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Abstract. Community Z Tools (CZT) is an integrated framework for
the Z formal specification language. In this paper, we show how it is
also designed to support extensions of Z, in a way that minimises the
work required to build a new Z extension. The goals of the framework
are to maximise extensibility and reuse, and minimise code duplication
and maintenance effort. To achieve these goals, CZT uses a variety of
different reuse mechanisms, including generation of Java code from a hi-
erarchy of XML schemas, XML templates for shared code, and several
design patterns for maximising reuse of Java code. The CZT framework
is being used to implement several integrated formal methods, which add
object-orientation, real-time features and process algebra extensions to
Z. The effort required to implement such extensions of Z has been dra-
matically reduced by using the CZT framework.

Keywords: Standard Z, Object-Z, TCOZ, Circus, parsing, typechecking,
animation, design patterns, framework, AST.

1 Introduction

The Z language [1] is a formal specification notation that can be used to precisely
specify the behaviour of systems, and analyse them via proof, animation, test
generation, and so on. Z was approved as an ISO standard in 2002, but currently
there are few tools that conform to the standard.1 The Community Z Tools
(CZT) project [2] is an open-source Java framework for building formal methods
tools for standard Z and Z extensions.

CZT2 provides the basic tools expected in a Z environment, such as conver-
sion between LATEX, Unicode and XML formats for Z, and parsing, unparsing,
typechecking and animation tools, with a WYSIWYG Z editing environment
integrated within the jEdit3 editor. There are also several more experimental
1 CADiZ (http://www-users.cs.york.ac.uk/∼ian/cadiz) is the only Z tool that

conforms closely to the Z standard. It is freely available, but is not open-source and
does not aim at supporting Z extensions.

2 See http://czt.sourceforge.net.
3 See http://www.jedit.org.
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tools under development, such as a Z-to-B translator and a semi-automated
GUI-builder for Z specifications. However, the main design goal of CZT is to
provide a framework which makes it easy to develop new Z tools. This paper de-
scribes how the framework also makes it easy to develop tools for extensions of Z.

In recent years, there has been an increasing interest in combining different
programming paradigms within a uniform formal notation, where Z plays a cen-
tral role. This has given rise to many Z extensions, which add features such as
process algebras [3, 4, 5], object orientation [6, 7], time [8, 9], mobility [10], and
so forth.

Among these extensions, CZT supports Object-Z [6], a specification language
that extends Z with modularity and reuse constructs that resemble the object-
oriented programming paradigm. Such constructs include classes, inheritance,
and polymorphism. CZT supports Object-Z in the form of parsing, typechecking,
and other facilities. CZT is also being used to develop extensions for Timed
Communicating Object-Z (TCOZ) [8], which is a blend of Object-Z and Timed-
CSP [11], as well as extensions for Circus [5], a unified refinement language that
combines Z, CSP [12], and the refinement calculus [13], with Hoare and He’s
Unifying Theories of Programming (UTP) as the semantic background [14]4.

This paper describes the engineering techniques used in the CZT framework
to maximise extensibility and reuse. Most of these techniques could also be
applied to frameworks for other integrated formal methods, especially when the
framework must support several different extensions of a common base language
(like the role of Z in CZT).

In Section 2, we present a method for specifying an XML interchange format
that maximises extensibility. Section 3 describes the automatic generation and
design of the Annotated Syntax Tree (AST) classes. Section 4 presents a method
for generating parsers, scanners, and other related tools for the different Z ex-
tensions, and Section 5 presents the design of the CZT typecheckers, which are
tailored for extendibility and reuse. Section 6 briefly presents the CZT animator,
ZLive, and discusses the possibility of using this to animate extensions to Z. Sec-
tion 7 presents the design of the specification manager, an integral component of
CZT that caches information about specifications to improve the efficiency of the
tools. Section 8 gives an overview of related work. Finally, Section 9 concludes
the paper and discusses the future of the CZT project.

2 XML Schemas

The first step in designing the CZT tools and libraries was the development of
an XML schema that describes an XML markup for Z specifications (ZML) [15].
This is an interchange format that can be used to exchange parsed Z specifica-
tions between sessions and tools written in different languages.

Standard Z allows specifications to be exchanged using Unicode, LATEX or
email markup. However, implementing a parser for such specifications is a non-
trivial task that can take several months. ZML, in contrast, can be parsed im-
4 See http://www.cs.york.ac.uk/circus/
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mediately since virtually all programming languages provide XML reading and
writing libraries.

The idea of using XML for Z has also been explored in the Z/EVES theorem
prover [16]. It allows one to create a customised theorem prover with additional
tactics tailored for a particular specification by modifying the XML representa-
tion of the Z specification in Z/EVES [17]. The main problem however, is the
lack of a common standard.

The XML schema for ZML was carefully designed, via consensus between
several groups of interested people, by selecting the best features of the abstract
syntaxes of CADiZ, Zeta and the Z standard. ZML supports several kinds of
extensibility:

Extensible Annotations: Each Z construct can be annotated with arbitrary
information, such as type information, comments, anticipated usage, and
source-file location.

Extensible ASTs: This allows Z extensions to add new kinds of expressions,
predicates, paragraphs, etc.

Extensible Schemas: The standard XML schema features, such as namespa-
ces and importing, mean that Z extensions can be defined without modifying
the original ZML schema.

The following strategies have been used to achieve these kinds of extensibility.
The “any” element can be used in an XML schema to enable instance XML

documents to contain additional elements not specified by the schema. This
concept has been used to define annotations. That is, an annotation to a term
can either be one of the annotations defined in the XML schema for Z, or any
other kind of data. New kinds of annotations can be added without changing
the ZML schema. This allows a tool builder to decide what data makes sense for
a particular tool. Tools that do not use a particular kind of annotation simply
ignore those annotations.

A typical style of defining XML schemas or DTDs is to explicitly list the
possible alternatives for expressions, predicates, etc. This makes it difficult to
extend the syntax of ASTs to allow new kinds of expressions or predicates.
In contrast, ZML uses inheritance (substitution groups in XML schema termi-
nology) extensively throughout the XML schema. Abstract elements are used
to provide placeholders for their derived elements. For example, the abstract
element Para is the parent of all concrete Z paragraphs, such as axiomatic para-
graphs (element AxPara), and free types paragraph (element FreePara). Other
elements that contain paragraphs, like Z section (element ZSect), are defined
to contain a reference to the abstract Para element. This allows any subtype of
Para to be used instead. This has the same extensibility advantages as subtyping
in object-oriented languages.

A Z extension can add new kinds of paragraphs, expressions and predicates,
simply by extending these ZML inheritance hierarchies. It is important to note
that this can be done without modifying the ZML schema file. Instead, the Z
extension creates a new XML schema which imports the original ZML schema
file, then defines the additional constructs using a new namespace. This means
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that several separate extensions of Z can easily coexist. For example, the XML
schema for Object-Z imports the ZML schema file, and defines a new paragraph
for classes (element ClassPara) that is derived from element Para defined in
the ZML schema. Instance documents of the Object-Z schema can now contain
class paragraphs in addition to the standard Z paragraphs wherever an element
Para is expected. Thus, an Object-Z specification in XML format can contain a
mixture of Z and Object-Z constructs, such as:

<Z:ZSect>
<OZ:ClassPara> ... <Z:True/> ... </OZ:ClassPara>

</Z:ZSect>

This process of extending the XML schema can be done multiple times, so
that even a Z extension can be extended. For example, the additional elements
provided by the Object-Z XML schema are further extended by the TCOZ XML
schema. Again, the definitions of the elements for TCOZ are encapsulated into
a TCOZ XML schema file, and the ZML and Object-Z XML schemas do not
need to be modified. Similarly, the Circus extension for CZT is encapsulated
into a Circus XML schema file that extends the main standard Z schema. This
approach of extension via inclusion is explored throughout the different layers of
CZT tools. The resulting net effect is that once one package is finished, it can be
directly extended through inheritance, hence simplifying the task of extending
standard Z to a great extent.

The use of XML in CZT has proved to be an efficient and extensible solution
for representing a Z specification and its extensions. The XML approach helps to
clarify design decisions in a straightforward fashion. This representation is the
key for the integrated development and exchange of information among different
Z tools.

3 Java AST Classes

To manipulate Z Annotated Syntax Trees (AST) within Java (or any other pro-
gramming language), we must convert ZML files into Java objects. This could
easily be done using one of the Java XML reader/writer libraries, such as DOM,
but this would result in a very generic interface to the Java objects — to the
programmer they would appear to be an N-ary tree of Element and Text ob-
jects. This does not accurately reflect Z syntax or semantics, is not elegant, and
is error-prone to use.

Instead, we provide a customised Java interface for each Z construct, with
appropriately named get and set methods for each subcomponent. This makes
programs more readable, and provides much stronger typechecking. However,
there are some situations where the generic N-ary tree view is more convenient
(for example, writing a deep copy procedure), so our Java interfaces also provide
a low-level generic view of each node, via the following two methods:

Object[] getChildren(); // return all children of this node
Term create(Object[] args); // create a new version of this node,

// with the given children.
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Having these two alternative views of each node of the AST gives the best of
both worlds — one can write generic tree traversal algorithms using the above
two methods, as well as readable and type-safe Z-specific syntax manipulations
using the node-specific get and set methods.

In fact, these CZT Java AST interfaces and their implementation classes
are automatically generated from the XML schemas described in the previous
section using our code generator GnAST (GeNerator for AST). The generated
code looks similar to the code produced by Java data binding tools like JAXB5

or Castor6. While the main purpose of a Java binding tool is to provide the
ability to convert from XML format to Java objects and vice versa, the main
purpose of GnAST is to generate well-designed AST classes. For example, the
AST classes generated by GnAST support an extensible variant of the visitor
design pattern [18, 19].

The automatic AST generation from the XML schemas dramatically reduces
the time required to develop a new Z extension, ensures a common style of
interface, and improves maintainability. For instance, the complete AST folder
representing standard Z contains around 420 Java files. GnAST has also been
used to generate AST interfaces and classes for Object-Z, TCOZ, and Circus. In
total, from the four XML schema files for standard Z and its extensions, GnAST
automatically generates around 2300 Java files. This provides a very convenient
and consistent way to obtain AST interfaces and classes for Z extensions that
fit well into the AST for standard Z.

The visitor design pattern [18, 19] makes it very easy to write tools like type-
checkers and printers, which need to traverse an AST. It allows new traversal
operations to be defined without modifying the AST classes. To define a new
operation, all one needs to do is to implement a new visitor class.

The visitor design pattern used in CZT has been described in detail in [2].
It is a variant of the acyclic visitor [20] pattern and the default visitor [21]
pattern. Its additional advantages over the standard visitor pattern are that it
allows the AST interfaces and classes to be extended without affecting existing
visitors, and that it allows a visitor to take advantage of the AST inheritance
relationships. For example, a copy visitor that copies an AST can provide a
default behaviour for Term, the base of the AST inheritance hierarchy. Since
AST classes for extensions also derive from Term, this copy visitor works for any
extension. On the other hand, if the default copy behaviour is not wanted for a
particular extension class, say XYZ, one can simply add a visitXYZ method to
the copy visitor, and that method will be used instead of the default visitTerm
method.

This has a big impact on the applicability of visitors for extensions like
Object-Z, TCOZ, and Circus. Firstly, it ensures that the Z AST classes can be
extended without having to modify existing Z visitors like typechecker, printer,
etc. Secondly, it makes it easy to extend existing visitors to handle Z extensions
— one can simply define a new visitor class which inherits behaviour from an

5 See http://java.sun.com/xml/jaxb/
6 See http://www.castor.org/

http://java.sun.com/xml/jaxb/
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existing Z visitor and adds a few methods for the new or changed language con-
structs. Finally, by defining default behaviours for abstract classes such as Expr
or Decl, it is possible to implement tools that are applicable to all Z extensions.

In conclusion, the CZT AST classes provide:

A Choice of Coding Style: One for generic low-level algorithms and the
other for node-specific high-level algorithms.

Automation: the AST classes are generated automatically by GnAST.
Reuse of Algorithms: The CZT visitor pattern allows AST traversal algo-

rithms to be reused and extended in flexible ways.
Extensibility: the standard Z AST can easily be extended by defining new

XML schemas.

4 Parsers, Scanners, and Related Tools

CZT includes a suite of important tools for operations such as parsing, type-
checking, and markup conversion. In addition to a parser and typechecker for
Z, an Object-Z parser is provided, and Circus and TCOZ parsers, as well as an
Object-Z typechecker, are under development. The Object-Z, TCOZ, and Circus
tools extend the Z tools by adding support for the additional constructs these
languages provide. As each language is an extension of Z, it is tempting to just
keep adding to the tools for each extension, and use the largest superset of all
extensions. For example, use the TCOZ tools to parse and typecheck Z. How-
ever, this has two distinct problems. Firstly, one aim of the CZT project is to
create tools that strongly conform to the Z standard. However, allowing extra
constructs to be parsed and using different type-rules will break the strong con-
formance. Secondly, the extensions of Z are not linear. For example, Object-Z
extends Z with class paragraphs, and TCOZ extends Object-Z with concurrency
operators, but Circus extends neither of these — only Z. Therefore, CZT requires
an approach that produces separate tools for each Z extension, maximises the
commonality between the parsers, and minimises versioning and maintenance
problems via reuse.

4.1 Parsers and Scanners

CZT includes parsers for standard Z specifications given either in Unicode or
LATEX markup. Support for email markup is planned. Java Cup7 is used to gen-
erate the CZT parsers from an LALR grammar, and JFlex8 is used to generate
the scanners.

Unfortunately, it is quite difficult to reuse code from an automatically gen-
erated scanner or parser, and neither Java Cup nor JFlex explicitly supports
inheritance for parser or scanners respectively. To avoid duplicated code, XML
templates that contain the different parser and scanner variants are used. From
this, the different source files for each Z extension are generated using XSLT9,
7 See http://www.cs.princeton.edu/∼appel/modern/java/CUP/
8 See http://jflex.de/
9 See http://www.w3.org/TR/xslt

http://www.cs.princeton.edu/~appel/modern/java/CUP/
http://jflex.de/
http://www.w3.org/TR/xslt
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a language for transforming XML documents. This maximises the commonality
between the parsers and minimises versioning and maintenance problems.

All parser and scanner variants are maintained in master XML files. Each
master file contains several XML tags that are used for substituting text for each
Z extension. For example, the <package/> tag is placed wherever one would nor-
mally write the Java package name, so that each parser and scanner can be con-
tained in their own package. The tags <add:extension> and </add:extension>
are used to wrap around code that are specific to particular Z extensions. Thus,
to add a new type of expression to the Object-Z parser, one would add a new
production to the appropriate grammar rule in the master file, and place it
between the <add:oz> and </add:oz> tags. In other programming languages,
conditional compilation could be used to achieve the same result. However, as
Java does not support conditional compilation, we use the XML template trans-
lation approach.

To generate the individual Java Cup files for each extension of Z, XSLT is
used to include the necessary code, and to substitute in values for tags. For
example, to generate the Object-Z parser, XSLT is applied to the master file,
and supplied with the three arguments below:

1. "class" substituted with "Parser".
2. "package" substituted with "net.sourceforge.czt.parser.oz".
3. code in "oz" tags to be included.

Similar rules are specified for each parser and scanner variants. The result is
a series of Java Cup and JFlex files, one for each language, which can then be
used to generate the parser and scanner code.

The use of XML templates enables parsing code to be reused and easily main-
tained. Extending the parser and scanner for a new language can be done by just
adding the respective grammar and lexer rules together with few modifications
such as those parameters above. For example, we are experimenting the incorpo-
ration of the available Circus parser [22] rules within the flexible CZT framework.
The obvious advantages are the widely tested and supported standard Z classes,
LATEX markup and Unicode, visiting and other facilities.

4.2 Multiple Markups

CZT supports multiple markups for each Z extension. The different markup lan-
guages suit different communities. For example, LATEX is preferred by researchers,
while Unicode WYSIWYG editing might be more attractive for students or in-
dustrial users. At present, Unicode, LATEX, and the XML format are supported.
Adding additional markups is straightforward, as this section will present. XML
markup is not considered any further because it can be parsed immediately using
existing XML parsers. CZT uses JAXB10 to unmarshal an XML document into
a tree of Java objects, and then uses the visitor design pattern to convert this
tree into an AST.
10 See http://java.sun.com/xml/jaxb/

http://java.sun.com/xml/jaxb/
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In order to avoid having to provide a parser for each markup language, all
specifications are first translated into Unicode and subsequently parsed by a
Unicode parser11. This also makes sure that names in the AST are markup in-
dependent: they are represented in Unicode independently on the actual markup
used in the source document. This is a necessary precondition of allowing differ-
ent sections of a specification to be written in different markups. If a parser for a
new markup is required, only a translator to Unicode needs to be implemented.

A consequence of this architecture is that extensions of Z need to support
at least Unicode. CZT provides a Z Unicode scanner, which performs lexical
analysis on a Unicode stream and breaks it into the necessary tokens. A scanner
for a Z extension can be derived by adding additional scanner rules to the CZT
scanner template as described above. In order to support LATEX markup, it is
convenient to provide a LATEX toolkit section for a given extension that defines
new operators for that language. In addition to defining new operators, these
LATEX markup documents contain LATEX markup directives [1, 2] used to specify
how certain LATEX commands are to be converted into Unicode. The LATEX to
Unicode translator parses these definitions and converts each LATEX command
into the corresponding Unicode sequence. However, LATEX \begin{xxx} and
\end{xxx} environments cannot be defined using LATEX markup directives. If
a Z extension needs to provide new LATEX environments, the LATEX to Unicode
converter needs to be adapted directly. Again, this is possible by adding new
rules to the converter template file.

An additional benefit of this approach is that it reduces the number of con-
verters needed between languages. That is, CZT currently implements LATEX to
Unicode and Unicode to LATEX converters. In the future, we plan to implement
an email to Unicode converter to allow parsing of specifications written in email.
Using this and the Unicode to LATEX converter, we could convert email to LATEX.
So, using an intermediate format reduces the number of converter tools that need
to be implemented from M ∗ (M − 1) to 2 ∗ (M − 1), in which M is the number
of markup languages supported.

In conclusion, CZT supports extensions to parser and scanners using:

XML Templates for Code Sharing: XML templates are used to maximise
code reuse for the parser and scanner scripts.

Unicode as an Intermediate Format: Unicode is used as an intermediate
format to simplify the process of writing scanners and reduce the number of
converters needed between markups.

5 Typecheckers

Typecheckers in CZT are written in a different way from the parsers and scan-
ners. Each Z extension has its own typechecker, and while reuse is of high im-
portance, using XML templates is unnecessary because unlike the parsers, Java
interfaces and inheritance can be used to extend the typecheckers.
11 See [2] for a more detailed description of the parser architecture.
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z.TypeChecker

<< interface >>

Visitor

z.Checker

z.ParaChecker z.ExprChecker. . .

6

Fig. 1. UML class diagram for Z Typechecker

The Z typechecker is the base implementation. When a Z specification AST
is passed to this typechecker, it applies all the typechecking rules and, if the
specification is type-correct, it returns TRUE and annotates the original AST
with type information as defined in the ISO standard [1–Section 10]. If the
specification contains type errors, the result is FALSE, the AST is unchanged
and a list of error messages describing the type errors (including their line and
column position) is made available.

Most of the typechecker is written using visitors, which can be extended as
discussed in Section 3. While it is tempting to write the typechecker as one large
visitor, this would create maintenance problems as this visitor would be quite
large and monolithic. So we use a more sophisticated and extensible design,
shown in Fig. 1.

This breaks up the overall task of typechecking into several (currently six)
smaller Checker visitors — each subclass of Checker typechecks a different
kind of syntactic construct such as paragraphs, predicates, expressions, etc. The
Checker class itself defines some shared resources, such as typing environments
and the type unification facilities, as well as common “helper” methods used
throughout the implementation such as error reporting. In addition, each checker
subclass object has a reference back to the top-level TypeChecker object, which
has links to all the checkers — this allows one checker to call another via the
TypeChecker object.

For example, for typechecking a schema text of an AxPara, the ParaChecker
class, which typechecks Z paragraphs, needs to typecheck both the declarations
and the predicate parts of the schema text. Although visiting through the given
AST is the general solution, the typechecking of the declarations part is delegated
to the DeclChecker class, whereas the typechecking of the predicate part is dele-
gated to the PredChecker class. The DeclChecker in turn uses the ExprChecker
to ensure that expressions defining the declaring variables type are well-formed.
Because each of these visitors share the same TypeChecker reference, and hence
the same references to type environments, the declarations added to the type
environment by the DeclChecker will be accessible by the other checkers.
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There are a few additional classes that are used in the typechecker, but not
shown in Fig. 1, such as the UnificationEnv class that performs the unification
of two types for type inference and for checking type consistency.

The advantages of this typechecker design include:

– Methods that are common to all the Checker subclasses can be put in the
Checker superclass. Data that is shared between the checkers can be man-
aged by the Typechecker class and made accessible to the checkers in a
controlled way via access methods.

– Splitting the overall typechecking task into several parts increases modular-
ity and maintainability, and provides better encapsulation for the different
checkers. This aids debugging and allows development of the checkers to
be somewhat independent (for example, assigned to different teams or to
different iterations of an agile lifecycle).

– Each Checker subclass is typechecking similar kinds of nodes (e.g., all ex-
pressions), so can have a uniform visiting protocol, which increases regular-
ity and helps to reduce errors. For example, all the visitor methods of the
ParaChecker class, which typechecks Z paragraphs, return a Signature of
the name and type pairs declared in that Para. In contrast, the ExprChecker
class typechecks expression nodes and all its visitor methods return a Type
with resolved reference parameters in which type unification has already
been performed.

– By defining several Checker subclasses over the same kinds of AST nodes,
it becomes easy to have multiple algorithms over the same syntax nodes.
For example, post-checking for unresolved set and reference expressions,
which may introduce an unresolved type, is implemented as a second kind of
ExprChecker. This post-typechecking pass ensures that all implicit param-
eters such as generics actuals have been completely determined. This would
not be possible with a single monolithic visitor design, because one could
not have two visitRefExpr methods in the same visitor.

Fig. 2 shows how this design is extended to define a typechecker for a Z ex-
tension — Object-Z in this case. A new package (oz) is created for the Object-Z
typechecker. In this package, a new oz.Checker class is implemented, which
inherits the base z.Checker class. In this new class, any common methods
that are to be used by the Object-Z typechecker are implemented, and exist-
ing methods are overridden or overloaded if additional functionality is needed.
Then, new Checker subclasses are created, one for each kind of language en-
tity that requires Object-Z-specific typechecking. Each of these checkers (the
oz.XXXXChecker subclasses in Fig. 2) implement the visitor methods only for
Object-Z constructs and for any Z constructs that require additional Object-Z-
specific checking. The remaining standard Z constructs are handled by delegation
to the original z.XXXXChecker object.

It is interesting to see how this delegation is achieved, given that Java does
not support multiple inheritance. We rely on the general visiting protocol de-
scribed in Section 3 and in [2]. For example, the oz.ExprChecker class catches
all Object-Z-specific expressions. It also implements an additional visitExpr



CZT Support for Z Extensions 237

z.ExprCheckerz.ParaChecker

z.Checker

<< interface >>

Visitor

z.TypeChecker
6

oz.TypeChecker oz.Checker

oz.ParaChecker oz.ExprCheckeroz.OpExprChecker

7 . . .

. . .

Fig. 2. UML class diagram for Object-Z Typechecker

method which “catches” all remaining Expr AST nodes and uses the visitor
from z.ExprChecker to check those nodes.

private z.ExprChecker zExprChecker_;
...
public Object visitExpr(Expr expr) {
return expr.accept(zExprChecker_);

}

The Z typechecker has a reference to a z.ExprChecker object, but in the
Object-Z typechecker, this points to an oz.ExprChecker instead. When an
Object-Z expression is typechecked, it is handled directly by the oz.ExprChecker
instance. When a standard Z expression is typechecked, the above visitExpr
method is called, delegating the typechecking to an instance of z.ExprChecker.
Any subexpressions of the Z expression are passed back to the top-level typechec-
ker, which uses the oz.ExprChecker instance, to ensure that Object-Z subex-
pressions are checked correctly.

This also allows type-rules to be overridden. For example, a selection expres-
sion, a.b, in standard Z requires that a is a schema binding, whereas in Object-Z,
a can also be an object. The ExprChecker in the Object-Z implements the visit
method for such expressions, and this method first checks if a is an object, and
if not, delegates the call to the Z typechecker.

Although this is an unusual design, it has proven to provide good and el-
egant support for extension. An alternative approach that we considered was
for the Object-Z checkers to directly subclass the Z checker subclasses (e.g.,
oz.ParaChecker to inherit z.ParaChecker). However, this would have meant
that the common code implemented in the current oz.Checker class would have
had to have been implemented in the base Checker class, which would have
resulted in an undesirable strong coupling between all of the typecheckers.
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Other components are extended using inheritance. For example, the class
UnificationEnv, which is responsible for type unification, is extended by over-
riding its unify method to handle the new Object-Z types, while using the
superclass’s unify method for standard Z types.

Our experience is that the above extensible typechecker design makes it much
easier to build multi-lingual typecheckers. That is, a family of typechecker objects
for Z and various extensions of Z. For example, a static checker for Circus that
checks some context-sensitive rules such as variable and action declaration scope
has been developed following the guidelines for Z and Object-Z typecheckers.
This took only three to four days to develop and the task was made significantly
easier because of the code reuse and elegant object-oriented design of the CZT
typechecker. The information collected by this static checker is being used as
an initial environment for the Circus operational semantics [23]. In the future,
this static checker can also be used as the basis for a full Circus typechecker; the
type-rules for Circus are under development in [24]. An obvious advantage of
reusing the base Z typechecker is that the Circus typechecker will already enforce
standard Z typechecking conformance. Therefore, one can concentrate on the
implementation of new type-rules for Circus in this available skeleton for a Circus
typechecker.

In conclusion, CZT supports extendibility in its typecheckers by:

Using Multiple Visitors: A separate visitor is used for each group of type-
rules; this provides a straightforward way to implement type-rules for new
constructs (by adding new visitors), or override existing type-rules (by sub-
classing existing visitors).

Sharing Common Code via Inheritance and Delegation: Methods used
throughout the typechecker are shared in several abstract super classes that
are reused via both inheritance and delegation.

Sharing Resources: The TypeChecker class is used by visitors to provide ac-
cess to common resources and to other visitors.

6 Animation

Further to parsing and typechecking standard Z and its extensions, CZT also
provides animation facilities with its ZLive tool. Z animation is particularly
useful for testing, rapid prototyping, and experimenting with specifications. In
addition, given suitable restrictions to finite state models, an animator can be
used for finite theorem proving (or theorem testing), and model checking. An ex-
tensive discussion and comparison of Z animation tools available is given in [25].

6.1 Extending ZLive

ZLive is an animator capable of evaluating predicates and expressions using mode
analysis [26]. Mode analysis consists of including additional (type and formulae
ordering) information not present in specifications, which enable evaluation and
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animation. The architecture of ZLive is an evolution of a previous Z animator
implemented in Haskell12.

The ZLive architecture is divided into six tasks. Firstly, a target expres-
sion is given. Secondly, the definitions are unfolded so that schema inclusions
are grounded to base terms. Next, the unfolded definitions are flattened into
a normal form of atomic predicates. After that, possible evaluation modes are
calculated for each flatten predicate. These moded-predicates are then reordered
according to the cheapest solution order in terms of number of solutions. Finally,
all solutions are lazily enumerated as requested.

ZLive currently supports basic logic and arithmetic operators (e.g., ∀, ∃, ¬,
∧, −, +, ∗, ≤, <, div, mod, succ), set representations (comprehension, ranges,
and displays), unfolding of simple definitions, tuples, and schema bindings. For
efficient execution, the main issue is to find a good reordering of atomic pred-
icates which minimises the expected enumeration time. Currently ZLive uses a
naive algorithm for this, but in the future we expect to implement a best-first
or A∗ path-finding algorithm.

It is desirable to provide animation facilities for Z extensions as well as for
standard Z. To extend ZLive to animate a new Z extension, there are three
possible approaches:

Explicit Inclusion: Animation support for each new language construct, in-
cluding any new evaluation algorithms, is directly added to ZLive by adding
new Java classes and methods. This would use interfaces, inheritance and
visitors to achieve an extensible architecture, similar to the CZT typechecker.

Transformation to Standard Z: If each new construct of the Z extension can
be transformed back into standard Z using rewriting rules, then ZLive can be
used directly on the result of that translation. This approach is being used
to develop an Object-Z animator, with Object-Z objects being transformed
into Z bindings, etc. This approach of rewriting specifications is similar to
the Z refinement calculus [27, 13].

Meta-Level Animation: If the operational semantics of the new language can
be given in standard Z, one can use ZLive directly to animate the new Z
extension by animating its operational semantics. Although this is a meta-
level approach to execution, which usually results in very slow performance,
the performance impact should be less in this case, because any standard Z
constructs within the Z extension can animated efficiently and directly by
ZLive. That is, only the new constructs have to be animated by the slower,
meta-level approach. This approach is taken for animating the operational
semantics of Circus [23].

Depending on the new language constructs to be animated, these possibilities
can be combined.

12 See http://www.cs.waikato.ac.nz/∼marku/jaza/

http://www.cs.waikato.ac.nz/~marku/jaza/
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6.2 Extension Example: Animating Circus

We are currently experimenting using ZLive within the development of a model
checker for Circus [28]. Among other aspects, we are particularly interested in
integration of model checking and theorem proving facilities for Circus. In this
direction, animation plays an important part in the evaluation of Z terms used
to describe state aspects of dependable and distributed systems.

The Circus model checker architecture is divided into four main tasks as
shown in Fig. 3. The first two involve parsing a Circus specification in LATEX
to produce an CZT AST, and typechecking to produce an annotated AST+.
They use the CZT parser and typechecker described in earlier sections. The
last two stages involve compilation and refinement search. From the annotated
AST+ the compiler builds a Predicate Transition System (PTS) that finitely
represent (possibly infinite specifications) base on the operational semantics of
Circus [23]. Both the PTS and the AST+ are given to the model checker engine
that integrates refinement model checking algorithms [29, 30] together with the-
orem proving and debugging functionalities13. The result is a (possibly empty)
set of witnesses representing failed refinement conditions. More details of this
architecture can be found in [28].

Circus Model-checker

Parsing
Contextual
Analysis

Compilation
Model

Checking

AST AST+ AST+

PTS

P(Witness)LaTeX

Fig. 3. Circus Model Checking Stages

In this architecture, ZLive is used from two different perspectives: (i) to
animate the Z part of Circus specifications, and (ii) to evaluate the operational
semantics of Circus given in Z, while performing the model checking search.

To implement the first perspective, we are extending ZLive via direct in-
clusion of several Z constructs (like θ and some schema operators) that are
frequently used in Circus specifications but not yet implemented by ZLive. To
implement the second perspective, we are using the meta-level animation ap-
proach to animate the operational semantics of the CSP parts of Circus.

The transformation to standard Z approach could also be used to animate
the CSP parts of Circus. To have confidence in the correctness of this approach,
it would be desirable to have correctness proofs for the rewriting laws. As Circus
is heavily based on the notion of stepwise refinement, this transformation ap-
proach would fit nicely with the philosophy of Circus. Work in this direction of
a refinement calculus for Circus is under development [31]. It also includes the
basis for a Circus theorem prover [32].

The theorem proving module in the Circus model checker (which is used
both in the compiler and refinement engine), dispatches requests for evaluation
13 See http://www.cs.york.ac.uk/circus/model-checker

http://www.cs.york.ac.uk/circus/model-checker
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of Z expressions and predicates. These are either verification conditions over the
state operations defined in Z, or possible enabling paths available for investi-
gation from the behavioural actions given using CSP. They are both given as
standard Z statements from the operational semantics of Circus. At this point,
theorem proving is usually necessary to discharge proof obligations, and trans-
form expressions or predicates. Nevertheless, for specifications with simple state
operations, animation is also a good idea that could improve the automation
levels of the model checking process.

The role ZLive plays in this scenario is to tackle the requests to evaluate Z
expressions and predicates from the theorem proving module within the com-
piler and refinement engine. As the operational semantics of Circus is given in Z
itself, we can use ZLive as a meta-level animator for simple specifications, hence
enabling automatic model checking of state-rich Circus specifications.

With a few improvements and extensions to the current implementation of
the schema calculus in ZLive, it should be possible to automatically model check
simple-state Circus specifications within ZLive. Furthermore, as the theorem
proving integration architecture of the Circus model checker allows pluggable
solutions suitable for individual contexts, if ZLive cannot handle some complex
Circus specifications, we can still resort to some alternative solution such as SAT
solvers, and general-purpose theorem provers.

These Circus tools, some of which are currently under development, give some
good examples of how to integrate different CZT tools across different notations
and tool boundaries, from standard Z parsing through to extended typechecking
and animation for Circus.

7 Specification Manager

One of the core components of the CZT framework is the specification man-
ager, which is an extensible repository for formal methods objects. Most of
the tools mentioned in the previous sections use the specification manager to
enquire about specific aspects of a specification. For example, to be able to
parse a Z section, the Z parser needs the operator definitions of the parent sec-
tions. In order to typecheck a Z section, the section must be parsed and the
parents of that section typechecked. To print a Z section in LATEX markup,
the operator definitions and LATEX markup directives of the parent sections are
needed.

While it would be possible to hard-code these dependencies and let, for ex-
ample, the LATEX markup printer call the parser for the parent sections directly,
it is more convenient, extensible, and efficient to have a central repository that
is responsible for this task. The CZT specification manager caches information
about all the specifications and Z sections that are being processed and auto-
matically runs tools such as markup converters, parsers and typecheckers when
necessary. The caching of the parsed form of commonly used objects, such as
standard toolkit sections, avoids repeated parsing and analysis of these objects
and can give significant performance improvements.
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Abstractly, the cache is a mapping from a key to the actual data. The key is
a (String, Class) pair, where the String is usually the name of the section,
and the Class is the Java class of the type of data associated with this key. This
allows several different kinds of objects to be associated with one section, and
provides some dynamic type security. For example, the Z parser adds the AST
of a specification it has parsed to the specification manager. The type of a Z
section in Java is ZSect.class. Thus the AST for a section called foo is cached
under the key (‘‘foo’’, ZSect.class).

The CZT specification manager supports two important kinds of extensibility:

Type Extensibility: Z extensions can easily use the specification manager to
store new types of information, since the flexible (String, Class) key
system allows arbitrary Java objects to be stored and retrieved. That is,
the kinds of objects managed by the specification manager are open-ended,
rather than being a fixed set of Z-related objects.

Command Extensibility: A Z extension can easily add or override the de-
fault commands of the specification manager. The default commands of the
specification manager are responsible for automatically computing requested
objects; they are implemented using the command design pattern [18]. For
example, if the AST for section foo (i.e., data of type ZSect.class) is
required and has not already been cached, the Z parser is called by the spec-
ification manager in order to parse the specification file containing section
foo. Here, the Z parser is the default command to compute data of type
ZSect.class. A Z extension that needs to use a different parser can sim-
ply override the default command associated with the type ZSect.class.
For example, the specification manager can be configured to always use the
Object-Z parser.

A major advantage of this default command approach is that it simplifies
tool development and makes tools more flexible, because a particular tool does
not have to know which other tools to use in order to find information about a
section — it simply requests the key that it wants and the specification manager
will locate the information if it is able. This gives a more flexible, plugin style
of tool development.

8 Related Work

Integrated formal methods frameworks have been investigated in the past. An-
derson et al. [33] discuss a framework for integrating different formal methods
tools. However, their aim is to specify generic interfaces to support integration of
formal methods tools. Three types of interfaces are used: between the engineer
and the tools; between cooperating tools; and between the tools and the project
environment. They achieve this by using an Encapsulation Toolkit to allow a
formal methods tool to communicate with other components in an intermediate
format, and an Active Document Toolkit to allow communication between tools
and their human users. The goals of this project are different to CZT, which
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aims to provide components for Z tools that can be extended and integrated
into the project or other tools.

Brillant14 is an open-source project with similar aims to CZT, but for the
B method. It aims to integrate several existing projects (BCaml, jBTools and
ABTools), which all contain parsers and typecheckers for various dialects of B.
Brillant is an approach to integrating these tools in a loosely-coupled style, with
tools being written in several different languages (OCaml, Java and XSLT) and
communicating via a common XML format for B machines. Brillant includes a
translator from UML to B, plus some experimental B extensions (Event B and
a real-time extension of B based on the duration calculus), but the extensions
seem to be designed on an individual basis, rather than being tightly integrated
extensions of a core architecture like in CZT. The extensible architecture of CZT,
and of course, the consistent use of Java for writing the tools, enables a higher
degree of reuse.

Other formal methods toolkits exist, such as the RODIN project15 for the B
specification language, and the Overture toolset16 for VDM, but they focus on
providing specific tool support for their respective languages, whereas CZT aims
to provide extensible components that can also be used by other tools.

Projects such as Eclipse17 and UQ* 18 are projects aimed at providing generic
language-based environments for software development. However, these projects
are not tailored towards formal methods, and provide support for generic lan-
guages, leaving the development of parsers, typecheckers, and other language-
specific tools up to users who want such support. CZT is exactly the opposite of
this, in that it focuses only Z and various Z extensions, allowing specific compo-
nents, such as parsers and typecheckers, to be included within the framework.
Therefore, CZT could be integrated into the Eclipse or UQ* environments.

9 Conclusions and Future Work

In this paper, we have presented a variety of reuse and extensibility mechanisms
that makes the CZT framework an ideal starting point to develop new integrated
formal methods tools for Z and its extensions. We have shown how the XML
schemas for Z, and for extensions of Z, support reuse and extension of the Z
language. They also enable automatic generation of Java AST classes with two
levels of interface, and a consistent implementation of the CZT visitor pattern.

Using examples from Object-Z, TCOZ, and Circus, we have discussed sev-
eral practical strategies and techniques that allow the CZT tools like parsers,
typecheckers, and animators developed for standard Z to be reused within these
Z extensions in a way that minimises code duplication and maintenance. The

14 See https://gna.org/projects/brillant.
15 See http://rodin-b-sharp.sourceforge.net/.
16 See http://www.overturetool.org/.
17 See http://www.eclipse.org/.
18 See http://www.itee.uq.edu.au/∼uqstar/.

https://gna.org/projects/brillant
http://rodin-b-sharp.sourceforge.net/
http://www.overturetool.org/
http://www.eclipse.org/
http://www.itee.uq.edu.au/~uqstar/
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strategies and techniques presented can also help developers of integrated formal
methods tools not based on Z to make their framework as extensible as possible.

We plan to develop additional tools for Z and its extensions, as well as ex-
tending the CZT framework itself. For instance, extensions of ZLive providing
Object-Z constructs, schema unfolding, predicate reordering, rewriting rules, and
a tactic language in the spirit of ANGEL [34] are on our agenda. These improve-
ments would enable a basis for an extensible theorem prover for standard Z and
its extensions that is open-source and cross-platform.

Z parsing and typechecking is neither a novel idea, nor a unavailable resource.
Nevertheless, flexible and integrated open-source support for ISO standard Z
heavily focused on strong conformance and extensibility has not previously been
available. The philosophy CZT advocates is simple: provide an open-
source framework with a set of tools for editing, parsing, typechecking
and animating formal specifications written in Z, with support for
Z extensions. As new extensions are included and the framework matures,
we expect it to become the common base for a growing number of strongly
conforming tools for Z and its extensions.
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