
Model Checking Sum and Product

H.P. van Ditmarsch1, J. Ruan1,�, and L.C. Verbrugge2,� �

1 University of Otago, New Zealand
{hans, jruan}@cs.otago.ac.nz

2 University of Groningen, Netherlands
rineke@ai.rug.nl

Abstract. We model the well-known Sum-and-Product problem in a
modal logic, and verify its solution in a model checker. The modal logic
is public announcement logic. The riddle is then implemented and its
solution verified in the epistemic model checker DEMO.

1 Introduction

The Sum-and-Product problem was first stated—in Dutch—in [1]:

A says to S and P : I have chosen two integers x, y such that 1 < x < y
and x+ y ≤ 100. In a moment, I will inform S only of s = x+ y, and P
only of p = xy. These announcements remain private. You are required
to determine the pair (x, y).
He acts as said. The following conversation now takes place:
1. P says: “I do not know it.”
2. S says: “I knew you didn’t.”
3. P says: “I now know it.”
4. S says: “I now also know it.”

Determine the pair (x, y).

This problem is, that the agents’ announcements appear to be uninformative,
as they are about ignorance and knowledge and not about (numerical) facts,
whereas actually they are very informative: the agents learn facts from the other’s
announcements. For example, the numbers cannot be 14 and 16: if they were,
their sum would be 30. This is also the sum of 7 and 23. If those were the numbers
their product would have been 161 which, as these are prime numbers, only is
the product of 7 and 23. So Product (P) would have known the numbers, and
therefore Sum (S)—if the sum had been 30—would have considered it possible
that Product knew the numbers. But Sum said that he knew that Product didn’t
know the numbers. So the numbers cannot be 14 and 16. Sum and Product learn
enough, by eliminations of which we gave an example, to be able to determine
the pair of numbers: the unique solution of the problem is the pair (4, 13).

� Hans and Ji appreciate support from AOARD research grant AOARD-05-4017.
� � Hans and Rineke appreciate support from the Netherlands Organization for Scientific

Research (NWO).

S. Zhang and R. Jarvis (Eds.): AI 2005, LNAI 3809, pp. 790–795, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Model Checking Sum and Product 791

Logical approaches to solve the problem are found in [2,3,4,5]. As far as we
know, we are the first to use an automated model checker to tackle the Sum-
and-Product problem.

In Section 2 we model the Sum-and-Product problem in public announcement
logic. In Section 3 we implement the Sum-and-Product specification of Section
2 in DEMO and verify its epistemic features.

2 Public Announcement Logic

Public announcement logic is a dynamic epistemic logic and is an extension of
standard multi-agent epistemic logic. Intuitive explanations of the epistemic part
of the semantics can be found in [6]. We give a concise overview of the logic.

Language. Given are a set of agents N and a set of atoms Q. The language of
public announcement logic is inductively defined as

ϕ ::= q | ¬ϕ | (ϕ ∧ ψ) | Knϕ | CGϕ | [ϕ]ψ

where q ∈ Q, n ∈ N , and G ⊆ N are arbitrary. For Knϕ, read ‘agent n knows
formula ϕ’. For CGϕ, read ‘group of agents G commonly know formula ϕ’. For
[ϕ]ψ, read ‘after public announcement of ϕ, formula ψ (is true)’.

Structures. An epistemic model M = 〈W,∼, V 〉 consists of a domain W of
(factual) states (or ‘worlds’), accessibility ∼ : N → P(W ×W), and a valuation
V : Q → P(W). For w ∈ W , (M,w) is an epistemic state (also known as a
pointed Kripke model). For ∼(n) we write ∼n, and for V (q) we write Vq .

Semantics. Assume an epistemic model M = 〈W,∼, V 〉.

M,w |= q iff w ∈ Vq

M,w |= ¬ϕ iff M,w 	|= ϕ
M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ
M,w |= Knϕ iff for all v ∈W : w ∼n v implies M, v |= ϕ
M,w |= CGϕ iff for all v ∈W : w ∼G v implies M, v |= ϕ
M,w |= [ϕ]ψ iff M,w |= ϕ implies M |ϕ,w |= ψ

The group accessibility relation ∼G is the transitive and reflexive closure of the
union of all access for the individuals in G: ∼G ≡ (

⋃
n∈G ∼n)∗. Epistemic model

M |ϕ = 〈W ′,∼′, V ′〉 is defined as

W ′ = {w′ ∈W | M,w′ |= ϕ}
∼′

n = ∼n ∩ (W ′ ×W ′)
V ′

q = Vq ∩W ′

The dynamic modal operator [ϕ] is interpreted as an epistemic state transformer.
Announcements are assumed to be truthful, and this is commonly known by all
agents. Therefore, the model M |ϕ is the model M restricted to all the states

792 H.P. van Ditmarsch, J. Ruan, and L.C. Verbrugge

where ϕ is true, including access between states. The dual of [ϕ] is 〈ϕ〉: M,w |=
〈ϕ〉ψ iff M,w |= ϕ and M |ϕ,w |= ψ. Validity and logical consequence are defined
in the standard way. For a proof system, see [7].

To give a specification of the Sum-and-Product problem in public announce-
ment logic, first we need to determine the set of atomic propositions and the
set of agents. Define I ≡ {(x, y) ∈ N

2 | 1 < x < y and x + y ≤ 100}. Con-
sider the variable x. If its value is 3, we can represent this information as the
(truth of) the atomic proposition ‘x = 3’. Slightly more formally we can think
of ‘x = 3’ as a propositional letter x3. Thus we create a (finite) set of atoms
{xi | (i, j) ∈ I} ∪ {yj | (i, j) ∈ I}. The set of agents is {S, P}; S and P will also
be referred to as Sum and Product, respectively.

A proposition such as ‘Sum knows that the numbers are 4 and 13’ is described
as KS(x4∧y13). The proposition ‘Sum knows the (pair of) numbers’ is described
as KS(x, y) ≡ ∨

(i,j)∈I KS(xi ∧ yj). Similarly, ‘Product knows the numbers’ is
described as KP (x, y) ≡ ∨

(i,j)∈I KP (xi ∧ yj). This is sufficient to formalize the
announcements made towards a solution of the problem:

1. P says: “I do not know it”: ¬KP (x, y)
2. S says: “I knew you didn’t”: KS¬KP (x, y)
3. P says: “I now know it”: KP (x, y)
4. S says: “I now also know it”: KS(x, y)

We can interpret these statements on an epistemic model SP(x,y) ≡ 〈I,∼, V 〉
consisting of a domain of all pairs (x, y) ∈ I (as above), with accessibility rela-
tions ∼S and ∼P such that for Sum: (x, y) ∼S (x′, y′) iff x + y = x′ + y′, and
for Product: (x, y) ∼P (x′, y′) iff xy = x′y′; and with valuation V such that
Vxi = {(x, y) ∈ I | x = i} and Vyj = {(x, y) ∈ I | y = j}. The solution of the
problem is represented by the truth of the statement

SP(x,y), (4, 13) |= 〈KS¬KP (x, y)〉〈KP (x, y)〉〈KS(x, y)〉
or, properly expressing that (4, 13) is the only solution, by the model validity

SP(x,y) |= [KS¬KP (x, y)][KP (x, y)][KS(x, y)](x4 ∧ y13)
Note that announcement 1 by Product is superfluous in the analysis. The ‘knew’
in announcement 2, by Sum, refers to the truth of that announcement in the
initial epistemic state, not in the epistemic state resulting from announcement 1,
by Product.

3 The Epistemic Model Checker DEMO

Recently, epistemic model checkers have been developed to verify properties of
interpreted systems, knowledge-based protocols, and various other multi-agent
systems. The model checkers MCK [8] and MCMAS [9] have a temporal epistemic
architecture, and exploration of the search space is based on ordered binary
decision diagrams. The epistemic model checker DEMO, developed by Jan van

Model Checking Sum and Product 793

module SNP

where

import DEMO

pairs = [(x,y)|x<-[2..100], y<-[2..100], x<y, x+y<=100]

numpairs = llength(pairs)

llength [] =0

llength (x:xs) = 1+ llength xs

ipairs = zip [0..numpairs-1] pairs

msnp :: EpistM

msnp = (Pmod [0..numpairs-1] val acc [0..numpairs-1])

where

val = [(w,[P x, Q y]) | (w,(x,y))<- ipairs]

acc = [(a,w,v)|(w,(x1,y1))<-ipairs,(v,(x2,y2))<-ipairs,x1+y1==x2+y2]++

[(b,w,v)|(w,(x1,y1))<-ipairs,(v,(x2,y2))<-ipairs,x1*y1==x2*y2]

fmrs1e = K a (Conj [Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

Neg (K b (Conj [Prop (P x),Prop (Q y)]))]| (x,y)<-pairs])

amrs1e = public (fmrs1e)

fmrp2e = Conj [(Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

K b (Conj [Prop (P x),Prop (Q y)])])|(x,y)<-pairs]

amrp2e = public (fmrp2e)

fmrs3e = Conj [(Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

K a (Conj [Prop (P x),Prop (Q y)])])|(x,y)<-pairs]

amrs3e = public (fmrs3e)

solution = showM (upds msnp [amrs1e, amrp2e, amrs3e])

Fig. 1. The DEMO program SNP.hs. Comment lines have been removed.

Eijck [10], is not based on temporal epistemics. DEMO is short for Dynamic
Epistemic MOdelling. It allows modelling epistemic updates, graphical display
of Kripke structures involved, and formula evaluation in epistemic states. DEMO
is written in the functional programming language Haskell. The model checker
DEMO implements the dynamic epistemic logic of [7]. For a comparative study
of these three model checkers, on a different problem, see [11]. We have specified
the ‘Sum and Product riddle’ in DEMO only. The verification of a comparable
specification in MCK exceeds its computational power (and this is also to be
expected for MCMAS), although clever restriction of variables might well bring
such verification with reach.

Figure 1 contains the specification of the Sum and Product riddle in DEMO.
The set I ≡ {(x, y) ∈ N

2 | 1 < x < y and x+y ≤ 100} is realized in DEMO as the
list pairs = [(x,y)| x<-[2..100], y<-[2..100], x<y, x+y<=100]. A pair
such as (4, 18) is not a proper name for a domain element. In DEMO, natural
numbers are such proper names. Therefore, we associate each element in pairs
with a natural number and make a new list ipairs = zip [0..numpairs-1]
pairs. Here, numpairs is the number of elements in pairs, and the function

794 H.P. van Ditmarsch, J. Ruan, and L.C. Verbrugge

zip pairs the i-th element in [0..numpairs-1] with the i-th element in pairs,
and makes that the i-th element of ipairs.

The initial model msnp of the Sum-and-Product riddle (see Figure 1) is a
multi-pointed epistemic model, that consists—this is the line msnp = (Pmod
[0..numpairs-1] val acc [0..numpairs-1]) in the program—of a domain
[0..numpairs-1], a valuation function val, an accessibility relation function
acc, and [0..numpairs-1] points. As the points of the model are the entire do-
main, we may think of this initial epistemic state as the (not-pointed) epistemic
model underlying it.

The valuation function val maps each state in the domain to the subset of
atoms that are true in that state. This is different from our previous definition
of a valuation V , but the correspondence q ∈ val(w) iff w ∈ V (q) is elementary.
An element (w,[P x, Q y]) in val means that in state w, atoms P x and Q y
are true. For example, given that (0,(2,3)) is in ipairs, P 2 and Q 3 are true
in state 0, where P 2 stands for ‘the smaller number is 2’ and Q 3 stands for ‘the
larger number is 3’. These same facts were described in the previous section by
x2 and y3, respectively, as that gave the closest match with the original problem
formulation. In DEMO, names of atoms must start with capital P,Q,R.

The function acc specifies the accessibility relations. Agent a represents Sum
and agent b represents Product. For (w,(x1,y1)) and (v,(x2,y2)) in ipairs,
if their sum is the same: x1+y1==x2+y2, then they cannot be distinguished by
Sum: (a,w,v) in acc; and if their product is the same: x1*y1==x2*y2, then
they cannot be distinguished by Product: (b,w,v) in acc. Function ++ is an
operation merging two lists.

Sum and Product’s announcements are modelled as structures called ‘single-
ton action models’, generated by the announced formula (precondition) ϕ and an
operation public. For our purposes it is sufficient to focus on that precondition.

Consider KS¬
∨

(i,j)∈I KP (xi ∧ yj), expressing that Sum says: “I knew you
didn’t.” This is equivalent to KS

∧
(i,j)∈I ¬KP (xi∧yj). A conjunct ¬KP (xi∧yj)

in that expression, for ‘Product does not know that the pair is (i, j)’, is equivalent
to (xi ∧ yj) → ¬KP (xi ∧ yj). The latter is computationally cheaper to check
in the model, than the former: in all states but (i, j) of the model, the latter
requires a check on two booleans only, whereas the former requires a check in
each of those states of Product’s ignorance, that relates to his equivalence class
for that state, and that typically consists of several states. This explains that the
check on

∧
(i,j)∈I ¬KP (xi ∧ yj) can be replaced by one on

∧
(i,j)∈I((xi ∧ yj) →

¬KP (xi∧yj)). Using a model validity, the check on
∨

(i,j)∈I KP (xi∧yj) (Product
knows the numbers) can also be replaced, namely by a check

∧
(i,j)∈I((xi∧yj) →

KP (xi ∧ yj)). Using these observations, and writing an implication ϕ → ψ as
¬ϕ ∨ ψ, the three problem announcements 2, 3, and 4 listed on page 792 are
checked in DEMO in by the formulas fmrs1e, fmrp2e, and fmrs3e, respectively,
as listed in Figure 1. The corresponding singleton action models are obtained by
applying the function public, for example, amrs1e = public (fmrs1e).

The riddle is solved by updating the initial model msnpwith the action models
corresponding to the three successive announcements:

Model Checking Sum and Product 795

*SNP> showM (upds msnp [amrs1e, amrp2e, amrs3e])
==> [0]
[0]
(0,[p4,q13])
(a,[[0]])
(b,[[0]])

This function showM displays a pointed epistemic model with, on successive lines,
point [0], domain [0]—after each update, states are renumbered starting from
0—, valuation (0,[p4,q13])—representing the facts P 4 and Q 13, i.e., the so-
lution pair (4, 13)—, and accessibility relations (a,[[0]]) and (b,[[0]])—Sum
and Product have full knowledge, as their access is the indentity. Intermediate
results of the computation can also be given. For the complete output of such
interaction, see www.cs.otago.ac.nz/staffpriv/hans/sumpro/.

References

1. Freudenthal, H.: (formulation of the sum-and-product problem). Nieuw Archief
voor Wiskunde 3(17) (1969) 152

2. McCarthy, J.: Formalization of two puzzles involving knowledge. In Lifschitz,
V., ed.: Formalizing Common Sense : Papers by John McCarthy. Ablex series in
artificial intelligence. Ablex Publishing Corporation, Norwood, N.J. (1990) original
manuscript dated 1978–1981.

3. Plaza, J.: Logics of public communications. In Emrich, M., Pfeifer, M., Hadzikadic,
M., Ras, Z., eds.: Proceedings of the 4th International Symposium on Methodolo-
gies for Intelligent Systems. (1989) 201–216

4. Panti, G.: Solution of a number theoretic problem involving knowledge. Interna-
tional Journal of Foundations of Computer Science 2(4) (1991) 419–424

5. van der Meyden, R.: Mutual belief revision. In Doyle, J., Sandewall, E., Torasso,
P., eds.: Proceedings of the 4th international conference on principles of knowledge
representation and reasoning (KR), Morgan Kaufmann (1994) 595–606

6. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT
Press, Cambridge MA (1995)

7. Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common
knowledge, and private suspicions. Technical report, Centrum voor Wiskunde en
Informatica, Amsterdam (1999) CWI Report SEN-R9922.

8. Gammie, P., van der Meyden, R.: MCK: Model checking the logic of knowledge.
In Alur, R., Peled, D., eds.: Proceedings of the 16th International conference on
Computer Aided Verification (CAV 2004), Springer (2004) 479–483

9. Raimondi, F., Lomuscio, A.: Verification of multiagent systems via ordered binary
decision diagrams: An algorithm and its implementation. In: 3rd International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004),
IEEE Computer Society (2004) 630–637

10. van Eijck, J.: Dynamic epistemic modelling. Technical report, Centrum voor
Wiskunde en Informatica, Amsterdam (2004) CWI Report SEN-E0424.

11. van Ditmarsch, H., van der Hoek, W., van der Meyden, R., Ruan, J.: Model
checking russian cards. Electronic Notes in Theoretical Computer Science (2005)
To appear; presented at MoChArt 05 (Model Checking in Artificial Intelligence).

	Introduction
	Public Announcement Logic
	The Epistemic Model Checker DEMO

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

