tree with respect to
the keys. Now consider a set S of items, each being a pair (key,priority). Define
the treap for S to be a tree T with one node for eash item in S, so that T is a

Developments in Data Structure Research 57

search tree with respect to the keys and a heap with respect to the priorities.
Update operations for such a treap can easily be designed. For storing a set K
of keys in a treap I have the freedom to choose for each key a priority. If I choose
this to be a random number, then in effect this approach simulates the “random
insertion order” that we talked about, irrespective of the order in which the keys
in K are actually inserted in to the treap.

For just about every binary search tree operation thinkable randomized
search trees match the best worst case performance of any tree strategy in terms
of their expected performance. Randomized search trees are easy to implement
and it is even possible to do this without using space to store priorities.

7 Hashing

Hashing is a well-known class of methods for realizing a dictionay abstract data
type. Already a few years before the first FSTTCS conference Carter and Weg-
mann [20] came up with the concept of universal hashing, which allowed to
do hashing with probabilistic performance guarantees that were not based on
assumed input distributions but only rested on the assumption that random
numbers can be fairly generated. Universal hashing achieves constant expected
time lookup and update operations, however the worst case is essentially loga-
rithmic with high probability. During the first years of the FSTTCS conference
series Fredman, Komlós, and Szemerédi [21] gave an ingenious construction that
showed that using universal hashing it was possible to do “perfect” hashing. This
hashing is perfect in the sense that worst case lookup time is constant and the
space usage is linear. However, this worked only for the static case where a table
could be built once and for all and no updates would happen. Later Dietzfel-
binger et al. [22] by judicious application of automatic dynamization techniques
showed that perfect hashing could be made dynamic. However, their method is
not exactly simple or simple to implement.

A very interesting recent development is the notion of “cuckoo hashing”
proposed by Pagh and Rodler [23] which promises to be a substantially simpler
realization of dynamic perfect hashing. The idea is to use two hash functions
h1 and h2, and each key x is stored either in location h1(x) or h2(x). This
immediately gurantees constant lookup time, since at most two table locations
need to be checked. The same holds for deletions. Insertions proceed by possibly
repeatedly “bumping” elements already stored in the table and moving them to
their other possible location. Pagh and Radler can show that if the load factor is
not too high and the hash functions are truly random, then the expected insertion
time is constant also. It is an interesting open problem to replace this perfect
randomness requirement on the hash functions by something more reasonable.

8 Transdichotomy

The word “transdichotomy” refers to going beyond the usual binary comparisons
that are typically used in searching or priority data structures. The term was

58 Raimund Seidel

introduced by Fredman and Willard in their seminal paper [24]. The main idea is
to exploit the parallelism that is inherent in operations that act in constant time
on words that contain many bits. A bitwise OR operation of two 64 bit words
can for instance really be viewed as 64 operations on 1 bit words done in parallel,
or also as 8 operations on 8 bit words. With this insight it is for instance not too
hard to come up with a way of doing binary search in a sequence of 8 ordered
7-bit numbers in essentially a single 64-bit word operations. This idea requires
that we deal with relatively short strings, however typically input strings are
about word sized. Fortunately a number of “range reduction” mechanisms have
been developed that allow to transform problems on long bitstrings to problems
on short bitstrings. The oldest nontrivial reduction of this kind was developed
by van Emde Boas [25].

Considerable progress has been made in this area during the last years. For
instance, it was shown that in an ordered dictionary a worst case search cost and
amortized update cost of O(

√
logn/ log logn) is possible and even a matching

lower bound was shown. We refer the reader to the survey article [26] for further
details in this fascinating area.

9 Implementations

The last 25 years have seen a tremendous effort transferring the theoretical in-
sights in data structure research to actual implementations. The most prominent
of these projects, at least from the theoreticians point of view, may have been
the LEDA project [27], since it has been a very long term project driven by the-
ory research and in turn driving some of that research. However, this is not the
place to either list all such systems or dwell on their virtues and vices. We sim-
ply refer the reader to the repository http://www.cs.sunysb.edu/~algorith/
maintained by Steven S. Skiena at SUNY Stony Brook.

10 Conclusions

There are many topics in data structures that we have not touched such as
succinct data structures, external data structure, cache oblivious ones, kinetic
data structures, competitive analysis, data structures for geometric problems,
and so on. All of those areas have taken tremendous strides in the last 25 years.
It will be interesting to see what the developments will take place until the 50th
FSTTCS.

References

1. Mehta, Sahni, eds.: Handbook of Data Structures and Applications. Chapman &
Hall/CRC (2005)

2. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32 (1985)
652–686

Developments in Data Structure Research 59

3. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34 (1987) 596–615

4. Tarjan, R.E.: Amortized computational complexity. SIAM Journal on Algebraic
and Discrete Methods 6 (1985) 306–318

5. Bentley, J.L., Saxe, J.B.: Decomposable searching problems i: Static-to-dynamic
transformation. J. Algorithms 1 (1980) 301–358

6. Overmars, M.H.: The design of dynamic data structure. Volume 156 of LNCS.
Springer Verlag (1983)

7. Kirkpatrick, D.G.: Efficient computation of continuous skeletons. In: FOCS. (1979)
18–27

8. Chazelle, B., Guibas, L.J.: Fractional cascading: I. a data structuring technique.
Algorithmica 1 (1986) 133–162

9. Chazelle, B., Guibas, L.J.: Fractional cascading: Ii. applications. Algorithmica 1
(1986) 163–191

10. Cole, R.: Searching and storing similar lists. J. Algorithms 7 (1986) 202–220
11. Sen, S.: Fractional cascading revisited. J. Algorithms 19 (1995) 161–172
12. Mehlhorn, K., Näher, S.: Dynamic fractional cascading. Algorithmica 5 (1990)

215–241
13. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures

persistent. J. Comput. Syst. Sci. 38 (1989) 86–124
14. Sarnak, N.: Persistend Data Structures. PhD thesis, New York University (1986)
15. Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees. Com-

mun. ACM 29 (1986) 669–679
16. Mulmuley, K.: Computational Geometry: An Introduction through Randomized

Algorithms. Prentice Hall (1993)
17. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. Commun. ACM

33 (1990) 668–676
18. Seidel, R., Aragon, C.R.: Randomized search trees. Algorithmica 16 (1996) 464–

497
19. Eppstein, D., Goodrich, M.T., Sun, J.Z.: The skip quadtree: a simple dynamic data

structure for multidimensional data. In: Symposium on Computational Geometry.
(2005) 296–305

20. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. JCSS 18 (1979)
143–154

21. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with 0(1) worst
case access time. J. ACM 31 (1984) 538–544

22. Dietzfelbinger, M., Karlin, A.R., Mehlhorn, K., auf der Heide, F.M., Rohnert,
H., Tarjan, R.E.: Dynamic perfect hashing: Upper and lower bounds. SIAM J.
Comput. 23 (1994) 738–761

23. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51 (2004) 122–144
24. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum span-

ning trees and shortest paths. J. Comput. Syst. Sci. 48 (1994) 533–551
25. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and

linear space. Inf. Process. Lett. 6 (1977) 80–82
26. Andersson, A.: Searchin dn priority queues in o(log n) time. In Mehta, Sahni, eds.:

Handbook of Data Structures and Applications. Chapman & Hall/CRC (2005)
27. Mehlhorn, K., Näher, S.: Leda: A platform for combinatorial and geometric com-

puting. Commun. ACM 38 (1995) 96–102

Inference Systems for Logical Algorithms�

Natarajan Shankar

Computer Science Laboratory
SRI International

Menlo Park CA 94025 USA
shankar@csl.sri.com

http://www.csl.sri.com/˜shankar/
Phone: +1 (650) 859-5272 Fax: +1 (650) 859-2844

Abstract. Logical algorithms are defined in terms of individual com-
putation steps that are based on logical inferences. We present a uni-
form framework for formalizing logical algorithms based on inference
systems. We present inference systems for algorithms such as resolution,
the Davis–Putnam–Logemann–Loveland procedure, equivalence and con-
gruence closure, and satisfiability modulo theories. The paper is intended
as an introduction to the use of inference systems for studying logical
algorithms.

1 Introduction

Automated reasoning is an established branch of computing with many notewor-
thy contributions. It is also a vast subject so that even the two massive volumes
of The Handbook of Automated Reasoning [RV01] do not succeed in captur-
ing the breadth of the subject. Recently, automated reasoning technology has
not only witnessed dramatic improvements in efficiency and functionality, it has
also found a wide range of applications in solving open mathematical problems,
hardware and software verification, program analysis, and constraint solving. We
briefly survey some of the recent developments focusing on logical algorithms in
which individual computation steps can be seen as logical inferences. Such logi-
cal algorithms are given uniform presentations and proofs in terms of inference
systems which are used to clearly separate the logic behind the algorithm from
the computational details. Inference systems also make it easy to explore infer-
ence strategies, optimizations, extensions such as proof and witness generation,
and also composition mechanisms.

The development of metamathematics [Kle52] in the first half of the twentieth
century coupled with the growth of computer technology in the late 1940s and
1950s laid the foundation for the development of automated reasoning. The
significant landmarks in the first twenty-five years of the field include

– 1954: Martin Davis’ implementation of Presburger’s decision procedure for
the first-order theory of addition over the integers [Dav57].

� This research was supported NSF Grants CCR-ITR-0326540 and CCR-ITR-0325808.

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 60–78, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Inference Systems for Logical Algorithms 61

– 1956: Newell, Shaw, and Simon’s Logic Theorist program which introduces
key techniques such as substitution, forward and backward chaining, and
subgoaling [NSS57].

– 1960: Davis and Putnam’s search procedure for propositional satisfiability.
The practical variant of this procedure due to Davis, Logemann, and Love-
land is still the basis of most modern satisfiability solvers [DP60a, DLL62].

– 1962: McCarthy’s proposal of automated proof checking as a basic chal-
lenge [McC62].

– 1963: Robinson’s resolution principle for proof search in first-order
logic [Rob65a].

– 1965: Various strategies for resolution proof search such as hyper-
resolution [Rob65b] and set of support [WRC65].

– 1966: Knuth and Bendix’s completion procedure solving word problems in
an equational theory by transforming the theory into a confluent and termi-
nating rewrite system [KB70].

– 1966: Buchberger’s method for constructing a Gröbner basis for computing
membership in a polynomial ideal [Buc76].

– 1970: de Bruijn’s Automath framework for proof checking![dB80].
– 1971: The invention of logic programming based on resolution applied to

Horn clauses by Kowalski and Colmerauer [Coh88].
– 1972: Milner’s LCF framework [GMW79] for automated proof check-

ing which is at the foundation of a number of current systems includ-
ing HOL [GM93], HOL Light [Har96], Coq [Tea05], Isabelle [Pau94],
Lego [LP92], and Nuprl [CAB+86].

– 1973: Boyer and Moore’s induction theorem prover [BM79] which has since
evolved into Thm, Nqthm, and now ACL2 [KMM00].

– 1977: Bledsoe’s critique of resolution theorem proving and espousal of an
alternative approach based on “natural deduction” [Ble77].

– 1977: Kozen and Shostak’s congruence closure algorithm [Koz77, Sho78] for
deciding uniform word problems in the theory of equality, and subsequent
optimization by Downey, Sethi, and Tarjan [DST80].

– 1979: Nelson and Oppen’s method [NO79] for combining ground decision
procedures, and subsequent specialization by Shostak [Sho84] to solvable
and canonizable theories.

In the last twenty five years, there has been an explosion of work in the
construction of theorem-proving systems. Some of these, such as McCune’s Ot-
ter and EQP, have been used to solve open problems in certain branches of
mathematics [McC97]. The TPTP problem repository [SS98] and the CASC
competition held at the Conference on Automated Deduction have made it pos-
sible to evaluate theorem proving software and quantify progress. The degree
and efficiency of automation has been greatly increased through powerful index-
ing techniques, the combination of different techniques such as model checking,
induction, and rewriting,

In the rest of the paper, we describe a framework for presenting and reason-
ing about logical algorithms called inference systems. We introduce the inference

62 Natarajan Shankar

systems framework in Section 2. Examples of inference systems for propositional
satisfiability are presented in Section 3. Systems for reasoning about equality
are covered in Section 4. We focus on the combination of theory-based con-
straint solving and satisfiability in Section 5. Future work and conclusions are
summarized in Section 6. The paper is a tutorial introduction to some key logi-
cal algorithms and the inference systems framework for describing and studying
these algorithms.

2 Inference Systems

An inference structure is a pair 〈Ψ,�〉 consisting of a set of logical states Ψ
and a binary inference relation � on logical states. If ψ � θ holds, then ψ is
the premise state and θ is the conclusion state. Corresponding to an inference
system, there is a set of models M, so that when M |= ψ, the model M from M
satisfies ψ. If there is a model M ∈ M such that M |= ψ, then ψ is said to be
satisfiable. If ψ is satisfiable iff θ is satisfiable, then ψ and θ are equisatisfiable.
An inference relation � is said to be conservative if ψ and θ are equisatisfiable
whenever ψ � θ.1

The inference relation � is said to be well-founded if there are no infinite
sequences of the form 〈ψi|i ≥ 0〉 such that ψi � ψi+1 for i ≥ 0. An inference
structure with a well-founded inference relation is said to be progressive. Given
an inference structure 〈Ψ,�〉, a state ψ ∈ Ψ is reducible if there is a θ ∈ Ψ such
that ψ � θ. Otherwise, ψ is said to be irreducible. There is a special state ⊥ in
Ψ that is unsatisfiable and irreducible. An inference structure is canonizing if
every irreducible state different from ⊥ is satisfiable. An inference system is an
inference structure that is conservative, progressive, and canonizing.

With respect to an inference system 〈Ψ,�〉, the operation satisfiable(ψ) takes
a state ψ and returns ⊥ if it is unsatisfiable, and �, otherwise.

satisfiable(⊥) = ⊥
satisfiable(ψ) = satisfiable(ψ′), where ψ � ψ′

satisfiable(ψ) = �, otherwise.

If I is an inference system 〈Ψ,�〉, then we write satisfiableI(ψ) to identify
the set of states and the inference relation.

Theorem 1. If the inference relation � is decidable, then an inference system
〈Ψ,�〉 yields a decision procedure for satisfiability.

Proof. The procedure satisfiable is terminating since in the recursive call ψ′ is
smaller than ψ according to a well-founded ordering, namely �.

Then, by well-founded induction, we can prove that satisfiable(ψ) = � iff ψ is
satisfiable. In the base case, when ψ is irreducible, by canonicity, ψ is satisfiable
1 Most of the inference systems we present are strongly conservative in that each

inference step actually preserves models rather than just satisfiability.

Inference Systems for Logical Algorithms 63

iff ψ 	= ⊥. In the induction step, by conservativity, ψ and ψ′ are equisatisfiable,
and by the induction hypothesis, satisfiable(ψ′) = � iff ψ′ is satisfiable.

An inference state ψ is typically of the form κ1| . . . |κn for configurations κi
and 0 ≤ n. A model M ∈ M satisfies κ1| . . . |κn iff there is an i, 1 ≤ i ≤ n, such
that M |= κi. The | operator is associative and commutative. The state ⊥ can be
defined as the empty set of configurations, but there is also a special unsatisfiable
configuration ⊥ such that ⊥|ψ = ψ. A configuration typically includes a set of
formulas along with other, possibly non-logical, information needed to define the
valid inference steps. Such a configuration is satisfied by M if each associated
formula is satisfied by M . The inference relation must be monotonic so that if
ψ � θ, the ψ|ψ′ � θ|ψ′. Many inference systems are local : ψ � ψ′ iff for some
κ ∈ ψ, κ � θ, and ψ′ = (ψ − {κ})|θ.

We can now examine some examples of decision procedures given in the form
of inference systems. Inference structures are defined by specifying the well-
formed set of logical states Ψ and a set of inference rules, each of the form Φ1

Φ2
.

An inference step ψ1 � ψ2 holds if ψ1 is an instance of Φ1 obtained by substituting
syntactic expressions of the appropriate type for the metavariables, and ψ2 is the
corresponding instance of Φ2. If the inference structure given by the inference
rules is progressive, conservative, and canonizing, then it is an inference system.

3 Propositional Satisfiability

Given a set of propositional variables P , a propositional formula φ has the syntax

φ := P | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | φ1 ⊃ φ2

The interpretation is as expected with each model M mapping formulas to
{�,⊥}. We present two styles of propositional inference systems: resolution and
the Davis–Putnam–Logemann–Loveland (DPLL) procedure [DP60b, DLL62].
We do not examine proof construction for these propositional inference sys-
tems since their inference rules can already be seen as proof rules. For example,
the resolution calculus is one where the sequents contain only literals and cut is
the only inference rule. The DPLL inference system corresponds to a one-sided
sequent calculus on clauses with the cut rule.

3.1 Resolution

Many proof search procedures are based on the resolution rule of inference.
Though resolution is not an effective method for propositional satisfiability, it
is quite powerful as a first-order proof search method. We focus on the propo-
sitional case and present an inference system for ordered resolution. Here each
configuration is a finite set of clauses, and each clause is a (possibly empty)
disjunction of literals, where each literal is either a positive atom p or a neg-
ative atom ¬p. The complement l of a literal l is defined so that p = ¬p and
¬p = p. Since we interpret the configuration as the conjunction of its clauses, we

64 Natarajan Shankar

Res
Γ, l ∨ C1, l ∨ C2

Γ, l ∨ C1, l ∨ C2, C1 ∨ C2

C1 ∨ C2 �∈ Γ
C1 ∨ C2 is not tautological

Contrad
Γ

⊥
if p,¬p ∈ Γ for some p

Fig. 1. Ordered Resolution Inference System ORes

are essentially assuming that the input is given in conjunctive normal form. We
assume an ordering � on atoms so that each clause is sorted in decreasing order
of the atoms appearing in the literals. This means the head literal l of a clause
l ∨ C is the maximal literal. Any tautological clauses of the form l ∨ ¬l ∨A are
automatically deleted from the clause set. Also, duplicate literals in a clause are
eliminated so that l ∨ l ∨C is simplified to l ∨C. The inference structure ORes
for ordered resolution is specified by the inference rules Figure 1 so that a state
consists of a set of clauses, and each inference step ψ1 � ψ2 must be an instance
of an inference rule in Figure 1.

Theorem 2. The ORes inference structure is a local inference system.

Proof. Each of the rules in ORes has exactly one premise and one conclu-
sion configuration. Conservativity is easily established for these rules since any
model of the premise clauses satisfies the conclusion clauses and vice-versa. The
progressiveness property follows easily since there are only a bounded number
of distinct clauses in a given set of atoms, and each resolution step generates a
new clause.

To show that the inference rules are canonizing, we construct a model M
satisfying a given irreducible, non-⊥ state Γ . Assume that the configuration
contains n distinct atoms ordered as p1, . . . , pN , and define M as MN , where
each Mi provides a truth assignment for the atoms p1, . . . , pi such that all the
clauses in Γ in these atoms are satisfied. First, define M0 = ∅. Then, assuming
the induction hypothesis that Mi satisfies all the clauses in Γ made up of atoms
from p0, . . . , pi, we can construct Mi+1 as follows. If pi+1 is the maximal literal
in a clause pi+1 ∨C and ¬pi+1 occurs as the maximal literal in ¬pi+1 ∨D, then
by the Res rule, the clause C ∨D occurs in Γ or is tautological. In either case,
if Mi |= C, then let Mi+1 = Mi{pi+1 → ⊥}. Otherwise, if Mi |= D, then let
Mi+1 = Mi{pi+1 → �}. Note that Mi+1 satisfies all the clauses in the atoms
p1, . . . , pi+1. If ¬pi+1 does not occur as the maximal literal in any clause in
Γ , then we define Mi+1 as Mi{pi+1 → �} so that Mi+1 clearly satisfies all the
clauses in the atoms p1, . . . , pi+1. Similarly, if pi+1 does not occur as the maximal
literal, then we define Mi+1 as Mi{pi+1 → ⊥}. Clearly, MN then satisfies Γ .

Inference Systems for Logical Algorithms 65

The Ores system can be used to demonstrate the unsatisfiability of the same
example as in the previous subsection with p � q.

Γ︷ ︸︸ ︷
p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q

q, Γ
Res

¬q, q, Γ
Contrad

⊥
Res

There are many variants of the resolution system above. One important op-
timization is the subsumption rule. Given a clause C, let lits(C) represent the
set of literals that are disjuncts of C.

Sub
C,C′, Γ

C, Γ
lits(C) ⊂ lits(C′)

If we add this rule to the ORes inference system, we lose progressiveness.
However, if we also strengthen the Res rule so that it never introduces a sub-
sumed clause to the conclusion state, then progressiveness is maintained as in
the proof of Theorem 2.

Res
Γ, l ∨ C1, l ∨ C2

Γ, l ∨ C1, l ∨ C2, C1 ∨ C2

for all C ∈ Γ : lits(C) 	⊆ lits(C1 ∨ C2)

The canonicity argument in the proof of Theorem 2 does need to be revised
since when pi+1 ∨C and ¬pi+1 ∨D are in Γ , we can only infer that either C ∨D
is tautological or some clause subsuming C ∨D also appears in Γ . However, this
is sufficient for completing the proof as given.

There are many variants of resolution which can also be similarly presented
within the inference system framework, but we omit these from the present
description.

3.2 The Davis-Putnam-Logemann-Loveland Procedure

The original Davis–Putnam procedure [DP60a] for propositional satisfiability
contained a resolution rule that proved to be expensive in terms of space usage.
Since this rule was redundant, it was dropped to obtain the Davis–Putnam–
Logemann–Loveland (DPLL) procedure [DLL62]. DPLL employs the same rep-
resentation as resolution but instead of deriving new clauses, it searches for a
satisfying truth assignment. The inference system shown in Figure 2 is a simpli-
fied form of the DPLL procedure. The Split rule splits a single configuration Γ
into two configuration l, Γ and l, Γ . Since any unit clause, that is a clause con-
sisting of a single literal, must be satisfied for the configuration to be satisfied,
the corresponding truth assignment is propagated. The Unit rule is a form of
resolution where one of the participating clauses is a unit clause.

66 Natarajan Shankar

Split
Γ

p, Γ | ¬p, Γ
p,¬p �∈ Γ, p occurs in Γ

Contrad
Γ, l, l

⊥

Unit
Γ, C ∨ l, l

Γ, C, l
C nonempty

Fig. 2. A Simplified DPLL Inference System DPLL

Theorem 3. The DPLL inference structure is a local inference system.

Proof. The DPLL rules are clearly conservative.
The inference rules yield a progressive system. Assume without loss of gen-

erality that the atoms appearing in the formulas are chosen from p0, . . . , pN−1

and that U(Γ) is the number of distinct unit clauses occurring in the clause set
Γ . Let m1(Γ) = 2 ∗ N − |U(Γ) and m2(Γ) = ΣC∈Γ |lits(C)|. In each inference
step, Γ � (Γ1| . . . |Γn), either m1(Γi) < m1(Γ) or n = 1, m1(Γ1) = m1(Γ), and
m2(Γ1) < m2(Γ).

The canonicity of the inference rules is established by arguing that when
none of the inference rules is applicable, either the state is ⊥ or is a state con-
taining configurations that consist solely of unit clauses. Since Contrad rule is
inapplicable, each of these configurations is satisfiable.

We illustrate the DPLL inference system on the same example as before.
Here, the unit propagation steps are executed to completion as Unit∗ following
each Split step.

Γ︷ ︸︸ ︷
p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q

p, Γ | ¬p, Γ
Split

p, q,¬q, p ∨ q, p ∨ ¬q | ¬p, Γ
Unit∗

⊥ | ¬p, Γ
Contrad

¬p, q,¬q,¬p ∨ q,¬p ∨ ¬q
Unit∗

⊥
Contrad

The Delete rule shown below is not needed for completeness but is useful for
discarding clauses that are already satisfied by any truth assignment satisfying
the unit clauses in the configuration.

Delete
l, l ∨ C, Γ

l, Γ

Inference Systems for Logical Algorithms 67

3.3 Conflict-Directed Backjumping

Implementations of DPLL typically follow a depth-first strategy. The config-
uration is split into the clause set G and the partial assignment κ. Following
an application of the Split rule, one of the configurations (i.e., branches), say
G;κ, p is explored completely before the other branch is considered. For the
chosen branch of the Split rule, the Unit rule is applied exhaustively (unit
propagation), unless a contradiction (conflict) is found. If a conflict is reached as
a result of splitting G;κ to obtain G;κ, p, then a conflict clause C is constructed
so that G∪C is unsatisfiable, where C = lits(C) and M = {l|l ∈M} for a set of
literals M . The conflict clause is used to backjump to G,C;κ′ where κ′ extends a
prefix of κ with additional unit clauses derived using C. The addition of conflict
clauses together with backjumping can simulate backtracking.

Conflict-directed backjumping can be captured within a non-local inference
system. The inference rules DPLL(CDB) for DPLL augmented with conflict-
directed backjumping are shown in Figure 3. Each configuration in the state is
represented as a pair of the clause set G and the decision configuration κ. Since
the clause set G is shared by all of the configurations, the state is represented
as G ⊗ (κ1| . . . |κn) abbreviating G;κ1| . . . |G;κn. Each κi is a sequence of the
form P0;P1; . . . ;Pm, where each Pj is itself a sequence of literals. The set P0

consists of the unit consequences of the input clauses, whereas each sequence Pi
for 1 ≤ i ≤ m consists of the decision literal followed by the unit consequences. If
for 1 ≤ i ≤ n, each Pi is nonempty, then the corresponding sequence of decision
literals is represented as 〈P1(0), . . . , Pn(0)〉. The sequence κ is overloaded to also
represent the set of literals appearing in it, as is also done with a sequence element
P . Given κ of the form P0; . . . ;Pn and a sequence Q of literals, κ ◦Q represents
P0; . . . ; (Pn ◦ Q), where Pn ◦ Q is the result of concatenating the sequences Pn
and Q.

For a set of clauses G and a set of literals L, the sequence of unit clauses
implied by G;L is written as UC (G;L) is defined to return the smallest set of
literals M so that for any clause C ∈ G, k = |lits(C)− (L∪M)|, k 	= 1. Clearly,
L∩M = ∅. Let M represent a sequence of the elements in the set of literals M .
Note that UC (G;L) can be computed using an auxiliary inference system using
the Unit rule from Figure 2. We write κ′ � κ if κ′ is a prefix of κ. Let N be the
number of distinct atoms in the input clause set G0. Given a sequence κ of the
form P0, P1; . . . ;PN , define m3(κ) and m4(κ) as follows.

m3(P0; . . . ;PN) = (2 ∗N + 1)N ∗ |P0|+ . . . + (2 ∗N + 1)(N−i) ∗ |Pi|+ . . . |PN |
m4(κ) = (2 ∗N + 1)N+1 −m3(κ)

For example, if k = 3 and κ = 〈〉; 〈p1〉; 〈¬p2〉; 〈p3,¬p1〉, then m3(κ) = 49 +
7 + 2 = 58 m4(κ) = 2401− 58 = 2343. If κ is of the form P0;P1; . . . ;Pi for some
i < N , then κ̂ is the result of padding κ with a suffix sequence N − i empty
sets. We write κ ≺ κ′ if κ = P0;P1; . . . ;Pm and κ′ = P ′0;P

′
1; . . . ;P

′
m where

Pi(0) = P ′i (0) for 1 ≤ i ≤ m, κ ⊆ κ′, and m3(κ̂) < m3(κ̂′).
The inference rules in Figure 3 use the ORes inference system and unit

closure as auxiliary systems. The Split rule is as in DPLL, whereas the unit

68 Natarajan Shankar

Split
G⊗ (κ|ψ)

G⊗ (κ; 〈p〉|κ; 〈¬p〉|ψ)

p occurs in G
p,¬p �∈ κ

Unitclose
G⊗ (κ|ψ)

G⊗ (κ ◦Q|ψ)
for Q = UC (G; κ) �= ∅

Backjump
G⊗ (κ|ψ)

(G, C)⊗ (κ′ ◦Q|ψ)

κ′ κ,
Q = UC (G, C; κ′) �= ∅
satisfiableORes(G ∪ C) = ⊥

Delete
(G, C)⊗ ψ

G⊗ ψ
if satisfiableORes(G ∪ C) = ⊥

Subsume
G⊗ (κ|ψ)

G⊗ ψ
if for some κ′ ∈ ψ, κ ≺ κ′

Contrad
G⊗ (κ|ψ)

G⊗ ψ
p,¬p ∈ G; κ for some p

Fig. 3. The Inference Rules for DPLL(CDB)

propagation steps are packaged into the Unitclose rule. The backjumping rule
Backjump augments G with a lemma clause C while replacing κ with a prefix
κ′ together with new unit clauses Q derived from G,C and κ′. The Delete
rule drops a clause that is known to be derivable from the others in G, whereas
the Subsume rule drops a decision configuration that is already derivable from
another configuration.

Theorem 4. The inference structure DPLL(CDB) is an inference system.

Proof. The inference rules of DPLL(CDB) are conservative. Any model of
G⊗ (κ1| . . . |κn) is a model of G since each model of G is a model of some κi. In
each inference step G⊗ψ � G′⊗ψ′, we have that G ⇐⇒ G′ so that any model
of G′ is a model of G and vice-versa.

The progressiveness property holds since each inference step from G;ψ to
G′;ψ′ either deletes an element κ of ψ to possibly replace it with a zero or more
configurations κ1, . . . , κn such that m4(κ̂i) < m4(κ̂) for 1 ≤ i ≤ n, or ψ is held
fixed and |G′| < |G|.

Canonicity also holds: when no further rules are applicable to a state
G⊗ (κ1| . . . |κn), then the literals in any of the κi yield a satisfying assignment
for G.

Nieuwenhuis, Oliveras, and Tinelli [NO05] give a formal presentation of the
DPLL procedure with conflict-directed backjumping and lemma deletion in a
form that is quite close to the usual depth-first search implementation. Our
presentation uses the more general framework of inference systems. The depth-
first search approach can be simulated by DPLL(CDB) using a strategy where

Inference Systems for Logical Algorithms 69

Split is always followed by Unitclose on the chosen branch, Backjump is
always followed by Subsume steps to delete all configurations that are subsumed
by the newly created one, and by restricting the application of the Contrad rule
to the case where there is a singleton configuration κ in ψ of the form P0.

4 Propagating Equality

We first consider an inference system for checking satisfiability with respect to
equivalence constraints. These constraints are in the form of equalities and dise-
qualities between variables. The equivalence constraints can be compiled into a
union-find data structure that can be used to determine if any of the disequality
constraints is contradicted. This basic inference system is extended to equal-
ity/disequality constraints over terms using the congruence closure algorithm.

4.1 Equivalence Constraints

Maintaining equivalence classes is a basic operation in many applications of
computing. We present an inference system based on the union-find algorithm.

Assume an order ≤ over the set of variables. The state contains the input
Γ which consists of equalities and disequalities between variables, and the find
structure F which is a finite set of equalities between variables. The find structure
F should be functional, that is, if x = y and x = y′ in F , then y ≡ y′. A functional
equality set can be used as a lookup table so that F (x) = y if x = y ∈ F , and
F (x) = x if there is no y such that x = y ∈ F . The equality set F should also
be acyclic so that the iterated closure of the lookup operation can be defined as
follows.

F ∗(x) =
{
x, if F (x) ≡ x
F ∗(F (x)), otherwise.

For example, if F is {x = y, y = z, u = v}, then F ∗(x) = z. Thus, for any x,
F ∗(x) is the canonical representative of its equivalence class. The union operation
merges two distinct equivalence classes by mapping the canonical representative
of one class to that of the other.

union(F)(x, y) = F ∪ {x′ = y′}, where x′ ≡ F ∗(x) 	≡ F ∗(y) ≡ y′

The inference system for equivalence is shown in Figure 4. Each configuration
has the form G;F ;D where G contains the unprocessed inputs, F contains the
find structure, and D contains the disequalities processed from the input. The
Delete rule discards a redundant input equality. The Merge rule merges two
distinct equivalence classes. The Diseq rule transfers a disequality from G to
D. The Contrad rule is triggered when there is an input disequality constraint
x 	= y for x and y in the same equivalence class.

Theorem 5. The inference structure Eq is an inference system.

70 Natarajan Shankar

Delete
x = y, G; F ; D

G; F ;D
if F ∗(x) ≡ F ∗(y)

Merge
x = y, G; F ; D

G; F ′; D

if F ∗(x) �≡ F ∗(y)
F ′ = union(F)(x, y)

Diseq
x �= y,G; F ; D

G; F ; x �= y,D

Contrad
G; F ; x �= y, D

⊥
if F ∗(x) = F ∗(y)

Fig. 4. An Inference System Eq for Equivalence

Proof. Since each rule application processes an input constraint, the progres-
siveness of the rules is straightforward. The rules yield a conservative inference
structure since F =⇒ x = F (x) and F =⇒ x = F ∗(x). The canonicity is
established through the construction of a term model corresponding to an ir-
reducible state so that each variable is mapped to its canonical representative
F ∗(x).

As an illustration of the Eq, we demonstrate the unsatisfiability of the for-
mulas x = y, u = v, x 	= z, z = y.

x = y, u = v, x 	= z, z = y; ∅; ∅
u = v, x 	= z, z = y;x = y; ∅

Merge

x 	= z, z = y;x = y, u = v; ∅
Merge

z = y;x = y, u = v;x 	= z
Diseq

∅;x = y, u = v, z = y, x 	= z
Merge

⊥
Contrad

The construction of proofs corresponding to unsatisfiable inputs is carried
out by tracking the input corresponding to each entry in F . For this purpose, we
number the inputs so that the i’th input has the form x =〈i〉 y if it is an equality
or x 	=〈i〉 y in the case of a disequality. Then the equality y =〈−i〉 x represents
an application of the symmetry rule to x =〈i〉 y. A sequence of positive and
negative indices x =〈i1,i2,...〉 y represents a series of applications of transitivity.
Given input G of the form x1 =〈1〉 y1, . . . , xn =〈n〉 yn, the judgment G |= x =σ y
represents a proof:

– Either σ is empty and x ≡ y, or
– σ is of the form j;σ′ for j > 0 and input j is of the form x =〈j〉 z for some z,

and G |= z =σ′ y, or j = −j′ for j′ > 0, and input j′ is of the form z =〈j′〉 x,
and z =σ′ y.

A slight modification of the Eq inference system makes it easy to maintain
such proofs. Define F 〈x〉 to return an equality set equivalent to F in which x is
the root of its equivalence class.

Inference Systems for Logical Algorithms 71

F 〈x〉 =

⎧⎨⎩F ′〈y〉,
where F ′ = (F − {x =〈i〉 y}) ∪ {y =〈−i〉 x}, and y ≡ F (x) 	≡ x
F, otherwise.

The union operation can then be redefined as below so that each equality
in the find structure corresponds directly to an input equality constraint or its
inverse.

union(F)(x =〈i〉 y) = F 〈x〉 ∪ {x =〈i〉 x}

Let G0 represent the input component in the initial state ψ0 of an inference,
then in every state ψ of the form G;F ;D reachable from ψ0 by valid inference
steps, and form x =〈j〉 y ∈ F , G0 |= x =〈j〉 y. In order to prove that x = F ∗(x),
we define Π∗(x) as follows.

Π∗(x) =
{
〈〉, if F (x) ≡ x
j;Π∗(y), if x =〈j〉 y ∈ F

Note that G0 |= x =Π∗(x) F
∗(x) for each state G;F ;D reachable from G0; ∅; ∅

by means of valid inference steps in Eq. Then, whenever F ∗(x) ≡ F ∗(y), we have
G0 |= xΠ∗(x);(Π∗(y))−y, where (σ)− is the sequence obtained by negating each
element of σ. Similarly G0 � ⊥j;σ represents a proof contradiction if for some
x, y, x 	=〈j〉 y ∈ G0 and G0 |= x =σ y.

The example above can now be repeated with proof annotations.

x =〈1〉 y, u =〈2〉 v, x 	=〈3〉 z, z =〈4〉 y; ∅; ∅
u =〈2〉 v, x 	=〈3〉 z, z =〈4〉 y;x =〈1〉 y; ∅

Merge

x 	=〈3〉 z, z = 〈4〉y;x =〈1〉 y, u =〈2〉 v; ∅
Merge

z =〈4〉 y;x =〈1〉 y, u =〈2〉 v;x 	=〈3〉 z
Diseq

∅;x =〈1〉 y, u =〈2〉 v, z =〈4〉 y, x 	=〈3〉 z
Merge

⊥3;〈1,−4〉
Contrad

The proofs generated are irredundant in the sense that no premise that is
used in a proof can be omitted, but these proofs are not minimal since the
Delete rule discards inputs that might yield shorter proofs. The above proof
construction is based on the proof-producing algorithms of de Moura, Rueß, and
Shankar [dMRS04] and Nieuwenhuis and Oliveras [NO05].

4.2 Congruence Closure

The inference system Eq can be extended to checking satisfiability on equal-
ity and disequality constraints over terms. Here, in addition to the reflexivity,
symmetry, and transitivity rules for equality, we also have a congruence rule for
inferring f(a1, . . . , an) = f(b1, . . . , bn) from ai = bi for 1 ≤ i ≤ n.

The inference system CC is based on the congruence closure algorithm. The
state now contains the set of input constraints G, the find equalities F , and

72 Natarajan Shankar

Delete
x = y, G; F ; D; U

G; F ; D; U
if F ∗(x) ≡ F ∗(y)

Abstract
G[f(x1, . . . , xn)]; F ; D; U

G[x]; F ; D; x = f(x1, . . . , xn), U
x �∈ vars(G; F ; D; U)

Congruence
G; F ;D; U

G; F ′; D; U

x = f(x1, . . . , xn) ∈ U,
y = f(y1, . . . , yn) ∈ U,
F ∗(xi) ≡ F ∗(yi), for 1 ≤ i ≤ n
F ∗(x) �≡ F ∗(y)
F ′ = union(f)(x, y)

Merge
x = y, G; F ; D; U

G; F ′; D; U

if F ∗(x) �≡ F ∗(y)
F ′ = union(F)(x, y)

Diseq
x �= y,G; F ;D; U

G; F ; x �= y,D; U

Contrad
G; F ; x �= y, D; U

⊥
if F ∗(x) ≡ F ∗(y)

Fig. 5. An Inference System CC for Congruence

a term map U that is a set of equalities of the form x = f(x1, . . . , xn). In
addition to the Delete, Merge, Diseq, and Contrad rules from the Eq system,
the CC inference system contains two rules for treating terms and inferring
equality by congruence. The rule Abstract replaces a flat subterm of the form
f(x1, . . . , xn) in the input G by a fresh variable x while adding x = f(x1, . . . , xn)
to U . The Congruence rule merges x and y in F when x = f(x1, . . . , xn) and
y = f(y1, . . . , yn) appear in U and xi and yi are in the same equivalence class
as partitioned by F .

Theorem 6. The CC inference structure is an inference system.

Proof. Each rule in CC either decreases the size of the input G or preserves
the size of the input while decreasing the number of distinct equivalence classes
in the variables occurring in the premise state. Hence, the inference structure is
progressive.

The conservativeness can be easily checked for each rule in CC.
The canonicity of CC follows from the construction of a term model M

so that for each variable x, M(x) = F ∗(x), and for a term f(a1, . . . , an),
M(f(a1, . . . , an)) = F ∗(x) if M(ai) = M(xi) for 1 ≤ i ≤ n and x =
f(x1, . . . , xn) ∈ U . Otherwise, M(f(a1, . . . , an)) = f(M(a1), . . . ,M(an)).

As an example of the inference system, consider the input x = f(y), y =
f(x), f(f(y)) 	= f(x).

Inference Systems for Logical Algorithms 73

x = f(y), y = f(x), f(f(y)) �= y); ∅; ∅; ∅

x = u1, y = f(x), f(u1) �= y; ∅; ∅;u1 = f(y)
Abstract

y = f(x), f(u1) �= y;x = u1; ∅;u1 = f(y)
Merge

y = u2, f(u1) �= y;x = u1; ∅;u1 = f(y), u2 = f(x)
Abstract

f(u1) �= y;x = u1, y = u2; ∅;u1 = f(y), u2 = f(x)
Merge

u3 �= y;x = u1, y = u2; ∅;u1 = f(y), u2 = f(x), u3 = f(u1)
Abstract

∅;x = u1, y = u2;u3 �= y;u1 = f(y), u2 = f(x), u3 = f(u1)
Diseq

∅;x = u1, y = u2, u3 = u2;u3 �= y;u1 = f(y), u2 = f(x), u3 = f(u1)
Congruence

⊥
Contrad

Proof construction for CC is an extension of that from Eq where the equal-
ities in F are justified either by an input equality in the case of the Merge rule,
or by congruence in the case of the Congruence rule. In the above example, if
the inputs are numbered as x =〈1〉 f(y), y =〈2〉 f(x), f(f(y)) 	=〈3〉 f(x), the proof
of the contradiction is 3; 〈C(f)(〈−1〉), 2〉. The inference system CC is a variant
of the abstract congruence closure algorithms of Kapur [Kap97] and Bachmair,
Tiwari, and Vigneron [BTV03].

5 Satisfiability Modulo Theories

The inference systems for equality presented in Section 4 check the satisfiability
of conjunctions of literals. Similar inference systems can be given for ordering
constraints, arithmetic equality and inequality constraints, arrays, and recur-
sive datatypes. These inference systems can be designed to generate proofs of
unsatisfiability, explanations identifying the input formulas that are relevant to
the proof of unsatisfiability, and implied equalities between variables. The gen-
eration of implied equalities between variables is not relevant for satisfiability
within a single theory, but is needed for composing inference systems for different
theories. Typical constraints arising in embedded uses of decision procedures in
verification, type checking, and translation validation, involve a mix of theories
such as equality over uninterpreted terms, arrays, arithmetic equalities and in-
equalities, and recursive datatypes. Such combination decision procedures were
first developed by Shostak [Sho79, Sho84] and Nelson and Oppen [NO79], and
have been the target of active research in recent years. The theory of modular
inference systems, and their composition and refinement, is developed in detail
elsewhere [GRS04].

The inference systems for theories discussed above can be used to check the
satisfiability of conjunctions of literals of the form l1, . . . , ln in a theory or a
union of theories, and can be used as an auxiliary inference system in deciding
the validity of quantifier-free formulas. To check the satisfiability of existentially
quantified formulas in a theory the DPLL inference system can be enhanced
with calls to a theory-specific decision procedure for this purpose. Augmenting
DPLL with theory satisfiability for a theory T is simply a matter of adding the
following rule

74 Natarajan Shankar

Lemma
Γ

Γ, l1 ∨ . . . ∨ ln

if satisfiableT (l1, . . . , ln) = ⊥,
and for all C ∈ Γ, lits(C) 	⊆ {l1, . . . , ln}
where li or li occurs in Γ, for 1 ≤ i ≤ n

Let DPLL(L) label the inference rules obtained by adding the Lemma rule
to the DPLL rules.

Theorem 7. The DPLL(L) inference structure is an inference system.

Proof. For progressiveness, observe that given an input set of clauses, there
is a bound on the number of lemma clauses that can be generated since there
are at most 3N clauses in N distinct atoms. In each application of a DPLL(L)
rule, either the number of missing clauses in Γ , that is 3N − |Γ |, decreases (in
the case of the Lemma rule) or it stays the same and the termination argument
from the proof of Theorem 3 can applied.

Since each added lemma clause is valid in all models, the Lemma rule is
conservative.

For canonicity, given an irreducible non-⊥ state Γ , let units(Γ) be the set
of unit literals in Γ . Then, clearly satisfiableT (units(Γ)) since otherwise, the
negation of units(Γ) would be a lemma clause and a contradiction would have
been established by the Unit and Contrad rules. The entire state Γ is then
satisfiable: each clause contains at least one literal that appears in units(Γ).

A näıve application of the Lemma rule would be horribly inefficient. In the
eager strategy, the lemmas are enumerated and the Lemma rule is invoked on
these enumerated lemmas prior to any other rule application. This approach is
viable when there are efficient ways of enumerating the valid lemmas without
generating and testing them. The lazy strategies invoke the Lemma rule as
needed for refining the Contrad, Unit, and Split rules. the following instance
of the Lemma is sufficient for completeness.

ContradLemma
Γ

C, Γ

C ≡ l1 ∨ . . . ∨ ln,
C ⊆ units(Γ),
satisfiableT (C) = ⊥

The system with the ContradLemma rule is sound and complete, but re-
quires an exhaustive enumeration of the truth assignments to the atoms through
the Split rule. The Unit can be similarly strengthened with a UnitLemma rule,
which also helps avoid needless applications of Split.

UnitLemma
Γ

l ∨ C, Γ

C ⊆ units(Γ),
satisfiableT ({l} ∪ C) = ⊥,
l 	∈ units(Γ),
l occurs in Γ

The UnitLemma rule can be used together with the Unit and Delete rules
to assign truth values to literals appearing clauses. Similarly, splitting on literals
that are implied by the unit clauses in the configuration, can be avoided. In the

Inference Systems for Logical Algorithms 75

ContradLemma and UnitLemma rules, the subset C of units(Γ) is obtained
from the explanation generated from the contradiction.

The combination of DPLL(CDB) and the Lemma rule is not progressive
due to the possible deletion of added lemmas by the Delete rule. However, the
Backjump rule can be modified to add lemma clauses that are derived using
ORes or theory satisfiability, and the same termination argument as Theorem 4
holds. Nieuwenhuis, Oliveras, and Tinelli [NO05] give a related treatment of
theory-based extensions of DPLL.

6 Conclusions

Logical algorithms use inference as the basic computing mechanism. Many
general-purpose algorithms are instances of logical algorithms. These include
a number of decision algorithms as well as those for maintaining equivalence
classes, and computing transitive closures and shortest paths. Logical algorithms
can be described in terms of inference systems given by an inference relation on
logical states. The inference system paradigm has the advantage of separating
concerns between the logical correctness of the inference steps, the best strategies
for applying these inferences, and the efficient implementation of each inference
step. The logical correctness is preserved regardless of the strategy. The effi-
cient application of inferences relies on the use of suitable representations of
the logical state. The inference systems presentation is also useful in computing
additional useful information in the form of proofs, explanations, and models.
Inference systems can also be systematically composed in various ways while
preserving the relevant logical properties. We have sketched the basic inference
system paradigm and shown a few basic examples as a step toward a more
comprehensive catalog of inference systems. These examples already weave to-
gether the different strands of early work including propositional satisfiability,
proof checking, and decision procedures. A great deal more work is needed to
understand how such high-level algorithmic descriptions can be systematically
optimized to yield efficient implementations.

Acknowledgments. Alan Bundy’s encouraging remarks during the Calculemus
workshop at Newcastle, England in July 2005 stimulated the writing of this
paper. The material presented here is based on a course entitled Little Engines
of Proof taught together with Leonardo de Moura, Harald Rueß, and Ashish
Tiwari at Stanford University during Fall 2003. Leonardo and Ashish provided
valuable feedback on early versions, as did Sam Owre and Bruno Dutertre.

References

[Ble77] W. W. Bledsoe. Non-resolution theorem proving. Artificial Intelligence,
9:1–36, 1977.

[BM79] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press,
New York, NY, 1979.

76 Natarajan Shankar

[BTV03] Leo Bachmair, Ashish Tiwari, and Laurent Vigneron. Abstract congruence
closure. Journal of Automated Reasoning, 31(2):129–168, 2003.

[Buc76] B. Buchberger. A theoretical basis for the reduction of polynomials to
canonical forms. ACM SIGSAM Bulletin, 10(3):19–29, 1976.

[CAB+86] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cre-
mer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panan-
gaden, J. T. Sasaki, and S. F. Smith. Implementing Mathematics with the
Nuprl Proof Development System. Prentice Hall, Englewood Cliffs, NJ,
1986.

[Coh88] Jacques Cohen. A view of the origins and development of prolog. Com-
munications of the ACM, 31(1):26–36, 1988.

[Dav57] M. Davis. A computer program for Presburger’s algorithm. In Sum-
maries of Talks Presented at the Summer Institute for Symbolic Logic,
1957. Reprinted in Siekmann and Wrightson [SW83], pages 41–48.

[dB80] N. G. de Bruijn. A survey of the project Automath. In To H. B. Curry: Es-
says on Combinatory Logic, Lambda Calculus and Formalism, pages 589–
606. Academic Press, 1980.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394–397, July 1962. Reprinted
in Siekmann and Wrightson [SW83], pages 267–270, 1983.

[dMRS04] Leonardo de Moura, Harald Rueß, and Natarajan Shankar. Justifying
equality. In Proceedings of PDPAR ’04, 2004.

[DP60a] M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7:201–215, 1960.

[DP60b] M. Davis and H. Putnam. A computing procedure for quantification theory.
JACM, 7(3):201–215, 1960.

[DST80] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subex-
pressions problem. Journal of the ACM, 27(4):758–771, October 1980.

[GM93] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A The-
orem Proving Environment for Higher-Order Logic. Cambridge University
Press, Cambridge, UK, 1993.

[GMW79] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A Mechanized
Logic of Computation, volume 78 of Lecture Notes in Computer Science.
Springer-Verlag, 1979.

[GRS04] H. Ganzinger, H. Rueß, and N. Shankar. Modularity and refinement in
inference systems. Technical Report CSL-SRI-04-02, SRI International,
Computer Science Laboratory, 333 Ravenswood Ave, Menlo Park, CA,
94025, January 2004. Revised, August 2004.

[Har96] John Harrison. HOL Light: A tutorial introduction. In Proceedings of
the First International Conference on Formal Methods in Computer-Aided
Design (FMCAD’96), volume 1166 of Lecture Notes in Computer Science,
pages 265–269. Springer-Verlag, 1996.

[Kap97] Deepak Kapur. Shostak’s congruence closure as completion. In H. Comon,
editor, International Conference on Rewriting Techniques and Applica-
tions, RTA ‘97, number 1232 in Lecture Notes in Computer Science, pages
23–37, Berlin, 1997. Springer-Verlag.

[KB70] D. E. Knuth and P. Bendix. Simple word problems in universal algebras.
In J. Leech, editor, Computational Problems in Abstract Algebras, pages
263–297. Pergamon Press, Oxford, 1970.

Inference Systems for Logical Algorithms 77

[Kle52] S. C. Kleene. Introduction to Metamathematics. North-Holland, Amster-
dam, 1952.

[KMM00] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-
Aided Reasoning: An Approach, volume 3 of Advances in Formal Methods.
Kluwer, 2000.

[Koz77] Dexter Kozen. Complexity of finitely presented algebras. In Conference
Record of the Ninth Annual ACM Symposium on Theory of Computing,
pages 164–177, Boulder, Colorado, 2–4 May 1977.

[LP92] Z. Luo and R. Pollack. The LEGO proof development system: A user’s
manual. Technical Report ECS-LFCS-92-211, University of Edinburgh,
1992.

[McC62] J. McCarthy. Computer programs for checking mathematical proofs. In
Recursive Function Theory, Proceedings of a Symposium in Pure Mathe-
matics, volume V, pages 219–227, Providence, Rhode Island, 1962. Amer-
ican Mathematical Society.

[McC97] W. W. McCune. Solution of the Robbins problem. Available from
ftp://info.mcs.anl.gov/pub/Otter/www-misc/robbins-jar-submitted.ps.gz,
1997.

[NO79] G. Nelson and D. C. Oppen. Simplification by cooperating decision pro-
cedures. ACM Transactions on Programming Languages and Systems,
1(2):245–257, 1979.

[NO05] Robert Nieuwenhuis and Albert Oliveras. Proof-Producing Congruence
Closure. In Jürgen Giesl, editor, Proceedings of the 16th International Con-
ference on Term Rewriting and Applications, RTA’05 (Nara, Japan), vol-
ume 3467 of Lecture Notes in Computer Science, pages 453–468. Springer,
2005.

[NSS57] A. Newell, J. C. Shaw, and H. A. Simon. Empirical explorations with the
logic theory machine: A case study in heuristics. In Proc. West. Joint
Comp. Conf., pages 218–239, 1957. Reprinted in Siekmann and Wright-
son [SW83], pages 49–73, 1983.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of
Lecture Notes in Computer Science. Springer-Verlag, 1994.

[Rob65a] J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41, 1965.

[Rob65b] J.A. Robinson. Automatic deduction with hyper-resolution. International
Journal of Computational Mathematics, 1:227–234, 1965.

[RV01] A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning.
Elsevier Science, 2001.

[Sho78] Robert E. Shostak. An algorithm for reasoning about equality. Commu-
nications of the ACM, 21(7):583–585, July 1978.

[Sho79] Robert E. Shostak. A practical decision procedure for arithmetic with
function symbols. Journal of the ACM, 26(2):351–360, April 1979.

[Sho84] Robert E. Shostak. Deciding combinations of theories. Journal of the
ACM, 31(1):1–12, January 1984.

[SS98] G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF Release
v1.2.1. Journal of Automated Reasoning, 21(2):177–203, 1998.

[SW83] J. Siekmann and G. Wrightson, editors. Automation of Reasoning: Clas-
sical Papers on Computational Logic, Volumes 1 & 2. Springer-Verlag,
1983.

78 Natarajan Shankar

[Tea05] Coq Development Team. The Coq proof assistant reference manual, version
8.0. Technical report, INRIA, Rocquencourt, France, January 2005.

[WRC65] L. Wos, G.A. Robinson, and D. Carson. Efficiency and completeness of
the set of support strategy in theorem proving. Journal of the ACM,
12(4):536–541, 1965.

From Logic to Games

Igor Walukiewicz

CNRS
LaBRI, Université Bordeaux-1

351, Cours de la Libération, 33 405, Talence
France

1 Introduction

The occasion of 25th jubilee of FSTCS gives an opportunity to look a bit further
back then one normally would. In this presentation we will look at some devel-
opments in what is called formal verification. In the seventies logics occupied a
principal place: Hoare logic [43], algorithmic logic [38], dynamic logic [41, 42],
linear time temporal logic [55]. With a notable exception of the last one, these
formalisms included programs into syntax of the logic with an idea to reduce
verification to validity checking. Temporal logic was the first to advocate exter-
nalization of modeling of programs and passing from validity checking to model
checking. Since the eighties, this view became predominant, and we have seen a
proliferation of logical systems. We have learned that game based methods not
only are very useful but also permit to abstract from irrelevant details of logical
formalisms. At present games themselves take place of specification formalisms.

Roughly, model-checking can be seen as a discipline of verifying properties
of labelled graphs. So, we are interested in formalisms for specifying graph prop-
erties. This formulation is misleadingly simple at the first sight. Observe, for
example, that almost all the richness of first-order logic already appears over
graph models, i.e., models with one binary relation. Thus, the goal is to get for-
malisms that are expressive and at the same time have decidable model-checking
problem (and preferably with low computational complexity).

The foundations of the discipline were ready before 1980-ties. Automata the-
ory existed already for a long time[71]. Büchi and Rabin have shown decidability
of monadic second-order (MSO) theories of sequences [16] and trees [70], respec-
tively. Martin has proven determinacy of Borel games [56]. Manna and Pnueli
have already proposed a new way of looking at program verification using linear
time temporal logic. Kamp’s theorem gave equivalence of LTL with first-order
logic over sequences [46].

Nevertheless, it is fair to say that a quarter of a century ago, at the beginning
of 80-eighties, the next important period in the development of the field took
place. In a relatively short interval of time a big number of significant concepts
have been born. Emerson and Clarke introduced CTL and the branching/linear
time distinction was clarified [25, 52]. Kozen defined the μ-calculus [48], the logic
that will later bring games to the field. Independently, Büchi [17], and Gurevich
and Harrington [40], arrive at understanding that the cornerstone of Rabin’s

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 79–91, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

80 Igor Walukiewicz

decidability result for MSO theory of trees is a theorem about existence of some
special strategies, now called finite memory, in some class of games. A bit later,
Street and Emerson [77, 78] developed techniques to attack satisfiability problem
for the μ-calculus. Around 1980 a concept of alternation was born [23]. These
have given later rise to alternating automata [63] and finally to understanding
that these are essentially the same as the μ-calculus.

In what follows we will give a brief introduction to the concepts described
above. This will bring us in a position to discuss open problems and directions for
future research. Present note is not meant to be a comprehensive survey of the
discipline. Citations and results are merely chosen to demonstrate development
of some lines of research, there is by far not enough place to present all important
accomplishments of the field.

2 The Concepts

We need to start with presentation of some basic concepts. From 25 years per-
spective it is clear that they where very influential in development of the theory.
The μ-calculus turned out to be important because of its purity, its expressive
power and because of technical problems posed by the fixpoint operator. Old
methods, like construction of syntactic models from consistent sets of formulas,
are not applicable to the μ-calculus. New techniques were required, and this is
where automata theory and game theory came to rescue.

2.1 The μ-Calculus

Formulas of the μ-calculus over the sets Prop = {p1, p2, . . .} of propositional
constants, Act = {a, b, . . .} of actions, and Var = {X,Y, . . .} of variables, are
defined by the following grammar:

F := Prop | ¬Prop | Var | F ∨ F | F ∧ F |
〈Act〉F | [Act]F | μVar .F |νVar .F

Note that we allow negations only before propositional constants. This is not a
problem as we will be interested in sentences, i.e., formulas where all variables
are bound by μ or ν. In the following, α, β, . . . will denote formulas.

Formulas are interpreted in transition systems, these are of the form M =
〈S, {Ra}a∈Act , ρ〉, where: S is a nonempty set of states, Ra ⊆ S × S is a binary
relation interpreting the action a, and ρ : Prop → P(S) is a function assigning
to each propositional constant a set of states where this constant holds.

For a given transition system M and an assignment V : Var → P(S), the
set of states in which a formula α is true, denoted ‖ α ‖MV , is defined inductively
as follows:

From Logic to Games 81

‖ p ‖MV = ρ(p) ‖ ¬p ‖MV = S − ρ(p)

‖ X ‖MV =V (X)

‖ 〈a〉α ‖MV ={s : ∃s′.Ra(s, s′) ∧ s′ ∈ ‖ α ‖MV }

‖ μX.α(X) ‖MV =
⋂
{S′ ⊆ S : ‖ α ‖MV [S′/X] ⊆ S′}

‖ νX.α(X) ‖MV =
⋃
{S′ ⊆ S : S′ ⊆ ‖ α ‖MV [S′/X]}

We have omitted here the obvious clauses for boolean operators and for [a]α
formula. We will omit V in the notation if α is a sentence and will sometimes
write M, s � α instead of s ∈ ‖ α ‖M.

The model-checking problem for the μ-calculus is: given a sentence α and a
finite transition system M with a distinguished state s0 decide if M, s0 � α.

2.2 Games

A game G is a tuple 〈VE , VA, T ⊆ (VE ∪VA)2,Acc ⊆ (VE ∪VA)ω〉 where Acc is a
set defining the winning condition and 〈VE ∪ VA, T 〉 is a graph with the vertices
partitioned into those of Eve and those of Adam. We say that a vertex v′ is a
successor of a vertex v if T (v, v′) holds.

A play between Eve and Adam from some vertex v ∈ V = VE ∪ VA proceeds
as follows: if v ∈ VE then Eve makes a choice of a successor, otherwise Adam
chooses a successor; from this successor the same rule applies and the play goes
on forever unless one of the parties cannot make a move. The player who cannot
make a move looses. The result of an infinite play is an infinite path v0v1v2 . . .
This path is winning for Eve if it belongs to Acc. Otherwise Adam is the winner.

A strategy σ for Eve is a function assigning to every sequence of vertices v
ending in a vertex v from VE a vertex σ(v) which is a successor of v. A play
respecting σ is a sequence v0v1 . . . such that vi+1 = σ(vi) for all i with vi ∈ VE .
The strategy σ is winning for Eve from a vertex v iff all the plays starting in
v and respecting σ are winning. A vertex is winning for Eve if there exists a
strategy winning from it. The strategies for Adam are defined similarly. Usually
we are interested in solving games, i.e., deciding which vertices are winninng for
Eve and which for Adam.

A strategy with memory M is a triple:

c : M × VE → P(V), up : M × V →M, m0 ∈M

The role of the initial memory element m0 and the memory update function up
is to abstract some information from the sequence v. This is done by iteratively
applying up function:

up∗(m, ε) = m and up∗(m,vv) = up∗(up(m,v), v)

This way, each sequence v of vertices is assigned a memory element up∗(m0,v).
Then the choice function c defines a strategy by σ(vv) = c(up∗(m0,v), v). The

82 Igor Walukiewicz

strategy is memoryless iff σ(v) = σ(w) whenever v and w end in the same
vertex; this is a strategy with a memory M that is a singleton.

In most of the cases here the winning conditions Acc ⊆ V ω will be Muller
conditions : that is, there will be a colouring λ : V → Colours of the set of
vertices with a finite set of colours and a set F ⊆ P(Colours) that define the
winning sequences by:

v ∈ Acc iff Infλ(v) ∈ F

where Infλ(v) is the set of colours appearing infinitely often on v.
An important special case is a parity condition. It is a condition determined

by a function Ω : V → {0, . . . , d} in the following way:

Acc = {v0v1 . . . ∈ V ω : lim sup
i→∞

Ω(vi) is even}

Hence, in this case, the colours are natural numbers and we require that the
biggest among those appearing infinitely often is even. This condition was dis-
covered by Mostowski [60] and is the most useful form of Muller conditions.
It is the only Muller condition that guarantees existence of memoryless strate-
gies [33, 61, 58]. It is closed by negation (the negation of a parity condition is
a parity condition). It is universal in the sense that very game with a Muller
condition can be reduced to a game with a parity condition [60].

2.3 Between Games and Formulas

The truth of a given formula in a given model can be characterized by games.
To see this, consider the task of checking if a propositional formula (in a positive
normal form) is true in a given valuation. If the formula is a disjunction then Eve
should choose one of the disjuncts that she believes is true; if it is a conjunction
then Adam should choose one of the conjuncts he believes is false. The game
continues until it arrives at a literal (a proposition or its negation). Eve wins
iff the literal is true in the valuation fixed at the beginning. It is easy to see
that Eve has a winning strategy in this game iff the initial formula is true in the
valuation.

Observe that we can define a similar game for almost any logic, just using
directly the clauses defining its semantics. For example, for first-order logic Eve
would choose in the case of disjunction and existential quantifier, and Adam
in the case of conjunction and universal quantifier. This view is of course well
known. The reason why it is not used too much in the context of first-order logic
is that the game becomes quite complicated. One can consider Ehrenfeucht-
Fräısé games as a way of hiding these complications at the cost of limiting the
scope of applicability of the concept.

While it is clear how to define game rules for disjunction, conjunction, and
most other cases, it is much less clear what to do with fixpoints. The best we can
do when we want to see if a formula μX.α(X) holds is to check if its unwinding
α(μX.α(X)) holds. Such an unwinding rule introduces potential of infinite plays

From Logic to Games 83

as for μX.X . The other problem is that for the greatest fixpoint νX.α(X) we
cannot do better but suggest the same rule. One of the most important devel-
opments in these 25 years is to admit infinite plays and to realize that fixpoints
give rise to a parity condition on infinite plays: least fixpoints are given odd
ranks, greatest fixpoints even ranks, and the exact value of the rank depends on
the nesting depth (see [76] for details).

Summarizing, one can look at the formula as a kind of schema that when
put together with a model defines a game. Observe that a schema by itself
does not define a game directly; putting it differently, the satisfiability question
requires more than just examining the structure of the formula. We see the same
phenomenon in a formalism of alternating automata. It is a very beautiful fact
that the to formalisms agree. Actually it is one of the cornerstones of the whole
theory.

2.4 Alternating Automata

An alternating automaton on on transition systems is a tuple:

A = 〈A,P,Q∃, Q∀, q0, δ : Q× P(P)→ P(A×Q),Acc〉

where A ⊆ Act ∪ {id}, P ⊆ Prop are finite set of actions and propositions,
respectively, relevant to the automaton. Set Q is a finite set of states partitioned
into existential, Q∃, and universal, Q∀ states. State q0 ∈ Q is the initial state
of the automaton and δ is the transition function that assigns to each state
and label, which is valuation relevant propositions, a set of possible moves. An
intuitive meaning of a move (a, q′) ∈ A ×Q is to move over an edge labelled a
and change the state to q′. The action id is a self-loop permitting to stay in the
same node. Finally, Acc ⊆ Qω is an acceptance condition.

The simplest way to formalize the notions of a run and of an acceptance of
an automaton is in terms of games. Given an automaton A as above and a tran-
sition system M = 〈S, {Ra}a∈Act , ρ〉 we define the acceptance game G(A, P) =
〈VE , VA, T,AccG〉 as follows:

– The set of vertices for Eve is (Q∃ × S).
– The set of vertices for Adam is (Q∀ × S).
– From each vertex (q, s), for every (a, q′) ∈ δ(q, λ(s)) and (s, s′) ∈ Ra we have

an edge in T to (q′, s′); we assume that Rid is the identity relation on states.
– The winning condition AccG consists of the sequences:

(q0, s0)(q1, s1) . . .

such that the sequence q0, q1 . . . is in Acc, i.e., it belongs to the acceptance
condition of the automaton.

Let us see how to construct an automaton equivalent to a sentence α of the
μ-calculus (we do not admit free variables in α). The states of the automaton
Aα will be the subformulas of the formula α plus two states � and ⊥. The initial
state will be α. The action and proposition alphabets of Aα will consist of the
actions and propositions that appear in α. The transitions will be defined by:

84 Igor Walukiewicz

– δ(p, υ) = � if p ∈ υ and ⊥ otherwise;
– δ(β1 ∨ β2, υ) = δ(β1 ∧ β2, υ) = {(id , β1), (id , β2)};
– δ(〈a〉β, υ) = δ([a]β, υ) = {(a, β)};
– δ(μX.β(X), υ) = δ(νX.β(X), υ) = {(id , β(X))};
– δ(X, υ) = {(id , β(X))}.

The symbols in the last rule demand some explications. Here X is a variable and
β(X) is the formula to which it is bound, i.e., we have μX.β(X) or νX.β(X) in
α. We can suppose that X is bound precisely once in α as we can always rename
bound variables.

Observe that the rules for conjunction and disjunction are the same. The
difference is that a disjunction subformula will be an existential state of Aα and
the conjunction subformula an universal one. Similarly for ⊥, � as well as for
〈a〉 and [a] modalities. This means, in particular, that � is an accepting state as
there are no transitions from � and Adam looses immediately in any position
of the form (�, s).

It remains to define the acceptance condition of Aα. It will be the parity
condition where all the subformulas but variables have rank 0. To define the
rank of a variable X we look at the formula it is bound to. If it is μX.β(X)
then the rank of X is 2d + 1 where d is the nesting depth of μX.β(X). If it
is is νX.β(X) then it is 2d. For the precise definition of the nesting depth we
refer the reader to [4], here it suffices to say that the principle is the same as for
quantifier depth in first-order logic.

We will not discuss here, not too difficult, proof that this construction gives
indeed an automaton equivalent to the formula. What is worth pointing out is
that the translation in the other direction is also possible. From a given alternat-
ing automaton one can construct an equivalent formula of the μ-calculus. This
equivalence is a very good example of a correspondence between formula and di-
agram based formalisms as advocated by Wolfgang Thomas [79]. The μ-calculus
is compositional, it permits doing proofs by induction on the syntax. Automata
are better for algorithmic issues and problems such as minimization.

The last remark we want to make here is about satisfiability. The above re-
duction shows that the satisfiability question for the μ-calculus can be solved via
emptiness problem for alternating automata. This in turn requires transforma-
tion of alternating to nondeterministic automata or in other words, elimination
of universal branching. When we look back we can see that this is an universal
phenomenon that appears even in the case of propositional logic.

3 Perspectives

One of the obvious problems that resisted over the last 25 years is the model
checking problem for the μ-calculus. Equivalently, it is the problem of solving
parity games. In this formulation it is a, potentially simpler, instance of the
problem of solving stochastic games [44] which complexity is open for quite
some time. There are at least two directions of research that are connected to
this problem and that are also interesting in their own right.

From Logic to Games 85

One direction is to find polynomial-time algorithms for some restricted classes
of games. For example, for any constant, games whose graphs have tree-width
bounded by this constant can be solved in polynomial time [68]. Recently, a new
graph complexity measure, called entanglement, has been proposed and the same
result for graphs of bounded entanglement has been proved [8]. In the future it
would be interesting to consider the case of clique-width. Tree-width is connected
to MSO logic where quantification over transitions is permitted. It is known
that in this logic each μ-calculus formula is equivalent to a formula of quantifier
depth 3. Clique-width [27] is linked to MSO logic where only quantification over
states is permitted. In this case it is open whether a finite number of quantifier
alternations suffices to capture the whole μ-calculus.

The other direction is to consider the model-checking and game solving prob-
lems for graphs represented implicitly. A simple example is a graph represented
as a synchronized product of transition systems. In this case even alternating
reachability is Exptime-complete (see [30] for more detailed analysis) but the
model-checking problem for the whole μ-calculus stays also in Exptime. The
other possibility is to consider configuration graphs of some type of machines.
In recent years pushdown graphs, i.e., graphs of configurations of pushdown
machines have attracted considerable attention [62, 9, 34, 50, 74, 83]. One re-
search direction is to find interesting and decidable classes of properties of push-
down systems [11, 36, 75]. The other direction is to go forward to more compli-
cated cases like higher order pushdowns [18, 19], higher order recursive program
schemes [45, 47] or pushdowns with parallel composition [10]. The biggest chal-
lenge here is to push the decidability frontier.

The understanding that the μ-calculus corresponds exactly to games with
parity conditions suggest to look for other winning conditions with interesting
properties. For finite Muller conditions we know how to calculate a memory
required to win [32]. Recently, more general winning conditions were investigated
as for example Muller conditions over infinite number of colours [39]. A particular
case of such a condition is when colours are natural numbers and the winner is
decided by looking at the parity of the smallest number appearing infinitely often
(additionally we can assume that Eve wins if there is no such number). It turns
out that this infinite kind of a parity condition is the only type of infinite Muller
condition that guarantees the existence of memoryless strategies in all games. It
is important to add that for this result to hold all positions of the game need to
have a colour assigned. If we permit partial assignments of colours or put coloring
on edges of the game graph and not on positions then only ordinary (i.e. finite)
parity conditions admit memoryless strategies [26]. In the recent paper [37] this
later result is extended to include also quantitative conditions such as mean or
discounted pay-off.

While we know already a great deal about the μ-calculus itself [4], there
still remains a lot to explore. One of the obvious research topics suggested by
the syntax of the logic is that of the alternation hierarchy of fixpoint operators.
Curiously, as the translation presented above shows, the alternation depth of
the formula corresponds to the size of a parity condition in the equivalent al-

86 Igor Walukiewicz

ternating automaton. Thus, one can equivalently study the later hierarchy. The
infiniteness of the hierarchy for the μ-calculus was shown by Bradfield [14] and
for alternating tree automata independently by Bradfield [15] and Arnold [3].
It is worth noting that hierarchy questions for nondeterministic tree automata
were solved ten years earlier by Niwiński [64], and for the even simpler case
of deterministic automata, another ten years back by Wagner [82]. (As a side
remark let us mention that quite recently Arnold and Santocanale has shown
a surprising behaviour of diagonal classes [5].) Once the basic hierarchy ques-
tions are resolved, the next challenge is to provide algorithms for determining
the level in the hierarchy of a given recognizable language. The first step was
to give a polynomial time algorithm for computing the level in the hierarchy
of deterministic automata [65]. Next, Urbański [80] has shown that it is decid-
able if a deterministic Rabin tree automaton is equivalent to a nondeterministic
Büchi one. Actually, the problem is also in Ptime [66]. More recently [67], the
case of deterministic tree automata was completely solved. There are forbidden
pattern characterizations for all the levels of the hierarchy of nondeterministic
automata; that is, given a deterministic automaton one can tell by examining its
structure to which level of the hierarchy of nondeterministic automata it belongs
to. This also solves the problem for levels of alternating automata hierarchy as
all deterministic languages are recognizable by co-Büchi alternating automata.
The challenge for the future is to calculate hierarchy levels for nondeterministic
automata.

There are numerous other directions of active research. We will describe just
three more very briefly here, referring the reader to the cited papers for details.

Games as well as logics and automata can be augmented with real-time.
While real-time automata are around for some time now [2], there is no standard
logic for real-time. This is partially due to the fact that timed-automata are not
closed under complement and it is difficult to decide on some other good class
of real-time properties. Also quantitative reachability problems, like minimizing
reachability cost, appear to be interesting [1, 12, 21].

The rules of playing games may be extended [28]: one may allow concurrent
moves when two players choose moves independently and the game proceeds to
the state that is a function of the two choices. An example of “paper, scissors,
stone” game shows that randomized strategies are sometimes necessary to win
in such games. This means that now a player does not win for sure, but only
with certain probability; the maximal such probability is called the value of the
player. Another extension is to allow randomized positions where a successor is
chosen randomly with respect to some probability distribution. The quantitative
determinacy result of Martin [57] states that in every game with concurrent
moves and randomized positions the values for Eva and Adam sum up to 1.
In [28] de Alfaro and Majumdar show how to calculate the values of a game using
appropriate extension of the μ-calculus. It can also happen that the objectives of
the two players are not antagonistic, in this case we talk about Nash equilibria
rather than values of games. Recently [24], Chatterjee has shown how to calculate

From Logic to Games 87

Nash equilibria for a very general class of concurrent, stochastic, nonzero-sum,
infinite games.

Finally, each of these game models can be applied to synthesis [69, 72, 49,
20]. The synthesis problem is to construct a system from a given specification.
It is often solved by reduction to the problem of finding a strategy in some
game [6]. If the problem mentions real-time then the game will have real-time
constraints [7, 29, 31, 13, 22]. If the problem concerns distributed setting then
either the reduction or the game model will have to take it into account [73,
53, 54, 51, 59, 35]. The number of choices is truly overwhelming and we need to
understand much better in what cases synthesis is feasible.

References

[1] R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability for weighted
timed games. In ICALP, volume 3124 of Lecture Notes in Computer Science,
pages 122–133, 2004.

[2] R. Alur and P. Madhusudan. Decision problems for timed automata: A survey.
In Formal Methods for the Design of Real-Time Systems, volume 3185 of Lecture
Notes in Computer Science, pages 1–24, 2004.

[3] A. Arnold. The mu-calculus alternation-depth hierarchy is strict on binary trees.
RAIRO–Theoretical Informatics and Applications, 33:329–339, 1999.

[4] A. Arnold and D. Niwiski. The Rudiments of the Mu-Calculus, volume 146 of
Studies in Logic. North-Holand, 2001.

[5] A. Arnold and L. Santocanale. Ambiguous classes in the games mu-calculus hi-
erarchy. In FOSSACS 03, volume 2620 of Lecture Notes in Computer Science,
pages 70–86, 2003.

[6] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers
with partial observation. Theoretical Computer Science, 303(1):7–34, 2003.

[7] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Contrloller synthesis for timed
automata. In Proc. IFAC Symp. System Structure and Control, pages 469–474,
1998.

[8] D. Berwanger and E. Grädel. Entanglement - a measure for the complexity of
directed graphs with applications to logic and games. In LPAR 2004, volume 3452
of Lecture Notes in Computer Science, pages 209–223, 2004.

[9] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Applications to model checking. In CONCUR’97, volume 1243 of Lecture
Notes in Computer Science, pages 135–150, 1997.

[10] A. Bouajjani, M. Mueller-Olm, and T. Touili. Regular symbolic analysis of dy-
namic networks of pushdown systems. In CONCUR’05, volume 3653 of Lecture
Notes in Computer Science, 2005.

[11] A. Bouquet, O. Serre, and I. Walukiewicz. Pushdown games with the unbound-
edness and regular conditions. In FSTTCS’03, volume 2914 of Lecture Notes in
Computer Science, pages 88–99, 2003.

[12] P. Bouyer, F. Cassez, E. Fleury, and K. G. Larsen. Optimal strategies in priced
timed game automata. In FSTTCS, Lecture Notes in Computer Science, 2004.

[13] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial
observability. In CAV’03, volume 2725 of Lecture Notes in Computer Science,
pages 180–192, 2003.

88 Igor Walukiewicz

[14] J. Bradfield. The modal mu-calculus alternation hierarchy is strict. Theoretical
Computer Science, 195:133–153, 1997.

[15] J. Bradfield. Fixpoint alternation: Arithmetic, transition systems, and the binary
tree. RAIRO–Theoretical Informatics and Applications, 33:341–356, 1999.

[16] J. R. Büchi. On the decision method in restricted second-order arithmetic. In
Proc. Internat. Congr. on Logic, Methodology and Philosophy of Science, pages
1–11. Stanford Univ. Press, 1960.

[17] J. R. Buchi. State strategies for games in Fσδ ∩Gδσ. Journal of Symbolic Logic,
48:1171–1198, 1983.

[18] T. Cachat. Symbolic strategy synthesis for games on pushdown graphs. In
ICALP’02, volume 2380 of Lecture Notes in Computer Science, pages 704–715,
2002.

[19] T. Cachat. Uniform solution of parity games on prefix-recognizable graphs. In
A. Kucera and R. Mayr, editors, Proceedings of the 4th International Workshop on
Verification of Infinite-State Systems, volume 68 of Electronic Notes in Theoretical
Computer Science. Elsevier Science Publishers, 2002.

[20] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.
Kluwer Academic Publishers, 1999.

[21] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient on-the-fly
algorithms for the analysis of timed games. In CONCUR’05, Lecture Notes in
Computer Science, 2005.

[22] F. Cassez, T. Henzinger, and J. Raskin. A comparison of control problems
for timed and hybrid systems. In Hybrid Systems Computation and Control
(HSCC’02), number 2289 in Lecture Notes in Computer Science, pages 134–148,
2002.

[23] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the
Association of Computing Machinery, 28(1):114–133, 1981.

[24] K. Chatterjee. Two-player nonzero-sum omega-regular games. In CONCUR’05,
Lecture Notes in Computer Science, 2005.

[25] E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Workshop on Logics of Programs, volume
131 of Lecture Notes in Computer Science, pages 52–71. Springer-Verlag, 1981.

[26] T. Colcombet and D. Niwiński. On the positional determinacy of edge–labeled
games. Submitted, 2004.

[27] B. Courcelle and P. Weil. The recognizability of sets of graphs is a robust
property. To appear in Theoretical Computer Science, http://www.labri.fr/
Perso/˜weil/publications/.

[28] L. de Alfaro. Quantitative verification and control via the mu-calculus. In CON-
CUR’03, volume 2761 of Lecture Notes in Computer Science, pages 102–126, 2003.

[29] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga. The
element of surprise in timed games. In CONCUR’03, volume 2761 of Lecture
Notes in Computer Science, pages 142–156, 2003.

[30] S. Demri, F. Laroussinie, and P. Schnoebelen. A parametric analysis of the state
exposion problem in model checking. In STACS’02, volume 2285 of Lecture Notes
in Computer Science, pages 620–631, 2002.

[31] D. D’Souza and P. Madhusudan. Timed control synthesis for external specifica-
tions. In STACS’02, volume 2285 of Lecture Notes in Computer Science, pages
571–582, 2002.

[32] S. Dziembowski, M. Jurdzinski, and I. Walukiewicz. How much memory is needed
to win infinite games. In LICS, pages 99–110, 1997.

From Logic to Games 89

[33] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In
Proc. FOCS’91, pages 368–377, 1991.

[34] J. Esparza and A. Podelski. Efficient algorithms for pre star and post star on
interprocedural parallel flow graphs. In POPL’00: Principles of Programming
Languages, 2000.

[35] B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In LICS05, 2005.
[36] H. Gimbert. Parity and explosion games on context-free graphs. In CSL’04,

volume 3210 of Lecture Notes in Computer Science, pages 56–70, 2004.
[37] H. Gimbert and W. Zielonka. When can you play positionally? In MFCS’04,

volume 3153 of Lecture Notes in Computer Science, 2004.
[38] G.Mirkowska and A.Salwicki. Algorithmic Logic. D.Reidel PWN, 1987.
[39] E. Grädel and I. Walukiewicz. Positional determinacy of infnite games, 2004.

Submitted.
[40] Y. Gurevich and L. Harrington. Trees, automata and games. In 14th ACM Symp.

on Theory of Computations, pages 60–65, 1982.
[41] D. Harel. Dynamic logic. In Handbook of Philosophical Logic Vol II, pages 497–

604. D.Reidel Publishing Company, 1984.
[42] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
[43] C. A. R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12:576–585, 1969.
[44] A. Hoffman and R. Karp. On nonterminating stochastic games. Management

Science, 12:369–370, 1966.
[45] C.-H. L. O. K. Aehlig, J. G. de Miranda. The monadic second order theory of

trees given by arbitrary level-two recursion schemes is decidable. In TLCA’05,
volume 3461 of Lecture Notes in Computer Science, pages 39–54, 2005.

[46] H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University
of California, 1968.

[47] T. Knapik, D. Niwinski, P. Urzyczyn, and I. Walukiewicz. Unsafe grammars
and panic automata. In ICALP’05, volume 3580 of Lecture Notes in Computer
Science, pages 1450–1461, 2005.

[48] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Sci-
ence, 27:333–354, 1983.

[49] R. Kumar and V. K. Garg. Modeling and control of logical discrete event systems.
Kluwer Academic Pub., 1995.

[50] O. Kupferman and M. Vardi. An automata-theoretic approach to reasoning about
infinite-state systems. In Proceedings of CAV’00, volume 1855 of Lecture Notes
in Computer Science, pages 36–52. Springer Verlag, 2000.

[51] O. Kupferman and M. Vardi. Synthesizing distributed systems. In Proc. 16th
IEEE Symp. on Logic in Computer Science, 2001.

[52] L. Lamport. “sometime” is sometimes “not never” – on the temporal logic of
programs. In POPL’80, pages 174–185, 1980.

[53] P. Madhusudan. Control and Synthesis of Open Reactive Systems. PhD thesis,
University of Madras, 2001.

[54] P. Madhusudan and P. Thiagarajan. A decidable class of asynchronous distributed
controllers. In CONCUR’02, volume 2421 of Lecture Notes in Computer Science,
2002.

[55] Z. Manna and A. Pnueli. Verification of the concurrent programs: the tempo-
ral framework. In R.Boyer and J.Moore, editors, The Correctness Problem in
Computer Scince, pages 215–273. Academic Press, 1981.

[56] D. Martin. Borel determinacy. Ann. Math., 102:363–371, 1975.

90 Igor Walukiewicz

[57] D. Martin. The determinacy of Blackwell games. The Journal of Symbolic Logic,
63(4):1565–1581, 1998.

[58] R. McNaughton. Infinite games played on finite graphs. Ann. Pure and Applied
Logic, 65:149–184, 1993.

[59] S. Mohalik and I. Walukiewicz. Distributed games. In FSTTCS’03, volume 2914
of Lecture Notes in Computer Science, pages 338–351, 2003.

[60] A. W. Mostowski. Regular expressions for infinite trees and a standard form of
automata. In Fifth Symposium on Computation Theory, volume 208 of LNCS,
pages 157–168, 1984.

[61] A. W. Mostowski. Games with forbidden positions. Technical Report 78, Univer-
sity of Gdansk, 1991.

[62] D. Muller and P. Schupp. The theory of ends, pushdown automata and second-
order logic. Theoretical Computer Science, 37:51–75, 1985.

[63] D. Muller and P. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54:267–276, 1987.

[64] D. Niwiński. On fixed-point clones. In Proc. 13th ICALP, volume 226 of LNCS,
pages 464–473, 1986.

[65] D. Niwiński and I. Walukiewicz. Relating hierarchies of word and tree automata.
In STACS’98, volume 1373 of Lecture Notes in Computer Science. Springer-
Verlag, 1998.

[66] D. Niwiński and I. Walukiewicz. A gap property of deterministic tree languages.
Theoretical Computer Science, 303(1):215–231, 2003.

[67] D. Niwiński and I. Walukiewicz. Deciding nondeterministic hierarchy of deter-
ministic tree automata. Electr. Notes Theor. Comput. Sci., 123:195–208, 2005.

[68] J. Obdrzalek. Fast mu-calculus model checking when tree-width is bounded. In
CAV’03, volume 2725 of Lecture Notes in Computer Science, pages 80–92, 2003.

[69] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. ACM
POPL, pages 179–190, 1989.

[70] M. Rabin. Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. Soc., 141:1–35, 1969.

[71] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM
Journal of Research and Development, pages 114–125, 1959. Reprinted in Se-
quential machines (editor E. F. Moore), Addison-Wesley, Reading, Massachusetts,
1964, pages 63-91.

[72] P. J. G. Ramadge and W. M. Wonham. The control of discrete event systems.
Proceedings of the IEEE, 77(2):81–98, 1989.

[73] K. Rudie and W. Wonham. Think globally, act locally: Decentralized supervisory
control. IEEE Trans. on Automat. Control, 37(11):1692–1708, 1992.

[74] O. Serre. Note on winning positions on pushdown games with ω-regular condi-
tions. Information Processing Letters, 85:285–291, 2003.

[75] O. Serre. Games with winning conditions of high Borel complexity. In ICALP’04,
volume 3142 of Lecture Notes in Computer Science, pages 1150–1162, 2004.

[76] C. Stirling. Modal and Temporal Properties of Processes. Texts in Computer
Science. Springer, 2001.

[77] R. S. Streett and E. A. Emerson. The propositional mu-calculus is elementary. In
ICALP, volume 172 of Lecture Notes in Computer Science, pages 465–472, 1984.

[78] R. S. Streett and E. A. Emerson. An automata theoretic procedure for the propo-
sitional mu-calculus. Information and Computation, 81:249–264, 1989.

[79] W. Thomas. Logic for computer science: The engineering challenge. volume 2000
of Lecture Notes in Computer Science, pages 257–267, 2002.

From Logic to Games 91

[80] T. Urbański. On deciding if deterministic Rabin language is in Büchi class. In
ICALP’00, volume 1853 of Lecture Notes in Computer Science, pages 663–674,
2000.

[81] M. Y. Vardi and P.Wolper. Automata theoretic techniques for modal logics of
programs. In Sixteenth ACM Symposium on the Theoretical Computer Science,
1984.

[82] K. Wagner. Eine topologische Charakterisierung einiger Klassen regulärer Fol-
genmengen. J. Inf. Process. Cybern. EIK, 13:473–487, 1977.

[83] I. Walukiewicz. Pushdown processes: Games and model checking. Information
and Computation, 164(2):234–263, 2001.

Proving Lower Bounds Via Pseudo-random

Generators

Manindra Agrawal

Department of Computer Science
Indian Institute of Technology, Kanpur

manindra@iitk.ac.in

Abstract. In this paper, we formalize two stepwise approaches, based
on pseudo-random generators, for proving P �= NP and its arithmetic
analog: Permanent requires superpolynomial sized arithmetic circuits.

1 Introduction

The central aim of complexity theory is to prove lower bounds on the complexity
of problems. While the relative classification of problems (via reductions) has
been very successful, not much progress has been made in determining their
absolute complexity. For example, we do not even know if NE admits nonuniform
NC1 circuits.

Initial attempts (in 1970s) to prove lower bounds centered on using the diag-
onalization technique that had proven very useful in recursion theory. However,
a series of relativization results soon showed that this technique cannot help in
its standard guise [6]. Very recently, the technique has been used to prove cer-
tain simultaneous time-space lower bounds [7], however, its usefulness for single
resource lower bounds remains unclear.

In the 1980s, the results of Razborov [15] (lower bounds on monotone circuits)
and H̊astad [8] (lower bounds on constant depth circuits) gave rise to the hope of
proving lower bounds via combinatorial arguments on boolean circuit model of
complexity classes. However, there was little progress since mid-80s and ten years
later Razborov and Rudich [16] explained the reason for this: they showed that
combinatorial arguments used for previous lower bounds cannot be extended to
larger classes.

Over the last ten years, a new paradigm is slowly emerging that might lead
us to strong lower bounds: pseudo-random generators. These were introduced in
1980s by Yao [22], Blum, and Micali [4], Nisan and Wigderson [14] to formulate
the hardness of cryptographic primitives (in the first two references) and to
derandomize polynomial-time randomized algorithms (in the last reference).

It was known from the beginning that existence of pseudo-random genera-
tors implies lower bounds on boolean circuits. In fact, they can be viewed as a
strong form of diagonalization. Attempts were then made to prove the other (and
seemingly more interesting) direction: lower bounds on boolean circuits imply
existence of pseudo-random generators. This was achieved after a lot of effort:

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 92–105, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Proving Lower Bounds Via Pseudo-random Generators 93

H̊astad, Impagliazzo, Levin and Luby [9] showed that pseudo-random genera-
tors of polynomial stretch are equivalent to one-way functions, Impagliazzo and
Wigderson [10] showed that pseudo-random generators of exponential stretch are
equivalent to hard sets in E.

Some recent advances suggest that the first (and easier) direction of the above
equivalence may in fact hold the key to obtaining lower bounds. Very recently,
Omer Reingold used expander graphs (these are one of the fundamental tools in
derandomization) to search in an undirected graph using logarithmic space [17].
This proves SL = L, resolving the complexity of the class SL. Although Rein-
gold’s result does not yield a pseudo-random generator or a lower bound, it
suggests that one can do derandomization without appealing to lower bounds,
and a strong enough derandomization will result in a lower bound.

Lower bounds for arithmetic circuits have also been investigated, but again,
without much success. It appears that obtaining lower bounds for these cir-
cuits should be easier than boolean circuits since boolean circuits can simulate
arithmetic circuits but not vice versa. Kabanets and Impagliazzo [11] have re-
cently observed a connection between lower bounds on arithmetic circuits and
derandomizations of polynomial identity testing problem (given a multivariate
polynomial computed by an arithmetic circuit, test if it is identically zero). This
connection, however, is not as tight as for boolean circuits. For these circuits too
there is some evidence that proving lower bounds via derandomization might
work: the primality testing algorithm of Agrawal, Kayal, Saxena [2] essentially
derandomizes a certain polynomial identity.

Admittedly, the evidence for the success of “pseudo-random generator” ap-
proach is weak: neither Reingold’s result nor the primality testing algorithm
yield a lower bound (the AKS “derandomization” works only for a problem, not
a class). However, this is one of the, if not the, most promising approach that
we have presently for obtaining boolean and arithmetic circuit lower bounds
and so needs to be investigated seriously. In this article, we formulate, based
on pseudo-random generators, stepwise approaches to resolve two of the most
important conjectures in complexity theory: P 	= NP and its arithmetic analog
Permanent requires superpolynomial-sized arithmetic circuits. For arithmetic cir-
cuits, the result of Kabanets and Impagliazzo is not strong enough to show that
derandomization implies second conjecture. To make it work, we define pseudo-
random generators for arithmetic circuits and show that certain generators imply
the desired lower bound on arithmetic circuits.

2 Pseudo-random Generators for Boolean Circuits

Let C(s(n), d(n)) denote the class of circuits of size s(n) and depth d(n) on inputs
of size n. We will assume that all our circuits are layered with layers alternating
between AND and OR gates.

We begin with the definition of a pseudo-random generator for boolean cir-
cuits.

94 Manindra Agrawal

Definition 21 Function f , f : {0, 1}∗ %→ {0, 1}∗, is a (�(n), n)-pseudo-random
generator against C(s(n), d(n)) if:

– f({0, 1}�(n)) ⊆ {0, 1}n with �(n) < n for all n.
– For any circuit C ∈ C(s(n), d(n)),

| Pr
x∈{0,1}n

[C(x) = 1]− Pr
y∈{0,1}�(n)

[C(f(y)) = 1] | ≤ 1
n
.

The difference between output and input length of a pseudo-random gener-
ator, n − �(n), is called the stretch of the generator. A simple counting argu-
ment shows that there exist (O(log s(n)), n)-pseudo-random generators against
C(s(n), d(n)):

Define f by randomly assigning strings of length n for inputs of size
4 log s(n). Let y be a string of size 4 log s(n). For a circuit C ∈
C(s(n), d(n)) with input size n, define random variable Y to be C(f(y)).
The expected value of Y is precisely the fraction of strings accepted by
C. We have s4(n) such independent random variables with the same
expected value. Hence, by Chernoff’s bound, the probability that the
average of these variables differs from the expectation by more than 1

n

is less than 1

2s3(n) . Since there are less than 2s
2(n) circuits of size s(n),

most of the choices of f will be pseudo-random.

It is also easy to see (via a similar counting argument) that (o(log s(n)), n)-
pseudo-random generators cannot exist against C(s(n), d(n)). This motivates the
following definition.

Definition 22 A (O(log s(n)), n)-pseudo-random generator against C(s(n),
d(n)) is called an optimal pseudo-random generator against C(s(n), d(n)).

So far, we have not examined the computability aspect of pseudo-random
generators. It is easy to see that optimal pseudo-random generators against
C(s(n), d(n)) can be computed in time O(2s

2(n)). To make the notion interest-
ing, we need to compute them faster. There are two ways in which the time
complexity of a generator can be measured: as a function of output size or as a
function of input size. We choose to express it in terms of input size.

Definition 23 A (�(n), n)-pseudo-random generator f against C(s(n), d(n)) is
t(m)-computable if there is an algorithm running in time t(m) that on input
(y, i) with |y| = m = �(n) and 1 ≤ i ≤ n, outputs ith bit of f(y).

In the above, we have defined the complexity of f slightly differently – usually
it is defined to be the complexity of computing the entire f(y). Our definition
has an advantage when both �(n) and t(�(n)) are substantially smaller than n.
In that case, the first few bits of f can be computed very quickly and this fact
would be useful later.

Proving Lower Bounds Via Pseudo-random Generators 95

3 Boolean Circuit Lower Bounds Via Pseudo-random
Generators

A (�(n), n)-pseudo-random generator against C(s(n), d(n)) that is 2O(m)-com-
putable yields a lower bound on C(s(�−1(n)), d(�−1(n))).

Theorem 31 ([14]) Let f be a t(m)-computable (�(n), n)-pseudo-random gen-
erator against C(s(n), d(n)). Then there is a set in Ntime(t(m)·m) ∩ Dtime(t(m)·
2m) that cannot be accepted by any circuit family in C(s(�−1(n)), d(�−1(n))).

Proof. Define a set A as follows:

On input x, |x| = m = �(n) + 1 for some n, find if there exists a y,
|y| = �(n) such that x is a prefix of f(y). If yes, accept otherwise reject.

The set A is in Ntime(t(m) ·m): guess a y of size m−1 and compute first m bits
of f(y). The set of also in Dtime(t(m) · 2m): for every y of size m− 1 compute
the first m bits of f(y) and check if any matches.

Suppose there is a circuit family in C(s(�−1(n)), d(�−1(n))) that accepts A.
Fix an input size m = �(n)+1 for some n and consider the corresponding circuit
C from the family. Construct a new circuit, say D, on input size n as follows.
Circuit D simply simulates circuit C on the first m bits of its input (ignoring the
remaining bits). By the definition of A, it follows that for every y, |y| = m− 1,
f(y) is accepted by D. In addition, circuit D rejects at least half of its inputs
(because the number of prefixes of m bits of f(y)’s is at most 2m−1). Circuit D
is in C(s(n), d(n)) since the input size has grown from m (for circuit C) to n (for
circuit D). Therefore,

| Pr
x∈{0,1}n

[D(x) = 1]− Pr
y∈{0,1}m−1

[D(f(y)) = 1] | ≤ 1
n
.

However, the first probability is less than 1
2 while the second is 1 as argued

above. This is a contradiction. &'

For optimal generators, we get the following corollary.

Corollary 32 Let f be a t(m)-computable optimal pseudo-random generator
against C(s(n), d(n)). Then there is a set in Ntime(t(m) ·m) ∩ Dtime(t(m) ·2m)
that cannot be accepted by any circuit family in C(2εn, d(s−1(2εn))) for some
ε > 0.1

As of now, the best pseudo-random generator known is the following.

Lemma 33 ([8, 14]) For any d > 0, there exists a mO(1)-computable
(logO(d) n, n)-pseudo-random generator against C(n, d), the class of size n, depth
d circuits.
1 The converse of this corollary was shown by Impagliazzo and Wigderson [10].

96 Manindra Agrawal

The above generator is constructed by taking H̊astad’s lower bound [8] on
constant-depth circuits and applying Nisan-Wigderson’s construction [14] of
pseudo-random generators on it. This generator is clearly not an optimal gen-
erator, but comes close – its input length is logO(d) n instead of O(log n). If one
can reduce the input length to, say, O(t(d) log n) for any function t(·), then we
get an optimal generator. This is our first step:

Step 1. Obtain a 2O(m)-computable optimal pseudo-random generator against
C(n, d) for each d > 0.

Such generators will already yield an interesting lower bound.

Lemma 34 If there exists a 2O(m)-computable optimal pseudo-random genera-
tor against C(n, d) then there is a set in E that cannot be accepted by any circuit
family in C(2εn, d) for some ε > 0.

Proof. Direct from Corollary 32. &'

It is worth mentioning at this point that exponential lower bounds are not
known even for depth three circuits! The above lemma implies another lower
bound:

Corollary 35 If there exists a 2O(m)-computable optimal pseudo-random gen-
erator against C(n, d) then there is a set in E that cannot be accepted by a
non-uniform semiunbounded circuit family of size nd−ε, depth (d − ε) logn for
any ε > 0.

Proof. Take any size nd−ε, depth (d − ε) logn (for some ε > 0) circuit C on
n inputs with unbounded fanin OR-gates. The circuit can be converted into
a subexponential size depth d circuit as follows. Cut C into d

2 layers of depth
2(d−ε)
d logn each. In each layer, write each topmost gate as OR-of-ANDs of bot-

tommost gates. A direct counting shows that each such OR-of-ANDs will have
O(n2dn1− ε

d) gates. There are at most nd−ε OR-of-ANDs, and therefore, the size
of the resulting circuit is at most 2O(logn·n1− ε

d) = 2o(n). The depth of the cir-
cuit is d. The existence of a 2O(m)-computable optimal pseudo-random generator
against C(n, d) implies the existence of a set A in E that cannot be accepted by
any family of circuits from C(2δn, d) for suitable δ > 0 by the above lemma. This
means that circuit C cannot accept {A}=n. &'

By improving the complexity of the generator, we can get a better lower
bound. This is our second step:

Step 2. Obtain a mO(1)-computable optimal pseudo-random generator against
C(n, d) for each d > 0.

The better time complexity of the generator implies that the set A will now
belong to the class NP instead of E. Thus we get:

Proving Lower Bounds Via Pseudo-random Generators 97

Corollary 36 If there exists a mO(1)-computable optimal pseudo-random gen-
erator against C(n, d) then there is a set in NP that cannot be accepted by a
non-uniform semiunbounded circuit family of size nd−ε, depth (d − ε) logn for
any ε > 0.

The next aim is to construct an optimal pseudo-random generator against
a larger class of circuits: class of logarithmic depth circuits of fanin two, i.e.,
NC1. This class contains constant depth circuits and is only “slightly higher”
(although no lower bounds are known for this class).

Step 3. Obtain a mO(1)-computable optimal pseudo-random generator against
C(n, logn).

This generalization improves the lower bound substantially.

Lemma 37 If there exists a mO(1)-computable optimal pseudo-random genera-
tor against C(n, logn) then there is a set in NP that cannot be accepted by any
non-uniform family of sublinear depth and subexponential size circuits.

Proof. Directly from Corollary 32. &'

The last step is to push the class of circuits further up to all polylog depth
circuits, i.e., the class NC. This class is believed to be substantially smaller than
the class of all polynomial sized circuits.

Step 4. Obtain a mO(1)-computable optimal pseudo-random generator against
C(n, logO(1) n).

The following lemma follows immediately.

Lemma 38 If there exists a mO(1)-computable optimal pseudo-random genera-
tor against C(n, logO(1) n) then there is a set in NP that cannot be accepted by
any non-uniform family of polynomial depth and subexponential size circuits.

As a corollary of above, we have:

Corollary 39 If there exists a mO(1)-computable optimal pseudo-random gen-
erator against C(n, logO(1) n) then P 	= NP.

4 Pseudo-random Generators for Arithmetic Circuits

Lower bounds for arithmetic circuits are even less understood than boolean cir-
cuits. For example, we do not even know lower bounds on depth four arithmetic
circuits. Mulmuley and Sohoni [12] have been trying to use algebraic geometric
techniques for proving arithmetic circuit lower bounds. Here, we formulate an
alternative way using pseudo-random generators.

Let A(n, F) be the class of arithmetic circuits over field F such that any
circuit C ∈ A(n, F) has n addition, subtraction, and multiplication gates over

98 Manindra Agrawal

the field F . We assume that all arithmetic circuits are layered and the layers
alternate between multiplication and addition/subtraction gates. Circuit C has
at most n input variables and computes a polynomial over F of degree at most
2n. Note that the number of input variables for arithmetic circuit is not as
important parameter as for boolean circuits. Even single variable circuits can
compute very complex polynomials. Kabanets and Impagliazzo [11] showed a
connection between polynomial identity testing and lower bounds on arithmetic
circuits. They proved that if there is a polynomial-time deterministic algorithm
for verifying polynomial identities then NEXP cannot have polynomial-sized
arithmetic circuits. They also proved a partial converse: if Permanent cannot
be computed by polynomial-sized arithmetic circuits, then polynomial identity
testing can be done in subexponential time.

We make this relationship between identity testing and lower bounds stronger
via an appropriate notion of pseudo-random generator against arithmetic cir-
cuits.

Definition 41 Function f : N %→ (F [y])∗ is a (�(n), n)-pseudo-random generator
against A(n, F) if:

– f(n) ∈ (F [y])n+1 for every n > 0.
– Let f(n) = (f1(y), . . . , fn(y), g(y)). Then each fi(y) as well as g(y) is a

polynomial of degree at most 2�(n).
– For any circuit C ∈ A(n, F) with m ≤ n inputs:

C(x1, x2, . . . , xm) = 0 iff C(f1(y), f2(y), . . . , fm(y)) = 0 (mod g(y)).

A direct application of Schwartz-Zippel lemma [18, 23] shows that there
always exist (O(log n), n)-pseudo-random generators against A(n, F):

For every n > 0, define f(n) to be the sequence (f1(y), f2(y), . . . , fn(y),
g(y)) where each fi(y) is a random degree n3 − 1 polynomial and g(y)
is an irreducible polynomial of degree n3 over F . In addition, if F is
infinite, all these polynomials have coefficients bounded by 2n. Let C ∈
A(n, F) compute a non-zero polynomial on m ≤ n variables. Let F̂ be
the extension field F [y]/(g(y)). Polynomial fi(y) can be thought of as
a random element of the field F̂ . Now by Schwartz-Zippel lemma, the
probability that C(f1(y), f2(y), . . . , fm(y)) = 0 (mod g(y)) is at most
degC

2n3 ≤ 1
2n3−n

since degC ≤ 2n. Since there are at most 2n
2

circuits of
size n, the probability that the generator fails against any such circuit is
at most 1

2n3−n2−n
. Therefore, most of the choices of f are pseudo-random.

As in the case of boolean circuits, we call such generators optimal pseudo-random
generators. There are, however, a few of crucial differences between the boolean
and arithmetic cases. Firstly, the pseudo-random generator against arithmetic
circuits does not approximate the number of zeroes of the polynomial computed
by the circuit. Secondly, it computes a polynomial for each input instead of
a bit value and a moduli polynomial. Finally, it outputs only one sequence
of n + 1 polynomials as opposed to a polynomial number of strings of length

Proving Lower Bounds Via Pseudo-random Generators 99

n in the boolean case. The degree of each output polynomial is 2�(n) which
equals nO(1) for optimal generator. Therefore, the time needed to compute such
a generator is 2Ω(�(n)) (= nΩ(1) for optimal case). This can be exponentially
larger than the input size of the generator. Hence we do not have as much
freedom available to vary the time complexity of the generator. This motivates
the following definition.

Definition 42 A (�(n), n)-pseudo-random generator f against A(n, F) is effi-
ciently computable if f(n) is computable in time 2O(�(n)).

This definition of pseudo-random generators is the right one from the per-
spective of derandomization of identity testing.

Theorem 43 Suppose there exists an efficiently computable (�(n), n)-pseudo-
random generator against A(n, F). Then polynomial identity testing can be done
deterministically in time n · 2O(�(n)).

Proof. Let C ∈ A(n, F) be a circuit of size n computing a possible identity
over F on m ≤ n variables. Then C(f1(y), f2(y), . . . , fm(y)) (mod g(y)) can be
computed in time 2O(�(n)): each fi(y) and g(y) is of degree 2O(�(n)) and can be
computed in the same time; and then the circuit C can be evaluated modulo
g(y) in n · 2O(�(n)) time. &'

Corollary 44 Suppose there exists an efficiently computable optimal pseudo-
random generator against A(n, F). Then polynomial identity testing can be done
in P.

A further evidence of “correctness” of the definition is provided by the AKS
primality test [2] which can be viewed as derandomization of a specific identity.
The identity is C(x) = (1 + x)n − xn − 1 over Zn and, as shown in [1], the
function f(n) = (x, g(x)) with

g(x) = x16 log5 n ·
16 log5 n∏
r=1

4 log4 n∏
a=1

((x − a)r − 1)

(g(x) is of degree O(log14 n)) is an efficiently computable optimal “pseudo-
random generator” against C(x) ∈ A(O(log n), Zn) (it is not really a pseudo-
random generator since it works only against a subset of circuits in A(O(log n),
Zn)).

5 Arithmetic Circuit Lower Bounds Via Pseudo-random
Generators

As in the case of boolean circuits, an efficiently computable pseudo-random
generator implies a lower bound:

100 Manindra Agrawal

Theorem 51 Let f be an efficiently computable (�(n), n)-pseudo-random gen-
erator against A(n, F). Then there is a multilinear polynomial computable in
time 2O(�(n)) that cannot be computed by any circuit family in A(n, F).2

Proof. For any m = �(n), define polynomial q(x1, x2, . . . , x2m) as:

q(x1, x2, . . . , x2m) =
∑

S⊆[1,2m]

cS ·
∏
i∈S

xi.

The coefficients cS satisfy the condition∑
S⊆[1,2m]

cS ·
∏
i∈S

fi(y) = 0

where f(n) = (f1(y), f2(y), . . . , fn(y), g(y)). Such a q always exists as the fol-
lowing argument shows.

The number of coefficients of q are exactly 22m. These need to satisfy a
polynomial equation of degree at most 2m ·2m. So the equation gives rise
to at most 2m ·2m+1 homogeneous constraints on the coefficients. Since
(2m · 2m + 1) < 22m for m ≥ 3, there is always a non-trivial polynomial
q satisfying all the conditions.

The polynomial q can be computed by solving a system of 2O(m) linear equations
in 2O(m) variables over the field F . Each of these equations can be computed in
time 2O(m) using computability of f . Therefore, q can be computed in time 2O(m).
Now suppose q can be computed by a circuit C ∈ A(n, F). By the definition of
polynomial q, it follows that C(f1(y), f2(y), . . . , f2m(y)) = 0. The size of circuit
C is n and it computes a non-zero polynomial. This contradicts the pseudo-
randomness of f . &'

As in the case of boolean circuits, optimal pseudo-random generators against
constant depth arithmetic circuits is our first goal.

Step 1. Obtain an efficiently-computable optimal pseudo-random generator
against size n arithmetic circuits of depth d over F for each d > 0.

And exactly as in the boolean case, we get a lower bound on log-depth
polynomial size circuits with unbounded fanin addition gates.

Lemma 52 If there exist efficiently-computable optimal pseudo-random gener-
ators against size n arithmetic circuits of depth d over F then for there exists
a multilinear polynomial computable in E that cannot be computed by a nonuni-
form family of circuits with unbounded fanin addition gates of size nd−ε, depth
(d− ε) logn for any ε > 0.
2 A partial converse of this theorem can also be shown: if there exists a polyno-

mial computable in time 2O(�(n)) that cannot be computed by a circuit family in
A(n, F) then there exists an efficiently computable (�2(n), n)-pseudo-random gener-
ator against the class of size n circuits over F whose degree is bounded by n.

Proving Lower Bounds Via Pseudo-random Generators 101

Proof. A size nd−ε, depth (d − ε) logn arithmetic circuit with unbounded fanin
addition gates can be translated, exactly as in proof of Lemma 35, to a subex-
ponential sized depth d circuit. The optimal pseudo-random generator against
depth d circuits gives the lower bound. &'

The class of arithmetic branching programs is equivalent to the class of poly-
nomials computed by determinants of a polynomial sized matrix [21, 19, 5]. Also,
polynomial-sized arithmetic formulas can be expressed as polynomial sized arith-
metic branching programs. We get a much stronger lower bound by generalizing
the pseudo-random generator to work against polynomial sized branching pro-
grams.

Step 2. Obtain an efficiently-computable optimal pseudo-random generator
against size n arithmetic branching programs over F .

This step nearly achieves our final goal.

Lemma 53 If there exist efficiently-computable optimal pseudo-random gener-
ators against size n arithmetic branching programs over F then there exists a
multilinear polynomial computable in E that (1) cannot be expressed as the de-
terminant of a subexponential sized matrix and (2) cannot be computed by a
2o(

n
log n)-sized arithmetic circuit.

Proof. The first part follows directly from Theorem 51 translated for arithmetic
branching programs. For the second part, recall that the polynomial q is multi-
linear and so has polynomial degree. In [20] it is shown that arithmetic circuits
of size N and degree D can be transformed to arithmetic circuits of size NO(1)

with depth O(logN logD). Further, a circuit of depth O(logN logD) can be ex-
pressed as determinant of a matrix of size 2O(logN logD) = NO(logD). Using the
lower bound of first part, it follows that the polynomial q cannot be computed
by arithmetic circuits of size 2o(

n
log n). &'

To obtain a lower bound on permanent, we need to improve the time com-
plexity of polynomial q. Suppose that each coefficient cS of the polynomial q
can be computed by a #P-function (this will require that all coefficients of each
polynomial in f(n) to be computed by a #P-function). Then it follows that the
polynomial q can be expressed as permanent of a matrix of size polynomial in
m (because permanent captures #P-computations). Let us call such a generator
#P-computable.

Step 3. Obtain a #P-computable optimal pseudo-random generator against size
n arithmetic branching programs over F .

Corollary 54 If there exists an efficiently-computable optimal pseudo-random
generator against size n arithmetic branching programs over F then the perma-
nent of a n× n matrix over F (1) cannot be expressed as the determinant of a
subexponential-sized matrix over F , (2) cannot be computed by a 2o(

n
log n)-sized

arithmetic circuit.

102 Manindra Agrawal

Of course, the above step cannot be carried out for fields of characteristic
two where permanent is equal to the determinant.

6 Will This Approach Work?

In the sequence of steps proposed to prove arithmetic and boolean circuit lower
bounds, perhaps the most important one is step 1. Achieving this step will,
besides providing strong lower bounds for the first time, will establish the cor-
rectness of the approach and increase the possibility that remaining steps can
also be achieved.

In this section, we discuss some potential candidates to achieve Step 1 for
both boolean and arithmetic circuits.

6.1 Step 1 for Boolean Circuits

Hitting set generators are a weaker form of optimal pseudo-random generators.
The difference is that for a circuit C that accepts at least half of its inputs, a
hitting set generator is required to generate at least one input x to C such that
C(x) = 1. (As opposed to this, pseudo-random generators are required to gener-
ate appoximately Prx[C(x) = 1] fraction of x’s on which C(x) = 1.) Both hitting
set generators and optimal pseudo-random generators against C(s(n), d(n)) have
input of size O(log s(n)).

The proof of Theorem 31 shows that efficiently computable hitting set gener-
ators are sufficient to obtain lower bounds. Coupled with the result of [10], this
implies that efficiently computable hitting set generators and efficiently com-
putable optimal pseudo-random generators are equivalent.

Let f : {0, 1}O(logn) %→ {0, 1}n be any 1
n2d -biased, 2 logn-wise indepen-

dent generator. In other words, any 2 logn output bits of f , on a random
input, are nearly independent (with a bias of at most 1

n2d). There exist sev-
eral constructions of such generators [13, 3]. We take one from [3]. Define fB,d,
fB,d : {0, 1}(4d+4) logn %→ {0, 1}n, as:

fB,d(x, y) = (x0 · y)(x1 · y) · · · (xn−1 · y)

where |x| = |y| = (2d + 2) logn, xi is computed in the field Fn2d+2 treating x as
an element of the field, and ‘·’ is inner product modulo 2. It is shown in [3] that
fB,d satisfies the required independence property.

Functions fB,d can easily shown to be mO(1) computable. We can prove the
following about function fB,2:

Lemma 61 Function fB,2 is a hitting set generator against depth 2, size n
boolean circuits.

Proof. Without loss of generality, consider a depth 2, size n circuit C that is
an OR-of-ANDs and accepts at least half fraction of inputs. Delete all the AND
gates from C of fanin more than 2 logn. Let the resulting circuit be C′. Any

Proving Lower Bounds Via Pseudo-random Generators 103

input accepted by circuit C′ is also accepted by C and the fraction of inputs
accepted by C′ is at least 1

2 −
1
n (a deleted AND gate outputs a 1 on at most

1
n2 inputs and there are at most n deleted AND gates). Consider any surviving
AND gate in the circuit. Its fanin is at most 2 logn. Therefore, it outputs a 1
on at least 1

n2 inputs. Since the output of fB,2 is 2 logn-wise independent with
a bias of at most 1

n4 , the probability that this AND gate will output a 1, when
given fB,2 as input, is at least 1

n2 − 1
n4 > 0. Hence fB,2 is a hitting set generator

against C.

About lemma and Lemma 35 together show that:

Corollary 62 There is a set in NP that cannot be accepted by semiunbounded
circuits of size n2−ε and depth (2− ε) logn for any ε > 0.

In fact, using a different definition for fB,2 from [3] can bring the complexity
of the hard set down to SAC1 from NP. This implies that fB,d cannot be a
hitting set generator for all d (because SAC1 circuits can be transformed to
subexponential sized constant depth circuits as observed earlier). However, it
appears that a combination of fB,d with other derandomization primitives can
result in hitting set generators for higher depths.

6.2 Step 1 for Arithmetic Circuits

We need to weaken the definition of pseudo-random generators for arithmetic
circuits too.

Definition 63 Function f : N× N %→ (F [y])∗ is a hitting set generator against
A(n, F) if:

– f(n, k) ∈ (F [y])n+1 for every n > 0 and 1 ≤ k ≤ nO(1).
– Let f(n, k) = (f1,k(y), . . . , fn,k(y), gk(y)). Then each fi,k(y) as well as gk(y)

is a polynomial of degree at most nO(1).
– For any circuit C ∈ A(n, F) with m ≤ n inputs:

C(x1, x2, . . . , xm) = 0 iff for every k, 1 ≤ k ≤ nO(1),

C(f1,k(y), f2,k(y), . . . , fm,k(y)) = 0 (mod gk(y)).

It is easy to see that a complete derandomization of identity testing can also
be done by an efficiently computable hitting set generator. By slightly modifying
the definition of polynomial q in the proof of Theorem 51, a similar lower bound
can be shown too (q will now need to satisfy nO(1) polynomial equations of degree
nO(1) instead of just one; this still translates to nO(1) homogeneous constraints
on the coefficients of q).

Define function fA,d as:

fA,d(n, k) = (yk
0
, yk

1
, . . . , yk

n−1
, yr − 1)

where r ≥ n4d is a prime and 1 ≤ k < r.
Function fA,d is easily seen to be nO(1) computable. Polynomial q, defined

for function fA,d, can be computed in PSPACE (it is not clear how to compute
q in #P). We can prove the following about function fA,2:

104 Manindra Agrawal

Lemma 64 Function fA,2 is a hitting set generator against size n, depth 2
arithmetic circuits.

Proof. Consider a size n, depth 2 arithmetic circuit C computing a non-zero
polynomial. If C has a multiplication gate at the top, then it will be non-zero
on any sequence fA,2(n, k) such that ki 	= kj (mod r) for 1 ≤ i < j < n. Most
of the k’s (e.g., any k which is a generator for F ∗r) have this property.

Now consider C with an addition gate at the top. C then computes a poly-
nomial of degree up to n with at most n non-zero terms. Let t1 be the first
term of this polynomial (under some ordering) and let tj be any other term.
Then the number of k’s for which t1 = tj (mod yr − 1) under the substitution
of variables according to fA,2(n, k) is at most n − 1. So the number of k’s for
which t1 = tj (mod yr − 1) for some j is at most n2. As total number of k’s
is n4, there exist k’s for which t1 	= tj (mod yr − 1) for any j > 1 under the
substitution fA,2(n, k). C evaluates to a non-zero polynomial modulo yr − 1 on
such inputs.

Using Lemma 52, this results in:

Corollary 65 There is a multilinear function computable in PSPACE that can-
not be computed by circuits with unbounded fanin addition gates of size n2−ε and
depth (2− ε) logn for any ε > 0.

We conjecture that above lemma holds for all depths:

Conjecture. Function fA,d is a hitting set generator against depth d, size n
arithmetic circuits for every d > 0.

It is to be hoped that the next twenty five years will be more fruitful for lower
bounds than the previous ones. One might even hope that all the proposed steps
will be achieved answering two of the most fundamental questions in complexity
theory.

References

[1] Manindra Agrawal. On derandomizing tests for certain polynomial identities.
In Proceedings of the Conference on Computational Complexity, pages 355–362,
2003.

[2] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of
Mathematics, 160(2):781–793, 2004.

[3] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta. Simple constructions of almost
k-wise independent random variables. In Proceedings of Annual IEEE Symposium
on Foundations of Computer Science, pages 544–553, 1990.

[4] M. Blum and S. Micali. How to generate cryptographically strong sequences of
pseudo-random bits. SIAM Journal on Computing, 13:850–864, 1984.

[5] C. Damm. DET=L#l. Technical Report Informatik-preprint 8, Fachbereich In-
formatik der Humboldt Universität zu Berlin, 1991.

Proving Lower Bounds Via Pseudo-random Generators 105

[6] L. Fortnow. The role of relativization in complexity theory. Bulletin of the Eu-
ropean Association for Theoretical Computer Science, 1994. Complexity Theory
Column.

[7] L. Fortnow. Time-space tradeoffs for satisfiability. J. Comput. Sys. Sci.,
60(2):337–353, 2000.

[8] J. H̊astad. Computational limitations on small depth circuits. PhD thesis, Mas-
sachusetts Institute of Technology, 1986.

[9] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudo-random generator
from any one-way function. SIAM Journal on Computing, pages 221–243, 1998.

[10] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proceedings of Annual ACM Symposium on
the Theory of Computing, pages 220–229, 1997.

[11] Valentine Kabanets and Russell Impagliazzo. Derandomizing polyonmial iden-
tity tests means proving circuit lower bounds. In Proceedings of Annual ACM
Symposium on the Theory of Computing, pages 355–364, 2003.

[12] K. Mulmuley and M. Sohoni. Geometric complexity theory I: An approach to the
P vs. NP and other related problems. SIAM Journal on Computing, 31(2):496–
526, 2002.

[13] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and
applications. In Proceedings of Annual ACM Symposium on the Theory of Com-
puting, pages 213–223, 1990.

[14] N. Nisan and A. Wigderson. Hardness vs. randomness. J. Comput. Sys. Sci.,
49(2):149–167, 1994.

[15] A. Razborov. Lower bounds for the monotone complexity of some boolean func-
tions. Doklady Akademii Nauk SSSR, 281(4):798–801, 1985. English translation
in Soviet Math. Doklady, 31:354-357, 1985.

[16] A. Razborov and S. Rudich. Natural proofs. In Proceedings of Annual ACM
Symposium on the Theory of Computing, pages 204–213, 1994.

[17] O. Reingold. Undirected s-t-connectivity in logspace. In Proceedings of Annual
ACM Symposium on the Theory of Computing, pages 376–385, 2005.

[18] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial iden-
tities. J. ACM, 27(4):701–717, 1980.

[19] S. Toda. Counting problems computationally equivalent to the determinant.
manuscript, 1991.

[20] L. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation
of polynnomials using few processors. SIAM Journal on Computing, 12:641–644,
1983.

[21] V Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic
circuits. In Proceedings of the Structure in Complexity Theory Conference, pages
270–284. Springer LNCS 223, 1991.

[22] A. C. Yao. Theory and applications of trapdoor functions. In Proceedings of An-
nual IEEE Symposium on Foundations of Computer Science, pages 80–91, 1982.

[23] R. E. Zippel. Probabilistic algorithms for sparse polynomials. In EUROSCAM’79,
pages 216–226. Springer LNCS 72, 1979.

Erdős Magic

Joel Spencer

Courant Institute of Mathematical Sciences
New York

spencer@cims.nyu.edu

Abstract. The Probabilistic Method ([AS]) is a lasting legacy of the
late Paul Erdős. We give two examples - both problems first formulated
by Erdős in the 1960s with new results in the last decade and both
with substantial open questions. Further in both examples we take a
Computer Science vantagepoint, creating a probabilistic algorithm to
create the object (coloring, packing, respectively) and showing that with
positive probability the created object has the desired properties.

– Given m sets each of size n (with an arbitrary intersection pattern)
we want to color the underlying vertices Red and Blue so that no
set is monochromatic. Erdős showed this may always be done if m <
2n−1 (proof: color randomly!). We give an argument of Srinivasan

and Radhakrishnan ([RS]) that extends this to m < c2n
√

n/ ln n.
One first colors randomly and then recolors the blemishes with a
clever random sequential algorithm.

– In a universe of size N we have a family of sets, each of size k, such
that each vertex is in D sets and any two vertices have only o(D)
common sets. Asymptotics are for fixed k with N, D →∞. We want
an asymptotic packing, a subfamily of ∼ N/k disjoint sets.
Erdős and Hanani conjectured such a packing exists (in an important
special case of asymptotic designs) and this conjecture was shown
by Rödl. We give a simple proof of the author ([S]) that analyzes the
random greedy algorithm.

Paul Erdős was a unique figure, an inspirational figure to countless math-
ematicians, including the author. Why did his view of mathematics res-
onate so powerfully? What was it that drew so many of us into his circle?
Why do we love to tell Erdős stories? What was the magic of the man
we all knew as Uncle Paul?

References

[AS] Alon, Noga and Spencer, Joel, The Probabilistic Method, Second Edition, John
Wiley & Sons, 2000.

[RS] Radhakrishnan, J. and Srinivasan, A., Improved bounds and algorithms for hy-
pergraph two-coloring, Random Structures and Algorithms, 16, 4-32, 2000.

[S] Spencer, J., Asymptotic Packing via A Branching Process, Random Structures
and Algorithms, 7, 167-172, 1995.

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 106–106, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

No Coreset, No Cry: II�

Michael Edwards and Kasturi Varadarajan

Department of Computer Science
The University of Iowa

Iowa City, IA 52242-1419
[mcedward,kvaradar]@cs.uiowa.edu

Abstract. Let P be a set of n points in d-dimensional Euclidean space,
where each of the points has integer coordinates from the range [−Δ, Δ],
for some Δ ≥ 2. Let ε > 0 be a given parameter. We show that there is
subset Q of P , whose size is polynomial in (log Δ)/ε, such that for any k
slabs that cover Q, their ε-expansion covers P . In this result, k and d are
assumed to be constants. The set Q can also be computed efficiently, in
time that is roughly n times the bound on the size of Q. Besides yielding
approximation algorithms that are linear in n and polynomial in log Δ
for the k-slab cover problem, this result also yields small coresets and
efficient algorithms for several other clustering problems.

1 Introduction

A slab in (d is specified by a hyperplane h and a real number r ≥ 0: Slab(h, r)
is the set of points at distance at most r from h. The width of such a slab is
2r. Note that such a slab can be viewed as the set of points enclosed between
two parallel hyperplanes at distance 2r apart. For an ε ≥ 0, the ε-expansion of
Slab(h, r) is Slab(h, r(1 + ε)); note that its width is 2r(1 + ε).

For an integer k ≥ 1 and a parameter 0 < ε < 1, a (k, ε) (multiplicative)
coreset of a point set P ⊆ (d is a subset Q ⊂ P such that given any k slabs
that cover Q, the ε-expansion of the k slabs covers P . (A set of k slabs is said
to cover a point set if the point set is contained in the union of the k slabs.)

A (1, ε) coreset for any set of n points P ⊆ (d of size O(1/ε(d−1)/2) exists,
and can be computed in O(n) time [3,4,1,5]. (We are ignoring constants in the
running time that depend on ε. Throughout this paper, d will be treated as a con-
stant.) Such a coreset immediately implies a linear time algorithm for computing
an approximately minimum width slab enclosing P . Moreover, a (1, ε) coreset
automatically implies a small (1, ε) coreset of other kinds, obtained essentially
by replacing ‘slab’ in the definition above by ‘ball’, ‘cylinder’, ‘spherical shell’,
‘cylindrical shell’, etc. [1]. One immediately obtains linear-time approximation
algorithms for various extent measure problems, such as finding the minimum-
width slab, cylinder, spherical shell, cylindrical shell, etc. enclosing a point set.
Furthermore, a small (1, ε) coreset also yields small coresets corresponding to

� This work was partially supported by NSF CAREER award CCR 0237431

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 107–115, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

108 Michael Edwards and Kasturi Varadarajan

such extent measure problems for points with algebraic motion [1]. This pleasant
state of affairs continues to persist if we want to handle a few outliers [8].

It is therefore natural to ask if small (k, ε) coresets exist, for k ≥ 2. We are
asking, informally, if the pleasant state of affairs for the one cluster case also
holds for the multiple cluster case. Answering this question in the negative, Har-
Peled [7] gave an example of a point set P ⊂ (2 for which any (2, 1/2) coreset
has size at least |P | − 2. In other words, the coreset needs to contain nearly all
the points. This is unfortunate, since a small coreset would yield small coresets
for several clustering problems. (Nevertheless, small coresets exist for the k balls
case [7], and small coresets of a weaker type exist for the k cylinders case [2].
These are the exceptions.)

Har-Peled’s construction, when embedded on an integer grid, uses coordi-
nates that are exponentially large in the number of input points. In this paper,
we ask whether small coresets exist if the coordinates are reasonably small. The
main result of this paper is the following theorem, which answers the question
in the affirmative.

Theorem 1. Let P be any set of n points in (d, with the co-ordinates of each
point in P being integers in the range [−Δ,Δ], where Δ ≥ 2. For any integer k ≥
1, and 0 < ε < 1, there is a (k, ε) coreset of P with at most (logΔ/ε)f(d,k) points,
where f(d, k) is a function of only d and k. Such a coreset can be constructed in
n(logΔ/ε)f(d,k) time.

We remark that k and d are treated as constants in the big-O notation.
Evidently, the theorem implies an algorithm whose running time is linear

in n and polynomial in logΔ (ignoring ‘constants’ that depend on ε, d, and k)
for computing k slabs of width (1 + ε)r∗ that cover P , where r∗ is the smallest
number such that k slabs of width r∗ cover P . (That is, r∗ is the width of the
optimal k-slab cover of P .) Such an algorithm is obtained by computing a (k, ε)
coreset of P , computing an optimal k-slab cover for the coreset, and taking their
ε-expansion. (An algorithm that is more efficient in terms of the hidden constants
can be obtained, if really needed, by working through the proof of Theorem 1.)

The theorem also holds if we replace ‘slab’ in the definition of a (k, ε) core-
set by an ‘�-cylinder’, where an �-cylinder is the set of points within a certain
distance from an �-dimensional flat (affine subspace of dimension �). The proof
readily carries over to this case. Consequently, we also obtain efficient algorithms
for approximating the k-�-cylinder cover of the point set P .

Other consequences for clustering follow from Theorem 1 using the machinery
developed in Agarwal et al. [1]. We give two illustrative examples. An annulus in
(2 is the set of points between two concentric circles, and its width is the differ-
ence between the two radii. An ε-expansion of an annulus is defined accordingly.
Let P be a set of points in (2 with integer coordinates in the range [−Δ,Δ],
and let k ≥ 1 be an integer and 0 < ε < 1 be a parameter. We can compute, in
linear time, a subset Q ⊂ P of (logΔ/ε)g(k) points such that for any k annuli
that cover Q, their ε-expansion covers P . Here, g is only a function of k.

The second example concerns moving points [6]. Let P = {p1, . . . , pn} be a
set of points moving linearly in (2, where the position of point pi at time t is

No Coreset, No Cry: II 109

given by pi[t] = ai + bit, where ai, bi ∈ (2 have integer coordinates in the range
[−Δ,Δ]. Let P [t] = {p1[t], . . . , pn[t]} denote the point set at time t. Let k ≥ 1
be an integer and 0 < ε < 1 be a parameter. We can compute, in linear time, a
subset Q ⊂ P of size (logΔ/ε)g(k) such that for any time t, and any k balls that
cover Q[t], their ε-expansion covers P [t]. These examples by no means exhaust
the consequences. For instance, we can replace linear motion by quadratic motion
and balls by slabs in the second example.

In summary, small coresets do exist for the multiple cluster case, provided
we are willing to expand our definition of ‘small’ in a reasonable way.

Technique. The proof of Theorem 1 builds (k, ε) coresets from (k − 1, ε)
coresets. The idea is to add to the coreset a subset Q′ composed of (k − 1, ε)
coresets of a small number of appropriately chosen subsets of P . The subset Q′

will have the property that for any set of k slabs, the points of Q′ contained in
the k’th slab tell us approximately which subset of P is contained in the k’th
slab. We are then left with the problem of adding a (k − 1, ε) coreset for the
remainder of P . The cases where Q′ fails to give us such meaningful information
are precisely those where the k’th slab plays no essential role – the ε-expansion
of the first k − 1 slabs covers P . Crucial to the entire construction is an idea
from [3], which says, in a technical sense that is convenient to us, that in order
to know the shape of a cluster, it is sufficient to know its d principal dimensions.

Is bounded spread enough? We modify the construction of Har-Peled [7]
to show that merely assuming bounded spread is not enough to obtain a coreset
of the type obtained in Theorem 1. The point set is P = {p1, . . . , pn} in (3,
where pi = (1/2n−i, 1/2i−1, i− 1). The spread of this point set, that is, the ratio
of the maximum to minimum interpoint distance, is clearly O(n). We claim that
any (2, 1/2) coreset for this point set must include each pi, for 1 ≤ i ≤ n, and
must consequently have all the points. Suppose, to the contrary, that there is
such a coreset without pi. Then the slab Slab(h1, 1/2n−(i−1)), where h1 is the
hyperplane x = 0, covers the points p1, . . . , pi−1, and the slab Slab(h2, 1/2i),
where h2 is the hyperplane y = 0, covers the points pi+1, . . . , pn. Therefore the
two slabs cover the coreset points. But evidently a 1/2-expansion of these two
slabs does not cover pi, a contradiction.

In Section 2, we establish some geometrical facts needed in Section 3, where
we prove Theorem 1. We omit from this version the proofs for the consequences
of Theorem 1 claimed above. These consequences follow, with some care, via the
arguments used for the one cluster case in [1].

2 Preliminaries

For any subset V = {v1, . . . , v�} of points in (d, let

Aff(V) = {a1v1 + · · ·+ a�v� | a1 + · · ·a� = 1}

be the affine subspace or flat spanned by them. If Aff(V) has dimension t, then
it is called a t-flat.

110 Michael Edwards and Kasturi Varadarajan

Let proj(q, F) denote the closest point on flat F to a point q, and let dist(q, F)
denote the diatance between q and proj(q, F).

For any subset V = {v1, . . . , v�} of points in (d, let

conv(V) = {a1v1 + · · ·+ a�v� | a1, . . . , a� ≥ 0, a1 + · · ·a� = 1}

be the convex hull of V .
Let D denote the points in (d with integer co-ordinates in the range [−Δ,Δ].

The following proposition is well known.

Proposition 1 There exists a constant cd > 0, depending only on the dimension
d, such that for any subset V ⊆ D and point q ∈ D, dist(q,Aff(V)) is either 0
or a number in the range [cd/Δd, 4dΔ].

Lemma 1. There exists a constant c′d, depending only on the dimension, for
which the following is true. Let v0, . . . , vt be any set of points, where t ≤ d.
For 1 ≤ i ≤ t, let ui denote the vector vi − proj(vi,Aff({v0, . . . , vi−1})), and
suppose that ||ui|| > 0. Suppose that for every i ≥ 1 and j ≥ i, we have
dist(vj ,Aff({v0, . . . , vi−1})) ≤ 2||ui||. Then the t-simplex conv({v0, . . . , vt}) con-
tains a translate of the hyper-rectangle

{c′d(a1u1 + a2u2 + · · ·+ atut)|0 ≤ ai ≤ 1}.

Proof. This is the central technical lemma that underlies the algorithm of Bare-
quet and Har-Peled [3] for computing an approximate bounding box of a point
set. For expository purposes, we sketch a proof. We may assume without loss of
generality that v0 is the origin, and u1, . . . , ut are multiples of the first t unit
vectors in the standard basis for (d. Scale the first t axes so that u1, . . . , ut map
to unit vectors. The conditions of the lemma ensure that the images v′0, . . . , v

′
t

of v0, . . . , vt lie in the “ cube ”

C = {(x1, . . . , xd)| − 2 ≤ xi ≤ 2 for i ≤ t, xi = 0 for i > t},

and the (t-dimensional) volume of conv({v′0, . . . , v′t}) is at least 1/t!, which is
at least 1

4dd!
of the volume of C. It follows (see Lemma 3.5 of [3]) that there

exists c′d > 0, depending only on d, such that a translate of c′dC is contained in
conv({v′0, . . . , v′t}). Scaling back gives the required hyper-rectangle. &'

It is worth stating that under the conditions of Lemma 1, the set {v0, . . . , vt}
is contained in the hyperrectangle

v0 + {(a1u1 + a2u2 + · · ·+ atut)| − 2 ≤ ai ≤ 2}.

3 The Coreset Construction

In this section, we describe our algorithm for constructing a (k, ε) coreset for any
given subset of D, for k ≥ 2. Our construction is inductive and will assume an

No Coreset, No Cry: II 111

algorithm for constructing a (k − 1, ε) coreset for any given subset of D. As the
base case, we know that a (1, ε) coreset of size O(1/εd−1) for any subset P ′ ⊂ D
can be constructed in O(|P ′|+1/εd−1) time [1]. Let λ denote the smallest integer
that is at least log2

4dΔ
cd/Δd , where cd > 0 is the constant in Proposition 1. Note

that λ = O(logΔ).
Let P ⊂ D be the point set for which we wish to construct a (k, ε) coreset.

Our algorithm can be viewed as having d+1 levels. At level t, we do some work
corresponding to each instantiation of the variables v0, . . . , vt. Let Q denote the
final coreset that the algorithm returns; Q is initialized to be the empty set.

We construct a (k − 1, ε) coreset K of the point set P and add K to Q.
Each point in K is a choice for the variable v0. For each choice of v0 from K, we
proceed to Level 0 with the point set P [v0] = P .

Level 0: Suppose we have entered this level with {v0} and P [v0]. We partition
P [v0] into λ+1 buckets. The 0’th bucket B0[v0] contains just v0 and for 1 ≤ i ≤ λ,
the i’th bucket Bi[v0] contains all points p ∈ P [v0] such that cd2i−1/Δd ≤
dist(p,Aff({v0})) < cd2i/Δd. (Note that Aff({v0}) simply consists of the point
v0.) By Proposition 1, we do indeed have a partition of P [v0]. For each 1 ≤ i ≤ λ,
we construct a (k − 1, ε) coreset Ki[v0] of Bi[v0] and add Ki[v0] to Q.

Each point in
⋃λ
i=1 Ki[v0] is a choice for v1. If v1 is chosen from Kj[v0], we

enter Level 1 with {v0, v1} and the corresponding set P [v0, v1] =
⋃j
i=0 Bi[v0].

Note that for any p ∈ P [v0, v1], we have dist(p,Aff(v0)) ≤ 2dist(v1,Aff(v0)).
Level 1: Suppose we have entered this level with {v0, v1} and P [v0, v1]. We

partition P [v0, v1] into λ+ 1 buckets. The 0’th bucket B0[v0, v1] contains all the
points of P [v0, v1] that lie on Aff({v0, v1}). (Note that Aff({v0, v1}) is simply the
line through v0 and v1.) For 1 ≤ i ≤ λ, the i’th bucket Bi[v0, v1] contains all
points p ∈ P [v0, v1] such that cd2i−1/Δd ≤ dist(p,Aff({v0, v1})) < cd2i/Δd. By
Proposition 1, we do indeed have a partition of P [v0, v1].

Let u1 = v1 − proj(v1,Aff({v0})). Cover the “rectangle”

R[v0, v1] = v0 + {a1u1| − 2 ≤ a1 ≤ 2}

by O(1/ε) copies of translates of the scaled down rectangle

R′[v0, v1] = {ε
2
c′da1u1|0 ≤ a1 ≤ 1}.

Here, c′d > 0 is the constant in Lemma 1. Note that the bigger rectangle
R[v0, v1] lies on Aff({v0, v1}) and contains B0[v0, v1]. For each of the O(1/ε)
copies of R′[v0, v1], we compute a (k − 1, ε) coreset of the points of B0[v0, v1]
contained in that copy, and add all these coreset points to Q.

For each 1 ≤ i ≤ λ, we construct a (k − 1, ε) coreset Ki[v0, v1] of Bi[v0, v1]
and add Ki[v0, v1] to Q. Each point in

⋃λ
i=1 Ki[v0, v1] is a choice for v2. If v2 is

chosen from Kj [v0, v1], we enter Level 2 with {v0, v1, v2} and the corresponding
set P [v0, v1, v2] =

⋃j
i=0 Bi[v0, v1]. Note that for any p ∈ P [v0, v1, v2], we have

dist(p,Aff(v0, v1)) ≤ 2dist(v2,Aff(v0, v1)).
Level t (2 ≤ t < d): Suppose we have entered this level with {v0, . . . , vt}

and P [v0, . . . , vt]. We partition P [v0, . . . , vt] into λ+ 1 buckets. The 0’th bucket

112 Michael Edwards and Kasturi Varadarajan

B0[v0, . . . , vt] contains all the points of P [v0, . . . , vt] that lie on Aff({v0, . . . , vt}).
For 1 ≤ i ≤ λ, the i’th bucket Bi[v0, . . . , vt] contains all points p ∈ P [v0, . . . , vt]
such that cd2i−1/Δd ≤ dist(p,Aff({v0, . . . , vt})) < cd2i/Δd. By Proposition 1,
we do indeed have a partition of P [v0, . . . , vt].

For 1 ≤ i ≤ t, let ui denote the vector vi−proj(vi,Aff({v0, . . . , vi−1})). Cover
the rectangle

R[v0, . . . , vt] = v0 + {a1u1 + a2u2 + · · ·+ atut| − 2 ≤ ai ≤ 2}

by O(1/εt) copies of translates of the scaled down rectangle

R′[v0, . . . , vt] = {ε
2
c′d(a1u1 + a2u2 + · · ·+ atut)|0 ≤ ai ≤ 1}.

Note that the bigger rectangle R[v0, . . . , vt] lies on Aff({v0, . . . , vt}) and con-
tains B0[v0, . . . , vt]. For each of the O(1/εt) copies of R′[v0, . . . , vt], we compute
a (k−1, ε) coreset of the points of B0[v0, . . . , vt] contained in that copy, and add
all these coreset points to Q.

For each 1 ≤ i ≤ λ, we construct a (k − 1, ε) coreset Ki[v0, . . . , vt] of
Bi[v0, . . . , vt] and add Ki[v0, . . . , vt] to Q. Each point in

⋃λ
i=1 Ki[v0, . . . , vt] is a

choice for vt+1. If vt+1 is chosen from Kj[v0, . . . , vt], we enter Level t + 1 with
{v0, . . . , vt, vt+1} and the corresponding set

P [v0, . . . , vt, vt+1] =
j⋃
i=0

Bi[v0, . . . , vt].

Note that for any p ∈ P [v0, . . . , vt+1], we have

dist(p,Aff(v0, . . . , vt)) ≤ 2dist(vt+1,Aff(v0, . . . , vt)).

Level d: Suppose we entered this level with {v0, . . . , vd} and P [v0, . . . , vd].
For 1 ≤ i ≤ d, let ui denote the vector vi − proj(vi,Aff({v0, . . . , vi−1})). Cover
the rectangle

R[v0, . . . , vd] = v0 + {a1u1 + a2u2 + · · ·+ adud| − 2 ≤ ai ≤ 2}

by O(1/εd) copies of translates of the scaled down rectangle

R′[v0, . . . , vd] = {ε
2
c′d(a1u1 + a2u2 + · · ·+ adud)|0 ≤ ai ≤ 1}.

Note that the bigger rectangle contains P [v0, . . . , vd]. For each of the O(1/εd)
copies, we compute a (k − 1, ε) coreset of the points of P [v0, . . . , vd] contained
in that copy, and add all these coreset points to Q.

This completes the description of the algorithm for computing Q.

No Coreset, No Cry: II 113

Running Time and Size

Let S(k) be an upper bound on the size of a (k, ε) coreset of any subset of points
from D computed by our algorithm. We derive a bound for S(k), for k ≥ 2, using
a bound for S(k − 1), noting that S(1) = O(1/εd−1).

There are S(k−1) choices for v0. For a choice of v0, there are O(logΔ)S(k−
1) choices of v1. For a given choice of v0, . . . , vt (1 ≤ t ≤ d − 1), there are
O(logΔ)S(k−1) choices of vt+1. Thus for 0 ≤ t ≤ d, we may bound the number
of choices v0, . . . , vt by O(logdΔ(S(k− 1))d+1). For each choice of v0, . . . , vt, we
compute (k − 1, ε) coresets O(logΔ + 1/εd) times. We therefore have

S(k) ≤ O

((
logΔ
ε

)d+1
)
× (S(k − 1))d+2.

The bound in Theorem 1 on the size of Q follows from this.
A similar analysis bounds the running time.

Proof of Coreset Property

Let S1, . . . , Sk be any k slabs that cover Q. We argue that an ε-expansion of the
slabs covers P . Suppose the last slab Sk contains no point from K ⊂ Q. Then
since K is a (k − 1, ε) coreset for P , and the first k − 1 slabs S1, . . . , Sk−1 cover
K, their ε-expansion covers P and we are done. Let us therefore assume that
there is some v0 ∈ K that is contained in Sk. We now need to argue that an
ε-expansion of S1, . . . , Sk covers P [v0] = P .

Stage 0: Let j ≥ 1 be the largest integer such that Sk contains some point
from Kj [v0]. If no such j exists, let j = 0. The sets Ki[v0], j + 1 ≤ i ≤ λ, are
contained in the first k − 1 slabs S1, . . . , Sk−1. Thus an ε-expansion of these
slabs covers Bi[v0], j + 1 ≤ i ≤ λ. If j = 0, we are done, since B0[v0] = {v0}
is contained in Sk, and all points in P [v0] =

⋃λ
i=0 Bi[v0] are covered by an

ε-expansion of the slabs.
So let us assume that j ≥ 1. Let v1 ∈ Kj [v0] be a point contained in Sk.

We now need to argue that an ε-expansion of S1, . . . , Sk covers P [v0, v1] =⋃j
i=0 Bi[v0].
Stage 1: First consider the point set B0[v0, v1] that lies on Aff({v0, v1}). Let

us consider the points of B0[v0, v1] contained in one of the O(1/ε) copies ρ of
R′[v0, v1]. Since a (k − 1, ε) coreset of these points has been added to Q, these
points will be covered by an ε-expansion of the first k − 1 slabs if the slab Sk
does not intersect ρ. So let us assume that Sk does intersect ρ. Since Sk contains
v0, v1, by Lemma 1, it contains a rectangle that is a translate of a scaling of
R′[v0, v1] by a factor of 2/ε. So this copy ρ of R′[v0, v1] is contained in a slab
‘parallel’ to Sk (the hyperplane defining the two slabs are parallel) but whose
width is ε/2 of the width of Sk. Since Sk intersects ρ, we may conclude that an
ε-expansion of Sk covers ρ.

We have just argued that the point set B0[v0, v1] is covered by an ε-expansion
of the k slabs, since each point in B0[v0, v1] is contained in one of the copies of
R′[v0, v1].

114 Michael Edwards and Kasturi Varadarajan

Let j ≥ 1 be the largest integer such that Sk contains some point from
Kj [v0, v1]. If no such j exists, set j = 0. The sets Ki[v0, v1], j + 1 ≤ i ≤ λ, are
contained in the first k−1 slabs S1, . . . , Sk−1. Thus an ε-expansion of these slabs
covers Bi[v0, v1], j + 1 ≤ i ≤ λ.

If j = 0, we are done, since all the points in P [v0, v1] =
⋃λ
i=0 Bi[v0, v1] are

covered by an ε-expansion of the k slabs.
So let us assume that j ≥ 1. Let v2 ∈ Kj[v0, v1] be a point contained in Sk.

We now need to argue that an ε-expansion of S1, . . . , Sk covers P [v0, v1, v2] =⋃j
i=0 Bi[v0, v1].
Stage t (2 ≤ t < d): We enter this stage to argue that an ε-expansion of the

k slabs contains P [v0, . . . , vt], for some choice of v0, . . . , vt that are contained in
Sk.

First consider the point set B0[v0, . . . , vt] that lies on Aff({v0, . . . , vt}). Let
us consider the points of B0[v0, . . . , vt] contained in one of the O(1/εt) copies
ρ of R′[v0, . . . , vt]. Since a (k − 1, ε) coreset of these points has been added to
Q, these points will be covered by an ε-expansion of the first k − 1 slabs if the
slab Sk does not intersect ρ. So let us assume that Sk does intersect ρ. Since
Sk contains v0, . . . , vt, by Lemma 1, it contains a rectangle that is a translate
of a scaling of R′[v0, . . . , vt] by a factor of 2/ε. So this copy ρ of R′[v0, . . . , vt] is
contained in a slab ‘parallel’ to Sk but whose width is ε/2 of the width of Sk.
Since Sk intersects ρ, we may conclude that an ε-expansion of Sk covers ρ.

We have just argued that the point set B0[v0, . . . , vt] is covered by an ε-
expansion of the k slabs, since each point in B0[v0, . . . , vt] is contained in one of
the copies of R′[v0, . . . , vt].

Let j ≥ 1 be the largest integer such that Sk contains some point from
Kj [v0, . . . , vt]. If no such j exists, set j = 0. The sets Ki[v0, . . . , vt], j+1 ≤ i ≤ λ,
are contained in the first k− 1 slabs S1, . . . , Sk−1. Thus an ε-expansion of these
slabs covers Bi[v0, . . . , vt], j + 1 ≤ i ≤ λ.

If j = 0, we are done, since all the points in P [v0, . . . , vt] =
⋃λ
i=0 Bi[v0, . . . , vt]

are covered by an ε-expansion of the k slabs.
So let us assume that j ≥ 1. Let vt+1 ∈ Kj [v0, . . . , vt] be a point con-

tained in Sk. We now need to argue that an ε-expansion of S1, . . . , Sk covers
P [v0, . . . , vt, vt+1] =

⋃j
i=0 Bi[v0, . . . , vt].

Stage d: We enter this stage to argue that an ε-expansion of the k slabs
contains P [v0, . . . , vd], for some choice of v0, . . . , vd that are contained in Sk.
This argument is identical to the argument given above for B0[v0, . . . , vt]. In
fact, P [v0, . . . , vd] may be thought of as B0[v0, . . . , vd].

We have completed the proof of Theorem 1.

Acknowledgements

We thank Piotr Indyk for suggesting the problem that is addressed in this paper,
and Sariel Har-Peled for raising it again. We also thank the reviewers for useful
feedback.

No Coreset, No Cry: II 115

References

1. P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan, Approximating extent mea-
sures of points, J. Assoc. Comput. Mach., 51 (2004), 606–635.

2. P. K. Agarwal, C. M. Procopiuc, and K. R. Varadarajan, Approximation algorithms
for k-line center, Proc. 10th Annu. European Sympos. Algorithms, 2002, pp. 54–63.

3. G. Barequet and S. Har-Peled, Efficiently approximating the minimum-volume
bounding box of a point set in three dimensions, J. Algorithms, 38 (2001), 91–109.

4. T. M. Chan, Approximating the diameter, width, smallest enclosing cylinder and
minimum-width annulus, Internat. J. Comput. Geom. Appl., 12 (2002), 67–85.

5. T. M. Chan, Faster core-set constructions and data stream algorithms in fixed
dimensions, Proc. 20th Annu. ACM Sympos. Comput. Geom., 2004, pp. 152–159.

6. S. Har-Peled, Clustering motion, Discrete Comput. Geom., 31 (2004), 545–565.
7. S. Har-Peled, No coreset, no cry, Proc. 24th Conf. Found. Soft. Tech. Theoret.

Comput. Sci., 2004.
8. S. Har-Peled and Y. Wang, Shape fitting with outliers, SIAM J. Comput.,

33 (2004), 269–285.

Improved Bounds on the Union Complexity of

Fat Objects

Mark de Berg�

Department of Computing Science, TU Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, the Netherlands

mdberg@win.tue.nl.

Abstract. We introduce a new class of fat, not necessarily convex or
polygonal, objects in the plane, namely locally γ-fat objects. We prove
that the union complexity of any set of n such objects is O(λs+2(n) log2 n).
This improves the best known bound, and extends it to a more general
class of objects.

1 Introduction

The running time of geometric algorithms and the amount of storage used by
geometric data structures often depend on the combinatorial complexity of cer-
tain geometric structures. Hence, the study of the combinatorial complexity of
geometric structures is an important and active area within computational geom-
etry. In this paper we study the combinatorial complexity of the union of a set F
of n objects in the plane. This is relevant because there are many geometric algo-
rithms and data structures whose performance depends on the union complexity
of planar objects. Examples are algorithms for hidden-surface removal [12], data
structures for ray shooting [3,13], algorithms for computing depth orders [13],
and algorithms for motion planning [21,14].

In the worst case the complexity of the union of n constant-complexity objects
in the plane can be as high as Θ(n2), a bound which is for example achieved
by a set of n long and thin rectangles arranged in a grid-like pattern. In many
applications, however, one would expect that the objects have some favorable
properties and that the union complexity is much lower. One such property that
has received considerable attention is fatness. Intuitively, an object is called fat if
it is not arbitrarily long and skinny—see Section 2 for precise definitions. There
are many algorithmic results for fat objects, several of which depend on the
union complexity of fat objects in the plane. Hence, the union complexity of fat
objects in the plane has been studied extensively.

One of the first results on the union complexity of fat objects was for fat
wedges, that is, wedges whose interior angle is bounded from below by a con-
stant. For this case it has been shown [1,9] that the union complexity is O(n).

� MdB was supported by the Netherlands’ Organisation for Scientific Research (NWO)
under project no. 639.023.301.

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 116–127, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Improved Bounds on the Union Complexity of Fat Objects 117

Matoušek et al. [16] considered the case of fat triangles. A triangle is called δ-fat
if all of its angles are at least δ for some fixed constant δ. Matoušek et al. proved
that the union complexity of n such triangles is O((1/δ3)n log logn). Later this
bound was improved by Pach and Tardos [18] to O((1/δ log(1/δ))n log logn).

Several people have worked on extending these results to more general types
of fat objects, in particular to curved and/or non-convex objects [8,11,10,15] and
to higher dimensions [2,17]. The most general result for planar objects to date is
by Efrat [8], who considered so-called (α, β)-covered objects—see the next section
for a definition. Efrat proved that the union complexity of n constant-complexity
(α, β)-covered objects is bounded by O(λs+2(n) log2 n log log n), where s is the
maximum number of intersections between any pair of object boundaries and
λt(n) denotes the maximum length of an (n, t) Davenport-Schinzel sequence;
λt(n) is near-linear for any constant t [19].

We introduce in Section 2 a new class of fat objects in the plane, namely
locally γ-fat objects. This class is more general than the class of (α, β)-covered
objects. We prove that the union complexity of n constant-complexity locally
γ-fat objects is O(λs+2(n) log2 n), thus not only generalizing the result of Efrat
but also slightly improving the bound. Our proof uses a generalization of the
so-called Density Lemma [3] to locally γ-fat objects. This powerful tool, which
is interesting in its own right, allows us to reduce the problem of bounding
the union complexity of locally γ-fat objects to the problem of bounding the
union complexity of so-called consistently oriented fat quasi-triangles; these are
almost triangular fat shapes with two edges in a fixed orientation. We then give
a simple proof that the union complexity of such shapes is O(λs+2(n) log2 n).
An interesting feature of our proof is that, unlike Efrat’s proof, it does not rely
on the result of Matoušek et al. [16] for fat triangles.

2 Preliminaries

Let F := {o1, . . . , on} be a set of objects in the plane. From now on, we assume
that each object is compact, that is, bounded and closed. We also assume that
each object has constant complexity; in particular we assume that the boundary
of each object consists of O(1) algebraic curves of constant maximum degree.
Hence, any two object boundaries intersect at most s times for some constant s.

Fatness and low density. We first define (α, β)-covered objects, as introduced by
Efrat [8]. Fig. 1(i) illustrates the definition.

Definition 1 A planar object o is called (α, β)-covered if for every point p on
the boundary of o one can place a triangle tp with the following properties:

(i) tp is contained inside o,
(ii) p is a vertex of tp,
(iii) tp is an α-fat triangle, that is, all its angles are at least α,
(iv) the length of each edge of tp is at least β · diam(o), where diam(o) is the

diameter of o.

118 Mark de Berg

(i) (ii) (iii)

p
tp

Fig. 1. Illustration of the various definitions.

Next we introduce a new characterization of fatness. Let area(o) denote the area
of an object o. Consider an object o and a disk D whose center lies inside o. If
o is non-convex D ∩ o may consist of several connected components. We define
D & o to be the connected component that contains the center of D.

Definition 2 Let o be an object in the plane. We say that o is locally γ-fat if,
for any disk D whose center lies in o and that does not fully contain o in its
interior, we have area(D & o) ≥ γ · area(D).

This definition is illustrated in Fig. 1(ii). It is similar to the fatness definition
introduced by Van der Stappen et al. [20,21], except that we use area(D & o)
instead of area(D ∩ o). Thus for convex objects, where D & o = D ∩ o, the
definitions are identical.

Lemma 3 Any (α, β)-covered object o is locally γ-fat for some γ = Ω(αβ2).

Proof. Let D be a disk centered at a point p ∈ o and not containing o in its
interior.

First assume p ∈ ∂o. Then there is an α-fat triangle tp ⊂ o with p as a vertex
all of whose edges have length at least β · diam(o). Clearly D ∩ tp ⊂ D & o. If
tp is not fully contained in D then area(D ∩ tp) = Ω(α · area(D)) because all
angles of tp are at least α. If, on the other hand, tp ⊂ D then

area(D&o) ≥ area(D∩tp) = area(tp) = Ω(α·(β ·diam(o))2) = Ω(αβ2 ·area(D)),

where the last equality follows because D does not fully contain o.
Now assume p lies in the interior of o. Let p′ be a point on ∂o with mini-

mum distance to p. If dist(p, p′) ≥ radius(D)/2 then area(D & o) ≥ area(D)/4.
Otherwise, let D′ ⊂ D be the disk with center p′ and radius radius(D)/2. Now
D′ & o ⊂ D & o, and since p′ ∈ ∂o we have

area(D & o) ≥ area(D′ & o) = Ω(αβ2 · area(D′)) = Ω(αβ2 · area(D)).

�

The reverse is not true: it is not possible to find constants α, β that depend
only on γ such that any locally γ-fat object is an (α, β)-covered object. This can
be seen in Fig. 1(ii): it is impossible to place a triangle with the point p as a

Improved Bounds on the Union Complexity of Fat Objects 119

vertex that is relatively large and stays inside the object. (Note that the part of
the object sticking out in the top right can be made arbitrarily small without
significantly changing the local fatness.)

Besides the concept of fatness, we also need the concept of density [4]. For
an object o in R2, we use size(o) to denote the radius of the smallest enclosing
disk of o. Note that a locally γ-fat object o in R2 has area Ω(γ · size(o)2).

Definition 4 The density of a set S of objects in R2 is defined as the smallest
number λ such that the following holds: any disk D ⊂ R2 is intersected by at
most λ objects o ∈ S such that size(o) ≥ size(D).

Notation. We end with some more notation and terminology. We use ∂o to
denote the boundary of an object o and we use U(S) to denote the union of a
set S of objects. The union boundary ∂U(S) of a set S of planar objects consists
of maximally connected portions of the boundaries of the objects in S. We call
these portions the edges of U(S); the endpoints of these edges are called the
corners of U(S).1 The (combinatorial) complexity of U(S) is defined as the total
number of edges and corners of U(S). For example, the union in Fig. 1(iii) has
complexity 12, as it has six corners and six edges. Notice that, up to an additive
term equal to the number of objects in S, the complexity of U(S) is linear in the
number of corners. Hence, it suffices to bound that number.

3 The Density Lemma for Locally γ-Fat Objects

In this section we prove a generalization of the Density Lemma [3] to non-convex
fat objects. This lemma will enable us to bound the complexity of the union of
two unions of fat objects. Recall that by an edge of the union of a set of objects we
mean a maximally connected portion of the union boundary that is contributed
by a single object.

Lemma 5 [Density Lemma] Let F be a set of n locally γ-fat objects, and let
E(F) denote the set of edges of the union U(F). Then the density of E(F) is
O(1/γ).

Proof. We proceed in much the same way as in [3]. Let D be a disk, and assume
without loss of generality that size(D) = 1. Let ED ⊂ E(F) be the set of edges
e ∈ E(F) that intersect D and for which size(e) ≥ 1. We have to show that
|ED| = O(1/γ).

We partition the bounding square of D into four unit squares. Together these
four squares—the four squares drawn with thick lines in Fig. 2(i)—cover D. Let

1 The boundaries of the objects may contain vertices (breakpoints between adjacent
boundary segments or arcs) as well. Such vertices may also show up on the union
boundary. These are not corners in our definition and, hence, do not contribute to
the complexity. However, their total number is bounded by the total complexity of
the objects, so counting them does not change the bounds asymptotically.

120 Mark de Berg

S1 be any one of these squares, and let ES1 ⊂ ED denote the edges intersect-
ing S1. Let S2 and Smid be squares with the same center as S1, where S2 has
edge length

√
2 and Smid has edge length (1 +

√
2)/2. Thus Smid is midway be-

tween S1 and S2. Since size(ei) ≥ 1 for any ei ∈ ES1 , such an edge ei cannot be
completely contained in the interior of S2. Since ei intersects S1 be definition, it
must therefore cross the square annulus S2 \S1. In fact, if we cover S2 \S1 using
four (partially overlapping) rectangles —Fig. 2(i) shows one of these rectangles
shaded—of size

√
2 by (

√
2 − 1)/2, then there must be one such rectangle R

crossed by ei. That is, a portion e∗i of ei connects the two longer sides of R—see
Fig. 2(ii). We shall bound the number of such edge portions e∗i for which U(F)

δi
e∗i(i) (ii)

R
�

Fig. 2. Illustration for the proof of Lemma 5.

lies locally to the right of e∗i ; the number of edges for which U(F) lies locally to
the left can be bounded similarly. Let p∗i be a point where e∗i intersects the line
� midway between the two longer sides of R, and let δi be the disk centered at
p∗i of radius (

√
2 − 1)/4. Let object(ei) be the object of which ei is a boundary

piece. Because ei is locally γ-fat, we have

area(δi & object(ei)) ≥ γ · π((
√

2− 1)/4)2.

Now consider another edge ej ∈ ES1 , with a portion e∗j crossing R and where
U(F) lies locally to the right, and consider a disk δj of radius (

√
2−1)/4 centered

at a point of e∗j ∩�. Then area(δj &object(ej)) can be bounded as above. Because
e∗i and e∗j are portions of union edges, they do not intersect any other object
(except possibly at their endpoints). It follows that

(δi & object(ei)) ∩ (δj & object(ej)) = ∅.

Since the area of R is 1 − 1
2

√
2, the number of edge portions we have to count

for R for which U(F) lies locally to the right is at most

1− 1
2

√
2

γ · π((
√

2− 1)/4)2
= O(1/γ).

The lemma follows. �

The Density Lemma allows us to bound the complexity of the combined union
of sets of fat objects.

Improved Bounds on the Union Complexity of Fat Objects 121

Lemma 6 [Merging Lemma] Let S1 and S2 be sets of constant-complexity
objects in the plane such that all objects in S1 are locally γ1-fat and all objects
in S2 are locally γ2-fat. Let U1 and U2 denote the complexity of the union of S1

and S2, respectively. Then the complexity of U(S1 ∪ S2) is O(U1/γ2 + U2/γ1).

Proof. This was already stated for convex objects [3] and the same proof ap-
plies if we replace the Density Lemma for convex objects with the more general
version above. In short: one can charge any intersection point of the two union
boundaries to the smaller of the two involved edges. By the Density Lemma,
any edge of U(S1) is charged O(1/γ2) times and any edge of U(S2) is charged
O(1/γ1) times. �

4 From Locally γ-Fat Objects to Quasi-Triangles

As in most papers on the union complexity of fat objects, we wish to replace our
locally γ-fat objects by simpler ‘canonical’ objects. Let D be a set of 40/γ equally
spaced orientations, where we assume for simplicity that 40/γ is an integer. Thus
the angle between two consecutive orientations in D is γ∗ := γπ/20. We call a
direction in D a standard direction. A quasi-triangle is an object Δ bounded by
two straight edges and one smooth Jordan arc without inflection points.

Definition 7 A γ-standard quasi-triangle is a quasi triangle Δ such that

(a) its two edges have standard directions, and their angle inside Δ is between
π − 7γ∗ and π − γ∗;

(b) the tangent line at any point of the Jordan arc makes an angle of at least
γ∗ with the edges of Δ, and the tangent direction along σ does not vary by
more than γ∗.

We say that two γ-standard quasi-triangles are consistently oriented if their
edges have the same standard orientations.

Fig. 3 illustrates this definition. Observe that property (b) implies that any line
parallel to one of the two edges of Δ intersects its Jordan arc at most once.
Also note that because of property (a) any set of γ-standard quasi-triangles can
be partitioned into O(1/γ) subsets of consistently oriented γ-standard quasi-
triangles. The following lemma follows from the fact that the angles at each

γ∗

Fig. 3. The standard directions and four consistently oriented γ-standard quasi-
triangles.

122 Mark de Berg

vertex of a γ-standard quasi-triangle are all at least γ∗—this follows from (b)—
and that the tangent direction along the arc cannot vary too much.

Lemma 8 A γ-standard quasi-triangle is locally γ′-fat for γ′ = Ω(γ).

We now set out to reduce the problem of bounding the union of locally γ-fat
objects to the problem of bounding the union of γ-standard quasi-triangles. We
do this by covering the boundary of each locally γ-fat object using γ-standard
quasi-triangles, as follows.

Let o be a locally γ-fat object. We partition ∂o into a number of subarcs by
putting breakpoints on ∂o in two steps. In the first step we put breakpoints at
the following three types of points:

(i) every non-smooth point of ∂o;
(ii) every inflection point of ∂o;
(iii) every smooth point where the tangent line has a standard direction.

Let B1 be the resulting set of breakpoints. Because o has constant complexity
and there are O(1/γ) standard directions, |B1| = O(1/γ). In the second step we
further refine ∂o by putting breakpoints as follows.

(iv) Put a breakpoint at each point p ∈ ∂o for which there is a breakpoint
q ∈ B1 such that the line segment pq has a standard direction and pq ⊂ o.

Let B2 denote the resulting set of breakpoints. We have |B2| = |B1| ·O(1/γ) =
O(1/γ2).

Next, we define a γ-standard quasi-triangle Δ(σ) for each of the O(1/γ2)
subarcs σ induced by the set of breakpoints. Let p and q be the endpoints of a
subarc σ. Assume without loss of generality that pq is parallel to the x-axis and
that σ bounds o from above. Let �p and �q be the vertical lines through p and q,
respectively. Rotate �p and �q in counterclockwise direction around p resp. q
until they have a standard direction. The γ-standard quasi-triangle Δ(σ) is now
formed by σ and two straight edges pr and qr, where r is a point in between �p
and �q as specified in the next lemma and illustrated in Fig. 4.

p q

σ

r

�p �q
�1�2

2γ∗ 2γ∗

Fig. 4. The γ-standard quasi-triangle Δ(σ) defined for σ.

Improved Bounds on the Union Complexity of Fat Objects 123

Lemma 9 There is a point r below σ and between �p and �q such that Δ(σ) is
a γ-standard quasi-triangle.

Proof. Draw a line �1 through p whose angle with σ at the point p is 2γ∗. Rotate
�1 clockwise until it reaches a standard direction. Similarly, draw a line �2 through
q whose angle with σ at the point q is 2γ∗, and rotate �2 counterclockwise until
it reaches a standard direction. Let r be the intersection point of �1 and �2—see
Fig. 4. Clearly pr and qr have standard directions and r lies below σ and between
�p and �q. Moreover, the angles that pr and qr make with σ are at least 2γ∗ and
at most 3γ∗. Since the tangent direction along σ does not vary by more than γ∗,
this implies that the angle between pr and qr is between π − 7γ∗ and π − γ∗,
which establishes property (a).

Property (b) follows because the angles that pr and qr make with σ at p
resp. q are at least 2γ∗ and the tangent direction along σ does not vary by more
than γ∗. �

Lemma 10 The γ-standard quasi-triangle Δ(σ) defined above is contained in o.

Proof. Let x be the lowest point on �p such that px ⊂ o. Clearly x ∈ ∂o. (Note
that it may happen that x = p.) Imagine sweeping a segment s from left to
right through o, as follows. Start with s = px. Move s to the right, keeping it
parallel to �p and keeping its endpoints on ∂o, until s reaches �q. Note that the
upper endpoint of s will move along σ. The lower endpoint of s cannot encounter
a breakpoint from B1 during the sweep, otherwise this breakpoint would have
generated a type (iv) breakpoint on σ and σ would not be a subarc. Let σ′ be the
part of ∂o followed by the lower endpoint of s—see Fig. 5(i). Because there is no
breakpoint on σ′, we know that σ′ does not contain a point where the tangent
line has a standard direction. Hence, σ′ can cross both pr and qr at most once.

If σ′ crosses neither pr nor qr, then Δ(σ) ⊂ o and we are done, so assume
for a contradiction that σ′ crosses pr and qr. Take a line through p whose angle
with pq is γ∗ and a line through p whose angle with pq is γ∗, such that their
intersection point r′ lies above σ, as in Fig. 5(ii). Consider the 6-gon defined by
the following six points: p, r′, q, the intersection of the extension of pr with �q,
r, and the intersection of the extension of qr with �p—see Fig. 5. Then both σ
and σ′ are contained in this 6-gon. Let w be the distance between �p and �q.
Using that angle(pq, pr′) = angle(pq, qr′) = γ∗, and that angle(pq, pr) ≤ 4γ∗

and angle(pq, qr) ≤ 4γ∗, one can show that the area of the 6-gon is at most
(9/2)γ∗w2. Now let D be the disk centered at a point of σ and touching �p and �q.
Because o is locally γ-fat, we have D & o ≥ γπ(w cos(γ∗)/2)2 ≥ 0.24γπw2. On
the other hand, D & o is contained in the area enclosed by σ and σ′. But this
area is at most (9/2)γ∗w2, which is a contradiction since γ∗ = γπ/20.

Now we can reduce the problem of bounding the union complexity of a set of
locally γ-fat objects to the problem of bounding the union complexity of a set
of locally fat γ-standard quasi-triangles.

124 Mark de Berg

p q

r

�p �q

σ′

σ

D

r′

(i)

p q

σ

r

�p �q

s

σ′

(ii)

Fig. 5. Illustrations for the proof of Lemma 5.

Proposition 11 Let uγ(n) denote the maximum complexity of the union of a
collection of n consistently oriented γ-standard quasi-triangles. Then the max-
imum union complexity of any set F of n locally γ-fat objects is O((1/γ2) ·
uγ(n/γ2)).

Proof. Replace each o ∈ F by a collection T (o) of quasi-triangles as described
above. Since we have ∂o ⊂ ∂U(T (o)) and U(T (o)) ⊂ o for each object o, the
complexity of U(F) is no more than the complexity of U({T (o) : o ∈ F}).

This gives us a set T of O(n/γ2) γ-standard quasi-triangles. We partition T
into O(1/γ) subsets Ti of consistently oriented quasi-triangles. Set ni := |Ti|.
Every corner of U(F) will show up either as (i) a corner of U(Ti) for some
i, or (ii) as a corner of U(Ti ∪ Tj) for some pair i, j. The number of corners of
type (i) is

∑
i uγ(ni) = O(uγ(n/γ2)). To bound the corners of type (ii) we use the

Merging Lemma and Lemma 8, which imply that the complexity of U(Ti∪Tj) is
O((uγ(ni)+uγ(nj))/γ). Hence, the total number of type (ii) corners is bounded
by∑

i

∑
j O((uγ(ni) + uγ(nj))/γ) =

∑
i{O(1/γ) ·O(uγ(ni)/γ) + O(uγ(n/γ2)/γ)}

= O((1/γ2) · uγ(n/γ2))

�

5 The Union Complexity of γ-Standard Quasi-Triangles

Let T be a set of consistently oriented γ-standard quasi-triangles. Without loss of
generality we assume each Δ ∈ T has one edge parallel to the x-axis, and one edge
that makes an angle α with the positive x-axis. Recall that π−7γ∗ ≤ α ≤ π−γ∗.
Set m := |T |.

Draw a horizontal line through the horizontal edge and the highest point of
every Δ ∈ T . This partitions the plane into at most 2m + 1 horizontal strips.
Let T be a balanced binary tree whose leaves correspond to these strips in

Improved Bounds on the Union Complexity of Fat Objects 125

Δ fΔ(p)

p
�

Fig. 6. Illustration for the proof of Lemma 12. For clarity the two straight edges
of the quasi triangles are drawn at a right angle (as could be achieved by a
suitable transformation) although in fact the angle is almost π.

order. We associate each node ν in T with the horizontal strip strip(ν) that is
the union of the strips corresponding to the leaves in the subtree rooted at ν.
Finally, we associate with each node ν a subset T (ν) ⊂ T , as follows: Δ ∈ T (ν)
if Δ completely crosses the strip of ν but does not completely cross the strip
of the parent of ν. (This is equivalent to constructing a segment tree [5] on
the projections of the Δ’s onto the y-axis, and defining T (ν) to be the quasi-
triangles whose projections are stored in the canonical subset of ν.) We clip each
Δ ∈ T (ν) to strip(ν), so that T (ν) will only contain the parts of these quasi-
triangles lying within strip(ν). Note that if N(Δ) is the collection of nodes to
which a quasi-triangle Δ is associated, then the clipped pieces of Δ within the
strips of the nodes ν ∈ N(Δ) together form Δ. So by assigning Δ to the nodes
in N(Δ) and clipping it, we effectively cut Δ into |N(Δ)| pieces. Since any Δ is
associated to at most two nodes at every level of T—this is a standard property
of segment-tree like structures [5]—Δ is cut into O(logm) pieces. Hence, if we
set mν := |T (ν)| then

∑
ν∈T mν = O(m logm).

Lemma 12 The complexity of U(T (ν)) is O(λs+2(mν)).

Proof. Let � be the line bounding strip(ν) from below. For each Δ ∈ T (ν), we
define a function fΔ : �→ R as follows. Let l(p) be the line through the point p
that makes an angle α with the positive x-axis. Then

fΔ(p) := the length of l(p) ∩Δ.

Now the boundary of U(T (ν)) is the upper envelope of the set of functions
{fΔ(p) : Δ ∈ T (ν)}—see Fig. 6—which has complexity O(λs+2(mν)) [19], where
s is the maximum number of intersections between two object boundaries. �

Next we consider the union of all (clipped) quasi-triangles associated to nodes
at a fixed depth in T . Let N(k) denote the nodes of T at depth k, and define
T (k) :=

⋃
ν∈N(k) T (ν).

Lemma 13 The complexity of U(T (k)) is O(λs+2(m)).

Proof. The strips of the nodes at a fixed level in the tree are disjoint. Hence, the
complexity of U(T (k)) is bounded by the sum of the complexities at each of the

126 Mark de Berg

nodes ν ∈ N(k), which is
∑

ν∈N(k) O(λs+2(mν)) by the previous lemma. Since
any quasi-triangle can be associated with at most two nodes at any fixed level,
we have

∑
ν∈N(k) mν ≤ 2m. The lemma follows. �

To combine the unions of different levels of the tree we use the following lemma.

Lemma 14 The set E(k) of boundary edges of U(T (k)) has density O(1/γ2).

Proof. For ν ∈ N(k), let E(ν) denote the set of boundary edges of U(T (ν)).
Since the strips of the nodes in N(k) are disjoint, we have E(k) = ∪ν∈N(k)E(ν).

First we note that, even though the quasi-triangles in T (ν) are not necessarily
fat because they are clipped, the set E(ν) still has density O(1/γ). Indeed, the
edges of the union of the unclipped quasi-triangles have density O(1/γ) by the
Density Lemma; clipping the union to strip(ν) can only remove or shorten edges,
which does not increase the density.

Now consider an edge e ∈ E(ν) and let w be the width of strip(ν). We
observe that size(e) = O(w/γ), because at any point p ∈ e the tangent to e
makes an angle Ω(γ) with the boundary lines of the strip. Let D be a disk and
assume without loss of generality that D has unit radius. We must argue that
D is intersected by O(1/γ2) edges e ∈ E(k) with size(e) ≥ 1. By the previous
observation, we only have to consider edges lying in strips of width Ω(γ). Clearly
D can be intersected by only O(1/γ) such strips, because the strips in N(k) are
disjoint. Since within each strip the density of the boundary edges is O(1/γ),
the overall density is O(1/γ2). �
We can now prove a bound on the total union complexity of T .

Lemma 15 The complexity of U(T) is O((λs+2(m) log2 m)/γ2).

Proof. Consider a corner v of U(T) that is an intersection point of the boundaries
of two quasi-trianglesΔ1 and Δ2. Let ν1 be the node such that Δ1 is associated to
ν1 and the clipped portion of Δ1 within strip(ν1) contains v. Define ν2 similarly
for Δ2. Let k1 and k2 be the depths of ν1 and ν2, respectively. If k1 = k2 then the
corner v is already accounted for in the bound O(λs+2(m)) on the complexity
of U(T (k1)). To account for the corners v where k1 	= k2 we must consider the
unions U(T (k1)∪T (k2)) at different depths k1 and k2. Since the sets of boundary
edges of U(T (k1)) and U(T (k2)) have density O(1/γ2) by the previous lemma,
we can use Lemma 13 and argue as in the proof of the Merging Lemma to bound
the complexity of U(T (k1)∪ T (k2)) by O(λs+2(m)/γ2). Because the depth of T
is O(logm) we now have∑

k1

∑
k2

O((λs+2(m))/γ2) = O((λs+2(m) log2 m)/γ2),

which completes the proof. �
Plugging this result into Proposition 11 we get our main theorem.

Theorem 16 The union complexity of any set F of n constant-complexity lo-
cally γ-fat objects is O((1/γ6) · λs+2(n) log2 n).

Improved Bounds on the Union Complexity of Fat Objects 127

References

1. H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. Naher, S. Schirra and C.
Uhrig. Approximate motion planning and the complexity of the boundary of the
union of simple geometric figures. Algorithmica 8:391–406 (1992).

2. B. Aronov, A. Efrat, V. Koltun and M. Sharir. On the union of κ-curved objects
in three and four dimensions. In Proc. 20th ACM Symp. Comput. Geom., pages
383–390, 2004.

3. M. de Berg. Vertical ray shooting for fat objects. In Proc. 21st ACM Symp. Comput.
Geom., pages 288–295, 2005.

4. M. de Berg, M. Katz, F. van der Stappen, and J. Vleugels. Realistic input models
for geometric algorithms. Algorithmica 34:81–97 (2002).

5. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications (2nd edition). Springer-Verlag, 2000.

6. C.A. Duncan. Balanced Aspect Ratio Trees. Ph.D. Thesis, John Hopkins University,
1999.

7. C.A. Duncan, M.T. Goodrich, S.G. Kobourov, Balanced aspect ratio trees: Com-
bining the advantages of k-d trees and octrees, In Proc. 10th Ann. ACM-SIAM
Sympos. Discrete Algorithms, pages 300–309, 1999.

8. A. Efrat. The complexity of the union of (α, β)-covered objects. SIAM J. Comput.
34:775–787 (2005).

9. A. Efrat, G. Rote and M. Sharir. On the union of fat wedges and separating a
collection of segments by a line. Comput. Geom. Theory Appl. 3: 277–288 (1993).

10. A. Efrat and M. Sharir. The complexity of the union of fat objects in the plane.
In Proc. 13th ACM Symp. Comput. Geom. pages 104–112, 1997.

11. A. Efrat and M. Katz. On the union of α-curved objects. In Proc. 14th ACM Symp.
Comput. Geom., pages 206–213, 1998.

12. M.J. Katz, M. Overmars, and M. Sharir. Efficient output sensitive hidden surface
removal for objects with small union size. Comput. Geom. Theory Appl. 2:223–234
(1992).

13. M.J. Katz. 3-D vertical ray shooting and 2-D point enclosure, range searching, and
arc shooting amidst convex fat objects. Comput. Geom. Theory Appl. 8:299–316
(1998).

14. K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and
collision-free translational motion amidst polygonal obstacles in the plane. Discr.
Comput. Geom. 1:59–71 (1986).

15. M. van Kreveld. On fat partitioning, fat covering, and the union size of polygons.
Comput. Geom. Theory Appl. 9:197–210 (1998).

16. J. Matoušek, J. Pach, M. Sharir, S. Sifrony, and E. Welzl. Fat triangles determine
linearly many holes. SIAM J. Comput. 23:154-169 (1994).

17. J. Pach, I. Safruti and M. Sharir. The union of congruent cubes in three dimensions.
Discr. Comput. Geom. 30:133–160 (2003).

18. J. Pach and G. Tardos. On the boundary complexity of the union of fat triangles.
SIAM J. Comput. 31: 1745-1760 (2002).

19. M. Sharir and P.K. Agarwal. Davenport-Schinzel sequences and their geometric
applications. Cambridge University Press, 1995.

20. A.F. van der Stappen. Motion planning amidst fat obstacles. Ph.D. thesis, Utrecht
University, Utrecht, the Netherlands, 1994.

21. A.F. van der Stappen, D. Halperin, and M.H. Overmars. The complexity of the
free space for a robot moving amidst fat obstacles. Comput. Geom. Theory Appl.
3:353–373, 1993.

On the Bisimulation Congruence in χ-Calculus�

(Extended Abstract)

Taolue Chen1,2��, Tingting Han2, and Jian Lu2

1 CWI, Department of Software Engineering,
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Taolue.Chen@cwi.nl
2 State Key Laboratory of Novel Software Technology,

Nanjing University, Nanjing, Jiangsu, P.R.China, 210093

Abstract. In this paper, we study weak bisimulation congruences for
the χ-calculus, a symmetric variant of the π-calculus. We distinguish two
styles of such bisimulation definitions, i.e. “open” and “closed” bisimu-
lation, the difference between which lies in that in open style the equiva-
lence is closed under context in every bisimulation step whereas in closed
style the equivalence is closed under context only at the very beginning.
As a result, we show that both in labelled and barbed congruence, the
open and closed style definitions coincide. Thus all bisimulation congru-
ences collapse into two equivalences, that is, the well-known open con-
gruence and open barbed congruence, which are the same in the strong
case, while in the weak case their difference can be reflected by one ax-
iom. The results of this paper close some conjectures in the literatures
and shed light on the algebraic theory of a large class of mobile process
calculi.

1 Introduction

Over the last decade, various calculi of mobile processes, notably the π-calculus
[11], have been the focus of research in concurrency theory. Since 1997, several
publications have focused on a class of new calculi of mobile process. These
models include χ-calculus [5] due to Fu, update calculus [13] and fusion calculus
[14] due to Parrow and Victor with its variants, such as explicit fusion [8], due
to Gardner and Wischik. Roughly speaking, in a uniform terminology they are
respectively χ-calculus, asymmetric χ-calculus and polyadic χ-calculus.

In the research of algebraic theory for mobile process, bisimulation equiv-
alence is the standard paradigm for behavioral comparison. Comparing to the
traditional process calculi, e.g. CCS [10], for mobile processes, there are often

� This work is partially supported by NNSFC (60233010, 60273034, 60403014) and
973 Program of China (2002CB312002).

�� Corresponding author. The author is partially supported by the Dutch BSIK/
BRICKS Project (Basic Research in Informatics for Creating the Knowledge So-
ciety).

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 128–139, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Bisimulation Congruence in χ-Calculus 129

many natural definitions of bisimilarity, which makes the theory much more in-
volved. For example, in the π-calculus, the most well-known of them include
late/early bisimulation [11], open bisimulation [15], barbed bisimulation [12],
etc. It is widely recognized that a bisimulation equivalence is most useful when
it is a congruence, i.e. is preserved by the syntactic constructions of the calcu-
lus. Unfortunately, in mobile process calculi, most of bisimulation equivalences
are not congruences themselves! This gives rise to the problem on how to refine
the bisimulation definition and thus obtain a congruence. It is well-known that
congruence relations on mobile processes should be closed under substitution on
names, which gives rise to a choice of whether the requirement of closure under
substitution is placed on the first step of a bisimulation or on each step of the
bisimulation. For example, open equivalence [15] is closed under substitution in
each bisimulation step, while early, late [11] and barbed equivalences [12] are
closed under substitution only in the first step of bisimulation. This distinction
makes open bisimulation strictly stronger than the other three (please note that
this is only the case in the π-calculus, as the results of this paper will suggest,
in the χ-calculus, the situation is quite different).

In the light of the above discussion, we argue that “open” is indeed a general
definition style while it is not only a single or ad hoc definition. Let us generalize
the above mentioned “substitution” to a broader notion of context. Remarkably,
there are at least two reasonable ways of ensuring the congruence property:

– Either take the largest congruence that is a bisimulation; this is the “re-
duction based” equivalence chosen for the ν-calculus in [9] and Abadi and
Fournet’s work, e.g. [1]. In this paper, we will call it “open” style, following
Sangiorgi [15]. This models the situation where environments change during
execution (the norm in distributed computation).

– Or take the largest congruence included in the bisimulation; this is the two-
stage definition traditionally chosen for CCS and the π-calculus; for symme-
try, in this paper, we will call it “closed” style. This models the situation
where a sub-program’s context is fixed at compile time. They are generally
just called “congruence” in the literature on π-calculus, e.g. [11].

We also can study the bisimulation relations in mobile process calculi from
another perspective, that is, we can distinguish the labelled and the barbed
style. Since we believe this distinction is much more familiar to the readers,
we will not explain it further. To summarize, in our opinion, there are actually
four key ways to define behavioral equivalences in mobile process calculi: de-
pending on whether the relation is closed under initial contexts (“closed” style)
or under subsequently-changing contexts as well (reduction-closed congruence,
open style); and orthogonally whether we just observe the channels over which
messages are sent (barbed style) or also record the message and the resulting
state (labelled style). Clearly, the combinations give rise to (at least) four sen-
sible bisimulation equivalences. Three of them are familiar in the community
and have been mentioned above. The remaining one, that is, the combination
of “open” and “barbed”, is open barbed bisimulation, which is also extensively
studied by Sangiorgi and Walker [16] and the first author in [2] in recent days.

130 Taolue Chen, Tingting Han, and Jian Lu

So far, most of the bisimulation congruences for χ-calculus, notably [6], are
defined in the open style, while in the research on mobile process calculi, the
closed style definitions seem to be more standard. In our opinion, this is not very
ideal for our understanding of the χ-calculus, the representative of a large class
of mobile process calculi. Under such a situation, one of the contributions of this
paper is to show how the four standard definitions of bisimulation congruence,
familiar from the π-calculus, can be applied to the χ-calculus. Based on it, we
study the relationships of these bisimulation equivalences. Intuitively, one might
expect the closed and open congruences to generate the same relation, since one
could presumably write an initial environment sophisticated enough to model a
subsequently-changing environment. Unfortunately, this result does not hold for
the (synchronous) π-calculus. Interestingly, if we restrict to the asynchronous
π-calculus, the analogous results hold! See Fournet and Gonthier’s work [4] for
more details and we will discuss it further in Section 5. Now, a natural question
is: What’s the situation in the χ-calculus? The main contribution of this paper is
to provide a systematic investigation on this. We compare the open and closed
style bisimulations in the setting of χ-calculus, and study both labelled and
barbed versions. Moreover, we focus on the weak version of bisimulation, since
it is much more general and difficult. Our results show that for both labelled
and barbed bisimulation, the closed and open style definitions coincide. This is
mainly, in our point of view, due to the fact that in χ-calculus, we can simulate
the notion of substitution through the parallel operator. It is worth pointing
out that Fu says ([6], pp. 225): “Our intuition strongly suggests that the barbed
bisimilarity and the barbed equivalence, which Parrow and Victor have studied,
coincide in the absence of the mismatch operator. But so far we have not been
able to formally prove this conjecture.” One of the results in this paper confirms
Fu’s conjecture (see Theorem 2 in Section 4), thus we close this open problem.
Moreover, our results also support Fu, Parrow, Victor’s general arguments that
in χ-like process algebra, open bisimulation is more natural.

We note that in [18] Wischik and Gardner have performed closely related re-
search. However, modulo the differences on the underlying process calculi, there
are some dramatic differences: (1) We discuss the weak case of bisimulation, while
[18] only considers the strong case. They claim that weak bisimulation congru-
ences have been studied by Fu for the χ-calculus. However, as we have pointed
out, this is not the case, since Fu only considers the “open” style relations. Under
such a situation, our results can be regarded as the weak counterpart of [18].
Moreover, [18] mentions that “An interesting open problem is to explore such
congruences3 for the explicit fusion calculus ...”. We believe the results of the
current paper will, at least, shed light on such issues, due to the similarity of
χ-calculus and explicit fusion. (2) [18] only proves the coincide of “open” and
“closed” (they call them reduction-based and shaped) style for labelled bisimu-
lation. As for the barbed case, they apply Sangiorgi’s “stratification” technique
[17] to show the coincidence of ground equivalence and barbed equivalence, then
they show (trivially) the coincidence of open barbed congruence and open con-

3 Here, they are essentially referring to the weak open congruences studied by Fu.

On the Bisimulation Congruence in χ-Calculus 131

gruence, thus the result is obtained. This is feasible in the strong case. However,
in the weak case, as we will see, labelled bisimulation and barbed bisimulation
do not coincide at all! To deal with this, we give a direct proof for the coin-
cide of “open” and “closed” style for barbed bisimulation, which is much more
complicated.

We should point out that the bisimulation congruences studied in this pa-
per are all “partial” congruences since they are not closed under summation
(technically speaking, they are closed under context but fail under full context,
see Definition 1). Since this problem is common and Milner [10] has provided
an elegant way to deal with this, it is not a true drawback. We also note that
this is only an extended abstract, since due to space restriction, all the proofs
have to be omitted. For more detailed proofs, explanations, remarks, we refer
the interested readers to our technical report [3].

The structure of this paper is as follows: Section 2 summarizes some back-
ground material on χ-calculus. Section 3 presents the results on label style bisim-
ulation while Section 4 discusses barbed style bisimulations. This paper is con-
cluded in Section 5, where some remarks are also given.

2 Background

In this section, we will review some background material for χ-calculus, we refer
the reader to [5] [6] for more details. Let N be a set of names, ranged over by
lower case letters. N̄ , the set of conames, denotes {x̄ | x ∈ N}. The set N ∪ N̄
will be ranged over by α. Let ᾱ be a if α = ā and ā if α = a.

We will write C for the set of χ-processes defined by the following grammar:

P := 0 | αx.P | P |P | (νx)P | [x = y]P | P + P |!P

The intuitional sense is standard. The name x in (νx)P is bound. A name
is free in P if it is not bound in P . The free names, the bound names and
names of P , as well as the notations fn(P), bn(P) and n(P), are used in their
standard meanings. In the sequel we will use the functions fn(-),bn(-) and n(-)
without explanation. We will adopt the α-convention saying that a bound name
in a process can be replaced by a fresh name without changing the syntax of the
process. And in any discussion we assume that the bound names of any processes
or actions under consideration are chosen to be different from the names free in
any other entities under consideration, such as processes, actions, substitutions,
and set of names. As a convention, we often abbreviate αx.0 simply as αx.
Moreover, sometimes a communication needs to carry no parameter when the
passed names are unimportant. To model this, we will usually write α.P for
αx.P where x /∈ fn(P).

A context is a process with a hole. Now, we give a formal definition as follows.

Definition 1. Contexts are defined inductively as follows:

(i) [] is a context.
(ii) If C[] is a context then αx.C[], P |C[], C[]|P, (νx)C[], [x = y]C[] are contexts.

132 Taolue Chen, Tingting Han, and Jian Lu

Full contexts are those contexts that satisfy additionally:
(iii) If C[] is a context then P + C[], C[] + P are contexts.

The operational semantics is defined by the following labelled transition sys-
tem:

Sqn
αx.P

αx→ P
Sum

P
λ→ P ′

P + Q
λ→ P ′

Cmp0
P

γ→ P ′ bn(γ) ∩ fn(Q) = ∅
P |Q γ→ P ′|Q

Cmp1
P

y/x→ P
′

P |Q y/x→ P ′ |Q{y/x}

Cmm0
P

α(x)→ P ′ Q
ᾱy→ Q′

P |Q τ→ P ′{y/x}|Q′
Cmm1

P
α(x)→ P ′ Q

ᾱ(x)→ Q′

P |Q τ→ (νx)(P ′|Q′)

Cmm2
P

αx→ P ′ Q
ᾱy→ Q′ x 	= y

P |Q y/x→ P ′{y/x}|Q′{y/x}
Cmm3

P
αx→ P ′ Q

ᾱx→ Q′

P |Q τ→ P ′|Q′

Loc0
P

λ→ P ′ x /∈ n(λ)

(νx)P λ→ (νx)P ′
Loc1

P
αx→ P ′ x /∈ {α, ᾱ}

(νx)P
α(x)→ P ′

Loc2
P

y/x→ P ′

(νx)P τ→ P ′
Match

P
λ→ P ′

[x = x]P λ→ P ′

Rep
!P |P λ→ P ′

!P λ→ P ′

Note that we have omitted all the symmetric rules. In the above rules the
letter γ ranges over the set {α(x), αx | α ∈ N ∪ N̄ , x ∈ N}∪ {τ} of non-update
actions and the letter λ over the set {α(x), αx, y/x | α ∈ N ∪ N̄ , x ∈ N} ∪ {τ}
of all actions. The symbols α(x), αx, y/x represent restricted action, free action
and update action respectively. The x in α(x) is bounded whereas the other
names are all free. We refer to [6] for more detailed explanations.

The process P{y/x} appearing in the above structured operational semantics
is obtained by substituting y for x throughout P . The notion {y/x} is an atomic
substitution of y for x. A general substitution denoted by σ, σ′ etc, is the com-
position of atomic substitutions. The composition of zero atomic substitutions
is an empty substitution, written as {} whose effect on a process is vacuous. The
result of applying σ to P is denoted by Pσ.

As usual, let ⇒ be the reflexive and transitive closure of τ→, and τ⇒ be

the composition ⇒ τ→⇒. The relation λ̂⇒ is the same as λ⇒ if λ 	= τ and is
⇒ otherwise. A sequence of names x1, . . . , xn will be abbreviated as x̃; and
consequently (νx1) . . . (νxn)P will be abbreviated to (νx̃)P . Moreover, we will
abuse the notation a little since for a finite name set N = {x1, . . . , xn}, we will
write (νÑ)P for (νx̃)P .

In the rest of this section we state some technical lemmas whose proofs are
by simple induction on derivation.

On the Bisimulation Congruence in χ-Calculus 133

Lemma 1. The following two properties hold:

(i) If P λ→ P ′, then fn(P ′) ⊆ fn(P) ∪ bn(λ).

(ii) If P
y/x→ P ′, then x /∈ fn(P ′).

(iii) If P ⇒ P ′, then Pσ ⇒ P ′σ.

(iv) If P
y/x⇒ P ′, then P

x/y⇒ P ′{x/y}.

3 Labelled Bisimulation

In this section, we discuss bisimulation for χ-calculus in the labelled semantics.

3.1 Closed Style Definitions

First, let us see how late bisimulation in π-calculus can be adapted to χ-calculus.

Definition 2. Let R be a binary symmetric relation on C. It is called a late
bisimulation if whenever PRQ then the following properties hold:

(i) If P λ→ P ′, where λ = y/x, τ then Q′ exists such that Q λ̂⇒ Q′ with P ′RQ′.
(ii) If P

αx→ P ′ then Q′, Q′′ exist such that Q ⇒αx→ Q′′, and for every y,
Q′′{y/x} ⇒ Q′ with P ′{y/x}RQ′.

(iii) If P
α(x)→ P ′ then Q′, Q′′ exist such that Q ⇒α(x)→ Q′′, and for every y,

Q′′{y/x} ⇒ Q′ with P ′{y/x}RQ′.

Late bisimilarity ≈̇l is the largest late bisimulation.

Since we are interested in bisimulation congruence, we consider the finer
equivalence obtained as bisimilarity.

Definition 3. P and Q are late equivalent, written P ≈cl Q, if for any context
C[], C[P] ≈̇l C[Q].

In a similar way, we also can adapt early bisimulation to χ-calculus.

Definition 4. Let R be a binary symmetric relation on C. It is called an early
bisimulation if whenever PRQ then the following properties hold:

(i) If P λ→ P ′, where λ = y/x, τ then Q′ exists such that Q λ̂⇒ Q′ with P ′RQ′.
(ii) If P

αx→ P ′ then for every y, Q′, Q′′ exist such that Q ⇒αx→ Q′′, and
Q′′{y/x} ⇒ Q′ with P ′{y/x}RQ′.

(iv) If P
α(x)→ P ′ then for every y, Q′, Q′′ exist such that Q ⇒α(x)→ Q′′, and

Q′′{y/x} ⇒ Q′ with P ′{y/x}RQ′.

Early bisimilarity ≈̇e is the largest early bisimulation.
P and Q are early equivalent, written P ≈ce Q, if for any context C[],

C[P] ≈̇e C[Q].

134 Taolue Chen, Tingting Han, and Jian Lu

Definition 5. Let R be a binary symmetric relation on C. It is called a ground

bisimulation if whenever PRQ and P
λ→ P ′ then Q′ exists such that Q

λ̂⇒ Q′

with P ′RQ′.
Ground bisimilarity ≈̇g is the largest ground bisimulation.

Definition 6. P and Q are ground equivalent, written P ≈cg Q, if for any
context C[], C[P] ≈̇g C[Q].

Remark 1. In the π-calculus, late and early bisimulation, which appeared in
the original paper [11], are well-known. In order to obtain a congruence, it is
often required that bisimulation should be closed under substitutions, see the
corresponding definitions in [11]. Here, in order to reflect our understanding on
the “closed” style equivalence, we choose to present it by the notion of context.
However, this can be simplified in the sense that we provide the following Context
Lemma. Note that ground bisimulation is not common in research on π-calculus.
The main reason is that it is not even closed under the parallel operator (thus it
can not be refined to congruence only by requiring closure under substitution), so
that is of little sense. Therefore, to obtain a congruence, one has to require closure
both under substitution and the parallel operator, which actually will lead to
early congruence. Moreover, it is worth pointing out that in the setting of χ-
calculus, only requiring closure under substitution is not sufficient! We provide a
counterexample to illustrate this. Suppose P = ā.ā+ā+ā.[x = y]ā, and Q = ā.ā+
ā. It is not difficult to observe that for any substitution σ, Pσ ≈̇l Qσ. However, if
R = 〈x|y〉, then P |R ā→ [x = y]τ |R. How can Q|R match this transition? Clearly
we have only two choices, Q|R ā→ 0|〈x|y〉 or Q|R ā→ τ |〈x|y〉, but in both cases,
the bisimulation game fails. Thus, we can conclude that P |R ˙	≈l Q|R, so P 	≈l Q!
That is, if only requiring closure under substitution is required, we would obtain
an ill-defined bisimulation relation, since it would not be closed under the parallel
operator. Instead, it is interesting and surprising that to require closure under
the parallel operator is enough to give rise to a (partial) congruence, since it
turns out that the parallel operator can exert a similar effect as substitution.

Lemma 2. For any processes P and Q, substitution σ, if P ≈� Q, then
Pσ ≈� Qσ, where � ∈ {cg, cl, ce}.

Lemma 3. (Context Lemma for Labelled Bisimulation) P ≈c� Q, iff for any
process R ∈ C, P |R ≈̇� Q|R, where � ∈ {g, l, e}.

Lemma 4. ≈cl⊆≈ce⊆≈cg.

3.2 Open Style Definitions

Definition 7. Let R be a binary symmetric relation on C. It is called an open
congruence if the following two properties hold:

(i) R is a ground bisimulation.
(ii) For any context C[], (P,Q) ∈ R implies (C[P], C[Q]) ∈ R.

On the Bisimulation Congruence in χ-Calculus 135

P and Q are open congruent, notation P ≈o Q, if there exists some open
congruence R such that (P,Q) ∈ R.

We present a different form of open congruence.

Definition 8. ([6], Definition 17) Let R be a binary symmetric relation on C.
It is called an open bisimulation if whenever PRQ and Pσ

λ→ P ′, then Q′ exists

such that Qσ
λ̂⇒ Q′ and (P ′, Q′) ∈ R.

Open bisimilarity ≈open is the largest open bisimulation.

Clearly, according to Theorem 19 and Theorem 21 of [6], the above definition
(≈open) is a rephrase of open bisimulation defined in Definition 7. Precisely, it
can be regarded as a characterization of Definition 7, which will smooth the
proofs of the results presented in the next section.

3.3 Relationships

As in [6], we first establish a technical lemma about the following general prop-
erty, which will simplify the proof greatly, though it is very simple and obvious
itself.

A weak bisimulation ≈ is said to satisfy the *-property if P ⇒ P1 ≈ Q and
Q⇒ Q1 ≈ P implies P ≈ Q.

Lemma 5. ≈̇g satisfies the *-property.

Lemma 6. ≈o⊆≈cl.

The following lemma is devoted to stating that ground equivalent is not
weaker than open congruence. The main proof idea is to construct a bisimulation
relation S such that ≈cg⊆ S, and prove that S is an open congruence. To this
end, we need to construct a sophisticated context. Unfortunately, its proof is
rather long and can not be presented here because of the space restriction. For
more details, see [3].

Lemma 7. ≈cg⊆≈o.

Theorem 1. ≈cl=≈ce=≈cg=≈o.

4 Barbed Bisimulation

In this section, we turn to reduction semantics and barbed style bisimulation
whose idea lies in that two processes are regarded as equal if they can simulate
each other’s communication while maintaining the same ability to communicate
through any particular name. As in the previous section, we start from the closed
style definition, and then treat the open style one.

136 Taolue Chen, Tingting Han, and Jian Lu

Definition 9. (Barb) A process P is strongly barbed at a, notion P ↓a, if

P
α(x)→ P ′ or P

αx→ P ′ for some P ′ such that a ∈ {α, ᾱ}. P is barbed at a,
written P ⇓a, if some P ′ exists such that P ⇒ P ′ ↓a.

Definition 10. Let R be a binary symmetric relation on C. It is called a barbed
bisimulation if whenever PRQ then the following two properties hold:

– For any name a, if P ↓a, then Q ⇓a.
– If P τ→ P ′ then Q′ exists such that Q⇒ Q′ with P ′RQ′.

The barbed bisimilarity ≈̇b is the largest barbed bisimulation.

For barbed bisimilarity, we have the following properties.

Lemma 8. ≈̇b satisfies the *-property.

Lemma 9. For any processes P,Q,R, and name s /∈ fn(P,Q,R), if P |(R +
s) ≈̇b Q|(R + s), then P |R ≈̇b Q|R.

Definition 11. P and Q are barbed equivalent, written P ≈cb Q, if for any
context C[], C[P] ≈̇cb C[Q].

We also provide a Context Lemma to simplify “any context” in the above
definition.

Lemma 10. (Context Lemma for Barbed Bisimulation)

P ≈cb Q iff (νx̃)(P |R) ≈̇b (νx̃)(Q|R) for any x̃ ∈ N , process R ∈ C.

Remark 2. The context in Lemma 10 is essential. We can not only require that it
is closed by the parallel operator as in Lemma 3, because this is not discriminate
enough. The following is a counterexample. Suppose P = ax|āy and Q = ax.āy+
āy.ax. We can prove that for any process R, P |R ≈̇b Q|R (here please note that
in our semantics, ax|āy has no interaction, i.e. ax|āy 	 τ→). However, P 	≈b Q,
because when they are put the context (νx)[], we can distinguish them.

Now, we turn to the “open” style definition.

Definition 12. Let R be a binary symmetric relation on C. It is called an open
barbed congruence if the following two properties hold:

(i) R is a barbed bisimulation.
(ii) For any context C, (P,Q) ∈ R implies (C[P], C[Q]) ∈ R.

P and Q are open barbed congruent, notation P ≈ob Q, if there exists some
barbed congruence R such that (P,Q) ∈ R.

On the Bisimulation Congruence in χ-Calculus 137

Note 1. Barbed equivalence is studied in [12], and open barbed congruence here
is essentially the barbed congruence in [6]. Here for a uniform terminology, we
follow Sangiorgi and Walker [16].

To characterize open barbed congruence, we borrow an alternative definition
from [6].

Definition 13. ([6], Definition 20) Let R be a binary symmetric relation on C.
It is called an open ba-bisimulation if whenever PRQ then for any substitution
σ it holds that:

(i) If Pσ
λ→ P ′, where λ = y/x, τ, α(x) then Q′ exists such that Qσ

λ̂⇒ Q′ and
P ′RQ′.

(ii) If Pσ
αx→ P ′ then Q′ exists such that P ′RQ′ and either Qσ ⇒αx→ Q′, or

Qσ
α(z)⇒ x/z⇒ Q′ for some fresh z.

Open ba-bisimilarity, denoted ≈baopen, is the largest open ba-bisimulation.

Actually, we have the following lemma. And in the sequel, when we mention
open barbed congruence, we will use the form in Definition 13.

Lemma 11. ([6], Theorem 21 (iii)) ≈baopen=≈o.
Now, we sketch the proof of the main result of this section, that is, the

relationship of barbed equivalent and open barbed congruence. First we present
a simple result.

Lemma 12. ≈ob⊆≈cb.
The following lemma is the most important result of this paper. The main

idea of proof is similar to Lemma 7. For more details, see [3].

Lemma 13. ≈cb⊆≈ob.
Now, we have the following theorem:

Theorem 2. ≈cb=≈ob.
Naturally, this raises the following problem: does ground congruence (≈cg)

coincide with barbed equivalence (≈cb)? This question has also been studied
extensively in π-calculus and it turned out to be a very difficult problem. Please
see [2][3], among others, for more detailed discussion. Fortunately, now we can
solve this problem easily in the setting of χ-calculus. Thanks to Theorem 1 and
Theorem 2, clearly we can reduce this problem to the similar problem of open
congruence and open barbed congruence, which is much simpler. As [6] shows:

– For the strong case, the two bisimulation equivalences coincide.
– For the weak case, the differences can be characterized by the following ax-

iom, which holds for open barbed congruence while not for open congruence.

Prefix Law: α(z).(P + 〈x|z〉.Q) = α(z).(P + 〈x|z〉.Q) +αx.Q{x/z} x 	= z

Now, we can claim that we solve this problem in the χ-calculus completely: In
the strong case, barbed equivalence and late equivalence (thus early and ground
equivalence) coincide while in the weak case barbed equivalence is strictly weaker
than the other three.

138 Taolue Chen, Tingting Han, and Jian Lu

5 Conclusion

In this paper, we study the bisimilation congruences in χ-calculus. The main
contributions and results are as follows:

– We adapt the bisimulation definitions for π-calculus to χ-calculus in a natural
way. We find that in χ-calculus, the “open” and “closed” distinction common
in π-calculus disappears. Thus we close the conjecture proposed by Fu in [6].

– We show that there are essentially two different bisimulation congruences,
i.e. open congruence and open barbed congruence. In the weak case, the
difference can be characterized by one axiom. Moreover, if we only consider
the strong case, all sensible bisimulation equivalences collapse to just one.

– As a byproduct, we solve the problem of characterizing weak barbed equiva-
lent in χ-calculus. It is essentially Definition 13. Moreover, according to our
results, [6] actually gives an axiomatization for this relation.

In short, the key results of this paper can be reflected by the following diagram.

≈cl=≈ce= ≈cg⊂ ≈cb
‖ ‖
≈o⊂ ≈ob

We now present some concluding remarks.

– In this paper, we only consider χ-calculus without mismatch operator [7].
This is not a very serious disadvantage, since besides some technical details,
the main results of this paper can be adapted. Here, we would like to men-
tion Fu and Yang’s paper [7]. In their paper, open barbed congruence is
also studied, and they also mention barbed equivalence ([7], Definition 34).
However, they argue that open barbed congruence is contained in barbed
equivalence and the inclusion is strict. To support this, they invite an ex-
ample: P1 = [x 	= y]τ.(P + τ.[x 	= y]τ.(P + τ)) and P2 = [x 	= y]τ.(P + τ),
for which they “show” that they are open barbed congruent but not barbed
equivalent. In our point of view, this is definitely incorrect since P1|〈x|y〉 and
P2|〈x|y〉 are not open barbed congruent. Thus P1 and P2 are also not open
barbed congruent! Currently we are performing a similar systematic study
of χ-calculus with mismatch.

– It is worth emphasizing that the results in this paper have strong implications
to other calculi falling into the family of fusion-style mobile calculi. Since all
of these calculi share a similar communication mechanism, we believe the
results in this paper generally also hold in, among others, update-calculus,
fusion calculus, explicit fusion calculus.

– As we have said in Section 1, [4] discusses a similar problem in the setting
of asynchronous π-calculus. To prove the analogous result for weak barbed
congruences, Fournet and Gonthier actually have to use a Universal Pi-
calculus Machine for their initial environment, and they use it to simulate
the execution of a Gödelized version of a program. This leads to a very long

On the Bisimulation Congruence in χ-Calculus 139

technical proof. Our proof technique, like that of Fournet and Gonthier, also
involves creating an initial sophisticated environment. However, thanks to
the mechanism of χ-calculus, our environment is much simpler.

Acknowledgement. We are grateful to Wan Fokkink for his careful reading of
a draft of this paper and valuable comments. We also would like to thank the
anonymous referees for their excellent criticisms.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In POPL, pages 104–115, 2001.

2. T. Chen. Research on the Theory and Application of Mobile Process Calculi. Mas-
ter’s thesis, Nanjing University, Nanjing, P.R.China, 2005.

3. T. Chen, T. Han, and J. Lu. On bisimulation congruence in χ-calculus. Technical
report, CWI, Amsterdam, The Netherlands. 2005.

4. C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous calculi.
J. Log. Algebr. Program., 63:131–1739, 2005.

5. Y. Fu. A proof theoretical approach to communication. In P. Degano, R. Gorrieri,
and A. Marchetti-Spaccamela, editors, ICALP, volume 1256 of Lecture Notes in
Computer Science, pages 325–335. Springer, 1997.

6. Y. Fu. Bisimulation congruence of chi calculus. Inf. Comput., 184(1):201–226,
2003.

7. Y. Fu and Z. Yang. Understanding the mismatch combinator in chi calculus. Theor.
Comput. Sci., 290(1):779–830, 2003.

8. P. Gardner and L. Wischik. Explicit fusions. In M. Nielsen and B. Rovan, edi-
tors, MFCS, volume 1893 of Lecture Notes in Computer Science, pages 373–382.
Springer, 2000.

9. K. Honda and N. Yoshida. On reduction-based process semantics. Theor. Comput.
Sci., 151(2):437–486, 1995.

10. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
11. R. Milner, J. Parrow, and D. Walker. A calculus of mobile process, part I/II. Inf.

Comput., 100:1–77, 1992.
12. R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor, ICALP,

volume 623 of Lecture Notes in Computer Science, pages 685–695. Springer, 1992.
13. J. Parrow and B. Victor. The update calculus (extended abstract). In M. Johnson,

editor, AMAST, volume 1349 of Lecture Notes in Computer Science, pages 409–
423, 1997.

14. J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in
mobile processes. In LICS, pages 176–185, 1998.

15. D. Sangiorgi. A theory of bisimulation for the π-calculus. Acta Inf., 33(1):69–97,
1996.

16. D. Sangiorgi and D. Walker. On barbed equivalences in pi-calculus. In CONCUR,
volume 2154 of Lecture Notes in Computer Science, pages 292–304, 2001.

17. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cam-
bridge University Press, 2001.

18. L. Wischik and P. Gardner. Strong bisimulation for the explicit fusion calculus.
In I. Walukiewicz, editor, FoSSaCS, volume 2987 of Lecture Notes in Computer
Science, pages 484–498. Springer, 2004.

Extending Howe’s Method to Early Bisimulations for
Typed Mobile Embedded Resources with Local Names

Jens Chr. Godskesen and Thomas Hildebrandt

IT University of Copenhagen, Denmark
{jcg, hilde}@itu.dk

Abstract. We extend Howe’s method to prove that input-early strong and -delay
contextual bisimulations are congruences for the Higher-order mobile embedded
resources (Homer) calculus, a typed higher order process calculus with active mo-
bile processes, nested locations and local names which conservatively extends the
syntax and semantics of higher-order calculi such as Plain CHOCS and HOpi. We
prove that the input-early strong and -delay contextual bisimulation congruences
are sound co-inductive characterisations of barbed bisimulation congruence and
in fact complete in the strong case. The extension of Howe’s method provides
considerably simpler congruence proofs than established previously for similar
calculi for mobile processes in nested locations.

1 Introduction

The ability to reason compositionally about the behaviour of processes and compare
their behaviour in any context are key issues in semantics. A way to achieve this is to
give a co-inductive characterisation of a behavioural congruence, for process calculi
typically a notion of barbed bisimulation congruence in terms of a labelled transition
bisimulation. In the present paper we study this problem for higher-order process calculi
allowing to represent active, copyable (non-linear), objectively mobile processes with
local names and nested locations as found in the Seal calculus [1], the M-calculus [2]
and its recent successor the Kell calculus [3]. This has proven to be a difficult problem.

Our main contribution is to extend Howe’s method [4], a classical technique for
proving that applicative bisimulation is a congruence, to early bisimulations for a core
higher-order calculus with local names and static scope, extended with non-linear active
process mobility and explicit, nested locations. We call the calculus Homer as short
for Higher-Order Mobile Embedded Resources 1. Thereby we also propose a calculus
which conservatively extends the standard syntax and semantics of higher-order process
calculi such as Plain CHOCS [5] and HOπ [6], which has been one of the main design
criteria behind Homer. The result is a calculus with considerable simpler syntax and
semantics than present calculi with comparable expressive power.

Active process mobility is introduced in Homer by the prefix n〈r〉 denoting a re-
source r residing at the location (or address) n, which may be moved by the comple-
mentary prefix, n(x), expressed by a reaction rule

n〈r〉p ‖ n(x)q↘↘↘ p ‖ q[r/x] ,

1 and reference to the dangerous mobile embedded resources in the legend of Troy.

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 140–151, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Extending Howe’s Method to Early Bisimulations 141

where r is a process and x is a process variable binding any number of occurrences of x
in q. The rule complements the usual reaction rule for higher-order process calculi

n〈r〉p ‖ n(x)q↘↘↘ p ‖ q[r/x] ,

where the process r is assumed to be passive, meaning that it can neither compute
internally nor interact with other processes before it has been sent. In the usual way the
receiver may activate or forward any number of copies of the process, but once a copy
has started computing, it cannot be moved again. This kind of mobility is known as code
mobility or passive process mobility. To allow active process mobility the process r in
the prefix n〈r〉 can perform internal computations, that is r↘↘↘ r′ implies n〈r〉p↘↘↘ n〈r′〉p
as in [7]. We allow interaction with (arbitrarily) nested active mobile resources by the
use of nested names as introduced in [8]. For instance, a resource r may be sent to the
subaddress server : 80 by the reaction

server : 80〈r〉p ‖ server〈80(x)q′ ‖ q′′〉↘↘↘ p ‖ server〈q′[r/x] ‖ q′′〉 .

Dually, a resource r may be taken from the subaddress server : 80 by the reaction

server〈80〈r〉q′ ‖ q′′〉 ‖ server : 80(x)p↘↘↘ server〈q′ ‖ q′′〉 ‖ p[r/x] .

As usual we let (n)p denote a process p in which the name n is local with static scope.
This provides the means to control access to resources. A standard example is the per-
fect firewall equation [9]: (n)(n〈p〉) ≈ 000, expressing that a resource computing at a
location with a local name has no observable behaviour.

When a resource is moved from a location it may be necessary to extend the scope of
a name through a location boundary, which we will refer to as vertical scope extension.
For instance, if the resource r below contains the name n, we will expect the reaction

m〈(n)(m′〈r〉 ‖ p)〉 ‖ m : m′(x)q↘↘↘ (n)(m〈p〉 ‖ q[r/x]) (1)

in which the scope of n is extended. If mobile processes can not be copied during
computation, such as in the Mobile Ambients calculus [9], vertical scope extension can
simply be dealt with in the structural congruence by introducing the equation

m〈(n)p〉 ≡ (n)m〈p〉 , if n 	= m .

However, as also identified in [1,3] this equation is unsound if mobile processes can be
copied. If placed in a context with a copying process (−) ‖ m(x)(x ‖ x) then the left
hand process in (1) above will reduce to (n)p ‖ (n)p while the right hand process will
reduce to (n)(p ‖ p), which in general will not be equivalent. The solution taken in
Homer is to extend the scope of the name n in the reaction (1) if and only if the name
n is free in p, which is consistent with the semantics of Plain CHOCS and HOπ. This
solution contrasts the more eager solution in [10,3] where the scope of all local names
is extended before resources move, i.e. local names will always be shared between
dynamically created copies of a process.

The vertical scope extension of Homer implies that a context can test if a name
is free in a mobile process (see [11] for a detailed discussion). Consequently, any non-
trivial congruence must be well typed, meaning that related processes r and r′ must have

142 Jens Chr. Godskesen and Thomas Hildebrandt

(inactive)
0 : ñ

(variable)
x : ñ

(context)
(−)ñ : ñ′

ñ⊆ ñ′ (prefix)
e : ñ

ϕe : ϕ∪ ñ

(rest)
F : ñ

(n)F : ñ\n
(abs)

p : ñ

(x)p : ñ
(parallel)

F : ñ p : ñ′

F ‖ p : ñ∪ ñ′

(concretion)
p′ : ñ′ p : ñ

〈p′ : ñ′〉p : ñ∪ ñ′
(nesting)

F : ñ′ p : ñ

ϕ〈F : ñ′〉p : ñ∪ ñ′ ∪ϕ

Table 1. Typing rules.

the same set of free names. This means that the firewall equation (n)(n〈p〉) ≈ 000, will
only hold if the process p has no free variables. We remedy this problem by explicitly
typing processes by a set of names including the usual free names of the process, but
allowing additional (unused) names. Interestingly, it turns out that one then also needs to
explicitly type all mobile sub resources. We can now state a well typed firewall equation
as (n)(n〈p : ñ〉) : m̃≈ 000 : m̃, where ñ is the type of process p.

The above constructions are the only primitives in Homer. In particular, process
passing is the only means of communication, thus, the issue of name passing is sep-
arated from process passing. The synchronous π-calculus can in fact be encoded in a
(simplified) variant of Homer [12]. The simplicity of the calculus helps us to adapt
Howe’s method to show that both strong and so called delay input-early contextual
bisimulation are congruences for Homer. This gives a sound and complete characterisa-
tion of strong barbed bisimulation, and a sound characterisation of weak barbed bisimu-
lation. It also helps pinpointing the need for typing processes and mobile sub resources,
which is studied in more detail in [13].

2 The Homer Calculus

We assume an infinite set of names N ranged over by m and n, and let ñ range over finite
sets of names. We let δ range over non-empty finite sequences of names, referred to as

paths and δ denotes co-paths. We let ϕ range over δ and δ and define δ = δ. We assume
an infinite set of process variables V ranged over by x and y. The sets p of process
expressions, a of abstractions, and c of concretions are defined by the grammar:

p ::= 000 | x | ϕe | p ‖ p′ | (n)p , a ::= (x)p , c ::= b | (n)c ,

where b ::= 〈p′ : ñ〉p is a basic (unrestricted) concretion and e ::= a | b. We let f, ranged
over by f , denote p∪ a∪ c. Whenever e denotes a basic concretion we let e denote an
abstraction, and vice versa.

The constructors are the standard ones from concurrent process calculi, extended
with process variables and by types ñ. The processes δ〈p′ : ñ〉p and δ(x)p correspond
to sending and receiving processes, except that paths, and not only names, are allowed

Extending Howe’s Method to Early Bisimulations 143

ϕ(e : ñ) = ϕe : ñ∪ϕ F : ñ ‖ p′ : ñ′ = F ‖ p′ : ñ∪ ñ′ (n)(F : ñ) = (n)F : ñ\n

(y)(p : ñ) = (y)p : ñ 〈p : ñ〉(p′ : ñ′) = 〈p : ñ〉p′ : ñ∪ ñ′

ϕ〈F : ñ′〉(p : ñ) = ϕ〈F : ñ′〉p : ñ∪ ñ′ ∪δ

Table 2. Extension of process constructors to typed terms.

as addresses. As explained in the introduction, the new constructs δ〈p′ : ñ〉p and δ(x)p
add active process mobility to the calculus.

The restriction operator (n) binds the name n and (x) binds the variable x. The sets
fn(f) and fv(f) of free names and free variables are defined accordingly as usual, except
that fn(〈p′ : ñ〉p) = ñ∪ fn(p), i.e. the type of a sub-resource defines its free names. We
say that a term with no free variables is closed and let fc (pc) denote the set of closed
terms (processes).

As usual, we let prefixing and restriction be right associative and bind stronger than
parallel composition. Often we shall write 〈p : ñ〉 instead of 〈p : ñ〉0. For a set of names
ñ = {n1, . . . ,nk} we let (ñ) f denote (n1) · · · (nk) f . We will write n for the set {n} and δ
for the set of names in δ (or δ) when no confusion can occur. We write f ≡α f ′, if f and
f ′ are α-convertible (wrt. both names and variables), and we let f/α (and fc/α) denote the
set of α-equivalence classes of (closed) terms. Likewise we let p/α (and pc/α) denote
the set of α-equivalence classes of (closed) processes. From now we consider terms up
to α-equivalence.

We define a family of type indexed evaluation contexts Eñ. They are contexts with
no free variables, and whose “hole” is indexed by a type ñ and is either not guarded by
a prefix or guarded by a prefix δ and nested in a concretion, i.e.

Eñ ::= (−)ñ | Eñ ‖ p | (n)Eñ | δ〈Eñ : ñ′〉p , p ∈ pc.

The free names of Eñ are defined similarly as for processes. If the type index of the hole
in Eñ is not important we may write E instead of Eñ.

We let F range over processes, abstractions, concretions, and evaluation contexts.
If F : ñ can be inferred from the rules in Table 1 we say that F is of type ñ. From now
on writing F : ñ we assume F is of type ñ. We can prove a simple kind of subsumption
(using α-conversion if needed).

Proposition 1. (Subsumption) F : ñ implies F : ñ′ for all ñ′ where ñ⊆ ñ′.

By convenience we extend the process constructors to typed terms as defined in
Table 2 (following the rules of Table 1). We let P, A, and C range over the set of typed
processes P/α, abstractions A/α, and concretions C/α up to α-equivalence respectively,
and we let T range over T/α = P/α∪A/α∪C/α. The closed variants of T/α, P/α, A/α,
and C/α are denoted by Tc/α, Pc/α, Ac/α, and Cc/α. Finally, we let Eñ range over typed
type indexed evaluation contexts and occasionally we leave out the type index writing
E for Eñ if the type index is not important.

144 Jens Chr. Godskesen and Thomas Hildebrandt

Whenever F : ñ then we write Eñ(F) (or by convenience Eñ : ñ′(F : ñ)) for the
insertion of F in the hole of Eñ. Note that free names of F may get bound by insertion
of F in the hole of a context.

Proposition 2. If Eñ : ñ′ and F : ñ then Eñ(F) : ñ′.

Substitution of all free occurrences of a variable x in a typed term T by a typed
process P is defined inductively as expected, extending explicit types to include the
type of P. The extension of types means that if f : ñ[p : ñ′/x] = f ′ : ñ′′ then ñ′′ = ñ∪ ñ′.

In the remaining part of this paper we consider only a restricted form of concretions
on the form (ñ)〈p′ : ñ′〉p where ñ ⊆ ñ′. These concretions we close by convenience
under process operators, hence whenever c = (ñ)〈p1 : ñ1〉p and assuming ñ∩ (fn(p′)∪
n∪ δ) = /0 (using α-conversion if needed) we write c ‖ p′ for (ñ)〈p1 : ñ1〉(p ‖ p′), we
write δ〈c : ñ′〉p′ for (ñ)〈p1 : ñ1〉δ〈p : ñ′ñ〉p′, and we let (n)c denote (nñ)〈p1 : ñ1〉p if
n∈ ñ1 and otherwise it denotes (ñ)〈p1 : ñ1〉(n)p. We also allow abstractions to be closed
under process constructs, hence whenever a = (x)p and assuming x 	∈ fv(p′) we write
a ‖ p′ for (x)(p ‖ p′), δ〈a : ñ〉p′ for (x)δ〈p : ñ〉p′, and (n)a for (x)(n)p. Finally, we
define the application of a typed abstraction A = (x)p : ñ to a typed concretion C =
(ñ′)〈P〉P′ (assuming that ñ∩ ñ′ = /0) by A ·C = C ·A = (ñ′)(p : ñ[P/x] ‖ P′).

3 Reaction Semantics

We provide Homer with a reaction semantics as usual defined through the use of evalu-
ation contexts, structural congruence, and reaction rules.

As touched upon in the introduction equivalent processes must have the same free
names, this we capture using well typedness. A binary relation R on T/α is well typed
if f : ñ R f ′ : ñ′ implies ñ = ñ′ and f : ñ′′R f ′ : ñ′′ for all ñ′′ where ñ⊆ ñ′′. In the sequel
we always assume binary relations on T/α to be well typed.

We say that a well-typed binary relation R on P/α is substitutive if P R P′ and
P1 R P′1 implies P[P1/x]R P′[P′1/x]. We also say that R is constructor compatible if
P R P′ and P1 R P′1 implies ϕ(x)P R ϕ(x)P′, ϕ〈P1〉P R ϕ〈P′1〉P′, P ‖ P1 R P′ ‖ P′1, and
(n)P R (n)P′. A well typed relation R on P/α is a congruence if it is substitutive and
constructor compatible.

Structural congruence≡ is then the least equivalence relation on p/α that is a con-
gruence and that satisfies the (usual) monoid rules for (‖,000) and scope extension as
for the π-calculus. In particular, we do not allow vertical scope extension described by
Eq.(1) in the introduction.

As Homer permits reactions between a process and an arbitrarily deeply nested sub-
resource, we define a restricted set of evaluation contexts, i.e. a family of path contexts
Dñ,γ indexed by the type ñ of its hole and a path address γ ∈ N ∗ which indicates the
path under which the context’s ‘hole’ is found. . We do so conveniently using multi hole
path contexts. A multi hole path contexts Dñ1,...,ñk

ñ,γ has k+1 holes and is also indexed by
a sequence of types ñ1, . . . , ñk indexing the auxiliary holes in the context. A multi hole
path context is defined inductively by Dε

ñ,ε = (−)ñ (where epsilon denotes an empty
sequence) and

Dñ1,...,ñk
ñ,δγ ::= δ〈(m̃)(Dñ1,...,ñk−2

ñ,γ ‖ (−)ñk−1) : ñ′〉(−)ñk

Extending Howe’s Method to Early Bisimulations 145

(react) γδe ‖ Dñ,γ(δe) : ñ′ ↘↘↘ e : ñ′ ·Dñ,γ(e) : ñ′

Table 3. Reaction rule

such that γ∩ m̃ = /0 and none of the names in m̃ are already bound in D
ñ1,...,ñk−2
ñ,γ , i.e. we

assume all names binding the hole of a context are unique. For closed typed processes
pi : ñi, i = 1, . . . ,k, we write Dñ1,...,ñk

ñ,γ (p1, . . . , pk) for the insertion of pi in the hole
indexed by ñi in the context, resulting in a (single hole) path context Dñ,γ.

We let Dñ,γ range over well typed (single hole) path contexts. If the indexed path
in Dñ,γ is not important we write Dñ instead. Finally, we define↘↘↘ as the least binary
relation on Pc/α satisfying the (parametrized) reaction rule in Table 3 and closed under
structural congruence and all type matching evaluation contexts. By the latter we mean
that p : ñ↘↘↘ p′ : ñ implies Eñ(p)↘↘↘Eñ(p′) for all Eñ. Notice, that the evaluation context
δ〈Eñ : ñ′〉p : ñ′′ enables internal reactions of active resources.

Below we exemplify key ideas of Homer, more examples can be found in [11].
Example: Recursion and replication We may encode recursion (up to weak equiva-
lence) as in [5]. Let p : ñ and define rec x.p =def (a)(recax.p) where recax.p = a〈r : añ〉 ‖
r for r = a(x)p[(a〈x : /0〉 ‖ x) : a/x], with a 	∈ ñ. Then recax.p↘↘↘ p[recax.p : añ/x]. One
may then encode replication by !p =def rec x.(p ‖ x).
Example: Static local name discipline The following example illustrates the importance
of explicitly typing of sub resources. Suppose n 	∈ ñ. Let p1 =def ab(x)a(y)(y ‖ y), let
p2 =def a〈(n)(b〈r : nñ〉 ‖ p) : ñ〉, and let p3 =def a〈(n)(b〈r : ñ〉 ‖ p) : ñ〉. Then

p1 ‖ p2 : abñ↘↘↘ (x)a(y)(y ‖ y) : abñ ·a〈(n)(〈r : nñ〉 ‖ p) : ñ〉 : abñ

= (n)(a(y)(y ‖ y) ‖ a〈p : nñ〉) : abñ↘↘↘ (n)(p ‖ p) : abñ

since by convention a〈(n)(〈r : nñ〉 ‖ p) : ñ〉= (n)〈r : nñ〉a〈(0 ‖ p) : nñ〉, however

p1 ‖ p3 : abñ↘↘↘ (x)a(y)(y ‖ y) : abñ ·a〈(n)(〈r : ñ〉 ‖ p) : ñ〉 : abñ

= a(y)(y ‖ y) ‖ a〈(n)p : ñ〉 : abñ↘↘↘ (n)p ‖ (n)p : abñ

because by convention a〈(n)(〈r′ : ñ〉 ‖ p) : ñ〉= 〈r : ñ〉a〈(n)(0 ‖ p) : ñ〉. Hence the scope
of n is extended vertically only if n appear in the type of r. Thus, if we did not explicitly
type sub resources then (for suitable p) the context a〈(n)(b〈(−)nñ〉 ‖ p)〉 ‖ p1 would
violate the typed perfect firewall equation (m)m〈q〉 : nñ≈ 000 : nñ, for m 	= n ∈ fn(q).

4 Transition Semantics

In this section we provide Homer with a labelled transition semantics. We let π range
over the set Π of labels which consists of labels of the form τ and ϕ. The set of free
names in π, fn(π), are defined as expected. As for the reduction semantics we define
the transitions for α-equivalence classes of closed processes. The rules in Table 4 then
define a labelled transition system

(Tc/α,−→−→−→⊆ Pc/α×Π×Tc/α).

146 Jens Chr. Godskesen and Thomas Hildebrandt

(prefix)
ϕe : ñ

ϕ−→−→−→ e : ñ
(sync)

p : ñ
ϕ−→−→−→ A p′ : ñ

ϕ−→−→−→C

p ‖ p′ : ñ
τ−→−→−→ A ·C

(par)
p : ñ

π−→−→−→ T

p ‖ p′ : ñ
π−→−→−→ T ‖ p′ : ñ

(sym)
p ‖ p′ : ñ

π−→−→−→ T

p′ ‖ p : ñ
π−→−→−→ T

(rest)
p : ñn

π−→−→−→ T

(n)p : ñ
π−→−→−→ (n)T

, n 	∈ fn(π) (nesting)
P

π−→−→−→ T

δ〈P〉p : ñ
δ ···π−→−→−→ δ〈T 〉p : ñ

Table 4. Transition rules.

The rules are completely standard, except for the handling of typing and interaction
with nested resources, which shows in the (prefix) and (nesting) rules. The (prefix) rule
expresses that types are preserved by transitions. The (nesting) rule takes care of the
communication and computation of arbitrarily deeply nested resources. It uses an oper-
ation δ ··· () formally defined by: δ ··· τ = τ and δ ···δ′ = δδ′. Note that the operation is not
defined for δ since it is directed “downward” and thus not visible outside the resource.
Since δ ···τ = τ, the nesting rule implies that δ〈P〉p : ñ

τ−→−→−→ δ〈T 〉p : ñ, if P
τ−→−→−→ T .

As explained in the introduction, the action prefixes allow two kinds of movement
of resources. Since they are completely dual, they are both treated by the rule (prefix)
and the synchronisation rule (sync). For instance, illustrating also the use of the rule
(nesting), we have

n〈m〈P〉p : ñ〉p′ ‖ nm(x)p′′ : ñ′
τ−→−→−→ 〈P〉n〈p : ñ〉p′ : ñ′ · (x)p′′ : ñ′

because n〈m〈P〉p : ñ〉p′ : ñ′
nm−→−→−→ 〈P〉n〈p : ñ〉p′ : ñ′ and nm(x)p′′ : ñ′

nm−→−→−→ (x)p′′ : ñ′.
Below we state the correspondence between our reaction and transition semantics.

Proposition 3. P↘↘↘ P′ iff P≡ τ−→−→−→≡ P′ and P ↓ n iff P
n−→−→−→C for some C.

5 Bisimulation Congruences

Next we consider how to describe congruences as bisimulations. First, we define strong
and weak barbed bisimulation congruences based on the reduction semantics, and next
we define early variants of strong and delay contextual transition bisimulations. We
prove that the early transition bisimulations are congruences using a novel extension
of Howe’s method, based on the approach in [14], and that they are sound (and in the
strong case also complete) with respect to barbed bisimulation congruences.

We define weak and strong barbs standardly letting↘↘↘∗ be the transitive and reflex-
ive closure of↘↘↘, and choosing barbs similarly to [15,1]

P ↓ n if P≡ (ñ)(n〈P′〉p ‖ p′) : ñ′ and n 	∈ ñ, and P ⇓ n if ∃P↘↘↘ ∗ P′. P′ ↓ n .

In a previous version [11] we show (as in [15,1]) that this choice of barbs is indeed
robust. In particular, one could have chosen to observe location paths.

Extending Howe’s Method to Early Bisimulations 147

We restrict binary relations R on P/α to closed terms by Rc = R ∩Pc/α×Pc/α.

Definition 1. A weak barbed simulation is a well typed binary relation R on Pc/α such
that whenever P1 R P2,

i) if P1 ↓ n then P′1 ⇓ n ii) if P1↘↘↘ P′1, then ∃P2↘↘↘ ∗ P′2 such that P′1R P′2

R is a weak barbed bisimulation if R and R −1 are weak barbed simulations. Weak
barbed bisimulation congruence≈b is the largest congruence such that (≈b)c is a weak
barbed bisimulation.

We define strong barbed simulation similar to above by replacing↘↘↘ ∗ with↘↘↘ and q⇓ n
with q ↓ n, and define strong barbed bisimulation congruence,∼b, accordingly.

We define delay transitions by P
τ=⇒=⇒=⇒ P and P

π=⇒=⇒=⇒ P′, if P
τ=⇒=⇒=⇒ P′′

π−→−→−→ P′, which
compared to weak transitions do not allow τ-transitions after the visible transition.

We extend well typed binary relations R on Pc/α to open terms the usual way,
by defining p : ñ R ◦ p′ : ñ if p : ñ[P1/x1] . . . [Pk/xk] R p′ : ñ[P1/x1] . . . [Pk/xk] for all
P1, . . . ,Pk ∈ Pc/α, where fv(p) = fv(p′) = {x1, . . . ,xk}, i.e. requiring two open terms to
be related after substitution with closed resources. Also we extend R ◦ to typed concre-
tions by c : ñ R � c′ : ñ if for all A, A · c : ñ R ◦ A · c′ : ñ.

Like in [1] we introduce an (input) early delay context bisimulation by

Definition 2. An (input) early delay context simulation is a well typed binary relation
R on Pc/α such that p : ñ R P implies

if p : ñ
τ−→−→−→ P1 then ∃P2. P

τ=⇒=⇒=⇒ P2 and P1 R P2

if p : ñ
δ−→−→−→ A then ∀C ∈ Cc/α. ∃A′. P

δ=⇒=⇒=⇒ A′ and A ·C R A′ ·C
if p : ñ

δ−→−→−→ A then ∀C ∈ Cc/α,Dñ. ∃A′. P
δ=⇒=⇒=⇒ A′ and Dñ(A) ·C R Dñ(A′) ·C

if p : ñ
δ−→−→−→C then ∃C′. P

δ=⇒=⇒=⇒C′ and C R � C′

if p : ñ
δ−→−→−→C then ∃C′. P

δ=⇒=⇒=⇒C′ and ∀Dñ. Dñ(C) R � Dñ(C′)

R is an early delay context bisimulation if both R and R −1 are early delay context
simulations. Let≈e denote the largest early delay context bisimulation. We define early
strong context simulation by replacing =⇒=⇒=⇒with−→−→−→, and let∼e denote the largest early
strong context bisimulation.

Proposition 4. ∼b, ≈b, ∼e, and ≈e are equivalence relations.

By defining testing contexts for the different kinds of labels, one can prove that early
contextual bisimulation, in the strong case, is in fact complete with respect to barbed
bisimulation congruence as stated below. We conjecture that ≈e

◦ is not complete with
respect to ≈b.

Proposition 5. ∼b ⊆∼e
◦ .

148 Jens Chr. Godskesen and Thomas Hildebrandt

0 : ñ R ◦ P

0 : ñ R P

x : ñ R ◦ P

x : ñ R P

p1 : ñ R p′1 : ñ p2 : ñ R p′2 : ñ p′1 ‖ p′2 : ñ R ◦ P

p1 ‖ p2 : ñ R P

P′R P′′ p′ : ñ R p′′ : ñ ϕ〈P′′〉p′′ : ñ R ◦ P

ϕ〈P′〉p′ : ñ R P

p : ñ R p′ : ñ ϕ(x)p′ : ñ R ◦ P

ϕ(x)p : ñ R P

p : ñn R p′ : ñn (n)p′ : ñ R ◦ P

(n)p : ñ R P

P R P′ p : ñ R p′ : ñ 〈P′〉p′ : ñ R � C

〈P〉p : ñ R C

c : ñn R c′ : ñn (n)c′ : ñ R � C

(n)c : ñ R C

Table 5. Howe relation for typed processes and concretions.

We now show the main technical result of the paper, that ∼e
◦ and ≈e

◦ are indeed
congruences, by adapting Howe’s method to active mobile processes in nested loca-
tions. This is in fact a combination of two new results. The first new result is that Howe’s
method can be extended to input-early strong and delay bisimulations, by extending the
relation to also cover concretions, despite that it has been considered difficult to extend
Howe’s method to early bisimulations for higher-order calculi with static scope [14].
The second result is to extend Howe’s method to active process mobility in nested lo-
cations. We find that the application of Howe’s method is considerably simpler than the
direct method applied e.g. in [1].

First we define the Howe-relation R on P/α∪C/α, relative to a binary relation R
on Pc/α and as the least relation satisfying the rules in Table 5. Let R • = R ∩P/α×
P/α, i.e. the relation restricted to (possibly open) processes. It is easy to prove that if R
is well typed then R • and R are so too. As in [14] we prove the following properties.

Proposition 6. Let R be an equivalence relation on Pc/α then
1. R is reflexive. 4. R • is substitutive. 7. R •∗ is symmetric
2. R � ⊆ R . 5. R • is constructor compatible
3. R R � ⊆ R . 6. R •−1 ⊆ R •∗

The key is now to show, since ∼e
• (≈e

•) is a congruence, that ∼e
◦ = ∼e

• (≈e
◦ =

≈e
•).
Next, as a novel contribution of this paper we extend the Howe-relation to path con-

texts. Let R be a binary relation on Pc/α. We define the Howe-relation R � on path

context by Dñ,γ : ñ′R �D′ñ,γ : ñ′ if there exists Dñ1,...,ñk
ñ,γ and pi : ñi R • p′i : ñi, i = 1, . . . ,k

such that Dñ,γ : ñ′ = Dñ1,...,ñk
ñ,γ (p1, . . . , pk) : ñ′ and D′ñ,γ : ñ′ = Dñ1,...,ñk

ñ,γ (p′1, . . . , p′k) : ñ′. Ob-
serve that two related path contexts have the same path to their hole which are indexed
by the same type, also they restrict their holes by the same names.

In order to establish ≈e
◦=≈e

• the method of Howe utilises that ≈e
• satisfies the

following bisimulation property. A similar property for ∼e
• is used to prove∼e

◦=∼e
•.

Extending Howe’s Method to Early Bisimulations 149

Lemma 1. p : ñ,P ∈ Pc/α and p : ñ≈e
• P implies that if:

p : ñ
τ−→−→−→ P1 then ∃P2. P

τ=⇒=⇒=⇒ P2 and P1 ≡≈e
• P2

p : ñ
δ−→−→−→ A then ∀C ≈e C′. ∃A′. P

δ=⇒=⇒=⇒ A′ and A ·C≡≈e
• A′ ·C′

p : ñ
δ−→−→−→ A then ∀C ≈e C′,Dñ≈e

�D ′
ñ. ∃A′.P

δ=⇒=⇒=⇒ A′ and Dñ(A) ·C≡≈e
• D ′

ñ(A
′) ·C′

p : ñ
δ−→−→−→C then ∃C′. P

δ=⇒=⇒=⇒C′ and C ≈e C′

p : ñ
δ−→−→−→C then ∃C′. P

δ=⇒=⇒=⇒C′ and ∀Dñ≈e
�D ′

ñ. Dñ(C)≈e D ′
ñ(C

′)

Proposition 7. ∼e
◦ and ≈e

◦ are congruences.

From Prop. 3 and from Prop. 7 it follows that ∼e
◦ and ≈e

◦ are sound with respect to
barbed and weak barbed bisimulation congruence, respectively.

Proposition 8. ∼e
◦ ⊆ ∼b and ≈e

◦ ⊆ ≈b.

From Prop. 5 and Prop. 8 we conclude that

Theorem 1. ∼e
◦ =∼b

In [11] we study late strong and delay contextual bisimulations for (an equivalent)
variant of Homer. It turns out that the late strong and delay context bisimulations are in
fact strictly contained in their corresponding early context bisimulations.

6 Conclusions and Related Work

We presented the calculus Homer, which combines higher-order process passing, lo-
cal names, nested locations and copyable, active mobile computing resources. We gave
reaction and labelled transition semantics as conservative extensions of the standard
semantics of a pure process-passing calculi with local names, and presented the first
generalisation of Howe’s method to a calculus with active mobile processes at nested
locations and local names, proving that early delay (and strong) contextual bisimulation
is a congruence and a sound (and complete) characterisation of weak (strong) barbed
bisimulation congruence. Finally, we identified the need for typing processes and mo-
bile sub resources with names.

Thomsen [5] and Prasad, Giacalone, and Mishra [16] provides so-called higher-
order labelled transition bisimulations for respectively Plain CHOCS and Facile, which
are early bisimulations where processes in higher-order labels are required to be bisim-
ilar. Sangiorgi shows in [17] that higher-order bisimulation is too discriminating and
presents an elegant, and now classical, solution to the problem using triggered processes
and normal bisimulation for the higher-order π-calculus. Jeffrey and Rathke extend
in [18] the result to recursive types. Sound and complete characterisations of barbed
bisimulation congruence exist for variants of the Ambient calculus [19,20]. However,
none of the variants of the Ambient calculs or HOπ (or the first-order π-calculus) allow
for copyable active mobile processes.

150 Jens Chr. Godskesen and Thomas Hildebrandt

A series of papers, summarised in [1], develop the semantics of the Seal calculus
which shares nested locations, objective non-linear mobility and local names with static
scoping with Homer. A sound characterisation of reduction barbed bisimulation con-
gruence for the Seal calculus is provided in [1], given by a delay bisimulation as in the
present paper. The authors leave important problems open, as e.g. providing a sound
and complete characterisation of barbed bisimulation congruence and a deeper under-
standing of the interrelation between local names and copyable mobile processes. We
have contributed to both of these problems by providing a sound and complete charac-
terisation of strong barbed bisimulation congruence and identified the need for typing
mobile sub resources if one uses the standard vertical scope extension used in HOπ.

The M-calculus and the Kell calculus of Schmitt and Stefani share with Homer in
being based on process passing and process substitution. A sound and complete char-
acterisation of barbed bisimulation congruence has been announced in [3], however, a
detailed proof has not been published yet.

None of the congruence proofs for the above mentioned calculi apply the method
by Howe. Howe’s method was originally introduced for lazy functional programming
languages. It has later been applied to the Abadi-Cardelli object calculi by Gordon [21],
higher-order functions with concurrent communication (a fragment of Reppy’s Concur-
rent ML) by Jeffrey [22], late bisimulations for local names with static scope by Jeffrey
and Rathke [10] and Baldamus and Frauenstein in [14].

A problem left open is to give a sound and complete co-inductive characterisation
of an appropriate weak barbed congruence. A delay bisimulation seems to be needed to
be able to apply Howe’s method and a standard weak barbed bisimulation is unlikely to
be included in a delay bisimulation in the higher-order setting.

Another problem is if the trigger, normal and up-to-context bisimulation techniques
can be adapted to calculi with non-linear active process mobility and explicit, nested
locations. It could provide us with a bisimulation without universal quantification over
contexts.

The type system presented is studied in a bigraphical setting in [13]. In [11] the
types are represented by a free name extension process constructor in some ways dual
to the local name operator. Work on more complex type systems for Homer has been
initiated in [23], presenting a type system for linear and non-linear mobile resources
for an early version of the Homer calculus and is currently being adapted to the present
version of Homer.

References

1. Castagna, G., Vitek, J., Nardelli, F.Z.: The Seal calculus. Accepted for publication in Infor-
mation and Computation (2004)

2. Schmitt, A., Stefani, J.B.: The M-calculus: A higher-order distributed process calculus. In:
Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages (POPL’03). (2003) 50–61

3. Schmitt, A., Stefani, J.B.: The Kell calculus: A family of higher-order distributed process
calculi. In: Proceedings of the International Workshop on Global Computing 2004 Workshop
(GC 2004). LNCS, Springer Verlag (2004)

Extending Howe’s Method to Early Bisimulations 151

4. Howe, D.J.: Proving congruence of bisimulation in functional programming languages. In-
formation and Computation 124 (1996) 103–112

5. Thomsen, B.: Plain CHOCS. A second generation calculus for higher order processes. Acta
Informatica 30 (1993) 1–59

6. Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-Order Para-
digms. PhD thesis, LFCS, University of Edinburgh (1993)

7. Boudol, G.: Towards a lambda-calculus for concurrent and communicating systems. In Dı́az,
J., Orejas, F., eds.: Proceedings of Theory and Practice of Software Development (TAPSOFT
’89). Volume 351 of LNCS., Springer Verlag (1989) 149–161

8. Godskesen, J.C., Hildebrandt, T., Sassone, V.: A calculus of mobile resources. In: Proceed-
ings of CONCUR’2002. LNCS, Springer (2002)

9. Cardelli, L., Gordon, A.D.: Mobile ambients. In Nivat, M., ed.: Proceedings of FoSSaCS
’98. Volume 1378 of LNCS., Springer (1998) 140–155

10. Jeffrey, A., Rathke, J.: Towards a theory of bisimulation for local names. In: Proceedings of
LICS ’99, IEEE, Computer Society Press (1999) 56–66

11. Hildebrandt, T., Godskesen, J.C., Bundgaard, M.: Bisimulation congruences for homer -
a calculus of higher order mobile embedded resources. Technical Report TR-2004-52, IT
University of Copehagen, Department of Theoretical Computer Science (2004)

12. Bundgaard, M., Hildebrandt, T., Godskesen, J.C.: A CPS encoding of name-passing in
higher-order mobile embedded resources. Journal of Theoretical Computer Science (2005)
To appear.

13. Bundgaard, M., Hildebrandt, T.: A bigraphical semantics of higher order mobile embedded
resources with local names (2005) submitted for publication.

14. Baldamus, M., Frauenstein, T.: Congruence proofs for weak bisimulation equivalences on
higher-order process calculi. Technical Report Report 95–21, Berlin University of Technol-
ogy, Computer Science Department (1995)

15. Merro, M., Hennessy, M.: Bisimulation congruences in safe ambients. Computer Science
Report 2001:05, University of Sussex (2001)

16. Prasad, S., Giacalone, A., Mishra, P.: Operational and algebraic semantics for Facile: A
symmetric integration of concurrent and functional programming. In Paterson, M., ed.: Pro-
ceedings of the 17th International Colloquium on Automata, Languages and Programming
(ICALP’90). Volume 443 of LNCS., Springer Verlag (1990) 765–778

17. Sangiorgi, D.: Bisimulation in higher-order process calculi. Journal of Information and Com-
putation 131 (1996) 141–178 Available as Rapport de Recherche RR-2508, INRIA Sophia-
Antipolis, 1995. An early version appeared in Proceedings of PROCOMET’94, pages 207–
224. IFIP. North Holland Publisher.

18. Jeffrey, A., Rathke, J.: Contextual equivalence for higher-order π-calculus revisited. In
Brookes, S., Panangaden, P., eds.: Proceedings of the 19th Conference on Mathematical
Foundations of Programming Semantics (MFPS’04). Volume 83 of ENTCS., Elsevier (2004)

19. Merro, M., Nardelli, F.Z.: Behavioural theory for mobile ambients. In: Proceedings of the
3rd International Conference on Theoretical Computer Science (IFIP TCS 2004). (2004)

20. Bugliesi, M., Crafa, S., Merro, M., Sassone, V.: Communication and mobility control in
boxed ambients. Journal of Information and Computation (2003)

21. A.D.Gordon: Operational equivalences for untyped and polymorphic object calculi. In:
Higher Order Operational Techniques in Semantics, Cambridge University Press (1998)

22. Jefrfrey, A.: Semantics for core concurrent ml using computation types. In: Higher Order
Operational Techniques in Semantics, Cambridge University Press (1998)

23. Godskesen, J.C., Hildebrandt, T.: Copyability types for mobile computing resources (2004)
International Workshop on Formal Methods and Security.

Approximation Algorithms for Wavelength

Assignment

Vijay Kumar1 and Atri Rudra2

1 Strategic Planning and Optimization Team,
Amazon.com,

Seattle, WA, USA
vijayk@amazon.com

2 Department of Computer Science and Engineering,
University of Washington,

Seattle, WA, USA
atri@cs.washington.edu

Abstract. Winkler and Zhang introduced the FIBER MINIMIZATION
problem in [10]. They showed that the problem is NP-complete but
left the question of approximation algorithms open. We give a simple
2-approximation algorithm for this problem. We also show how ideas
from the Dynamic Storage Allocation algorithm of Buchsbaum et al. [4]
can be used to give an approximation ratio arbitrarily close to 1 pro-
vided the problem instance satisfies certain criteria. We also show that
these criteria are necessary to obtain an approximation scheme. Our 2-
approximation algorithm achieves its guarantee unconditionally.
We also consider the extension of the problem to a ring network and give
a 2+o(1)-approximation algorithm for this topology. Our techniques also
yield a factor-2 approximation for the related problem of PACKING
INTERVALS IN INTERVALS, also introduced by Winkler and Zhang
in [10].

1 Introduction

The FIBER MINIMIZATION problem on an optical linesystem ([10]) relates to
the efficient construction of an optical fiber network to meet a specified collection
of demands. Consider n links (or edges) connected in a line. Each demand needs
to use some consecutive links, and thus the demands can be represented as a
set of line intervals. A segment of optical fiber, which is of wavelength μ and
spans some consecutive links, can carry a collection of demands such that links
required by the demands are contained within the links spanned by the fiber,
and no two demands are assigned the same wavelength if there is a link which
they both use. The goal is to get a set of fiber segments which can carry all
demands such that the total length of fiber used is minimized.

This problem was introduced by Winkler and Zhang in [10]. The problem is
motivated by wavelength division multiplexing (WDM), which is used to par-
tition the bandwidth available on an optical fiber into multiple channels using

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 152–163, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Approximation Algorithms for Wavelength Assignment 153

different wavelengths. These technologies have made very fast all-optical trans-
mission physically possible. See [3,10] for more details on the practical motiva-
tions.

1.1 Problem Definition

More formally, consider a linesystem of n links e1, e2, · · · , en. We represent each
demand by dj = [lj , rj] for lj ≤ rj if it requires the links elj , elj+1 · · · , erj ;
the set of demands is denoted by D. We say demands dj and dj′ intersect (or
overlap) if either lj ≤ lj′ ≤ rj or lj′ ≤ lj ≤ rj′ . A fiber interval f is represented
by f = [lf , rf] for lf ≤ rf if it spans the edges elf , elf+1 · · · , erf

. The goal
is to construct a set F of fiber intervals (each capable of carrying μ different
wavelengths) of minimum total length (

∑
F�f=[lf ,rf](rf − lf + 1)) such that D

can be packed in F . A packing of D in F is an assignment of each demand
dj = [lj , rj] to a fiber f = [lf , rf] ∈ F , and a wavelength ω ∈ {1, · · · , μ} within
f , such that [lj , rj] ⊆ [lf , rf] and no two intersecting demands are assigned the
same wavelength in the same fiber.

1.2 Previous Work

There is a substantial body of work relating to resource optimization in WDM
networks. Most of this work addresses the problem of minimizing the number
of wavelengths necessary to satisfy the presented demand for a given network
topology. This body of work is too extensive to summarize here — please see [8]
for a survey of the field.

In some recent work [2,3,5,9,10] it is sought to more faithfully represent real-
world constraints by assuming that fiber has a fixed capacity. Starting with [10]
this vein of research aims to optimize the use of fiber. There are different flavors
of this problem depending on what the objective function is —

– Minimizing the ratio of the number of fibers deployed to the minimum num-
ber of fibers required for any edge [2].

– Minimizing the maximum over all links the the number of fibers used in a
link [2,5,6].

– Minimize the total amount of fiber used [3,6].

Much recent work addresses a different flavor of the FIBER MINIMIZATION
problem. That version assumes the availability of a device called a mesh optical
add/drop multiplexer (or MOADM), which allows the signals to moved from
one fiber to another as they pass through the nodes in the optical network
under consideration. In the presence of MOADMs, the FIBER MINIMIZATION
problem becomes “easier” as we are allowed to “break” a demand into segments
which span an edge while routing them through the network. For the case of
a linesystem, [10] give a polynomial time algorithm to solve this version of the
problem. For ring and tree networks, constant-factor approximation algorithms
are known [5,9]. Recently, Andrews and Zhang have showed that for general

154 Vijay Kumar and Atri Rudra

graph topologies, this problem (which they call SUMFIBER-CHOOSEROUTE)
is hard to approximate to within a poly-logarithmic factor of the optimal for
a general network topology under some complexity assumptions, whether the
routing of the demands is performed by the algorithm ([3]), or specified as input
([2]). They also prove ([2]) a similar hardness result under a similar complexity
assumption for the problem where the objective function is to minimize the ratio,
over all edges, of the number of fibers deployed for that edge to the minimum
number of fibers required. These negative results are accompanied in all cases
by approximation algorithms with logarithmic approximation ratios.

A related set of problems is tackled in [1], where linesystem design is modeled
as a generalized graph coloring problem. A collection of optimal and approxima-
tion algorithms are presented for different network scenarios, where the objective
is to minimizing costs related to the set of colors employed. It has been pointed
out to us that some of their techniques can be employed to substitute Phase 1
of our algorithm in Section 2.

In the setting of [10] where there are no MOADMs, — that is, a demand
cannot change fibers at any node — FIBER MINIMIZATION was shown to be
NP-complete in [10]. To the best of our knowledge, ours are the first approxi-
mation algorithms in this model.

1.3 Our Results

We present polynomial time approximation algorithms for the FIBER MINI-
MIZATION problem on some simple network topologies.

– In Section 2, we give a 2-approximation algorithm for the FIBER MINI-
MIZATION problem. This problem is similar to the Dynamic Storage Al-
location (DSA) problem in some aspects, and we employ techniques from
the DSA literature, such as those of Gergov [7] and Buchsbaum et al. [4], to
tackle it (Incidentally, the proof of Theorem 1 has essentially the same struc-
ture as the proof — to the best of our knowledge, unpublished — of Gergov’s
[7] algorithm being a 3-approximation for DSA, and may be interesting on
that account).

– We use a result of Buchsbaum et al. [4] to derive an approximation scheme
for FIBER MINIMIZATION in Section 3.

– We extend these results to obtain other approximations for related prob-
lems. In Section 4 give a factor 2+ o(1) approximation algorithm for FIBER
MINIMIZATION on a ring.

– We investigate the related problem of PACKING INTERVALS IN INTER-
VALS — also posed in [10] — in Section 5, and obtain a 2-approximation
algorithm.

2 A 2-Approximation Algorithm for FIBER
MINIMIZATION

As specified in Section 1.1, the input D to the FIBER MINIMIZATION problem
consists of demands dj , each of which is an interval of the form [lj , rj], where

Approximation Algorithms for Wavelength Assignment 155

lj ≤ rj ∈ {1, · · · , n}. For each link ei, we define LD(i) = |{dj ∈ D : i ∈ [lj , rj]}|
(WLOG we assume that LD(i) is a multiple of μ) and LmaxD = maxi LD(i). The
algorithm uses an LmaxD × n matrix H to keep track of wavelength assignments.
For each k ∈ {1, · · · , LmaxD }, the row Hk is referred to as the kth row and finally
would correspond to a wavelength in some fiber interval. We say that link ei is
colored ci in row k if Hk,i = ci. For any row k and color C, we call an interval
[l, r] in the kth row a C segment if Hk,l−1 	= C, Hk,r+1 	= C and ∀i ∈ [l, r],
Hk,i = C.

The algorithm, which we refer to as the Simple algorithm, is specified in
Figures 1 and 2. In Phase 1, the algorithm constructs the matrix H and then
derives a “packing” PD from H . We say that demand dj ∈ D is packed in PD
if 〈j, k〉 ∈ PD for some k ∈ {1, · · · , LmaxD }. PD is not a feasible solution since
the assignments of some demands overlap, although only to a limited extent. In
Phase 2, the overlaps are taken care of and a valid packing derived.

2.1 Algorithm Outline

Let us briefly summarize the algorithm before we formally describe it. The basic
intuition for the algorithm comes from techniques often used for the Dynamic
Storage Allocation (DSA) problem, in particular those used in [7]. FIBER MINI-
MIZATION has some similarities with DSA, with the important distinction that
while the demands in DSA are axis-parallel rectangles, demands in our problem
are line intervals.

In a nutshell, this is how the algorithm works. During Phase 1 (Figure 1),
each matrix entry Hk,i either has the value red (which means that no demand
can be “placed on ei” in the kth row), or green (which means that at most one
demand can be “placed on ei” in the kth row), or blue (which means overlapping
demands can be “placed on ei” in the kth row). Each edge ei is “alloted” LD(i)
rows, which is why the first LmaxD − LD(i) entries in the ith column of H are
colored red in Step 2. All other entries are colored green. Initially all green
segments are “available”.

In Step 3, the algorithm iterates over all possible rows and in each iteration
looks for an “available” green segment over which some “unpacked” demand
can be placed (maybe partially) in the following way: this demand can possibly
intersect blue segments in that row but it must not intersect with any other green
segment. The placement of a demand can fragment an “available” green segment
into smaller “available” green segments (the edges common to the placed demand
and the green segment are no longer available). The iteration is complete when
no demand can be placed on any available green segment. Edges which were
colored blue in the current row or did not have any demand placed on them in
the current row are colored blue in the next row. Note that this implies that
if an edge becomes blue in one row then it remains blue for all the subsequent
iterations (rows). Phase 1 of the algorithm is complete when Dmax iterations
are complete. We will show in Lemma 4 that after the first phase, all demands
are “packed”.

156 Vijay Kumar and Atri Rudra

Further, in Lemma 5 we show that in a blue segment a demand may intersect,
if at all, with no more than one other demand. This suggests Phase 2 (Figure 2)
of the algorithm where demands are finally packed into fiber intervals. Consider
μ consecutive rows and consider maximal intervals of consecutive edges which
are not colored red in any of the μ rows. In each such segment, every one of the μ
rows has, by Lemma 5, at most two demands conflicting over any particular link.
Thus, creating two fiber intervals corresponding to such a segment is sufficient
to accommodate all the demands.

The algorithm is more formally described in Figures 1 and 2.

Phase 1
1. J ← D, PD ← ∅.
2. for (k ← 1; k ≤ Lmax

D ; k ← k + 1)
for (i← 1; i ≤ n; i← i + 1)

Hk,i ← red if k ≤ Lmax
D − LD(i); otherwise Hk,i ← green.

3. for (k ← 1; k ≤ Lmax
D ; k ← k + 1)

(a) G ← {[l, r] : Hk,j is green for all j ∈ [l, r]; [l, r] is maximal} (G is the set
of all maximal green intervals in the kth row)

(b) while ∃ [l, r] ∈ G
i. if ∃ dj = [lj , rj] ∈ J such that (dj is an unpacked demand)

A. [l, r] ∩ [lj , rj] �= ∅ (dj intersects [l, r]), and
B. ∀w ∈ [lj , rj], either w ∈ [l, r] or Hk,w = blue (dj intersects no other

interval in G)
then

Add 〈j, k〉 to PD and for all i ∈ [lj , rj] ∩ [l, r] set Hk+1,i ← green.
delete dj from J
delete [l, r] from G
if l < lj add [l, lj] to G
if rj < r add [rj , r] to G

else
for all i ∈ [l, r] set Hk,i ← blue
delete [l, r] from G

(c) for (i← 1; i ≤ n; i← i + 1)
if Hk,i = blue then set Hk+1,i ← blue

Fig. 1. Phase 1 of the Simple algorithm

2.2 Correctness and Performance

The following three lemmas follow directly from the way the matrix H is ma-
nipulated in the algorithm of Figure 1.

Lemma 1. At the end of Phase 1, if Hk,i = green for any k and i, then for all
1 ≤ k′ < k, Hk′,i = green or Hk′,i = red.

Approximation Algorithms for Wavelength Assignment 157

FD ← ∅.
for (k = 1; k ≤ Lmax

D ; k = k + μ)

1. ∀i ∈ {1, · · · , n}, c[i]← black;
2. ∀i ∈ {1, · · · , n}, if ∃j ∈ [k, k + μ) such that Hj,i = red then c[i]← red.
3. for each maximal interval I = [l, r] ⊆ [1, n] such that i ∈ [l, r]⇒ c[i] = black,

(a) Create two fiber segments f1(I) and f2(I) and add them to FD.
(b) for all j ∈ [k, k + μ),

i. Let Sj ← {di : di ⊆ I, 〈i, j〉 ∈ PD}. Let sj,1, sj,2, · · · , sj,N be an order-
ing of Sj such that for any two demands sj,a = [la, ra] and sj,b = [lb, rb],
a < b⇒ ra ≤ rb.

ii. for i = 1, 2, · · · , N ,
– Assign sj,i the wavelength j − k + 1.
– Assign sj,i the fiber segment f2(I) if there exists some demand sj,u

assigned wavelength j − k + 1 and fiber segment f1(I), such that
sj,i ∩ sj,u �= ∅; otherwise, assign sj,i the fiber segment f1(I).

Fig. 2. Phase 2 of the Simple algorithm

Proof. If Hk′,i is colored blue, then Hj,i gets colored blue for all j > k′ due
to repeated execution of Step 3(c); in particular Hk,i gets colored blue, which
contradicts the assumption on Hk,i in the lemma.

Lemma 2. At the end of Phase 1, if Hk,i = red for any k and i, then for all
1 ≤ k′ < k, Hk′,i = red.

Proof. This is ensured by Step 2, where Hk,i is colored red for all k less than a
certain value. The color red is not employed at any other step in the algorithm;
nor is it ever replaced by any other color.

Lemma 3. At the end of Phase 1, LD(i) = |{k : Hk,i 	= red }|.

Proof. This follows from how the coloring decision is made at Step 2, and the
fact that the set {(k, i) : Hk,i is red} is invariant over the later steps of the
algorithm.

We now show that all demands in D are “packed” in PD after Phase 1.

Lemma 4. At the end of Phase 1, J is empty.

Proof. Assume that this is not the case, and there is a demand dt = [lt, rt] ∈ J
at the end of Phase 1. One of the following three cases must arise:

– Case 1: There is one i ∈ [lt, rt] such that HLmax
D

,i = red. By Lemma 2, for all
k ∈ [1, LmaxD], Hk,i = red. Lemma 3 implies that D(i) = 0, which contradicts
the fact that dt uses link i.

– Case 2: There exists i ∈ [lt, rt] such that HLmax
D

,i = green. It follows from
Lemmas 1 and 2 and the coloring criterion of Step 2 that for all k ∈
{1, · · · , LmaxD − LD(i)}, Hk,i = red; and for all k′ ∈ {LmaxD − LD(i) +
1, · · · , LmaxD }, Hk′,i = green.

158 Vijay Kumar and Atri Rudra

For each such k′, it must be the case that in the k′th iteration of the for
loop in Step 3, some demand dj 0 ei was placed in row k′, since otherwise
Hk′,i would have been colored blue at Step 3(b). In all there would be LD(i)
such demands, one for each value of k′. Including them, and including dt,
there are at least LD(i) + 1 demands that use link ei, which contradicts the
definition of LD(i).

– Case 3: For all i ∈ [lt, rt], HLmax
D

,i = blue. We complete the proof by showing
that dt would have been placed by the algorithm in some row. Consider
k∗ = min{k : ∀j ∈ [lt, rt], Hk,j = blue}. By the choice of k∗, there exists an
interval [l, r] ⊆ [lt, rt] such that in some iteration of the while loop of Step
3(b),
• [l, r] ∈ G, and
• for all i ∈ [lt, rt]− [l, r], Hk∗,i =blue, and
• for all j ∈ [l, r], Hk∗,j is colored blue by the else clause of Step 3(b)(i).

This can only happen when there is no demand dj which is suitable for
placing over [l, r] in row k∗: as indicated by conditions A and B in the
if statement. However, dt is precisely such a demand; it is unpacked, it
intersects [l, r], and (by the choice of k∗) it does not anymore intersect any
other interval in G. Thus, instead of coloring [l, r] blue, dt should have been
placed over it; and this completes our proof by contradiction.

We now show that the packing PD has a nice property– no link is used by
more than two demands that are placed in the same row. In other words, no
three demands conflict simultaneously.

Lemma 5. ∀(i, k), |{j : 〈j, k〉 0 ei}| ≤ 2.

Proof. It is easy to see from the way intervals are added to and deleted from
G that only one demand is placed on a green segment, that is, demands do not
overlap over green segments. Thus, it follows that overlaps can only take place
over blue segments (as no demands are placed over red segments).

Consider such a segment [l, r] in row k. Among the demands that are placed
over this segment, there can be at most one demand that contains H [k, l−1], and
at most one demand that contains H [k, r+1] — that is because both H [k, l−1]
and H [k, r+ 1] are non-blue and thus can not have overlapping demands placed
on them. By placement rules [3(b)i.A.] and [3(b)i.B.], no demand is contained
within a blue segment. Thus, no more than two demands can be placed over [l, r]
in row k.

We next show that Phase 2 outputs a valid solution.

Lemma 6. Phase 2 (Figure 2) produces a valid packing of D in the set of FD.

Proof. Consider a demand di = [li, ri]. Let di be placed in row j where j ∈
[(h− 1)μ, hμ) for some j and h — that is, 〈i, j〉 ∈ PD.

First of all, let us verify that di is assigned a fiber interval in Phase 2. Consider
the hth iteration of the for loop (Figure 2) in Phase 2. At Step 3(a), an interval
I 0 [li, ri] would indeed be created, except if c[u] = red for some u ∈ [li, ri]. Is

Approximation Algorithms for Wavelength Assignment 159

that possible? For that to be the case, there must exist some j′ ∈ [(h− 1)μ, hμ)
such that Hj′,u = red.

Recall how certain elements of H are colored red at Step 2 in Phase 1 (Figure
1). If Hj′,u is red, then Hv,u is red for all v ≤ LmaxD − LD(u), and it is not red
for any other v. Since LmaxD − LD(u) is a multiple of μ (we have assumed the
load at any link to be a multiple of μ), it follows that Hv,u is red either for all
v ∈ [(h− 1)μ, hμ), or for none of those values of v. In the latter case, the desired
fiber interval I is indeed created; while the former case is easy to rule out, since
it implies that Hj,u is red as well, which is not possible given that 〈i, j〉 ∈ PD
and u ∈ [li, ri] (no di can be placed over a red interval in Phase 1).

Note that demand di is assigned wavelength j − (h − 1)μ + 1, and one of
the fibers f1(I) and f2(I). It remains to be verified that no other demand is
assigned the same wavelength and the same fiber. We do this by pointing out
that the set of demands that have been assigned wavelength j− (h− 1)μ+ 1 on
f1(I) or f2(I) is exactly the set of demands dk for which 〈k, j〉 ∈ PD. This set
of demands has been characterized by Lemma 5– any given link is contained in
no more than two of these demands. This set of demand can be thought of as a
collection of line intervals. Packing them into f1(I) and f2(I) without conflict is
akin to 2-coloring the corresponding interval graph (whose clique number is 2).
It is well-known and easy to see that a legal 2-coloring can be obtained simply
by scanning the intervals left-to-right, and greedily assigning them one of two
colors. Note that this is precisely what Step 3(b)ii of Phase 2 (Figure 2) attempts
to do.

Let L be defined as
∑

n

i=1
LD(i)

μ . For any set F of fiber intervals, let LF be
the total length of fiber used in F .

The following lemma shows that FD is a pretty good solution.

Lemma 7. LFD = 2L.

Proof. Let us denote a fiber interval f by [lf , rf], and for any link ei, let LFD(i) =
|{f ∈ FD : i ∈ [lf , rf]}|. We will prove a stronger claim– for all ei, LFD(i) =
2LD(i)

μ . The lemma follows by summing over all links.
Consider Step 3 of Phase 2 (Figure 2), where fiber intervals are created in

pairs (f1(I) and f2(I)). This step is repeated in the LmaxD /μ iterations of the
for loop. A link ei will not be contained in these fiber intervals for iterations
1, 2, · · · , L

max
D −LD(i)

μ , and included in both intervals of a pair (f1(I), f2(I)) in all
subsequent iterations. This is because Hv,i is red for all v ≤ LmaxD − LD(i), and
not red for any other v, as we saw in the proof of Lemma 6. This implies that
during the first Lmax

D −LD(i)
μ iterations, c[i] is red, and thus the fiber intervals

created do not include link ei. In other words, link ei is contained in exactly
2LD(i)

μ fiber intervals.
Clearly, L is a trivial lower bound on the length of the optimal set of fiber

intervals for D. Thus, we have the following result.

Theorem 1. Simple algorithm is a 2-approximation algorithm for the FIBER
MINIMIZATION problem.

160 Vijay Kumar and Atri Rudra

3 An Approximation Scheme

In this section we employ the boxing technique of Buchsbaum et al. [4] to the
FIBER MINIMIZATION problem. The application of a result of [4] yields an
approximation scheme for our problem. Let us first briefly describe boxing, which
is applied in [4] to the Dynamic Storage Allocation problem. Let Z be a set of
jobs, where each job i is a triple of start time li, end time ri and height hi. To
box Z means placing the jobs in a box b starting from time lb = min{lj : j ∈ Z},
ending at time rb = max{rj : j ∈ Z} and of height hb ≥

∑
j∈Z hj. A boxing of Z

into a set B of boxes is a partition of Z into |B| subsets, each of which is then
boxed into a distinct b ∈ B. At any time t, let LZ(t) denote

∑
j∈Z:lj≤t≤rj

hj ,
and let LB(t) =

∑
b∈B:lb≤t≤rb

hb.
We will be working with jobs of unit height, for which the algorithm in

Section 2.1 of [4] comes with the following performance guarantee:

Theorem 2. [4] Given a set Z of jobs, each of height 1, an integer box-height
parameter H, and a sufficiently small positive ε, there exists a set B of boxes,
each of height H, and a boxing of Z into B such that for all time t:
LB(t) ≤ (1 + 4ε)LZ(t) + O(H logH

ε2 log 1
ε).

The key insight here is that each demand in the FIBER MINIMIZATION
problem can be viewed as a job of unit height, and packing of demands into
fiber intervals is analogous to the boxing of a collection of jobs. This leads us
to the following bound, where LF (t) denotes as before the number of fibers in
F containing the link et and LD(t) denotes the number of demands in D using
link et.

Lemma 8. Given a set D of demands and a sufficiently small positive ε, there
exists a set of fiber intervals F and a packing of the demands of D into F such
that for all links et:
LF (t) ≤ (1 + 4ε)LD(t)

μ + O(log μ
ε2 log 1

ε).

Proof. A straightforward reduction maps an instance D of the FIBER MINI-
MIZATION problem to an instance of boxing. Corresponding to every demand
[l, r] in D, let there be a job with a start time of l − 1 and end time of r. Each
link ei is mapped to the time interval [i− 1, i], and fiber intervals of wavelength
μ = H map to boxes of height H = μ.

Consider the boxing algorithm in Section 2.1 of [4]. As observed above, a
demand [l, r] in D corresponds to a job (l − 1, r) in the DSA setting. Further
note that a box of height μ in the DSA setting corresponds to a fiber interval.
The set of fiber intervals F and set of demands D map directly to the set B
of boxes and set Z of jobs, respectively, in the boxing instance. Observe that
LD(t) = LZ(t) and LF (t) = LB(t)

μ .
The lemma follows directly from an application of Theorem 2 to the boxing

instance Z with H = μ.

Noting that LF =
∑n

i=1 LF (i) is the total length of fiber used by the algo-

rithm, and LD =
∑

n

i=1
LD(i)

μ , we have

Approximation Algorithms for Wavelength Assignment 161

Theorem 3. LF ≤ (1+4ε)LD +O(n) for sufficiently small positive constant ε.

Proof. Using Lemma 8 and summing over all links. The last term on the right
hand side in Lemma 8 is a constant, which leads to the O(n) upon summation.

As in Section 2, we observe that for F ∗, the optimal set of fiber intervals,
LF∗ ≥ LD. Thus, algorithm of [4] has a competitive ratio arbitrarily close to 1
provided LD = Ω(n).

Next, we look at the O(n) term in Theorem 3 more carefully.

3.1 A Lower Bound

It is easy to see that the O(n) additive term in the statement of Theorem 3
cannot be done away with for any approximation scheme. Consider the set Dbad

of demands over 2n+ 1 links. Dbad contains one copy of demand [1, 2n+ 1], and
μ− 1 copies each of demands [1, n + 1] and [n + 1, 2n+ 1].

Clearly, LDbad
≤ 2n + 2 while LF∗ , the value of the optimal solution, is

3n + 2. That is, there can be no positive constant δ < 1
2 such that LF∗ <

(1 + δ)LDbad
+ o(n) for all n.

4 FIBER MINIMIZATION in a Ring

Next, we look at what is perhaps the most natural generalization of the FIBER
MINIMIZATION problem. Ring topologies are very commonly encountered and
widely studied in optical routing literature. Consider a ring of n links where
each demand dj in the demand set D is an arc [lj, rj] which requires links
elj , elj+1mod(n), · · · , erj . Fiber intervals are now arcs each of which can support μ
different wavelengths. The goal is to find the set of fiber arcs with the minimum
total length.

The straightforward technique of partitioning an arc coloring problem into
two interval coloring problems and taking the union of the two solutions would
seem to directly obtain an approximation ratio of twice of that of the approx-
imation ratio for the problem on a line system (that is, a ratio of four in this
case). However, a small tweak gives a (2 + ε)-approximation ratio algorithm
with two invocations of the Simple algorithm of Figures 1 and 2. Arbitrar-
ily pick a link ei and consider the set of demands using link ei, Di = {dj ∈
D : i ∈ {lj, lj + 1mod(n), · · · , rj}}. Now run the Simple algorithm on both
Di and D − Di to get sets of fiber intervals (arcs) FDi and FD−Di . Define
FD = FDi ∪ FD−Di . Due to (possible) rounding3 “errors” we now have for each
link ei, LFD(i) ≤ 2LD(i) + 1. Thus we have:

Theorem 4. The combined algorithm gives LFD ≤ 2LF∗
D

+ n, where F ∗D is the
optimal set of fibers arcs for D.
3 For each arc ei at most 2 fiber intervals containing ei from the two solutions can be

merged in the solution for the original problem.

162 Vijay Kumar and Atri Rudra

Theorem 4 implies that if LF∗
D
≥ 1

εn, then the combined algorithm achieves
an approximation ratio of 2 + ε.

The ideas developed in the paper so far can be applied to the related problem
of PACKING INTERVALS IN INTERVALS [10].

5 PACKING INTERVALS IN INTERVALS

Winkler and Zhang also introduced the PACKING INTERVALS IN INTER-
VALS problem in [10]. Here we are given a set of demands D and a set of fiber
intervals F , and the goal is to determine if D can be packed in F . Consider
the optimization version of this decision problem. What is the smallest value of
μ such that F can accommodate D? Our techniques imply a 2-approximation
algorithm for this problem in the following sense:

Theorem 5. If D can be packed in F using no more than μ
2 wavelengths in each

fiber, then there exists an algorithm which can pack D in F utilizing no more
than μ wavelengths in each fiber.

Proof (Sketch): A small modification to the Simple algorithm is required. Let
F be the set of fiber intervals and for each edge ei define LD(i) = μ

2 |{f : F 0
f = [lf , rf] and i ∈ [lf , rf]}|. As in Section 2, LmaxD is defined as maxi LD(i).
Run Step 1 and 2 of Figure 1 with these values of LD(i) and LmaxD . Run Step 3
of Figure 1 with the given set of demands D. Execute Phase 2 (Figure 2) using
μ
2 in place of μ, and in the output FD merge each (f1(I),f2(I)) pair.

Using arguments similar to ones used to prove Lemma 4, one can show that
if D can be packed in F using no more than μ

2 wavelengths in each fiber then
J is empty after the execution of Phase 1 . Similarly, analogues of Lemmas 5, 6
and 7 can be proved if the assumption of the theorem statement is valid. The
definition of LD(i) and the fact that the constructed FD is actually F completes
the proof. A detailed proof is omitted due to space restrictions.

6 Conclusions

We presented a clean 2-approximation algorithm for the FIBER MINIMIZA-
TION problem on a linesystem. We also apply techniques from [4] to give an
approximation scheme for this problem. Based upon our 2-approximation al-
gorithm, we obtain good approximations for the related problems of FIBER
MINIMIZATION on a ring and PACKING INTERVALS IN INTERVALS.

Interesting open problems include investigating the FIBER MINIMIZATION
problem on other network topologies, particularly those common in optical fiber
networks, such as trees and meshes.

References

1. M. Alicherry and R. Bhatia. Line system design and a generalized coloring problem.
In Proc. of ESA 03, 2003.

Approximation Algorithms for Wavelength Assignment 163

2. M. Andrews and L. Zhang. Wavelength assignment in optical networks with fixed
fiber capacity. In Proc. of ICALP, 2004.

3. M. Andrews and L. Zhang. Bounds on fiber minimization in optical networks. In
Proc. of IEEE INFOCOM 05, 2005.

4. A. Buchsbaum, H. Karloff, C. Kenyon, N. Reingold, and M. Thorup. Opt versus
load in dynamic storage allocation. In Proc. of STOC 03, 2003.

5. C. Chekuri, M. Mydlarz, and F. B. Shepard. Multicommodity demand flow in a
tree. In Proc. of ICALP 03, 2003.

6. T. Erlebach, A. Pagourtzis, K. Potika, and S. Stefanakos. Resource allocation
problems in multifiber WDM tree networks. In Proc. of the 29th Workshop on
Graph Theoretic Concepts in Computer Science, pages 128–229, 2003.

7. J. Gergov. Algorithms for compile-time memory optimization. In Proc. of 10th
SODA, 1999.

8. R. Klasing. Methods and problems of wavelength-routing in all-optical networks.
In Tech rep. CS-RR-348, Department of Computer Science, University of Warwick,
1998.

9. C. Nomikos, A. Pagourtzis, and S. Zachos. Routing and path-multicoloring. In-
formation Processing Letters, 2001.

10. P. Winkler and L. Zhang. Wavelength assignment and generalized interval graph
coloring. In Proc. of SODA 03, 2003.

The Set Cover with Pairs Problem�

Refael Hassin and Danny Segev

School of Mathematical Sciences,
Tel-Aviv University, Tel-Aviv 69978, Israel
{hassin,segevd}@post.tau.ac.il

Abstract. We consider a generalization of the set cover problem, in which el-
ements are covered by pairs of objects, and we are required to find a minimum
cost subset of objects that induces a collection of pairs covering all elements.
Formally, let U be a ground set of elements and let S be a set of objects, where
each object i has a non-negative cost wi. For every {i, j} ⊆ S , let C(i, j) be the
collection of elements in U covered by the pair {i, j}. The set cover with pairs
problem asks to find a subset A ⊆ S such that

⋃
{i,j}⊆A C(i, j) = U and such

that
∑

i∈A wi is minimized.
In addition to studying this general problem, we are also concerned with develop-
ing polynomial time approximation algorithms for interesting special cases. The
problems we consider in this framework arise in the context of domination in
metric spaces and separation of point sets.

1 Introduction

Given a ground set U and a collection S of subsets of U , where each subset is associated
with a non-negative cost, the set cover problem asks to find a minimum cost subcollec-
tion of S that covers all elements. An equivalent formulation is obtained by introducing
a covering function C : S → 2U , that specifies for each member of S the subset of U
it covers. Set cover now becomes the problem of finding a subset A ⊆ S of minimum
cost such that

⋃
i∈A C(i) = U .

We consider a generalization of this problem, in which the covering function C
is defined for pairs of members of S, rather than for single members. Formally, let
U = {e1, . . . , en} be a ground set of elements and let S = {1, . . . ,m} be a set of
objects, where each object i ∈ S has a non-negative cost wi. For every {i, j} ⊆ S, let
C(i, j) be the collection of elements in U covered by the pair {i, j}. The objective of
the set cover with pairs problem (SCP) is to find a subset A ⊆ S such that C(A) =⋃
{i,j}⊆A C(i, j) = U and such that w(A) =

∑
i∈A wi is minimized. We refer to the

special case in which each object has a unit weight as the cardinality SCP problem.
SCP is indeed a generalization of the set cover problem. A set cover instance with

U = {e1, . . . , en} and S1, . . . , Sm ⊆ U can be interpreted as an SCP instance by
defining C(i, j) = Si ∪ Sj for every i 	= j. Therefore, hardness results regarding set
cover extend to SCP, and in particular the latter problem cannot be approximated within
a ratio of (1− ε) lnn for any ε > 0, unless NP ⊂ TIME(nO(log log n)) [4].

� Due to space limitations, most proofs are omitted from this extended abstract. We refer the
reader to the full version of this paper [8], in which all missing proofs are provided.

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 164–176, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Set Cover with Pairs Problem 165

1.1 Applications

In addition to studying the SCP problem, we are concerned with developing polynomial
time approximation algorithms for interesting special cases, that arise in the context of
domination in metric spaces and separation of point sets.

Remote Dominating Set. Let M = (V, d) be a finite metric space, and let r1 ≤ r2 be
two covering radii. We refer to the elements of V = {v1, . . . , vn} as points or vertices,
and assume that each v ∈ V is associated with a non-negative cost cv . A subset of
points S ⊆ V is called a remote dominating set if for every v ∈ V there is a point
u ∈ S within distance r1 of v, or a pair of points u1 	= u2 ∈ S within distance r2 of
v each. The remote dominating set problem (RDS) asks to find a minimum cost remote
dominating set in M .

RDS can be interpreted as a special case of SCP: The set of elements to cover is
V , which is also the set of covering objects, and the collection of points covered by
u 	= v ∈ V is

C(u, v) = {w ∈ V : min {d(u,w), d(v, w)} ≤ r1 or max {d(u,w), d(v, w)} ≤ r2} .

When d(u, v) ∈ {1, 2} for every u 	= v and r1 = r2 = 1, RDS reduces to the standard
dominating set problem. Therefore, hardness results regarding set cover extend to RDS,
as the dominating set problem is equivalent to set cover with regard to inapproximabil-
ity.

We also consider two special cases of this problem, for which significantly better
approximation algorithms are possible. In the cardinality RDS on a tree problem, the
metric d is generated by a tree T = (V,E) with unit length edges, and the covering
radii are r1 = 1 and r2 = 2. In the cardinality Euclidean RDS problem, V is a set of
points in the plane, and d(u, v) = ‖u− v‖2.

Group Cut on a Path. Let P = (V,E) be a path, in which each edge e ∈ E has
a non-negative cost ce, and let G1, . . . , Gk be k groups, where each group is a set of
at least two vertices. A group Gi is separated by the set of edges F ⊆ E if there is
a representative vi ∈ Gi such that no vertex in Gi \ {vi} belongs to the connected
component of P −F that contains vi. The objective of the group cut on a path problem
(GCP) is to find a minimum cost set of edges that separates all groups.

Given a GCP instance we may assume without loss of generality that any optimal
solution contains at least two edges. This assumption implies that GCP is a special case
of SCP: The elements to cover are the groups G1, . . . , Gk, and the covering objects are
the edges. The groups covered by pairs of edges are defined as follows. Let v1, . . . , vr
be the left-to-right order of the vertices in Gi, and let [vi, vj] be the set of edges on the
subpath connecting vi and vj . The group Gi is covered by a pair of edges e′ 	= e′′ ∈ E
if {e′, e′′}∩ ([v1, v2]∪ [vr−1, vr]) 	= ∅ or if e′ ∈ [vt−1, vt] and e′′ ∈ [vt, vt+1] for some
2 ≤ t ≤ r − 1.

166 Refael Hassin and Danny Segev

1.2 Our Results

In Section 2 we study a natural extension of the greedy set cover algorithm [1,11,13] to
approximate SCP. We define a class of functions, called feasible maps, that assign the
elements in U to pairs of objects in the optimal solution, and characterize them by max
and mean properties. We then present a conditional analysis of the greedy algorithm,
based on the existence of such maps. Specifically, we prove an approximation guarantee
of αHn for the weighted and cardinality versions of the problem, given the existence of
feasible maps whose max and mean are at most α, respectively. We also prove that the
unconditional approximation ratio for cardinality SCP is O(

√
n logn).

We continue the discussion with indications for the hardness of SCP. First, although
the set cover problem becomes trivial when each subset contains a single element, we
show that the corresponding special case of SCP, where each pair of objects covers at
most one element, is at least as hard to approximate as set cover. Second, the analysis
of the greedy set cover algorithm in [13] shows that the integrality gap of the natural
LP-relaxation of set cover is O(log n). However, we demonstrate that this property does
not extend to SCP, for which the integrality gap is Ω(n).

As a first attempt at attacking the RDS problem, one might consider using the
greedy SCP algorithm. However, we show in Section 3 that the approximation guar-
antee of this algorithm is Ω(

√
n), mainly due to the observation that there are instances

of RDS in which non-trivial feasible maps do not exist. Nevertheless, we provide a
2Hn-approximation algorithm that constructs a remote dominating set by approximat-
ing two dependent set cover problems.

In Section 4 we proceed to the cardinality RDS problem on a tree T = (V,E).
Although this problem can be solved to optimality in O(|V |3) time using dynamic
programming techniques [8], we demonstrate that it can be well approximated much
faster. We first show how to map a subset of “problematic” vertices of T to a small
collection of pairs in the optimal solution. We then exploit the special structure of this
map to present a linear time 2-approximation algorithm, and illustrate that in general
graphs this algorithm does not guarantee a non-trivial approximation ratio.

In Section 5 we present a polynomial time approximation scheme for the Euclidean
RDS problem. Although we follow the general framework of Hochbaum and Maass for
covering and packing problems in Euclidean spaces [10], our analysis is more involved.
This is due to the use of two covering radii and the restriction that the set of points we
choose must be a subset of V , instead of any set of points in the plane.

Finally, in Section 6 we discuss the hardness of approximating GCP, and in par-
ticular prove that this problem is as hard to approximate as set cover. Moreover, we
identify the exact point at which GCP becomes NP-hard, by showing that this problem
is polynomial time solvable when the cardinality of each group is at most 3, but as hard
to approximate as vertex cover when the bound on cardinality is 4. On the positive side,
we prove the existence of a feasible map whose max is at most 2. This result enables us
to show that the approximation ratio of the greedy SCP algorithm for this special case
is 2Hk, where k is the number of groups to be separated.

The Set Cover with Pairs Problem 167

2 Set Cover with Pairs

In this section we suggest a natural extension of the greedy set cover algorithm to ap-
proximate SCP, and present a conditional analysis based on the existence of a map-
ping of the elements in U to pairs of objects in the optimal solution, that satisfies cer-
tain properties. We then make use of these results to prove an approximation ratio of
O(
√
n logn) for cardinality SCP. We also prove that the special case in which each pair

of objects covers at most one element is at least as hard to approximate as set cover, and
demonstrate that the integrality gap of the natural LP-relaxation of SCP is Ω(n).

2.1 A Greedy Algorithm

The greedy SCP algorithm iteratively picks the most cost-effective object or pair of
objects until all elements are covered, where cost-effectiveness is defined as the ratio
between the objects costs and the number of newly covered elements. Let GR be the set
of objects already picked when an iteration begins, where initially GR = ∅. We define:

1. For every i ∈ S \GR, the current covering ratio of i is

wi
|C(GR ∪ {i})| − |C(GR)| .

2. For every i 	= j ∈ S \GR, the current covering ratio of {i, j} is

wi + wj
|C(GR ∪ {i, j})| − |C(GR)| .

In each iteration we augment GR by adding a single object i ∈ S \ GR or a pair of
objects i 	= j ∈ S \GR, whichever attains the minimum covering ratio. The algorithm
terminates when U is completely covered.

2.2 Conditional Analysis

Let F ⊆ S be a feasible solution, that is, a set of objects that covers the elements of
U , and let P (F) = {{i, j} ⊆ F : i 	= j}. A function M : U → P (F) is a feasible
map with respect to F if the pair of objects M(e) covers e, for every e ∈ U . Given a
feasible map M, for every {i, j} ∈ P (F) we use IM(i, j) to indicate whether at least
one element is mapped to {i, j}. We define:

max(M, F) = max
i∈F

∑
j �=i

IM(i, j) , mean(M, F) =
1
|F |

∑
i∈F

∑
j �=i

IM(i, j) .

In other words, max(M, F) ≤ α if each object i ∈ F belongs to at most α pairs
to which elements are mapped. Similarly, mean(M, F) ≤ α if the average number
of pairs, to which elements are mapped, an object belongs to is at most α. Clearly,
mean(M, F) ≤ max(M, F).

In Lemma 1 we show that given the existence of a feasible map M with respect to
an optimal solution OPT, for which max(M,OPT) ≤ α, the greedy SCP algorithm

168 Refael Hassin and Danny Segev

constructs a solution whose cost is within factor αHn of optimum. In Lemma 2 we
show that to obtain an approximation guarantee of αHn for cardinality SCP, the weaker
condition of mean(M,OPT) ≤ α is sufficient.

Lemma 1. If there exists an optimal solution OPT and a feasible map M such that
max(M,OPT) ≤ α, then w(GR) ≤ αHn · w(OPT).

Proof. For every {i, j} ∈ P (OPT), let M−1(i, j) = {e ∈ U : M(e) = {i, j}}. By
definition ofM, {M−1(i, j) : {i, j} ∈ P (OPT)} is a partition of U . In each iteration
of the algorithm, we distribute the cost of the newly picked object or pair of objects
among the new covered elements: If x new elements are covered, each such element
is charged wi

x or wi+wj

x , depending on whether a single object or a pair of objects are
picked.

LetM−1(i, j) = {e′1, . . . , e′k}, where the elements ofM−1(i, j) are indexed by the
order they were first covered by the greedy algorithm, breaking ties arbitrarily. Consider
the iteration in which e′l was first covered. One possibility of the greedy algorithm was
to pick {i, j} (or if one of i and j was already picked, then take the other one), covering
the elements e′l, . . . , e

′
k, and possibly other elements as well. Therefore, each element

that was covered in this iteration is charged at most wi+wj

k−l+1 , and the total cost charged
to the elements ofM−1(i, j) satisfies

charge(M−1(i, j)) =
k∑
l=1

charge(e′l) ≤
k∑
l=1

wi + wj
k − l + 1

≤ (wi + wj)Hn .

Since w(GR) is charged to e1, . . . , en, we have

w(GR) =
n∑
j=1

charge(ej)

=
∑

{i,j}∈P (OPT)

charge(M−1(i, j))

≤ Hn

∑
{i,j}∈P (OPT)

(wi + wj)IM(i, j)

= Hn

∑
i∈OPT

wi
∑
j �=i

IM(i, j)

≤ αHn

∑
i∈OPT

wi

= αHn · w(OPT) ,

where the last inequality holds since
∑

j �=i IM(i, j) ≤ max(M,OPT) ≤ α for every
i ∈ OPT. &'

Lemma 2. If there exists an optimal solution OPT for cardinality SCP and a feasible
mapM such that mean(M,OPT) ≤ α, then |GR| ≤ αHn · |OPT|.

The Set Cover with Pairs Problem 169

2.3 Approximation Ratio for Cardinality SCP

The conditional analysis in Lemma 2 is based on the existence of a feasible mapMwith
respect to the optimal solution with small mean(M,OPT). In Lemma 3 we demon-
strate that there are instances of cardinality SCP in which a non-trivial map does not
exist, and show that the approximation ratio of the greedy SCP algorithm might be
Ω(
√
n). However, in Theorem 4 we prove that the cardinality of the solution con-

structed by the greedy algorithm is within factor
√

2nHn of the minimum possible.

Lemma 3. The approximation guarantee of the greedy algorithm for cardinality SCP
is Ω(

√
n).

Theorem 4. |GR| ≤
√

2nHn · |OPT|.

Proof. We first observe that |GR| ≤ 2n, since in each iteration of the algorithm at least
one element is covered using at most two objects. In addition, any feasible mapM with
respect to OPT certainly satisfies mean(M,OPT) ≤ |OPT|, since

mean(M,OPT) ≤ max(M,OPT) ≤ |OPT| .

By Lemma 2 we have |GR| ≤ Hn · |OPT|2, and it follows that

|GR| ≤ min
{
2n,Hn · |OPT|2

}
≤
(
2n
) 1

2
(
Hn · |OPT|2

) 1
2 =

√
2nHn · |OPT| .

&'

2.4 The Hardness of SCP: Additional Indications

The Case |C(i, j)| ≤ 1. The set cover problem becomes trivial when each subset
contains a single element. However, in Theorem 5 we prove that SCP remains at least as
hard to approximate as set cover when each pair of objects covers at most one element.
We refer to this special case as SCP1.

Theorem 5. For any fixed ε > 0, a polynomial time α-approximation algorithm for
SCP1 would imply a polynomial time (1 + ε)α-approximation algorithm for set cover.

Proof. Given a set cover instance I , with a ground set U = {e1, . . . , en} and a col-
lection S = {S1, . . . , Sm} of subsets of U , we construct an instance ρ(I) of SCP1 as
follows.

1. Let k =
⌈
n
ε

⌉
.

2. The set of elements is
⋃k
t=1{et1, . . . , etn}.

3. The set of objects is (
⋃k
t=1{St1, . . . , Stm}) ∪ {y1, . . . , yn}.

4. For t = 1, . . . , k, i = 1, . . . ,m and j = 1, . . . , n, the pair {Sti , yj} covers etj if
ej ∈ Si.

5. Other pairs do not cover any element.

170 Refael Hassin and Danny Segev

Let S∗ ⊆ S be a minimum cardinality set cover in I . Given a polynomial time α-
approximation algorithm for SCP1, we show how to find in polynomial time a set cover
with cardinality at most (1 + ε)α|S∗|, for any fixed ε > 0.

The construction of ρ(I) guarantees that the collection of objects {Sti , y1, . . . , yn}
covers the set of elements {etj : ej ∈ Si}, for every t = 1, . . . , k. Therefore, since S∗

is a set cover in I , the objects (
⋃k
t=1{Sti : Si ∈ S∗})∪ {y1, . . . , yn} cover all elements

of ρ(I). It follows that OPT(ρ(I)) ≤ k|S∗|+ n, and we can find in polynomial time a
feasible solution S̃ to ρ(I) such that |S̃| ≤ α(k|S∗|+n). Let t′ be the index t for which
|S̃ ∩ {St1, . . . , Stm}| is minimized. Then S′ = {Si : St

′
i ∈ S̃ ∩ {St

′
1 , . . . , S

t′
m}} is a set

cover in I with cardinality

|S′| = min
t=1,...,k

|S̃ ∩ {St1, . . . , Stm}| ≤
|S̃|
k
≤ α(k|S∗|+ n)

k
≤ (1 + ε)α|S∗| .

&'

Integrality Gap of LP-Relaxation. In contrast with the set cover problem, for which
the integrality gap of the natural LP-relaxation is O(log n) [13], we show in Theorem 6
that the integrality gap of the corresponding relaxation of SCP is Ω(n).

SCP can be formulated as an integer program by:

minimize
∑
i∈S

wixi

subject to
∑

{i,j}:e∈C(i,j)
y{i,j} ≥ 1 ∀ e ∈ U (2.1)

y{i,j} ≤ xi ∀ i 	= j ∈ S (2.2)

xi, y{i,j} ∈ {0, 1} ∀ i 	= j ∈ S (2.3)

The variable xi indicates whether the object i is chosen for the cover, whereas y{i,j}
indicates whether both i and j are chosen. Constraint (2.1) guarantees that for each
element e ∈ U we pick at least one pair of objects that covers it. Constraint (2.2)
ensures that a pair of objects cannot cover any element unless we indeed pick both
objects. The LP-relaxation of this integer program, (LP), is obtained by replacing the
integrality constraint (2.3) with xi ≥ 0 and y{i,j} ≥ 0.

Theorem 6. The integrality gap of (LP) is Ω(n), even for cardinality SCP.

Proof. Consider the instance of cardinality SCP with U = {e1, . . . , en} and S =
{1, . . . , 2n}. The elements covered by pairs of objects in S are:

1. C(i, n + 1) = C(i, n + 2) = · · · = C(i, 2n) = {ei}, i = 1, . . . , n.
2. Other pairs do not cover any element.

Since any integral solution must pick the objects 1, . . . , n and at least one of the
objects n + 1, . . . , 2n, |OPT| ≥ n + 1. We claim that the fractional solution x′i = 1

n
and y′{i,j} = 1

n for every i 	= j is feasible for (LP). Clearly, this solution is non-negative

The Set Cover with Pairs Problem 171

and satisfies constraint (2.2). In addition,
∑
{i,j}:e∈C(i,j) y

′
{i,j} = 1 for every e ∈ U ,

since the left-hand-side contains exactly n summands, each of value 1
n . It follows that

the cost of an optimal fractional solution is at most 2, and the integrality gap of (LP) is
at least n+1

2 . &'

3 Remote Dominating Set

In the following we show that there are instances of the problem in which a non-trivial
map does not exist, and demonstrate that the greedy algorithm might construct a solu-
tion for RDS whose cost is Ω(

√
n) times the optimum. On the positive side however, we

provide a 2Hn-approximation algorithm for RDS that constructs a remote dominating
set by approximating two dependent set cover problems.

3.1 The Greedy SCP Algorithm for RDS

According to our interpretation of the RDS problem as a special case of SCP, the greedy
algorithm picks in each iteration a single point or a pair of points, whichever attains the
minimum ratio of cost to number of newly covered points. By modifying the construc-
tion in Lemma 3, we prove in Lemma 7 that the approximation ratio of this algorithm
is Ω(

√
n).

Lemma 7. The approximation guarantee of the greedy algorithm for RDS is Ω(
√
n).

3.2 A 2Hn-Approximation Algorithm

Despite these negative results regarding the performance of the greedy SCP algorithm
for the RDS problem, we show that this problem can still be approximated to within a
logarithmic factor. Our algorithm constructs a remote dominating set by approximating
two dependent set cover problems, (SC1) and (SC2).

For v ∈ V , let Nv = {u ∈ V : d(v, u) ≤ r2}. Using the greedy set cover algorithm,
we construct an RDS in two phases:

1. We first approximate (SC1): The set of elements to cover is V ; the covering sets
are S = {Nv : v ∈ V }; the cost of Nv is cv . Let S1 be the cover we obtain. V can
now be partitioned into two sets: V1, points within distance r1 of some point in S1

or within distance r2 of two points in S1, and V2 = V \ V1.
2. We then approximate (SC2): The set of elements to cover is V2; the covering sets

are S = {Nv : v ∈ V \ S1}; the cost of Nv is cv . Let S2 be the cover we obtain.

Theorem 8. Let OPT be a minimum cost RDS. Then

1. S1 ∪ S2 is an RDS.
2. c(S1 ∪ S2) ≤ 2Hn · c(OPT).

172 Refael Hassin and Danny Segev

4 Cardinality RDS on a Tree

In this section we consider the minimum cardinality RDS problem on a tree T = (V,E)
with unit length edges and covering radii r1 = 1 and r2 = 2. It would be convenient to
work directly with the tree representation of the problem, instead of working with the
related metric space.

We constructively show that a minimum cardinality dominating set in T is a 2-
approximation, by exploiting special properties of a partial map we find. We also prove
that this bound is tight, and demonstrate that in general graphs a minimum cardinality
dominating set does not guarantee a non-trivial approximation ratio.

4.1 The Existence of Acyclic Mapping Graphs

Let S be an RDS that contains at least two vertices. We denote by L ⊆ V the set of
vertices that are not covered by a single vertex in S. In other words, v ∈ L if there is no
vertex in S within distance 1 of v. Given a partial map ML : L → P (S), its mapping
graph G(ML) is defined by:

1. The set of vertices of G(ML) is S.
2. For u 	= v ∈ S, (u, v) is an edge of G(ML) if there is a vertex w ∈ L such that
ML(w) = {u, v}.

Lemma 9. There is a partial map ML : L→ P (S) whose mapping graph G(ML) is
acyclic.

4.2 A 2-Approximation Algorithm

Based on the existence of a partial map whose mapping graph is acyclic, in Lemma 10
we constructively show that for every remote dominating set S in T there is a dominat-
ing set of cardinality at most 2|S| − 1.

Lemma 10. Let S be an RDS in T . Then there is a dominating set of cardinality at
most 2|S| − 1.

A minimum cardinality dominating set D∗ in T can be found in linear time [2], and
in the special case we consider, this set is also an RDS. Lemma 10 proves, in particular,
the existence of a dominating set whose cardinality is at most 2|OPT|−1, where OPT
is a minimum cardinality RDS in T . We have as a conclusion the following theorem.

Theorem 11. |D∗| ≤ 2|OPT| − 1.

In Lemma 12 we show that the bound given in Theorem 11 is tight, by providing
an instance with |D∗| = 2|OPT| − 1. We also demonstrate that in general graphs a
minimum cardinality dominating set does not guarantee a non-trivial approximation
ratio.

Lemma 12. There are instances in which |D∗| = 2|OPT| − 1. In addition, when the
underlying graph is not restricted to be a tree, there are instances with |OPT| = O(1)
and |D∗| = Ω(n).

The Set Cover with Pairs Problem 173

5 Euclidean RDS

In this section we present a polynomial time approximation scheme for the Euclidean
RDS problem, following the general framework suggested by Hochbaum and Maass
for covering and packing problems in Euclidean spaces [10]. The unifying idea behind
their shifting strategy is to repeatedly apply a simple divide-and-conquer approach and
select the best solution we find.

To simplify the presentation, we denote by P = {p1, . . . , pn} the set of points to be
covered, and let D = r2. We also assume that P is bounded in a rectangle I , where the
length of the long edge of I is nD. Otherwise, we can partition P into sets for which
this property is satisfied, and separately use the algorithm for each set.

The Vertical Partitions. We divide I into pairwise disjoint vertical strips of width D.
Given a shifting parameter l, the partition V0 of I consists of strips of width lD. For
every i = 1, . . . , l − 1, let Vi be the partition of I obtained by shifting V0 to the right
over distance iD.

For each partition Vi we define a set of points OPT(Vi) as follows. For every strip
J in the partition Vi, let OPT(Vi, J) be a minimum cardinality set of points in P that
covers the points PJ , where PJ is the set of points in P located in the strip J . Then
OPT(Vi) =

⋃
J∈Vi

OPT(Vi, J). Clearly, OPT(Vi) is an RDS.

Lemma 13. Let OPT be a minimum cardinality Euclidean RDS, then

min
i=0,...,l−1

|OPT(Vi)| ≤
(

1 +
2
l

)
|OPT| .

The Horizontal Partitions. We are now concerned with the problem of finding a small
set of points in P that covers PJ , for a given strip J . We divide J into pairwise disjoint
horizontal strips of height D. The partition H0 of J consists of strips of height lD. For
every i = 1, . . . , l − 1, let Hi be the partition of J obtained by shifting H0 up over
distance iD.

For each partition Hi we define a set of points OPT(Hi) as follows. For every strip
R in the partition Hi, let OPT(Hi, R) be a minimum cardinality set of points in P
that covers the points PR, where PR is the set of points in P located in the strip R.
Then OPT(Hi) =

⋃
R∈Hi

OPT(Hi, R). Clearly, OPT(Hi) is a set of points in P that
covers PJ .

Lemma 14. Let OPTJ be a minimum cardinality set of points in P that covers PJ ,
then

min
i=0,...,l−1

|OPT(Hi)| ≤
(

1 +
2
l

)
|OPTJ | .

Optimal Solution in an lD × lD Square. Lemmas 13 and 14 show that in order
to obtain a polynomial time approximation scheme for Euclidean RDS, it is sufficient
to optimally solve the following problem: Given R, an lD × lD square in I , find a
minimum cardinality set of points in P that covers PR. The next lemma allows us to
perform an exhaustive search for an optimal solution to this problem in time O(nO(l2)).

174 Refael Hassin and Danny Segev

Lemma 15. There is a set of points S ⊆ P , |S| = O(l2), that covers PR.

Theorem 16. There is a polynomial time approximation scheme for the Euclidean RDS
problem.

6 Group Cut on a Path

In this section we first discuss the hardness of approximating GCP, and prove that this
problem is as hard to approximate as set cover. We also identify the exact point at which
GCP becomes NP-hard. We then present a simple proof for the existence of a feasible
mapMwith respect to the optimal solution for which max(M,OPT) ≤ 2. This result,
combined with Lemma 1, enables us to show that the approximation ratio of the greedy
SCP algorithm for this special case is 2Hk.

6.1 Hardness Results

By describing an approximation preserving reduction, we prove in Theorem 17 that
GCP is as hard to approximate as set cover. A special case of this reduction also shows
that GCP is as hard to approximate as vertex cover even when the cardinality of each
group is at most 4. In addition, we prove in Lemma 18 that when the bound on cardi-
nality is 3, the problem is polynomial time solvable.

Theorem 17. A polynomial time approximation algorithm for the GCP problem with
factor α would imply a polynomial time approximation algorithm for the set cover
problem with the same factor.

Note that vertex cover is a special case of set cover in which each element belongs
to exactly two sets. Therefore, the proof of Theorem 17 can be modified to show that
GCP is as hard to approximate as vertex cover even when the cardinality of each group
is at most 4.

Lemma 18. GCP is polynomial time solvable when |Gi| ≤ 3 for every i = 1, . . . , k.

6.2 A Feasible Map with Small Max

Let F ⊆ E be any feasible solution, with |F | ≥ 2. In Lemma 19 we prove the existence
of a feasible mapM : {G1, . . . , Gk} → P (F) for which max(M, F) ≤ 2.

Lemma 19. There is a feasible mapM : {G1, . . . , Gk} → P (F) with

max(M, F) ≤ 2 .

Let OPT be a minimum cost set of edges that separates G1, . . . , Gk, and without
loss of generality |OPT| ≥ 2. The next theorem follows from Lemmas 1 and 19.

Theorem 20. The greedy SCP algorithm constructs a solution whose cost is at most
2Hk · c(OPT).

The Set Cover with Pairs Problem 175

7 Concluding Remarks

There is a huge gap between the upper bound for approximating the cardinality SCP
problem, that was established in Theorem 4, and the logarithmic lower bound that fol-
lows from the observation that SCP contains set cover as a special case. The first, and
probably the most challenging, open problem is to obtain either an improved hardness
result or an improved approximation algorithm. Another open problem in this context
is to provide a non-trivial algorithm for the general problem.

In addition, it would be interesting to study the seemingly simple special case, in
which each pair of objects covers at most one element. We proved that this problem is
at least as hard to approximate as set cover, but we do not know how to significantly
improve the approximation guarantee. Moreover, we consider this case to demonstrate
the main difficulty in approximating SCP, as it shows that the objective is to choose a
dense set of objects that covers all elements.

We suggest for future research the partial SCP problem, a variant of SCP in which
we are given an additional parameter k, and the objective is to cover at least k elements
with minimum cost. This problem is closely related to the dense k-subgraph problem,
that required to find in a given graph G = (V,E) a set of k vertices whose induced sub-
graph has maximum number of edges. This problem is NP-hard, and the currently best
approximation guarantee in general graphs is O(n−δ), for some constant δ < 1

3 , due
to Feige, Kortsarz and Peleg [5]. The next theorem relates these problems, and shows
that the approximation guarantee of dense k-subgraph can be improved by developing
an o(nδ/2)-approximation algorithm for partial SCP.

Theorem 21. A polynomial time α(k)-approximation algorithm for partial SCP would
imply a randomized polynomial time 1

α2(k2)(1+ε) -approximation algorithm for dense
k-subgraph, for any fixed ε > 0.

References

1. V. Chvátal. A greedy heuristic for the set covering problem. Mathematics of Operations
Research, 4:233–235, 1979.

2. E. J. Cockayne, S. E. Goodman, and S. T. Hedetniemi. A linear algorithm for the domination
number of a tree. Information Processing Letters, 4:41–44, 1975.

3. E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The
complexity of multiterminal cuts. SIAM Journal on Computing, 23:864–894, 1994.

4. U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM, 45:634–652,
1998.

5. U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem. Algorithmica, 29:410–
421, 2001.

6. N. Garg, V. V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms for
integral flow and multicut in trees. Algorithmica, 18:3–20, 1997.

7. S. Guha and S. Khuller. Approximation algorithms for connected dominating sets. Algorith-
mica, 20:374–387, 1998.

8. R. Hassin and D. Segev. The set cover with pairs problem, 2005.
http://www.math.tau.ac.il/∼segevd/Papers/SCP-Jour.pdf.

176 Refael Hassin and Danny Segev

9. R. Hassin and A. Tamir. Improved complexity bounds for location problems on the real line.
Operations Research Letters, 10:395–402, 1991.

10. D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing problems
in image processing and VLSI. Journal of the ACM, 32:130–136, 1985.

11. D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer
and System Sciences, 9:256–278, 1974.

12. F. T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms. Journal of the ACM, 46:787–832, 1999.

13. L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Mathematics,
13:383–390, 1975.

14. P. Slavı́k. Improved performance of the greedy algorithm for partial cover. Information
Processing Letters, 64:251–254, 1997.

Non-disclosure for Distributed Mobile Code

Ana Almeida Matos

INRIA Sophia Antipolis

Abstract. This paper addresses the issue of confidentiality and declas-
sification for global computing in a language-based security perspective.
The purpose is to deal with new forms of security leaks, which we call
migration leaks, introduced by code mobility. We present a generalization
of the non-disclosure policy [AB05] to networks, and a type and effect
system for enforcing it. We consider an imperative higher-order lambda-
calculus with concurrent threads and a flow declaration construct, en-
riched with a notion of domain and a standard migration primitive.

1 Introduction

Protecting confidentiality of data is a concern of particular relevance in a global
computing context. When information and programs move throughout networks,
they become exposed to users with different interests and responsibilities. This
motivates the search for practical mechanisms that enforce respect for confiden-
tiality of information, while minimizing the need to rely on mutual trust. Access
control is important, but it is not enough, since it is not concerned with how
information may flow between the different parts of a system. Surprisingly, very
little research has been done on the control of information flow in networks. In
fact, to the best of our knowledge, this work is the first to address the problem
in an imperative setting where mobility of resources plays an explicit role.

This paper is about ensuring confidentiality in networks. More specifically,
it is about controlling information flows between subjects that have been given
different security clearances, in the context of a distributed setting with code
mobility. Clearly, in such a setting, one cannot assume resources to be accessible
by all programs at all times. In fact, a network can be seen as a collection of
sites where conditions for computation to occur are not guaranteed by one site
alone. Could these failures be exploited as covert information flow channels? The
answer is Yes. New security leaks, that we call migration leaks, arise from the
fact that execution or suspension of programs now depend on the position of
resources over the network, which may in turn depend on secret information.

We take a language based approach [SM03], which means that we restrict
our concern to information leaks occurring within computations of programs of a
given language. These can be statically prevented by means of a type and effect
system [VSI96, LG88], thus allowing rejection of insecure programs before exe-
cution. As is standard, we attribute security levels to the objects of our language
(memory addresses), and have them organized into a lattice [Den76]. Since con-
fidentiality is the issue, these levels indicate to which subjects the contents of an

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 177–188, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

178 Ana Almeida Matos

object are allowed to be disclosed. Consequently, during computation, informa-
tion contained in objects of “high” security level (let us call them “high objects”)
should never influence objects of lower or incomparable level. This policy has
been widely studied and is commonly referred to as non-interference [GM82]. In
a more general setting, where the security lattice may vary within a program,
non-disclosure [AB05] can be used instead.

We consider a calculus for mobility where the notion of location of a program
and of a resource has an impact in computations: resources and programs are
distributed over computation sites – or domains – and can change position during
execution; accesses to a resource can only be performed by a program that
is located at the same site; remote accesses are suspended until the resources
become available. The language of local computations is an imperative λ-calculus
with concurrent threads, to which we add a standard migration primitive. We
include a flow declaration construct [AB05] for providing the programmer with
means to declassify information, that is to explicitly allow certain information
leaks to occur in a controlled way (find overviews in [AB05, SS05]). We show that
mobility and declassification can be safely combined provided that migrating
threads compute according to declared flow policies.

The security properties we have at hand, designed for local computations
where the notion of locality does not play a crucial role, are not suitable for
treating information flows in a distributed setting with code mobility. In fact,
since the location of resources in a network can be itself a source of information
leaks, the notion of safe program must take this into account. For this purpose,
we extend the usual undistinguishability relation for memories to states that
track the positions of programs in a network. Furthermore, it is not reasonable
to assume a global security policy that all threads comply to. Admitting that
each program has its own security policy raises problems in ensuring that the
threads who share resources respect one another’s flow policies. For instance,
when should one allow “low level” information to be accessed by “high level”
readers, if the assignment of the levels ‘low’ and ‘high’ were based on different
criteria? It turns out that, if the security levels are sets of principals, there is a
“minimum” security policy that every thread must satisfy, and which we use to
conveniently approximate the “intersection” of security policies in any network.

The paper is organized as follows: In the next section we define a distributed
calculus with code and resource mobility. In Section 3 we formulate a non-
disclosure property that is suitable for a decentralized setting. In Section 4 we
develop a type and effect system that only accepts programs satisfying such a
property. Finally, we comment on related work and conclude.

2 The Calculus

The design of network models is a whole research area in itself, and there ex-
ists a wide spectrum of calculi that focus on different aspects of mobility (see
[BCGL02]). We are interested in a general and simple framework that addresses
the unreliable nature of resource access in networks, as well as trust concerns

Non-disclosure for Distributed Mobile Code 179

that are raised when computational entities follow different security orientations.
We then consider a distributed ML-like core language where domains in a net-
work can communicate with each other via mobile threads, in general composed
of programs and memory, yet enriched with a flow declaration construct.

In this section we define the syntax and semantics for the calculus at the
local and network level. Very briefly, a network consists of a number of domains,
places where local computations occur independently. Threads may execute con-
currently inside domains, create other threads, and migrate into another domain.
They can own and create a store that associates values to references, which are
addresses to memory containers. These stores move together with the thread
they belong to, which means that threads and local references are, at all times,
located in the same domain. However, a thread need not own a reference in order
to access it. Read and write operations on references may be performed if and
only if the corresponding memory location is present in the domain (otherwise
they are implicitly suspended).

2.1 Syntax

In order to define the syntax of the language we need to introduce the notions of
security level and of flow policy (they are fully explained in Section 3). Security
levels j, k, l are sets of principals (ranged over by p, q ∈ P). They are apparent
in the syntax as they are assigned to references (and reference creators, not to
values) and threads (and thread creators). The security level of a reference is to
be understood as the set of principals that are allowed to read the information
contained in that reference. The security level of a thread is the set of principals
that can have information about the location of the thread. We use flow policies
as in [AB05] for defining a flow declaration construct that enables downgrading
computations by encapsulating expressions in a context allowed by the security
policy. For now it is enough to know that a flow policy (ranged over by F,G) is
a binary relation over P , where a pair (p, q) ∈ F is denoted p ≺ q, and is to be
understood as “whatever p can read, q can also read”.

Names are given to domains (d ∈ D), threads (m,n ∈ N) and references (a),
which we also call addresses. References are lexically associated to the threads
that create them: they are of the form m.u, n.u, where u is an identifier given
by the thread. Thread and reference names can be created at runtime. We add
annotations (subscripts) to names: references carry their security level and the
type of the values that they can hold (the syntax of types will be defined later, in
Section 4), while thread names carry their security level. In the following we may
omit these subscripts whenever they are not relevant, following the convention
that the same name has always the same subscript.

Threads are named expressions (Mmj), where the syntax of M is given by:

Expressions M, N ::= V | x | (M N) | (if M then N1 else N2)
| (M ; N) | (ref l,θ M) | (? N) | (M :=? N) | (�xV)
| (threadl M) | (goto d) | (flow F in M)

Values V, W ::= () | mj .ul,θ | (λx.M) | tt | ff

180 Ana Almeida Matos

The language of expressions is an imperative higher-order λ-calculus with thread
creation (threadl M), migration (goto d) and a flow declaration (flow F in M).
The commands (? N) and (M :=? N) correspond to the dereferencing and as-
signment operations on references, respectively. The different notation is due
to the fact that these operations can potentially suspend. The notation follows
[Bou04], though here we shall not consider any form of reaction to suspension.
The construct (xV), where x is binded in V , is used to express recursive values.

We define stores S that map references to values, and pools (sets) P of threads
(named expressions) that run concurrently. These two sets are part of domains
d[P, S], which in turn form networks whose syntax is given by:

Networks X, Y . . . ::= d[P, S] | X ‖ Y

Networks are flat juxtapositions of domains, whose names are assumed to be
distinct, and where references are assumed to be located in the same domain as
the thread that owns them. Notice that networks are in fact just a collection of
threads and owned references that are running in parallel, and whose executions
depend on their relative location. To keep track of the locations of threads and
references it suffices to maintain a mapping from thread names to domain names.

2.2 Semantics

Given a set D of domain names in a network, and assuming that all threads in a
configuration have distinct names, the semantics of the language is operationally
defined as a transition system between configurations of the form 〈T, P, S〉 rep-
resenting network d1[P1, S1] ‖ · · · ‖ dn[Pn, Sn] where:

T is a function from thread names with security level to the domains where they
appear, given by T = {ml %→ d1|Mml ∈ P1} ∪ · · · ∪ {ml %→ dn|Mml ∈ Pn}.

P and S are the (disjoint) unions of all the thread pools, respectively stores,
that exist in the network, that is P = P1 ∪ · · · ∪ Pn and S = S1 ∪ · · · ∪ Sn.

We call the pair (T, S) the state of the configuration. We define dom(T), dom(P)
and dom(S) as the sets of decorated names of threads and references that are
mapped by T , P and S, respectively. We say that a thread or reference name is
fresh in T or S if it does not occur, with any subscript, in dom(T) or dom(S),
respectively. We denote by tn(P) and rn(P) the set of decorated thread and
reference names, respectively, that occur in the expressions of P (this notation
is extended in the obvious way to expressions). Furthermore, we overload tn and
define, for a set R of reference names, the set tn(R) of thread names that are
prefixes of some name in R.

We restrict our attention to well formed configurations 〈T, P, S〉 satisfying the
condition for memories dom(S) ⊇ rn(P), a similar condition for the values stored
in memories obeying al,θ ∈ dom(S) implies dom(S) ⊇ rn(S(al,θ)), and the cor-
responding one for thread names dom(T) ⊇ dom(P) and dom(T) ⊇ tn(dom(S)).
We denote by {x %→ W}M the capture avoiding substitution of W for the free
occurrences of x in M . The operation of updating the image of an object zo to
zi in a mapping Z is denoted Z[zo := zi].

Non-disclosure for Distributed Mobile Code 181

In order to define the operational semantics, it is useful to write expressions
using evaluation contexts. Intuitively, the expressions that are placed in such
contexts are to be executed first.

Contexts E ::= [] | (E N) | (V E) | (if E then M else N) | (E; N)

| (refl,θ E) | (? E) | (E :=? N) | (V :=? E) | (flow F in E)

Evaluation is not allowed under threads that have not yet been created. We
denote by 2E3 the flow policy that is permitted by the context E. It collects all
the flow policies that are declared using flow declaration constructs into one:

�[]� = ∅, �(flow F in E)� = F ∪ �E�,
�E′[E]� = �E�, if E′ does not contain flow declarations

The transitions of our (small step) semantics are defined between configurations,
and are decorated with the flow policy of the context that is relevant to the
expression being evaluated (it will be used later to formulate the non-disclosure
property). We omit the set-brackets for singletons. We start by defining the
transitions of a single thread.

The evaluation of expressions might depend on and change the store, the
position of references in the network, and the name of the thread of which they
are part. However, there are rules that depend only on the expression itself.

〈T, E[((λx.M) V)]mj , S〉 ()−−→
�E�

〈T, E[{x �→ V }M]mj , S〉

〈T, E[(if tt then N1 else N2)]
mj , S〉 ()−−→

�E�
〈T, E[N1]

mj , S〉

〈T, E[(if ff then N1 else N2)]
mj , S〉 ()−−→

�E�
〈T, E[N2]

mj , S〉

〈T, E[(V ; N)]mj , S〉 ()−−→
�E�

〈T, E[N]mj , S〉

〈T, E[(�xW)]mj , S〉 ()−−→
�E�

〈T, E[({x �→ (�xW)} W)]mj , S〉

〈T, E[(flow F in V)]mj , S〉 ()−−→
�E�

〈T, E[V]mj , S〉

The name of the thread is relevant to the rules that handle references: when
a reference is created, it is named after the parent thread. Accesses to references
can only be performed within the same domain.

〈T, E[(ref l,θ V)]mj , S〉 ()−−→
�E�

〈T, E[mj .ul,θ]
mj , S ∪ {mj .ul,θ �→ V }〉, if m.u fresh in S

〈T, E[(? nk.ul,θ)]
mj , S〉 ()−−→

�E�
〈T, E[V]mj , S〉, if T (nk) = T (mj) & S(nk.ul,θ) = V

〈T, E[(nk.ul,θ :=? V)]mj , S〉 ()−−→
�E�

〈T, E[()]mj , S[nk.ul,θ := V]〉, if T (nk) = T (mj)

Fresh names are arbitrarily attributed to threads when they are created. The
(goto d) statement is used for sending the executing thread to a domain named d
(subjective migration). By simply changing the domain that is associated to the
migrating thread’s name, both the thread and associated store are subtracted
from the emitting domain and integrated into the destination domain.

〈T, {E[(threadl N)]mj}, S〉 Nnl−−−→
�E�

〈T ∪ {nl �→ T (mj)}, {E[()]mj }, S〉, if n fresh in T

〈T, {E[goto d]mj }, S〉 ()−−→
�E�
〈T [mj := d], {E[()]}, S〉

182 Ana Almeida Matos

Finally, the execution of threads in a network is compositional. The following
three rules gather the threads that are spawned into a pool of threads.

〈T, Mmj , S〉 ()−−→
�E�

〈T ′, M ′mj , S′〉

〈T, Mmj , S〉 −−→
�E�

〈T ′, M ′mj , S′〉

〈T, Mmj , S〉 Nnl−−−→
�E�

〈T ′, M ′mj , S′〉 if Nnl �= ()

〈T, Mmj , S〉 −−→
�E�
〈T ′, {M ′mj , Nnl}, S′〉

〈T, P, S〉 −−→
�E�
〈T ′, P ′, S′〉 〈T, P ∪Q,S〉 is well formed

〈T, P ∪Q, S〉 −−→
�E�
〈T ′, P ′ ∪Q,S′〉

One can prove that the above rules preserve well-formedness of configurations,
and that the language of expressions is deterministic up to choice of new names.

3 Decentralized Non-disclosure Policies

We begin this section with the definition of an extended flow relation. A discus-
sion on the implementation and meaning of multiple flow policies follows. We
then define the non-disclosure policy for networks and prove soundness of our
type system with respect to that property.

3.1 From Flow Relations to Security Lattices

We have mentioned that security levels are sets of principals representing read-
access rights to references. Our aim is to insure that information contained in a
reference al1 (omitting the type annotation) does not leak to another reference
bl2 that gives a read access to an unauthorized principal p, i.e., such that p ∈ l2
but p /∈ l1. Reverse inclusion defines the allowed flows between security levels,
allowing information to flow from level l1 to level l2 if and only if l1 ⊇ l2.

Given a security level l and a flow policy F , the upward closure of l w.r.t.
F is the set {p | ∃q ∈ l . (q, p) ∈ F} and is denoted by l ↑F . Now denoting the
reflexive and transitive closure of F by F ∗, we can derive (as in [ML98, AB05])
a more permissive flow relation:

l1 �F l2
def⇔ ∀q ∈ l2.∃p ∈ l1 . p F ∗ q ⇔ (l1 ↑F) ⊇ (l2 ↑F)

This relation defines a lattice of security levels, where meet (&F) and join ('F)
are given respectively by the union of the security levels and intersection of their
upward closures with respect to F :

l1 #F l2 = l1 ∪ l2 l1 $F l2 = (l1 ↑F) ∩ (l2 ↑F)

Notice that 5F extends ⊇ in the sense that 5F is larger than ⊇ and that
5∅=⊇. We will use this mechanism of extending the flow relation with a flow
policy F in the following way: the information flows that are allowed to occur
in an expression M placed in a context E[] must satisfy the flow relation 5�E�.

Non-disclosure for Distributed Mobile Code 183

3.2 The Non-disclosure Policy

In this section we define the non-disclosure policy for networks, which is based
on a notion of bisimulation for sets of threads P with respect to a “low” security
level. As usual, the bisimulation expresses the requirement that P1 and P2 are
to be related if, when running over memories that coincide in their low part,
they perform the same low changes. Then, if P is shown to be bisimilar to itself,
one can conclude that the high part of the memory has not interfered with the
low part, i.e., no security leak has occurred. Using the flow policies that were
presented earlier, the notion of “being low” can be extended as in [AB05], thus
weakening the condition on the behavior of the threads.

As we will see in Section 4, the position of a thread in the network can reveal
information about the values in the memory. For this reason, we must use a
notion of “low-equality” that is extended to states 〈T, S〉. The intuition is that
a thread can access a reference if and only if it is located at the same domain
as the thread that owns it. Threads that own low references can then be seen as
“low threads”. We are interested in states where low threads are co-located. Low-
equality on states is defined pointwise, for a security level l that is considered as
low:

S1 =F,l S2
def⇔ ∀ak,θ ∈ dom(S1) ∪ dom(S2) . k �F l⇒

ak,θ ∈ dom(S1) ∩ dom(S2) & S1(ak,θ) = S2(ak,θ)

T1 =F,l T2
def⇔ ∀nk ∈ dom(T1) ∪ dom(T2) . k �F l ⇒

nk ∈ dom(T1) ∩ dom(T2) & T1(nk) = T2(nk)

We say that two states are low-equal if they coincide in their low part (including
their domains). This relation is transitive, reflexive and symmetric.

Now we define a bisimulation for networks, which can be used to relate net-
works with the same behavior over low parts of the states. In the following we
denote by � the reflexive closure of the union of the transitions −→

F
, for all F .

Definition 1 (l-Bisimulation and ≈l). Given a security level l, we define an
l-bisimulation as a symmetric relation R on sets of threads such that

P1 R P2 & 〈T1, P1, S1〉 −→
F
〈T ′

1, P
′
1, S

′
1〉 & 〈T1, S1〉 =F,l 〈T2, S2〉 & (∗) implies:

∃T ′
2, P

′
2, S

′
2 : 〈T2, P2, S2〉� 〈T ′

2, P
′
2, S

′
2〉 & 〈T ′

1, S
′
1〉 =∅,l 〈T ′

2, S
′
2〉 & P ′

1 R P ′
2

where (∗) = dom(S1
′ − S1) ∩ dom(S2) = ∅ and dom(T1

′ − T1) ∩ dom(T2) = ∅.
The relation ≈l is the greatest l-bisimulation.

Intuitively, our security property states that, at each computation step per-
formed by some thread in a network, the information flow that occurs respects
the basic flow relation (empty flow policy), extended with the flow policy (F)
that is declared by the context where the command is executed.

Definition 2 (Non-disclosure for Networks). A set P of threads satisfies
the non-disclosure policy if it satisfies P ≈l P for all security levels l.

The non-disclosure definition differs from that of [AB05] in two points: first, the
position of the low threads is treated as “low information”; second, for being
independent from a single flow policy – as we have seen, each thread in the
network may have its own flow policy.

184 Ana Almeida Matos

4 The Type and Effect System

The type and effect system that we present here selects secure threads by ensur-
ing the compliance of all information flows to the flow relation that rules in each
point of the program. To achieve this, it constructively determines the effects of
each expression, which contain information on the security levels of the refer-
ences that the expression reads and writes, as well as the level of the references
on which termination or non-termination of the computations might depend.

A key observation is that non-termination of a computation might arise from
an attempt to access a foreign reference. In order to distinguish the threads that
own each expression and reference, we associate unique identifiers m̄, n̄ ∈ N̄ to
names of already existing threads, as well as to the unknown thread name ‘?’
for those that are created at runtime. It should be clear that information on
which the position of a thread n might depend can leak to another that simply
attempts to access one of n’s references. For this reason, we associate to each
thread a security level representing its “visibility” level, since just by owning a
low reference, the position of a thread can be detected by “low observers”.

Judgments have the form Σ,Γ �n̄l

G M : s, τ , where Σ is a partial injective
mapping from the set of decorated thread names extended with ‘?’, and the set
of decorated thread identifiers. The typing context Γ assigns types to variables.
The expression M belongs to the thread that is statically identified by n̄l. The
security level l is a lower bound to the references that the thread can own. The
flow policy G is the one that is enforced by the context in which M is evaluated.
The security effect s has the form 〈s.r, s.w, s.t〉, where s.r is an upper bound on
the security levels of the references that are read by M , s.w is a lower bound
on the that are written by M , and s.t is an upper bound on those levels of the
references on which the termination of expression M might depend. Finally, τ is
the type of the expression, whose syntax is as follows, for any type variable t:

τ, σ, θ ::= t | unit | bool | θ refl,n̄k
| τ s−−−→

n̄k,G
σ

As expected, the reference type shows the reference’s security level l and the type
θ of the value that it points to; now we also add the identifier n̄ and security
level k of the thread that owns the reference. As for the function type, we have
the usual latent parameters that are needed to type the body of the function.

The rules of the type system are shown in Figure 1. Whenever we have
Σ;Γ �n̄G M : 〈⊥,�,⊥〉, τ , for all n̄, G, we simply write Σ;Γ � M : τ . We
also abbreviate meet and join with respect to the empty flow relation (&∅, '∅)
by &, ', and 〈s.r ' s′.r, s.w & s′.w, s.t ' s′.t〉 by s ' s′. We must now convince
ourselves that the type system indeed selects only safe threads, according to the
security notion defined in the previous section. We refer the reader to [AB05]
for explanations regarding the use of flow policies in the typing rules. The usual
intuitions on treating termination leaks can be useful to understand the new
conditions regarding migration leaks. In fact, suspension of a thread on an access
to an absent reference can be seen as a non-terminating computation that can
be unblocked by migration of concurrent threads.

In rule Loc, the identifier of the thread name that owns the reference is
obtained by applying Σ to the prefix of the address. In rule Ref, the reference

Non-disclosure for Distributed Mobile Code 185

[Nil] Σ; Γ & () : unit [Flow]
Σ; Γ &m̄j

G∪F M : s, τ

Σ; Γ &m̄j

G (flow F in M) : s, τ

[Abs]
Σ; Γ, x : τ &m̄j

G M : s, σ

Σ; Γ & (λx.M) : τ
s−−−→

m̄j ,G
σ

[Rec]
Σ; Γ, x : τ & W : τ

Σ; Γ & (�xW) : τ

[Var] Σ; Γ, x : τ & x : τ [Loc] Σ; Γ & nk.ul,θ : θ refl,Σ(nk)

[Ref]
Σ; Γ &m̄j

G M : s, θ
j � l

s.r, s.t �G l

Σ; Γ &m̄j

G (refl,θ M) : s, θ refl,m̄j

[Der]
Σ; Γ &m̄j

G M : s, θ refl,n̄k

Σ; Γ &m̄j

G (? M) : s $ 〈l,', t̄〉, θ
(∗)

[Ass]

Σ; Γ &m̄j

G M : s, θ refl,n̄k
Σ; Γ &m̄j

G N : s′, θ
s.t �G s′.w

s.r, s′.r, s.t, s′.t, j �G l

Σ; Γ &m̄j

G (M :=? N) : s $ s′ $ 〈⊥, l, t̄〉, unit
(∗)

(∗) where t̄ = (if m̄ �= n̄ then k $ j else ⊥)

[BoolT] Σ; Γ & tt : bool [BoolF] Σ; Γ & ff : bool

[Cond]
Σ; Γ &m̄j

G M : s, bool Σ; Γ &m̄j

G Ni : si, τ s.r $ s.t �G s1.w $ s2.w

Σ; Γ &m̄j

G (if M then N1 else N2) : s $ s1 $ s2 $ 〈⊥,', s.r〉, τ

[App]

Σ; Γ &m̄j

G M : s, τ
s′−−−→

m̄j ,G
σ Σ; Γ &m̄j

G N : s′′, τ
s.t �G s′′.w

s.r, s′′.r, s.t, s′′.t �G s′.w

Σ; Γ &m̄j

G (M N) : s $ s′ $ s′′ $ 〈⊥,', s.r $ s′′.r〉, σ

[Seq]
Σ; Γ &m̄j

G M : s, τ Σ; Γ &m̄j

G N : s′, σ s.t �G s′.w

Σ; Γ &m̄j

G (M ; N) : s $ s′, σ

[Thr]

j �G l
n̄ fresh in Σ

Σ, ? : n̄l; Γ &n̄l
G M : s, unit

Σ; Γ &m̄j

G (threadl M) : 〈⊥, s.w # l,⊥〉, unit

[Mig] Σ; Γ &m̄j

G goto d : 〈⊥, j,⊥〉, unit

Fig. 1. Type system

that is created belongs to the thread identified by the superscript of the ‘�’. We
check that the security level that is declared for the new reference is greater than
the level of the thread. In rule Thr, a fresh identifier – image of an unknown
thread name represented by ‘?’ – is used to type the thread that is created. The
new thread’s security level must preserve that of the parent thread.

In rule Mig we add the security level of the thread to the write effect to
prevent migrations of threads owning low references to depend on high infor-
mation. The motivation for this is that the mere arrival of a thread and its
references to another domain might trigger the execution of other threads that
were suspended on an access to a low reference, as in the following program:

d1[{(if (? n1.xH) then goto d2 else ())n1}, {n1.yL �→ 1}] ‖ d2[{(n1.yL :=? 0)
n2}, ∅]

Notice that the rule Cond rejects thread n in a standard manner, since H 	5 L.

186 Ana Almeida Matos

In rules Der and Ass, the termination effect is updated with the level of
the thread that owns the foreign reference we want to access. Without this
restriction, suspension on an access to an absent reference could be unblocked
by other threads, as is illustrated by the following example:

d[(if aH then (goto d1) else (goto d2))
mj , {mj .x
 �→ 42}] ‖

‖ d1[((mj .x
 :=? 0); (n1k1 .y
L

:=? 0))
n1k1 , S1] ‖

‖ d2[((mj .x
 :=? 0); (n2k2 .y
L

:=? 0))
n2k2 , S2]

Then, depending on the value of the high reference a, different low assignments
would occur to the low references n1.yL and n2.yL. To see why we can take j for
preventing the leak from aH to n1.yL, n2.yL, notice that (by Mig and Cond)
H 5 j. The same example can show a potential leak of information about the po-
sitions of the threads n1 and n2 via their own low variables n1.yL, n2.yL. This also
accounts for updating the termination level of the assignments (mj .x� :=? 0)
and (mj .x� :=? 0) with the security levels k1 and k2, respectively.

The previous example shows how migration of a thread can result in an
information leak from a high variable to a lower one via an “observer” thread.
It is the ability of the observer thread to detect the presence of the first thread
that allows the leak. However, one must also prevent the case where it is the
thread itself that reveals that information, like in the following simple example:

d[(n.uL :=? 0)
mj

, ∅]

This program is insecure if j 	5 L, and it is rejected by the condition j 5G l in
rule Ass. Notice that, in the typing rule, for the cases where m = n the condition
is satisfied anyway due to the meaning of j.

We now give a safety property of our type system:

Theorem 1 (Subject reduction). If Σ;Γ �Σ(mj)
G M : s, τ and 〈T,Mmj , S〉

Nnl−−−→
F

〈T ′,M ′mj , S′〉, then ∃s′ such that Σ;Γ �Σ(mj)
G M ′ : s′, τ , where s′.r 5 s.r,

s.w 5 s′.w and s′.t 5 s.t. Furthermore, if Nnl 	= (), then ∃n̄, s′′ such that
Σ, ? : n̄l;Γ �n̄l

G N : s′′, unit where n̄ is fresh in Σ, j 5G l and s.w 5 s′′.w.

This result states that computation preserves the type of threads, and that as the
effects of an expression are performed, the security effects of the thread “weaken”.
We now state the main result of the paper, saying that our type system only
accepts threads that can securely run in a network with other typable threads.

Theorem 2 (Soundness). Consider a set of threads P and an injective map-
ping Σ from decorated thread names to decorated thread identifiers, such that
dom(Σ) = tn(P). If for all Mmj ∈ P we have that ∃Γ, s, τ . Σ;Γ �Σ(mj)

∅ M : s, τ ,
then P satisfies the non-disclosure policy for networks.

This result is compositional, in the sense that it is enough to verify the typability
of each thread separately in order to ensure non-disclosure for the whole network.
Having the empty set as the flow policy of the context means that there is no
global flow policy that encompasses the whole network. One could easily prove
non-disclosure with respect to a certain global flow policy G by requiring the
typability of all the threads with respect to G. However, by choosing the empty
global flow policy we stress the decentralized nature of our setting.

Non-disclosure for Distributed Mobile Code 187

5 Conclusion and Related Work

To the best of our knowledge, this paper is the first to study insecure information
flows that are introduced by mobility in the context of a distributed language
with states. We have identified a new form of security leaks, the migration leaks,
and provided a sound type system for rejecting them. The discussion on related
work will focus on type-based approaches for enforcing information flow control
policies in settings with concurrency, distribution or mobility.

A first step towards the study of confidentiality for distributed systems is
to study a language with concurrency. Smith and Volpano [SV98] proved non-
interference for an imperative multi-threaded language. They identified the ter-
mination leaks that appear in concurrent contexts but that are not problematic
in sequential settings. This line of study was pursued by considering increasingly
expressive languages and refined type systems [Smi01, BC02, AB05, Bou05]. In
the setting of synchronous concurrent systems, new kinds of termination leaks
– the suspension leaks – are to be handled. A few representative studies in-
clude [Sab01, ABC04]. Already in a distributed setting, but restricting inter-
action between domains to the exchange of values (no code mobility), Mantel
and Sabelfeld [SM02] provided a type system for preserving confidentiality for
different kinds of channels over a publicly observable medium.

Progressing rather independently we find a field of work on mobile calculi
based on purely functional concurrent languages. To mention a few representa-
tive papers, we have Honda et al.’s work on for π-calculus [HVY00], and Hennessy
and Riely’s study for the security π-calculus [HR00]. The closest to the present
work is the one by Bugliesi et al. [CBC02], for Boxed Ambients [BCC01], a purely
functional calculus based on the mobility of ambients. Since ambient names cor-
respond simultaneously to places of computation, subjects of migration, and
channels for passing values, it is hard to establish a precise correspondence be-
tween the two type systems. Nevertheless, it is clear that the knowledge of the
position of an ambient of level l is considered as l-level information, and that
migration is also identified as a way of leaking the positions of ambients, though
the dangerous usages of migration are rejected rather differently.

Sharing our aim of studying the distribution of code under decentralized
security policies, Zdancewic et al. [ZZNM02] have however set the problem in a
very different manner. They have considered a distributed system of potentially
corrupted hosts and of principals that have different levels of trust on these
hosts. They then proposed a way of partitioning the program and distributing
the resulting parts over hosts that are trusted by the concerned principals.

Acknowledgments

I would like to thank Gérard Boudol, Ilaria Castellani, Jan Cederquist, Matthew
Hennessy, Tamara Rezk and the anonymous referees for insightful comments at
different stages of this work. This research was partially funded by the PhD
scholarship POSI/SFRH/BD/7100/2001 and by the French ACI Project CRISS.

188 Ana Almeida Matos

References

[AB05] A. Almeida Matos and G. Boudol. On declassification and the non-
disclosure policy. In CSFW, 2005.

[ABC04] A. Almeida Matos, G. Boudol, and I. Castellani. Typing noninterference
for reactive programs. In FCS, volume 31 of TUCS General Publications,
2004.

[BC02] G. Boudol and I. Castellani. Noninterference for concurrent programs and
thread systems. Theoretical Computer Science, 281(1):109–130, 2002.

[BCC01] M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In TACS, volume
2215 of LNCS, 2001.

[BCGL02] G. Boudol, I. Castellani, F. Germain, and M. Lacoste. Analysis of formal
models of distribution and mobility: state of the art. Mikado D1.1.1, 2002.

[Bou04] G. Boudol. ULM, a core programming model for global computing. In
ESOP, volume 2986 of LNCS, 2004.

[Bou05] G. Boudol. On typing information flow. In ICTAC, LNCS, 2005.
[CBC02] S. Crafa, M. Bugliesi, and G. Castagna. Information flow security for boxed

ambients. In F-WAN, volume 66(3) of ENTCS, 2002.
[Den76] D. E. Denning. A lattice model of secure information flow. Communica-

tions of the ACM, 19(5):236–243, 1976.
[GM82] J. A. Goguen and J. Meseguer. Security policies and security models. In

Symposium on Security and Privacy, 1982.
[HR00] M. Hennessy and J. Riely. Information flow vs resource access in the

asynchronous pi-calculus. In ICALP’00, volume 1853 of LNCS, 2000.
[HVY00] K. Honda, V. Vasconcelos, and N. Yoshida. Secure information flow as

typed process behaviour. In ESOP, volume 1782 of LNCS, 2000.
[LG88] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In POPL,

1988.
[ML98] A. Myers and B. Liskov. Complete, safe information flow with decentralized

labels. In Symposium on Security and Privacy, 1998.
[Sab01] A. Sabelfeld. The impact of synchronization on secure information flow

in concurrent programs. In Andrei Ershov International Conference on
Perspectives of System Informatics, 2001.

[SM02] A. Sabelfeld and H. Mantel. Static confidentiality enforcement for dis-
tributed programs. In SAS, volume 2477 of LNCS, 2002.

[SM03] A. Sabelfeld and A. Myers. Language-based information-flow security.
Journal on Selected Areas in Communications, 21(1), 2003.

[Smi01] Geoffrey Smith. A new type system for secure information flow. In CSFW,
2001.

[SS05] A. Sabelfeld and D. Sands. Dimensions and principles of declassification.
In CSFW, 2005.

[SV98] G. Smith and D. Volpano. Secure information flow in a multi-threaded
imperative language. In POPL, 1998.

[VSI96] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow
analysis. Journal of Computer Security, 4(3), 1996.

[ZZNM02] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Secure program par-
titioning. ACM Transactions in Computer Systems, 20(3):283–328, 2002.

Quantitative Models and Implicit Complexity

Ugo Dal Lago1 and Martin Hofmann2

1 Dipartimento di Scienze dell’Informazione
Università di Bologna
dallago@cs.unibo.it

2 Institut für Informatik
Ludwig-Maximilians-Universität, München
mhofmann@informatik.uni-muenchen.de

Abstract. We give new proofs of soundness (all representable functions
on base types lies in certain complexity classes) for Elementary Affine
Logic, LFPL (a language for polytime computation close to realistic func-
tional programming introduced by one of us), Light Affine Logic and Soft
Affine Logic. The proofs are based on a common semantical framework
which is merely instantiated in four different ways. The framework con-
sists of an innovative modification of realizability which allows us to use
resource-bounded computations as realisers as opposed to including all
Turing computable functions as is usually the case in realizability con-
structions. For example, all realisers in the model for LFPL are polynomi-
ally bounded computations whence soundness holds by construction of
the model. The work then lies in being able to interpret all the required
constructs in the model. While being the first entirely semantical proof
of polytime soundness for light logics, our proof also provides a notable
simplification of the original already semantical proof of polytime sound-
ness for LFPL. A new result made possible by the semantic framework is
the addition of polymorphism and a modality to LFPL thus allowing for
an internal definition of inductive datatypes.

1 Introduction

In recent years, a large number of characterizations of complexity classes based
on logics and lambda calculi have appeared. At least three different principles
have been exploited, namely linear types [3,10], restricted modalities in the con-
text of linear logic [8,1,13] and non-size-increasing computation [9]. Although
related one to the other, these systems have been studied with different, often
unrelated methodologies and few results are known about relative intentional ex-
pressive power. We believe that this area of implicit computational complexity
needs unifying frameworks for the analysis of quantitative properties of compu-
tation. This would help to improve the understanding of existing systems. More
importantly, unifying frameworks can be used themselves as a foundation for
controlling the use of resources inside programming languages.

In this paper, we introduce a new semantical framework which consists of an
innovative modification of realizability. The main idea underlying our proposal

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 189–200, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

190 Ugo Dal Lago and Martin Hofmann

lies in considering bounded-time algorithms as realizers instead of taking plain
Turing Machines as is usually the case in realizability constructions. Bounds
are expressed abstractly as elements of a monoid. We can define a model for a
given (logical or type) system by choosing a monoid flexible enough to justify
all the constructs in the system. The model can then be used to study the class
of representable functions.

This allows us to give new proofs of soundness (all representable functions
on base types lies in certain complexity classes) for Light Affine Logic (LAL, [1]),
Elementary Affine Logic (EAL, [5]), LFPL [9] and Soft Affine Logic (SAL, [2]).
While being the first entirely semantical proof of polytime soundness for light
logics, our proof also provides a notable simplification of the original already
semantical proof of polytime soundness for LFPL [9]. A new result made possible
by the semantic framework is the addition of polymorphism and a modality to
LFPL.

The rest of the paper is organized as follows. This Section is devoted to a
brief description of related work and to preliminaries. In Section 2 we introduce
length spaces and show they can be used to interpret multiplicative linear logic
with free weakening. Sections 3 and 4 are devoted to present instances of the
framework together with soundness results for elementary, soft and light affine
logics. Section 5 presents a further specialization of length spaces and a new
soundness theorem for LFPL based on it.

An extended version of this paper is available [7].

Related-Work. Realizability has been used in connection with resource-bounded
computation in several places. The most prominent is Cook and Urquhart work
(see [4]), where terms of a language called PVω are used to realize formulas of
bounded arithmetic. The contribution of that paper is related to ours in that re-
alizability is used to show “polytime soundness” of a logic. There are important
differences though. First, realizers in Cook and Urquhart [4] are typed and very
closely related to the logic that is being realized. Second, the language of realiz-
ers PVω only contains first order recursion and is therefore useless for systems
like LFPL or LAL. In contrast, we use untyped realizers and interpret types as
certain partial equivalence relations on those. This links our work to the untyped
realizability model HEO (due to Kreisel [12]). This, in turn, has also been done
by Crossley et al. [6]. There, however, one proves externally that untyped realiz-
ers (in this case of bounded arithmetic formulas) are polytime. In our work, and
this happens for the first time, the untyped realizers are used to give meaning
to the logic and obtain polytime soundness as a corollary. Thus, certain resource
bounds are built into the untyped realizers by their very construction. Such a
thing is not at all obvious, because untyped universes of realizers tend to be
Turing complete from the beginning due to definability of fixed-point combi-
nators. We get around this problem through our notion of a resource monoid
and addition of a certain time bound to Kleene applications of realizers. Indeed,
we consider this as the main innovation of our paper and hope it to be useful
elsewhere.

Quantitative Models and Implicit Complexity 191

Preliminaries. In this paper, we rely on an abstract computational framework
rather than a concrete one like Turing Machines. This, in particular, will simplify
proofs.

Let L ⊆ Σ∗ be a set of finite sequences over the alphabet Σ. We assume
a pairing function 〈·, ·〉 : L × L → L and a length function | · | : L → N
such that |〈x, y〉| = |x| + |y| + cp and |x| ≤ length(x), where length(x) is the
number of symbols in x and cp is a fixed constant. We assume a reasonable
encoding of algorithms as elements of L. We write {e}(x) for the (possibly
undefined) application of algorithm e ∈ L to input x ∈ L. We furthermore
assume an abstract time measure Time({e}(x)) ∈ N such that Time({e}(x))
is defined whenever {e}(x) is and, moreover, there exists a fixed polynomial p
such that {e}(x) can be evaluated on a Turing machine in time bounded by
p(Time({e}(x))+ |e|+ |x|) (this is related to the so-called invariance thesis [14]).
By “reasonable”, we mean for example that for any e, d ∈ L there exists d◦e ∈ L
such that |d ◦ e| = |d| + |e| + O(1) and {d ◦ e}(x) = {d}(y) where y = {e}(x)
and moreover Time({d ◦ e}(x)) = Time({e}(x)) + Time({d}(y)) + O(1). We
furthermore assume that the abstract time needed to compute d ◦ e from 〈d, e〉
is constant. Likewise, we assume that “currying” and rewiring operations such
as 〈x, 〈y, z〉〉 %→ 〈〈y, z〉, x〉 can be done in constant time. However, we do allow
linear (in |x|) abstract time for copying operations such as x %→ 〈x, x〉.

There are a number of ways to instantiate this framework. In the full version
of this paper [7], the precise form of the assumptions we make as well as one
instance based on call-by-value lambda-calculus are described.

2 Length Spaces

In this section, we introduce the category of length spaces and study its proper-
ties. Lengths will not necessarily be numbers but rather elements of a commu-
tative monoid.

A resource monoid is a quadruple M = (|M |,+,≤M ,DM) where
(i) (|M |,+) is a commutative monoid;
(ii) ≤M is a pre-order on |M | which is compatible with +;
(iii) DM : {(α, β) | α ≤M β} → N is a function such that for every α, β, γ

DM (α, β) +DM (β, γ) ≤ DM (α, γ)
DM (α, β) ≤ DM (α + γ, β + γ)

and, moreover, for every n ∈ N there is α such that DM (0, α) ≥ n.
Given a resource monoid M = (|M |,+,≤M ,DM), the function FM : |M | → N
is defined by putting FM (α) = DM (0, α). We abbreviate σ + . . . + σ (n times)
as n.σ.

Let us try to give some intuition about these axioms. We shall use elements
of a resource monoid to bound data, algorithms, and runtimes in the following
way: an element ϕ bounds an algorithm e if FM (ϕ) ≥ |e| and, more importantly,
whenever α bounds an input x to e then there must be a bound β ≤M ϕ+α for

192 Ugo Dal Lago and Martin Hofmann

the result y = {e}(x) and, most importantly, the runtime of that computation
must be bounded by DM (β, ϕ + α). So, in a sense, we have the option of either
producing a large output fast or to take a long time for a small output. The
“inverse triangular” law above ensures that the composition of two algorithms
bounded by ϕ1 and ϕ2, respectively, can be bounded by ϕ1 + ϕ2 or a simple
modification thereof. In particular, the contribution of the unknown intermediate
result in a composition cancels out using that law. Another useful intuition is
that DM (α, β) behaves like the difference β−α, indeed, (β−α)+(γ−β) ≤ γ−α.

A length space on a resource monoid M = (|M |,+,≤M ,DM) is a pair A =
(|A|,�A), where |A| is a set and �A ⊆ |M |×L×|A| is a (infix) relation satisfying
the following conditions:
(i) If α, e �A a, then FM (α) ≥ |e|;
(ii) For every a ∈ |A|, there are α, e such that α, e �A a;
(iii) If α, e �A a and α ≤M β, then β, e �A a;
(iv) If α, e �A a and α, e �A b, then a = b.
The last requirement implies that each element of |A| is uniquely determined by
the (nonempty) set of it realisers and in particular limits the cardinality of any
length space to the number of partial equivalence relations on L.

A morphism from length space A = (|A|,�A) to length space B = (|B|,�B)
(on the same resource monoid M = (|M |,+,≤M ,DM)) is a function f : |A| →
|B| such that there exist e ∈ L ⊆ Σ∗, ϕ ∈ |M | with FM (ϕ) ≥ |e| and whenever
α, d �A a, there must be β, c such that:
(i) β, c �B f(a);
(ii) β ≤M ϕ + α;
(iii) {e}(d) = c;
(iv) Time({e}(d)) ≤ DM (β, ϕ + α).
We call e a realizer of f and ϕ a majorizer of f . The set of all morphisms from
A to B is denoted as Hom(A,B). If f is a morphism from A to B realized by e

and majorized by ϕ, then we will write f : A
e,ϕ−→ B or ϕ, e �A�B f .

Remark 1. It is possible to alter the time bound in the definition of a morphism
to Time({e}(d)) ≤ DM (β, ϕ + α)FM (α + ϕ). This allows one to accommodate
linear time operations by padding the majorizer for the morphism. All the sub-
sequent proofs go through with this alternative definition, at the expense of
simplicity and ease of presentation,

Given two length spaces A = (|A|,�A) and B = (|B|,�B) on the same
resource monoid M , we can build A ⊗ B = (|A| × |B|,�A⊗B) (on M) where
α, e �A⊗B (a, b) iff FM (α) ≥ |e| and there are f, g, β, γ with

β, f �A a;
γ, g �B b;
e = 〈f, g〉;

α ≥M β + γ.

A⊗B is a well-defined length space due to the axioms on M .
Given A and B as above, we can build A � B = (Hom(A,B),�A�B) where

α, e �A�B f iff f is a morphism from A to B realized by e and majorized by α.

Quantitative Models and Implicit Complexity 193

Lemma 1. Length spaces and their morphisms form a symmetric monoidal
closed category with tensor and linear implication given as above.

A length space I is defined by |I| = {0} and α, e �A 0 when FM (α) ≥ |e|. For
each length space A there are isomorphisms A⊗ I 6 A and a unique morphism
A→ I. The latter serves to justify full weakening.

For every resource monoid M , there is a length space BM = ({0, 1}∗,�BM)
where α, e �BM t whenever e is a realizer for t and FM (α) ≥ |e|. The function
s0 (respectively, s1) from {0, 1}∗ to itself which appends 0 (respectively, 1) to
the left of its argument can be computed in constant time in our computational
model and, as a consequence, is a morphism from BM to itself.

2.1 Interpreting Multiplicative Affine Logic

We can now formally show that second order multiplicative affine logic (i.e.
multiplicative linear logic plus full weakening) can be interpreted inside the
category of length spaces on any monoid M . Doing this will simplify the analysis
of richer systems presented in following sections. Formulae of (intuitionistic)
multiplicative affine logic are generated by the following productions:

A ::= α | A � A | A⊗A | ∀α.A

where α ranges over a countable set of atoms. Rules are reported in figure 1.
A realizability environment is a partial function assigning length spaces (on the

Identity, Cut and Weakening.

A & A
I

Γ & A Δ, A & B

Γ, Δ & B
U

Γ & A
Γ, B & A

W

Multiplicative Logical Rules.

Γ, A, B & C

Γ, A⊗B & C
L⊗

Γ & A Δ & B
Γ, Δ & A⊗B

R⊗
Γ & A Δ, B & C

Γ, Δ, A � B & C
L�

Γ, A & B

Γ & A � B
R�

Second Order Logical Rules.

& Γ, A[C/α] & B

Γ,∀α.A & B L∀ Γ & A α /∈ FV (Γ)

Γ & ∀α.A R∀

Fig. 1. Intuitionistic Multiplicative Affine Logic

same resource monoid) to atoms. Realizability semantics �A�R
η of a formula A

on the realizability environment η is defined by induction on A:

194 Ugo Dal Lago and Martin Hofmann

�α�R
η = η(α)

�A⊗B�R
η = �A�R

η ⊗ �B�R
η

�A � B�R
η = �A�R

η � �B�R
η

�∀α.A�R
η = (|�∀α.A�R

η |,��∀α.A�R
η

)

where

|�∀α.A�R
η | =

∏
C∈U

|�A�R
η[α→C]|

α, e ��∀α.A�R
η
a⇐⇒ ∀C.α, e ��A�R

η[α→C]
a

Here U stands for the class of all length spaces. A little care is needed when
defining the product since strictly speaking it does not exist for size reasons. The
standard way out is to let the product range over those length spaces whose un-
derlying set equals the set of equivalence classes of a partial equivalence relation
on L. As already mentioned, every length space is isomorphic to one such. When
working with the product one has to insert these isomorphisms in appropriate
places which, however, we elide to increase readability.

If n ≥ 0 and A1, . . . , An are formulas, the expression �A1⊗ . . .⊗An�R
η stands

for I if n = 0 and �A1 ⊗ . . .⊗An−1�
R
η ⊗ �An�R

η if n ≥ 1.

3 Elementary Length Spaces

In this section, we define a resource monoid L such that elementary affine logic
can be interpreted in the category of length spaces on L. We then (re)prove that
functions representable in EAL are elementary time computable.

A list is either empty or cons(n, l) where n ∈ N and l is itself a list. The sum
l + h of two lists l and h is defined as follows, by induction on l:

empty + h = h + empty = h;
cons(n, l) + cons(m,h) = cons(n + m, l + h).

For every e ∈ N, binary relations ≤e on lists can be defined as follows
• empty ≤e l for every e;
• cons(n, l) ≤e cons(m,h) iff there is d ∈ N such that

(i) n ≤ 3e(m + e)− d;
(ii) l ≤d h.

For every e and for every lists l and h with l ≤e h, we define the natural number
De(l, h) as follows:

De(empty , empty) = 0;
De(empty , cons(n, l)) = 3e(n + e) +D3e(n+e)(empty , l);
De(cons(n, l), cons(m,h)) = 3e(m + e)− n +D3e(m+e)−n(l, h).

Given a list l, !l stands for the list cons(0, l). The depth depth(l) of a list l is
defined by induction on l: depth(empty) = 0 while depth(cons(n, l)) = depth(l)+

Quantitative Models and Implicit Complexity 195

1. |l| stands for the maximum integer appearing inside l, i.e. |empty | = 0
and |cons(n, l)| = max{n, |l|}. For every natural number n, [n]L stands for
cons(n, empty).

Relation ≤0 and function D0 can be used to build a resource monoid on
lists. |L| will denote the set of all lists, while ≤L,DL will denote ≤0 and D0,
respectively.

Lemma 2. L = (|L|,+,≤L,DL) is a resource monoid.

An elementary length space is a length space on the resource monoid (|L|,+,≤L
,DL). Given an elementary length space A = (|A|,�A), we can build the length
space !A = (|A|,�!A), where l, e �!A a iff h, e �A a and l ≥L!h. The construction
! on elementary length spaces serves to capture the exponential modality of
elementary affine logic. Indeed, the following two results prove the existence of
morphisms and morphisms-forming rules precisely corresponding to axioms and
rules from EAL.

Lemma 3 (Basic Maps). Given elementary length spaces A,B, there are mor-
phisms:

contr : !A→!A⊗!A
distr : !A⊗!B →!(A⊗B)

where contr(a) = (a, a) and distr (a, b) = (a, b)

Lemma 4 (Functoriality). If f : A
e,ϕ−→ B, then there is ψ such that f :!A

e,ψ−→
!B

Elementary bounds can be given on FL(l) depending on |l| and depth(l):

Proposition 1. For every n ∈ N there is an elementary function pn : N → N
such that FL(l) ≤ pdepth(l)(|l|).

We emphasize that Proposition 1 does not assert that the mapping (n,m) %→
pn(m) is elementary. This, indeed, cannot be true because we know EAL to be
complete for the class of elementary functions. If, however, A ⊆ L is such that
l ∈ A implies depth(l) ≤ c for a fixed c, then (l ∈ A) %→ pdepth(l)(|l|) is elementary
and it is in this way that we will use the above proposition.

3.1 Interpreting Elementary Affine Logic

EAL can be obtained by endowing multiplicative affine logic with a restricted
modality. The grammar of formulae is enriched with a new production A ::=!A,
while modal rules are reported in figure 2. Realizability semantics is extended
by �!A�R

η =!�A�R
η .

Theorem 1. Elementary length spaces form a model of EAL.

196 Ugo Dal Lago and Martin Hofmann

Exponential Rules and Contraction.

Γ & A
!Γ &!A P

Γ, !A, !A & B

Γ, !A & B
C

Fig. 2. Intuitionistic Elementary Affine Logic

Now, consider the formula

ListEAL ≡ ∀α.!(α � α) �!(α � α) �!(α � α).

Binary lists can be represented as cut-free proofs with conclusion ListEAL. Sup-
pose you have a proof π :!jListEAL �!kListEAL. From the denotation �π�R

we can build a morphism g from �ListEAL�
R to BL by internal application to

ε, s0, s1. This map then induces a function f : {0, 1}∗ → {0, 1}∗ as follows: given
w ∈ {0, 1}∗, first compute a realizer for the closed proof corresponding to it,
then apply g to the result.

Remark 2. Notice that elements of BL can all be majorized by lists with unit
depth. Similarly, elements of �ListEAL�

R corresponding to binary lists can be
majorized by lists with bounded depth. This observation is essential to prove
the following result.

Corollary 1 (Soundness). Let π be an EAL proof with conclusion !jListEAL �
!kListEAL and let f : {0, 1}∗ → {0, 1}∗ be the function induced by �π�R. Then f
is computable in elementary time.

The function f in the previous result equals the function denoted by the proof π
in the sense of [11]. This intuitively obvious fact can be proved straightforwardly
but somewhat tediously using a logical relation or similar, see also [11].

4 Other Light Logics

Girard and Lafont have proposed other refinements of Linear Logic, namely
Light Linear Logic and Soft Linear Logic, which capture polynomial time. We
have succeeded in defining appropriate reource monoids for affine variants of
these logics, too. In this way we can obtain proofs of “polytime soundness” by
performing the same realizability interpretation as was exercised in the previous
section. These instantiations of our framework are considerably more technical
and difficult to find, but share the idea of the EAL interpretation which is why
we have decided not to include them in this Extended Abstract. The interested
reader may consult the full paper [7].

In the following section, we will elaborate in some more detail a rather dif-
ferent instantiation of our method.

Quantitative Models and Implicit Complexity 197

5 Interpreting LFPL

In [9] one of us had introduced another language, LFPL, with the property that
all definable functions on natural numbers are polynomial time computable.
The key difference between LFPL and other systems is that a function defined
by iteration or recursion is not marked as such using modalities or similar and
can therefore be used as a step function of subsequent recursive definitions.

In this section we will describe a resource monoidM for LFPL, which will pro-
vide a proof of polytime soundness for that system. This is essentially the same
as the proof from [9], but more structured and, hopefully, easier to understand.

The new approach also yields some new results, namely the justification of
second-order quantification, a !-modality, and a new type of binary trees based
on cartesian product which allows alternative but not simultaneous access to
subtrees.

5.1 Overview of LFPL

LFPL is intuitionistic, affine linear logic, i.e., a linear functional language with
⊗,�,+,×. Unlike in the original presentation we also add polymorphic quan-
tification here. In addition, LFPL has basic types for inductive datatypes, for
example unary and binary natural numbers, lists, and trees. There is one more
basic type, namely ♦, the resource type.

The recursive constructors for the inductive datatypes each take an additional
argument of type ♦ which prevents one from invoking more constructor functions
than one. Dually to the constructors one has iteration principles which make
the ♦-resource available in the branches of a recursive definition. For example,
the type T (X) of X-labelled binary trees has constructors leaf : T (X) and
node : ♦ � X � T (X) � T (X) � T (X). The iteration principle allows one to
define a function T (X) � A from closed terms A and ♦ � X � A � A � A.
In this paper we “internalise” the assumption of closedness using a !-modality.

5.2 A Resource Monoid for LFPL

The underlying set of M is the set of pairs (n, p) where n ∈ N is a natural
number and p is a monotone polynomial in a single variable x. The addition is
defined by (n, p) + (m, r) = (n + m, p + r), accordingly, the neutral element is
0 = (0, 0). We have a submonoid M0 = {(n, p) ∈M | n = 0}.

To define the ordering we set (n, p) ≤ (m, r) iff n ≤ m and (r − p)(x) is
monotone and nonnegative for all x ≥ m. For example, we have (1, 42x) ≤
(42, x2), but (1, 42x) 	≤ (41, x2). The distance function is defined by

DM((n, p), (m, r)) = (r − p)(m).

We can pad elements ofM by adding a constant to the polynomial. The following
is now obvious.

Lemma 5. Both M and M0 are resource monoids.

198 Ugo Dal Lago and Martin Hofmann

A simple inspection of the proofs in Section 2.1 shows that the realisers for all
maps can be chosen from M0. This is actually the case for an arbitrary sub-
monoid of a resource monoid. We note that realisers of elements may nevertheless
be drawn from all of M. We are thus led to the following definition.

Definition 1. An LFPL-space is a length space over the resource monoid M. A
morphism from LFPL length space A to B is a morphism between length spaces
which admits a majorizer from M0.

Proposition 2. LFPL length spaces with their maps form a symmetric monoidal
closed category.

Definition 2. Let A be an LFPL space and n ∈ N. The LFPL space An is defined
by |An| = |A| and α, e �An a iff α ≥ (2n− 1).β for some β such that β, e �A a.

So, An corresponds to the subset of A⊗ . . .⊗A consisting of those tuples with
all n components equal to each other. The factor 2n− 1 (“modified difference”)
instead of just n is needed in order to justify the linear time needed to compute
the copying involved in the obvious morphism from Am+n to Am ⊗An.

Let I be an index set and Ai, Bi be I-indexed families of LFPL spaces. A
uniform map from Ai to Bi consists of a family of maps fi : Ai → Bi such
that there exist α, e with the property that α, e � fi for all i. Recall that, in
particular, the denotations of proofs with free type variables are uniform maps.

Proposition 3. For each A there is a uniform (in m,n) map Am+n → Am⊗An.
Moreover, A1 is isomorphic to A.

The LFPL-space ♦ is defined by |♦| = {♦} and put α, d �♦ ♦ if α ≥ (1, 0).
For each LFPL-space A we define LFPL-space !A by |!A| = |A| and α, t �!A a

if there exists β = (0, p) ∈M0 with β, t �A a and α ≥ (0, (x + 1)p).

Proposition 4. There is an LFPL space ♦ and for each LFPL space A there is
an LFPL space !A with the following properties:
(i) |!A| = |A|;
(ii) If f : A→ B then f :!A→!B;
(iii) !(A⊗B) 6!A⊗!B;
(iv) The obvious functions !A⊗ ♦n → An ⊗ ♦n are a uniform map.
The last property means intuitively that with n “diamonds” we can extract n
copies from an element of type !A and get the n “diamonds” back for later use.

The proof of the last assertion relies on the fact that (2n − 1, (2n − 1)p) ≤
(2n− 1, (x + 1)p) for arbitrary n.

Definition 3. Let Ti be a family of LFPL spaces such that |Ti| = T independent
of i. The LFPL space ∃i.Ti is defined by |∃i.Ti| = |T | and α, e �∃i.Ti t iff α, e �Ti t
for some i.

Quantitative Models and Implicit Complexity 199

Note that if we have a uniform family of maps Ti → U where U does not depend
on i then we obtain a map ∃i.Ti → U (existential elimination).

Conversely, if we have a uniform family of maps Ui → Vf(i) then we get a
uniform family of maps Ui → ∃j.Vj (existential introduction). We will use an
informal “internal language” to denote uniform maps which when formalised
would amount to an extension of LFPL with indexed type dependency in the
style of Dependent ML [15].

5.3 Inductive Datatypes

In order to interpret unary natural numbers, we define N = ∃n.Nn where

Nn = ♦n ⊗ ∀α.(α � α)n � α � α.

We can internally define a successor map ♦ ⊗ Nn → Nn+1 as follows: start-
ing from d : ♦, c : ♦n and f : ∀α.(α � α)n � α � α we obtain a mem-
ber of ♦n+1 (from d and c) and we define g : ∀α.(α � α)n+1 � α � α as
λ(xA�A, y(A�A)n

).λzA.x(f y z). From this, we obtain a map ♦ ⊗ N → N by
existential introduction and elimination.

Of course, we also have a constant zero I → N0 yielding a map I → N by
existential introduction.

Finally, we can define an iteration map Nn �!(♦ ⊗ A � A) � A � A as
follows: Given (d, f) ∈ Nn and t :!(♦⊗A � A), we unpack t using Proposition 4
to yield u ∈ ((♦ ⊗ A) � A)n as well as d ∈ ♦n. Feeding these “diamonds” one
by one to the components of u we obtain v ∈ (A � A)n. But then f v yields
the required element of A � A. Existential elimination now yields a single map
N �!(♦⊗A � A) � A � A.

In the full version of this paper [7], we also show how to interpret two different
kinds of binary trees.

6 Conclusion

We have given a unified semantic framework with which to establish soundness
of various systems for capturing complexity classes by logic and programming.
Most notably, our framework has all of second-order multiplicative linear logic
built in, so that only the connectives and modalities going beyond this need to
be verified explicitly.

While resulting in a considerable simplification of previous soundness proofs,
in particular for LFPL and LAL, our method has also lead to new results, in
particular polymorphism and a modality for LFPL.

The method proceeds by assiging both abstract resource bounds in the form
of elements from a resource monoid and resource-bounded computations to
proofs (respectively, programs). In this way, our method can be seen as a combi-
nation of traditional Kleene-style realisability (which only assigns computations)
and polynomial and quasi interpretation known from term rewriting (which only

200 Ugo Dal Lago and Martin Hofmann

assigns resource bounds). An altogether new aspect is the introduction of more
general notions of resource bounds than just numbers or polynomials as for-
malised in the concept of resource monoid. We thus believe that our methods
can also be used to generalise polynomial interpretations to (linear) higher-order.

References

1. Andrea Asperti and Luca Roversi. Intuitionistic light affine logic. ACM Transac-
tions on Computational Logic, 3(1):137–175, 2002.

2. Patrick Baillot and Virgile Mogbil. Soft lambda-calculus: a language for poly-
nomial time computation. In Proceedings of the 7th International Conference on
Foundations of Software Science and Computational Structures, 2004.

3. Stephen Bellantoni, Karl Heinz Niggl, and Helmut Schwichtenberg. Higher type
recursion, ramification and polynomial time. Annals of Pure and Applied Logic,
104:17–30, 2000.

4. Stephen Cook and Alasdair Urquhart. Functional interpretations of feasible con-
structive arithmetic. Annals of Pure and Applied Logic, 63(2):103–200, 1993.

5. Paolo Coppola and Simone Martini. Typing lambda terms in elementary logic
with linear constraints. In Proceedings of the 6th International Conference on
Typed Lambda-Calculus and Applications, pages 76–90, 2001.

6. John Crossley, Gerald Mathai, and Robert Seely. A logical calculus for polynomial-
time realizability. Journal of Methods of Logic in Computer Science, 3:279–298,
1994.

7. Ugo Dal Lago and Martin Hofmann. Quantitative models and implicit complexity.
Arxiv Preprint. Available from http://arxiv.org/cs.LO/0506079, 2005.

8. Jean-Yves Girard. Light linear logic. Information and Computation, 143(2):175–
204, 1998.

9. Martin Hofmann. Linear types and non-size-increasing polynomial time compu-
tation. In Proceedings of the 14th IEEE Syposium on Logic in Computer Science,
pages 464–473, 1999.

10. Martin Hofmann. Safe recursion with higher types and BCK-algebra. Annals of
Pure and Applied Logic, 104:113–166, 2000.

11. Martin Hofmann and Philip Scott. Realizability models for BLL-like languages.
Theoretical Computer Science, 318(1-2):121–137, 2004.

12. Georg Kreisel. Interpretation of analysis by means of constructive functions of finite
types. In Arend Heyting, editor, Constructivity in Mathematics, pages 101–128.
North-Holland, 1959.

13. Yves Lafont. Soft linear logic and polynomial time. Theoretical Computer Science,
318:163–180, 2004.

14. Peter van Emde Boas. Machine models and simulation. In Handbook of Theoretical
Computer Science, Volume A: Algorithms and Complexity, pages 1–66. Elsevier,
1990.

15. Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In
Proceedings of the 26th ACM SIGPLAN Symposium on Principles of Programming
Languages, pages 214–227, 1999.

The MSO Theory of Connectedly

Communicating Processes

P. Madhusudan1, P.S. Thiagarajan2, and Shaofa Yang2

1 Dept. of Computer Science, University of Illinois at Urbana-Champaign
madhu@cs.uiuc.edu

2 School of Computing, National University of Singapore
{thiagu,yangsf}@comp.nus.edu.sg

Abstract. We identify a network of sequential processes that commu-
nicate by synchronizing frequently on common actions. More precisely,
we demand that there is a bound k such that if the process p executes k
steps without hearing from process q—directly or indirectly—then it will
never hear from q again. The non-interleaved branching time behavior
of a system of connectedly communicating processes (CCP) is given by
its event structure unfolding. We show that the monadic second order
(MSO) theory of the event structure unfolding of every CCP is decidable.
Using this result, we also show that an associated distributed controller
synthesis problem is decidable for linear time specifications that do not
discriminate between two different linearizations of the same partially
ordered execution.

1 Introduction

Sequential systems can be represented as transition systems and their behav-
iors can be specified and verified using a variety of linear time and branching
time logics. One can view the monadic second order (MSO) logic of 1-successor
interpreted over strings as the canonical linear time logic and the MSO logic
of n-successors interpreted over regular trees as the canonical branching time
logic [12] for sequential systems. All other reasonable logics can be viewed as
specializations of these two logics with expressive power often traded in for more
efficient verification procedures.

In the case of concurrent systems the situation is similar in many respects. As
for models, one can choose asynchronous transition systems or 1-safe Petri nets
or some other equivalent formalism [15]. In the linear time setting, Mazurkiewicz
traces—viewed as restricted labelled partial orders—constitute a nice generaliza-
tion of sequences and the MSO logic of sequences can be smoothly extended to
Mazurkiewicz traces [1]. In the branching time setting, it is clear that labelled
event structures [15] are an appropriate extension of trees. Further, just as a
transition system can be unwound into a (regular) tree, so can an asynchronous
transition system or 1-safe Petri net be unwound into a (regular) labelled event
structure [15]. One can also define a natural MSO logic for event structures in
which the causality relation (a partial order) and the conflict relation are the

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 201–212, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

202 P. Madhusudan, P.S. Thiagarajan, and Shaofa Yang

non-logical predicates and quantification is carried out over individual and sub-
sets of events. But at this stage, the correspondence between the sequential and
concurrent settings breaks down.

One can say that the MSO theory—of the branching time behavior—of a
transition system is the MSO theory of the tree obtained as its unwinding.
According to Rabin’s famous result [11], the MSO theory of every finite state
transition system is decidable. In the concurrent setting, it is natural to say
that the MSO theory—of the non-interleaved branching time behavior—of a
finite asynchronous transition system is the MSO theory of the event structure
obtained as its event structure unfolding. The trouble is, it is not the case that the
MSO theory of every finite asynchronous transition system is decidable. Hence
an interesting question is: what is the precise subclass of finite asynchronous
transition systems for which the MSO theory is decidable?

We provide a partial answer to this question by exhibiting a subclass of finite
asynchronous transition systems called, for want of a better term, Connectedly
Communicating Processes (CCPs), whose MSO theories are decidable. As the
name suggests, in a CCP, processes communicate with each other frequently.
More precisely, there is a bound k such that if process p executes k steps without
hearing from process q either directly or indirectly and reaches a state s, then
starting from s it will never hear from q again, directly or indirectly. This class
of systems properly includes two subclasses of 1-safe net systems that we know
of, which have decidable MSO theories. These two subclasses are: the sequential
net systems that do not exhibit any concurrency and dually, the conflict-free net
systems which do not exhibit any branching—due to choices—in their behavior.

One motivation for studying branching time temporal logics in a non-
interleaved setting has to do with distributed controller synthesis. More specifi-
cally, for distributed systems, where one is interested in strategies that are not
dependent on global information—and hence can be synthesized in turn as a
distributed controller—one needs to look at partial order based branching time
behaviors. This is the case even if the controller must satisfy just a linear time
specification. Here, as an application of our main result, we establish the decid-
ability of a distributed controller synthesis problem where the plant model is
based on a CCP and the specification is a robust (trace-closed) ω-regular lan-
guage. By a robust language we mean one that does not discriminate between
two different interleavings of the same partially ordered execution.

The communication criterion we impose is motivated by results in undecid-
ability of distributed control. Most undecidability proofs in distributed control
rely on the undecidability of multi-player games with partial information where
the players (in our case processes) have an unbounded loss of information on the
status of other players. Our restriction ensures that the processes communicate
often enough so that this partial information stays bounded.

Our proof technique consists of extracting a regular tree from the event
structure induced by a CCP with the nodes of this tree corresponding to the
events of the event structure such that the causality relation is definable in
the MSO theory of trees. This representation is obtained directly and broadly

The MSO Theory of Connectedly Communicating Processes 203

preserves the structure of the event structure. Similar ideas have been used in
other—tenuously related—settings [3, 4].

Turning to more directly related work, a variety of branching time logics
based on event structures have been proposed in the literature (see for in-
stance [9] and the references therein) but few of them deal directly with the
generalization of Rabin’s result. In this context, a closely related work is [5]
where it is shown, in present terms, that the MSO theories of all finite asyn-
chronous transition systems are decidable provided set quantification is restricted
to conflict-free subsets of events. It is however difficult to exploit this result to
solve distributed controller synthesis problems.

Following the basic undecidablity result reported in [10], positive results in
restricted settings are reported in [7, 8, 14]. However, [7] considers processes
communicating via buffers as also [14] in a more abstract form. On the other
hand, [8] imposes restrictions on communication patterns that are much more
severe than the property we demand here. Our notion of strategies considered
in this paper are local in the sense that each process’s strategy is based on its
local view of the global history, consisting of its own sequence of actions as well
as the sequence of actions executed by other agents that it comes to know about
through synchronizations. The work in [6] also considers view-based strategies,
and shows that for simulations, the problem is undecidable. A more recent study
that uses view-based strategies is [2]. This work is also based on asynchronous
transition systems, but the restrictions placed on the plants concerned is in terms
of the trace alphabet associated with the plant rather than the communication
patterns. As a result, this subclass is incomparable with the subclass of CCPs.
Finally, decentralized controllers have also been studied (see for instance [13] and
its references) where the plant is monolithic but one looks for a set of controllers
each of which can control only a subset of the controllable actions.

In the next section we formulate our model and in section 3 we show that
the MSO theory of every CCP is decidable. We use this result in section 4 to
solve a distributed controller synthesis problem. We discuss a number of possible
extensions in the concluding part of the paper. Due to lack of space, many proofs
are omitted and can be found in the technical report at www.comp.nus.edu.sg
/~thiagu/fsttcs05.

2 Connectedly Communicating Processes

We fix a finite set of processes P and let p, q, range over P . For convenience,
we will often write a P-indexed family {Xp}p∈P simply as {Xp}. A distributed
alphabet over P is a pair (Σ, loc) where Σ is a finite alphabet of actions and
loc : Σ → 2P \ {∅} identifies for each action, a nonempty set of processes (lo-
cations) that take part in each execution of the action. Σp is the set of actions
that p participates in and it is given by {a | p ∈ loc(a)}. Fix such a distributed
alphabet for the rest of the paper.

We will formulate our model in terms of deterministic asynchronous tran-
sition systems. We impose determinacy only for convenience. All our results

204 P. Madhusudan, P.S. Thiagarajan, and Shaofa Yang

will go through, with minor complications, even in the absence of determi-
nacy. An asynchronous transition system (ATS) over (Σ, loc) is a structure
A = ({Sp}, sin , {δa}a∈Σ) where Sp is a finite set of p-states for each p and
sin ∈

∏
p∈P Sp. Further, δa ⊆

∏
p∈loc(a) Sp×

∏
p∈loc(a) Sp for each a. The ATS A

is deterministic if for each a, (sa, s′a), (sa, s
′′
a) ∈ δa implies s′a = s′′a. From now on

we will implicitly assume that the ATSs we encounter are deterministic. Mem-
bers of

∏
p∈P Sp are referred to as global states. It will be convenient to view the

global state s as a map from P into
⋃
Sp such that s(p) ∈ Sp for every p. For

the global state s and P ⊆ P , we will let sP denote the map s restricted to P .
An example of an asynchronous transition system is shown in figure 1(i), where
the locations of an action is assumed are the components in which it appears as
a label of a local transition.

•a
c •

•

a

g

y •
h

•b
c •

•

b

x

g •
y

•d

•

d

x h

p q r

•
a

•
c

•

a

g

y •
h

•
b

•
c

•

b

x

g •
y

•d

•

d

x h

p q r

a b

a g x b

b h d

x d

(i) (ii) (iii)

Fig. 1.

The dynamics of A is given by a transition system TSA = (RSA, sin , Σ,→A)
where RSA ⊆

∏
p∈P Sp, the set of reachable global states, and →A ⊆

RSA × Σ × RSA are least sets satisfying: Firstly, sin ∈ RSA. Secondly, sup-
pose s ∈ RSA and s′ ∈

∏
p∈P Sp such that (sP , s′P) ∈ δa and sQ = s′Q where

P = loc(a) and Q = P \ P . Then s′ ∈ RSA and s
a→A s′. We extend →A to

sequences in Σ� in the obvious way. We define L(A) = {σ ∈ Σ� | ∃s. sin σ→A s}.
We shall use (Mazurkiewicz) trace theory to capture the notion of connect-

edly communicating. It will also come in handy for defining the event structure
semantics of asynchronous transition systems. We first recall that a trace al-
phabet is a pair (Γ, I) where Γ is a finite alphabet set and I ⊆ Γ × Γ is an
irreflexive and symmetric relation called the independence relation. The trace
alphabet (Σ, I) induced by the distributed alphabet (Σ, loc) is given by : aI b iff
loc(a)∩ loc(b) = ∅. Clearly I is irreflexive and symmetric. We let D = (Σ×Σ)\I
denote the dependency relation. The independence relation is extended to Σ�

via: σ I σ′ iff a I b for every letter a that appears in σ and every letter b that ap-
pears in σ′. In what follows, we let σ, σ′ range over Σ�. As usual, ∼I is the least
equivalence relation contained in Σ� × Σ� such that σabσ′ ∼I σbaσ′ whenever
a I b. We let σ � p be the Σp-projection of σ. It is the sequence obtained by eras-
ing from σ all appearances of letters that are not in Σp. We define |σ|p = |σ � p|
where |τ | denotes the length of the sequence τ . In what follows, we will often
write ∼ instead of ∼I .

We say that two processes p and q are separated in σ if there exist τ, τ ′ ∈ Σ�

such that σ ∼ ττ ′ and τ I τ ′ and |τ |q = |τ ′|p = 0. Thus in the execution

The MSO Theory of Connectedly Communicating Processes 205

represented by σ there can be no flow of information from q to p or conversely.
The asynchronous transition system A is k-communicating if for every s ∈ RSA
and every p, q, the following condition is satisfied: Suppose s σ→A s′ and |σ|p ≥ k

and |σ|q = 0. Then p and q are separated in σ′ for any s′
σ′
→A s′′.

We shall say that A is connectedly communicating iff it is k-communicating
for some k. Clearly A is connectedly communicating iff it is K-communicating
where K is at most |RSA|. Furthermore, one can effectively determine whether
A is connectedly communicating. From now on we will often refer to a finite
deterministic connectedly communicating ATS as a CCP. The ATS shown in
figure 1(ii) is a CCP while the one shown in figure 1(i) is not. Note that the two
ATSs are based on the same distributed alphabet.

3 Decidability

We wish to prove that the MSO theory of the unfolding of every CCP is decid-
able. To formulate this result we begin with a brief account of event structures.

An event structure (often called a prime event structure) is a triple ES =
(E,≤,#) where (E,≤) is a poset such that for every e ∈ E, ↓ e = {e′ ∈ E |
e′ ≤ e} is a finite set. And # ⊆ E × E is an irreflexive and symmetric relation
such that, for every e1, e2 and e3, if e1 # e2 and e2 ≤ e3, then e1 # e3. E is the
set of events, ≤ the causality relation and # the conflict relation. The minimal
causality relation � is defined as: e�e′ iff e < e′ and for every e′′, if e ≤ e′′ ≤ e′,
then e′′ = e or e′′ = e′. A Σ-labelled event structure is a structure (E,≤,#, λ)
where (E,≤,#) is an event structure and λ : E → Σ a labelling function.

The non-interleaved branching time behavior of A is naturally given by its
event structure unfolding [15]. This Σ-labelled event structure denoted ESA is
obtained as follows. We first note that L(A) is a trace-closed subset of Σ� in the
sense if σ ∈ L(A) and σ ∼ σ′ then σ′ ∈ L(A) as well. For a non-null sequence
σ ∈ Σ�, let last(σ) denote the last letter appearing in σ. In the present context,
we shall view a (Mazurkiewicz) trace as a ∼-equivalence class of strings and
denote the ∼-equivalence class containing the string σ as [σ]∼ and often drop
the subscript ∼. The partial ordering relation� over traces is given by : [σ] � [σ′]
iff there exists σ′′ in [σ′] such that σ is a prefix of σ′′. A trace [σ] is prime iff σ is
non-null and for every σ′ in [σ], last(σ) = last(σ′). Thus for a prime trace [σ], we
can set last([σ]) = last(σ). Now, ESA is defined to be the structure (E,≤,#, λ)
where

– E = {[σ] | σ ∈ L(A) and [σ] is prime}.
– ≤ is � restricted to E × E.
– # is given by: e # e′ iff there does not exist σ ∈ L(A) such that e � [σ] and

e′ � [σ], for every e, e′ ∈ E.
– λ(e) = last(e), for every e ∈ E.

It is easy to check that ESA is a Σ-labelled event structure. In fact, the labelling
function λ will respect the dependency relation D in the sense that if λ(e) D λ(e′)
then it will be the case that e ≤ e′ or e′ ≤ e or e # e′. And this will endow ESA

206 P. Madhusudan, P.S. Thiagarajan, and Shaofa Yang

with a great deal of additional structure. In particular, it will let us define its
MSO theory using just the � relation and the labelling function as it will turn
out below. In what follows, we will often write ESA as just ES .

In figure 1(iii) we show an initial fragment of the event structure unfolding
of the system shown in figure 1(ii). As usual, directed arrows represent members
of the � relation and the squiggly edges represent the “minimal” members of
the # relation. The relations ≤ and # are to be deduced using the transitivity
of ≤ and the conflict inheritance axiom satisfied by an event structure.

We now define the syntax of the MSO logic over ESA as:

MSO(ESA) ::= Ra(x) | x � y | x ∈ X | ∃x (ϕ) | ∃X(ϕ) | ∼ ϕ | ϕ1 ∨ ϕ2 ,

where a ∈ Σ, x, y, . . . are individual variables and X,Y, . . . are set variables.
An interpretation I assigns to every individual variable an event in E and every
set variable, a subset of E. The notion of ES satisfying a formula ϕ under an
interpretation I, denoted ES |=I ϕ, is defined in the obvious way. For example,
ES |=I Ra(x) iff λ(I(x)) = a; ES |=I x � y iff I(x) � I(y).

It is a standard observation that ≤ can be defined in terms of � in the
presence of set quantification. We next observe that the conflict relation of ESA
admits an alternative characterization. Let the relation #̂D be given by: e #̂D e′

iff e � e′ and e′ � e and λ(e) D λ(e′). Next define #̂ as: e #̂ e′ iff there exist e1
and e1′ such that e1 #̂D e1′ and e1 ≤ e and e1′ ≤ e′. It is easy to verify that
#̂ = # and that #̂ is definable.

The MSO theory of ES is the set of sentences (formulas that do not have free
occurrences of individual or set variables) given by: {ϕ | ES |= ϕ}. The MSO
theory of ES is said to be decidable if there exists an effective procedure that
determines for each sentence ϕ in MSO(ES), whether ES |= ϕ. Finally, by the
MSO theory of A we shall mean the MSO theory of ESA. It is not difficult to
show that the MSO theory of the asynchronous transition system in figure 1(i)
is undecidable (as easily shown in our technical report). Our main result is:

Theorem 1. Let A be a CCP. Then the MSO theory of A is decidable.

Through the rest of this section, we assume A is k-communicating where
k ≤ |RSA|. Let TR = (Σ�, {succa}a∈Σ) be the infinite Σ-tree, where succa =
{(u, ua) | u ∈ Σ�}. In what follows, we shall denote the standard MSO logic of
n-successors (|Σ| = n) interpreted over TR as MSO(TR). Its syntax is:

MSO(TR) ::= succa(x, y) | x ∈ X | ∃x (ϕ) | ∃X(ϕ) | ∼ ϕ | ϕ1 ∨ ϕ2 .

The semantics is the standard one [12]. We shall show that the structure (E,�, λ)
can be embedded in TR and that this embedding can be defined in MSO(TR).
This will at once yield theorem 1 by the result that MSO(TR) is decidable [11].

Through the rest of the paper, we fix a total order lex on Σ. Often, we refer
to this order implicitly, for example, by speaking of a being less than b. Clearly
lex induces a total order over Σ� which we shall refer to as the lexicographic
order. For an event e in E with e = [σ], we let lin(e) be the lexicographically

The MSO Theory of Connectedly Communicating Processes 207

least member in [σ]. Set LEXA = {lin(e) | e ∈ E}. In what follows, we will
write LEXA as just LEX . Clearly LEX ⊆ Σ� and hence members of LEX can
be looked upon as distinguished nodes in the tree TR. A pleasant fact is that
LEX is definable in MSO(TR).

Lemma 2. One can effectively construct a formula ϕLEX (x) with one free in-
dividual variable x such that for any interpretation I, TR |=I ϕLEX (x) iff
I(x) ∈ LEX .

Proof. It is easy to show that Levents = {σ | [σ] ∈ E} is a regular trace-closed
subset of Σ� and is hence a regular trace language. It is known that the col-
lection L̂lex obtained by picking the lexicographically least member of each
∼-equivalence class of a regular trace language L̂ is, in turn, a regular lan-
guage [1]. Thus LEX is a regular subset of Σ� and we can effectively construct
from A, a deterministic finite state automaton accepting LEX . Further, one can
describe the successful runs of this automaton in the form of a formula ϕLEX (x).

&'

Define now the relation �LEX ⊆ LEX × LEX by: σ �LEX σ′ iff [σ] � [σ′] in
ESA. Define also the map λLEX as λLEX (σ) = last(σ) for every σ ∈ LEX . It
now follows that (LEX ,�LEX , λLEX) is isomorphic to the structure (E,�, λ).
Hence if we show that �LEX is definable in MSO(TR) then we are done. In this
light, the following result is crucial.

Lemma 3. There exists a constant K (which can be effectively computed from
A) with the following property: Suppose w = a1 . . . am, w

′ = b1 . . . bn ∈ LEX .
Suppose further, w�LEXw′ and w is not a prefix of w′. Then |aiai+1 . . . am| ≤ K,
where i is the least index such that ai 	= bi.

Proof. Let e = [w] and e′ = [w′] so that e � e′. It follows from the definition
of ES that w′ ∼ wτ for some τ in Σ+. Hence bi is less than ai. We show that
bi I aiai+1 . . . am. This will easily yield that |aiai+1 . . . am| ≤ k|P|, following the
facts that A is k-communicating and [w′] is prime and w′ ∼ wbiτ

′ for some τ ′

in Σ+. Now suppose bi I aiai+1 . . . am does not hold. Let j (i ≤ j ≤ m) be the
least index such that aj D bi. A basic property of traces is that if a D b then
the {a, b}-projection of σ1 is identical to the {a, b}-projection of σ2 whenever
σ1 ∼ σ2. It follows that aj = bi. But then bi being less than ai would imply that
ŵ = a1 . . . ai−1biai . . . aj−1aj+1 . . . am ∼ w and clearly ŵ is lexicographically less
than w, a contradiction. &'

We can now show that �LEX is expressible in MSO(TR).

Lemma 4. One can effectively construct a formula ϕ�(x, y) in MSO(TR) with
two free individual variables x and y such that, for any interpretation I,
TR |=I ϕ�(x, y) iff I(x), I(y) ∈ LEX and I(x) �LEX I(y).

Proof. Let w,w′ ∈ LEX . Consider the condition C1 given by:

C1: w is a proper prefix of w′ and last(w) D last(w′)
and last(w) I w′′ where w′ = ww′′.

208 P. Madhusudan, P.S. Thiagarajan, and Shaofa Yang

It is easy to see that if C1 is satisfied then w �LEX w′ and moreover, C1 is
definable in MSO(TR). Let K be the constant established in lemma 3. Now
consider the following conditions:

C2.1 : w = w0a1a2 . . . al with l ≤ K and
w′ = w0w

′
1a1w

′
2a2 . . . w

′
lalw

′
l+1last(w

′).
C2.2 : w′i I aj for 1 ≤ i ≤ j ≤ l and al I w′l+1.
C2.3 : al D last(w′).

Let C2 be the conjunction of C2.1, C2.2 and C2.3. It is easy to see that if C2 is
satisfied then w�LEX w′ and also that C2 is definable in MSO(TR). What takes
some work is showing that if w �LEX w′ then C1 or C2 is satisfied. This can
however be achieved by faithfully applying the definitions of LEX and �LEX .

&'

We can now establish theorem 1. Define the map ‖·‖ from MSO(ESA) into
MSO(TR) inductively: ‖Ra(x)‖ = ∃y succa(y, x) and ‖x � y‖ = ϕ�(x, y) where
ϕ�(x, y) is the formula established in lemma 4. Next we define ‖x ∈ X‖ =
x ∈ X . Further, ‖∃x (Ψ)‖ = ∃x (ϕLEX(x) ∧ ‖Ψ‖) and ‖∃X (Ψ)‖ = ∃X ((∀x ∈
X ϕLEX(x)) ∧ ‖Ψ‖) where ϕLEX (x) is the formula established in lemma 2 . Fi-
nally, ‖∼ Ψ‖ = ∼ ‖Ψ‖ and ‖Ψ1 ∨ Ψ2‖ = ‖Ψ1‖ ∨ ‖Ψ2‖. It is now easy to show
that ESA |= Ψ iff TR |= ‖Ψ‖ for each sentence Ψ . It is also easy to see that our
decision procedure for determining the truth of the sentence Ψ in MSO(ESA) is
non-elementary in the size of Ψ but not in k.

4 Controller Synthesis

Our goal here is to define a distributed plant model based on deterministic ATSs
and show the decidability of the controller synthesis problem for CCPs.

A plant is a structure A = ({Senv
p }, {Ssys

p }, sin , Σenv , Σsys , {δa}a∈Σ) where
({Sp}, sin , {δa}a∈Σ) is a deterministic ATS over (Σ, loc), called the underlying
ATS of A with Sp = Senv

p ∪ Ssys
p and Senv

p ∩ Ssys
p = ∅ for each p. Further,

{Σenv , Σsys} is a partition of Σ such that for each a in Σenv , |loc(a)| = 1.
Finally, suppose (sa, s′a) ∈ δa and p ∈ loc(a). Then sa(p) ∈ Senv

p iff a ∈ Σenv

and hence loc(a) = {p}.
The sets Senv

p , Ssys
p are respectively the p-environment and p-system states.

The sets Σenv and Σsys are the environment (uncontrollable) and system (con-
trollable) actions respectively. Each component interacts with its local environ-
ment and these interactions are enabled only when the component is in one of
its environment states. We note that although the underlying ATS is determin-
istic, in general, a menu of controllable actions involving different processes will
be available for the controller at each stage as the plant evolves. This will be
the case even for the local strategies we define below. Through the rest of the
section, we fix a plant A as above. When talking about the behavioral aspects of
A, we shall identify it with its underlying ATS and will often drop the subscript
A. We will also say the plant is a CCP in case its underlying ATS is.

The MSO Theory of Connectedly Communicating Processes 209

Members of L(A) are referred to as plays. The set of infinite plays Lω(A)
is defined in the obvious way. We are interested in distributed strategies ob-
tained by piecing together local strategies and the local views of a play will be
instrumental in determining local strategies.

Let σ = a1 . . . an be a play in L(A). The p-view of σ denoted ↓p (σ) is
the subsequence ah1 . . . ahm such that H = {h1, h2, . . . , hm} is the least subset
of {1, 2, . . . , n} which satisfies: Firstly, hm is the largest index in {1, 2, . . . , n}
such that p ∈ loc(ahm). Secondly, if i ∈ H and j < i and aj D ai, then j ∈
H . In other words, ↓p (σ) is the maximum amount of the current play that p
knows about where this knowledge is gathered by its participation in the actions
that have occurred in the play and the information it acquires as a result of
synchronizations with other agents.

It will be convenient to define the set of actions that can potentially occur
at a local state. For u ∈ Sp we let act(u) be the set given by: a ∈ Σp is in
act(u) iff there exists (sa, s′a) in δa with sa(p) = u. A p-strategy is a function
f : L(A) → 2Σp which satisfies: Suppose σ ∈ L(A) and sin

σ→ s with s(p) = u.
Then f(σ) ⊆ act(u) and moreover f(σ) = act(u) in case u ∈ Senv

p . Thus a
p-strategy recommends a subset of the structurally possible Σp-actions at the
current p-state. It does so without restricting in any way the environment’s
choices.

The p-strategy f is said to be local if it satisfies: for every σ, σ′ ∈ L(A),
↓p (σ) ∼ ↓p (σ′) implies f(σ) = f(σ′). Hence a local p-strategy depends only on
the (partially ordered!) p-view of the play.

We now define a distributed strategy Str = {Strp} to be a family of local
p-strategies, one for every p. From now, unless otherwise stated, we shall say
“p-strategy” to mean “local p-strategy” and “strategy” to mean a distributed
strategy.

Let Str = {Strp} be a strategy. The set of plays according to Str denoted
L(Str) is defined inductively by: Firstly, ε ∈ L(Str). Secondly, if σ ∈ L(Str) and
σa ∈ L(A) such that a ∈ Strp(σ) for every p ∈ loc(a), then σa ∈ L(Str). That is,
an action a is allowed to execute only when it is recommended by every process
taking part in a. In what follows, we will assume without loss of generality
that TSA has no deadlocks; more precisely, every reachable global state has a
successor state reachable via a transition. Thus if a play according to a strategy
cannot be extended it is only due to the local strategies not being able to agree
on executing any system action. We will say that a strategy Str is non-blocking
in case every play in L(Str) can be extended to a longer play in L(Str). This
notion does not rule out the possibility of a play being extended indefinitely by
just the execution of environmental actions. However one can rule out such plays
by choosing the specification suitably.

To define specifications, we first define the set of infinite plays according
to the strategy Str denoted Lω(Str) in the obvious way. A specification is an
ω-regular subset of Σω which is assumed to be presented in a finite way, say, as
a Büchi automaton. Let Lspec be a specification. A strategy Str is winning for
Lspec iff Str is non-blocking and Lω(Str) ⊆ Lspec. A winning strategy for Lspec

210 P. Madhusudan, P.S. Thiagarajan, and Shaofa Yang

is called a controller for the pair (A, Lspec). The controller synthesis problem we
wish to solve is: given a pair (A, Lspec) where A is a CCP, determine whether
there exists a controller for Lspec. We will be mainly interested in showing here
that this problem is effectively solvable if the specification is robust.

To pin down robustness, we extend ∼ to Σω. This can be done in a number
of equivalent ways. For our purposes it will do to define it as follows: Suppose
σ, σ′ ∈ Σω. Then σ ∼ σ′ iff σ � p = σ′ � p for every p. We say that the
specification Lspec is robust iff for every σ, σ′ ∈ Σω, if σ ∈ Lspec and σ ∼ σ′,
then σ′ ∈ Lspec.

We can now state:

Theorem 5. Given a CCP plant A and a robust specification Lspec, one can
effectively determine whether there exists a controller for (A, Lspec).

In fact we can say much more as we point out in remarks following the proof of
theorem 5.

4.1 Proof of Theorem 5

Throughout this subsection, we assume A is a CCP and Lspec is robust. We
shall show that the existence of a controller for (A, Lspec) can be asserted in
MSO(ESA). The required result will then follow at once from theorem 1.

In what follows, we let ESA = (E,≤,#, λ) and often write ES instead of
ESA. A configuration of ES is a subset c ⊆ E such that ↓ c = c (where ↓ c =
∪e∈c(↓ e)) and (c × c) ∩# = ∅. Let c be a finite configuration. Then it is well-
known that the Σ-labelled poset (c,≤c, λc) where ≤c and λc are the obvious
restrictions, represents a trace in the following sense. The set of linearizations of
(c,≤c) (subjected to the point-wise application of λc) will be a trace, viewed as
a ∼-equivalence class of strings. In fact finite and infinite configurations on the
one hand and finite and infinite traces on the other hand, represent each other. It
is not difficult to see that in MSO(ES) one can construct a formula infinite(X)
with one free set variable X which asserts that X is an infinite set of events.
Consequently, in MSO(ES) one can define a formula fin-conf (X) (inf -conf (X))
asserting that X is a finite (infinite) configuration.

Next we define, for E′ ⊆ E, the p-view of E′ denoted p-view (E′) to be the set
of events given by: e′ ∈ p-view (E′) iff there exists e′′ ∈ E′ such that e′ ≤ e′′ and
p ∈ loc(λ(e′′)). Again it is easy to see that we can define a formula p-view (X,Y)
asserting that Y is the p-view of X .

Now let Str be a strategy. From the definitions, it follows that L(Str) is
trace-closed. Hence for each σ ∈ L(Str) we will have [σ] ⊆ L(Str) and moreover,
by the observation above, there will be a unique finite configuration in ES that
corresponds to [σ]. We will say that EStr is the set of Str-events and define it to
be the set given by: e ∈ E is in EStr iff there exists σ ∈ L(Str) such that e = [σ].
We will say that E′ is good in case there exists a strategy Str such that E′ is
the set of Str-events. We can construct a formula Good(X) which will assert
that X is good. For arguing this, it will be convenient to assume the transition
relation ⇒⊆ Cfin ×E ×Cfin where Cfin is the set of finite configurations of ES

The MSO Theory of Connectedly Communicating Processes 211

and ⇒ is given by: c e⇒ c′ iff e /∈ c and c′ = c ∪ {e}. The formula Good(X) will
be a conjunction of the following properties all of which are easily definable in
MSO(ES).

– X is a nonempty set and for every finite configuration Y contained in X , if
Y

e⇒ Y ′ and λ(e) ∈ Σenv then Y ′ ⊆ X .
– If Y is a finite configuration contained in X then there exists a finite config-

uration Y ′ such that Y ⊂ Y ′ ⊆ X .
– Suppose Y is a finite configuration contained in X , and Y

e⇒ Y ′. Suppose
that for every p in loc(a), where a = λ(e), there exists Yp ⊆ X such that the
p-view of Yp is identical to the p-view of Y and Yp

e1⇒ Y ′p with λ(e1) = a and
Y ′p ⊆ X . Then Y ′ ⊆ X .

All we need now is to argue that we can assert that every infinite play be-
longing to a good set meets the specification. But this is easy to do since Lspec is
robust. It follows that Lspec in fact is an ω-regular trace language and is hence
definable in the Monadic Second Order logic of infinite traces interpreted over
the set of infinite traces generated by our trace alphabet (Σ, I) [1]. Denoting
this logical language by MSO(Σ, loc), we can assume, without loss of generality,
that its syntax is exactly that of MSO(ES) but interpreted over infinite traces
represented as Σ-labelled partial orders. In particular, the � refers to the partial
order of the trace rather than the positional order of a linearization of the trace.

Now let Φspec be a sentence in MSO(Σ, loc) such that the ω-regular trace
language defined by it is precisely Lspec. We can now assert in MSO(ES) that
there exists X such that X is a good set and moreover, for every infinite con-
figuration Y contained in X , the trace corresponding to Y satisfies Φspec. It is
routine to show that this sentence, say Ψcontroller , is satisfiable in MSO(ES) iff
there exists a controller for (A, Lspec).

5 Discussion

Here we informally sketch a number of additional results that one can derive for
our ATSs. To start with, theorem 5 can be considerably strengthened. In case
a controller exists then there exists a finite state one which can be effectively
computed and synthesized as a (finite deterministic) CCP over (Σ, loc). This
controller will synchronize with the plant on common actions and the resulting
controlled behavior will meet the specification. Developing this result however
requires additional work and machinery. It also requires us to work with TR, the
tree representation of ES , rather than with ES itself. By adapting the arguments
developed in [10] we can also show quite easily that the controller synthesis
problem is undecidable for CCP plants in case the specification is allowed to be
non-robust.

Clearly we can assume the specification for the controller synthesis problem
to be given as a sentence in MSO(ES) and our argument for decidability will
extend smoothly. One can also assume that the plant itself is not a CCP but
require, for robust specifications, the controller be a CCP. More precisely, we say

212 P. Madhusudan, P.S. Thiagarajan, and Shaofa Yang

that the strategy Str is k-communicating iff for every σ ∈ L(Str), if σσ′ ∈ L(Str)
and |σ′|p ≥ k and |σ′|q = 0, then for every σσ′σ′′ ∈ L(Str), p, q are separated
in σ′′. We say Str is connectedly communicating iff Str is k-communicating for
some integer k. We conjecture that the k-communicating controller synthesis
problem for a given k is decidable and in case such a controller exists, a finite
state one exists as well and it can be effectively synthesized. It is also interesting
to determine if the connectedly communicating controller synthesis problem is
decidable. In other words, given a plant and a robust specification determine if
there exists a k-communicating controller for some k. We conjecture that this
problem is undecidable.

References

[1] V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

[2] P. Gastin, B. Lerman, and M. Zeitoun. Distributed games with causal memory are
decidable for series-parallel systems. In FSTTCS ’04, LNCS 3328, pages 275–286.
Springer, 2004.

[3] D. Kuske. Regular sets of infinite message sequence charts. Information and
Computation, 187:80–109, 2003.

[4] P. Madhusudan. Reasoning about sequential and branching behaviours of message
sequence graphs. In ICALP ’00, LNCS 2076, pages 396–407. Springer, 2000.

[5] P. Madhusudan. Model-checking trace event structures. In LICS ’03, pages 371–
380. IEEE Press, 2003.

[6] P. Madhusudan and P.S. Thiagarajan. Controllers for discrete event systems via
morphisms. In CONCUR ’98, LNCS 1466, pages 18–33. Springer, 1998.

[7] P. Madhusudan and P.S. Thiagarajan. Distributed control and synthesis for local
specifications. In ICALP ’01, LNCS 2076, pages 396–407. Springer, 2001.

[8] P. Madhusudan and P.S. Thiagarajan. A decidable class of asynchronous dis-
tributed controllers. In CONCUR ’02, LNCS 2421, pages 145–160. Springer,
2002.

[9] W. Penczek. Model-checking for a subclass of event structures. In TACAS ’97,
LNCS 1217, pages 146–164. Springer, 1997.

[10] A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In
FOCS ’90, pages 746–757. IEEE Press, 1990.

[11] M. Rabin. Decidability of second order theories and automata on infinite trees.
Trans. of AMS, 141:1–35, 1969.

[12] W. Thomas. Automata on infinite objects. In Handbook of Theoretical Comp.
Sci., Vol. B. Elsevier, 1990.

[13] S. Tripakis. Decentralized control of discrete event systems with bounded or
unbounded delay communication. IEEE Trans. on Automatic Control, 49:1489–
1501, 2004.

[14] I. Walukiewicz and S. Mohalik. Distributed games. In FSTTCS ’03, LNCS 2914,
pages 338–351. Springer, 2003.

[15] G. Winskel and M. Nielsen. Models for concurrency. In Handbook of Logic in
Comp. Sci., Vol. 3. Oxford University Press, 1994.

Reachability of Hennessy-Milner Properties

for Weakly Extended PRS

Mojmı́r Křet́ınský, Vojtěch Řehák, and Jan Strejček

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{kretinsky,rehak,strejcek}@fi.muni.cz

Abstract. We examine the problem whether a given weakly extended
process rewrite system (wPRS) contains a reachable state satisfying a
given formula of Hennessy–Milner logic. We show that this problem is
decidable. As a corollary we observe that the problem of strong bisimi-
larity between wPRS and finite-state systems is decidable. Decidability
of the same problem for wPRS subclasses, namely PAN and PRS, has
been formulated as an open question, see e.g. [Srb02]. We also strengthen
some related undecidability results on some PRS subclasses.

1 Introduction

Current software systems often exhibit an evolving structure and/or operate on
unbounded data types. Hence automatic verification of such systems usually re-
quires to model them as infinite-state ones. Various modeling formalisms suited
to different kinds of applications have been developed with their respective ad-
vantages and limitations.

Here we employ the classes of infinite-state systems defined by term rewrite
systems and called Process Rewrite Systems (PRS) as proposed by Mayr [May00].
PRS subsume a variety of the formalisms studied in the context of formal verifica-
tion. Petri nets (PN), pushdown processes (PDA), and process algebras like BPA,
BPP, or PA all serve to exemplify this. The relative expressive power of various
process classes has been studied, especially with respect to strong bisimulation;
see [BCS96, Mol96] and [May00] showing the strictness of the PRS hierarchy.
Their relevance for modeling and analysing programs is shown e.g. in [Esp02],
for automatic verification see e.g. surveys [BCMS01, KJ02, Srb02].

Expressiveness of (most of) the PRS classes can be increased by adding
a finite-state control unit to the PRS rewriting mechanism, which results in so-
called state-extended PRS (sePRS) classes, see e.g. [JKM01, HM01]. We have
extended the PRS hierarchy by the sePRS classes and refined this extended
hierarchy by introducing PRS equipped with a weak finite-state unit (wPRS,
inspired by weak automata [MSS92]) [KŘS04b, KŘS04a].

Research on the expressive power of process classes has been accompanied by
exploring algorithmic boundaries of various verification problems. In this paper
we mainly focus on model checking some (fragments of) simple branching time
logics, namely EF and EG, on the process classes mentioned above.

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 213–224, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

214 Mojmı́r Křet́ınský, Vojtěch Řehák, and Jan Strejček

First, we note that the reachability problem, i.e. to decide whether a given
state is reachable from the initial one, is decidable for the classes of PRS [May00]
and wPRS [KŘS04a], while it is undecidable for sePA [BEH95]. All the problems
mentioned below remain undecidable on the sePA class due to its Turing power.

A reachability property problem, for a given system Δ and a given formula ϕ,
is to decide whether EFϕ holds in the initial state of Δ. Hence, these problems
are parametrized by the class to which the system Δ belongs, and by the type
of the formula ϕ. In most of practical situations, ϕ specifies error states and the
reachability property problem is a formalization of a natural verification problem
whether some error state is reachable in a given system.

We recall that the (full) EF logic is decidable for PAD [May98] (PAD sub-
sumes both PA and PDA). It is undecidable for PN [Esp94]; an inspection of the
proof moves this undecidability border down to seBPP (also known as multiset
automata, MSA). If we consider the reachability HM property problem, i.e. the
reachability property problem where ϕ is a formula of Hennessy–Milner logic
(HM formula), then this problem has been shown to be decidable for the classes
of PN [JM95] and PAD [JKM01]. We lift the decidability border for this problem
to the wPRS class. This results also moves the decidability border for the reach-
ability simple property problem, i.e. the reachability property problem where ϕ
is a HM formula without any nesting of modal operators 〈a〉, as the problem has
been know to be decidable for PRS [May00] so far.

Let us recall that the (full) EG logic is decidable for PDA (a consequence
of [MS85] and [Cau92]), whilst undecidability has been obtained for its EGϕ
fragment on (deterministic) BPP [EK95], where ϕ is a HM formula. We show
that this problem remains undecidable on (deterministic) BPP even if we restrict
ϕ to a HM formula without nesting of modal operators 〈a〉.

As a corollary of our main result, i.e. decidability of the reachability HM
property problem for wPRS, we observe that the problem of strong bisimilar-
ity between wPRS systems and finite-state ones is decidable. As PRS and its
subclasses are proper subclasses of wPRS, it follows that we positively answer
the question of the reachability HM property problem for the PRS class and
hence the questions of bisimilarity checking the PAN and PRS processes with
finite-state ones, which have been open problems, see for example [Srb02]. Their
relevance to program specification and verification is advocated, for example,
in [JKM01, KS04].

The outline of the paper is as follows. In the next section we recall some
basic notions including syntax and semantics of (extended) PRS. In Section 3
we show that the problem of reachability HM property is decidable for wPRS.
Some consequences and further results are discussed in Section 4.

2 Preliminaries

2.1 PRS and Its Extensions

Let Const = {X, . . .} be a set of process constants. The set of process terms
(ranged over by t, . . .) is defined by the abstract syntax t ::= ε | X | t.t | t‖t,

Reachability of Hennessy-Milner Properties for Weakly Extended PRS 215

where ε is the empty term, X ∈ Const is a process constant; and ’.’ and ’‖’
mean sequential and parallel compositions respectively. We always work with
equivalence classes of terms modulo commutativity and associativity of ’‖’, as-
sociativity of ’.’, and neutrality of ε, i.e. ε.t = t.ε = t‖ε = t. We distinguish four
classes of process terms as:

1 – terms consisting of a single process constant only, in particular ε 	∈ 1,
S – sequential terms - terms without parallel composition, e.g. X.Y.Z,
P – parallel terms - terms without sequential composition, e.g. X‖Y ‖Z,
G – general terms - terms without any restrictions, e.g. (X.(Y ‖Z))‖W .

Let M = {o, p, q, . . .} be a set of control states and Act = {a, b, c, . . .} be
a set of actions. Let α, β ∈ {1, S, P,G}, α ⊆ β be the classes of process terms.
An (α, β)-sePRS (state extended process rewrite system) Δ is a tuple (R, p0, t0),
where

– R is a finite set of rewrite rules of the form (p, t1)
a
↪→ (q, t2), where t1 ∈ α,

t1 	= ε, t2 ∈ β, p, q ∈M , and a ∈ Act ,
– a pair (p0, t0) ∈M × β forms the distinguished initial state of the system.

Sets of control states and process constants occurring in rewrite rules or in the
initial state of Δ are denoted by M(Δ) and Const(Δ) respectively.

An (α, β)-sePRS Δ = (R, p0, t0) represents a labelled transition system the
states of which are pairs (p, t) such that p ∈M(Δ) is a control state and t ∈ β is
a process term over Const(Δ). The transition relation −→ is the least relation
satisfying the following inference rules:

((p, t1)
a
↪→ (q, t2)) ∈ Δ

(p, t1)
a−→ (q, t2)

(p, t1)
a−→ (q, t2)

(p, t1‖t′1)
a−→ (q, t2‖t′1)

(p, t1)
a−→ (q, t2)

(p, t1.t′1)
a−→ (q, t2.t′1)

Sometimes we use −→Δ or −→R to emphasize that we mean the transition rela-
tion corresponding to Δ or the relation generated by a set of rules R, respectively.
To shorten our notation we write pt in lieu of (p, t). The transition relation can
be extended to finite words over Act in a standard way. A state qt2 is reachable
from a state pt1, written pt1

∗−→ qt2, if there is σ ∈ Act∗ such that pt1
σ−→ qt2.

We say that a state is reachable if it is reachable from the initial state.
An (α, β)-sePRS where M(Δ) is a singleton is called (α, β)-PRS (process

rewrite system). In such systems we omit the single control state from rules and
states. An (α, β)-sePRS Δ is called a process rewrite system with weak finite-state
control unit or a weakly extended process rewrite system, written (α, β)-wPRS,
if there exists a partial order ≤ on M(Δ) such that each rule pt1

a
↪→ qt2 of Δ

satisfies p ≤ q.
Some classes of (α, β)-PRS correspond to widely known models as finite-

state systems (FS, (1, 1)-PRS), basic process algebras (BPA, (1, S)-PRS), basic
parallel processes (BPP, (1, P)-PRS), process algebras (PA, (1, G)-PRS), push-
down processes (PDA, (S, S)-PRS, see [Cau92] for justification), and Petri nets
(PN, (P, P)-PRS). The classes (S,G)-PRS, (P,G)-PRS and (G,G)-PRS were

216 Mojmı́r Křet́ınský, Vojtěch Řehák, and Jan Strejček

introduced and named as PAD, PAN, and PRS by Mayr [May00]. Instead of
(α, β)-sePRS or (α, β)-wPRS we juxtapose prefixes ‘se-’ or‘w-’ respectively with
the acronym corresponding to the (α, β)-PRS class. For example, we use wBPP
rather than (1, P)-wPRS.

The expressive power of a class is measured by the set of labelled transition
systems that are definable (up to strong bisimulation equivalence [Mil89]) by the
class. Details can be found in [KŘS04b, KŘS04a].

2.2 Logics and Studied Problems

In this paper we work with fragments of unified system of branching-time logic
(UB) [BAPM83]. Formulae of UB have the following syntax:

ϕ ::= tt | ¬ϕ | ϕ1 ∧ ϕ2 | 〈a〉ϕ | EFϕ | EGϕ,

where a ∈ Act is an action. Here, formulae are interpreted over states of sePRS
systems. Validity of a formula ϕ in a state pt of a given sePRS system Δ, written
(Δ, pt) |= ϕ, is defined by induction on the structure of ϕ: tt is valid for all states;
boolean operators have standard meaning; (Δ, pt) |= 〈a〉ϕ iff there is a state qt′

such that pt
a−→ qt′ and (Δ, qt′) |= ϕ; (Δ, pt) |= EFϕ iff there is a state qt′

reachable from pt such that (Δ, qt′) |= ϕ; (Δ, pt) |= EGϕ iff there is a maximal
(finite or infinite) transition sequence p1t1

a1−→ p2t2
a2−→ p3t3

a3−→ . . . such that
pt = p1t1 and all states in the sequence satisfy piti |= ϕ. We write Δ |= ϕ if ϕ is
valid in the initial state p0t0 of Δ. For each UB formula ϕ, depth(ϕ) denotes a
nesting depth of 〈a〉 operators in ϕ (see e.g. [Mil89] for this standard definition).

A UB formula ϕ is called

– an EF formula if it does not contain any EG operator;
– an EG formula if it does not contain any EF operator;
– a Hennessy–Milner formula (or HM formula for short) if it contains neither

EG nor EF operators;
– a simple formula if it is an HM formula satisfying depth(ϕ) = 1.

In the following, we deal with six problems parametrized by a subclass of
sePRS systems. Let Δ be a given system of the subclass considered. The problem
to decide whether

– Δ |= ϕ, where ϕ is a given EF formula, is called decidability of EF logic;
– Δ |= EFϕ, where ϕ is a given HM formula, is called reachability HM property;
– Δ |= EFϕ, where ϕ is a given simple formula, is called reachability simple

property;
– Δ |= ϕ, where ϕ is a given EG formula, is called decidability of EG logic;
– Δ |= EGϕ, where ϕ is a given HM formula, is called evitability HM property;
– Δ |= EGϕ, where ϕ is a given simple formula, is called evitability simple

property.

Reachability of Hennessy-Milner Properties for Weakly Extended PRS 217

3 Main Result

In this section, we study a reachability HM property problem for wPRS, i.e. the
problem to decide whether a given wPRS Δ and a given HM formula ϕ satisfy
Δ |= EFϕ or not. We prove that the problem is decidable. The proof reduces
this problem to the reachability problem for wPRS, i.e. the problem to decide
whether a given state of a given wPRS is reachable or not, which is decidable
due to [KŘS04a].

Theorem 1 ([KŘS04a]). The reachability problem for wPRS is decidable.

For the rest of this section, let Δ be a fixed wPRS system, D 	∈ Const(Δ)
be a fixed fresh process constant, and C = Const(Δ) ∪ {D}. Further, let ϕ be a
HM formula and n = depth(ϕ). We assume that n > 0.

Definition 1. A term t′ is called n-equivalent to a state pt of Δ if and only if,
for each HM formula ψ satisfying depth(ψ) ≤ n, it holds:

(Δ, pt) |= ψ ⇐⇒ (Δ, pt′) |= ψ

Our proof will proceed in two steps. In the first step we show that there
exists a finite set T of terms such that, for each reachable state pt of Δ, the set
T contains a term t′ which is n-equivalent to pt. In the second step we enrich
the system with rules allowing us to rewrite an arbitrary reachable state pt to a
state [p, t′]D, where the control state [p, t′] represents the original control state
p and a term t′ which is n-equivalent to pt. Finally, for each p ∈ M(Δ), t′ ∈ T

satisfying (Δ, pt′) |= ϕ we add a rule [p, t′]D
a
↪→ acc D. Let us note that the

validity of (Δ, pt′) |= ϕ is decidable as wPRS systems are finitely branching. To
sum up, ϕ is valid for some reachable state pt of Δ if and only if the state acc D
is reachable in the modified system.

First, we introduce some auxiliary terminology and notation. A nonempty
proper subterm t′ of a term t is called idle if t′ is the right-hand-side com-
ponent of some sequential composition in t (such that its left-hand-side com-
ponent is nonempty), where sequential composition is considered to be left-
associative. For example, a term (X.Y.Z)‖(U.(V ‖W)) should be interpreted as
((X.Y).Z)‖(U.(V ‖W)) and its idle subterms are Y, Z, V ‖W but not Y.Z. By
IdleTerms we denote a set of all idle terms occurring in the initial term or
in terms on the right-hand sides of rewrite rules of Δ. Observe that each idle
subterm of any reachable state of Δ is contained in IdleTerms .

We define a length of a term t, written |t|, as the number of all occurrences
of process constants in the term. For example, |X‖(X.Y)‖ε| = 3. Further, for
each j ≥ 0, we define a set

SmallTerms(j) = {t | t is a term over C and 0 < |t| ≤ j}.

Definition 2. Let h > 0 be an integer. We put k = max{|t| | t ∈ IdleTerms}
and H = h · (h + k) · |SmallTerms(h + k)|. We define Rules(h) to be the set of
rewrite rules of three types (see the proof of Lemma 1 for their respective roles):

218 Mojmı́r Křet́ınský, Vojtěch Řehák, and Jan Strejček

(1) p s′.D
del
↪→ pD for all p ∈M(Δ) and s′ ∈ SmallTerms(H),

(2) p sh+1 del
↪→ p sh for all p ∈M(Δ) and s ∈ SmallTerms(H),

(3) p s′.s
del
↪→ pD for all p ∈M(Δ), s ∈ IdleTerms, and

s′ ∈ SmallTerms(H) � SmallTerms(h),

where si denotes a parallel composition of i copies of term s.

Lemma 1. For each h > 0 and for each reachable state pt of Δ it holds that
p t.D

∗−→Rules(h) pD.

Proof. As every rule in Rules(h) has its right-hand side shorter than its left-
hand side and an application of a rule in Rules(h) cannot produce any new idle
subterm, it is sufficient to prove that, for each p ∈ M(Δ) and each term t over
C with all idle subterms in IdleTerms , there is a rule of Rules(h) applicable to
p t.D. We assume the contrary and derive a contradiction. Let p ∈ M(Δ) be
a control state and t be a term of the minimal length such that t satisfies the
preconditions and no rule of Rules(h) is applicable to p t.D. Then |t| > H as in
the other case a rule of type (1) is applicable to p t.D. There are two cases:

t = u.v As v ∈ IdleTerms we have |v| ≤ k. Further, |t| > H implies |u| >
H − k > h. If h < |u| ≤ H , then there is a rule of type (3) that can be
applied to p t.D. Hence |u| > H . As no rule of Rules(h) can be applied to
p t.D = p u.v.D, no such rule can be applied to pu. The inequality |u| > H
gives us that a rule of type (1) is applicable to p u.D if and only if it is
applicable to pu. The same holds for rules of type (2) and (3) as well due to
the shape of these rules and due to the fact that D does not occur in any
term of IdleTerms . To sum up, no rule of Rules(h) can be applied to p u.D
and thus u contradicts the minimality of t.

t = u‖v As ‘‖’ is associative and commutative, it can be seen as an operator
with an unbounded arity. Thus, t can be seen as a parallel composition of
several components which are nonempty sequential terms. The length of each
of these components is less than or equal to H ; a component u satisfying
|u| > H would contradict the minimality of t using the same arguments as in
the previous case. Further, as no rule of type (3) can be applied, the length
of each component is at most h + k. Moreover, as rules of type (2) are not
applicable, we have that the parallel composition contains at most h copies
of each component. Hence, |t| ≤ h · (h+ k) · |SmallTerms(h+ k)| = H . This
contradicts the relation |t| > H . &'

Definition 3. Let l be the maximal length of a left-hand-side term of a rule in Δ.
Lemma 1 implies that, for each reachable state pt of Δ, there exists a transition
sequence p t.D

∗−→Rules(nl) pD. By MultiSetnl(pt) (or just MultiSet(pt) if no
confusion can arise) we denote a multiset containing exactly all the subterms
that are rewritten during this transition sequence and correspond to a subterm
s′ of rewrite rules of types (1) and (3). Further, for each multiset of terms S =
{t1, t2, . . . , tj}, we define its characteristic term tS = (t1.D)‖(t2.D)‖ . . . ‖(tj .D).

Reachability of Hennessy-Milner Properties for Weakly Extended PRS 219

Lemma 2. Let pt be a reachable state of Δ. Then tMultiSet(pt) is n-equivalent
to pt.

Proof. Let us fix a transition sequence p t.D
∗−→Rules(nl) pD and the corre-

sponding multiset MultiSet(pt). The proof proceeds by induction on the number
of transition steps in the transition sequence.

Let Si denote a part of MultiSet(pt) obtained in the first i transition steps
and pui be the state reached by these steps. It is sufficient to prove that, for
each i, ui‖tSi is n-equivalent to pt. We note that D cannot be rewritten by any
rewrite rule of Δ – it is used to prevent unwanted rewriting.

The basic step is trivial as u0 = t, S0 = ∅, and thus ui‖tSi = t‖ε. Now
we assume that ui‖tSi is n-equivalent to pt and we prove that the same holds
for ui+1‖tSi+1 . Let l be the maximal length of a left-hand-side term of a rule
in Δ. There are three cases reflecting the type of the rewrite rule applied in a
transition step pui

del−→Rules(nl) pui+1:

type (1) We note that no rule in Rules(nl) can introduce D on the right-hand

side of a sequential composition. Thus, a rule p s′.D
del
↪→ pD of type (1) is

applicable to pui iff ui = s′.D. Therefore, ui+1 = D, Si+1 = Si ∪ {s′}, and
ui+1‖tSi+1 = D‖(s′.D)‖tSi = D‖ui‖tSi. As ui‖tSi is n-equivalent to pt, it is
obvious that so is ui+1‖tSi+1 .

type (2) Let ψ be a HM formula such that depth(ψ) ≤ n. Then its validity in a
state depends only on the first n successive transitions performable from the
state. At most nl process constants of the term t can be rewritten during
n successive steps. Hence, at most nl parallel components can be rewrit-
ten during these steps. Thus, reducing of the number of identical parallel
components from nl + 1 to nl does not affect the validity of ψ. To sum up,
ui+1‖tSi+1 = ui+1‖tSi is n-equivalent to pt.

type (3) The term s′ occurring in the applied rule satisfies |s′| > nl. Hence, the
part of the term t corresponding to the subterm s of the rule is “too far” to be
rewritten in the first n steps of any transition sequence. The term s′.s in ui
is replaced by D in ui+1. It is easy to see that ui+1‖tSi+1 = ui+1‖(s′.D)‖tSi

is n-equivalent to pt. &'

Given a multiset of terms S, by S↓n we denote the largest subset of S contain-
ing at most n copies of each element. One can readily confirm that a characteristic
term tS is n-equivalent to some state of Δ if and only if tS↓n is n-equivalent to
this state.

To sum up, for each reachable state pt of Δ, we can construct a multiset
MultiSet(pt)↓n such that its characteristic term tMultiSet(pt)↓n is n-equivalent to
pt. Moreover, there is a bound on the size of each such a multiset which depends
on Δ and n only. More precisely, such a multiset contains at most n copies
of terms s′ ∈ SmallTerms(nl · (nl + k) · |SmallTerms(nl + k)|), where l is the
maximal length of a left-hand-side term of a rule in Δ and k the maximal length
of a term in IdleTerms . We now present the reduction of the reachability HM
property problem for wPRS to the reachability problem for wPRS.

220 Mojmı́r Křet́ınský, Vojtěch Řehák, and Jan Strejček

Lemma 3. Let Δ be a wPRS system and ϕ be a Hennessy–Milner formula.
Then we can construct a wPRS Δ′ with a state acc D such that

Δ |= EFϕ ⇐⇒ acc D is reachable in Δ′.

Proof. Let n, D, C, IdleTerms , SmallTerms(j), and MultiSet(pt) have the same
meanings as above.

Let k be the maximal length of a term in IdleTerms , l be the maximal length
of a left-hand-side term in any rule fromΔ, and H = nl·(nl+k)·|SmallTerms(nl+
k)|. Further, let MS be a set of all multisets containing at most n copies of each
term s′ ∈ SmallTerms(H).

The system Δ′ uses control states of the original system, a distinguished
control state acc 	∈M(Δ), and control states of the form (p, S) where p ∈M(Δ)
and S ∈ MS.

Let p0t0 be the initial state of Δ. Then Δ′ has the initial state p0t0.D and
the following rules, where p and S range over M(Δ) and MS respectively. We
omit labels as they are not relevant.

(1) pt ↪→ qt′ for all (pt
a
↪→ qt′) ∈ Δ

(2) pX ↪→ (p, ∅)X for all X ∈ C
(3) (p, S) s′.D ↪→ (p, (S ∪ {s′})↓n)D for all s′ ∈ SmallTerms(H)
(4) (p, S) snl+1 ↪→ (p, S) snl for all s ∈ SmallTerms(H)
(5) (p, S) s′.s ↪→ (p, (S ∪ {s′})↓n)D for all s ∈ IdleTerms and

s′ ∈ SmallTerms(H) � SmallTerms(nl)
(6) (p, S)D ↪→ acc D whenever (Δ, ptS) |= ϕ

Intuitively, the rules of type (1) mimic the behaviour of Δ and allow Δ′ to reach
a state p t.D if and only if pt is a reachable state of Δ. A rule of type (2) stops
this mimic phase and starts a checking phase where only rules of types (3)–(6)
are applicable. The rules of types (3), (4), and (5) correspond to the rules of type
(1), (2), and (3) in Rules(nl), respectively. Let p t.D be a final state reached in
the mimic phase. The rules of types (3)–(5) allow us to rewrite this state to the
state (p,MultiSet(pt)↓n)D. Finally, the control state (p,MultiSet(pt)↓n) can be
changed to acc using a rule of type (6) if and only if (Δ, tMultiSet(pt)↓n) |= ϕ.
As tMultiSet(pt)↓n is n-equivalent to pt, the control state can be changed to acc
if and only if (Δ, pt) |= ϕ. &'

The following theorem is an immediate corollary of Lemma 3 and Theorem 1.

Theorem 2. The reachability HM property problem is decidable for wPRS.

4 Related Results

An interesting corollary of Theorem 2 arises in connection with one of the results
of [JKM01].

Reachability of Hennessy-Milner Properties for Weakly Extended PRS 221

Theorem 3 ([JKM01], Theorem 22). If the model checking problem for sim-
ple EF formulae (i.e. reachability HM property problem) is decidable in a class
K of transition systems, then strong bisimilarity is decidable between processes
of K and finite-state ones.

A combination of Theorem 2 and Theorem 3 yields the following corollary.

Theorem 4. Strong bisimilarity is decidable between wPRS systems and finite-
state ones.

Remark 1. Theorem 2 also implies that reachability simple property problem is
decidable for PRS. This result has been previously presented in [May98] under
the name reachable property problem. However, the proof given there contains a
nontrivial mistake which was not fixed in subsequent papers [MR98, May00]. The
weak point is the proof showing a transformation of an arbitrary PRS onto a PRS
in normal form. Considering a PRS Δ = ({A‖(B.C)

a
↪→ A‖(B.C)}, A‖(B.C))

that does not model a formula EF(¬〈a〉tt), one receives a transformed PRS in
normal form that models this formula.

Remark 2. It is known that (full) EF logic is undecidable for PN [Esp94]. An
inspection of the proof given in [Esp97] shows that this undecidability result is
valid even for seBPP class (also known as multiset automata, MSA).

Remark 3. Esparza and Kiehn have proved that EG logic is undecidable for
(deterministic) BPP [EK95]. In Appendix A we describe a modification of their
proof showing that for (deterministic) BPP even the evitability simple property
problem is undecidable.

5 Conclusion

In the paper we have shown that given any wPRS system Δ and any Hennessy–
Milner formula ϕ, one can decide whether there is a state s of Δ reachable from
the initial state of Δ such that s satisfies ϕ. Using Theorem 22 of [JKM01], our
result implies that strong bisimilarity between wPRS and finite-state systems is
decidable. Decidability of the same problem for some of the wPRS subclasses,
namely PAN and PRS, has been formulated as an open question, see e.g. [Srb02].

The following table describes the current state of (un)decidability results
regarding the six problems defined at the end of Section 2 for the classes of PRS
hierarchy and their extended counterparts. The results established by this paper
are typeset in bold.

problem decidable for undecidable for
decidability of EF logic PAD [May98] seBPP
reachability HM property wPRS sePA
reachability simple property wPRS sePA
decidability of EG logic PDA [MS85, Cau92] BPP [EK95]
evitability HM property PDA [MS85, Cau92] BPP [EK95]
evitability simple property PDA [MS85, Cau92] BPP

222 Mojmı́r Křet́ınský, Vojtěch Řehák, and Jan Strejček

To sum up, the situation with (un)decidability of these six problems for all
the considered classes is now clear with one exception: decidability of EF logic
remains open for classes wBPP, wPA, and wPAD.

Regarding other decidability questions we note that the BPP class and its
extensions form a strict (sub)hierarchy with respect to bisimulation,

BPP � wBPP � MSA � PN,

which is decidable (even PSPACE-complete [Jan03]) for BPP processes and un-
decidable for MSA ([HM01] using the techniques of [Jan95]). Decidability of
bisimilarity remains open for the wBPP class and is a subject of our further re-
search. We are motivated by the fact the strictness of the left-most inclusion can
be proved (but is not shown here) even for language equivalence. The strictness
of inclusion between wBPP and MSA on the language equivalence level is just
our conjecture.

Acknowledgment. We thank Antońın Kučera for valuable suggestions and
pointers. Authors have been partially supported as follows: M. Křet́ınský by
the Grant Agency of the Czech Republic, grant No. 201/03/1161, V. Řehák by
the research centre “Institute for Theoretical Computer Science (ITI)”, project
No. 1M0021620808, and J. Strejček by the Academy of Sciences of the Czech
Republic, grant No. 1ET408050503.

References

[BAPM83] M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching
time. Acta Informatica, 20(3):207–226, 1983.

[BCMS01] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite
structures. In Handbook of Process Algebra, pages 545–623. Elsevier, 2001.

[BCS96] O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the
process taxonomy. In Proc. of CONCUR’96, volume 1119 of LNCS, pages
247–262. Springer, 1996.

[BEH95] A. Bouajjani, R. Echahed, and P. Habermehl. On the verification problem
of nonregular properties for nonregular processes. In Proc. of LICS’95.
IEEE, 1995.

[Cau92] D. Caucal. On the regular structure of prefix rewriting. Theor. Comput.
Sci., 106:61–86, 1992.

[EK95] J. Esparza and A. Kiehn. On the model checking problem for branching
time logics and basic parallel processes. In CAV, volume 939 of LNCS,
pages 353–366. Springer, 1995.

[Esp94] J. Esparza. On the decidability of model checking for several mu-calculi
and petri nets. In CAAP, volume 787 of LNCS, pages 115–129. Springer,
1994.

[Esp97] J. Esparza. Decidability of model checking for infinite-state concurrent
systems. Acta Informatica, 34(2):85–107, 1997.

[Esp02] J. Esparza. Grammars as processes. In Formal and Natural Computing,
volume 2300 of LNCS. Springer, 2002.

Reachability of Hennessy-Milner Properties for Weakly Extended PRS 223

[HM01] Y. Hirshfeld and F. Moller. Pushdown automata, multiset automata, and
petri nets. Theor. Comput. Sci., 256(1-2):3–21, 2001.

[Jan95] P. Jančar. Undecidability of bisimilarity for Petri nets and some related
problems. Theor. Comput. Sci., 148(2):281–301, 1995.

[Jan03] P. Jančar. Strong bisimilarity on basic parallel processes is PSPACE-
complete. In Proc. of 18th IEEE Symposium on Logic in Computer Science
(LICS’03), pages 218–227. IEEE Computer Society, 2003.

[JKM01] P. Jančar, A. Kučera, and R. Mayr. Deciding bisimulation-like equiva-
lences with finite-state processes. Theor. Comput. Sci., 258:409–433, 2001.

[JM95] P. Jancar and F. Moller. Checking regular properties of petri nets. In
CONCUR, volume 962 of LNCS, pages 348–362. Springer, 1995.

[KJ02] A. Kučera and P. Jančar. Equivalence-checking with infinite-state systems:
Techniques and results. In Proc. SOFSEM’2002, volume 2540 of LNCS.
Springer, 2002.

[KŘS04a] M. Křet́ınský, V. Řehák, and J. Strejček. Extended process rewrite sys-
tems: Expressiveness and reachability. In Proceedings of CONCUR’04,
volume 3170 of LNCS, pages 355–370. Springer, 2004.

[KŘS04b] M. Křet́ınský, V. Řehák, and J. Strejček. On extensions of process rewrite
systems: Rewrite systems with weak finite-state unit. In Proceedings of
INFINITY’03, volume 98 of ENTCS, pages 75–88. Elsevier, 2004.

[KS04] A. Kučera and Ph. Schnoebelen. A general approach to comparing infinite-
state systems with their finite-state specifications. In CONCUR, volume
3170 of LNCS, pages 371–386. Springer, 2004.

[May98] R. Mayr. Decidability and Complexity of Model Checking Problems for
Infinite-State Systems. PhD thesis, Technische Universität München, 1998.

[May00] R. Mayr. Process rewrite systems. Information and Computation,
156(1):264–286, 2000.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[Mol96] F. Moller. Infinite results. In Proc. of CONCUR’96, volume 1119 of LNCS,

pages 195–216. Springer, 1996.
[MR98] R. Mayr and M. Rusinowitch. Reachability is decidable for ground AC

rewrite systems. In Proceedings of INFINITY’98 workshop, 1998.
[MS85] D. Muller and P. Schupp. The theory of ends, pushdown automata, and

second-order logic. Theor. Comput. Sci., 37:51–75, 1985.
[MSS92] D. Muller, A. Saoudi, and P. Schupp. Alternating automata, the weak

monadic theory of trees and its complexity. Theor. Comput. Sci., 97(1–
2):233–244, 1992.

[Srb02] J. Srba. Roadmap of infinite results. EATCS Bulletin, (78):163–175, 2002.
http://www.brics.dk/~srba/roadmap/.

A Evitability Simple Property for Deterministic BPP

In this section, we show how to strengthen the result of undecidability the EG
logic for BPP, a proof of which has been given by Esparza and Kiehn in [EK95].
As we just describe the necessary changes to be done within the proof, we use the
same notation as introduced in [EK95]. The original proof is done by a reduction
from the halting problem of a Minsky counter machine. A quick inspection of
the reduction shows that it demonstrates undecidability of the inevitability HM

224 Mojmı́r Křet́ınský, Vojtěch Řehák, and Jan Strejček

property problem for the class of deterministic BPP systems. We note that it is
not a proof of undecidability for the inevitability simple property problem due to
the following reason. In the definition of ÊN(a1, . . . , ak), there is a subformula

k∧
i:=1

¬∃(ai)EN(ai) corresponding to
k∧
i=1

¬〈ai〉〈ai〉tt in our notation

which expresses that no sequence aiai is enabled. Omitting this subformula from
ÊN(a1, . . . , ak), the construction produces a simple property formula.

In what follows, we present some other changes to be done within the con-
struction in orded to keep its correctness for the case of the simple property
formula as well. In other words, we prove than even the inevitability simple
property problem remains undecidable for the deterministic BPP systems.

The following definitions of SM, M, and Cj are the same as in [EK95]:

SM
def= (SQ1‖ . . . ‖SQn+1) M

def= SM‖Q0 Cj
def= dec1j · dec2j · dec3j · 0

Without loss of generality, we assume that there is no self loop in the counter
machine M (i.e., k 	= i 	= k′, for each transition rule of M). Hence, it is not
necessary to create a new parallel instance of a process constant Qi from SQi as
far as the rewriting on the existing instance of Qi is not finished. In the following,
we reformulate the definitions of SQi and Qi to prevent sequences of the form
out1iout

1
i or out2iout2i.

The halting state definition is reformulated as follows.

SQn+1
def= in1n+1 · Qn+1 Qn+1

def= halt · SQn+1

A state qi of type II is modelled as follows.

SQi
def= in1i · Qi Qi

def= out1i · out2i · SQi

A state qi of type I has to proceed to the state qk. To prevent multiple
occurrences of the process constant Qk, we use the same technique as in the case
of states of type II. Hence, SQi and Qi are modelled as

SQi
def= in1i · Qi Qi

def= out1i · out2i · (SQi‖Cj)

and we add the following disjunct to the formula φh to guarantee a move to the
state qk in an honest run.

ÊN(out1i) ∨ ÊN(out2i) ∨ ÊN(out2i, out
1
k) ∨ ÊN(out1k)

Hence, the multiple enabling of out1i and out2i is omitted by the construc-
tion. It remains to focus on the situation for dec2i and dec3i. As the states
where both dec2i and dec3i are enabled do not satisfy φh, each state satisfy-
ing ∃(dec2i)EN(dec2i) has no continuation to make a honest run and each state
satisfying ∃(dec3i)EN(dec3i) is unreachable in any honest run.

Decision Procedures for Queues with Integer

Constraints

Ting Zhang, Henny B. Sipma, and Zohar Manna�

Computer Science Department
Stanford University

{tingz,sipma,zm}@theory.stanford.edu

Abstract. Queues are a widely used data structure in programming
languages. They also provide an important synchronization mechanism
in modeling distributed protocols. In this paper we extend the theory of
queues with a length function that maps a queue to its size, resulting in
a combined theory of queues and Presburger arithmetic. This extension
provides a natural but tight coupling between the two theories, and hence
the general Nelson-Oppen combination method for decision procedures
is not applicable. We present a decision procedure for the quantifier-free
theory and a quantifier elimination procedure for the first-order theory
that can remove a block of existential quantifiers in one step.

1 Introduction

Queues are a widely used data structure in programming languages. They also
provide an important synchronization mechanism in modeling distributed pro-
tocols. To verify programs or protocols using queues we must be able to reason
about this data structure. Single theory decision procedures, however, are usu-
ally not applicable, because programming languages often involve multiple data
domains. A natural example of such “mixed” constraints are combinations of
queues with integer constraints on the size of queues.

In this paper we extend the theory of queues with a length function that
maps a queue to its size, resulting in a combined theory of queues and Pres-
burger arithmetic (PA). The language is the set-theoretic union of the language
of queues and that of PA. Formulae are formed from atom, queue, and integer
literals using logical connectives and quantifiers. The two theories are connected
by the length function | · | : Q → N. With the expressive power of PA, we can
express linear relations between sizes of queues. E.g., in a network with n input
queues qi, the property that the influx is bounded by B can be expressed as
Σn−1

i=0 |qi| < B.
We present a decision procedure for the quantifier-free theory of queues. The

method extracts accurate integer constraints from queue constraints. Thus, we

� This research was supported in part by NSF grants CCR-01-21403, CCR-02-20134,
CCR-02-09237, CNS-0411363, and CCF-0430102, by ARO grant DAAD19-01-1-
0723, and by NAVY/ONR contract N00014-03-1-0939.

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 225–237, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

226 Ting Zhang, Henny B. Sipma, and Zohar Manna

can utilize decision procedures for queues and integers to derive the new decision
procedure. We also present a quantifier elimination procedure for the first-order
theory of queues with integers. The elimination procedure removes a block of
existential quantifiers in one step. In all developments, we assume that the atom
domain is finite; the decision problems in an infinite domain are considerably
easier.

Related Work and Comparison. Presburger arithmetic (PA) was first shown to be
decidable in 1929 by the quantifier elimination method [4]. Efficient algorithms
were later discovered by [3] and further improved in [9].

[2] gave a decision procedure for the quantifier-free theory of queues with
subsequence relations which consist of prefix, suffix and sub-queue relations.
It also discussed the integer combination for the case of infinite atom domain
without the subsequence relations. The decidability and the complexity of the
first-order theory of queues were given by [10,11]. By the decidability of WS1S
and a standard encoding, the theory of words with the prefix relation and the
successor operator (i.e., a theory of queues) is decidable and admits quantifier
elimination [1]. [1,12] studied theories of words with “equal length” predicate
which can be viewed as special integer constraints.

This arithmetic extension provides a natural but tight coupling between the
two theories, and hence the general Nelson-Oppen combination method [8] for
decision procedures is not applicable. Recently [6] showed the decidability of a
fragment of WS1S with cardinality constraints (WS1Scard) and the undecidabil-
ity of WS1Scard for the fragments with alternation of second-order quantifiers.
By a standard encoding (in which a queue is represented as sets of natural num-
bers), the theory of queues with integers can be interpreted in WS1Scard. Even
the quantifier-free theory of queues with integers, however, is unlikely to be in-
terpreted in the quantifier-free fragment of WS1Scard, because encoding a queue
by sets of natural numbers necessarily involves quantification. Moreover, though
interpretation in general renders elegant decidability results, it produces less
efficient decision procedures in practice, especially if the host theory has high
complexity (in our case even the existential WS1S is non-elementary).

In [13,14] we gave decision procedures for the theory of term algebras with
integer constraints. The method relies on a key normalization process to ex-
tract integer constraints from term constraints. The normalization partitions
terms into stratified clusters such that (i) each cluster consists of pairwise un-
equal terms (trees) of the same length, and (ii) disequalities between composite
terms (proper trees) in a cluster are implied by disequalities in the clusters of
lower ranks. Property (ii) allows the construction of a satisfying assignment in
a bottom-up fashion, while providing integer constraints that express the sat-
isfiability of the clusters. Thus, (i) and (ii) allow us to reduce the satisfiability
of the original formula to the satisfiability of computable integer constraints.
The decision procedure presented here relies on the same idea, but for queues
disequalities cannot be normalized into stratified clusters, because queues are
not uniquely generated. Consider, for example, the constraint

X � Y ∧ aX � Yb ∧ Xa � bY ∧ |X| = |Y|.

Decision Procedures for Queues with Integer Constraints 227

Infinitely many assignments of the form {X = (ba)nb,Y = a(ba)n} satisfy X � Y,
but neither aX � Yb nor Xa � bY. Therefore, we cannot construct a satisfying
assignment inductively. In this paper we present new normalization procedures
that allow the computation of a cut length Lt for all queue variables: below Lt
all satisfying assignments can be enumerated, above Lt integer constraints can
be computed that are equisatisfiable with the original formula.

Paper Organization. Sec. 2 defines the language and structure of queues and
presents some word properties. Sec. 3 describes a decision procedure for the
quantifier-free theory of queues [2], the basis for our decision procedures. Sec.
4 introduces the theory of queues augmented with Presburger arithmetic and
presents the technical machinery for the decision procedures. Sec. 5 presents the
main contribution of this paper: it adapts the technique in [13,14] to derive a
decision procedure for the extended theory of queues. Sec. 6 applies the technique
to give a quantifier elimination procedure for the extended first-order theory of
queues. Sec. 7 concludes with a discussion on complexity and some ideas for
future work. Due to space limitation all proofs and some algorithms have been
omitted. An extended version of this paper is available from the first author’s
webpage.

2 The Theory of Queues

We present a two-sorted language and structure of queues. For notation con-
venience, we do not distinguish syntactic terms in the language from semantic
terms in the structure. The meaning should be clear from the context.

Definition 1. The structure of queues Q : 〈Q;A,C,S〉 consists of

1. A: A finite set of atoms: a, b, c, . . .We use εA to denote the “phantom
atom” whose only purpose is to keep functions on queues total.

2. Q: The domain of queues, consisting of sequences of atoms. We use εQ to
denote the empty queue.

3. C: Two constructors: the left insertion la : A×Q→ Q and the right insertion
ra : A × Q → Q such that for α ∈ Q, la(εA, α) = ra(εA, α) = α, and for
a ∈ A\{εA}, 〈s1, . . . , sn〉 ∈ Q, la(a, εQ) = ra(a, εQ) = 〈a〉, and la(a, 〈s1, . . . , sn〉) =
〈a, s1, . . . , sn〉, ra(a, 〈s1, . . . , sn〉) = 〈s1, . . . , sn, a〉.

4. S: Four selectors: the left head lh : Q → A, the left tail lt : Q → Q, the right
head rh : Q → A, and the right tail rt : Q → Q such that for 〈s1, . . . , sn〉 ∈ Q,
lh(εQ) = rh(εQ) = εA, lt(εQ) = rt(εQ) = εQ, and

lh(〈s1, . . . , sn〉) = s1, lt(〈s1, . . . , sn〉) = 〈s2, . . . , sn〉,
rh(〈s1, . . . , sn〉) = sn, rt(〈s1, . . . , sn〉) = 〈s1, . . . , sn−1〉.

We use LQ for the language of queues.

Queues are finite words constructed from letters in A, i.e., Q = A∗. We
assume |A|> 1 as queue constraints trivially reduce to integer constraints if A

228 Ting Zhang, Henny B. Sipma, and Zohar Manna

is a singleton. We use “word”, ”letter” in semantic discussions and use “queue”,
“atom” to refer to their counterparts in the formal language. For a word α, |α|
denotes the length of α; α[i] (1 ≤ i ≤ |α|) denotes the letter at position i; α[m..n]
(1 ≤ m, n ≤ |α|) denotes the consecutive fragment from position m to position n;
αm denotes the word obtained by concatenating m copies of α; α∗ (α+) denotes
the set {αm | m ≥ 0} ({αm | m > 0}).

Because of finiteness ofA, we assume only constant atoms appear in formulas
(i.e., no occurrences of atom variables). For clarity, X,Y,Z, . . . are reserved for
queue variables, a, b, c, . . . for constant atoms and α, β, γ, . . . for constant queues.
We use concatenation ◦ to express constructor operations. For example, a◦X◦b
stands for either ra(b, la(a,X)) or la(a, ra(b,X)). Often we even omit ◦ unless
necessary for clarity.

The expressive power of the constructor language (the language without se-
lectors) is the same as that of LQ.

Proposition 1 (Elimination of Selectors). For any ϕ in LQ, one can effec-
tively compute an equivalent ϕ′ such that (i) ϕ′ contains no selectors, and (ii)
if ϕ is quantifier-free, then ϕ′ can be put into either ∃1 or ∀1 form.

So in terms of satisfiability or validity, even in the quantifier-free fragment of
LQ, selectors are dispensable without compromising expressiveness. From now
on we assume LQ is the constructor language except in Sec. 6 where selectors
are used in quantifier elimination. In a constructor language, a queue variable
can occur at most once in a term, and hence we can assume all terms of sort Q
are in the form αXβ, where α, β are constant words and X is a queue variable.

The equations in LQ can express certain “circular properties” on queues.

Definition 2 ([7]). Two words α, β are conjugate if there exist words u, v
(v � εQ) such that α = uv and β = vu. In other words, α is obtained from β by
circular shift, and vice versa. We say that α is k-conjugate with β if |u| = k.

Let ext(β,m, k) denote βmβ[1..k], orb(β, k) the set {ext(β,m, k) |m ≥ 0}, and
orb(β) the set

⋃
k≥0 orb(β, k). Note that orb(β) is the orbit of all words of the

form β∗β[1..i] (i < |β|) and orb(β, k) is the subtrack of orb(β) ending with β[1..k].

Example 1. Let β = aba. Then ext(β, 1, 2) = abaab, orb(β) are words in one of the
following forms (aba)∗, (aba)∗a, (aba)∗ab, which are orb(β, 0), orb(β, 1) and orb(β, 2).

Proposition 2 ([7]). Two words α and β are conjugate if and only if there
exists γ such that αγ = γβ. Moreover, α and β are k-conjugate if and only if for
all γ, αγ = γβ if and only if γ ∈ orb(α, k).

This proposition says that if α = u1u2, β = u2u1, then the solution set of αX =
Xβ is (u1u2)∗u1. As a consequence, we define X ∈ orb(α, k) as “syntactic sugar”
for αX = Xα[k+1..|α|]α[1..k]; similarly X � orb(α, k) for αX � Xα[k+1..|α|]α[1..k].

Definition 3 (Primitive Words). A word β is primitive if β � αn (n ≥ 1) for
any proper prefix α of β, and is strongly primitive if in addition β � orb(α).

Decision Procedures for Queues with Integer Constraints 229

Example 2. Consider α ≡ aba, β ≡ abab and γ ≡ abb. It is clear that β is non-
primitive, α is primitive but not strongly primitive and γ is strongly primitive.

If β is non-primitive, then there exists α such that β ∈ α∗. We call the
shortest such α the generator of β, denoted by gen(β). It is easily seen that
orb(β) = orb(gen(β)), i.e., every orbit is uniquely generated. Thus, without loss
of generality, we always assume the occurrences of β in orb(β, k) to be primitive.

Proposition 3 ([2,10]). Let α, β be two distinct primitive words and γ a word
of length n. Then γ ∈ orb(α) ∩ orb(β) implies n < |α| + |β| − 1.

This proposition says that X ∈ orb(α) and X ∈ orb(β) (where α � β), are
mutually exclusive except for a finite number of cases which can be enumerated
by comparing two orbits of α and β coordinate-wise up to |α|+ |β| − 2. We have

Proposition 4 ([2,10]). A conjunction of literals of the form
n∧

i=1

X ∈ orb(αi) ∧
m∧

j=1

X � orb(β j) (1)

can be simplified to a formula in which at most one of X ∈ orb(αi) appears, and
if this happens, no X � orb(β j) occurs. In addition, if n > 1, (1) simplifies to
either false or a finite set of solutions.

Example 3. X ∈ orb(ab) ∧ X ∈ orb(aba) simplifies to X ∈ {a, b, aba}, and X ∈
orb(ab) ∧ X � orb(aba) simplifies to X ∈ orb(ab) ∧X � {a, b, aba}.

3 Decision Procedure for Th∀(Q)

The basis of the decision procedures for the combined theory is the decision
procedure for the quantifier-free theory of queues, Th∀(Q) [2]. This decision pro-
cedure is refutation-based ; to determine the validity of a formula ϕ, it determines
the unsatisfiability of ¬ϕ, which further reduces to determining the unsatisfia-
bility of each disjunct in the disjunctive normal form of ¬ϕ. A key constituent
of all decision procedures is equality elimination.

Definition 4 (Solved Form). A set of equalities E is in solved form if every
E ∈ E has the form x = t(x) where x neither occurs in x nor in any other equations
in E.

Obviously a set of equalities in solved form pose no restriction on the solution,
and hence those equalities can be considered “virtually eliminated”.

Definition 5 (Normal Form in Q). A queue constraint ΦQ is in normal form
if (i) all equalities are in solved form, (ii) for each queue variable X there exists
at most one literal X ∈ orb(α, k), and (iii) disequalities are in the form αX � Yβ
for X � Y.

230 Ting Zhang, Henny B. Sipma, and Zohar Manna

The following algorithm, a simplified version of [2], reduces a set of equalities
and inequalities to normal form.

Algorithm 1 (Normalization in Q, cf. [2]). Input ΦQ : E ∪ D where E, D
are sets of equalities and disequalities, respectively.

1. Reduce literals of the form αXβ = α′Yβ′, αXβ � α′Yβ′, where α, β, α′, β′ are
constant queues and X, Y are queue variables, to αX = Yβ and αX � Yβ by
position-wise removing prefixes and suffixes. For example, abXcd = abcYdd
reduces to false and abXcd � abcYd to Xc � cY.

2. Eliminate equalities of the form αX = Yβ with X � Y. For |X| < |β|, αX = Yβ
reduces to X = β[|β| − |X|+1..|β|] ∧ Y = αβ[1..|β| − |X|]. For |X| ≥ |β|, αX = Yβ
reduces to X = X′β ∧ Y = αX′, where X′ is a fresh queue variable.

3. Eliminate equalities of the form αX = Xβ. By Prop. 2 if α, β are not conju-
gate, then αX = Xβ simplifies to false. If α, β are k-conjugate, αX = Xβ is
replaced by X ∈ orb(α, k).

4. Eliminate disequalities of the form αX � Xβ. Again by Prop. 2, if α, β are
not conjugate, αX � Xβ simplifies to true. If α, β are k-conjugate, αX � Xβ
is replaced by X � orb(α, k).

Although the literals X ∈ orb(α, k), X � orb(α, k), introduced in steps 3 and
4, are implicit equalities (disequalities, resp.), Prop. 4 ensures that a set of such
equalities is either inconsistent or a finite set of solutions can be computed,
and that in the presence of X ∈ orb(α, k), all occurrences X � orb(α′, k′) can be
eliminated.

We claim that a constraint in normal form is satisfiable: a satisfiable as-
signment can be constructed incrementally by assigning each queue variable a
queue with length distinct from all previously assigned terms. This justifies the
following algorithm.

Algorithm 2 ([2]). Input: Φ ≡ E ∪D.

1. Transform Φ to Φ′ : E′ ∪ D′ which is normal.
2. If inconsistency is discovered, return FAIL; otherwise, return SUCCESS.

4 The Theory of Queues with Integers

Definition 6. The structure of queues with integers is QZ : 〈Q,PA; | · |〉 where
Q is the structure of queues, PA is Presburger arithmetic, and | · | : Q → N is
the length function such that |X| denotes the number of atoms in the queue X.

We use subscripts Q and Z (or prefixes Q- and PA-) to denote notions related
to queue sort and integer sort, respectively. For example, ΦQ denotes a queue
formula and VQ denotes the collection of queue variables. We use integer terms
|t(X)| in two ways; as the function value of t(X) when t(X) is in discussion, and
as purely syntactic integer variable (called pseudo integer variable). In the latter
case, suppose ΦZ(X) is given, then ΦZ(z) is the formula obtained by substituting

Decision Procedures for Queues with Integer Constraints 231

each pseudo integer variable |X| (X ∈ X) for a real integer variable z (z ∈ z).
|X| = z denotes

∧
i |Xi| = zi. If σ is an assignment for VQ, then |σ| denotes the

corresponding assignment for pseudo integer variables.
In a combined constraint ΦQ ∧ΦZ, ΦZ restricts solutions to ΦQ.

Example 4. The constraint ΦQ: Xba � abY ∧ Xab � baY ∧ Xaa � baY ∧ Xab �
aaY is not satisfiable with ΦZ : |X| = |Y| = 1, in QZ with A = {a, b}. It can be
easily verified by enumerating all four combinations. On the other hand, both
ΦQ and ΦZ are obviously satisfiable in their respective domains.

A simple but crucial observation is that ΦQ induces an “implicit” length
constraint, in addition to the “explicit” constraint ΦZ given in the input. For
example, in Ex. 4, ΦQ implies ΦΔ : |X| = |Y| → |X| = |Y| � 1 and thus ΦΔ
contradicts ΦZ. If we can extract from ΦQ the implicit ΦΔ that exactly charac-
terizes the solution set of ΦQ, then the satisfiability of ΦQ ∧ΦZ reduces to the
satisfiability of ΦΔ ∧ΦZ. As a consequence, we can derive decision procedures
for the combined theory by utilizing the decision procedures for PA and queues.

Definition 7 (Length Constraint Completion (LCC)). A formula ΦΔ(X)
in LZ is a length constraint completion (LCC) for ΦQ(X) if the following for-
mulae are valid:

(∀X : Q)
[
ΦQ(X)→ (∃z : Z)

(
ΦΔ(z) ∧ |X| = z

)]
, (2)

(∀z : Z)
[
ΦΔ(z)→ (∃X : Q)

(
ΦQ(X) ∧ |X| = z

)]
. (3)

(2) states that an LCC ΦΔ for ΦQ is sound : | · | maps a satisfying assignment
in Q to a satisfying assignment in PA. (3) states that ΦΔ is realizable: any
satisfying assignment in PA is an image under | · | of a satisfying assignment
in Q. Given ΦQ, let ΦΔ be an LCC, ΦΔ+ (resp. ΦΔ−) be the formula (when
substituted for ΦΔ) satisfying (2) (resp. (3)). If we identify these constraints
with their corresponding solution sets, we have ΦΔ− ⊆ ΦΔ ⊆ ΦΔ+. Thus ΦΔ is
the exact projection of ΦQ from Q to PA, while ΦΔ+, ΦΔ− are over and under
approximations of ΦΔ respectively.

Example 5. Consider ΦQ in Ex. 4 and ΦΔ+ : true, ΦΔ− : |X| = |Y| = 2, and ΦΔ :
|X| � |Y| ∨ (|X| = |Y| ∧ |X| � 1). ΦΔ+ is not realizable by ΦQ because the integer
assignment σΔ : {|X| = |Y| = 1} can not be realized. On the other hand, ΦΔ− is
not sound because it does not satisfy the queue assignment σQ : {X = εQ,Y = εQ}.
Finally, ΦΔ is both sound and realizable w.r.t. ΦQ and hence is an LCC for ΦQ.

We have a decision procedure for Th(QZ) if ΦΔ can be computed from ΦQ.

Theorem 1. Let ΦΔ be an LCC for ΦQ. Then QZ |=∃ ΦQ ∧ΦZ if and only if
PA |=∃ ΦΔ ∧ΦZ.

To obtain an LCC, we need to normalize ΦQ into an equivalent disjunction
in which each disjunct is of the form Φ′Q ∧θ′Z with θ′

Z
a newly generated integer

constraint. We do not require the disjuncts to be mutually exclusive. First, we
extend Def. 7 to deal with newly generated integer constraints in the normaliza-
tion.

232 Ting Zhang, Henny B. Sipma, and Zohar Manna

Definition 8 (Relativized Length Constraint Completion (RLCC)). A
formula ΦΔ(X) is a length constraint completion for ΦQ(X) relativized to θZ(X),
(in short, ΦΔ(X) is an RLCC for ΦQ(X)/θZ(X)), if the following formulae are
valid:

(∀X : Q)
[
ΦQ(X) ∧ θZ(X)→ (∃z : Z)

(
ΦΔ(z) ∧ |X| = z

)]
, (4)

(∀z : Z)
[
ΦΔ(z)→ (∃X : Q)

(
ΦQ(X) ∧ θZ(X) ∧ |X| = z

)]
. (5)

It is easily seen that an LCC is an RLCC with θZ ≡ true and RLCCs have
the “additive” property.

Proposition 5. If ΦΔ is an RLCC for ΦQ/θZ, then for any θ′
Z
, ΦΔ ∧ θ′Z is

also an RLCC for ΦQ/(θZ ∧ θ′Z).

In particular, if (θ′
Z

:= ΦZ, θZ := true), ΦΔ is an LCC for ΦQ, then ΦΔ∧ΦZ
is an RLCC for ΦQ/ΦZ. So Thm. 1 is in fact a special case of the following
theorem.

Theorem 2. Let ΦΔ be an RLCC for ΦQ/ΦZ. Then QZ |=∃ ΦZ ∧ ΦQ if and
only if PA |=∃ ΦΔ.

This theorem motivates the strategy of our decision procedures. In the nor-
malization process, with introduction of auxiliary integer constraints, we par-
tition the original search space for ΦQ such that ΦQ ↔ ⋃

iΦ
(i)
Q ∧ θ(i)

Z
, until

we easily compute the RLCC Φ(i)
Δ for each Φ(i)

Q /θ
(i)
Z

. By Prop. 5, Φ(i)
Δ ∧ ΦZ is

an RLCC for Φ(i)
Q /(θ

(i)
Z
∧ ΦZ). Then QZ |=∃ ΦQ ∧ ΦZ if and only if for some

i, QZ |=∃ Φ(i)
Q ∧ θ(i)

Z
∧ ΦZ, which, by Thm. 2 (set ΦQ := Φ(i)

Q ,ΦΔ := Φ(i)
Δ ∧ ΦZ,

ΦZ := ΦZ∧θ(i)
Z

), reduces to determining whether PA |=∃ Φ(i)
Δ ∧ΦZ and Q |=∃ ΦQ.

This leads to the following generic decision procedure.

Algorithm 3 (Generic Decision Procedure). Input: ΦQ ∧ΦZ.

1. Return FAIL if Q �|=∃ ΦQ.
2. For each partition Φ(i)

Q ∧ θ(i)
Z

of ΦQ:

(a) Compute an RLCC Φ(i)
Δ for Φ(i)

Q /θ
(i)
Z
.

(b) Return SUCCESS if PA |=∃ Φ(i)
Δ ∧ΦZ.

3. Return FAIL.

Example 6. Revisiting Ex. 5, we partition ΦQ into (ΦQ ∧ |X| � |Y|) ∨ (ΦQ ∧
|X| = |Y|). The first disjunct simplifies to |X| � |Y| as |X| � |Y| implies ΦQ. Now
consider the second disjunct. It is clear that the RLCC for ΦQ/(|X| = |Y|) is
|X| = |Y| ∧ |X| � 1.

Decision Procedures for Queues with Integer Constraints 233

5 Decision Procedure for Th∀(QZ)

We partition the search space for ΦQ in a series of steps. When |X| is known
to be bounded by a constant l, we can instantiate X with a constant queue of
length l. As A is finite, there are only finitely many such queues.

First we assume ΦQ ∧ θZ satisfies the following condition.

Definition 9 (Equality Completion). ΦQ is equality complete if t1 � t2 ∈
ΦQ if and only if |t1| = |t2| ∈ θZ.

To satisfy this condition, we first set θZ := ∅ and for each t1 � t2, add either
|t1| = |t2| or |t1| � |t2| to θZ. In the latter case, t1 � t2 can be removed from ΦQ.

Definition 10 (Normal Form in QZ). ΦQ is in normal form in QZ if ΦQ
satisfies Def. 5 and satisfies (i) if αX � Yβ occurs with either X ∈ orb(α′, k) or
Y ∈ orb(β′, l), then α ≡ εQ; (ii) αX � Yβ does not occur with both X ∈ orb(α′, k)
and Y ∈ orb(β′, l).

Algorithm 4 (Normalization in QZ).

1. Call Alg. 1 to normalize ΦQ.
2. For all disequalities αX � Yβ with |X| < |β| or |Y| < |α|, replace X and Y by

instantiations. In the remaining steps we assume |X| ≥ |β| and |Y| ≥ |α|.
3. Consider each constraint of the form

αX � Yβ ∧ X ∈ orb(α′, k) ∧ Y ∈ orb(β′, l), (6)

which asserts that X is of the form (α′)∗α′[1..k] and similar for Y. If β is not
a prefix of X or α is not a prefix of Y, αX � Yβ simplifies to true. Otherwise
αX � Yβ can be replaced by X = X′β∧Y = αY′ ∧X′ � Y′ which can be further
reduced to

X′ ∈ orb(α′, k′) ∧ Y′ ∈ orb(β′′, l′) ∧ X′ � Y′, (7)

where

k′ =
(
k + |α′| − (|β|mod |α′|)

)
mod |α′|,

β′′ = β′[(|α|mod |β′|) + 1..|β′|] ◦ β′[1..(|α|mod |β′|)],
l′ =
(
l + |β′| − (|α|mod |β′|)

)
mod |β′|.

If α′ = β′′, then k′ = l′, because |X′| = |Y′|. Thus (7) is false and so is (6).
If α′ � β′′, then there are only finitely many cases that X′ = Y′ which can be
computed and excluded.

4. Consider each constraint of the form αX � Yβ∧X ∈ orb(α′, k). Guess a word
α′′ such that |α′′| = |α| and set Y = α′′Y′. For α � α′′, replace αX � Yβ by
Y = α′′Y′, otherwise, replace αX � Yβ by Y = αY′ ∧ X � Y′β.

5. Consider each constraint of the form αX � Yβ ∧ Y ∈ orb(β′, l). If α is not
a prefix of Y (which has the form (β′)∗β′[1..l]), αX � Yβ ∧ Y ∈ orb(β′, l)
simplifies to true. Otherwise αX � Yβ can be replaced by Y = αY′ ∧X � Y′β,
which can be further simplified to Y′ ∈ orb(β′′, l′) ∧ X � Y′β, with β′′ and l′
the same as in step 3.

234 Ting Zhang, Henny B. Sipma, and Zohar Manna

Algorithm 5 (Computation of ΦΔ+). Input: ΦQ ∧θZ. Initially set ΦΔ+ = ∅.
Add to ΦΔ+: (1) |t1| = |t2|, if t1 � t2 or t1 = t2; (2) |X| + |α| = |αX| = |Xα|, if αX
or Xα occurs; (3) |X| ≡ k(mod |α|), if X ∈ orb(α, k).

ΦQ can be satisfied by sufficiently long queues: there exists a cutpoint δ
such that if Q |=∃ ΦQ, then for any solution (li)n (i.e., l0, . . . , ln) for ΦΔ+ such
that li ≥ δ, there exists a solution (αi)n for ΦQ such that |αi| = li. Let CΦ(δ)
denote

∧
X∈VQ(ΦQ) |X| ≥ δ. It is clear that ΦΔ+ ∧ CΦ(δ) ∧ θZ is an RLCC for

ΦQ/θZ. It is not true, however, that δ is the smallest max{(μi)n} such that QZ |=∃
ΦQ ∧ ∧n

i=1 |Xi| = μi where (Xi)n enumerate VQ(ΦQ). Ex. 4 shows an anomaly
where {X := εQ,Y := εQ} is a solution for ΦQ (with |X| = |Y| = 0), while there
exists no solution for ΦQ such that |X| = |Y| = 1. To avoid such anomalies we
separate the search for a satisfying assignment into two cases. We compute a
cut length Lt ≥ δ and enumerate all assignments σ with �|X|�σ < Lt, while for
�|X|�σ ≥ Lt satisfiability of the queue constraints is reduced to satisfiability of
integer constraints as in [13,14].

The computation of Lt is based on the observation that an assignment σ is
satisfying if every �X�σ includes a unique “marker” at the same, fixed, position.
Such a marker can be constructed by concatenating a “shortest unused prefix”
and a unique identifier for each queue variable. Let PREΦ denote the set of all
words α such that αX or α is a proper term in ΦQ. A word q is called a delimiter
of ΦQ if q is strongly primitive and q � orb(α) for any α ∈ PREΦ. Let dp denote an
arbitrary shortest delimiter (there can be more than one) and let Lp = |dp|. Let Lc
be the smallest number of letters necessary to create a unique identifying word,
called a color, for each queue variable in ΦQ. We claim that Lc + Lp = Lt ≥ δ.
Example 7 (Computation of Lt). Consider again ΦQ in Ex. 4. Here PREΦ =
{ab, ba, aa}; a shortest delimiter is aab, and thus Lp = 3. ΦQ includes two queue
variables, requiring one letter to identifying them with two letters in the alpha-
bet. Thus, we need four letters to construct a unique identifying word, resulting
in Lt = 4.

Proposition 6 (RLCC in QZ). ΦΔ+ ∧ CΦ(Lt) ∧ θZ is an RLCC for ΦQ/θZ.

Definition 11 (Length Configuration in QZ). A length configuration for
ΦQ (in QZ) is a conjunction

∧
X∈VQ(ΦQ) AX, where AX is either |X| = i (for some

i < Lt) or |X| ≥ Lt.

Let C be the set of all configurations. Clearly C creates a finite partition of
the search space that includes CΦ(Lt). A partial assignment ∂ is compatible with
a configuration C if for any variable X, �X�∂ is defined iff |X| = i (for some i < Lt)
occurs in C. The empty assignment is vacuously a satisfying partial assignment,
the only one compatible with CΦ(Lt). As a consequence of Prop. 6, we have

Algorithm 6 (Decision Procedures for QZ). Input: ΦQ ∧ θZ ∧ ΦZ where
ΦQ ∧ θZ denotes one of the partitions.

Decision Procedures for Queues with Integer Constraints 235

1. For each C ∈ C,
(a) Guess a satisfying ∂ compatible with C and update ΦΔ+, C,θZ and ΦZ.
(b) If succeed, return SUCCESS if PA |=∃ ΦΔ+ ∧ C ∧ θZ ∧ΦZ.

2. Return FAIL.

6 Quantifier Elimination for Th(QZ)

In this section we present a quantifier elimination for the first-order theory of
queues with integers, Th(QZ). The procedure removes a block of quantifiers of
the same type in a single step.

It is well-known that eliminating arbitrary quantifiers reduces to eliminating
existential quantifiers from formulae in the form (∃x)[A1(x)∧ . . .∧An(x)], where
Ai(x) (1 ≤ i ≤ n) are literals [5]. By parameters we mean the implicitly universally
quantified variables. We use Y to denote a sequence of Q-parameters.

The elimination procedure consists of the following two subprocedures.

Elimination of Quantifiers on Integer Variables We assume formulas with quan-
tifiers on integer variables are in the form

(∃u : Z)
[
ΦQ(X) ∧ ΦZ(u, v,X)

]
, (8)

where X ⊆ VQ and v, u ⊆ VZ. Since ΦQ(X) does not contain u, we can move
them out of the scope of (∃u), and then obtain

ΦQ(X) ∧ (∃u : Z)ΦZ(u, v,X). (9)

Since in ΦZ(u, v,X), X occurs as pseudo integer variables, (∃u : Z)ΦZ(u, v,X)
is essentially a Presburger formula and we can proceed to remove the quantifier
using Cooper’s method [3]. In fact we can defer the elimination until all other
types of quantifiers are removed.

Elimination of Quantifiers on Queue Variables We assume formulas with quan-
tifiers on queue variables are in the form

(∃X : Q)
[
ΦQ(X,Y) ∧ ΦZ(u,X,Y)

]
, (10)

where X,Y ⊆ VQ, u ⊆ VZ, and ΦZ(u,X,Y) can be an arbitrary Presburger
formula (not necessarily quantifier-free). By Prop. 1, we can assume X does
not occur in selectors. Though elimination of selectors in general adds more
existential quantifiers of sort queue or atom, the newly added quantifiers will be
removed together with the original ones.

We need to extend the notion of RLCC to deal with parameters.

Definition 12 (RLCC with parameters). Consider (∃X : Q)
[
ΦQ(X,Y) ∧

θZ(X,Y)
]
, where Y are parameters. Let Φ(2)

Q (Y) be the maximum subset of

ΦQ(X,Y) not containing X and Φ(1)
Q (X,Y) := ΦQ(X,Y) \ Φ(2)

Q (Y). A formula

236 Ting Zhang, Henny B. Sipma, and Zohar Manna

ΦΔ(X,Y) is an RLCC in X for ΦQ(X,Y) relativized to θZ(X,Y), (in short,
ΦΔ(X,Y) is an RLCC for ΦQ(X,Y)/X/θZ(X,Y)), if the following hold:

(∀X,Y : Q)
[
ΦQ(X,Y) ∧ θZ(X,Y)→ (∃z : Z)

(
ΦΔ(z,Y) ∧ |X| = z

)]
, (11)

(∀Y : Q)(∀z : Z)
[
Φ(2)
Q (Y) ∧ ΦΔ(z,Y)

→ (∃X : Q)
(
ΦQ(X,Y) ∧ θZ(X,Y) ∧ |X| = z

)]
.

(12)

We also need to update the notion of normal form for parameters.

Definition 13 (Normal Form in QZ with Y). ΦQ is in normal form in
QZ (with parameters) if ΦQ satisfies Def. 10 and the following condition: if
αXβ � t(Y) (where Y is a parameter) appears in ΦQ, then α ≡ β ≡ εQ and X
does not occur in literals of the form X ∈ orb(α, k).

We treat Q-terms of the form t(Y) as distinct variables. Let Lc,Lp and Lt be
as defined in Sec. 5 and we obtain CΦ(Lt) and ΦΔ+(X,Y) accordingly.

Proposition 7 (RLCC in QZ with Y). ΦΔ+(X,Y) ∧ CΦ(Lt) ∧ θZ(X,Y) is an
RLCC for ΦQ(X,Y)/X/θZ(X,Y).

We guess and add a C ∈ C to (10). First we remove each X such that |X| = i
(i < Lt) occurs in C. For the variables left in X, we have |X| ≥ Lt in C and so we
can assume C is CΦ(Lt) Then (10) is rewritten as

(∃X : Q)
[
ΦQ(X,Y) ∧ θZ(X,Y) ∧ ΦZ(u,X,Y)

]
, (13)

which is equivalent to
Φ(2)
Q (Y) ∧ (∃v : Z)

[
ΦΔ+(v,Y) ∧ CΦ(Lt) ∧ θZ(v,Y) ∧ ΦZ(u, v,Y)

]
. (14)

7 Conclusion

We presented decision procedures for the theory of queues with integer con-
straints. Our method combines the extraction of integer constraints from queue
constraints, and in case of the quantified theory, with a reduction of quantifiers
on queue variables to quantifiers on integer variables.

Complexity Clearly Th∀(QZ) is NP-hard as it is a super theory of Th∀(Q) and
Th∀(Z), which are both NP-complete. Alg. 5 computes ΦΔ+ in O(n) and Lt, L+t
are also in O(n). By the nondeterministic nature of our algorithms, we can show
that each branch of computation in the normalization procedures and in Algs.
2, 3, 6 is in P. Therefore Th∀(QZ) is NP-complete and consequently, for Th(QZ),
the elimination of a block of existential quantifiers, regardless of the size of the
block, can be done in O(2n).

Future Work We plan to extend our results to the theory of queues in a more ex-
pressive signature, e.g., in the language with prefix, suffix and subqueue relation,
and investigate decidability of the first-order theory of queues with integers and
prefix or suffix relation. Note that for the first-order theory we cannot obtain
decidability with both prefix and suffix relations, nor in a signature with prefix
(or suffix) relation and all constructors, because both extensions are sufficiently
expressive to interpret the theory of arrays.

Decision Procedures for Queues with Integer Constraints 237

References

1. Michael Benedikt, Leonid Libkin, Thomas Schwentick, and Luc Segoufin. A model-
theoretic approach to regular string relations. In Proceedings of 16th IEEE Sym-
posium on Logic in Computer Science (LICS’01), pages 431–440. IEEE Computer
Society Press, 2001.

2. Nikolaj S. Bjørner. Integrating Decision Procedures for Temporal Verification. PhD
thesis, Computer Science Department, Stanford University, November 1998.

3. D. C. Cooper. Theorem proving in arithmetic without multiplication. In Machine
Intelligence, volume 7, pages 91–99. American Elsevier, 1972.

4. H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 2001.
5. Wilfrid Hodges. Model Theory. Cambridge University Press, Cambridge, UK, 1993.
6. Felix Klaedtke and Harald Rueß. Monadic second-order logics with cardinali-

ties. In 30th International Colloquium on Automata, Languages and Programming
(ICALP’03), volume 2719 of LNCS. Springer-Verlag, 2003.

7. M. Lothaire. Combinatorics on Words. Addison-Wesley, Massachusetts, USA,
1983.

8. Greg Nelson and Derek C. Oppen. Simplification by cooperating decision proce-
dures. ACM Transaction on Programming Languages and Systems, 1(2):245–257,
October 1979.

9. C. R. Reddy and D. W. Loveland. Presburger arithmetic with bounded quantifier
alternation. In Proceedings of the 10th Annual Symposium on Theory of Computing
(STOC’78), pages 320–325. ACM Press, 1978.

10. Tatiana Rybina and Andrei Voronkov. A decision procedure for term algebras with
queues. In Proceedings of 15th IEEE Symposium on Logic in Computer Science
(LICS’00), pages 279 – 290. IEEE Computer Society Press, 2000.

11. Tatiana Rybina and Andrei Voronkov. Upper bounds for a theory of queues. In
Proceedings of 30th International Colloquium on Automata, Languages and Pro-
gramming (ICALP’03), volume 2719 of LNCS, pages 714–724. Springer-Verlag,
2003.

12. Wolfgang Thomas. Infinite trees and automaton-definable relations over ω-words.
Theoretical Computer Science, 103:143–159, 1992.

13. Ting Zhang, Henny B. Sipma, and Zohar Manna. Decision procedures for recursive
data structures with integer constraints. In the 2nd International Joint Confer-
ence on Automated Reasoning (IJCAR’04), volume 3097 of LNCS, pages 152–167.
Springer-Verlag, 2004.

14. Ting Zhang, Henny B. Sipma, and Zohar Manna. Term algebras with length
function and bounded quantifier alternation. In the 17th International Conference
on Theorem Proving in Higher Order Logics (TPHOLs’04), volume 3223 of LNCS,
pages 321–336. Springer-Verlag, 2004.

The Directed Planar Reachability Problem

Eric Allender1, Samir Datta2, and Sambuddha Roy3

1 Department of Computer Science, Rutgers University, Piscataway, NJ 08855
allender@cs.rutgers.edu

2 Chennai Mathematical Institute, Chennai, TN 600 017, India
sdatta@cmi.ac.in

3 Department of Computer Science, Rutgers University, Piscataway, NJ 08855
samroy@paul.rutgers.edu

Abstract. We investigate the s-t-connectivity problem for directed planar graphs,
which is hard for L and is contained in NL but is not known to be complete. We
show that this problem is logspace-reducible to its complement, and we show that
the problem of searching graphs of genus 1 reduces to the planar case.
We also consider a previously-studied subclass of planar graphs known as grid
graphs. We show that the directed planar s-t-connectivity problem reduces to the
reachability problem for directed grid graphs.
A special case of the grid-graph reachability problem where no edges are directed
from right to left is known as the “layered grid graph reachability problem”. We
show that this problem lies in the complexity class UL.

1 Introduction

Graph reachability problems play a central role in the study and understanding of sub-
classes of P. The s-t-connectivity problem for directed graphs (STCONN) is complete
for nondeterministic logspace (NL); the restriction of this problem to undirected graphs,
called USTCONN, has recently been shown to be complete for logspace (L) [Rei05];
thus this problem has the same complexity as the s-t-connectivity problem for graphs
of outdegree 1 (and even for graphs of indegree and outdegree at most 1 [Ete97]).

Grid graphs are an important restricted class of graphs for which the reachability
problem has significant connections to complexity classes. (The vertices in a grid graph
are a subset of IN × IN, and all edges are of the form (i, j) → (i + b, j) or (i, j) →
(i, j + b), where b ∈ {1,−1}.) In most settings (and in particular in all of the results
we will present in this paper) it is sufficient to restrict attention to grid graphs where the
start vertex s lies in the first column, and the terminal vertex t lies in the final column.
In [BLMS98], Barrington et al showed that the reachability problem in (directed or
undirected) grid graphs of width k captures the complexity of depth k AC0. Barrington
also considered general grid graphs without the width restriction, calling this the Grid
Graph Reachability problem (GGR) [Bar02]. The construction of [BLMS98, Lemma
13] shows that GGR reduces to its complement via uniform projections. (The problems
STCONN and USTCONN also reduce to their complements via uniform projections,
as a consequence of [Imm88, Sze88, Rei05, NTS95].) Reachability problems for grid
graphs have proved easier to work with than the corresponding problems for general

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 238–249, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Directed Planar Reachability Problem 239

graphs. For instance, the reachability problem for undirected grid graphs was shown to
lie in L in the 1970’s [BK78], although more than a quarter-century would pass before
Reingold proved the corresponding theorem for general undirected graphs.

Barrington also defined what we will refer to as the layered grid graph reachability
problem LGGR, in which no edges are directed from right to left in the grid. (That
is, there is no edge of the form (i, j) → (i, j − 1); we use the convention that ver-
tex (i, j) refers to the point in row i and column j.) Barrington originally called these
graphs “acyclic” grid graphs, because this is a simple syntactic condition guaranteeing
that a grid graph will have no cycles. (However, this terminology was confusing be-
cause there are grid graphs without cycles that do not meet this syntactic criterion.) In
personal communication, Barrington suggested the name “layered”, with the following
justification. It is shown in [Bar02] that this problem is equivalent to the special case
where all edges are directed from left to right or from top to bottom. Thus without loss
of generality, the start node is in the top left corner. If such a grid graph is rotated 45
degrees counterclockwise, one obtains a graph whose “columns” correspond to the di-
agonals of the original graph, where s is the only node in the first “column”, and all
edges in one column are directed “northeast” or “southeast” to their neighbors in the
following column. This is consistent with the usual usage of the word “layered” in graph
theory.

Barrington showed that GGR and LGGR are hard for NC1 under uniform pro-
jections [Bar02], but the best upper bound that was identified by Barrington for these
problems is NL.

Our focus in this paper is the restriction of STCONN to planar (directed) graphs
PLANAR.STCONN. This problem is hard for L under uniform projections, as a conse-
quence of [Ete97], and it lies in NL. Nothing else has been published regarding its com-
putational complexity. Thus the class of problems≤log

m -reducible to PLANAR.STCONN

can be viewed as a complexity class lying between L and NL. We show that this class
is closed under complement, by presenting a≤log

m reduction of PLANAR.STCONN to its
complement; we do not know if this reduction can be accomplished by uniform projec-
tions or even by NC1 reductions; in contrast to the case for STCONN, USTCONN, and
GGR. We also show that this class contains the s-t-connectivity problem for graphs of
genus 1; the generalization for graphs of higher genus remains open.

We have two separate proofs of closure under complement, but due to space limi-
tations we will not present our direct proof. Instead, we will present only a reduction
showing PLANAR.STCONN≤log

m GGR. By [BLMS98, Lemma 13] (showing that GGR
reduces to its complement) this is sufficient.

Our final technical contribution is to show that LGGR lies in the complexity class
UL. This must be viewed as a slight improvement, since it is shown in [ARZ99] that
NL = UL if there is any problem in DSPACE(n) that requires circuits of exponential
size, and it is shown in [RA00] that NL/poly = UL/poly (unconditionally). We actually
show that LGGR lies in UL∩coUL, although (in contrast to all of the other reachability
problems we consider) it remains open if LGGR reduces to its complement. (Note also
that it remains open if UL = coUL.) Some other examples of reachability problems in
UL were presented by Lange [Lan97]; these problems are obviously in UL (in the sense
that the positive instances consist of certain graphs that contain only one path from s to

240 Eric Allender, Samir Datta, and Sambuddha Roy

t), and the main contribution of [Lan97] is to present a completeness result for a natural
subclass of UL. In contrast, positive instances of LGGR can have many paths from s
to t. We know of no reductions (in either direction) between LGGR and the problems
considered in [Lan97].

Series-parallel graphs are an important and well-studied subclass of planar directed
graphs. Jakoby, Liskiewicz, and Reischuk showed in [JLR01] that s-t-connectivity in
series-parallel graphs can be computed in logspace (and in fact is complete for L). They
also show the much stronger result that counting the number of paths between s and t
can be computed in logspace for series-parallel graphs. Very recently, in joint work with
David Mix Barrington and Tanmoy Chakraborty, we have identified some even larger
classes of planar directed graphs for which s-t-connectivity can be solved in logspace;
these results will be described in a subsequent paper.

2 Reduction to a Special Case

In this section we present a reduction showing that it is sufficient to consider the special
case where the vertices s and t both lie on the external face of the planar graph. This
was useful in our direct proof of closure under complement, but it is also useful in
presenting our reduction to grid-graph reachability.

Let G be a directed graph. Testing if G is planar reduces to the undirected s-t-
connectivity problem [AM04] and thus can be done in logarithmic space [Rei05]. Fur-
thermore, if a graph is planar then a planar combinatorial embedding (i.e., a cyclic
ordering of the edges adjacent to each vertex) can be computed in logarithmic space
[AM04]. Given a combinatorial embedding, it is easy to check if two vertices lie on
the same face. (The vertices on each face adjacent to a vertex v can be enumerated by
starting at some (undirected) edge adjacent to v and starting a walk from v along that
edge; each time a new vertex w is entered along some edge e the walk continues along
the edge that succeeds e in the cyclic ordering of edges around w.) Thus in logspace we
can check if s and t lie on the same face. If so, then the graph G is already in the desired
form, since we can consider any face to be the “external” face in the embedding.

If s and t do not lie on the same face, then by use of the undirected connectivity
algorithm we can determine if there is an undirected path from s to t. If there is no such
path, then clearly there is no directed path, either. Otherwise (as observed in [AM04])
we can find a simple undirected path P = (s, v1, v2, . . . , vm, t) in logspace. First, we
construct a new face with s and t on it, by “cutting” along the path P . (That is, we
replace each vertex vi on P by vertices vi,a and vi,b. For any vertex vi on P , let u
and x be the vertices appearing before and after vi on P ; that is, u ∈ {s, vi−1} and
x ∈ {t, vi+1}. Let e1, . . . , eda be the edges embedded “above” the edges connecting vi
to u and x in the cyclic ordering around vi, and let e′1, . . . , e

′
db

be the edges embedded
“below” the edges between vi and u and x. That is, if the undirected path from s to t
moves from left to right, edges e1, . . . , eda appear on the left side of this path, and edges
e′1, . . . , e

′
db

appear on the right side. LetL be the set of all edges adjacent toP embedded
on the left side, and let R be the set of all edges adjacent to P embedded on the right
side. In the new graph, the edges in L that were connected to vi are connected to vi,a
and those in R are connected to vi,b. Edges between vi and {vi+1, vi−1 are duplicated,

The Directed Planar Reachability Problem 241

with edges between vi,c and {vi+1,c, vi−1,c} for c ∈ {a, b}. Similarly, edges between
s and v1 (and t and vm) are duplicated, with edges between s and v1,a and v1,b (and
edges between t and vm,a and vm,b, respectively). This is illustrated in Figure 1.)

G’

ts

Fig. 1. Cutting along a st path

This new graph G′ is planar, and has vertices s and t on the same face (the only new
face created). Since we can embed any planar graph such that any specific face is the
outer face, we re-embed our graph G′ such that s and t are now on the outer face. From
now on we assume G′ has this embedding.

In the process of going from G to G′ we have changed the connectivity of the
graph; s and t might have been connected in G but they might not be connected in
G′. In particular, any directed path in G from s to t that uses edges from both L and
R is not replicated in G′. We solve this problem by pasting together copies of the
graph G′, as follows. The outer face of G′ consists of two undirected paths from s
to t: s, v1,a, v2,a, . . . , vm,a, t and s, v1,b, v2,b, . . . , vm,b, t. The operation of “pasting”
two copies of G′ together consists of identifying the vertices v1,a, v2,a, . . . , vm,a in one
copy with the vertices v1,b, v2,b, . . . , vm,b in the other copy. (Note that this amounts to
“sewing together” two copies of the path that were “cut apart” in creating G′ from G.)
The graph G′′ consists of 2n+ 1 copies of G′ pasted together in this way: the “original
copy” in the middle, and n copies pasted in sequence to the top boundary of the outer
face, and n copies pasted in sequence to the bottom boundary.

G′′ has (the original copies of) s and t on the outer face. A simple inductive argu-
ment shows that there is a directed path from s to t in G if and only there is a directed
path from (the original copy of) s to one of the copies of t in G′′. A pathological exam-
ple showing that many copies of G′ are needed is shown in Figure 2. To complete the
reduction, we construct a graph H that consists of G′′ along with a new vertex t′′ with
directed edges from each copy of t to t′′. The vertices s and t′′ appear on the external
face of H , and there is a directed path from s to t in G if and only if there is a directed
path from s to t′′ in H .

242 Eric Allender, Samir Datta, and Sambuddha Roy

s t

G

P

Fig. 2. A pathological case

3 Grid Graphs

In this section, we present a ≤log
m reduction of PLANAR.STCONN to GGR.

Using the reduction of Section 2, we may assume that we are given a planar graph G
with s and t on the external face. By applying the reachability algorithm on undirected
graphs, we can merge all vertices that are joined by bidirected edges, and thus we can
assume that all edges are unidirectional; note that the graph remains planar after this
transformation. We may also assume without loss of generality that G has no vertex of
degree (indegree + outdegree) greater than 3, and that s has degree two. (To see this,
observe that if v is a vertex of degree d > 3, then we may replace v with d vertices
arranged in a directed cycle, with each one adjacent to one of the d edges that were
connected to v. In order to compute this transformation it is important to note that we
can compute the planar embedding in logspace. If the vertex s has degree three, then an
additional vertex of degree two can be inserted into this cycle, and re-named s.)

We can compute an (undirected) spanning tree T of G in logspace. The vertex s is
a vertex of T , and we can consider it to be the root of T ; without loss of generality s
has two children in T . By our assumptions on G, the tree T is a binary tree; the planar
embedding of G imposes an ordering on the children of each node in T . As observed in
[AM04], we can compute the height h(v) of each node v in T in logspace (by counting
the number of vertices that are ancestors of v). For notational convenience, define the
height of the root s to be 1, and if v has child u then h(u) = h(v) + 1.

At this point, we are ready to assign each vertex of G to a grid point. Our grid graph
will consist of a “fine grid” and a “coarse grid”. The coarse grid consists of points placed
at the corners of large squares (of size (4n + 1)× (4n + 1)) of the fine grid. (The fine
grid will be used to route non-tree edges between vertices placed on the coarse grid.)
For any node x, define w(x) to be the number of leaves of T that appear strictly to the
left of x; w(x) can be computed easily in logspace by traversing T . Each vertex x is
assigned to the point (h(x), w(x) + 1) in the coarse grid; note that the root s is placed
at the top left corner (1, 1). If node x is at position (i, j) in the coarse grid, then the
tree edge from x to its left child is embedded as a vertical path to point (i + 1, j) in the
coarse grid. If x also has a right child y, then this edge is embedded as a horizontal path

The Directed Planar Reachability Problem 243

to location (i, w(y) + 1) followed by a vertical path to location (i+ 1, w(y) + 1) in the
coarse grid. This is illustrated in Figure 3.

w(e)
w(e)

ss

w(e)

u

v

e

e

u v

Fig. 3. Embedding a graph on the grid. Edges used in the spanning tree are shown as
dashed lines; non-tree edges are solid.

For every non-tree edge e in the tree we can find the number w(e) of non-tree edges
enclosed by the unique cycle formed by adding e to the tree. (For edge e = (u, v), w(e)
can be computed by finding the least common ancestor y of u and v and determining
for each non-tree edge connected to a descendant of y if it is embedded to the right or
left of the paths between y and u and v.) For any non-tree edge e = (u, v), note that
u and v have degree at most two in the tree T , and thus there is no tree edge attached
horizontally adjacent to u or v. The embedding determines if the path representing e
should be attached to the east or west sides of u and v. If the embedding goes around
a leaf z of the tree T , then the path is routed horizontally from u to a location w(e)
fine grid points to the east or west of the column containing z, and vertically down to
a point w(e) fine grid points below the level of the leaf of maximum height, and from
there horizontally to a point w(e) fine grid points east or west of the column containing
v, then vertically to the level of v, and then horizontally to attach to v. If the embedding
does not go around a leaf, then a simpler path can be drawn: horizontally to a pointw(e)
fine grid points east or west of v, then vertically to the level of v, and then horizontally
to connect to v. It is easy to verify that no paths collide in this way. See Figure 3 for an
example.

Thus we have the following theorem.

Theorem 3.1. PLANAR.STCONN≤log
m GGR

244 Eric Allender, Samir Datta, and Sambuddha Roy

We obtain the following corollary by appeal to [BLMS98, Lemma 13].

Corollary 3.2. PLANAR.STCONN ≤log
m -reduces to its complement.

4 More Closure Properties

Different types of logspace reductions were introduced and studied by Ladner and
Lynch [LL76], who showed that logspace Turing and truth-table reducibilities coincided
(A≤log

T B iff A≤log
tt B). They also introduced a more restrictive version of logspace-

computable truth-table reducibility, known as logspace Boolean formula reducibility
≤log

bf−tt . A≤log
bf−ttB if there is a logspace computable function f such that f(x) =

(q1, q2, . . . , qr, φ) where each qi is a query and φ is a Boolean formula with r variables
y1, . . . , yr, such that x ∈ A if and only if φ evaluates to 1 when the variables yi are
assigned the truth value of the statement “qi ∈ B”. Additional results about this type of
reducibility can be found in [BST93, BH91].

Corollary 4.1. A≤log
m PLANAR.STCONN if and only if A≤log

bf−ttPLANAR.STCONN.

Proof. One direction is trivial; thus assume that A≤log
bf−tt PLANAR.STCONN. For a

given input x, let f(x) = (q1, q2, . . . , qr, φ) be the result of applying the reduction to
x. Without loss of generality, the formula φ has negation operations only at the leaves
(since it is easy in logspace to apply DeMorgan’s laws to rewrite a formula). Using clo-
sure under complementation, we can even assume that there are no negation operations
at all in the formula. By the results of Section 2, we can assume that each graph qi is
a planar graph with s and t on the external face. Given two such graphs G1, G2, note
that both G1 and G2 are in PLANAR.STCONN if and only if the graph with the terminal
vertex of G1 connected to the start vertex of G2 is in PLANAR.STCONN, and thus it is
easy to simulate an AND gate. Similarly, an OR gate can be simulated by building a
new graph with start vertex s connected to the start vertices of both G1 and G2, and with
edges from the terminal vertices of G1 and G2 to a new vertex t. These constructions
maintain planarity, and they also maintain the property that s and t are on the external
face. Simulating each gate in turn involves only a constant number of additional vertices
and edges, and it is easy to see that this gives rise to a ≤log

m reduction.

5 Higher Genus

In this section we prove that the s-t-connectivity problem for graphs of genus 1 reduces
to the planar case. Throughout this section, we will assume that we are given an em-
bedding Π of a graph G onto a surface of genus 1. (Unlike the planar case, it does
not appear to be known if testing if a graph has genus g > 0 can be accomplished in
logspace, even for g = 1 [MV00].) Given such an embedding, using [AM04], we can
check in logspace if the minimal genus of the graph is 1.

We introduce here some terminology and definitions relating to graphs on surfaces.
It will be sufficient to give informal definitions of various notions; the interested reader
can refer to [MT01] for more rigorous definitions.

The Directed Planar Reachability Problem 245

A closed orientable surface is one that can be obtained by adding handles to a sphere
in 3-space. The genus of the resulting surface is equal to the number of handles added;
see also the text [GT87]. Given a graph G, the genus of the graph is the genus of the
(closed orientable) surface of least genus on which the graph can be embedded.

Given a graph G embedded on a closed orientable surface, and a cycle of the graph
embedded on the surface, there are two (possibly intersecting) subgraphs, called the
two sides of the cycle with respect to the embedding. Informally, a side of a cycle is
the set of vertices of the graph that are path-connected (via a path in the graph, each
edge of the graph being considered regardless of direction) to some vertex on the cycle,
such that this path does not cross the cycle itself. (In the considerations below, we are
concerned only with genus 1 graphs for which this notion of path-connectivity suffices.)
A cycle thereby has two sides, which are called the left and the right sides. If the left
and right sides of a cycle have nonempty intersection, then we call the cycle a surface-
nonseparating cycle. Note that a graph embedded on a sphere (i.e., a planar graph) does
not have any surface-nonseparating cycles. Also, it is easy to see that a facial cycle (one
that forms the boundary of a face in the embedding of the graph on the surface) cannot
be surface-nonseparating. Given a cycle C in an embedded graph, it is easy to check in
logspace, if C is surface-nonseparating or not: merely check if there is a vertex v ∈ G,
such that v is path-connected to both sides of C (on the embedding).

Lemma 5.1. Let G be a graph of genus g > 0, and let T be a spanning tree of G. Then
there is an edge e ∈ E(G) such that T ∪ {e} contains a surface-nonseparating cycle.

Proof. The proof follows ideas from [Tho90] which introduces the “3-path condition”:

Definition 5.2. Let K be a family of cycles of G as follows. We say that K satisfies the
3-path condition if it has the following property. If x, y are vertices of G and P1, P2, P3

are internally disjoint paths joining x and y, and if two of the three cyclesCi,j = Pi∪Pj
(1 ≤ i < j ≤ 3) are not in K, then also the third cycle is not in K.

We quote the following from [MT01].

Proposition 5.3. (Proposition 4.3.1 of [MT01]) The family of Π-surface-nonseparat-
ing cycles satisfies the 3-path condition.

Suppose, that ∀e, (T ∪ {e}) does not have a surface-nonseparating cycle. We will
prove that no cycle C in the graph G can be surface-nonseparating, by induction on the
number k of non-tree edges in C. This contradicts the fact that every non-planar graph
has a surface-nonseparating cycle ([MT01, Lemma 4.2.4 and the following discussion])
and thus suffices to prove the claim.

The basis (k = 1) follows from the above supposition.
For the inductive step from k− 1 to k, let a cycle C be given with k edges not in T .
Take any non-tree edge e = (x, y) on C. Consider the tree path P between x and

y. If P never leaves the cycle C, then C is a fundamental cycle and we are done by
the assumption for k = 1. Otherwise, we can consider a maximal segment S of P not
in C. Let S lie between vertices u and v of C. Now, we have three paths between u
and v : the two paths between u and v on C (call these C1, C2), and path S. Note that

246 Eric Allender, Samir Datta, and Sambuddha Roy

both S ∪ C1 and S ∪ C2 have less than k non-tree edges. Hence they are not surface-
nonseparating cycles by the induction assumption. So, by the 3-path condition, neither
is C = C1 ∪ C2.

This completes the induction, and the proof.

At this point we are able to describe how to reduce the s-t-connectivity problem for
graphs of genus 1 to the planar case.

Given a graph G of genus 1 and an embedding Π of G onto the torus, construct an
(undirected) spanning tree T of G. (It follows from [NTS95, Rei05] that spanning trees
can be constructed in logspace.) For each edge e of G that is not in T , determine if the
unique cycle Ce in T ∪ {e} is surface-nonseparating, as follows.

Let Ce = {v1, v2, · · · , vr}. Let Ge be the graph obtained from G by cutting along
the cycle Ce (as described in [MT01, p. 105]). (For the purposes of visualization, it
is useful to imagine cycles as embedded on an inner tube. Cutting along a surface-
separating cycle amounts to cutting a hole in the inner tube (resulting in two pieces).
In contrast, if Ce is surface-nonseparating, then it is embedded either like a ribbon tied
around the tube, or like a whitewall painted on the inner tube. In the former case, cut-
ting along Ce turns the inner tube into a bent cylinder with a copy of Ce on each end;
in the latter case cutting along Ce results in a flat ring with one copy of Ce around
the inside and one around the outside. In this latter case, the graph is again topolog-
ically equivalent to a cylinder with a copy of Ce on each side.) More formally, the
graph Ge has two copies of each of the vertices {v1, v2, · · · , vr}, which we denote by
{v1,1, v2,1, · · · , vr,1}, and {v1,2, v2,2, · · · , vr,2}. For every edge (u, vj) (or (vj , u)) on
the right side of Ce (according to Π), Ge has the edge (u, vj,1) ((vj,1, u), respectively),
and for every edge (u, vj) ((vj , u),respectively) on the left side of Ce we have the edge
(u, vj,2) (or (vj,2, u)) in Ge. The graph Ge also has two copies of the cycle Ce, which
we denote by Ce,1 and Ce,2. That is, we have edges between vj,b and vj+1,b for each
b ∈ {1, 2} and each 1 ≤ j ≤ r, directed as in Ce. An important property of cutting
along the cycle Ce is that if Ce was surface-nonseparating, then the resulting graph Ge

is planar, and the the cycles Ce,1 and Ce,2 are facial cycles ([MT01, p. 106,Lemma
4.2.4]). (Otherwise, Ge will not be planar.) Thus in logspace we can determine if Ce is
surface-nonseparating.

By Lemma 5.1, we are guaranteed to find a surface-nonseparating cycle by test-
ing each edge e that is not in T . The graph Ge does not have the same connectivity
properties as G; s and t might have been connected in G but not in Ge. In particular,
any directed path in G from s to t that uses edges from both the right and left sides
of Ce is not replicated in Ge. As in Section 2, we solve this problem by pasting to-
gether copies of the graph Ge, as follows. The operation of “pasting” two copies of Ge

together consists of identifying the vertices v1,1, v2,1, . . . , vr,1 in one copy with the ver-
tices v1,2, v2,2, . . . , vm,2 in the other copy. (Note that this amounts to “sewing together”
two copies of the path that were “cut apart” in creating Ge from G.)

Now construct the graph G′ consisting of 2n + 1 copies of Ge pasted together in
this way: the “original copy” in the middle, and n copies along each side, forming one
long cylinder. Since this cylinder has genus zero, it is easy to see that G′ is planar.

As in Section 2, a simple inductive argument shows that there is a directed path from
s to t in G if and only there is a directed path from (the original copy of) s to one of

The Directed Planar Reachability Problem 247

the copies of t in G′. Thus we have presented a logspace-computable disjunctive truth-
table reduction to the planar directed s-t-connectivity problem. We obtain a many-one
reduction by appeal to Corollary 4.1 Thus we have proved the following theorem.

Theorem 5.4. The s-t-connectivity problem for graphs of genus one is ≤log
m reducible

to the planar directed s-t-connectivity problem.

6 Layered Grid Graphs

Theorem 6.1. LGGR ∈ UL.

Proof. Let G be a layered n× n grid graph, with vertex s in column 1 and vertex t in
column n. We define a weight function w on the edges of G as follows. If e is directed
vertically (that is, from (i, j) to (i′, j) for i′ ∈ {i + 1, i− 1}), then e has weight zero.
Otherwise, e is directed horizontally and is of the form (i, j)→ (i, j + 1). In this case,
the weight of e is i. This weight function induces a natural weight function on paths; the
weight of a path is the sum of the weights of its edges. (It is a helpful approximation to
think of the weight of a path as the number of boxes of the grid that lie above the path.)

The minimal-weight simple path from s to any vertex v is unique. This is because
if there are two paths P1 and P2 from s to v that have the same weight, there must be
some column in which P1 is higher than P2 and another column in which P2 is higher
than P1. Since G is a layered grid graph, this means that there is some point in between
these two columns in which the two paths intersect. The path from s to v that follows
the two paths until they diverge, and then follows the path closer to the top of the grid
until they next intersect, and continues in this way until v is reached, will have smaller
weight than either P1 or P2, and thus they cannot have had minimal weight.

At this point, we are able to mimic the argument of [RA00].
LetCk be the set of all vertices in column k that are reachable from s. Let ck = |Ck|.

Let Σk be the sum, over all v ∈ Ck of the minimal weight path from s to v. Exactly as
in [RA00], there is a UL algorithm that, given (G, k, ck, Σk, v), can determine if there
is a path from s to v or not. (We emphasize the words “or not”; if there is no path,
the UL machine will determine this fact; the algorithm presented in [RA00] has this
property.) Furthermore, this algorithm has the property that, if v is reachable from s,
then the UL machine can compute the weight of the minimal-weight path from s to v.
(Informally, the machine tries each vertex x in column k in turn, keeping a running tally
of the number of vertices that have been found to be reachable, and the total weight of
the guessed paths. For each vertex x, the machine guesses whether there is a path from
s to x; if it guesses there is a path, then it tries to guess the path, and increments its
running totals. If x = v, then it remembers the weight of the path that was guessed. At
the end, if the running totals do not equal ck and Σk, then the machine concludes that
it did not make good guesses and aborts. By the properties of the weight function, there
will be exactly one path that makes the correct guesses and does not abort.)

It suffices now to show that a UL machine can compute the values ck and Σk.
Observe first of all that c1 is easy to compute (by simply walking up and down column
1 from s and counting how many vertices are reachable), and Σ1 = 0.

248 Eric Allender, Samir Datta, and Sambuddha Roy

Assuming that the values ck and Σk are available, the numbers ck+1 and Σk+1 can
be computed as follows. Initialize ck+1 and Σk+1 to zero. For each vertex v in column
k + 1, for each edge of the form x → y to a vertex y in column k + 1 such that there
is a path in column k + 1 from y to v, if x ∈ Ck via a minimal-weight path of weight
wx, then compute the weight w′x of the path to v through x. Let wv be the minimum of
all such x. Increment ck+1 by one (to indicate that v is reachable) and increase Σk+1

by wv . (This algorithm is actually more general than necessary; it is easy to show that
the minimal-weight path to v will always be given by the “topmost” vertex x ∈ Ck for
which there is an edge x→ y to a vertex y that can reach v in column k + 1.)

This completes the proof.

We observe that we have shown that a UL algorithm can also determine if there is
not a path from s to t, and thus LGGR is in UL ∩ coUL.

Acknowledgments

We acknowledge many people for sharing with us their thoughts about what was al-
ready known about this problem, including David Mix Barrington, Til Tantau, Omer
Reingold, Paul Beame, Pierre McKenzie, Jeff Edmunds, Anna Gal, Vladimir Trifonov,
K.V. Subrahmanyam, Meena Mahajan, and Tanmoy Chakraborty. The first and third
authors acknowledge the support of NSF Grant CCF-0514155. We also acknowledge
the helpful comments provided to us by the program committee.

References

[AM04] Eric Allender and Meena Mahajan. The complexity of planarity testing. Informa-
tion and Computation, 189:117–134, 2004.

[ARZ99] E. Allender, K. Reinhardt, and S. Zhou. Isolation, matching, and counting: Uni-
form and nonuniform upper bounds. Journal of Computer and System Sciences,
59(2):164–181, 1999.

[Bar02] David A. Mix Barrington. Grid graph reachability problems. Talk presented at
Dagstuhl Seminar on Complexity of Boolean Functions, Seminar number 02121,
2002.

[BH91] Samuel R. Buss and Louise Hay. On truth-table reducibility to SAT. Inf. Comput.,
91(1):86–102, 1991.

[BK78] Manuel Blum and Dexter Kozen. On the power of the compass (or, why mazes
are easier to search than graphs). In IEEE Symposium on Foundations of Computer
Science (FOCS), pages 132–142, 1978.

[BLMS98] David A. Mix Barrington, Chi-Jen Lu, Peter Bro Miltersen, and Sven Skyum.
Searching constant width mazes captures the AC0 hierarchy. In 15th International
Symposium on Theoretical Aspects of Computer Science (STACS), number 1373 in
Lecture Notes in Computer Science, pages 73–83. Springer, 1998.

[BST93] Harry Buhrman, Edith Spaan, and Leen Torenvliet. The relative power of logspace
and polynomial time reductions. Computational Complexity, 3:231–244, 1993.

[Ete97] Kousha Etessami. Counting quantifiers, successor relations, and logarithmic space.
Journal of Computer and System Sciences, 54(3):400–411, Jun 1997.

The Directed Planar Reachability Problem 249

[GT87] Jonathan Gross and Thomas Tucker. Topological Graph Theory. John Wiley and
Sons, New York, 1 edition, 1987.

[Imm88] N. Immerman. Nondeterministic space is closed under complementation. SIAM
Journal on Computing, 17:935–938, 1988.

[JLR01] A. Jakoby, M. Liskiewicz, and R. Reischuk. Space efficient algorithms for series-
paralle graphs. In 18th International Symposium on Theoretical Aspects of Com-
puter Science (STACS), number 2010 in Lecture Notes in Computer Science, pages
339–352. Springer, 2001. To appear in J. Algorithms.

[Lan97] Klaus-Jörn Lange. An unambiguous class possessing a complete set. In 14th Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS), number
1200 in Lecture Notes in Computer Science, pages 339–350. Springer, 1997.

[LL76] R. Ladner and N. Lynch. Relativization of questions about log space reducibility.
Mathematical Systems Theory, 10:19–32, 1976.

[MT01] Bojan Mohar and Carsten Thomassen. Graphs on surfaces. John Hopkins Univer-
sity Press, Maryland, 1 edition, 2001.

[MV00] Meena Mahajan and Kasturi R. Varadarajan. A new NC-algorithm for finding a
perfect matching in bipartite planar and small genus graphs. In ACM Symposium
on Theory of Computing (STOC), pages 351–357, 2000.

[NTS95] N. Nisan and A. Ta-Shma. Symmetric Logspace is closed under complement.
Chicago Journal of Theoretical Computer Science, 1995.

[RA00] K. Reinhardt and E. Allender. Making nondeterminism unambiguous. SIAM Jour-
nal of Computing, 29:1118–1131, 2000.

[Rei05] O. Reingold. Undirected st-connectivity in log-space. In Proceedings 37th Sympo-
sium on Foundations of Computer Science, pages 376–385. IEEE Computer Society
Press, 2005.

[Sze88] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata.
Acta Informatica, 26:279–284, 1988.

[Tho90] C. Thomassen. Embeddings of graphs with no short noncontractible cycles. J.
Comb. Theory Ser. B, 48(2):155–177, 1990.

Dimensions of Copeland-Erdös Sequences

Xiaoyang Gu�, Jack H. Lutz�, and Philippe Moser��

Department of Computer Science, Iowa State University, Ames, IA 50011 USA
{xiaoyang,lutz,moser}@cs.iastate.edu

Abstract. The base-k Copeland-Erdös sequence given by an infinite set
A of positive integers is the infinite sequence CEk(A) formed by con-
catenating the base-k representations of the elements of A in numerical
order. This paper concerns the following four quantities.
• The finite-state dimension dimFS(CEk(A)), a finite-state version of

classical Hausdorff dimension introduced in 2001.
• The finite-state strong dimension DimFS(CEk(A)), a finite-state ver-

sion of classical packing dimension introduced in 2004. This is a dual
of dimFS(CEk(A)) satisfying DimFS(CEk(A)) ≥ dimFS(CEk(A)).

• The zeta-dimension Dimζ(A), a kind of discrete fractal dimension
discovered many times over the past few decades.

• The lower zeta-dimension dimζ(A), a dual of Dimζ(A) satisfying
dimζ(A) ≤ Dimζ(A).

We prove the following.
1. dimFS(CEk(A)) ≥ dimζ(A). This extends the 1946 proof by Cope-

land and Erdös that the sequence CEk(PRIMES) is Borel normal.

2. DimFS(CEk(A)) ≥ Dimζ(A).
3. These bounds are tight in the strong sense that these four quantities

can have (simultaneously) any four values in [0, 1] satisfying the four
above-mentioned inequalities.

1 Introduction

In the early years of the twenty-first century, two quantities have emerged
as robust, well-behaved, asymptotic measures of the finite-state information
content of a given sequence S over a finite alphabet Σ. These two quanti-
ties, the finite-state dimension dimFS(S) and the finite-state strong dimension
DimFS(S) (defined precisely in section 3), are duals of one another satisfying
0 ≤ dimFS(S) ≤ DimFS(S) ≤ 1 for all S. They are mathematically well-
behaved, because they are natural effectivizations of the two most important
notions of fractal dimension. Specifically, finite-state dimension is a finite-state
version of classical Hausdorff dimension introduced by Dai, Lathrop, Lutz, and
Mayordomo [10], while finite-state strong dimension is a finite-state version of
classical packing dimension introduced by Athreya, Hitchcock, Lutz, and May-
ordomo [3]. Both finite-state dimensions, dimFS(S) and DimFS(S), are robust in
� This research was supported in part by National Science Foundation Grant 0344187.

�� This research was supported in part by Swiss National Science Foundation Grant
PBGE2–104820.

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 250–260, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Dimensions of Copeland-Erdös Sequences 251

that each has been exactly characterized in terms of finite-state gamblers [10,3],
information-lossless finite-state compressors [10,3], block-entropy rates [5], and
finite-state predictors in the log-loss model [14,3]. In each case, the character-
izations of dimFS(S) and DimFS(S) are exactly dual, differing only in that a
limit inferior appears in one characterization where a limit superior appears in
the other. Hence, whether we think of finite-state information in terms of gam-
bling, data compression, block entropy, or prediction, dimFS(S) and DimFS(S)
are the lower and upper asymptotic information contents of S, as perceived by
finite-state automata.

For any of the dimensions mentioned above, whether classical or finite-state,
calculating the dimension of a particular object usually involves separate upper
and lower bound arguments, with the lower bound typically more difficult. For
example, establishing that dimFS(S) = α for some particular sequence S and
α ∈ (0, 1) usually involves separate proofs that α is an upper bound and a lower
bound for dimFS(S). The upper bound argument, usually carried out by exhibit-
ing a particular finite-state gambler (or predictor, or compressor) that performs
well on S, is typically straightforward. On the other hand, the lower bound ar-
gument, proving that no finite-state gambler (or predictor, or compressor) can
perform better on S, is typically more involved.

This paper exhibits and analyzes a flexible method for constructing sequences
satisfying given lower bounds on dimFS(S) and/or DimFS(S). The method is
directly motivated by work in the first half of the twentieth century on Borel
normal numbers. We now review the relevant aspects of this work.

In 1909, Borel [4] defined a sequence S over a finite alphabet Σ to be normal
if, for every string w ∈ Σ+,

lim
n→∞

1
n
|{i < n |S[i..i + |w| − 1] = w }| = |Σ|−|w|,

where S[i..j] is the string consisting of the ith through jth symbols in S. That
is, S is normal (now also called Borel normal) if all the strings of each length ap-
pear equally often, asymptotically, in S. (Note: Borel was interested in numbers,
not sequences, and defined a real number to be normal in base k if its base-k
expansion is normal in the above sense. Subsequent authors mentioned here also
stated their results in terms of real numbers, but we systematically restate their
work in terms of sequences.)

The first explicit example of a normal sequence was produced in 1933 by
Champernowne [7], who proved that the sequence

S = 123456789101112 · · · , (1.1)

formed by concatenating the decimal expansions of the positive integers in or-
der, is normal over the alphabet of decimal digits. Of course there is nothing
special about decimal here, i.e., Champernowne’s argument proves that, for any
k ≥ 2, the sequence (now called the base-k Champernowne sequence) formed by
concatenating the base-k expansions of the positive integers in order is normal
over the alphabet Σk = {0, 1, . . . , k − 1}.

252 Xiaoyang Gu, Jack H. Lutz, and Philippe Moser

Champernowne [7] conjectured that the sequence

S = 235711131719232931 · · · , (1.2)

formed by concatenating the decimal expansions of the prime numbers in order, is
also normal. Copeland and Erdös [8] proved this conjecture in 1946, and it is the
method of their proof that is of interest here. Given an infinite set A of positive
integers and an integer k ≥ 2, define the base-k Copeland-Erdös sequence of A
to be the sequence CEk(A) over the alphabet Σk = {0, 1, . . . , k − 1} formed by
concatenating the base-k expansions of the elements of A in order. The sequences
(1.1) and (1.2) are thus CE10(Z+) and CE10(PRIMES), respectively, where Z+ is
the set of all positive integers and PRIMES is the set of prime numbers. Say that
a set A ⊆ Z+ satisfies the Copeland-Erdös hypothesis if, for every real number
α < 1, for all sufficiently large n ∈ Z+,

|A ∩ {1, 2, . . . , n}| > nα.

Copeland and Erdös [8] proved that every set A ⊆ Z+ satisfying the Copeland-
Erdös hypothesis has the property that, for every k ≥ 2, the sequence CEk(A)
is normal over the alphabet Σk. The normality of the sequence (1.2) – and of
all the sequences CEk(PRIMES) – follows immediately by the Prime Number
Theorem [1,13], which says that

lim
n→∞

|PRIMES ∩ {1, 2, . . . , n}| lnn
n

= 1,

whence PRIMES certainly satisfies the Copeland-Erdös hypothesis.
The significance of the Copeland-Erdös result for finite-state dimension lies

in the fact that the Borel normal sequences are known to be precisely those
sequences that have finite-state dimension 1 [16,5]. The Copeland-Erdös result
thus says that the sequences CEk(A) have finite-state dimension 1, provided only
that A is “sufficiently dense” (i.e., satisfies the Copeland-Erdös hypothesis).

In this paper, we generalize the Copeland-Erdös result by showing that a
parametrized version of the Copeland-Erdös hypothesis for A gives lower bounds
on the finite-state dimension of CEk(A) that vary continuously with – in fact,
coincide with – the parameter. The parametrization that achieves this is a quan-
titative measure of the asymptotic density of A that has been discovered several
times by researchers in various areas over the past few decades. Specifically,
define the zeta-dimension of a set A ⊆ Z+ to be

Dimζ(A) = inf {s |ζA(s) <∞} ,
where the A-zeta function ζA : [0,∞)→ [0,∞] is defined by

ζA(s) =
∑
n∈A

n−s.

It is easy to see (and was proven by Cahen [6] in 1894; see also [2,13]) that
zeta-dimension admits the “entropy characterization”

Dimζ(A) = lim sup
n→∞

log|A ∩ {1, . . . , n}|
logn

. (1.3)

Dimensions of Copeland-Erdös Sequences 253

It is then natural to define the lower zeta-dimension of A to be

dimζ(A) = lim inf
n→∞

log|A ∩ {1, . . . , n}|
logn

. (1.4)

Various properties of zeta-dimension and lower zeta-dimension, along with ex-
tensive historical references, appear in the recent paper [11], but none of this
material is needed to follow our technical arguments in the present paper.

It is evident that a set A ⊆ Z+ satisfies the Copeland-Erdös hypothesis if and
only if dimζ(A) = 1. The Copeland-Erdös result thus says that, for all infinite
A ⊆ Z+ and k ≥ 2,

dimζ(A) = 1 =⇒ dimFS(CEk(A)) = 1. (1.5)

Our main theorem extends (1.5) by showing that, for all infinite A ⊆ Z+ and
k ≥ 2,

dimFS(CEk(A)) ≥ dimζ(A), (1.6)

and, dually,
DimFS(CEk(A)) ≥ Dimζ(A). (1.7)

Moreover, these bounds are tight in the following strong sense. Let A ⊆ Z+ be
infinite, let k ≥ 2, and let α = dimζ(A), β = Dimζ(A), γ = dimFS(CEk(A)),
δ = DimFS(CEk(A)). Then, by (1.6), (1.7), and elementary properties of these
dimensions, we must have the inequalities

γ ≤ δ ≤ 1

≤ ≤

0 ≤ α ≤ β.
(1.8)

Our main theorem also shows that, for any α, β, γ, δ satisfying (1.8) and any
k ≥ 2, there is an infinite set A ⊆ Z+ such that dimζ(A) = α, Dimζ(A) = β,
dimFS(CEk(A)) = γ, and DimFS(CEk(A)) = δ. Thus the inequalities

dimFS(CEk(A)) ≤ DimFS(CEk(A)) ≤ 1

≤ ≤

0 ≤ dimζ(A) ≤ Dimζ(A).
(1.9)

are the only constraints that these four quantities obey in general.
The rest of this paper is organized as follows. Section 2 presents basic notation

and terminology. Section 3 reviews the definitions of finite-state dimension and
finite-state strong dimension and gives useful characterizations of zeta-dimension
and lower zeta-dimension. Section 4 presents our main theorem. Most proofs are
omitted from this conference version of the paper.

2 Preliminaries

We write Z+ = {1, 2, . . .} for the set of positive integers. For an infinite set
A ⊆ Z+, we often write A = {a1 < a2 < · · · } to indicate that a1, a2, . . . is

254 Xiaoyang Gu, Jack H. Lutz, and Philippe Moser

an enumeration of A in increasing numerical order. The quantifier ∃∞n means
“there exist infinitely many n ∈ Z+ such that . . . ”, while the dual quantifier
∀∞n means “for all but finitely many n ∈ Z+, . . . ”.

We work in the alphabets Σk = {0, 1, . . . , k − 1} for k ≥ 2. The set of all
(finite) strings over Σk is Σ∗k , and the set of all (infinite) sequences over Σk is
Σ∞k . We write λ for the empty string. Given a sequence S ∈ Σ∞k and integers
0 ≤ i ≤ j, we write S[i..j] for the string consisting of the ith through jth symbols
in S. In particular, S[0..n − 1] is the string consisting of the first n symbols of
S. We write w � z to indicate that the string w is a prefix of the string or
sequence z.

We use the notation Δ(Σk) for the set of all probability measures on Σk,
i.e., all functions π : Σk → [0, 1] satisfying Σa∈Σk

π(a) = 1. Identifying each
probability measure π ∈ Δ(Σk) with the vector (π(0), . . . , π(k − 1)) enables us
to regard Δ(Σk) as a closed simplex in the k-dimensional Euclidean space Rk. We
write ΔQ(Σk) for the set of all rational-valued probability measures π ∈ Δ(Σk).
It is often convenient to represent a positive probability measure π ∈ ΔQ(Σk)
by a vector $a = (a0, . . . , ak−1) of positive integers such that, for all i ∈ Σk,
π(i) = ai

n , where n =
∑k−1

i=0 ai. In this case, $a is called a partition of n. When
$a represents π in this way, we write π = �a

n .
The k-ary Shannon entropy [9] of a probability measure π ∈ Δ(Σk) is

Hk(π) = Eπ logk
1

π(i)
=

k−1∑
i=0

π(i) logk
1

π(i)
,

where Eπ denotes mathematical expectation relative to the probability measure
π and we stipulate that 0 logk

1
0 = 0, so that Hk is continuous on the simplex

Δ(Σk). The k-ary Kullback-Leibler divergence [9] between probability measures
π, τ ∈ Δ(Σk) is

Dk(π ‖ τ) = Eπ logk
π(i)
τ(i)

=
k−1∑
i=0

π(i) logk
π(i)
τ(i)

.

It is well-known that Dk(π ‖ τ) ≥ 0, with equality if and only if π = τ .
For k ≥ 2 and n ∈ Z+, we write σk(n) for the standard base-k representation

of n. Note that σk(n) ∈ Σ∗k and that the length of (number of symbols in) σk(n)
is |σk(n)| = 1+ �logk n�. Note also that, if A = {a1 < a2 < · · · } ⊆ Z+ is infinite,
then the base-k Copeland-Erdös sequence of A is

CEk(A) = σk(a1)σk(a2) · · · ∈ Σ∞k .

Given a set A ⊆ Z+ and k, n ∈ Z+, we write A=n = {a ∈ A ||σk(a)| = n} in
contexts where the base k is clear.

We write logn for log2 n.

Dimensions of Copeland-Erdös Sequences 255

3 The Four Dimensions

As promised in the introduction, this section gives precise definitions of finite-
state dimension and finite-state strong dimension. It also gives a useful bound on
the success of finite-state gamblers and useful characterizations of zeta-dimension
and lower zeta-dimension.

Definition. A finite-state gambler (FSG) is a 5-tuple

G = (Q,Σk, δ, β, q0),

where Q is a nonempty, finite set of states; Σk = {0, 1, . . . , k − 1} is a finite
alphabet (k ≥ 2); δ : Q×Σk → Q is the transition function; β : Q→ ΔQ(Σk) is
the betting function; and q0 ∈ Q is the initial state.

Finite-state gamblers have been investigated by Schnorr and Stimm [16],
Feder [12], and others. The transition function δ is extended in the standard
way to a function δ : Q × Σ∗k → Q. For w ∈ Σ∗k, we use the abbreviation
δ(w) = δ(q0, w).

Definition. ([10]). Let G = (Q,Σk, δ, β, q0) be an FSG, and let s ∈ [0,∞). The
s-gale of G is the function

d
(s)
G : Σ∗k → [0,∞)

defined by the recursion
d
(s)
G (λ) = 1,

d
(s)
G (wa) = ksd

(s)
G (w)β(δ(w))(a) (3.1)

for all w ∈ Σ∗k and a ∈ Σk.

Intuitively, d(s)
G (w) is the amount of money that the gambler G has after

betting on the successive symbols in the string w. The parameter s controls the
payoffs via equation (3.1). If s = 1, then the payoffs are fair in the sense that
the conditional expected value of d(1)

G (wa), given that w has occurred and the
symbols a ∈ Σk are all equally likely to follow w, is precisely d

(1)
G (w). If s < 1,

then the payoffs are unfair.
We repeatedly use the obvious fact that d

(s)
G (w) ≤ ks|w| holds for all s and

w.

Definition. Let G = (Q,Σk, δ, β, q0) be an FSG, let s ∈ [0,∞), and let S ∈ Σ∞k .

1. G s-succeeds on S if

lim sup
n→∞

d
(s)
G (S[0..n− 1]) = ∞.

256 Xiaoyang Gu, Jack H. Lutz, and Philippe Moser

2. G strongly s-succeeds on S if

lim inf
n→∞

d
(s)
G (S[0..n− 1]) = ∞.

Definition. Let S ∈ Σ∞k .

1. [10]. The finite-state dimension of S is

dimFS(S) = inf {s |there is an FSG that s-succeeds on S } .

2. [3] The finite-state strong dimension of S is

DimFS(S) = inf {s |there is an FSG that strongly s-succeeds on S } .

It is easy to verify that 0 ≤ dimFS(S) ≤ DimFS(S) ≤ 1 for all S ∈ Σ∞k .
More properties of these finite-state dimensions, including their relationships to
classical Hausdorff and packing dimensions, respectively, may be found in [10,3].

It is useful to have a measure of the size of a finite-state gambler. This
size depends on the alphabet size, the number of states, and the least common
denominator of the values of the betting function in the following way.

Definition. The size of an FSG G = (Q,Σk, δ, β, q0) is

size(G) = (k + l)|Q|,

where l = min {l ∈ Z+ |(∀q ∈ Q)(∀i ∈ Σk)lβ(q)(i) ∈ Z}.

Observation 3.1 For each k ≥ 2 and t ∈ Z+, there are, up to renaming of
states, fewer than t2(2t)t finite-state gamblers G with size(G) ≤ t.

In general, an s-gale is a function d : Σ∗k → [0,∞) satisfying

d(w) = k−s
k−1∑
a=0

d(wa)

for all w ∈ Σ∗k [15]. It is clear that d
(s)
G is an s-gale for every FSG G and every

s ∈ [0,∞). The case k = 2 of the following lemma was proven in [15]. The
extension to arbitrary k ≥ 2 is routine.

Lemma 3.2 ([15]). If s ∈ [0, 1] and d is an s-gale, then, for all w ∈ Σ∗k , j ∈ N,
and 0 < α ∈ R, there are fewer than ksj

α strings u ∈ Σ∗k of length j for which
d(u) > α.

The following lemma will be useful in proving our main theorem.

Dimensions of Copeland-Erdös Sequences 257

Lemma 3.3 For each s, α ∈ (0,∞) and k, n, t ∈ Z+ with k ≥ 2, there are fewer
than

k2snst2(2t)t

α(ks − 1)

integers m ∈ {1, . . . , n} for which

max
size(G)≤t

d
(s)
G (σk(m)) ≥ α,

where the maximum is taken over all FSGs G = (Q,Σk, δ, β, q0) with size(G) ≤ t.

The zeta-dimension Dimζ(A) and lower zeta-dimension dimζ(A) of a set A
of positive integers were defined in the introduction. The following lemma gives
useful characterizations of these quantities in terms of the increasing enumeration
of A.

Lemma 3.4 Let A = {a1 < a2 < · · · } be an infinite set of positive integers.

1. dimζ(A) = inf {t ≥ 0 |(∃∞n)atn > n} = inf {t ≥ 0 |(∃∞n)atn ≥ n}
= sup {t ≥ 0 |(∀∞n)atn < n} = sup {t ≥ 0 |(∀∞n)atn ≤ n}.

2. Dimζ(A) = inf {t ≥ 0 |(∀∞n)atn > n} = inf {t ≥ 0 |(∀∞n)atn ≥ n}
= sup {t ≥ 0 |(∃∞n)atn < n} = sup {t ≥ 0 |(∃∞n)atn ≤ n}.

4 Main Theorem

The proof of our main theorem uses the following combinatorial lemma.

Lemma 4.1 For every n ≥ k ≥ 2 and every partition $a = (a0, . . . , ak−1) of n,
there are more than

knHk(�a
n)−(k+1) logk n

integers m with |σk(m)| = n and #(i, σk(m)) = ai for each i ∈ Σk.

We now have all the machinery that we need to prove the main result of this
paper.

Theorem 4.2 (main theorem). Let k ≥ 2.

1. For every infinite set A ⊆ Z+,

dimFS(CEk(A)) ≥ dimζ(A) (4.1)

and
DimFS(CEk(A)) ≥ Dimζ(A). (4.2)

258 Xiaoyang Gu, Jack H. Lutz, and Philippe Moser

2. For any four real numbers α, β, γ, δ satisfying the inequalities

γ ≤ δ ≤ 1

≤ ≤

0 ≤ α ≤ β,
(4.3)

there exists an infinite set A ⊆ Z+ such that dimζ(A) = α, Dimζ(A) = β,
dimFS(CEk(A)) = γ, and DimFS(CEk(A)) = δ.

Proof. We prove part 1 here. Let A = {a1 < a2 < · · · } ⊆ Z+ be infinite. Fix
0 < s < t < 1, let

Jt =
{
n ∈ Z+

∣∣atn < n
}
,

and let G = (Q,Σk, δ, β, q0) be an FSG. Let n ∈ Z+, and consider the quantity
d
(s)
G (wn), where

wn = σk(a1) · · ·σk(an).

There exist states q1, . . . , qn ∈ Q such that

d
(s)
G (wn) =

n∏
i=1

d
(s)
Gqi

(σk(ai)),

where Gqi = (Q,Σk, δ, β, qi). Let B =
{
1 ≤ i ≤ n

∣∣∣d(s)
Gqi

(σk(ai)) ≥ 1
k

}
, and let

Bc = {1, . . . , n} −B. Then

d
(s)
G (wn) =

(∏
i∈B

d
(s)
Gqi

(σk(ai))

)(∏
i∈Bc

d
(s)
Gqi

(σk(ai))

)
. (4.4)

By our choice of B, ∏
i∈Bc

d
(s)
Gqi

(σk(ai)) ≤ k|B|−n. (4.5)

By Lemma 3.3,

|B| ≤ ck2s+1asn
ks − 1

, (4.6)

where c = size(G)2(2size(G))size(G). Since d
(s)
Gqi

(u) ≤ ks|u| must hold in all cases,
it follows that ∏

i∈B
d
(s)
Gqi

(σk(ai)) ≤ ks|B||σk(an)| ≤ ks|B|(1+logk an). (4.7)

By (4.4), (4.5), (4.6), and (4.7), we have

logk d
(s)
G (wn) ≤ τ(1 + s + s logk an)asn − n, (4.8)

Dimensions of Copeland-Erdös Sequences 259

where τ = ck2s+1

ks−1 . If n is sufficiently large, and if n + 1 ∈ Jt, then (4.8) implies
that

logk d
(s)
G (wn) ≤ τ(1 + s + s logk an)asn − 2(n + 1)

s+t
2t

≤ τ(1 + s + s logk an)asn − 2a
s+t
2

n+1

≤ τ(1 + s + s logk an)asn − a
s+t
2

n − s(1 + logk an+1)
≤ −s(1 + logk an+1)
≤ −s|σk(an+1)|.

We have now shown that

d
(s)
G (wn) ≤ k−s|σk(an+1)| (4.9)

holds for all sufficiently large n with n + 1 ∈ Jt.
To prove (4.1), let s < t < dimζ(A). It suffices to show that dimFS(CEk(A)) ≥

s. Since t < dimζ(A), Lemma 3.4 tells us that the set Jt is cofinite. Hence, for
every sufficiently long prefix w � CEk(A), there exist n and u � σk(an+1) such
that w = wnu and (4.9) holds, whence

d
(s)
G (w) ≤ k−s|σk(an+1)|ks|u| ≤ 1.

This shows that G does not s-succeed on CEk(A), whence dimFS(CEk(A)) ≥ s.
To prove (4.2), let s < t < Dimζ(A). It suffices to show that DimFS(CEk(A))

≥ s. Since t < Dimζ(A), Lemma 3.4 tells us that the set Jt is infinite. For
the infinitely many n for which n + 1 ∈ Jt and (4.9) holds, we then have
d
(s)
G (wn) < 1. This shows that G does not strongly s-succeed on CEk(A), whence

DimFS(CEk(A)) ≥ s. �

Finally, we note that the Copeland-Erdös theorem is a special case of our main
theorem.

Corollary 4.3 (Copeland and Erdös [8]). Let k ≥ 2 and A ⊆ Z+. If, for
all α < 1, for all sufficiently large n ∈ Z+, |A ∩ {1, . . . , n}| > nα, then the
sequence CEk(A) is normal over the alphabet Σk. In particular, the sequence
CEk(PRIMES) is normal over the alphabet Σk.

Acknowledgment. We thank the referees for careful reading.

References

1. T. M. Apostol. Introduction to Analytic Number Theory. Undergraduate Texts in
Mathematics. Springer-Verlag, 1976.

2. T. M. Apostol. Modular Functions and Dirichlet Series in Number Theory, vol-
ume 41 of Graduate Texts in Mathematics. Springer-Verlag, 1976.

260 Xiaoyang Gu, Jack H. Lutz, and Philippe Moser

3. K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective strong
dimension, algorithmic information, and computational complexity. SIAM Journal
on Computing. To appear. Preliminary version appeared in Proceedings of the 21st
International Symposium on Theoretical Aspects of Computer Science, pages 632-
643, 2004.

4. E. Borel. Sur les probabilités dénombrables et leurs applications arithmétiques.
Rend. Circ. Mat. Palermo, 27:247–271, 1909.

5. C. Bourke, J. M. Hitchcock, and N. V. Vinodchandran. Entropy rates and finite-
state dimension. Theoretical Computer Science. To appear.

6. E. Cahen. Sur la fonction ζ(s) de Riemann et sur des fonctions analogues. Annales
de l’École Normale Supérieure, 1894. (3) 11, S. 85.

7. D. G. Champernowne. Construction of decimals normal in the scale of ten. J.
London Math. Soc., 2(8):254–260, 1933.

8. A. H. Copeland and P. Erdös. Note on normal numbers. Bull. Amer. Math. Soc.,
52:857–860, 1946.

9. T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley &
Sons, Inc., New York, N.Y., 1991.

10. J. J. Dai, J. I. Lathrop, J. H. Lutz, and E. Mayordomo. Finite-state dimension.
Theoretical Computer Science, 310:1–33, 2004.

11. D. Doty, X. Gu, J. H. Lutz, E. Mayordomo, and P. Moser. Zeta-dimension. In Pro-
ceedings of the Thirtieth International Symposium on Mathematical Foundations
of Computer Science, volume 3618 of Lecture Notes in Computer Science, pages
283–294, 2005.

12. M. Feder. Gambling using a finite state machine. IEEE Transactions on Informa-
tion Theory, 37:1459–1461, 1991.

13. G. Hardy and E. Wright. An Introduction to the Theory of Numbers. Clarendon
Press, 5th edition, 1979.

14. J. M. Hitchcock. Fractal dimension and logarithmic loss unpredictability. Theo-
retical Computer Science, 304(1–3):431–441, 2003.

15. J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing,
32:1236–1259, 2003.

16. C. P. Schnorr and H. Stimm. Endliche Automaten und Zufallsfolgen. Acta Infor-
matica, 1:345–359, 1972.

Refining the Undecidability Frontier of Hybrid

Automata

Venkatesh Mysore1 and Amir Pnueli1,2

1 Courant Institute of Mathematical Sciences, NYU, New York, NY, U.S.A.
{mysore,amir}@cs.nyu.edu

2 The Weizmann Institute of Science, Rehovot, Israel

Abstract. Reachability becomes undecidable in hybrid automata (HA)
that can simulate a Turing (TM) or Minsky (MM) machine. Asarin
and Schneider have shown that, between the decidable 2-dim Piece-
wise Constant Derivative (PCD) class and the undecidable 3-dim PCD
class, there lies the “open” class 2-dim Hierarchical PCD (HPCD). This
class was shown to be equivalent to the class of 1-dim Piecewise Affine
Maps (PAM). In this paper, we first explore 2-dim HPCD’s proximity
to decidability, by showing that they are equivalent to 2-dim PCDs with
translational resets, and to HPCDs without resets. A hierarchy of inter-
mediates also equivalent to the HPCD class is presented, revealing sem-
blance to timed and initialized rectangular automata. We then explore
the proximity to the undecidability frontier. We show that 2-dim HPCDs
with zeno executions or integer-checks can simulate the 2-counter MM.
We conclude by retreating HPCDs as PAMs, to derive a simple over-
approximating algorithm for reachability. This also defines a decidable
subclass 1-dim Onto PAM (oPAM). The novel non-trivial transformation
of 2-dim HPCDs into “almost decidable” systems, is likely to pave the
way for approximate reachability algorithms, and the characterization of
decidable subclasses. It is hoped that these ideas eventually coalesce into
a complete understanding of the reachability problem for the class 2-dim
HPCD (1-dim PAM).

1 Introduction

Reachability – the problem of deciding whether a certain continuous state is
reachable from a given initial state, becomes undecidable if the dynamical sys-
tem specifications allow a Turing Machine (TM) to be simulated. This is because
of Alan Turing’s seminal proof, that the problem of deciding whether a given
TM will halt on a given input is in general undecidable [20]. Another conve-
nient formalization is the 2-counter Minsky Machine (MM) [13], which has been
shown to be able to simulate a TM. Hence reachability is undecidable for an
MM, and any dynamical system that can simulate an MM as well. Hybrid Au-
tomata (HA), which can have arbitrary discrete transitions and continuous flows,
correspond to a class of immense computational power. HA very easily become
undecidable for the reachability query, with only extremely stringent restrictions

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 261–272, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

262 Venkatesh Mysore and Amir Pnueli

leading to decidability. Timed automata [2], multirate automata [1], initialized
rectangular automata [16,7], controllable linear systems [18], some families of
linear vector fields [11] and o-minimal HA [10] have been shown to be decidable
for the reachability query.

The fundamental question continues to be: “What is the simplest class of
dynamical systems for which reachability is undecidable ?”. The conventional
answers to this question have involved proving that a certain decidable class
becomes undecidable, when given some additional computational power. For in-
stance, 2-dimensional Piecewise Constant Derivative (PCD) systems [12] and
Simple Planar Differential Inclusions (SPDIs) [5] are decidable, while 3-dimen-
sional PCDs are undecidable [3]. This paper focuses on the 2-dim Hierarchical
PCD (HPCD) class introduced by Asarin and Schneider [4]. This intermedi-
ate class, between decidable 2-dim PCDs and undecidable 3-dim PCDs, is not
known to be provably decidable or undecidable! Asarin and Schneider proved
that 2-dim HPCDs are equivalent to 1-dim Piecewise Affine Maps (PAM). Since
the reachability problem for 1-dim PAMs is an open question [9], 2-dim HPCD-
reachability is also open. They went a step further, and proved that the HPCD
class, when endowed with a little additional computational power, becomes un-
decidable. Thus, the HPCD 3 class (and equivalently the PAM class) is clearly
on the boundary between decidable and undecidable subclasses of HA.

This paper presents new developments in the analysis of the HPCD class, a
sequel to Asarin and Schneider’s work [4]. We begin this analysis of the prox-
imity to decidability and undecidability in Section 2, with the definitions of
the various subclasses of HA we will encounter in this paper. In Section 3, we
present our main result: 2-dim PCDs with translational resets can simulate a
PAM. We then construct several very interesting subclasses of HPCDs, which
also simulate PAMs. Since PAMs have been shown to be equivalent to HPCDs
[4], it proves that surprisingly, these subclasses are just as powerful as the HPCD
class itself. This reveals the redundancy in the expressive power of the HPCD,
and shows how even closer HPCDs are to decidable systems. In Section 4, we
present some undecidable extensions of HPCDs, very different from Asarin and
Schneider’s constructions. They reveal new dimensions of the fineness of the
line separating HPCDs from undecidability. We present a simple algorithm for
over-approximating reachability in PAMs in Section 5, and show how decidable
subclasses can be identified. We summarize our contributions in Section 6 and
discuss several open research questions.

2 Background: Hybrid Automata and Subclasses

An HA approximates a complicated non-linear system in terms of a model that
is partly discrete and partly continuous [8,15]. An HA is a directed graph of dis-
crete states and transitions, which allows arbitrary: (1) “invariant” expressions
dictating when the system can be in this state; (2) differential equations in the
3 Henceforth, “HPCD” refers to 2-dim HPCD, “PAM” to 1-dim PAM, and “decid-

ability” to decidability of reachability, unless explicitly stated otherwise.

Refining the Undecidability Frontier of Hybrid Automata 263

“flow” expressions, in each discrete state (continuous evolution with time); (3)
conditions controlling when a transition can be taken, in the “guard”; (2) equa-
tions that change the values of the variables, in the “reset” expressions during
each discrete state transition (instantaneous discrete evolution). A computation
of an HA is a series of continuous evolution steps of arbitrary time-length each,
interspersed with an arbitrary number of zero time-length discrete transition
steps.

Before introducing the subclasses, we quickly review some terms frequently
used to describe different restrictions. Let a, b, c, d stand for numerical constants,
and p, q stand for the HA variables. A rectangular guard refers to an expression of
the form a < p < b, while a non-rectangular or comparative guard is of the form
ap+ bq+ c < 0. A rectangular invariant is of the form a < p < b

∧
c < q < d i.e.

the state represents a rectangular region in the p− q plane. State invariants are
said to be non-overlapping if the regions they represent in their variable-space
do not intersect. A constant reset refers to p′ = c, a translational reset refers to
p′ = p + c and an affine reset to p′ = ap + b. An “initialized” automaton is one
where all variables, whose flow changes after a discrete state transition, are reset
to a constant. An automaton is “timed” if all flow-derivatives are 1.

Among the several formalizations that simplify the reachability problem by
curbing the computational power of the HA, we dwell on the PCD construct. A 2-
dim PCD [12] is an HA in two continuous variables, where (1) All flow-derivatives
are constants; (2) The guards are rectangular i.e. p ∈ I, where I is a numerical
interval; (3) No variable can be reset during transitions i.e., p′ = p ∧ q′ = q;
(4) The discrete states (invariants) correspond to non-overlapping rectangles
in the real plane with non-empty interiors. The trajectories of a 2-dim PCD
are restricted to be broken straight lines, with slopes changing only when a
different polygonal region (new discrete state) is entered. Maler and Pnueli [12]
used the property of planar systems to prove that reachability is decidable for
2-dim PCDs. 3-dim PCDs are the natural extension of 2-dim PCDs with a third
dynamic variable (dimension). Asarin, Maler and Pnueli [3] proved that 3-dim
PCDs are undecidable.

Subsequently, Asarin and Schneider set out to discover an “open” class in
between 2-dim and 3-dim PCDs. They proceeded by studying HA that could sim-
ulate a known open problem - the 1-dim PAM. To understand their equivalence
result, we first introduce PAMs, where computation is modeled as iterative func-
tion evaluation. A PAM [9] is of the form f(x) = aix+bi , x ∈ Ii , i = 1, 2, · · · , n,
where all ai, bi and the ends of the non-overlapping intervals Ii are rational. f is
closed i.e. ∀x, i (x ∈ Ii) ⇒ (∃j, f(x) ∈ Ij). Further, the intervals are in ascend-
ing order. In other words, there are n non-overlapping partitions of the real line
(which may not cover it entirely). The current value of the variable x decides
which interval Ii it falls in, and hence its next value f(x) is uniquely defined. The
reachability problem is also defined in the natural way: “Is the point xf reach-
able from the point x0 by repeated application of the piece-wise affine maps ?”.
Note that unlike HA, there is no non-determinism or choice – the starting point
defines a unique trajectory.

264 Venkatesh Mysore and Amir Pnueli

Recall that a class A simulates a class B if every computational trajectory of
B has a unique counterpart in A. Two classes are equivalent if they simulate each
other: thus if the reachability problem is (un)decidable for one class, so it is for
the other. Asarin and Schneider characterized the PCD extensions necessary to
simulate a PAM, keeping in mind that the resulting HA subclass in turn needed
to be expressible as a PAM. The result was the HPCD class which augmented
a PCD, by allowing comparative guards and affine resets in overlapping regions
of the plane. A 2-dim HPCD [4] is an HA in 2 continuous variables where, (1)
All flow-derivatives are constants; (2) The guards are of the form (ax+ by+ c =
0∧x ∈ I ∧y ∈ J) where I and J are intervals and a, b, c and the extremities of I
and J are rational-valued; (3) The reset functions are affine functions: x′ = ax+b;
(4) The state invariant, which could overlap with other state invariants, is the
negation of the union of the guards. The term hierarchical was used originally,
to indicate that an HPCD could also be thought of as a PCD with overlapping
state invariants, where each state was actually a PCD.

q̇ = 1

ṗ = 0

0 ≤ p, q ≤ 1

q = 1 ∧ 0 ≤ p < 1/2
∧

q′ = 0 ∧ p′ = 2p q = 1 ∧ 1/2 ≤ p ≤ 1
∧

q′ = 0 ∧ p′ = 2 − 2p

Fig. 1. One-State Tent Map HPCD

Example 1. Consider the PAM describing the Tent Map [19]:
f(x) = 2x + 0, x ∈ [0, 1/2)(≡ I1)
f(x) = −2x+ 2, x ∈ [1/2, 1](≡ I2)
The HPCD simulating this PAM is shown in Figure 1. �

We now summarize the results of Asarin and Schneider [4]. The HPCD class
is equivalent to the PAM class. The restricted class HPCDiso, with translational
instead of affine resets, is also equivalent to the PAM class. The extended classes
HPCD1c (with an additional counter), HPCD∞ (with infinite partitions) and
HPCDx (origin-dependent rates) are undecidable, as they can simulate a TM.

3 Open HPCD Subclasses

Asarin and Schneider’s results thus have two implications: (1) a PAM can capture
an HPCD; (2) an HPCD can capture a PAM. Their first result is clearly the more
significant one, also involving a non-trivial construction. It demonstrates that
a 2-dim HPCD, which seems dramatically more complex than a 1-dim PAM,

Refining the Undecidability Frontier of Hybrid Automata 265

actually has no additional computational power ! Their second result seems
simple in comparison, as HPCDs seem to have more expressivity than necessary,
to capture a PAM. A PAM can be trivially captured by a PCD with just 1
state, with all computations done only using affine resets along self-loops (see for
example, the Tent Map HPCD in Figure 1). Schneider has proved [17] that these
affine resets can be made translational (HPCDiso). However, that construction
uses all the other enhancements. To summarize, PCDs with just affine resets
can simulate a PAM. However, multiple states with overlapping invariants and
comparative guards seem necessary, when only translational resets are allowed.

In this section, we first prove our main result: a 1-dim PAM can be simulated
using a 2-dim PCD, with just translational resets of the form x′ = x + ci.
Comparative guards and affine resets can be done away with by making the
two PCD variables (p and q) take turns simulating the PAM variable (x), while
non-overlapping state invariants become sufficient because the PCD variables
are guaranteed to lie in a bounded region. We then show how 1-dim PAMs can
be simulated by other simple subclasses of HPCDs, each revealing proximity to
a different decidable HA subclass. The following lemma simplify the proof:

Lemma 1. A 1-dim PAM is bounded. �

Lemma 2. Every 1-dim PAM is equivalent to a 1-dim “positive” PAM where
all intervals are positive. �

Now we are ready to prove our main result:

Theorem 1. A 1-dim PAM can be simulated by a 2-dim PCD with translational
resets.

Proof. Consider an equivalent 1-dim positive PAM f(x) = aix + bi , x ∈ Ii(≡
[li, ri)) , i = 1, 2, · · · , n. Let L be a number such that L > rn ∧ ∀i, L > bi.
Corresponding to the i-th function of the PAM, we will have two states Pi and
Qi. In Pi, p flows from p0 = bi to xn+1(≡ bi + aixn) at the rate ṗ = ai. q drops
from q0 = xn to 0 at the rate q̇ = −1. The guard q = 0 thus ensures that the
system spends t = q0 time in this state. This allows the affine term aixn to be
computed, without using comparative guards or affine resets. In the “Q” states,
the roles of p and q are reversed i.e., q uses p’s value to grow to the next iterate,
while p just drops to 0, effectively keeping track of time.

From Pi, there are transitions to each possible state Qj . p retains the value
it just computed, while q is reset to the constant portion (bj) of the next iterate
of x. In Qj, q will accumulate the rest of its target value (aj × x) by flowing for
time x (stored in p) at the rate aj . Similarly, from Qi, there are transitions to
each possible state Pj , while there are no transitions within P -states or within
Q-states.

The above expressions are adjusted, now assuming that each state is associ-
ated with a different large constant “base”. In a state, all numbers are represented
with respect to this base. Thus, x becomes LSi + x in state Si, where LSi is the
base. Even if x increases or decreases to its maximum / minimum possible value,

266 Venkatesh Mysore and Amir Pnueli

p and q will not cross over to an adjoining state. This is because the different
base constants are themselves very far apart. This base-adjustment creates the
translational resets, when the current iterate needs to be remembered and passed
on to a new state. It is to be noted that just constant resets suffice if the state
invariants are allowed to overlap.

We now construct the PCD with translational resets and 2n states:

– Corresponding to the i-th function of the PAM, we have two states Pi and
Qi associated with the constants LPi = 4iL− 3L and LQi = 4iL− L.

– In Pi, p grows at rate ṗ = ai from LPi + p0(= bi) to aiq0(= xn) + bi + LPi ,
while q drops from q0+LPi to LPi at the rate q̇ = −1. q0 denotes the unscaled
previous iterate xn, using which xn+1 is being computed by spending exactly
t = q0 time in this state.

– Qi behaves exactly as above with p and q swapped i.e., this corresponds to
the case where q grows to the next iterate, while p just drops to LQi .

– In Pi and Qi, the values of p and q are both bounded by {(LPi/Qi
−

L,LPi/Qi
+L)}, which is equal to {(4iL− 4L, 4iL− 2L)} in Pi and {(4iL−

2L, 4iL)} in Qi. Clearly, none of rectangular regions can overlap.
– From Pi, there are transitions to each possible state Qj with guard q =

LPi ∧ p ∈ Ij i.e., “p has reached the next iterate of x” and “p is in the
interval corresponding to the j-th PAM function”. The reset (note: constant
or translational) is p′ = p− LPi + LQj ∧ q′ = LQj + bj i.e., “p, which holds
the current value of x, is translated to the range of the destination state (to
prevent overlap)” and “q is reset to the constant portion (bj) of the next
iterate of x”. The portion proportional to xn (aj × xn) will be gained by
flowing for time xn (stored in p) with slope aj .

– Similarly, from Qi, there are transitions to each possible state Pj . There are
no transitions within P -states or within Q-states.

This PCD with translational resets simulates the PAM, as p and q take turns
simulating x. It can be seen that xf is reachable from x0: (i) if (p = xf +LPi, q =
LPi) and (p = xf + LQj , q = LQj + bj) are reachable; or (ii) if (p = LQi , q =
xf + LQi) and (p = LPj , q = xf + LPj) are reachable. This needs to hold for
some i and j, such that xf ∈ Ij and one of the pre-images of xf lies in Ii. The
“and” terms are necessary to eliminate intermediate points during continuous
evolution from satisfying the query. The “or” term is necessary because p reaches
only even iterates and q reaches only the odd iterates of x0. The starting state is
(p = x0 +LQk

, q = LQk
+ bk) (or (p = LPk

+ bk, q = LQk
+ x0)), where x0 ∈ Ik.

�

Example 2. We will now construct a PCD with translational resets that sim-
ulates the Tent Map, in two variables p and q and 2 × 2 = 4 states. Setting
L = 3(> max(rn, bi) = 2), we get LP1 = 3, LQ1 = 9, LP2 = 15, LQ2 = 21. The
result is presented in Figure 2. �

Various other intermediates – subclasses of HPCDs, simulate a 1-dim PAM.
We now present some of the interesting cases, which extend known decidable
systems.

Refining the Undecidability Frontier of Hybrid Automata 267

P2
Q2

ṗ = 2

q̇ = −1

P1 Q1

ṗ = −1

q̇ = 2

q̇ = −1

ṗ = −2

q̇ = −2

ṗ = −1

q = 15 ∧ 15.5 ≤ p ≤ 16
∧

q′ = 23 ∧ p′ = p + 6

q = 3 ∧ 3 ≤ p < 3.5
∧

q′ = 9 ∧ p′ = p + 6

p = 9 ∧ 9 ≤ q < 9.5
∧

p′ = 3 ∧ q′ = q − 6

p = 21 ∧ 21.5 ≤ q ≤ 22
∧

p′ = 17 ∧ q′ = q − 6

q
=

15
∧ 15

≤
p

<
15

.5
∧

p
=

9
∧ 9.

5
≤

q
<

10
∧

0 < p, q < 6

12 < p, q < 18 18 < p, q < 24

6 < p, q < 12
p
=

21 ∧
21 ≤

q
<

21.5 ∧
p ′

=
3 ∧

q ′
=

q −
18

q
=

3 ∧
3.5 ≤

p ≤
4 ∧

q ′
=

23 ∧
p ′

=
p
+

18

q
′ =

9
∧ p

′ =
p
−

6

p
′ =

17
∧ q

′ =
q
+

6

Fig. 2. PCD with Translational Resets simulating the Tent Map

Theorem 2. A 1-dim PAM can be simulated by: (1) an HPCD with comparative
guards, 3 different flows +1,−1, 0 and no resets; (2) an initialized PCD, with
comparative guards; (3) an HPCD with rectangular guards i.e. p = 0 ∧ q ∈ Ii,
when simple constant resets of the form q′ = aj ∧ p′ = p are allowed; (4) a PCD
with just clocks, when translational resets and comparative guards are allowed;
and (5) an HPCD with just clocks, when simple constant resets (p′, q′) = (0, q)
or (p, 0) and comparative guards are allowed.

Proof. All the proofs are based on the techniques demonstrated in the proof of
Theorem 1. So, for brevity, we only give a flavor of results (1) and (4).

For result (1), we will construct an HPCD with 4n states of the form P±j and
Q±j that simulates this PAM. We will now have p evolving from xn−1 to xn+1,
while q remains stationary at xn. The affine guard condition p = aiq + bi makes
the HA jump to the next state at the correct time. Since xn+1 could be greater or
less than xn−1, the flow will need to be +1 or−1 respectively. Hence, each P (and
Q) state now corresponds to two states: P+ and P−. In the state P+

j , q flows from
q0(∈ some Ii) to q′ = ajp0 + bj, with flow is q̇ = +1. In P−j , q′ > q0 and q̇ = −1.
ṗ = 0 to ensure that q flows to the correct amount. The transitions are of the form
P+
j → Q±k , with the guard being q = ajp+bj∧q ∈ Ik∧p < (bk+akbj)/(1−ajak).

The last term will be p ≥ if we are jumping to Q−k . The Q±j states are defined
exactly as above, with p and q interchanged. Clearly, the above HPCD without
resets simulates the given PAM. In particular, the reachability query “Is xf
reachable from x0” is true iff (p = xf , q = xf−1) or (p = xf−1, q = xf) is

268 Venkatesh Mysore and Amir Pnueli

reachable from (p = x0, q = x1), where xf−1 is some pre-image of xf and x1 is
the successor of x0.

For result (4), an HPCD with 2n states of the form Pj and Qj can simulate
the equivalent positive PAM. In state Pj , p flows from p0 to p0 + ajp0 + bj with
ṗ = +1, while q flows from 0 to ajp0 + bj with q̇ = +1. The discrete transitions
will be of the form Pj → Qk with guard ajp − (1 + aj)q + bj = 0 ∧ q ∈ Ik and
reset p′ = 0 ∧ q′ = q. �

4 Undecidable HPCD Extensions

True to its “open” nature, the HPCD class does not present any direct mech-
anism to simulate a TM / MM. Asarin and Schneider [4] have shown that the
HPCD class becomes undecidable when extended with one additional counter
(HPCD1c), with infinite partition (HPCD∞) and with origin-dependent rates
(HPCDx). In this section, we present a new set of extensions of HPCDs that
manage to be undecidable. We proceed by simulating the MM with the least
possible additional work. Recall that an MM uses two (positive) integer coun-
ters m and n. Incrementing and decrementing a counter, and branching based
on equality to zero are the operations that need to be supported.

Any program over a 2-counter MM can be almost trivially captured as an
HPCD, using just the discrete transitions without using the flows. Recall that a
“zeno” system is one where one cannot bound the number of discrete transitions
i.e. potentially all the computation could be done in the resets, in zero time.
Thus:

Theorem 3. Reachability over HPCDs with zeno-paths (HPCDzeno) is unde-
cidable. �

Alternatively, we can capture the value of both the counters m and n using
just one continuous variable x as x = pm1 pn2 , where p1 and p2 are two prime num-
bers. Clearly, given the integer product x, there is exactly one way of factoring
it and hence m and n can be extracted. The second variable y is now free to be
used as a temporary variable for computations and to make the system non-zeno.
Incrementing and decrementing the counter correspond respectively, to multi-
plying and dividing by the appropriate prime factor. The problem of simulating
a 2-counter MM over a HPCD now reduces to the problem of checking if m > 0
given the numerical value of x = pm1 pn2 , and being able to recover the original
value of x at the end of the procedure. One approach is to divide x by the prime
number corresponding to the counter we wish to check for zero, and then check
if the result of the division is an integer. The problem of simulating a 2-counter
MM over an HPCD thus reduces, to the problem of checking whether a given
number is an integer (!) using the 2-dim HPCD infrastructure, and being able
to recover the original number at the end of the procedure. Surprisingly, there is
no known way of doing this.

Refining the Undecidability Frontier of Hybrid Automata 269

Theorem 4. Reachability over the following HPCD-extensions are undecidable:

1. HPCDfn−int, where the guard can include a function integer(x) that returns
true if the parameter x is an integer

2. HPCDzeno−int, where the integer-check function is now simulated by a zeno
execution of repeatedly subtracting 1 and checking if the number equals 0 �

5 Understanding PAMs

Having refined the decidable and undecidable frontiers of the HPCD class, we
explore one last avenue – treating HPCDs as PAMs, and subjecting them to a
similar extend-restrain analysis. Just like we enhanced a 2-dim HPCD to make
it undecidable, we present the flavor of a similar effort for PAMs.

Theorem 5. 1-dim PAMs that can check if a given number x can be expressed
as p−i (the class “PAMpow”), where p is a given prime number and i is an
unknown positive integer, can simulate an MM. �

We stop with this contrived extension, and move on to restricted subclasses.
The simplest PAM is one where every interval maps exactly on to another in-

terval. Thus the mapping unwinds to a cyclical application of functions, possibly
preceded by a linear sequence.

Definition 1. 1-dim oPAM A 1-dimensional Onto PAM (oPAM) is a 1-
dim PAM where, for every interval Ii in the PAM definition, there is an interval
Ij also in the definition such that {aix+ bi|x ∈ Ii} = {x|x ∈ Ij}. �

Next we prove a crucial lemma:

Lemma 3. In a 1-dim oPAM with k intervals, every point has at most 2k unique
successors.

Proof. If interval Ii maps on to Ij , the end points (li, ri) have to map on to
(lj , rj) or to (rj , lj). No other mapping is possible because of our restriction,
that the affine post-image of Ii has to exactly and completely overlap with Ij .
Hence, there are only two possible equations linking xj with xi:

1. Direct (li → lj , ri → rj): xj = lj + xi−li
ri−li (rj − lj)

2. Flipped (li → rj , ri → lj): xj = lj + ri−xi

ri−li (rj − lj)

In other words, if we define d = x0−lx0
rx0−lx0

, only the points that are lj+d(rj− lj) or
lj +(1−d)(rj− lj) are ever reachable. Thus, every interval has only two possible
reachable points from a given x0. Since there are k intervals, after 2k iterations
all possible successors would have been explored, and there will be a cycle of
period ≤ 2k in the path. �

Using this observation about exactly onto affine maps over linear intervals,
we can prove that:

270 Venkatesh Mysore and Amir Pnueli

Theorem 6. Reachability is decidable for 1-dim oPAMs. �

Example 3. f(x) = 2x + 1/3, x ∈ [0, 1/3)(≡ I1) and f(x) = 1/2 − x/2, x ∈
[1/3, 1](≡ I2) is a oPAM as f([0, 1/3]) = [1/3, 1] and f([1/3, 1]) = [0, 1/3]. Thus,
all points reachable from x0 = 1/4 are given by x1 = 2/4 + 1/3 = 5/6, x2 =
1/2 − 5/12 = 1/12, x3 = 2/12 + 1/3 = 1/2, x4 = 1/2 − 1/4 = 1/4 = x0 as
expected. �

Reachability is easily semidecidable for PAMs: we just keep iterating x0,
f(x0), f(f(x0)), · · · until xf is reached. If xf is not reachable, this algorithm
will never converge. We now present a simple algorithm for over-approximating
the reachable points (see box below). The idea is to repeatedly partition the
intervals Ii of the PAM, until all the successors (post-images) of points in one
interval map on to exactly one complete interval i.e. domain and range are fully
covered (an extension of this idea was presented in [14]).

Over-Approximation of PAM Reachability

1. Let the initial set of partitions P be the set of PAM intervals {Ii}
2. Pick an interval Pi in P and calculate its post-image P ′

i . Let P ′
i span the intervals

Pl, Pl+1, · · · , Pr−1, Pr.
3. P ′

i induces r−l+1 partitions of Pi: Pi1 · · ·Pir−l+1 such that Pij maps on to Pl+j−1.
It could also partition Pl and Pr in case it maps on to a sub-interval rather than
covering the whole of Pl or Pr. In all, the total number of partitions can increase
by 0 to n + 1.

4. Update P so it now holds the newly induced partitions as well.
5. Repeat steps 2−4 until every interval Pi maps on to exactly one interval Pj already

in P

By treating each interval as a node and connecting Pi and Pj if the post image of Pi is
Pj , we get a graph representation of the PAM. Thus, xf is reachable from x0, if there
is a path from Px0 to Pxf in this graph (where xi ∈ Pxi). �

Clearly, the algorithm is not guaranteed to converge. However, we can ter-
minate after a reasonable number of steps and still use the resultant graph to
approximately decide reachability. Also note that the graph needs to be con-
structed only once no matter how many different reachability queries we need
to answer. A rewarding observation is that a 1-dim oPAM is obtained, if the
above partitioning algorithm converges ! This concurs with the fact that they
are decidable.

6 Discussion

In this paper, we refined the decidability frontier by exploiting the expressive
redundancy of the HPCD class definition. We introduced the “taking-turns”
idea, that the two PCD variables could alternately compute PAM iterations.

Refining the Undecidability Frontier of Hybrid Automata 271

It was pointed out by one of the reviewers that a similar idea was used by
Berard and Duford to prove that the emptiness query is undecidable for timed
automata with four clocks and additive clock constraints [6]. We also showed
how we could exploit the finite range of the PAM to construct non-overlapping
state invariants. These ideas helped show that a 1-dim PAM can be simulated
by a 2-dim PCD with translational resets. Further, resets can be disposed, if
we allow overlapping invariants and comparative guards. We also demonstrated
how decidable classes, like timed and initialized rectangular automata, can be
extended into open problems. On the undecidability front, we showed that zeno
HPCD executions can naturally capture MMs. More interestingly, the ability to
check if a number is an integer was seen to be the computational ability, that
separates an HPCD from universal Turing computability. A simple algorithm
for over-approximating reachability was presented. It revealed that the problem
is decidable, for those PAMs that converge during this iteration (oPAMs). The
current understanding of this undecidability frontier of HA is summarized in
Figure 3.

1−dim oPAM

+overlapping invariants
+overlapping invariants

+translational resets

2−dim PAM*

2−dim PCD*

2−dim TA*

3−dim TA +comparative guards*,
linear resets*
or stop−watches*

3−dim uninitialized* or non−rectangular*

2−dim initialized
rectangular automata*

1−dim PAM* +comparative guards +constant resets
+comparative guards +linear resets

+comparative guards

3−dim PCD*

+non−overlapping invariants

automata

+comparative guards
+non−overlapping invariants

+uninitialized
+overlapping invariants

2-dim HPCDzeno
HPCDfn/zeno−int

HPCD1c*, HPCD∞*, HPCDx*

1-dim PAMpow

2-dim HPCD*

DECIDABLE

UNDECIDABLE

OPEN

Fig. 3. Decidable, Open and Undecidable subclasses of HA (“*” indicates what
was already known; unstarred results are contributions of this paper)

There are many related questions that need to be explored. Using the reduc-
tions of an HPCD to a PCD or initialized rectangular automaton with extensions,
can we identify more interesting decidable subclasses and approximate reacha-
bility algorithms ? One suggestion we offer is to construct the “PCD-graph” of a
1-dim PAM, and then show how planarity can correspond to decidability. Using
the construction in Theorem 1, we can build a graph with a set of nodes cap-
turing each state. Different nodes can correspond to the different intervals, with
an edge corresponding to each reset. We can then check whether it is possible to
rearrange the given PCD-graph into a planar graph, by using the standard graph
drawing literature. Another perspective to be explored is, how discrete chaotic
dynamical systems (like the Tent Map) can have a say in the decidability of
the PAM class. It is hoped that the ideas presented in this paper will aid the
eventual “deciding” of the 1-dim PAM / 2-dim HPCD reachability problem.

272 Venkatesh Mysore and Amir Pnueli

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The Algorithmic Analysis of Hybrid Systems.
Theoretical Computer Science, 138:3–34, 1995.

2. R. Alur and D.L. Dill. A Theory of Timed Automata. TCS, 126:183–235, 1994.
3. E. Asarin, O. Maler, and A. Pnueli. Reachability analysis of dynamical systems

having piecewise-constant derivatives. Theoretical Computer Science, 138:35–65,
1995.

4. E. Asarin and G. Schneider. Widening the boundary between decidable and un-
decidable hybrid systems. In CONCUR’2002, Brno, Czech Republic, volume 2421
of LNCS, pages 193–208. Springer-Verlag, August 2002.

5. E. Asarin, G. Schneider, and S. Yovine. On the decidability of the reachability
problem for planar differential inclusions. In In: Hybrid Systems: Computation
and Control, pages 89–104. LNCS 2034, March 2001.

6. B. Berard and C. Dufourd. Timed automata and additive clock constraints. In-
formation Processing Letter, 75(1-2):1–7, 2000.

7. T. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s Decidable about
Hybrid Automata. In Symposium on the Theory of Computing (STOC), pages
373–382, 1995.

8. Thomas A. Henzinger and Shankar Sastry. Hybrid Systems-Computation and Con-
trol: Proceedings of the First International Workshop, HSCC ’98. Lecture Notes in
Computer Science 1386. Springer-Verlag, 1998.

9. Pascal Koiran. My favourte problems. http://perso.ens-lyon.fr/pascal.koiran/
problems.html, 1999.

10. G. Lafferiere, G. J. Pappas, and S. Sastry. O-minimal Hybrid Systems. Mathemat-
ics of Control, Signals, and Systems, 13(1):1–21, March 2000.

11. Gerardo Lafferriere, George J. Pappas, and Sergio Yovine. Symbolic reachability
computation for families of linear vector fields. J. Symb. Comput., 32(3):231–253,
2001.

12. O. Maler and A. Pnueli. Reachability analysis of planar multi-linear systems. In
C. Courcoubetis, editor, Computer Aided Verification: Proc. of the 5th Interna-
tional Conference CAV’93, pages 194–209, Berlin, Heidelberg, 1993. Springer.

13. M.L. Minsky. Recursive unsolvability of post’s problem of tag and other topics in
theory of turing machines. Ann. of Math., 74:437–455, 1961.

14. Venkatesh Mysore and Bud Mishra. Algorithmic Algebraic Model Checking III:
Approximate Methods. In Infinity, 2005.

15. C. Piazza, M. Antoniotti, V. Mysore, A. Policriti, F. Winkler, and B. Mishra.
Algorithmic Algebraic Model Checking I: The Case of Biochemical Systems and
their Reachability Analysis. In CAV, 2005.

16. A. Puri and P. Varaiya. Decidebility of hybrid systems with rectangular differential
inclusions. Computer Aided Verification, pages 95–104, 1994.

17. Gerardo Schneider. Algorithmic Analysis of Polygonal Hybrid Systems. Ph.D. the-
sis. VERIMAG - UJF, Grenoble, France, 2002.

18. Paulo Tabuada and George J. Pappas. Model checking ltl over controllable linear
systems is decidable. Hybrid Systems : Computation and Control, Lecture Notes
in Computer Science, 2623, April 2003.

19. Gerald Teschl. Ordinary differential equations and dynamical systems. Lecture
Notes from http://www.mat.univie.ac.at/ gerald/ftp/book-ode/index.html, 2004.

20. Alan Turing. On computable numbers, with an application to the entscheidungs
problem. Proceedings of the London Mathematical Society, 2(42):230–265, 1936.

When Are Timed Automata Weakly Timed

Bisimilar to Time Petri Nets?

Beatrice Bérard1, Franck Cassez2, Serge Haddad1, Didier Lime3, and
Olivier H. Roux2

1 LAMSADE, Paris, France
{beatrice.berard | serge.haddad}@lamsade.dauphine.fr

2 IRCCyN, Nantes, France
{Franck.Cassez | Olivier-h.Roux}@irccyn.ec-nantes.fr

3 CISS, Aalbork, Denmark
Didier@cs.aau.dk

Abstract. In this paper, we compare Timed Automata (TA) with Time
Petri Nets (TPN) with respect to weak timed bisimilarity. It is already
known that the class of bounded TPNs is included in the class of TA.
It is thus natural to try and identify the (strict) subclass T Awtb of TA
that is equivalent to TPN for the weak time bisimulation relation. We
give a characterisation of this subclass and we show that the member-
ship problem and the reachability problem for T Awtb are PSPACE-
complete. Furthermore we show that for a TA in T Awtb with integer
constants, an equivalent TPN can be built with integer bounds but with
a size exponential w.r.t. the original model. Surprisingly, using rational
bounds yields a TPN whose size is linear.

Keywords: Time Petri Nets, Timed Automata, Weak Timed Bisimilar-
ity.

1 Introduction

Expressiveness of timed models. Adding explicit time to classical models
was first done in the seventies for Petri nets [12,14]. Since then, timed models
based on Petri nets and finite automata were extensively studied, and various
tools were developed for their analysis. In this paper, we focus on two well known
models: Timed Automata (TA) from [2] and Time Petri Nets (TPNs) from [12].
In [4], we studied the different semantics for TPNs w.r.t. weak timed bisimilarity.
Here, we are interested in comparing the expressive power of TA and TPN for
this equivalence. Recall that there are unbounded TPNs for which no bisimilar
TA exists. This is a direct consequence of the following observation: the untimed
language of a TA is regular which is not necessarily the case for TPNs. On the
other hand, it was proved in [8] that bounded TPNs form a subclass of the class
of timed automata, in the sense that for each bounded TPNN , there exists a TA
which is weakly timed bisimilar toN . A similar result can be found in [11], where
it is obtained by a completely different approach. In another line of work [10],
Haar, Kaiser, Simonot and Toussaint compare Timed State Machines (TSM)

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 273–284, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

274 Beatrice Bérard et al.

and Time Petri Nets, giving a translation from TSM to TPN that preserves
timed languages. In [5], we propose an extended translation between TA and
TPNs with better complexity.

Our Contribution. In this work, we consider TPNs and label-free TA, i.e.
where two different edges have different labels (and no label is ε) and we give a
characterisation of the subclass T Awtb of timed automata which admit a weakly
timed bisimilar TPN. This non intuitive condition relates to the topological
properties of the so-called region automaton associated with a TA. To prove that
the condition is necessary, we introduce the notion of uniform bisimilarity, which
is stronger than weak timed bisimilarity. Conversely, when the condition holds for
a TA, we provide two effective constructions of bisimilar TPNs: the first one with
rational constants has a size linear w.r.t. the TA, while the other one, which uses
only integer constants has an exponential size. From this characterisation, we will
deduce that given a TA, the problem of deciding whether there is a TPN bisimilar
to it, is PSPACE-complete. Thus, we obtain that the membership problem
is PSPACE-complete. Finally we also prove that the reachability problem is
PSPACE-complete.

Outline of the paper. Section 2 recalls the semantics of TPNs and TA, and
the notion of timed bisimilarity. Section 3 explains the characterisation while
Section 4 is devoted to a sketch of its proof. We conclude in Section 5.

2 Time Petri Nets and Timed Automata

Notations. Let Σ be a finite alphabet, Σ∗ (resp. Σω) the set of finite (resp.
infinite) words of Σ and Σ∞ = Σ∗ ∪Σω. We also use Σε = Σ ∪ {ε} with ε (the
empty word) not in Σ.

The sets N, Q≥0 and R≥0 are respectively the sets of natural, non-negative
rational and non-negative real numbers. We write 0 for the tuple v ∈ Nn such
that v(k) = 0 for all 1 ≤ k ≤ n. Let g > 0 in N, we write Ng = { ig | i ∈ N}. A
tuple v ∈ Qn belongs to the g-grid if v(k) ∈ Ng for all 1 ≤ k ≤ n.

An interval I of R≥0 is a Q≥0-interval iff its left endpoint belongs to Q≥0 and
its right endpoint belongs to Q≥0∪{∞}. We set I↓ = {x | x ≤ y for some y ∈ I},
the downward closure of I and I↑ = {x | x ≥ y for some y ∈ I}, the upward
closure of I. We denote by I(Q≥0) the set of Q≥0-intervals of R≥0.
Timed Transition Systems and Equivalence Relations. Timed transi-
tion systems describe systems which combine discrete and continuous evolutions.
They are used to define and compare the semantics of TPNs and TA.

A Timed Transition System (TTS) is a transition system S = (Q, q0,→),
where Q is the set of configurations, q0 ∈ Q is the initial configuration and the
relation → consists of either delay moves q

d−→ q′, with d ∈ R≥0, or discrete
moves q

a−→ q′, with a ∈ Σε. Moreover, we require standard properties for the
relation →:
Time-Determinism: if q d−−→ q′ and q

d−−→ q′′ with d ∈ R≥0, then q′ = q′′

0-delay: q 0−−→ q

When Are Timed Automata Weakly Timed Bisimilar to Time Petri Nets? 275

Additivity: if q d−−→ q′ and q′
d′−−→ q′′ with d, d′ ∈ R≥0, then q

d+d′−−−−→ q′′

Continuity: if q d−−→ q′, then for every d′ and d′′ in R≥0 such that d = d′ + d′′,

there exists q′′ such that q d′−−→ q′′
d′′−−−→ q′.

With these properties, a run of S can be defined as a finite or infinite sequence
of moves ρ = q0

d0−→ q′0
a0−→ q1

d1−→ q′1
a1−→ · · · qn

dn−→ q′n . . . where discrete actions
alternate with durations. We also write this run as q

d0a0...dn...−−−−−−−→ q′. The word
Untimed(ρ) in Σ∞ is obtained by the concatenation a0a1 . . . of labels in Σε (so
empty labels disappear), and Duration(ρ) =

∑|ρ|
i=0 di.

From a TTS, we define the relation →>⊆ Q× (Σ ∪R≥0)×Q for a ∈ Σ and
d ∈ R≥0 by:

- q d−→> q′ iff ∃ ρ = q
w−→ q′ with Untimed(ρ) = ε and Duration(ρ) = d,

- q a−→> q′ iff ∃ ρ = q
w−→ q′ with Untimed(ρ) = a and Duration(ρ) = 0.

Definition 1 (Weak Timed Bisimilarity). Let S1 = (Q1, q
1
0 ,→1) and S2 =

(Q2, q
2
0 ,→2) be two TTS and let ≈ be a binary relation over Q1×Q2. We write

q ≈ q′ for (q, q′) ∈≈. The relation ≈ is a weak timed bisimulation between S1

and S2 iff q1
0 ≈ q2

0 and for all a ∈ Σ ∪ R≥0

- if q1
a−→>1 q′1 and q1 ≈ q2 then ∃q2 a−→>2 q′2 such that q′1 ≈ q′2;

- conversely, if q2
a−→>2 q′2 and q1 ≈ q2 then ∃q1 a−→>1 q′1 such that q′1 ≈ q′2.

Two TTS S1 and S2 are weakly timed bisimilar, written S1 ≈W S2, if there
exists a weak timed bisimulation relation between them.

Strong timed bisimilarity would require similar properties for transitions la-
beled by a ∈ Σ ∪R≥0, but with a−→ instead of a−→>. Thus it forbids the possibility
of a simulating a move by a sequence. On the other hand, weak timed bisimilar-
ity is more precise than language equivalence and it is well-known to be central
among equivalence relations between timed systems. In the rest of the paper, we
abbreviate weak timed bisimilarity by bisimilarity and we explicitly name other
equivalences when needed.

Time Petri Nets. Introduced in [12], and studied more recently in [13], Time
Petri Nets (TPNs) associate a closed time interval with each transition.

Definition 2 (Labeled Time Petri Net). A Labeled Time Petri Net N over
Σε is a tuple (P, T,Σε,

•(.), (.)•,M0, Λ, I) where P is a finite set of places, T
is a finite set of transitions with P ∩ T = ∅, •(.) ∈ (NP)T is the backward
incidence mapping, (.)• ∈ (NP)T is the forward incidence mapping, M0 ∈ NP

is the initial marking, Λ : T → Σε is the labeling function and I : T %→ I(Q≥0)
associates with each transition a closed firing interval.

A TPN N is a g-TPN if for all t ∈ T , the interval I(t) has its bounds in Ng. We
also use •t (resp. t•) to denote the set of places •t = {p ∈ P | •t(p) > 0} (resp.
t• = {p ∈ P | t•(p) > 0}) as is common is the literature.

A configuration of a TPN is a pair (M, ν), where M is a marking in the
usual sense, i.e. a mapping in NP , with M(p) the number of tokens in place

276 Beatrice Bérard et al.

p. A transition t is enabled in a marking M iff M ≥ •t. We denote by En(M)
the set of enabled transitions in M . The second component of the pair (M, ν)
describes the values of clocks implicitely associated with transitions enabled in
M : a valuation ν is a mapping in (R≥0)En(M). For d ∈ R≥0, the valuation ν+d is
defined by (ν + d)(t) = ν(t)+ d for each t ∈ En(M). An enabled transition t can
be fired if ν(t) belongs to the interval I(t). The result of this firing is as usual the
new marking M ′ = M − •t+ t•. Moreover, some valuations are reset and we say
that the corresponding transitions are newly enabled. Different semantics are
possible for this operation. In this paper, we choose persistent atomic semantics,
which is slightly different from the classical semantics [7,3], but equivalent when
the net is bounded [4]. The predicate is defined by:
↑enabled(t′,M, t) = t′ ∈ En(M − •t + t•) ∧ (t′ 	∈ En(M)).

Thus, firing a transition is considered as an atomic step and the transition cur-
rently fired behaves like the other transitions (ν(t) need not be reset when t
is fired). The set ADM(N) of (admissible) configurations consists of the pairs
(M, ν) such that ν(t) ∈ I(t)↓ for each transition t ∈ En(M). Thus time can
progress in a marking only up to the minimal right endpoint of the intervals for
all enabled transitions.

Definition 3 (Semantics of TPN). The semantics of a TPN N = (P, T,Σε,
•(.), (.)•,M0, Λ, I) is a TTS SN = (Q, q0,→) where Q = ADM(N), q0 = (M0,0)
and → is defined by:
- either a delay move (M, ν) d−−→ (M, ν + d) iff ∀t ∈ En(M), ν(t) + d ∈ I(t)↓,

- or a discrete move (M, ν)
Λ(t)−−−→ (M − •t+ t•, ν′) where ∀t′ ∈ En(M − •t+ t•),

ν′(t′) = 0 if ↑enabled(t′,M, t) and ν′(t′) = ν(t) otherwise, iff t ∈ En(M) is such
that ν(t) ∈ I(t).

We simply write (M, ν) w−→ to emphasise that a sequence of transitions w can
be fired. If Duration(w) = 0, we say that w is an instantaneous firing sequence.
A net is said to be k-bounded if for each reachable configuration (M, ν) and for
each place p, M(p) ≤ k.

Note that taking into account the enabling degree of transitions would require
to add components to ν, which leads to awkward notations, although our result
holds in the bounded case.
Timed Automata. First defined in [2], the model of timed automata (TA)
associates a set of non negative real-valued variables called clocks with a finite
automaton. Let X be a finite set of clocks. We write C(X) for the set of constraints
over X , which consist of conjunctions of atomic formulas of the form x &' h for
x ∈ X , h ∈ Q≥0 and &'∈ {<,≤,≥, >}.
Definition 4 (Timed Automaton). A Timed Automaton A over Σε is a
tuple (L, �0, X,Σε, E, Inv) where L is a finite set of locations, �0 ∈ L is the
initial location, X is a finite set of clocks, E ⊆ L × C(X) × Σε × 2X × L is a
finite set of edges and Inv ∈ C(X)L assigns an invariant to each location. An
edge e = 〈�, γ, a, R, �′〉 ∈ E represents a transition from location � to location �′

with guard γ and reset set R ⊆ X. We restrict the invariants to conjunctions of
terms of the form x &' h for x ∈ X, h ∈ N and &' ∈ {<,≤}.

When Are Timed Automata Weakly Timed Bisimilar to Time Petri Nets? 277

When we need to consider label-free automata, we simply assume that each edge
has a unique label, different from ε.

A valuation v is a mapping in RX
≥0. For R ⊆ X , the valuation v[R %→ 0] maps

each variable in R to the value 0 and agrees with v over X \ R. Constraints of
C(X) are interpreted over valuations: we write v |= γ when the constraint γ is
satisfied by v.

Definition 5 (Semantics of TA). The semantics of a TA A = (L, �0, X,Σε,
E, Inv) is a TTS SA = (Q, q0,→) where Q = L × (R≤0)X , q0 = (�0,0) and →
is defined by:
- either a delay move (�, v) d−−→ (�, v + d) iff v + d |= Inv(�),
- or a discrete move (�, v) e−→ (�′, v′) iff there exists some e = (�, γ, a, R, �′) ∈ E
s.t. v |= γ, v′ = v[R %→ 0] and v′ |= Inv(�′).

Elementary zones of a TA. Recall [9,2] that, if m is the maximal constant
appearing in atomic formulas x &' c of A, an equivalence relation with finite
index can be defined on clock valuations, leading to a partition Pm of (R≥0)X ,
with the following property: two equivalent valuations have the same behaviour
under progress of time and reset operations, with respect to the constraints.
Note that the same property holds for any partition which refines Pm. This is
the case in particular if we replace m by any K ≥ m instead of m, even with
K = +∞ (as depicted in Figure 1 on the left). Of course, a finite constant is
needed for decidability results. Finally, we can also consider a g-grid, where all
constants are of the form i

g , 0 ≤ i ≤ K·g instead of {0, 1, . . . ,K}.

x

y

x

y

Z1 Z2

Fig. 1. Partitions of (R+)2 with K = +∞ and K = 3

In this paper, the elements of the partition are called elementary zones and
we consider a slight variation for their definition: we take a constant K ≥ m+ 1
and with each clock x ∈ X , we associate an interval in the set {{0},]0, 1[, {1}, . . . ,
{K − 1},]K − 1,K[, [K,+∞[}, instead of keeping {K} separately. As usual, we
also specify the ordering on the fractional parts for all clocks x such that x < K.
Such a partition is represented in Figure 1 (on the right) for the set of two
clocks X = {x, y} and K = 3. For this example, elementary zones Z1 and Z2 are

278 Beatrice Bérard et al.

described by the constraints: Z1 : (2 < x < 3) ∧ (1 < y < 2) ∧ (0 < frac(y) <
frac(x)) and Z2 : (x ≥ 3) ∧ (1 < y < 2).

If Z and Z ′ are elementary zones, Z ′ is a time successor of Z, written Z ≤ Z ′,
if for each valuation v ∈ Z, there is some d ∈ R≥0 such that v+d ∈ Z ′. For each
elementary zone Z, there is at most one elementary zone such that (i) Z ′ is a
time successor of Z, (ii) Z 	= Z ′ and (iii) there is no time successor Z ′′ different
from Z and Z ′ such that Z ≤ Z ′′ ≤ Z ′. When it exists, this elementary zone is
called the immediate successor of Z and denoted by succ(Z).

Standard topological notions on (R≥0)X apply to elementary zones. More-
over, due to the particular form of the constraints, the topological closure of any
elementary zone has a minimal element.

3 A Characterisation of TA Bisimilar to TPNs

Regions of a timed automaton. Since our results are mainly based on the
region automaton, we recall its definition [2]. For a TA A, a constant K and a
granularity g, the region automaton R(A)g,K is a finite automaton with states of
the form (�, Z), where � is a location of A and Z an elementary zone of (R≥0)X .

We call region a pair (�, Z). The regions of R(A)g,K are built inductively
from the initial one (�0,0) by the following transitions over the set of labels
{succ} ∪ Σε: (�, Z) succ−−−→ (�, succ(Z)) if succ(Z) |= Inv(�) and (�, Z) a−→ (�′, Z ′)
if there is a transition (�, γ, a, R, �′) ∈ E such that Z |= γ and Z ′ = Z[R %→ 0],
with Z ′ |= Inv(�′). Thus, only reachable regions appear in R(A)g,K . A region
r = (�, Z) is said to be maximal in R(A)g,K with respect to � if no succ-transition
is possible from r. In the sequel, the topological properties of r are implicitly
derived from those of Z. We write r for the topological closure of r, and we
denote by minr the minimal vector of r.

We now give a definition which distinguishes time-closed and time-open de-
scriptions for regions. It is equivalent to the original one but more convenient
for our proofs and it fits both cases, whether K is finite or infinite.

Definition 6 (Region description for automaton R(A)g,K).
A time-closed description of a region r is given by:
- �r the location of r,
- minr ∈ NX

g with ∀x, minr(x) ≤ K, the minimal vector of the topological
closure of r,
- ActXr = {x ∈ X |minr(x) < K} the subset of relevant clocks,
- the number sizer of different fractional parts for the values of relevant clocks
in the NActXr

g grid, with 1 ≤ sizer ≤ Max(|ActXr|, 1) and the onto mapping
ordr : X %→ {1, . . . , sizer} giving the ordering of the fractional parts.
By convention, ∀x ∈ X \ActXr, ordr(x) = 1.
Then r = {(�r,minr + δ) | δ ∈ RX

≥0 ∧ ∀x, y ∈ ActXr[ordr(x) = 1 ⇔ δ(x) =
0] ∧ δ(x) < 1/g ∧ [ordr(x) < ordr(y)⇔ δ(x) < δ(y)]}
A time-open description of a region r is defined with the same attributes (and
conditions) as the time-closed one with:
r = {(�r,minr + δ + d) | d ∈ R>0 ∧ ∀x ∈ ActXr, δ(x) + d < 1/g}.

When Are Timed Automata Weakly Timed Bisimilar to Time Petri Nets? 279

The set [X]r is the set of equivalence classes of clocks w.r.t. their fractional parts,
i.e. x and y are equivalent iff ordr(x) = ordr(y).

Remark that minr /∈ r except if there is a single class of clocks relative to r (for
instance if the corresponding zone is a singleton). Of course, when K = +∞, the
part about relevant clocks, for which the value is less than K, can be omitted
(since ActXr = X). This hypothesis makes some proofs simpler, because the
extremal case where a clock value is greater than K is avoided, and it can be
lifted afterward. Furthermore when K is finite, some regions admit both time-
open and time-closed descriptions (for instance a region associated with zone
Z2 in fig. 1), whereas when K = +∞, a region admits a single description, so
that time elapsing leads to an alternation of time-open regions (where time can
elapse) and time-closed ones (where no time can elapse).

Reachability. For a reachable region r of R(A)g,K , not all configurations of r are
reachable. Nevertheless, by induction on the reachability relation, the following
property can be shown: For any reachable region r, there is a region reach(r)
w.r.t. the g-grid and constant K = ∞ such that (i) reach(r) ⊂ r, (ii) each
configuration of reach(r) is reachable and (iii) if reach(r) is a time-open region
then r admits a time-open description else r admits a time-closed description.
As a consequence, we have: ∀x ∈ ActXr,minreach(r)(x) = minr(x) and ∀x ∈
X \ ActXr,minreach(r)(x) ≥ K and ordr restricted to ActXr is identical to
ordreach(r).

Consider now the relation R defined by (l, v) R (l, v′) iff ∀x ∈ X, v′(x) =
v(x) ∨ (v(x) ≥ K ∧ v′(x) ≥ K). It is a strong timed bisimulation relation. From
the previous observations, we note that each configuration of a reachable region
is strongly timed bisimilar to a reachable configuration of this region. Thus
speaking about reachability of regions is a slight abuse of notations.

We can now state our main results.

Theorem 1 (Characterisation of TA bisimilar to some TPN). Let A be a
(label-free) timed automaton and R(A)1,K its region automaton with a constant
K strictly greater than any constant occurring in the automaton, then A is weakly
timed bisimilar to a time Petri net iff for each region r of R(A)1,K and for each
edge e from A,

(a) Every region r′ such that r′ ∩ r 	= ∅ is reachable
(b) ∀(�r, v) ∈ r, if (�r, v)

e−→ then (�r,minr)
e−→

(c) ∀(�r, v) ∈ r, if (�r,minr)
e−→ then (�r, v)

e−→.
Furthermore, if these conditions are satisfied then we can build a 1-bounded 2-
TPN bisimilar to A whose size is linear w.r.t. the size of A and a 1-bounded
1-TPN bisimilar to A whose size is exponential w.r.t. the size of A.
We denote by T Awtb the corresponding subclass of timed automata.

Theorem 2 (Complexity results). Given a (label-free) timed automaton A,
deciding whether there is a TPN weakly timed bisimilar to A is PSPACE-
complete. The reachability problem for the class T Awtb is PSPACE-complete.

280 Beatrice Bérard et al.

�0
x ≤ 1

�1
x ≤ 1

l2

x ≤ 1, a, ∅

x = 1, b, {y}

x ≥ 1 ∧ y ≤ 0, c, ∅

A0 :

�0
x ≤ 1

�1
x ≤ 1

l2
x ≤ 1, a, {y} x ≥ 1 ∧ y ≤ 0, c, ∅

A1 :

Fig. 2. Two automata with different behaviours w.r.t bisimulation with a TPN

The characterisation of Theorem 1 is closely related to the topological closure
of reachable regions: it states that any region intersecting the topological closure
of a reachable region is also reachable and that a discrete step either from a
region or from the minimal vector of its topological closure is possible in the
whole topological closure. Consider the two TA A0 and A1 in Figure 2. The
automaton A0 admits a bisimilar TPN whereas A1 does not. Indeed, the region
r = {(�1, x = 1 ∧ 0 < y < 1} is reachable. The guard of edge c is true in
minr = (�1, (1, 0)) whereas it is false in r.

The next section is devoted to a sketch of the proof of Theorem 1. The proof
of Theorem 2 is obtained from Theorem 1 and an adaptation of results in [1].
The complete proofs can be found in [6].

4 Proof of Theorem 1

4.1 Necessary Condition

From bisimulation to uniform bisimulation. As a first step, we prove that
when a TPN and a TA are bisimilar, this relation can in fact be strengthened
in what we call uniform bisimulation. We first need a lemma which points out
the effect of time granularity on the behaviour of TPN.

Lemma 1. Let (M, ν) and (M, ν + δ) be two admissible configurations of a g-
TPN with ν, δ ∈ REn(M)

≥0 . Let w be an instantaneous firing sequence, then:
(i) (M, ν) w−→ implies (M, ν + δ) w−→
(ii) If ν ∈ Ng

En(M) and δ ∈ [0, 1/g[En(M) then (M, ν + δ) w−→ implies (M, ν) w−→

Lemma 2 is the central point for the proof of necessity. It shows that bisimula-
tion implies uniform bisimulation for the g-grid with K = ∞. Roughly speaking,
uniform bisimulation means that a unique mechanism is used for every configu-
ration of the topological closure of the region to obtain a bisimilar configuration
of the net.

When Are Timed Automata Weakly Timed Bisimilar to Time Petri Nets? 281

Lemma 2 (From bisimulation to uniform bisimulation). Let A be a timed
automaton bisimilar to some g-TPN N via some relation R and let R(A)g,∞ be
a region automaton of A. Then:

– if a region r belongs to R(A)g,∞ then r also belongs to R(A)g,∞;
– for each reachable region r, there exist a configuration of the net (Mr, νr)

with νr ∈ NEn(Mr)
g and a mapping φr : En(Mr)→ [X]r such that:

• If r is time-closed, then for each δ ∈ RX
≥0 such that (�r,minr + δ) ∈ r,

(�r,minr + δ) R (Mr, νr + projr(δ)),
• If r is time-open, then for each δ ∈ RX

≥0, d ∈ R≥0 such that (�r,minr +
δ + d) ∈ r, (�r,minr + δ + d) R (Mr, νr + projr(δ) + d),

where projr(δ)(t) = δ(φr(t)).

Proof. First note that the choice of a particular clock x in the class φr(t) is
irrelevant when considering the value δ(x). Thus the definition of projr is sound.
The proof is an induction on the transition relation in the region automaton.
The basis case is straightforward with {(l0,0)} and {(M0,0)}. The induction
part relies on lemma 1, with 4 cases, according to the incoming or target region
and to the nature of the step: 1. a time step from a time-closed region, 2. a time
step from a time-open region, 3. a discrete step into a time-closed region, and 4.
a discrete step into a time-open region. &'

Proof of Necessity. The fact that conditions (a), (b) and (c) of Theorem 1
hold for R(A)g,∞ is straightforward:
(a) This assertion is included in the inductive assertions.
(b) Let r be a reachable region, let (�r,minr + δ) ∈ r be a configuration with
δ ∈ [0, 1/g[X, then ∃(M, ν) ν ∈ NEn(M)

g bisimilar to (�r,minr) and (M, ν + δ′)
with δ′ ∈ [0, 1/g[En(M) bisimilar to (�r, v + δ). Suppose that (�r,minr + δ) e−→,
then (M, ν + δ′) w−→ with w an instantaneous firing sequence and label(w) = e.
Now by lemma 1-(ii), (M, ν) w−→, thus (�r,minr)

e−→.
(c) Let r be a region, and (�r,minr + δ) ∈ r with δ ∈ [0, 1/g]X thus ∃(M, ν)
bisimilar to (�r,minr) and (M, ν + δ′) with δ′ ∈ [0, 1/g]En(M) bisimilar to
(�r,minr + δ). Suppose that (�r,minr)

e−→, then (M, ν) w−→ with w an instanta-
neous firing sequence and label(w) = e. By lemma 1-(i), we have (M, ν+δ′) w−→,
thus (�r,minr + δ) e−→.

In order to complete the proof, we successively show that if the conditions
are satisfied in R(A)g,∞ for some g, they also hold for R(A)1,∞, and finally that
they are satisfied in R(A)1,K , with a finite constant K sufficiently large.

4.2 Sufficient Condition

Starting from a TA A satisfying the conditions of Theorem 1, we build a 2-TPN
bisimilar to A. We describe the construction, the proof of correctness as well as
the construction of a 1-TPN can be found in [6].

For this construction, all edges are weighted by 1. Omitted labels for transi-
tions stand for ε. A firing interval [0, 0] is indicated by a blackened transition and

282 Beatrice Bérard et al.

intervals [0,∞[are omitted. A double arrow between a place p and a transition
t indicates that p is both an input and an output place for t.

W.l.o.g. we assume that an invariant never forbids to enter a state (by adding
constraints to the input transitions). We then remark that x < c occurring in
an invariant of A may be safely omitted. If it would forbid the progress of time
in some configuration, then the associated region would be a maximal time-
open region r. Due to condition (a), r is reachable but since r is time-open,
r ∩ succ(r) 	= ∅, so that succ(r) is reachable which contradicts the maximality
of r.
Clock constraints. The atomic constraints associated with a clock x are arbi-
trarily numbered from 1 to n(x) where n(x) is the number of such conditions.
When x ≤ h occurs in at least one transition and in at least one invariant, we
consider it as two different conditions. Then we add places (Rtodoxi)i≤n(x)+1 for
the reset operations. We build a subnet for each atomic constraint x &' h occur-
ring in a transition of the TA, and one for each condition x ≤ h occurring in
an invariant. Figure 3 below shows the subnets corresponding to x < h (with
h > 0) on the left and x ≤ h on the right. Since constant 1

2 appears in interval
bounds, the resulting TPN is a 2-TPN.

•
Tx<h Fx<h

changex<h

[h− 1
2
, h− 1

2
]

Rtodox
i

Rtodox
i+1

reset1x<h reset2x<h

•

Tx≤h Fx≤h

changex≤h

[h + 1
2
, h + 1

2
]

Rtodox
i

Rtodox
i+1

reset1x≤h reset2x≤h

Fig. 3. The subnets for x < h (with h > 0) and x ≤ h

Locations and edges. With each location � of the automaton, we associate
an eponymous place �. The place � is initially marked iff the location � is the
initial one. The invariant Inv(�) is tested with the subnets corresponding to its
atomic constraints. To simulate an edge (�, γ, a, R, �′), we must test the atomic
constraints from γ = γ1∧. . .∧γm(e), using the places corresponding to true in the
associated subnets, and reset successively all the clocks in R = {x1, . . . , xn(e)}
by instantaneous transitions. This is done by the subnet in Figure 4, which must
be connected to some subsets like those of Figure 3.

This construction is illustrated in Figure 4.2 for the timed automatonA0 from
Figure 2 with some simplifications related to this particular TA. Note that the
subnet associated to the constraint y ≤ 0 switches the condition to false (marking
Fy≤0) when the implicit value of y maintained in the net reaches 1/2. This

When Are Timed Automata Weakly Timed Bisimilar to Time Petri Nets? 283

Tγ1

Tγ2

Tγm

...

. . .

. . .

. . .

�

W 1
e W 2

e W
n(e)
e

Rtodox1
1

Rtodox1
n(x1)+1 Rtodox2

n(x2)+1

Rtodox2
1 Rtodo

xn(e)
1

Rtodo
xn(e)
n(xn(e))+1

�′
firee, a

next1e next
n(e)
e

Fig. 4. The subnet for edge e = (�, γ = γ1∧ . . .∧γm(e), a, R = {x1, . . . , xn(e)}, �′)

•

•

•

[1/2, 1/2]

c, [0, +∞[l2�1

Fy≤0

�0

a, [0, +∞[

b, [0, +∞[

Tx≥1[1, 1]

inv0

Fig. 5. A 2-TPN bisimilar to A0

translation thus seems less constrained than the original condition. However,
conditions (b) and (c) ensure that the configurations where both constraints do
not simultaneously hold are not reachable.

5 Conclusion

In this paper, we considered the (semantic) subclass T Awtb of labeled-free TA
such that a timed automaton A is in T Awtb if and only if there is a TPN N
weakly timed bisimilar to A. We obtained a characterisation of this class, based
on the region automaton associated with A. To prove that our condition is nec-
essary, we introduced the notion of uniform bisimulation between TA and TPNs.
For the sufficiency, we proposed two constructions. From this characterisation,

284 Beatrice Bérard et al.

we have proved that for the class T Awtb, the membership problem and the
reachability problem are PSPACE-complete. The techniques introduced here
also lead to a similar characterisation for TA with diagonal constraints and to a
simpler one for TA without strict or diagonal constraints (see [6]). These tech-
niques also give some insight for use of the region automaton in order to obtain
expressivity results. Further work would consist in finding a characterization for
a larger class of intervals.

References

1. L. Aceto and F. Laroussinie. Is Your Model Checker on Time? On the Complex-
ity of Model Checking for Timed Modal Logics. Journal of Logic and Algebraic
Programming, volume 52-53, pages 7-51. Elsevier Science Publishers, august 2002.

2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science
B, 126:183–235, 1994.

3. T. Aura and J. Lilius. A causal semantics for time Petri nets. Theoretical Computer
Science, 243(1–2):409–447, 2000.

4. B. Bérard, F. Cassez, S. Haddad, D. Lime and O.H. Roux. Comparison of Different
Semantics for Time Petri Nets. ATVA’05, Taipei, Taiwan, volume 3707 of LNCS,
2005, to appear.

5. B. Bérard, F. Cassez, S. Haddad, D. Lime and O.H. Roux. Comparison of the
Expressiveness of Timed Automata and Time Petri Nets . FORMATS’05, Uppsala,
Sweden, LNCS, 2005, to appear.

6. B. Bérard, F. Cassez, S. Haddad, D. Lime and O.H. Roux. Comparison of the
Expressiveness of Timed Automata and Time Petri Nets. Research Report IRC-
CyN R2005-2 available at http://www.lamsade.dauphine.fr/∼haddad/publis.html
2005.

7. B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems
using time Petri nets. IEEE Transactions on Software Engineering, 17(3):259–273,
March 1991.

8. F. Cassez and O. H. Roux. Structural Translation of Time Petri Nets into Timed
Automata. In Michael Huth, editor, Workshop on Automated Verification of Crit-
ical Systems (AVoCS’04), Electronic Notes in Computer Science. Elsevier, August
2004.

9. D. L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In Proc. Workshop on Automatic Verification Methods for Finite State Systems,
Grenoble, volume 407 of LNCS, 1989.

10. S. Haar, F. Simonot-Lion, L. Kaiser, and J. Toussaint. Equivalence of Timed State
Machines and safe Time Petri Nets. In Proceedings of WODES 2002, Zaragoza,
Spain, pages 119–126.

11. D. Lime and O. H. Roux. State class timed automaton of a time Petri net. In
PNPM’03. IEEE Computer Society, September 2003.

12. P. M. Merlin. A study of the recoverability of computing systems. PhD thesis,
University of California, Irvine, CA, 1974.

13. M. Pezzé and M. Young. Time Petri Nets: A Primer Introduction. Tutorial pre-
sented at the Multi-Workshop on Formal Methods in Performance Evaluation and
Applications, Zaragoza, Spain, september 1999.

14. C. Ramchandani. Analysis of asynchronous concurrent systems by timed Petri
nets. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1974.

Subquadratic Algorithms for Workload-Aware

Haar Wavelet Synopses

S. Muthukrishnan�

Dept. of Computer Science, Rutgers University, New Brunswick, NJ 08903
muthu@cs.rutgers.edu

Abstract. Given a signal A of N dimensions, the problem is to obtain
a representation R for it that is a linear combination of vectors in the
dictionary H of Haar wavelets. The quality of the representation R is
determined by B, the number of vectors from H used, and δ, the error
between R and A. Traditionally, δ has been the sum squared error εR =∑

i
(R[i]−A[i])2, in which case, Parseval’s theorem from 1799 helps solve

the problem of finding the R with smallest εR in O(N) time.
Recently, motivated by database applications, researchers have sought
other notions of error such as
– workload-aware error, or επ

R =
∑

i
π[i](R[i] − A[i])2, where π[i] is

the workload or the weight for i, and
– maximum pointwise absolute error, eg., ε∞R = maxi |R[i]−A[i]|.

Recent results give Ω(N2) time algorithms for finding R that minimize
these errors.
We present subquadratic algorithms for versions of these problems. We
present a near-linear time algorithm to minimize επ

R when π is com-

pressible. To minimize ε∞R, we give an O(N2−ε) time algorithm. These
algorithms follow a natural dynamic programming approach developed
recently, but the improvements come from exploiting local structural
properties of the Haar wavelet representations of signals we identify.
Sparse approximation theory is a mature area of Mathematics that has
traditionally studied signal representations with Haar wavelets. It is in-
teresting that the past few years have seen new problems in this area
motivated by Computer Science concerns: we pose a few new additional
problems and some partial results.

1 Introduction

We study the problem of representing signals via Haar wavelets.

Definition of Haar Basis. There are many kinds of wavelets. We work with one
of the most popular and fundamental: Haar wavelets [16]. Let N be a power of
2. We define N − 1 proper wavelet functions on [0, N − 1) as follows. For integer
j, 0 ≤ j < log(N) and integer k, 0 ≤ k < 2j, we define a proper wavelet by
φ(x)[j, k] = −

√
2j/N for x ∈ [kN/2j, kN/2j +N/2j+1), φ(x)[j, k] =

√
2j/N for

� Supported by NSF DMS 0354600.

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 285–296, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

286 S. Muthukrishnan

x ∈ [kN/2j + N/2j+1, (k + 1)N/2j) and 0 otherwise. Additionally, we define a
wavelet function φ, also known as a scaling function, that takes the value +1/

√
N

over the entire domain [0, N). We number the φ(x)[j, k]’s as ψ0, ψ1, . . . , ψN−2

in some arbitrary order and φ as ψN−1. The support of a vector v, denoted
supp(v), is {t : v(t) 	= 0}. Thus the support of a wavelet vector is either the
entire interval [0, N) or, recursively, the left half or right half of the support of
some other wavelet. The wavelet ψN−1 is constant on its entire support; each
other wavelet is constant on the left half and right half of its support and takes
values on its left and right halves that are negatives of each other. The set of
possible supports of a wavelet is the set of dyadic intervals of length at least 2.
(A dyadic interval is the whole space a power of two in length, or recursively, a
dyadic interval comprising the left or right half. The intervals that x belong to
in the definition above are dyadic.)

Haar Wavelet Synopsis for Signals. Wavelets can be used to represent signals.
Consider a signal A[0...N − 1], where N is a power of 2 for convenience and
A[i] ∈ R. The wavelet coefficient ci = 〈A, ψi〉 . Since H = {ψ0, ψ1, . . . , ψN−1} is
a basis for RN , any signal A is exactly recoverable using the wavelet basis, ie.,
A =

∑
i ciψi. Typically, we are not interested in recovering the signal exactly

using all the N wavelet coefficients; instead, we want to represent the signal using
no more than B wavelet coefficients for some B 9 N . Say Λ is a set of wavelets
of size at most B. Signal A can be represented as R using these coefficients as
follows:

R =
∑
i∈Λ

ciψi.

Since B 9 N , R must necessarily be an approximation for worst case A. The
best B-term representation of A is the choice of Λ that minimizes the error εR of
representing A which is typically the sum-squared-error, i.e., εR = ||R−A||22 =∑

i(R[i] − A[i])2. From a fundamental result of Parseval from 1799 [22,2], it
follows that choosing the B largest |ci|’s suffices to get an R that minimizes εR.

Recent Versions of Haar wavelet Representation Recently, researchers have iden-
tified two variations of the basic problem above.

Problem 1. Given signal A[0, . . . , N − 1], N a power of 2, an integer B 9 N ,
and workload π[0, . . . , N − 1], determine set Λ of wavelets such that |Λ| ≤ B,
and επR =

∑
i π[i](R[i]−A[i])2 is minimized.

Problem 2. Given signal A[0, . . . , N − 1], N a power of 2, an integer B 9 N ,
and workload π[0, . . . , N − 1], determine set Λ of wavelets such that |Λ| ≤ B,
and absolute error1 ε∞R = maxi π[i]|R[i]−A[i]| is minimized.

1 All our discussions here will apply to minimizing the relative error εR =

maxi π[i] |R[i]−A[i]|
max{|R[i]|,1} with minor changes.

Subquadratic Algorithms for Workload-Aware Haar Wavelet Synopses 287

Problem 1 appears in [18,12,20,13,14]. Problem 2 appears in [9,3,8,13,14],
with uniform workload, that is, π[i] = 1/N for all i, but it is a natural to
generalize that to nonuniform π[i]’s. It is trivial to observe that the B i’s with
the largest |ci|’s no longer form the best B-term representation and indeed can be
arbitrarily far away from the optimal in specific instances for both the problems
above. So, algorithmically the problems above are nontrivial.

Motivation. Consider how Haar wavelet synopses get used in databases and data
analysis. A signal A (A[i] is the number of tuples in a table with attribute value—
say age of a student—i) is represented using a B-term wavelet representation
R which is used as the (succinct) approximation or the surrogate of A. When
the signal is queried using point queries, i.e., queries are of the form “A[i] =?”,
the approximation R[i] is returned instead. If all point queries are equally likely,
then average of the squared error in using R[i] rather than A[i] is precisely εR,
thus, the traditional rationale to minimize εR.

Problems 1 and 2 arise in the same setting, but motivated by different
practical aspects.

First, in practice, all point queries are not equally likely. In general, there is
bias in how points are queried that depends on the application and the nature
of the signal. So, there is a workload π, where π[i] is the probability of i being
queried. The uniform workload case is the one when π[i] = 1/N for all i. In the
general workload case then, one wants to minimize, analogous to the uniform
workload case, the total squared-error over all i’s, but now normalized for the
probability of a point i being queried (equivalently the probability of incurring
the error on i). More precisely, we wish to minimize επR =

∑
i π[i] (R[i]−A[i])2.

This is the Problem 1 above.
Second, in practice, averaging the error over the set of all points may not

be appropriate. For example, [9] shows that errors can vary without bound and
unpredictably, even for identical queries on nearly-identical values on different
parts of the data with representations that minimize the total or average error.
Hence, they propose to minimize error on individual points [9,8,3], leading to
Problem 2 above.

Both these problems are fairly central to query optimization in databases.
Databases [17] maintain workload information by profiling queries in a number
of ways and would prefer to use representations that accurately reflects their cost
for the given workload rather than ignore this information; similarly, optimizing
per-query error estimates is of interest too. There has been several heuristic
algorithms related to these problem [1,7,23,4].

Previous Results. In a key development, Garofalakis and Kumar [8] proposed a
dynamic programming approach to solve these problems. Their method, applied
to Problems 1 and 2, takes time O(N2B logB). Guha [12] improved this to
O(N2 logB) for Problem 1 and O(N2) time for Problem 2, where the author
also made a crucial improvement in the space used from O(NB) to O(N)—this
has an impact in practice.

288 S. Muthukrishnan

One of the outstanding questions is can one design improved algorithms
for these problems. Besides the natural question of improving running times
in general, this question is of relevance because part of the rationale for using
wavelets over other summaries like histograms comes from the fact that in the
traditional setting, wavelet transformation is highly efficient, working in O(N)
time while histograms have taken O(N2B) time [15]. Now with the two variants
above, histogram algorithms still take O(N2B) time, but the known wavelet
algorithms are not significantly more efficient. So, better wavelet constructions
are needed to make a strong case for wavelet representations in nontraditional
settings such as the ones above.

There are improved approximation results for Problems 1 and 2 [8,13,14],
and a linear time result with a modified basis [18]. But no o(N2) time optimal
algorithms are known for either variant for precisely minimizing the error with
the Haar basis.

Our Results. We present o(N2) time exact algorithms for versions of both vari-
ants. More precisely,

– We consider compressible π’s. In particular, a k-flat π for k 9 N comprises
k piecewise constant partition. That is, for p0 = 0 < p1 · · · < pk = N ,
we have for all i, π[j] = π[j + 1] where j ∈ [pi, pi+1 − 1). We present an
O(NkB2 logN) time algorithm in this case to minimize επR. This is nearly
linear for choices of B (sparse representation) and k (compressible π’s) of
interest.
In practice, π’s are seldom arbitrary in real life. k-flat π’s are natural in some
situations. For example, if the domain were time, one can imagine different
weights attached to several observations from different days (months) but
equal weights for all observations of the same day (or month, respectively).
Another natural setting is one in which N is very large and we do not
associate π[i] with all i’s, but only with a handful of i’s that are distinguished,
and let the remainder be uniformly important. If there are k distinguished
values, π is 2k− 1-flat. Finally, if π were compressed by run length encoding
or even wavelet representation, then it is O(k)-flat where k is the compressed
size of π. So, this is a very interesting case in practice.

– For minimizing ε∞R, we study its dual version: given an upper bound δ on
the error, minimize the number B of wavelet vectors needed in R so that
ε∞R ≤ δ. We present an O(N2/ logN) algorithm, and another taking time
roughly O(N2−εB∗) where B∗ is the optimal answer, for some constant ε.
Both algorithms take subquadratic time.

– We pose a few open problems in the larger context of representing signals via
different dictionaries to optimize suitable errors. We also present few other
(partial) results.

We believe the emerging Computer Science perspective to the area of Sparse
Approximation Theory which is a mature area in Mathematics is interesting,
and our results add to the growing body of work.

Subquadratic Algorithms for Workload-Aware Haar Wavelet Synopses 289

2 Problem 1

Recall that a k-flat π for k 9 N comprises k piecewise constant partition,
ie., for p0 = 0 < p1 · · · < pk = N , we have for all i, π[j] = π[j + 1] where
j ∈ [pi, pi+1 − 1). We will solve Problem 1 for the case of k-flat π’s in two
steps. First, we will consider k-dyadic-flats, that is, the case where each interval
Ii = [pi, pi+1) is dyadic. Later, we will consider the general case.

k-dyadic-flat π’s. Consider the full binary tree T with [0, N − 1] as the leaves.
Associate with each node u in T , the interval Ju spanned by the leaves in the
subtree rooted at it. Since each Ii is dyadic, it is an interval Ju associated with
some internal node u of T . Let the set of all nodes u in T that have an associated
Ju = Ii be denoted L; clearly |L| = k and no two such nodes are the parents of
each other since the k-flat intervals form a partition.

Definition 1. Let t be the portion of tree T that includes the nodes in L and
all their ancestors in T .

Observe that since the k-dyadic-flat intervals form a partition, t is size at
most 2k − 1 (k of leaves and k − 1 internal nodes); this is crucial.

We will apply a dynamic programming approach to the internal nodes of t
and a “local Parsevals” to the leaves of t.

Dynamic Programming. At any internal node u of t, we will consider Ju
and determine E(Ju, �, S) which is the least επR for representing A[Ju] with
any subset Λu of wavelets that have supports contained in Ju, |Λu| ≤ �, together
with the contribution for the set S of wavelets whose individual supports strictly
contain Ju.

Our emphasis is on searching over the different sets S that impinge on Ju.
Each dyadic interval I has a left half denoted IL and a right half denoted IR
which are themselves dyadic intervals. With each interval I, we associate the
wavelet vector ψI that is positive on IL and is negative on IR. There are two
cases to consider while computing E(I, k, S): ψI is included in the set of k wavelet
terms or not. Either way, we will write E(I, k, S) in terms of similar functions
for IR and IL recursively. Say ψI is included in the set of k wavelet terms. Then,

E(I, k, S) = min
0≤k′≤k−1

E(IL, k′, S ∪ ψI) + E(IR, k − 1− k′, S ∪ ψI).

In the other case,

E(I, k, S) = min
0≤k′≤k

E(IL, k′, S) + E(IR, k − k′, S).

Hence, E(I, k, S) is the minimum of the two possibilities above. The bound-
ary cases are easy to define, and E(I, k, S) can be calculated using dynamic
programming. The number of problems to solve by dynamic programming is
O(kB2min{k,logN}) since the number of different S can be bounded by either

290 S. Muthukrishnan

logN , the depth of T , or k, the number of internal nodes in t; each such prob-
lem can be computed in O(B) time.

Local Search. Now we focus on the local search which is applied to intervals
on the leaves of t. We will exploit the property of π that it is constant in such
intervals, and be much more efficient than exploring the solution space by dy-
namic programming. Formally, consider computing E(Ju, �, S) where Ju = Ii for
some i. Let Au denote the signal in interval Ju. We make the following crucial
observation:

Lemma 1. (Local Parseval’s) Let α0, α1, . . . , α|Ju|−2 be the proper wavelet
vectors of an interval [0, |Ju|−1] and α|Ju|−1 be the all “average” scaling vector.
E(Ju, �, S) is minimized by choosing the largest � wavelet coefficients in magni-
tude from 〈A, αi〉 for i = 0, . . . , |Ju| − 2.

Proof. The contribution of S to a j ∈ Ju is v[j] = (
∑

ψi∈S 〈A, ψi〉ψi)[j]. Since
all ψi’s in S have support that contains Ju, v[j]’s will be identical for all j ∈ Ju.
So, we have a generic v to denote the value v[j] for any j ∈ Ju and v to denote the
vector of all v’s of size Ju. Observe that E(Ju, �, S) is minimized by choosing the
� wavelet coefficients ψi with supp(ψi) ∈ Ju for the signal Au−v. Let R be such
a representation. Observe that the ψi’s with supp(ψi) ∈ Ju have a one-to-one
correspondence with α0, α1, . . . , α|Ju|−2. The difference between picking amongst
the best wavelet representation of Au − v from αi’s that form an orthonormal
basis for it, and from amongst ψi with supp(ψi) ∈ Ju is the presence of α|Ju|−1

in the orthonormal basis that is not available in determining E(Ju, �, S) since it
is not a wavelet vector for the signal A on [0, N).

We now proceed with the proof of the lemma. We have Au =
∑

i 〈A, αi〉αi
and v =

∑
i 〈v, αi〉αi since αi’s are an orthonormal basis. Note further that

〈v, αi〉 = 0 for i = 0, . . . , |Ju| − 2. We have R =
∑

i∈Λ, |Λ|≤�, Λ∈{0,...,|Ju|−2} ciαi
which we seek. Expanding and doing algebaric manipulations, one can conclude
that (fix Λ ∈ {0, . . . , |Ju| − 2})

‖Au − v −R‖2 = (
〈
Au, α|Ju|−1

〉
− v)2 +

∑
i∈Λ

(ci − 〈Au, αi〉)2 +
∑
i�∈Λ

〈Au, αi〉2

because all the other cross terms cancel out since αi ⊥ αj for i 	= j. Now the
lemma follows since last two summands do not depend on v.

Local Parseval’s has certain nontrivial aspects. For example, v in the proof
may be positive or negative, and we do not pick the largest � of the wavelet
coefficients for the signal in the interval of interest, but rather the largest � from
those except the scaling vector. This form of Local Parseval’s may have other
applications.

The algorithm that uses the Local Parseval’s for local search is simple and
takes O(|Ju|) time and therefore O(N) over all u’s that form the leaf of t. That
completes the description of the algorithm for the k-dyadic-flat case.

Theorem 1. Problem 1 can be solved in O(N + kB22min{k,logN}) time for k-
dyadic-flat π’s.

Subquadratic Algorithms for Workload-Aware Haar Wavelet Synopses 291

Note that when k is small, say a constant, this algorithm takes time linear
in N ; for general k, the running time is O(NkB2) which is near-linear since
k,B 9 N .

k-flat π’s. When π is k-flat but not k-dyadic-flat, we can not directly follow the
previous algorithm. Since any dyadic interval Ju in T may overlap two partitions
of a k-flat π (one at either end), the dynamic programming and local search
problems do not divide nicely into independent problems. Our approach here is
to replace any k-flat π with O(k logN)-dyadic-flat π′ by replacing each constant
partition in π using at most O(logN)-sized partitions that are dyadic (in a
straightforward way). We can conclude with a near-linear time algorithm again
since k,B 9 N :

Theorem 2. Problem 1 can be solved in time O(NkB2 logN) for k-flat π’s.

3 Problem 2

Formally, we study the dual version below.

Problem 3. Given a bound δ, find the smallest B such that the optimal B-sized
representation R satisfies, maxi π[i]|R[i]−A[i]| ≤ δ.

We will outline our solution for the uniform π case (that is, all π’s are equal, so
they can be removed from the optimization criteria); extension to the nonuniform
case is straightforward. Given an interval I and set S of wavelets whose individual
supports strictly contain I, consider B(I, δ, S), the least number of wavelets from
ΛI needed for representing A[I] such that for each i ∈ I, |R[i] − a[i]| ≤ δ. Say
ψI is included in the set of k wavelet terms. Then,

B(I, δ, S) = B(IL, δ, S ∪ ψI) + B(IR, δ, S ∪ ψI) + 1.

In the other case,

B(I, δ, S) = B(IL, δ, S) + B(IR, δ, S).

Hence, B(I, δ, S) is the minimum of the two possibilities above. This dynamic
programming method gives an algorithm that takes time O(N2).

Using local search, we will develop a more efficient algorithm. We need the
key observation: we do not have to solve B(I, δ, S) for each possible S. Instead,
it suffices to keep the maximum and minimum absolute errors for each subset of
wavelets in ΛI . This is because:

Lemma 2. We have
min

S , i∈2ΛI

max
j∈I

|δji − vS |,

where δji is the error in A[j] due to set i of wavelets chosen from ΛI and vS is
the contribution of S to each i ∈ I, is equal to

min
S , i∈2ΛI

max{|(max
j∈I

δji)− vS |, |(min
j∈I

δji)− vS |}.

292 S. Muthukrishnan

As before, we run dynamic programming until we have intervals of size 2j and
following that, we run the local search above; the combined algorithm will take
time O(N2j

N
2j 2j+ N

2j 22j

), which, when balanced, reduces to O(N2/ logN). Details
have been omitted, but they can be reconstructed with some work.

Another improvement is as follows. Say B∗ is the optimal answer. It suffices to
keep the maximum and minimum absolute errors over all B∗-sized subsets. Then
in the local search phase, we will spend only time O(|I|B∗

). Then we can balance
the two running times by choosing 2j = n1/B∗+1 so the total running time is
O(N2− 2

B∗+1B∗). Both these improvements make the running time marginally
subquadratic o(N2).

Theorem 3. There is an O(N2/ logN) (or O(N2− 2
B∗+1B∗), where B∗ is the

optimal number) time algorithm to solve Problem 3.

This result for the dual problem is not only of independent interest, but also
may be used to approximate the solution to the primal problem studied in [8]
by binary searching with guesses of δ. Then, with O(log δ∗) extra factor in the
running time, one can solve the primal version as well.

4 Extensions

From a mathematical and algorithmic viewpoint, lot remains to be done with
different π’s and εR’s, despite the recent progress.

In what follows, we will list a set of open problems and provide some com-
ments. We have chosen to discuss only those problems that we believe are rele-
vant to understanding the role of π, and those that have some nontrivial intuition
or challenge.

4.1 Foundational Open Problems

Problem 4. Consider some compression measure of π, ie., the size of π using a
compression algorithm, denoted C(π). Find fast algorithms for Problem 1 that
adopt to C(π).

The problem above is motivated by an interest to develop faster algorithms
that exploit properties of the importance vector π. In particular, we would like to
study the information content of π. The uniform π = 1/N is most compressible
and arbitrary π is incompressible; they lead to the classical wavelet representa-
tion problem solved via Parseval’s, and the recent nonuniform problem studied
in this paper, respectively. Problem 4 is an attempt to parameterize the com-
plexity of the problem in terms of the information content of π as determined
by a compression method. Two simple examples arise:

– If we used run-length compression to compress π, then π is piecewise constant
with C(π) disjoint pieces. Then our Theorem 2 solves it in near-linear time.

Subquadratic Algorithms for Workload-Aware Haar Wavelet Synopses 293

– If π can be summarized exactly using say k Haar wavelet coefficients, then
π can be rewritten as piecewise constant functions on O(k) dyadic pieces.
Then our Theorem 1 solves it in nearly linear time.

But better compressors (such as Lempel-Ziv) are known and Problem 4 is open
for those cases. Recently, this view was developed for weight hitogram construc-
tion algorithms [21], but they do not provide any insight into wavelet represen-
tation construction.

Problem 5. Say π is periodic with period p, ie., π[j + p] = π[j] for all j ∈
0, . . . , N − 1. Solve Problem 1 under this assumption.

Again, this problem tries to exploit properties of π but from a different per-
spective from Problem 4. Periodic π’s can be nicely compressed, but compressible
π’s are not strictly periodic. This problem brings out the difficulty in comput-
ing partial solutions at two disjoint portions of the signal which have identical
weights, ie., for the same information content of π, what is the role of different
signals on the complexity of Problem 1?

Problem 6. Given signal A[0, . . . , N − 1], N a power of 2, an integer B 9 N ,
and importance π[0, . . . , N − 1], determine set Λ of wavelets with |Λ| ≤ B and
coefficients di for i ∈ Λ such that επR =

∑
i π[i] (R[i]−A[i])2 is minimized where

R =
∑

i∈Λ diψi.

The problem above is more general than Problem 1 because di is not neces-
sarily chosen to be the wavelet coefficients ci = 〈A, ψi〉. In principle, choosing
di’s more effectively does not hurt the applications. First,

Theorem 4. If the set Λ of wavelets were fixed, then the choice of di’s to solve 6
can be computed using least-squares fit approach in time O(N +B3) in the worst
case.

But the problem above is to search simultaneously over the choice of wavelets
ψi’s as well as di’s. Note that if π was uniform, then from the orthogonality of
ψi’s, it will follow that di = 〈A, ψi〉. But that does not hold for arbitrary π’s.
We present the following partial result.

Theorem 5. There is an algorithm that solves Problem 6 in time O(nB2 log2 N)
and outputs a representation R of at most B logN wavelet vectors and error επR
no worse than the optimal error of any representation with B wavelet vectors.

The result above is an augmented-resource result. We are able to obtain no
worse error than we seek, but at the expense of larger number of buckets than the
budget allows. The theorem above relies on the observation that any B vector
representation can be converted into one with at most B logN vectors where the
wavelet vectors are non-intersecting (for suitable choice of di’s). Thereafter, we
do a dynamic programming to pick the B logN nonoverlapping wavelet vectors
in a straightforward way taking time claimed in the theorem. Again, details have
been omitted. We can get an improved running time if we additionally assumed

294 S. Muthukrishnan

that π’s are compressible as in Section 2, but this is of lesser concern than
decreasing the logN factor in the number of wavelet vectors in the solution.

Finally, here is a gem.

Problem 7. Solve Problem 1 with the dictionary of Fourier basis.

We think this is a fairly basic question and surprisingly, perhaps because
this problem was not formulated explicitly before, we do not know of an efficient
algorithm for this problem from prior work.

4.2 Applied Open Problems

From an applied point of view, finally, experimental studies matter. For example,
it will be interesting to evaluate different heuristics for optimal wavelets using
experiments under realistic arbitrary workloads. An interesting question is what
heuristics to study. In sparse approximation theory, when one deals with non-
standard problems where Parseval’s does not apply, it is common to (a) use
greedy methods and sometimes they give provably good bounds, or (b) transform
the problem so that Parseval’s may be used. In our problem, for example, (b)
can be applied as follows.

Heuristic. We have
επR = (A−R)TD(A−R),

where D is the diagonal matrix with D[i, i] = π[i] and D[i, j] = 0 for i 	= j. We
can rewrite this by setting A′ = D1/2A and say its approximate representation
is R′. Then, we have

επR = (A′ −R′)T (A′ −R′).

This is in the standard form of the error and hence we can directly apply Parse-
val’s theorem and find the B largest Haar coefficients to get optimal R′ for A′.
This whole procedure takes only O(N) time. While this is optimal in error, using
this transformation to represent A involves an inverse transformation that is not
akin to Haar wavelet decoding (eg., it involves estimating A′[j] and scaling it
by 1/

√
π[j] because even though A′ is represented using the Haar wavelet basis

(denote it by Ψ), A is represented using a transformed basis (ie., D−1/2Ψ)).
Recently, another nice heuristic has been suggested that too involves trans-

forming the basis from Haar to a suitably different weighted version [18]. Also,
there are heuristics to the Haar wavelet basis case based on greedy methods.
Finally, some approximate algorithms have been proposed recently [13,14]. The
open issue from an applied point of view is to compare these heuristics to each
other and to our optimal results with Haar wavelets, and to explore the tradeoffs
in practice.

5 Concluding Remarks

This brings us to the concluding thought, namely, why focus on representing a
signal using the Haar basis and why not one of the transformed basis if it has

Subquadratic Algorithms for Workload-Aware Haar Wavelet Synopses 295

suitable properties for fast coding and decoding. Adapting the standard Haar
basis for coding signals and making it more suitable for the workload entails no
changes in the decoding procedure of a signal using the wavelet representations. In
fact, the decoding program does not need to know π. Hence, from a systems point
of view, there is some preference to our approach. Of course from a technical
point of view, our problem is of great interest because what appears to be a
natural variation of the classical method from 1910 seems to pose new challenges
and calls for new algorithmic strategies beyond the Parseval’s theorem that has
been the workhorse of sparse approximation theory since 1799. Also, this inspires
the area of sparse approximation with nonuniform workloads and non-euclidean
error metrics which we hope will develop into a theory with a clear understanding
of the complexity of the problem in terms of the structure of π and A.

6 Acknowledgements

Thanks to David Applegate for pointing me to the least squares fit method in
Problem 6. Thanks to Suhas Diggavi for discussions about wavelet basis trans-
formations. Thanks to Sudipto Guha for describing his recent results [12,13,14].

References

1. A. Aboulnaga and S. Chaudhuri. Self-tuning histograms: building histograms with-
out looking at data. Proc. SIGMOD, 181–192, 1999.

2. K. G. Beauchamp. Walsh functions and their applications. 1975.
3. A. Deligiannakis, M. Garofalakis, and N. Roussopoulos. A fast approximation

scheme for probabilistic wavelet synopses. Proc. of SSDBM, 2005.
4. A. Deligiannakis and N. Roussopoulos. Extended wavelets for multiple measures.

Proc. SIGMOD, 2003.
5. R. Devore and G. Lorentz. Constructive approximation. Springer Verlag, 1991.
6. K. Egiazarian and J. Astola. Tree-structured Haar transforms. Journal of Mathe-

matical Imaging and Vision, 16:269–279, 2002.
7. V. Ganti, M. Lee and R. Ramakrishnan. ICICLES: Self-tuning samples for approx-

imate query answering. VLDB Journal, 176–187, 2000.
8. M. Garofalakis and A. Kumar. Deterministic wavelet thresholding for maximum

error metrics. Proc. PODS, 2004.
9. M. Garofalakis and P. Gibbons. Wavelet Synopses with Error Guarantees. Proc. of

ACM SIGMOD, 476–487, 2002.
10. A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan and M. Strauss.

Fast, small space algorithms for approximate histogram maintenance. Proc. STOC,
389–398, 2002.

11. A. Gilbert, S. Muthukrishnan and M. Strauss. Approximation of functions over
redundant dictionaries using coherence. Proc. ACM-SIAM SODA, 2003.

12. S. Guha. Space Efficiency in Synopsis Construction Algorithms Proc. VLDB, 2005.
13. S. Guha, B. Harb. Wavelet Synopsis for Data Streams: Minimizing Non-Euclidean

Error. Proc. KDD, 2005.
14. S. Guha, B. Harb. Approximation Algorithms for Wavelet Transform Coding of

Data Streams. To appear in Proc. ACM-SIAM SODA, 2006.

296 S. Muthukrishnan

15. H. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. Sevcik, and T. Suel.
Optimal Histograms with Quality Guarantees. Proc. VLDB, 275–286, 1998.

16. A. Haar. “Zur theorie der orthogonalen functionsysteme”. Math Annal., Vol 69,
331–371, 1910.

17. V. Markl, G. Lohman and V. Raman. LEO: An automatic query optimizer for
DB2. IBM Systems Journal, Vol 42, No 1, 2003. Aloso, Proc. VLDB, 2002.

18. Y. Matias and D. Urieli. Optimal workload-based wavelet synopses. Proc. Intl Conf
on Database Technology, 2004.

19. Y. Matias, J. Vitter and M. Wang. Wavelet-based histograms for selectivity esti-
mation. Proc. ACM SIGMOD, 448–459, 1998.

20. S. Muthukrishnan. Workload-optimal wavelet synopsis. DIMACS Technical Report
2004-25, May 2004.

21. S. Muthukrishnan, M. Strauss and X. Zhang. Workload-aware histograms on
streams. To appear in Proc. ESA, 2005. Also, DIMACS TR 2005.

22. M. Parseval. http://encyclopedia.thefreedictionary.com/Parseval’s+theorem 1799.
23. R. Schmidt and C. Shahabi. How to evaluate multiple range-sum queries proges-

sively. Proc. PODS, 2002.

Practical Algorithms for Tracking Database Join Sizes

Sumit Ganguly, Deepanjan Kesh, and Chandan Saha

Indian Institute of Technology, Kanpur

Abstract. We present novel algorithms for estimating the size of the natural join
of two data streams that have efficient update processing times and provide ex-
cellent quality of estimates.

1 Introduction

The problem of accurately estimating the size of the natural join of two database tables
is a classical problem[15,13,1,11,12], with fundamental applications to database query
optimization and approximate query answering. Prior work in the ’80s through the mid
’90s largely focussed on the stored data model, where, the joining relations are either
disk or memory-resident. Sampling emerged as a popular solution technique in this
model [14,15,13].

The streaming data model [6,5,7,4] was proposed in the late ’90’s as a model for
a class of monitoring applications, such as network management, RF-id based appli-
cations, sensor networks, etc. These applications are characterized by high volumes of
rapidly and continuously arriving records. The monitoring applications can often tol-
erate approximate answers, provided, (a) the error probability and the approximation
ratio are both guaranteed to be low, (b) the rate of processing is able to keep pace with
the fast arrival rates without significantly degrading the quality of answers, and, (c) the
space consumed is significantly smaller than that needed for exact computation. Ex-
isting streaming algorithms satisfy a majority of the above properties, and in addition,
process the stream in an online fashion, (i.e., look once only).

Data Stream Model and Notation. A data stream is viewed as a sequence of updates
of the form (i, v), where, i takes values from the domain D = {0, 1, . . . , N − 1},
and v is the change in the frequency of the items. If v > 0, then we can think of the
tuple (i, v) as representing v insertions of i; correspondingly, if v < 0, then, (i, v) can
be thought of as representing v deletions of i. The frequency of i, denoted by fi, is
the sum of the changes to the frequency of i since the inception of the stream, that is,
fi =

∑
(i,v) appears in stream v. We denote by mR the sum of the frequencies of the items in

a stream R, that is, mR =
∑

i∈D fi. In this paper, we consider the insert-only model of
data streams (i.e., v > 0 for all updates) and the general update model of data streams
(i.e., v > 0 or v < 0).

The self-join [2,3,1] of a stream R is denoted by SJ(R) and is defined as SJ(R) =∑
i∈D f2

i . For r = 1, 2, . . . , N , let rank(r) be a (ranking) function that returns an item
whose frequency is the rth largest frequency in f (ties are broken arbitrarily). The
residual self-join [8] of a stream R, denoted by SJres(R, k) is defined as the self-join of

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 297–309, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

298 Sumit Ganguly, Deepanjan Kesh, and Chandan Saha

R after the top-k ranked frequencies are removed, that is, SJres(R, k) =
∑

r>k f
2
rank(r).

It is easily shown that SJres(R, k) ≤ m2
R

4k .

In this paper, we consider two data streams R and S, and denote the frequencies of
an item i in streams R and S by fi and gi respectively. The size J of the natural join of
R and S is defined as J = |R &' S| =

∑
i∈D fi ·gi. Following standard convention, we

let 0 < ε ≤ 1 and 0 < δ < 1 denote user-specified accuracy and confidence parameters
respectively. When referring to the join of R and S, we use m to denote mR + mS , SJ
to denote SJR + SJS , and SJres(k) to denote SJres(R, k) + SJres(S, k).

Previous work. The seminal work in [1,2,3] presents the product of sketches tech-
nique that estimates the join size using space O(s · (log(mN)) · log 1

δ) bits with ad-

ditive error of O((SJ(R)SJ(S))1/2

ε
√
s

). The work in [1] also presents a space lower bound

of s = Ω(m
2

J) for approximating the join size J to within a constant confidence over
general data streams. The product of sketches algorithm does not match the space lower
bound for the problem, and, the time taken to process each stream update can be large
(O(s · log 1

δ)). The Fast-AGMS algorithm[10] is a time-efficient variant of the product
of sketches technique, processing stream updates in time O(log 1

δ), while providing the
same space versus accuracy guarantees of the product of sketches algorithm.

COUNT-MIN sketches[9] presents an elegant technique for estimating the join
size using space O(s(logN + logm) log 1

δ) bits, time O(log 1
δ) for processing each

stream update and with additive estimation error of O(m
2

s). The cross-sampling al-
gorithm [1] has similar properties; however, it is not applicable to streams with dele-
tion operations and is known to be generally outperformed by sketch-based methods
in practice. The skimmed-sketches algorithm [12] estimates the join size using space
O(s(logN) log(m ·N) · log (m logN)

δ) bits, time O(log 1
δ) for processing each stream

update and with additive error ofO(m
2

εs). The COUNT-MIN sketch and skimmed-sketch
techniques match the worst-case lower bound for the problem. Their main drawback is
that they often perform poorly in comparison with the simple product of sketches al-
gorithm, since, the complexity term m2 of [12] is in practice, much larger than the
self-join sizes.

Contributions. In this paper, we present two novel, space-time efficient algorithms
called REDSKETCH and REDSKETCH-A for estimating the size of the natural join
of two data streams. The REDSKETCH algorithm estimates the join size using O(s ·
log(mN)·log m

δ) bits , with additive error = O(m·(SJres(s))1/2
√
s

). The REDSKETCH-A al-

gorithm estimates the join size using space O(s·log(mN)·log m
δ) bits and with additive

estimation error of O
(
J2/3·(SJ)1/6·(SJres(s))1/6

s1/6

)
. Both algorithms process each stream

update in time O(log m
δ) and match the space lower bound of [1] (up to logarithmic

factors). Our algorithms are practically effective, since, the bounds are in terms of SJ
and SJress , which are significantly less than m2 and m2

s , respectively, in practice.

Organization. The rest of the paper is organized as follows. In Section 2, we re-
view basic data stream algorithms that we use later. Sections 3 and 4 present the
REDSKETCH and the REDSKETCH-A algorithms respectively. We conclude in Sec-
tion 5.

Practical Algorithms for Tracking Database Join Sizes 299

2 Review

In this section, we review sketches [2,3], the algorithm CountSketch [8] for approxi-
mately finding the top-k frequent items over R and the FAST-AGMS algorithm [10]
for estimating binary join sizes.

Sketches and estimating self-join sizes. A sketch[2,3] X of the stream R is a random
integer defined as X =

∑
i∈D fi · xi, where, for each i ∈ D, xi is chosen randomly

from the set {−1,+1} such that the family of random variables {xi}i∈D are four-
wise independent. The family {xi}i∈D is called the sketch basis. Corresponding to a
stream update of the form (i, v), the sketch is updated in time O(1) as follows: X
:= X + xi · v. It can be shown that E

[
X2
]

= SJ and Var
[
X2
]

= O(SJ2). An ε-
accurate estimate of the self-join is obtained by taking the average ofO(1

ε2) independent
sketches. The confidence of the estimate is boosted to 1 − δ by using the standard
technique of returning the median of O(log 1

δ) independently computed averages.

Algorithm CountSketch [8]. Sketches are used in [8] to design the CountSketch al-
gorithm for finding the top-k frequent items in a data stream. The data structure called
CSK consists of a collection of s hash tables, T [1], . . . , T [s], each consisting of A buck-
ets. A pair-wise independent hash function ht : D → {0, 1, . . . , A− 1} and a pair-wise
independent sketch basis {xt,i}i∈D are associated with each hash table, 1 ≤ t ≤ s.
Each bucket, T [t, b] keeps the sketch Xt,b =

∑
ht(i)=b

fi · xt,i, of the sub-stream of
the items that map to this bucket. In addition, an array capable of storing A pairs of the
form (i, f̂i) is kept and organized as a classical min-heap data structure. Corresponding
to a stream update (i, v), the structure CSK is updated in time O(s) as follows.

UPDATECSK(i, v) : for t := 1 to s do Xt,ht(i) := Xt,ht(i) + v · xt,i endfor

Once all the hash tables are updated, the frequency fi is estimated as

f̂i = medianst=1Xt,ht(i) · xt,i . (1)

If f̂i exceeds the lowest value estimate in the heapH , then, the latter value is evicted and
replaced by the pair (i, f̂i). The estimation guarantees of the CountSketch algorithm are
stated as a function Δ of the residual self-join and is summarized below.

Δ(s,A) = 8
(

SJres(s)
A

)1/2

(2)

Theorem 1 ([8]). Let s = O(log m
δ), A ≥ 8 ·k, and let Δ = Δ(A8 , A). Then, for every

item i, Pr
{
|f̂i − fi| ≤ Δ

}
≥ 1− δ

2·m . The space complexity is O(k·log m
δ ·(log(m·N))

bits, and the time taken to process a stream update is O(log m
δ). &'

The FAST-AMS [16] and FAST-AGMS algorithms [10]. The FAST-AGMS al-
gorithm is a time-efficient variant of the product of sketches technique for estimating
join sizes. The CountSketch based second moment estimator presented in [16] applies a

300 Sumit Ganguly, Deepanjan Kesh, and Chandan Saha

similar optimization for reducing the processing time for estimating self-joins. The al-
gorithm uses a pair of set of hash tables, T1, T2, . . . , Ts and U1, U2, . . . , Us for streams
R and S respectively, such that, each hash table consists of A buckets. The T and U
hash tables are parallel in the sense that for 1 ≤ t ≤ s, the tables Tt and Ut use the same
random pair-wise independent hash function ht : D → {0, 1, . . . , A− 1} and the same
four-wise independent sketch basis {xt,i}. The random bits used for different hash table
indices are independent of each other. For 1 ≤ t ≤ s and 0 ≤ b ≤ A − 1, each bucket
Tt[b] (resp. Ut[b]), contains a single sketch Xt,b (resp. Yt,b) of the sub-stream of items
that hash to this bucket, that is, Xt,b =

∑
ht(i)=b

fi ·xt,i (resp. Yt,b =
∑

ht(i)=b
gi ·xt,i).

Updates to the stream R or S are propagated to the corresponding data structure T or U
appropriately, similar to the UPDATECSK sub-routine given in Section 2. For each hash
table index t, 1 ≤ t ≤ s, an estimate Ĵt is obtained as follows: Ĵt =

∑A−1
b=0 Xt,b · Yt,b.

Finally, the median of these estimates is returned as the estimate of the join size, that is,
Ĵ = medianst=1Ĵt. Lemma 1 summarizes the basic property of this algorithm.

Lemma 1 ([10,16]). E
[
Ĵt
]

= J and Var
[
Ĵt
]
≤ 1

A

(
SJ(R) · SJ(S) + J2

)
. In particu-

lar, if R = S, then, E
[
Ĵt
]

= SJ(R) and Var
[
Ĵ
]
< 2(SJ(R))2

A . &'

3 Algorithm REDSKETCH for Join Size Estimation

In this section, we present the algorithm REDSKETCH for estimating the size of the
join of data streams R and S for the insert-only stream model. The algorithm can be
extended to insert-delete streams by using a variant of the CountSketch algorithm that
can handle deletions.

The data structure used by the algorithm is a pair of parallel CountSketch struc-
tures denoted by CSKR and CSKS , for streams R and S respectively. The structures
CSKR and CSKS use a pair of parallel hash table sets, T [1], . . . , T [s] for CSKR and
U [1], . . . , U [s] for CSKS , respectively, each consisting of A buckets. The hash table sets
in the sense that Tt and Ut use the same random pair-wise independent hash function
ht and the same four-wise independent sketch basis xt,i. The updates to the structure
are done as in the CountSketch algorithm.

A join value i from stream R (resp. S) is said to be frequent in R (resp. S) provided
its estimate f̂i obtained using the frequency estimation procedure of CountSketch(resp.
ĝi) is among the top-k estimated frequencies in the stream R (resp. S).

Let F denote the set of join values that are frequent in either R or S. We decompose
the join size J into two components as follows.

J0 =
∑

i∈F fi · gi, and J1 =
∑

i�∈F fi · gi.

The estimate Ĵ0 is obtained as Ĵ0 =
∑

i∈F f̂i · ĝi. Next, we reduce the hash tables
by deleting the estimated contribution of each frequent item i ∈ F from the sketches
contained in those buckets to which the item i hashes to.

Xt,ht(i) := Xt,ht(i) − f̂i · xt,i ; Yt,ht(i) := Yt,ht(i) − ĝi · xt,i for i ∈ F , 1 ≤ t ≤ s

Practical Algorithms for Tracking Database Join Sizes 301

We then multiply the corresponding buckets of the reduced hash table pair Tt and Ut
and obtain an estimate for J1 as the median of averages.

J ′t =
A−1∑
b=0

Xt,b · Yt,b, for t = 1, 2, . . . , s, and Ĵ1 = medianst=1J
′
t .

The join size is estimated as Ĵ = Ĵ0 + Ĵ1. Theorem 2 presents the accuracy versus
space guarantees of the algorithm.

Theorem 2. For any 0 < δ < 1, A = 64k, and s = O(log m
δ), Pr{|Ĵ − J | ≤ E} ≥

1− δ, where, E = 4√
k
(mR · (SJres(S, k))1/2 + mS · (SJres(R, k))1/2 + J

4
√
k

. &'

If A = 64k, then, the space used by the algorithm is O(k · logm log m
δ) bits. The time

taken to process each stream update is O(log m
δ) operations. We now prove Theorem 2.

Analysis. Let ΔR = ΔR

(
A
8 , A

)
= 8

(
(SJres(R,A

8)

A

)1/2

and ΔS = 8
(

SJres(S,A
8)

A

)1/2

.

Let Γ = (mR(SJres(S, k)1/2 + mS(SJres(S, k))1/2).

Lemma 2. Let A ≥ 64k. Then, (i) (mRΔS + mSΔR) ≤ 2Γ√
k
,

(ii) (SJres(R, k))1/2(SJres(S, k))1/2 ≤ Γ
8
√

2k
and (iii) kΔRΔS ≤ Γ

8
√

2k
.

Proof. We use the property that SJres(R, k) ≤ m2
R

4k .

(i) mRΔR ≤ 8mR(SJres(R,A
8))1/2

√
A

≤ mR(SJres(R,k))1/2
√
k

, since, A ≥ 64k. Similarly

mSΔS ≤ mS SJres(S,k)√
k

). Adding, we obtain part (i).

(ii) (SJres(R, k))1/2(SJres(S, k))1/2 ≤ mR

4
√

2k
(SJres(S, k))1/2. Similarly,

(SJres(R, k))1/2(SJres(S, k))1/2 ≤ (SJres(R, k))1/2 mS

4
√

2k
). Therefore, adding,

we have, 2(SJres(R, k))1/2(SJres(S, k))1/2 ≤ Γ

4
√

2k
.

(iii) Since, k ≤ A
64 < A

8 , SJres(R, A8) ≤ SJres(R, k) and SJres(S, A8) ≤ SJres(S, k).
Thus, kΔRΔS ≤ 64k

A (SJres(R, k)SJres(S, k))1/2 ≤ Γ
8
√

2k
, by part(ii). &'

Lemma 3. Let A = 64k. Then, |Ĵ0 − J0| ≤ (2 + 1
4
√

2
) Γ√

k
with probability 1− δ

4 .

Proof. By Theorem 1, it follows that |f̂i− fi| ≤ ΔR, and |ĝi − gi| ≤ ΔS , with proba-
bility 1− δ

8m . Since, |F | ≤ k + k = 2k, therefore,

|Ĵ0 − J0| ≤
∑
i∈F
|f̂iĝi − figi| ≤

∑
i∈F

((fi + ΔR)(gi + ΔS)− figi)

=
∑
i∈F

(fiΔS + giΔR + ΔRΔS) ≤ mRΔS + mSΔR + |F |ΔRΔS

≤ mRΔS + mSΔR + 2kΔRΔS ≤
(

2Γ√
k

+
Γ

4
√

2
√
k

)

302 Sumit Ganguly, Deepanjan Kesh, and Chandan Saha

by Lemma 2, parts (i) and (iii). By union bound, the error probability is bounded by
δ|F |
8m ≤ δ

4 . &'

Defining the reduced frequency vector f ′ as follows.

f ′i =

{
fi if i 	∈ F (i.e., i is not a frequent item)

fi − f̂i otherwise.
(3)

Lemma 4. Let A = 64k. Then, |E
[
J ′t
]
− J1| ≤ Γ

4
√

2k
, with probability 1− δ

4 .

Proof. By Lemma 1, E
[
J ′t
]

=
∑

i∈D f ′ig
′
i. Thus,

∣∣E[J ′t]− J1

∣∣ =
∣∣∑
i∈D

f ′ig
′
i −

∑
i�∈F

figi
∣∣ ≤∑

i∈F
|fi − f̂i||gi − ĝi| ≤ 2kΔRΔS ≤

Γ

4
√

2k

by Lemma 2, part(iii). The total error probability is bounded by δ|F |
8m ≤ δ

4 . &'

We now present an upper bound on the self-join size of the reduced frequencies. Let H
denote the set of top-k items of a stream (say R) in terms of estimated frequencies.

Lemma 5. Let s3 = O(log m
δ). Then,

∑
i�∈H f2

i ≤ SJres(k)
(
1 + 32

(
k
A

)1/2
+ 256 kA

)
,

with probability at least 1− δ
16 .

Proof. Let P be the set of the top-k items in terms of their true frequencies. Since P
and H are sets of k values each, therefore, |P −H | = |H − P | and we can map each
value i of P − H to a unique value i′ of H − P (arbitrarily). For any i ∈ P − H ,
fi ≥ fi′ and f̂i ≤ f̂i′ . Therefore, for any i ∈ P −H ,

0 ≤ fi − fi′ = (f̂i′ − fi′) + (fi − f̂i) + (f̂i − f̂i′) ≤ (f̂i′ − fi′) + (f̂i − fi) .

Taking absolute values, |fi−fi′ | ≤ |f̂i′−fi′ |+ |f̂i−fi| ≤ Δ+Δ = 2Δ, by Theorem 1
(with probability 1− δ

8m each). We therefore have,∑
i�∈H

f2
i =

∑
i∈P−H

f2
i +

∑
i�∈(P∪H)

f2
i ≤

∑
i′∈(H−P)

(fi′ + 2 ·Δ)2 +
∑

i�∈(P∪H)

f2
i

=
∑
j �∈P

f2
j + 4Δ

∑
i′∈(H−P)

fi′ + 4 · |H − P | ·Δ2

= SJres(k) + 4Δ|H − P |1/2
∑

i′∈H−P
f2
i′ + 4kΔ2

≤ SJres(k) + 4k1/2Δ(SJres(k))1/2 + 4kΔ2

< SJres(k)

(
1 + 32

(
k

A

)1/2

+ 256
k

A

)
&'

Practical Algorithms for Tracking Database Join Sizes 303

Lemma 6. Let A = 64k. Then,
∑

i∈D f ′2i < 37
4 SJres(R, k) and

∑
i∈D g′2i <

37
4 SJres(S, k) with probability 1− δ

16 .

Proof. Let FR denote the top-k items in R in terms of estimated frequencies. Then,∑
i∈D f ′2i =

∑
i∈FR

(fi − f̂i)2 +
∑

i�∈FR
f2
i

≤ kΔ2
R + SJres(R, k)

(
1 + 32

√
k√
A

+ 256k
A

)
, by Lemma 5

= 1
4 SJres(R, k) + SJres(R, k)(1 + 32

√
k√

64k
+ 256k

64k) = 37
4 SJres(R, k) .&'

Lemma 7. Let A = 64k. Then,|Ĵ1 − J1| ≤ Γ√
k

+ J1

4
√
k

with probability 1− δ
4 .

Proof. By Lemma 1, Var
[
J ′t
]
≤ 1

A

(
(
∑

i∈D f ′2i)(
∑

i∈D g′2i) + 1
A (E

[
J ′t
]
)2
)
. Substitut-

ing from Lemma 6, we obtain that

Var
[
J ′t
]
≤ (37)2

16A SJres(R, k)SJres(S, k) + 1
A (E

[
J ′t
]
)2) ≤ (37)2Γ 2

(16)(64)(128)k +
(E
[
J′

t

]
)2

64k

by Lemma 2, part(ii) and substituting A = 64k. Therefore, (Var
[
J ′t
]
)1/2 ≤ 37Γ

256
√

2k
+

E
[
J′

t

]
8
√
k

. By Lemma 4, E
[
J ′t
]
≤ J1 + Γ

4
√

2k
. Adding, we have, (Var

[
J ′t
]
)1/2 < 37Γ

256
√

2k
+

Γ
32k
√

2
+ J1

8
√
k

. By Chebychev’s inequality Pr
{
|J ′t − E

[
J ′t
]
| ≤ 2(Var

[
J ′t
]
)1/2

}
≥ 3

4 ,

or that Pr {|J ′t − J1|} ≤ 2(Var
[
J ′t
]
)1/2 + Γ

4
√

2k
, with probability 3

4 . By a standard
argument of boosting the confidence of taking medians, we obtain the statement of the
lemma. &'

Proof (Of Theorem 2.). Adding the errors given by Lemmas 3 and 7 and the error
probabilities , we obtain that |Ĵ − J | ≤ (2 + 1

4
√

2
) Γ√

k
+ Γ√

k
+ J1

4
√
k
< 4Γ√

k
+ J

4
√
k

with

probability 1− δ
2 . &'

4 Algorithm REDSKETCH-A

In this section, we present a variant of the REDSKETCH algorithm for estimating join
sizes. The data structure used by the REDSKETCH-A algorithm is identical to that of
the REDSKETCH algorithm; hence the space and the time complexity of algorithm
REDSKETCH-A is the same as that of the REDSKETCH algorithm. Additionally, the
REDSKETCH-A algorithm uses an estimator for the residual self-join size SJres(R, k)
for any stream R which is presented below.

4.1 Estimating SJres(k)

The estimator for SJres(k) = SJres(R, k) uses a CountSketch data structure CSK con-
sisting of s3 = O(log m

δ) independent hash tables, T [1], . . . , T [s3], each consisting of
A = O(kε2) buckets, as explained in Section 2. Let H denote the set of the top-k items
in terms of the estimated frequencies. First, the contributions of the top-k estimated

304 Sumit Ganguly, Deepanjan Kesh, and Chandan Saha

frequencies are removed from the corresponding sketches contained in the hash tables,
that is, Xt,ht(i):=Xt,ht(i) − f̂i · xt,i, for every i ∈ H and 1 ≤ t ≤ s3. Next, we

obtain an estimate Zt from each hash table index t as follows: Zt =
∑A−1

b=0 X2
t,b. Fi-

nally, we return the estimate ŜJ
res

(k) as the median of the Zt’s, that is, ŜJ
res

(k) =
medians3t=1Zt. The accuracy guarantees are given by Theorem 3. The algorithm uses
space O

(
k
ε2 · log m

δ · logm
)

bits and processes each stream update in time O(log m
δ).

Theorem 3. If ε ≤ 1
8 , A ≥ 1600k

ε2 and s3 = O(log m
δ) then, |ŜJ

res
(R, k)−SJres(k)| ≤

εSJres(k), with probability 1− δ.

Proof. Let f ′i = (fi − f̂i), if i ∈ H , and f ′i = fi, for i 	∈ H . Define SJsuffix(k) =∑
i f
′2
i . Note that the estimator ŜJ

res
returns an approximation of SJsuffix(k) using the

FAST-AMS algorithm. Let Δ = ΔR. By property of CountSketch algorithm, |f̂i −
fi| ≤ Δ, with probability 1− δ

8m .

SJsuffix(k) =
∑

i∈H(fi − f̂i)2 +
∑

i�∈H f2
i ≤ k ·Δ2 +

∑
i�∈H f2

i

≤ SJres(k)
(
1 + 32

√
k√
A

+ 320k
A

)
, by Lemma 5.

Further, SJsuffix ≥
∑

i�∈H f2
i ≥

∑
i�∈P f2

i ≥ SJres(k).
By Lemma 1, E

[
Zt
]

= SJsuffix(k) and Var
[
Zt
]
≤ 2

A (SJsuffix(k))2. Therefore,
Chebychev’s inequality, |Zt − SJsuffix(k)| ≤ 2√

A
SJsuffix(k) occurs with probability at

least 3
4 . Therefore, by boosting the confidence by returning the median ŜJ

res
(k) of

the Zt’s, we have, ŜJ
res

(k) ∈ (1 ± 2√
A

)SJsuffix(k). Therefore,
(
1− 2√

A

)
SJres(k) ≤

ŜJ
res

(k) ≤ SJres(k)
(
1+ 32

√
k√
A

+ 320k
A

)
(1+ 2√

A
)SJres(k). Substituting A ≥ 1600

ε2 and

ε ≤ 1
8 gives (1− ε)SJres(k) ≤ ŜJ

res
(k) ≤ (1 + ε)SJres(k). &'

4.2 Estimating Join Size Using Algorithm REDSKETCH-A

The REDSKETCH-A algorithm first estimates SJres(R, k) and SJres(S, k) as
ŜJ

res
(R, k) and ŜJ

res
(S, k) respectively, to within factors of 1 ± 1

8 with probability

1 − δ
32 , each, using the algorithm given above. Let Δ̂R denote 8

(
ŜJ

res
(R,A

8)

A

)1/2

and

Δ̂S denote 8
(

ŜJ
res

(S,A
8)

A

)1/2

. The algorithm uses the following notion of frequent

items.

Definition 1. A join value i from the stream R (resp. S) is said to be frequent in R
(resp. S), provided, (a) f̂i ≥ γΔ̂R (resp. ĝi ≥ γΔ̂S), and, (b)f̂i is among the top-k
estimated frequencies in the stream R (resp. S), where, γ = 6

5

(
1 + 2

ε

)
. &'

The value of ε used in Definition 1 is a parameter. Let FR (resp. FS) denote the set
of join values that are frequent in R (resp. S) and let F denote FR ∪ FS . Follow-
ing the paradigm of the bifocal method [13], we decompose the join size J into four

Practical Algorithms for Tracking Database Join Sizes 305

components, namely, J = Jd,d + Jd,s + Js,d + Js,s, where, Jd,d =
∑

i∈FR∩FS
figi,

Js,s =
∑

i�∈(FR∪FS) figi, Jd,s =
∑

i∈FR−FS
figi and Js,d =

∑
i∈FS−FR

figi. The es-

timate Ĵd,d for Jd,d is obtained as usual: Ĵd,d =
∑

i∈FR∩FS
f̂i · ĝi. Next, we reduce the

hash table structure as follows. For every hash table index t, 1 ≤ t ≤ s3, we perform
the following operations.

Xt,ht(i) :=Xt,ht(i) − f̂i · xt,i, for each i ∈ FR, and
Yt,ht(i) :=Yt,ht(i) − ĝi · xt,i, for each i ∈ FS

We then obtain the estimates Ĵd,s,t and Ĵs,d,t from each hash table index t, 1 ≤ t ≤ s3,
as follows.

Ĵd,s,t =
A−1∑
b=0

Yt,b ·
(∑
i∈FR:ht(i)=b

f̂i · xt,i
)
, Ĵs,d,t =

A−1∑
b=0

Xt,b ·
(∑
i∈FS :ht(i)=b

ĝi · xt,i
)

The estimates Ĵd,s and Ĵs,d are obtained as the medians of the estimates Ĵd,s,t and Ĵs,d,t
respectively. That is,

Ĵd,s = medians3t=1Ĵd,s,t, and Ĵs,d = medians3t=1Ĵs,d,t .

The estimates Ĵs,s,t, 1 ≤ t ≤ s3 and the median estimate Ĵs,s is obtained in a manner
identical to J ′t and Ĵ1 in the REDSKETCH algorithm, as follows.

Ĵs,s,t =
A−1∑
b=0

Xt,b · Yt,b, 1 ≤ t ≤ s3, and Ĵs,s = medians3t=1Ĵs,s,t

Finally, the estimate Ĵ for the join size is obtained as the sum of the estimates, that
is, Ĵ = Ĵd,d + Ĵd,s + Ĵs,d + Ĵs,s. The space versus accuracy properties of the al-
gorithm is stated in Theorem 4 and proved below. Λ = (SJ(R)SJres(S, k))1/2 +
(SJres(R, k)SJ(S))1/2.

Theorem 4. Let A ≥ 64k . Then, Pr
{
|Ĵ − J | ≤ E

}
≥ 1−δ, where, E = min

(
32Λ√
k

+
J
2 + J√

k
), 2J2/3

(
2Λ√
k

)1/3)
. &'

Analysis. Let γ = 6
5

(
1 + 2

ε

)
(as given by Definition 1), γ1 = 5

6γ and γ2 = 6
5γ. Since,

ŜJ
res

(R, k) ≥ 3
4 SJres(R, k), with probability 1 − δ

8m , therefore,
(

3
4

)1/2
Δ(R, k) ≤

Δ̂(R, k) ≤
(

4
3

)1/2
Δ(R, k), which implies that, γ1Δ(R, k) ≤ Δ̂(R, k) ≤ γ2Δ(R, k).

Similarly, γ1Δ(S, k) ≤ Δ̂(S, k) ≤ γ2Δ(S, k), each with probability 1− δ
8m .

Lemma 8. Suppose i is a frequent item in R. Then, fi ≥ (γ1 − 1)ΔR and |f̂i − fi| ≤
εfi, with probability 1− δ

8m . Otherwise, fi < (γ2+1)Δ(R, k), with probability 1− δ
8m .

Proof. By Definition 1, f̂i ≥ γ1ΔR. Therefore, with probability 1 − δ
8m , fi ≥ (γ1 −

1)ΔR. Further, |f̂i−fi|
fi

≤ ΔR

γ1−1 ≤ ε. If i 	∈ FR, then, f̂i < γ1Δ̂(R, k) ≤ γ2Δ(R, k).
Therefore, with probability 1− δ

8m , fi < (γ2 + 1)Δ(R, k). &'

306 Sumit Ganguly, Deepanjan Kesh, and Chandan Saha

Lemma 9. Let ε ≤ 1. Then, |Ĵd,d − Jd,d| ≤ 5ε
4 Jd,d, with probability 1− δ

8 .

Proof. |Ĵd,d − Jd,d| ≤
∑

i∈FR∩FS
|f̂iĝi − figi| ≤

∑
i∈FR∩FS

figi((1 + ε
2)2 − 1) ≤

5ε
4 Jd,d. Since, |FR ∩ FS | ≤ k, the total error probability, is at most δk

8m ≤ δ
8 . &'

The reduced frequencies are defined as before, namely: f ′i = fi if i 	∈ FR, and f ′i =
fi−f̂i, otherwise; and analogously for S: g′i = gi if i 	∈ FS , and g′i = gi−ĝi, otherwise.

Lemma 10.
∣∣E[Ĵd,s,t] − Jd,s

∣∣ ≤ ε
2Jd,s + 9ε

16Jd,d and
∣∣E[Ĵs,d,t] − Js,d

∣∣ ≤ ε
2Js,d +

9ε
16Jd,d, each with probability 1− δ

8 .

Proof. Jd,s =
∑

i∈FR−FS
figi. By Lemma 1, E

[
Ĵd,s,t

]
=
∑

i∈FR
f̂ig

′
i. Therefore,

|E
[
Ĵd,s,t

]
− Jd,s| = |

∑
i∈FR

f̂ig
′
i −

∑
i∈FR−FS

figi| = |
∑

i∈FR∩FS

f̂ig
′
i +

∑
i∈FR−FS

(f̂i − fi)gi|

If i ∈ FR ∩ FS , then, |f̂i − fi| ≤ εfi

2 , by Lemma 8, and |g′i| ≤ |ĝi − gi| ≤ εgi

2 ,

by Lemma 8. Adding, |
∑

i∈FR∩FS
f̂ig

′
i| ≤

∑
i∈FR∩FS

(1 + ε
2) ε2figi ≤

9ε
16Jd,d. If i ∈

FR − FS , then, |f̂i − fi| ≤ εfi

2 , by Lemma 8. Therefore, |
∑

i∈FR−FS
(f̂i − fi)gi| ≤∑

i∈FR−FS

εfi

2 gi = ε
2Jd,s. Adding, we obtain the statement of the lemma. The proof

for Js,d is analogous. &'

Lemma 11.
∣∣E[Ĵs,s,t]− Js,s

∣∣ ≤ ε2Jd,d + ε(Jd,s + Js,d), with probability 1− δ
4 .

Proof.
∣∣E[Ĵs,s,t]− Js,s

∣∣ =
∣∣∑

i∈D f ′ig
′
i −

∑
i�∈(FR∪FS) figi

∣∣
≤
∑

i∈FR∩FS
|fi − f̂i||gi − ĝi|+

∑
i∈FR−FS

|fi − f̂i|gi +
∑

i∈FS−FR
fi|gi − ĝi|

≤ ε2Jd,d + ε(Jd,s + Js,d). &'

Lemma 12. If A = 64k, then,
∑

i∈FR
f̂2
i ≤ 9

4 SJ(R) and
∑

i∈FS
ĝ2
i ≤ 9

4 SJ(S).

Proof. Using (a + b)2 ≤ 2(a2 + b2), we have,∑
i∈FR

f̂2
i ≤

∑
i∈FR

(fi + ΔR)2 ≤ 2
∑
i∈FR

f2
i + 2kΔ2

R

≤ 2SJ(R) +
16k
A

SJres(R,
A

8
) ≤ 5

2
SJ(R). &'

Lemma 13. IfA ≥ 64k and ε ≤ 1
4 , then,

∑
i∈D f ′2i ≤ 5

4ε2 SJres(R, k) and
∑

i∈D g′2i ≤
5

4ε2 SJres(S, k), with high probability (1− δ
8).

Practical Algorithms for Tracking Database Join Sizes 307

Proof. Suppose that |FR| = l. Consider the item whose rank is l + 1. This item must
have frequency at most γΔ̂R +ΔR ≤ (γ2 + 1)ΔR, otherwise, its estimate would have
crossed the frequent item threshold γΔ̂R (with probability 1 − δ

8m), and it, along with
the l higher ranked items would all have been included in the frequent item set FR. This
would make |FR| ≥ l + 1. Thus,

SJres(R, l) ≤ (k − l)((γ2 + 1)ΔR)2 + SJres(R, k)

≤ 10(k − l)
ε2

Δ2
R + SJres(R, k) ≤

(
1 +

5(k − l)
4ε2k

)
SJres(R, k)

∑
i∈D f ′2i =

∑
i∈FR

(fi − f̂i)2 +
∑

i�∈FR
f2
i ≤ lΔ2

R +
∑

i�∈FR
f2
i ≤ l

8kSJres(R, k) +∑
i�∈FR

f2
i , with probability at least 1− lδ

8m . By Lemma 5,
∑

i�∈FR
f2
i ≤ SJres(R, l)

(
1+

32
√
l√

A
+ 256l

A

)
. Adding,

∑
i∈D

f ′2i ≤SJres(R, k)
(l

8k
+
(
1+

5(k − l)
4ε2k

)(
1+

32
√
l√

A
+

256l
A

))
≤ 5

4ε2
SJres(R, k) .&'

Recall that Λ = (SJ(R)SJres(S, k))1/2 + (SJres(R, k)SJ(S))1/2.

Proof (Of Theorem 4). By Lemma 1, Var
[
Ĵd,s,t

]
≤ 1

A (
∑

i∈FR
f̂2
i)(
∑

i∈D g′2i) +
1
A (E

[
Jd,s,t

]
)2. By Lemmas 12 and 13, 1

A(
∑

i∈FR
f̂2
i)(
∑

i∈D g′2i) ≤ 45
16ε2ASJ(R) ·

SJres(S, k) ≤ Λ2

20ε2k . By Lemma 10, E
[
Ĵd,s,t

]
≤ (Jd,s + 9ε

16 (Jd,d + Jd,s)). By Cheby-

chev’s inequality, |Ĵd,s,t − E
[
Jd,s,t

]
| |≤ 3(Var

[
Ĵd,s,t

]
)1/2 with probability at least 8

9 .

The median Ĵd,s satisfies the same relation with probability 1 − δ
4 . Therefore, using

triangle inequality,

|Ĵd,s − Jd,s| ≤ 3(Var
[
Ĵd,s,t

]
)1/2 + |E

[
Ĵd,s,t

]
− Jd,s|

≤ 3Λ
ε
√

20
+

3Jd,s
8
√
k

+
9ε
16

(1 +
3

8
√
k

)(Jd,d + Jd,s)

Analogously, it can be shown that

|Ĵs,d − Js,d| ≤
3Λ

ε
√

20
+

3Js,d
8
√
k

+
9ε
16

(1 +
3

8
√
k
)(Jd,d + Js,d) .

By Lemma 1, Var
[
Ĵs,s,t

]
≤ 1

A (
∑

i∈D f ′2)(
∑

j∈D g′2) + 1
A (E

[
Ĵs,s,t

]
)2. Using Lem-

mas 13 and 11 and following a similar reasoning as above, it can be shown that

Var
[
Ĵs,s,t

]
≤ Λ2

40ε4k +
(E
[
Ĵs,s,t

]
)2

64k , and therefore, the median Ĵs,s satisfies

|Ĵs,s − Js,s| ≤
Λ√

40ε2k
+ (ε2Jd,d + ε(Jd,s + Js,d))(1 +

3
8
√
k

) +
2Js,s
8
√
k

with probability 1 − δ
8 . By Lemma 9, |Ĵd,d − Jd,d| ≤ 5ε

4 Jd,d ≤
5ε
4 J , with probability

1− δ
8 . Adding the errors and error probabilities, and using that ε ≤ 1

4 , we have, |Ĵ−J | ≤
Λ

2ε2
√
k

+ (4ε + 2√
k
)J , with probability 1− δ

2 .

308 Sumit Ganguly, Deepanjan Kesh, and Chandan Saha

The above property holds for all values of ε ≤ 1
4 . Therefore, we can find the value

of ε that minimizes the above function. Doing so, we obtain ε =
(

Λ
4J
√
k

)1/3

and sub-

stituting this value yields the statement of the theorem. &'

5 Conclusions

In this paper, we present novel, space and time efficient algorithms for estimating the
join size of two data streams consisting of general insertion and deletion operations.

References

1. Noga Alon, Phillip B. Gibbons, Yossi Matias, and Mario Szegedy. “Tracking Join and Self-
Join Sizes in Limited Storage”. In Proceedings of the Eighteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, Philadeplphia, Pennsylvania, May
1999.

2. Noga Alon, Yossi Matias, and Mario Szegedy. “The Space Complexity of Approximating
the Frequency Moments”. In Proceedings of the 28th Annual ACM Symposium on the Theory
of Computing STOC, 1996, pages 20–29, Philadelphia, Pennsylvania, May 1996.

3. Noga Alon, Yossi Matias, and Mario Szegedy. “The space complexity of approximating
frequency moments”. Journal of Computer Systems and Sciences, 58(1):137–147, 1998.

4. A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R Motwani, U. Srivastava,
and J. Widom. “STREAM: The Stanford Data Stream Management System”. In Data
Stream Management Processing High-Speed Data Streams Series: Data-Centric Systems
and Applications, Minos Garofalakis, Johannes Gehrke and Rajeev Rastogi (Eds.) 2006,
ISBN: 3-540-28607-1, Springer.

5. Ron Avnur and Joseph M. Hellerstein. “Eddies: Continuously Adaptive Query Processing”.
In Proceedings of the 2000 ACM SIGMOD International Conference on Management of
Data, Dallas, Texas, USA, 2000.

6. Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. “Mod-
els and Issues in Data Stream Systems”. In Proceedings of the Twentysecond ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, Madison, Wisconsin,
USA, 2002.

7. Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Greg
Seidman, Michael Stonebraker, Nesime Tatbul, and Stanley B. Zdonik. “Monitoring Streams
- A New Class of Data Management Applications”. In Proceedings of the 28th International
Conference on Very Large Data Bases, Hong Kong, China, 2002.

8. Moses Charikar, Kevin Chen, and Martin Farach-Colton. “Finding frequent items in data
streams”. In Proceedings of the 29th International Colloquium on Automata Languages and
Programming, 2002.

9. G. Cormode and S. Muthukrishnan. “An improved data stream summary: The Count-Min
sketch and its applications”. In Proceedings of the 6th Latin American Symposium on Infor-
matics LATIN, Lecture Notes in Computer Science 2976 Springer 2004, ISBN 3-540-21258-
2, pages 29–38, Buenos Aires, Argentina, April 2004.

10. Graham Cormode and Minos Garofalakis. “Sketching Streams Through the Net: Distributed
Approximate Query Tracking”. In Proceedings of the 31st International Conference on Very
Large Data Bases, September 2005.

Practical Algorithms for Tracking Database Join Sizes 309

11. Alin Dobra, Minos N. Garofalakis, Johannes Gehrke, and Rajeev Rastogi. “Processing com-
plex aggregate queries over data streams”. In Proceedings of the 2002 ACM SIGMOD Inter-
national Conference on Management of Data, Madison, Wisconsin, USA, 2002.

12. Sumit Ganguly, Minos Garofalakis, and Rajeev Rastogi. “Processing Data Stream Join Ag-
gregates using Skimmed Sketches”. In Proceedings of the Ninth International Conference
on Extending Database Technology, Herkailon, Crete, Greece, March 2004.

13. Sumit Ganguly, Phil Gibbons, Yossi Matias, and Avi Silberschatz. “Bifocal Sampling for
Skew-Resistant Join Size Estimation”. In Proceedings of the 1996 ACM SIGMOD Interna-
tional Conference on Management of Data, Montreal, Quebec, June 1996.

14. Wen-Chi Hou, Gultekin Ozsoyoglu, and Baldeo K. Taneja. “Statistical estimators for rela-
tional algebra expressions”. In Proceedings of the Seventh ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 276–287, Philadelphia, Pennsylvania,
March 1988.

15. Richard Lipton, Jeffrey Naughton, and Donovan Schneider. “Practical Selectivity Estimation
Through Adaptive Sampling”. In Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data, Atlantic City, NJ, 1990.

16. Mikkel Thorup and Yin Zhang. “Tabulation based 4-universal hashing with applications
to second moment estimation”. In Proceedings of the Fifteenth ACM SIAM Symposium on
Discrete Algorithms, pages 615–624, New Orleans, Louisiana, USA, January 2004.

On Sampled Semantics of Timed Systems

Pavel Krčál1� and Radek Pelánek2��

1 Uppsala University, Sweden
pavelk@it.uu.se

2 Masaryk University Brno, Czech Republic
xpelanek@fi.muni.cz

Abstract. Timed systems can be considered with two types of seman-
tics – dense time semantics and discrete time semantics. The most typical
examples of both of them are real semantics and sampled semantics (i.e.,
discrete semantics with a fixed time step ε). We investigate the relations
between real semantics and sampled semantics with respect to differ-
ent behavioral equivalences. Also, we study decidability of reachability
problem for stopwatch automata with sampled semantics. Finally, our
main technical contribution is decidability of non-emptiness of a timed
automaton ω-language in some sampled semantics (this problem was
previously wrongly classified as undecidable). For the proof we employ
a novel characterization of reachability relations between configurations
of a timed automaton.

1 Introduction

In this paper we are concerned with formal verification of timed systems. As
models of timed systems we consider mainly timed automata (TA) [1]; some
results are also shown for stopwatch automata (SWA) [12] — an extension of
timed automata which allows clocks to be stopped in some locations.

The semantics of these models can be defined over various time domains. The
usual approach is to use dense time semantics, particularly real time semantics
(time domain is R+

0). From many points of view, this semantics is very plausible.
One does not need to care about the granularity of time during the modeling
phase. This semantics leads to an uncountable structure with a finite quotient
(for timed automata) and thus it is amenable to verification with finite state
methods. Moreover, theoretical and also practical complexity of problems for
dense time semantics is usually the same as for various discrete semantics.

Discrete semantics, particularly sampled semantics with fixed time step ε ∈
Q+
>0 (time domain is {k · ε | k ∈ Z+

0 }), is also often considered, e.g. in [6, 5].
One of the advantages is that with the sampled time domain we have a wider
choice of representations for sets of clock valuations, e.g., explicit representation
or symbolic representation using decision diagrams. Another important issue is
� Partially supported by the European Research Training Network GAMES.

�� Partially supported by the Grant Agency of Czech Republic grant No. 201/03/0509
and by the Academy of Sciences of Czech Republic grant No. 1ET408050503.

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 310–321, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Sampled Semantics of Timed Systems 311

implementability, e.g., discussed in [20, 18]. If a system is realized on a hardware
then there is always some granularity of time (e.g., clock cycle, sampling period).
Therefore, sampled semantics is closer to the implementation then more abstract
dense time semantics.

Dense time semantics can even give us misleading verification results. Assume
that we have a model of a timed system such that it satisfies some property in
dense time semantics. Now the question is whether there is an implementation
(realized on a discrete time hardware) such that it preserves this property. Dense
time semantics allows behaviors which are not realizable in any real system. If
satisfaction of the property depends on these behaviors then there might not be
an implementation satisfying the property.

Verification problems can be stated as the (ω-)language non-emptiness. By
verification of a model A with respect to sampled semantics we mean answering
the question whether there exists ε such that the (ω-)language of A is empty in
sampled semantics with ε as the sampling period. We show that this problem
is decidable for timed automata and that one can also synthesize such ε. This
problem for ω-languages was previously wrongly classified as undecidable [2]. The
same problem was studied in the control setting with slightly different sampled
behavior in [7]. In this setting, an automaton is a model of a controller with a
periodic control loop which reacts on input data by a control action. Therefore,
an automaton has to perform an action at every sampled time point which makes
the problem undecidable even for (finite word) language non-emptiness.

Our proof uses a novel characterization of reachability relations in timed
automata. Representations of reachability relations were studied before: using
additive theory of real numbers [8] and 2n-automata [9]. Our novel representation
is based on simple linear (in)equalities (comparisons of clock differences). This
representation is of an independent interest, since it is simpler and more specific
then previously considered characterizations and it gives a better insight into
reachability relations.

We also systematically study relations between dense time semantics and
sampled semantics for different timed systems. We study these relations in terms
of behavioral equivalences, as it is well known which verification results are pre-
served by which equivalence. These results are summarized in Table 1. For sam-
pled semantics, a given result means that there exists an ε such that a given
equivalence is guaranteed. All considered equivalences are “untimed” – the only
important information for an equivalence are actions performed and not the pre-
cise time points at which these actions are taken. There has been a considerable
amount of work related to discretization issues and verifying dense time proper-
ties using discrete time methods, e.g. [13, 15, 16, 10, 3]. The main difference is
that usually a fixed sampling rate and trace equivalence are considered.

Finally, we summarize the (un)decidability of the reachability problem in
timed systems (Table 1.). Particularly, we provide a new undecidability proof
for the reachability problem in sampled semantics for stopwatch automata with
diagonal constraints and one stopwatch. One stopwatch suffices for all undecid-
ability results.

312 Pavel Krčál and Radek Pelánek

Table 1. The first table gives a summary of the equivalences: each field gives
the relation to real semantics. The second table gives a summary of decidability
results for the reachability problem.

equivalences closed TA TA SWA

rational semantics bisimilar bisimilar trace eq.

sampled semantics similar reachability eq. reachability eq.

reachability TA diagonal-free SWA SWA

dense semantics PSPACE-complete undecidable undecidable

sampled semantics PSPACE-complete PSPACE-complete undecidable

2 Preliminaries

In this section we define syntax and semantics of the automata. We define a
stopwatch automaton and a timed automaton as a special case of the stopwatch
automaton. Semantics is defined as a labeled transition system (LTS). We also
define usual behavioral equivalences on LTSs and equivalences on valuations.
Note that all languages and equivalences that we consider are untimed (this is
sometimes denoted as untime(L(A)) and time abstracted equivalences in the
literature).

Labeled Transition Systems An LTS is a tuple T = (S,Act ,→, s0) where S
is a set of states, Act is a finite set of actions, →⊆ S × Act × S is a transition
relation, s0 ∈ S is an initial state. A run of T over a trace w ∈ Act∗ ∪Actω is a

sequence of states π = q0, q1, . . . such that q0 = s0 and qi
w(i)−→ qi+1. The set of

finite (resp. infinite) traces of the transition system is L(T) = {w ∈ Act∗ | there
exists a run of T over w} (resp. Lω(T) = {w ∈ Actω | there exists a run of T
over w}).

Equivalences Let T1 = (S1,Act ,→1, s
1
0), T2 = (S2,Act ,→2, s

2
0) be two labeled

transitions systems. A relation R ⊆ S1 × S2 is a simulation relation iff for all
(s1, s2) ∈ R and s1

a−→1 s′1 there is s2 such that s2
a−→2 s′2 and (s′1, s

′
2) ∈ R.

System T1 is simulated by T2 if there exists a simulation R such that (s1
0, s

2
0) ∈ R.

A relation R is a bisimulation relation iff R is a symmetric simulation relation.
A bisimulation ∼ is the largest bisimulation relation. A set of reachable actions
RA(T) is the set {a ∈ Act | s0 →∗ sn

a−→ sn+1}. Systems T1, T2 are:

– reachability equivalent iff RA(T1) = RA(T2),
– trace equivalent iff L(T1) = L(T2),
– infinite trace equivalent iff Lω(T1) = Lω(T2),
– simulation equivalent iff T1 simulates T2 and vice versa,
– bisimulation equivalent (bisimilar) iff s1

0 ∼ s2
0.

On Sampled Semantics of Timed Systems 313

Syntax Let C be a set of non-negative real-valued variables called clocks. The
set of guards G(C) is defined by the grammar g := x &' c | x − y &' c | g ∧ g
where x, y ∈ C, c ∈ N0 and &'∈ {<,≤,≥, >}. A stopwatch automaton is a tuple
A = (Q,Act , C, q0, E, stop), where:

– Q is a finite set of locations,
– C is a finite set of clocks,
– q0 ∈ Q is an initial location,
– E ⊆ Q× Act ×G(C) × 2C ×Q is a set of edges labeled by an action name,

a guard, and a set of clocks to be reset,
– stop : Q → 2C assigns to each location a set of clocks that are stopped at

this location.

A clock x ∈ C is called a stopwatch clock if ∃q ∈ Q : x ∈ stop(q). We use the
following special types of stopwatch automata:

– a timed automaton is a stopwatch automaton such that there are no stop-
watch clocks (i.e., ∀q ∈ Q : stop(q) = ∅),

– a closed automaton uses only guards with {≤,≥},
– a diagonal-free automaton uses only guards defined by g := x &' c | g ∧ g.

We also consider combinations of these types, e.g., closed timed automaton.

Semantics Semantics is defined with respect to a given time domain D. We
suppose that time domain is a subset of real numbers which contains 0 and is
closed under addition. A clock valuation is a function ν : C → D. If δ ∈ D
then a valuation ν + δ is such that for each clock x ∈ C, (ν + δ)(x) = ν(x) + δ.
If Y ⊆ C then a valuation ν[Y := 0] is such that for each clock x ∈ C � Y ,
ν[Y := 0](x) = ν(x) and for each clock x ∈ Y , ν[Y := 0](x) = 0. The satisfaction
relation ν |= g for g ∈ G(C) is defined in the natural way.

The semantics of a stopwatch automaton A = (Q,Act , C, q0, E, stop) with
respect to the time domain D is an LTS �A�D = (S,Act ,→, s0) where S =
Q × DC is the set of states, s0 = (q0, ν0) is the initial state, ν0(x) = 0 for all
x ∈ C. Transitions are defined with the use of two types of basic steps:

– time step: (q, ν)
delay(δ)−−−−−−→ (q, ν′) if δ ∈ D, ∀x ∈ stop(q) : ν′(x) = ν(x), ∀x ∈

C � stop(q) : ν′(x) = ν(x) + δ,

– action step: (q, ν)
action(a)−−−−−−−→ (q′, ν′) if there exists (q, a, g, Y, q′) ∈ E such

that ν |= g, ν′ = ν[Y := 0].

The transition relation of �A�D is defined by concatenating these two types

of steps: (q, ν) a−→ (q′, ν′) iff there exists (q′′, ν′′) such that (q, ν)
delay(δ)−−−−−−→

(q′′, ν′′)
action(a)−−−−−−−→ (q′, ν′).

We consider the following time domains: R+
0 ,Q

+
0 , {k · ε | k ∈ Z+

0 }. The
semantics with respect to the last domain is denoted �A�ε (also called sampled
semantics). We use the following shortcut notation: L(A) = L(�A�R+

0
), Lω(A) =

Lω(�A�R+
0
), Lε(A) = L(�A�ε), Lεω(A) = Lω(�A�ε).

314 Pavel Krčál and Radek Pelánek

Equivalences on Valuations For any δ ∈ R, int(δ) denotes the integral part
of δ and fr(δ) denotes the fractional part of δ. Let k be an integer constant. We
define the following relations on the valuations. The equivalence ∼=k is a standard
region equivalence (its equivalence classes are regions), the equivalence ∼k is an
auxiliary relation which allows us to forget about the clocks whose values are
above k.

– ν ∼=k ν
′ iff all the following conditions hold:

• for all x ∈ C : int(ν(x)) = int(ν′(x)) or ν(x) > k ∧ ν′(x) > k,
• for all x, y ∈ C with ν(x) ≤ k and ν(y) ≤ k : fr(ν(x)) ≤ fr(ν(y)) iff

fr(ν′(x)) ≤ fr(ν′(y)),
• for all x ∈ C with ν(x) ≤ k : fr(ν(x)) = 0 iff fr(ν′(x)) = 0;

– ν ∼k ν′ iff for all x ∈ C : ν(x) = ν′(x) or ν(x) > k ∧ ν′(x) > k.

Note that ∼k is refinement of ∼=k, ∼=k has a finite index for all semantics, ∼k has
a finite index for sampled semantics. Let A be a diagonal-free timed automaton
and K be a maximal constant which occurs in some guard in A. For each location
l ∈ Q and two valuations ν ∼=K ν′ it holds that (l, ν) is bisimilar to (l, ν′).

3 Dense Vs. Sampled Semantics

In this section, we present a set of results about relations between dense time
semantics and sampled semantics of timed systems showing the limits of using
discrete time verification methods for the dense time. We start with relations
between real and rational semantics as it creates a connection between dense and
sampled semantics. For timed automata, real and rational semantics are clearly
bisimilar. This follows directly from the region construction since each region
contains at least one rational valuation. For stopwatch automata, however, we
can guarantee only trace equivalence — we show that there exists a SWA which
has infinite traces realizable in real semantics, but not in rational one.

Lemma 1. Let A be an SWA. Then �A�Q+
0

is trace equivalent to �A�R+
0
.

Proof. Let us consider a run π in �A�R+
0
. We can consider the delays on this run

as parameters δ1, . . . , δn. The set of values of these parameters, which enable
execution through the same sequence of location and over the same trace is
described by a system of linear inequalities in δ1, . . . , δn — these inequalities
are obtained by substituting sums of δ1, . . . , δn for ν(x) in guards. The set of
solutions of this system of linear inequalities is a non-empty convex polyhedron
and it has a rational solution. Therefore, there exists a run π′ in �A�Q+

0
over the

same trace as π. &'

Lemma 2. There exist an SWA A such that �A�Q+
0

is not infinite trace equiv-
alent to �A�R+

0
.

On Sampled Semantics of Timed Systems 315

�� �������	l1
0<x<2 �� �������	l2

a,x≥1,”x=x−1”
��

b,x<1

�� �������	l3

��
”x=2·x”

��

Fig. 1. Stopwatch automaton for binary expansion. Clock x is stopped in l2, l3.

Proof (sketch). A skeleton of the example illustrating this observation is given
in Fig. 1. The operations x = x − 1 and x = 2 · x are not valid operations
of SWA, but can be simulated using several locations and (stopwatch) clocks
(see e.g., [12]). The automaton in the first step nondeterministically chooses a
value between 0 and 2 and then it accepts the sequence of a, b corresponding to
binary expansion of the chosen value. Note, that for this automaton, there is no
countably branching LTS which would be infinite trace equivalent to �A�R+

0
. &'

Now we study relations between dense time and sampled semantics. We show
that for a closed TA we can guarantee the simulation equivalence (i.e., that there
is an ε such that �A�R+

0
is simulation equivalent to �A�ε), but not bisimilarity.

For general TA (as well as for SWA) the best what we can guarantee is the
reachability equivalence (i.e., that there is an ε such that �A�R+

0
is reachability

equivalent to �A�ε).

Lemma 3. Let A be a closed TA and ε is the greatest common divisor of con-
stants in A. Then �A�ε is simulation equivalent to �A�R+

0
.

Proof. See [14] for the proof.

Lemma 4. There exits a closed TA A such that �A�R+
0

is not bisimilar to �A�ε
for any ε.

Proof. Fig. 2 shows an automaton for which there is no ε such that dense time
and sampled semantics are bisimilar. For the proof we use a characterization of
bisimulation in terms of a game between Challenger and Defender [19]. Consider
the following play of the bisimulation game. Let Challenger plays with the sam-
pled semantics, delays for 1− ε and then takes a transition. Defender can delay
for 0 ≤ δ < 1 and then take a transition. If Defender delays for 1 time unit then
Challenger will take e transition, which Defender cannot take.

Now Challenger plays with dense time semantics, delays for (1 − δ)/2 and
then takes b transition. Defender can either delay for 0 or for ε and then take
b transition. Challenger plays with sampled semantics again in the next step,
delays for 0 and takes a transition according to the previous move of Defender.
If Defender delayed for 0 then Challenger takes d transition, otherwise he takes
c transition. Defender has no answer. &'

316 Pavel Krčál and Radek Pelánek

�� �������	l1
a,0≤x≤1,x:=0 �� �������	l2

e,x=0∧y=1

��

b,0≤y≤1,z:=0 �� �������	l3
c,x=0∧z=0 ��

d,y=1∧z=0

��

�������	l4

�������	l6 �������	l5

Fig. 2. An automaton for which there is no ε such that discrete and dense
semantics are bisimilar.

Lemma 5. Let A be an SWA. Then there exists ε such that �A�R+
0

is reachability
equivalent to �A�ε.

Proof. From Lemma 1 we have that for each reachable action a there is a finite
run πa which contains action a and which has only rational delays. Let εa be the
greatest common divisor of all delays on πa. Let ε be the greatest common divisor
of all εa where a is a reachable action. Then, clearly, each action is reachable in
�A�ε if and only if it is reachable in �A�R+

0
. &'

Lemma 6. There exists a TA A such that �A�R+
0

is not trace equivalent to �A�ε
for any ε.

(a) (b)

�� �������	l1

a,y>0∧x<1,y:=0

��
�� �������	l1

a,y=1,y:=0

�� �������	l2
b,x>1,x:=0

		

Fig. 3. Difference between dense and sampled semantics (example (b) is taken
from [2]).

Such an automaton could be easily obtained by enabling zeno behavior (ar-
bitrary number of events in finite time), see Fig. 3(a). Zeno behavior cannot be
obtained in the sampled semantics. But there are also non-zeno automata which
are not trace equivalent in dense and sampled domains, see Fig. 3(b).

All results are summarized in Table 1. For the sampled semantics, a given
result means that there exists an ε such that the given equivalence is guaranteed.
In a case of closed TA, such ε can be easily constructed from the syntax of the
automaton (as the greatest common divisor of all constants). For general TA,
such ε can be constructed, but it requires to explore the region graph correspond-
ing to the automaton. For SWA, such ε cannot be constructed algorithmically
(because we do not know which actions are reachable).

On Sampled Semantics of Timed Systems 317

4 Reachability Problem for Stopwatch Automata in
Sampled Semantics

The reachability problem is to determine, for a given automaton A and an ac-
tion a, whether a is reachable in �A� (for a given semantics). This is a fundamen-
tal problem, because verification of the most common type of properties (safety
properties) can be reduced to the reachability problem. It is well-known that
for timed automata the problem is PSPACE-complete and that the complexity
depends neither on the time domain which we use nor on the choice of the type
of constraints (diagonal-free, non-strict) [1]. The type of constraints becomes
important if we allow more general updates in the reset operation [4].

Here we show that for stopwatch automata the choice of the time domain
and the type of constraints are important. With dense semantics, the problem
is known to be undecidable even for diagonal-free constraints and one stop-
watch [12]. We show that in sampled semantics, the problem is decidable for
diagonal-free constraints. However, if we allow diagonal constraints, the reacha-
bility problem is again undecidable. We have to use a different reduction than
in the dense case, but, surprisingly, only one stopwatch suffices even in the case
of sampled semantics.

Lemma 7. Let A be a diagonal-free SWA and ε a given sampling period. Then
the reachability problem in sampled semantics �A�ε is PSPACE-complete.

Proof. We use a standard ’normalization’ approach — it is easy to check that the
relation ∼K induces bisimulation on �A�ε (K is the largest constant occurring in
guards) for a diagonal-free SWA. We can easily obtain unique representative of
each bisimulation class (by ’normalizing’ all clock values larger than K to value
K+1) and thus we can easily perform the search over the bisimulation collapse.

Complexity: PSPACE-membership follows from the algorithm (search in an
exponential graph can be done in polynomial space), PSPACE-hardness follows
from PSPACE-hardness for timed automata. &'

Lemma 8. Let A be an SWA with one stopwatch. Then the reachability problem
in sampled semantics �A�ε is undecidable.

Proof. We show the undecidability by reduction from the halting problem for a
two counter machine M . Since this is usual approach in this area (see e.g., [12, 7,
4]), we just describe the main idea — how to encode counter values and perform
increment/decrement.

The value of a counter i is represented as the difference of two clocks: xi−yi.
Before the start of the simulation of M the simulating SWA nondeterministically
guesses the maximal value c of counters during a computation of M and sets the
stopwatch to the value c+ 1. From this moment on the stopwatch is stopped for
the rest of the computation with the value c + 1.

Values of clocks are kept in the interval [0, c+ 1] all the time. Whenever the
value of a clock reaches c+1, the clock is reseted. Testing the value of a counter

318 Pavel Krčál and Radek Pelánek

for zero is straightforward: just testing xi = yi. Decrementing a counter i is
performed by postponing the reset of a clock xi by 1 time unit. Incrementing
a counter i is performed by postponing the reset of a clock yi by 1 time unit.
During the increment we have to check for an ’overflow’ — if the difference
xi−yi equals to c and we should perform increment then it means that the initial
nondeterministic guess was wrong and the simulation should not continue.

Note that the stopwatch is used in a very limited fashion: it is stopped once
and then it keeps a constant value. &'

5 Non-emptiness of ω-Language in Sampled Semantics

Examples in Fig. 3 demonstrate that there are timed automata such that Lω(A)
is non-empty whereas for all ε the language Lεω(A) is empty. Non-emptiness is
an important problem, because verification of liveness properties can be reduced
to checking non-emptiness of an ω-language. Non-emptiness implies existence of
a behavior which violates a given liveness property. But as examples in Fig. 3
demonstrate, it may happen that all infinite traces are non-realizable. Therefore,
the property would be satisfied on a real system.

What we really want is non-emptiness of Lεω(A) for some ε instead of non-
emptiness of Lω(A). We show that the problem of deciding whether such an ε
exists is decidable. This problem was considered in a survey paper [2], where it
is claimed that the problem is undecidable, with a reference to [7]. The work [7],
however, deals with a slightly different problem: it is required that the timed
automaton performs action step after every discrete time step (this requirement
is motivated by control theory).

Theorem 1. Let A be a timed automaton. The problem of deciding whether⋃
ε L

ε
ω(A) 	= ∅ is decidable.

Our proof is based on the classical region construction [1] (for the definition
of region graph and for technical aspects of the proof see [14]). The region graph
can be directly used for ω-language emptiness checking in dense semantics —
the ω-language is non-empty if and only if there is a cycle in the region graph.
This is, however, not true for sampled semantics, as illustrated by examples in
Fig. 3.

Intuitively, the problem is the following. Existence of a cycle in the region
graph from a region (l, D) to itself means that there exists some valuations
ν, ν′ ∈ D such that (l, ν)→+ (l, ν′). These valuations may be constrained, e.g., in
example in Fig. 3(b) the constraint on paths from state (l1, [x = 0, 0 < y < 1]) to
itself is that 1 > ν′(y) > ν(y) > 0. In dense semantics we can have an infinite run
which satisfies this constraint, but in sampled semantics we cannot. In sampled
semantics we need a path (l, ν) →+ (l, ν′) such that ν ∼k ν′ (valuations may
differ only in clocks above constants).

To formalize this intuition, we need a notion of reachability relation, which
describes exactly which valuations can be reached from a given valuation. Let
(l, D), (l, D′) be two states in region graph. Then reachability relation of the pair

On Sampled Semantics of Timed Systems 319

(l, D), (l, D′) is a relation on valuations C(l,D)(l′,D′) ⊆ D×D′ such that for each
ν ∈ D, ν′ ∈ D′:

(ν, ν′) ∈ C(l,D)(l′,D′) ⇐⇒ ∃ν′′ ∼K ν′ : (l, ν)→+ (l, ν′′)

We present a simple representation for reachability relations. The fact that
such simple (in)equalities are sufficient to capture the reachability relations and
that these relations can be computed effectively is rather interesting.

Clock difference relations (CDR) structure over a set of clocks C is a set of
(in)equalities of the following form:

– x′ − y′ &' u− v
– x′ − y′ &' 1− (u− v)

where &'∈ {<,>,=}, x, y, u, v ∈ C. The semantics of a CDR B is defined as
follows:

– if x′ − y′ &' u− v ∈ B then fr(ν′(x)) − fr(ν′(y)) &' fr(ν(u)) − fr(ν(v)),
– if x′−y′ &' 1−(u−v) ∈ B then fr(ν′(x))−fr(ν′(y)) &' 1−(fr(ν(u))−fr(ν(v))),

Theorem 2. Reachability relations C(l,D)(l′,D′) are effectively definable as a fi-
nite unions of clock difference relations.

The proof of this theorem is based on the following key facts:

– If there is an immediate transition (l, D) → (l′, D′) then the reachability
relation can be directly expressed as a CDR.

– If (l, D) →+ (l′′, D′′) → (l′, D′) and the reachability relation over (l, D),
(l′′, D′′) is expressed as a union of CDRs then the reachability relation over
(l, D), (l′, D′) can be expressed as a union of CDRs as well.

– Using these two steps, reachability relations can be computed by a standard
dynamic programming algorithm; termination is guaranteed, because there
is only a finite number of CDRs over a fixed set of clocks; correctness is
proved by induction with respect to the length of a path between (l, D) and
(l′, D′).

Lemma 9. There exists an ε such that Lεω(A) is non-empty if and only if there
exists a reachable state (l, D) in the region graph of A such that the following
condition is satisfiable:

∃ν, ν′ ∈ D : (ν0, ν) ∈ C(l0,D0)(l,D) ∧ (ν, ν′) ∈ C(l,D)(l,D) ∧ ν ∼K ν′

Proof. At first, suppose that the condition is satisfiable. Due to Theorem 2,
the condition can be expressed as boolean combination of linear inequalities.
The set of solutions is an union of convex polyhedrons and therefore there must
exist a rational solution ν, ν′. From the definition of reachability relations we
get that there exists ν′′ ∼K ν such that (l0, ν0) →+ (l, ν) →+ (l, ν′′) in the real

320 Pavel Krčál and Radek Pelánek

semantics. Since real and rational semantics are bisimilar, there exists such a
path in rational semantics as well. We take ε as the greatest common divisor of
time steps on this path. Thus the path (l0, ν0)→+ (l, ν)→+ (l, ν′′) is executable
in �A�ε and since ν′′ is bisimilar to ν (because ν ∼K ν′′) we can construct an
infinite run. Therefore, Lεω(A) is non-empty.

On the other hand, if Lεω(A) is non-empty then there exists an infinite run
(l0, ν0) → (l1, ν1) → (l2, ν2) → Since ∼K has a finite index (over sampled
semantics) there must exists i, j such that li = lj , νi ∼K νj . These valuation
demonstrate the satisfiability of the condition. &'

With the use of Theorem 2 and Lemma 9 it is now quite straightforward to
prove Theorem 1 (see [14] for technical details).

6 Future Work

Sampled semantics gives natural under-approximations of timed systems, where
the choice of sampling period ε can nicely tune the size of the state space of
an under-approximation. This makes sampled semantics plausible as a base for
under-approximation refinement scheme. This scheme starts with coarse-grained
under-approximation of the systems and refines it until an error is found or
the approximation is exact [11, 17]. This approach is suitable particularly for
falsification (defect detection).

From a theoretical point of view, a successful application of the under-
approximation refinement scheme based on sampled semantics has many ob-
stacles. Complexity (decidability) of verification problems remains usually the
same for sampled semantics as it is for dense semantics. Moreover, it is even not
possible to efficiently decide whether ε-sampled and dense semantics are equiva-
lent. Nevertheless, we believe that for practical examples this approach can give
better results than classical complete methods (at least for defect detection). One
possible direction for future work is an experimental evaluation of this approach
on practical case studies.

Another direction for future work is provided by the decidability result for
non-emptiness of ω-language in some sampled semantics. The result leads to
standard questions about complexity of the problem and about the existence of
a practically feasible algorithm.

Acknowledgments. We thank Wang Yi and Ivana Černá for their comments
on previous drafts of this paper.

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[2] R. Alur and P. Madhusudan. Decision problems for timed automata: A survey.
In Formal Methods for the Design of Real-Time Systems, volume 3185 of LNCS,
pages 1–24. Springer, 2004.

On Sampled Semantics of Timed Systems 321

[3] E. Asarin, O. Maler, and A. Pnueli. On discretization of delays in timed au-
tomata and digital circuits. In Proc. of Conference on Concurrency Theory (CON-
CUR’98), volume 1466 of LNCS, pages 470–484. Springer, 1998.

[4] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Are timed automata updatable?
In Proc. of Computer Aided Verification (CAV 2000), volume 1855 of LNCS,
pages 464–479. Springer, 2000.

[5] M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some Progress in the Symbolic Ver-
ification of Timed Automata. In Proc. of Computer Aided Verification (CAV’97),
volume 1254 of LNCS, pages 179–190. Springer, June 1997.

[6] M. Bozga, O. Maler, and S. Tripakis. Efficient verification of timed automata
using dense and discrete time semantics. In Proc. of Charme’99, volume 1703 of
LNCS, pages 125–141. Springer, 1999.

[7] F. Cassez, T. A. Henzinger, and J.-F. Raskin. A comparison of control problems
for timed and hybrid systems. In Proc. of the Hybrid Systems: Computation and
Control, volume 2289 of LNCS, pages 134–148. Springer, 2002.

[8] H. Comon and Y. Jurski. Timed automata and the theory of real numbers.
In Proc. of Conference on Concurrency Theory (CONCUR’99), volume 1664 of
LNCS, pages 242–257. Springer, 1999.

[9] C. Dima. Computing reachability relations in timed automata. In Proc. of Symp.
on Logic in Computer Science (LICS 2002), pages 177–188. IEEE Computer So-
ciety Press, 2002.

[10] A. Gollu, A. Puri, and P. Varaiya. Discretization of timed automata. In Proc. of
Conferene on Decision and Control, pages 957–958, 1994.

[11] O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided
underapproximation-widening for multi-process systems. In Proc. of Principles of
programming languages (POPL’05), pages 122–131. ACM Press, 2005.

[12] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable
about hybrid automata? In Proc. of ACM Symposium on Theory of Comput-
ing (STOC’95), pages 373–382. ACM Press, 1995.

[13] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In Proc.
of Colloquium on Automata, Languages and Programming (ICALP’92), volume
623 of LNCS, pages 545–558. Springer, 1992.

[14] P. Krčál and R. Pelánek. Reachability relations and sampled semantics of timed
systems. Technical Report FIMU-RS-2005-09, Masaryk University Brno, 2005.

[15] K. G. Larsen and W. Yi. Time-abstracted bisimulation: Implicit specifications
and decidability. Information and Computation, 134(2):75–101, 1997.

[16] J. Ouaknine and J. Worrell. Revisiting digitization, robustness, and decidability
for timed automata. In Proc. of IEEE Symp. on Logic in Computer Science (LICS
2003), pages 198–207. IEEE Computer Society Press, 2003.

[17] C. Pasareanu, R. Pelánek, and W. Visser. Concrete search with abstract matching
and refinement. In Proc. of Computer Aided Verification (CAV 2005), LNCS.
Springer, 2005. To appear.

[18] Anuj Puri. Dynamical properties of timed automata. Discrete Event Dynamic
Systems, 10(1-2):87–113, 2000.

[19] C. Stirling. Local model checking games. In Proc. of Conference on Concurrency
Theory (CONCUR’95), volume 962 of LNCS, pages 1–11. Springer, 1995.

[20] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics: From timed
models to timed implementations. In Proc. of Hybrid Systems: Computation and
Control (HSCC’04), volume 2993 of LNCS, pages 296–310. Springer, 2004.

Eventual Timed Automata

Deepak D’Souza and M. Raj Mohan

Department of Computer Science and Automation,
Indian Institute of Science, Bangalore 560012, India

{deepakd,raj}@csa.iisc.ernet.in

Abstract. We study the class of timed automata called eventual timed
automata (ETA’s) obtained using guards based on the operator �. In
this paper we show that ETA’s form a decidable class of timed automata
via a flattening to non-recursive ETA’s followed by a reduction to 1-
clock alternating timed automata. We also study the expressiveness of
the class of ETA’s and show that they compare favourably with other
classes in the literature. Finally we show that class obtained using the
dual operator �- is also decidable, though the two operators together lead
to an undecidable class of languages.

1 Introduction

The timed automata of Alur and Dill [AD94] are a popular model of time de-
pendent systems. While they are very expressive and have a decidable emptiness
problem, they suffer from the fact that they are not closed under complement
and have an undecidable language inclusion problem. As a result of non-closure
under complementation, they also do not admit natural monadic second order
logic characterizations. In an attempt to describe a robust class of timed au-
tomata which are closed under boolean operations and which have more robust
logical properties, the generic class of Input Determined Automata (IDA’s) were
identified in [DT04]. In contrast to a timed automaton, an IDA does not have
explicit clocks but uses distance operators whose meaning is determined solely
by the given timed word and a position in it. These generic classes of automata
have several desirable properties. They are determinizable, closed under boolean
operations, admit natural monadic second order logic characterizations, and have
expressively complete timed temporal logics.

In this paper we focus on the class of IDA’s based on the input determined
operator �, and call it eventual timed automata or ETA’s. The operator �a,
where a is a letter of the alphabet, identifies a set of distances to future positions
in the timed word which are labeled a. An eventual timed automaton can use
guards of the form (�a ∈ I) which is then true at a point in a timed word
provided there is a position in the future where an a occurs and the distance
to that point lies in the interval I. In general, the class of recursive ETA’s can
make use of operators of the form �B, where B is in turn such an ETA which
accepts timed words at a designated position in them.

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 322–334, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Eventual Timed Automata 323

The class of recursive ETA’s are an interesting class of timed automata for
reasons other than that they inherit the useful properties of generic IDA’s listed
above. The well known timed temporal logic Metric Temporal Logic (MTL)
[Koy90, AFH96, OW05] corresponds to the first order fragment of recursive
ETA’s. That is, MTL is expressively equivalent to the first order fragment
of the timed MSO which characterizes recursive ETA’s [DT04]. Further, they
form an orthogonal class of timed languages with respect to Alur-Dill timed
automata, since they can express some languages not expressible by timed au-
tomata [DT04]. However nothing much was known about decision procedures
for this class of languages.

In this paper we address this issue and show that recursive ETA’s form a
decidable class of timed languages. We do this in two steps. We first show that
recursive ETA’s can be “flattened” to a non-recursive one over an extended
alphabet. We then show that the emptiness problem for ETA’s can be decided
by showing how they can be simulated by 1-clock alternating timed automata
which were recently shown to be decidable [LW05, OW05].

We also study the expressiveness of this class more closely, and show that it
is indeed incomparable with the class of timed automata in that there is also a
language which timed automata can express but a recursive ETA cannot. The
class of recursive ETA’s can also be seen to be strictly more expressive than the
class of recursive Event Predicting Automata [AFH94, HRS98] which are another
class with robust logical properties [DT04]. This, together with the properties
described above, make the class of recursive ETA’s one of the most expressive
classes of timed automata of its kind in the literature.

Finally we show that the class of automata obtained by considering the dual
operator �- is also decidable. We do this by reducing its emptiness problem to
that of ETA’s. However, the two operators taken together lead to an undecidable
class of automata.

Some proofs are omitted due to lack of space and can be found in the full
version of this paper [DM05].

2 Eventual Timed Automata

For an alphabet A we use A∗ to denote the set of finite words over A, and |w| to
denote the length of a word w. The set of non-negative and positive real numbers
will be denoted by R≥0 and R>0 respectively.

A (finite) timed word over an alphabet Σ is an element of (Σ×R>0)∗ of the
form σ = (a0, t0)(a1, t1) · · · (an, tn), satisfying ti < ti+1 for all i ∈ {0, . . . , n− 1}.
Wherever convenient, we will also use the representation of the timed word σ
above as (w, τ) where w = a0 · · ·an and τ = t0 · · · tn. We denote the set of all
timed words over Σ by TΣ∗.

We will use rational bounded intervals to specify timing constraints. These
intervals can be open or closed, and we allow ∞ as an open right end. These
intervals denote a subset of reals in the usual manner – for example [2,∞)
denotes the set {t ∈ R≥0 | 2 ≤ t}. The set of all intervals is denoted IQ.

324 Deepak D’Souza and M. Raj Mohan

An eventual timed automaton is essentially a timed automaton which has no
explicit clocks, but uses atomic guards of the form “�a ∈ I”, which assert that
with respect to the current position in a timed word there is an occurrence of
an action a at some point in the future, such that the distance to that point lies
in the interval I. To define these automata more formally, we begin by defining
the guards used by them. For an alphabet Σ, we use G(Σ) to denote the set of
guards given by the syntax g ::= � | �a ∈ I | ¬g | g ∨ g | g ∧ g, where a ∈ Σ
and I ∈ IQ. The guards are interpreted at the “action points” in a timed word
σ (we call these positions and denote them by natural numbers between 0 and
|σ|− 1). Let σ = (a0, t0) · · · (an, tn) and i ∈ {0, . . . , |σ|− 1}. Then σ at position i
satisfies the guard �a ∈ I, written σ, i |= �a ∈ I, iff there exists j ≥ i such that
aj = a and tj − ti ∈ I. The guard � is always true, and the boolean operators
are interpreted in the expected manner.

An eventual timed automaton (ETA) over Σ is of the form A = (Q, s, δ, F)
where Q is a finite set of states, s ∈ Q is the start state, δ is the transition
relation and is a finite subset of Q×Σ × G(Σ)×Q, and F ⊆ Q is a set of final
states. A run of A on a timed word σ = (a0, t0) · · · (an, tn) is a sequence of states
q0, . . . , qn+1 satisfying

– q0 = s,
– for each i ∈ {0, . . . , n} there exist guards gi such that (qi, ai, gi, qi+1) ∈ δ

and σ, i |= gi.

The run is accepting if qn+1 ∈ F . The language of timed words accepted by A
is denoted L(A) and defined to be the set of all timed words in TΣ∗ on which
A has an accepting run.

The figure below shows an example of a simple ETA with a single state that
is both the start and the final state. It accepts the language L0 of all timed
words of a’s in which there are no two a’s at a distance of 1 time unit apart.

a,¬(�a ∈ [1, 1])

Fig. 1. An example ETA

It will be convenient to recall the general class of input determined automata
(IDA) defined in [DT04]. An IDA over an alphabet Σ has a structure similar to
an ETA except that it is parameterized by a set of “input determined” operators
Op. Each operator Δ ∈ Op has a semantic function �Δ� which we assume in this
paper associates a set of distances with a given timed word σ and a position i
in it. Thus �Δ�(σ, i) ⊆ R≥0. The atomic guards in an IDA are now of the form
(Δ ∈ I) and the truth of the guard at position i in a timed word σ is given by
σ, i |= Δ ∈ I iff �Δ�(σ, i) ∩ I 	= ∅. The timed language accepted by an IDA A

Eventual Timed Automata 325

over an alphabet Σ and a set of operators Op is denoted L(A) and is defined as
for ETA’s, with the guards interpreted as described above.

Thus the class of ETA’s over an alphabet Σ defined above is nothing but the
class of IDA’s corresponding to the set of operators {�a | a ∈ Σ} (we denote
this class by IDA(�)) with the semantic function ��a� given by

��a�(σ, i) = {τ(j) − τ(i) | σ = (w, τ), j ≥ i, and w(j) = a}.

We now introduce the recursive version of ETA’s. The main idea is to index
the � operator with an automaton B and use the operator �B to mean the set of
distances to the points in the future where the automaton B “accepts”. To make
this notion more precise, we first introduce the notion of a floating language. A
floating language over Σ is a set of floating timed words over Σ which in turn
are pairs of the form (σ, i) where σ is a timed word over Σ and i is a position in
σ. We will represent a “floating” word (σ, i) as a timed word over the extended
alphabet Σ×{0, 1}. Thus a timed word ν over Σ×{0, 1} represents the floating
word (σ, i), iff ν = (w, v, τ), with v ∈ {0, 1}∗ with a single 1 in the i-th position,
and σ = (w, τ). We use fw to denote the (partial) map which given a timed word
ν over Σ×{0, 1} returns the floating word (σ, i) corresponding to ν, and extend
it to apply to timed languages over Σ × {0, 1} in the natural way.

We can now define recursive ETA’s and the timed languages they accept as
follows. The class of recursive eventual timed automata (recursive ETA’s) over
the alphabet Σ is the union of the classes of level i recursive eventual timed
automata over Σ (for i ≥ 0) which are defined inductively below:

– A level 0 recursive ETA over Σ is an ETA A over Σ that uses only the guard
�. It accepts the language L(A) as defined for ETA’s.

– Similarly, a level 0 recursive floating ETA over Σ is an ETA B over the
alphabet Σ × {0, 1} that uses only the guard �. It accepts the floating
language Lf (B) defined to be fw (L(B)).

– Let D be a finite collection of recursive floating ETA of level i or less over
Σ, and consider the set of operators Op = {�B | B ∈ D}. We define the
semantics of �B in Op by:

��B�(σ, i) = {τ(j)− τ(i) | σ = (w, τ), j ≥ i, and (σ, j) ∈ Lf(B)}.

A level i + 1 recursive ETA over Σ is then an IDA A over (Σ,Op), and
accepts the language L(A) as defined for IDA’s. We also require that A
should use at least one operator of the form �B for a recursive floating ETA
B of level i.

– To define level i + 1 recursive floating ETA’s, let D be a finite collection
of recursive floating ETA’s of level i or less over Σ, and consider the set of
operators Op = {�B | B ∈ D}. For floating automata the operator � works
slightly differently in that it ignores the extended part of the alphabet. We
define the semantics of �C when used in a floating automaton as follows. Let
σ′ be a timed word over Σ × {0, 1}. Then

��C�(σ′, i) = {τ(j)− τ(i) | σ′ = (w, v, τ), j ≥ i, and ((w, τ), j) ∈ Lf (C)}.

326 Deepak D’Souza and M. Raj Mohan

A level i + 1 recursive floating ETA over Σ is then an IDA B over (Σ ×
{0, 1},Op), and accepts the floating language Lf (B) defined to be fw(L(B)).
Once again we require that B should use at least one operator of the form
�C for a recursive floating ETA C of level i.

Below we give an example of a recursive ETA over the alphabet {a, b, c}.

(−, 0)(−, 0)

(c, 1),'

(−, 0)(−, 0)

A

a, �B ∈ [1, 2]

B C

(b, 1), �C ∈ [1, 1]

Fig. 2. A level 2 recursive ETA.

Fig. 2 shows a level 2 recursive ETAA which uses a level 1 floating automaton
B, which in turn calls a level 0 floating automaton C. A accepts timed words σ
which start with an a at some time t, followed eventually by a b at time t′ such
that t′ − t ∈ [1, 2], and a c at time t′′ = t′ + 1. For example, the timed word
(a, 0.2)(a, 1.2)(b, 1.4)(c, 2.4) satisfies all the conditions given above and therefore
belongs to L(A).

Before we close this section, we recall some of the results of [DT04] specialized
to the case of recursive ETA’s. We recall briefly the timed monadic second order
logic rec-TMSO(Σ) based on the operator �, which characterizes the class of
timed languages defined by recursive ETA’s. The syntax of the logic is given by

ϕ ::= Qa(x) | �ψ(x) ∈ I | x ∈ X | x < y | ¬ϕ | (ϕ ∨ ϕ) | ∃xϕ | ∃Xϕ.

In the predicate �ψ(x) ∈ I, we require ψ to be a rec-TMSO(Σ) formula with a
single free variable z, x a first-order variable, and I ∈ IQ.

The logic is interpreted over timed words in TΣ∗. For formulas with free
variables we use an interpretation I which maps variables to positions in a timed
word. The semantics of the predicate “�ψ(x) ∈ I” is defined inductively as
follows. If ψ is a formula which uses no � predicates, then the satisfaction relation
σ, I |= ψ is defined as for standard MSO. Inductively, assuming the semantics of
ψ has already been defined, �ψ is interpreted as an input determined operator
as follows:

��ψ�(σ, i) = {τ(j)− τ(i) | σ = (w, τ), j ≥ i, and σ, [j/z] |= ψ}.

Then we say:

σ, I |= �ψ(x) ∈ I iff ��ψ�(σ, I(x)) ∩ I 	= ∅.

A sentence ϕ in rec-TMSO(Σ) defines the language L(ϕ) = {σ ∈ TΣω |σ |= ϕ}.

Eventual Timed Automata 327

Theorem 1 ([DT04]). The class of recursive ETA’s over an alphabet Σ satis-
fies the following properties:

1. They are determinizable and closed under boolean operations.
2. The timed monadic second order logic rec-TMSO(Σ) is expressively equiva-

lent to them.
3. The timed temporal logic MTL is expressively equivalent to the first order

fragment of rec-TMSO(Σ). &'

3 Deciding Emptiness for ETA’s

In this section we give a decision procedure for the language emptiness problem
for ETA’s. We do this by showing how to translate an ETA to a 1-clock alter-
nating timed automaton, the emptiness problem for which has been shown to
be decidable [LW05, OW05].

We first recall the definition of a 1-clock alternating timed automaton. Let
Gx denote the set of guards over the clock x given by the following syntax:
g ::= � | x ∈ I | ¬g | g ∨ g. A valuation for the clock x, d ∈ R≥0, satisfies x ∈ I,
written d |= x ∈ I, iff d ∈ I. The other guards are interpreted in the expected
manner. For X ⊆ {x}, we use d[0/X] to denote the valuation d or 0, depending
on whether X = ∅ or {x}.

A 1-clock alternating timed automaton (ATA) over an alphabet Σ is of the
form T = (Q, s,Δ, F) where Q is a finite set of states, s ∈ Q is the initial state,
Δ ⊆ Q × Σ × Gx × (2{∅,{x}}×Q − {∅}) is the transition relation, and F ⊆ Q is
the set of final states.

An extended state of T is a pair of the form (q, d) where q ∈ Q and d ∈ R≥0

is a valuation for x. A configuration of T is a finite collection of extended states.
To describe a run of the ATA over a timed word it is convenient to first define
a consecution relation between configurations. Let C = {(q0, d0), . . . , (qk, dk)}
be a configuration of T . Let t ∈ R≥0 and a ∈ Σ. Then a configuration D is an
(a, t)-successor of C iff D is the union of configurations D0, . . . , Dk which satisfy:
there exist guards gi and sets of reset-state pairs Ti = {(ri0, pi0), . . . , (rini

, pni)}
such that

– (qi, a, gi, Ti) ∈ Δ,
– di + t |= gi, and
– Di = {(pij , (di + t)[0/rij]) | j ∈ {0, . . . , ni}}.

An accepting run of T over a timed word σ = (a0, t0) · · · (an, tn) is a sequence
of configuration C0, . . . , Cn+1 satisfying:

1. C0 = {(s, 0)}
2. For each i ∈ {0, . . . , n}, the configuration Ci+1 is an (ai, ti − ti−1)-successor

of Ci. (We use the convention that t−1 = 0.)
3. Cn+1 contains only final states – i.e. Cn+1 ⊆ F × R≥0.

328 Deepak D’Souza and M. Raj Mohan

The timed language accepted by T , denoted L(T), is the set of timed words over
Σ on which T has an accepting run.

As an example, the timed language over {a, b} in which every a is followed by
a b exactly one time unit later is accepted by the ATA T shown in the diagram
below. The transition relation Δ of T is depicted by using an arc covering the
edges corresponding to an “And” transition. For example the state s has two
entries in Δ corresponding to its two outgoing transitions: (s, b,�, {(∅, s)}) and
(s, a,�, {(∅, s), ({x}, t)}).

s

b

b, x = 1

a, b

a

b, x �= 1

a

{x}
t u

Fig. 3. An alternating timed automaton T

We recall here the recent result of Lasota-Walukiewicz and Ouaknine-Worell:

Theorem 2 ([LW05, OW05]). The emptiness problem of one-clock alternat-
ing timed automata over finite words is decidable. &'

We now show how to translate a given ETA to a language-equivalent 1-clock
ATA. The idea is fairly simple: for every guarded transition in the ETA we spawn
off a copy of the automaton which verifies a literal guard of the form �a ∈ I or
¬�a ∈ I. The translation is depicted in Fig. 4.

More precisely, let A = (Q, s, δ, F) be an ETA over the alphabet Σ. We
construct an ATA T = (Q′, s′, Δ, F ′) as follows. The set of states Q′ of T
consists of the original states Q of A, a new state u, and a new state pc for
each literal guard c (i.e. of the form �a ∈ I or ¬�a ∈ I) in A. The initial state
s′ is the initial state s of A. The transition relation Δ contains the following
transitions:

1. For each transition (p, a, g, q) of A we have the following transition in Δ.
Without loss of generality let g = c0 ∧ · · · ∧ ck be a conjunction of literal
guards ci. Then

(p, a, g, {(∅, q)} ∪ {({x}, pci) | 0 ≤ i ≤ k}) ∈ Δ

2. For each positive literal c of the form �a ∈ I we have the transitions

(pc, b,�, {(∅, pc)}) ∈ Δ (for each b ∈ Σ),
(pc, a, x ∈ I, {(∅, u)}) ∈ Δ.

Eventual Timed Automata 329

3. For each negative literal c of the form ¬�a ∈ I we have the transitions

(pc, b,�, {(∅, pc)}) ∈ Δ (for each b 	= a),
(pc, a,¬(x ∈ I), {(∅, pc)}) ∈ Δ.

4. (u, a,�, {(∅, u)}) ∈ Δ.

The set of final states F ′ is given by

F ′ = F ∪ {u} ∪ {pc | c is a negative literal in A}.

−

−

b, x ∈ I

a

a, �b ∈ I ∧ ¬(�c ∈ J)
{x}

p¬(�c∈J)

p�b∈I

{x}

u rr

q q

c, x /∈ J

¬c

Fig. 4. Translation of an ETA transition

It is not difficult to check that L(A) = L(T). Using Theorem 2, we conclude
that:

Theorem 3. The emptiness problem for ETA’s is decidable. &'

4 Deciding Recursive ETA’s

In this section we show how we can decide the emptiness problem for recursive
ETA’s by showing how they can be simulated by non-recursive ETA’s, though
over an extended alphabet.

To explain the idea of our “flattening” construction, consider a recursive
ETA A that uses the floating recursive ETA’s B0, . . . ,Bk in its guards. We can
then consider a timed word over the extended alphabet Σ × {0, 1}k+1 which
represents the positions where the automata Bi accept the underlying timed
word. Thus if σ = (a0, t0) · · · (an, tn) is a timed word over Σ, the canonical
extension of σ (wrt B0, . . . ,Bk) is the timed word σ̄ which we represent as
((a0, v0), t0) · · · ((an, vn), tn) where for each i ∈ {0, . . . , n} and j ∈ {0, . . . , k},
vi[j] = 1 iff Bj accepts (σ, i). The figure below shows the canonical extension of
the timed word (a, 0.2)(a, 1.2)(b, 1.4)(c, 2.4) with respect to the recursive ETA
of Fig. 2.

T 0.2 1.2 1.4 2.4

Σ a a b c

B 0 0 1 0

C 0 0 0 1

330 Deepak D’Souza and M. Raj Mohan

Now the idea is essentially to run a modified version of A, which we call
Â, over the extended timed words, and replace each atomic guard of the form
�Bj ∈ I in A by an appropriate non-recursive guard of the form �(a,v) ∈ I

where a ∈ Σ and v is such that v[j] = 1. We must further make sure that Â does
not accept “bad” extended words in which some 0 and 1 guesses are incorrect.
For this we use ETA’s B̂0

j and B̂1
j which verify that the 0 entries (respectively

the 1 entries) in the j-th row are correct.
The ETA B̂0

j which verifies that the 0 entries in the j-th row are correct,
works by maintaining two components in its state: the first a state of Bj and
the second a subset of states of Bj . Whenever it gets an (a, v) with v[j] = 0
it pretends it has received a 1 entry instead, and pushes the resulting state to
its second component. Apart from this, it runs its second component similar to
a subset construction, assuming all entries are 0. Thus, if the extended word
contained a 0 entry that should have been a 1, at the end of the word B̂0

j will
have a final state of Bj and it will reject the extended word.

We now give the formal construction of the flattened ETA. LetA = (Q, s, δ, F)
be a recursive ETA over the alphabet Σ, and let it make use of the recursive
floating ETA’s B0, . . . ,Bk, listed in the order of increasing levels. Without loss
of generality (cf. Theorem 1) we assume that each Bj is deterministic. Let each
Bj have the structure (Qj , sj, δj , Fj).

The required flattened ETA A′ over the extended alphabet Σ′ = Σ ×
{0, 1}k+1 is defined to be the intersection of the following ETA’s as below:

A′ = Â ∩
k⋂
j=0

B̂0
j ∩

k⋂
j=0

B̂1
j .

The ETA Â has the same structure as A and is defined to be (Q, s, δ̂, F)
where the transition relation δ̂ is given as follows. For a guard g in A, we denote
by ĝ the guard obtained by replacing each occurrence of an atomic guard of the
form �Bj ∈ I by the guard ∨

a∈Σ,v[j]=1

(�(a,v) ∈ I).

Now let (p, a, g, q) ∈ δ. Then we have the transition (p, (a, v), ĝ, q) in δ̂ for all v.
The automaton B̂0

j is defined as follows. B̂0
j = (Q̂0

j , ŝ
0
j , δ̂

0
j , F̂

0
j), where:

– Q̂0
j = Qj × 2Qj

– ŝ0
j = (sj , ∅)

– δ̂0
j is given as follows. Let (q, S) be a state of B̂0

j , with S = {q0, . . . , qm}. Let
(a, v) ∈ Σ′ with v[j] = 0. Then we have the transition ((q, S), (a, v), h, (r, T))
in δ̂0

j provided the following conditions are satisfied:
• There exists g such that (q, (a, 0), g, r) ∈ δj .
• There exists g′ such that (q, (a, 1), g′, t) ∈ δj .
• There exist g0, . . . , gm such that (qi, (a, 0), gi, ri) ∈ δj

Eventual Timed Automata 331

• h = ĝ0 ∧ · · · ∧ ĝm ∧ ĝ ∧ ĝ′, and,
• T = {r0, . . . , rm} ∪ {t}.

If (a, v)∈Σ′ with v[j] = 1, then we have the transition ((q, S), (a, v), h, (r, T))
in δ̂0

j provided:
• There exists g such that (q, (a, 0), g, r) ∈ δj .
• There exist g0, . . . , gm such that (qi, (a, 0), gi, ri) ∈ δj
• h = ĝ0 ∧ · · · ∧ ĝm ∧ ĝ, and,
• T = {r0, . . . , rm}.

– F̂ 0
j = Qj × 2Qj−Fj .

The ETA B̂1
j is defined in a similar manner, except that we now verify the

1’s instead of the 0 entries.
To reason about the correctness of the construction, it is convenient to use

the notion of a “projection” of an extended word to a standard timed word.
Let σ′ be a timed word over the extended alphabet Σ′. Let us represent σ′ as
(w, β, τ) where w ∈ Σ∗, β ∈ ({0, 1}k+1)∗, and τ ∈ (R>0)∗. Then the projection
of σ′ to Σ, denoted σ′ 	Σ, is defined to be the timed word (w, τ). We extend the
projection operator to work on timed languages over Σ′ in the expected way.

Theorem 4. The recursive ETA A accepts the projection of the language ac-
cepted by the ETA A′, i.e L(A) = L(A′)	Σ.

Proof (Sketch). The proof involves two arguments. The first that the ETA over
the extended alphabet Â accepts precisely the canonical extensions of timed
words accepted by A, provided we restrict ourselves to only canonical extended
timed words. That is, if σ is a timed word over Σ and σ̄ is its canonical extension
wrt B0, . . . ,Bk, then σ ∈ L(A) iff σ̄ ∈ L(Â). This is easy to see once we observe
that

σ, i |= g iff σ̄, i |= ĝ.

The second part of the argument is to show that the intersection of the
ETA’s B̂0

j and B̂1
j together ensure that A′ accepts only canonical extensions wrt

B0, . . . ,Bk. To prove this it is sufficient to argue that if σ′ is an extended timed
word such that for a particular j all rows below it have “correct” 0’s and 1’s,
then B̂0

j (and symmetrically B̂1
j) accepts it iff all 0 entries (respectively 1 entries)

in the j-th row are correct. This is fairly routine to prove using the fact that the
Bj ’s are time deterministic. &'

5 Expressiveness of ETA’s

In this section we compare the expressiveness of the class of recursive ETA’s
with a couple of well known classes of timed automata in the literature. We
show that recursive ETA’s are incomparable in expressiveness with Alur-Dill
timed automata, and that they are strictly more expressive than the class of
recursive Event Predicting Automata (EPA’s) of [HRS98].

The timed language L0 of section 2 was shown to to be definable by an
ETA whereas it is not definable by an Alur-Dill timed automaton. Conversely,

332 Deepak D’Souza and M. Raj Mohan

consider the language Lni (for “no insertions”) over the alphabet {a, b}, in which
for any two consecutive a’s the corresponding time period translated by one time
unit contains no events. The complement of this language is definable by a non-
deterministic timed automaton. However, as shown in [DP05], the language Lni

is not definable by a 1-clock alternating timed automaton (and hence neither is
its complement, since this class is closed under complement). Recursive ETA’s
can be seen to be a subclass of 1-clock ATA’s, using Theorem 4 and the fact that
1-clock ATA’s are closed under projection. It then follows that recursive ETA’s
cannot define the complement of Lni either. Thus the class of recursive ETA’s
is incomparable to the class of Alur-Dill timed automata.

The class of recursive Event Predicting Automata [AFH96, HRS98] can be
seen to be strictly contained in the class of recursive ETA’s. Recall that EPA’s
use an input determined operator �a which measures the distance to the next
a event. The EPA guard �a ∈ I can be simulated by the ETA guard (�a ∈
I) ∧ ¬(�a ∈ I ′), where the interval I ′ is of the form (0, l) if I = [l, r〉, and (0, l]
if I = (l, r〉 (here ‘〉’ is either ‘)’ or ‘]’). A recursive EPA can also be simulated
by a recursive ETA by inductively replacing guards in a similar manner. A
recursive EPA can be flattened to a projection equivalent non recursive EPA
which runs over an extended alphabet. The class of non recursive EPA is shown
to be a subclass of Alur-Dill timed automata [AFH94]. Since timed automata
are closed under projection there exists a timed automaton which accepts the
language accepted by the recursive EPA. Therefore the class of EPA’s is strictly
contained in the of ETA’s. The figure below summarizes the arguments of this
section.

EPA
ETA

TA

L0

L̄ni

Fig. 5. Expressiveness of recursive ETA’s, EPA’s and timed automata

6 Decision Procedures for the Dual of �

In this section we consider the class of IDA’s obtained by considering the dual
operator �- . The semantics of the operator is given as follows:

��- a�(σ, i) = {τ(i)− τ(j) | σ = (w, τ), j ≤ i, and w(j) = a}.

We denote this class IDA(�-). We prove that the emptiness problem of the class
of IDA(�-) over finite words is decidable by reducing it to the emptiness problem
of ETA’s.

Eventual Timed Automata 333

We now define the reverse of a timed word. Let σ = (a0, t0) · · · (an, tn) be
a timed word. We define the set of reversed timed words σR corresponding to
σ as follows: σR = {(an, d − tn) · · · (a0, d − t0) | d > tn}. For a timed language
L ⊆ TΣ∗ we define LR =

⋃
σ∈L σ

R.
Let g be a �- -guard, and let us denote by gR the �-guard obtained from g

by replacing each atomic guard �- a ∈ I in g by the atomic guard �a ∈ I. Then
the following can be easily verified: Let σ and σ′ be such that σ′ ∈ σR. Then (a)
if σ, i |= g then σ′, (n− i) |= gR, and (b) if σ, i |= gR then σ′, (n− i) |= g.

We now construct an ETA AR from the given IDA(�-) A by replacing every
guard g in A with the guard gR, reversing the direction of all the edges, and
interchanging the start and the final states. For convenience we allowAR to have
multiple start states. It is then easy to verify that if σ′ ∈ σR then σ ∈ L(A)
implies σ′ ∈ L(AR), and σ ∈ L(AR) implies σ′ ∈ L(A). Thus AR preserves the
language emptiness of A. In general, the language accepted by AR can be seen
to be L(A)R.

Since the emptiness problem for ETA’s is decidable we conclude that:

Theorem 5. The emptiness problem for IDA(�-) is decidable. &'

It is easy to see that recursive IDA(�-) can be flattened in a similar manner
to ETA’s. Hence we can conclude that:

Theorem 6. The emptiness problem for recursive IDA(�-) is decidable. &'

Finally, we point out that the class of IDA’s with both operators � and �-
becomes undecidable. One can give a reduction from the halting problem of a
2-counter machine to the emptiness problem for this class, in a similar manner
as done in [AD94]. More details can be found in [DM05].

Theorem 7. The emptiness problem for IDA(�,�-) is undecidable. &'

References

[AD94] R. Alur and D. Dill: A theory of timed automata, Theoretical Computer
Science 126, Elsevier, 183–235 (1994).

[AFH96] R. Alur, T. Feder and T.A. Henzinger: The benefits of relaxing punctuality,
J. ACM 43, 116–146 (1996).

[AFH94] R. Alur, L. Fix and T. A. Henzinger: Event-clock automata: a determiniz-
able class of timed automata, Proc. 6th CAV, LNCS 818, 1–13, Springer-
Verlag (1994).

[DM05] D. D’Souza and Raj Mohan M: Eventual Timed Automata, IISc-CSA-TR-
2005-8, Technical Report, Indian Institute of Science, Bangalore (2005).

[DP05] D. D’Souza and P. Prabhakar: On the expressiveness of MTL in the point-
wise and continuous semantics, IISc-CSA-TR-2005-7, Technical Report, In-
dian Institute of Science, Bangalore (2005).

[DT04] D. D’Souza and N. Tabareau: On timed automata with input-determined
guards, Proc. FORMATS-FTRTFT, LNCS 3253 (2004).

[HRS98] T. Henzinger, J. Raskin and P. Schobbens: The regular real-time languages,
Proc. 25th ICALP, LNCS 1443, 580–591 (1998).

334 Deepak D’Souza and M. Raj Mohan

[Koy90] R. Koymans: Specifying real-time properties with metric temporal logic,
Real Time Systems, Vol. 2, No.4, 255–299 (1990).

[LW05] S. Lasota and I. Walukiewicz: Alternating timed automata, Proc. FOS-
SACS 2005 (2005).

[OW05] J. Ouaknine and J. Worrell: On the decidability of metric temporal logic,
Proc. LICS 2005 (2005).

Causal Closure for MSC Languages

Bharat Adsul, Madhavan Mukund, K. Narayan Kumar, and
Vasumathi Narayanan

Chennai Mathematical Institute, Chennai, India
{abharat,madhavan,kumar,vasumathi}@cmi.ac.in

Abstract. Message sequence charts (MSCs) are commonly used to spec-
ify interactions between agents in communicating systems. Their visual
nature makes them attractive for describing scenarios, but also leads to
ambiguities that can result in incomplete or inconsistent descriptions.

One such problem is that of implied scenarios—a set of MSCs may
imply new MSCs which are “locally consistent” with the given set. If
local consistency is defined in terms of local projections of actions along
each process, it is undecidable whether a set of MSCs is closed with
respect to implied scenarios, even for regular MSC languages [3].

We introduce a new and natural notion of local consistency called
causal closure, based on the causal view of a process—all the information
it collects, directly or indirectly, through its actions. Our main result is
that checking whether a set of MSCs is closed with respect to implied
scenarios modulo causal closure is decidable for regular MSC languages.

1 Introduction

Message Sequence Charts (MSCs) [10] are an appealing visual formalism that
are used in a number of software engineering notational frameworks such as
SDL [15] and UML [4, 8]. A collection of MSCs is used to capture the scenarios
that a designer might want the system to exhibit (or avoid).

A standard way to generate a set of MSCs is via Hierarchical (or High-
level) Message Sequence Charts (HMSCs) [12]. Without losing expressiveness,
we consider only a subclass of HMSCs called Message Sequence Graphs (MSGs).
An MSG is a finite directed graph in which each node is labelled by an MSC.
An MSG defines a collection of MSCs by concatenating the MSCs labelling each
path from an initial vertex to a terminal vertex.

Though the visual nature of MSGs makes them attractive for describing
scenarios, it also leads to ambiguities that can result in incomplete or inconsistent
descriptions. An important issue is the presence of implied scenarios [2, 3]. An
MSC M is (weakly) implied by an MSC language L if the local actions of each
process p along M agree with its local actions along some good MSC Mp ∈ L.

Implied scenarios are naturally tied to the question of realizability—when
is an MSG specification implementable as a set of communicating finite-state
machines? In a distributed model with local acceptance conditions, it is natural
to expect the specification to be closed with respect to local projections. Thus,

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 335–347, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

336 Bharat Adsul et al.

a language is said to be weakly realizable if all weakly implied scenarios are
included in the language. Unfortunately, weak realizability is undecidable, even
for regular MSC languages [3].

Weak implication presumes that the only information a process can maintain
locally about an MSC is the sequence of actions that it participates in. How-
ever, we can augment the underlying message alphabet of an MSC by tagging
auxiliary information to each message. Using this extra information, processes
can maintain a bounded amount of information about the global state of the
system [13]. With this, we arrive at a stronger notion of implied scenario that
we call causal closure, based on the local view that each process has of an MSC
from the information it receives, directly or indirectly, about the system.

Our main result is that causal closure preserves regularity for MSC languages,
in contrast to the situation with weak closure. From this it follows that causal
realizability is effectively checkable for regular MSC languages, both in the case of
implementations with deadlocks and for safe, or deadlock-free, implementations.

Our result also allows us to interpret MSGs as incomplete specifications
whose semantics is given in terms of the causal closure. Thus, we can retain
relatively simple visual specifications without compromising on the complete-
ness and consistency of verification.

The paper is organized as follows. We begin with some basic definitions re-
garding MSCs, message sequence graphs and message-passing automata. In the
next section, we recall the results for weakly implied scenarios. In Section 4, we
define the notion of causal closure and establish our main result, that causal clo-
sure preserves regularity for MSC languages. Finally, in Section 5, we examine
the feasibility of using causal closure as a semantics for MSGs.

2 Preliminaries

2.1 Message Sequence Charts

Let P = {p, q, r, . . .} be a finite set of processes (agents) that communicate with
each other through messages via reliable FIFO channels using a finite set of
message types M. For p ∈ P , let Σp = {p!q(m), p?q(m) | p 	= q ∈ P ,m ∈ M} be
the set of communication actions in which p participates. The action p!q(m) is
read as p sends the message m to q and the action p?q(m) is read as p receives the
message m from q. We set ΣP =

⋃
p∈P Σp. We also denote the set of channels

by Ch = {(p, q) | p 	= q}. Whenever the set of processes P is clear from the
context, we write Σ instead of ΣP , etc.
Labelled posets A Σ-labelled poset is a structure M = (E,≤, λ) where (E,≤)
is a poset and λ : E → Σ is a labelling function. For e ∈ E, let ↓e = {e′ | e′ ≤ e}.
For X ⊆ E, ↓X = ∪e∈X↓e. We call X ⊆ E a prefix of M if X = ↓X .

For p ∈ P and a ∈ Σ, we set Ep = {e | λ(e) ∈ Σp} and Ea = {e | λ(e) = a},
respectively. For each (p, q) ∈ Ch, we define the relation <pq as follows:

e <pq e
′ ⇐⇒ λ(e) = p!q(m), λ(e′) = q?p(m) and |↓e∩Ep!q(m)| = |↓e′∩Eq?p(m)|

Causal Closure for MSC Languages 337

m1

m2

m3

e1 e2

e′2

e′1 e′3

e3

p q r

Fig. 1. An MSC over {p, q, r}.

The relation e <pq e
′ says that channels are FIFO with respect to each message—

if e <pq e
′, the message m read by q at e′ is the one sent by p at e.

Finally, for each p ∈ P , we define the relation ≤pp= (Ep×Ep)∩≤, with <pp

standing for the largest irreflexive subset of ≤pp.

Definition 1. An MSC (over P) is a finite Σ-labelled poset M = (E,≤, λ) that
satisfies the following conditions.

1. Each relation ≤pp is a linear order.
2. If p 	= q then for each m ∈ M, |Ep!q(m)| = |Eq?p(m)|.
3. If e <pq e

′, then |↓e ∩
(⋃

m∈MEp!q(m)

)
| = |↓e′ ∩

(⋃
m∈MEq?p(m)

)
|.

4. The partial order ≤ is the reflexive, transitive closure of the relation⋃
p,q∈P <pq.

The second condition ensures that every message sent along a channel is
received. The third condition says that every channel is FIFO across all messages.

In diagrams, the events of an MSC are presented in visual order. The events
of each process are arranged in a vertical line and messages are displayed as
horizontal or downward-sloping directed edges. Fig. 1 shows an example with
three processes {p, q, r} and six events {e1, e

′
1, e2, e

′
2, e3, e

′
3} corresponding to

three messages—m1 from p to q, m2 from q to r and m3 from p to r.
For an MSC M = (E,≤, λ), we let lin(M) = {λ(π) | π is a linearization of

(E,≤)}. For instance, p!q(m1) q?p(m1) q!r(m2) p!r(m3) r?q(m2) r?p(m3) is one
linearization of the MSC in Fig. 1.

MSC languages An MSC language is a set of MSCs. We can also regard an
MSC language L as a word language L over Σ consisting of all linearizations of
the MSCs in L. For an MSC language L, we set lin(L) =

⋃
{lin(M) |M ∈ L}.

Definition 2. An MSC language L is said to be a regular MSC language if the
word language lin(L) is a regular language over Σ.

2.2 Message Sequence Graphs

Message sequence graphs (MSGs) are finite directed graphs with designated
initial and terminal vertices. Each vertex in an MSG is labelled by an MSC. The
edges represent (asynchronous) MSC concatenation, defined as follows.

338 Bharat Adsul et al.

q r s r sp p q
m m

M1 M2

mm

CGM1◦M2

p

r

q

s

⇒ M2M1

Fig. 2. A message sequence graph

Let M1 = (E1,≤1, λ1) and M2 = (E2,≤2, λ2) be a pair of MSCs such that
E1 and E2 are disjoint. The (asynchronous) concatenation of M1 and M2 yields
the MSC M1 ◦ M2 = (E,≤, λ) where E = E1 ∪ E2, λ(e) = λi(e) if e ∈ Ei,
i ∈ {1, 2}, and ≤ = (

⋃
p,q∈P <pq)∗, where <pp=<1

pp ∪ <2
pp ∪{(e1, e2) | e1 ∈

E1, e2 ∈ E2, λ(e1) ∈ Σp, λ(e2) ∈ Σp} and for (p, q) ∈ Ch, <pq=<1
pq ∪ <2

pq.
A Message Sequence Graph is a structure G = (Q,→, Qin, F, Φ), where Q is a

finite and nonempty set of states, → ⊆ Q×Q, Qin ⊆ Q is a set of initial states,
F ⊆ Q is a set of final states and Φ labels each state with an MSC.

A path π through an MSG G is a sequence q0 → q1 → · · · → qn such
that (qi−1, qi) ∈ → for i ∈ {1, 2, . . . , n}. The MSC generated by π is M(π) =
M0 ◦M1 ◦M2 ◦ · · · ◦Mn, where Mi = Φ(qi). A path π = q0 → q1 → · · · → qn
is a run if q0 ∈ Qin and qn ∈ F . The language of MSCs accepted by G is
L(G) = {M(π) | π is a run through G}.

An example of an MSG is depicted in Fig. 2. The initial state is marked ⇒
and the final state has a double line. The language L defined by this MSG is not
regular: L projected to {p!q(m), r!s(m)}∗ consists of σ ∈ {p!q(m), r!s(m)}∗ such
that |σ�p!q(m)| = |σ�r!s(m)| ≥ 1, which is not a regular string language.

In general, it is undecidable whether an MSG describes a regular MSC lan-
guage [9]. However, a sufficient condition for the MSC language of an MSG to
be regular is that the MSG be locally synchronized.

Communication graph For an MSC M = (E,≤, λ), let CGM , the communi-
cation graph of M , be the directed graph (P , %→) where:

– P is the set of processes of the system.
– (p, q) ∈ %→ iff there exists an e ∈ E with λ(e) = p!q(m).

M is said to be com-connected if CGM consists of one nontrivial strongly con-
nected component and isolated vertices.

Locally synchronized MSGs The MSG G is locally synchronized [14] (or
bounded [1]) if for every loop π = q → q1 → · · · → qn → q, the MSC M(π) is
com-connected. In Fig. 2, CGM1◦M2 is not com-connected, so the MSG is not
locally synchronized. We have the following result for MSGs [1].

Theorem 3. If G is locally synchronized, L(G) is a regular MSC language.

Causal Closure for MSC Languages 339

2.3 Message-Passing Automata

Message-passing automata are natural recognizers for MSC languages.

Definition 4. A message-passing automaton (MPA) over Σ is a structure
A = ({Ap}p∈P , Δ, sin, F) where:

– Δ is a finite alphabet of auxiliary messages.
– Each component Ap is of the form (Sp,→p) where Sp is a finite set of p-local

states and →p ⊆ Sp ×Σp ×Δ× Sp is the p-local transition relation.
– sin ∈

∏
p∈P Sp is the global initial state.

– F ⊆
∏
p∈P Sp is the set of global final states.

The local transition relation →p specifies how the process p sends and re-
ceives messages. The transition (s, p!q(m), x, s′) says that in state s, p can send
the message m to q tagged with auxiliary information x and move to state s′.
Similarly, the transition (s, p?q(m), x, s′) signifies that at state s, p can receive
the message m from q tagged with information x and move to state s′.

A global state of A is an element of
∏
p∈P Sp. For a global state s, sp denotes

the pth component of s. A configuration is a pair (s, χ) where s is a global state
and χ : Ch → (M× Δ)∗ is the channel state describing the message queue in
each channel c. The initial configuration ofA is (sin, χε) where χε(c) is the empty
string ε for every channel c. The set of final configurations of A is F × {χε}.

The set of reachable configurations of A, ConfA, is defined in the obvi-
ous way. The initial configuration (sin, χε) is in ConfA. If (s, χ) ∈ ConfA and

(sp, p!q(m), x, s′p) ∈ →p, then there is a global move (s, χ)
p!q(m)
=⇒ (s′, χ′) where for

r 	= p, sr = s′r, for each r ∈ P , χ′((p, q)) = χ((p, q)) · (m,x), and for c 	= (p, q),
χ′(c) = χ(c). Similarly, if (s, χ) ∈ ConfA and (sp, p?q(m), x, s′p) ∈ →p, then

there is a global move (s, χ)
p?q(m)
=⇒ (s′, χ′) where for r 	= p, sr = s′r, for each

r ∈ P , χ((q, p)) = (m,x) · χ′((q, p)), and for c 	= (q, p), χ′(c) = χ(c).
Let prf(σ) denote the set of prefixes of a word σ ∈ Σ∗. A run of A over σ is

a map ρ : prf(σ) → ConfA such that ρ(ε) = (sin, χε) and for each τa ∈ prf(σ),
ρ(τ) a=⇒ ρ(τa). The run ρ is accepting if ρ(σ) is a final configuration.

We define L(A) = {σ | A has an accepting run over σ}. L(A) corresponds
to the set of linearizations of an MSC language. To simplify notation, we write
L(A) = L, where L is an MSC language, rather than L(A) = lin(L).

For B ∈ N, we say that a configuration (s, χ) of A is B-bounded if |χ(c)| ≤ B
for every channel c ∈ Ch. We say that A is a B-bounded automaton if every
reachable configuration (s, χ) ∈ ConfA is B-bounded.

The MPA A in Fig. 3 has two components, p and q, with initial state (s1, t1)
and only one final state, (s2, t3). A typical MSC in L(A) is displayed at the right.

Deterministic Message-Passing Automata We say that A is deterministic
if the transition relation→p for each component satisfies the following conditions:

– (s, p!q(m), x′, s′) ∈ →p and (s, p!q(m), x′′, s′′) ∈ →p imply x′ = x′′, s′ = s′′.
– (s, p?q(m), x, s′) ∈ →p and (s, p?q(m), x, s′′) ∈ →p imply s′ = s′′.

340 Bharat Adsul et al.

s1

s2

s3

p!q(m)

t2

t1 q?p(m)

p!q(m)

q!p(m′)
q?p(m)

⇓ ⇓

t3

p?q(m′)

p q

m m′

m

m

m′

Fig. 3. A message-passing automaton.

For deterministic MPAs, the global state at the end of an MSC is independent
of the choice of linearization.

Proposition 5. Let A be a deterministic MPA, M = (E,≤, λ) an MSC and
E′ ⊆ E a prefix of M . Let w and w′ be linearizations of E′ and let ρ and ρ′ be
the runs of A on w and w′, respectively. Then, ρ(w) = ρ(w′).

If A is deterministic, for any prefix E′ of an MSC M , we can unambiguously
write ρ(E′) to denote the unique run of A on E′. In particular, the unique run
of A on M can be written as ρ(M). The following theorem characterizes regular
MSC languages in terms of message-passing automata [9].

Theorem 6. An MSC language L is regular iff there is a deterministic B-
bounded MPA A such that L(A) = L.

3 Implied Scenarios: The Weak Case

When we use MSC languages to specify sets of scenarios, it is important to
identify whether the specification is complete. A natural requirement is that the
language be closed with respect to local views—for an MSC M , if every process
locally believes that M belongs to the language L, M should in fact be in L.

One way to formalize closure with respect to local views is in terms of local
projections [2, 3].

Definition 7. – Let M = (E,≤, λ) be an MSC and p ∈ P a process. The
projection of M onto p, M�p, is the Σ-labelled partial order (Ep,≤p, λp),
where ≤p = ≤ ∩ (Ep × Ep) is a total order and λp = λ�Ep

.
– An MSC M is said to be weakly implied by L if for every process p ∈ P

there is an MSC Mp ∈ L such that Mp�p = M�p.
– The weak closure of L is the collection of MSCs

WeakCl(L)
�
= {M |M is weakly implied by L}.

Unfortunately, the weak closure of a language can admit unbounded channels
even when every channel in the original language is uniformly bounded. An
example is shown in Fig. 4—all messages are labelled m and labels are omitted.

Causal Closure for MSC Languages 341

p q r s p q r sp q r s

M M ′

Fig. 4. A regular MSC language whose weak closure has unbounded buffers

Both M and M ′ are com-connected, so the MSC language consisting of arbi-
trary concatenations of M and M ′ is regular. However, for every natural number
k, the weak closure of this language contains the MSC Mk in which the actions
of p and q correspond to the sequence M2k ◦M ′k while the actions of r and s
match the sequence M ′k◦M2k. In Mk, the buffer from p to s contains k messages
at the global state where p and q make the transition from M to M ′ and r and s
make the transition from M ′ to M . The figure shows the case k = 2. The dotted
line marks the global cut where the channel from p to s has maximum capacity.

Implied scenarios have a close link to implementability, or realizability. An
MSC language recognized by a communicating finite-state machine with a local
acceptance condition must be closed with respect to local views. We say that an
MSC language L is weakly realizable if L = WeakCl(L). We have the following
negative result [3], which arises from the fact that the weak closure of a regular
MSC language may have unbounded buffers.

Theorem 8. Let G be a locally synchronized MSG. It is undecidable if L(G) is
weakly realizable.

To overcome this negative result, a more restrictive notion of realizability
is proposed in [2, 11]. An MSC language is said to be safely realizable if it
admits a deadlock-free implementation—a deadlock is a global state from which
no accepting state is reachable. In a safe implementation, it turns out that all
implied scenarios must have bounded buffers, yielding the following result [3].

Theorem 9. Let G be a locally synchronized MSG. It is decidable if L(G) is
safely realizable.

4 Causal Closure for Regular MSC Languages

Weak closure assumes that the only information that a process can maintain
locally about the current MSC is the sequence of actions that it participates
in. However, as we have observed when characterizing regular MSC languages in
terms of MPAs, we can tag each underlying message with extra data using which

342 Bharat Adsul et al.

p q sr p q sr p q sr

M2M1 M ′

m

m

m m

m

m

m

Fig. 5. Illustrating the difference between weak and causal closure

processes can maintain a bounded amount of information about the global state
of the system. This leads us to a stronger notion of local view called causal view.

We begin by defining p-views. For an MSC M = (E,≤, λ) and p ∈ P , let
maxp(M) denote the maximum event from Ep in M—since all p events in M
are linearly ordered by ≤pp, maxp(M) is well-defined whenever Ep 	= ∅.

Definition 10. Let M = (E,≤, λ) be an MSC and p ∈ P a process. The p-view
of M , ∂p(M), is the Σ-labelled partial order (E′,≤′, λ′) where E′ = {e | e ≤
maxp(M)}, ≤′ = ≤ ∩ (E′ × E′) and λ′ = λ�E′ . If Ep = ∅, ∂p(M) = (∅, ∅, ∅).

It is easy to observe that ∂p(M) is always a prefix of M . Causal realizability
captures the intuition that each process p can keep track of the events in ∂p(M).

Definition 11. Let L be an MSC language.

– An MSC M is said to be causally implied by L if for every process p ∈ P
there is an MSC Mp ∈ L such that ∂p(M) = ∂p(Mp).

– The causal closure of L is the collection of MSCs

CausalCl(L)
�
= {M |M is causally implied by L}.

– The language L is said to be causally realizable if L = CausalCl(L).

An MSC language is causally realizable if each local process can recognize
whether an MSC belongs to the language based purely on its causal view of the
MSC. Observe that we always have L ⊆ CausalCl(L). Thus, L is not causally
realizable iff there is an MSC M ∈ CausalCl(L) such that M /∈ L.

We also have the inclusion CausalCl(L) ⊆ WeakCl(L). In general,
CausalCl(L) 	= WeakCl(L)—for instance, the implied MSCs in Fig. 4 are not in
the causal closure of the language. Fig. 5 illustrates the difference between weak
and causal closure. Here M ′ is in the weak closure of {M1,M2} but not in the
causal closure, because the causal view of process s includes information about
whether or not p has sent a message to q.

Every regular MSC language L is recognized by a deterministic B-bounded
MPA AL. To construct an MPA for CausalCl(L), we simulate AL and make
each process go into a local accepting state if its current history is consistent
with some accepting run of AL. To achieve this, we make use of a bounded
time-stamping protocol for B-bounded MPA, described in [13], by which each
process can maintain the latest known state of every other process and channel.
Using this protocol, we can derive the following result.

Causal Closure for MSC Languages 343

Theorem 12. Let A = ({Ap}p∈P , Δ, sin, F) be a deterministic B-bounded MPA.
We can augment A with time-stamping information to get a deterministic B-
bounded MPA Aτ = ({Aτp}p∈P , Δτ , sτin, F

τ) such that:

– For each process p, let Ap = (Sp,→p) and Aτp = (Sτp ,→τ
p) be the p compo-

nents of A and Aτ , respectively. Then:
– Sτp is of the form Sp × Γ , where Γ contains a bounded amount of time-

stamped data about all the processes and channels in the system.
– →τ

p is such that for every MSC M = (E,≤, λ) and for every prefix E′

of M , the unique run ρτ (E′) of Aτ on E′ corresponds to the unique run
ρ(E′) of A on E′ in the sense that ρ(E′) matches the first component of
ρτ (E′).

– sτin =
∏
p∈P(sp, γ0

p) where sin =
∏
p∈P sp and

∏
p∈P γ0

p is a fixed set of initial
time-stamps.

– F τ =
{∏

p∈P(sp, γp) |
∏
p∈P sp ∈ F

}
.

– Let M = (E,≤, λ) be an MSC. For each p ∈ P, from the p-state (sp, γp)
assigned by ρτ (∂p(M)) we can recover the configuration (s, χ) reached by A
at the end of ∂p(M).

When we augment a deterministic MPAA with time-stamping data to obtain
Aτ , after any sequence of actions w, the local state of p in Aτ allows us to recover
the global configuration reached by A after processing all actions in the p-view
of w. Thus, incrementally each process can keep track of the global configuration
of the automaton A for the portion of the MSC that it has seen so far.

Theorem 13. Let L be a regular MSC language. Then, its causal closure
CausalCl(L) is also a regular MSC language.

Proof. Since L is a regular MSC language, by Theorem 6 there is a deterministic
B-bounded MPA A such that L(A) = L.

We apply Theorem 12, to obtain a new automaton Aτ that augments A
with time-stamped information. For each process p, we define a subset of local
final states F τ

p ⊆ Sτp as follows. A state (sp, γp) belongs to F τ
p iff, starting

from the configuration (s, χ) of A that we recover from (sp, γp), A can reach
a configuration (f, χε), where f ∈ F , without performing any actions involving
process p. Notice that the sets F τ

p are effectively computable.
In Aτ , we replace the set of global final states F τ by the product of local

final states
∏
p∈P F τ

p and call this modified MPA AClτ .

Claim L(AClτ) = CausalCl(L).
Proof of claim (⇐) Suppose that M ∈ CausalCl(L). Then, for every process p,
there is an MSC Mp ∈ L such that ∂p(M) = ∂p(Mp). Fix p ∈ P and let (sp, γp)
be the state of p in the run ρτ of Aτ on ∂p(M). The configuration (s, χ) recorded
in (sp, γp) is the configuration reached byA at the end of ∂p(M) = ∂p(Mp). Since
Mp ∈ L, A can reach a configuration (f, χε), f ∈ F , starting from (s, χ), without
performing any actions involving p. Thus, (sp, γp) ∈ F τ

p . Since p does not make

344 Bharat Adsul et al.

any moves outside ∂p(M), the state of p in ρτ (M) also belongs to F τ
p . Since

every process p reaches a state in F τ
p at the end of M , M ∈ L(AClτ).

(⇒) Suppose that M ∈ L(AClτ). Fix a process p, and let (sp, γp) ∈ F τ
p be the

state of p in the accepting run ρτ (M) of AClτ on M . Since p does not participate
in any action outside ∂p(M), the state of p in ρτ (∂p(M)) must also be (sp, γp).

Let (s, χ) be the configuration of A that we recover from (sp, γp)—by Theo-
rem 12, (s, χ) is the configuration reached by A at the end of ∂p(M). From the
definition of F τ

p , we know that A can reach a configuration (f, χε) from (s, χ),
where f ∈ F , without perfoming any actions involving p. Let wp be linearization
of ∂p(M) and let w be the sequence of actions processed by A when going from
the configuration (s, χ) to the configuration (f, χε). All messages sent during
wp but not received in wp must be received in w since all channels are empty
in the final configuration. It is not difficult to see that wpw corresponds to the
linearization of an MSC Mp. By construction, A has an accepting run on Mp,
so Mp ∈ L, with ∂p(M) = ∂p(Mp).

Thus, whenever p reaches a state in F τ
p after M , there is an MSC Mp ∈ L

such that ∂p(M) = ∂p(Mp). If M is in L(Aτ), then we find such a witness Mp

for every p ∈ P , so M ∈ CausalCl(L). &'

Since we can construct a B-bounded MPA recognizing CausalCl(L) for any
regular MSC language L, we can effectively check whether L = CausalCl(L).
Thus, we have the following.

Corollary 14. For any regular MSC language L (respectively, locally synchro-
nized MSG G), it is decidable if L (respectively, L(G)) is causally realizable.

Every regular MSC language is recognized by a deterministic MPA. Our
construction for the causal closure preserves determinacy. We can check this
deterministic MPA for deadlocked states, which immediately yields the following.

Corollary 15. Let L be a regular MSC language. It is decidable if L is causally
realizable and admits a deadlock-free implementation.

Not all regular MSC languages are MSG-definable. A regular MSC language
is MSG-definable precisely when it is finitely generated—that is, there is a finite
set of MSCs Atoms = {M1,M2, . . . ,Mk} such that every MSC in the language
can be written out as a sequence Mi1 ◦Mi2◦· · ·◦Mi� where each Mij ∈ Atoms [9].

Proposition 16. There exist regular MSC languages L such that L is MSG-
definable but CausalCl(L) is not.

Proof. The MSG in Fig. 6 is locally synchronized and hence defines a regular
MSC language. In the same figure is shown a family of MSCs {Mn}n∈N, each
of which is causally implied by the language of this MSG. However, observe
that each Mn is an atomic MSC that cannot be written as the asynchronous
concatenation M1 ◦M2 of two nontrivial MSCs. Thus, the causal closure of this
MSG language is regular but not MSG-definable. &'

Causal Closure for MSC Languages 345

p sq r

p sq r

p sq r

p sq r

p sq r

... n copies

⇓
⇓

Fig. 6. MSG definability and causal closure

Moving to arbitrary MSGs takes us into the realm of undecidability. We have
the following results, whose proofs are omitted.

Theorem 17. For an arbitrary MSG G, it is undecidable whether L(G) is
causally realizable. It is also undecidable whether the causal closure of L(G) is a
regular MSC language.

5 MSGs as Partial Specifications

The realizability question for MSGs asks whether the set of scenarios represented
by an MSG corresponds exactly to the language of a suitably defined MPA. To
ensure that a specification is realizable, we need to impose severe restrictions on
the structure of the MSG. This leads to an explosion in the complexity of the
MSG and detracts significantly from the main motivation for using this notation,
which is to have a transparent and visually appealing formalism to describe the
behaviour of communicating systems.

An alternative is to view MSGs as partial specifications and interpret them
modulo the closure conditions required by distributed implementations. This
approach was studied in the context of Petri nets in [5]. For MPAs, we cannot use
weak closure as the semantics of MSGs because weak closure does not preserve
regularity. However, since the causal closure does preserve regularity, it is feasible
to use this as a semantics for MSGs.

Under the exact interpretation, locally synchronized MSGs correspond to
the class of finitely-generated regular MSC languages [9]. If we interpret MSGs
modulo causal closure, an MSG can represent languages that are not finitely
generated (like the example in Fig. 6). This increases the expressive power of
the MSG notation. Another advantage is that we can sensibly analyze less com-
plicated MSG specifications, making the notation more usable.

MSC languages can also be used to specify desirable properties of commu-
nicating systems. Two interpretations are possible: positive scenarios are those
that the system must be able to exhibit, while negative scenarios should be
avoided.

346 Bharat Adsul et al.

Suppose we use MSC languages both to specify the communicating system
as well as to describe the scenarios that the system should exhibit. To verify
that a set of positive scenarios P is included in the set of system behaviours S,
it is important that both P and S are causally closed to avoid missing out some
scenarios when checking this inclusion.

When model checking a negative property, it is again important to use the
causal closure of the property. We have argued that reasonable implementations
are causally closed. If the property is not causally closed, the implementation may
exhibit an implied scenario that is forbidden, but this fact could go undetected.

In [7], it is shown that model checking of positive and negative scenarios
under the exact interpretation can be performed for existentially bounded MSC
languages—there is at least one linearization for each MSC in the language for
which all channels are uniformly bounded. This is in contrast to regular MSC
languages, where channels are universally bounded across all linearizations. The
properties of existentially bounded MSC languages are further elaborated in [6].
Unfortunately, the causal closure of an existentially bounded MSC language need
not be existentially bounded. It would be interesting to identify when the causal
closure of an existentially bounded MSC language remains existentially bounded
so that the results of [7] can be applied modulo causal closure.

References

[1] Alur, R., Yannakakis, M.: Model checking of message sequence charts. Proc. CON-
CUR 1999), Springer Lecture Notes in Computer Science 1664 (1999) 114–129.

[2] Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence graphs.
IEEE Trans. Software Engg 29(7) (2003) 623–633.

[3] Alur, R., Etessami, K., Yannakakis, M.: Realizability and Verification of MSC
Graphs. Theor. Comput. Sci. 331(1) (2005) 97–114.

[4] Booch, G., Jacobson, I., Rumbaugh, J.: Unified Modeling Language User Guide.
Addison-Wesley (1997).

[5] Caillaud, B., Darondeau, P., Hélouët, L. and Lesventes, G.: HMSCS as partial
specifications . . . with PNs as completions. In Modeling and Verification of Parallel
Processes, 4th Summer School, MOVEP 2000, Nantes, France (2000).

[6] Genest, B., Muscholl, A., and Kuske, D.: A Kleene Theorem for a Class of Commu-
nicating Automata with Effective Algorithms. Proc DLT 2004, Springer Lecture
Notes in Computer Science 3340 (2004) 30–48.

[7] Genest, B., Muscholl, A., Seidl, H. and Zeitoun, M.: Infinite-State High-Level
MSCs: Model-Checking and Realizability. Proc ICALP 2002, Springer Lecture
Notes in Computer Science 2380 (2002) 657–668.

[8] Harel, D., Gery, E.: Executable object modeling with statecharts. IEEE Computer,
July 1997 (1997) 31–42.

[9] Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M., and Thiagarajan,
P.S.: A Theory of Regular MSC Languages. Inf. Comp., 202(1) (2005) 1–38.

[10] ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS,
Geneva (1997).

[11] Lohrey, M.: Safe Realizability of High-Level Message Sequence Charts. Proc CON-
CUR 2002, Springer Lecture Notes in Computer Science 2421 (2002) 177–192.

Causal Closure for MSC Languages 347

[12] Mauw, S., Reniers, M. A.: High-level message sequence charts, Proc SDL’97, El-
sevier (1997) 291–306.

[13] Mukund, M., Narayan Kumar, K., Sohoni, M.: Bounded time-stamping in
message-passing systems. Theor. Comput. Sci., 290(1) (2003) 221–239.

[14] Muscholl, A., Peled, D.: Message sequence graphs and decision problems on
Mazurkiewicz traces. Proc. MFCS 1999), Springer Lecture Notes in Computer
Science 1672 (1999) 81–91.

[15] Rudolph, E., Graubmann, P., Grabowski, J.: Tutorial on message sequence charts.
In Computer Networks and ISDN Systems — SDL and MSC 28 (1996).

Reachability Analysis of Multithreaded Software
with Asynchronous Communication

Ahmed Bouajjani1, Javier Esparza2, Stefan Schwoon2, and Jan Strejček2,(

1 LIAFA, University of Paris 7, abou@liafa.jussieu.fr
2 Institute for Formal Methods in Computer Science, University of Stuttgart
{esparza,schwoosn,strejcek}@informatik.uni-stuttgart.de

Abstract. We introduce asynchronous dynamic pushdown networks (ADPN), a
new model for multithreaded programs in which pushdown systems communi-
cate via shared memory. ADPN generalizes both CPS (concurrent pushdown sys-
tems) [7] and DPN (dynamic pushdown networks) [5]. We show that ADPN ex-
hibit several advantages as a program model. Since the reachability problem for
ADPN is undecidable even in the case without dynamic creation of processes, we
address the bounded reachability problem [7], which considers only those com-
putation sequences where the (index of the) thread accessing the shared memory
is changed at most a fixed given number of times. We provide efficient algorithms
for both forward and backward reachability analysis. The algorithms are based on
automata techniques for symbolic representation of sets of configurations.

1 Introduction

In recent years a number of formalisms have been proposed for modelling and analyz-
ing procedural multithreaded programs. A well-known result states that, if recursion is
allowed, checking assertions for these programs is undecidable, even if all variables are
boolean (see for instance [8]).

Due to this undecidability result, approximate analysis techniques have been con-
sidered. While [3, 4] deal with overapproximations of the set of reachable states, [7]
presents the first nontrivial technique to compute underapproximations. In this paper we
build on the ideas of [7], which we now describe in some more detail. Qadeer and Rehof
introduce concurrent pushdown systems (CPS) as a model of multithreaded programs.
A CPS is a set of stacks with a global finite control; at each step, the CPS reads the
current control state and the topmost symbol of (exactly) one of the stacks, can change
the control state and replace the stack symbol by a word, like in a pushdown automaton.
A dynamic CPS (or DCPS) can also create a new stack as the result of a transition. Each
stack of a CPS corresponds to a thread. Communication between threads is modelled
through the common set of global control states. A context is defined as a computation
in which all transitions act on the same stack. In [7] it is shown how to compute, given
a fixed number k, the set of states that can be reached by k-bounded computations, i.e.,
by computations consisting of the concatenation of at most k contexts. Obviously, this
set constitutes an underapproximation of the set of all reachable states.

(The co-author has been partially supported by GAČR, grant No. 201/03/1161.

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 348–359, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Reachability Analysis of Multithreaded Software with Asynchronous Communication 349

In this paper, we show that with the help of a refined model it is possible to general-
ize and improve the results of [7] in a number of ways. We propose a generalization of
CPS called asynchronous pushdown networks (APN); we also introduce the dynamic
version of the model, called ADPN. Loosely speaking, the stacks of an APN have an
additional set of local control states, different from the common global finite control;
transitions are either local (dependent only on the local control), or global (depending
on both the global and local control states). We also propose a new, more liberal, defi-
nition of context: a context is now a computation in which all global transitions act on
the same stack, possibly interspersed with local transitions acting on arbitrary stacks.

In the first part of the paper (Section 2) we observe that, while the APN and CPS
formalisms are equally expressive, APN can model programs more succinctly than CPS.
In the dynamic case we show that, while ADPN can naturally model value passing from
a called procedure to its caller, DCPS cannot.

In the second part of the paper (Section 3), we study the forward and backward
k-bounded reachability problem for APN. Comparing [7], we propose a more general
and asymptotically faster algorithm for forward reachability. We introduce a backward
reachability algorithm as well.

In the third part of the paper (Sections 4 and 5), we consider the k-reachability prob-
lem for the ADPN model. We show that, due to the more liberal notion of context, the
set of configurations of an ADPN reachable by k-bounded computations may be non-
regular, contrary to the case of DCPSs. Using results of [5], we show that the set is
always context-free and provide an algorithm to compute a context-free grammar that
generates it. We then observe that the set of backwards k-bounded reachable config-
urations is regular, and, relying on results from [6], provide an efficient algorithm to
compute it.

2 The Model

2.1 Asynchronous Dynamic Pushdown Networks

An asynchronous dynamic pushdown network (ADPN) is a tuple N = (G,P,Γ,Δl ,Δg),
where G is a finite set of global states, P is a finite set of local states, Γ is a finite stack
alphabet, and

– Δl is a finite set of local rules of the form pγ ↪→ p1w1 or pγ ↪→ p1w1 � p2w2, where
p, p1, p2 ∈ P, γ ∈ Γ, and w1,w2 ∈ Γ∗.

– Δg is a finite set of global rules of the form (g, pγ) ↪→ (g′, p1w1) or (g, pγ) ↪→
(g′, p1w1)� p2w2, where g,g′ ∈G, p, p1, p2 ∈ P, γ ∈ Γ, and w1,w2 ∈ Γ∗.

The rules with a suffix of the form �p2w2 are called dynamic. A configuration
of an ADPN is a pair (g,α) ∈ G× (PΓ∗)+ of a global state g and a word α =
p1w1 p2w2 . . . pnwn, where each subword piwi ∈ PΓ∗ represents a configuration of (a
pushdown corresponding to) one component. A word piwi is called component config-
uration. The set of all configurations is denoted by C .

The transition relation→⊆ C ×C is defined as follows: (g,u)→ (g′,v) if there is

– pγ ↪→ p1w1 in Δl such that u = u1 pγu2, v = u1 p1w1u2, and g = g′, or
– pγ ↪→ p1w1 � p2w2 in Δl such that u = u1 pγu2, v = u1 p2w2 p1w1u2, and g = g′, or

350 Ahmed Bouajjani et al.

– (g, pγ) ↪→ (g′, p1w1) in Δg such that u = u1 pγu2 and v = u1 p1w1u2, or
– (g, pγ) ↪→ (g′, p1w1)� p2w2 in Δg such that u = u1 pγu2 and v = u1 p2w2 p1w1u2,

where u1 ∈ (PΓ∗)∗ and u2 ∈ Γ∗(PΓ∗)∗. We say that the transition has been performed
by the component whose local state changes from p to p1. The transitions generated by
global and local rules are called global and local transitions respectively. A dynamic
rule creates a new component starting in component configuration p2w2.

2.2 Subclasses of ADPNs

ADPNs are an extension of several other models. An ADPN with only global states and
global rules is a dynamic concurrent pushdown systems (DCPS). Formally, a DCPS is
an ADPN (G,P,Γ,Δl,Δg) satisfying |P| = 1 and Δl = /0. The DCPS model is studied
in [7]. The subclasses of ADPN and DCPS without dynamic rules are called APN and
CPS, respectively. Notice that in an APN or CPS all configurations reachable from an
initial configuration have the same number of components. Finally, both APNs and
CPSs are extensions of pushdown systems (PDS). Formally, a PDS is a CPS in which
the initial configuration only has one component.

An ADPN without global variables or global rules is called a DPN. DPNs have been
introduced and studied in [5]. Notice that in a DPN there is no communication between
different threads.

2.3 Reachability and Bounded Reachability

Given an ADPN N and a set S ⊆ C , we denote by post∗N (S) and pre∗N (S) the sets
of forward and backward reachable configurations from S. The forward and backward
reachability problem consists of, given sets I and F of initial and final configurations,
determining if post∗N (I)∩F = /0 or pre∗N (F)∩ I = /0, respectively. Both problems are
undecidable, even when I and F are singletons. This is a consequence of the fact that
APNs (even without dynamic rules) are Turing powerful. For instance, it is straightfor-
ward to encode a 2-counter Minsky machine into an APN.

Following [7], we define a notion of bounded reachability. A context is a transition
sequence where all global transitions are performed by the same component. We say
that this component controls the context. Notice that within a context local transitions
can be performed by arbitrary components. For k ≥ 1, a sequence of transitions is k-
bounded if it is a concatenation of at most k contexts. We denote by post∗k,N (S) the set
of all configurations reachable from S by k-bounded sequences. By analogy, pre∗k,N (S)
denotes the set of all configurations from which a configuration from S is reachable by
a k-bounded sequence. We talk about forward and backward k-bounded reachability,
respectively. Further, by post∗0,N (S) and pre∗0,N (S) we denote the sets of configurations
that are forward and backward reachable only by local transitions, respectively.

2.4 APN as Program Model

The following example illustrates how to model programs with APNs (for simplicity,
we omit thread creation here). We consider a program with procedures m,n, lock,unlock

Reachability Analysis of Multithreaded Software with Asynchronous Communication 351

0

1

2

3

4

5

y=call lock

if y==tt

call m

else

call
unlock

use the
resource

m: n:

2

3

4

1

return

use the
resource

call
unlock

z=call lock else

lock:

3

if z==tt

if l=0 else

return ff

1

l=1

2
return tt

0 0

1

2

l=0

return

unlock:0

5
return

•[m0,b] ↪→•lock0[m1,b]
tt[m1,b] ↪→•[m2, tt]
ff [m1,b] ↪→•[m4, ff]
•[m2,b] ↪→•[m3,b]
•[m3,b] ↪→•unlock0[m5,b]
•[m4,b] ↪→•[m0,−][m5,b]
•[m5,b] ↪→•ε

where b ranges over {−, tt, ff}

•[n0,b] ↪→•[n1,b]
•[n0,b] ↪→•[n5,b]
•[n1,b] ↪→•lock0[n2,b]
tt[n2,b] ↪→•[n3, tt]
ff [n2,b] ↪→•[n1, ff]
•[n3,b] ↪→•[n4,b]
•[n4,b] ↪→•unlock0[n5,b]
•[n5,b] ↪→•ε

 (0,•lock0) ↪→ (0,•lock1)

 (1,•lock0) ↪→ (1,•lock3)

 (0,•lock1) ↪→ (1,•lock2)

 (1,•lock1) ↪→ (1,•lock2)
•lock2 ↪→ ttε
•lock3 ↪→ ff ε

 (0,•unlock0) ↪→(0,•unlock1)

 (1,•unlock0) ↪→(0,•unlock1)
•unlock1 ↪→•ε

Fig. 1. A program with four procedures and two threads.

described by the flow graphs of Figure 1; y and z are local variables of the procedures
m and n, respectively, and can take the values undefined (−), true (tt), or false (ff).
The procedures m and n call procedures lock and unlock to get exclusive access to a
shared resource. The lock action is nonblocking; it returns true if it succeeds to lock the
resource, false otherwise. The variable l occurring in the procedures lock and unlock
is global and ranges over {0,1}. The system consists of two concurrent threads, one
starting with the execution of m, the other with the execution of n.

We model this program by the APN N = (G,P,Γ,Δl,Δg) as follows: Global states
model the value of the global variable l, i.e. G = {0,1}. Local states are used to pass
a potential return value from a callee back to the caller: The callee stores the value
in the local state of the thread, from where it is read by the caller.3 As a procedure
cannot return the undefined value (−), we set P = {tt, ff ,•}, where tt and ff are used to
return the corresponding values, and • is used elsewhere. The set Γ of stack symbols
contains all program locations (pl denotes the symbol for location l of procedure p),
together with the actual values of the local variables for procedures m,n. The local and
global rules corresponding to each procedure are given directly in the figure; global
rules (marked with
) correspond to transitions dealing with the global variable l.

The techniques developed in the next sections can show that the program does not
satisfy its basic specification: exclusive access to the resource. More precisely, they

3 In general, local states can be also used to hold values of variables that are global to a thread
(if such a variable type is supported in the modeled system).

352 Ahmed Bouajjani et al.

show that the program can reach a configuration of the form (0,•[m2,b]w1 • [n3,b′]w2)
from the initial configuration (0,•[m0,−]• [n0,−]), and in fact within 3 contexts.

2.5 A(D)PN Versus (D)CPS

As we have seen, local states are used to model value-passing from a callee to its caller.
In the CPS model there is no notion of local state of a thread, and so value passing must
be simulated through a global variable. Clearly, this amounts to simulating an APN by
a CPS. We show that this is possible, but involves a blow-up in size. Moreover, the
translation has to fix the number n of components that the CPS can work upon. Let
N = (G,P,Γ,Δl,Δg) be an APN. We construct a CPS N ′ = (G′,Γ′,Δ′g) such that the
configuration graphs of N and N ′, defined in the usual way, are isomorphic. We take
G′ = G×Pn, Γ′ = Γ×{1, . . . ,n}, and add to Δ′g rules

((g1, p1, . . . , pi−1, p, pi+1, . . . , pn),q(γ, i)) ↪→ ((g2, p1, . . . , pi−1, p′, pi+1, . . . , pn),q[w, i])

for every (g1, pγ) ↪→ (g2, p′w) in Δg, 1≤ i≤ n, p1, . . . , pi−1, pi+1, . . . , pn ∈ P, and rules

((g, p1, . . . , pi−1, p, pi+1, . . . , pn),q(γ, i)) ↪→ ((g, p1, . . . , pi−1, p′, pi+1, . . . , pn),q[w, i])

for every pγ ↪→ p′w in Δl , g ∈ G, 1 ≤ i ≤ n, and p1, . . . , pi−1, pi+1, . . . , pn ∈ P.
Here, q is the only local state of N ′. Further, for w = w1w2 . . .wm, [w, i] stands for
(w1, i)(w2, i) . . . (wm, i). Observe that the size of N ′ may be larger than that of N by a
factor of n · |G| · |P|n−1.

Observe also that the transformation APN → CPS cannot be naturally extended to
a transformation ADPN → DCPS. The straightforward idea of taking G×P∗ as set of
global states does not work, and not only because this set is infinite, but also because
in order to simulate a change of local state a stack has to know its position in the
current state (g, p1 p2 . . . pn), which now changes as the computation proceeds because
of thread creation. Currently we do not know if an ADPN can be translated into an
equivalent DCPS, and we do not see any elegant way of modelling value-passing and
thread creation in the DCPS formalism.

We finish with an advantage of our more liberal notion of context. In a k-bounded
computation, at most k components can execute global transitions, and this has the
following consequence when comparing ADPN and DCPS: While a k-bounded com-
putation of a DCPS can create an arbitrary number of components, at most k of them
can execute a transition at all. For ADPN the constraint is weaker: arbitrarily many pro-
cesses can execute transitions, but at most k of them can execute global transitions. So
an algorithm for exploring k-bounded computations of ADPN searches ‘deeper’ as the
same algorithm for DCPS.

3 Reachability Analysis for APN

We now consider k-bounded reachability for the APN model, i.e. the restriction of
ADPN to non-dynamic rules. Let us fix an APN N = (G,P,Γ,Δl,Δg) and k ∈ N for
the rest of this section. We investigate the case where the initial or final configurations
are given by so-called aggregates:

Reachability Analysis of Multithreaded Software with Asynchronous Communication 353

Definition 1. An aggregate is a tuple M = (g,C1, . . . ,Cn), where g ∈ G, n ≥ 1 is the
number of concurrent processes, and C1, . . . ,Cn ⊆ P×Γ∗ are regular sets of component
configurations. M is used to denote the set {g}× (C1. · · · .Cn), where . is the concatena-
tion of the component configurations.

We now fix an aggregate M = (g,C1, . . . ,Cn) for the rest of the section, and we will
present solutions for computing post∗k,N (M) as well as pre∗k,N (M).

For the CPS model, k-bounded reachability was considered in [7]. The algorithms
presented in this section follow the same general idea as the solutions in [7] (but applied
to APN). Moreover, the new solution has these benefits:

– Our algorithm avoids repeating partial computations of reachable component con-
figurations. Even if we consider only CPSs, the algorithm runs asymptotically faster
than the one presented in [7].

– The APN model distinguishes between local and global states, and our algorithm
exploits this difference. Therefore, it is faster than a translation of a given APN to
CPS (see Section 2.5) followed by the application of an algorithm for CPS.

– Some details in our algorithm are different from [7] and would lead to time and
memory savings in an implementation. These are discussed in Section 3.3.

– We provide algorithms for both forward and backwards reachability, whereas [7]
only covered forward reachability. The two algorithms are fairly similar – in fact we
will present them as one algorithm – but their complexity analysis is a little more
involved. The algorithm makes use of a procedure called CLOSURE, which stands
for the post∗ or pre∗ procedure on PDSs [6] in case of forward and backwards
reachability, respectively.

3.1 Reordering of Transitions

Our algorithms are based on the following observation: Let c be a configuration reach-
able from M = (g,C1, . . . ,Cn) by a k-bounded computation, and let σ be this computa-
tion. Then the transitions in σ can be rearranged to another k-bounded computation σ′
that also leads from M to c. Moreover, σ′ can be partitioned into n+ k phases, where in
each phase all rules are applied to the same component:

– In the i-th phase, 1 ≤ i ≤ n, component i executes all its local steps in σ up to, but
not including, its first global step (or all steps, if it never executes a global rule).

– In the n+ i-th phase, 1≤ i≤ k, the component controlling the i-th context executes
the first global step of the i-th context in σ, followed by all its global and local steps
up to, but not including, the first global step in the next context controlled by the
same component (all its remaining steps, if it does not control any more contexts).

Notice that this rearrangement only requires to swap the ordering of local transitions
of some component with local or global transitions of other components; but as the
application of a local rule does not depend on the global state, these reorderings do not
alter the final configuration of the computation.

354 Ahmed Bouajjani et al.

3.2 Reduction to PDS

We now show that all n + k phases reduce to reachability problems on PDS. In the
following, CLOSUREP (C) denotes the set post∗P (C) or pre∗P (C), depending on whether
forward or backward reachability is of interest.

– Let P 1
N := (P,Γ,Δl), i.e. P 1

N simulates the local moves of N . Thus, the results of
the first n phases are obtained by CLOSUREP 1

N
(Ci) for i = 1, . . . ,n.

– For the remaining phases, we create a PDS in which the global and local states are
merged. Let P 2

N = (G×P,Γ,Δ′), where Δ′ contains all (g1, p1)γ ↪→ (g2, p2)w such

that either (g1, p1γ) ↪→ (g2, p2w) in Δg, or p1γ ↪→ p2w in Δl and g1 = g2. Thus, P 2
N

computes the possible operations of one component in a single context. More pre-
cisely, we define LIFT(g,C) := {((g, p),w) | (p,w) ∈ C} and RESTRICT(C,g) :=
{(p,w) | ((g, p),w) ∈C}. Now, if a component starts a context in global state g and
with component configurations C, the reachable configurations within this context
that end in global state g′ are RESTRICT(CLOSUREP 2

N
(LIFT(g,C)),g′).

Recall that the initial sets C1, . . . ,Cn are regular and can be represented by finite
automata. Regular sets are closed under the CLOSURE operation, and algorithms for
these have been provided in [6]. It is easy to see that LIFT and RESTRICT can also be
implemented as operations on finite automata.

3.3 The Algorithm

Figure 2 shows our algorithm, which directly implements the ideas outlined before.
Line 2 computes the local phases 1, . . . ,n of the computations, whereas the lines from
line 3 onwards implement phases n + 1, . . . ,n + k. Essentially, the algorithm explores
a ‘tree’ of depth k, where each node corresponds to an aggregate, and its successors
are the aggregates reachable by executing one context. Each iteration of the while loop
picks an aggregate and computes its successors. As hinted at before, the operations on
the sets of component configurations are carried out by operations on finite automata.
The algorithm uses the following data structures:

todo is a list with information on those aggregates whose successors still need to be
computed. The first part of each entry in todo indicates the depth of the aggregate
in the tree, the second is the index of the component that has controlled the previous
context; the rest is the aggregate itself.

aut is a hash table. An entry aut[g,B] remembers the result of applying the closure on
LIFT(g,B). The motivation for this table is that, for a pair (g,B), the computation
of CLOSUREP 2

N
(LIFT(g,B)) may be required in multiple branches of the ‘tree’;

therefore we would like to reuse the result. Notice that actually hashing over (an
automaton accepting) the language B could be very time consuming. In order to
achieve the desired time-saving effect, it suffices to approximate this effect, e.g.
by giving a unique identifier to each automaton that arises from an application of
CLOSURE.

reachable collects the aggregates that represent reachable configurations.

Reachability Analysis of Multithreaded Software with Asynchronous Communication 355

Input: An APN N , an aggregate M = (g,C1, . . . ,Cn), and k ∈ N
Output: The set post∗

k,N (M) (or pre∗
k,N (M)) given by union of the aggregates in reachable.

1 reachable← /0;
2 todo← {(0,0,g,CLOSUREP 1

N
(C1), . . . ,CLOSUREP 1

N
(Cn))};

3 while todo 	= /0 do
4 pop (level, last,g,B1, . . . ,Bn) with minimal level from todo;
5 if level = k then
6 reachable← reachable∪{(g,B1, . . . ,Bn)};
7 else
8 for all i = 1, . . . ,n such that i 	= last do
9 if aut[g,Bi] undefined then

10 aut[g,Bi]← CLOSUREP 2
N

(LIFT(g,Bi));

11 for all g′ ∈G do
12 todo←todo∪{(level+1, i,g′,B1,. . .,Bi−1,RESTRICT(aut[g,Bi],g′),Bi+1,. . .,Bn)};

Fig. 2. Algorithm computing k-bounded reachability on APN.

The basic idea of exploring a tree of depth k is similar to the CPS algorithm in [7].
However, the algorithm in Figure 2 also contains some improvements:

– When adding a new item to todo, the algorithm reuses all previous local automata
except for Bi (unlike [7], where all n automata are changed in every step). This
makes the algorithm more memory-efficient, because the automata that have not
changed from one context to another can be shared.

– Using aut allows to reuse results of computations made in other parts of the tree.
– A trivial improvement is that no component is allowed to execute two contexts in a

row (the second context would yield nothing new due to closure properties).
– Another simple, but important optimization (not shown) is that line 11 should only

be executed for those global states g′ such that aut[g,Bi] accepts at least one con-
figuration of the form 〈g′,w〉 for some w ∈ Γ∗.

3.4 Complexity Analysis

We now state the complexity of our algorithm for both directions. The proofs can be
found in [2]. Let A1, . . . ,An be automata representing C1, . . . ,Cn.

Theorem 1. Let M = (g,C1, . . . ,Cn) be an aggregate of an APN N = (G,P,Γ,Δl ,Δg)
and let k∈N be a number. Then there exist aggregates M0, . . . ,Mm such that post∗k,N (M)
(or pre∗k,N (M), resp.) has the form M0 ∪M1 ∪ . . .∪Mm and all these aggregates are
effectively computable. Moreover,

(a) computing post∗k,N (M) takes O(nk · |G|k + n · |G|k · |P| · (d + |Δ| · k · q + |Δ|2 · k2))
time, where |Δ| = |G| · |Δl|+ |Δg| and q,d are the largest numbers of non-initial
states and transitions leading out of non-initial states in A1, . . . ,An, respectively;

356 Ahmed Bouajjani et al.

(b) pre∗k,N (M) can be computed in time O(nk · |G|k + n · |G|k−1 · (q + k · |P| · |G|)2 · |Δ|)
where |Δ|= |G| · |Δl|+ |Δg| and q is the maximal number of states in A1, . . . ,An.

Note that the complexity given for k-bounded forward CPS reachability in [7] has
(among others) the factors k3 and |G|k+5. Seeing as APNs are an extension of CPSs,
Theorem 1 provides a better upper bound for k-bounded reachability even on CPSs.

4 Forward Reachability Analysis of ADPN

Even in the DPN case, the post∗ image of a regular set of configurations is not always
regular [5]. However, it can be shown that this image is always context-free, and [5]
provides a construction that, given a DPN and an initial configuration p0γ0, computes a
context-free grammar G such that L(G) = post∗(p0γ0).

In this paper we show how to compute post∗k,N (c0) for an ADPN N , a configuration
c0 = (g0, p0γ0) and an arbitrary k ≥ 0. (The algorithm can be extended from one con-
figuration c0 to a regular set of configurations.) The key of the result is a construction
which, given a sequence σ = g0 . . .gk−1 of global states of N , constructs a DPN Nσ, a
configuration c, a regular set S, and a regular transduction π (as we shall see, S, c, and π
are independent from σ) such that post∗k,N (c0) = π(S∩⋃σ∈Gk post∗Nσ

(c)). By the result
of [5], the sets post∗Nσ

(c) are effectively context-free, and so post∗k,N (c0) is effectively
context-free as well.

Informally, given σ = g0 . . .gk−1 the DPN Nσ is able to simulate those execution
sequences of N in which, for every 1 ≤ i < k, the i-th context-switch occurs at a con-
figuration of N with global state gi. During the simulation, each pushdown component
of Nσ maintains a guess about the index of the current context. (Notice that, due to
the lack of communication between components of a DPN, a component cannot know
how many context-switches have occurred). The component can at any point increase
its guess, but cannot decrease it. A wrong guess leads to an unfaithful simulation (see
below how to ‘filter them away’). Moreover, the component can at any point decide to
control the current context (more precisely, the context it guesses is the current one). In
such a case, the current global state is mantained as a part of the corresponding local
state. Since components cannot communicate, this may lead to an unfaithful simulation,
where zero, two or more different components claim to control the same context.

The problem of the unfaithful simulations is solved with the help of the set S and
the homomorphism π. We define Nσ so that if a component completes the simulation
of a context it claims to have controlled, then it must create an inactive ‘marker’ (a new
component that can do nothing) witnessing this claim. At the end of the simulation we
can inspect the inactive markers, and check if every context was indeed controlled by
one and at most one component. If this is so, the simulation is faithful, otherwise it is
unfaithful. The set S is the set of configurations where every marker appears exactly
once, and so intersection with S ‘filters out’ all the configurations reached by faithful
simulations. The transduction π is used to ‘clean up’ the configurations so obtained by
disposing of the markers and other auxiliary symbols used along the simulation, and to
move the global state (stored in the local state of the process controlling the last context)
to the front of the configuration.

Reachability Analysis of Multithreaded Software with Asynchronous Communication 357

For details of the construction of Nσ we refer to [2]. The construction gives rise to
the following theorem:

Theorem 2. Let N = (G,P,Γ,Δl ,Δg) be an ADPN and let c0 = (g0, p0γ0) be a config-
uration of N . The set post∗k,N (c0) is context-free. A context-free grammar generating it

can be constructed in time O(k3 · |G|k+3 · |P|3 · (|Δl|+ |Δg|))

5 Backward Reachability Analysis of ADPN

We consider here the problem of constructing the pre∗k images of a regular set of con-
figurations, under the assumption of at most k contexts. We provide a reduction of this
problem to the problem of computing pre∗ images in the case of DPNs (or in other
words to the problem of computing pre∗1 images), and we provide and efficient algo-
rithm for solving the latter problem. This algorithm improves the complexity of the
basic saturation-based procedure proposed in [5] for symbolic backward reachability
analysis of DPN.

5.1 Regular Symbolic Representations

Our algorithms use a class of automata-based representations for regular sets of con-
figurations (mass configurations) which have been introduced in [5] for DPN analysis.
These representations are finite-state automata in a special form defined below.

Let N = (G,P,Γ,Δl,Δg) be an ADPN. Then, a finite-state automaton A =
(Q,Σ,δ,q0,F) is called N -automaton if and only if it satisfies the following conditions:

– Σ = P∪Γ,
– Q can be partitioned into three mutually disjoint subsets Q0,Q1,Q2 such that for all

q ∈ Q0, p ∈ P there exists a unique state qp ∈ Q1,
– transition relation δ can be partitioned into three disjoint relations δ0,δ1,δ2 such

that δ0 = {(q, p,qp) | q ∈ Q0, p ∈ P,qp ∈ Q1}, δ1 ⊆ (Q1∪Q2)×Γ×Q2, and δ2 ⊆
(Q1∪Q2)×{ε}×Q0,

– q0 ∈ Q0, and F ⊆ Q1∪Q2.

An automaton in the above special form is

Q0 Q1 Q2

δ0 δ1
δ1

δ2

Fig. 3. An automaton in special form.

schematically depicted in Figure 3. Notice that
N -automata recognize languages which are reg-
ular subsets of (PΓ∗)+. It is easy to see that,
conversely, every finite-state automaton over the
alphabet Σ = P∪Γ recognizing a language in-
cluded in (PΓ∗)+ can be transformed into a lan-
guage equivalent N -automaton. Notice also that
this definition depends obviously on the model
N under consideration, but only on his set of control states P and his stack alphabet Γ
and not on the fact whether global variables and rules are considered.

Following the common habit, we write q
a−→δ q′ meaning (q,a,q′) ∈ δ. We also

extend this notation to finite words in standard way: for every q,q′ ∈Q, a∈Σ and u∈Σ∗

we set q
ε−→δ q and q

au−→δ q′ iff there is q′′ ∈ Q such that q
a−→δ q′′ and q′′

u−→δ q′.

358 Ahmed Bouajjani et al.

5.2 Computing pre∗ Images for DPN

Let N = (P,Γ,Δ) be a DPN and A = (Q,Σ,δ,q0,F) be an N -automaton. We describe a
simple procedure proposed in [5] for computing a finite-state automaton Apre∗ satisfying
L(Apre∗) = pre∗N (L(A)). The automaton is defined as Apre∗ = (Q,Σ,δ′,q0,F), where δ′

is the smallest relation δ′ ⊇ δ satisfying the following two conditions.

– If pγ ↪→ p1w1 ∈ Δ and q
p1w1−−−→δ′ q

′ for q,q′ ∈ Q then (qp,γ,q′) ∈ δ′.
– If pγ ↪→ p1w1 � p2w2 ∈ Δ and q

p2w2 p1w1−−−−−−→δ′ q
′ for q,q′ ∈ Q then (qp,γ,q′) ∈ δ′.

The construction of the automaton Apre∗ terminates since it corresponds to adding
iteratively new transitions to the original automaton A without modifying the number
of its states. The construction can be proved to be sound and complete [5].

It can be seen that this construction is polynomial but a naive implementation of it
can be of a prohibitive cost, similarly to the basic algorithm of [1] for pushdown systems
with respect to its efficient implementation of [6]. Following the principles used in [6],
we define an efficient algorithm implementing the saturation-based procedure above
(see [2]). We have the following result:

Theorem 3. Given a DPN N = (P,Γ,Δ) and an N -automaton A = (Q,Σ,δ,q0,F), it
is possible to construct in O(|Q|3 · |Δ|) time and O(|Q|2 · |Δ|) space an automaton Apre∗

such that L(Apre∗) = pre∗(L(A)).

5.3 Computing pre∗k Images for ADPN

Let N = (G,P,Γ,Δl ,Δg) be an ADPN, and let k ≥ 1. Roughly speaking, the compu-
tation of a pre∗k,N image is decomposed into k successive steps of pre∗1,N image com-
putation, each of them consisting basically in a pre∗ image computation in a (suitably
defined) DPN. To define in more details the construction, we need some notations and
definitions. A mass configuration is a pair M = (g,A). It represents the set of configura-
tions (g,u) where u∈ L(A). Given a mass configuration M = (g,A), let local(M) denote
the automaton A. We generalize this notation to finite collections of mass configurations
by taking the union of their N -automata.

Then, given a mass configuration (g,A), the computation of pre∗k,N (g,A) is per-
formed as follows: first we compute the set pre∗1,N (g,A) corresponding to all predeces-

sors of (g,A) without context switch. For every global state g′, let (g′,A′) be the set
of all configurations in pre∗1,N (g,A) having g′ as global state. Then, the second step

constists in computing the pre∗1,N images of all the pairs (g′,A′), for all global states

g′, and so on. More precisely, given an N -automaton A and a sequence of global states
σ ∈G+, we define inductively the set REACHσ(A):

REACHg(A) = pre∗1,N (g,A)

REACHg1g2σ′(A) = REACHg2σ′(local(REACHg1(A)∩ (g2,(PΓ∗)+)))

where g,g1,g2 ∈ G and σ′ ∈G∗. Then, the following fact holds.

Reachability Analysis of Multithreaded Software with Asynchronous Communication 359

Lemma 1. Given an ADPN N , a global state g, an N -automaton A, and an integer
k ≥ 1, we have pre∗k,N (g,A) =

⋃
g1,...,gk−1∈Gk−1 REACHgg1···gk−1(A).

Therefore, we only have to show how to construct pre∗1,N images. For that, we can
actually use our algorithm of Theorem 3 which allows to perform backward analysis
for DPN. Given an N -automaton A and a global state g, we proceed as follows:

– we construct an automaton Â such that for every word u of component configu-
rations which is accepted by A, the automaton Â accepts all words arising from u
by embedding the global state g into a local state of one of the components. More
precisely, Â accepts a word w if and only if there is a word u1 pu2 ∈ L(A) such that
u1 ∈ (PΓ∗)∗, p ∈ P, u2 ∈ Γ∗(PΓ∗)∗, and w = u1(g, p)u2.

– we transform the sets Δl and Δg into a set of local rules Δ which are applicable to
local states (with an embedded global state). The set of obtained rules has a size
O(|G| · |Δl|+ |Δg|).

– we use the algorithm for DPN of Theorem 3 to build an automaton Âpre∗ .
– then,

pre∗1,N (g,A) =
⋃

g′∈G

(g′,{w ∈ (PΓ∗)+ : w = upu′ and ∃u(g′, p)u′ ∈ L(Âpre∗)}).

An automata-based representation for this set can be straightforwardly obtained from
Âpre∗ using intersection and projection. Then we have the following (see [2]).

Theorem 4. Given an ADPN N = (G,P,Γ,Δl,Δg), k≥ 1, g∈G, and an N -automaton
A = (Q,Σ,δ,q0,F), it is possible to construct a finite-state automata-based representa-
tion of the set pre∗k,N (g,A) in O(k4 · |Q|3 · (|G|k · |Δl|+ |G|k−1 · |Δg|)) time.

References

1. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Ap-
plication to model-checking. In Proceedings of CONCUR’97, LNCS 1243, pages 135–150,
1997.

2. A. Bouajjani, J. Esparza, S. Schwoon, and J. Strejček. Reachability analysis of multithreaded
software with asynchronous communication. Technical Report 2005/06, Universität Stuttgart,
2005. A full version of this paper.

3. A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis of concurrent
programs with procedures. In Proceedings of POPL’2003, pages 62–73. ACM Press, 2003.

4. A. Bouajjani, J. Esparza, and T. Touili. Reachability analysis of synchronized PA-systems. In
Proceedings of Infinity 2004, 2004. To appear.

5. A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of dynamic networks
of pushdown processes. In Proceedings of CONCUR 2005, LNCS 3653, pages 473–487,
2005.

6. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model check-
ing pushdown systems. In Proceedings of CAV’2000, LNCS 1855, pages 232–247, 2000.

7. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In Pro-
ceedings of TACAS’2005, LNCS 3440, pages 93–107, 2005.

8. G. Ramalingam. Context-sensitive synchronisation-sensitive analysis is undecidable. ACM
Transactions on Programming Languages and Systems, 22:416–430, 2000.

Probabilistic Analysis for a Multiple Depot

Vehicle Routing Problem

Andreas Baltz1, Devdatt Dubhashi2, Libertad Tansini2, Anand Srivastav1, and
Sören Werth1

1 Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Universität
zu Kiel, Christian-Albrechts-Platz 4, 241098 Kiel, Germany

{aba,asr,swe}@numerik.uni-kiel.de
2 Department of Computing Science,

Chalmers University, SE 412 96 Göteborg, Sweden
{dubhashi,libertad}@cs.chalmers.se

Abstract. We give the first probabilistic analysis of the Multiple Depot
Vehicle Routing Problem(MDVRP) where we are given k depots and n
customers in [0, 1]2. The optimization problem is to find a collection of
disjoint TSP tours with minimum total length such that all customers
are served and each tour contains exactly one depot(not all depots have
to be used). In the random setting the depots as well as the customers
are given by independently and uniformly distributed random variables
in [0, 1]2. We show that the asymptotic tour length is αk

√
n for some

constant αk depending on the number of depots. If k = o(n), αk is the
constant α(TSP) of the TSP problem. Beardwood, Halton, and Ham-
mersley(1959) showed 0.62 ≤ α(TSP) ≤ 0.93. For k = λn, λ > 0, one
expects that with increasing λ the MDVRP tour length decreases. We
prove that this is true exhibiting lower and upper bounds on αk, which

decay as fast as (1 + λ)−
1
2 .

A heuristics which first clusters customers around the nearest depot and
then does the TSP routing is shown to find an optimal tour almost surely.

1 Introduction

An important and practically relevant generalization of the classical Traveling
Salesman Problem (TSP) is the Multiple Depot Vehicle Routing Problem (MD-
VRP). Given are several depots and a set of customers who must be served from
these depots, the problem is to both (a) assign the customers to a depot and
(b) find optimal service tours. It is known that the MDVRP is NP-hard [10].
On the other hand, there is PTAS for the MDVRP [16] in the line of Arora’s [1]
PTAS for the TSP. Since it is inefficient for real world applications, one usually
resorts to heuristics to solve the problem. There is a wide body of literature
describing the application of various heuristics, tested with various benchmark
instances [5,4,13,7]. We are unaware of any rigorous theoretical results comple-
menting these experimental works. In particular, to our best knowledge there is
no probabilistic analysis for the multiple depot vehicle routing problem in the
literature.

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 360–371, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Probabilistic Analysis for a Multiple Depot Vehicle Routing Problem 361

We study the MDVRP problem on random instances, where the depots as well
as the customers are given by independently and uniformly distributed random
variables in [0, 1]2.
Let k, n ∈ N and D = {D1, . . . , Dk} resp. P = {P1, . . . , Pn} be sets of points in
[0, 1]2. The Di’s are called depots and the Pi’s points. A multiple depot vehicle
routing tour is a set of disjoint cycles such that all points are covered and each
cycle contains exactly one depot, but not all depots have to be used. The goal
is to find a tour of minimum length with respect to the Euclidean metric. The
length of an optimal MDVRP tour is denoted by L(D,P).
Related Work: In the celebrated paper of Beardwood, Halton, and Hammers-
ley [3] it was shown that for n independently and identically distributed random
variables P1, . . . , Pn in [0, 1]2, the optimal TSP tour length LTSP (P1, . . . , Pn) is
asymptotically

√
n, more precisely there is a constant α(TSP) > 0 such that

limn→∞ LTSP (P1, . . . , Pn)/
√
n = α(TSP) almost surely. This motivated a large

body of research on the probabilistic analysis of Euclidean optimization prob-
lems like minimum spanning tree, minimum perfect matching, etc. Today, there
is a good understanding of the general structure that underlies the asymptotic
behavior of these problems. A good overview on the history and main develop-
ments in this area is given in the books of Yukich [17] and Steele [15]. In the
MDVRP the numbers of points and depots have to be considered both, so this is
a first step to extend the typical average case analysis of Euclidean functionals
to two-sets problems.
Karp, resp. Karp and Steele [8,9] showed that the stochastic version of an NP-
hard optimization problem allows a tight approximation in polynomial time
almost surely by introducing a polynomial time partitioning heuristics which for
every ε > 0, constructs a TSP tour of length at most (1 + ε)LTSP (P1, . . . , Pn)
for n independently and identically distributed random points in [0, 1]2. Later,
it was shown that the heuristics can be extended to other classic Euclidean
optimization problems, see [17].
Our results: We recall the notion of complete convergence of random vari-
ables: let (Yn)n≥1 be a sequence of random variables and let Y be a random
variable in some probability space (Ω,F ,P). We say Yn → Y completely, writ-
ten limn→∞ Yn → Y c.c., if

∑∞
n=1 P [|Yn − Y | > ε] < ∞ for all ε > 0. One can

show that complete convergence implies almost surely convergence.
In Section 2 we analyze the asymptotic behavior of the optimal MDVRP tour
length for random depot and point sets in [0, 1]2. Intuitively, we can expect the
k tours to take up (roughly) each cell of a

√
k by

√
k grid. And then we can

simply use the TSP result and use the fact that (roughly) there would be n/k
points in each tour and totalized over all the tours we get k times

√
n/k/

√
k,

that is
√
n. We distinguish two cases:

(a) If k = λn for a constant λ > 0, then L(D,P)/
√
n→ αk for n→∞ c.c., where

αk is a positive constant. In this case the MDVRP shows the
√
n asymptotics of

the TSP, but the constant αk depends on the number of depots. We show that
2α(TSP)√

1+λ
≥ αk ≥ 1

2
√

1+λ

(
1 + 1

4(1+λ)

)
and thus exhibit the quantitative decay of

the MDVRP tour length compared to the TSP tour length as λ increases.

362 Andreas Baltz et al.

(b) If k = o(n), L(D,P)/
√
n → α(TSP) for n → ∞ c.c. Thus, for “small”

numbers of depots, the MDVRP behaves asymptotically exactly like the TSP.
In Section 3 we present an analysis of an algorithm which first assigns points
to the nearest depot (clustering phase) and then computes a TSP tour for each
cluster by adapting Karp’s partitioning heuristics [8] for the routing phase of
the MDVR problem. We prove that this 2-phase algorithm computes a solution
with cost at most (1 + o(1))OPT for random instances (as defined above) for
k = o(n) almost surely.
This result is the first rigorous analysis of a heuristics for the MDVRP in a natu-
ral probabilistic setting. The analysis involves a clustering lemma of independent
interest which is proved using results on the complexities of the Voronoi diagram
of points distributed uniformly and independently at random in the unit square.

2 Probabilistic Analysis

Our main result considers the asymptotic behavior of L(D,P):

Theorem 1. Let D = {D1, . . . , Dk} and P = {P1, . . . , Pn} be depots and points
in [0, 1]2 given by independent uniformly distributed random variables. The op-
timal length L(D,P) of an MDVRP tour through D and P satisfies

(i) limn→∞
L(D,P)√

n
= αk c.c., if k = λn for a constant λ > 0,

(ii) limn→∞
L(D,P)√

n
= α(TSP) c.c., if k = o(n),

where α(TSP) is the constant for the TSP and αk is a positive constant.

Upper and lower bounds for αk are presented in Theorem 3.

2.1 The Case k = λn for a Constant λ > 0

In contrast to the TSP tour length, the MDVRP tour length is not monotone
if we add depots. Such a lack of monotonicity has challenged the development
of the theory of Euclidean boundary functionals which approximate the original
functional, and are accessible for probabilistic analysis. For a detailed description
of this approach we refer to Yukich [17] and Redmond and Yukich [12].
First of all, we list some general properties of a length function F that is defined
for an Euclidean optimization problem on two finite subsets of R2. Let F be a
function F : S ×S → R+, where S is the set of finite subsets of R2. F fulfills the
translation invariance property if for all y ∈ R2 and finite subsets D,P ⊂ R2,

F (D,P) = F (D + y, P + y),

the homogeneity, if for all α > 0 finite subsets D,P ⊂ R2,

F (αD,αP) = αF (D,P),

and normalization property, if F (∅, ∅) = 0. F is called a Euclidean functional if
it satisfies these properties.

Probabilistic Analysis for a Multiple Depot Vehicle Routing Problem 363

F is called subadditive if for all rectangles R ⊂ R2, all finite subsets D,P ⊂ R
and all partitions of R into R1 and R2,

F (D,P) ≤ F (D ∩R1, P ∩R1) + F (D ∩R2, P ∩R2) + C(R),

with a constant C depending only on the diameter of R.
A major difference between the MDVRP functional L and most classic function-
als is that L is not subadditive, a counterexample is given in Figure 1. Normally,

Fig. 1. The first two figures show that L is not subadditive, and the remaining
that L is not superadditive.

the subadditivity is used to express the global graph length as a sum of local
components. This can also be done via superadditivity, a functional F is called
superadditive, if for all rectangles R ⊂ R2, all finite subsets D,P ⊂ R and all
partitions of R into R1 and R2

F (D,P) ≥ F (D ∩R1, P ∩R1) + F (D ∩R2, P ∩R2).

The MDVRP functional is not superadditive, see Figure 1. The boundary mod-
ification introduced by Redmond and Yukich [12] helps to overcome the lack of
sub- and superadditivity. The boundary modification of the total edge length
function of the MDVRP is the total edge length function of the least expensive
depot tour, where the cost of traveling along the boundary is zero, and the paths
connected to the boundary do not have to contain a depot. The formal definition
for the boundary functional of the MDVRP follows: for all rectangles R ⊂ R2,
finite point sets D,P ⊂ R and points a, b on the boundary of R let L(∅, P, {a, b})
denote the length of the shortest path through all points of P with endpoints a
and b. The boundary functional LB is defined by

LB(D,P) := min

{
L(D,P), inf

{
L(D,P1) +

∑
i>1

L(∅, Pi, {ai, bi})
}}

,

where the infimum ranges over all sequences (ai, bi)i≥1 of points on the boundary
of R and all partitions (Pi)i≥1 of P .

364 Andreas Baltz et al.

Fig. 2. An optimal MDVRP tour and an optimal boundary MDVRP tour.

We have the following lemma for the MDVRP boundary functional, the proof is
straightforward and will appear in the full paper.

Lemma 1. Let L be the functional of the MDVRP and LB the boundary func-
tional. LB is superadditive and for D 	= ∅ and a constant C > 0

|L(D,P)− LB(D,P)| ≤ C.

In addition to superadditivity we need another property of the boundary func-
tional, the smoothness. A Euclidean functional F is smooth if there is a constant
C > 0 such that for all finite sets D1, D2, P1, P2 ⊂ R2,

|F (D1 ∪D2, P1 ∪ P2)− F (D1, P1)| ≤ C
√
|D2|+ |P2|.

So the smoothness describes the variation of F when points and depots are added
and deleted.

Lemma 2. The boundary functional LB of the MDVRP is smooth.

Proof. Let D1, D2, P1, P2 ⊂ [0, 1]2 be sets containing depots respectively points.
To see that LB(D1 ∪ D2, P1 ∪ P2) − LB(D1, P1) ≤ C

√
|D2|+ |P2| consider an

optimal solution for D1 and P1 and add a traveling salesman tour through all
elements of D2 and P2. This is a feasible solution for the boundary MDVRP
if D2 	= ∅. If D2 = ∅, we transform the cycle into a path starting and ending
at the border of [0, 1]2. The tour/path together with the graph associated to
LB(D1, P1) yields a feasible solution for the problem on D1 ∪D2 and P1 ∪P2 of
length at most LB(D1, P1) + C

√
|D2|+ |P2|.

Once we show LB(D1, P1) ≤ LB(D1∪D2, P1∪P2)+C
√
|D2|+ |P2| the smooth-

ness of LB follows. We start with a graph G associated to LB(D1∪D2, P1∪P2),
see Figure 3, and remove all elements of D2 and P2. Let B denote the set of
points where the graph meets the boundary of [0, 1]2, we add B to the graph,
see Figure 4. In the following, we do not consider unmodified components in G.
The deletion of D2 and P2 generates at most 2(|D2| + |P2|) connected compo-
nents, since the elements of D2 and P2 are either in a path connected to the
border or they are in a closed cycle.
The resulting components are either paths or isolated vertices. So the total
number of vertices with degree 1 is even, and the overall number of vertices

Probabilistic Analysis for a Multiple Depot Vehicle Routing Problem 365

with degree 1 and 0 is at most 4(|D2|+ |P2|). We add a traveling salesman tour
through the points of degree one and zero and a minimal perfect matching of the
points with degree one, see Figure 5. The length of tour is at most C

√
|D2|+ |P2|

with a constant C, the same holds for the matching.
Adding the TSP tour and the matching yields a connected graph. Every vertex
has an even degree so that there exists a Eulerian tour. We shortcut the Eulerian
tour into a traveling salesman tour. If the tour contains a depot, it is a feasible
cycle, otherwise we delete an edge and connect the remaining path to the border.
Together with the unmodified cycles in G we get a feasible solution for D1 and P1,
Figure 6, so it follows that LB(D1, P1) ≤ LB(D1∪D2, P1∪P2)+C

√
|D2|+ |P2|.

&'

Fig. 3. The bound-
ary MDVRP tour.

Fig. 4. P2 and D2

deleted, B added.

MatchingTSP tour

Fig. 5. Tour and
matching added.

Fig. 6. The result-
ing tour.

Since LB is a Euclidean, superadditve and smooth functional, we can show the
asymptotic behavior of the mean of LB via typical methods, refer [17].
Lemma 3. Let k = λn, λ > 0 constant. Then there exists a constant αk > 0
such that

lim
n→∞

E [LB(D1 . . . , Dλn, P1 . . . , Pn)]√
n

= αk.

Proof. Set Φ(k, n) := E [LB(D1, . . . , Dk, P1, . . . , Pn)]. The number of depots
resp. points that fall into a given subcube of [0, 1]2 of volume m−2 is given by a
binomial random variable B(k,m−2) resp. B(n,m−2). We divide [0, 1]2 into m2

identical cubes Ri of volume m−2. With the superadditivity and homogeneity of
LB we have

Φ(k, n) ≥
m2∑
i=1

Φ(B(k,m−2) ∩Ri, B(n,m−2) ∩Ri)

≥ 1
m

m2∑
i=1

Φ(B(k,m−2) ∩ [0, 1]2, B(n,m−2) ∩ [0, 1]2).

Via the smoothness of LB and Jensen’s inequality for concave functions one can
show that

Φ(k, n) ≥ mΦ(km−2, nm−2)− Ck
1
4m

1
2 − Cn

1
4m

1
2 .

366 Andreas Baltz et al.

Dividing by k
1
4n

1
4 and replacing n by nm2 and k by km2, we get for the case

k = λn

Φ(λnm2, nm2)
(nm2)

1
2

≥ Φ(λn, n)
n

1
2

− Cλ
1
4

n
1
4
− C

n
1
4
.

Set α := α(LB) := lim supn→∞
Φ(λn,n)

n
1
2

. The smoothness of LB guarantees α <

∞. For all ε > 0, choose n0 such that for all n ≥ n0 we have C

n
1
4
< ε, Cλ

1
4

n
1
4

< ε

and Φ(λn0,n0)

n
1
2
0

> α−ε. Thus, for all m ≥ 1 it follows that Φ(λn0m
2,n0m

2)

(n0m2)
1
2

> α−3ε.

Now we use an interpolation argument and the smoothness of the functional.
For an arbitrary integer t determine the unique integer m such that n0m

2 < t ≤
n0(m + 1)2. Then holds |n0m

2 − t| ≤ C′n0m and by smoothness we get

Φ(λt, t)
t

1
2

≥ Φ(λn0m
2, n0m

2)
(n0(m + 1)2)

1
2
− C′(n0m)

1
2

(n0(m + 1)2)
1
2
− C′(λn0m)

1
2

(n0(m + 1)2)
1
2

≥ (α− 3ε)
(

m

m + 1

)
− C′m

1
2

m + 1
− C′(λm)

1
2

m + 1
.

Since the last two terms go to zero as m goes to infinity, lim inft→∞
Φ(λt,t)

t
1
2

≥
α − 3ε. For ε tending to zero we see that the lim inf and the lim sup of the
sequence Φ(λt,t)

t
1
2

, t ≥ 1, coincide, and we may define

αk := lim
t→∞

Φ(λt, t)
t

1
2

.

It remains to show that αk > 0. For a set of independent random variables
X := {X1, . . . , Xn+λn} with uniform distribution in [0, 1]2, there is a c > 0
such that E [min{|Xi −Xj | : Xi, Xj ∈ X}] > c√

n+λn
. Since c√

n+λn
> c′√

n
for a

c′ > 0, and a depot tour through n points contains at least n+ 1 edges, we have
Φ(λn, n, [0, 1]2) > c′

√
n. Consequently, α is positive. &'

The following isoperimetric inequality by Rhee shows that, except for a small
set with polynomially small probability, the boundary functional and its mean
are close.

Theorem 2 ([14]). Let X1, . . . , Xn be independent identically distributed ran-
dom variables with values in [0, 1]2 and let L(X1, . . . , Xn) be a smooth Euclidean
functional. Then there are constants C,C′ and C′′ such that for all t > 0:

P [|L(X1, . . . , Xn)− E [L(X1, . . . , Xn)] | > t] ≤ Ce−
(t/C′)4

C′′n .

Proof (Proof of Theorem 1 (i)). The boundary functional is Euclidean and
smooth, so we can apply the theorem directly to LB, i.e. in [17]. Since L approx-
imates LB, Lemma 1, it is sufficient to show Theorem 1 (i) for LB. &'

Probabilistic Analysis for a Multiple Depot Vehicle Routing Problem 367

2.2 Bounds for αk for k = λn

For λ ≤ 1
n our lower bound equals the lower bound of the TSP constant in [3]

which is 5
8 and decreases with increasing λ. The upper bound is also decreasing

with increasing λ, but for λ < 3, the TSP tour through all points is a better
upper bound. We have:

Theorem 3.

min
{
α(TSP),

2α(TSP)√
1 + λ

}
≥ αk ≥

1
2
√

1 + λ

(
1 +

1
4(1 + λ)

)
.

Proof. For the lower bound we consider an arbitrary point p ∈ P . Let O =
P \ {p} ∪D. Let oi denote the distance from p the i-nearest object of O. In the
optimal tour p is either connected with two edges to a depot or it is connected
to two different objects in O. So the length of one edge is bounded by o1. The
length of the second edge is bounded by o1, too, if the nearest neighbor is a depot
or by o2 if the nearest neighbor is a point. Let z1 and z2 be random variables
denoting the length of the first and second edge used, thus, P[z1 = o1] = 1,
P[z2 = o1] = k

n+k−1 and P[z2 = o2] = n−1
n+k−1 . So we consider a slightly different

setting. We have n+ k− 1 random variables with uniform distribution in [0, 1]2.
After the objects are placed, we choose a random subset of k elements which we
consider as depots. This is equivalent to the original situation with n random
variables for the points and k for the depots. We have 2 E[L(D,P)] ≥ nE[z1+z2].
To determine the probability that the nearest neighbor has a distance of at least
r, we consider the probability that there is no point in a circle around p with
radius r. Thus,

E[L(D,P)] ≥ n

2
E[z1 + z2] =

n

2

(
E(o1) +

k

n + k − 1
E(o1) +

n− 1
n + k − 1

E(o2)
)

≥ n

2

(
1 +

k

n + k − 1

)∫ ∞

0

P[o1 > r]dr +
n− 1

n + k − 1

∫ ∞

0

P[o2 > r]dr

≥ n

2

((
1 +

k

n + k − 1

)∫ 1√
π

0

(1− πr2)n+k−1dr

+
n− 1

n+ k − 1

∫ 1√
π

0

(1− πr2)n+k−1 + (n + k − 1)πr2(1− π)n+k−2dr

)

≥ n

2
√
π

(∫ 1

0

z
−1
2 (1− z)n+k−1dz +

(n− 1)(n + k − 1)
2(n + k − 1)

∫ 1

0

z
1
2 (1 − z)n+k−2dz

)
.

In the last step we substituted z = πr2. Using
∫ 1

0
tx−1(1 − t)y−1dt = Γ (x)Γ (y)

Γ (x+y) ,
xΓ (x) = Γ (x + 1) and Γ (1

2) =
√
π, one can calculate

E[L(D,P)] ≥ n

2
Γ (n + k)

Γ (n + k + 1
2)

(
1 +

n− 1
4(n + k)

)
≥ n

2
√
n + k

(
1 +

n− 1
4(n + k)

)
.

368 Andreas Baltz et al.

For the last inequality consider al = Γ (l)
√
l

Γ (l+ 1
2)

. Since al

al+1
=
(
1 + 1

l

)− 1
2
(
1 + 1

2l

)
≥ 1

and al → 1 for l→∞, we get the last inequality for l = n+k. Thus, for k = λn,
we have asymptotically E[L(D,P)] ≥

√
n 1

2
√

1+λ

(
1 + 1

4(1+λ)

)
.

For the upper bound, we consider the TSP tour of length α(TSP)
√
n + k through

all points and depots. We start with an arbitrary point and follow the tour, du-
plicating all edges starting at a point and deleting all edges starting at a depot.
So we use 2n

n+k of the edges of the TSP tour. Each of the resulting connected
components is turned into a feasible depot tour solution by shortcuts. Thus, the
length of the constructed depot solution is α(TSP)

√
n+k2n

n+k = 2α(TSP)
√
n√

1+λ
. &'

2.3 The Case k = o(n)

For k = o(n) the MDVRP behaves asymptotically exactly like the TSP. In the
following lemma we show that the lengths of optimal solutions for the MDVRP
and the TSP are very close if k = o(n). Let LTSP (P) denote the length of an
optimal TSP tour through a point set P ⊂ [0, 1]2.

Lemma 4. Let D,P ⊂ [0, 1]2. If |D| = o(|P |), then |LTSP (P) − L(D,P)| =
o(
√
|P |).

Proof. Let D,P ⊂ [0, 1]2 with |D| = o(|P |). Then L(D,P) ≤ LTSP (P) + 2
√

2,
because we get a feasible multiple depot tour if we connect an optimal TSP tour
to a depot. It remains to show that LTSP (P) − L(D,P) = O(

√
|D|). Given an

optimal multiple depot tour of length L(D,P), we add a traveling salesman tour
through D of length O(

√
|D|). The resulting graph is connected and all vertices

have even degree, so there is a Eulerian tour. Short-cutting the Eulerian tour
yields a traveling salesman tour through P of length at most L(D,P)+O(

√
|D|).
&'

So the influence of the depots on the length of an optimal MDVRP tour is small
in this case and we get Theorem 1 (ii):

Proof (Proof of Theorem 1 (ii)). Let |P | = n and |D| = o(n). We show that
L(D,P)√

n
converges completely to α(TSP): let ε > 0,

∞∑
n=1

P
[∣∣∣∣L(D,P)√

n
− α(TSP)

∣∣∣∣ > ε

]

≤
∞∑
n=1

P
[∣∣∣∣L(D,P)− LTSP (P)√

n

∣∣∣∣ > ε

2

]
+ P

[∣∣∣∣LTSP (P)√
n

− α(TSP)
∣∣∣∣ > ε

2

]
.

With Lemma 4 |LTSP (P) − LMD(D,P)| = o(
√
|P |) holds, and the length of

the TSP functional converges completely to α(TSP), refer [17], hence the above
sum is finite. Thus, we have complete convergence. &'

Probabilistic Analysis for a Multiple Depot Vehicle Routing Problem 369

3 Probabilistic Analysis of a Nearest Neighbor Heuristics

We describe and analyze an algorithm for the multiple depot routing problem
that combines a depot clustering heuristics with approximation algorithms for
solving a TSP problem.
Two step scheme:

1. Cluster the points around the depots.
2. Route the points in each cluster to the corresponding depot with a TSP tour.

This is a widespread approach to solve the problem practically [6,7], but to our
best knowledge there is no theoretical analysis. We give a first analysis for the
case that the clustering step is implemented by the nearest neighbor heuristics:
assign each point to its nearest depot. The second routing step is implemented
by the fixed dissection heuristics of Karp[9].
Let C denote a clustering i.e. an assignment of points to depots. Let CN denote
the clustering produced by applying the nearest neighbor rule and let C∗ denote
the clustering in an optimal tour. For a clustering C, let T ∗(C) denote the optimal
tours for the clustering C, i.e. the union of the optimal TSP tours for each cluster
C ∈ C. Let T K(C) denote the union of the TSP tours produced by applying
the fixed dissection heuristics of Karp to each cluster C ∈ C separately. Our
objective is to compare T K(CN) to T ∗(C∗). We bound two approximation errors
separately, that due to using the nearest neighbor clustering instead of an optimal
clustering and that due to applying the Karp heuristics instead of an optimal
TSP solver:

T K(CN) ≤ T ∗(CN) + E1 ≤ T ∗(C∗) + E1 + E2

Lemma 5 (Clustering Approximation Lemma). Let the points and depots
be given by independent and uniformly distributed random variables. The nearest
neighbor clustering rule satisfies

T ∗(CN) ≤ T ∗(C∗) + O(
√
k),

with high probability. If k = o(n), the error term is o(
√
n) with high probability.

Proof. Consider the Voronoi partition V corresponding to the depots in the unit
square. Take the optimal tour T ∗ corresponding to the optimal clustering C∗
and modify it to respect the partition V . This is accomplished by “stitching in”
a tour along one of the sides of a Voronoi region and connecting it to a possible
inner tour, see Figure 7 and 8. This means to cut of the optimal tours keeping
only the portions within the Voronoi region and connecting these portions along
the sides of the polygon. In order to obtain a true TSP tour, the inner tour that
contains the depot inside the region has to be connected to the outer tour.
To analyze the resulting tour, we use the following two geometric results, for
more details see [2,11]: the sum of the lengths of all sides of the Voronoi diagram

370 Andreas Baltz et al.

is O(
√
k) and the distance of a point to its closest depot is O(1/

√
k). The first

fact implies that the sum of the stitched tours along the sides of the Voronoi
diagram is at most O(

√
k), and the second that the sum of the lengths of the

connections to the inner tours in all cells is at most k · O(1/
√
k) = O(

√
k).

Overall, the increase in the length due to the “stitching” operations is O(
√
k).

Since the optimal routing in each region will give shorter tours than the ones
constructed above the error is at most O(

√
k). &'

Fig. 7. Six depots with Voronoi
diagram, the optimal tour shown
as dashed line

Fig. 8. The stitched tour of the
central depot as a bold line

Lemma 6 (Tour Approximation Lemma). For any clustering C of n points
and k depots, we have:

T K(C) ≤ T ∗(C) + o
(√

n + k
)
.

Proof. The analysis of Karp’s fixed dissection heuristics shows by simple scaling
that the approximation error for n uniformly distributed points in a square
of side � is O(�

√
n/s) where s = logn/ log logn. Suppose the clustering C

has m clusters, each in a box of length �j and containing nj points for j ∈
[m]. Note that

∑
j nj ≤ n + k (some depots may have no points alloted to

them) and
∑

j �
2
j = O(1). Applying the approximation bound for Karp’s heuris-

tics separately to each cluster, we have an absolute approximation error of∑
j �j
√
nj/sj ≤

√∑
j �

2
j

√∑
j
nj

sj
O(1) ·

√
n+k

log n
log log n

if we take sj = logn
log logn for each

j ∈ [m]. &'
Note that the analysis in this lemma is deterministic. Putting both lemmas
together, we get:

Theorem 4. The two step algorithm with nearest neighbor clustering and Karp’s
fixed dissection TSP heuristics computes a (1+o(1))OPT approximation for MD-
VRP with n points and k = o(n) depots uniformly and independently distributed
in the unit square almost surely.

Acknowledgments: We thank Luc Devroye and Mordecai Golin for comments
which helped to improve the paper.

Probabilistic Analysis for a Multiple Depot Vehicle Routing Problem 371

References

1. S. Arora. Polynomial time Approximation Schemes for Euclidean TSP and other
Geometric problems. J. ACM , 45(5): 753–782, 1998.

2. F. Avram and D. Bertsimas. On Central Limit Theorems in Geometrical Probability.
The Annals of Applied Probability, 3(4): 1033–1046, 1993.

3. J. Beardwood, J.H. Halton, and J. M. Hammersley. The shortest path through
many points. In Proc. Cambridge Philos. Soc., 55, 299–327, 1959.

4. I. M. Chao, B. L. Golden and E. Wasil. A new heuristic for the multi-depot vehi-
cle routing problem that improves upon best-known solutions. American Journal of
Mathematical and Management Sciences 13: 371–406, 1993.

5. J. F. Cordeau, M. Gendreau, and G. Laporte. A Tabu Search Heuristic for Periodic
and Multi-Depot Vehicle Routing Problems. Networks, 30: 105–119, 1997.

6. M. L. Fisher and R. Jaikumar. A Generalized Assignment Heuristic for Vehicle
Routing. Networks, 11:109-124, 1981.

7. D. Giosa, L. Tansini and O. Viera. New Assignment Algorithms for the Multi-Depot
Vehicle Routing Problem. Journal of the Operational Research Society 53(9): 977–
984, 2002.

8. R. Karp. Probabilistic Analysis of Partitioning Algorithms for the Travelling Sales-
man Problem in the Plane. Math. of Operations Research 2, 1977.

9. R. Karp and J. M. Steele. Probabilistic Analysis of Heuristics. In Lenstra et al. (ed)
The Travelling Salesman Problem , John Wiley 1985.

10. J. Lenstra and A. Rinnooy Kan. Complexity of vehicle routing and scheduling
problems. Networks 11, 221–227, 1981.

11. M. Penrose and J. Yukich. Central Limit Theorems for some Graphs in Computa-
tional Geometry. Annals of Applied Prob., 11:4, 1005–1041, 2001.

12. C. Redmond and J. E. Yukich. Limit theorems and rates of convergence for Eu-
clidean functionals. Ann. Appl. Probab., 4(4):1057–1073, 1994.

13. J. Renaud, G. Laporte and F. F. Boctor. A tabu search heuristic for the multi-
depot vehicle routing problem. Computers and Operations Research, 23: 229–235,
1996.

14. W. T. Rhee. A matching problem and subadditive Euclidean functionals. Ann.
Appl. Probab., 3(3):794–801, 1993.

15. J. M. Steele. Probability theory and combinatorial optimization, volume 69 of
CBMS-NSF Regional Conference Series in Applied Mathematics. Society for In-
dustrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997.

16. L. Tansini. PhD Thesis, to appear.
17. J. E. Yukich. Probability theory of classical Euclidean optimization problems,

volume 1675 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1998.

Computing the Expected Accumulated Reward

and Gain for a Subclass of Infinite
Markov Chains

Tomáš Brázdil� and Antońın Kučera��

Faculty of Informatics, Masaryk University,
Botanická 68a, 60200 Brno, Czech Republic

{brazdil,kucera}@fi.muni.cz

Abstract. We consider the problem of computing the expected accu-
mulated reward and the average gain per transition in a subclass of
Markov chains with countable state spaces where all states are assigned
a non-negative reward. We state several abstract conditions that guaran-
tee computability of the above properties up to an arbitrarily small (but
non-zero) given error. Finally, we show that our results can be applied
to probabilistic lossy channel systems, a well-known model of processes
communicating through faulty channels.

1 Introduction

Methods for qualitative and quantitative analysis of stochastic systems have been
rapidly gaining importance in recent years. Stochastic systems are used for mod-
eling systems that exhibit some kind of uncertainty caused by, e.g., unpredictable
errors, randomness, or underspecification. The semantics of stochastic systems is
usually defined in terms of Markov chains or Markov decision processes [19,22].
So far, problems related to formal verification of stochastic systems have been
studied mainly for finite-state systems [24,11,6,12,19,10]. Only recently, some of
these results were extended to certain classes of infinite-state systems, in par-
ticular to probabilistic pushdown automata [13,9,14,7], recursive Markov chains
[16,15], and probabilistic lossy channel systems [2,3,5,4,18,23].

A more abstract approach has been adopted in [1], where the problems of
qualitative and quantitative reachability are studied for a subclass of Markov
chains with a finite attractor. In [1], it is shown that the problems of qualitative
reachability and qualitative repeated reachability are decidable in the considered
subclass, and that the quantitative variants of these problems can be solved up
to an arbitrarily small given error. These abstract results are then applied to
probabilistic lossy channel systems. Moreover, in the same paper it is shown that
the exact probability of (repeated) reachability is not expressible in first order

� Supported by the Czech Science Foundation, grant No. 201/03/1161.
�� Supported by the research centre Institute for Theoretical Computer Science (ITI),

project No. 1M0021620808.

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 372–383, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Computing the Expected Accumulated Reward and Gain 373

theory of the reals for probabilistic lossy channel systems (unlike for probabilistic
pushdown automata or recursive Markov chains [13,9,16,15]).
Our contribution: In this paper we adopt an abstract approach similar to
the one of [1]. We identify an abstract class of infinite Markov chains where
the expected accumulated reward between two given states and the average
reward per transition can be effectively approximated up to a given precision.
Our results are applicable to a similar class of systems as the results of [1],
in particular to various versions of probabilistic lossy channel systems. These
problems have previously been considered and solved for probabilistic pushdown
automata by showing that these parameters are effectively expressible in first
order theory of the reals [14]. However, this approach cannot be used for any
class of Markov chains that subsumes probabilistic lossy channel systems; by
adapting the results of [1], one can easily show that these values are (provably)
not expressible in first order theory of the reals.

The problem of computing the expected accumulated reward can be roughly
formulated as follows: assume that each state of a given Markov chain is assigned
a rational reward, which is collected when the state is visited. We are interested
in the expected reward accumulated when going from a given state s to another
given state t. In particular, if the reward function returns 1 for every state,
then the expected accumulated reward corresponds to the expected number of
transitions between s and t, and can also be interpreted as the expected ter-
mination time. Another important parameter which is well-known from general
theory of Markov chains is the gain, i.e., the average reward per transition along
a given infinite run. The gain (computed w.r.t. various reward functions) plays
an important role in performance analysis and can be used to evaluate various
long-run system properties (such as the expected throughput, expected service
time, etc.)

Since the expected accumulated reward and the average gain can take irra-
tional values, the best we can hope for is to compute rational lower and upper
approximations that are arbitrarily close. Our approach is similar to the one
of [21] used for approximating the probability of reaching a given state t from
another given state s. Roughly speaking, the algorithm successively computes
the probability p−n of reaching t from s in at most n steps. This yields a se-
quence of lower approximations p−1 , p

−
2 , . . . of p. It holds (without any additional

assumptions) that limn→∞ p−n equals the probability p of reaching t from s, and
that p−1 ≤ p−2 ≤ . . . ≤ p. However, it is not clear which p−n is “close enough”
to p in the sense that p − pn ≤ ε for a given precision ε > 0. Therefore, one
also computes the probabilities dn of reaching a “dead” state in at most n steps
(a state s′ is dead if t is not reachable from s′). Putting p+

i = 1 − di for every
i ∈ N, we obtain a sequence of upper approximations p+

1 ≥ p+
2 ≥ · · · of p. If the

Markov chain contains a finite attractor, then limn→∞ p−n = p = limn→∞ p+
n ,

and it suffices to compute a sufficiently large n such that p+
n − p−n ≤ ε.

We use a similar approach for computing the expected accumulated reward
and the average gain by showing that there are effectively computable sequences
E+

1 , E+
2 , . . . and E−1 , E−2 , . . . of upper and lower approximations which converge

374 Tomáš Brázdil and Antońın Kučera

to the value of the considered parameter. For the expected accumulated reward,
the sequence of lower approximations is easy to find, using a similar technique as
in the case of reachability. In Section 3 we show how to construct the sequence
of upper approximations for a subclass of Markov chains that satisfy certain
abstractly formulated conditions. We show that an infinite Markov chain M of
this class can be effectively approximated with a sequence of finite-state Markov
chains so that the expected accumulated rewards computed in these approxi-
mations converge to the expected accumulated reward in M . In order to prove
this convergence, we use results of perturbed Markov chains theory [17]. The
problem of computing the expected gain is solved along similar lines, but the
problem (and hence also the techniques involved) become more complicated. In
particular, there is no simple method for constructing a sequence of lower ap-
proximations as in the case of the expected accumulated reward, and we have
to compute both lower and upper approximating sequences using the sequence
of finite-state Markov chains mentioned above.

Due to space constraints, all proofs are omitted. These can be found in a full
version of this paper [8].

2 Preliminaries

In the paper we use Q, R, and R+ to denote the sets of rational numbers, real
numbers, and non-negative real numbers, respectively. We also use Q∞ and R+

∞
to denote the set Q∪{∞} and R+∪{∞}, respectively. The symbol∞ is treated
according to the standard conventions.

Definition 1. A (discrete) Markov chain is a triple M = (S,→,Prob) where S
is a finite or countably infinite set of states, → ⊆ S×S is a transition relation,
and Prob is a function which to each transition s→ t of M assigns its probability
Prob(s→ t) ∈ (0, 1] so that for every s ∈ S we have

∑
s→t Prob(s→ t) = 1.

In the rest of this paper we write s
x→ t instead of Prob(s → t) = x. A path in

M is a finite or infinite sequence w = s0, s1, . . . of states such that si → si+1

for every i. We say that a state t is reachable from a state s if there is a path
from s to t. We say that a Markov chain M is irreducible, if for all states s, t
of M there is a path from s to t in M . The length of a given path w is the
number of transitions in w. In particular, the length of an infinite path is ∞,
and the length of a path s, where s ∈ S, is zero. We also use w(i) to denote
the state si of w (by writing w(i) = s we implicitly impose the condition that
the length of w is at least i). The prefix s0, . . . , si of w is denoted by wi. A run
is an infinite path. The sets of all finite paths and all runs of M are denoted
FPath and Run, respectively. Similarly, the sets of all finite paths and runs that
start with a given w ∈ FPath are denoted FPath(w) and Run(w), respectively.
In particular, Run(s), where s ∈ S, is the set of all runs initiated in s.

We are interested in probabilities of certain events that are associated with
runs. To every s ∈ S we associate the probabilistic space (Run(s),F ,P) where
F is the σ-field generated by all basic cylinders Run(w) where w ∈ FPath(s),

Computing the Expected Accumulated Reward and Gain 375

and P : F → [0, 1] is the unique probability function such that P(Run(w)) =
Πm−1
i=0 xi where w = s0, · · · , sm and si

xi→ si+1 for every 0 ≤ i < m (if m = 0, we
put P(Run(w)) = 1).

For every s ∈ S and every A ⊆ S, we use P [s,A] to denote the probability
of reaching A from s. Formally, P [s,A] = P({w ∈ Run(s) | ∃i ≥ 0 : w(i) ∈ A}).
We write P [s, t] instead of P [s, {t}].

Definition 2. A set A⊆S is recurrent if for all s ∈ A we have that s → t
implies P [t, A] = 1.

Note that whenever a run leaves a recurrent set A, then it almost surely (i.e.,
with probability one) returns back to A in the future.

A reward function is a function f : S → R+. We extend f to finite paths by
putting f(s0, . . . , sn) =

∑n
i=0 f(si). Thus, f assigns to each path its accumulated

reward. The special reward function which assigns 1 to every s ∈ S is denoted 1
(i.e., 1(s) = 1 for each s ∈ S).

3 Computing the Expected Accumulated Reward and
Gain

In this section we show how to compute certain quantitative properties in certain
classes of Markov chains up to an arbitrarily small ε > 0. More precisely, we show
that these properties are effectively approximable in the following sense:

Definition 3. Let O be a class of objects, and let P : O → R+
∞. We say that

P is effectively approximable if there is an algorithm which, for a given o ∈ O,
enumerates two sequences E+

1 , E+
2 , . . . and E−1 , E−2 , . . . where E+

i , E
−
i ∈ Q∞

such that for all i ≥ 1 we have E−i ≤ P (o) ≤ E+
i and limi→∞E+

i = limi→∞E−i .
The sequences E+

1 , E+
2 , . . . and E−1 , E−2 , . . . are called the upper/lower ap-

proximating sequences of P (o), respectively.

If P is effectively approximable, then the value of P (o) can effectively be ap-
proximated up to an arbitrarily small ε > 0 by enumerating the upper and lower
sequences simultaneously until they become sufficiently close.

3.1 The Expected Accumulated Reward

For the rest of this subsection, let us fix a Markov chain M = (S,→,Prob), two
states sin , sfin ∈ S, and a reward function f : S → R+. Moreover, we assume
that given a state s ∈ S, the set {(s, x, t) | s x→ t} of all transitions from s is
effectively denumerable.

We define a random variable R : Run(sin) → R+
∞ that counts the reward

accumulated between sin and sfin . Formally, given a run w ∈ Run(sin), we
define

R(w) =
{
f(w(0), . . . , w(n−1)) ∃n : w(n) = sfin , w(i) 	= sfin for 1 ≤ i ≤ n−1;
∞ otherwise.

376 Tomáš Brázdil and Antońın Kučera

The expected value of R is denoted E(M, f) (the reason why we write E(M, f)
and not just E(R) is that in our proofs we consider various modifications of the
chain M and various reward functions, keeping sin , sfin fixed).

Our aim is to show that the function which to a given tuple (M, f, sin , sfin)
assigns the value E(M, f) is effectively approximable (cf. Definition 3) if M and
f satisfy certain abstractly formulated conditions. To simplify our notation, we
formulate these conditions directly for the previously fixed M and f , and show
how to compute the sequences E+

1 , E+
2 , . . . and E−1 , E−2 , . . . if these conditions

are satisfied.
First, let us realize that the lower approximating sequence E−1 , E−2 , . . . can

be computed without any additional assumptions about M and f , because

• one can effectively compute a sequence P1, P2, . . . of finite sets of finite paths
such that Pi ⊆ Pi+1 for each i ≥ 1, and

⋃∞
i=1 Pi is exactly the set of all finite

paths w where w(0)=sin , w(k)=sfin for some k, and w(j)	=sfin for all 0≤j<k;
• E−i can be defined as

∑
w∈Pi

P(Run(w)) · f(w)

However, the upper approximating sequence E+
1 , E+

2 , . . . cannot be effectively
constructed for general M and f . In order to formulate the promised sufficient
conditions, we need to state one auxiliary definition.

Definition 4. Let h : S → R+ be a reward function, A ⊆ S, and s ∈ A. We de-
fine a random variable Oh,A

s : Run(s)→ R+that counts the reward accumulated
“before hitting the set A” as follows:

Oh,A
s (w) =

{
h(w(1), . . . , w(n−1)) ∃n : w(n) ∈ A,w(1), . . . , w(n−1) 	∈ A;
⊥ otherwise.

The symbol EOh,A
s denotes either the conditional expectation E(Oh,A

s | Oh,A
s 	=⊥)

or 0, depending on whether P(Oh,A
s 	=⊥) is positive or zero, respectively.

The sufficient conditions which (as we shall see) enable an effective construction
of E+

1 , E+
2 , . . . are the following:

1. there is an effectively computable sequence A0 ⊆ A1 ⊆ · · · of finite recurrent
sets such that

⋃∞
i=0 Ai = S;

2. there is an effectively computable number Ξ ∈ R+ such that for all i ≥ 0
and all s ∈ Ai we have EOf,Ai

s ≤ Ξ and EO1,Ai
s ≤ Ξ (remember that 1 is

the reward function which assigns 1 to each state);
3. given a finite set A ⊆ S and s, t ∈ A, it is decidable whether there is a finite

path of the form s=s0, . . . , sn=t where si 	∈ A for all 0 < i < n (i.e., whether
s can reach t without visiting any state of A in the middle).

As we shall see, these conditions are satisfied by, e.g., Markov chains generated
by various variants of probabilistic lossy channel systems. The intuitive meaning
of these conditions is explained at appropriate places below. Note that we can
safely assume that sin , sfin ∈ A0.

For the rest of this subsection, let us assume that the conditions 1–3 are
satisfied and sin , sfin ∈ A0. First, let us deal with the case when P [sin , sfin] < 1.

Computing the Expected Accumulated Reward and Gain 377

Then clearly E(M, f) = ∞. Moreover, one can easily prove that P [sin , sfin] < 1
if and only if there is a state s ∈ A0 such that s is reachable from sin , and sfin

is not reachable from s (we use the fact that A0 is recurrent and finite). Hence,
using condition 3 we can effectively check whether P [sin , sfin] < 1. If this is the
case, then E(M, f) = ∞.

Now let us assume that P [sin , sfin] = 1. We show that conditions 1–3 suffice
for computing the upper approximating sequence E+

1 , E+
2 , . . . Loosely speaking,

the algorithm computes a sequence of finite-state Markov chains that “approxi-
mate” the Markov chain M , and the expected reward accumulated between sin
and sfin in these chains “approximates” E(M, f).

We start with some auxiliary definitions. Given a set A ⊆ S and two states
s, t ∈ A, we define the set Out(A, s, t) ⊆ Run(s) of runs that reach t without
visiting A in the middle:

Out(A, s, t) = {w ∈ Run(s) | ∃n : w(n) = t, w(1), . . . , w(n−1) 	∈ A}

We put Out(A, s) = {w ∈ Run(s) | w(1) 	∈ A}, and for all i ≥ 0 define a Markov
chain Mi = (Si,→i,Probi), where Si = Ai ∪ {s̄ | s ∈ Ai,P(Out(Ai, s)) > 0} and
the transitions are determined as follows:

• if s, t ∈ Ai, then s
x→i t iff s

x→ t;
• if s ∈ Ai and s̄ ∈ Si, then s

x→i s̄ iff x = P(Out(Ai, s));
• if s, t ∈ Ai and s̄ ∈ Si, then s̄

x→i t iff x = P(Out(Ai, s, t) | Out(Ai, s)) > 0.

Note that Mi has finitely many states. Now we define a reward function
fi : Si → R+ where fi(s) = f(s) and fi(s̄) = EOf,Ai

s for every s ∈ Ai. The
following (crucial) lemma states that each (Mi, fi) is a faithful abstraction of
(M, f) with respect to the expected reward accumulated between sin and sfin .

Lemma 1. For all i ≥ 0 we have that E(M, f) = E(Mi, fi).

Note that if we were able to compute (Mi, fi) for some i, we would be done,
because the expected accumulated reward can easily be computed for finite-state
Markov chains using standard methods. Unfortunately, we cannot compute the
transition probabilities of Mi precisely (the transitions of the form s̄

x→i t cause
the problem), and the definition of fi is not effective either. However, we can use
condition 2 to design a reward function f+

i that approximates fi — for every
i ≥ 0 and every s ∈ Ai we define f+

i (s) = f(s) and f+
i (s̄) = Ξ. Condition 2

implies that fi ≤ f+
i for all i ≥ 0, hence E(Mi, fi) ≤ E(Mi, f

+
i). The following

lemma states that the difference between E(Mi, fi) and E(Mi, f
+
i) approaches 0

as i grows.

Lemma 2. For each ε > 0 there is i ≥ 0 s.t. 0 ≤ E(Mj , f
+
j)−E(Mj , fj) ≤ ε for

every j ≥ i.

The only problem left is that we are not able to compute transition probabil-
ities in the chains Mi. This is overcome by showing that, for a given δ > 0,
one can effectively approximate the transition probabilities of Mi and compute
a finite-state Markov chain M δ

i = (Si,→i,Probδi) with the transition matrix P δ
i

378 Tomáš Brázdil and Antońın Kučera

so that ‖Pi − P δ
i ‖∞ ≤ δ (the norm ‖ · ‖∞ of a matrix P = {pij} is defined

as ‖P‖∞ = maxi
∑

j |pij |). Then, we show that for every M δ
i there is an effec-

tively computable number cδ ∈ R+ such that |E(M δ
i , f

+
i)− E(Mi, f

+
i)| ≤ cδ · δ.

Moreover, the number cδ approaches a bounded value as δ goes to zero. Here we
employ results of perturbed Markov chains theory and develop some new special
tools that suit our purposes. In this way, we obtain the following lemma:

Lemma 3. For every i ≥ 0 and every ε > 0 there is an effectively computable
δ > 0 such that |E(M δ

i , f
+
i)− E(Mi, f

+
i)| ≤ ε.

Note that since the definition of M δ
i is effective, we can compute E(M δ

i , f
+
i) by

standard methods for finite-state Markov chains.
Now we can define the upper approximating sequence E+

1 , E+
2 , . . . of E(M, f)

as follows: For each i ≥ 1 we put E+
i = E(M δi

i , f+
i)+ 1

2i+1 , where δi > 0 is the δ of
Lemma 3 computed for the considered i and ε = 1

2i+1 . Now it is easy to see that
0 ≤ E+

i −E(Mi, f
+
i) ≤ 1

2i . By combining this observation together with Lemma 1
and Lemma 2, we obtain that limi→∞E+

i = E(M, f) and E+
i ≥ E(M, f) for all

i ≥ 1. Moreover, the approximations E+
1 , E+

2 , . . . are effectively computable.
Thus, we obtain our first theorem:

Theorem 1. For every ε > 0 there is an effectively computable number x such
that |E(M, f)− x| ≤ ε.

3.2 The Average Gain

Similarly as in Section 3.1, we fix a Markov chain M = (S,→,Prob), a state
sin ∈ S, and a reward function f : S → R+, such that for each s ∈ S the set
{(s, x, t) | s x→ t} is effectively denumerable.

We define a function G(M, f) : Run(sin)→ R+
∞ as follows

G(M, f)(w) =
{

limn→∞
f(wn)
n if the limit exists;

⊥ otherwise.

Hence, G(M, f)(w) corresponds to the gain (i.e., “average reward per transi-
tion”), which is a standard notion in stochastic process theory (see, e.g., [20]).
As we shall see in Section 3.3, the gain can be used to compute other interesting
characteristics which reflect long-run properties of a given system.

Note that G(M, f)(w) can be undefined for some w ∈ Run(sin). As we shall
see, for Markov chains that satisfy conditions 1–3 of Section 3.1, the total prob-
ability of all such runs is zero. Since G(M, f)(w) can take infinitely many values,
a standard problem of stochastic process theory is to compute E(G(M, f)), the
expected value of G(M, f). However, one should realize that the information pro-
vided by E(G(M, f)) is relevant only in situations when a system is repeatedly
restarted and runs “sufficiently long” so that the average reward per transition
approaches its limit. In our setup, we can provide a bit more detailed informa-
tion about the runs of Run(sin), which is not reflected in the “ensemble average”

Computing the Expected Accumulated Reward and Gain 379

E(G(M, f)). We show that in the subclass of Markov chains that satisfy condi-
tions 1–3, the variable G(M, f) can take only finitely many values with a positive
probability, and we give an algorithm which approximates these values as well as
the associated probabilities up to an arbitrarily small ε > 0. Thus, we obtain a
“complete picture” about possible limit behaviours of runs initiated in sin . Note
that E(G(M, f)) can be effectively approximated simply by taking the weighted
sum of the finitely many admissible values of G(M, f). It is worth noting that
similar results have recently been achieved for an incomparable class of Markov
chains generated by probabilistic pushdown automata [7] by using completely
different methods.

The class of Markov chains considered in this subsection is the same as in
Section 3.1, i.e., we assume that the previously fixed chain M satisfies condi-
tions 1–3 (cf. Section 3.1). We also assume (without restrictions) that sin ∈ A0.
Since the constructions and techniques employed in this section are hard to ex-
plain at an intuitive level, we only state our main theorem and refer to [8] for
missing details.

Theorem 2. There are finitely many pairwise disjoint sets R1, . . . ,Rn ⊆
Run(sin) and numbers x1, . . . , xn ∈ R+ such that

• Prob(
⋃n
i=1Ri) = 1, and Prob(Ri) > 0 for every 1 ≤ i ≤ n;

• for every 1 ≤ i ≤ n and every w ∈ Ri we have G(M, f)(w) = xi;
• for every ε > 0 and every 1 ≤ i ≤ n, there is an effectively computable number
yi such that |xi − yi| ≤ ε;
• for every 1 ≤ i ≤ n, it is decidable whether Prob(Ri) = 1; moreover, for every
ε > 0 and every 1 ≤ i ≤ n, there is an effectively computable number ri such
that |Prob(Ri)− ri| ≤ ε.

3.3 The Average Ratio

The gain can be used to define some interesting characteristics of Markov chains,
like, e.g., the frequency of visits to a distinguished family of states along an
infinite run. In performance analysis, one is also interested in features that cannot
be directly specified as gains, but as limits of fractions of two reward functions.

Let us start with a simple motivating example. Let M = (S,→,Prob) be a
Markov chain, sin ∈ S an initial state, f : S → R+ a reward function, and T ⊆ S
a set of triggers. Intuitively, a trigger is a state initiating a finite “service” of a
certain request. Hence, each run with infinitely many triggers can be seen as an
infinite sequence of finite services, where each service corresponds to a finite path
between two consecutive occurrences of a trigger. What we are interested in is
the average accumulated reward per service. Formally, the average accumulated
reward per service can be defined as follows: we fix another reward function g
where g(s) returns 1 if s ∈ T ∪ {sin}, and 0 otherwise. Now we define a random
variable R : Run(sin)→ R+

∞ as follows:

R(w) =

{
limn→∞

f(wn)
g(wn) if the limit exists;

⊥ otherwise.

380 Tomáš Brázdil and Antońın Kučera

It is easy to see that R(w) indeed corresponds to the average accumulated re-
ward per service in the run w. For the reasons which have been discussed at
the beginning of Section 3.2, we are interested not only in E(R) (the expected
average accumulated reward per service), but in a complete classification of ad-
missible values of R and their associated probabilities. Of course, this is possible
only under some additional assumptions about the chain M ; as we shall see,
conditions 1–3 are sufficient.

Now we move from the above example to a general setup. For the rest of
this section, we fix a Markov chain M = (S,→,Prob), a state sin ∈ S, and two
reward functions f, g : S → R+. In order to simplify our presentation, we assume
that g(sin) > 0. We define the average ratio Rf

g : Run(sin) → R+
∞ as follows.

Rf
g (w) =

{
limn→∞

f(wn)
g(wn) if the limit exists;

⊥ otherwise.

First we observe that the average ratio can be expressed in terms of gains.

Lemma 4. Let w ∈ Run(sin) be a run. If both G(M, f)(w) and G(M, g)(w) are
defined and finite, and if G(M, f)(w) + G(M, g)(w) > 0, then

Rf
g (w) =

G(M, f)(w)
G(M, g)(w)

Here we use the convention that c/0 =∞ for c > 0.

For the rest of this section, we assume that the chain M satisfies conditions 1–3
of Section 3.1. First, let us consider the special case when the chain M0 is ir-
reducible. It follows from Theorem 2 that G(M, f) and G(M, g) are constant
almost everywhere and finite. Moreover, the values G(M, f) and G(M, g) can
be effectively approximated up to a given ε > 0. The case when G(M, g) = 0
requires some attention.

Lemma 5. G(M, g) = 0 iff for all s ∈ S reachable from sin we have that g(s)=0.

Now we consider the general case when M0 is not necessarily irreducible. We
obtain that the values of G(M, g) are determined by the bottom strongly con-
nected components of the underlying transition system TM0 of M0. The value
associated with a given component C is 0 iff all states s ∈ S that are reachable
from a state of C ∩ A0 satisfy g(s) = 0 iff for all runs w ∈ Run(sin) that enter
a state of C ∩ A0 there is k ≥ 0 such that for all j ≥ k we have g(w(j)) = 0.
Thus, we obtain the following generalization of Theorem 2.

Theorem 3. Let us assume that for each s ∈ A0 it is decidable whether there is
t ∈ S reachable from s such that g(t) > 0, and the same for the reward function f .
Then there are finitely many pairwise disjoint sets Zf ,Zg,Zf,g,R1, . . . ,Rn ⊆
Run(sin) and numbers x1, . . . , xn ∈ R+ such that

Computing the Expected Accumulated Reward and Gain 381

• Prob(
⋃n
i=1Ri ∪ Zf ∪ Zg ∪ Zf,g) = 1, and

−Rf
g (w) = xi > 0 for all w ∈ Ri and all 1 ≤ i ≤ n;

−Rf
g (w) = 0 for all w ∈ Zf ;

−Rf
g (w) =∞ for all w ∈ Zg.

• for all w ∈ Zf,g there is k ≥ 0 such that j ≥ k implies f(w(j)) = g(w(j)) = 0.
• for every ε > 0 there are effectively computable y1, . . . , yn such that |xi−yi| ≤ ε

for 1 ≤ i ≤ n;
• the probabilities Prob(Ri) for 1 ≤ i ≤ n, Prob(Zf), Prob(Zg), and Prob(Zf,g)

can be effectively approximated up to a given ε > 0; moreover, for each of these
probabilities, it is decidable whether the probability is equal to 1 or not.

4 Probabilistic Lossy Channel Systems

Lossy channel systems (LCS) [2] have been proposed as a model for processes
communicating via faulty communication channels. A lossy channel system con-
sists of a finite-state control unit and a finite set of FIFO channels. A config-
uration of LCS consists of the current control state and the current contents
of the channels. A computational step from a given configuration consists of
adding/removing one message to/from a channel, and possibly changing the
control state. Moreover, during each transition, one or more messages can be
lost from the channels.

A probabilistic lossy channel system (PLCS) is a probabilistic variant of
LCS. In PLCS, transitions and message losses are chosen randomly according to
a given probability distribution. There are several models of PLCS that differ
mainly in the treatment of message losses. The model considered in [18] assumes
that each step of a system is either a message loss or a “perfect” step that
is performed consistently with transition function. There is a fixed probability
λ > 0 that the next step will be a message loss. This model is called a global-
fault model in [23]. Another variant of PLCS was considered in [5], where it is
assumed that each message can be lost independently of the other messages with
some given probability λ > 0. Then each step of a system consists of a perfect
step followed by a loss of (zero or more) messages, where each message is lost
with the probability λ, independently of the other messages. This model is also
called a local-fault model. See [23] for a deeper explanation of the above models
of PLCS.

We show that the abstract results of Section 3 are applicable both to the
global-fault and the local-fault variant of PLCS. In our discussion, we use the
following result for one-dimensional random walks: For each 0 < λ < 1 we define
a Markov chain Mλ = (N0,→,Prob) where the transitions are defined as follows.
For all n ≥ 0 we put n 1−λ→ n+1, for all n ≥ 1 we put n λ→ n−1, and we also put
0 λ→ 0. It is easy to prove that if λ > 1

2 , then the expected number of transitions
needed to reach 0 from 1 equals 1

2λ−1 .
Let L be a PLCS, and let us assume that f is a reward function that assigns

a rational reward to configurations of L. Moreover, let us assume that f is

382 Tomáš Brázdil and Antońın Kučera

effectively bounded, i.e., there is an effectively computable constant ξ such that
for every configuration s we have f(s) ≤ ξ.

Let us first consider the global-fault model. We argue that if λ > 1
2 , then the

conditions 1–3 of Section 3.1 are satisfied, and hence Theorems 1, 2, and 3 apply.
For all i ≥ 0 we define the set Ai consisting of all configurations where the total
number of messages stored in the channels is bounded by i. Since at most one
message can be added into channels during a perfect step and each step is lossy
with probability λ, we obtain that the expected time to reach Ai after leaving Ai
is bounded from above by the expected number of transitions needed to reach
0 from 1 in Mλ. Hence, condition 2 is satisfied because f is effectively bounded.
Condition 3 can be proved using similar arguments as in Theorem 8 in [1].

In the local-fault model, the probability of a message loss converges to 1 as the
number of stored messages increases. In particular, there is n ∈ N such that for
each configuration where the total number of stored messages exceeds n we have
that the probability of losing at least two messages in the next step is greater
than 1

2 (since at most one message can be added to channels in a single step, the
number of messages stored in the next configuration decreases with probability
greater than 1

2). It is easy to see that the number n is computable from λ. Hence,
if we define Ai to be the set of all configurations where the number of stored
messages is less than or equal to n + i, we obtain that conditions 2 and 3 are
satisfied, using the same argument as for the global-fault model above. Hence,
the general results of Theorems 1, 2, and 3 apply.

References

1. P. Abdulla, N.B. Henda, and R. Mayr. Verifying infinite Markov chains with a
finite attractor or the global coarseness property. In Proceedings of LICS 2005, pp.
127–136. IEEE, 2005.

2. P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. I&C,
127(2):91–101, 1996.

3. P.A. Abdulla and A. Rabinovich. Verification of probabilistic systems with faulty
communication. In Proceedings of FoSSaCS 2003, vol. 2620 of LNCS, pp. 39–53.
Springer, 2003.

4. C. Baier and B. Engelen. Establishing qualitative properties for probabilistic lossy
channel systems: an algorithmic approach. In Proceedings of 5th International
AMAST Workshop on Real-Time and Probabilistic Systems (ARTS’99), vol. 1601
of LNCS, pp. 34–52. Springer, 1999.

5. N. Bertrand and Ph. Schnoebelen. Model checking lossy channel systems is prob-
ably decidable. In Proceedings of FoSSaCS 2003, vol. 2620 of LNCS, pp. 120–135.
Springer, 2003.

6. A. Bianco and L. de Alfaro. Model checking of probabalistic and nondeterministic
systems. In Proceedings of FST&TCS’95, vol. 1026 of LNCS, pp. 499–513. Springer,
1995.

7. T. Brázdil, J. Esparza, and A. Kučera. Analysis and prediction of the long-run
behavior of probabilistic sequential programs with recursion. In Proceedings of
FOCS 2005. IEEE, 2005. To appear.

Computing the Expected Accumulated Reward and Gain 383

8. T. Brázdil and A. Kučera. Computing the expected accumulated reward and
gain for a subclass of infinite markov chains. Technical report FIMU-RS-2005-10,
Faculty of Informatics, Masaryk University, 2005.

9. T. Brázdil, A. Kučera, and O. Stražovský. On the decidability of temporal proper-
ties of probabilistic pushdown automata. In Proceedings of STACS’2005, vol. 3404
of LNCS, pp. 145–157. Springer, 2005.

10. C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite-state
probabilistic programs. In Proceedings of FOCS’88, pp. 338–345. IEEE, 1988.

11. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
JACM, 42(4):857–907, 1995.

12. L. de Alfaro, M.Z. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Sym-
bolic model checking of probabilistic processes using MTBDDs and the Kronecker
representation. In Proceedings of TACAS 2000, vol. 1785 of LNCS, pp. 395–410.
Springer, 2000.

13. J. Esparza, A. Kučera, and R. Mayr. Model-checking probabilistic pushdown au-
tomata. In Proceedings of LICS 2004, pp. 12–21. IEEE, 2004.

14. J. Esparza, A. Kučera, and R. Mayr. Quantitative analysis of probabilistic push-
down automata: Expectations and variances. In Proceedings of LICS 2005, pp.
117–126. IEEE, 2005.

15. K. Etessami and M. Yannakakis. Algorithmic verification of recursive probabilistic
systems. In Proceedings of TACAS 2005, vol. 3440 of LNCS, pp. 253–270. Springer,
2005.

16. K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars,
and monotone systems of non-linear equations. In Proceedings of STACS’2005,
vol. 3404 of LNCS, pp. 340–352. Springer, 2005.

17. E. Cho G and C. D. Meyer. Markov chain sensitivity measured by mean first
passage times. Linear Algebra and its Applications, 316(1–3):21–28, 2000.

18. S.P. Iyer and M. Narasimha. Probabilistic lossy channel systems. In Proceedings
of TAPSOFT’97, vol. 1214 of LNCS, pp. 667–681. Springer, 1997.

19. M.Z. Kwiatkowska. Model checking for probability and time: from theory to prac-
tice. In Proceedings of LICS 2003, pp. 351–360. IEEE, 2003.

20. M. Puterman. Markov Decision Processes. John Wiley and Sons, 1994.
21. A. Rabinovich. Quantitative analysis of probabilistic lossy channel systems. In

Proceedings of ICALP 2003, vol. 2719 of LNCS, pp. 1008–1021. Springer, 2003.
22. J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathematical Techniques

for Analyzing Concurrent and Probabilistic Systems, vol. 23 of CRM Monograph
Series. American Mathematical Society, 2004.

23. Ph. Schnoebelen. The verification of probabilistic lossy channel systems. In Val-
idation of Stochastic Systems: A Guide to Current Research, vol. 2925 of LNCS,
pp. 445–465. Springer, 2004.

24. M. Vardi. Automatic verification of probabilistic concurrent finite-state programs.
In Proceedings of FOCS’85, pp. 327–338. IEEE, 1985.

Towards a CTL* Tableau

Mark Reynolds

The University of Western Australia, Perth, Australia
mark@csse.uwa.edu.au

Abstract. We present a sound, complete and relatively straightforward
tableau method for deciding valid formulas in the propositional version of
the bundled (or suffix and fusion closed) computation tree logic BCTL*.
This proves that BCTL* is decidable. It is also moderately useful to have
a tableau available for a reasonably expressive branching time temporal
logic. However, the main interest in this should be that it leads us closer
to being able to devise a tableau-based technique for theorem-proving in
the important full computational tree logic CTL*.

1 Introduction

CTL*, or full computation tree logic, was introduced in [4] and [8]. It extends
both the simple branching logic, CTL, of [3], and the standard linear temporal
logic, PLTL of [17].

The language of CTL*, which is a propositional temporal language, is built
recursively from the atomic propositions using the next X and until U operators
of PLTL, and the universal path switching modality A of CTL as well as classical
connectives. This language is appropriate for describing properties of all paths of
states through a transition structure, or applications which can be modelled as
such. This standard semantics for CTL* is called the semantics over R-generable
models.

The main uses of CTL* in computer science are for developing and checking
the correctness of complex reactive systems. See [10] for a survey. CTL* is also
used widely as a framework for comparing other languages more appropriate for
specific reasoning tasks of this type. These include the purely linear and purely
branching sub-languages as well as languages which allow a limited amount of
interplay between these two aspects.

In this paper we will mainly be concerned with a variant semantics which
gives a slightly different logic. In [23], this is called ∀LTFC and it allows us
to restrict the use of the path quantifier to a given subset of all of the paths
through the transition structure. The only requirements are that the chosen set
of paths is closed under taking suffixes (i.e. it is suffix closed) and is closed
under putting together a finite prefix of one path with the suffix of any other
path such that the prefix ends at the same state as the suffix begins (i.e. the
set is fusion closed). This logic lacks the so called limit closure property of the
standard CTL* semantics (see section 2.3 below).

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 384–395, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Towards a CTL* Tableau 385

The alternative name of BCTL*, or bundled CTL*, for ∀LTFC comes from
the term bundle which is used in philosophical accounts of branching time tense
logics, when only certain selected branches of time play a role in the semantics
(see for example [1]). Such a variation on the semantics gives us a different set
of valid formulas in BCTL* when compared to standard CTL*: we give some
details in section 2.3. Every valid formula in BCTL* is a valid formula in CTL*.
There are possible applications for BCTL* (as distinct from CTL*) where only
certain of the possible infinite paths through a transition structure are counted
as legitimate computations. For example, there may be fairness constraints on
the repeated choice amongst branching alternatives. BCTL* also has played a
role as a technically simpler variant of CTL*, giving a basis on which to work
towards handling standard CTL*. See [19] and [23]. This is how we use it here.

Validity of formulas of CTL* is known to be decidable. This was proved in [8]
using an automata-theoretic approach. [7] makes use of the specific form of some
linear automata to give a decision procedure of deterministic double exponential
time complexity in the length of the formula. This agrees with the lower bound
found in [24].

As with other temporal logics and despite these conclusive results, the search
for other reasoning methods has been a major undertaking. Even for the basic
task of deciding validity (or equally satisfiability), of a CTL* formula, there
is interest in finding approaches which are more straightfoward, or more tradi-
tional, or more amenable to human understanding, or yield meaningful interme-
diate steps, etc. In this vein, there is a complete Hilbert-style axiomatization for
CTL* in [19] using an unusual and unorthodox rule of inference and a perfectly
orthodox axiomatization of an extension of CTL* with past-time operators in
[20].

Tableaux are another popular style of modal reasoning technique and there
has been a substantial amount of work on applying them to temporal logics: see
[12] and [18] for surveys. They can be presented in an intuitive way, they are often
suitable for automated reasoning and it is often not hard to prove complexity
results for their use. Tableaux were used for modal logics in [15] and [11] and
there has been much work since on tableaux for temporal logics [25,13,5,6,21].

Despite all the interest in tableaux for temporal logic and for reasoning with
CTL*, tableaux do not exist for deciding validity in CTL*. However, it should
be noted that tableau-style elements appear in the somewhat intricate CTL*
model-checking systems in [22] and [16]. Model-checking is a distinct task from
deciding validity: it involves checking whether a given formula holds of a given
system, and is used for the verification of implementations. Validity deciders can
be used to model-check but model-checkers can not in general decide validity:
model-checking is an “easier” or less computationally complex reasoning task.
In [22] there is a tableau system for model-checking with predicate CTL*. In [16]
there is a complete deductive system for model-checking formulas in predicate
CTL* and some of the derivation steps look similar to tableau-building steps.

There are good reasons to try to devise a not too complicated tableau-style
system for deciding validity in CTL*. Even though there is the seriously incon-

386 Mark Reynolds

venient double exponential lower bound on the complexity, there are reasons
to believe that experienced tableau practitioners will be able to use a range of
techniques to make fast implementations capable of delivering results for a wide
range of practical reasoning problems. A general CTL* tableau can be the basis
for searching for more practical sublanguages, and for assisting with human-
guided derivations on bigger tasks. It can be the basis of proofs of correctness
for alternative reasoning techniques like resolution or rewrite systems. It may
assist with model-checking and program synthesis tasks. It may be extended to
cope with some predicate reasoning.

In this paper we do not deliver a CTL* tableau. However, we do describe a
simple, sound and complete tableau system for BCTL*. This can be used directly
for BCTL* reasoning, and thus for showing the validity of many CTL* formulas.

It also seems that our result gives the first explicit proof of decidability of
BCTL*. However, it should be noted that the same fact can be deduced from a
result (theorem 10) in [14], and possibly from one in [2], concerning decidability
for bundled tree logics with more general semantics.

The main reason for this paper, however, is to lay the basis for a future
tableau system for standard propositional CTL*.

The tableau construction we describe for BCTL* is of the graph rather than
the tree form. To decide the validity of φ, we build a graph with the nodes built
from sets of formulas from a finite closure set defined from φ. There is then a
pruning process. A novel aspect is the fact that the nodes in the initial tableau
graph are built from sets of sets of formulas. We use certain sets of formulas
called hues, and then put together sets of hues called colours. This notation
reflects some similar ideas in the CTL* axiomatic completeness proof in [19].
The proof of correctness is an interesting mixture of techniques from linear and
branching temporal logic, and it has some subtleties.

In section 2 we give a formal definition of BCTL* and CTL* and give some
example valid formulas. In section 3 we describe the tableau and the following
section sketches the proof of correctness. Complexity and implementation issues
are discussed briefly in section 5 before a conclusion.

2 Syntax and Semantics

The language of (propositional) CTL* is used to describe several different types
of structures and so there are really several different logics here. In the back-
ground in our paper is the logic of R-generable sets of paths on transition struc-
tures. In most papers it is this logic which is referred to as CTL*: this is the
standard CTL* logic.

We will, however, be proving results for a different logic, BCTL*, which uses
the same language but has fewer valid formulas. In this section we introduce
BCTL* first and then CTL*.

2.1 BCTL*

We fix a countable set L of atomic propositions.

Towards a CTL* Tableau 387

Definition 1. A transition frame is a pair (S,R) where:
S is the non-empty set of states
R is a total binary relation ⊆ S × S

i.e. for every s ∈ S, there is some t ∈ S such that (s, t) ∈ R.

A transition frame could equally be called a Kripke frame as in standard
modal logic except that a Kripke frame’s accessibility relation, R, is not neces-
sarily assumed to be total.

Formulas are defined along ω-long sequences of states. A fullpath in (S,R) is
an infinite sequence 〈s0, s1, s2, ...〉 of states such that for each i, (si, si+1) ∈ R.
For the fullpath b = 〈s0, s1, s2, ...〉, and any i ≥ 0, we write bi for the state si
and b≥i for the fullpath 〈si, si+1, si+2, ...〉.

BCTL* allows the semantics to be defined with respect to a predefined set of
fullpaths, not necessarily all possible fullpaths. However there are restrictions.
We say that a set B of fullpaths through (S,R) is suffix closed iff for all b ∈ B,
for all i ≥ 0, b≥i ∈ B.

We say that B is fusion closed if we can switch from one path to another
at any common state. That is, if b, c ∈ B and i, j ≥ 0 and bi = cj , then
〈b0, b1, ..., bi−1, cj , cj+1, cj+2, ...〉 (which is a fullpath, of course) is also in B.

A non-empty set of fullpaths (through (S,R)) will be called a bundle (on
(S,R)) if it is both suffix and fusion closed.

Formulas of BCTL* are evaluated in bundled structures:

Definition 2. A bundled (transition) structure is a triple M = (S,R,B, g)
where:
(S,R) is a transition frame;
g : S → ℘(L) is a labelling of the states with sets of atoms; and
B is a bundle.

The formulas of BCTL* are built from the atomic propositions in L recur-
sively using classical connectives ¬ and ∧ as well as the temporal connectives X ,
U and A: if α and β are formulas then so are Xα, αUβ and Aα. As well as the
standard classical abbreviations, true, ∨, →, ↔, we have linear time abbrevia-
tions Fα ≡ trueUα and Gα ≡ ¬F¬α, and we have the path switching modal
diamond Eα ≡ ¬A¬α.

We shall write ψ ≤ φ if ψ is a subformula of φ.
Truth of formulas is evaluated at bundled fullpaths in bundled structures.

We write M, b |= α iff the formula α is true of the fullpath b ∈ B in the structure
M = (S,R,B, g). This is defined recursively by:
M, b |= p iff p ∈ g(b0), any p ∈ L
M, b |= ¬α iff M, b 	|= α
M, b |= α ∧ β iff M, b |= α and M, b |= β
M, b |= Xα iff M, b≥1 |= α
M, b |= αUβ iff there is some i ≥ 0 such that M, b≥i |= β

and for each j, if 0 ≤ j < i then M, b≥j |= α
M, b |= Aα iff for all fullpaths b′ ∈ B such that b0 = b′0 we have M, b′ |= α

388 Mark Reynolds

We say that α is valid in BCTL* iff for all bundled transition structures M ,
for all fullpaths b in M , we have M, b |= α. Let us write |=B α in that case.

We say that α is satisfiable in BCTL* iff for some bundled transition structure
M and for some fullpath b in M , we have M, b |= α. Clearly α is satisfiable (in
BCTL*) iff 	|=B ¬α.

2.2 CTL*

The standard version of CTL*, the full computation tree logic of R-generable
structures uses the same language as defined above for BCTL*. However, the
semantics is different and, as we will see below (subsection 2.3), there are some
extra valid formulas.

There are two slightly different but ultimately equivalent ways of defining the
semantics of CTL*. In terms of the definitions above for BCTL* both involve a
further restriction on the sets we allow as bundles B in structures (S,R,B, g).
One alternative is to only allow B to be exactly the set of all fullpaths through
(S,R).

The other alternative way of introducing CTL* semantics is to impose an
extra closure condition called limit closure. Limit closure is the requirement
that if a sequence of prefixes of fullpaths from the bundle is strictly increasing
then the fullpath which is their limit is also in the bundle. The set of all fullpaths
is limit closed. Full details about the relationship between limit closure of sets
of paths and equivalence results can be found in [9] and [19]. We do not need to
go into details here.

A (transition) structure is just (S,R, g) where (S,R) is a transition frame
and g is a labelling of the states with sets of atoms. Let FB(S,R) be the set of
all fullpaths through (S,R). Note that FB(S,R) is a bundle.

Truth of formulas in CTL* is evaluated at fullpaths in transition structures.
Using our definitions above we just put (S,R, g), b |= α iff (S,R, FB(S,R), g), b |=
α.

We say that α is valid in CTL* iff for all transition structures M , for all
fullpaths b in M , we have M, b |= α. Let us write |=C α in that case.

We say that α is satisfiable in CTL* iff for some transition structure M and
for some fullpath b in M , we have M, b |= α. Clearly α is satisfiable in CTL* iff
	|=C ¬α.

2.3 Examples: BCTL* Versus CTL*

Many interesting valid formulas in our two logics can be gained from the axiom-
atizations in [23] and [19].

Formulas which appear in these axiom systems and which are valid in both
BCTL* and CTL* include all the valid formulas of PLTL such as θ1 = G(α →
β) → (Gα → Gβ), θ2 = Gα → (α ∧ Xα ∧ XGα), θ3 = (αUβ) ↔ (β ∨ (α ∧
X(αUβ))) and θ4 = (αUβ) → Fβ. There are also S5 axioms such as θ5 = α→
AEα and θ6 = Aα → AAα. The main interaction between the path switching

Towards a CTL* Tableau 389

and the linear time modalities is the valid formula θ7 = AXα → XAα. There
is also a special axiom saying that atomic propositions only depend on states:
θ8 = p→ Ap (for atom p).

Now we list three more interesting valid formulas of BCTL* and CTL*:

θ9 = E(pU(E(pUq))) → E(pUq)
θ10 = (AG(p→ qUr) ∧ qUp)→ qUr

θ11 = G(EFp→ XFEFp)→ (EFp→ GFEFp).

We leave it to the reader to verify the validity of these examples using semantic
arguments.

It is immediate that, as FB(S,R) is a bundle in (S,R), every valid formula
in BCTL* is a valid formula in CTL*.

The literature includes a few examples of the extra valid formulas of CTL*,
that is formulas which are valid in CTL* but not in BCTL*. The negations of
these formulas are satisfiable in BCTL* but not in CTL*.

A simple example is the limit closure axiom from CTL,

θ12 = AG(p→ EXp)→ (p→ EGp).

A basic induction shows that this is valid in CTL*: if M, b |= AG(p→ EXp)∧ p
then we can find, for all n ≥ 0, a finite sequence 〈s0, s1, ..., sn〉 such that s0 = b0
and for any fullpath σ, if σ0 = sn then M,σ |= AG(p → EXp) ∧ p. Then we
have a fullpath satisfying Gp and we are done.

To see that the negation of θ12 is satisfiable in BCTL* consider the structure
in figure 1. Let S = {u, v}, R = {(u, u), (u, v), (v, v)}, g(u) = {p}, g(v) = {} and
B = {b|∃i bi = v}. The reader can verify that (S,R,B, g) is a bundled model of
¬θ12.

��
�

��
� �

�
� 	

�
�

��
��

��
��

u v

p ¬p

Fig. 1. ¬θ12 is satisfiable

 �� � 	

�

�
��

����
� 	 ��

��
��
��

p

vu

r

Fig. 2. ¬θ14 is satisfiable

390 Mark Reynolds

The LC (limit closure) axiom schema from [19] gives us other examples:

θ13 = AG(Eα→ EX((Eβ)U(Eα))) → (Eα→ EG((Eβ)U(Eα))).

There is a (semantic) proof of the soundness of this scheme in [19]. In BCTL*
this is not generally valid. As a simple example take α = p and β = true. To
see that its negation is satisfiable in BCTL* use the bundled structure from the
previous example.

Another example from [19]:

θ14 = (AG(p→ EXr) ∧AG(r → EXp))→ (p→ EG(Fp ∧ Fr)).

This is proved to be valid in CTL* using the axiom system in [19]. To see that
its negation is satisfiable in BCTL* consider the structure in figure 2. Let the
bundle only contain those fullpaths which eventually remain in the same state
from some time onwards.

3 The Tableau for BCTL*

Most of the work on temporal tableaux involves a move away from the tradi-
tional tree-shaped tableau building process of other modal logics. The standard
approach for temporal logics is to start with a graph and repeatedly prune away
nodes, according to certain removal rules, until there is nothing more to remove
(success) or some failure condition is detected. This approach is seen for the
linear PLTL in [25] and [13] and for the simple branching CTL in [5] and [6].
The PLTL tableau in [21] is interesting because of the return to a tree shape.

We want to use a tableau approach to decide validity of a formula in BCTL*.
We will start with a formula φ and determine whether φ is satisfiable in BCTL*
or not. To decide validity simply determine satisfiabilty of the negation.

As in the usual graph-style tableau processes for linear time temporal logics,
we start with a graph of these nodes and repeatedly “prune” away (i.e. remove)
nodes until we either reach a failure condition or a successful stabilization.

The main difference here is that the nodes in our graph will be sets of sets of
formulas rather than just sets of formulas. Obviously there is a risk of getting a
very large graph to deal with. We discuss complexity and implementation issues
briefly in section 5 below.

From the closure set for φ, which is just the subformulas and their negations,
we will define a certain set of subsets of the closure set called the hues of φ. The
colours of φ will be certain sets of hues of φ. The nodes in our tableau graph
will be colours of φ: each colour will be at most one node. The hue and colour
terminology relects some similar notions in the axiomatic completeness proof for
CTL* in [19]. Edges in the tableau will be determined by certain conditions on
the formulas in the hues at each end of the edge.

3.1 Hues and Colours

Fix the formula φ whose satisfiability we are interested in.

Towards a CTL* Tableau 391

Definition 3 (closure set). The closure set for φ is clφ = {ψ,¬ψ|ψ ≤ φ}.

Definition 4 (MPC). Say that a ⊆ clφ is maximally propositionally consis-
tent (MPC) iff for all α, β ∈ clφ,
M1) if β = ¬α then (β ∈ a iff α 	∈ a); and
M2) if α ∧ β ∈ clφ then (α ∧ β ∈ a iff both α ∈ a and β ∈ a).

A hue is supposed to (approximately) capture a set of formulas which could
all hold together of one fullpath.

Definition 5 (Hue). a ⊆ clφ is a hue for φ iff all these conditions hold:
H1) a is MPC;
H2) if αUβ ∈ a and β 	∈ a then α ∈ a;
H3) if αUβ ∈ clφ \ a then β 	∈ a;
H4) if Aα ∈ a then α ∈ a.

Let Hφ be the set of hues of φ.
The usual temporal successor relation plays a role:

Definition 6 (rX). For hues a and b, put a rX b iff the following four conditions
all hold.
R1) Xα ∈ a implies α ∈ b.
R2) ¬Xα ∈ a implies ¬α ∈ b.
R3) αUβ ∈ a and ¬β ∈ a implies αUβ ∈ b.
R4) ¬(αUβ) ∈ a and α ∈ a implies ¬(αUβ) ∈ b.

The next relation aims to tell whether two hues correspond to fullpaths start-
ing at the same state:

Definition 7 (rA). For hues a and b, put a rA b iff the following two conditions
both hold:
A1) Aα ∈ a iff Aα ∈ b; and
A2) for all p ∈ L, p ∈ a iff p ∈ b

Now we move up from the level of hues to the level of colours. Could a
set of hues be exactly the hues corresponding to all the fullpaths starting at a
particular state?

Definition 8 (Colour). c ⊆ Hφ is a colour (of φ) iff the following two condi-
tions hold. For all a, b ∈ c,
C1) arAb
C2) if a ∈ c and ¬Aα ∈ a then there is b ∈ c such that ¬α ∈ b.

Let Cφ be the set of colours of φ.
We define a successor relation RX between colours. It is defined in terms

of rX between the component hues. Note that colours will in general have a
non-singleton range of successors.

Definition 9 (RX). For all c, d ∈ Cφ, put c RX d iff for all b ∈ d there is a ∈ c
such that a rX b.

The initial tableau graph will be (Cφ, RX).

392 Mark Reynolds

3.2 Pruning the Tableau

Start with the set S′ of colours being equal to Cφ and repeatedly remove colours
from S′ according to the following two rules, applied in any order to the colours
left in S′.

Removal rule 1: Remove c from S′ if its succession can not be completely
covered, i.e. if there is a ∈ c and there is no b ∈ d ∈ S′ such that c RX d and
a rX b. Thus each hue in c must have an rX successor in some RX successor of
c still in S′.

Removal rule 2: Remove c from S′ if it contains an unfulfillable eventuality.
This is defined in several steps. An eventuality in a hue a is any formula of the
form αUβ ∈ a. An eventuality in a colour c is just some eventuality in a hue
in c. A fulfillment of the eventuality αUβ ∈ a ∈ c ∈ S′ is a finite sequence
〈(c0, h0), (c1, h1), (c2, h2), ..., (cn, hn)〉 of colour-hue pairs such that: n ≥ 0, h0 =
a, c0 = c, each hi ∈ ci ∈ S′, each ci RX ci+1, each hi rX hi+1 and β ∈ hn. (Note
that here we need not require α in each hi as that follows from the definition
of rX .) Remove c if it contains an eventuality which does not have a fulfillment.
Note that this may be implemented by spreading fulfillment backwards from hue
to hue along rX within RX .

Halt and Fail condition: If at any stage there is no colour containing a
hue containing φ left in S′ then we can stop and say that φ is unsatisfiable in
BCTL*.

Halt and Succeed: Otherwise, it is clear that we will eventually stop finding
colours to remove. Then we halt and say that φ is satisfiable in BCTL*.

4 Soundness and Completeness

Call the above algorithm BCTL*-TAB.

Theorem 1. BCTL*-TAB, which clearly always terminates, is sound and com-
plete for deciding satisfiability in BCTL*.

This follows from lemmas 1 and 3.

Lemma 1. BCTL*-TAB is sound, that is, if it halts and succeeds on φ then φ
is satisfiable in BCTL*.

Here we give a brief sketch of the proof.
Say that the algorithm terminates with the set S′ ⊆ Cφ of colours remaining.

Say φ ∈ a0 ∈ e0 ∈ S′.
Define a bundled structure (S′, RX , B, g) as follows. The transition structure

is just (S′, RX).
The bundle B of fullpaths is built from examining sequences of colour-hue

pairs from S′. Call an ω-sequence of colour-hue pairs 〈(c0, h0), (c1, h1), (c2, h2), ...〉
a thread through S′ iff: each hi ∈ ci ∈ S′, each ci RX ci+1, and each hi rX hi+1.
Say that this thread is a fulfilling thread iff for all i ≥ 0, for all formulas of the
form αUβ ∈ hi, there is some j ≥ i such that βj ∈ hj . We include the fullpath

Towards a CTL* Tableau 393

σ = 〈c0, c1, c2, ...〉 in B iff there is a fulfilling thread 〈(c0, h0), (c1, h1), (c2, h2), ...〉,
and then we say that this thread justifies σ being in B.

Using the definition of RX we can show that B is a bundle.
Finally define g : S′ → ℘(L), the labelling of the states with sets of atoms,

by p ∈ g(c) iff there is some a ∈ c with p ∈ a.
Now find some sequence 〈(c0, h0), (c1, h1), (c2, h2), ...〉 of colour-hue pairs such

that: each hi ∈ ci ∈ S′, each ci RX ci+1, each hi rX hi+1, every eventuality in
any hi is fulfilled, and φ ∈ h0. Let π0 be 〈c0, c1, ...〉.

Now we claim (S′, RX , B, g), π0 |= φ. In fact we show

Lemma 2. For all α ∈ cl(φ), for all threads μ = 〈(c0, h0), (c1, h1), ...〉 justifying
σ = 〈c0, c1, ...〉 ∈ B we have (S′, RX , B, g), σ |= α iff α ∈ h0.

That proves soundness. Now the converse.

Lemma 3. BCTL*-TAB is complete, that is, if φ is satisfiable in BCTL* then
it halts and succeeds on φ.

Here we give a brief sketch of the proof. Suppose that φ is satisfiable, say
that (K,R,B, g), π0 |= φ. For each π ∈ B define a hue h(π) containing exactly
those α ∈ clφ such that (K,R,B, g), π |= α. Define a map ρ : K → Cφ, by
ρ(s) = {h(π)|π ∈ B, π0 = s}. Define S0 = ρ(K) ⊆ Cφ.

We can show that during the running of the algorithm we do not ever remove
any element of S0 from S′. As φ appears in h(π0) ∈ ρ(π0

0) ∈ S0, the algorithm
must halt with the correct answer as required.

Corollary 1. BCTL* is decidable.

5 Complexity and Implementation Issues

Say that the length of φ is |φ| = l. Thus φ has ≤ l subformulas and clφ contains
at most 2l formulas. Since each hue contains, for each α ≤ φ at most one of α
or ¬α, there are at most ≤ 2l hues. Thus there are less than 22l

colours.
The process of constructing the initial tableau and determining the RX rela-

tion is thus double exponentially complex in time and space usage. Each round of
the pruning process takes time bounded above by the size of the graph in terms
of colour-hue pairs. There are less than 22l+l such pairs. Each round (except
possibly the last) removes at least one colour so there are at most 22l

rounds.
Overall we have a double exponential upper bound on time and space usage.

No lower bound on deciding validity in BCTL* is known although the reduc-
tions in [24] showing a exponential space lower bound for CTL* will probably
go through for BCTL* as well.

The implementation of BCTL*-TAB is relatively straightforward (but no
version robust enough for public release has yet been constructed).

A prototype implementation written by the author shows that for many
interesting, albeit relatively small, formulas, the actual performance is nowhere

394 Mark Reynolds

near as bad as the the theoretical upper bounds above. All but one of the 14
example formulas are easily decided by this prototype implementation. Only θ14

is too expensive. The size of the initial tableau is the limiting factor: pruning
the tableau rarely takes more than a few rounds.

6 Conclusion

We have provided a simple, sound and complete tableau system for the bundled
(or suffix and fusion closed) variant, here called BCTL*, of the propositional full
computational tree logic CTL*.

This seems to be the first account of a decision procedure for BCTL*. There
is potential for BCTL* reasoning applications with an identified set of acceptable
computation paths.

However, the standard propositional CTL* logic is even more useful. Our
system for BCTL* should be of some importance as it lays the groundwork
for possible attempts to devise a tableau system for CTL*. Future work will
concentrate on trying to identify CTL* models in the final BCTL* tableau. In
the literature, there is a wide range of existing expertise in making fast tableaux
and we will also be trying to apply that.

Even though there is an existing decision procedure for CTL* (based on
automata) there are many potential uses of tableaux systems for CTL*. We
can often extract counter-models and formal proofs from tableaux. They could
be a base for developing, or proving correctness of, other techniques such as
tree-shaped tableaux, resolution or term rewriting. They may give indications of
simpler more reasonable sub-languages. Tableaux help manual proofs of validity.
They can be extended to help with reasoning in the predicate case, for example
for software verification.

References

1. J. P. Burgess. Logic and time. J. Symbolic Logic, 44:566–582, 1979.

2. J. P. Burgess. Decidability for Branching Time. Studia Logica, 39:203–218, 1980.

3. E. Clarke and E. Emerson. Synthesis of synchronization skeletons for branching time
temporal logic. In Proc. IBM Workshop on Logic of Programs, Yorktown Heights,
NY, pages 52–71. Springer, Berlin, 1981.

4. E. Clarke, E. Emerson and A. Sistla, Automatic verification of finite state con-
current system using temporal logic specifications: a practical approach. In Proc.
10th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
pages 117–126. 1983.

5. E. Emerson and E. C. Clarke. Using branching time temporal logic to synthesise
synchronisation skeletons. Sci. of Computer Programming, 2, 1982.

6. E. Emerson and J. Halpern. Decision procedures and expressiveness in the temporal
logic of branching time. J. Comp and Sys. Sci, 30(1):1–24, 1985.

7. E. Emerson and C. Jutla. Complexity of tree automata and modal logics of pro-
grams. In 29th IEEE Foundations of Computer Science, Proceedings. IEEE, 1988.

Towards a CTL* Tableau 395

8. E. Emerson and A. Sistla. Deciding full branching time logic. Information and
Control, 61:175 – 201, 1984.

9. E. Emerson. Alternative semantics for temporal logics. Theoretical Computer Sci-
ence, 26:121–130, 1983.

10. E. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B. Elsevier, Amsterdam, 1990.

11. M. Fitting. Proof methods for modal and intuitionistic logics. Reidel, 1983.
12. R. Goré. Tableau methods for modal and temporal logics. In M. D’Agostino,

D. Gabbay, R. Hähnle, and J. Posegga, editors, Handbook of Tableau Methods, pages
297–396. Kluwer Academic Publishers, 1999.

13. G. Gough. Decision procedures for temporal logics. Technical Report UMCS-89-
10-1, Department of Computer Science, University of Manchester, 1989.

14. I. Hodkinson and F. Wolter and M. Zakharyaschev. Decidable and undecidable
fragments of first-order branching temporal logics. In LICS 2002, Proceedings of
17th Annual IEEE Symp. on Logic in Computer Science,pages 393–402. IEEE, 2002.

15. G. Hughes and M. Cresswell. An Introduction to Modal Logic. Methuen, 1968.
16. A. Pnueli and Y. Kesten. A deductive proof system for CTL*. In L. Brim, P.

Jancar, M. Kret́ınský, and A. Kucera, editors, CONCUR 2002, volume 2421 of Lecture
Notes in Computer Science, pages 24–40. Springer, 2002.

17. A. Pnueli. The temporal logic of programs. In Proceedings of 18th Symp. on
Foundations of Computer Science, pages 46–57, 1977. Providence, RI.

18. M. Reynolds and C. Dixon. Theorem-proving for discrete temporal logic. In
M. Fisher, D. Gabbay, and L. Vila, editors, Handbook of Temporal Reasoning in
Artificial Intelligence, pages 279–314. Elsevier, 2005.

19. M. Reynolds. An axiomatization of full computation tree logic. J. Symbolic Logic,
66(3):1011–1057, 2001.

20. M. Reynolds. An axiomatization of PCTL*. Information and Computation,
201:72–119, 2005.

21. S. Schwendimann. A new one-pass tableau calculus for PLTL. In H. de Swart,
editor, Proceedings of International Conference, TABLEAUX 1998, Oisterwijk, LNAI
1397, pages 277–291. Springer, 1998.

22. C. Sprenger. Deductive Local Model Checking. PhD thesis, Swiss Federal Institute
of Technology, Lausanne, Switzerland, 2000.

23. C. Stirling. Modal and temporal logics. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, Volume 2, pages 477–
563. OUP, 1992.

24. M. Vardi and L. Stockmeyer. Improved upper and lower bounds for modal logics of
programs. In 17th ACM Symp. on Theory of Computing, Proceedings, pages 240–251.
ACM, 1985.

25. P. Wolper. The tableau method for temporal logic: an overview. Logique et Analyse,
28:110–111, June–Sept 1985.

Bisimulation Quantified Logics: Undecidability

Tim French

The University of Western Australia
tim@csse.uwa.edu.au

Abstract. In this paper we introduce a general semantic interpretation for propo-
sitional quantification in all multi-modal logics based on bisimulations (bisimula-
tion quantification). Bisimulation quantification has previously been considered
in the context of isolated modal logics, such as PDL (D’Agostino and Hollen-
berg, 2000), intuitionistic logic (Pitts, 1992) and logics of knowledge (French
2003). We investigate the properties of bisimulation quantifiers in general modal
logics, particularly the expressivity and decidability, and seek to motivate the
use of bisimulation quantified modal logics. This paper addresses two impor-
tant questions: when are bisimulation quantified logics bisimulation invariant;
and do bisimulation quantifiers always preserve decidability? We provide a suf-
ficient condition for bisimulation invariance, and give two examples of decidable
modal logics which are undecidable when augmented with bisimulation quan-
tifiers. This is part of a program of study to characterize the expressivity and
decidability of bisimulation quantified modal logics.

1 Introduction

In this paper we introduce a general semantic interpretation for propositional quantifi-
cation in modal logic. This interpretation is based on the notion of bisimulation [11,10].
We use bisimulation quantifiers [3] to quantify over the interpretation of propositional
atoms in all bisimilar models. Bisimulation quantifiers were introduced in [8] and [14]
and have been defined in logics based on PDL [3], intuitionistic logics [12] and logics
of knowledge [6].

Modal logics find use in great variety of applications, such as temporal reasoning,
reasoning about the correctness of programs, and reasoning about knowledge [4]. The
variety of modal logics is achieved by restricting the structures (or models) of the logics
to various classes. When applying bisimulation quantifiers to these logics we do not
quantify over the entire bisimulation class of a structure, rather we quantify over the
intersection of that bisimulation class with the class of structures that defines the logic.

In the context of modal logic, bisimulation quantifiers are a natural extension which
have some nice properties which we discuss in Section 3. We would like bisimulation
quantification to preserve our intuitions regarding propositional quantification, partic-
ularly the axioms of existential introduction and existential elimination. We define a
class of logics, the safe logics, for which these axioms are sound.

In 1970 Kit Fine [5] investigated the decidability of propositional quantifiers in
modal logics. The standard propositional quantifiers were highly expressive and often
undecidable (for example, in the cases of K and S4). Bisimulation quantifiers quan-
tify over the interpretation of propositions in all bisimilar models and are consequently

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 396–407, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Bisimulation Quantified Logics: Undecidability 397

less expressive. In fact the logic K augmented with bisimulation quantifiers is no more
expressive than K itself.

D’Agostino and Hollenberg have shown the decidability of BQL [3], which is ef-
fectively the dynamic modal logic, PDL, augmented with bisimulation quantifiers, and
in [6] the decidability of logics of knowledge with bisimulation quantifiers is shown.
Unfortunately it is not always the case that augmentation with bisimulation quantifiers
preserves decidability. In this paper we show two decidable modal logics: S5×S5 and
LTL × S5, are undecidable when augmented with bisimulation quantifiers.

2 Syntax and Semantics

We let LC be a multi-modal logic consisting of k modalities, where C represents the
class of frames over which the logic is defined. Given a modal logic LC , we will let
QLC be an extension of LC including bisimulation quantifiers (defined below).

Let V be a set of atomic propositions. We recursively define the formulas of LC as
follows:

α ::= x | ¬α | α1 ∨ α2 | � iα (1)

where x ∈ V and i = 1, ...k. The syntax for QLC includes the recursion ∃xα, where
x ∈ V . We let the abbreviations∧, →, ↔,�, ⊥ and ∀ be defined as usual and let � iα
abbreviate ¬� i¬α.

We will first give the semantics for an arbitrary modal logic without bisimulation
quantifiers.

Definition 1. A k-frame, F , is given by the tuple (S,R1, ..., Rk) where S is a set
of worlds and for each i, Ri ⊆ S × S. A k-model, M , is given by the tuple
(S,Ri, ..., Rk, π, s) where s ∈ S and π : S −→ ℘(V)

We let R abbreviate R1, ..., Rk, and for s′ ∈ S we let Ms′ = (S,R, π, s′). Given
a k-model, M = (S,R, π, s), the semantic interpretation of propositional atoms and
modalities is given by:

M |= x ⇐⇒ x ∈ π(s) (2)

M |= � iα ⇐⇒ ∃(s, t) ∈ Ri, Mt |= α (3)

and the propositional operators have their usual meaning. If a formula is true in every k-
model it is referred to as a validity, and if it is true in some k-model it is satisfiable. The
set of valid formulas in this language is referred to as Kk (the fusion of k unrestricted
modalities, see [7]). However the usefulness of modal logic comes from placing restric-
tions on modalities. For example specifying a modality to be transitive, irreflexive and
antisymmetric allows it to represent properties of time, and specifying a modality to be
reflexive, symmetric and transitive allows it to represent properties of knowledge [4].

For a given k, we let C be a class of k-frames.

Definition 2. Given a set of k-frames, C, we say (S,R) is a C-frame if (S,R) ∈ C and
we define a C-model to be the tuple M = (S,R, π, s) where π : S −→ ℘(V), s ∈ S
and (S,R) ∈ C.

398 Tim French

The set of valid formulas in the language LC is defined by restricting the logic to the
class of C-frames, so that a formula is valid for LC if and only if it is true for all C-frames.
To define propositional quantification we will require some additional definitions, based
on the concept of a bisimulation [10] [11].

Definition 3. Given the C-models M = (S,R, π, s) and N = (T, P , λ, t), and given
Θ ⊆ V we say the models M and N are Θ-bisimilar (written M ∼=Θ N) if there is
some relation B ⊆ S × T such that:

1. (s, t) ∈ B and for all (s, t) ∈ B, π(s)\Θ = λ(t)\Θ;
2. for all (s, t) ∈ B, for all u ∈ S, if (s, u) ∈ Ri then there exists some (u, v) ∈ B

such that (t, v) ∈ Pi;
3. for all (s, t) ∈ B, for all v ∈ T if (t, v) ∈ Pi then there exists some (u, v) ∈ B

such that (s, u) ∈ Ri.

We call such a relation B a Θ-bisimulation1 from M to N . If M ∼=∅ N we say they
are bisimilar (written M ∼= N), and if M ∼={x} N we say M and N are x-bisimilar
(written M ∼=x N).

We are now able to give the semantic interpretation of bisimulation quantification
in QLC :

M |= ∃xα if and only if there is some C-model, N such that M ∼=x N and N |= α.

We note that the meaning of |= is now dependent on C. In the case that C is not clear
from context, we will write |=C .

3 Properties of Bisimulation Quantification

Bisimulations have been investigated in the context of modal logics for many years. The
following results are well-known:

Lemma 1. For all Θ ⊂ V , Θ-bisimulation is an equivalence relation.

Lemma 2. For all pure modal formulas φ not containing atoms from Θ, for all models,
M and N , if M |= φ and M is Θ-bisimilar to N , then N |= φ.

Bisimulation quantifiers are a natural extension to modal logic. They allow us to
achieve some powers of monadic second-order logic whilst retaining many of the intu-
itions of pure modal logic. The semantics can appear daunting, since every occurrence
of a quantifier in a formula requires us to consider all possible bisimulations of a given
model (this complexity is apparent in Section 4.1). However there is a good argument
for studying bisimulation quantifiers further. Several bisimulation quantified modal log-
ics, such as BQL [3], are expressively equivalent to the modal μ-calculus. Reasoning

1 Note, in some previous work (e.g. [3]), a Θ-bisimulation refers to what we would denote a
V\Θ-bisimulation. The current notation is more convenient in the context of propositional
quantification.

Bisimulation Quantified Logics: Undecidability 399

in the μ-calculus is relatively efficient (EXPTIME), and μ-automata [9] allow us to ef-
fectively represent bisimulation quantifiers (the construction is effectively equivalent to
the projection operation in binary tree automata). In such a case we can avoid much
of the complexity involved in bisimulations, whilst still enjoying the ability to express
higher order properties.

The action of bisimulation quantifiers is also worth investigating in its own right,
rather than as a simple tool to gain greater expressivity. Given any structure, M , in
any pure modal logic, C, let L be set of formulas φ such that M |= φ. We will refer
to the set L as the facts of M , whilst C is the context of M . We can suppose that an
agent reasoning about M knows the context of M (for example if C was a temporal
system, we would expect an agent would know time is transitive), and knows all the
facts of M . Importantly the agent does not know about the structure of M , which is
really just a tool to facilitate the set L. So if the agent were to reason about alternative
interpretations for an atom, x, we would expect the agent to consider any model that
is firstly, an element of C, and secondly agrees with L on all pure modal formulas
not containing x. This process can be applied recursively to motivate any number of
nestings of bisimulation quantifiers. This argument is not precise: there are cases where
two non-bisimilar models can satisfy the same set of pure modal formulas. However
it does give some philosophical motivation for studying bisimulation quantifiers. The
relationship between bisimulations and non-well-founded sets is explored in [2].

The final reason for examining bisimulation quantifiers is that they give us some
power for describing the logic itself. For example, ∀x(x→ � ix) is equivalent to saying
“the modality, � i, is reflexive”. However this is not a statement about any particular
structure. It says that in every model in the class C the modality � i is reflexive, so
x→ � ix is a validity. Being able to express validities as validities, rather than simply
as satisfied formulas, does not change the expressivity of the logic, but it certainly could
be significant in providing axiomatizations, or allowing meta-logical reasoning.

As the properties definable in modal logic are bisimulation invariant [13], the appli-
cation of bisimulation quantifiers does not affect the interpretation of pure modal formu-
las. However we would also like the semantic interpretation of bisimulation quantifiers
to preserve the intuitions of propositional quantification. Particularly, it should satisfy
the standard axioms for propositional quantifiers:

1. If φ → ψ is a validity and ψ does not contain the variable x, then for every model
that ∃xφ→ ψ should also be a validity. This is referred to as existential elimination.

2. Suppose α is a formula such that β is free for x in α. Then α[x\β] → ∃xα is a
validity. This is referred to as existential introduction.

Here α[x\β] is the formula α with every free occurrence of the variable x replaced by
the formula β, and β is free for x in α if and only if for every free variable, y, of β the
variable x is not in the scope of a quantifier, ∃y, in α.

Unfortunately these axioms will not hold for all logics, QLC . However these axioms
are sound for all safe logics, defined below 2:

2 The author thanks Giovanna D’Agostino and Giacomo Lenzi for improving this definition

400 Tim French

Definition 4. We say the class of frames C is safe if and only if for any Θ1, Θ2 ⊂ V , for
any C-models M and N such that M ∼=Θ1∪Θ2 N , there is some C-model, K such that
M ∼=Θ1 K and N ∼=Θ2 K .

Lemma 3. Suppose that C is safe and M, N are C-models such that M ∼=Θ N . Then
for all formulas, α, not containing free atoms from Θ, M |= α if and only if N |= α.

Proof. This is shown by induction over the complexity of formulas. The cases for
propositional atoms and propositional operators are trivial. Suppose that for some α
not containing atoms from Θ, for all C-models, M and N with M ∼=Θ N we have
M |= α if and only if N |= α.
Let M = (S,R, π, s) and N = (T, P , μ, t) be C-models. If M ∼=Θ N and M |= � iα,
then there is some s′ ∈ S such that (s, s′) ∈ Ri and (S,R, π, s′) |= α. Since M ∼=Θ N ,
there is some t′ ∈ T such that (t, t′) ∈ Pi and (S,R, π, s′) ∼=Θ (T, P , μ, t′). By the
induction hypothesis, (T, P , μ, t′) |= α, and thus N |= � iα.
Now suppose that M and N are C-models such that M ∼=Θ N and M |= ∃xα. Then
there is some model M ′ such that M ∼=x M ′ and M ′ |= α. Therefore N and M ′ are
{x}∪Θ-bisimilar, (by Lemma 1). Since C is safe, there must be a C-frame, K such that
K ∼=Θ M ′ and K ∼={x} N . By the induction hypothesis, K |= α, and thus N |= ∃xα.
As the converse for these inductions is symmetric this is sufficient to prove the lemma.

Lemma 4. Given C is safe, the axioms existential elimination and existential introduc-
tion are sound for QLC .

Proof. To show existential elimination is sound, suppose that for all C-models, α→ β
is a validity, and for some C-model,M , we have M |= ∃xα, where x is not a variable of
β. Thus there is some C-model, N , such that M ∼=x N and N models α. Since α→ β
is a validity, we have N |= β. Since M ∼=x N , it follows from Lemma 3 that M |= β.
Therefore existential elimination is sound.
To show existential introduction suppose that M = (S,R, π, s) is a C-model such
that M |= α[x\β] where β is free for x in α. We define the model N = Mβ→x =
(S,R, ρ, s) where ρ is such that for all t ∈ S, π(t)\{x} = ρ(t)\{x} and x ∈ ρ(t) if
and only if Mt |= β. In the first instance we will assume that x is not a free variable of
β. For all subformulas, γ of α, let γ′ = γ[x\β]. We show for all t ∈ S, Mt |= γ′ if and
only if Nt |= γ by induction over the complexity of formulas. As the base cases of the
induction we have Mt |= γ′ if and only if Nt |= γ where γ is an atomic proposition.
Now assume for any γ we have Mt |= γ′ if and only if Nt |= γ. It follows directly that

1. Nt |= ¬γ ⇐⇒Mt |= (¬γ)′.
2. Nt |= γ1 ∨ γ2 ⇐⇒Mt |= (γ1 ∨ γ2)′.
3. Nt |= � iγ ⇐⇒Mt |= (� iγ)′.

Now suppose that Nt |= ∃yγ. Therefore there is some C-model K = (U,P , ρ, u) such
that K ∼={y} Nt (so K ∼={x,y} Mt) and K |= γ. By the safety of C there is some
C-model, L such that L ∼=x K and L ∼=y Mt. If x does not occur free in γ, then by
Lemma 3 we have L |= γ, and γ = γ′, so the induction follows. If x does occur in γ,

Bisimulation Quantified Logics: Undecidability 401

then β does not contain the atom y, since x is free for β in α. Since x does not occur in
β, we have for all v ∈ U , Kv |= x ↔ β. Therefore K = Kβ→x so we can apply this
construction inductively to derive K |= γ′. It follows from Lemma 3 that L |= γ′ and
therefore Mt |= ∃yγ′.
Conversely suppose that Mt |= ∃yγ′. There is some C-model, K = (U,P , ρ, u) such
that K ∼={y} Mt (so K ∼={x,y} Nt) and K |= γ′. By the safety of C there is some model
L = (V,Q, η, v) such that L ∼={y} Nt and L ∼={x} K . If γ does not contain x the result
follows from Lemma 3. If γ does contain x, then β cannot contain y, so for all w ∈ V ,
Lw |= β ↔ x (since L is y-bisimilar to Nt). As K |= γ′, it follows from Lemma 3 that
L |= γ′. Since L = Lβ→x we can again apply this construction inductively to derive
L |= γ and therefore Nt |= ∃yγ.
To complete this proof we need to generalize to the case where x may be a variable of
β. Let α′ be the formula with every free occurrence of x replaced by y, where y does
not occur in α nor β. As x is free for β in α, y is free for β in α′ (since y does not occur
in α). Clearly α′[y\β] is the same as α[x\β] and as y does not occur in β the above
induction applies. Thus

α[x\β] −→ ∃yα′ (4)

is a validity. As x does not occur free in α′ from the semantic definition of existen-
tial quantification and Lemma 3 we have ∃yα′ → ∃xα is also a validity and hence
existential introduction is valid.

To see the value of the lemma above it is worthwhile looking and a class of frames
which is not safe. Later we will see a logic S5×S5 which does not enjoy this property,
but first we will consider a simpler logic. Let Three be the set of all frames, F = (S,R)
where |S| = 3 and R = S × S. We can define two Three-models which demonstrate
existential elimination is not sound. Particularly, let

– M = (S,R, π, a) where S = {a, b, c}, R = S × S, π(a) = {y, z}, π(b) = {y}
and π(c) = {x}.

– N = (T, P, ρ, d) where T = {d, e, f}, P = T × T , ρ(d) = {y}, ρ(e) = {x,w}
and ρ(f) = {x}.

Now M ∼={w,z} N via the bisimulation, B = {(a, d), (b, d), (c, e), (c, f)} but there
is no Three-model, K = (U,Q, η, u) such that M ∼={w} K and N ∼={z} K . To see
this we note that any such model must contain some state g ∈ U , with η(g) = {y, z},
some state h ∈ U with η(h) = {y}, some state i ∈ U with η(i) = {x,w} and
some state j ∈ U with η(j) = {x}. That is, K cannot be a Three-model. Therefore
M |=Three ∃z∃w(�(x∧w)∧� (x∧¬w)), but M 	|=Three ∃w(�(x∧w)∧� (x∧¬w))

This example exploits a simple counting property to invalidate existential elimina-
tion. The S5 × S5 example below shows how more complex structural properties can
make a class of frames unsafe.

4 Undecidable Logics

Here we will briefly examine some logics which are decidable, but whose bisimulation
quantified extension is undecidable. The logics we will describe are PLTL × S5 and

402 Tim French

S5×S5. The decidability of both of these logics is described in [7]. Both undecidability
proofs will make use of tiling problems, which is a common technique for proving the
undecidability of modal logics.

The tiling problem is as follows: We are given a finite set Γ = {γi|i = 1, ...,m} of
tiles. Each tile γi has four coloured sides: left, right, top and bottom, written γli, γ

r
i , γ

t
i ,

and γbi . Each side can be one of n colours cj for j = 1, ..., n. Given any set of these
tiles, we would like to know if we can cover the plane N× N with these tiles such that
adjacent sides share the same colour. Formally, given some finite set of tiles Γ we would
like to decide if there exists a function λ : N×N −→ Γ such that for all (x, y) ∈ N×N

1. λ(x, y)r = λ(x + 1, y)l

2. λ(x, y)t = λ(x, y + 1)b

where λ(x, y)t is the colour of the top side of the tile on (x, y), and likewise for the
other sides. As shown by Berger [1], this problem is undecidable.

4.1 S5 × S5

The logic S5 × S5 is defined to be the cross-product of two S5 frames. The syntax is
given by α ::= x|α ∨ α|¬α|�1α|�2α. The logic is defined over the set of all frames
specified as follows: F = (S,R1, R2) where

– S = S1 × S2 where S1 and S2 are arbitrary non-empty sets.
– ((a, b), (c, d)) ∈ R1 if and only if a = c.
– ((a, b), (c, d)) ∈ R2 if and only if b = d.

By an abuse of notation, we will also refer to the class of S5× S5 frames as S5× S5.

Lemma 5. The class of frames, S5× S5, is not safe.

Proof. We will prove this lemma with an example. In Figure 4.1 there are two S5×S5-
models, M and N . One modality corresponds to the vertical axis, and one modality
corresponds to the horizontal access. The propositions true at each state are marked,
and we let the starting state for each model be the bottom left state. We can see the two
models {x, y}-bisimilar, via a bisimulation which relates states with the same proposi-
tions (excepting x and y). Note that when we ignore x and y, the two models are almost
identical, except the central four states are transposed.
Now suppose for contradiction that there is some S5× S5-model K such that K ∼={y}
M and K ∼={x} N . Therefore the starting state for K must be labeled with the propo-
sitions, c, x and y. Since K is y bisimilar to M , by Lemma 2 for every pure modal
formula, φ, not containing y K satisfies φ if and only if M satisfies φ (and likewise for
N and x). Let

φ(w, z) = � 1(d→ � 2(w → � 1(g → � 2(c→ ¬z)))).

We can see M |= φ(b, x) and N |= φ(a, y), so K |= φ(b, x) ∧ φ(a, y). However since
K is an S5×S5-model, {x, y}-bisimilar to both M and N , there must be states h, i, j, k
is K where:

Bisimulation Quantified Logics: Undecidability 403

f e d

h b a g

g a b h

fed

f e d

h a b g

g b a h

d e fc, x

c, y

c,y

c,x

NM

Fig. 1. An example where S5 × S5 is not safe. The two modalities correspond to the
horizontal and vertical axis respectively.

1. h is the starting state, labeled with c, x, y;
2. i is some state such that (h, i) ∈ R1 and i is labeled with d;
3. j is some state such that (h, j) ∈ R2 and j is labeled with g;
4. k is defined such that (i, k) ∈ R2 and (j, k) ∈ R1.

By observing M and N we can see that the state k must be labeled with either a or b.
However the relations R1 and R2 are symmetric, so if k was labeled by a we would
have K |= ¬φ(a, y), and if k was labeled by b we would have K |= ¬φ(b, x), giving
the necessary contradiction.

As S5×S5 is not safe we must proceed with caution as our usual intuitions regard-
ing the behavior of quantification will not necessarily hold. However we can see from
the proof above that bisimulation invariance still applies to pure modal formulas.

We encode the tiling problem by defining propositional atoms u and v such that
they allow us to linearly order the horizontal and vertical axis. In particular we would
like the following properties to hold:

1. if u is true at any state (a, b) in the model, then there is exactly one state (a, c) in
the model such that c 	= b where v is true.

2. if v is true at any state (a, b) in the model, then there is exactly one state (c, b) in
the model such that c 	= a where u is true.

We will refer to such properties as the step properties. Such a configuration is given in
Figure 4.1.

In general bisimulation quantifiers do not allow us to define such strict properties,
but we will see that we can “simulate” such properties in the scope of quantifiers.

For each γ ∈ Γ we suppose that there is a unique propositional atom in V , which
we also refer top as γ (where its meaning shall be clear from context). We encode the
tiling problem in several stages: Let

step(x, y) = x ∧ � 2¬y ∧ � 1 � 2((x→ �1y) ∧ (y → �2x)).

404 Tim French

u v

u v

u v

u

Fig. 2. u and v define the step property in S5 × S5, which allows us to discretize and
order the horizontal and vertical axis.

This states that x and y satisfy the step properties except for the uniqueness constraints.
Next we define

step(x, y, u, v) = u ∧ � 2¬v ∧ � 1 � 2((u→ (x ∧ �1v)) ∧ (v → (y ∧ �2u))).

Finally assuming the u and v satisfy the step properties we can encode the tiling
problem as follows:

right = � 1 � 2

⎛⎝∧
γ∈Γ

(γ → ∀z(z → � 2(u→ � 1(v → �2(�1z ∧
∨

γr=δl

δ)))))

⎞⎠
up = � 1 � 2

⎛⎝∧
γ∈Γ

(γ → ∀z(z → � 1(v → � 2(u→ �1(�2z ∧
∨

γt=δb

δ)))))

⎞⎠
unique = � 1 � 2

⎛⎝⎛⎝∨
γ∈Γ

γ

⎞⎠ ∧
⎛⎝∧
γ∈Γ

γ →
∧

δ∈Γ−γ
¬δ

⎞⎠⎞⎠
We now give the complete formula as

T ileΓ = unique ∧ step(x, y) ∧ ∀u∀v(step(x, y, u, v)→ (right ∧ up)).

We note that the alternation in quantifier is similar to a least fixed point. If T ileΓ is
true then there must be some uv-bisimulation which satisfies the step properties, and
if T ileΓ is false, then it must be false for some xy-bisimulation where x and y satisfy
the step properties (and hence u and v satisfy the step properties up to bisimulation
equivalence).

Lemma 6. T ileΓ is satisfiable if and only if Γ can tile the plane.

Bisimulation Quantified Logics: Undecidability 405

Proof. First, let us suppose that there is a tiling, λ, of the plane with the tiles in Γ . We
show that there is a model, M = (S,R1, R2, π, s), satisfying T ileΓ . We let:

1. S = ω × ω
2. R1 = {((a, b), (c, b))|a, b, c ∈ ω}
3. R2 = {((a, b), (a, c))|a, b, c ∈ ω}
4. γ ∈ π(a, b) ⇔ γ = λ(a, b), x ∈ π(a, b)⇔ a = b and y ∈ π(a, b)⇔ a = b + 1.
5. s = (0, 0).

As λ is a function it follows that M |= unique, and by the construction of M we
also have M |= step(x, y). The remaining part of the formula, T ileΓ is in the scope
of universal quantifiers which makes things more complicated. It is especially compli-
cated in the case of S5 × S5 as the logic is not safe. However we have constructed a
model where every state can be uniquely identified by a formula, and we will use these
“unique” formulas to show that T ileΓ is satisfied. The unique formulas are defined
recursively by

η0 = x ∧ � 2¬y
ηi+1 = x ∧ �2(y ∧ �1ηi)

η(a, b) = �2ηa ∧ �1ηb.

We can see Mt |= ηa if and only if t = (a, a), and thus for all t ∈ S, Mt |= η(a, b)
if and only if t = (a, b). Consequently, for any (a, b) ∈ S, we have M |= η(a, b) →
λ(a, b). By a result of van Benthem, pure modal formulas are bisimulation invariant, so
for any model N where N ∼=u,v M we will have N |= � 1 � 2(η((a, b) → λ(a, b)).
Let N = (S′, R′1, R

′
2, π

′, s′) be any {u, v}-bisimulation of M , such that N is an S5×
S5-model and N |= step(x, y, u, v). For any state t ∈ S′, there is a unique (a, b) such
that Nt |= η(a, b) and thus Nt |= λ(a, b). Suppose that λ(a, b) = γ. To show that the
subformula right is satisfied by N we must show

Nt |= ∀z(z → � 1(v → � 2(u→ �1(�2z ∧
∨

γt=δb

δ)))) (5)

For any z-bisimulation N ′ = (T, P1, P2, ρ, t
′) of Nt where N ′ |= z, we will have

N ′ |= � 2(u → η(a, a)) (since u → x). Since N |= step(x, y, u, v), there is some
state e ∈ T such that N ′

e |= u where (t′, e) ∈ P2. By the definition of the step function
we also have N ′ |= � 2(u → � 1(v → η(a + 1, a))), (since u → x and v → y
in N ′). Let f ∈ T be any state such that N ′

f |= v and (e, f) ∈ P1. Since N is a
S5×S5 frame there is some unique state g ∈ T such that (f, g) ∈ P2 and (t′, g) ∈ P1.
Also since N ′

f |= �2ηa+1 and N ′
t′ |= �1ηb, we have N ′

g |= η(a + 1, b) and hence
N ′
g |= λ(a+ 1, b)∧ �1z. Therefore we have shown (5) to be true, and as t was chosen

arbitrarily it follows that N |= right. The case for showing that N |= up is symmetric.
As N is an arbitrary {u, v}-bisimulation of M satisfying step(x, y, u, v) it follows that
M |= ∀u∀v(step(x, y, u, v)→ (right ∧ up)).

Conversely, suppose that M |= T ileΓ , where M = (S,R1, R2, π, s). Since M |=
T ileΓ for every {u, v}-bisimulation, N of M we have N |= unique ∧ step(x, y) ∧
step(x, y, u, v) → (right ∧ up). Clearly there is some such {u, v}-bisimulation N =

406 Tim French

(T, P1, P2, ρ, t) of M such that N |= step(x, y, u, v). We define a function φ : ω ×
ω −→ T inductively by

1. φ(0, 0) = t. We note that as N |= step(x, y, u, v) we have Nφ(0,0) |= u ∧ �1v.
2. Given a ∈ ω such that φ(a, a) = t′ and Nφ(a,a) |= u ∧ �1v we choose some

r ∈ T such that u ∈ ρ(r) and for some r′ ∈ T , v ∈ ρ(r′), (t′, r′) ∈ P1 and
(r′, r) ∈ P2. We let φ(a + 1, a + 1) = r, and note that Nφ(a+1,a+1) |= u ∧ �1v
(since N |= step(x, y, u, v)). Thus for all a ∈ ω we can define φ(a, a).

3. For any (a, b) ∈ ω × ω where a 	= b, we define φ(a, b) to be the unique element r
of T , such that (φ(a, a), r) ∈ P1 and (φ(b, b), r) ∈ P2

It follows from the definitions of up and right, that λ is a tiling of the plane where
λ(a, b) = γ if and only if γ ∈ ρ(φ(a, b)).

Corollary 1. QLS5×S5, the bisimulation quantified extension of S5× S5, is undecid-
able.

4.2 LTL × S5

In the previous section we saw a complicated bisimulation quantified logic which was
neither safe nor decidable. We might hope that bisimulation quantifiers preserve the
decidability of all safe logics, but this is not the case. LTL × S5 is a safe logic which
is also undecidable when augmented with bisimulation quantifiers.

The syntax for LTL× S5 is as follows:

α ::= x|α ∨ α|¬α|Xα|Fα|�α

where Gα is the dual of Fα.
The logic LTL×S5 is defined over structures specified by F ⊂ F = {σ|σ : N −→

℘(V)} The states of F are represented by the tuple, σ, i, where σ ∈ F and i ∈ N. The
semantics are:

(F, σ, j) |= x⇔ x ∈ σ(j), for all x ∈ V .
(F, σ, j) |= Xα⇔ (F, σ, j + 1) |= α.
(F, σ, j) |= Gα⇔ ∀k ≥ j, (F, σ, k) |= α.
(F, σ, j) |= �α⇔ ∀σ′, (F, σ′, j) |= α

where ∨ and ¬ have there usual meaning.
This logic has been shown to be decidable (see [7]). We note that the set LTL×S5

models can easily be translated to define a class of frames in the notation of Section 2.
This allows us to provide the semantics for bisimulation quantifiers. We give the fol-
lowing lemmas.

Lemma 7. LTL× S5 is safe.

Proof. Suppose that M = (F, σ, 0) and N = (G, η, 0) are Θ ∪Λ-bisimilar models, via
the bisimulation Z . We define a LTL × S5 model K = (H,φ, 0) such that K ∼=Θ M
and K ∼=Λ N as follows: We let H = {a′|a = (τa, μa) ∈ Z} where for all i, a′(i) =
(τa(i)\Θ) ∪ (μa(i)\Λ). It follows that the relation X = {(a′, τa)|a = (τa, μa) ∈ Z}
is a Θ-bisimulation from K to M and Y = {(a′, μa)|a = (τa, μa) ∈ Z} is a Λ-
bisimulation from K to N . Therefore LTL×S5 is safe, and hence preserves existential
elimination.

Bisimulation Quantified Logics: Undecidability 407

Given that LTL × S5 is safe it is easier to encode a tiling problem, since we can
assume that existential introduction and elimination are sound.

Lemma 8. The bisimulation quantified extension of LTL× S5 is undecidable.

This can be shown in a similar manner to Lemma 6. The proof is slightly easier since the
X operator can be used to identify vertically adjacent states. For horizontally adjacent
states we can again use the step properties and bisimulation quantified atoms to define
a formula T ile2

Γ that is satisfiable if and only if Γ can tile the plane.

5 Conclusion

In this paper we have examined a generalized definition for bisimulation quantified
modal logics. We have also introduced the notion of safe frames, which satisfy the ax-
ioms of existential elimination and existential introduction. We have shown that there
are decidable modal logics which are not safe and undecidable. However, the decid-
ability of QLLTL×S5 shows that safety alone is not enough to guarantee that extension
by bisimulation quantification will preserve decidability. It is an interesting problem to
characterize the modal logics for which are decidable when augmented with bisimula-
tion quantification. While this paper provides several negative results, we hope to soon
provide a positive decidability result for a general class of safe modal logics.

References

1. R. Berger. The undecidability of the dominoe problem. Mem. Amer. Math. Soc., 66, 1966.
2. G. D’Agostino. Modal logic and non-well-founded set theory: translation, bisimulation,

interpolation. PhD thesis, University of Amsterdam, 1998.
3. G. D’Agostino and M. Hollenberg. Logical questions concerning the mu-calculus: interpo-

lation, Lyndon and Los-Tarski. The Journal of Symbolic Logic, 65(1):310–332, 2000.
4. R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning About Knowledge. MIT Press,

1995.
5. K. Fine. Propositional quantifiers in modal logic. Theoria, 36:336–346, 1970.
6. T. French. Decidability of propositionally quantified logics of knowledge. In Proc. 16th

Australian Joint Conference on Artificial Intelligence, 2003.
7. D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharayashev. Many Dimensional Modal Logics:

Theory and Applications. Elsevier, 2003.
8. S. Ghilardi and M. Zawadowski. A sheaf representation and duality for finitely presented

heyting algebras. Journal of Symbolic Logic, 60:911–939, 1995.
9. D. Janin and I. Walukiewicz. Automata for the modal mu-calculus and related results. Lec-

ture Notes in Computer Science, 969:552–562, 1995.
10. R. Milner. A calculus of communicating systems. Lecture Notes in Computer Science, 92,

1980.
11. D. Park. Concurrency and automata on infinite sequences. Lecture Notes in Computer

Science, 104:167–183, 1981.
12. A. Pitts. On the interpretation of second-order quantification in first-order intuitionistic

propositional logic. Journal of Symbolic Logic, 57:33–52, 1992.
13. J. van Benthem. Correspondence theory. Handbook of Philosophical Logic, 2:167–247,

1984.
14. A. Visser. Uniform interpolation and layered bisimulation. In Godel ’96, volume 6 of Lecture

Notes Logic, pages 139–164, 1996.

Logarithmic-Time Single Deleter, Multiple

Inserter Wait-Free Queues and Stacks

Prasad Jayanti and Srdjan Petrovic

Department of Computer Science, Dartmouth College,
Hanover, New Hampshire, USA

{prasad,spetrovic}@cs.dartmouth.edu

Abstract. Despite the ubiquitous need for shared FIFO queues in paral-
lel applications and operating systems, there are no sublinear-time wait-
free queue algorithms that can support more than a single enqueuer and
a single dequeuer. Two independently designed algorithms—David’s re-
cent algorithm [1] and the algorithm in this paper—break this barrier.
While David’s algorithm is capable of supporting multiple dequeuers (but
only one enqueuer), our algorithm can support multiple enqueuers (but
only one dequeuer). David’s algorithm achieves O(1) time complexity for
both enqueue and dequeue operations, but its space complexity is infi-
nite because of the use of infinite sized arrays. The author states that he
can bound the space requirement, but only at the cost of increasing the
time complexity to O(n), where n is the number of dequeuers. A signifi-
cant feature of our algorithm is that its time and space complexities are
both bounded and small: enqueue and dequeue operations run in O(lg n)
time, and the space complexity is O(n + m), where n is the number of
enqueuers and m is the actual number of items currently present in the
queue. David’s algorithm uses fetch&increment and swap instructions,
which are both at level 2 of Herlihy’s Consensus hierarchy, along with
queue. Our algorithm uses the LL/SC instructions, which are universal.
However, since these instructions have constant time wait-free imple-
mentation from CAS and restricted LL/SC that are widely supported
on modern architectures, our algorithms can run efficiently on current
machines. Thus, in applications where there are multiple producers and
a single consumer (e.g., certain server queues and resource queues), our
algorithm provides the best known solution to implementing a wait-free
queue. Using similar ideas, we can also efficiently implement a stack that
supports multiple pushers and a single popper.

1 Introduction

In parallel systems, shared data objects provide the means for processes to com-
municate and cooperate with each other. Atomicity of these shared data objects
has traditionally been ensured through the use of locks. Locks, however, limit
parallelism and cause processes to wait on each other, with several consequent
drawbacks, including deadlocks, convoying, priority inversion, and lack of fault-
tolerance to process crashes. This sparked off extensive research on the design

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 408–419, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues& Stacks 409

of wait-free data objects, which ensure that every process completes its opera-
tion on the data object in a bounded number of its steps, regardless of whether
other processes are slow, fast or have crashed [2]. We refer to this bound (on the
number of steps that a process executes to complete an operation on the data
object) as the time complexity (of that operation).

Early research sought to demonstrate the feasibility of implementing wait-
free data objects, culminating in Herlihy’s universal construction [2,3], which
transforms any sequential implementation A of a data object into a wait-free
shared implementation B of that data object. However, the worst-case time com-
plexity of performing an operation on the data object B is Ω(n), where n is
the number of processes sharing B. In fact, it has been proved later that this
linear dependence of time complexity on n is unavoidable with any universal
construction [4]. Thus, if sublinear time wait-free data objects are our goal, it
is imperative that algorithms exploit the semantics of the specific object (e.g.,
counter, queue, stack) being implemented. In recent years, this approach has
indeed led to sublinear time wait-free algorithms for implementing a variety of
shared data objects, e.g., the class of closed objects (which include counters and
swap objects) [5], f -arrays [6], and LL/SC objects [7,8,9].

A shared FIFO queue is one of the most commonly used data objects in
parallel applications and operating systems. Not surprisingly, a number of al-
gorithms have been proposed for implementing queues. However, most of these
algorithms are only nonblocking1 and not wait-free. With the exception of a
recent algorithm by David [1], which we will discuss shortly, wait-free queue
algorithms either had excessive time complexity of Ω(n) [3,7,10,11], or imple-
mented a queue in the restricted case when there is only one enqueuer and one
dequeuer [12,13]. Specifically, until recently, no sublinear time wait-free queue
algorithm was discovered, despite the ubiquitous need for queues. When we con-
sidered why there has been so little success in designing efficient wait-free queue
algorithms, we found a plausible explanation, which we now describe. Normally,
we represent a queue as a (linear) linked list of elements with variables front and
rear holding the pointers to the first and the last elements of the list. To enqueue
an element e, a process p must perform a sequence of steps: first it must read
rear to locate the currently last element, then adjust that element to point to the
new element e and, finally, adjust rear to point to e. If p stops after performing
only a few of these steps, other processes (that need to enqueue elements into
the queue) have no option but to help p (otherwise the implementation won’t be
wait-free). Thus, if k processes are concurrently performing enqueue operations,
the last process to complete the enqueue may have to help all other processes,
resulting in Ω(k) time complexity for its enqueue operation. In the worst case,
k may be as high as n, the maximum number of processes sharing the queue.
Hence, the worst-case time complexity of an enqueue operation is linear in n.

1 A nonblocking queue is strictly weaker than a wait-free queue: when multiple pro-
cesses attempt to execute operations on a nonblocking queue, all but one process
may starve.

410 Prasad Jayanti and Srdjan Petrovic

The above informal reasoning suggests that any wait-free queue algorithm, if
it aspires to break the linear time barrier, must necessarily be based on a more
creative data structure than a linear linked list. This paper proposes one such
novel data structure where a queue is represented as a binary tree whose leaves
are linear linked lists. Based on this data structure, we design an efficient wait-
free queue algorithm, but it has one limitation: the algorithm does not allow
concurrent dequeue operations. In other words, our algorithm requires that the
dequeue operations be executed one after the other, but allows the dequeue to
be concurrent with any number of enqueue operations. The significant features
of our algorithm are:

1. Sublinear Time Complexity: The worst-case time complexity of an enqueue
or a dequeue operation is O(lg n), where n is the maximum number of pro-
cesses for which the queue is implemented.

2. Space Efficiency: At any time t, the algorithm uses O(m + n) space, where
m is the actual number of items present in the queue at time t.

Our algorithm uses LL/SC instructions which act like read and conditional-
write, respectively. More specifically, the LL(X) instruction by process p returns
the value of the location X , while the SC(X, v) instruction by p checks whether
some process updated the location X since p’s latest LL, and if that isn’t the
case it writes v into X and returns true; otherwise, it returns false and leaves X
unchanged. Although these instructions are not directly supported in hardware,
they have constant time and space wait-free implementation from CAS and re-
stricted LL/SC, which are widely supported on modern architectures [7,8,9].
Consequently, our algorithms can run efficiently on current machines. In appli-
cations where there are multiple producers and a single consumer (e.g., certain
server queues and resource queues), our algorithm provides the best known so-
lution to implementing a wait-free queue.

Concurrently with our research and independently, David designed a
sublinear-time wait-free queue algorithm [1] that imposes a different limitation
than ours: his algorithm does not allow concurrent enqueue operations (but al-
lows an enqueue operation to run concurrently with any number of dequeue
operations). In contrast, our algorithm does not allow concurrent dequeue oper-
ations, but allows a dequeue to run concurrently with any number of enqueue
operations. In the following we describe David’s result and contrast it with ours.

David’s algorithm implements a wait-free single enqueuer, multiple dequeuer
queue while our algorithm implements a multiple enqueuer, single dequeuer
queue. His algorithm uses fetch&increment and swap instructions while ours
uses LL/SC instructions. The enqueue and dequeue operations run in O(1) time
in his algorithm while they run in O(lg n) time in our algorithm. David’s result is
interesting because (1) it shows for the first time that it is possible to implement
a sublinear-time, non-trivial, wait-free queue (i.e., a queue that supports more
concurrent operations than just a single enqueue and a single dequeue) from

Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues& Stacks 411

objects of the same power as the queue itself,2 and (2) it achieves the best pos-
sible running time of O(1) for enqueue and dequeue operations. His algorithm,
however, is not practical: it uses arrays of infinite length and therefore has an
infinite space complexity. The author states that it is possible to bound the space
complexity of his algorithm, but at the cost of increasing the time complexity of
the algorithm to O(n). In contrast, our algorithm, besides achieving sublinear
time complexity, is also space efficient: its space complexity is O(n +m), where
n is the total number of processes sharing the queue and m is the actual number
of items currently present in the queue.

The ideas introduced in this paper have a more general applicability than
for just implementing queues: they have proved useful in designing a wait-free
multiple pusher, single popper stack with the same time and space complexities
as for queue, and seem to have potential for efficiently implementing priority
queues (which we are currently exploring).

1.1 Algorithmic Ideas in a Nutshell

The key idea behind our al-

Fig. 1. Main data structure for the multiple
enqueuer, single dequeuer queue.

gorithm is to distribute the
“global” queue Q (that we wish
to implement) over n “local”
queues, where n is the maximum
number of processes sharing Q.
More specifically, the algorithm
keeps one local queue at each
process. To enqueue an element
e, a process p first obtains a time
stamp t and then inserts the pair
(e, t) into its local queue. (Pro-
cesses that concurrently attempt

to get time stamps are allowed to get the same time stamp, which makes it possi-
ble to obtain a time stamp in just two machine instructions, as we will see later.)
Thus, the local queue at p contains only the elements inserted by p, in the order
of their insertion. The front element of the global queue is the earliest of the
front elements of the local queues (i.e., an element with the smallest time stamp
over all local queues). The naive strategy to locate this earliest element would
be to examine the front elements of all of the local queues, which leads to O(n)
running time for the dequeue operation. We use a cleverer strategy that views
the front elements of the local queues as the leaves of a binary tree (see Figure 1)
and, using ideas first proposed by Afek, Dauber and Touitou [14], propagate the
minimum of these elements to the root of the tree. Significantly, even though
many processes might be acting concurrently, this propagation works correctly
and takes only O(lg n) time. The dequeuer reads the root to determine the local
queue that has the earliest element, removes that element from the local queue,
and finally propagates the new front element of that local queue towards the
root (to ensure that the root reflects the new minimum element).
2 By the power of an object we mean its level in the Herlihy’s Consensus Hierarchy [2].

All of fetch&increment, swap, and queue are at level 2 of the consensus hierarchy,
and are thus equally powerful by this measure.

412 Prasad Jayanti and Srdjan Petrovic

In the above strategy, the local queue at process p is accessed (possibly
concurrently) by at most two processes—the enqueuer (namely, process p) and
the lone dequeuer. The enqueuer executes either an enqueue operation or a read-
front operation, which returns the front element without affecting the state of
the queue. The dequeuer executes either a dequeue operation or a read-front
operation. The read-front operation is needed because, in order to propagate the
front element of the local queue towards the root of the binary tree, the enqueuer
and the dequeuer need the means to determine what the front element of the local
queue is. In Section 2 we describe how to implement a local queue supporting
these operations using only read and write operations on shared variables. Then,
in Section 3, we describe how to implement a global queue from the local queues,
using the strategy described in the previous paragraph.

2 Single Enqueuer, Single Dequeuer Queue

In this section we present an important building block for our main queue imple-
mentation, namely, a single enqueuer, single dequeuer queue object that supports
three operations—enqueue(v), dequeue(), and readFront(). The enqueue(v) op-
eration inserts an element v into the queue. The dequeue() operation removes
and returns the front element of the queue. The readFront() operation reads the
value of the front element without removing that element from the queue. If the
queue is empty, both dequeue() and readFront() return ⊥.

A single enqueuer, single dequeuer queue can be accessed by two processes:
the enqueueing process, which can invoke an enqueue() or a readFront() oper-
ation, and a dequeuing process, which can invoke a dequeue() or a readFront()
operation. To distinguish between the readFront() operations performed by an
enqueuer and a dequeuer, we refer to the two operations as readFronte and
readFrontd, respectively.

Figure 2 presents an implementation of a single enqueuer, single dequeuer
queue. This algorithm is similar to the two-lock queue algorithm by Michael and
Scott [15], except that it additionally supports the readFront() operation. (We
need this operation for our main queue algorithm, presented in the next section.)
As we will shortly see, the presence of the readFront() operation significantly
complicates the algorithm design.

The queue is represented as a singly linked list terminated by a dummy node.
Variables First and Last point, respectively, to the first and the last node in the
list. Enqueueing and dequeueing elements from the queue consists of inserting
and removing nodes from the linked list in a way similar to a sequential linked-list
implementation of a queue. In particular, to enqueue the value v into the queue,
process p performs the following steps. First, p creates a new node (Line 1).
Next, p locates the last node in the list, i.e., the dummy node (Line 2) and
writes the value v into that node (Line 3). Finally, p completes its operation by
inserting a new (dummy) node to the end of the list (Lines 4 and 5). To dequeue
an item from the queue, process p first checks whether the list contains only a
single node (Lines 6 and 7). If it does, then that node is a dummy node and

Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues& Stacks 413

Types
valuetype = Any type
nodetype = record val : valuetype; next : pointer to nodetype end

Shared variables
First, Last, Announce, FreeLater: pointer to nodetype
Help: valuetype

Initialization
First = Last = new Node()
FreeLater = new Node()

procedure enqueue(v) procedure dequeue()

1: newNode = new Node() returns valuetype

2: tmp = Last 6: tmp = First

3: tmp.val = v 7: if (tmp == Last) return ⊥
4: tmp.next = newNode 8: retval = tmp.val
5: Last = newNode 9: Help = retval

10: First = tmp.next
procedure readFronte() 11: if (tmp == Announce)

returns valuetype 12: tmp′ = FreeLater

17: tmp = First 13: FreeLater = tmp
18: if (tmp == Last) return ⊥ 14: free(tmp′)
19: Announce = tmp 15: else free(tmp)
20: if (tmp �= First) 16: return retval
21: retval = Help

22: else retval = tmp.val procedure readFrontd()

23: return retval returns valuetype

24: tmp = First

25: if (tmp == Last) return ⊥
26: return tmp.val

Fig. 2. Implementation of the single enqueuer, single dequeuer queue object from
read/write registers.

so p returns ⊥ (Line 7). Otherwise, p reads the value stored at the front node
(Line 8), removes that node from the list (Line 10), and frees up memory used
by that node (Lines 14 or 15). Finally, p completes its operation by returning
the value it read from the front node (Line 16).

Observe that in the above algorithm, the enqueue and dequeue operations
work on separate parts of the list, namely, its front and back. Hence, there is no
contention between the two operations, which is why the above algorithm is so
simple. However, if we add a readFront() operation to our set of operations, we
have a problem: both readFronte() and dequeue() now operate on the same node
of the list, namely, its front node. This contention on the first element of the list
complicates the design of the two operations, as we describe below.

To perform a readFronte operation, process p first reads the pointer to the
front node in the list (Line 17) and then checks whether the list contains only
a single node (Line 18). If it does, then that node is a dummy node and so p

414 Prasad Jayanti and Srdjan Petrovic

returns ⊥ (Line 18). Otherwise, at the time when p read the pointer to the front
node, the front node indeed contained a valid value for p’s operation to return.
However, it is quite possible that after p’s reading of the pointer a dequeue
operation deleted the front node and freed up the memory used by it. Thus, p
cannot even attempt to read the value at the front node since it may result in a
memory access to a memory that has already been freed.

So, instead of reading the value at the front node, p first writes the pointer
to the front node into the variable Announce (Line 19), notifying a dequeuing
operation that it is interested in the front node and asking it not to free that node
from the memory. Next, p reads the pointer to the front node again (Line 20).
If the pointer is the same as before, then p knows that a dequeuer has not yet
removed the front node from the queue. (Notice that the front node could not
have been removed and re-inserted into the queue because readFronte is executed
by the enqueuer and hence no insertions take place during that operation.) More
importantly, p can be certain that a dequeuer will notice p’s announcement (at
Line 11) and as a result will not free up that node from memory. (Instead, a
dequeuer will store the pointer to the front node into the FreeLater variable,
and will free it up only after p changes its announcement—Lines 12–14.) Hence,
p simply reads and returns the value stored at the front node (Lines 22 and 23).
If, on the other hand, the pointer to the front node has changed, then a dequeuer
has already removed the front node from the queue and potentially freed up that
node from memory. So, p must obtain a valid value for its operation to return
by other means, and it does so with help from a dequeuing operation, which,
prior to removing the front node from the list, first writes the value stored at
the front node into the variable Help (Line 9). When p notices that the pointer
to the front node has changed, it knows that some dequeuing operation removed
the front node from the list and has therefore written into Help the value at that
node. Hence, by simply reading the variable Help, p can obtain a valid value for
its operation to return. In particular, p will obtain either the value stored at
the original front node, or, if multiple nodes have been removed, it will obtain
a value stored at a node that was at the front of the list at some point during
p’s operation. Hence, p reads and returns the value stored in Help (Lines 21 and
23) and terminates its operation.

The algorithm for readFrontd is very simple: process p first checks whether
the list contains only a single node (Lines 24 and 25). If it does, then that node
is a dummy node, and so p returns ⊥ (Line 25). Otherwise, p returns the value
stored at the front node of the list (Line 26). The reason why readFrontd is
much simpler than readFronte is that the former operation never overlaps with a
dequeue() operation (since they are both executed by the same process). Hence,
when p reads the pointer to the front node, p knows that the front node will not
be removed or freed before it reads the value stored at that node. Therefore, p
is guaranteed to return the valid value.

Based on the above, we have the following theorem.

Theorem 1. The algorithm in Figure 2 is a linearizable [16] wait-free imple-
mentation of the single enqueuer, single dequeuer queue from read/write regis-

Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues& Stacks 415

ters. The time complexities of enqueue, dequeue, readFronte, and readFrontd
operations are 5, 10, 6, and 3, respectively. The space consumption of the algo-
rithm at any time t is O(m), where m is the number of elements in the queue
at time t.

3 Multiple Enqueuer, Single Dequeuer Queue

In this section we present our main result, namely, the wait-free implementation
of a multiple enqueuer, single dequeuer queue object with time complexity of
O(lg n). The high-level intuition for this algorithm was presented in Section 1.1;
the reader should consult that section before proceeding further.

We begin by a formal definition of this object. An n-process multiple en-
queuer, single dequeuer queue object supports two operations—enqueue(p,v)
and dequeue(p). The enqueue(p,v) operation enables process p to insert an ele-
ment v into the queue. The dequeue(p) operation enables process p to remove
the front element from the queue. Multiple processes are allowed to execute the
enqueue() operation concurrently. However, at any point in time, at most one
process can be executing the dequeue() operation. The dequeue() operation can
overlap with any number of enqueue() operations.

The algorithm is presented in Figure 3. It maintains two data structures:
an array Q of size n, holding one single enqueuer, single dequeuer queue for
each process, and a complete binary tree T of size n built on top of that array.
To remove any ambiguity, the algorithm refers to the enqueue and dequeue
operations on the single enqueuer, single dequeuer queues by the names enqueue2
and dequeue2, respectively.

To enqueue an element v into the queue, process p first obtains a new time
stamp by reading the variable counter (Line 1). Next, p increments counter
by adding 1 to the time stamp it has obtained and SC-ing the result back into
counter (Line 2). Notice that by the end of this step, the value in counter is
strictly greater than p’s time stamp, regardless of whether p’s SC on counter
succeeds or not. (This is because even if p’s SC fails, some other process must
have performed a successful SC and has therefore incremented the counter.)
Notice also that it is quite possible for two different processes to obtain the
same time stamp. To ensure that all time stamps are unique, a process adds its
process id to the back of its time stamp.

After constructing the time stamp, process p inserts the element v along with
the time stamp into its local queue (Line 3). Notice that, since p increments the
variable counter during each enqueue operation, successive enqueue operations
by p obtain time stamps in a strictly increasing order. Consequently, the time
stamps of the elements in p’s local queue are ordered as follows: the front element
has the smallest time stamp, the next element has a higher time stamp, and so
on. The front element of the global queue is the earliest of the front elements
of all the local queues, i.e., an element with the smallest time stamp over all
local queues. To help a dequeuer locate this earliest element quickly, process p
propagates the time stamp at the front element of its local queue toward the

416 Prasad Jayanti and Srdjan Petrovic

Types
valuetype = Any type
queue2type = Single enqueuer, single dequeuer queue
treetype = Complete binary tree with n leaves

Shared variables
counter: integer (counter supports LL and SC operations)
Q: array [1 . . n] of queue2type
T: treetype

Initialization
counter = 0

procedure enqueue(p, v) procedure dequeue(p) returns valuetype

1: tok = LL(counter) 11: [t, q] = read(root(T))
2: SC(counter, tok + 1) 12: if (q == ⊥) return ⊥
3: enqueue2(Q[p], (v, (tok, p))) 13: ret = dequeue2(Q[q])
4: propagate(Q[p]) 14: propagate(Q[q])

15: return ret.val

procedure propagate(Q) procedure refresh() returns boolean

5: currentNode = Q 16: LL(currentNode)
6: repeat 17: read time stamps in currentNode’s children
7: currentNode = Let minT be the smallest time stamp read

parent(currentNode) 18: return SC(currentNode, minT)
8: if ¬refresh()
9: refresh()
10: until(currentNode == root(T))

Fig. 3. Implementation of the n-process multiple enqueuer, single dequeuer
queue object from LL/SC variables and read/write registers.

root of the binary tree (Line 4). At each internal tree node s that p visits, it
makes sure that the following invariant holds:

Invariant: Let s be any node in the binary tree. Let E(s) be the set of all elements
in the local queues located at the leaves of the subtree rooted at s whose time
stamps have been propagated up to s. Then, at any point in time, s contains
the smallest time stamp among all elements in E(s).

We will describe shortly how the above Invariant is maintained. For now, we
assume that the Invariant holds and look at how it impacts the implementation
of the dequeue operation.

To dequeue an element from the queue, process p first reads the time stamp
stored at the root node (Line 11). If the time stamp is ⊥, it means that the
queue is empty and so p returns ⊥ (Line 12). Otherwise, by the Invariant, the
time stamp [t, q] that p reads at the root is the smallest time stamp among all
elements in the local queues that have been propagated to the root. Furthermore,
the element with that time stamp must be located at the front of q’s local queue.

Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues& Stacks 417

Therefore, to obtain the front element a of the global queue, p simply visits q’s
local queue and removes the front element from it (Line 13). Since the smallest
time-stamped element has been removed from q’s local queue, some of the nodes
in the binary tree need to be updated in order to reflect this change (and maintain
the Invariant). Hence, p propagates the new front element to the root, updating
each node along the way (Line 14). At the end, p returns the element a that it
dequeued from q’s local queue (Line 15).

Notice that, at the time when p reads the root, it is possible that there
exists another element b with a smaller time stamp than a that hasn’t yet been
propagated to the root. In this case, p is in fact not returning the element with
the smallest time stamp among all local queues. However, the fact that (1) b
has a smaller time stamp than a, and (2) b hasn’t been propagated to the root,
implies that the enqueue operations that inserted elements a and b overlap.
Thus, we can assume that the operation that inserted a has taken effect (i.e.,
was linearized) before the operation that inserted b, and hence p was correct in
returning a.

We now describe the mechanism by which nodes in the tree are updated
to maintain the Invariant. More specifically, we describe the manner in which
a process p propagates the change at the front of some local queue Q[q] to all
the nodes on the path from Q[q] to the root, thereby ensuring that the Invariant
holds at each node on that path. (Notice that the other tree nodes are unaffected
by the change and for that reason do not need to be updated.) This propagation
step is similar to the way propagation is handled in Afek, Dauber, and Touitou’s
universal construction [14]. It is captured by a procedure propagate(), described
below.

Process p starts at the local queue Q[q] (Line 5). During the next lg n iter-
ations, p repeatedly performs the following steps. First, p sets its current node
to be the parent of the old current node (Line 7). Next, p attempts to update
the minimum time stamp at the current node by a call to refresh() (Line 8).
If refresh() returns true, it means that p’s attempt to update the current node
has succeeded. If p’s attempt fails, p simply calls refresh() again (Line 9). The
interesting feature of the algorithm is that, by the end of this call, the current
node is sure to have an updated minimum time stamp, regardless of whether the
second refresh() fails or not. To see why that is so, we must look at how the
refresh() procedure is implemented.

During each refresh() call, p performs the following steps. First, p LL’s the
current node s (Line 16). Next, p reads the time stamps from all the children of
s (Line 17). (If the current node is a leaf, then reading of the children consists of
reading the time stamp of the first element of the local queue.) Then, p finds the
smallest time stamp t among all the time stamps it read. Observe that, since the
time stamps at the children (by the Invariant) contain the smallest time stamps
among all elements in their respective subtrees that have been propagated to
those nodes, t is guaranteed to be the smallest time stamp among all elements
in the subtree rooted at s that have been propagated to s. So, p installs the value
t into s by performing an SC on s (Line 18). If p’s SC succeeds, time stamp t

418 Prasad Jayanti and Srdjan Petrovic

is installed into s (thus ensuring that the Invariant holds) and p returns true.
Otherwise, p’s attempt to install t into the current node has failed (due to some
other process performing a successful SC between p’s LL at Line 16 and its SC
at Line 18) and p returns false (Line 18).

We now justify an earlier claim that, after p calls refresh() twice, the current
node is sure to have an updated minimum time stamp, even if both refresh()
calls fail. Observe that if the first refresh() call fails, then some process q
had performed a successful SC operation on the current node during that call.
Similarly, if the second refresh() call fails, then some process r had performed
a successful SC operation on the current node during that call. Since r’s SC
succeeded, r must have LL-ed the current node after q performed its successful
SC. Consequently, r must have also read the time stamps at current node’s
children after q performed its successful SC and before r performed its successful
SC. Hence, r reads the time stamps during the time interval of p’s two calls to
refresh(). So, the time stamps that r reads from the current node’s children
are the time stamps that p would have also read from current node’s children.
Therefore, r’s successful SC installs the correct minimum time stamp into the
current node. As a result, by the end of p’s second refresh() call, the current
node is sure to have an updated minimum time stamp, thus ensuring that the
Invariant holds.

We now analyze the time and space complexities for the above algorithm.
First, observe that the tree updating process takes O(lg n) time. Hence, the
time complexity for both dequeue and enqueue operations is O(lg n). Second, by
Theorem 1, the space complexity of a local queue is proportional to the actual
number of elements in the queue. Therefore, if m is the total number of items
in the global queue at time t, then the space used by all local queues at time t
is O(m). Since the tree uses O(n) space at any time, the space consumption for
the queue algorithm at time t is O(m + n).

Notice that the algorithm stores at each node in the tree a time stamp con-
sisting of an unbounded integer and a process id. Since these two values are
stored together in the same machine word, it means that if the length of the ma-
chine word is b, b − lg n bits are left for the unbounded integer. Since the value
of the unbounded integer is proportional to the number of enqueue operations
invoked on the queue, it follows that the algorithm allows at most 2b/n enqueue
operations to be performed. This restriction is not a limitation in practice. For
instance, on most modern architectures, we have b = 64. Hence, even if the
number of processes accessing the algorithm is as large as 16,000, the algorithm
allows for at least 250 enqueue operations to be performed. If there are a million
enqueue operations performed each second, the algorithm can thus safely run
for more than 35 years!

The following theorem summarizes the above discussion.

Theorem 2. Let b be the length of the machine word, and n be the number
of processes. Under the assumption that at most 2b/n enqueue operations are
invoked, the algorithm in Figure 3 is a linearizable wait-free implementation of
the multiple enqueuer, single dequeuer queue from LL/SC words and registers.

Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues& Stacks 419

The time complexity for both the dequeue and enqueue operations is O(lg n). The
space consumption of the algorithm at any time t is O(m + n) machine words,
where m is the number of elements in the queue at time t.

Acknowledgments

We thank the anonymous referees for their valuable comments on an earlier
version of this paper.

References

1. David, M.: A single-enqueuer wait-free queue implementation. In: Proceedings of
the 18th International Conference on Distributed Computing. (2004) 132–143

2. Herlihy, M.: Wait-free synchronization. ACM TOPLAS 13 (1991) 124–149
3. Herlihy, M.: A methodology for implementing highly concurrent data structures.

ACM Transactions on Programming Languages and Systems 15 (1993) 745–770
4. Jayanti, P.: A lower bound on the local time complexity of universal construc-

tions. In: Proceedings of the 17th Annual Symposium on Principles of Distributed
Computing. (1998)

5. Chandra, T., Jayanti, P., Tan, K.Y.: A polylog time wait-free construction for
closed objects. In: Proceedings of the 17th Annual Symposium on Principles of
Distributed Computing. (1998)

6. Jayanti, P.: f-arrays: implementation and applications. In: Proceedings of the 21st
Annual Symposium on Principles of Distributed Computing. (2002) 270 – 279

7. Anderson, J., Moir, M.: Universal constructions for large objects. In: Proceedings
of the 9th International Workshop on Distributed Algorithms. (1995) 168–182

8. Jayanti, P., Petrovic, S.: Efficient and practical constructions of LL/SC variables.
In: Proceedings of the 22nd ACM Symposium on Principles of Distributed Com-
puting. (2003)

9. Moir, M.: Practical implementations of non-blocking synchronization primitives.
In: Proceedings of the 16th Annual ACM Symposium on Principles of Distributed
Computing. (1997) 219–228

10. Afek, Y., Weisberger, E., Weisman, H.: A completeness theorem for a class of syn-
chronization objects. In: Proceedings of the 12th Annual Symposium on Principles
of Distributed Computing. (1993) 159–170

11. Li, Z.: Non-blocking implementation of queues in asynchronous distributed shared-
memory systems. Master’s thesis, University of Toronto (2001)

12. Lamport, L.: Specifying concurrent program modules. ACM Transactions on
Programming Languages and Systems 5 (1983) 190–222

13. Michael, M., Scott, M.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proceedings of the 15th Annual ACM Symposium
on Principles of Distributed Computing. (1996) 267–276

14. Afek, Y., Dauber, D., Touitou, D.: Wait-free made fast. In: Proceedings of the
27th Annual ACM Symposium on Theory of Computing. (1995) 538–547

15. Michael, M., Scott, M.: Nonblocking algorithms and preemption-safe locking on
multiprogrammed shared memory multiprocessors. Journal of Parallel and Dis-
tributed Computing (1998) 1–26

16. Herlihy, M., Wing, J.: Linearizability: A correctness condition for concurrent ob-
jects. ACM TOPLAS 12 (1990) 463–492

Monitoring Stable Properties in Dynamic
Peer-to-Peer Distributed Systems

Sathya Peri and Neeraj Mittal

Department of Computer Science, The University of Texas at Dallas,
Richardson, TX 75083, USA

sathya.p@student.utdallas.edu, neerajm@utdallas.edu

Abstract. Monitoring a distributed system to detect a stable property
is an important problem with many applications. The problem is espe-
cially challenging for a dynamic distributed system because the set of
processes in the system may change with time. In this paper, we present
an efficient algorithm to determine whether a stable property has become
true in a system in which processes can join and depart the system at
any time. Our algorithm is based on maintaining a spanning tree of pro-
cesses that are currently part of the system. The spanning tree, which is
dynamically changing, is used to periodically collect local states of pro-
cesses such that: (1) all local states in the collection are consistent with
each other, and (2) the collection is complete, that is, it contains all local
states that are necessary to evaluate the property and derive meaningful
inferences about the system state.
Unlike existing algorithms for stable property detection in a dynamic
environment, our algorithm is general in the sense that it can be used to
evaluate any stable property. Further, it does not assume the existence
of any permanent process. Processes can join and leave the system while
the snapshot algorithm is in progress.

1 Introduction

One of the fundamental problems in distributed systems is to detect whether
some stable property has become true in an ongoing distributed computation.
A property is said to be stable if it stays true once it becomes true. Some
examples of stable properties include “system is in terminated state”, “a subset
of processes are involved in a circular wait” and “an object is a garbage”. The
stable property detection problem has been well-studied and numerous solutions
have been proposed for solving the general problem (e.g., [1,2,3]) as well as its
special cases (e.g., [4,5,6,7,8,9,10]). However, most of the solutions assume that
the system is static, that is, the set of processes is fixed and does not change
with time.

With the advent of new computing paradigms such as grid computing and
peer-to-peer computing, dynamic distributed systems are becoming increasingly
popular. In a dynamic distributed system, processes can join and leave the on-
going computation at anytime. Consequently, the set of processes in the system
may change with time. Dynamic distributed systems are especially useful for
solving large-scale problems that require vast computational power. For exam-
ple, distributed.net [11] has undertaken several projects that involve searching a

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 420–431, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Monitoring Stable Properties in Dynamic Peer-to-Peer Distributed Systems 421

large state-space to locate a solution. Some examples of such projects include
RC5-72 to determine a 72-bit secret key for the RC5 algorithm, and OGR-25 to
compute the Optimal Golomb Ruler with 25 and more marks.

Although several algorithms have been proposed to solve the stable property
detection problem in a dynamic environment, they suffer from one or more of the
following limitations. First, to the best of our knowledge, all existing algorithms
solve the detection problem for special cases such as property is either termina-
tion [12,13,14] or can be expressed as conjunction of local predicates [15]. Second,
most of the algorithms assume the existence of permanent processes that never
leave the system [13,15,14]. Third, some of the algorithms assume that processes
can join but cannot leave the system until the detection algorithm has termi-
nated [12,14]. Fourth, the algorithm by Darling and Mayo [15] assumes that
processes are equipped with local clocks that are weakly synchronized.

In this paper, we describe an algorithm to detect a stable property for a
dynamic distributed system that does not suffer from any of the limitations
described above. Our approach is based on maintaining a spanning tree of all
processes currently participating in the computation. The spanning tree, which is
dynamically changing, is used to collect local snapshots of processes periodically.
Processes can join and leave the system while a snapshot algorithm is in progress.
We identify sufficient conditions under which a collection of local snapshots can
be safely used to evaluate a stable property. Specifically, the collection has to be
consistent (local states in the collection are pair-wise consistent) and complete
(no local state necessary for correctly evaluating the property is missing from
the collection). We also identify a condition that allows the current root of
the spanning tree to detect termination of the snapshot algorithm even if the
algorithm was initiated by an “earlier” root that has since left the system. Due to
lack of space, formal description of our algorithm and proofs of various lemmas
and theorems have been omitted and can be found in [16].

2 System Model and Notation

2.1 System Model

We assume an asynchronous distributed system in which processes communicate
with each other by exchanging messages. There is no global clock or shared
memory. Processes can join and leave the system at any time. We do not assume
the existence of any permanent process. We, however, assume that there is at
least one process in the system at any time and processes are reliable. For ease
of exposition, we assume that a process can join the system at most once. If
some process wants to join the system again, it joins it as a different process.
This can be ensured by using incarnation numbers.

When a process sends a message to another process, we say that the former
process has an outgoing channel to the latter process. Alternatively, the latter
process has an incoming channel to the former process. We make the following
assumptions about channels. First, any message sent to a process that never
leaves the system is eventually delivered. This holds even if the sender of the
message leaves the system after sending the message but before the message is
delivered. Second, any message sent by a process that never leaves the system

422 Sathya Peri and Neeraj Mittal

to a process that leaves the system before the message is delivered is eventu-
ally returned to the sender with an error notification. Third, all channels are
FIFO. Specifically, a process receives a message from another process only after
it has received all the messages sent to it earlier by that process. The first two
assumptions are similar to those made by Dhamdhere et al [13].

We model execution of a process as an alternating sequence of states and
events. A process changes its state by executing an event. Additionally, a send
event causes a message to be sent and a receive event causes a message to be
received. Sometimes, we refer to the state of a process as local state. To avoid
confusion, we use the letters a, b, c, d, e and f to refer to events and the letters
u, v, w, x, y and z to refer to local states.

Events on a process are totally ordered. However, events on different processes
are only partially ordered by the Lamport’s happened-before relation [17], which
is defined as the smallest transitive relation satisfying the following properties:

1. if events e and f occur on the same process, and e occurred before f in real
time then e happened-before f , and

2. if events e and f correspond to the send and receive, respectively, of a mes-
sage then e happened-before f .

For an event e, let process(e) denote the process on which e is executed.
Likewise, for a local state x, let process(x) denote the process to which x belongs.
We define events(x) as the set consisting of all events that have to be executed
to reach x. Intuitively, events(x) captures the causal past of x.

A state of the system is given by the set of events that have been executed
so far. We assume that existence of fictitious events ⊥ that initialize the state
of the system. Further, every collection (or set) of events we consider contains
these initial events. Clearly, a collection of events E corresponds to a valid state
of the system only if E is closed with respect to the happened-before relation.
We refer to such a collection of events as comprehensive cut. Formally,

E is a comprehensive cut � (⊥ ⊆ E) ∧ 〈∀e, f :: (f ∈ E) ∧ (e→ f)⇒ e ∈ E〉

Sometimes, it is more convenient to model a system state using a collection of
local states instead of using a collection of events, especially when taking a snap-
shot of the system. Intuitively, a comprehensive state is obtained by executing
all events in a comprehensive cut. In this paper, we use the term “comprehen-
sive cut” to refer to a collection of events and the term “comprehensive state”
to refer to a collection of local states. To avoid confusion, we use the letters A,
B, C, D, E and F to refer to a collection of events and the letters U , V , W , X ,
Y and X to refer to a collection of local states.

For a collection of local states X , let processes(X) denote the set of processes
whose local state is in X . Also, let events(X) denote the set of events that have
to be executed to reach local states in X .

Two local states x and y are said to be consistent if, in order to reach x on
process(x), we do not have to advance beyond y on process(y), and vice versa.

Definition 1 (consistent collection of local states). A collection of local
states is said to be consistent if all local states in the collection are pair-wise
consistent.

Monitoring Stable Properties in Dynamic Peer-to-Peer Distributed Systems 423

Note that, for a collection of local states to form a comprehensive state,
the local states should be pair-wise consistent. However, not every consistent
collection of local states forms a comprehensive state. This happens when the
collection is missing local states from certain processes. Specifically, a collection
of local states X corresponds to a comprehensive state if the following two con-
ditions hold: (1) X is consistent, and (2) X contains a local state from every
process that has at least one event in events(X).

For a consistent collection of local states X , let CS(X) denote the system
state obtained by executing all events in events(X). Clearly, X ⊆ CS(X) and,
moreover, CS(X) corresponds to a comprehensive state.

For a static distributed system, a system state is captured using the notion of
consistent global state. A collection of local states forms a consistent global state
if the collection is consistent and it contains one local state from every process
in the system. For a dynamic distributed system, however, the set of processes
may change with time. As a result, the term “every process in the system” is
not well-defined. Therefore, we use a slightly different definition of system state,
and, to avoid confusion, we use the term “comprehensive state” instead of the
term “consistent global state” to refer to it.

2.2 Stable Properties

A property maps every comprehensive state of the system to a boolean value.
Intuitively, a property is said to be stable if it stays true once it becomes true.
For two comprehensive states X and Y , we say that Y lies in the future of X ,
denoted by X � Y , if events(X) ⊆ events(Y). Then, a property φ is stable if
for every pair of comprehensive states X and Y ,

(φ holds for X) ∧ (X � Y) ⇒ φ holds for Y

We next describe an algorithm to detect a stable property in a dynamic
distributed system.

3 Our Algorithm

3.1 The Main Idea

A common approach to detect a stable property in a static distributed system
is to repeatedly collect a consistent set of local states, one from each process.
Such a collection is also referred to as a (consistent) snapshot of the system. The
property is then evaluated for the snapshot collected until it evaluates to true.
The problem of collecting local states, one from each process, is relatively easier
for a static distributed system than for a dynamic distributed system. This is
because, in a static system, the set of processes is fixed and does not change
with time. In a dynamic system, however, the set of processes may change with
time. Therefore it may not always be clear local states of which processes have
to be included in the collection.

In our approach, we impose a logical spanning tree on processes that are
currently part of the system. The spanning tree is used to collect local states

424 Sathya Peri and Neeraj Mittal

of processes currently attached to the tree. Observe that, to be able to evaluate
the property, the collection has to at least include local states of all processes
that are currently part of the application. Therefore we make the following two
assumptions. First, a process attaches itself to spanning tree before joining the
application. Second, a process leaves the application before detaching itself from
the spanning tree.

A process joins the spanning tree by executing a control join protocol and
leaves the spanning tree by executing a control depart protocol. Likewise, a pro-
cess joins the application by executing an application join protocol and leaves
the application by executing an application depart protocol.

We associate a status with every process, which can either be OUT, JOINING,
IN, TRYING, DEPARTING. Intuitively, status captures the state of a process with
respect to the spanning tree. A process that is not a part of the system (that
is, before it starts executing the control join protocol or after it has finished
executing the control depart protocol) has status OUT. When a process starts
executing its control join protocol, its status changes to JOINING. The status
changes to IN once the join protocol finishes and the process has become part
of the spanning tree. When a process wants to leave the spanning tree, it begins
executing the control depart protocol, which consists of two parts. In the first
part, the process tries to obtain permission to leave from all its neighboring
processes. In the second part, it actually leaves the spanning tree. But, before
leaving the system, it ensures that the set of processes currently in the system
remain connected. During the former part of the depart protocol, its status is
TRYING and, during the latter part, its status is DEPARTING.

Typically, for evaluating a property, state of a process can be considered to
consist of two components. The first component captures values of all program
variables on a process; we refer to it as core state. The second component is
used to determine state of a channel (e.g., the number of messages a process
has sent to another process); we refer to it as non-core state. We assume that,
once a process has detached itself from the application its core state is no longer
needed to evaluate the property. However, its non-core state may still be required
to determine the state of an outgoing channel it has with another process that
is still part of the application. For example, consider a process p that leaves the
application soon after sending an application message m to process q. In this
case, m may still be in transit towards q after p has left the application. If q does
not know about the departure of p when it receives m and it is still part of the
application, then it has to receive and process m. This may cause q’s core state
to change, which, in turn, may affect the value of the property. In this example,
even though p has left the application, its non-core state is required to determine
the state of the channel from p to q, which is non-empty.

We say that an application message is irrelevant if either it is never delivered
to its destination process (and is therefore returned to the sender with error
notification) or when it is delivered, its destination process is no longer part
of the application; otherwise the message is relevant. In order to prevent the
aforementioned situation from arising, we make the following assumption about
an application depart protocol:

Assumption 1. Once a process has left the application, none of its outgoing
channels, if non-empty, contain a relevant application message.

Monitoring Stable Properties in Dynamic Peer-to-Peer Distributed Systems 425

The above assumption can be satisfied by using acknowledgments for appli-
cation messages. Specifically, a process leaves the application only after ensuring
that, for every application message it sent, it has either received an acknowledg-
ment for it or the message has been returned to it with error notification. Here,
we assume that a process that is no longer a part of the application, on receiving
an application message, still sends an acknowledgment for it. It can be verified
that this scheme implements Assumption 1.

Assumption 1 is useful because it enables a process to evaluate a property
using local states of only those processes that are currently part of the spanning
tree. Specifically, to evaluate the property, a process does not need information
about states of processes that left the system before the snapshot algorithm
started.

Now, to understand local states of which processes need to be recorded in a
snapshot, we define the notion of completeness. We call a process active if its
status is IN and semi-active if its status is either IN or TRYING. Further, for
a collection of local states X , let active(X) denote the set of local states of all
those processes whose status is IN in X . We can define semi-active(X) similarly.

Definition 2 (complete collection of local states). A consistent collection
of local states Y is said to be complete with respect to a comprehensive state X
with Y ⊆ X if Y includes local states of all those processes whose status is IN in
X. Formally,

Y is complete with respect to X � active(X) ⊆ Y

From Assumption 1, to be able to evaluate a property for a collection of local
states, it is sufficient for the collection to be complete; it need not be compre-
hensive. This is also important because our definition of comprehensive state
includes local states of even those processes that are no longer part of the sys-
tem. As a result, if a snapshot algorithm were required to return a comprehensive
state, it will make the algorithm too expensive. As we see later, our snapshot al-
gorithm returns a collection that contains local states of all semi-active processes
of some comprehensive state (and not just all active processes).

3.2 Spanning Tree Maintenance Algorithm

Processes may join and leave the system while an instance of the snapshot al-
gorithm is in progress. Therefore spanning tree maintenance protocols, namely
control join and depart protocols, have to designed carefully so that they do not
“interfere” with an ongoing instance of the snapshot algorithm. To that end, we
maintain a set of invariants that we use later to establish the correctness of the
snapshot algorithm.

Each process maintains information about its parent and its children in the
tree. Initially, before a process joins the spanning tree, it does not have any
parent or children, that is, its parent variable is set to nil and its children-set
is empty. Let x be a local state of process p. We use parent(x) to denote the
parent of p in x and children(x) to denote the set of children of p in x. Further,
p is said to be root in x if parent(x) = p. For a collection of local states X and
a process p ∈ processes(X), we use X.p to denote the local state of p in X .

426 Sathya Peri and Neeraj Mittal

Now, we describe our invariants. Consider a comprehensive state X and let
p and q be two processes in X . The first invariant says that if the status of a
process is either IN or TRYING, then its parent variable should have a non-nil
value. Formally,

status(X.p) ∈ {IN,TRYING} ⇒ parent(X.p) 	= nil (1)

The second invariant says that if a process considers another process to be
its parent then the latter should consider the former as its child. Moreover, the
parent variable of the latter should have a non-nil value. Intuitively, it means
that child “relationship” is maintained for a longer duration than parent “rela-
tionship”. Further, a process cannot set its parent variable to nil as long as there
is at least one process in the system, different from itself, that considers it to be
its parent. Formally,

(parent(X.p) = q) ∧ (p 	= q) ⇒
(p ∈ children(X.q)) ∧ (parent(X.q) 	= nil) (2)

The third invariant specifically deals with the departure of a root process.
To distinguish between older and newer root processes, we associate a rank with
every root process. The rank is incremented whenever a new root is selected.
This invariant says that if two processes consider themselves to be root of the
spanning tree, then there cannot be a process that considers the “older” root to
be its parent. Moreover, the status of the “older” root has to be DEPARTING.
Formally,

root(X.p) ∧ root(X.q) ∧ (rank(X.p) < rank(X.q)) ⇒
〈�r : r ∈ processes(X) \ {p} : parent(X.r) = p〉 ∧
(status(X.p) = DEPARTING)

(3)

We now describe our control join and depart protocols that maintain the
invariants (1)–(3).

Joining the Spanning Tree: A process attaches itself to the spanning tree by
executing the control join protocol. Our control join protocol is quite simple. A
process wishing to join the spanning tree first obtains a list of processes that are
currently part of the spanning tree. This, for example, can be achieved using a
name server. It then contacts the processes in the list, one by one, until it finds
a process that is willing to accept it as its child. We assume that the process is
eventually able to find such a process, and, therefore, the control join protocol
eventually terminates successfully.

Leaving the Spanning Tree: A process detaches itself from the spanning tree
by executing the control depart protocol. The protocol consists of two phases.
The first phase is referred to as trying phase and the status of process in this
phase is TRYING. In the trying phase, a departing process tries to obtain per-
mission to leave from all its tree neighbors (parent and children). To prevent
neighboring processes from departing at the same time, all departure requests
are assigned timestamps using logical clock. A process, on receiving departure

Monitoring Stable Properties in Dynamic Peer-to-Peer Distributed Systems 427

request from its neighboring process, grants the permission only if it is not de-
parting or its depart request has larger timestamp than that of its neighbor.
This approach is similar to Ricart and Agrawala’s algorithm [18] modified for
drinking philosopher’s problem [19]. Note that the neighborhood of a departing
process may change during this phase if one of more of its neighbors are also
trying to depart. Whenever the neighborhood of a departing process changes, it
sends its departure request to all its new neighbors, if any. A process wishing
to depart has to wait until it has received permission to depart from its current
neighbors.

We show in [16] that the first phase of the control depart protocol eventually
terminates. Once that happens, the process enters the second phase. The second
phase is referred to as departing phase and the status of process in this phase
is DEPARTING. The protocol of the departing phase depends on whether the
departing process is a root process. If the departing process is not a root process,
then, to maintain the spanning tree, it attaches all its children to its parent. On
the other hand, if it is a root process, then it selects one its children to become
the new root. It then attaches all its other children to the new root. The main
challenge is to change the spanning tree without violating any of the invariants.

Case 1 (when the departing process is not the root): In this case, the
departing phase consists of the following steps:
– Step 1: The departing process asks its parent to inherit all its children

and waits for acknowledgment.
– Step 2: The departing process asks all its children to change their parent

to its parent and waits for acknowledgment from all of them. At this
point, no process in the system considers the departing process to be its
parent.

– Step 3: The departing process terminates all its neighbor relationships.
At this point, the parent of the departing process still considers the
process to be its child.

– Step 4: The departing process asks its parent to remove it from its set
of children and waits for acknowledgment.

Case 2 (when the departing process is the root): In this case, the
departing phase consists of the following steps:
– Step 1: The departing process selects one of its children to become the

new root. It then asks the selected child to inherit all its other children
and waits for acknowledgment.

– Step 2: The departing process asks all its other children to change their
parent to the new root and waits for acknowledgment from all of them.
At this point, only the child selected to become the new root considers
the departing process to be its parent.

– Step 3: The departing process terminates child relationships with all its
other children. The child relationship with the child selected to become
the new root cannot be terminated as yet.

– Step 4: The departing process asks the selected child to become the new
root of the spanning tree and waits for acknowledgment. At this point,
no process in the system considers the departing process to be its parent.

– Step 5: The departing process terminates all its neighbor relationships.

428 Sathya Peri and Neeraj Mittal

To ensure liveness of the snapshot algorithm, we require the departing process
to “transfer” the latest set of local states it has collected so far (which may be
empty) to another process, after it has detached itself from the spanning tree
but before leaving the system permanently. The process to which the collection
has to be “transfered” is the parent of the departing process in the first case
and the new root of the spanning tree in the second case. In both cases, the
process to which the collection is “transfered” has to wait until it has received
the collection from all processes it is supposed to before it can itself enter the
departing phase.

3.3 The Snapshot Algorithm

As discussed earlier, it is sufficient to collect a consistent set of local states
that is complete with respect to some comprehensive state. We next discuss how
consistency and completeness can be achieved. For convenience, when a process
records it local state, we say that it has taken its snapshot.

Achieving Consistency To achieve consistency, we use Lai and Yang’s ap-
proach for taking a consistent snapshot of a static distributed system [2]. Each
process maintains the instance number of the latest snapshot algorithm in which
it has participated. This instance number is piggybacked on every message it
sends—application as well as control. If a process receives a message with an
instance number greater than its own, it first records its local state before de-
livering the message. It can be verified that:

Theorem 3 (consistency). Two local states belonging to the same instance of
the snapshot algorithm are consistent with each other.

Achieving Completeness As explained earlier in Sect. 3.1, to be able to
evaluate a property for a collection of local states, it is sufficient for the collection
to be complete with respect to some comprehensive state. The main problem
is: “How does the current root of the spanning tree know that its collection has
become complete?” To solve this problem, our approach is to define a test property
that can be evaluated locally for a collection of local states such that once the
test property evaluates to true then the collection has become complete. To that
end, we define the notion of f -closed collection of local states.

Definition 4 (f-closed collection of local states). Let f be a function that
maps every local state to a set of processes. A consistent collection of local states
X is said to be f -closed if, for every local state x in X, X contains a local state
from every process in f(x). Formally,

X is f -closed � 〈∀x ∈ X :: f(x) ⊆ processes(X)〉

Intuitively, f denotes a neighborhood function. For example, f may map a
local state x to children(x). We consider two special cases for function f . For a
local state x, let ρ(x) be defined as the set containing the parent of process(x)
in local state x, if it exists. Further, let κ(x) be defined as the set of children

Monitoring Stable Properties in Dynamic Peer-to-Peer Distributed Systems 429

of process(x) in local state x, that is, κ(x) = children(x). We show that, under
certain condition, if the collection is (ρ ∪ κ)-closed, then it is also complete. To
capture the condition under which this implication holds, we define the notion
of f -path as follows:

Definition 5 (f-path). Let f be a function that maps every local state to a set
of processes. Consider a comprehensive state X and two distinct processes p and
q in processes(X). We say that there is an f -path from p to q in X, denoted
by f -path(p, q,X), if there exists a sequence of processes si ∈ processes(X) for
i = 1, 2, . . . ,m such that:

1. s1 = p and sm = q
2. for each i, 1 ≤ i < m, si 	= si+1 and si+1 ∈ f(X.si)

Using the notion of f -path, we define the notion of an f -connected state as
follows:

Definition 6 (f-connected state). Let f be a function that maps every local
state to a set of processes. A comprehensive state X is said to be f -connected
if there is a f -path between every pair of distinct processes in semi-active(X).
Formally, X is f -connected if

〈∀p, q ∈ processes(X) : p 	= q : {p, q} ⊆ semi-active(X) ⇒ f -path(p, q,X)〉

Using the invariants (1)–(3), we show that every comprehensive state is actu-
ally (ρ∪κ)-connected. We first prove an important property about the spanning
tree maintained by our algorithm.

Theorem 7. The directed graph induced by parent variables of a comprehensive
state is acyclic (except for self-loops).

The following theorem can now be proved:

Theorem 8. Every comprehensive state is (ρ ∪ κ)-connected.

The main idea behind the proof is to show that each semi-active process has
a ρ-path to the current root of the spanning tree. This, in turn, implies that there
is a κ-path from the current root to each semi-active process in the system. We
now provide a sufficient condition for a collection of local states to be complete.

Theorem 9 (f-closed and f-connected ⇒ complete). Let f be a function
that maps every local state to a set of processes. Consider a consistent collection
of local states X. If (1) X is f -closed, (2) semi-active(X) 	= ∅, and (3) CS(X)
is f -connected, then X is complete with respect to CS(X).

Therefore it suffices to ensure that the set of local states collected by the
snapshot algorithm is (ρ ∪ κ)-closed. We now describe our snapshot algorithm.
After recording its local state, a process waits to receive local states of its children
in the tree until its collection becomes κ-closed. As soon as that happens, it sends
the collection to its (current) parent in the spanning tree unless it is a root.
In case it is a root, it uses the collection to determine whether the property of

430 Sathya Peri and Neeraj Mittal

interest (e.g., termination) has become true. A root process initiates the snapshot
algorithm by recording its local state provided its status is either IN or TRYING.
This ensures that the collection contains a local state of at least one semi-active
process. (Note that the snapshot algorithm described above does not satisfy
liveness. We describe additions to the basic snapshot algorithm to ensure its
liveness later.) The next theorem establishes that the collection of local states
returned by an instance of the snapshot algorithm is not only κ-closed but also
(ρ ∪ κ)-closed.

Theorem 10. The collection of local states returned by the snapshot algorithm
is consistent and (ρ ∪ κ)-closed.

It follows from Theorem 3, Theorem 9, Theorem 8 and Theorem 10 that:

Corollary 11 (safety). The collection of local states returned by the snapshot
algorithm is (1) consistent and (2) complete with respect to some comprehensive
state.

The liveness of the snapshot algorithm is only guaranteed if the system be-
comes permanently quiescent eventually (that is, the set of processes does not
change). Other algorithms for property detection make similar assumptions to
achieve liveness [13,15]. Without this assumption, the spanning tree may con-
tinue to grow forcing the snapshot algorithm to collect local states of an ever in-
creasing number of processes. To ensure liveness under this assumption, we make
the following enhancements to the basic snapshot algorithm. First, whenever a
process records its local state, it sends a marker message containing the current
instance number to all its neighbors. In addition, it sends a marker message to
any new neighbor whenever its neighborhood set changes. Second, whenever its
parent changes, it sends its collection to the new parent if the collection has
become κ-closed. Third, just before leaving the system, a process transfers its
collection to one of its neighbors as explained earlier. Once the system becomes
permanently quiescent, the first modification ensures that all processes in the
tree eventually record their local states and the second modification ensures that
the collection at the root eventually becomes κ-closed. It can be proved that:

Theorem 12 (liveness). Assuming that the system eventually becomes perma-
nently quiescent (that is, the set of processes does not change), every instance of
the snapshot algorithm terminates eventually.

4 Conclusion and Future Work

In this paper, we present an efficient algorithm to determine whether a stable
property has become true in a dynamic distributed system in which processes
can join and leave the system at any time. Our approach involves periodically
collecting local states of processes that are currently part of the system using a
(dynamically changing) spanning tree.

There are several interesting problems that still need to be addressed. The
depart protocol described in the paper has relatively high worst-case time-
complexity. Specifically, a process may stay in the trying phase for a long period

Monitoring Stable Properties in Dynamic Peer-to-Peer Distributed Systems 431

of time (because of other processes joining and leaving the system) before it is
able to enter the departing phase. An interesting problem is to design a depart
protocol that has low worst-case time-complexity. Also, in our current approach,
control neighbors of a process may be completely different from its application
neighbors, which may be undesirable in certain cases. Finally, in this paper, we
assume that processes are reliable and they never fail. It would be interesting to
investigate this problem in the presence of failures.

References

1. Chandy, K.M., Lamport, L.: Distributed Snapshots: Determining Global States of
Distributed Systems. ACM Transactions on Computer Systems 3 (1985) 63–75

2. Lai, T.H., Yang, T.H.: On Distributed Snapshots. Information Processing Letters
(IPL) 25 (1987) 153–158

3. Alagar, S., Venkatesan, S.: An Optimal Algorithm for Recording Snapshots using
Casual Message Delivery. Information Processing Letters (IPL) 50 (1994) 311–316

4. Dijkstra, E.W., Scholten, C.S.: Termination Detection for Diffusing Computations.
Information Processing Letters (IPL) 11 (1980) 1–4

5. Francez, N.: Distributed Termination. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 2 (1980) 42–55

6. Ho, G.S., Ramamoorthy, C.V.: Protocols for Deadlock Detection in Distributed
Database Systems. IEEE Transactions on Software Engineering 8 (1982) 554–557

7. Chandy, K.M., Misra, J., Haas, L.M.: Distributed Deadlock Detection. ACM
Transactions on Computer Systems 1 (1983) 144–156

8. Marzullo, K., Sabel, L.: Efficient Detection of a Class of Stable Properties. Dis-
tributed Computing (DC) 8 (1994) 81–91

9. Schiper, A., Sandoz, A.: Strong Stable Properties in Distributed Systems. Dis-
tributed Computing (DC) 8 (1994) 93–103

10. Atreya, R., Mittal, N., Garg, V.K.: Detecting Locally Stable Predicates without
Modifying Application Messages. In: Proceedings of the 7th International Confer-
ence on Principles of Distributed Systems (OPODIS). (2003) 20–33

11. distributed.net: http://www.distributed.net/projects.php (2005)
12. Lai, T.H.: Termination Detection for Dynamic Distributed Systems with Non-

First-In-First-Out Communication. Journal of Parallel and Distributed Computing
(JPDC) 3 (1986) 577–599

13. Dhamdhere, D.M., Iyer, S.R., Reddy, E.K.K.: Distributed Termination Detection
for Dynamic Systems. Parallel Computing 22 (1997) 2025–2045

14. Wang, X., Mayo, J.: A General Model for Detecting Termination in Dynamic Sys-
tems. In: Proceedings of the 18th International Parallel and Distributed Processing
Symposium (IPDPS), Santa Fe, New Mexico (2004)

15. Darling, D., Mayo, J.: Stable Predicate Detection in Dynamic Systems. Submitted
to the Journal of Parallel and Distributed Computing (JPDC) (2003)

16. Peri, S., Mittal, N.: Monitoring Stable Properties in Dynamic Peer-to-Peer Dis-
tributed Systems. Technical Report UTDCS-27-05, Department of Computer Sci-
ence, The University of Texas at Dallas, Richardson, TX, 75083, USA (2005)

17. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM (CACM) 21 (1978) 558–565

18. Ricart, G., Agrawala, A.K.: An Optimal Algorithm for Mutual Exclusion in Com-
puter Networks. Communications of the ACM (CACM) 24 (1981) 9–17

19. Chandy, K.M., Misra, J.: The Drinking Philosophers Problem. ACM Transactions
on Programming Languages and Systems (TOPLAS) 6 (1984) 632–646

On the Expressiveness of TPTL and MTL

Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey

LSV – CNRS & ENS de Cachan – France
{bouyer,chevalie,markey}@lsv.ens-cachan.fr

Abstract. TPTL and MTL are two classical timed extensions of LTL.
In this paper, we positively answer a 15-year-old conjecture that TPTL
is strictly more expressive than MTL. But we show that, surprisingly,
the TPTL formula proposed in [4] for witnessing this conjecture can be
expressed in MTL. More generally, we show that TPTL formulae using
only the F modality can be translated into MTL.

1 Introduction

Temporal logics. Temporal logics [19] are a widely used framework in the field
of specification and verification of (models of) reactive systems. In particular,
Linear-time Temporal Logic (LTL) allows to express properties about the exe-
cutions of a model, such as the fact that any occurrence of a problem eventually
raises the alarm. LTL has been extensively studied, both about its expressive-
ness [14,11] and for model checking purposes [21,23].

Timed temporal logics. At the beginning of the 90s, real-time constraints have
naturally been added to temporal logics [15,2], in order to add quantitative
constraints to temporal logic specifications of timed models. The resulting logics
allow to express, e.g., that any occurrence of a problem in a system will raise
the alarm in at most 5 time units.

When dealing with dense time, we may consider two different semantics for
timed temporal logics, depending on whether the formulae are evaluated over
timed words (i.e. over a discrete sequence of timed events; this is the pointwise
semantics) or over timed state sequences (i.e., roughly, over the continuous be-
havior of the system; this is the interval-based semantics). We refer to [6,12]
for a survey on linear-time timed temporal logics and to [20] for more recent
developments on that subject.

Expressiveness of TPTL and MTL. Two interesting timed extensions of LTL are
MTL (Metric Temporal Logic) [15,7] and TPTL (Timed Propositional Temporal
Logic) [8]. MTL extends LTL by adding subscripts to temporal operators: for
instance, the above property can be written in MTL as

G (problem⇒ F≤5 alarm).

TPTL is “more temporal” [8] in the sense that it uses real clocks in order to
assert timed constraints. A TPTL formula can “reset” a formula clock at some

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 432–443, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Expressiveness of TPTL and MTL 433

point, and later compare the value of that clock to some integer. The property
above would then be written as

G (problem⇒ x.F (alarm∧ x ≤ 5))

where “x.ϕ” means that x is reset at the current position, before evaluating ϕ.
This logic also allows to easily express that, for instance, within 5 t.u. after any
problem, the system rings the alarm and then enters a failsafe mode:

G (problem⇒ x.F (alarm ∧ F (failsafe∧ x ≤ 5))). (1)

While it is clear that any MTL formula can be translated into an equivalent
TPTL one, [6,7] state that there is no intuitive MTL equivalent to formula (1).
It has thus been conjectured that TPTL would be strictly more expressive than
MTL [6,7,12], formula (1) being proposed as a possible witness not being ex-
pressible in MTL.

Our contributions. We consider that problem for two standard semantics (viz.
the pointwise and the interval-based semantics). We prove that

– the conjecture does hold for both semantics;
– for the pointwise semantics, formula (1) witnesses the expressiveness gap,

i.e. it cannot be expressed in TPTL;
– for the interval-based semantics, formula (1) can be expressed in MTL, but

we exhibit another TPTL formula (namely, x.F (a∧x ≤ 1∧G (x ≤ 1⇒ ¬b)),
stating that the last atomic proposition before time point 1 is an a) and prove
that it cannot be expressed in MTL.

As side results, we get that MTL is strictly more expressive under the interval-
based semantics than under the pointwise one, as recently and independently
proved in [10], and that, for both semantics, MTL+Past and MITL+Past (where
the past-time modality “Since” is used [3]) are strictly more expressive than MTL
and MITL, resp. We also get that the branching-time logic TCTL with explicit
clock [13] is strictly more expressive than TCTL with subscripts [2], which had
been conjectured in [1,24].

Finally, we prove that, under the interval-based semantics, the fragment of
TPTL where only the F modality is allowed (we call it the existential fragment
of TPTL) can be translated into MTL. This generalizes the fact that formula (1)
can be expressed in MTL.

Related work. Over the last 15 years, many researches have focused on expres-
siveness questions for timed temporal logics (over both integer and real time).
See [5,7,8,3] for original works, and [12,20] for a survey on that topic.

MTL and TPTL have also been studied for the purpose of verification. If
the underlying time domain is discrete, then MTL and TPTL have decidable
verification problems [7,8]. When considering dense time, verification problems
(satisfiability, model checking) become much harder: [3] proves that the satis-
fiability problem for MTL is undecidable when considering the interval-based

434 Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey

semantics. This result of course carries on for TPTL. It has recently been proved
that MTL model checking and satisfiability are decidable over finite words under
the pointwise semantics [18], while it is still undecidable for TPTL [8]. Note that
our expressiveness result concerning TPTLF yields an NP decision procedure for
that fragment under the pointwise semantics (see Corollary 11).

MTL and TPTL have also been studied in the scope of monitoring and path
model checking. [22] proposes an (exponential) monitoring algorithm for MTL
under the pointwise semantics. [17] shows that, in the interval-based semantics,
MTL formulae can be verified on lasso-shaped timed state sequences in polyno-
mial time, while TPTL formulae require at least polynomial space.

Some proofs are omitted due to lack of space. They can be found in [9].

2 Timed Linear-Time Temporal Logics

Basic definitions. In the sequel, AP represents a non-empty, countable set of
atomic propositions. Let R denote the set of reals, R+ the set of nonnegative
reals, Q the set of rationals and N the set of nonnegative integers. An interval
is a convex subset of R. Two intervals I and I ′ are said to be adjacent when
I ∩ I ′ = ∅ and I ∪ I ′ is an interval. We denote by IR the set of intervals, and
by IQ the set of intervals whose bounds are in Q.

Given a finite set X of variables called clocks, a clock valuation over X is a
mapping α : X → R+ which assigns to each clock a time value in R+.

Timed state sequences and timed words. A timed state sequence over AP is
a pair κ = (σ, I) where σ = σ1σ2 . . . is an infinite sequence of elements of 2AP and
I = I1I2 . . . is an infinite sequence of intervals satisfying the following properties:

– (adjacency) the intervals Ii and Ii+1 are adjacent for all i ≥ 1, and
– (progress) every time value t ∈ R+ belongs to some interval Ii.

A timed state sequence can equivalently be seen as an infinite sequence of ele-
ments of 2AP × IR.

A time sequence over R+ is an infinite non-decreasing sequence τ = τ0τ1 . . .
of nonnegative reals satisfying the following properties:

– (initialization) τ0 = 0,
– (monotonicity) the sequence is nondecreasing: ∀ i ∈ N τi+1 ≥ τi,
– (progress) every time value t ∈ R+ is eventually reached: ∀t ∈ R.∃i. τi > t.

A timed word over AP is a pair ρ = (σ, τ), where σ = σ0σ1 . . . is an infinite
word over AP and τ = τ0τ1 . . . a time sequence over R+. It can equivalently be
seen as an infinite sequence of elements (σ0, τ0)(σ1, τ1) . . . of (AP×R). We force
timed words to satisfy τ0 = 0 in order to have a natural way to define initial
satisfiability in the semantics of MTL. This involves no loss of generality since it
can be obtained by adding a special action to the alphabet.

Note that a timed word can be seen as a timed state sequence: for example
the timed word (a, 0)(a, 1.1)(b, 2) . . . corresponds to the timed state sequence
({a}, [0, 0])(∅,]0, 1.1[)({a}, [1.1, 1.1])(∅, [1.1, 2[)({b}, [2, 2]) . . .

On the Expressiveness of TPTL and MTL 435

2.1 Clock Temporal Logic (TPTL)

The logic TPTL [8,20] is a timed extension of LTL [19] which uses extra variables
(clocks) explicitly in the formulae. Below, we define the syntax and semantics
of TPTL+Past. The logic TPTL is the fragment of TPTL+Past not using the
operator S .

Formulae of TPTL+Past are built from atomic propositions, boolean connec-
tives, “until” and “since” operators, clock constraints and clock resets:

TPTL+Past 0 ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 U ϕ2 | ϕ1 S ϕ2 | x ∼ c | x.ϕ

where p ∈ AP is an atomic proposition, x is a clock variable, c ∈ Q is a rational
number and ∼ ∈ {≤, <,=, >,≥}. There are two main semantics for TPTL,
the interval-based semantics which interprets TPTL over timed state sequences,
and the pointwise semantics, which interprets TPTL over timed words. This
last semantics is less general as (as we will see below) formulae can only be
interpreted at points in time when actions occur.

In the literature, these two semantics are used interchangeably, but results
highly depend on the underlying semantics. For example, a recent result [18]
states that MTL (a subset of TPTL, see below) is decidable under the pointwise
semantics, whereas it is known to be undecidable for finite models under the
interval-based semantics [3].

Interval-based semantics. In this semantics, models are time state sequences
κ, and are evaluated at a date t ∈ R+ with a valuation α : X → R+ (where X is
the set of clocks for formulae of TPTL+Past). The satisfaction relation (denoted
with (κ, t, α) |=i ϕ) is defined inductively as follows (we omit the standard
semantics of boolean operators):

(κ, t, α) |=i p iff p ∈ κ(t)
(κ, t, α) |=i x ∼ c iff t− α(x) ∼ c

(κ, t, α) |=i x.ϕ iff (κ, t, α[x %→ t]) |=i ϕ

(κ, t, α) |=i ϕ1 U ϕ2 iff ∃t′ > t such that (κ, t′, α) |=i ϕ2

and ∀t < t′′ < t′, (κ, t′′, α) |=i ϕ1 ∨ ϕ2
1

(κ, t, α) |=i ϕ1 S ϕ2 iff ∃t′ < t such that (κ, t′, α) |=i ϕ2

and ∀t′ < t′′ < t, (κ, t′′, α) |=i ϕ1 ∨ ϕ2

We write κ |=i ϕ when (κ, 0,0) |=i ϕ where 0 is the valuation assigning 0 to all
clocks. Following [20], we interpret “x.ϕ” as a reset operator. Note also that the
semantics of U is strict in the sense that, in order to satisfy ϕ1 U ϕ2, a time
state sequence is not required to satisfy ϕ1. In the following, we use classical
shorthands: � stands for p ∨ ¬p, ϕ1 ⇒ ϕ2 holds for ¬ϕ1 ∨ ϕ2, F ϕ holds for
�U ϕ (and means that ϕ eventually holds at a future time), and G ϕ holds for
¬(F ¬ϕ) (and means that ϕ always holds in the future).

1 Following [20] we use ϕ1 ∨ ϕ2 to handle open intervals in timed models.

436 Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey

Pointwise semantics. In this semantics, models are timed words ρ, and sat-
isfiability is no longer interpreted at a date t ∈ R but at a position i ∈ N in the
timed word. For a timed word ρ = (σ, τ) with σ = (σi)i≥0 and τ = (τi)i≥0, we
define the satisfaction relation (ρ, i, α) |=p ϕ inductively as follows (where α is a
valuation for the set X of formula clocks):

(ρ, i, α) |=p p iff σi = p

(ρ, i, α) |=p x ∼ c iff τi − α(x) ∼ c

(ρ, i, α) |=p x.ϕ iff (ρ, i, α[x %→ τi]) |=p ϕ

(ρ, i, α) |=p ϕ1 U ϕ2 iff ∃j > i s.t. (ρ, j, α) |=p ϕ2

and ∀i < k < j (ρ, k, α) |=p ϕ1

(ρ, i, α) |=p ϕ1 S ϕ2 iff ∃j < i s.t. (ρ, j, α) |=p ϕ2

and ∀j < k < i (ρ, k, α) |=p ϕ1

We write ρ |=p ϕ whenever (ρ, 0,0) |=p ϕ.

Example 1. Consider the timed word ρ = (a, 0)(a, 1.1)(b, 2) . . . which, as already
mentioned, can be viewed as the time state sequence

κ = ({a}, [0])(∅, (0, 1.1))({a}, [1.1, 1.1])(∅, (1.1, 2))({b}, [2, 2]) . . .

If ϕ = x.F (x = 1 ∧ y.F (y = 1 ∧ b)), then ρ 	|=p ϕ whereas κ |=i ϕ. This is due
to the fact that there is no action at date 1 along ρ.

2.2 Metric Temporal Logic (MTL)

The logic MTL [15,7] extends the logic LTL with time restrictions on “until”
modalities. Here again, we first define MTL+Past:

MTL+Past 0 ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 UI ϕ2 | ϕ1 SI ϕ2

where p ranges over the set AP of atomic propositions, and I an interval in IQ.
MTL is the fragment of MTL+Past not using the operator S . We also define
MITL and MITL+Past as the fragments of MTL and MTL+Past in which intervals
cannot be singletons.

For defining the semantics of MTL+Past, we view MTL+Past as a fragment
of TPTL+Past: ϕ1 UI ϕ2 is then interpreted as x.(ϕ1 U (x ∈ I∧ϕ2)) and ϕ1 SI ϕ2

as x.(ϕ1 S (x ∈ I ∧ ϕ2)). As for TPTL, we will thus consider both the interval-
based (interpreted over time state sequences) and the pointwise (interpreted over
timed words) semantics. For both semantics, it is clear that TPTL is at least as
expressive as MTL, which in turn is at least as expressive as MITL.

We omit the constraint on modality U when [0,∞) is assumed. We write
U∼c for UI when I = {t | t ∼ c}. As previously, we use classical shorthands
such as FI or GI .

Example 2. In MTL, the formula ϕ of Example 1 can be expressed as F=1 F=1 b.
In the interval-based semantics, this formula is equivalent to F=2 b, and this is
not the case in the pointwise semantics.

On the Expressiveness of TPTL and MTL 437

3 TPTL Is Strictly More Expressive than MTL

3.1 Conjecture

It has been conjectured in [6,7,12] that TPTL is strictly more expressive than
MTL, and in particular that a TPTL formula such as

G (a⇒ x.F (b ∧ F (c ∧ x ≤ 2)))

can not be expressed in MTL. The following proposition states that this formula
is not a witness for proving that TPTL is strictly more expressive than MTL.

Proposition 1. The TPTL formula x.F (b∧F (c∧ x ≤ 2)) can be expressed in
MTL for the interval-based semantics.

Proof. Let Φ be the TPTL formula x.F (b∧F (c∧ x ≤ 2)). This formula expresses
that, along the time state sequence, from the current point on, there is a b
followed by a c, and the delay before that c is less than 2 t.u. For proving
the proposition, we write an MTL formula Φ′ which is equivalent to Φ over
time state sequences. Formula Φ′ is defined as the disjunction of three formulae
Φ′ = Φ′1 ∨ Φ′2 ∨ Φ′3 where:⎧⎨⎩

Φ′1 = F≤1 b ∧ F[1,2] c
Φ′2 = F≤1 (b ∧ F≤1 c)
Φ′3 = F≤1 (F≤1 b ∧ F=1 c)

b c

0 1 2
|= Φ′

1

b c

0 1 2
|= Φ′

2

b c

0 1 2
|= Φ′

3

F≤1 b ∧ F=1 c

Fig. 1. Translation of TPTL formula Φ in MTL

Let κ be a time state sequence. If κ |=i Φ
′, it is obvious that κ |=i Φ. Suppose

now that κ |=i Φ, then there exists 0 < t1 < t2 ≤ 2 such that2 (κ, t1) |=i b and
(κ, t2) |=i c. If t1 ≤ 1 then κ satisfies Φ′1 or Φ′2 (or both) depending on t2 being
smaller or greater than 1. If t1 ∈ (1, 2] then there exists a date t′ in (0, 1] such
that (κ, t′) |=i F≤1 b∧F=1 c which implies that κ |=i Φ

′
3. We illustrate the three

possible cases on Fig. 1. �
2 Here we abstract away the value for clock x as it corresponds to the date.

438 Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey

From the proposition above we get that the TPTL formula G (a ⇒ Φ) is
equivalent over time state sequences to the MTL formula G (a⇒ Φ′). This does
not imply that the conjecture is wrong, and we will now prove two results:

– x.F (b ∧ F (c ∧ x ≤ 2)) can not be expressed in MTL for the pointwise
semantics (thus over timed words)

– the more involved TPTL formula x.F (a ∧ x ≤ 1 ∧G (x ≤ 1 ⇒ ¬b)) can not
be expressed in MTL for the interval-based semantics.

This implies that TPTL is indeed strictly more expressive than MTL for both
pointwise and interval-based semantics, which positively answers the conjecture
of [6,7,12].

3.2 Pointwise Semantics

We now show that the formula Φ = x.(F (b ∧ F (c ∧ x ≤ 2))) cannot be ex-
pressed in MTL for the pointwise semantics. This gives another proof of the
strict containment of MTL with pointwise semantics in MTL with interval-based
semantics [10].

We note MTLp,n for the set of MTL formulae whose constants are multiple of p
and whose temporal height (maximum number of nested modalities) is at most n.
We construct two families of timed words (Ap,n)p∈Q,n∈N and (Bp,n)p∈Q,n∈N such
that:

– Ap,n |=p Φ whereas Bp,n 	|=p Φ for every p ∈ Q and n ∈ N,
– for all ϕ ∈ MTLp,n−3, Ap,n |=p ϕ ⇐⇒ Bp,n |=p ϕ.

The two families of models are presented in Fig. 2. Note that there is no action
between dates 0 and 2− p. It is obvious that Ap,n |=p Φ whereas Bp,n 	|=p Φ.

c c c c c c cb b b b

p
n

p
4n

0 2− p 2

c c c c c c cb b b

0 2− p 2

Ap,n

Bp,n

Fig. 2. Models Ap,n and Bp,n

We now give a sketch of the expressiveness proof:

– we first prove that given any integer n, models Ap,n+3 and Bp,n+3 can not
be distinguished by MTLp,n formulae after date 2−p. This result holds both
in the pointwise and the interval-based semantics.

– we then use the fact that there are no actions between 0 and 2 − p in the
models; in the pointwise semantics, a formula cannot point a date before
2 − p. This enables us to prove that the two models Ap,n+3 and Bp,n+3

can not be initially distinguished by any MTLp,n formula in the pointwise
semantics. This result does not hold in the interval-based semantics.

On the Expressiveness of TPTL and MTL 439

– assume Φ has an MTL equivalent Ψ . We define the granularity P as follows:
P =

∏
a/b∈Ψ 1/b. Let N be its temporal height. Then the models AP,N+3

and BP,N+3 cannot be distinguished by Ψ , according to the above result,
which contradicts that Ψ is equivalent to Φ.

Theorem 2. TPTL is strictly more expressive than MTL under the pointwise
semantics.

Since the MITL+Past formula F≤2 (c∧�S b) also distinguishes between the
families of models (Ap,n)p∈Q,n∈N and (Bp,n)p∈Q,n∈N, we get the corollary:

Corollary 3. MTL+Past (resp. MITL+Past) is strictly more expressive than
MTL (resp. MITL) for the pointwise semantics.

Note that the above result is a main difference between the timed and the
untimed framework where it is well-known that past does not add any expres-
siveness to LTL [14,11]. This had already been proved in [6] for MITL.

3.3 Interval-Based Semantics

As we have seen, the formula which has been used for the pointwise semantics can
not be used for the interval-based semantics. We will instead prove the following
proposition:

Proposition 4. The TPTL formula Φ = x.F (a ∧ x ≤ 1 ∧G (x ≤ 1 ⇒ ¬b)) has
no equivalent MTL formula over time state sequences.

Proof. Assume some formula Ψ ∈ MTL is equivalent to Φ over time state se-
quences. Let P be its granularity. W.l.o.g., we may assume that Ψ only uses
constraints of the form ∼ P , with ∼ ∈ {<,=, >}. Let N be the temporal height
of this formula. We write MTL−p,n for the fragment of MTL using only ∼ p con-
straints, and with temporal height at most n. Thus Ψ ∈ MTL−P,N .

Now, we build two different families of time state sequences Ap,n and Bp,n,
such that Φ holds initially in the first one but not in the second one. We will
then prove that they cannot be distinguished by any formula in MTL−p,n−3.

a a a a a a a a ab

0
p
2

p
2n

p
12n

a a a a a a a a ab

0
p
2

Ap,n

Bp,n

Fig. 3. Two timed paths Ap,n and Bp,n

Let us first define Ap,n. Along that time state sequence, atomic proposition a
will be set to true exactly at time points p

4n +α p
2n , where α may be any nonneg-

ative integer. Atomic proposition b will hold exactly at times (α + 1) · p2 −
4p
6n ,

440 Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey

with α ∈ N. As for Bp,n, it has exactly the same a’s, and b holds exactly at time
points (α + 1) · p2 −

p
6n , with α ∈ N. The portion between 0 and p

2 of both time
state sequences is represented on Fig. 3. Both time state sequences are in fact
periodic, with period p

2 . The following lemma is straightforward since, for each
equivalence, the suffixes of the paths are the same.
Lemma 5. For any positive p and n, for any nonnegative real x, and for any
MTL formula ϕ,

Ap,n, x |=i ϕ ⇐⇒ Bp,n, x +
p

2n
|=i ϕ (2)

Ap,n, x |=i ϕ ⇐⇒ Ap,n, x+
p

2
|=i ϕ (3)

Bp,n, x |=i ϕ ⇐⇒ Bp,n, x+
p

2
|=i ϕ (4)

We can then prove (by induction, see [9]) the following lemma:
Lemma 6. For any k ≤ n, for any p ∈ Q+, for any ϕ ∈ MTL−p,k, for any

x ∈
[
0, p2 −

(k+2)p
2(n+3)

)
, for any nonnegative integer α, we have

Ap,n+3, α
p

2
+ x |= ϕ ⇐⇒ Bp,n+3, α

p

2
+ x |= ϕ

As a corollary of the lemma, when n = N = k, p = P and α = x = 0, we get
that any formula in MTL−P,N cannot distinguish between models AP,N+3 and
BP,N+3. This is in contradiction with the fact that Ψ is equivalent to Φ, since Ψ
holds initially along AP,N+3 but fails to hold initially along BP,N+3. �

We can now state our main theorem:

Theorem 7. TPTL is strictly more expressive than MTL for the interval-based
semantics.

As a side result we get that TPTL under the pointwise semantics is strictly
more expressive than MTL under the interval-based semantics (assuming that
the latter is restricted to timed words). Also note that the formula Φ does not
use the U modality. However, it needs both F and G , as the fragment of TPTL
using only the F modality can be translated into MTL (see Section 4).

Since the MTL+Past formula F=1 (¬bS a) distinguishes between the two fam-
ilies of models (Ap,n)p∈Q,n∈N and (Bp,n)p∈Q,n∈N, we get the following corollary:

Corollary 8. MTL+Past is strictly more expressive than MTL for the interval-
based semantics.

The more involved MITL+Past formula3 F≥1 (¬a∧F−1
≥−1 (G−1 ¬a)∧¬bS a)

also distinguishes between the two families, so that we also get:
Corollary 9. MITL+Past is strictly more expressive than MITL for the interval-
based semantics.

To our knowledge, these are the first expressiveness result for timed linear-
time temporal logics using past modalities under the interval-based semantics.
3 Note that F−1

≥−1 ϕ holds when ϕ held at some point in the last time unit.

On the Expressiveness of TPTL and MTL 441

4 On the Existential Fragments of MTL and TPTL

TPTLF is the fragment of TPTL which only uses the F modality and which does
not use the general negation but only negation of atomic propositions. Formally,
TPTLF is defined by the following grammar:

TPTLF 0 ϕ ::= p | ¬p | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | F ϕ | x ∼ c | x.ϕ.

An example of a TPTLF formula is x.F (b ∧F (c ∧ x ≤ 2)) (see Subsection 3.1).
Similarly we define the fragment MTLF of MTL where only F modalities are
allowed:

MTLF 0 ϕ ::= p | ¬p | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | FI ϕ.

From Subsection 3.2, we know that, under the pointwise semantics, TPTLF

is strictly more expressive than MTLF , since formula x.F (b∧F (c∧ x ≤ 2)) has
no equivalent in MTL (thus in MTLF). On the contrary, when considering the
interval-based semantics, we proved that this TPTLF formula can be expressed
in MTLF (see Subsection 3.1). In this section, we generalize the construction of
Subsection 3.1, and prove that TPTLF and MTLF are in fact equally expressive
for the interval-based semantics.

Theorem 10. TPTLF is as expressive as MTLF for the interval-based seman-
tics.

Sketch of proof. From a TPTLF formula ϕ, we construct a system of difference
inequations Sϕ which recognizes the same models. Such a system has a finite
number of free variables corresponding to dates, these dates are constrained
by difference inequations, and propositional variables must be satisfied at some
dates. Here is an example of the system constructed for the formula of section 3.1.

Example 3. For the formula x.F (a ∧ F (b ∧ x ≤ 2)), we obtain:

S =
{
V : y1 %→ a, y2 %→ b
J = {y2 ≤ 2, y2 > y1, y1 > 0}

We explain now how to construct a MTL formula for such systems:

– if all variables of the system are sorted (r1 < y1 < · · · < yp < r2 with
r1, r2 ∈ Q), we generalize the technique used in proposition 1 to construct a
corresponding MTL formula.

– if all variables are bounded in the system, it can be obtained by an union of
previous systems using a region construction.

– a general system can be decomposed in bounded systems as follows:

0 >M︷ ︸︸ ︷ >M︷ ︸︸ ︷︸ ︷︷ ︸
bounded system

︸ ︷︷ ︸
bounded system

Each point on the line represents a variable, and a part denoted by “bounded
system” gathers variables whose differences are bounded. Two variables in
different bounded systems are separated by at least M t.u.

442 Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey

Note that this construction from TPTLF to MTLF is exponential due to the
ordering of variables and the region construction.

It is known [3] that the satisfiability problem for TPTL and MTL is undecid-
able for the interval-based semantics, whereas it has been proved recently that
the satisfiability problem for MTL is decidable but non primitive recursive for
the pointwise semantics [18]. As a corollary of the previous proof, we get:

Corollary 11. The satisfiability problem for TPTLF (and thus MTLF) is NP-
complete for the interval-based semantics.

5 Conclusion

In this paper we have proved the conjecture (first proposed in [4]) that the logic
TPTL is strictly more expressive than MTL. However we have also proved that
the TPTL formula G (a → x.F (b ∧ F (c ∧ x ≤ 1))), which had been proposed
as an example of formula which could not be expressed in MTL, has indeed
an equivalent formula in MTL for the interval-based semantics. We have thus
proposed another formula of TPTL which can not be expressed in MTL. We
have also proved that the fragment of TPTL which only uses the F modality can
be translated in MTL.

As side results, we have obtained that MTL+Past and MITL+Past are strictly
more expressive than MTL and MITL, resp., which is a main difference with the
untimed framework where past modalities do not add any expressive power to
LTL [14,11].

Linear models we have used for proving above expressiveness results can be
viewed as special cases of branching-time models. Our results thus apply to the
branching-time logic TCTL (by replacing the modality U with the modality
AU), and translate as: TCTL with explicit clocks [13] is strictly more expressive
than TCTL with subscripts [2], as conjectured in [1,24].

As further developments, we would like to study automata formalisms equiv-
alent to both logics TPTL and MTL. Several existing works may appear as in-
teresting starting points, namely [6,16,18,10].

References

1. R. Alur. Techniques for Automatic Verification of Real-Time Systems. PhD thesis,
Stanford Univ., Stanford, CA, USA, 1991.

2. R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Infor-
mation and Computation, 104(1):2–34, 1993.

3. R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality.
Journal of the ACM, 43(1):116–146, 1996.

4. R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressiveness. In
Proc. 5th Ann. Symp. Logic in Computer Science (LICS’90), pages 390–401. IEEE
Comp. Soc. Press, 1990.

5. R. Alur and T. A. Henzinger. Back to the future: towards a theory of timed
regular languages. In Proc. 33rd Ann. Symp. Foundations of Computer Science
(FOCS’92), pages 177–186. IEEE Comp. Soc. Press, 1992.

On the Expressiveness of TPTL and MTL 443

6. R. Alur and T. A. Henzinger. Logics and models of real-time: A survey. In Real-
Time: Theory in Practice, Proc. REX Workshop 1991, volume 600 of LNCS, pages
74–106. Springer, 1992.

7. R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressiveness.
Information and Computation, 104(1):35–77, 1993.

8. R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM,
41(1):181–204, 1994.

9. P. Bouyer, F. Chevalier, and N. Markey. About the expressiveness of TPTL and
MTL. Research Report LSV-05-05, LSV, ENS Cachan, France, 2005.

10. D. D’Souza and P. Prabhakar. On the expressiveness of MTL in the pointwise and
continuous semantics. Technical Report IISc-CSA-TR-2005-7, Indian Institute of
Science, Bangalore, India, 2005.

11. D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of
fairness. In Conf. Record 7th ACM Symp. Principles of Programming Languages
(POPL’80), pages 163–173. ACM Press, 1980.

12. T. A. Henzinger. It’s about time: Real-time logics reviewed. In Proc. 9th Int.
Conf. Concurrency Theory (CONCUR’98), volume 1466 of LNCS, pages 439–454.
Springer, 1998.

13. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model-checking
for real-time systems. Information and Computation, 111(2):193–244, 1994.

14. J. A. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, UCLA, Los
Angeles, CA, USA, 1968.

15. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2(4):255–299, 1990.

16. S. Lasota and I. Walukiewicz. Alternating timed automata. In Proc. 8th Int.
Conf. Foundations of Software Science and Computation Structures (FoSSaCS’05),
volume 3441 of LNCS, pages 250–265. Springer, 2005.

17. N. Markey and J.-F. Raskin. Model checking restricted sets of timed paths. The-
oretical Computer Science, 2005. To appear.

18. J. Ouaknine and J. B. Worrell. On the decidability of metric temporal logic. In
Proc. 19th Ann. Symp. Logic in Computer Science (LICS’05), pages 188–197. IEEE
Comp. Soc. Press, 2005.

19. A. Pnueli. The temporal logic of programs. In Proc. 18th Ann. Symp. Foundations
of Computer Science (FOCS’77), pages 46–57. IEEE Comp. Soc. Press, 1977.

20. J.-F. Raskin. Logics, Automata and Classical Theories for Deciding Real-Time.
PhD thesis, Univ. Namur, Namur, Belgium, 1999.

21. A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. Journal of the ACM, 32(3):733–749, 1985.

22. P. Thati and G. Rosu. Monitoring algorithms for metric temporal logic specifi-
cations. In Proc. 4th International Workshop on Runtime Verification (RV’04),
volume 113 of ENTCS, pages 145–162. Elsevier, 2005.

23. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. 1st Ann. Symp. Logic in Computer Science (LICS’86), pages
322–344. IEEE Comp. Soc. Press, 1986.

24. S. Yovine. Méthodes et outils pour la vérification symbolique de systèmes tempo-
risés. PhD thesis, INPG, Grenoble, France, 1993.

Modal Strength Reduction in Quantified

Discrete Duration Calculus

Shankara Narayanan Krishna1 and Paritosh K. Pandya2

1 Indian Institute of Technology, Bombay, India
krishnas@cse.iitb.ac.in

2 Tata Institute of Fundamental Research, India
pandya@tifr.res.in

Abstract. QDDC is a logic for specifying quantitative timing proper-
ties of reactive systems. An automata theoretic decision procedure for
QDDC reduces each formula to a finite state automaton accepting pre-
cisely the models of the formula. This construction has been implemented
into a validity/model checking tool for QDDC called DCVALID. Unfor-
tunately, the size of the final automaton as well as the intermediate
automata which are encountered in the construction can some times
be prohibitively large. In this paper, we present some validity preserv-
ing transformations to QDDC formulae which result into more efficient
construction of the formula automaton and hence reduce the validity
checking time. The transformations can be computed in linear time. We
provide a theoretical as well as an experimental analysis of the improve-
ments in the formula automaton size and validity checking time due to
our transformations.

1 Introduction

Various logics have emerged as useful formalisms for the specification of desired
behaviour of systems. The temporal logics have proved especially useful in the
specification of properties of reactive systems. The connection between logics
and automata provides an important foundation for many validity and model
checking algorithms. For example, logic S1S, Monadic second order logic over
finite words and Linear Temporal logic can all be decided using automata theo-
retic techniques [1,2]. Leading model checking tools such as MONA, SPIN and
NuSMV make use of these logic-to-automata translations.

Quantified Discrete-time Duration Calculus (QDDC) [11,12,3,13] is a highly
expressive logic for specifying properties of finite sequences of states (behaviours).
It is well suited to specifying quantitative timing properties of synchronous pro-
grams such as response time and latency [5]. QDDC is closely related to the
Interval Temporal Logic of Moszkowski [10] and Duration Calculus of Zhou et
al [16]. (See [11,15] for their relationship.)

QDDC provides novel interval based modalities for describing behaviours.
For example, the formula �(2P 30 !22¬Q3!2Q30 ⇒ (ΣR ≤ 3)) holds for a
behaviour σ provided for all fragments σ′ of σ which have (a) P true in the

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 444–456, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Modal Strength Reduction in Quantified Discrete Duration Calculus 445

beginning, (b) Q true at the end, and (c) no occurrences of Q in between, the
number of occurrences of states in σ′ where R is true is at most 3. Here, �

modality ranges over all fragments of a behaviour. Operator ! is like concate-
nation (fusion) of behaviour fragments and 22¬Q3 states invariance of ¬Q over
the behaviour fragment. Finally, ΣR counts number of occurrences of R within
a behaviour fragment. A precise definition of the syntax and semantics of QDDC
is given in Section 2.

The validity (and model checking) of QDDC formulae is decidable. An au-
tomata theoretic decision procedure allows construction of a finite state automa-
ton A(D) for each formula D such that the models of D are precisely the words
accepted by A(D) [11]. This construction is implemented into a tool DCVALID
[11,12] which can be used to check validity/satisfiability of a QDDC formula and
for model checking. The tool DCVALID is built on top of MONA [7,8].

It must be noted that the lower bound on the size of A(D) is non-elementary
in general. However, this complexity is not frequently observed in practice and we
have been able to check validity of many large formulae with our tool DCVALID
[11,13]. On the other hand, we have also encountered several formulae where the
automaton construction becomes prohibitively expensive.

In this paper, we present some validity preserving transformations of QDDC
formulae. These transformations replace the temporal operators �,�, ! with
suitable quantification, and in some cases they can eliminate these quantifiers
while preserving validity. Hence, we call our transformation as modal strength re-
duction (MSR). The objective of this transformation is to come up with formulae
which result in more efficient construction of the formula automaton.

In the paper, we provide a theoretical analysis to show that the MSR trans-
formation can lead to an exponential reduction in the size of the formula au-
tomaton. The transformation takes only linear time to compute. We also carry
out detailed experimental analysis to profile the effect our transformation on the
final and the intermediate automata sizes and on the time taken to compute
validity of QDDC formulae. We show a very significant improvement in the per-
formance of our tool DCVALID on some formulae of interest by using the MSR
transformation. Thus, the proposed transformation has practical utility and it
will be incorporated in next release of the DCVALID tool.

2 Quantified Discrete-Time Duration Calculus (QDDC)

Let Pvar be a finite set of propositional variables representing some observable
aspects of system state. VAL(Pvar) def= Pvar → {0, 1} be the set of valu-
ations assigning truth-value to each variable. We shall identify behaviours with
finite, nonempty sequences of valuations, i.e. VAL(Pvar)+. Given such a non-
empty finite sequence of valuations σ ∈ VAL+, we denote the satisfaction of a
QDDC formula D over σ by σ |= D.

Syntax of QDDC Formulae Let p range over propositional variables, P,Q over
propositions, c over positive integers and D,D1, D2 over QDDC formulae. Propo-
sitions are constructed from variables Pvar and constants 0, 1 (denoting true,

446 Shankara Narayanan Krishna and Paritosh K. Pandya

false resp.) using boolean connectives ∧, ¬ etc. as usual. The syntax of QDDC
is as follows.

2P 30 | 22P 3 | D1
!D2 | D1 ∧D2 | ¬D | ∃p.D |

η op c | ΣP op c where op ∈ {<,≤,=,≥, >}

Let σ ∈ VAL(Pvar)+ be a behaviour. Let #σ denote the length of σ and σ[i]
the i’th element. Let dom(σ) = {0, 1, . . . ,#σ − 1} denote the set of positions
within σ. The set of intervals in σ is Intv(σ) = {[b, e] ∈ dom(σ)2 | b ≤ e}.

Let σ, i |= P denote that proposition P evaluates to true at position i in σ.
We omit this obvious definition. We inductively define the satisfaction of QDDC
formula D for behaviour σ and interval [b, e] ∈ Intv(σ) as follows.

σ, [b, e] |= 2P 30 iff b = e and σ, b |= P
σ, [b, e] |= 22P 3 iff b < e and σ, i |= P for all i : b ≤ i < e
σ, [b, e] |= ¬D iff σ, [b, e] 	|= D
σ, [b, e] |= D1 ∧D2 iff σ, [b, e] |= D1 and σ, [b, e] |= D2

σ, [b, e] |= D1
!D2 iff for some m : b ≤ m ≤ e :
σ, [b,m] |= D1 and σ, [m, e] |= D2

Entities η and ΣP are called measurements. Term η denotes the length of the
interval whereas ΣP denotes the count of number of times P is true within the
interval [b, e] (we treat the interval as being left-closed right-open). Formally,

eval(η, σ, [b, e]) def= e− b

eval(ΣP, σ, [b, e]) def=
∑e−1

i=b

{
1 if σ, i |= P
0 otherwise

}
Then, σ, [b, e] |= t op c iff eval(t, σ, [b, e]) op c for a measurement t.

Call a behaviour σ′ to be p-variant of σ provided #σ = #σ′ and for all i ∈
dom(σ) and for all q 	= p, we have σ(i)(q) = σ′(i)(q). Then, let

σ, [b, e] |= ∃p.D iff σ′, [b, e] |= D for some p-variant σ′ of σ.
Finally, σ |= D iff σ, [0,#σ − 1] |= D. The modality �D

def= true!D!true

holds provided D holds for some subinterval, and its dual �D
def= ¬�¬D holds

provided D holds for all subintervals. For more details on logic QDDC, see [11].

Notation Consider a formula D over propositional variables Pvar. A pair σ, [b, e]
is called a model and σ, [b, e] |= D is as before. Let MOD denote the set of all
models over Pvar. For M ⊆MOD, define M |= D iff ∀ m ∈M, m |= D.

Definition 1. Let D(D′) denote an occurrence of D′ in D. Define D′ to be
modally free if D′ is not in scope of any modality !,�,� or quantifier ∀, ∃. Let
B+(D) denote a modally free occurrence of the sub formula D where D occurs in
scope of an even number of negations (i.e. positively). Similarly, B−(D) denotes
that D occurs modally freely and negatively. Let D(D′) ≡ D(D′′) abbreviate the
equivalence D(D′) ≡ D[D′′/D′] where D[D′′/D′] denotes the formula obtained
by replacing in D the occurrence D′ by D′′. &'

Modal Strength Reduction in Quantified Discrete Duration Calculus 447

Definition 2 (Validity Equivalence). Let D1 ≡e D2
def= ∀m ∈MOD.m |=

D1 iff m |= D2. Also, D1 ≡v D2
def= |= D1 iff |= D2. &'

Proposition 1. (a) ∀pD(p) ≡v D(p), (b) If D1 ≡e D2 and D1 occurs in D, then
D(D1) ≡e D(D2), (c) B+(∀p.D(p)) ≡v B+(D(p)), and (d) B−(∃p.D(p)) ≡v
B−(D(p)) provided that variables p do not occur elsewhere in B+ or B−. &'

Decidability of QDDC The following theorem characterizes the sets of models
of a QDDC formula D over propositional variables Pvar(D).

Theorem 1. For every QDDC formula D, we can effectively construct a fi-
nite state automaton A(D) over the alphabet VAL(Pvar(D)) such that for all
σ ∈ VAL(Pvar(D))∗, we have σ |= D iff σ ∈ L(A(D)). Hence, satisfiability
(validity) of QDDC formulae is decidable [11]. &'

DCVALID The reduction from formulae of QDDC to finite state automata as
stated in Theorem 1 has been implemented into a tool called DCVALID, which
also checks for the validity of formulae (see [11]). This tool is built on top of tool
MONA [7].

In the next section we consider how to transform formulae of the form
D1

! . . . !Dn and its negation to a form which leads to more efficient automaton
construction. We then specialize these transformations to the derived operators
�D and �D.

3 Modal Strength Reduction

Consider a formula of the formula DD = D1
! . . . !Dn over Pvar. Then,

σ, [b, e] |= DD iff ∃m1, . . . ,mn−1 such that taking m0 = b and mn = e we
have mi−1 ≤ mi and σ, [mi−1,mi] |= Di for 1 ≤ i ≤ n. To capture this chop-
ping of interval [b, e] into n parts at points mi, we shall introduce fresh witness
propositions, p1, . . . , pn−1 such that first occurrence of pi within [b, e] records the
position mi. We shall also define a formula αn(i,Di) which states that the first
occurrence of pi−1 is not later than the first occurrence of pi and between these
two positions the formula Di holds. Then D1

! . . . !Dn can be reformulated
using the witness propositions as the formula

∧n
i=1 α(i,Di). This is formalized

below.

Definition 3. Let 22P 3− def= 22P 3 ∨ 2 3 which is true provided that P holds for
all points of the (point or extended) interval except possibly the end point. Define

αn(1, D1)
def= (22¬p13− ∧D1)!2p130 !true

αn(n,Dn) def= 22¬pn−13−!2pn−130 !Dn

αn(i,Di)
def= 22¬pi−1 ∧ ¬pi3−!2pi−130 !(22¬pi3− ∧Di)!2pi30 !true

448 Shankara Narayanan Krishna and Paritosh K. Pandya

Formula Ordern states that first occurrences of propositions p1, . . . , pn−1 are in
the order 1 to n, i.e. Ordern

def=
∧n
i=1 αn(i, true).

1. Let P̂ var = Pvar ∪ {p1, . . . pn−1}. Let V̂ AL = P̂ var → {0, 1} be the set of
valuations of P̂ var. Let σ̂ denote behaviours with finite non-empty sequence
of valuations over V̂ AL and let M̂OD denote the set of all models over
P̂ var.

2. Let ÔMOD = {σ̂, [b, e] | σ̂, [b, e] |= Ordern} be the set of models over P̂ var
satisfying formula Ordern.

3. Define h : M̂OD →MOD such that h(σ̂, [b, e]) = σ̂ ↓ Pvar, [b, e].
4. Let f : MOD → 2M̂OD be such that f(σ, [b, e]) = {σ̂, [b, e] ∈ M̂OD | σ̂ ↓

Pvar = σ ∧ σ̂, [b, e] |= Ordern}.
5. Functions f and h can be extended to sets of models in point wise manner,

i.e. we can define f(M) and h(M ′) for M ⊆MOD and M ′ ⊆ M̂OD.

Every element of ÔMOD encodes a way of chopping [b, e] into n-parts.

Proposition 2. f(MOD) = ÔMOD. &'

Proposition 3. For all m ∈ MOD,m′ ∈ ÔMOD, we have m′ ∈ f(m) iff
m = h(m′). Hence, f(h(M ′)) = M ′ and M ⊆ h(f(M)). &'

The following formulae shall play an important role in the paper.

α̂+
n (D1, . . . , Dn) def= Ordern ∧

n∧
i=1

αn(i,Di) (1)

α̂−n (D1, . . . , Dn) def= Ordern ⇒
(

n∨
i=1

αn(i,¬Di)

)
(2)

In the rest of the paper, we shall omit the subscript n from Ordern, αn and βn.

Proposition 4. |=
∧n
i=1 α(i,Di) ⇒ Order.

Hence, α̂+(D1, . . . , Dn) ≡e
∧n
i=1 α(i,Di). &'

We now relate the truth of formula D1
! . . . !Dn to the truth of the formula

α̂+(D1, . . . , Dn). The following important theorem proves the correctness this
encoding. Its proof relies on the proposition following it. We omit the proofs
which can be found in the full version of the paper [9].

Theorem 2. σ, [b, e] |= D1
!D2

! . . . !Dn

iff σ̂, [b, e] |= α̂+(D1, . . . , Dn) for some σ̂, [b, e] ∈ f(σ, [b, e]) &'

Proposition 5. Let σ̂, [b, e] ∈ ÔMOD. Define πi(σ̂, [b, e]) as the position of first
occurrence of pi for 1 ≤ i < n−1. Also define π0(σ̂, [b, e]) = b and πn(σ̂, [b, e]) =
e. Then, for 1 ≤ i ≤ n and some QDDC formula D we have

σ̂, [πi−1(σ̂, [b, e]), πi(σ̂, [b, e])] |= D iff σ̂, [b, e] |= αn(i,D). &'

Modal Strength Reduction in Quantified Discrete Duration Calculus 449

Corollary 1. σ, [b, e] |= D1
!D2

! . . . !Dn

iff σ, [b, e] |= ∃p1 . . . ∃pn−1. α̂+(D1, . . . , Dn). &'

We now consider the formula ¬(D1
!. . .!Dn)and its relation to α̂−(D1, . . . , Dn).

Proposition 6. (a) |= (Order ⇒ ((¬α(i,D)) ⇔ α(i,¬D))).
(b)Hence, ¬ α̂+(D1, . . . , Dn) ≡e α̂−(D1, . . . , Dn). &'

Theorem 3. σ, [b, e] |= ¬(D1
!D2

! . . . !Dn) iff
σ, [b, e] |= ∀p1 . . . ∀pn−1. α̂−(D1, . . . , Dn). &'

3.1 MSR Transformations

Below, we list the equivalences which can be used to transform QDDC formulae.
The equivalences Tr A, Tr B follow immediately from the Corollary 1 and
Theorem 3. The equivalence Tr C follow from Tr B using the proposition 1(a).
The equivalences Tr D, Tr E follow from Tr A, Tr B using the proposition
1(c,d).

– (Tr A) D1
! . . . !Dn ≡e ∃p1 . . . ∃pn−1. α̂+(D1, . . . , Dn).

– (Tr B) ¬(D1
! . . . !Dn) ≡e ∀p1 . . . ∃pn−1. α̂−(D1, . . . , Dn).

– (Tr C) ¬(D1
! . . . !Dn) ≡v α̂−(D1, . . . , Dn).

– (Tr D) B+(¬(D1
! . . . !Dn)) ≡v B+(α̂−(D1, . . . , Dn)).

– (Tr E) B−(D1
! . . . !Dn) ≡v B−(α̂+(D1, . . . , Dn)).

Note that �D
def= true!D!true and �D

def= ¬(true!D!true). Using these,
we can specialize the above equivalences as follows.

– (Tr F) �D ≡e ∃p1, p2. α3(2, D).
– (Tr G) �D ≡e ∀p1, p2. (Order ⇒ α3(2, D)).
– (Tr H) �D ≡v Order ⇒ α3(2, D).
– (Tr I) B+(�D) ≡v B+(Order ⇒ α3(2, D)).
– (Tr J) B−(�D) ≡v B−(α3(2, D)).

Applying the above equivalences left-to-right eliminates modal operators by in-
troducing suitable quantifiers over temporal variables. Transformations A,B,
F,G can be applied to any subformula due to Proposition 1(b).

The application of transformations C,D,E and H,I,J eliminates all modally
free positive occurrences of � and ¬! operators as well as negative occurrences
of � and ! operators without introducing quantifiers. Note that the introduced
witness variables p1, . . . , pn must be fresh. With this precaution, the transfor-
mations can be recursively applied to resulting formulae. We shall denote the
result of repeated application of transformations C,D,E and H,I,J to a formula
D as MSR(D). Observe that MSR(D) can computed in time linear in the size
of D.

450 Shankara Narayanan Krishna and Paritosh K. Pandya

Example 1. The gas burner problem is fully described in the full version of this
paper [9]. To prove its correctness, we must establish the validity of a formula
G(winlen, leakbound) which has the form G = (�F1 ∧ �F2) ⇒ �F3. Here the
top level modal sub-formulae �F1 and �F2 occur negatively. Hence, MSR trans-
formation cannot be applied to them. However, �F3 occurs positively. Hence
applying Tr D, we get validity equivalent formula MSR(G) = (�F1∧�F2)⇒
(Order3 ⇒ α3(2, F3)). Using the definitions of Order and α3, this reduces to:
(�F1 ∧ �F2) ⇒ ((22¬p1 ∧ ¬p23−!2p130 !22¬p23−!2p230 !true)

⇒ (22¬p1 ∧ ¬p23−!2p130 !(22¬p23− ∧ F3)!2p230 !true))

Complexity We now study the effect of the transformations on the formula au-
tomaton size. Given a formula D let A(D) denote the minimal, deterministic
automaton for the formula as in Theorem 1. Let |A(D)| denote the size of this
automaton in number of states. Hence, |A(D)| = |A(¬D)|. Below, we character-
ize the size of the automaton for α̂−(D1, . . . , Dn). Note that due to Proposition
6 this size is same as the size for α̂+(D1, . . . , Dn).

Theorem 4. |A(α̂−(D1, . . . , Dn))| ≤
∑n

i=1 |A(Di)|+ n &'

Proof. Let us denote α̂−(D1, . . . , Dn) by α̂−. Given DFAs A(¬Di) over the al-
phabet V AL(Pvar), we can construct a DFA A(α̂−) for α̂− having requisite
number of states. This automaton has alphabet V AL(P̂ var). Figure 1 illustrates
the construction of α̂−(D1, D2, D3, D4). Each edge of A(α̂−) is labeled with a
label from A(Di) (such as a, b, c) augmented with a column vector giving values
of witness propositions 〈p1, p2, p3〉. The automaton A(α̂−) is basically the union
of A(¬Di) with some additional nodes and edges (we denote these fragments as
B(¬Di)). Automaton A(α̂−) functions as follows.
1. Beginning with the initial state of B(¬D1), the automaton enters B(¬Di)
when pi−1 = 1 for the first time. It stays within B(¬Di) mimicking A(¬Di)
while pi = . . . = pn−1 = 0. Such transitions are drawn with solid arrows in
Figure 1.
2. If input occurs violating Order, then A(α̂−) accepts by transiting to state qf .
In Figure 1 such transitions are drawn with dash-dot-dash lines.
3. A new state fini is added to B(¬Di) as the unique final state within it. Thus
any final state qfi in A(¬Di) is made non-final within B(¬Di). While mimicking
A(¬Di), if final state q′fi

of A(¬Di) is entered simultaneously with pi = 1 then
B(¬Di) transits to the accepting state fini. This is because between the first
occurrences of pi−1 and pi we have found behaviour satisfying ¬Di, i.e. α(i,¬Di)
holds for the full input sequence. On the other hand, if final state q′fi

of A(¬Di) is
entered while mimicking A(¬Di) with condition pi = 0, the automaton B(¬Di)
goes to non-accepting state qfi and continues mimicking A(¬Di).
4. If while mimicking a transition labeled d of A(¬Di) we encounter pi = 1, and
the transition does not lead to a final state of A(¬Di), then B(¬Di) is exited.
A(α̂−) then enters B(¬Di+1). Such transitions are drawn with dashed arrows in
Figure 1. The state entered is one which would arise by mimicking A(¬Di+1) on
input d. For example see the transition from q02 to q13 (and the more complex
one from q02 to q14 when both pi and pi+1 become true simultaneously).

Modal Strength Reduction in Quantified Discrete Duration Calculus 451

5. Since we have added one additional state fini for each B(¬Di) except the
last one B(¬Dn), and we have also used one additional state qf for violation of
Order, the total number of states is

∑n
i=1 |A(Di)|+ n. &'

Proposition 7. (a) |A(D1
! . . . !Dn)| can be of the order of 2max(|A(Di)|)

where 1 ≤ i ≤ n. (b) |A(�D)| and |A(�D)| can be of the order of 2|A(D)|.

Proof. (a) Consider the formula DD1 = (true!2p30 !η = (l− 1)) for any value
of l. This defines a language over {0, 1} where the lth letter from the right is 1.
It is well-known that any deterministic automaton recognizing this will have
at least 2l states. Now consider the formula DD2 = D1

! . . . !Dn with Di =
(2p30 !η = l!2p30) for some fixed i 	= 1 and Dj = true for all j 	= i. It is
easy to show as a variation of the first case that the size of any deterministic
automaton for this formula will be exponential in l. However, the size of the
automaton for the component Di is only l. Part (b) follows by noting that
�D = true!D!true. &'

The above theorem 4 and the proposition 7 show that transformations Tr C
and Tr F can give rise to an exponential reduction in the size (number of states)
of the automaton of a formula, while preserving validity.

4 Experimental Results

We apply the modal strength reduction transformations to some formulae to
study their effects on automata size and validity checking time. The validity
checking time is proportional to the sum of the formula automaton construction
time and the automaton size.

When the transformations Tr B or Tr G are applied to a formula D, we
denote the resulting formula by TrBG(D). Instead, when transformations Tr
C or Tr H are applied to the formula D, we denote the resulting formula by
TrCH(D). Note that D ≡e TrBG(D) and D ≡v TrCH(D).

Table 1 gives the improvement in the automata sizes and their computation
times due to TrBD and TrCH transformations on several examples. In each
case, we record (a) the time taken to compute the formula automaton, (b) the
size (number of state) of the final automaton, (c) a pair giving the maximum
size of the intermediate automata and the maximum number of BDD nodes
for representing the intermediate automata. In all tables a ↓ denotes that the
automaton construction could not be completed due to excessive BDD size (>
16777216 nodes).

The experiments are conducted using the tool DCVALID V1.4 [11] on a Linux
i686 dual processor PC having 1GB physical memory, 1 GB swap memory, clock
speed 1GHz and cache size 256 kb for both processors. The following artificially
created formulae are used in the experiments.

452 Shankara Narayanan Krishna and Paritosh K. Pandya

Fig. 1. The automata A(¬Di) on the left, and A(α̂−(D1, D2, D3, D4)), on the
right

Modal Strength Reduction in Quantified Discrete Duration Calculus 453

F1(i, j) = (Σ P ≤ i ∧ η ≤ j), F2 = (η = 25 ⇒ ΣP ≤ 4),
F3 = 22P 3!22¬P 3!22R3!22¬R3!22Q3!22¬Q3 ⇒ (η = 8!η = 2!η ≥ 3),
F4(i) = ((22P 33 ⇒ 22Q33)⇒ ΣR ≤ i).

Table 1. Effect of Transformations B,C,G & H on Automata Sizes

F TrCH(F) TrBG(F)

Time Final Max.
Size Size

�F1(3, 12) 00.17s 43 (3434,
9198)

�F2 02m 65802 (594046,
1675874)

¬(F3�F1(6, 7)) 02m 16 (968971,
3058671)

¬[F3 �F4(20) 13m 3 (1766509,
�F1(2, 4)] 6739628)

Time Final Max.
Size Size

00.07s 45 (173,
772)

00.17s 130 (517,
2321)

00.16s 139 (280,
1887)

00.37s 156 (717,
4269)

Time Final Max.
Size Size

00.12s 43 (1719,
4601)

01m 65802 (363817,
1027689)

02m 16 (835219,
2601408)

05m 3 (1187634,
3811428)

In order to profile the improvement in validity checking time, we applied
the full MSR(D) transformations as outlined in Section 3.1 to some benchmark
QDDC examples drawn from the literature. These examples include (a) the
Gas Burner problem, (b) the Lift controller problem, (c) the jobshop scheduling
problem, and (d) the delay-insensitive oscillator (see [11]). In Table 2, we report
the times taken to check the validity of the gas burner formula G versus the
validity of MSR(G) using the tool DCVALID (see Example 1). Similar tables
for the other problems can be found in the full version of the paper [9].

5 Discussion

In this paper, we have proposed some modal strength reduction (MSR) trans-
formations for QDDC formulae. These transformations preserve the validity of
formulae while reducing the size of the finite state automaton accepting the
models of the formula. In Proposition 7, we have shown that the construct
¬(D1

! . . . !Dn) can give rise to an exponential blowup in the size of the for-
mula automaton. Compared with this, Theorem 4 shows that the automaton for
the validity equivalent formula α̂−(D1, . . . , Dn) is only linear in the size of its
component automata. Thus, theoretically the MSR(D) transformation can give
rise to up to an exponential reduction in size (number of states) of the formula
automaton. Note that computing MSR(D) takes time which is linear in the size
of D. The MSR(D) transformation introduces auxiliary variables. Hence, The
reduction in the automaton state size is achieved at the cost of increasing the
alphabet size of the automaton. However, due to the use of efficient BDD-based
data structure for representing the transition table, this does not create propor-

454 Shankara Narayanan Krishna and Paritosh K. Pandya

tionate increase in the computation time in tool DCVALID. Hence, our technique
leads to improvement in the validity checking time for QDDC formulae.

In order to evaluate the practical significance of the MSR transformations, we
have carried out experiments measuring the improvement due to MSR in the size
of the formula automaton, the time taken for computing the formula automaton
as well as the validity checking time for many formulae. Some of these results are
presented in Tables 1, 2, and the rest can be found in the full version of the paper
[9]. These results show a tremendous improvement (of 3-4 orders of magnitude) in
the automaton size and validity computation time for many formulae of interest.
The MSR transformations allow us to handle significantly larger instances of the
benchmark Gas Burner and the Jobshop scheduling problems. Hence, the MSR
transformations are of practical importance and they will be incorporated in the
next release of the DCVALID tool.

In other examples, such as the lift controller and delay intensive oscillator, the
validity checking time reduces only to to 50% to 70% of the original using MSR.
These examples contain a large boolean combination of many small formulae
leading to the construction of product of a large number of small automata
causing state space explosion. It is our observation that MSR transformations
are most effective when the complexity of the automaton construction is due to
modal operators such as ¬(D1

! . . . !Dn) or �Di and where the sub-formula
Di contains the duration construct

∑
P ∼ k with moderately large constant k.

Such formulae occur when specifying schedulability and performance constraints.
One interesting new feature is allowing explicit declaration of “singleton”

(or first-order) variables within the logic QDDC. Such variables are constrained
to be true exactly at one position within any behaviour. The tool DCVALID
allows the use of such variables and modalities are in fact modelled internally as
quantification over such singleton variables. Singleton variables are handled effi-
ciently using special techniques (e.g. guidance [8]) in the underlying tool MONA
on which DCVALID is built.

The MSR transformations introduce auxiliary variables in the validity equiva-
lent formula. One potential optimization is to replace these variables by singleton
variables. However, a quick examination of the automaton for α̂−(D1, . . . , Dn) in
Theorem 4 and the lower bound on the size of the automaton for ¬(D1

!. . .!Dn)
in Proposition 7 show that the resultant automata sizes are not changed by re-
formulation using singleton variables. Hence, using singleton variables does not
affect the size reduction due to MSR transformations. Our experiments with
the DCVALID tool indicate that using singleton auxiliary variables in the MSR
transformation actually increases the validity checking time. This is due to the
additional need for ensuring singleton-ness during the formula automaton con-
struction.

Related Work Hansen [6] and Skakkebaek [14] were the first to investigate the au-
tomata based tools for checking validity of Discrete Duration Calculus. MONA
[7,8] is a sophisticated tool for the construction of automata recognizing the
models of formulae of the monadic second order logic over finite words. Many
sophisticated techniques [8] are used in the construction of the formula automa-

Modal Strength Reduction in Quantified Discrete Duration Calculus 455

ton in MONA. Our tool DCVALID [11] is built on top of MONA, and it benefits
from all these optimizations. Our transformations lead to further improvements
in the MONA automaton construction. Gonnord et al [5] have investigated the
translation of QDDC to symbolic automata. Franzle [4] has independently pro-
filed the performance of DCVALID checker on the gas burner problem and some
scheduling problems. Franzle has shown that bounded model checking using
SAT solving can be more efficient on instances of such problems where short
counter examples exist. But, with MSR transformations we obtain several or-
ders of magnitude improvement in validity checking of the gas burner and the
jobshop scheduling problems which makes DCVALID comparable with the BMC
approach of Franzle [4]. Thus, in our view, both techniques have their applica-
bility. Recently, Chakravorty and Pandya [3,13] have proposed a digitization
approach to validity checking of dense-time duration calculus by reducing it to
discrete time validity checking in QDDC. The resulting QDDC formulae are
particularly benefitted by the MSR transformations (see Sharma et al [13]).

Table 2. Effect of MSR on Checking Validity of Gas Burner

Parameters G MSR(G)

Time taken

winlen = 30, leakbound = 3 13.26s 00.24s

winlen = 45, leakbound = 3 03m 15.88s 00.53s

winlen = 60, leakbound = 3 01h 02m 55s 00.93s

winlen = 1000, leakbound = 40 ↓ 01h11m24s

winlen = 2000, leakbound = 100 ↓ 13h36m59.99s

References

1. J.R. Buchi, Weak second-order arithmetic and finite automata, Z. Math. Logik
Grundl. Math. 6, 1960.

2. C.C. Elgot, Decision problems of finite automata design and related arithmetics,
Trans. Amer. Math. Soc. 98, 1961.

3. Chakravorty, G. and P.K. Pandya, Digitizing Interval Duration Logic, in Proceedings
of CAV 2003, LNCS 2725, pp 167-179, 2003.

4. M. Fränzle and C. Herde, Efficient SAT engines for concise logics: Accelerating
proof search for zero-one linear constraint systems, In Proceedings of LPAR 2003,
LNCS 2850, pp 300-314, 2003.

5. L. Gonnord, N. Halbwachs and P. Raymond, From Discrete Duration Calculus to
Symbolic Automata, in ENTCS Proceedings of SLAP’04, Barcelona, Spain, 2004.

6. M.R. Hansen, Model-Checking Duration Calculus, Formal Aspects of Computing,
1994.

7. J. G. Henriksen, J. Jensen, M. Jorgensen, N. Klarlund, B. Paige, T. Rauhe, and
A. Sandholm, Mona: Monadic Second-Order Logic in Practice, in Proceedings of
TACAS’95, LNCS 1019, Springer-Verlag, 1996.

456 Shankara Narayanan Krishna and Paritosh K. Pandya

8. N. Klarlund, A. Møller and M. I. Schwartzbach, MONA Implementation Secrets,
Proceedings of CIAA 2000, LNCS 2088, pp 182-194, 2001.

9. S. N. Krishna and P. K. Pandya, Modal Strength Reduction in QDDC, Technical
Report, 2005 (www.cse.iitb.ac.in/∼krishnas/fsttcstr.ps).

10. B. Moszkowski, A Temporal Logic for Multi-Level Reasoning about Hardware, in
IEEE Computer, 18(2), 1985.

11. P. K. Pandya, Specifying and Deciding Quantified Discrete-time Duration Calculus
Formulae using DCVALID: An Automata Theoretic Approach, in Proceedings of
RTTOOLS’2001, Denmark, 2001.

12. P. K. Pandya, Model checking CTL*[DC], in Proceedings of TACAS 2001, LNCS
2031, pp 559-573, 2001.

13. B. Sharma, P.K. Pandya and S. Chakraborty, Bounded Validity Checking of In-
terval Duration Logic, Proceedings of TACAS 2005, LNCS 3440, pp 301-316, 2005.

14. J.U. Skakkebaek and P. Sestoft, Checking Validity of Duration Calculus Formulas,
Technical Report ID/DTH JUS 3/1, Department of Computer Science, Technical
University of Denmark, 1994.

15. Zhou Chaochen and M.R. Hansen, Duration Calculus: A formal approach to real-
time systems, Springer, 2004.

16. Zhou Chaochen, C.A.R. Hoare and A.P. Ravn, A Calculus of Durations, Info. Proc.
Letters, 40(5), 1991.

Comparing Trees Via Crossing Minimization

Henning Fernau1,2, Michael Kaufmann1, and Mathias Poths1

1 Univ. Tübingen, WSI für Informatik, Sand 13, 72076 Tübingen, Germany
{fernau/mk/poths}@informatik.uni-tuebingen.de

2 Univ. Hertfordshire, Comp. Sci., College Lane, Hatfield, Herts AL10 9AB, UK

Abstract. Two trees with the same number of leaves have to be em-
bedded in two layers in the plane such that the leaves are aligned in
two adjacent layers. Additional matching edges between the leaves give
a one-to-one correspondence between pairs of leaves of the different trees.
Do there exist two planar embeddings of the two trees that minimize the
crossings of the matching edges ? This problem has important applica-
tions in the construction and evaluation of phylogenetic trees.

1 Introduction

The comparison of trees has applications in various areas like text data bases,
bioinformatics, compiler construction etc. Various algorithms for different mod-
els for comparisons have been proposed. Keywords are tree matching, tree align-
ment, tree editing [12,13,14,15,16], a nice overview being [3]. Motivated by dis-
cussions with researchers from bioinformatics like D. Huson and D. Bryant, we
propose to compare two tree structures by finding two most similar left-to-right
orderings of their leaves. The ordering of the leaves can be made best visible by
drawing one tree downward from the root and aligning all the leaves on a hori-
zontal line. The leaves of the other tree are also aligned parallel to the first line
and the corresponding tree structure is drawn from the leaves upside downward
to the root. Corresponding leaves from the two trees are connected by matching
edges.

Let L(T) denote the leaves of a tree T . A linear order < on L(T) is called
suitable if T can be embedded into the plane such that L(T) is mapped onto
a straight line (layer) in the order given by <. A two-tree (T1, T2;M) is given
by a pair of rooted binary trees (T1, T2) with perfect matching M ⊆ L(T1) ×
L(T2), where the matching is given by a bijective labeling λi : L(Ti) → Λ with
(�1, �2) ∈M iff λ1(�1) = λ2(�2). A drawing of (T1, T2;M) is given by two suitable
linear orders <1 and <2 on L(T1) and L(T2), respectively. We assume that a
drawing is realized by embedding L(T1) and L(T2) into two parallel lines L1 and
L2, so that all nodes of Ti lie within one of the half-planes described by L3−i.
Hence, only matching edges may cross. The number of crossings is independent of
the chosen realization. Let cr(T1, T2,M,<1, <2) denote the number of crossings
in the drawing of (T1, T2;M) given by <1 and <2. A two-tree (T1, T2;M) is
called drawable if cr(T1, T2,M,<1, <2) = 0 for some linear orders <1 and <2.

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 457–469, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

458 Henning Fernau, Michael Kaufmann, and Mathias Poths

Very simple non-drawable two-trees are shown in Fig. 2. These are the smallest
examples of non-drawable two-trees: all two-trees with three leaves are drawable.

Let cr(T1, T2,M,<1, ·) denote the minimum value of cr(T1, T2,M,<1, <2)
for all suitable orders <2, and cr(T1, T2,M, ·, ·) denote the minimum value of
cr(T1, T2,M,<1, <2) for all suitable orders <1 and <2. An instance of two-
tree crossing minimization (TTCM) is given by a two-tree (T1, T2;M),
and the parameter, a positive integer k. Question: Is cr(T1, T2,M, ·, ·) ≤ k ?An
instance of one-tree crossing minimization (OTCM) is given by a two-tree
(T1, T2;M), a suitable fixed order <1 on L(T1), and the parameter, a positive
integer k. Question: Is cr(T1, T2,M,<1, ·) ≤ k ?

A possible application from bioinformatics for the variant one-tree cross-
ing minimization is that for a known species tree different gene trees should
be compared to the species tree. The more general variant two-tree crossing
minimization supports tasks like: Compare different construction methods for
phylogenetic trees for some data set or compare multiple gene trees [11].

A related important problem from graph drawing [4] is the two-sided
crossing minimization problem (TSCM) for bipartite graphs, where the ver-
tices within each layer are connected only to vertices of the other layer. The main
differences are that the vertices might have more than one incident edge and that
no trees restrict the possible orderings. two-sided crossing minimization is
NP-complete, and the problem remains NP-complete even if the order of one
of the layers is fixed [8] (one-sided crossing minimization(OSCM)). Both
problems are fixed-parameter tractable. In the case of a binary tree with n leaves,
there are exactly 2n−1 different leaf orders implied by different orderings of the
subtrees. This is in contrast to the n! permutations which are possible in OSCM.

Similarly related is the problem of finding an embedding of a graph in
the plane that minimizes the number of crossings; this problem remains NP-
complete even if the degree of the graph is bounded by three. Notice that a
two-tree (plus matching edges) obeys this degree bound. Moreover, in that case,
the crossing minimization problem is known to be fixed-parameter tractable [9].

Since we like to talk about left and right subtrees and these notions usually
depend on the parent’s position, let us fix the following convention: We assume
that all our trees are drawn either downwards (the upper tree) or upwards (the
bottom tree); then, “left” and “right” refers to how an observer would name these
relative directions when viewing such a drawing. More specifically, in a two-tree
(T1, T2), T1 is the upper and T2 is the bottom tree. In a tree T = (V,E) with
root r, the notion of a least common ancestor lca(X) of a non-empty set X ⊆ V
is well-defined. Given X ⊆ V , let the ancestral tree T 〈X〉 = (V ′, E′) be the
given by V ′ = X ∪ lca(X) and xy ∈ E′ iff there is a path P from x to y in T
and no other vertex z ∈ V ′ is on P . Conversely, for x ∈ V , the descendants tree
T [x] is the graph induced by all vertices y of T such that the path from y to the
root r contains x. Furthermore, we may talk about the left and the right child
of an inner node x, written lx and rx, respectively.
Results. (1) We improve on the dynamic programming approach exhibited in [6]
to solve OTCM in time O(n log2 n). (2) We give an linear-time algorithm for

Comparing Trees Via Crossing Minimization 459

the drawability test. (3) We prove NP-completeness for TTCM. (4) We show
in the main part that TTCM is fixed-parameter tractable.

2 The OTCM Problem

Let (T1, T2;M) be a two-tree with a fixed suitable order <1 on L(T1). The task
is to find a suitable order <2 on L(T2) that minimizes the number of crossings of
matched edges. We are going to give a dynamic programming solution to OTCM.
Therefore, notice that any inner node v of T2 defines a subproblem in the follow-
ing sense: let L be the leaves from T1 that are matched to leaves from L(T2[v]);
then, consider the two-tree (T1, T2)[v] = (T1 〈L〉 , T2[v],M ∩(L×L(T2[v]))), with
the order <1 restricted to L. For an inner node v of T2, cr(T2(lv, rv)) denotes
the number of pairwise crossings of the matching edges incident with leaves from
L(T2[lv]) and L(T2[rv]). Note that the total number of crossings for a certain
embedding can be expressed as

∑
v cr(T2(lv, rv)). Hence, we can express the

minimum crossing number by the following recursion:

cr((T1, T2)[v], <1, ·) = cr((T1, T2)[lv], <1, ·) + cr((T1, T2)[rv], <1, ·)
+ min{cr(T2(lv, rv)), cr(T2(rv, lv))}

This recursion can be solved in a naive way in time O(n2). We give a sketch
of the proof and show how to improve this time complexity.

Firstly, we show how to compute cr(T2(lv, rv)). cr(T2(lv, rv)) can be ex-
pressed as the sum over all � ∈ L(T2[lv]), where each term gives the number
of r ∈ L(T2[rv]) to the left of �; we call this number the rank of �. This sum can
be determined by a simple sweep in time linear in |L(T2[v])|. Since the subtrees
T2[lv] and T2[rv] are disjoint, the total time complexity is O(n2), where n is the
number of leaves.

Alternatively, we can keep the leaves in a balanced search tree. We have to
determine the rank of the leaves in L(T2[rv]) within L(T2[lv]). For each single leaf
in L(T2[rv]) this can be done in timeO(logn). Hence, it takesO(|L(T2[rv])| log n)
time. Vice-versa we can compute the ranks of the leaves from L(T2[lv]) within
L(T2[rv]) in time O(|L(T2[lv])| log n). Since both sums are of the same type, we
can choose the cheaper alternative and solve the recursion in time T (|L(T2[v])|) =
T (|L(T2[lv])|)+T (|L(T2[rv])|)+min{|L(T2[lv])|, |L(T2[rv])|} logn. By induction,
we can easily prove that T (n) = O(n log2 n).

Theorem 1. In time O(n log2 n), we can solve the OTCM problem, where n is
the number of leaves.

3 An Efficient Algorithm for the Non-crossing Case

Theorem 2. Given a two-tree (T1, T2;M), its drawability can be decided in lin-
ear time.

460 Henning Fernau, Michael Kaufmann, and Mathias Poths

Proof. The two input trees together with the matching edges can be naturally
directed upward having the two roots as single source and sink respectively.
Then, we can directly apply the linear time algorithm for upward planarity of
acyclic digraphs with a single source [2].

4 The General Case

Theorem 3. two-tree crossing minimization is NP-complete.

Proof. Membership in NP is clear. Next, we give a reduction of the MAXCUT
problem with unit weights. The MAXCUT problem is to partition the vertex
set V into V1 and V2 for a given graph G = (V,E), such that |{e = (v, w) ∈ E
with v ∈ V1 and w ∈ V2}| is maximized.

So, let G = (V,E) with V = {1, . . . , n} be an instance of MAXCUT. From G,
we construct an instance of the two-tree crossing minimization problem,
so that we have a ’backbone’-path a1, b1, . . . , an, bn, C in both of the trees T1,
T2, which, with the leaf-layers, partitions the drawing area into four parts that
later give us the membership of each vertex to V1 or V2, respectively. Let a1 be
the root in each tree, C is one of the leaves. For each vertex v ∈ V , we connect
two representative nodes a′v, b

′
v to the corresponding backbone nodes av, bv in

each tree. Moreover, to each of those representative nodes a′v, b
′
v, we have to

connect further representatives in the leaf-layer, say Av, Bv; Av-leaves shall be
matched to the Bv-leaves of the other tree and vice versa with n5 edges for each
v = 1, . . . , n. For each edge e = {v, w} ∈ E, we create leaf-vertices av,w and
aw,v and connect both pairwise by matching edges. Furthermore, we connect a′v
with the leaf nodes av,w for all e = {v, w} ∈ E. We also connect the two C
leaves of the backbone to each other via n7 edges. To make the trees binary,
every vertex that is connected to more than one other vertex is substituted by a
small binary subtree with an appropriate number of leaves. We can observe the
following facts:

1. In any optimum solution, there is no crossing between edges adjacent to
C-nodes and (Av −Bv)-edges.

2. In any optimum solution, the a′v- and b′v- vertices are on different sides of
the backbone in both trees. The side for a′v in T1 is different from that in
T2.

3. In any optimum solution, the number of edges (av,w, aw,v) crossing the back-
bone connection is minimized, and the number of edges (av,w, aw,v) which
do not cross the backbone is maximized.

Now, we define V1 = {i | av is on the left-hand side of the backbone in T1}
and V2 = {i | av is on the right-hand side of the backbone in T1} for splitting
V into two disjoint sets V1 and V2. From our observations, we can see that this
is an optimal solution for the MAXCUT problem. Obviously, this construction
can be built in polynomial time. Hence the reduction of MAXCUT to TTCM
is completed.

Comparing Trees Via Crossing Minimization 461

Parameterized complexity and algorithmics is now an established way of
dealing with hard problems that have a natural parameter in its definition. The
idea is that, for small parameter values, we can get away with a polynomial-time
algorithm, where the degree of the polynomial is independent of the parameter.
This is the approach we take in the next section.

(a) balanced (b) unbalanced

Fig. 1. The two types of trees to be analyzed.

5 Fixed-Parameter Tractability

A parameterized problem P is a subset of Σ∗ × N, where Σ is a fixed alphabet
and N is the set of all non-negative integers. Therefore, each instance of the
parameterized problem P is a pair (I, k), where the second component k is
called the parameter. The language L(P) is the set of all YES-instances of P . We
say that the parameterized problem P is fixed-parameter tractable [5] if there is
an algorithm that decides whether an input (I, k) is a member of L(P) in time
f(k)|I|c, where c is a fixed constant and f(k) is a recursive function independent
of the overall input length |I|. The class of all fixed-parameter tractable problems
is denoted by FPT . Ignoring the polynomial part of a parameterized algorithm,
we write O∗(f(k)) to indicate the non-polynomial running time estimate.

5.1 Quadruple Trees

To establish our results, we need a complete analysis of what happens if we
restrict ourselves to the case of two trees T1 and T2 each having four leaves
labeled a, b, c, d. We will also refer to such small trees as quadruple trees and the
four leaf labels are then called a quadruple. Since our trees T = Ti are binary,
we can have only two different cases: T has depth two and is hence balanced ; T
has depth three and is unbalanced, see Fig 1. We will show that there are only
two types of non-drawable quadruple trees as depicted in Fig. 2.

Let us first analyze the balanced trees. If we assume a labeling a, b, c, d in
this sequence along the leaves of a balanced tree (in the sequence as shown in

462 Henning Fernau, Michael Kaufmann, and Mathias Poths

Fig. 1), then let [abcd] denote the different labelings of leaves that can be obtained
by different drawings of that particular tree, i.e., by redefining (swapping) the
left/right child relations in that tree. We can observe the following possibilities,
where B1 ∩B2 = B1 ∩B3 = B2 ∩B3 = ∅:

– B1 = [abcd] = {abcd, abdc, bacd, badc, cdab, cdba, dcab, dcba},
– B2 = [acbd] = {acbd, acdb, bdac, bdca, cabd, cadb, dbac, dbca}, and
– B3 = [adbc] = {adbc, adcb, bcad, bcda, cbad, cbda, dabc, dacb}.

(a) balanced (b) unbalanced

Fig. 2. The two types of contradicting quadruple two-trees.

Lemma 1. B1, B2, B3 are the three mutually disjoint equivalence classes of leaf
labelings for balanced trees that together exhaust all 24 permutations of a, b, c, d.

If we assume that both T1 and T2 are balanced quadruple trees, then we can
conclude from Lemma 1:

Corollary 1. Let T1 and T2 be balanced quadruple trees. Let L1
i (L2

i , resp.) be
the two two-element label sets that label leaves reachable from the first (second,
resp.) child of the root of Ti. Then, the pair (T1, T2) can be drawn without cross-
ings iff L1

1 = L1
2 or L1

1 = L2
2. Hence, non-drawability in the balanced quadruple

tree case means that, with L1
1 = {x, y}, x ∈ L1

2 and y ∈ L2
2.

The unbalanced quadruple trees can be also treated with a case-by-case analysis.

Corollary 2. Let T1 and T2 be unbalanced quadruple trees. Assume (w.l.o.g.)
that T1 and T2 are drawn as in Fig. 1 (of course, T2 must be flipped to get the

Comparing Trees Via Crossing Minimization 463

root at the bottom), with labels a, b, c, d attached to the leaves of T1 in that order.
Then, the pair (T1, T2) is drawable iff either the third leaf of T2 is not labeled c
or the last leaf of T2 is not labeled with one of the first two labels of T1.

Hence, such a pair cannot be drawn iff the third leaf coincides and the last
leaf of T2 is among the first two leaves of T1. Comparing the classes of unbalanced
trees with those of balanced trees, one can see:

Corollary 3. Let T1 and T2 be quadruple trees, where T1 is balanced and T2 is
unbalanced (or vice versa). Then, the pair (T1, T2) is drawable.

5.2 Quadruples Are All About Inconsistencies

The following theorem shows that the drawability of a two-tree only depends on
the drawability of the induced quadruple trees.

Theorem 4. Let (T1, T2;M) be a two-tree with labelings λi : L(Ti) → Λ. If
cr(T1, T2,M, ·, ·) > 0, then there exists a quadruple Q = {a, b, c, d} ⊆ Λ such
that cr

(
T1

〈
λ−1

1 (Q)
〉
, T2

〈
λ−1

2 (Q)
〉
,M ∩ (λ−1

1 (Q)× λ−1
2 (Q)), ·, ·

)
> 0.

We will present a recursive algorithm which either finds such an quadruple,
or it provides a drawing of the two-tree. This algorithm will not only prove this
structural result that gives a characterization of drawable two-trees in terms of
forbidden substructures, but also provides the backbone of two FPT algorithms
that are presented in the following.

Proof. Let (T1, T2;M) be the two-tree and Λ the set of labels associated to the
leaves. W.l.o.g., |Λ| > 1.

We assume that each inner node provides links to its two children and in
addition permanent and temporary information attached to each such link. The
permanent information p(�) attached to link � is either L,R or ∗, meaning:

L This link leads to the left child.
R This link leads to the right child.
∗ It is not yet determined if this link leads to the left or to the right child.

The permanent information indicates a commitment how the links are to be
drawn (either forced or without loss of generality) in order to obtain a crossing-
free embedding of the two-tree; once fixed, it will not be changed in later stages of
the algorithm. The temporary information is only used to either produce further
evidence that allows to make further commitments of the permanent information
or to provide a contradictory quadruple.

In the initialization phase of our algorithm, we (arbitrarily) set p(�1) = L and
p(�2) = R for the two links emanating from the root of T2. All other permanent
information is set to ∗. This defines the function p (that we use both for T1 and
for T2). Thus initiated, we call embed(T1, T2, p). The way how the permanent
information is initiated and updated shows that the following is always true:
Claim 1: Let n be an inner node with emanating links �1 and �2. Then, p(�1) = L
iff p(�2) = R, and p(�1) = R iff p(�2) = L.
The temporary information t(�) attached to link � is either l, r or m, meaning:

464 Henning Fernau, Michael Kaufmann, and Mathias Poths

l All links �′ below (i.e., in direction to the leaves) satisfy t(�′) = l.
r All links �′ below satisfy t(�′) = r.
m Mixed case: some links below are marked l and some are marked r.

The temporary information is processed bottom-up as follows:

1. As described in Alg. 1 in detail, the links leading to the leaves of the tree to
be processed are assigned either l or r.

2. Let n be an inner node (besides the root) where to both links �1 and �2
emanating to its two children, the temporary information has been assigned,
such that the previous situation does not apply. Then, to the link � that
leads to n we assign t(�) according to the following table:

t(�1) l l l r r r m m m
t(�2) l r m l r m l r m
t(�) l m m m r m m m e

Here, e signals an error case: we have found a quadruple situation correspond-
ing to the balanced tree case in Fig. 2. Hence, there is no way of finding a
crossing-free embedding of the two-trees, and we can abort here.

Interestingly, we can also update the permanent information of two siblings.
Let n be an inner node where to both links �1 and �2 emanating to its two
children, the temporary information has been assigned. We update p(�1) and
p(�2) according to the following table:

t(�1) l l l l l l l l l
t(�2) l l l r r r m m m
p(�1) L R ∗ L R ∗ L R ∗
p(�2) R L ∗ R L ∗ R L ∗
p(�1) L R ∗ L E L L E L
p(�2) R L ∗ R E R R E R

Observe that there are more cases for assigning temporary information, with
the roles of �1 and �2 being interchanged. Furthermore, notice that the list of
cases of assignments to �1 and �2 is complete with respect to the permanent
information because of Claim 1. The table should be read as follows: the first
four lines give the current values of t and p on the two links. The last two lines
give the updated values of p. Here, an E signals that we found a contradictory
situation; more specifically (as we will see below), we have found a quadruple
situation corresponding to the unbalanced tree case in Fig. 2 Hence, there is no
way of finding a crossing-free embedding of the two-trees, and we can abort here.
Claim 2: Observe that the graph that is induced by the edges (links) to which
non-∗ permanent information has been attached to is a tree before and after
each complete bottom-up tree processing (as described above). Moreover, if this
induced tree is non-empty, then it also contains the root.

How to actually use the bottom-up processing of the temporary and per-
manent information is explained in Alg. 1. Observe that the roles of the trees
alternate. We will make use of the following property of our algorithm:

Comparing Trees Via Crossing Minimization 465

Claim 3: Each time that it is again say the upper tree’s turn to get new temporary
labels, the former root of that tree (and possibly more nodes) will no longer be
taken into consideration.

We still have to show that the two aborts (error cases) described above are
indeed based on finding a contradictory quadruple two-tree as explained in Fig. 2.
The (omitted) proofs of the following claims show the details of this construction.

Algorithm 1 Procedure “embed-TT”
Require: A two-tree (T1, T2; M) and a permanent link information function p.
Ensure: YES iff a crossing-free drawing of (T1, T2; M) respecting p can be obtained.

Moreover, either (implicitly) a crossing-free drawing of (T1, T2; M) respecting p is
found or a contradictory quadruple two-tree is produced.

Let r be the root of T2.
if (T1, T2; M) has at most four leaves then

return answer by table look-up (produced according to Subsec. 5.1)
else if r has only one child then

5: Delete r to produce T ′
2.

Modify p and M accordingly, yielding p′ and M ′.
return embed-TT(T1, T

′
2, M

′, p′);
else
{Let �1 and �2 be the two links emanating from the root x of T2.}

10: if p(�1) = ∗ then
p(�1) := L and p(�2) := R (without loss of generality).

end if
{Let �L = xyL with p(�L) = L and �R = xyR with p(�R) = R.}
Let LL := L(T2[yL]) and LR := L(T2[yR]).

15: Let Ll = {u ∈ L(T1) | ∃u′ ∈ LL : (u, u′) ∈M} and Lr = L(T1) \ Ll.
for all links � = uv of T1 where v is closer to the root than u do

if u ∈ L(T1) then
t(�) := z ∈ {l, r} such that u ∈ Lz.

else
20: t(�) := ∗

end if
end for
Update the temporary and permanent information within T1 as in the proof.
if contradiction is reached then

25: Report contradictory quadruple two-tree (see the proof).
return NO

else
Let pL be the permanent information p updated to cover the two-tree
(T2[yL], T1 〈Ll〉 ; ML) with M−1

L = M ∩ (Ll × LL); similarly, define pR, MR.
return embed-TT(T2[yL], T1〈Ll〉, ML, pL) ∧embed-TT(T2[yR], T1〈Lr〉, MR, pR)

30: end if
end if

Claim 4: Whenever an error occurs within the temporary label information up-
date, we can exhibit a balanced quadruple two-tree.

466 Henning Fernau, Michael Kaufmann, and Mathias Poths

Claim 5: Whenever a contradiction is found between the temporary label infor-
mation and the already existent permanent label information, we can exhibit an
unbalanced quadruple two-tree.

Theorem 4 shows an immediate result for the following problem that is closely
related to TTCM: An instance of two-tree drawing by deleting edges
(TTDE) is given by a two-tree (T1, T2;M), and the parameter, a positive integer
k. Question: Is there a set M ′ = L′1×L′2 ⊆M with |M ′| ≤ k such that the two-
tree (T1 〈L(T1) \ L′1〉 , T2 〈L(T1) \ L′2〉) is drawable? Namely, we can translate
any two-tree drawing by deleting edges instance into 4-hitting set:
simply cycle through all O(n4) possible quadruple two-trees (given a concrete
two-tree (T1, T2) with n leaves): If a quadruple two-tree is contradictory, then
it corresponds to a hyperedge with four vertices, the leaf labels forming that
quadruple. All n leaf labels together are the vertices of the hypergraph. Using
known parameterized algorithms for 4-hitting set, see [10], we can thus show:

Corollary 4. TTDE is solvable in O∗(3.115k) time.

Let us mention that we can similarly translate the variant one-tree drawing
by deleting edges of TTDE where one tree is fixed into 3-hitting set.

6 two-tree crossing minimization Is in FPT

This result is heavily based on the structural results of the previous section.
More precisely, we will sketch a parameterized algorithm that branches on small
contradicting structures (primarily, at contradicting quadruples) as long as these
incur new crossings. In a second phase, we attempt at drawing the remaining
two-tree with using a variant of the algorithm embed, possibly finding new small
contradicting structures. The validity of this approach relies on the fact that we
are able to separate contradicting structures from the rest of the two-tree by
attachment links that are described as follows.

Let u be a node in a tree T . The parent link p(u) is the unique edge leading
to u in T ; if u is the root, then there is no parent link to u. Let V ′ ⊆ V (T). The
set of all parent links of V ′ is P(V ′) = {p(u) | u ∈ V ′}. The set of attachment
links of a subgraph G of T is A(G) = P(lca(V (G))).

As above, we work with the permanent information p(�) attached to an edge
�, initialized with p = ∗ and later gradually updated to either L or R. Sometimes,
it is more convenient to think of this labeling information being attached to the
inner nodes in the sense that a bit (called flip) is associated with each inner node
that tells, when defined, which child is to the left and which is to the right.

Given a two-tree (T1, T2;M) with labelings λi, our algorithm will basically
branch on all possible settings of p to either L or R on the attachment links A(Gi)
(that do not contradict earlier settings 	= ∗) for the subgraphs Gi = Ti〈λ−1

i (Q)〉
of Ti for all possible contradicting quadruples Q. Observe that whenever a parent
link of some node is assigned L, then the parent link of its sibling will be assigned
R for reasons of consistency (and vice versa).

Comparing Trees Via Crossing Minimization 467

The problem we are facing is that we have to ensure that the natural parame-
ter of this problem, i.e., the given budget k of tolerable crossings, is decremented
in each branching step. So, our strategy will be to only branch at contradicting
structures if this gives us a gain in each branch. To simplify matters, we as-
sume that only those leaves that participated in those contradicting structures
we earlier branched on have been accounted for in the branching process.

As contradicting structures, we will view contradicting quadruples (as before)
and contradicting pairs, i.e., pairs of labels a, b where say the upper tree fixes
a < b and the lower tree fixes b < a (due to the flips that are fixed in both trees).

Algorithm 2 Sketch of procedure “embed-TTCM”
Require: A two-tree (T1, T2; M); permanent link information p; a parameter k.
Ensure: YES iff (T1, T2; M) can be drawn with ≤ k crossings so that p is respected.

if k < 0 then
return NO

else if k = 0 then
return embed-TT(T1, T2, M, p) {see to Alg. 1}

5: else
if there is a small contradicting structure S then

branch on all possible flips for A(Ti〈S〉) with recursive calls on embed-TTCM,
where S is deleted from the new instances and M , p are accordingly modified.

else
return embed-TT′(T1, T2, M, p, k)

10: {k is only needed if embed-TT′′ recursively calls embed-TTCM.}
end if

end if

l

L R

r

To fully understand Alg. 2, we still have to explain
what to do when there are no longer contradicting
quadruples or pairs to be found (line 9): we will then
start a procedure very similar to embed-TT. The only
difference is that it will not find any of the contradic-
tions described in the proof of Theorem 4 (since there
are no contradicting quadruples). Now, a temporary
labeling could contradict the already established per-
manent labeling. In that case, the permanent labeling
would already exist upon first calling embed-TT′, so
that we face the situation depicted in the figure to the
left. This figure is understood as follows: the white in-
ner node indicates a flip that has been determined.

As the labels L and R indicate, this flip would go the other way round according
to the temporary link information propagation. The permanent labeling must
have a reason (otherwise, we could just interchange the meaning of L and R):

468 Henning Fernau, Michael Kaufmann, and Mathias Poths

namely, there must be a third leaf (the brick-pattern label) that is residing some-
where in the “right branch” of the upper tree but in the “left branch” in the
bottom tree (on a previous level of recursion). Hence, we also get a crossing if we
draw the left part of bottom tree coherently with the “white flip.” Upon finding
such an erroneous situation, we would consider the depicted leaves as a con-
tradicting structure and branch on all attachment points as before, recursively
calling embed-TTCM again.

Theorem 5. two-tree crossing minimization is in FPT . More precisely,
the problem can be solved in time O∗(ck) for some constant c.

Unfortunately, the constant c is still quite huge (about 210) due to the many
attachment links whose combinations must be tested. We can see our result
therefore as a preliminary one, mainly providing a classification of the problem.

7 Conclusion

We have considered two-layer crossing minimization problems for the purpose
of comparing two unordered trees. We derived NP-completeness results and ef-
ficient polynomial-time algorithms as well as FPT -algorithms. The following
open problems are worthwhile to consider: (1) Determine the (parameterized)
complexity of the maximum planar submatching variant TTDE and prove NP-
completeness. (2) Extend the techniques to d-ary trees. From the first sight,
an additional factor of d! shows up. This problem has clustering applications,
see [1]. (3) Consider the weighted version of TTCM, where the crossings have
higher weights if they occur between edges of larger different subtrees. (4) The
connections to hitting set we exhibited for TTDE provides a factor-4 approx-
imation; we do not see any constant-factor approximation for TTCM.

Acknowledgment: Thanks to G. Liotta and D. Huson for motivation and help.

References

1. Z. Bar-Joseph, D. Gifford, and T. Jaakkola. Fast optimal leaf ordering for hierar-
chical clustering. Bioinformatics, 17:22–29, 2001.

2. P. Bertolazzi, G. DI Battista, G. Liotta and C. Mannino. Optimal upward planarity
testing of single-source digraphs. SIAM Journal of Computing, 27:132-169, 1998.

3. P. Bille. A survey on tree edit distance and related problems. Theoretical Computer
Science, 337:217–239, 2005.

4. G. Di Battista, Eades P., Tamassia R. and I. G. Tollis. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, 1999.

5. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
6. T. Dwyer and F. Schreiber. Optimal leaf ordering for two and a half dimensional

phylogenetic tree visualisation. In: Proc. Australasian Symp. on Information Vi-
sualisation (InVis.au 2004), CRPIT 35:109–115, 2004.

7. P. Eades and S. Whitesides. Drawing graphs in two layers. Theoretical Computer
Science, 13:361–374, 1994.

Comparing Trees Via Crossing Minimization 469

8. P. Eades and N. Wormald. Edge crossings in drawings of bipartite graphs. Algo-
rithmica, 10:379–403, 1994.

9. M. R. Fellows. The Robertson-Seymour theorems: a survey of applications. Con-
temp. Math., 89:1–18, 1989.

10. H. Fernau. Parameterized Algorithmics: A Graph-Theoretic Approach. Habilita-
tionsschrift, Universität Tübingen, Germany, 2005. Submitted.

11. D. Huson. Private Communication, 2005.
12. T. Jiang, L. Wang, and K. Zhang. Alignment of trees—an alternative to tree edit.

Theoretical Computer Science, 143:137–148, 1995.
13. P. Kilpeläinen and H. Mannila. Ordered and unordered tree inclusion. SIAM

Journal of Computing, 24:340-356, 1995.
14. P. Klein, S. Tirthapura, D. Sharvit, and B. Kimia. A tree-edit-distance algorithm

for comparing simple, closed shapes. In: Proc. of 11th ACM-SIAM Symposium on
Discrete Algorithms (SODA), 696–704, 2000.

15. R. Ramesh and I. Ramakrishnan. Nonlinear pattern matching in trees. Journal of
the ACM, 39:295-316, 1992.

16. K. Zhang and D. Shasha. Simple fast algorithms for the edit distance between
trees and related problems SIAM Journal of Computing, 18:1245-1262, 1989.

On Counting the Number of Consistent

Genotype Assignments for Pedigrees

Jǐŕı Srba�

BRICS��, Department of Computer Science, Aalborg University
Fredrik Bajersvej 7B, 9220 Aalborg East, Denmark

srba@brics.dk

Abstract. Consistency checking of genotype information in pedigrees
plays an important role in genetic analysis and for complex pedigrees
the computational complexity is critical. We present here a detailed
complexity analysis for the problem of counting the number of com-
plete consistent genotype assignments. Our main result is a polynomial
time algorithm for counting the number of complete consistent assign-
ments for non-looping pedigrees. We further classify pedigrees according
to a number of natural parameters like the number of generations, the
number of children per individual and the cardinality of the set of al-
leles. We show that even if we assume all these parameters as bounded
by reasonably small constants, the counting problem becomes computa-
tionally hard (#P-complete) for looping pedigrees. The border line for
counting problems computable in polynomial time (i.e. belonging to the
class FP) and #P-hard problems is completed by showing that even for
general pedigrees with unlimited number of generations and alleles but
with at most one child per individual and for pedigrees with at most two
generations and two children per individual the counting problem is in
FP.

1 Introduction

Pedigrees are fundamental structures used in genetics. A pedigree describes fam-
ily relations among generations of individuals. Genealogists study pedigrees in
connection with the genotype information associated to the individuals at a par-
ticular locus. A genotype of a given individual is a pair of alleles in its genome
(allele is one of the possible forms a gene may have). Due to different reasons,
for a given pedigree the genotype information of its individuals can be known
only partially. In order to complete the missing genotype information or to filter
out erroneous input data, genealogists need to verify that the given partial infor-
mation is consistent with the classic Mendelian laws of inheritance (see e.g. [5]),
which means that every individual in the pedigree has to inherit exactly one
� The author is supported in part by the research center ITI, project

No. 1M0021620808.
�� Basic Research in Computer Science,

Centre of the Danish National Research Foundation.

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 470–482, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Counting the Number of Consistent Genotype Assignments for Pedigrees 471

allele from each of its parents. This process is called consistency checking and
as argued in [9], in many real-life cases a manual consistency check is very diffi-
cult, time-consuming and sometimes unsuccessful. For an accessible overview of
further biological aspects we refer the reader to [1].

To the best of our knowledge only algorithmic issues of consistency and like-
lihood checking for pedigrees have been studied in the literature so far (see
e.g. [6,10,12,2,1]). In this paper we shall focus on a more general problem of
counting the total number of complete genotype assignments consistent with
the input data. This approach can provide a deeper insight and generalize the
algorithms already developed for pure consistency checking. Moreover, knowing
the total number of complete genotype assignments consistent with the input
data can answer several additional questions. For example the fact that the
number of assignments is 1 tells us that the missing information can be uniquely
reconstructed from the available data. On the other hand, knowing that there
are too many possibilities how to interpret the input data indicates that more
genotype sampling is needed in order to reduce uncertainty.

Our contribution. We introduce characterization of pedigrees according to a
number of natural parameters that describe their shapes. Apart for the stan-
dard notion of looping/non-looping pedigrees we further distinguish the number
of generations, number of children per individual and the cardinality of the set
of alleles. We describe a polynomial time algorithm that counts the number of
complete genotype information for a given partial genotype data in non-looping
pedigrees. We use this result to show that the counting problems for general pedi-
grees with at most 2 generations and 2 children per individual and for pedigrees
with at most 1 child per individual are also solvable in polynomial deterministic
time. We complete the results by demonstrating two parsimonious reductions
(i.e. reductions that preserve the number of solutions) from #Bpos-2Sat to the
counting problems for pedigrees with (i) 3 generations, 2 children per individual
and 2 alleles, and (ii) 2 generations, 3 children per individual and 2 alleles. To-
gether with an obvious containment in #P this proves #P-completeness of the
problems.

Related work. For the case of pure consistency checking the following results
are known. The problem for non-looping pedigrees is decidable in polynomial
time using a genotype elimination algorithm proposed by Lange and Goradia [7]
and further optimized and extended by O’Connell and Weeks [10], and Du and
Hoeschele [2]. For general pedigrees there is a recent work by Aceto et al. [1]
showing that consistency checking is NP-complete for pedigrees with marriage
loops. They prove the result by reduction from 3SAT, however, their reduction is
not parsimonious (does not preserve the number of solutions). It also works only
for pedigrees with at least 5 generations, 3 children per individual and 3 alleles
but under the assumption that there is either a complete or no knowledge about
the genotype of single individuals. Another related result is NP-completeness of
marginal probability and maximum likelihood by Piccolboni and Gusfield [12].

472 Jǐŕı Srba

As discussed in [1], although the problems are closely connected to consistency
checking, they cannot be used to imply hardness results for our problem.

Full version will appear as a technical report in BRICS research series.

2 Basic Definitions

2.1 Pedigrees and Genotype Information

In order to reason about pedigrees and the genotype information that they con-
tain, we need to introduce a formal model. Several formalizations of the notion
of pedigree have been presented in the literature on computational genetics (see
e.g. [1,8,12]). The definition that we provide is equivalent to the ones mentioned
above.

Definition 1 (Pedigree). A pedigree is a triple P = (M,F, φ) where

– M and F are finite disjoint sets of male, resp. female, individuals,
– φ : M × F −→ 2(M∪F) is a function called family function satisfying:

1. φ(f) ∩ φ(f ′) = ∅ for all f, f ′ ∈M × F such that f 	= f ′,
2. the transitive closure of the parental relation ≺⊆ (M ∪ F)× (M ∪ F) is

irreflexive, where ≺ is defined by u ≺ v iff there is a w ∈ M ∪ F such
that u ∈ φ(v, w) if v ∈M , or u ∈ φ(w, v) if v ∈ F .

We define a set of families in P given by φ as F(φ) def= {f ∈M ×F | φ(f) 	= ∅}.
Let us also define p(f) def= {u, v} for any family f = (u, v) ∈ F(φ); we call u and
v the parents in the family f .

Here is an informal explanation of the definition. Given a male u ∈M and a
female v ∈ F , φ(u, v) is the set of all children they have. Condition 1. says that
every child belongs to exactly one family and condition 2. guarantees that no
individual can be its own ancestor.

The maximal elements from M ∪ F w.r.t. ≺ are called founders of the pedi-
gree. Individuals that are not founders are called non-founders. The length of
a longest chain (counting the number of nodes) w.r.t. ≺ is called the number
of generations. The set of children of an individual u ∈ M ∪ F is defined by
∪f∈F(φ),u∈p(f)φ(f) and the number of children per individual is the largest car-
dinality of this set over all individuals in the pedigree.

Example 1. Let M
def= {x, y, z} and F

def= {u, v, w}. We define a pedigree P

by φ(x, u) def= {v} and φ(y, v) def= {w, z}. In all other cases φ(,) def= ∅. This
is graphically depicted as follows (male individuals are represented by squares,
female individuals by circles and families with parental relation by lines).

x �����
�u

�����
�v y

�����
�w z

On Counting the Number of Consistent Genotype Assignments for Pedigrees 473

The founders of the pedigree are the individuals x, u and y. The pedigree
has 3 generations and 2 children per individual. &'

For each individual u ∈ M ∪ F we define a community C(u) as a collection
of all families where u is a parent, i.e., C(u) def= {f ∈ F(φ) | u ∈ p(f)}. Maximal
community size is the largest cardinality over all communities in the pedigree,
i.e., maxu∈M∪F |C(u)|.

Remark 1. In any pedigree, the number of children per individual is at least the
maximal community size.

We shall now introduce formal definitions of a mating graph and (non-)looping
pedigrees. The following definitions are equivalent to the ones in [10] and [1].

Definition 2 (Mating Graph, Connected Pedigrees). Let P = (M,F, φ)
be a pedigree. We define an undirected bipartite graph G(P) def= (M∪F,F(φ),↔),
also called the mating graph of P , by stating that for all u ∈M ∪ F and for all
f ∈ F(φ) we have {u, f} ∈↔ iff u ∈ p(f), or u ∈ φ(f). We say that a pedigree
P is connected iff G(P) is a connected graph.

From now on we shall consider only non-empty and connected pedigrees. All
results presented in the paper can be extended also to unconnected pedigrees in
a straightforward manner.

Definition 3 ((Non-)Looping Pedigree). We say that a pedigree P is loop-
ing if there is a loop in the mating graph G(P). Otherwise we call P a non-looping
pedigree.

Consistency checking of a pedigree is based on its associated genotype infor-
mation; intuitively, the pedigree defines the structure of the family relationships
that are being modelled, and the genotype information is the data which must
be consistent with the structure. Let A be a finite and non-empty set of alleles.
A particular genotype information associated to every individual is represented
by an element from A2 modulo the least equivalence on A2 satisfying xy ≡ yx
(the order of alleles in a genotype does not play any role).

Definition 4 ((Partial) Genotype Information). Let P = (M,F, φ) be a
pedigree. A (partial) genotype information for P is a function G : M∪F −→ 2A

2

that associates a set of possible genotype data to the individuals in the pedigree,
s.t. G(u) 	= ∅ for all u ∈M ∪ F .

The intuition is that G(u) = {AB} means that the genotype of the individual
u is known to be exactly AB. If e.g. G(u) = {AB,AC} then we have only a partial
information about the individual u (we know that its genotype can be either AB
or AC). If only one allele (let us say A) from the pair is know then we model it
by G(u) = {AX | X ∈ A}. In case that nothing is known about the genotype of
u then G(u) = A2.

474 Jǐŕı Srba

Definition 5 (Specialization). Let G and G′ be two partial genotype informa-
tion. We say that G specializes into G′ iff G′(u) ⊆ G(u) for all u ∈M ∪ F .

Definition 6 (Complete Genotype Information). A genotype information
G is called complete if |G(u)| = 1 for every u ∈ M ∪ F , i.e., every individual is
assigned exactly one genotype.

Verifying the consistency for a specific gene amounts to checking whether the
pedigree and the genotype information are consistent according to the Mendelian
law of segregation (see e.g. [5]). The law of segregation implicitly defines the
following constraint on consistent genotype assignments:

Each individual inherits exactly one allele from both of its parents.

Our order of business will now be to formalize this constraint, and what it means
that a genotype information is consistent with respect to a pedigree. Given
two genotypes AB and CD, we define zygote(AB,CD) def= {AC,AD,BC,BD}
as the set of all possible combinations of the given genotypes. Note that due
to the commutativity introduced on A2 we get that e.g. zygote(AB,AB) =
{AA,AB,BB} and zygote(AA,AB) = {AA,AB}.

Definition 7 (Consistent Genotype Information).

1. A complete genotype information G is consistent if for all (u, v) ∈ F(φ)
such that G(u) = {AB}, G(v) = {CD} for some A,B,C,D ∈ A and for all
w ∈ φ(u, v) it is the case that G(w) ⊆ zygote(AB,CD).

2. A partial genotype information G is consistent if there is a complete consis-
tent genotype information G′ such that G specializes into G′.

Let P be a pedigree and G a genotype information for P . By #(P,G) we
denote the number of complete and consistent genotype information into which
G specializes (or simply the number of solutions). A natural algorithmic problem
is that of computing #(P,G) and we call it the counting problem for a pedigree
P and a genotype information G.

2.2 Counting Problems and Complexity Classes FP and #P

The complexity classes FP and #P for counting problems play a similar role
as the complexity classes P and NP in case of decision problems. Let R be a
polynomially balanced ((x, y) ∈ R implies |y| ≤ |x|k for some constant k >
0) and polynomial time decidable binary relation [11]. The counting problem
#R is for a given input x to count how many different y there are such that
(x, y) ∈ R. To provide the answer to such a problem is generally considered as
a hard computational task. #P is the class of all such problems. Alternatively,
#P can be defined as the class of functions that can be computed by counting
the number of accepting paths of a polynomial time nondeterministic Turing
machine. On the other hand, the complexity class FP is the class of functions

On Counting the Number of Consistent Genotype Assignments for Pedigrees 475

that are computable by a deterministic Turing machine in polynomial time (also
called the class of feasible functions, i.e., those solvable by computers). We can
easily notice that FP ⊆ #P and it is widely conjectured that the inclusion is
strict.

In order to show #P-hardness of a counting problem, we often use the notion
of parsimonious reduction. Let #R and #S be two counting problems. We say
that there is a parsimonious reduction from #R to #S if there is a polynomial
time transformation f from the instances of #R to the instances of #S which
preserves the number of solutions, i.e., for all x we have that |{y | (x, y) ∈ R}| =
|{y | (f(x), y) ∈ S}|.

Remark 2. This notion of reduction is little too restrictive so sometimes one
defines that #R reduces to #S if there is a polynomial time algorithm for #R
given an oracle that solves #S. Nevertheless, all the reductions presented in this
paper are parsimonious.

As noted in [11] p. 439: “Even in cases in which the decision problem is
polynomial, counting the solutions may be highly nontrivial.” An example of
such a problem is e.g. counting the number of perfect matchings in a bipartite
graph. This is a #P-complete problem, while the decision variant of the problem
is in P. On the other hand, showing that a counting problem is in FP immediately
gives a polynomial time algorithm for the corresponding decision problem. Hence
proving that the counting problem for a certain subclass of pedigrees (e.g. non-
looping pedigrees) is in FP provides a stronger claim than only showing that the
decision problem of consistency checking is in P.

3 Pedigrees with the Counting Problem in FP

In this section we demonstrate that for an arbitrary non-looping pedigree P
and a given genotype information G, the number #(P,G) can be computed in
polynomial time on a deterministic Turing machine. Hence we generalize the
result by Lange and Goradia [7] where they showed that the decision version of
the problem is solvable in polynomial time using a genotype elimination algo-
rithm. In our approach, we provide a different solution which exploits dynamic
programming and enables us to count (and list if necessary) the total number
of complete and consistent genotype information. We also show how to count
in polynomial time the number of consistent pedigree assignments for pedigrees
with 2 generations and maximal community size 2, and for pedigrees with at
most one child per individual.

Let us consider a pedigree P = (M,F, φ) with a partial genotype information
G over the alleles from A. When counting #(P,G) we will use the techniques of
dynamic programming and store the intermediate results in the following table.

T : (M ∪ F)×A2 → N

We shall often denote a table element T (u,XY) where u ∈M ∪F and XY ∈ A2

by T u(XY). The main idea of the algorithm is that we shall process all families

476 Jǐŕı Srba

(and the corresponding individuals) of the pedigree in a particular order such
that the number assigned to the table position T u(XY) stands for the number
of solutions in a subpedigree that was already processed and is connected to u,
all under the assumption that the genotype information of u is fixed to XY .

The procedure initialize in Figure 1 initializes the table T for all individuals
from M ∪ F .

Let (x, y) ∈ F(φ), u ∈ M ∪ F s.t. u ↔ (x, y) and XY ∈ G(u). The function
update in Figure 1 returns the number of solutions in the already processed
subpedigree connected (in the mating graph) to the individual u, under the
assumption that the genotype information for u is fixed to XY and that the
table T v is fully computed for all the individuals v connected to the family
(x, y) except for u.

Finally, the function count in Figure 1 computes the number #(P,G) where
the notion of a mediator for f ∈ F(φ) and Z ⊆ F(φ) is defined as follows: an
individual u ∈ M ∪ F is a mediator for f w.r.t. Z iff u ↔ f and there is some
f ′ ∈ Z such that f 	= f ′ and u↔ f ′. In other words a mediator is an individual
that connects two different families in the mating graph. The function count first
initializes the table T to its initial values and creates a set Z, which represents
the set of families to be processed. It then removes the families from Z one by
one in a particular order which ensures that the table T u for a mediator u can
be easily computed. Finally, when Z contains only one family, the final number
of solutions is computed and returned.

Theorem 1. The counting problem for non-looping pedigrees is in FP.

Proof. (Sketch) It is easy to see that the algorithm runs in polynomial time. We
have to argue that for a given pedigree P and a genotype information G the
function count(P , G) returns the number #(P,G). The requirement that P is
non-looping (and connected) ensures that we can always select a family f ∈ Z
with exactly one mediator u with respect to Z. Moreover, whenever a value
is assigned to T u(XY) the following assertion holds: “T u(XY) is the number
of solutions in the subpedigree generated by u and the families in F(φ) � Z
(together with their children) that are connected to u in the mating graph”. &'

Example 2. We shall demonstrate the algorithm for counting the number of
solutions on the following pedigree.

�����
�u1 u2 �����
�u3 u4

{AA,BB} {AB} {AA,BB} {AB}

�����
�u5 u6 �����
�u7 u8

{AA,BB} {AA,BB} {AA,BB} {AA,BB}

�����
�u9 �����
�u10 �����
�u11

{AB} {AB} {AB}

On Counting the Number of Consistent Genotype Assignments for Pedigrees 477

initialize =
for all v ∈M ∪ F do

for all XY ∈ A2 do

T v(XY) :=

{
1 if XY ∈ G(v)
0 otherwise

end for
end for

update((x, y), u, XY):int =
if u = x then

*** u is a male parent in the family ***
let {w1, . . . , w�} = φ(x, y) be all children in the family (x, y)
return

∑
AB ∈ G(y)

X1Y1, . . . , X�Y� ∈ zygote(XY ,AB)

T y(AB) · T w1(X1Y1) · · · · · T w�(X�Y�)

else if u = y then
*** u is a female parent in the family ***
let {w1, . . . , w�} = φ(x, y) be all children in the family (x, y)
return

∑
AB ∈ G(x)

X1Y1, . . . , X�Y� ∈ zygote(AB,XY)

T x(AB) · T w1(X1Y1) · · · · · T w�(X�Y�)

else
*** u ∈ φ(x, y) is a child in the family ***
let {w1, . . . , w�} = φ(x, y) � {u} be all the children except for u
return

∑
AB ∈ G(x) and CD ∈ G(y)
s.t. XY ∈ zygote(AB,CD)

X1Y1, . . . , X�Y� ∈ zygote(AB,CD)

T x(AB) · T y(CD) · T w1(X1Y1) · · · · · T w�(X�Y�)

end if

count(P = (M, F, φ), G : M ∪ F → 2A2
):int =

Z := F(φ)
initialize
while |Z| > 1 do

select f ∈ Z s.t. f has exactly one mediator u w.r.t. Z
for all XY ∈ G(u) do

T u(XY) := T u(XY)·update(f , u, XY)
end for
Z := Z � {f}

end while
let f = (x, y) where {f} = Z;
let {w1, . . . , w�} = φ(x, y) be all children in the family (x, y)
return

∑
AB ∈ G(x) and CD ∈ G(y)

X1Y1, . . . , X�Y� ∈ zygote(AB,CD)

T x(AB) · T y(CD) · T w1(X1Y1) · · · · · T w�(X�Y�)

Fig. 1. Algorithm for computing the number #(P,G)

478 Jǐŕı Srba

The pedigree consists of 11 individuals u1, . . . , u11 and 5 families (u2, u1),
(u4, u3), (u6, u5), (u6, u7) and (u8, u7). The genotype information for each indi-
vidual is depicted in the picture (e.g. G(u5) = {AA,BB} and G(u2) = {AB}).

During the call of the function count we first for all individuals initialize
the table T to either 0 and 1 according to the given genotype information. Next
we start eliminating the families in the pedigree. Let us assume that the first
selected family in the while-loop is (u2, u1) and the mediator u is equal to u5.
As u5 is a child in the family (u2, u1) we compute T u5(AA) = 1 · 1 = 1 and
T u5(BB) = 1 · 1 = 1 according to the third case in the function update. The
family (u2, u1) is then removed from Z. Next assume that the second selected
family is (u6, u5) with a mediator u6 and we compute T u6(AA) = T u6(BB) =
1 · 1 = 1 by using the first case in the function update. The family (u6, u5) is
removed from Z. Assume that the third selected family is (u4, u3) where u7 is the
mediator and we compute T u7(AA) = T u7(BB) = 1 · 1 = 1. The family (u4, u3)
is removed from Z. Now we can select e.g. the family (u8, u7) with the mediator
u7 and compute T u7(AA) = T u7(BB) = 1 · 1 = 1 while removing (u8, u7) from
Z. Finally, only the family (u6, u7) remains in Z and we return the final value

T u6(AA) · T u7(BB) · T u10(AB) + T u6(BB) · T u7(AA) · T u10(AB) = 1 + 1 = 2.

Indeed, there are exactly two possibilities for the assignment of a genotype to
u1 and this uniquely determines the assignments in the rest of the pedigree. In
particular, one can see that u3 has to be assigned exactly the same genotype as
u1 in order to preserve consistency. &'

Theorem 2. If a pedigree P = (M,F, φ) has at most one child per individual
then it is non-looping.

Corollary 1. The counting problem for pedigrees with at most one child per
individual is in FP.

Let us now consider pedigrees with 2 generations only and the maximal
community size at most 2. We can demonstrate that the counting problem for
this subclass is also in FP by applying the observations about “loop-breakers”
from [4].

Theorem 3. The counting problem for pedigrees with 2 generations and maxi-
mal community size 2 (and an arbitrary number of alleles) is in FP.

Corollary 2. The counting problem for pedigrees with 2 generations and at most
two children per individual (and an arbitrary number of alleles) is in FP.

Proof. Directly from Theorem 3 and Remark 1. &'

On Counting the Number of Consistent Genotype Assignments for Pedigrees 479

4 Pedigrees with #P-Complete Counting Problem

In this section we shall argue that the counting problems in all other pedi-
grees except for those considered in Section 3 are computationally hard. We will
demonstrate #P-hardness (with respect to parsimonious reduction) for pedigrees
with 3 generations, 2 children per individual and 2 alleles, and for pedigrees with
2 generations, 3 children per individual and 2 alleles. Even for general pedigrees
one can easily see that the problems are in #P, which together with the hardness
results implies #P-completeness. This completes the full picture of the compu-
tational complexity of counting problems for pedigrees.

Let us consider the #Bpos-2Sat counting problem [3]. We are given two
disjoint sets of variables {x1, . . . , xn} and {y1, . . . , ym} and a formula C1 ∧C2 ∧
. . .∧Ck where for every �, 1 ≤ � ≤ k, the clause C� is of the form xi∨yj such that
1 ≤ i ≤ n and 1 ≤ j ≤ m. Counting the number of satisfying truth assignments
of such a formula is a #P-complete problem [3]. Note that the corresponding
decision problem is trivial as any #Bpos-2Sat formula is satisfiable.

We shall reduce #Bpos-2Sat to the counting problem for pedigrees of par-
ticular shapes such that the reduction preserves the number of solutions (i.e.
it is a parsimonious reduction). In our reductions we shall use only two alleles
A def= {A,B} such that AA represents true and BB represents false.

Theorem 4. The counting problem for pedigrees with 3 generations, 2 children
per individual and 2 alleles is #P-complete.

Proof. (Sketch) Containment in #P is easy. We shall argue for #P-hardness of
the problem. Let C1 ∧C2 ∧ . . .∧Ck be a given instance of #Bpos-2Sat. We shall
construct a pedigree P as follows.

First, for every variable xi, 1 ≤ i ≤ n, we create k of its copies by constructing
the following pedigree part.

�����
�x1
i

�����
�x2
i · · · �����
�xki

{AA,BB} {AB} {AA,BB} {AB} {AA,BB} {AB}

�����
� �����
� · · · �����
�
{AA,BB} {AA,BB} {AA,BB} {AA,BB} {AA,BB}

�����
� �����
� �����
�
{AB} {AB} {AB}

Next we create a similar structure for every variable yj , 1 ≤ j ≤ m.

y1
j

�����
� y2
j

�����
� · · · ykj
�����
�

{AA,BB} {AB} {AA,BB} {AB} {AA,BB} {AB}

�����
� �����
� · · · �����
�
{AA,BB} {AA,BB} {AA,BB} {AA,BB} {AA,BB}

�����
� �����
� �����
�
{AB} {AB} {AB}

480 Jǐŕı Srba

As argued in Example 2, we can now see that the pedigrees for xi (resp. yj)
have exactly two solutions so that x1

i , . . . , x
k
i (resp. y1

j , . . . , y
k
j) can simultane-

ously take the assignment AA or BB, hence representing the truth value true
or false.

Now for every �, 1 ≤ � ≤ k, such that C� ≡ xi ∨ yj we will add the fol-
lowing pedigree part where the individuals x�i and y�j are identified with the
corresponding nodes in the pedigrees above.

�����
�x�i y�j

�����
�
{AA,AB}

We can now easily verify that at least one of x�i and y�j has to be set to true (i.e.
takes the value AA) in order to achieve a consistent assignment. It is a routine
exercise to check that the number of satisfying truth assignments of the formula
is the same as the number of complete genotype information for the constructed
pedigree. The construction ensures that the pedigree has 3 generations, at most
2 children per individual and uses only 2 alleles. &'

Theorem 5. The counting problem for pedigrees with 2 generations, 3 children
per individual and 2 alleles is #P-complete.

Proof. (Sketch) As in the previous proof, the reduction goes from #Bpos-2Sat.
We modify the way in which we generate the truth assignments. We shall use
only 2 generation pedigrees at the expense of 3 children per individual.

�����
�x1
i

�����
�x2
i · · · �����
�xki

{AA,BB} {AA,BB} {AA,BB} {AA,BB} {AA,BB} {AA,BB}

�����
� �����
� �����
� · · · �����
�
{AB} {AB} {AB}

y1
j

�����
� y2
j

�����
� · · · ykj
�����
�

{AA,BB} {AA,BB} {AA,BB} {AA,BB} {AA,BB} {AA,BB}

�����
� �����
� �����
� · · · �����
�
{AB} {AB} {AB}

It is easy to see that x1
i , . . . , x

k
i (resp. y1

j , . . . , y
k
j) can simultaneously take the

assignment AA or BB and after adding the pedigree parts for all clauses C� as
in the construction above, the reduction preserves the number of solutions. The
final pedigree has 2 generations and at most 3 children per individual. As before,
the containment in #P is easy. &'

On Counting the Number of Consistent Genotype Assignments for Pedigrees 481

5 Conclusion

We have studied counting problems for genotype assignments in pedigrees and
found a delicate borderline between tractable and intractable instances of the
problem. The following table summarizes the main results achieved in the paper.

type # generations # children # alleles complexity
non-looping ∞ ∞ ∞ in FP (Thm. 1)

looping ∞ ∞ 1 in FP (trivial)
looping 1 ∞ ∞ in FP (trivial)
looping ∞ 1 ∞ in FP (Cor. 1)
looping 2 2 ∞ in FP (Cor. 2)
looping 3 2 2 #P-complete (Thm. 4)
looping 2 3 2 #P-complete (Thm. 5)

The table provides a complete characterization of the computational com-
plexity of counting problems with respect to the selected parameters. Moreover,
the hardness results use only marriage loops [12] and contain no inbreeding loops.

In [1] it is shown that consistency checking for general pedigrees with 2 alleles
only is in P, provided that for each individual we either know precisely his/her
genotype information or we know nothing at all, i.e., for every individual u we
have either |G(u)| = 1 or G(u) = A2. It would be interesting to see whether
the counting problem is in FP under this restriction. The future research will
also focus on investigating possible ways of tackling the counting problem for
pedigrees with loops (here some ideas from [10] seem to be applicable) and on
the complete complexity characterization of the consistency checking problems.

References

1. L. Aceto, J.A. Hansen, A. Ingólfsdóttir, J. Johnsen, and J. Knudsen. The com-
plexity of checking consistency of pedigree information and related problems. J.
of Computer Science and Technology, 19(1):42–59, 2004.

2. F.X. Dua and I. Hoeschele. A note on algorithms for genotype and allele elimi-
nation in complex pedigrees with incomplete genotype data. Genetics, 156:2051–
2062,2000.

3. M.O. Ball J.S. Provan. The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM J. on Comp., 12(4):777–788, 1983.

4. K. Lange K and R.C. Elston. Extensions to pedigree analysis i. likehood calcula-
tions for simple and complex pedigrees. Human Heredity, 25(2):95–105, 1975.

5. William S. Klug and Michael R. Cummings. Concepts of Genetics. Prentice Hall,
5th edition, 1997.

6. K. Lange and T. Goradia. An algorithm for automatic genotype elimination.
American J. of Human Genetics, 40:250–256, 1987.

7. Kenneth Lange and Tushar Madhu Goradia. An algorithm for automatic genotype
elimination. American J. of Human Genetics, 40:250–256, 1987.

8. Jing Li and Tao Jiang. Efficient rule-based haplotyping algorithms for pedigree
data. In Proceedings of RECOMB’03, pages 197–206. ACM, 2003.

482 Jǐŕı Srba

9. J.R. O’Connell and D.E. Weeks. Pedcheck: A program for identification of genotype
incompatibilities in linkage analysis. Am. J. of Human Genetics, 63:259–266, 1998.

10. J.R. O’Connell and D.E. Weeks. An optimal algorithm for automatic genotype
elimination. American J. of Human Genetics, 65:1733–1740, 1999.

11. Ch.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
12. A. Piccolboni and D. Gusfield. On the complexity of fundamental computational

problems in pedigree analysis. J. of Computational Biology, 10(5):763–773, 2003.

Fixpoint Logics on Hierarchical Structures

Stefan Göller and Markus Lohrey

FMI, Universität Stuttgart, Germany
{goeller,lohrey}@informatik.uni-stuttgart.de

Abstract. Hierarchical graph definitions allow a modular description of graphs
using modules for the specification of repeated substructures. Beside this modu-
larity, hierarchical graph definitions allow to specify graphs of exponential size
using polynomial size descriptions. In many cases, this succinctness increases
the computational complexity of decision problems. In this paper, the model-
checking problem for the modal μ-calculus and (monadic) least fixpoint logic
on hierarchically defined graphs is investigated. In order to analyze the modal
μ-calculus, parity games on hierarchically defined graphs are studied.

1 Introduction

Hierarchical graph definitions specify a graph via modules, where every module is a
graph that may refer to modules of a smaller hierarchical level. In this way, large struc-
tures can be represented in a modular and succinct way. Hierarchical graph definitions
were introduced in [14] in the context of VLSI design. Formally, hierarchical graph
definitions can be seen as hyperedge replacement graph grammars [6] that generate
precisely one graph. Specific algorithmic problems (e.g. reachability, planarity, circuit-
value, 3-colorability) on hierarchically defined graphs are studied in [12,13,14,18].

In this paper we consider the complexity of the model-checking problem for least
fixpoint logic (LFP) and its fragments monadic least fixpoint logic (MLFP) and the
modal μ-calculus. LFP is the extension of classical first-order logic that allows the def-
inition of least fixpoints of arbitrary arity [15]. MLFP is the fragment of LFP where
only monadic fixpoints can be defined. The modal μ-calculus is the fragment of MLFP
that is obtained from classical modal logic extended by a monadic fixpoint operator.
The model-checking problem for a certain logic asks whether a given sentence from
that logic is true in a given finite structure (e.g. a graph). Usually, the structure is given
explicitly, for instance by listing all tuples in each of the relations of the structure. In
this paper, input structures will be given in a hierarchical form via straight-line pro-
grams. Straight-line programs are equivalent to hierarchical graph definitions [16] w.r.t.
succinctness, but are more convenient for our purpose.

LFP and its fragments MLFP and the modal μ-calculus found many applications
in data base theory, finite model theory, and verification, see e.g. [15]. It is therefore
not surprising that the model-checking problem for these logics on explicitly given in-
put structures is a very well-studied problem. Let us just mention a few references:
[2,4,5,9,10,11,21,22]. Concerning hierarchically defined graphs, in [1] the complexity
of the temporal logics LTL and CTL over hierarchical state machines was investigated.

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 483–494, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

484 Stefan Göller and Markus Lohrey

Hierarchical state machines can be seen as a restricted form of hierarchical graph def-
initions that are tailored towards the modular specification of large reactive systems.
Since LTL and CTL can be efficiently translated into the modal μ-calculus, our work
is a natural extension of [1]. Moreover, our work continues the previous paper [17]
of the second author, where the model-checking problem of first-order logic, monadic
second-order logic, and full second-order logic over hierarchically defined graphs was
studied.

Our investigation of model-checking problems follows Vardi’s methodology from
[21]. For a logic L and a class of structures C, Vardi introduced three different ways of
measuring the complexity of the model-checking problem for L and C: (i) One may fix
a formula ϕ ∈ L and consider the complexity of verifying for a given structure A ∈ C
whether A |= ϕ; thus, only the structure belongs to the input (data complexity or struc-
ture complexity). (ii) One may fix a structure A ∈ C and consider the complexity of
verifying for a given formula ϕ ∈ L, whether A |= ϕ; thus, only the formula belongs to
the input (expression complexity). (iii) Finally, both the structure and the formula may
belong to the input (combined complexity). In the context of hierarchically defined
structures, expression complexity does not lead to new results. Having a fixed hierar-
chically defined structure is the same as having a fixed explicitly given structure. Thus,
we only consider data and combined complexity for hierarchically defined structures.

Section 2 introduces the necessary concepts. In Section 3 we show that the win-
ner of a parity game on a hierarchically defined graph can be determined in PSPACE.
Since the classical reduction of the model-checking problem for the modal μ-calculus
to parity games [3,4] can be extended to hierarchically defined graphs (Thm. 3), we ob-
tain PSPACE-completeness of the model-checking problem for the modal μ-calculus
on hierarchically defined graphs. The upper bound generalizes a corresponding result
for CTL/LTL from [1]. For a restricted class of hierarchically defined graphs we ob-
tain the better upper bound of NP ∩ coNP for parity games, which leads to the same
upper bound for the data complexity of the modal μ-calculus. In Section 5 we study
least fixpoint logic (LFP) and its fragment monadic least fixpoint logic (MLFP) over
hierarchically defined input structures. MLFP is still more expressive than the modal μ-
calculus. It turns out that in most cases the complexity of the model-checking problem
over hierarchically defined input structures becomes EXP. Our results are collected in
Table 1 in Section 2. Proofs that are omitted due to space restrictions can be found in
the full version [7].

2 Preliminaries

General notations Let ≡ be an equivalence relation on a set A. For a ∈ A, [a]≡ =
{b ∈ A | a ≡ b} is the equivalence class containing a. With [A]≡ we denote the set of all
equivalence classes. With π≡ : A → [A]≡ we denote the function with π≡(a) = [a]≡
for all a ∈ A. For a function f : A → B let ran(f) = {b ∈ B | ∃a ∈ A : f(a) = b}.
For C ⊆ A we define the restriction f�C : C → B by f�C(c) = f(c) for all c ∈ C.
For functions f : A → B and g : B → C we define the composition g ◦ f : A → C
by (g ◦ f)(a) = g(f(a)) for all a ∈ A. For n ∈ N we denote by id{1,...,n} the identity
function over {1, . . . , n}.

Fixpoint Logics on Hierarchical Structures 485

Complexity theory We assume some basic background in complexity theory [20]. In
particular, we assume that the reader is familiar with the classes P (deterministic poly-
nomial time), NP (nondeterministic polynomial time), coNP (complements of prob-
lems in NP), PH (the polynomial time hierarchy), PSPACE (polynomial space), and
EXP (deterministic exponential time). We will use alternating Turing-machines, see
[20] for more details. An alternating Turing-machine M is a nondeterministic Turing-
machine, where the set of states Q is partitioned into three sets: Q∃ (existential states),
Q∀ (universal states), and F (accepting states). A configuration C with current state q
is accepting, if (i) q ∈ F , or (ii) q ∈ Q∃ and there exists a successor configuration of C
that is accepting, or (iii) q ∈ Q∀ and every successor configuration of C is accepting.
An input word w is accepted by M if the corresponding initial configuration is accept-
ing. It is well known that PSPACE equals the class of all problems that can be solved
on an alternating Turing-machine in polynomial time.

Relational structures and straight-line programs A signature is a finite set R of
relational symbols, where each relational symbol r ∈ R has an associated arity nr.
A (relational) structure over the signature R is a tuple A = (A, (rA)r∈R), where
A is a set (the universe of A) and rA is a relation of arity nr over the set A, which
interprets the relational symbol r. Usually, we denote the relation rA with r as well.
The size |A| of A is |A| +

∑
r∈R nr · |rA|. For an equivalence relation relation ≡ on

A we define the quotient A/≡ = ([A]≡, ({(π≡(a1), . . . , π≡(anr)) | (a1, . . . , anr) ∈
rA})r∈R). For n ≥ 0, an n-pointed structure is a pair (A, τ), where A is a structure
with universe A and τ : {1, . . . , n} → A is injective. The elements in ran(τ) (resp.
A \ ran(τ)) are also called contact nodes (resp. internal nodes). Let Gi = (Ai, τi) be
an ni-pointed structure (i ∈ {1, 2}) over the signature R, where Ai is the universe of
Ai and A1 ∩ A2 = ∅. We define the disjoint union G1 ⊕ G2 as the (n1 + n2)-pointed
structure ((A1 ∪ A2, (rA1 ∪ rA2)r∈R), τ), where τ : {1, . . . , n1 + n2} → A1 ∪ A2

with τ(i) = τ1(i) for all 1 ≤ i ≤ n1 and τ(i + n1) = τ2(i) for all 1 ≤ i ≤ n2.
Now let G = (A, τ) be an n-pointed structure, where A is the universe of A. For
a permutation f : {1, . . . , n} → {1, . . . , n} define renamef (G) = (A, τ ◦ f). If
n ≥ 1, then forget(G) = (A, τ � {1, . . . , n − 1}). Finally, if n ≥ 2, then glue(G) =
(A/≡, (π≡ ◦ τ) � {1, . . . , n − 1}), where ≡ is the smallest equivalence relation on A
which contains the pair (τ(n), τ(n − 1)). Note that the combination of renamef and
glue (resp. forget) allows to glue (resp. forget) arbitrary contact nodes.

Straight-line programs offer a succinct representation of large structures. A straight-
line program (SLP) S = (Xi := ti)1≤i≤l is a sequence of definitions, where every
right hand side ti is either an n-pointed finite structure (for some n) or an expres-
sion of the form Xj ⊕ Xk, renamef (Xj), forget(Xj), or glue(Xj) with j, k < i and
f : {1, . . . , n} → {1, . . . , n} a permutation. Here, Xi is a formal variable. For every
variable Xi, type(Xi) is inductively defined as follows: (i) if ti is an n-pointed struc-
ture, then type(Xi) = n, (ii) if ti = Xj⊕Xk, then type(Xi) = type(Xj)+type(Xk),
(iii) if ti = renamef (Xj), then type(Xi) = type(Xj), and (iv) if ti = op(Xj) for
op ∈ {forget, glue}, then type(Xi) = type(Xj) − 1. The type(Xi)-pointed finite
structure eval(Xi) is inductively defined by: (i) if ti is an n-pointed structure, then
eval(Xi) = ti, (ii) if ti = Xj ⊕Xk, then eval(Xi) = eval(Xj) ⊕ eval(Xk), and (iii)
if ti = op(Xj) for op ∈ {renamef , forget, glue}, then eval(Xi) = op(eval(Xj)). We

486 Stefan Göller and Markus Lohrey

define eval(S) = eval(Xl). The SLP S is c-bounded (c ∈ N) if type(Xi) ≤ c for all
1 ≤ i ≤ l. Finally, the size |S| of S is l plus the size of all explicit n-pointed structures
that appear as a right-hand side ti. In [17] we used hierarchical graph definitions for
the specification of large structures. A hierarchical graph definition can be translated in
polynomial time into an SLP defining the same structure [7,16].

Fixpoint logics Fix a signature R. First-order (FO) formulas over the signature R
are built from atomic formulas of the form x = y and r(x1, . . . , xnr) (where r ∈ R
and x, y, x1, . . . , xnr are first-order variables ranging over elements of the universe)
using boolean connectives and (first-order) quantifications over elements of the uni-
verse. Least fixpoint logic (LFP) extends FO by the definition of least fixpoints. For
this, let us take a countably infinite set of fixpoint variables. Each fixpoint variable R
has an associated arity n and ranges over n-ary relations over the universe. Fixpoint
variables will be denoted by capital letters. Syntactically, LFP extends FO by the fol-
lowing formula building rule: Let ϕ(x̄, R, P̄ , ȳ) be a formula of LFP. Here, x̄ and ȳ
are repetition-free tuples of first-order variables, P̄ is a repetition-free tuple of fixpoint
variables, the arity of the fixpoint variable R is |x̄| (the length of the tuple x̄), and
R only occurs positively in ϕ (i.e., within an even number of negations). Then also
lfpx̄,R ϕ(x̄, R, P̄ , ȳ) is a formula of LFP. The semantics of the lfp-operator is the fol-
lowing: Let b̄ ∈ A|ȳ| and let S̄ be a tuple of relations that is interpreting the tuple P̄
of fixpoint variables. Since R only occurs positively in ϕ(x̄, R, P̄ , ȳ), the function Fϕ
that maps T ⊆ A|x̄| to {ā ∈ A|x̄| | A |= ϕ(ā, T, S̄, b̄)} is monotonic. Hence, by the
Knaster-Tarski fixpoint theorem, the smallest fixpoint fix(Fϕ) exists. Now for ā ∈ A|x̄|

we have A |= [lfpx̄,R ϕ(x̄, R, S̄, b̄)](ā) if and only if ā ∈ fix(Fϕ). The greatest fix-
point operator can be defined as gfpx̄,R ϕ(x̄, R, P̄ , ȳ) = ¬lfpx̄,R ¬ϕ(x̄,¬R/R, P̄ , ȳ),
it defines the greatest fixpoint of Fϕ.

Monadic least fixpoint logic (MLFP) is the fragment of LFP that only contains unary
(i.e., monadic) fixpoint variables. The modal μ-calculus can be defined as a fragment
of MLFP that is defined as follows. Formulas of the modal μ-calculus are interpreted
over special relational structures that are called transition systems. Let P be a finite
set of atomic propositions. A transition system (over P) is a tuple T = (Q,R, λ),
where Q is a finite set of states, R ⊆ Q×Q, and λ : Q→ 2P . Note that a state may be
labeled with several atomic propositions. Clearly, T can be identified with the relational
structure AT = (Q,R, ({q ∈ Q | p ∈ λ(q)})p∈P). This allows us to use SLPs in order
to construct large transition systems. The set of formulas Fμ(P) over P of the modal
μ-calculus is defined by the following EBNF, where p ∈ P and X is a unary fixpoint
variable: ϕ ::= p | ¬p | X | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ♦ϕ | �ϕ | μX.ϕ | νX.ϕ We define
the semantics of a formula ϕ ∈ Fμ(P) by translating it to an MLFP-formula ||ϕ||(x)
over the signature {R} ∪ P , where R has rank 2, every p ∈ P has rank 1, and x is a
first-order variable. The translation is done inductively:

||(¬)p||(x) = (¬)p(x) ||X ||(x) = X(x)
||ϕ ∧ ψ||(x) = ||ϕ||(x) ∧ ||ψ||(x) ||ϕ ∨ ψ||(x) = ||ϕ||(x) ∨ ||ψ||(x)
||�ϕ||(x) = ∀y : R(x, y)⇒ ||ϕ||(y) ||♦ϕ||(x) = ∃y : R(x, y) ∧ ||ϕ||(y)

||μX.ϕ||(x) = [lfpx,X ||ϕ||(x)](x) ||νX.ϕ||(x) = [gfpx,X ||ϕ||(x)](x)

Fixpoint Logics on Hierarchical Structures 487

Table 1. Data and combined complexity for fixpoint logics

explicit [4,9,21] c-bounded SLP unrestricted SLP

data P P · · ·NP ∩ coNP
μ-calc.

combined P · · ·NP ∩ coNP PSPACE

data P P · · ·PH
MLFP

combined EXP

data P
LFP

combined
EXP

For a transition system T = (Q,R, λ), a state q ∈ Q, and a formula ϕ ∈ Fμ(P), we
write (T, q) |= ϕ if AT |= ||ϕ||(q).

The model checking problem for a logic L asks whether for a structure A and a
sentence ϕ ∈ L we have A |= ϕ. As already explained in the introduction, we will
be interested in combined complexity (both, the formula and the structure belong to
the input) and data complexity (the formula is fixed and only the structure belongs to
the input), where the structure is represented via an SLP. Table 1 collects the known
results as well as our new results concerning the (data and combined) complexity of
the model-checking problem for the logics LFP, MLFP, and the modal μ-calculus. Only
for the data complexity of MLFP and the modal μ-calculus on structures defined by
c-bounded SLPs (for some fixed c ∈ N) we do not obtain matching lower and upper
bounds.

Parity games The modal μ-calculus has a close relationship to parity games, which
are played between two players, called Adam and Eve, on a particular kind of rela-
tional structure, called a game graph. Let C = {0, . . . , k} (k ∈ N) be a finite set of
priorities. A game graph G over C is a tuple G = (V,E, ρ) s.t. V is a finite set of
nodes, E ⊆ V × C × V is the set of labeled edges, and ρ : V → {Eve,Adam} as-
signs to every node v a player ρ(v). Its size is defined by |G| = |V | + |E|. We define
Eve = Adam and Adam = Eve. The set of successor nodes of a given node v ∈ V is
vE = {u ∈ V | ∃c ∈ C : (v, c, u) ∈ E}. Note that we diverge from common conven-
tions as in [4,8,19] since priorities are assigned to edges instead to nodes. This is no re-
striction when considering parity games. A sequence π = v0, c0, v1, c1, . . . ∈ V (CV)ω

(resp. π = v0, c0, v1, . . . , cn−1, vn ∈ V (CV)∗) is an infinite path (resp. finite path) in
G if for all i ≥ 0 (resp. 0 ≤ i ≤ n − 1) we have (vi, ci, vi+1) ∈ E. A finite path
π is called empty if π = v for some v ∈ V . The set of priorities occurring in π is
denoted by Occ(π). For an infinite path π we denote with Inf(π) ⊆ Occ(π) the set of
those priorities that occur infinitely many times in the path π. Clearly, the game graph
G = (V,E, ρ) can be identified with the relational structure (V, ({(u, v) | (u, c, v) ∈
E})c∈C , ρ−1(Eve), ρ−1(Adam)). This allows us to generate large game graphs using
SLPs. Here we have to be careful with the glue-operation. If (G, τ) is an n-pointed
relational structure, where G is the game graph G = (V,E, ρ) — we call such a struc-
ture an n-game graph — then glue(G, τ) is an (n − 1)-game graph only if n ≥ 2 and

488 Stefan Göller and Markus Lohrey

ρ(τ(n − 1)) = ρ(τ(n)), i.e., the two nodes that are glued belong to the same player.
Thus, glue is only a partial operation on n-game graphs.

Let G = (V,E, ρ) be a game graph over the priorities C = {0, . . . , k} (k ∈ N).
A play is either an infinite path in G or a finite path in G that ends in a node v
with vE = ∅ (i.e., a dead end). Eve (resp. Adam) wins an infinite play π if and
only if max(Inf(π)) ≡ 0 mod 2 (resp. max(Inf(π)) ≡ 1 mod 2). Player σ ∈
{Eve,Adam} wins a finite play π if and only if ρ(v) = σ for the last node v of π, i.e.,
the dead end, where π ends, belongs to player σ. It is an important question whether
Eve/Adam has the possibility to force the game to a play which she/he can win, i.e., if
she/he has a winning-strategy. For parity games, so called memoryless strategies suf-
fice. A memoryless strategy for player σ ∈ {Eve,Adam} is a map Sσ : {v | ρ(v) =
σ, vE 	= ∅} → V s.t. Sσ(v) ∈ vE for all v ∈ {v | ρ(v) = σ, vE 	= ∅}. We say that a
finite play π = v0, c0, v1, . . . cn−1, vn (resp. an infinite play π = v0, c0, v1, . . .) is Sσ-
confirm w.r.t. a memoryless strategy Sσ if for all 0 ≤ i ≤ n− 1 (resp. for all i ≥ 0) we
have Sσ(vi) = vi+1 whenever ρ(vi) = σ. For v ∈ V we call the memoryless strategy
Sσ a memoryless winning strategy for player σ from the node v if player σ wins every
Sσ-confirm play which starts in v. The question whether a memoryless strategy Sσ for
player σ is a winning strategy can be answered in deterministic polynomial time. With
PARITY we denote the set of all triples (G, v, σ), where G is a game graph, v is a node
of G, σ ∈ {Eve,Adam}, and there exists a memoryless winning strategy for player σ
from v. The determinacy theorem for parity games [4] states that (G, v, σ) ∈ PARITY
if and only if (G, v, σ) /∈ PARITY. It implies that PARITY belongs to NP∩coNP. By
a result of [3,4], the model-checking problem for the modal μ-calculus can be reduced
to PARITY.

3 Parity Games over SLP-defined Graphs

In this section we will prove a PSPACE upper bound for parity games over game graphs
that are given via SLPs. Our construction is inspired by [19], where parity games on
graphs of bounded tree width are examined. For the following considerations, let us fix
a set C = {0, . . . , k} (k ∈ N) of priorities and let G = (H, τ) be an n-game graph over
C with H = (V,E, ρ).

Strategy reducts Let W ⊆ ρ−1(Eve) ∩ ran(τ) be a set of contact nodes that belong
to Eve. An n-game graph G′ is a strategy reduct of G w.r.t. W if G′ can be obtained
from G by (i) removing all outgoing edges for all w ∈ W , and (ii) keeping exactly one
outgoing edge for all w ∈ ρ−1(Eve) \ (W ∪ {v | vE = ∅}). Thus, a strategy reduct of
G is the remainder of G by restricting G to a given strategy and making certain Eve-
nodes to dead ends. Note that a strategy reduct is always defined w.r.t. a subset W of
Eve-nodes and is not unique in general. The reason for making an Eve-node u to a dead
end in G is the fact that u is a contact node which will be glued with another contact
node u′ from another n′-game graph G′ in an SLP, and for u′ an outgoing edge (as a
part of the strategy for Eve on G′) has already been guessed.

The reward function For a guessed strategy reduct G′ of the potentially exponentially
large n-game graphG we only store a polynomial amount of relevant information. More

Fixpoint Logics on Hierarchical Structures 489

precisely for each pair of contact nodes τ(i) and τ(j) we only store the maximal priority
along an optimal path for Adam from τ(i) to τ(j). In order to define this formally, we
introduce the function reward : 2C \ {∅} → C, see also [19]. Let B ⊆ C, B 	= ∅:

reward(B) =

⎧⎨⎩max(B ∩ {2n+ 1 | n ∈ N}) if B ∩ {2n+ 1 | n ∈ N} 	= ∅
min(B) else

Intuitively, reward(B) is the best priority amongB for Adam: if there is an odd priority
in B, then the largest odd priority is the best for Adam. If there are only even priorities
in B, then the smallest priority in B causes the smallest harm for Adam. For a set
Π 	= ∅ of finite paths in G let reward(Π) = reward({ max(Occ(π)) | π ∈ Π}). The
intuition behind this definition is the following: If G′ is a strategy reduct of G, then it is
only Adam who can freely choose the next outgoing edge in G′. Hence, if Π is the set
of all paths in G′ between two contact nodes τ(i) and τ(j), then, if Adam is smart, he
will choose a path π ∈ Π with max(Occ(π)) = reward(Π) when going from τ(i) to
τ(j). Hence, we can replace the set of paths Π by a single edge from τ(i) to τ(j) with
priority reward(Π). For technical reasons we only put paths into Π that do not visit
any contact nodes except its start and end node. We call such paths ττ -internal paths.

(τ)τ -internal paths For two contact nodes v0, vn ∈ ran(τ) we call a non-empty finite
path π = v0, c0, v1, . . . , cn−1, vn a ττ -internal path from v0 to vn if v1, . . . , vn−1 	∈
ran(τ). Note that v0 = vn is allowed. We call a non-empty play π (i.e., either π is an
infinite path or it ends in a dead end but is non-empty) a τ -internal path if its first node
is a contact node but it never visits a contact node again. We will be only interested in τ -
internal paths, which player Adam wins. For 1 ≤ i, j ≤ n we denote with Πτ

i,j(G) the
set of all ττ -internal paths in G from τ(i) to τ(j). Note that an arbitrary path between
two contact nodes can be split up into consecutive ττ -internal paths. Similarly an arbi-
trary maximal path that begins in a contact node consists of a sequence of ττ -internal
paths possibly followed by a τ -internal path. Hence, we do not lose any information by
only considering (τ)τ -internal paths.

The reduce operation Assume that G′ is a strategy reduct of the n-game graph G.
Then it is only player Adam who can choose any path in G′. Of course, there is no
reason for player Adam to move from contact node τ(i) to contact node τ(j) along
a path which is not optimal for him. Hence we can replace the set Πτ

i,j(G) of all ττ -
internal paths from τ(i) to τ(j) by a single edge with priority reward(Πτ

i,j(G)). The
operation reduce is doing this for every pair of contact nodes. We define the reduce-
operation on arbitrary n-game graphs, but later we will only apply it to strategy reducts:
reduce(G) is the game graph ({1, . . . , n}, F,), where (i) = ρ(τ(i)) for all 1 ≤ i ≤
n and (i, p, j) ∈ F if and only if Πτ

i,j(G) 	= ∅ and reward(Πτ
i,j(G)) = p. We identify

reduce(G) with the n-game graph (({1, . . . , n}, F,), id{1,...,n}).

Lemma 1. The operation reduce is polynomial time computable.

Interfaces and realizability For a given variable Xi of an SLP S, the type(Xi)-game
graph eval(Xi) may have exponential size in |S|, and the same is true for some strategy

490 Stefan Göller and Markus Lohrey

reduct G′ of eval(Xi). We will store all the relevant information about G′ in a so called
n-interface of G′, which can be stored in polynomial space. An n-interface S over the
priorities C is a tuple S = ({1, . . . , n}, F, , I, U) s.t. (i) ({1, . . . , n}, F,) is a game
graph over the priorities C, (ii) I ⊆ {1, . . . , n}, and (iii) U ⊆ −1(Eve) is a subset
of the nodes which belong to Eve. The notion of an interface is inspired by the notion
of a border from [19]. The n-interface S is realized by the n-game graph G = (H, τ)
if there is a strategy reduct G′ = (H ′, τ) of G w.r.t. τ(U) s.t. (i) ({1, . . . , n}, F,) =
reduce(G′), and (ii) i ∈ I if and only if there is a τ -internal path π in G′ which begins
at τ(i) and which player Adam wins (recall that π has to be non-empty). We also say
that G′ is a witness that S is realized by G. By first guessing a strategy reduct and then
applying Lemma 1, we obtain:

Lemma 2. The problem of checking, whether a given n-interface is realized by a given
n-game graph, belongs to NP.

Example 1. The following figure shows a 3-game graph G together with a strategy
reductG′ w.r.t. {τ(2)} (node τ(i) is labeled with i and -labeled (resp. �-labeled) nodes
belong to Eve (resp. Adam). The interface S = ({1, 2, 3}, F, , I, U) with I = {1} and
U = {2} is realized by G, and G′ is a witness for this.

G G′ S

�1

2

3

�
u

 v

1 0
3

24

3 4

2

1

2

�1

2

3

�
u

 v

3

24

4

2

1

2

�
1 ∈ I

2 ∈ U

3

3

4

2

4

We have 1 ∈ I , because the infinite τ -internal path τ(1), 2, (u, 1)ω starts in node τ(1)
in G′ and Adam wins this path. The loop with priority 4 at node 1 in S exists due to the
ττ -internal path τ(1), 2, u, 4, v, 2, τ(1) in G′.

Operations on interfaces Our PSPACE-algorithm will only manipulate n-interfaces
instead of whole n-game graphs. In order to do this, we have to extend the operations⊕,
renamef , forget, and glue on interfaces. The crucial correctness property is formalized
in this section for arbitrary operations. In the following we restrict to n-game graphs
G = (H, τ) such that every contact node τ(i) has at least one outgoing edge. This can
be ensured by adding for a contact node τ(i) without outgoing edges an outgoing edge
to a new internal node v, which is a dead end and which belongs to the same player as
τ(i). This new edge has no influence on the winner of a parity game.

Let op be a partial operation, mapping a k-tuple (G1, . . . , Gk), where Gi is an
ni-game graph, to an n-game graph op(G1, . . . , Gk). We say that op has a faithful
polynomial implementation (briefly FPI) on interfaces, if there exists a partial poly-
nomial time computable operation ops, mapping a k-tuple (S1, . . . , Sk), where Si is
an ni-interface, to an n-interface op(S1, . . . , Sk) s.t. the following is true: Whenever
G = op(G1, . . . , Gk), where Gi is an ni-game graph and G is an n-game graph, and S
is an n-interface, then G realizes S if and only if there exist ni-interfaces Si (1 ≤ i ≤ k)
s.t. S = op(S1, . . . , Sk) and Gi realizes Si.

Lemma 3. The operations⊕, renamef , forget, and glue have FPIs on interfaces.

Fixpoint Logics on Hierarchical Structures 491

Proof. The operations ⊕s and renamesf are straight-forward: ⊕s builds the disjoint
union of two interfaces, and renamesf renames the contact nodes according to the per-
mutation f . Let us now describe the operation glues, the operation forgets can be de-
fined similarly. Let S = ({1, . . . , n}, F, , I, U) be an n-interface. Then glues(S) is
only defined if (i) n ≥ 2, (ii) (n) = (n − 1) (thus, node n − 1 and n belong to
the same player and can actually be glued), and (iii) if (n) = (n − 1) = Eve then
n− 1 ∈ U or n ∈ U . Then glues(S) = ({1, . . . , n− 1}, F ′, ′, I ′, U ′), where:

– ({1, . . . , n− 1}, F ′, ′) = reduce(glue({1, . . . , n}, F,)).
– I ′ = I \ {n} ∪ {n− 1} if (n− 1 ∈ I or n ∈ I), otherwise I ′ = I .
– U ′ = U \ {n} if n− 1, n ∈ U , otherwise U ′ = U \ {n− 1, n}.

The intuition behind this definition is the following. Assume that the n-interface S is
realized by an n-game graphG = (H, τ) and let G′ be a witness for this. We want to de-
fine glues(S) = ({1, . . . , n− 1}, F ′, ′, I ′, U ′) in such a way that glues(S) is realized
by glue(G) and moreover glue(G′) is a witness for this. Note that by assumption (i)–
(iii), glue(G′) is in fact a strategy reduct of glue(G). In order to determine the maximal
priority of an optimal path for Adam from τ(i) to τ(j) in glue(G′), it suffices to look at
the (n− 1)-game graph K = glue({1, . . . , n}, F,), i.e., to calculate reduce(K). This
graph will be therefore ({1, . . . , n−1}, F ′, ′). Note that in K , there may be more than
one edge between two contact nodes. By applying reduce to K we select the optimal
edge for player Adam between two contact nodes. Finally, if n − 1 ∈ I or n ∈ I , i.e.,
there exists a τ -internal path in G′ that starts in τ(n − 1) or in τ(n) and which player
Adam wins, then we can be sure that there exists a τ -internal path in glue(G′) that
starts in τ(n − 1) and which player Adam wins. Here it is important that τ -internal
paths are non-empty. Hence, we put n− 1 into I ′. &'

Parity games over SLP-defined graphs We are now ready to prove an upper bound
of PSPACE for the parity game problem on graphs that are represented by SLPs:

Theorem 1. For a given SLP S = (Xi := ti)1≤i≤l, where eval(S) = (G, τ) is a
1-game graph, we can decide in PSPACE, whether (G, τ(1),Eve) ∈ PARITY.

Proof. W.l.o.g. we can assume that node τ(1) belongs to Eve and that τ(1) has no
incoming edge; this property can be easily enforced by adding a new node. Due to
this convention, we have (G, τ(1),Eve) ∈ PARITY if and only if eval(G) real-
izes the interface Sl = ({1}, ∅, [1 %→ Eve], ∅, ∅). We present the algorithm in form
of the following procedure P , which works on a polynomial time bounded alternat-
ing Turing machine; (Q∀) (resp. (Q∃)) indicates that the machine branches universally
(resp. existentially). Procedure P has two parameters, the current line i of the SLP and
a type(Xi)-interface Si, and it returns true if and only if Si is realized by eval(Xi).
At the beginning we call P with the parameter (l, Sl).

procedure P(i ∈ {1, . . . , l}, Si) return boolean is
if ti is a type(Xi)-game graph then return (ti realizes Si) (∗)
elseif ti = op(Xi1 , . . . , Xik) then

(Q∃): for 1 ≤ j ≤ k guess type(Xij)-interfacesSij s.t. Si = ops(Si1 , . . . , Sik)
(Q∀): return

∧
1≤j≤k P(ij, Sij)

endif

492 Stefan Göller and Markus Lohrey

The correctness of the algorithm follows easily by induction on the index i ∈ {1, . . . , l}.
For the alternating polynomial time bound note that: (i) the test whether ti realizes Si
in line (∗) is in NP by Lemma 2 and (ii) each of the operations ops is computable in
polynomial time by Lemma 3 and the definition of an FPI. &'

By the following theorem, we can improve the PSPACE upper bound from Thm. 1 to
NP ∩ coNP, when we restrict to c-bounded SLPs for some fixed constant c.

Theorem 2. Let c ∈ N be a fixed constant. The problem of checking (G, τ(1),Eve) ∈
PARITY for a given c-bounded SLP S = (Xi := ti)1≤i≤l, where eval(S) = (G, τ) is
a 1-game graph, belongs to NP ∩ coNP.

Proof. By the determinacy theorem it suffices to prove membership in NP. The main
idea is to guess for all 1 ≤ i ≤ l a set of type(Xi)-interfaces Mi. Note that for the
representation of a single interface c2 log |C| + 2c bits suffice, where C is the set of
priorities used in the SLP S. Thus, every Mi contains at most |C|c222c many interfaces.
Hence, since c is a constant, we can guess in polynomial time the set

⋃
1≤i≤lMi of

interfaces. Then we check whether for all 1 ≤ i ≤ l the set Mi is a subset of the set of
interfaces which are realized by eval(Xi). In case ti is an n-game graph we can do this
in NP by Lemma 2. If ti = op(Xi1 , . . . , Xik), then one has to check, whether for every
Si ∈Mi there are Sij ∈Mij (1 ≤ j ≤ k) s.t. Si = ops(Si1 , . . . , Sik). &'

4 The Modal μ-Calculus over SLP-defined Graphs

In this section, we show that both the data and combined complexity of the modal μ-
calculus over transition systems that are represented by SLPs is PSPACE-complete.
The upper bound extends [1, Thm. 9] concerning CTL. Note that a translation of the
modal μ-calculus into MSO and an application of the MSO-model-checking algorithm
from [17] leads to a higher upper bound, namely within the exponential time hierarchy
(already for data complexity). For c-bounded SLPs we obtain an upper bound of NP ∩
coNP for the data complexity, whereas the combined complexity remains PSPACE.
For the upper bounds we use a reduction to parity games, which is analogous to the
corresponding reduction for explicitly given input graphs [3,4]:

Theorem 3. The following problem can be calculated in polynomial time:
INPUT: A c-bounded SLP St defining a transition system eval(St), a state q of eval(St),
and a sentence ϕ of the modal μ-calculus having exactly k subformulas.
OUTPUT: A (c · k)-bounded SLP Sg defining a game graph eval(Sg) and a node v of
eval(Sg) s.t. (eval(St), q) |= ϕ if and only if (eval(Sg), v,Eve) ∈ PARITY.

Corollary 1. The following problem is PSPACE-complete:
INPUT: An SLP S defining a transition system eval(S), a state q of eval(S), and a
sentence ϕ of the modal μ-calculus.
QUESTION: (eval(S), q) |= ϕ ?
Moreover: (i) the above problem is already PSPACE-complete when restricted to c-
bounded SLPs (for a suitably large c), and (ii) there exists already a fixed sentence of
the modal μ-calculus for which the above problem is PSPACE-complete.

Fixpoint Logics on Hierarchical Structures 493

Proof. The upper bound follows from Thm. 1 and 3. For the lower bounds, we use two
results from [1]: The combined complexity of CTL for hierarchical state machines is
PSPACE-complete [1, Thm. 9]; recall that CTL is a fragment of the modal μ-calculus.
It is easy to see that the hierarchical state machines from the proof of [1, Thm. 9] can
be generated by a 5-bounded SLP, which gives us (i). Moreover, there is already a fixed
CTL-sentence s.t. the model-checking problem for hierarchical state machines (and thus
SLPs) is PSPACE-complete [1, Thm. 11]. This implies (ii). &'
When we restrict both to c-bounded SLPs and to a fixed sentence ϕ, then we obtain a
better upper bound:

Corollary 2. Let c ∈ N be a fixed constant and ϕ be a fixed sentence of the modal
μ-calculus. The problem of checking (eval(St), q) |= ϕ for a given c-bounded SLP St
(s.t. eval(St) is a transition system) and a state q of eval(St) belongs to NP ∩ coNP.

Proof. If ϕ has k many subformulas, then the SLP Sg from Thm. 3 is (c · k)-bounded.
Since ϕ and ϕ are fixed, c ·k is a fixed constant. The corollary follows from Thm. 2. &'

5 LFP and MLFP over SLP-defined Graphs

In this section we state our results concerning MLFP and LFP. An upper bound for the
most general case (combined complexity of LFP) is given by the next theorem; recall
that EXP is also the combined complexity of LFP for explicitly given structures.

Theorem 4. It can be checked in EXP, whether eval(S) |= ϕ for a given SLP S and a
given LFP-sentence ϕ.

Only for the data complexity of MLFP we obtain a better upper bound. MLFP is a
fragment of MSO (monadic second order logic). Since for every fixed MSO-sentence ϕ
and every fixed constant c the model-checking problem for ϕ on structures represented
by c-bounded SLPs belongs to the polynomial time hierarchy PH [17, Thm. 6.3], we
obtain:

Theorem 5. For every fixed MLFP sentence ϕ and every fixed constant c ∈ N, the
problem of checking eval(S) |= ϕ for a given c-bounded SLP S belongs to PH.

Finally, we state several EXP lower bounds. Together with Thm. 4 we get the EXP
completeness results in Table 1. We start with the data complexity of LFP:

Theorem 6. There is a fixed LFP-sentence ϕ s.t. it is EXP-hard to check whether
eval(S) |= ϕ for a given 4-bounded SLP S.

If we do not restrict to c-bounded hierarchical graph definitions, then an EXP lower
bound can be also shown for the data complexity of MLFP:

Theorem 7. There exists a fixed MLFP-sentence ϕ s.t. it is EXP-hard to check whether
eval(S) |= ϕ for a given SLP S.

For the combined complexity of MLFP, we can derive an EXP lower bound also for the
c-bounded case:

Theorem 8. It is EXP-hard to check eval(S) |= ϕ for a given 3-bounded SLP S and a
given MLFP-sentence ϕ.

494 Stefan Göller and Markus Lohrey

References

1. R. Alur and M. Yannakakis. Model checking of hierarchical state machines. ACM Trans.
Program. Lang. Syst., 23(3):273–303, 2001.

2. S. Dziembowski. Bounded-variable fixpoint queries are PSPACE-complete. In Proc.
CSL’96, LNCS 1258, pages 89–105. Springer, 1996.

3. E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy (extended
abstract). In Proc. FOCS’91, pages 132–142. IEEE Computer Society Press, 1991.

4. E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model checking for the μ-calculus and its
fragments. Theor. Comput. Sci., 258(1-2):491–522, 2001.

5. E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional
mu-calculus (extended abstract). In Proc. LICS’86, pages 267–278. IEEE Computer Society
Press, 1986.

6. J. Engelfriet. Context-free graph grammars. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, Volume 3: Beyond Words, pages 125–213. Springer, 1997.

7. S. Göller and M. Lohrey. Fixpoint logics on hierarchical structures. Tech. Rep.
2005/3, University of Stuttgart, Germany, 2005. ftp.informatik.uni-stuttgart.de/pub/library/
ncstrl.ustuttgart fi/TR-2005-04/.

8. E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games. LNCS 2500.
Springer, 2002.

9. N. Immerman. Relational queries computable in polynomial time. Inf. Control, 68(1–3):86–
104, 1986.

10. M. Jurdziński. Deciding the winner in parity games is in UP and co-UP. Inf. Process. Lett.,
68(3):119–124, 1998.

11. M. Jurdziński. Small progress measures for solving parity games. In Proc. STACS 2000,
LNCS 1770, pages 290–301. Springer, 2000.

12. T. Lengauer. Hierarchical planarity testing algorithms. J. Assoc. Comput. Mach., 36(3):474–
509, 1989.

13. T. Lengauer and K. W. Wagner. The correlation between the complexities of the nonhierar-
chical and hierarchical versions of graph problems. J. Comput. Syst. Sci., 44:63–93, 1992.

14. T. Lengauer and E. Wanke. Efficient solution of connectivity problems on hierarchically
defined graphs. SIAM J. Comput., 17(6):1063–1080, 1988.

15. L. Libkin. Elements of Finite Model Theory. Springer, 2004.
16. M. Lohrey. Model-checking hierarchical graphs. Tech. Rep. 2005/1, University of Stuttgart,

Germany, 2005. ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart fi/TR-2005-1/.
17. M. Lohrey. Model-checking hierarchical structures. In Proc. LICS 2005, pages 168–177.

IEEE Computer Society Press, 2005.
18. M. V. Marathe, H. B. Hunt III, R. E. Stearns, and V. Radhakrishnan. Approximation algo-

rithms for PSPACE-hard hierarchically and periodically specified problems. SIAM J. Com-
put., 27(5):1237–1261, 1998.

19. J. Obdržálek. Fast mu-calculus model checking when tree-width is bounded. In CAV’03,
LNCS 2725, pages 80–92. Springer, 2003.

20. C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
21. M. Y. Vardi. The complexity of relational query languages (extended abstract). In

Proc. STOC 1982, pages 137–146. ACM Press, 1982.
22. M. Y. Vardi. On the complexity of bounded-variable queries. In Proc. PODS 1995, pages

266–276. ACM Press, 1995.

The Equivalence Problem for Deterministic
MSO Tree Transducers Is Decidable

Joost Engelfriet1 and Sebastian Maneth2�

1 LIACS, Leiden University, The Netherlands
engelfri@liacs.nl

2 Faculté I & C, EPFL, Switzerland
sebastian.maneth@epfl.ch

Abstract. It is decidable for deterministic MSO definable graph-to-string or graph-
to-tree transducers whether they are equivalent on a context-free set of graphs.

1 Introduction

It is well known that the equivalence problem for nondeterministic (one-way) finite state
transducers is undecidable, even when they cannot read or write the empty string [Gri68].
In contrast, equivalence is decidable for deterministic finite state transducers, even for
two-way transducers [Gur82]. The question arises whether these results can be gener-
alized from strings to transducers working on more complex structures like, e.g., trees
or graphs. There is no accepted notion of finite state transducer working on graphs; in-
stead, it is believed that transductions expressed in monadic second-order logic (MSO)
are the natural counterpart of finite state transductions on graphs. The idea is to define
an output graph by interpreting fixed MSO formulas on a given input graph. In fact,
if the input and output graphs of such an MSO graph transducer are strings, then the
resulting transductions (in the deterministic case) are precisely the deterministic two-
way finite state transductions [EH01]. Hence, by the above, equivalence is decidable
for deterministic MSO string transducers. A nondeterministic MSO graph transducer
can easily simulate a nondeterministic finite state transducer that cannot read the empty
string; hence, equivalence is undecidable. Actually, even for deterministic MSO graph
transducers equivalence is undecidable. This is due to the fact that MSO is undecid-
able for graphs (Propositions 5.2.1 and 5.2.2 of [Cou97]); cf. end of Section 3 for more
details. The question remains whether deterministic MSO tree transducers have a de-
cidable equivalence problem. Recently, these transducers have been characterized by
certain attribute grammars [BE00] and macro tree transducers [EM99]. However, for
both models it is unknown whether equivalence is decidable. Here we give an affirma-
tive answer: equivalence of deterministic MSO tree transducers is decidable. This result
has several applications; for instance, it implies that XML queries of linear size increase
have decidable equivalence, by the results of [MSV03], [EM03a], [EM03b], [Man03],
and [MBPS05]. Our proof generalizes the one of [Gur82] (see also [Iba82]): it is based
on the fact that certain sets are semilinear. It proceeds roughly as follows: two transduc-
ers M1,M2 are equivalent if there is no input s and position n such that the symbol at

� Present address: National ICT Australia Ltd. sebastian.maneth@nicta.com.au

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 495–504, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

496 Joost Engelfriet and Sebastian Maneth

position n of M1’s output on s is different from the symbol at position n of M2’s output
on s. Hence, we must test whether there exists an n and distinct symbols a, b such that
(n, n) is contained in the set Sa,b of all pairs (i, j) where M1’s output at position i is
a and M2’s output at position j is b, for some input s. The set Sa,b is semilinear which
implies that the existence of such an n is decidable. Semilinearity of Sa,b is proved us-
ing known results from the theory of MSO graph transducers, by coding the pair (i, j)
as a discrete graph with i a-labeled nodes and j b-labeled nodes.

2 Preliminaries

The reader is assumed to be familiar with MSO on graphs and with MSO graph trans-
ducers, see, e.g., the survey papers [Cou97, Cou94].

A graph alphabet is a pair (Σ,Γ) of alphabets of node and edge labels, respectively.
A graph over (Σ,Γ) is a tuple (V,E, λ) where V is the finite set of nodes, E ⊆ V ×
Γ × V is the set of edges, and λ : V → Σ is the node labeling function. The set of
all graphs over (Σ,Γ) is denoted GR(Σ,Γ). The language MSO(Σ,Γ) of monadic
second-order (MSO) formulas over (Σ,Γ) uses node variables x, y, . . . and node-set
variablesX,Y, . . . ; both can be quantified with ∃ and ∀. It has atomic formulas labσ(x)
for σ ∈ Σ, denoting that x is labeled σ, edgγ(x, y) for γ ∈ Γ , denoting that there is
a γ-labeled edge from x to y, and x ∈ X denoting that x is in X . For g ∈ GR(Σ,Γ)
and a closed formula ψ in MSO(Σ,Γ) we write g |= ψ if g satisfies ψ; similarly, if
ψ has free variables x or x, y and u, v are nodes of g, then we write (g, u) |= ψ or
(g, u, v) |= ψ if g satisfies ψ with x = u or with x = u, y = v, respectively.

Let (Σ1, Γ1), (Σ2, Γ2) be graph alphabets. A deterministic MSO graph transducer
M (from (Σ1, Γ1) to (Σ2, Γ2)) is a tuple (C,ϕdom, Ψ,X) where C is a finite set of copy
names, ϕdom ∈ MSO(Σ1, Γ1) is the closed domain formula, Ψ = {ψc,σ(x)}c∈C,σ∈Σ2

is a family of node formulas, i.e., MSO formulas ψc,σ(x) over (Σ1, Γ1) with one free
variable x, and X = {χc,c′,γ(x, y)}c,c′∈C,γ∈Γ2 is a family of edge formulas, i.e., MSO
formulas χc,c′,γ(x, y) over (Σ1, Γ1) with two free variables x, y.

The purpose of the node formulas of an MSO graph transducer is twofold: (1) they
define which (copies of) nodes of the input graph are used, and they define their labels.
As can be seen easily, it is no loss of generality to require that, for every c ∈ C, the
formulas ψc,σ(x) are mutually exclusive.

Given g ∈ GR(Σ1, Γ1), the graph h = τM (g) ∈ GR(Σ2, Γ2) is defined if g |=
ϕdom, and then Vh = {(c, u) | c ∈ C, u ∈ Vg , there is exactly one σ ∈ Σ2 such
that (g, u) |= ψc,σ(x)}, Eh = {((c, u), γ, (c′, u′)) | (c, u), (c′, u′) ∈ Vh, γ ∈ Γ2,
and (g, u, u′) |= χc,c′,γ(x, y)}, and λh = {((c, u), σ) | (c, u) ∈ Vh, σ ∈ Σ2, and
(g, u) |= ψc,σ(x)}. Hence, τM is a partial function from GR(Σ1, Γ1) to GR(Σ2, Γ2)
with dom(τM) = {g ∈ GR(Σ1, Γ1) | g |= ϕdom}.

In the sequel we often identify a transducer M with its transduction τM , and simply
write, e.g., M(g) in place of τM (g).

A (nondeterministic) MSO graph transducer is obtained from a deterministic one by
allowing all formulas to use fixed free node-set variables Y1, Y2, . . . , called parameters.
For each valuation of the parameters (by sets of nodes of the input graph) that satisfies
the domain formula, the other formulas define the output graph as before. Hence each

The Equivalence Problem for Deterministic MSO Tree Transducers Is Decidable 497

such valuation may lead to a different output graph for the given input graph. Thus,
τM ⊆ GR(Σ1, Γ1)×GR(Σ2, Γ2).

For an alphabet Δ and a1, . . . , an ∈ Δ, n ≥ 0, we identify the string w =
a1a2 · · · an with the graph in GR({#}, Δ) that has #-labeled nodes v1, . . . , vn+1 and,
for 1 ≤ i ≤ n, an ai-labeled edge from vi to vi+1. For 1 ≤ i ≤ n, we denote by w/i
the i-th letter ai of w.

Let Σ be a ranked alphabet, i.e., an alphabet Σ together with a mapping rankΣ :
Σ → N. Let m be the maximal rank of symbols in Σ. A tree (over Σ) is an acyclic,
connected graph in GR(Σ, {1, . . . ,m}), with exactly one node that has no incoming
edges (the root), and, for σ ∈ Σ, every σ-labeled node has exactly rankΣ(σ) outgoing
edges, labeled 1, 2, . . . , rankΣ(σ), respectively. The set of all trees over Σ is denoted
by TΣ .

Let M be an MSO graph transducer and let X,Y be sets of graphs. Then M is
called an MSO X-to-Y transducer, if dom(M) ⊆ X and range(M) ⊆ Y , and it is an
MSO X transducer if additionally Y = X . Thus, as an example, an MSO tree-to-string
transducer translates trees into strings.

Convention: All lemmas stated in this paper are effective.

Example 1. (i) Let Σ be the ranked alphabet consisting of the binary symbol σ and the
nullary symbol a. Consider the deterministic MSO tree-to-string transducers M1,M2

that translate trees s over Σ into strings bn, where n = i + j + k − 1, i is the num-
ber of binary nodes on the left-most path in s, j is the number of leaves in s, and
k is the number of binary nodes on the right-most path in s. Let us denote n by
outer(s). Roughly, the transducer M1 realizes the translation by doing a depth-first

2

1 2

1 2

1
σ

σ a

(1, v0)

#
(2, v0)

#

#

#

#
b

b

b

#

(1, v2)#(1, v1)

(1, v3)

(1, v6)(1, v5)

b

c

b
(1, v0)

#

##

(1, v2)#

(1, v6)(1, v5)

c

b

b

(2, v0)

#b

#

#
b

(1, v1)

(1, v3)

b

a σ

ca
v5

v3

v2

v4

v0

v1

v6

Fig. 1. The tree s = σ(σ(a, σ(a, c), a)) in the center, M3(s) = bbbcbb on the left, and
M4(s) = bcbbbb on the right.

left-to-right traversal through s, while M2 does a depth-first right-to-left traversal. Let
M1 = ({1, 2}, ϕtree, {ψ1,#(x), ψ2,#(x)}, {χc,c′,b(x, y)}c,c′∈{1,2}) where ϕtree is an
MSO formula expressing that a graph is a tree, and

498 Joost Engelfriet and Sebastian Maneth

ψ1,#(x) ≡ laba(x) ∨ (∃y)(root(y) ∧ (edg∗1(y, x) ∨ edg∗2(y, x)))
ψ2,#(x) ≡ root(x)
χ1,1,b(x, y) ≡ ¬root(x) ∧ (edg1(x, y) ∨ yield(x, y) ∨ edg2(y, x))
χ1,2,b(x, y) ≡ root(x)
χ2,1,b(x, y) ≡ χ2,2,b(x, y) ≡ false.

Here, root(y) denotes that y is the root node, yield(x, y) denotes that x is a leaf and y
is the next leaf in pre-order, and edg∗1(x, y) denotes the transitive closure of edg1 (sim-
ilarly edg∗2); all these can easily be expressed in MSO. The transducer M2 is defined as
M1 with the only difference that χ1,1,b(x, y) ≡ ¬root(x) ∧ (edg2(x, y) ∨ yield(y, x) ∨
edg1(y, x)).

(ii) Next, consider the transducers M3,M4, obtained from M1,M2 as follows. We
now take input trees over Σ′ that additionally contains the nullary symbol c which is
translated into c. Hence, M3 becomes

ψ1,#(x) ≡ laba(x) ∨ labc(x) ∨ (∃y)(root(y) ∧ (edg∗1(y, x) ∨ edg∗2(y, x)))
ψ2,#(x) ≡ root(x)
χ1,1,b(x, y) ≡ ¬root(x) ∧ ¬labc(x) ∧ (edg1(x, y) ∨ yield(x, y) ∨ edg2(y, x))
χ1,1,c(x, y) ≡ ¬root(x) ∧ labc(x) ∧ (edg1(x, y) ∨ yield(x, y) ∨ edg2(y, x))
χ1,2,b(x, y) ≡ root(x) ∧ ¬labc(x)
χ1,2,c(x, y) ≡ root(x) ∧ labc(x)
χ2,1,b(x, y) ≡ χ2,2,b(x, y) ≡ χ2,1,c(x, y) ≡ χ2,2,c(x, y) ≡ false.

Consider the input tree s = σ(σ(a, σ(a, c), a)). Then, as can be seen in Fig. 1, M3

generates as output the string M3(s) = bbbcbb and M4 generates M4(s) = bcbbbb.

The following lemma contains a basic fact about MSO definable graph transduc-
tions; see, e.g., Proposition 3.2 in [Cou94].

Lemma 2. The (deterministic) MSO graph transductions are closed under composi-
tion.

Notation. Let M1;M2 denote a transducer M for which τM = τM2 ◦ τM1 ; note that
M is deterministic, if M1 and M2 are. By Lemma 2, M1;M2 effectively exists.

A discrete graph (dgraph, for short) is a graph without edges. Let g be a dgraph
over (Σ,∅) with Σ = {σ1, . . . , σk}. Define Par(g) as the vector (n1, . . . , nk) in Nk

such that, for 1 ≤ i ≤ k, ni is the number of σi-labeled nodes in g. Similarly, for a
string w ∈ Σ∗, Par(w) is the vector in Nk such that the i-th component is the number
of σi’s in w. We denote by dgr(w) the (unique) dgraph g such that Par(g) = Par(w).
For a set S of dgraphs or strings, Par(S) is the set of all Par(g) for g ∈ S. A set
P ⊆ Nk is semilinear if there exists a regular language R such that P = Par(R),
cf. [Par66, GS64, Gin66] for the more usual definition of semilinearity. The set S is
Parikh if Par(S) is semilinear. Note that since Par(R) = ∅ iff R = ∅, emptiness of
semilinear sets is decidable.

A set of graphs is NR if it is generated by a context-free node replacement graph
grammar, see, e.g., [Eng97, Cou94]; it is also called C-edNCE or VR. Such grammars
have productions of the form X → (g, C) where X is a nonterminal, g is a graph, and

The Equivalence Problem for Deterministic MSO Tree Transducers Is Decidable 499

C is a finite set of connection instructions. The application of X → (g, C) to an X-
labeled node v of a sentential form works as follows. First v (and edges to and from it) is
removed, g is disjointly added, and then edges from the former neighbors of v to nodes
in g are established, according to the connection instructions. A connection instruction
is of the form (σ, β, γ, x, d) where σ is a node label, β, γ are edge labels, x is a node of
g, and d ∈ {in, out}. For d = out it means that if there was a β-labeled edge from v to
a σ-labeled neighbor w of v, then a γ-labeled edge from x to w is generated. Similarly,
for “in”, edges from a w to x are generated. The derivation relation of the grammar
should satisfy a certain confluence requirement, see Definition 4.6 of [Eng97].

Lemma 3. (Theorem 7.1 of [Cou94]) The images of NR sets of graphs under MSO
graph-to-dgraph transductions are Parikh.

In fact, the class of NR sets of graphs is closed under MSO graph transductions (see
Theorem 4.2(3) of [Cou94], or Section 5 of [Eng97]) and NR sets of graphs are Parikh
(see Proposition 4.11 of [Eng97]).

A useful property of semilinear sets is their (effective) closure under intersection. It
implies the following lemma.

Lemma 4. It is decidable for a semilinear set S ⊆ N2 whether there exists an n ∈ N
such that (n, n) ∈ S.

Proof. Let P = {(n, n) | n ∈ N} = Par((ab)∗). The lemma holds because S ∩ P is
semilinear [GS64, Gin66] and semilinear sets have a decidable emptiness problem. &'

Note that Lemma 4 can alternatively be proved without using the fact that semilinear
sets are closed under intersection: let R be a regular language with Par(R) = S and
let C be the context-free language containing all strings over {a, b} that have an equal
number of a’s and b’s. ThenC′ = R∩C is context-free and hence Par(C′) is semilinear
by Parikh’s Theorem [Par66].

3 Main Result

The main result of this paper (Theorem 8) is that it is decidable for deterministic MSO
graph-to-string or graph-to-tree transducers whether they are equivalent on an NR set
of graphs, cf. the Abstract.

Recall from the Preliminaries that for a string w, w/i denotes the i-th letter of w.

Lemma 5. Let Δ be an alphabet and a ∈ Δ. There exists an MSO string-to-dgraph
transducer Na

Δ such that for every w ∈ Δ∗,

Na
Δ(w) = {dgr(an) | w/n = a}.

Proof. The transducerNa
Δ uses one parameter Y1 to nondeterministically choose a node

v that has an outgoing a-labeled edge (if there is one). It copies v and all input nodes

500 Joost Engelfriet and Sebastian Maneth

to the left of v, and labels them a. There are no edge formulas because dgraphs have no
edges. Define Na

Δ = ({1}, ϕdom(Y1), ψ1,a(x, Y1),∅) with

ϕdom(Y1) ≡ ϕstring ∧ singleton(Y1) ∧ (∃x)(∃y)(edga(x, y) ∧ x ∈ Y1)
ψ1,a(x, Y1) ≡ (∃y)(x 5 y ∧ y ∈ Y1)

where ϕstring expresses that a graph is a string, singleton(Y1) expresses that Y1 is a
singleton, and x 5 y that there is a path from x to y. &'

We denote the disjoint union of graphs h1 and h2 by h1 ; h2.

Lemma 6. Let M1,M2 be MSO graph transducers. There exists an MSO graph trans-
ducer M , denoted M1 ;M2, such that for every graph g,

M(g) = {h1 ; h2 | h1 ∈M1(g), h2 ∈M2(g)}.

Proof. Let M1 = (C1, ϕ1, Ψ1, X1) and M2 = (C2, ϕ2, Ψ2, X2). We may assume
w.l.o.g. that C1 is disjoint from C2 and that the parameters of M1 are disjoint from
those of M2. Then M = (C1∪C2, ϕ1∧ϕ2, Ψ1∪Ψ2, X1∪X2∪X) realizes the desired
transduction, where all edge formulas in X are set to false, i.e., χc,c′,γ(x, y) ≡ false for
all (c, c′) ∈ (C1 × C2) ∪ (C2 × C1). &'

Lemma 7. Let M1,M2 be MSO graph-to-string transducers and let a, b be distinct
symbols. There exists an MSO graph-to-dgraph transducer Ma,b such that for every
graph g,

Ma,b(g) = {dgr(ambn) | ∃h1 ∈M1(g), h2 ∈M2(g) : h1/m = a and h2/n = b}.

Proof. Let Mi be from (Σi, Γi) to ({#}, Δi) for i ∈ {1, 2}. If a 	∈ Δ1 or b 	∈ Δ2

then let Ma,b = (∅, false,∅,∅). Otherwise define Ma,b = (M1;Na
Δ1

) ; (M2;N b
Δ2

)
according to Lemmas 2, 5, and 6. &'

For a relation R ⊆ A × B and a set D ⊆ A, denote by R|D the restriction of R to
D, i.e., R|D = {(a, b) ∈ R | a ∈ D}.

Theorem 8. It is decidable for deterministic MSO graph-to-string or graph-to-tree
transducers M1,M2 and an NR set D of graphs whether τM1 |D = τM2 |D.

Proof. We start with the graph-to-string case. For i ∈ {1, 2} let Di = dom(Mi) ∩D.
We first show that it is decidable whether D1 = D2. Clearly, D1 = D2 if and only
if Par(E(D)) = ∅, where E is the deterministic MSO graph-to-dgraph transducer
that removes the edges of all graphs in the symmetric difference of dom(M1) and
dom(M2): E = ({1},¬(ϕ1 ↔ ϕ2), {ψ1,σ(x)}σ∈Σ ,∅} where ϕi is the domain for-
mula of Mi for i ∈ {1, 2}, Σ is the node alphabet of D, and ψ1,σ(x) = labσ(x) for
σ ∈ Σ. By Lemma 3, Par(E(D)) is effectively semilinear, and hence its emptiness can
be decided. If D1 	= D2 then we are finished and know that τM1 |D 	= τM2 |D. Assume
now that D1 = D2.

The Equivalence Problem for Deterministic MSO Tree Transducers Is Decidable 501

Let Mi have output edge alphabet Δi, for i ∈ {1, 2}, and let $ be a symbol not in
Δ = Δ1∪Δ2. We define deterministic MSO graph-to-string transducers M$

i = Mi;N
such that M$

i (g) = Mi(g)$ for all g ∈ dom(Mi). Here N is the deterministic MSO
string transducer (C, true, {ψ1,#(x), ψ2,#(x)}, {χc,c′,δ(x, y)}c,c′∈C,δ∈Δ∪{$}) such that
C = {1, 2}, ψ1,#(x) ≡ true, ψ2,#(x) ≡ χ1,2,$(x, y) ≡ ¬(∃z)

∨
δ∈Δ edgδ(x, z) and,

for δ ∈ Δ, χ1,1,δ(x, y) ≡ edgδ(x, y); all other edge formulas are set to false.
Since now all output strings end on the special marker $, τM1 |D 	= τM2 |D iff

∃a∃b : (d(a, b) ∧ ∃n∃g : (g ∈ D1 ∧M$
1 (g)/n = a ∧ M$

2 (g)/n = b))

where d(a, b) denotes the statement a, b ∈ (Δ ∪ {$}) ∧ a 	= b. For given a, b, let Ma,b

be the transducer of Lemma 7 for a, b,M$
1 ,M

$
2 . Then the statement displayed above

holds if and only if

∃a∃b : (d(a, b) ∧ ∃n : dgr(anbn) ∈Ma,b(D)))
iff ∃a∃b : (d(a, b) ∧ ∃n : (n, n) ∈ Par(Ma,b(D)))︸ ︷︷ ︸

P (a,b)

)

By Lemma 3, Par(Ma,b(D)) is effectively semilinear. By Lemma 4 this means that
P (a, b) is decidable. Since there are only finitely many a, b with d(a, b), the statement
is decidable.

We now reduce the graph-to-tree case to the graph-to-string case. Let Δ be a ranked
alphabet and let m be the maximal rank of its elements. There is a deterministic MSO
tree-to-string transducer MΔ that translates every tree t over Δ into the string pre(t) of
its node labels in pre-order. Clearly, if we associate with a deterministic MSO graph-to-
tree transducer M (from (Σ,Γ) to (Δ, {1, . . . ,m})) the deterministic MSO graph-to-
string transducer M̂ = M ;MΔ, then M1 is equivalent to M2 on D if and only if M̂1 is
equivalent to M̂2 onD. Let MΔ = ({1, 2}, true, {ψ1,#, ψ2,#}, {χc,c′,δ}c,c′∈{1,2},δ∈Δ)
with ψ1,# ≡ true, ψ2,# ≡ root(x), where root(x) expresses that x is the root node.
Further, for δ ∈ Δ, χ1,1,δ ≡ labδ(x) ∧ π(x, y) and χ1,2,δ ≡ labδ(x) ∧ root(y) ∧
¬(∃z)π(x, z) where π(x, y) expresses that y is the successor of x in the pre-order. &'

Note that it is essential in Theorem 8 that the transductions are restricted to an NR
set of graphs. The set of all graphs (over a given alphabet) is not NR. In fact, equiva-
lence of deterministic MSO graph (or graph-to-string, or graph-to-tree) transducers is
undecidable when taking all graphs as input. This follows from the fact that, as men-
tioned in the Introduction, MSO is undecidable for graphs (Propositions 5.2.1 and 5.2.2
of [Cou97]); i.e., given an MSO formula φ, it is undecidable whether φ holds for all
graphs. It is easy to construct MSO graph-to-string transducers M1,M2 that take as
input the disjoint union h of an arbitrary graph g and the string $, such that M1 trans-
lates h into $ if g satisfies φ (and is undefined otherwise), and M2 translates h into $.
Clearly, M1 is equivalent to M2 if and only if φ holds for all graphs g. The proof for
the graph-to-tree case is analogous.

Example 9. (i) Let M1,M2 (and Σ,Σ′) be as in Example 1(i). We now want to follow
the proof of Theorem 8 to test whether M1 is equivalent to M2. We take D = TΣ .
First, construct M$

1 and M$
2 . Then construct M b,$ and M$,b. Clearly, for every tree

502 Joost Engelfriet and Sebastian Maneth

s over Σ, M b,$(s) = {dgr(bm$n) | 1 ≤ m ≤ outer(s), n = outer(s) + 1} and
M$,b(s) = {dgr($mbn) | m = outer(s) + 1, 1 ≤ n ≤ outer(s)}. The sets M b,$(D)
and M$,b(D) are Parikh. Clearly, Par(M b,$(TΣ)) = {(m,n) | 1 ≤ m < n, n = 2 or
n = 4 or n ≥ 6} which implies that its intersection with P = {(n, n) | n ∈ N} is
empty. Similarly, Par(M b,$(TΣ)) ∩P = ∅, which proves that indeed M1 is equivalent
to M2.

(ii) Consider now the transducers M3,M4 of Example 1(ii). If we again follow the
proof of Theorem 8, then it turns out that the set Par(M b,c(TΣ′) contains, e.g., the
pair (2, 2) and hence M3 is not equivalent to M4. To see this, consider the input tree
s = σ(σ(a, σ(a, c), a))). Then M3(s) = bbbcbb and M4(s) = bcbbbb, and therefore
dgr(bbcc) ∈M b,c(s).

4 String and Tree Transductions

Clearly, Theorem 8 also holds if we restrict the input graphs to strings or trees. In
particular, deterministic MSO X-to-Y transducers have decidable equivalence for all
X,Y ∈ {string, tree}, because the set of all strings and the set of all trees (over given
alphabets) are NR. For string transducers this reproves the decidability result of [Gur82]
(through [EH01]). For trees we obtain the following new decidability result (see the title
of this paper).

Corollary 10. The equivalence problem is decidable for deterministic MSO tree trans-
ducers.

Of course, even stronger statements hold; namely, given an NR set D of strings or
trees, it is decidable if two deterministic MSO X-to-Y transducers are equivalent when
restricted to D. For string transducers this means the following.

Corollary 11. It is decidable whether two deterministic two-way finite state transduc-
ers are equivalent on an NR set of strings.

As discussed in Section 6 of [Eng97], the NR sets of strings are the same as the
ranges of deterministic tree-walking tree-to-string transducers. They properly contain,
for instance, the context-free languages and the ranges of deterministic two-way finite
state transducers. Since the NR sets of strings form a full AFL of Parikh languages,
Corollary 11 is in fact a special case of the general decidability result for deterministic
two-way finite state transducers in Theorem 5 of [Iba82]. It is incomparable to the
decidability of equivalence of two such transducers on an NPDT0L language [CK87].

Our results also imply that equivalence of deterministic tree-walking tree-to-string
transducers [AU71] is decidable: by Lemma 4.4 and Theorem 4.7 of [ERS80] such
transducers can be simulated by deterministic finite-copying top-down tree-to-string
transducers with regular look-ahead, which, in turn, realize exactly the same translations
as deterministic MSO tree-to-string transducers by Theorem 7.7 of [EM99].

Corollary 12. It is decidable whether two deterministic tree-walking tree-to-string
transducers are equivalent.

The Equivalence Problem for Deterministic MSO Tree Transducers Is Decidable 503

The two statements of the next corollary follow from the characterizations of deter-
ministic MSO tree transductions in [BE00] and [EM03b], respectively. Note that a tree
transducer is of linear size increase if the size of the output tree is at most linear in the
size of the input tree. An attributed tree transducer is essentially an attribute grammar
which translates trees over a ranked alphabet (instead of derivation trees of a context-
free grammar) into trees; the only allowed semantic operation is top-concatenation of
trees. An attribute grammar (or attributed tree transducer) is said to be single-use re-
stricted if each attribute is used at most once in every local set of semantic rules. The
single-use restriction implies that the corresponding dependency graphs are trees (in-
stead of DAGs, for unrestricted grammars/transducers). For more information on tree
transducers see [FV98].

Corollary 13. The equivalence problem is decidable
(1) for single-use restricted attributed tree transducers and
(2) for deterministic macro tree transducers of linear size increase.

This result is incomparable with the decidability of the equivalence problem for

(1) deterministic bottom-up tree transducers [Zac80],
(2) deterministic top-down tree transducers [Ési79], and
(3) deterministic nonnested separated attributed/macro tree transducers [CF82].

Note that (2) is included in the more general (3), and that all transducers mentioned
in (1) – (3) can be simulated by deterministic macro tree transducers. It remains open
since 1979 [Eng80] whether the equivalence problem is decidable for attributed tree
transducers and for deterministic macro tree transducers.

In both [MSV03] and [MBPS05] formal models of XML queries are introduced
(the pebble tree transducer and the transformation language TL, respectively). In the
deterministic case these can be simulated by compositions of deterministic macro tree
transducers [EM03a, MBPS05]. Hence we call such compositions deterministic XML
queries. If they are of linear size increase, then they are MSO definable [Man03].

Corollary 14. The equivalence problem is decidable for deterministic XML queries of
linear size increase.

References

[AU71] A. V. Aho and J. D. Ullman. Translations on a context-free grammar. Inform. and
Control, 19:439–475, 1971.

[BE00] R. Bloem and J. Engelfriet. A comparison of tree transductions defined by monadic
second order logic and by attribute grammars. J. Comp. Syst. Sci., 61:1–50, 2000.

[CF82] B. Courcelle and P. Franchi-Zannettacci. On the equivalence problem for attribute
systems. Inform. and Control, 52:275–305, 1982.

[CK87] K. Culik II and J. Karhumäki. The equivalence problem for single-valued two-way
transducers (on NPDT0L languages) is decidable. SIAM J. Comput., 16:221–230,
1987.

[Cou94] B. Courcelle. Monadic second-order definable graph transductions: a survey. Theo-
ret. Comput. Sci., 126:53–75, 1994.

504 Joost Engelfriet and Sebastian Maneth

[Cou97] B. Courcelle. The expression of graph properties and graph transformations in
monadic second-order logic. In Handbook of graph grammars and computing by
graph transformation, Volume 1, pages 313–400. World Scientific, 1997.

[EH01] J. Engelfriet and H. J. Hoogeboom. MSO definable string transductions and two-
way finite-state transducers. ACM Transactions on Computational Logic, 2:216–254,
2001.

[EM99] J. Engelfriet and S. Maneth. Macro tree transducers, attribute grammars, and MSO
definable tree translations. Inform. and Comput., 154:34–91, 1999.

[EM03a] J. Engelfriet and S. Maneth. A comparison of pebble tree transducers with macro
tree transducers. Acta Informatica, 39:613–698, 2003.

[EM03b] J. Engelfriet and S. Maneth. Macro tree translations of linear size increase are MSO
definable. SIAM J. Comput., 32:950–1006, 2003.

[Eng80] J. Engelfriet. Some open questions and recent results on tree transducers and tree
languages In Formal language theory; perspectives and open problems, Academic
Press, 1980.

[Eng97] J. Engelfriet. Context-free graph grammars. In G. Rozenberg and A. Salomaa, edi-
tors, Handbook of Formal Languages, Volume 3, chapter 3. Springer-Verlag, 1997.

[ERS80] J. Engelfriet, G. Rozenberg, G. Slutzki. Tree transducers, L systems, and two-way
machines. J. Comp. Syst. Sci., 20:150–202, 1980.

[Ési79] Z. Ésik. Decidability results concerning tree transducers I. Acta Cybern., 5:1–20,
1980.

[FV98] Z. Fülöp and H. Vogler. Syntax-Directed Semantics – Formal Models based on Tree
Transducers. EATCS Monographs in Theoretical Computer Science (W. Brauer, G.
Rozenberg, A. Salomaa, eds.). Springer-Verlag, 1998.

[Gin66] S. Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-Hill,
1966.

[Gri68] T. V. Griffiths. The unsolvability of the equivalence problem for Λ-free nondetermin-
istic generalized machines. J. ACM, 15:409–413, 1968.

[GS64] S. Ginsburg and E. H. Spanier. Bounded Algol-like languages. Trans. Amer. Math.
Soc., 113:333–368, 1964.

[Gur82] E. M. Gurari. The equivalence problem for deterministic two-way sequential trans-
ducers is decidable. SIAM J. Comput., 11(3):448–452, 1982.

[Iba82] O. H. Ibarra. 2DST mappings on languages and related problems. Theoret. Comput.
Sci., 19:219–227, 1982.

[Man03] S. Maneth. The macro tree transducer hierarchy collapses for functions of linear
size increase. In Proc. FSTTCS 2003, LNCS 2556, pages 326–337, Springer-Verlag,
2003.

[MBPS05] S. Maneth, A. Berlea, T. Perst, H. Seidl. XML type checking with macro tree trans-
ducers. In Proc. PODS 2005, pages 283–294, ACM Press, 2005.

[MSV03] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. J. Comp. Syst.
Sci., 66:66–97, 2003.

[Par66] R. J. Parikh. On context-free languages. J. ACM, 13:570–581, 1966.
[Zac80] Z. Zachar. The solvability of the equivalence problem for deterministic frontier-to-

root tree transducers. Acta Cybern., 4:167–177, 1980.

Market Equilibrium for CES Exchange

Economies: Existence, Multiplicity, and
Computation�

Bruno Codenotti1, Benton McCune2, Sriram Penumatcha3, and
Kasturi Varadarajan2

1 IIT-CNR, Pisa, Italy
bruno.codenotti@iit.cnr.it

2 Department of Computer Science, The University of Iowa,
Iowa City IA 52242

[bmccune,kvaradar]@cs.uiowa.edu
3 Department of Mathematics, Arizona State University, Tempe AZ 85287

sriram@mathpost.la.asu.edu

Abstract. We consider exchange economies where the traders’ prefer-
ences are expressed in terms of the extensively used constant elasticity of
substitution (CES) utility functions. We show that for any such economy
it is possible to say in polynomial time whether an equilibrium exists.
We then describe a convex formulation of the equilibrium conditions,
which leads to polynomial time algorithms for a wide range of the pa-
rameter defining the CES utility functions. This range includes instances
that do not satisfy weak gross substitutability. As a byproduct of our
work, we prove the uniqueness of equilibrium in an interesting setting
where such a result was not known.
The range for which we do not obtain polynomial-time algorithms coin-
cides with the range for which the economies admit multiple disconnected
equilibria.

1 Introduction

An exchange economy consists of a collection of goods, initially distributed
among a number of traders. The preferences of the traders for the bundles of
goods are expressed by a utility function. Each trader wants to maximize her
utility, subject to her budget constraint.

An equilibrium is a set of prices at which there are allocations of goods
to traders such that two conditions are simultaneously satisfied: each trader’s
allocation maximizes her utility subject to the budget constraint, and the market
clears.
� Part of the first author’s work was done when visiting the Toyota Technological

Institute at Chicago. The work by the last three authors was in part supported by
NSF CAREER award CCR-0237431. This paper is an expanded and revised version
of an unpublished paper that was presented at a DIMACS Workshop on Large Scale
Games in April, 2005.

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 505–516, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

506 Bruno Codenotti et al.

Existence. An early and fundamental triumph of Mathematical Economics
was the 1954 result by Arrow and Debreu [1] that, even in a more general sit-
uation which includes the production of goods, subject to mild sufficient con-
ditions, there is an equilibrium. However, given a set of traders, each endowed
with a concave utility function and a nonnegative vector of initial endowments,
an equilibrium does not need to exist.

Thus the problem arises of determining whether a given exchange economy
has an equilibrium. In this paper, we show that this problem can be solved in
polynomial time, whenever the utility functions are of the form u(x1, . . . , xn) =(∑n

j=1 cjx
ρ
j

) 1
ρ

, for −∞ < ρ < 1 and ρ 	= 0, i.e., for constant elasticity of
substitution (CES) utility functions [27].

This result generalizes methods of Gale [13], who analyzed the existence of
equilibria for linear utility functions, and Eaves [12], who analyzed the existence
of positive equilibrium prices for Cobb-Douglas utility functions. (See also Jain
[17], who employs a sufficient condition for the existence of positive price equi-
libria for linear utility functions.) Our result is in contrast with the NP-hardness
result of [7], which applies to Leontief utility functions. As described below,
linear, Cobb-Douglas, and Leontief utility functions are limiting cases of CES
utility functions.

Computation. The problem of computing equilibrium prices for exchange
economies has attracted a lot of attention since the 1960s. In recent years, theo-
retical computer scientists have become interested in the polynomial-time solv-
ability of the problem. Several results [25] seem to indicate that in order for
the problem to admit polynomial time algorithms, certain restrictions should be
satisfied by the market.

Two well studied restrictions are gross substitutability – GS (see [22], p. 611)
and the weak axiom of revealed preferences – WARP (see [22], Section 2.F). Al-
though restrictive, these conditions are useful and model some realistic scenarios.
A utility function satisfies GS (resp., weak GS – WGS) if increasing the prices
of some of the goods while keeping the other prices and the income fixed causes
the increase (resp., does not cause the decrease) in demand for the goods whose
price is fixed. Roughly speaking, WARP means that the aggregate behavior of
the market fulfills a fundamental property satisfied by the choices made by any
rational individual trader.

It is well known that GS implies that the equilibrium prices are unique up
to scaling ([28], p. 395), and that WGS and WARP both imply that the set of
equilibrium prices is convex ([22], p. 608). When the set of equilibria is convex, it
is enough to add a non-degeneracy assumption (which is almost always satisfied)
to get the uniqueness of the equilibrium up to scaling [9].

Most of the polynomial-time algorithms developed so far apply to exchange
economies where either WGS or WARP hold. In this paper we present a con-
vex characterization of the equilibrium conditions which applies to exchange
economies with CES functions such that −1 ≤ ρ < 0. Note that these economies
do not fall into either WGS or WARP. Also, the methods of [24,17], which work

Market Equilibrium for CES Exchange Economies 507

when each utility function u(x1, . . . , xn) has the property that log(u(x)
∂u(x)/∂xj

) is
a concave function for every j, do not apply here.

Multiplicity. Besides its algorithmic contribution, our work allows us to
conclude that, for CES functions with −1 ≤ ρ < 0, the equilibria are connected,
and are thus essentially unique. This was not known by economists. Indeed it
turns out that an exchange economy with traders endowed with CES utility
functions such that −1 ≤ ρ < 0 is not covered by any of the known conditions
that ensure that there are no multiple disconnected equilibria, such as the Super
Cobb-Douglas Property of Mas-Colell [21], and thus our result also provides an
original contribution to the theory of equilibrium. Combined with a result by
Gjerstad [16], who showed that multiple disconnected equilibria can arise in
economies where traders have CES functions with any ρ < −1, our work leads
to a characterization of the values of ρ for which the CES exchange economies
equilibrium sets must be connected.

Related Work. In a series of papers which started with linear utility func-
tions, polynomial time algorithms have been developed to compute equilibria for
more and more general settings [10,11,18,14,17,29,3,15,6,4]. However, the corre-
sponding market satisfies one of the two conditions discussed above (WGS or
WARP) (see [5] for a review).

The technical tool used in some of these results is to reformulate the prob-
lem in terms of mathematical programming in a way that a polynomial time
algorithm (or approximation scheme – in general the equilibrium point is not
a vector of rationals) can be obtained by known optimization techniques. In
particular, convex programming has been proven to be a particularly useful tool
[24,17,29,6,4].

Organization. In Section 2, we formally describe the model of an exchange
economy, introduce CES functions, and hint at their economic relevance. Sec-
tion 3 is devoted to a detailed discussion of the demand function of traders with
CES utility functions. In Section 4, we characterize the problem of existence
of an equilibrium for CES exchange economies, in terms of a graph property
that can be verified in polynomial time. In Section 5 we show that equilibrium
prices and allocations for an exchange economy, where the traders are endowed
with CES functions with −1 ≤ ρ < 0, can be computed by solving a feasibility
problem, defined in terms of explicitly given convex constraints.

2 Background

We now describe the exchange market model. Let us consider m economic agents
who represent traders of n goods. Let Rn

+ (resp. Rn
++) denote the subset of Rn

where the coordinates are nonnegative (resp. strictly positive). The j-th coordi-
nate in Rn will stand for the good j. Each trader i has a concave utility function
ui : Rn

+ → R+, which represents her preferences for the different bundles of
goods, and an initial endowment of goods wi = (wi1, . . . , win) ∈ Rn

+. At given
prices π ∈ Rn

+, the i-th trader will sell her endowment, and get the bundle of
goods xi = (xi1, . . . , xin) ∈ Rn

+ which maximizes ui(x) subject to the budget

508 Bruno Codenotti et al.

constraint4 π · x ≤ π · wi. The budget constraint restricts the choice to bundles
that cost no more than π ·wi, the income of trader i. If the utility maximization
is well-defined, such a bundle xi is called the demand of trader i at price π, and
is denoted by xi(π). If the utility has no maximum over the set of feasible bun-
dles, we say that the demand is not well-defined. (The feasible region is always
non-empty, since the origin is in it.)

An equilibrium is a nonnegative vector of prices π = (π1, . . . , πn) ∈ Rn
+ at

which there is a bundle x̄i = (xi1, . . . , xin) ∈ Rn
+ of goods for each trader i such

that the following two conditions hold:

1. For each trader i, the demand is well-defined at price π and x̄i is a demanded
bundle.

2. For each good j,
∑

i x̄ij ≤
∑

iwij .

Under the assumption that for each i and every bundle x ∈ Rn
+, there is a

bundle y ∈ Rn
+ such that ui(y) > ui(x), it can be shown that for any good with

positive price, equality must hold in (2). The already mentioned result of Arrow
and Debreu [1] implies that, under some mild assumptions, such an equilibrium
exists. The above described market model is usually called an exchange economy.

A special (and analytically more tractable) case of the exchange model,
known as Fisher’s model, arises when the economic agents are buyers, endowed
with fixed incomes, competing for goods, which are available in fixed quantities.
Note that Fisher’s model can be seen as a special case of an exchange econ-
omy, obtained by assuming that the initial endowments are proportional, i.e.,
wi = δiw, δi > 0, so that the relative incomes of the traders are independent of
the prices.

CES utility functions. The most popular family of utility functions is
given by CES (constant elasticity of substitution) functions, which have been
introduced in [27]. We refer the reader to the book by Shoven and Whalley
[26] for a sense of their pervasiveness in applied general equilibrium models. A
CES function ranks the trader’s preferences over bundles of goods (x1, . . . , xn)

according to the value of u(x1, . . . , xn) =
(∑n

j=1 cjx
ρ
j

) 1
ρ

. where −∞ < ρ < 1,
but ρ 	= 0.

The success of CES functions is due to the useful combination of their math-
ematical tractability with their expressive power, which allows for a realistic
modeling of a wide range of consumer preferences. Indeed, one can model mar-
kets with very different characteristics in terms of preference towards variety,
substitutability versus complementarity, and multiplicity of price equilibria, by
changing the values of ρ and of the utility parameters cj.

CES functions have been thoroughly analyzed in [2], where it has also been
shown how to derive, in the limit, their special cases, i.e., linear, Cobb-Douglas,
and Leontief functions (see [2], p. 231). Let σ = 1

1−ρ . The parameter σ is called
the elasticity of substitution. For σ →∞ (ρ→ 1), CES take the linear form, and
the goods are perfect substitutes, so that there is no preference for variety. For

4 Given two vectors x and y, we use the notation x · y to denote their inner product.

Market Equilibrium for CES Exchange Economies 509

σ > 1 (ρ > 0) , the goods are partial substitutes, and different values of σ in
this range allow us to express different levels of preference for variety. For σ → 1
(ρ → 0), CES become Cobb-Douglas functions, and express a perfect balance
between substitution and complementarity effects. Indeed it is not difficult to
show that a trader with a Cobb-Douglas utility spends a fixed fraction of her
income on each good.

For σ < 1 (ρ < 0), CES functions model markets with significant com-
plementarity effects between goods. This feature reaches its extreme (perfect
complementarity) as σ → 0 (ρ → −∞), i.e., when CES takes the form of Leon-
tief functions. In the latter case, the shape of the optimal bundle demanded by
the consumer does not depend at all on the prices of the goods, but is fully
determined by the parameters defining the utility function.

Whenever the relative incomes of the traders are independent of the prices,
CES functions give rise to a market which satisfies WARP. This happens for
instance in the Fisher model, a very special case of the exchange model. On the
other hand, CES functions satisfy WGS if and only if ρ ≥ 0, whereas, if ρ < −1,
they allow for multiple disconnected equilibria.

3 Demand of CES Consumers

In this section, we characterize the demand function of traders with CES utility
functions. Consider a setting where trader i has an initial endowment wi =
(wi1, . . . , win) ∈ Rn

+ of goods, and the CES utility function ui(xi1, . . . , xin) =(∑n
j=1 αijx

ρi

ij

) 1
ρi , where αij ≥ 0, and −∞ < ρi < 1, but ρi 	= 0.

We assume throughout that each trader i owns some good j, that is, wij > 0
for some j. We also assume that each trader i wants some good j, that is, αij > 0
for some j. If trader i does not want good j, it is easy to see that the utility of a
bundle xi ∈ Rn

+ is independent of xij . We adopt the convention that αijx
ρi

ij = 0
when αij = 0 and xij = 0. If ρi < 0, we define ui(xi1, . . . , xin) = 0 if there is a
j such that i wants j and xij = 0. Note that this ensures that ui is continuous
over Rn

+.
Consider a case where ρi > 0. Evidently, if we start with any bundle xi ∈ Rn

+

and add to it an arbitrarily small amount of a good that i wants, we get a bundle
with more utility. From this, it follows that the demand of the trader is well-
defined at a given price if and only if each of the goods that the trader wants
has a strictly positive price.

Now consider the case where ρi < 0. A bundle xi ∈ Rn
+ has a strictly positive

utility if and only if it has a strictly positive amount of each of the goods that the
trader wants. Evidently, if we start with any bundle xi ∈ Rn

+ that has strictly
positive utility and add to it an arbitrarily small amount of a good that i wants,
we get a bundle with more utility. Let π be a price at which the income π ·wi is
positive. Since the trader can afford a bundle with positive utility, we conclude
that the demand is well-defined at π if and only if each of the goods that the
trader wants has a strictly positive price. Now let π be a price at which the

510 Bruno Codenotti et al.

income π · wi is zero. We see that the demand is well-defined if and only if at
least one of the goods that the trader wants is positively priced.

Irrespective of whether ρi is positive or negative, traders with positive income
demand a positive amount of each good they want. Such positive income traders
are also non-satiable on all goods they want which means that demand is not
well-defined if any good they want is priced zero.

Also irrespective of whether ρi is positive or negative, the demand is well-
defined at any strictly positive price vector π ∈ Rn

++. It is in fact unique and is
given by the expression

xij(π) =
α

1/1−ρi

ij

π
1/1−ρi

j

×
∑

k πkwik∑
k α

1/1−ρi

k π
−ρi/1−ρi

k

. (1)

The formula above is folklore and is derived using the Kuhn-Tucker condi-
tions.

4 Existence of an Equilibrium

The celebrated paper of Arrow and Debreu [1] had a much weaker set of assump-
tions sufficient for the existence of equilibrium than earlier work. However, the
assumptions were still somewhat restrictive. Indeed, Arrow and Debreu them-
selves called the assumptions for their first existence theorem “clearly unreal-
istic” and immediately proceeded to weaken the sufficent conditions for their
second theorem. See the introduction to Maxfield [23] for a discussion of the
work on showing existence of equilibrium under progressively weaker assump-
tions. In general, it is NP-hard to determine whether a market possesses an
equilibrium or not [7].

Gale [13] provided a very simple two trader example of a market that does
not possess an equilibrium. Gale’s example was for the linear exchange model,
but it also serves as an example for the CES case with ρ > 0. Suppose trader
one possesses both apples and oranges, but only wants apples. Trader two wants
both apples and oranges, but owns only oranges. This simple market has no
equilibrium. If oranges are priced at zero, then the demand of trader two is not
well-defined. If oranges have a positive price, then trader one will want to sell all
of her oranges to buy more apples even though she already owns all the apples
present in the market. Gale’s example will not work for the CES with ρ < 0 case
though because that actually has an equilibrium with a positive price for apples
and zero price for oranges.

In this section, we characterize the existence of equilibrium for an exchange
economy where the traders have CES utility functions. The characterization
immediately implies a polynomial time algorithm to decide whether the economy
has an equilibrium. As before, we assume that each trader wants at least one
good and owns at least one good. We also assume that each good is owned by
some trader.

Market Equilibrium for CES Exchange Economies 511

We assume in the remainder of this section that each trader has a posi-
tive amount of precisely one good. This assumption is without loss of general-
ity: we may replace a trader with positive amounts of k different goods with k
traders, each with the same utility function and a positive amount of one good.
A straightforward argument that employs the homogeneity of the CES utility
functions shows that this transformation preserves the equilibria.

It is easy to see, but nonetheless worth noting, that the traders with positive
income will be precisely those traders whose single good is positively priced.

Definition 1. There is a vertex vi for each consumer i. We have an arc from vi
to vk when trader i possesses a good which trader k wants. The resulting directed
graph is called an economy graph.

The following existence theorem is the main result we use from Maxfield [23].

Theorem 1. If the economy graph is strongly connected, an equilibrium exists.
Moreover, all goods are positively priced at any equilibrium.

Proof. This follows from Theorem 2 of Maxfield [23] who obtains this result using
strong connectivity and general results on the existence of a quasi-equilibrium
([22], Chapter 17). &'

Definition 2. We say that a strongly connected component is on (at a given
price) if every trader within it has a positive income. If no trader in a strongly
connected component has a positive income, then we say that that component is
off.

Lemma 1. At equilibrium, every strongly connected component in an economy
graph is either on or off.

Proof. Suppose not. Suppose that at equilibrium price π, there is a component
that is neither on or off. In that case, there must be a trader with positive income
that desires a good from a trader with no income. That means the zero income
trader’s good must have a price of zero. Since the trader with positive income is
non-satiable on the zero priced good, demand is not well-defined for that good
and therefore, π is not an equilibrium. This provides a contradiction. &'

Consider a strongly connected component C of the economy graph that has
no incoming arcs from traders outside C. We claim that a good held by any
trader i in C is also desired by some trader i′ in C. If C consists simply of the
node vi, then since there are no incoming arcs from outside, it must be that i
desires his own good. If C consists of more than one node, the claim follows from
strong connectivity.

Furthermore, it now follows that a good held by a trader in C is not held by
any trader outside C. Otherwise, C would have an incoming arc.

Lemma 2. At equilibrium, a strongly connected component of an economy graph
is on if and only if it has no incoming arcs.

512 Bruno Codenotti et al.

Proof. Suppose the economy has an equilibrium price π. Suppose a strongly
connected component C1 is on. We will show that C1 can have no incoming arcs.
If C1 has an incoming arc, that means some trader t in C1, wants some good g
held by a trader in another component C2. If C2 is off, then g has price zero. But t
has positive income since C1 is on. Since t wants g, t’s demand is undefined, thus
contradicting the assumption of equilibrium. Thus, at equlibrium C2 must be on.
If C2 has any incoming arcs, then we can make an identical argument to show
that the components providing the incoming arcs must also be on. Following this
chain, we arrive at two components C′1 and C′2 that are on, C′1 has an incoming
arc from a trader in C′2, and C′2 has no incoming arcs. So a trader t in C′1, who
has positive income, will demand a positive amount of a good g that is held by
some trader in C′2. Since C′2 has no incoming arcs, g is owned only by traders in
C′2, as we have already established. Since C′2 has no incoming arcs, the traders in
C′2 form a subeconomy for which π is seen to be an equilibrium. Since the price
of all goods held by traders in C′2 is positive (C′2 is on), it holds that for all such
goods, including g, the demand within C′2 equals the supply within C′2. But this
means that the demand for g in the bigger economy exceeds the supply: t, who
is outside C′2, demands a positive amount of it, but only traders in C′2 own it.
Thus, π is not an equilibrium which is a contradiction.

Suppose the economy has an equilibrium price π. Suppose further that a
component, C, has no incoming arcs. We show that C must be on. Suppose C
is off. Consider any trader in C. He wants some goods; all of these are owned
only by traders in C, since C has no incoming arc. All goods in C are free (C
is off), so the trader’s demand is undefined. Therefore, π is not an equilibrium.
We have a contradiction and the lemma is proven. &'

There is an important distinction, which bears repeating, between CES utility
functions with ρ > 0 and those with ρ < 0. Traders with ρ > 0 will have positive
utility as long as they have a positive amount of some good that they desire.
Traders with ρ < 0 will only have positive utility if they have a positive amount
of all goods they desire. Moreover, traders with ρ > 0 with zero income have
undefined demands if any of their desired goods are priced at zero. Zero income
traders with ρ < 0 only have undefined demand if all of their desired goods are
free.

The following theorem is the main result of this section.

Theorem 2. An equilibrium exists if and only if for every vertex v in a strongly
connected component with incoming arcs, either (a) v has a CES utility function
with ρ > 0 and all its incoming arcs are from vertices in strongly connected
components without incoming arcs, or (b) v has a CES utility function with
ρ < 0 and has at least one incoming arc from a strongly connected component
without incoming arcs.

Proof. Suppose an equilibrium price π exists. Then by Lemma 2, the strongly
connected components that are on are precisely those that have no incoming arcs.
And it is precisely the goods that are held by traders in such components that
have positive price. Let C1 be a strongly connected component with incoming

Market Equilibrium for CES Exchange Economies 513

arcs (if none exist, then this direction of the theorem is trivially true). Suppose
there is a vertex i with a CES utility function with ρ > 0, and it has an incoming
arc from a vertex that is in a strongly connected component with incoming
arcs. Then i wants a good with price zero and so her demand is not defined,
contradicting the assumption that π is an equilibrium price. Now suppose that
there is a vertex i with a CES utility function with ρ < 0, and none of its
incoming arcs are from a vertex in a strongly connected component with no
incoming arcs. This means that trader i desires only zero priced goods and thus
has undefined demand contradicting the assumption that π is an equilibrium
price.

We now establish the other direction of the theorem. Each strongly connected
component with no incoming arcs can be considered as an economy unto itself,
and has an equilibrium with positive prices by Maxfield’s theorem. For each
good in a component with no incoming arcs we assign a price identical to its
equilibrium price in the subeconomy. As no good in one of these strongly con-
nected components is owned outside the component, this assignment of prices is
well-defined.

For each good held by a trader in a component with incoming arcs, we assign
a price of zero. By the argument above, we know that none of these goods are
the same as those that were priced positively so this assignment is well defined.
We claim that this price π is an equilibrium price.

For a trader in a component without incoming arcs, we assign the bundle
that is the same as the one she gets in the equilibrium for the corresponding
subeconomy. Clearly, this is a valid demand.

Consider a trader in a component with incoming arcs. Her income is 0. We
claim that her demand is well-defined and that the zero bundle is a valid demand
vector. This is because she is either a CES trader with ρ > 0 and all the goods
that she wants are in components with no incoming arcs and hence positively
priced, or she is a CES trader with ρ < 0 and at least one of the goods that she
wants is positively priced, and thus the best utility she can afford is 0.

We now verify that condition (2) in the definition of an equilibrium holds,
that is, the demand is at most the supply. For a good held by a trader in a com-
ponent with no incoming arc, this follows from the equilibrium conditions of the
corresponding subeconomy, and the fact that any trader outside the subeconomy
demands 0 units of the good. For a good held by a trader in a component with
incoming arcs, the net demand is 0, so condition (2) trivially holds. &'

We conclude by noting that besides yielding a polynomial time algorithm
for checking the existence of equilibrium, the above characterization provides a
polynomial-time reduction of the computation of an equilibrium for the original
economy to the computation of positive price equilibria for sub-economies.

5 Efficient Computation by Convex Programming

In this section, we consider an economy in which each trader i has a CES util-
ity function with −1 ≤ ρi < 0. We show that the positive price equilibria of

514 Bruno Codenotti et al.

such an economy can be characterized as the solutions of a convex feasibility
problem. The results of the previous section show that the computation of an
equilibrium for an economy can be reduced to the computation of a positive
price equilibrium for a sub-economy. This reduction, together with the fact that
the convex feasibility problem can be solved (approximately) in polynomial time
lead to a polynomial time algorithm for computing an approximate equilibrium.
The notion of approximate equilibrium that we use corresponds to the strong
approximate equilibrium defined by Codenotti et al.[6]; here, the condition (2)
in the definition of an equilibrium is relaxed so that it holds approximately. Our
algorithm will be polynomial not only in the input parameters but also in the
number of bits used in the standard encoding of the rational number represent-
ing the approximation parameter. (We postpone a detailed discussion of this to
a fuller version.) Whenever the solution can be irrational, such an algorithm is
considered equivalent to an exact algorithm.

Since the demand of every trader is well-defined and unique at any positive
price, we may write the positive price equilibria as the set π ∈ R++ such that
for each good j, we have

∑
i xij(π) ≤

∑
iwij . Let ρ = −1, and note that ρ ≤ ρi,

for each i. Let fij(π) = π
1/(1−ρ)
j xij(π). Let σj = π

1/(1−ρ)
j . In terms of the σj ’s,

we obtain the set of σ = (σ1, . . . , σn) ∈ R++ such that for each good j,∑
i

fij(σ) ≤ σj(
∑
i

wij).

We argue that this is a convex feasibility program. Since the right hand side
of each inequality is a linear function, it suffices to argue that the left hand side
is a convex function. The latter is established via the following proposition.

Proposition 1. The function fij(σ) is a convex function over R++.

Proof. If αij = 0, fij is zero over the domain and the proposition follows. Oth-
erwise, fij is positive at each point of the domian. It therefore suffices to show
that the constraint fij ≤ t defines a convex set for positive t. Using the formula
(1) for the demand, this constraint is

α
1

1−ρi

ij

σ
ρi−ρ

1−ρi

j

×
∑

k σ
1−ρ
k wik∑

k α
1

1−ρi

ik σ
−ρi(1−ρ)

1−ρi

k

≤ t.

Rewriting, and raising both sides to the power 1/(1− ρ), we obtain

α
1

(1−ρ)(1−ρi)

ij × (
∑
k

σ1−ρ
k wik)

1
1−ρ ≤ t

1
1−ρσ

ρi−ρ

(1−ρi)(1−ρ)

j v
−ρi
1−ρi

i , (2)

where

vi =

(∑
k

α
1

1−ρi

ik σ
−ρi(1−ρ)

1−ρi

k

) 1−ρi
−ρi(1−ρ)

. (3)

Market Equilibrium for CES Exchange Economies 515

The left hand side of inequality 2 is a convex function, and the right hand side
is a concave function that is non-decreasing in each argument when viewed as a
function of t, σj , and vi, since the exponents are non-negative and add up to one.
Since 0 < −ρi(1−ρ)

1−ρi
≤ 1, the right hand side of equality 3 is a concave function,

in fact a CES function. It follows that the right hand side of inequality 2 remains
a concave function when vi is replaced by the right hand side of equality 3. This
completes the proof.

The convex feasibility formulation derived in this section highlights an inde-
pendently useful property of the demand, encapsulated by Proposition 1. As we
will show in a fuller version of this paper, a similar approach works for CES func-
tions with ρ > 0, as well as for some other utility functions. The tools developed
here for exchange economies also find some use in an extension to production
[19].

Acknowledgements. We wish to acknowledge some fruitful exchanges with An-
dreu Mas-Colell on the state-of-the-art in the area of uniqueness of equilibrium.
We wish to thank Janos Simon for many useful suggestions on early versions of
this paper, and Steve Gjerstad for valuable feedback.

References

1. K.J. Arrow and G. Debreu, Existence of an Equilibrium for a Competitive
Economy, Econometrica 22 (3), pp. 265–290 (1954).

2. K.J. Arrow, H.B. Chenery, B.S. Minhas, R.M. Solow, Capital-Labor Sub-
stitution and Economic Efficiency, The Review of Economics and Statistics,
43(3), 225–250 (1961).

3. N. Chen, X. Deng, X. Sun, and A. Yao, Fisher Equilibrium Price with a
Class of Concave Utility Functions, ESA 2004.

4. B. Codenotti, B. McCune, K. Varadarajan, Market Equilibrium via the Ex-
cess Demand Function, STOC 2005.

5. B. Codenotti, S. Pemmaraju, K. Varadarajan, Algorithms Column: The
Computation of Market Equilibria. SIGACT News Vol. 35(4), December
2004.

6. B. Codenotti, S. Pemmaraju, K. Varadarajan, On the Polynomial Time
Computation of Equilibria for certain Exchange Economies. SODA 2005.

7. B. Codenotti, A. Saberi, K. Varadarajan, Y. Ye, Leontief Economies Encode
Nonzero Sum Two-Player Games. Electronic Colloquium on Computational
Complexity, Report TR05-055. To appear in SODA 06.

8. B. Codenotti, K. Varadarajan, Efficient Computation of Equilibrium Prices
for Markets with Leontief Utilities, ICALP 2004.

9. G. Debreu, Economies with a Finite Set of Equilibria. Econometrica, vol.
38(3), pp. 387-92 (1970).

10. X. Deng, C. H. Papadimitriou, M. Safra, On the Complexity of Equilibria,
STOC 02.

11. N. R. Devanur, C. H. Papadimitriou, A. Saberi, V. V. Vazirani, Market
Equilibrium via a Primal-Dual-Type Algorithm. FOCS 2002, pp. 389-395.

12. B. C. Eaves, Finite Solution of Pure Trade Markets with Cobb-Douglas
Utilities, Mathematical Programming Study 23, pp. 226-239 (1985).

516 Bruno Codenotti et al.

13. D. Gale, The Linear Exchange Model, Journal of Mathematical Economics
(3), 205–209, 1976.

14. R. Garg and S. Kapoor, Auction Algorithms for Market Equilibrium. In
Proc. STOC, 2004.

15. R. Garg, S. Kapoor, and V. V. Vazirani, An Auction-Based Market Equi-
lbrium Algorithm for the Separable Gross Substitutibility Case, APPROX
2004.

16. S. Gjerstad. Multiple Equilibria in Exchange Economies with Homothetic,
Nearly Identical Preference, University of Minnesota, Center for Economic
Research , Discussion Paper 288, 1996.

17. K. Jain, A polynomial time algorithm for computing the Arrow-Debreu mar-
ket equilibrium for linear utilities, Proc. FOCS 2004.

18. K. Jain, M. Mahdian, and A. Saberi, Approximating Market Equilibria,
Proc. APPROX 2003.

19. K. Jain and K. Varadarajan. Equilibria for Economies with Production:
Constant-Returns Technologies and Production Planning Constraints. To
appear in SODA 06.

20. O. L. Mangasarian. Nonlinear Programming, McGraw-Hill, 1969.
21. A. Mas-Colell, On the Uniqueness of Equilibrium Once Again, in: Equilib-

rium Theory and Applications, W. Barnett, B. Cornet, C. DAspremont, J.
Gabszewicz, andA. Mas-Colell (eds). Cambridge University Press (1991).

22. A. Mas-Colell, M.D. Whinston, and J.R. Green, Microeconomic Theory, Ox-
ford University Press (1995).

23. R. R. Maxfield, General Equilibrium and the Theory of Directed Graphs,
Journal of Mathematical Economics 27, 23-51 (1997).

24. E. I. Nenakov and M. E. Primak. One algorithm for finding solutions of the
Arrow-Debreu model, Kibernetica 3, 127–128 (1983). (In Russian.)

25. C.H. Papadimitriou, On the Complexity of the Parity Argument and other
Inefficient Proofs of Existence, Journal of Computer and System Sciences
48, pp. 498-532 (1994).

26. J. B. Shoven and J. Whalley. Applying General Equilibrium, Cambridge
University Press (1992).

27. R. Solov, A Contribution to the Theory of Economic Growth, Quarterly
Journal of Economics 70, pp. 65-94 (1956).

28. H. Varian, Microeconomic Analysis, New York: W.W. Norton, 1992.
29. Y. Ye, A Path to the Arrow-Debreu Competitive Market Equilibrium. To

appear in Mathematical Programming.

Testing Concurrent Systems: An Interpretation of
Intuitionistic Logic

Radha Jagadeesan1, Gopalan Nadathur2, and Vijay Saraswat3

1 School of CTI, DePaul University
2 Digital Technology Center and Department of CSE, University of Minnesota

3 IBM T.J. Watson Research Center

Abstract. We present a natural confluence of higher-order hereditary Harrop for-
mulas (HH formulas), Constraint Logic Programming (CLP, [JL87]), and Con-
current Constraint Programming (CCP, [Sar93]) as a fragment of (intuitionis-
tic, higher-order) logic. This combination is motivated by the need for a sim-
ple executable, logical presentation for static and dynamic semantics of modern
programming languages. The power of HH formulas is needed for higher-order
abstract syntax, and the power of constraints is needed to naturally abstract the
underlying domain of computation. Underpinning the combination is a sound
and complete operational interpretation of a two-sided sequent presentation of (a
large fragment of) intuitionistic logic in terms of behavioral testing of concur-
rent systems. Formulas on the left hand side of a sequent style presentation are
viewed as a system of concurrent agents, and formulas on the right hand side
as tests against this evolving system. The language permits recursive definitions
of agents and tests, allows tests to augment the system being tested and allows
agents to be contingent on the success of a test. We present a condition on proofs,
operational derivability (OD), and show that the operational semantics generates
only operationally derivable proofs. We show that a sequent in this logic has a
proof iff it has an operationally derivable proof.

1 Introduction

The investigations in this paper are driven by an interest in logical frameworks for
program manipulation. This interest has a twofold motivation.

First, the recent emergence of extremely successful program development environ-
ments such as Eclipse [ecl], has highlighted the power of advanced program manipu-
lation techniques (such as refactorings, [FTK04]), particularly for modern, concurrent,
object-oriented programming languages such as JAVA. At the same time the complexity
of internal programming APIs in Eclipse – and the brittleness in extending them to lan-
guages other than JAVA – has highlighted the importance of developing a coherent con-
ceptual framework for programs that manipulate programs. The holy grail of this work
is to make it possible for end-users to define their own refactorings. This requires that
there be a simple declarative framework in which the user can compose the refactoring,
and there be a way to determine if the proposed refactoring is semantics-preserving.

A second motivation for such a framework is to ease the task of writing and extend-
ing compilers. Object-oriented (OO) compiler frameworks such as Polyglot [NCM03]

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 517–528, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

518 Radha Jagadeesan, Gopalan Nadathur, and Vijay Saraswat

ease some of the burden of compiler-writing for new OO languages. A compiler-writer
has to provide a parser for the new language, define new Abstract Syntax Tree (AST)
nodes to represent the parsed program, and implement different passes for various com-
piler tasks such as disambiguation, type-checking, translation to an intermediate rep-
resentation (IR), static analysis and code-generation. Several of these passes can be
thought of as generating and checking constraints on the AST. However this structure
is hidden in the current conceptualization in terms of procedural code to implement
“visitors” that build up the context for a node as they traverse the path from the root
to the node, and rewrite the AST based on this context. Thus, it becomes difficult to
extend the underlying IR and perform new analyses for new programming constructs.
Similar difficulties have been reported in other frameworks that aim to make it easy for
programmers to specify and plug new optimization rules into a compiler, while guaran-
teeing that these rules preserve program correctness [LMRC05].

This leads us to enunciate the following desiderata for the kind of framework we
investigate. Below we will find it convenient to distinguish the (hypothetical) object
languageO and the programming languageF to be used to write programs that manip-
ulate O-programs.

Programs as data. F should be able to express programs in modern languages (e.g.
Java, Co-Array Fortran, Prolog) as data in such a way that object programs can be
decomposed into their constituent parts and new object programs can be created from
program parts, while respecting scoping constructs. A central requirement is that O
scoping constructs (such as method parameter declaration, local variable introduction)
subject to “alpha renaming” should in fact be represented by F scoping constructs
so that the programmer does not have to worry about the book-keeping involved in
explicitly implementing alpha renaming, substitution, generating “new” constants etc.
This is the idea of higher-order abstract syntax [PE88].

Constraint-based. There is a large body of work establishing the centrality of con-
straints to the static and dynamic analysis of programs e.g. [Hei92, OSW99, Pal95,
PS94], [Aik99, PW98, RMR01]. Thus, the framework should support the compositional
generation of constraints from program structures. Constraints may be simple (no em-
bedded quantifiers) or polymorphic (universally and existentially quantified). Programs
should be able to query these constraints and take further action (such as generating
more constraints or checking more constraints), based on the success or failure of such
a query. Furthermore, we demand extensibility. It should be possible to extend the con-
straint system with analysis-specific constraints with the same ease with which new
analyses can be written.

Declarative. It should be possible to view F programs as logical formulas so that
properties of these programs (such as: they preserve the semantics of the object program
they are manipulating) can be established through logical reasoning involving other F
programs (e.g. representing the static and dynamic semantics of O). The declarative
framework should be expressive enough to allow the static and dynamic semantics ofO
to be expressed (and implemented) in terms of declarative rules over program structures
in F .

Testing Concurrent Systems: An Interpretation of Intuitionistic Logic 519

2 Basic Paradigm

In searching for a programming language framework for dealing with programs, it is
natural to start with λProlog, and its underlying conceptual basis, higher-order heredi-
tary Harrop formulas [MNPS91] (henceforth called HH). Consider the basic syntactic
structure of definite clause programs. Starting with the base

(Agent) D ::= true | D ∧D | ∀x D
(Test) G ::= true | G ∧G | G ∨G | ∃x G

(1)

we may obtain definite clause logic programming LP by adding

D ::= G ⊃ A G ::= A (2)

That is, a program is formulated in terms of universally quantified implications, whose
head contains an atom and whose body contains goals, which may be atomic or con-
junctive, disjunctive or existential formulas. We assume a higher-order language so the
arguments of atomic formulas may be (typed) lambda terms. To keep matters simple,
we exclude quantification over predicates; this condition may be relaxed as in λProlog.

To LP, HH adds the notion of universal and implicational goals:

G ::= D ⊃ G | ∀x G (3)

Computationally, implicational goals or extensible tests permit the extension of the
current database of programs before answering a specific query. Universal goals permit
the introduction of scoped constants. These additional constructs complement the use
of typed lambda-calculus to represent object level binding notions with devices for real-
izing recursion over such structure [NM98]. The practical benefits of these capabilities
in syntax manipulation have been discussed in several places in the literature.

A limitation of λProlog for the applications of interest is the absence of a treatment
of constraints; as we have noted earlier, constraint systems find many uses in static and
dynamic analyses over program structure. This leads us to the integration of constraint
programming with HH. The addition of constraints to goals and agents has been pro-
posed by [FFL03, GDN04, LNRA01] through the further syntax rules:

D ::= c G ::= c (4)

An implicational goal (e.g. c ⊃ G) can be used to add constraints to the store (the
LHS); a constraint goal c may check that a constraint follows from the store.

The language with syntax described by rules (1)–(4) still has a shortcoming: it does
not permit (recursive) computations on the LHS of a sequent. For example, consider the
computation of the goal D ⊃ (G1 ∧G2) in the context of an LHS given by Λ. Solving
this goal requires the addition of D to Λ. In HH, the consequences that emerge from the
addition of D to Λ must be computed separately while solving G1 and G2. Permitting
recursive computation in the LHS could eliminate this redundancy: the consequences
can then be computed once, and used in showing both G1 and G2. The following ex-
cerpt from the type checking of Java programs in the context of a class hierarchy is an
example of the utility of this idea.

520 Radha Jagadeesan, Gopalan Nadathur, and Vijay Saraswat

Example 1 (Java type checking). The type checking of a method body in a JAVA pro-
gram must be done in the context of type assertions generated by examining the classes
referenced in the code. These assertions are built using predicates such as extends be-
tween class names that captures the subtype relationship. It is desirable that the parsing
of referenced classes and the elaboration of type assertions (based on the inheritance hi-
erarchy, method signatures, field signatures, etc) be done only once. Thus, conceptually,
one wishes to define:

∀ClassName ∀Code
(((parse ClassName Code) ∧

((referencedClassTypes Code) ⊃ (typed code Code)))
⊃ (typed class ClassName))

The definition of the predicate for typed code assumes that the type information for
each referenced class is already available in the store and may simply be queried (e.g.
using the constraint subType):

∀LExp ∀RExp ∀LT ∀RT
((isType RExp RT) ∧ (isType LExp LT) ∧ (subType RT LT))

⊃ (typed (assign LExp RExp))).

Thus, we expect referencedClassTypes to be a user-defined (agent) predicate here that
operates on the LHS of a sequent and that walks the AST Code, determining referenced
classes and for each such class generating type assertions based on the type hierarchy.
Running the agent referencedClassTypes Code to quiescence on the LHS would thus
elaborate the type information in Code once and for all, sharing this computation among
all subsequent RHS queries.

This motivates us to take the fundamental step underlying this paper: combining the
power of HH with CCP. CCP is organized around the notion of (deterministic) agents
working together in parallel to produce constraints on a shared store.

(Agent) D ::= true | c | D ∧D | E | G ⊃ D | E ⊃ D | ∃x D
(Test) G ::= true | c | G ∧G

One views true as the vacuous agent, c as the agent which adds the constraint c to
the store, D1 ∧ D2 as the parallel composition of D1 and D2, E (an atomic formula)
as a recursively defined agent, (whose rules of behavior are specified by the formulas
E ⊃ D), G ⊃ D as a deep guard ask agent which checks whether the store entails
G, and if so, reduces to D, and ∃xD as the agent that introduces a new local variable
x and then behaves like D. [LS93] has shown that the logical view of CCP (in the
subcase of flat guards c ⊃ D) corresponds to computation on the left in a sequent
based presentation. Conceptually the purpose of the computation is to determine the
(strongest) set of constraints c (on the variables in D) that follow from D. Thus on
termination we have a c and a proof tree for D � c such that for any other c1, if D � c1
then c � c1.

This motivates us to add to the syntax rules (1)–(4) the rules:

D ::= E | G ⊃ D | E ⊃ D | ∃x D (5)

Testing Concurrent Systems: An Interpretation of Intuitionistic Logic 521

We call the resulting language framework λRCC (RCC for the sub-language with first-
order terms). Notice that the second rule should be thought of as permitting fully recur-
sive asks (“deep guards” in concurrent logic programming terminology), thus allowing
a symmetric interplay between goals and agents (cf the production G::=D ⊃ G).

An important restriction in λRCC is that the vocabulary of predicate names used
for goals, agents and constraints are pairwise disjoint—we refer to this as the Disjoint
Vocabulary condition. The Rules (1)–(5) can be consolidated as:

(Agent) D ::= true | c | E | D ∧D | G ⊃ A | G ⊃ D | E ⊃ D | ∃x D | ∀x D
(Test) G ::= true | c | A | G ∧G | D ⊃ G | G ∨G | ∃x G | ∀x G

(6)

Clearly this includes LP, HH, CLP and CCP. The results of this paper may be extended
to support disjunctive agents as well; but we omit their treatment for lack of space.

3 Operational Semantics for λRCC

How should we understand computation in λRCC? We propose that behavioral testing
of concurrent systems provides a suitable framework. Let us think of a configuration in
our system as being given by a multiset of predications of the form (Λ,G) in which Λ is
a multiset of D (agent) formulas. Informally, we would like to view such a pair as posing
the question “Does the concurrent system Λ pass the test G?” We expect the operational
semantics of the language to be described by a transition relation−→ on configurations
that allows us to address such a question in an incremental fashion. To indicate success,
we introduce the configuration ε; thus the question (Λ,G) is considered to be one that
has a successful answer iff (Λ,G) �−→ ε.

The testing notion is behavioral in the sense that it merely examines the behavior, i.e.
the potential to produce certain results, treating the structure of the system as opaque.
Even simple structural queries such as “Does the system contain the agent A?” are not
permitted (thanks to the Disjoint Vocabulary condition). Permitting such queries would
interfere with the understanding of goal-predicates and agent-predicates as recursive
procedure calls. One would have to account for the possibility that a query A can be
answered not only by unrollingA into the bodyG of a clause definingA but by the mere
presence of the atom A on the LHS. Similarly, there is no possibility of formulating a
query which is able to decompose the system into the parallel composition of two agents
A1 and A2 and ask whether A1 satisfies G1 and A2 satisfies G2 (cf bunched implication
logics [OP99]).

3.1 The Underlying Intuitions

Let us write Λ |� G (read: “Λ passes G” or “Λ has the potential to answer G”) to
represent the condition (Λ,G) �−→ ε.

Structural principles. A question to ask is: When should Λ |� c succeed? The opera-
tional interpretation of CCP suggests a natural answer: it should succeed iff it is pos-
sible for Λ to evolve in such a way that the resulting store entails c. Thus the question
being asked is: does Λ have the potential to generate c? Even before we get specific
about the evolution process, the viewpoint that it only serves to “actualize” potential
leads to certain structural principles that our operational semantics should satisfy:

522 Radha Jagadeesan, Gopalan Nadathur, and Vijay Saraswat

Potential preservation (Λ, c) �−→ (Λ′, c) and Λ |� c implies Λ′ |� c.
Structural Rules Λ |� c′ and Λ, c′ |� c implies Λ |� c; Λ,D |� c if Λ,D,D |� c;

Λ,D1, D2 |� c if Λ,D2, D1 |� c; and Λ,D |� c if Λ |� c.

Agent combinators. To address the issue of evolution itself, when should Λ,D pass a
test c? This should happen if (a) Λ passes the test by itself or (b) D interacts with Λ in
such a way that the system reaches a state in which c can be answered. To specify this
precisely, we need agent interaction rules:

Vacuous agent Λ, true |� c iff Λ |� c.
Parallel agent Λ,D1 ∧D2 |� c iff Λ,D1, D2 |� c.
Recursive agent Λ,E |� c iff Λ |� c or there is a Λ′ and a rule E ⊃ D ∈ Λ′ s.t.

((Λ,E), c) �−→ ((Λ′, E), c) and Λ′, E,D |� c.
Deep guard agent Λ,G ⊃ D |� c iff for some Λ′: ((Λ,G ⊃ D), c) �−→ ((Λ′, G ⊃

D), c), and (i) Λ′ |� c or (ii) Λ′, G ⊃ D |� G and Λ′, D |� c.
Existential agent Λ, ∃xD |� c iff Λ,D[i/x] |� c for some new parameter i.
Universal agent Λ, ∀xD |� c iff Λ, ∀xD,D[t/x] |� c.

The first two rules have already been discussed in conjunction with CCP. For recursive
agents, Λ,E passes the test c if Λ passes the test by itself or if Λ can evolve to Λ′ in
which a rule E ⊃ D is revealed such that Λ′, E,D passes the test. The agent ∃xD
interacts with Λ by producing a previously unknown instance of D that it runs in par-
allel. The case for ∀xD keeps ∀xD around to produce other instances that might be
needed. Finally, G ⊃ D interacts with Λ by testing whether Λ passes G (using G ⊃ D
as a resource if needed) and, if so, by running D in parallel with Λ. Thus we require
Λ,G ⊃ D |� c iff for some Λ′: ((Λ,G ⊃ D), c) �−→ ((Λ′, G ⊃ D), c), and (i) Λ′ |� c
or (ii) Λ′, G ⊃ D |� G and Λ′, D |� c. Notice that, in contrast to E, G functions as
a deep guard in this kind of agent formula. Further, the evolution of ((Λ,G ⊃ D), c)
may itself involve a recursive use of G ⊃ D, but this time in the context of establishing
G′ for a different G′ ⊃ D′ in the current configuration.

Test combinators. Of course, tests may themselves have a complex, non-primitive struc-
ture and the operational semantics must specify behavior with respect to such structure
as well. Here we rely on the usual interpretation of atomic goals A as recursively de-
fined tests and of G1 ∧ G2 (resp. G1 ∨ G2, D ⊃ G, ∀xG) should be viewed as a
conjunctive (resp. disjunctive, conditional, generic) test, consistent with their “search
reading” formalized by uniform proofs [MNPS91]. There is, however, a subtle differ-
ence in the interpretation of existential tests: While the test ∃xG succeeds when there is
some term t such that the test G[t/x] succeeds, existential agents are allowed to evolve
and introduce new constants that can be used to construct t.

Vacuous query Λ |� true always holds.
Recursive query Λ |� A iff there is some Λ′ s.t. (Λ,A) �−→ (Λ′, A), and there is a

G ⊃ A ∈ Λ′ and Λ′ |� G.
Conjunctive query Λ |� G1 ∧G2 iff Λ |� G1 and Λ |� G2.
Disjunctive query Λ |� G1 ∨G2 iff Λ |� G1 or Λ |� G2.
Extensible query Λ |� D ⊃ G iff Λ,D |� G.

Testing Concurrent Systems: An Interpretation of Intuitionistic Logic 523

Universal query Λ |� ∀xG iff Λ |� G[i/x] for some new parameter i.
Existential query Λ |� ∃xG iff there is some Λ′ s.t. (Λ, ∃xG) �−→ (Λ′, ∃xG) and

Λ′ |� G[t/x], for some t built using the constants in Λ′, G.

From a programmer’s point of view, the notion of behavioral testing of a concurrent
system provides an account of the operational behavior of various combinators. λRCC
can be thought of as building on the basic query of the underlying constraint system,
c0, . . . , cn � c, by permitting complex, recursively defined agents on the LHS of the
�, and complex recursively defined queries on the RHS. The purpose of the complex
formulas on the LHS and RHS in this context is to construct appropriate queries of the
underlying constraint system (which may be viewed as a replacement for the axiom
case in the usual inference systems).

3.2 A Formal Presentation

We formalize these ideas via a transition system specified in the tradition of Plotkin’s
SOS. The transition relation builds on some unknown but fixed underlying constraint
system C satisfying the properties described in [Sar92, PSSS92] that formalizes a deriv-
ability relation of the form c0, . . . , ck �C c. In particular, the properties include the ad-
missibility of CUT, i.e., if c0, . . . , ck−1 �C ck and c0, . . . , ck �C c then c0, . . . , ck−1 �C
c, the admissibility of Contraction, i.e., if Γ, c, c �C c′ then Γ, c �C c′, and closure
under substitution for parameters, i.e., if Γ �C c and Γ ′ and c′ result from Γ and c by
replacing a parameter i by a term t then Γ ′ �C c′. We augment C with the inference rule
CONST

c0, . . . , ck �C c
Λ, c0, . . . , ck �C c

(CONST) (7)

in which Λ ranges over multisets of D-formulas. The configurations of the machine are
multisets Γ of predications (Λ,G). We use ε for the empty multiset. The inference rules
of the transition system are:

((Λ, E, E ⊃ D), G) −→ ((Λ, E, D), G) (FC) Λ &C c
(Λ, c) −→ ε

(C)

((Λ, G ⊃ D), G)
�−→ ε

((Λ, G ⊃ D), G′) −→ ((Λ, D), G′)
(DG) (Λ, G ∨G′) −→ (Λ, G) (R-OR-1)

((Λ, D ∧D′), G) −→ ((Λ, D, D′), G) (L-AND) (Λ, G ∨G′) −→ (Λ, G′) (R-OR-2)
((Λ,∃x D), G) −→ ((Λ, D[i/x]), G) (L-E(*)) (Λ, D ⊃ G) −→ ((Λ, D), G) (R-IMP)
((Λ,∀x D), G) −→ ((Λ,∀x D, D[t/x]), G) (L-U) (Λ,∃x G) −→ (Λ, G[t/x]) (R-E)
(Λ, true) −→ ε (R-TRUE) (Λ, (∀x)G) −→ (Λ, G[i/x]) (R-U(*))

((Λ, G ⊃ A), A) −→ ((Λ, G ⊃ A), G) (BC)
(Λ, G)

�−→ Γ ′

Γ, (Λ, G) −→ Γ, Γ ′ (STRUC)

(Λ, G ∧G′) −→ (Λ, G), (Λ, G′) (R-AND)

The symbol “,” is used to denote multiset union in these rules. In determining the appli-
cability of any rule to a given configuration, we assume that a notion of equality modulo
the rules of λ-conversion is used. In the rules L-E and R-U, i must be a parameter that
does not already appear in the predication on the LHS of the transition rule.

The semantics described above accurately models successful termination leveraging
don’t know non-determinism inherent in the application of BC (which of many appli-
cable rules should be chosen?), R-Or-1/2 (which branch should be chosen?), and R-E

524 Radha Jagadeesan, Gopalan Nadathur, and Vijay Saraswat

(when the rule should be used and with which term?). (See Theorem 8 which estab-
lishes that the nondeterminism in the application of the remaining rules is don’t care.)
The first two can be handled via or-parallel search or backtracking in the usual Prolog
style. Once the point of use of the R-E rule has been determined, the actual instantia-
tion for the quantifier may be incrementally generated, using techniques such as those
described in [Sha92] to encode quantifier dependency information that constrains the
instantiation. A more detailed operational semantics could also replace the “coarse step”
evaluation of deep guards above with an incremental evaluation based on maintaining
and propagating partial state (cf AKL [HJ90]). Such a detailed operational semantics is
beyond the scope of this paper and will be presented in subsequent work.

The proof of the following theorem relies on Theorem 3, Theorem 7, and known
properties of intuitionistic derivability.

Theorem 2 (Operational Characterization). The operational semantics formalized
above validates the structural principles and the agent and test combinator conditions
described in Section 3.1.

4 Proof-Theoretic Semantics for λRCC

We show the declarative semantics of λRCC to be given by provability in intuitionis-
tic logic augmented by a fixed constraint system C of the kind described in Section 3.
Specifically we assume that the derivability relation is characterized by a standard se-
quent system that may additionally use as axioms

Λ & c
(CONST)

whenever Λ �C c is a valid judgement. We differentiate these axioms from the usual
ones in a sequent calculus below by annotating the latter as (ID).

4.1 Operational Derivability

We are interested in (cut-free) proofs of sequents of the form Λ � G where Λ is a
multiset of D formulas. Observe that if Ξ is any sequent that appears in a proof, then
the LHS of Ξ contains only D and A formulas and the RHS of Ξ contains either a G
or an E formula. One consequence of this observation is that we do not have a need for
the ∨-L rule in constructing proofs for the sequents under consideration. We would also
like to restrict the use of the ⊃-L rule as follows.
Chaining condition: Every instance of ⊃-L in which the principal formula is G ⊃ A
(resp. E ⊃ D) is of the form on the left (resp. right):

Π
′

...
Λ, G ⊃ A � G Λ, A � A

(ID)

Λ, G ⊃ A � A
(⊃-L) Λ, E, E ⊃ D � E

(ID)

Π
′

...
Λ, E, D � G

Λ, E, E ⊃ D � G
(⊃-L)

Testing Concurrent Systems: An Interpretation of Intuitionistic Logic 525

Constraint-condition: Every instance of ⊃-L in which the principal formula is c ⊃ D
is of the form:

Λ, c ⊃ D & c
(CONST)

Π′

...
Λ, D & G

Λ, c ⊃ D & G
(L-IMP)

There are no restrictions on the use of ⊃-L on G ⊃ D formulas where G is not c.
We say that a sequentD � G is operationally derivable iff it has a proof in which the

∨-L rule is not used and each occurrence of the⊃-L rule satisfies the above restrictions.
We indicate the existence of such a proof by writing D �o G. In such proofs, goal rules
are used only to determine what to do next when trying to prove an atomic goal (thus
goal rules define the behavior of goal-predicates); agent rules are used only to determine
which agents follow from atomic agents (thus agent rules define the behavior of agent-
predicates); a constraint query can be proven only if sufficiently powerful constraints
are explicitly present in the constraint store. In particular, operational derivability forces
proofs to have a “straight line” structure. In a proof the only nodes which have two deep
subtrees (i.e. subtrees of depth > 1) and which correspond to the application of a left
rule are those whose principal formula is (G ⊃ D) (where G is not c).

Operational derivability corresponds to the transition system of Section 3.

Theorem 3 (Faithfulness Theorem). Λ �o G iff (Λ,G) �−→ ε

The proof in one direction proceeds by induction on the size of a derivation and in
the other by induction on the length of the transition sequence.

4.2 Correspondence with Intuitionistic Logic

Operational derivability is intended as a bridge between the transition semantics and
intuitionistic provability. In one direction, the connection is immediate since operational
proofs are intuitionistic proofs with additional structure.

Theorem 4 (Soundness Theorem). D �o G implies D � G.

For the other direction, we have to show that the provability relation is unaltered
even though we may lose some proofs. We proceed towards this goal via a couple of
lemmas. The first lemma is modelled on results in Dyckhoff [Dyc92]. Call a proof sen-
sible if whenever A ⊃ B is the principal formula of an ⊃-L rule in an intuitionistic
derivation and A is atomic, then A also appears on the LHS of the lower sequent. Then
the following holds for Intuitionistic Logic (with constraints, as developed in this pa-
per):

Lemma 5. A proof exists for a sequent if and only if a sensible proof exists.

Proof. (Sketch) Associate with a proof an insensibility measure that counts the number
of places where⊃-L is applied in a way that violates the notion of sensibility, i.e., where
it pertains to a formula of the form A ⊃ B where A is atomic and A does not appear
in the antecedent. We then prove the lemma by induction on the insensibility measure,
essentially showing that the first occurrence of such a rule in the derivation along any
path starting from the leaves (axioms) can be eliminated.

526 Radha Jagadeesan, Gopalan Nadathur, and Vijay Saraswat

Lemma 5 shows that we can restrict attention to intuitionistic derivations satisfying the
forward chaining condition. By a similar argument, we can show also that the constraint
condition can be respected without loss of completeness. We now want to show that if
the RHS of the sequent is an atom then we can require it to be proved by backchaining.
Define a clause instance based on the structure of a D formula as follows:
(1) Any clause instance of D′[i/x] for a new constant i is a clause instance of ∃xD′.
(2) Any clause instance of D′[t/x], for a closed term t is a clause instance of ∀xD′.
(3) Any clause instance of D1 or D2 is a clause instance of D1 ∧D2.
(4) Let D = G ⊃ D: If G′ ⊃ A is a clause instance of D then ((G ∧ G′) ⊃ A is a
clause instance of D.

Lemma 6. If A is an atomic formula and Λ is a multiset of D formulas, then Λ � A
has a derivation if and only if there is a clause instance G ⊃ A of some D formula in
Λ such that Λ � G has a derivation.

Proof. (Sketch) The proof proceeds by induction on the height of the derivation. The
last rule in the derivation must pertain to the LHS. The definition of clause instances is
modelled to address the non-trivial cases, namely ∃-L, ∀-L and ⊃-L.

Lemmas 5 and 6 provide the basis for the proof of the desired result:

Theorem 7 (Completeness Theorem). D � G implies D �o G.

The results of this section show that entailment in intuitionistic logic provides an
alternative semantics for λRCC. Apart from underpinning the declarative semantics of
this language, this property also allows us to use known properties of the intuitionistic
calculus to understand characteristics of our transition relation. As one example, known
permutation properties for this calculus reveal that some aspects of non-determinism in
the transition relation are inconsequential:

Theorem 8 (Local Confluence Theorem). Let (Λ,A) −→ (Λ1, A1) by any rule ex-
cept R-OR-2, R-OR-1, R-E or BC. Let (Λ,A) −→ (Λ2, A2) by any rule. Then there
exists a Λ3 such that (Λ1, A1)

�−→ (Λ3, A
′) and (Λ2, A1)

�−→ (Λ3, A
′).

5 Conclusions

This paper establishes the semantic foundations for a logical approach to program ma-
nipulation, λRCC, which satisfies the desiderata laid out in Section 1. λRCC endows
a very rich subset of intuitionistic logic with a (complete) computational interpretation
based on testing determinate concurrent systems. Operationally, the programmer may
use recursive agents to generate constraints from a representation of an object program,
and recursive queries to test these constraints.

From a practical point of view, we are currently developing a concrete extension
of λProlog along these lines. We intend to develop an integration of such a language
into JAVA-like languages along the lines of jcc[SJG03], and use it as the basis for AST-
rewrites in Polyglot and Eclipse.

On the theoretical front, extending the basic conception of this paper to sub-struc-
tural logics such as linear logic remains open. In contrast to LolliMon [LPPW05] that

Testing Concurrent Systems: An Interpretation of Intuitionistic Logic 527

associates backward (resp. forward) chaining with asynchronous (resp. synchronous)
connectives of linear logic, this paper explores forward and backward chaining mostly
(except existentials) in the asynchronous fragment. The detailed integration of these
seemingly different approaches remains open to further investigations.

Acknowledgements. We gratefully acknowledge discussions with Robert Fuhrer and
Mandana Vaziri on the topic of logical representation of program refactorings. Radha
Jagadeesan was supported in part by NSF 0430175. Gopalan Nadathur has received
support for this work from NSF Grant CCR-0429572 and the Digital Technology Center
and the Department of Computer Science at the University of Minnesota.

References

[Aik99] Alexander Aiken. Introduction to set constraint-based program analysis. Sci. Com-
put. Program., 35(2-3):79–111, 1999.

[Dyc92] Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. The Journal
of Symbolic Logic, 57(3), September 1992.

[ecl] The eclipse project. www.eclipse.org.
[FFL03] Stacy E. Finkelstein, Peter Freyd, and James Lipton. A new framework for declar-

ative programming. Theor. Comput. Sci., 300(1-3):91–160, 2003.
[FTK04] Robert Fuhrer, Frank Tip, and Adam Kiezun. Advanced refactorings in eclipse. In

OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications, pages 8–8, New York,
NY, USA, 2004. ACM Press.

[GDN04] Miguel Garcia-Diaz and Susana Nieva. Providing declarative semantics for hh ex-
tended constraint logic programs. In PPDP ’04: Proceedings of the 6th ACM SIG-
PLAN international conference on Principles and practice of declarative program-
ming, pages 55–66, New York, NY, USA, 2004. ACM Press.

[Hei92] Nevin Charles Heintze. Set based program analysis. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, USA, 1992.

[HJ90] S. Haridi and S. Janson. Kernel andorra Prolog and its computation model. In David
H. D. Warren and Peter Szeredi, editors, Proceedings of the Seventh International
Conference on Logic Programming, pages 31–46, Jerusalem, 1990. The MIT Press.

[JL87] J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proceedings
of the 14th Annual ACM Symposium on Principles of Programming Languages
(POPL’87), Munich, Germany, pages 111–119. ACM Press, New York (NY), USA,
1987.

[LMRC05] Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers. Automated sound-
ness proofs for dataflow analyses and transformations via local rules. In POPL
’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 364–377, New York, NY, USA, 2005. ACM Press.

[LNRA01] Javier Leach, Susana Nieva, and Mario Rodrguez-Artalejo. Constraint logic pro-
gramming with hereditary harrop formulas. Theory Pract. Log. Program., 1(4):409–
445, 2001.

[LPPW05] Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Monadic concur-
rent linear logic programming. In Pedro Barahona and Amy P. Felty, editors, PPDP,
pages 35–46. ACM, 2005.

[LS93] Patrick Lincoln and Vijay Saraswat. Proofs as concurrent processes. Technical
report, PARC, 1993.

528 Radha Jagadeesan, Gopalan Nadathur, and Vijay Saraswat

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied Logic,
51:125–157, 1991.

[NCM03] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An
extensible compiler framework for java. In Proceedings of the Conference on Com-
piler Construction (CC’03), pages 1380–152, April 2003.

[NM98] Gopalan Nadathur and Dale Miller. Higher-order logic programming. In C. Hogger
D. Gabbay and A. Robinson, editors, Handbook of Logic in Artificial Intelligence
and Logic Programming, volume 5, pages 499–590. Oxford University Press, 1998.

[OP99] P.W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of Sym-
bolic Logic, 5(2):215–244, 1999.

[OSW99] Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with con-
strained types. Theor. Pract. Object Syst., 5(1):35–55, 1999.

[Pal95] Jens Palsberg. Closure analysis in constraint form. ACM Trans. Program. Lang.
Syst., 17(1):47–62, 1995.

[PE88] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings of
the ACM-SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 199–208. ACM Press, June 1988.

[PS94] Jens Palsberg and Michael I. Schwartzbach. Object-oriented type systems. John
Wiley and Sons Ltd., Chichester, UK, UK, 1994.

[PSSS92] Prakash Panangaden, Vijay A. Saraswat, P. J. Scott, and R. A. G. Seely. A hyper-
doctrinal view of concurrent constraint programming. In J. W. de Bakker, Willem P.
de Roever, and Grzegorz Rozenberg, editors, REX Workshop, volume 666 of Lec-
ture Notes in Computer Science, pages 457–476. Springer, 1992.

[PW98] William Pugh and David Wonnacott. Constraint-based array dependence analysis.
ACM Trans. Program. Lang. Syst., 20(3):635–678, 1998.

[RMR01] Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to analysis for java
using annotated constraints. In OOPSLA ’01: Proceedings of the 16th ACM SIG-
PLAN conference on Object oriented programming, systems, languages, and appli-
cations, pages 43–55, New York, NY, USA, 2001. ACM Press.

[Sar92] Vijay A. Saraswat. The category of constraint systems is cartesian closed. In Pro-
ceedings of the IEEE Symposium on Logic in Computer Science, 1992.

[Sar93] V. Saraswat. Concurrent Constraint Programming. Doctoral Dissertation Award
and Logic Programming. MIT Press, 1993.

[Sha92] Natarajan Shankar. Proof search in the intuitionistic sequent calculus. In Deepak
Kapur, editor, Automated Deduction – CADE-11, number 607 in Lecture Notes in
Computer Science, pages 522–536. Springer Verlag, June 1992.

[SJG03] V Saraswat, R Jagadeesan, and V Gupta. jcc: Integrating timed default concurrent
constraint programming into Java. Number 2902 in Lecture Notes in Computer
Science, pages 156–170. Springer Verlag, 2003.

Proofs of Termination of Rewrite Systems for

Polytime Functions

Toshiyasu Arai1 and Georg Moser2

1 Kobe University, Graduate School of Science and Technology
arai@kurt.scitec.kobe-u.ac.jp

2 University of Innsbruck, Computational Logic
georg.moser@uibk.ac.at

Abstract. We define a new path order ≺pop so that for a finite rewrite
system R compatible with ≺pop, the complexity or derivation length func-
tion DlfR for each function symbol f is guaranteed to be bounded by a
polynomial in the length of the inputs. Our results yield a simplification
and clarification of the results obtained by Beckmann and Weiermann
(Archive for Mathematical Logic, 36:11–30, 1996).

Keywords : Termination, term rewriting characterisation, derivation length, com-
plexity theory.

1 Introduction

Suppose C denotes an inductively defined class of recursive number-theoretic
functions and suppose each f ∈ C is defined via an equation (or more generally
a system of equations) of the form

f(x) = t(λy.f(y),x) , (1)

where t may involve previously defined functions. In a term-rewriting context
these defining equations are oriented from left to right and the canonical term-
rewriting characterisation RC of C can be defined as follows: The signature Σ
of RC includes for each function f in C a corresponding function symbol f . In
order to represent natural numbers Σ includes a constant 0 and a unary function
symbol S. I.e. numbers are represented by their numerals. (Later we represent
natural numbers in the form of binary strings.) For each function f ∈ C−{0, S},
defined by (1), the rule

f(x)→ t(λy.f(y),x) ,

is added to RC . In all non-pathological cases the term rewrite system (TRS)
RC is terminating and confluent. RC is best understood as a constructor TRS,
where the constructors are 0 and S. Hence RC may be conceived as a functional
program implementing the functions in C.

Term-rewriting characterisations have been studied e.g. in [1,2,3,4]. The anal-
ysis of RC provides insight into the structure of C or renders us with a delineation

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 529–540, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

530 Toshiyasu Arai and Georg Moser

of a class of rewrite systems whose complexity (measured by the length of deriva-
tions) is guaranteed to belong to the class C. Term-rewriting characterisations
turn the emphasis form the definition of a function f to its computation. An
essential property of term-rewriting characterisations RC is its feasibility: RC is
called feasible, if for each n-ary function f ∈ C, there exists a function sym-
bol g in the signature of RC such that g(m1, . . . ,mn) computes the value of
f(m1, . . . ,mn) and the derivation length of this computation is bounded by a
function from C.

We study term-rewriting characterisations of the complexity class FP. In
particular, our starting point is a clever characterisation R′B of FP introduced
by Beckmann and Weiermann. In [1] the feasibility of R′B is established and
conclusively shown that any reduction strategy for R′B yields an algorithm for
f ∈ FP that runs in polytime. We provide a slight generalisation of the fact
that R′B is feasible. Moreover, we flesh out the crucial ingredients of the TRS
R′B by defining a path order for FP, denoted as ≺pop. We show that for a finite
TRS R, compatible with ≺pop, the derivation length function DlfR is bounded
by a polynomial in the length of the inputs for any defined function symbol f .
Furthermore ≺pop is complete in the sense that for any function f ∈ FP, there
exists a TRS R computing f such that termination of R can be shown by ≺pop.

2 A Rewrite System for FP

In the following we need some notions from term rewriting and assume (at least
nodding) acquaintance with term rewriting. (For background information, please
see [5].) Let V denote a countably infinite set of variables and Σ a signature.
The set of terms over Σ and V is denoted as T (Σ,V), while the set of ground
terms is written as T (Σ). The rewrite relation induced by a rewrite system R is
denoted as →R, and its transitive closure by →∗

R. We write τ(t) to denote the
size of a term t, i.e. the number of symbols in t.

Conventions : Terms are denoted by r, s, t, possibly extended by subscripts.
We write t, to denote sequences of terms t1, . . . , tk ∈ T (Σ,V) and g to denote
sequences of function symbols g1, . . . , gk, respectively. The letters i, j, k, l,m, n,
possible extended by subscripts will always refer to natural numbers. The set of
natural numbers is denoted as usual by N.

We consider the class FP of polytime computable functions, i.e. those func-
tions computable by a deterministic Turing machine M , such that M runs in
time ≤ p(n) for all inputs of length n, where p denotes a polynomial. We consider
equivalent formulations of the class of polytime computable functions in terms
of recursion schemes.

Recursion schemes such as bounded recursion due to Cobham [6] generate
exactly the functions computable in polytime. In contrast to this, Bellantoni-
Cook [7] introduce certain unbounded recursion schemes that distinguish be-
tween arguments as to their position in a function. This separation of variables
gives rise to the following definition of the predicative recursive functions B; for
further details see [7]. We fix a suitable signature of predicative recursive function
symbols B.

Proofs of Termination of Rewrite Systems for Polytime Functions 531

Definition 1. For k, l ∈ N we define Bk,l inductively.

– S0,1
i ∈ B0,1, where i ∈ [0, 1].

– Ok,l ∈ Bk,l.
– Uk,l

r ∈ Bk,l, for all r ∈ [1, k + l].
– P 0,1 ∈ B0,1.
– C0,3 ∈ B0,3.
– If f ∈ Bk′,l′ , g1, . . . , gk′ ∈ Bk,0, and h1, . . . , hl′ ∈ Bk,l,

then SUBk,l
k′,l′ [f,g,h] ∈ Bk,l.

– If g ∈ Bk,l, h0, h1 ∈ Bk+1,l+1, then PRECk+1,l[g, h1, h2] ∈ Bk+1,l.

Set B :=
⋃
k,l∈N Bk,l.

To simplify notation we usually drop the superscripts, when denoting pred-
icative recursive function symbols. Occasionally, we even write SUB (, PREC),
instead of SUBk,l[f,g] (,PRECn+1[g, h]). No confusion will arise from this.

The binary successor function m %→ 2m+ i, i ∈ {0, 1} is denoted as Si. Every
natural number can be buildt up from 0 with repeated applications of Si. The
binary length of a number m is defined as follows: |0| := 0 and |Si(m)| := |m|+1.

We write Nk,l for Nk×Nl and for f : Nk,l → N, write f(m1, . . . ,mk;n1, . . . , nl)
instead of f(〈m1, . . . ,mk〉, 〈n1, . . . , nl〉). The arguments occurring to the left of
the semi-colon are called normal, while the arguments to the right are called
safe.

We define the following functions: S0,1
i , i ∈ {0, 1} denotes the function

〈;m〉 %→ 2m+ i. Ok,l denotes the function 〈m;n〉 %→ 0. Uk,lr denotes the function
〈m1, . . . ,mk;mk+1, . . . ,mk+l〉 %→ mr. P0,1 denotes the unique number-theoretic
function satisfying the following equations: f(; 0) = 0, f(;Si(m)) = m. C0,3 de-
notes the unique function satisfying: f(; 0,m0,m1) = m0, f(;Si(m),m0,m1) =
mi.

If f : Nk′,l′ → N, gi : Nk,0 → N for i ∈ [1, k′], hj : Nk,l → N for j ∈ [1, l′], then
SUBk,lk′,l′ [f,g,h] denotes the function 〈m;n〉 %→ f(g1(m;), . . . , gk′(m;);h1(m;n),
. . . , hl′(m;n)).

If g : Nk,l → N, hi : Nk+1,l+1 → N for i ∈ [0, 1] then PRECk+1,l[g, h1, h2]
denotes the unique number-theoretic function f satisfying: f(0,m;n) = g(m;n)
and f(Si(m),m;n) = hi(m,m;n, f(m,m;n)).

Definition 2. For k, l ∈ N we define Bk,l inductively.

– S0,1
i ∈ B0,1, where i ∈ [0, 1].

– Ok,l ∈ Bk,l.
– Uk,lr ∈ Bk,l, for all r ∈ [1, k + l].
– P0,1 ∈ B0,1.
– C0,3 ∈ B0,3.
– If f ∈ Bk

′,l′ , g1, . . . , gk′ ∈ Bk,0, and h1, . . . , hl′ ∈ Bk,l, then SUBk,lk′,l′ [f,g,h] ∈
Bk,l.

– If g ∈ Bk,l, h0, h1 ∈ Bk+1,l+1, then PRECk+1,l[g, h1, h2] ∈ Bk+1,l.

The set of predicative recursive functions is defined as B =
⋃
k,l B

k,l.

532 Toshiyasu Arai and Georg Moser

Table 1. A Feasible Term-Rewriting Characterisation of the Predicative
Recursive Functions

Ok,l(x;a)→ 0 , [zero]

Uk,l(x1, . . . , xk; xk+1, . . . , xk+l)→ xr , [projection]

P 0,1(; 0)→ 0 , [predecessor]

P 0,1(; Si(; a))→ a ,

C0,3(; 0, a0, a1)→ a0 , [conditional]

C0,3(; Si(; a), a1, a0)→ a2−i ,

SUBk,l[f, g,h](x;n)→ f(g(x;);h(x;n)) , [safe composition]

PRECk+1,l[g, h1, h2](0, x;n)→ g(x;n) , [predicative recursion

PRECk+1,l[g, h1, h2](Si(; b),x;n)→ on notation]

→ hi(b,x;n,PRECk+1,l[g, h1, h2](b,x;n)) .

We use the following notation: i ∈ [0, 1] and r ∈ [1, k + l].

It follows from the definitions that for each f ∈ B, there exists a unique
predicative recursive function fB; the latter is called the interpretation of f in
B. For every number m we define its numeral m ∈ T (B,V) as follows: 0 := 0,
Si(;m) := Si(;m) for i ∈ [0, 1]. We write m to denote a sequence of numer-
als m1, . . . ,mk. Now the polytime computable functions FP can be defined as
follows, see [7]:

FP =
⋃
k

Bk,0 .

In [1] a clever feasible term-rewriting characterisation R′B of the predicative
recursive functions B is given. By Bellantoni’s result this yields a feasible term-
rewriting characterisation of the class of polytime computable functions FP.
The (infinite) TRS is given in Table 1.

The TRS R′B is terminating and confluent. Termination follows by recur-
sive path order (RPO). Confluence is a consequence of the fact that R′B is
orthogonal. Note the restriction in the rewrite rules for safe composition and
predicative recursion. These rules only apply if all safe arguments are numerals,
i.e. in normal-form. This peculiar restriction is necessary as the canonical term-
rewriting characterisation RB of B, admits exponential lower-bounds, hence RB

is non-feasible, compare. [1].
Let R denote a TRS. A derivation is a sequence of terms ti, i ∈ N, such

that for all i, ti →R ti+1. The (i + 1)th element of a sequence a is denoted as
(a)i. We write � for the concatenation of sequences and define the length
|a| of a sequence a as usually. We define a partial order ⊆ on pairs of se-
quences. a ⊆ b, if b is an extension of a, i.e. |a| ≤ |b| and for all i < |a| we
have (a)i = (b)i. A derivation d with (d)0 = t is called derivation starting with

Proofs of Termination of Rewrite Systems for Polytime Functions 533

t. The derivation tree TR(t) of t is defined as the structure (T (t),⊆), where
T (t) := {d|d is a derivation starting with t}. The root of TR(t) is denoted by t
(instead of (t)).

We measure the complexity or derivation length of the computation of f(m)
by the height of TR(f(m)); more concisely we define the derivation length func-
tion DlfR : T (Σ)→ N:

DlfR(m) := max{n | ∃ t0, . . . , tn ∈ T (Σ) (tn ←R . . .←R t0 = f(m))} .

Based on these definitions we make the notion of feasible term-rewriting
characterisation precise. A term-rewriting characterisation RC of a function class
C is called feasible, if for each n-ary function f ∈ C, there exists a function
symbol g in the signature of RC such that g(m1, . . . ,mn) computes the value
of f(m1, . . . ,mn) and DlfRC is bounded by a function from C. For the rewrite
system R′B we have the following proposition.

Proposition 1. For every f ∈ B, DlfR′
B

is bounded by a monotone polynomial
in the length of the normal inputs. Specifically for each f we can find a number
�(f) so that DlfR′

B
(m;n) ≤ (2+ |m|)�(f), where |m| denotes the sum of the length

normal inputs mi.

Proof. See [8] for a proof, essentially we employ the observation that the deriva-
tion trees TR′

B
(f(m;n)) are isomorphic no matter how the safe input numerals

n vary, to drop the dependency on the length of the normal inputs. &'

3 A Path Ordering for FP

To extend the above results and to facilitate the study of the polytime com-
putable functions in a term-rewriting framework, we introduce in this section a
new path order for FP, which is a miniaturisation of the recursive path order,
cf. [5], see also [9].

In the definition we make use of an auxiliary varyadic function symbol
‘list’ of arbitrary, but finite arity, to denote sequences s0, . . . , sn of terms. In-
stead of list(s0, . . . , sn) we write (s0, . . . , sn). We write a� b for sequences a =
(s0, . . . , sn), b = (sn+1, . . . , sn+m) to denote the concatenation (s0, . . . , sn+m) of
a and b.

Let Σ be a signature. We write T ∗(Σ,V) to denote the set of all finite se-
quences of terms in T (Σ,V). To ensure that T (Σ,V) ⊂ T ∗(Σ,V), any term is
identified with the sequence list(t) = (t). We denote sequences by a, b, c, both
possible extended with subscripts. Sometimes we write fa as abbreviations of
f(t0, . . . , tn), if a = (t0, . . . , tn).

We suppose a partial well-founded relation on S, the precedence, denoted
as <. We write f ∼ g if (f � g) ∧ (g � f) and we write f > g and g < f
interchangeably. Further, we suppose that the signature Σ contains two unary
symbols S0, S1 of lowest rank in the precedence. I.e. Σ = {S0, S1} ∪ Σ′ and

534 Toshiyasu Arai and Georg Moser

S0 ∼ S1 and for all f ∈ Σ′, S0, S1 < f . Moreover, we define 0 := (). For every
number m we define its numeral m ∈ T (Σ,V) as follows: 0 := (); Si(m) := Si(m)
for i ∈ [0, 1].

The definition of the path order for FP (POP) ≺pop (induced by <) is based
on an auxiliary order �. The separation in two orders is necessary to break the
strength of the recursive path order that induces primitive recursive derivation
length, cf. [10].

Definition 3. Inductive definition of � induced by <.

1. ∃j ∈ [1, n] (s � tj) =⇒ s � f(t1, . . . , tn) ,
2. t = f(t1, . . . , tn) & s = g(s1, . . . , sm) with g < f & ∀i ∈ [1,m] (si � t)

=⇒ s � t .

Definition 4. Inductive definition of ≺pop induced by <; ≺pop is based on �.

1. s � t =⇒ s ≺pop t ,
2. ∃j ∈ [1, n] (s 5pop tj) =⇒ s ≺pop f(t1, . . . , tn) & s ≺pop (t1, . . . , tn) ,
3. t = f(t1, . . . , tn) & (m = 0 or (∃i0 (∀i 	= i0 (si � t) & si ≺pop t))

=⇒ (s1, . . . , sm) ≺pop t ,
4. t = f(t0, . . . , tn) & s = g(s0, . . . , sm) with f ∼ g & (s0, . . . , sm) ≺pop

(t0, . . . , tn)
=⇒ s ≺pop t ,

5. a ≈ a0 � · · ·�an & ∀i ≤ n (ai 5pop bi) & ∃i ≤ n (ai ≺pop bi)
=⇒ a ≺pop (b0, . . . , bn) if n ≥ 1 ,

a ≈ a0 � · · ·� an denotes the fact that the sequence a of terms is obtained
from the concatenated a0 � · · ·�an by permutation.

Note that due to rule 3 () ≺pop a for any sequence a ∈ T ∗(Σ,V). Further, we
write s �pop t for t ≺pop s. It is not difficult to argue that ≺pop is a reduction
order. A number of relations are missing; we mention only the following:

– t = f(t1, . . . , tn) & s = g(s1, . . . , sm) with g < f & ∀i ∈ [1,m] (si ≺pop

t) =⇒ s ≺pop t.

We indicate the reasons for the omission of this clause.

Example 1. Consider the following TRS, where Σ contains additionally the sym-
bols a, g, h, f with precedence a, h < f , g < h.

f(0)→ a f(Si(x)) → h(f(x)) h(x) → g(x, x) .

It is easy to see that ≺pop cannot handle the TRS in the example, but would
if rule above is included. However, note that the TRS admits an exponential
lower-bound on the derivation length function.

We introduce suitable approximations ≺k of ≺pop.

Proofs of Termination of Rewrite Systems for Polytime Functions 535

Definition 5. Inductive definition of �l
k induced by <; we write �k to abbrevi-

ate �k
k.

1. ∃j ∈ [1, n] (s �lk tj) =⇒ s �l
k f(t0, . . . , tn) ,

2. t = f(t0, . . . , tn) & s = g(s0, . . . , sm) with g < f & m < k & ∀i (si �l
k t)

=⇒ s �l+1
k t .

Definition 6. Inductive definition of ≺k induced by <; ≺k is based on �k.

1. s �k t =⇒ s ≺k t ,
2. ∃j ∈ [1, n] (s 5k tj) =⇒ s ≺k f(t1, . . . , tn) ,
3. t = f(t1, . . . , tn) & (m = 0 or ∃i0 ∈ [1,m] (∀i 	= i0 (si �k t) & si0 ≺k t))

& m < k =⇒ (s1, . . . , sm) ≺k t ,
4. t = f(t0, . . . , tn) & s = g(s0, . . . , sm) with f ∼ g & (s0, . . . , sm) ≺k

(t0, . . . , tn) & m < max{k, n} =⇒ s ≺k t ,
5. a ≈ a0 � · · · � an & ∀i ≤ n (ai 5k bi) & ∃i ≤ n (ai ≺k bi) =⇒ a ≺k

(b0, . . . , bn) if n ≥ 1 .

In the following we prove that if for a finite rewrite system R, R ⊆≺pop, then
it even holds that →R⊆≺k, where k depends on R only.

Lemma 1. If s ≺k t and k < l, then s ≺l t.

We introduce the auxiliary measure |.| : T ∗(Σ,V) → N: (i) |x| := 1, x ∈ V ,
(ii) |(s1, . . . , sn)| := max{n, |s1|, . . . , |sn|}, (iii) |fa| := |a|+ 1.

Lemma 2. If s ≺pop t, then for any substitution σ, sσ ≺|s| tσ.

Lemma 3. If t = f(t1, . . . , v, . . . , tn), s = f(t1, . . . , u, . . . , tn) with u ≺k v,
where k ≥ max{ar(f) : f ∈ Σ}, then s ≺k t.

Recall that ≺pop is a reduction order. Hence the assumption R ⊆≺pop implies
→R⊆≺pop.

Lemma 4. If t →R s, then s ≺k t, where k = max{max{τ(r)|(l → r) ∈
R},max{ar(f)|f ∈ S}}.

We set

Gk(σ) := max{n ∈ N | ∃(a0, . . . , an) (an ≺k · · · ≺k a0 = a)} ,
Fk,p(n) := max{Gk(fa) : rk(f) = p & Gk(a) ≤ n} ,

where rk(f) : Σ → N is defined inductively: rk(f) := max{rk(g)+1: g ∈ Σ∧g ≺
f}. We collect some properties of the function Gk in the next lemma.

Lemma 5. 1. Gk((s0, . . . , sn)) =
∑n

i=0 Gk(ai).
2. Gk(m) = |m| for any natural number m.

536 Toshiyasu Arai and Georg Moser

Lemma 6. Inductively we define dk,0 := 2 and dk,p−1 := (dk,p)k+1. Then there
exists a constant c (depending only on k and p) such that Fk,p(n) ≤ c ·ndk,p + c.

Proof. The lemma is proven by main induction on p and side induction on σ.
Set a := (t0, . . . , tn) and let w ≺k f(t0, . . . , tn) =: t, rk(f) = p and w

maximal. By assumption Gk(a) ≤ n. We prove

Gk(w) < cndk,p for almost all n ,

by case-distinction on the definition of ≺k. It suffices to consider the case w =
(r0, . . . , rm).

Case. p = 0 and ∀i ≤ m (ri �k t). By definition of ≺pop we have ∀i ≤ m ∃j ≤
n (ri 5k tj). Then Gk(w) ≤ Gk(a) = n. Hence

Gk(w) ≤ kn < cn2 ,

where we set c := k.

Case. p = 0, ∀i 	= i0 (ri �k t), and ri0 ≺k t. By definition of ≺pop we have ∀i ≤
m ∃j ≤ n (ri 5k tj) and ri0 = f(s0, . . . , sl), rk(f) = 0, with (s0, . . . , sl) ≺k a.
Hence by induction hypothesis (IH) on a, there exists a constant c, such that
Gk(ri0) ≤ c(n− 1)2 a.e. Employing Lemma 5.1 we obtain:

Gk(w) = Gk((r0, . . . , rm)) =
m∑
i=0

Gk(ri) ≤ c(n− 1)2 + (k − 1)n < cn2 ,

as we can assume c > k.

Case. p > 0 and ∀i ≤ m (ri �k t). Let i be arbitrary. We can assume ri =
g(s0, . . . , sl), g ≺ f , and ∀i ≤ l (si �k−1

k t). Otherwise, if ri = g(s0, . . . , sl) with
g � f s.t. there ∃j ≤ n (ri � tj) we proceed as in the first case. By IH there
exists c and d = dk,p s.t. Fk,p(n) ≤ cnd a.e.

We show the existence of a constant c′ s.t. Fk,p+1(n) ≤ c′nd
′
, where d′ =

dk,p+1. We define f(a) := cad and g(0)(a) := a, g(l+1)(a) = f(g(l)(a) · k); we
obtain:

s �l
k t =⇒ Gk(s) ≤ g(l)(n) a.e. (()

To see (() we show by induction on l, that s �l
k t implies Gk(s) ≤ g(l)(n),

where g(l)(n) = c0a
d(l)

with c0 = c
∑ l−1

i=0 d
i

k
∑ l

i=1 d
i

. Suppose l > 0, then we obtain
by IH on the claim and Fk,p(n) ≤ cnd we obtain:

Gk(s) ≤ c[(c0nd
l

) · k]d = c1n
dl+1

a.e. ,

where c1 = c
∑ l

i=0 d
i

k
∑ l+1

i=1 d
i

. This accomplishes the claim.
Now the upper-bound for Gk(w) follows:

Gk(w) ≤ kg(k)(n) < c′nd
′
a.e. ,

where c′ = c
∑k−1

i=0 d
i

k
∑k

i=0 d
i

and d′ = dk+1 + 1 = dk,p+1.

Proofs of Termination of Rewrite Systems for Polytime Functions 537

Case. p > 0, ∀i 	= i0 (ri �k t), and ri0 ≺k t. By definition ∀i ≤ m ∃j ≤ n (ri 5k
tj), and ri0 = f(s0, . . . , sl) so that (s0, . . . , sl) ≺k a. Let c, c′, d′ be defined as
above. By IH on σ we obtain Gk(ri0) ≤ c′(n− 1)d

′
and thus

Gk(w) ≤ c′(n− 1)d
′
+ (k − 1) · c · ndk

< c′nd
′
.

&'

Recall the definition of the derivation length function:

DlfR(m) = max{l | ∃ t0, . . . , tn ∈ T (Σ) (tn ←R . . .←R t0 = f(m))}

We have established the following theorem.

Theorem 1. If for a finite TRS R defined over T (Σ,V), R ⊆≺pop then for
each f ∈ Σ, DlfR is bounded by a monotone polynomial in the sum of the binary
length of the inputs.

Proof. Let R be a finite TRS defined over T (Σ,V), such that for every rule
(l → r) ∈ R, r ≺pop l holds. This implies that for any two terms t, s, t →R s
implies s ≺pop t. Hence by Lemma 4 there exists k ∈ N, s.t. ←R⊆≺k. Suppose f
is an n-ary function symbol and set t := f(m1, . . . ,mn). By definition it follows
that

DlfR(m1, . . . ,mn) ≤ Gk(f(m1, . . . ,mn)) .

By Lemma 6 there exists a polynomial p, depending only on k and the rank of
f , s.t.

Gk(f(m1, . . . ,mn)) ≤ p(Gk((m1, . . . ,mn)) .

Employing with Lemma 5, we obtain DlfR(m1, . . . ,mn) ≤ p(
∑n

i=1|mi|). &'

4 Predicative Recursion and POP

In the previous section we have shown that if for a finite TRS R, defined over
T ∗(Σ,V), R ⊆≺pop, then the derivation length function DlfR is bounded by
a monotone polynomial in the binary length of the inputs. As an application
of Theorem 1, we prove in this section that DlfR′

B
is bounded by a monotone

polynomial in the binary length of the normal inputs. I.e. we give an alternative
proof of Prop. 1. As R′B exactly characterises the functions in FP this yields
that ≺pop—via the mapping S defined below—exactly characterises the class of
polytime computable functions FP.

It suffices to define a mapping S: T (B)→ T ∗(Σ), such that S is a monotone
interpretation such that S(lσ) �pop S(rσ) holds for all (l → r) ∈ R′B. We
suppose the signature Σ is defined such that for any function symbol f ∈ Bk,l

there is a function symbol f ′ ∈ Σ of arity k. Moreover, Σ includes two constants
S0, S1 and a varyadic function symbol • of lowest rank. We need a few auxiliary
notions: sn(n) := n for numerals n; sn(f(t; s)) =

∑
j(sn(sj)), otherwise. For

538 Toshiyasu Arai and Georg Moser

every number m we define its representation m̂ ∈ T (Σ,V) as follows: 0̂ :=
•; Ŝi(m) := •(Si) ∗ m̂ for i ∈ [0, 1], where •(s0, . . . , si) ∗ •(si+1, . . . , sn) :=
•(s0, . . . , sn). We define S: T (B) → T ∗(Σ) by mutual induction together with
the interpretation N: T (B)→ T ∗(Σ).

Definition 7.

– S(n) := () and S(Si(; t)) := (Si)�S(t) for t 	≡ n (i.e. t is not a numeral).
– For f 	= Si, define S(f(t; s)) := (f(N(t0), . . . ,N(tn)), S(s0), . . . ,S(sm)).

– N(t) := •S(t) ∗ ŝn(t).

First we show that for Q ∈ {S,N}, Q(lσ) �pop Q(rσ). More precisely we
show the following lemma.

Lemma 7. Let (l → r) ∈ R′B , σ a ground substitution, such that lσ, rσ ∈ T (B).
Then there exists k, depending on the rule (l → r), such that Q(rσ) ≺k Q(lσ).

Proof. Let (l → r) and σ as in the assumptions of the lemma. We sketch the
proof by considering the rule:

PRECp+1,q[g, h1, h2](Si(; t), t;n)→ hi(t, t;n,PREC[g, h1, h2](t, t;n)) .

We abbreviate F := PRECp+1,q[g, h1, h2] and set k := 1 + max{3, p + 1, q +
1}. Let lh(f), f ∈ B be defined as follows: lh(f) := 1, for f ∈ {Si, O, U, P}.
lh(SUB[f,g,h]) := 1 + lh(f) + lh(g1) + · · · + lh(gk′) + lh(h1) + · · · + lh(hl′).
lh(PREC[g, h1, h2]) := 1+lh(g)+lh(h1)+lh(h2). Then we define the precedence
< over Σ compatible with lh, i.e. f ′ < g′ if lh(f) < lh(g). For Q = S, we employ
the following sequence of comparisons:

S(F (Si(; t), t;n))
= (F ′(N(Si(; t)),N(t1), . . . ,N(tp)), S(n1), . . . ,S(nq))
= F ′(N(Si(; t)),N(t1), . . . ,N(tp))
= F ′(•(Si) ∗N(t)),N(t1), . . . ,N(tp)) .

By definition S(ni) = () and for each t ∈ T (Σ,V), t = (t). Moreover it is a direct
consequence of the definitions that N(Si(; t)) = •(Si) ∗N(t). Further:

F ′(•(Si) ∗N(t),N(t1), . . . ,N(tp))
�k (h′i(N(t),N(t1), . . . ,N(tp)), F ′(N(t),N(t1), . . . ,N(tp))) ,

By Definition 6.4 we obtain •(Si)∗N(t) �k N(t). This yields by rules 6.4 and 6.5
using k > p+ 1: F ′(•(Si) ∗N(t),N(t1), . . . ,N(tp)) �k F ′(N(t),N(t1), . . . ,N(tp)).
Finally applying Definition 6.3 together with rule 6.2 and 5.2 yields the inequal-
ity. In these rule applications we employ k > q + 1 and F ′ > h′i.

(h′i(N(t),N(t1), . . . ,N(tp)), F ′(N(t),N(t1), . . . ,N(tp)))
= (h′i(N(t),N(t1), . . . ,N(tp))), S(n1), . . . ,S(nl), F ′(N(t),N(t1), . . . ,N(tp)))
= S(hi(t, t;n, F (t, t;n))) .

Proofs of Termination of Rewrite Systems for Polytime Functions 539

Finally, it is easy to see that N(F (Si(; t), t;n)) �k N(hi(t, t;n, F (t, t;n)).
We established the lemma for the rule F (Si(; t), t;n) → hi(t, t;n, F (t, t;n)).
The other rules follow similar.

Note that the definition of k in all cases depends on the arity-information
encoded in the head function symbol on the left-hand side. Moreover at most 3
iterated applications of �k are necessary. &'

The next lemma establish monotonicity for the interpretations S,N.

Lemma 8. For k ∈ N and for u, v ∈ T (Σ), Q(u) ≺k Q(v) for Q ∈ {S,N}.
Suppose f ∈ Bp,q and t, s ∈ T (Σ). Then

– Q(f(t1, . . . , u, . . . , tp; s) ≺k Q(f(t1, . . . , v, . . . , tp; s) for Q ∈ {S,N}, and
– Q(f(t; s1, . . . , u, . . . , sq) ≺k Q(f(t; s1, . . . , v, . . . , sq)) for Q ∈ {S,N}.

We define the derivation length function DlfR′
B

over the ground term-set
T (Σ):

DlfR′
B
(m;n) := max{n | ∃ t0, . . . , tn ∈ T (B)

(
tn ←R′

B
. . .←R′

B
t0 = f(m;n)

)
} .

Recall the definition of the derivation tree TR′
B
. Note that for each t ∈ T (B,V),

TR′
B
(t) is finite. This follows from the fact that R′B is terminating and TR′

B
(t)

is finitely branching. The latter is shown by well-founded induction on →R′
B
.

Let f ∈ B be a fixed predicative recursive function symbol. As the deriva-
tion tree TR′

B
(f(m;n)) is finite only finitely many function symbols occur in

TR′
B
(f(m;n)). This allows to define a finite subset F ⊂ B, such that all terms

occurring in TR′
B
(f(m;n)) belong to T (F). We define

k := 1 + max({3} ∪ {p, q + 1|fp,q ∈ B occurs in TR′
B
(f(m;n))}) .

Let R′ denote the restriction of R′B to T (F). Then, we have DlfR′
B
(m;n) =

DlfR′(m;n). From these observations together with Lemma 7 and 8 we conclude

Lemma 9. Let s, t ∈ T (F) such that t→R s. Then S(s) ≺k S(t).

In summary we obtain, by following the pattern of the proof of Thm. 1:

Theorem 2. For every f ∈ B, DlfR′
B
(m1, . . . ,mp;n1, . . . , nq) is bounded by a

monotone polynomial in the sum of the length of the normal inputs m1, . . . ,mp.

5 Conclusion

The main contribution of this paper is the definition of a path order for FP,
denoted as ≺pop. This path order has the property that for a finite TRS R com-
patible with ≺pop, the derivation length function DlfR is bounded by a polynomial
in the length of the inputs for any defined function symbol f in the signature
of R. Moreover ≺pop is complete in the sense that for a function f ∈ FP, there

540 Toshiyasu Arai and Georg Moser

exists a TRS R computing f such that such that termination of R follows by
≺pop. Another feature of ≺pop is, that its definition is devoid of the separation of
normal and safe arguments, present in the definition of the predicative recursive
functions and therefore in the definition of the term-rewriting characterisation
R′B.

We briefly relate our findings to the notion of the light multiset path order,
denoted as ≺lmpo, introduced by Marion in [11]. It is possible to define a vari-
ant of ≺pop—denoted as ≺popv—such that Theorem 1 remains true for ≺popv

when suitably reformulated. While Definition 3 and 4 are based on an arbitrary
signature, the definition of ≺popv assumes that normal and safe arguments are
separated as in Section 2. It is easy to see that ≺popv⊂≺lmpo and this inclusion is
strict as ≺lmpo proves termination of the non-feasible rewrite system RB , while
≺popv clearly does not. On the other hand let R be a functional program (i.e.
a constructor TRS) computing a number-theoretic function f . A termination
proof of R via ≺lmpo guarantees the existence of a polytime algorithm for f .
However, a termination proof of R via or the introduced path order ≺popv (or
≺pop) guarantees that R itself is already a polytime algorithm for f . It seems
clear to us that the latter property is of more practical value.

Acknowledgments. We would like to thank Arnold Beckmann who uncov-
ered an embarrassing error in an earlier version of this paper.

References

1. Beckmann, A., Weiermann, A.: A term rewriting characterization of the polytime
functions and related complexity classes. Archive for Mathematical Logic 36 (1996)
11–30

2. Cichon, E.A., Weiermann, A.: Term rewriting theory for the primitive recursive
functions. Annals of Pure and Applied Logic 83 (1997) 199–223

3. Oitavem, I.: A term rewriting characterization of the functions computable in
polynomal space. Archive for Mathematical Logic 41 (2002) 35–47

4. Bonfante, G., Marion, J.Y., Moyen, J.Y.: Quasi-intepretations and small space
bounds. In: Proceedings of RTA’2005. (2005) 150–164

5. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge Univeristy
Press (1998)

6. Cobham, A.: The intrinsic computational difficulty of functions. In Bar-Hillel,
Y., ed.: Logic, Methodology and Philosophy of Science, proceedings of the second
International Congress, Jerusalem, 1964, North-Holland (1965)

7. Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the polytime
functions. Comput. Complexity 2 (1992) 97–110

8. Arai, T., Moser, G.: A note on a term rewriting characterization of PTIME. In:
Proc. of WST’2004. (2004) 10–13 Extended Abstract.

9. Buchholz, W.: Proof-theoretical analysis of termination proofs. Annals of Pure
and Applied Logic 75 (1995) 57–65

10. Hofbauer, D.: Termination proofs by multiset path orderings imply primitive re-
cursive derivation lengths. TCS 105 (1992) 129–140

11. Marion, J.: Analysing the implicit complexity of programs. Information and Com-
putation 183 (2003) 2–18

On the Controller Synthesis for Finite-State

Markov Decision Processes

Antońın Kučera� and Oldřich Stražovský��

Faculty of Informatics, Masaryk University,
Botanická 68a, 60200 Brno, Czech Republic
{kucera,strazovsky}@fi.muni.cz

Abstract. We study the problem of effective controller synthesis for
finite-state Markov decision processes (MDPs) and the class of properties
definable in the logic PCTL extended with long-run average propositions.
We show that the existence of such a controller is decidable, and we give
an algorithm which computes the controller if it exists. We also address
the issue of “controller robustness”, i.e., the problem whether there is
a controller which still guarantees the satisfaction of a given property
when the probabilities in the considered MDP slightly deviate from their
original values. From a practical point of view, this is an important aspect
since the probabilities are often determined empirically and hence they
are inherently imprecise. We show that the existence of robust controllers
is also decidable, and that such controllers are effectively computable if
they exist.

1 Introduction

The controller synthesis problem is one of the fundamental research topics in
the area of system design. Loosely speaking, the task is to modify or limit some
parts of a given system so that a given property is satisfied. The controller syn-
thesis problem is well understood for discrete systems [11], and the scope of this
study has recently been extended also to timed systems [2,5] and probabilistic
systems [1].

In this paper, we concentrate on a class of probabilistic systems that can be
modelled by finite-state Markov decision processes. Intuitively, Markov decision
processes (MDPs) are finite-state systems where each state has several outgoing
transitions leading to probability distributions over states. Thus, Markov deci-
sion processes combine the paradigms of non-deterministic/probabilistic choice,
and this combination turns out to be very useful in system modelling. Quanti-
tative properties of MDPs can be defined only after resolving nondeterminism
by assigning probabilities to the individual transitions. Similarly as in [1], we
distinguish among four natural types of strategies for resolving nondeterminism,
depending on whether
� Supported by the research center Institute for Theoretical Computer Science (ITI),

project No. 1M0021620808.
�� Supported by the Czech Science Foundation, grant No. 201/03/1161.

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 541–552, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

542 Antońın Kučera and Oldřich Stražovský

– the transition is chosen deterministically (D) or randomly (R);
– the choice does or does not depend on the sequence of previously visited

states (Markovian (M) and history-dependent (H) strategies, respectively).

Thus, one obtains the four basic classes of MD, HD, MR, and HR strategies.
In addition, we assume that the states of a given MDP are split into two dis-
joint subsets of controllable and environmental states, depending on whether the
nondeterminism is resolved by a controller or by the environment, respectively.
Hence, in our setting the controller synthesis problem is specified by choosing
the type of strategy for controller and environment, and the class of properties
that are to be achieved. The task is to find, for a given MDP and a given prop-
erty, a controller strategy such that the property is satisfied for every strategy
of the environment. In [1], it was shown that this problem is NP-complete for
MD strategies and PCTL properties, and elementary for HD strategies and LTL
properties.

For linear-time properties, the problem of finding a suitable controller strat-
egy can also be formulated in the terms of stochastic games on graphs [12].
Controller and environment act as two players who resolve the non-deterministic
choice in controllable and environmental states, resp., and thus produce a “play”.
The winning conditions are defined as certain properties of the produced play.
In many cases, it turns out that the optimal strategies for both players are mem-
oryless (i.e., Markovian in our terms). However, in the case of branching-time
properties that are considered in this paper, optimal strategies are not necessar-
ily memoryless and the four types of strategies mentioned above form a strict
hierarchy [1].

Our contribution: In this paper we consider the controller synthesis prob-
lem for MR strategies and the class of properties definable in the logic PCTL
extended with long-run average propositions defined in the style of [4]. The re-
sulting logic is denoted PCTL+LAP. The long-run average propositions allow
to specify long-run average properties such as the average service time, the av-
erage frequency of visits to a distinguished subset of states, etc. In the logic
PCTL+LAP, one can express properties such as:

– the probability that the average service time for a request does not exceed
20 seconds is at least 98%;

– the system terminates with probability at least 80%, and at least 98% of
runs have the property that the percentage of time spent in “dangerous”
states does not exceed 3%.

A practical relevance of PCTL+LAP properties is obvious.
The controller synthesis problem for PCTL+LAP properties and MD strate-

gies is trivially reducible to the satisfaction problem for finite-state Markov
chains and PCTL+LAP properties. This is because there are only finitely many
MD strategies for a given MDP, and hence one can try out all possibilities. For
MR strategies, a more sophisticated approach is required because the total num-
ber of MR strategies is infinite (and in fact not countable). This is overcome by
encoding the existence of a MR-controller in (R,+, ∗,≤), the first-order theory

On the Controller Synthesis for Finite-State Markov Decision Processes 543

of reals, which is known to be decidable [10]. The encoding is not simple and
includes several subtle tricks. Nevertheless, the size of the resulting formula is
polynomial in the size of a given MDP and a given PCTL+LAP property, and
the number of quantifier alternations is fixed. Hence, we obtain the EXPTIME
upper complexity bound by applying the result of [6].

Another problem addressed in this paper is controller robustness [8]. Since
the probabilities of events that are modelled in MDPs are often evaluated em-
pirically, they are inherently imprecise. Hence, it is important to know whether
the constructed controller still works if the probabilities in the considered MDP
slightly deviate from their original values. We say that a controller is ε-robust
if the property in question is still satisfied when probability distributions in the
considered MDP change at most by ε in each component (here we do not allow
for changing the probabilities from zero to non-zero (and vice versa), because
this corresponds to changing from “impossible” to “possible”). Similarly, we can
also wonder whether the constructed controller is “fragile” in the sense that it
stops working if the computed strategy changes a little bit. We say that a con-
troller is δ-free if every other controller obtained by changing the strategy by at
most δ is again a correct controller. We show that the problem whether there
is an ε-robust and δ-free controller for given MDP, PCTL+LAP property, and
ε, δ ≥ 0, is in EXPTIME. Moreover, we also give an algorithm which effectively
estimates the maximal achievable level of controller robustness for given MDP
and PCTL+LAP property (i.e., we show how to compute the maximal ε, up to
a given precision, such that there is an ε-robust controller for given MDP and
PCTL+LAP property). Finally, we show how to construct an ε-robust controller
for a given MDP and PCTL+LAP property, provided that an ε-robust and δ-free
controller exists and δ > 0.

2 Basic Definitions

We start by recalling basic notions of probability theory. A σ-field over a set X
is a set F ⊆ 2X that includes X and is closed under complement and countable
union. A measurable space is a pair (X,F) where X is a set called sample space
and F is a σ-field over X . A measurable space (X,F) is called discrete if F = 2X .
A probability measure over measurable space (X,F) is a function P : F → R≥0

such that, for each countable collection {Xi}i∈I of pairwise disjoint elements of
F , P(

⋃
i∈I Xi) =

∑
i∈I P(Xi), and moreover P(X) = 1. A probabilistic space

is a triple (X,F ,P) where (X,F) is a measurable space and P is a probability
measure over (X,F). A probability measure over a discrete measurable space is
called a discrete measure. We also refer to discrete measures as distributions. The
set of all discrete measures over a measurable space (X, 2X) is denoted Disc(X).

Markov Decision Processes. A Markov decision process (MDP)M is a triple
(S,Act , P) where S is a finite or countably infinite set of states, Act is a finite
set of actions, and P : S×Act×S → [0, 1] is a (total) probabilistic function such
that for every s ∈ S and every a ∈ Act we have that

∑
t∈S P (s, a, t) ∈ {0, 1}. We

544 Antońın Kučera and Oldřich Stražovský

say that a ∈ Act is enabled in s ∈ S if
∑

t∈S P (s, a, t) = 1. The set of all actions
that are enabled in a given s ∈ S is denoted Act(s). For technical convenience,
we assume that each state s ∈ S has at least one enabled action. We say that
M is finite if S is finite. A path in M is a nonempty finite or infinite alternating
sequence of states and actions π = s1a1s2a2 . . . an−1sn or π = s1a1s2a2 . . . such
that P (si, ai, si+1) > 0 for all 1 ≤ i < n or i ∈ N, resp. The length (i.e., the
number of actions) of a given π is denoted |π|, where |π| = ∞ if π is infinite. For
every 1 ≤ i ≤ |π|+1, the symbol π(i) denotes the i-th state of π (which is si). A
run is an infinite path. The sets of all finite paths and all runs ofM are denoted
FPath and Run, respectively. Sometimes we write FPathM and RunM if M is
not clear from the context. Similarly, the sets of all finite paths and runs that
start in a given s ∈ S are denoted FPath(s) and Run(s), respectively. For finite
paths, last(π) = π(|π|+1) denotes the last state of π.

For the rest of this section, we fix a MDP M = (S,Act , P).

Strategies, Adversaries, and Policies for MDPs. Let S0 ⊆ S be nonempty
subset of controllable states. The states of S \S0 are environmental. A strategy is
a function D that resolves nondeterminism for the controllable states ofM. Sim-
ilarly as in [1], we distinguish among four basic types of strategies for (M, S0),
according to whether they are deterministic (D) or randomized (R), and Marko-
vian (M) or history-dependent (H).

– A MD-strategy is a function D : S0 → Act such that D(s) ∈ Act(s) for all
states s ∈ S0.

– A MR-strategy is a function D : S0 → Disc(Act) such that D(s) ∈
Disc(Act(s)) for all states s ∈ S0.

– A HD-strategy is a function D : FPath → Act such that D(π) ∈ Act(last(π))
for all finite paths π ∈ FPath where last(π) ∈ S0, otherwise D(π) = ⊥.

– A HR-strategy is a function D : FPath → Disc(Act) such that D(π) ∈
Disc(Act(last(π))) for all finite paths π ∈ FPath where last(π) ∈ S0, other-
wise D(π) = ⊥.

MD, MR, HD, and HR adversaries are defined in the same way as strategies
of the corresponding type; the only difference is that adversaries range over
environmental states. A policy is a pair H = (D,E) where D is a strategy and
E an adversary. Slightly abusing notation, we write H(s) to denote either D(s)
or E(s), depending on whether s ∈ S0 or not, respectively.

Markov Chains Induced by Policies. A Markov chain is a MDP with only
one action, i.e., without nondeterminism. Formally, a Markov chainMC is a pair
(S, P) where (S, {a}, P) is a MDP. The (only) action a can safely be omitted,
and so the probabilistic function is restricted to the set S × S, and a path in
MC is a (finite or infinite) sequence of states s1s2s3

Each π ∈ FPathMC determines a basic cylinder Run(π) which consists of
all runs that start with π. To every s ∈ S we associate the probabilistic space

On the Controller Synthesis for Finite-State Markov Decision Processes 545

(Run(s),F ,P) where F is the σ-field generated by all basic cylinders Run(π)
where π starts with s (i.e., π(1) = s), and P : F → [0, 1] is the unique proba-
bility measure such that P(Run(π)) = Π

|π|
i=1P (π(i), π(i + 1)) (if |π| = 0, we put

P(Run(π)) = 1).
Let M = (S,Act , P) be a MDP. Each policy H for M induces a Markov

chain MCH = (SH , PH) in the following way:

– If H is a Markovian (MD or MR) policy, then SH = S.
– If H is a history-dependent (HD or HR) policy, then SH = FPathM.

The function PH is determined as follows:

– If H is a MD-policy, then PH(si, sj) = P (si, H(si), sj).
– If H is a MR-policy, then PH(si, sj) = Σa∈Act(si)μ(a).P (si, a, sj) where

μ = H(si).
– If H is a HD-policy, then PH(π, π′) = P (last(π), H(π), s) if π′ = π.H(π).s,

and PH(π, π′) = 0 otherwise.
– If H is a HR-policy, then PH(π, π′) = μ(a).P (last(π), a, s) where μ = H(π),

if π′ = π.a.s, and PH(π, π′) = 0 otherwise.

The Logics PCTL and PCTL+LAP. Let Ap = {p, q, . . . } be a countably
infinite set of atomic propositions. The syntax of PCTL state and path formulae
is given by the following abstract syntax equations:

Φ ::= tt | p | ¬Φ | Φ1 ∧ Φ2 | P∼#ϕ ϕ ::= XΦ | Φ1 U Φ2

Here p ranges over Ap, ∈ [0, 1], and ∼ ∈ {≤, <,≥, >}.
Let MC = (S, P) be a Markov chain, and let ν : Ap → 2S be a valuation.

The semantics of PCTL is defined below. State formulae are interpreted over S,
and path formulae are interpreted over Run.

s |=ν tt
s |=ν p iff s ∈ ν(p)
s |=ν ¬Φ iff s 	|=ν Φ
s |=ν Φ1 ∧ Φ2 iff s |=ν Φ1 and s |=ν Φ2

s |=ν P∼#ϕ iff P({π∈Run(s) | π |=ν ϕ}) ∼

π |=ν XΦ iff π(2) |=ν Φ
π |=ν Φ1 U Φ2 iff ∃j≥1 : π(j) |=ν Φ2 and π(i) |=ν Φ1 for all 1≤i<j

The logic PCTL+LAP is obtained by extending PCTL with long-run average
propositions (in the style of [4]). Intuitively, we aim at modelling systems which
repeatedly service certain requests, and we are interested in measuring the av-
erage costs of servicing a request along an infinite run. The states where the
individual services start are identified by (the validity of) a dedicated atomic
proposition, and each service corresponds to a finite path between two consecu-
tive occurrences of marked states.

546 Antońın Kučera and Oldřich Stražovský

Definition 1. A long-run average proposition is a pair [p, f] where p is an
atomic proposition and f : S → R≥0 a reward function that assigns to each
s ∈ S a reward f(s).

The reward assigned to a given s ∈ S corresponds to some costs which are “paid”
when s is visited. For example, f(s) can be the expected average time spent in s,
the amount of allocated memory, or simply a binary indicator specifying whether
s is “good” or “bad”. The proposition p is valid in exactly those states where
a new service starts. Note that in this setup, a new service starts immediately
after finishing the previous service. This is not a real restriction, because the
states which precede/follow the actual service can be assigned zero reward.

The syntax of PCTL+LAP formulae is obtained by modifying the syntax of
PCTL path formulae as follows:

ϕ ::= XΦ | Φ1 U Φ2 | ξ ξ ::= [p, f]∼b | ¬ξ | ξ1 ∧ ξ2

Here [p, f] ranges over long-run average propositions, b ∈ R≥0, and ∼ ∈
{≤, <,≥, >}.

Let MC = (S, P) be a Markov chain, [p, f] a long-run average proposition,
and ν : Ap → 2S a valuation. Let π ∈ Run be a run along which p holds
infinitely often, and let π(i1), π(i2), . . . be the sequence of all states in π where
p holds. Let π[j] denote the subword π(ij−1 + 1), · · · , π(ij) of π, where i0 = 0.
Hence, π[j] is the subword of π consisting of all states in between the j−1th state
satisfying p (not included) and the jth state satisfying p (included). Intuitively,
π[j] corresponds to the jth service. Slightly abusing notation, we use f(π[j]) to
denote the total reward accumulated in π[j], i.e., f(π[j]) =

∑ij
k=ij−1+1 f(π(k)).

Now we define the average reward per service in π (with respect to [p, f]) as
follows:

A[p, f](π) =

{
limn→∞

∑n
j=1 f(π[j])

n if the limit exists;

⊥ otherwise.

If π ∈ Run contains only finitely many states satisfying p, we put A[p, f](π) = ⊥.
Now we define

π |=ν [p, f]∼b iff A[p, f](π) 	= ⊥ and A[p, f](π) ∼ b

The semantics of negation and conjunction of long-run average propositions is
defined in the expected way.

3 Controller Synthesis

In this section we examine the controller synthesis problem for finite MDPs,
PCTL+LAP properties, and MR policies.

Since the probabilities used in MDPs are often evaluated empirically (and
hence inherently imprecise), it is important to analyze the extent to which a

On the Controller Synthesis for Finite-State Markov Decision Processes 547

given result about a given MDP is “robust” in the sense that its validity is
not influenced by small probability fluctuations. This is formalized in our next
definitions:

Definition 2. Let M = (S,Act , P) be a MDP, and let ε ∈ [0, 1]. We say that a
MDPM′ = (S,Act , P ′) is an ε-perturbation ofM if for all (s, a, t) ∈ S×Act×S
the following two conditions are satisfied:

– P (s, a, t) = 0 iff P ′(s, a, t) = 0,
– |P (s, a, t)− P ′(s, a, t)| ≤ ε.

Note that Definition 2 also applies to Markov chains.

Definition 3. Let M = (S,Act , P) be a MDP, ε ∈ [0, 1], si ∈ S, and Prop
some property of si. We say that Prop is ε-robust if for every MDP M′ which
is an ε-perturbation of M we have that if si |= Prop in M, then si |= Prop
in M′.

Examples of 1-robust properties are qualitative LTL and qualitative PCTL prop-
erties of states in finite Markov chains, whose (in)validity depends just on the
“topology” of a given chain [3]. On the other hand, the property of “being bisimi-
lar to a given state” (here we consider a probabilistic variant of bisimilarity [9]) is
generally 0-robust, because even a very small change in probability distribution
can spoil the bisimilarity relation.

In a similar fashion we also define a δ-perturbation of a randomized strategy.

Definition 4. Let M = (S,Act , P) be a MDP, S0 ⊆ S a nonempty set of
controllable states, D a randomized (i.e., MR or HR) strategy, and δ ∈ [0, 1].
We say that a strategy D′ is a δ-perturbation of D if D′ is of the same type as
D and for all a ∈ Act:

– MR case: for all s ∈ S0: |D(s)(a) − D′(s)(a)| ≤ δ and D(s)(a) = 0 ⇔
D′(s)(a) = 0

– HR case: for all π ∈ FPath where last(π) ∈ S0: |D(π)(a)−D′(π)(a)| ≤ δ
and D(π)(a) = 0 ⇔ D′(π)(a) = 0

Let M = (S,Act , P) be a MDP, S0 ⊆ S a nonempty set of controllable
states, si ∈ S, and Prop some property of si. Let T ∈ {MD,MR,HD,HR}. A
T -controller forM and Prop is a T -strategy D such that si |= Prop in MC(D,E)

for every T -environment E. We say that the controller D is

– ε-robust for a given ε ∈ [0, 1] if the property “D is a controller for M and
Prop” is ε-robust. In other words, D is a valid controller for Prop even if the
probabilities in M are slightly (i.e., at most by ε) changed.

– ε-robust and δ-free for given ε, δ ∈ [0, 1] if every D′ which is a δ-perturbation
of D is an ε-robust controller for M and Prop.

548 Antońın Kučera and Oldřich Stražovský

In the rest of this section we consider the problem of MR-controller synthesis
for a given MDP M = (S,Act , P), a set of controllable states S0 ⊆ S, a state
si ∈ S, a PCTL+LAP formula ϕ, and a valuation ν. For notation simplification,
we do not list these elements in our theorems explicitly, although they are always
a part of a problem instance.

Theorem 5. Let ε, δ ∈ [0, 1]. The problem whether there is an ε-robust and
δ-free MR-controller is in EXPTIME.

Proof. We construct a closed formula of (R, ∗,+,≤) which is valid iff an ε-robust
and δ-free MR-controller exists. The formula has the following structure:

∃D ∀D′ (D′ δ-pert. of D)⇒ (∀E ∀P ′ (P ′ ε-pert. of P)⇒ (∃Y (Y si
ϕ =1)))

Intuitively, the formula says “there is an MR-strategy D such that for every
strategy D′, which is a δ-perturbation of D, every environment E, and every
chain (an ε-perturbation of M) with probabilities P ′, there is a consistent va-
lidity assumption Y (which declares each subformula of ϕ to be either true or
false in every state of S) such that Y sets the formula ϕ to true in the state si”.
Now we describe these parts in greater detail.

Let Xs
a, X

′s
a be fresh first-order variables for all s ∈ S0 and a ∈ Act(s). These

variables are used to encode the strategies D,D′. Intuitively, Xs
a and X ′s

a carry
the probability of choosing the action a in the state s in D and D′, respectively.
The

∃D ∀D′ (D′ δ-pert. of D)

part can then be implemented as follows:

∃{Xs
a | s ∈ S0, a ∈ Act(s)} :

∧
Xs

a

(0 ≤ Xs
a ≤ 1) ∧

∧
s∈S0

(
∑

a∈Act(s)

Xs
a = 1) ∧

∀{X ′s
a | s ∈ S0, a ∈ Act(s)} :

(∧
X′s

a

(0 ≤ X ′s
a ≤ 1) ∧

∧
s∈S0

(
∑

a∈Act(s)

X ′s
a = 1)∧∧

Xs
a

((Xs
a = 0⇔ X ′s

a = 0) ∧ (|Xs
a −X ′s

a | ≤ δ))

Similarly,

– for all s ∈ S \ S0 and a ∈ Act(s) we fix fresh first-order variables X ′s
a that

encode the environment E (from a certain point on, we do not need to
distinguish between the probabilities chosen by D′ and E);

– for all s, t ∈ S and a ∈ Act(s) we fix a fresh variable P s,t
a that encodes the

corresponding probability of P ′;
– for every φ ∈ cl(ϕ) (here cl(ϕ) is the set of all subformulas of ϕ) and every

s ∈ S we fix a variable Y s
φ that carries either 1 or 0, depending on whether

s satisfies φ or not, respectively. As we shall see, the value of Y s
φ is first

“guessed” and then “verified”.

The ∀E ∀P ′ (P ′ ε-pert. of P) ⇒ (∃Y (Y si
ϕ =1)) part can now be implemented

as follows:

On the Controller Synthesis for Finite-State Markov Decision Processes 549

∀{X ′s
a | s ∈ S \ S0, a ∈ Act(s)} :

∧
X′s

a

(0 ≤ X ′s
a ≤ 1) ∧

∧
s∈S\S0

(
∑

a∈Act(s)

X ′s
a = 1) ⇒

∀{P s,t
a | s, t ∈ S, a ∈ Act(s)} :∧
P s,t

a

((P (s, a, t) = 0 ⇔ P s,t
a = 0) ∧ (|P (s, a, t)− P s,t

a | ≤ ε))⇒

∃{Y s
φ | φ ∈ cl(ϕ), s ∈ S} :∧
Y s

φ

((Y s
φ = 0 ∨ Y s

φ = 1) ∧ (Y s
φ = 1 ⇔ ψsφ)) ∧ (Y si

ϕ = 1)

The tricky part of the construction is the formula ψsφ, which is defined inductively
on the structure of φ. Intuitively, ψsφ says that s satisfies φ, where we assume
that this has already been achieved for all subformulae of φ (hence, by justifying
all steps in our inductive definition we also yield a correctness proof for our
construction):

– φ ≡ p. If s ∈ ν(p), then ψsφ ≡ tt, otherwise ψsφ ≡ ff.
– φ ≡ ¬φ′. Then ψsφ ≡ (Y s

φ′ = 0).
– φ ≡ φ1 ∧ φ2. Then ψsφ ≡ (Y s

φ1
= 1) ∧ (Y s

φ2
= 1).

– φ ≡ P∼#Xφ′. Then ψsφ ≡
(∑

a∈Act(s),t∈SX
′s
a · P s,t

a · Y t
φ′

)
∼ .

The case when φ ≡ P∼#φ1 U φ2 is slightly more complicated. The probabilities
{Zr | r ∈ S}, where Zr is the probability that a run initiated in r satisfies the
path formula φ1 U φ2, form the least solution (in the interval [0, 1]) of a system
of recursive linear equations constructed as follows (where Zr should be seen as
“unknowns”; cf. [7,3]):

– if Y r
φ2

= 1, we put Zr = 1;
– if Y r

φ1
= 0 and Y r

φ2
= 0, we put Zr = 0;

– if Y r
φ1

= 1 and Y r
φ2

= 0, we put Zr =
(∑

a∈Act(s),t∈S X
′r
a · P r,t

a · Zt
)
.

So, the formula ψsφ for the case when φ ≡ P∼#φ1 U φ2 looks as follows:

∃{Zr | r ∈ S} :
∧
r∈S

(0 ≤ Zr ≤ 1) ∧ {Zr} is a solution ∧ Zs∼ ∧(
∀{Z ′r | r ∈ S} : (

∧
r∈S

(0 ≤ Z ′r ≤ 1) ∧ {Z ′r} is solution) ⇒ (
∧
r∈S

Zr ≤ Z ′r)
)

Here “{Zr} is a solution” means that the variables {Zr} satisfy the above system
of recursive linear equations, which can be easily encoded in (R,+, ∗,≤).

Finally, we analyze the most complicated case when φ ≡ P∼#[p, f]≈b. In
order to check long-run average propositions, we need to analyze the structure
of the Markov chain induced by the current values of the X ′r

a variables and find
bottom strongly connected components (BSCC) of this chain.

We start by computing the probabilities Probtr of reaching the state t from
the state r. The set {Probtr | r, t ∈ S} forms the least solution (in the interval
[0, 1]) of the following system of recursive linear equations, where Probtr should
be interpreted as “unknowns”:

550 Antońın Kučera and Oldřich Stražovský

– if r = t, we put Probtr = 1;
– if r 	= t, we put Probtr =

∑
u∈S

(∑
a∈Act(r) X

′r
a · P r,u

a

)
· Probtu.

So, the formula which “computes” all Probtr looks as follows:

∃{Probtr | r, t ∈ S} :
∧
r,t∈S

(0 ≤ Probtr ≤ 1) ∧ {Probtr} is solution ∧(
∀{Prob ′tr | r, t ∈ S} : (

∧
r,t∈S

(0 ≤ Prob ′tr ≤ 1) ∧ {Prob′tr} is solution)⇒

(
∧
r,t∈S

Probtr ≤ Prob ′tr)
)

Now we introduce predicates SCC r,t and BSCC r, where SCC r,t means that r, t
are in the same strongly connected component, and BSCC r means that r is in
a bottom strongly connected component.

SCC r,t ::= (Probtr > 0 ∧ Probrt > 0)

BSCC r ::=
∧
t∈S

(Probtr > 0 ⇒ Probrt > 0)

The next step is to compute the (unique) invariant distribution for each BSCC .
Recall that the invariant distribution in a finite strongly connected Markov chain
is the (unique) vector Inv of numbers from [0, 1] such that the sum of all com-
ponents in Inv is equal to 1 and Inv ∗ T = Inv where T is the transition matrix
of the considered Markov chain.

For each BSCC (represented by a given t ∈ S), the following formula “com-
putes” its unique invariant distribution {Inv tr | r, t ∈ S}. More precisely, Inv tr is
either zero (if r does not belong to the BSCC represented by t), or equals the
value of the invariant distribution in r (otherwise). We also need to ensure that
the representative t is chosen uniquely, i.e., the values of all Inv t

′
r , where t′ is in

the same SCC as t, is zero:

∃{Inv tr | r, t ∈ S} :∧
r,t∈S

(
(0 ≤ Inv tr ≤ 1) ∧ ((¬BSCC r ∨ ¬BSCC t ∨ ¬SCC r,t)⇒ Inv tr = 0)

∧ ((BSCC r ∧ BSCC t ∧ SCC r,t) ⇒
Inv tr =

∑
u∈S

(Inv tu ·
∑

a∈Act(u)

X ′u
a · Pu,r

a))
)
∧∧

t∈S

(
BSCC t ⇒

(∑
r∈S

Inv tr = 1 ∧
∧

t′∈S,t′ �=t
(SCC t,t′ ⇒

∑
r∈S

Inv t
′
r = 0)

)
∨(∑

r∈S
Inv tr = 0 ∧

∨
t′∈S,t′ �=t

(SCC t,t′ ∧
∑
r∈S

Inv t
′
r = 1)

))
According to ergodic theorem, almost all runs (i.e., with probability one) end
up in some BSCC, and then “behave” according to the corresponding invariant
distribution (i.e., the “percentage of visits” to each state is given by the invariant

On the Controller Synthesis for Finite-State Markov Decision Processes 551

distribution). From this one can deduce that the average reward per service is
the same for almost all runs that hit a given BSCC. Hence, for each t ∈ S we
can “compute” a value Rew t which is equal to 1 iff

– t represents some BSCC and
– at least one state in this BSCC satisfies p (and hence p is satisfied infinitely

often in almost all runs that hit this BSCC) and
– the average reward per service associated with this BSCC is “good” with

respect to the long-run average proposition [p, f]≈b.

Note that the average reward per service can be computed as the ratio between
the average reward per state and the percentage of visits to states where the
service starts. Thus, we obtain the formula

∃{Rewt | t ∈ S} :
∧
t∈S

(Rewt = 0 ∨Rewt = 1)∧(
Rewt = 1⇔

(∑
r∈S

Inv tr · Y r
p > 0

)
∧
(∑

r∈S Inv tr · f(r)∑
r∈S Inv tr · Y r

p

≈ b

))
Finally, the formula ψsφ “checks” whether the “good” BSCCs are reachable with
a suitable probability:

ψsφ ::=
(∑
t∈S

Probts ·Rew t

)
∼

Although the whole construction is technically complicated, none of the above
considered subcases leads to an exponential blowup. Hence, we can conclude
that the size of the resulting formula is polynomial in the size of our instance.
Moreover, a closer look reveals that the quantifiers are alternated only to a fixed
depth. Hence, our theorem follows by applying the result of [6]. &'
The technique used in the proof of Theorem 5 can easily be adapted to prove
the following:

Theorem 6. For every ε ∈ [0, 1], if there is an ε-robust MR-controller which is
δ-free for some δ > 0, then an ε-robust MR-controller is effectively constructible.

Proof. First, realize that the problem whether there is an ε-robust MR-controller
which is δ-free for some δ > 0 is in EXPTIME. We use the formula constructed
in the proof of Theorem 5, where the constant δ is now treated as first-order
variable, and the whole formula is prefixed by “∃δ > 0”. If the answer is positive
(i.e., there is a controller with a non-zero freedom), one can effectively find some
δ′ for which there is an ε-robust and δ′-free controller by trying smaller and
smaller δ′. As soon as we have such a δ′, there are only finitely many candidates
for a suitable MR-strategy D. Intuitively, we divide the interval [0, 1] into finitely
many pieces of length δ′, and from each such subinterval we test only one value.
This suffices because the controller we are looking for is δ′-free. More precisely,
we successively try to set each of the variable {Xs

a} to values{
n

|Act(s)| + mδ′ where n,m ∈ Z, 0 ≤ n ≤ |Act(s)|,−
⌈

1
δ′

⌉
≤ m ≤

⌈
1
δ′

⌉}

552 Antońın Kučera and Oldřich Stražovský

so that 0 ≤ Xs
a ≤ 1 and

∑
a∈Act(s) X

s
a = 1 for each s ∈ S. For each choice we

check if it works (using the formula of Theorem 5 where the {Xs
a} variables are

replaced with their chosen values and δ is set to zero). One of these finitely many
options is guaranteed to work, and hence a controller is eventually found. &'

Similarly, we can also approximate the maximal ε for which there is an ε-robust
MR-controller (this maximal ε is denoted εm):

Theorem 7. For a given θ > 0, one can effectively compute a rational number
κ such that |κ− εm| ≤ θ.

Since our algorithm for computing an ε-robust MR-controller works only if there
is at least one such controller with a non-zero freedom, it makes sense to ask what
is the maximal ε for which there is an ε-robust MR-controller with a non-zero
freedom. Let us denote this maximal ε by ε′m.

Theorem 8. For a given θ > 0, one can effectively compute a rational number
κ such that |κ− ε′m| ≤ θ.

References

1. C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski. Controller synthesis
for probabilistic systems. In Proceedings of IFIP TCS’2004. Kluwer, 2004.

2. P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with par-
tial observability. In Proceedings of CAV 2003, vol. 2725 of LNCS, pp. 180–192.
Springer, 2003.

3. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
JACM, 42(4):857–907, 1995.

4. L. de Alfaro. How to specify and verify the long-run average behavior of proba-
bilistic systems. In Proceedings of LICS’98, pp. 454–465. IEEE, 1998.

5. L. de Alfaro, M. Faella, T. Henzinger, R. Majumdar, and M. Stoelinga. The element
of surprise in timed games. In Proceedings of CONCUR 2003, vol. 2761 of LNCS,
pp. 144–158. Springer, 2003.

6. D. Grigoriev. Complexity of deciding Tarski algebra. Journal of Symbolic Compu-
tation, 5(1–2):65–108, 1988.

7. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6:512–535, 1994.

8. A. Nilim and L. El Ghaoui. Robustness in markov decision problems with uncertain
transition matrices. In Proceedings of NIPS 2003. MIT Press, 2003.

9. R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes.
NJC, 2(2):250–273, 1995.

10. A. Tarski. A Decision Method for Elementary Algebra and Geometry. Univ. of
California Press, Berkeley, 1951.

11. W. Thomas. Infinite games and verification. In Proceedings of CAV 2003, vol.
2725 of LNCS, pp. 58–64. Springer, 2003.

12. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. TCS,
158(1&2):343–359, 1996.

Reasoning About Quantum Knowledge

Ellie D’Hondt1 and Prakash Panangaden2

1 Vrije Universiteit Brussel, Belgium
Ellie.DHondt@vub.ac.be

2 McGill University, Canada
prakash@cs.mcgill.ca

Abstract. We construct a formal framework for investigating epistemic
and temporal notions in the context of distributed quantum computa-
tion. While we rely on structures developed in [1], we stress that our
notion of quantum knowledge makes sense more generally in any agent-
based model for distributed quantum systems. Several arguments are
given to support our view that an agent’s possibility relation should not
be based on the reduced density matrix, but rather on local classical
states and local quantum operations. In this way, we are able to anal-
yse distributed primitives such as superdense coding and teleportation,
obtaining interesting conclusions as to how the knowledge of individual
agents evolves. We show explicitly that the knowledge transfer in tele-
portation is essentially classical, in that eventually, the receiving agent
knows that its state is equal to the initial state of the sender. The relevant
epistemic statements for teleportation deal with this correlation rather
than with the actual quantum state, which is unknown throughout the
protocol.

1 Introduction

The idea of developing formal models to reason about knowledge has proved to
be very useful for distributed systems [2,3,4]. Epistemic logic provides a natural
framework for expressing the knowledge of agents in a network, allowing one
to make quite complex statements about what agents know, what they know
that other agents know, and so on. Moreover, combining epistemic with tem-
poral logic, one can investigate how knowledge evolves over time in distributed
protocols, which is useful both for program analysis as well as formal verification.

The standard approach to knowledge representation in multi-agent systems
is based on the possible worlds model. The idea is that there exists a set of
worlds such that an agent may consider several of these to be possible. An agent
knows a fact if it is true in all the worlds it considers possible; this is expressed
by epistemic modal operators acting on some basic set of propositions. The
flexibility of this approach lies in the fact that there are many ways in which
one can specify possibility relations. In a distributed system, worlds correspond
to global configurations occurring in a particular protocol, and possible worlds
are determined by an equivalence relation over these configurations. Typically,

R. Ramanujam and S. Sen (Eds.): FSTTCS 2005, LNCS 3821, pp. 553–564, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

554 Ellie D’Hondt and Prakash Panangaden

global network configurations are considered equivalent by an agent if its local
state in these configurations is identical.

Quantum computation is a field of research that is rapidly acquiring a place
as a significant topic in computer science [5]. Logic-based investigations in quan-
tum computation are relatively recent and few. Recently there have been some
endeavours in describing quantum programs in terms of predicate transformers
[6,7,8]. These frameworks, however, aim at modelling traditional algorithms that
establish an input-output relation, a point of view which is not appropriate for
distributed computations. A first attempt to define knowledge for quantum dis-
tributed systems is found in [9]. Therein, two different notions of knowledge are
defined. First, an agent i can classically know a formula θ to hold, denoted Kc

i θ;
in this case the possibility relation is based on equality of local classical states.
Second, an agent can quantumly know a formula to hold, denoted Kq

i θ. For the
latter, the possibility relation is based on equality of reduced density matrices
for that agent. The authors argue that Kq

i is an information-theoretic idealisa-
tion of knowledge, in that the reduced density matrix embodies what an agent,
in principle, could determine from its local quantum state. However, there are
two main problems with this approach. The first is that one cannot assume that
the reduced density matrix is always known, because in quantum mechanics,
observing a state alters it irreversibly. So, quantum knowledge does not consist
of possession of a quantum state: it is not because an agent has a qubit in its lab
that the agent knows anything about it. Indeed, consider the situation where a
qubit has just been sent from A to B. Then B knows nothing about its newly
acquired qubit – it is possible, even, that A knows more about it than B does.
The second problem with the above approach is that one loses information on
correlations between agents by considering only the reduced density matrix, a
crucial ingredient in distributed quantum primitives.

What we need is a proper notion of quantum knowledge, which captures
the information an agent can obtain about its quantum state. This includes the
following ingredients: first, an agent knows states that it has prepared; second, an
agent knows a state when it has just measured it; and third, an agent may obtain
knowledge by classical communication of one of the above. While knowledge of
preparation states is automatically contained in the description of the protocol,
our notion of equivalence precisely captures the latter two items. As we shall see
below, in doing this we find a similar notion as Kc

i θ. Our main argument, then,
is that there is no such thing as quantum knowledge in the sense of Kq

i θ; rather
quantum knowledge is about classically knowing facts about quantum systems.

The structure of this paper is as follows. In Sec. 2 we construct a framework
for reasoning about knowledge in quantum distributed systems. Next, we investi-
gate the important distributed primitives of superdense coding and teleportation
in our epistemic framework in Sec. 3, investigating how agents’ knowledge is up-
dated as each protocol proceeds. We conclude in Sec. 4.

This paper assumes some familiarity with quantum computation – for the
reader not familiar with the domain, we refer to the excellent [5]. The present

Reasoning About Quantum Knowledge 555

paper is also a continuation of earlier work by the authors [10,1]. However, most
of the material presented here can be understood independently of the latter.

2 Knowledge in Quantum Networks

In this section, we develop the notion of knowledge for distributed quantum
systems. The equivalence relation for agents, on the basis of which quantum
knowledge is defined, is established in Sec. 2.1. Next, temporal operators are
defined in Sec. 2.2, where we also briefly discuss how temporal and epistemic
operators combine.

We phrase our results below in the context of quantum networks, an agent-
based model for distributed quantum computation elaborated in [1]. We stress,
however, that our notion of quantum knowledge is model-independent. That
is to say, any agent-based model for distributed quantum computation would
benefit from quantum knowledge as defined below, or slight adaptations thereof.
Due to space limitations, only a short overview is given here; for more detailed
explanations, we refer the reader to [1,11].

A network of agents N is defined by a set of concurrently acting agents
together with a shared quantum state, that is

N = A1 : Q1.E1 | . . . | Am : Qm.Em ‖ σ = |iAi(ii,oi) : Qi.Ei ‖ σ , (1)

where σ is the network quantum state, | denotes parallel composition, and for
all i, Ai is an agent with local qubits Qi and event sequence Ei. The network
state σ in the definition is the initial entanglement resource which is distributed
among agents. Local quantum inputs are added to the network state σ during
initialisation; in this way we keep initial shared entanglement as a first-class
primitive in our model. Note that agents in a network need to have different
names, since they correspond to different parties that make up the distributed
system. In other words, concurrency comes only from distribution; we do not
consider parallel composition of processes in the context of one party. Events
consist of local quantum operations A, classical communication c? and c!, and
quantum communication qc? and qc!. Quantum operations are denoted in the
style of [10], that is we have entanglement operators E, measurements M and
Pauli corrections X and Z. All of this is much clarified in the applications in
Sec. 3.

A network determines a set of configurations CN that can potentially occur
during execution of N . Configurations are written

C = |σ〉, |iΓi,Ai : Qi.Ei , (2)

where Γi is each agent’s local (classical) state, which is where measurement
outcomes and classical messages are stored. CN consists of all configurations
encountered in those paths a protocol can take. More formally, CN is obtained by
following the rules for the small-step operational semantics of networks, denoted
by transitions =⇒ and elaborated in [1].

556 Ellie D’Hondt and Prakash Panangaden

Before we can actually define modal operators for knowledge or time, we need
to clarify what the propositions are that these act upon. It is not our intention to
define a full-fledged language for primitive propositions; rather, we define these
abstractly. An interpretation of N is a truth-value assignment for configurations
in CN for some basic set of primitive propositions θ. Writing I(C, θ) for the
interpretation of fact θ in configuration C, we then have,

C,N � θ ⇐⇒ I(C, θ) = true . (3)

The primitive propositions considered usually depend on the network under
study, and are specified individually for each application encountered below.
Composite formulas can be constructed from primitive propositions and the log-
ical connectives ∧, ∨ and ¬ in the usual way. However, the formulas encountered
in the applications below are usually about equality For example, θ may be of
the form x = v, meaning that the classical variable x has the value v, or q1 = q2,
meaning that the states of qubits q1 and q2 are identical. We also allow functions
init and fin for taking the initial and final values of a variable or quantum state.
These formulas are currently defined in an ad-hoc manner.

2.1 Knowledge

In order to define quantum knowledge, we need to define an equivalence relation
on configurations for each of the agents, embodying what an agent knows about
the global configuration from its own information only. We deliberately do not
say local information here, as, via the network preparation, an agent may also
have non-local information, under the form of correlations, at its disposal. By
considering only configurations in CN we model that agents know which protocol
they are executing.

In a quantum network, each agent’s equivalence relation has to reflect what
an agent knows about the network state, the execution of the protocol and
the results of measurements. All classical information an agent has is stored in
its local state Γ ; this includes classical input values, measurement outcomes,
and classical values passed on by other agents. Just like in classical distributed
systems, an agent can certainly differentiate configurations for which the local
state is different. As for quantum information, an agent knows which qubits
it owns, what local operations it applies on these qubits, and, moreover, what
(non-local) preparation state it starts out with, i.e. what entanglement it shares
with other agents initially. It can also have information on its local quantum
inputs, though this is not necessarily so, as we have explained in the above. All
of the above information is in fact captured by an agent’s event sequence in a
particular configuration, together with its local state. Therefore, we obtain the
following definition.

Definition 1. Given a network N and configurations C = σ; |iΓi,Ai : Qi.Ei
and C′ = σ′; |iΓ ′i ,Ai : Q′i.E ′i in CN , we say that agent Ai considers C and C′

to be equivalent, denoted C ∼i C′, if Γi = Γ ′i and Ei = E ′i. For each agent Ai

Reasoning About Quantum Knowledge 557

the relation ∼i is an equivalence relation on CN , called the possibility relation
of Ai.

Via possibility relations we can now define what it means for an agent Ai to
know a fact θ in a configuration C in the usual way,

C,N � Kiθ ⇐⇒ ∀C′ ∼i C : C′ � θ . (4)

Our choice of equivalence embodies that agents cannot distinguish configu-
rations if they only differ in that other agents have applied local operations to
their qubits; neither can they if other agents have exchanged messages with each
other. While the global network state does change as a result of local operations,
an agent not executing these has no knowledge of this, and no way of obtaining
it. This is precisely what we capture with the relation ∼i.

Special attention needs to be given to the matter of quantum inputs. Agents
distinguish configurations corresponding to different values of their classical in-
put via their local state, in which these input values are stored. Essentially, for
each set of possible input values there is a group of corresponding configurations
in CN . However, this is not something we can do for quantum inputs, since these
occupy a continuous space. Hence we choose to let configurations be parame-
terised by these inputs, writing C(|ψ〉) whenever we want to stress this. But then
what about an agent’s possibility relation? Basically, either a quantum input is
known, in which case it is just a local preparation state such that there is only
one possible initial configuration. If a quantum input for agent A is truly arbi-
trary, or the agent knows nothing about it – as is the case for teleportation –
then all values of |ψ〉, and hence all configurations in the set {C(|ψ〉), |ψ〉 ∈ IA},
are considered equivalent by A. If A does know some properties of its input, then
we model this by only allowing a certain set of input states. We do not explicitly
mention the equivalence related to unknown quantum inputs in the examples be-
low, for the simple reason that we are interested only in logical statements that
hold for all quantum inputs. That is, we compare only configurations resulting
from the same quantum inputs, and derive knowledge-related statements that
are independent of this input. Nevertheless, whenever a configuration C(|ψ〉) is
written, it should be interpreted as a set of states, all considered equivalent by
all agents of the network.

From this one can construct more complicated statements, such as for ex-
ample C � KAKBθ for “agent A knows that agent B knows that θ holds in
configuration C’.

2.2 Time

One typically also wants to investigate how knowledge evolves during a compu-
tation, for example due to communication between agents. Thus, one also needs
a proper formalisation of time. This is usually done by allowing a set of temporal
modal operations, operating on the same set of propositions. The area of tem-
poral logics is itself an active field of research, with applications in virtually all
aspects of concurrent program design; for an overview see for example [12].

558 Ellie D’Hondt and Prakash Panangaden

We use the approach of computational tree logic (CTL) to formalise time-
related logical statements, providing state as well as path modal operators. The
reason for this is that, due to the fact that quantum networks typically have
a branching structure, we need to be able to express statements concerning all
paths as well as those pertaining to some paths. Typically, we want to say things
such as “for all paths, agent A always knows θ ”, or “there exists a path for which
A eventually knows θ”. We can of course express this by placing restrictions on
the paths we are considering in a particular statement – this is, in fact, precisely
what we do in the definition of modal path operators. Introducing these is more
appealing since in this way we can abstract away from actual path definitions,
which are determined by the formal semantics for networks elaborated in [1],
and denoted abstractly as =⇒ below.

Concretely, we introduce the traditional temporal state operators � (“al-
ways”) and � (“eventually”) into our model, and combine these with the path
operators A (“for all paths”) and E (“there exists a path”), as follows3

C,N � A�θ ⇐⇒ ∀γ, ∀C′ with C
γ

=⇒ C′ : C′ � θ (5)

C,N � E�θ ⇐⇒ ∃γ, ∀C′ with C
γ

=⇒ C′ : C′ � θ (6)

C,N � A�θ ⇐⇒ ∀γ, ∃C′ with C
γ

=⇒ C′ : C′ � θ (7)

C,N � E�θ ⇐⇒ ∃γ, ∃C′ with C
γ

=⇒ C′ : C′ � θ . (8)

Obviously, we have that any formula with A implies the corresponding one
with E, and likewise any formula with � implies the corresponding ones with �
and �.

When investigating knowledge issues in a distributed system, one naturally
arrives at situations where one needs to describe formally how knowledge evolves
as the computation proceeds. This can be done adequately by combining knowl-
edge operators Ki with the temporal operators defined above. As usual, one
needs to proceed with caution when doing this, since it is not always intuitively
clear what the meaning of each of these different combinations is. For example,
it is generally not the case that the formula A�Kiθ is equivalent to KiA�θ.
Typically, we want to prove things that are eventually known by an agent, no
matter what branch the protocol follows; this is embodied by the former.

3 Applications

With epistemic and temporal notions for quantum networks in place, we are
ready to evaluate the distributed primitives superdense coding [13] and telepor-
tation [14] from a knowledge-based perspective. That is, instead of investigating
how the global network evolves by deriving a network’s semantics, we now use

3 γ
=⇒ is the closure of the small-step transition relation =⇒ mentioned above. That is,
we have C

γ
=⇒ C′ if C′ can be reached form C by a series of consecutive small-step

transitions, specified by the path γ.

Reasoning About Quantum Knowledge 559

this semantics, or rather, the configurations encountered therein, to analyse how
the knowledge of individual agents evolves. We start with superdense coding,
which is simpler to analyse because it is deterministic and does not depend
on quantum inputs. We move on to teleportation in Sec. 3.2. We note that an
analysis of the quantum leader election protocol [15] was also carried out in [11].

3.1 Superdense Coding

The aim of superdense coding is to transmit two classical bits from one party to
the other with the aid of one entangled qubit pair or ebit. The network for this
task is defined as follows,

SC = A : {1}.[(qc!1)Xx2
1 Zx1

1] | B : {2}.[M0,0
12 (qc?1)] ‖E12 , (9)

Here x1x2 are A’s classical inputs, subscripts stand for qubits on which events
operate, X and Z are Pauli operations, qc! and qc? stand for a quantum ren-
dezvous, M0,0

12 is a Bell measurement on qubits 1 and 2, and E12 is an ebit. In
the first step of the protocol Alice transforms her half of the entangled pair, in a
different way for each of the four possible classical inputs. Next, she sends Bob
her qubit, who then measures the entangled pair. At the end of the protocol the
measurement outcomes, denoted s1 and s2, are equal to A’s inputs.

The configurations in CSC are the following [11],

Cj1j2
1 = E12; [x1, x2 %→ j1, j2],A : {1}.[(qc!1)Xx2

1 Zx1
1] | ∅,B : {2}.[M0,0

12 (qc?1)]

Cj1j2
2 = Xx2

1 Zx1
1 E12; [x1, x2 %→ j1, j2],A : {1}.(qc!1) | ∅,B : {2}.[M0,0

12 (qc?1)]

Cj1j2
3 = Xx2

1 Zx1
1 E12; [x1, x2 %→ j1, j2],A | ∅,B : {1, 2}.M0,0

12

Cj1j2
4 = 0; [x1, x2 %→ j1, j2]A | [s1, s2 %→ j1, j2],B ,

where j1j2 is equal to the input values 00,01,10 or 11.
The equivalence relation for both of the agents for configurations in CSC is

represented in Fig. 1, with arrows for computation paths, boxes for A’s equiva-
lence classes and dashed boxes for B’s equivalence classes. Obviously, A distin-
guishes the 4 possible configurations at each time step – we refer to this below as
horizontally – because A’s local state [x1, x2 %→ j1, j2] is different for each input
value. Vertically, that is with respect to the evolution of time, configurations at
the first three steps differ because A’s event sequence has changed. However, we
find that configurations at the third and fourth level are equivalent for A, since
from between both steps B has applied a local operation, which is not observable
by A.

The possibility relation for B is quite different. We find that that all configu-
rations occurring at the first two steps are considered equivalent by B. Further-
more, all configurations C3 are equivalent to each other, though they are not
equivalent to the previous ones because the event sequence of B has changed.
Configurations C4 differ from the previous ones because here B applies a local
operation, and furthermore, here B finally distinguishes states horizontally via
its local state [s1, s2 %→ j1, j2].

560 Ellie D’Hondt and Prakash Panangaden

C002

C001 C011 C101 C111

C012 C102 C112

C003 C013 C103 C113

C004 C014 C104 C114

Fig. 1. Possibility relations for the superdense coding network.

The possibility relations of both agents allow us to derive several epistemic
statements. First of all, however, let us note that the SC network is correct, since
we have

∀j1, j2 : Cj1j2
1 , SC � A�(s1s2 = j1j2) , (10)

or, if we want to stress that this occurs in the last step, we use C3(j1j2), SC �
A�(s1s2 = j1j2). Note that, since there is no branching in the protocol, we may
replace A by E in the above.

Next, we trivially have that C, SC � KA(x1x2 = j1j2) for all C ∈ CSC , that
is, A always knows its input values – in fact, agents always know their own input
values in any protocol. We can also state this by saying that for all input values
Cj1j2

1 , SC � A�KA(x1x2 = j1j2). On the other hand, it is only in the last step
that B knows A’s input values, that is

∀j1, j2 : Cj1j2
4 , SC � KB(s1s2 = j1j2) , (11)

while
∀j1, j2, s < 4 : Cj1j2

s , SC � ¬KB(s1s2 = j1j2) . (12)

Interestingly, A never knows that B knows A’s input values eventually,

∀j1, j2 : Cj1j2
1 , SC � ¬A�KAKB(s1s2 = j1j2) . (13)

The reason for this is that A cannot distinguish between configurations at the
last two time steps, that is, A does not know whether B has applied its local
measurement yet, and therefore A never knows if B knows that s1s2 = j1j2.

Other statements that can be made about the SC network, for example one
can play around with temporal operators to highlight when exactly the quantum
message is sent. However, the essential features of the protocol are captured
above.

Reasoning About Quantum Knowledge 561

3.2 Teleportation

The goal of the teleportation network is to transmit a qubit from one party to
another with the aid of an ebit and classical resources. The network achieving
this is defined as follows,

TP = A : {1, 2}.[(c!s2s1).M
0,0
12] | B : {3}.[Xx2

3 Zx1
3 .(c?x2x1)] ‖E23 , (14)

where c! and c? stand for a classical message rendezvous. In the first step of
the protocol Alice executes a Bell measurement on her qubits. Next, Alice sends
Bob her measurement outcomes, after which Bob applies Pauli corrections to his
qubit dependent on these outcomes. The result is that Bob’s qubit ends up in
the same state as Alice’s input qubit.

In this case, we have branching due to the Bell measurement. Moreover,
configurations are parameterised by the quantum input |ψ〉. As explained above,
we do not explicitly show that configurations for different quantum inputs are
equivalent for all agents. This feature is usually expressed by saying that |ψ〉
is an unknown quantum state, that is, A (nor B) know anything about it. We
repeat the configurations occurring throughout the execution of the protocol
explicitly here, labelling configurations by measurement outcomes obtained in
the first step of the computation.

C1(|ψ〉) = |ψ〉E23; ∅,A : {1, 2}.[(c!s2s1).M
0,0
12] | ∅,B : {3}.[Xx2

3 Zx1
3 .(c?x2x1)]

Cj1j2
2 (|ψ〉) =Xj2Zj1 |ψ〉; [s1, s2 %→j1, j2],A.(c!s2s1)|∅,B : {3}.[Xx2

3 Zx1
3 .(c?x2x1)]

Cj1j2
3 (|ψ〉) =Xj2Zj1 |ψ〉; [s1, s2 %→j1, j2],A | [x1, x2 %→ j1, j2],B : {3}.Xx2

3 Zx1
3)

Cj1j2
4 (|ψ〉) = |ψ〉; [s1, s2 %→ j1, j2],A | [x1, x2 %→ j1, j2],B : {3} .

The equivalence relation for both agents for the set of configurations CTP
is represented in Fig. 2. We find that C1(|ψ〉) is equivalent only to itself for
agent A– once more, in effect we have a set {C1(|ψ〉), |ψ〉 ∈ C2} of equivalent
configurations with respect to ∼A. After the measurement A distinguishes (sets
of) configurations horizontally at all time steps via its outcome map. Just as for
SC, and for the same reason, A considers configurations at the last two steps to
equivalent.

Again, the situation for agent B is quite different. We find that that config-
urations at the first two levels are considered to be equivalent, while all other
configurations are distinguished, horizontally via B’s local state, and vertically
by the change in B’s event sequence.

The correctness of the TP network is stated in logical terms as follows,

C1, TP � A�(fin(q3) = init(q1)) , (15)

where we have left out the parameterisation because the statement holds for all
|ψ〉. In other words, the final state of B’s qubit q3 is identical to the initial value
of A’s qubit q1

4. Interestingly, neither of the agents know the actual quantum
state at any point of the computation, that is
4 We refer to the qubit named qi as qubit i in semantical derivations.

562 Ellie D’Hondt and Prakash Panangaden

C003 (| 〉) C113 (| 〉)

C002 (| 〉)

C1(| 〉)

C012 (| 〉) C102 (| 〉) C112 (| 〉)

C013 (| 〉) C103 (| 〉)

C004 (| 〉) C014 (| 〉) C104 (| 〉) C114 (| 〉)

Fig. 2. Possibility relations for the teleportation network.

C1(|ψ〉), TP � ¬KA(q1 = |ψ〉) ∧ ¬KB(q1 = |ψ〉) (16)
C1(|ψ〉), TP � ¬E�KA(q3 = |ψ〉) ∧ ¬E�KB(q3 = |ψ〉) , (17)

that is to say, initially nobody knows that q1 is in the state |ψ〉, and there is
no future point in the protocol at which either A or B knows that q3 is in the
state |ψ〉. The basic reason for this is of course that for all input states |ψ〉
configurations C(|ψ〉) are considered equivalent by all agents, and therefore they
can conclude nothing about properties |ψ〉 may have. Apart from statements
about classical message passing, in TP the only knowledge transfer deals with
the correlation between initial and final states of the network, not with the
actual form of the quantum input. To be more precise, we have that

C1, TP � A�KB(q3 = init(q1)) , (18)

since at the last step of the computation B knows that it must have the original
input state. However, since A cannot distinguish the last two time steps, we also
have that

C1, TP � ¬E�KA(q3 = init(q1)) . (19)

The latter two statements may seem odd in that we are talking about states that
the agents know nothing about. However, even without knowing a state, one may
still have information about how it compares with other states. There is nothing
strange about this, as this sort of thing happens with classical correlations too.
What it does show, however, is that there is no actual quantum knowledge
transfer in the TP network – there was no quantum knowledge about the input
to begin with! We can only say something about the relation of the initial to
final quantum states.

Note that our analysis is in stark contrast with the one found in [9], which
is jointly in terms of Kc

i and Kq
i . As mentioned above, the latter is based upon

Reasoning About Quantum Knowledge 563

equality of reduced density matrices. Next to our objections to this approach
mentioned earlier, such an analysis becomes increasingly awkward when applied
to the teleportation protocol, since the basis of TP is that the initial state is
unknown. In fact, the authors themselves note that their analysis leads to dif-
ficulties. Concretely, in their framework the conclusion is that initially A has
quantum knowledge of |ψ〉 – i.e. A knows its initial reduced density matrix,
which is just |ψ〉〈ψ| – while B does not, and that eventually B knows the initial
state |ψ〉, i.e. the same reduced density matrix. However, if Alice teleports a sin-
gle qubit to Bob she absolutely has not transmitted a continuum of information.
Indeed, Bob needs many such qubits to determine, via statistical analysis, which
quantum state has been teleported. Moreover, as pointed out by the authors
themselves, their notion of knowledge allows B to distinguish the four possible
network states even before A has sent the measurement results through, i.e. at
the second step of the computation. This is not the case: in fact the classical
message passing is crucial for the success of the protocol, as without this infor-
mation Bob’s state is given by the maximally mixed state. All these arguments
just strengthen our point: analysing teleportation from an epistemic point of
view has nothing to do with quantum states, but rather with the relationship
between them. Our point is that, although quantum mechanics can be used to
transmit information in unexpected ways, there is no such thing as quantum
knowledge; it is all classical knowledge, albeit about quantum systems.

4 Conclusion

We have developed a formal framework for investigating epistemic and temporal
notions in the context of distributed quantum systems. While we rely on struc-
tures developed in prior work, our notion of quantum knowledge makes sense
more generally in any agent-based model of quantum networks. Several argu-
ments are given to support our view that an agent’s possibility relation should
not be based on the reduced density matrix, but rather on local classical states
and local quantum operations. In this way, we are able to analyse distributed
primitives from a knowledge-based perspective. Concretely, we investigated su-
perdense coding and teleportation, obtaining interesting conclusions as to how
the knowledge of individual agents evolves. We have explicitly shown that the
knowledge transfer in teleportation is essentially classical, in that eventually,
the receiving agent only knows that its state is equal to the initial state of the
sender. The relevant epistemic statements for teleportation deal with this corre-
lation rather than with the actual quantum state, which is unknown throughout
the protocol.

References

1. Danos, V., D’Hondt, E., Kashefi, E., Panangaden, P.: Distributed measurement-
based quantum computation. In Selinger, P., ed.: Proceedings of the 3rd Workshop
on Quantum Programming Languages (QPL05). (2005)

564 Ellie D’Hondt and Prakash Panangaden

2. Hintikka, J.: Knowledge and belief - An introduction to the logic of the two notions.
Cornell University Press, Ithaca, N.Y. (1962)

3. Halpern, J.Y.: Reasoning about knowledge: a survey. In: Handbook of Logic in
Artificial Intelligence and Logic Programming. Volume 4. Oxford University Press
(1995) 1–34

4. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about knowledge.
MIT Press (1995)

5. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Cam-
bridge university press (2000)

6. Baltag, A., Smets, S.: Quantum dynamic logic. In Selinger, P., ed.: Proceed-
ings of the 2nd Workshop on Quantum Programming Languages (QPL04), Turku,
Finland, Turku Centre for Computer Science, TUCS General Publication No 33
(2004)

7. Baltag, A., Smets, S.: LQP: the dynamic logic of quantum information. Unpub-
lished (2005)

8. van der Meyden, R., Patra, M.: A logic for probability in quantum systems. In:
Proc. Computer Science Logic and 8th Kurt Gödel Colloquium, Vienna, Austria
(2003) 427–440

9. van der Meyden, R., Patra, M.: Knowledge in quantum systems. In: Proceed-
ings of the 9th conference on Theoretical aspects of rationality and knowledge,
Bloomington, Indiana (2003) 104–117

10. Danos, V., Kashefi, E., Panangaden, P.: The measurement calculus. quant-
ph/0412135 (2004)

11. D’Hondt, E.: Distributed quantum computation – A measurement-based approach.
PhD thesis, Vrije Universiteit Brussel (2005) In preparation.

12. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B). MIT Press (1990) 995–1072

13. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators
on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. (1992) 2881–2884

14. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.:
Teleporting an unknown quantum state via dual classical and EPR channels. Phys.
Rev. Lett. 70 (1993) 1895–1899

15. D’Hondt, E., Panangaden, P.: The computational power of the W and GHZ states.
Journal on Quantum Information & Computation (2005) To appear.

Author Index

Adsul, Bharat, 335
Agrawal, Manindra, 92
Allender, Eric, 238
Arai, Toshiyasu, 529

Baltz, Andreas, 360
Bérard, Beatrice, 273
Bouajjani, Ahmed, 348
Bouyer, Patricia, 432
Brázdil, Tomáš, 372

Cassez, Franck, 273
Chatterjee, Krishnendu, 1
Chen, Taolue, 128
Chevalier, Fabrice, 432
Codenotti, Bruno, 505

D’Hondt, Ellie, 553
D’Souza, Deepak, 322
Dal Lago, Ugo, 189
Datta, Samir, 238
de Berg, Mark, 116
Dubhashi, Devdatt, 360

Edwards, Michael, 107
Engelfriet, Joost, 495
Esparza, Javier, 348

Fernau, Henning, 457
French, Tim, 396

Ganguly, Sumit, 297
Godskesen, Jens Chr., 140
Göller, Stefan, 483
Gu, Xiaoyang, 250

Haddad, Serge, 273
Han, Tingting, 128
Hassin, Refael, 164
Henzinger, Thomas A., 1
Hildebrandt, Thomas, 140
Hofmann, Martin, 189

Impagliazzo, Russell, 19

Jagadeesan, Radha, 517
Jayanti, Prasad, 408

Kaufmann, Michael, 457
Kesh, Deepanjan, 297
Krčál, Pavel, 310
Křet́ınský, Mojmı́r, 213
Krishna, Shankara Narayanan, 444
Kučera, Antońın, 372, 541
Kumar, K. Narayan, 335
Kumar, Vijay, 152

Lime Didier, 273
Lohrey, Markus, 483
Lu, Jian, 128
Lutz, Jack H., 250

Madhusudan, P., 201
Maneth, Sebastian, 495
Manna, Zohar, 225
Markey, Nicolas, 432
Matos, Ana Almeida, 177
McCune, Benton, 505
Mittal, Neeraj, 420
Moser, Georg, 529
Moser, Philippe, 250
Mukund, Madhavan, 335
Muthukrishnan, S., 285
Mysore, Venkatesh, 261

Nadathur, Gopalan, 517
Narayanan, Vasumathi, 335

Panangaden , Prakash, 553
Pandya, Paritosh K., 444
Pelánek, Radek, 310
Penumatcha, Sriram, 505
Peri, Sathya, 420
Petrovic, Srdjan, 408
Pnueli, Amir, 261
Poths, Mathias, 457

Raj Mohan, M., 322
Řehák, Vojtěch, 213
Reynolds, Mark, 384
Roux, Olivier H., 273
Roy, Sambuddha, 238
Rudra, Atri, 152

566 Author Index

Saha, Chandan, 297
Saraswat, Vijay, 517
Schwoon, Stefan, 348
Segev, Danny, 164
Seidel, Raimund, 48
Shankar, Natarajan, 60
Sipma, Henny B., 225
Spencer, Joel, 106
Srba, Jǐŕı, 470
Srivastav, Anand, 360
Stražovský, Oldřich, 541
Strejček, Jan, 213, 348

Tansini, Libertad, 360
Thiagarajan, P.S., 201

Varadarajan, Kasturi, 107, 505

Walukiewicz, Igor, 79
Werth, Sören, 360

Yang, Shaofa, 201

Zhang, Ting, 225

	Frontmatter
	Invited Papers
	Semiperfect-Information Games
	Computational Complexity Since 1980
	Developments in Data Structure Research During the First 25 Years of FSTTCS
	Inference Systems for Logical Algorithms
	From Logic to Games
	Proving Lower Bounds Via Pseudo-random Generators
	Erd\H{o}s Magic

	Contributed Papers
	No Coreset, No Cry: II
	Improved Bounds on the Union Complexity of Fat Objects
	On the Bisimulation Congruence in χ-Calculus
	Extending Howe's Method to Early Bisimulations for Typed Mobile Embedded Resources with Local Names
	Approximation Algorithms for Wavelength Assignment
	The Set Cover with Pairs Problem
	Non-disclosure for Distributed Mobile Code
	Quantitative Models and Implicit Complexity
	The MSO Theory of Connectedly Communicating Processes
	Reachability of Hennessy-Milner Properties for Weakly Extended PRS
	Decision Procedures for Queues with Integer Constraints
	The Directed Planar Reachability Problem
	Dimensions of Copeland-Erd\"{o}s Sequences
	Refining the Undecidability Frontier of Hybrid Automata
	When Are Timed Automata Weakly Timed Bisimilar to Time Petri Nets?
	Subquadratic Algorithms for Workload-Aware Haar Wavelet Synopses
	Practical Algorithms for Tracking Database Join Sizes
	On Sampled Semantics of Timed Systems
	Eventual Timed Automata
	Causal Closure for MSC Languages
	Reachability Analysis of Multithreaded Software with Asynchronous Communication
	Probabilistic Analysis for a Multiple Depot Vehicle Routing Problem
	Computing the Expected Accumulated Reward and Gain for a Subclass of Infinite Markov~Chains
	Towards a CTL* Tableau
	Bisimulation Quantified Logics: Undecidability
	Logarithmic-Time Single Deleter, Multiple Inserter Wait-Free Queues and Stacks
	Monitoring Stable Properties in Dynamic Peer-to-Peer Distributed Systems
	On the Expressiveness of {\sf TPTL} and {\sf MTL}
	Modal Strength Reduction in Quantified Discrete Duration Calculus
	Comparing Trees Via Crossing Minimization
	On Counting the Number of Consistent Genotype Assignments for Pedigrees
	Fixpoint Logics on Hierarchical Structures
	The Equivalence Problem for Deterministic MSO Tree Transducers Is Decidable
	Market Equilibrium for CES Exchange Economies: Existence, Multiplicity, and Computation
	Testing Concurrent Systems: An Interpretation of Intuitionistic Logic
	Proofs of Termination of Rewrite Systems for Polytime Functions
	On the Controller Synthesis for Finite-State Markov Decision Processes
	Reasoning About Quantum Knowledge

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

