

Lecture Notes in Computer Science 3771
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Judi Romijn Graeme Smith
Jaco van de Pol (Eds.)

Integrated
Formal Methods

5th International Conference, IFM 2005
Eindhoven, The Netherlands
November 29 – December 2, 2005
Proceedings

13

Volume Editors

J.M.T. Romijn
Eindhoven University of Technology, Computing Science Department
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
E-mail: jromijn@win.tue.nl

G.P. Smith
The University of Queensland
School of Information Technology and Electrical Engineering
4072 Australia
E-mail: smith@itee.uq.edu.au

J.C. van de Pol
Centre for Mathematics and Computer Science (CWI)
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
E-mail: Jaco.van.de.Pol@cwi.nl

Library of Congress Control Number: 2005935883

CR Subject Classification (1998): F.3, D.3, D.2, D.1

ISSN 0302-9743
ISBN-10 3-540-30492-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30492-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11589976 06/3142 5 4 3 2 1 0

Preface

This is the 5th edition of the International Conference on Integrated Formal
Methods (IFM). Previous IFM conferences were held in York (June 1999), Dag-
stuhl (November 2000), Turku (May 2002) and Canterbury (April 2004). This
year’s IFM was held in December 2005 on the campus of the Technische Univer-
siteit Eindhoven in The Netherlands.

This year IFM received 40 submissions, from which 19 high-quality papers
were selected by the Program Committee. Besides these, the proceedings contain
invited contributions by Patrice Godefroid, David Parnas and Doron Peled.

It was 10 years ago that Jonathan P. Bowen and Michael G. Hinchey pub-
lished their famous Ten Commandments of Formal Methods in IEEE Computer
28(4). Their very first commandment — Thou shalt choose an appropriate no-
tation — touches the heart of the IFM theme: Complex systems have different
aspects, and each aspect requires its own appropriate notation.

Classical examples of models for various aspects are: state based notations
and algebraic data types for data, process algebras and temporal logics for behav-
ior, duration calculus and timed automata for timing aspects, etc. The central
question is how the models of different notations relate. Recently, Bowen and
Hinchey presented their Ten Commandments Revisited (in: ACM proceedings of
the 10th International Workshop on Formal Methods for Industrial Critical Sys-
tems). They distinghuish variations in combining notations, ranging from loosely
coupled viewpoints to integrated methods.

The loosely coupled viewpoints are quite popular (cf. the success of UML) and
are easy to adopt in a leightweight process. They could be useful for specifying
and analyzing isolated system aspects. However, the main advantage of formal
methods — being able to specify and verify the correctness of complete systems
— is lost.

In order to specify and verify complete systems, an integrated approach is
inescapable. Integrated methods provide an underlying concept, a semantic in-
tegration of models, an integrated methodology and integrated verification al-
gorithms. The added value is that questions regarding inter-model consistency,
completeness and correctness of implementations become meaningful and can be
answered effectively. Bowen and Hinchey acknowledge this as the central theme
of the series of IFM conferences.

These proceedings contain new insights in the field of integrated formal meth-
ods. The various papers contribute to integration at notational, semantic and
tool level. We hope that the reader will find inspiring material and useful knowl-
edge. Ultimately, we hope that the field contributes to more reliable software
and hardware systems, constructed with less effort.

We would like to thank all PC members and all anonymous referees for their
excellent and timely job in assessing the quality of the submitted papers. We

VI Preface

also thank the invited speakers for their contributions. We are grateful to Hol-
ger Hermanns for his invited tutorial on QoS modelling and analysis for em-
bedded systems. Finally, we thank our home institutes Technische Universiteit
Eindhoven, University of Queensland and CWI for their support.

September 2005 Judi Romijn, Graeme Smith, Jaco van de Pol

Program Committee

Didier Bert (France)
Eerke Boiten (UK)
Jonathan Bowen (UK)
Michael Butler (UK)
Paul Curzon (UK)
Jim Davies (UK)
John Derrick (UK)
Steve Dunne (UK)
Jin Song Dong (Singapore)
Andy Galloway (UK)
Chris George (Macau, SAR China)
Wolfgang Grieskamp (USA)
Henri Habrias (France)
Maritta Heisel (Germany)
Soon-Kyeong Kim (Australia)
Michel Lemoine (France)
Shaoying Liu (Japan)
Dominique Mery (France)
Stephan Merz (France)

Richard Paige (UK)
Luigia Petre (Finland)
Jaco van de Pol

(Co-chair, The Netherlands)
Judi Romijn

(Co-chair, The Netherlands)
Thomas Santen (Germany)
Steve Schneider (UK)
Wolfram Schulte (USA)
Kaisa Sere (Finland)
Jane Sinclair (UK)
Graeme Smith

(Co-chair, Australia)
Bill Stoddart (UK)
Kenji Taguchi (Japan)
Helen Treharne (UK)
Heike Wehrheim (Germany)
Kirsten Winter (Australia)
Jim Woodcock (UK)

Sponsors

We thank NWO and FME for sponsoring the invited lectures, IPA for sponsoring
the welcome reception, and BCS-FACS for sponsoring the best paper awards.

External Referees

Besides the Program Committee members, several external anonymous referees
read the submitted papers. Without their help, the conference would have been
of a lesser quality. The following is a list, to the best of our knowledge, of external
referees.

Preface VII

Bernhard Aichernig
Pascal André
Victor Bos
Chunqing Chen
Neil Evans
David Faitelson
Lars Grunske
Ping Hao

Bart Jacobs
Hironobu Kuruma
Alistair McEwan
Sotiris Moschoyiannis
Stephane Lo Presti
Ivan Porres Paltor
Jean-Claude Reynaud
Rimvydas Ruksenas

Colin Snook
Yasuyuki Tahara
Nikolai Tillmann
Leonidas Tsiopoulos
G. Vidal-Naquet
James Welch
Hirokazu Yatsu

Table of Contents

Invited Papers

A Family of Mathematical Methods for Professional Software
Documentation

David Lorge Parnas . 1

Generating Path Conditions for Timed Systems
Saddek Bensalem, Doron Peled, Hongyang Qu,
Stavros Tripakis . 5

Software Model Checking: Searching for Computations in the Abstract
or the Concrete

Patrice Godefroid, Nils Klarlund . 20

Session: Components

Adaptive Techniques for Specification Matching in Embedded Systems:
A Comparative Study

Robi Malik, Partha S. Roop . 33

Session: State/Event-Based Verification

State/Event Software Verification for Branching-Time Specifications
Sagar Chaki, Edmund Clarke, Orna Grumberg, Joël Ouaknine,
Natasha Sharygina, Tayssir Touili, Helmut Veith 53

Exp.Open 2.0: A Flexible Tool Integrating Partial Order,
Compositional, and On-The-Fly Verification Methods

Frédéric Lang . 70

Chunks: Component Verification in CSP‖B
Steve Schneider, Helen Treharne, Neil Evans . 89

Session: System Development

Agile Formal Method Engineering
Richard F. Paige, Phillip J. Brooke . 109

X Table of Contents

An Automated Failure Mode and Effect Analysis Based on High-Level
Design Specification with Behavior Trees

Lars Grunske, Peter Lindsay, Nisansala Yatapanage,
Kirsten Winter . 129

Enabling Security Testing from Specification to Code
Shane Bracher, Padmanabhan Krishnan . 150

Session: Applications of B

Development of Fault Tolerant Grid Applications Using
Distributed B

Pontus Boström, Marina Waldén . 167

Formal Methods Meet Domain Specific Languages
Jean-Paul Bodeveix, Mamoun Filali, Julia Lawall,
Gilles Muller . 187

Synthesizing B Specifications from eb3 Attribute Definitions
Frédéric Gervais, Marc Frappier, Régine Laleau 207

Session: Tool Support

CZT Support for Z Extensions
Tim Miller, Leo Freitas, Petra Malik, Mark Utting 227

Embedding the Stable Failures Model of CSP in PVS
Kun Wei, James Heather . 246

Model-Based Prototyping of an Interoperability Protocol for Mobile
Ad-Hoc Networks

Lars M. Kristensen, Michael Westergaard,
Peder Christian Nørgaard . 266

Session: Non-software Domains

Translating Hardware Process Algebras into Standard Process
Algebras: Illustration with CHP and LOTOS

Gwen Salaün, Wendelin Serwe . 287

Formalising Interactive Voice Services with SDL
Kenneth J. Turner . 307

Table of Contents XI

Session: Semantics

A Fixpoint Semantics of Event Systems With and Without Fairness
Assumptions

Héctor Rúız Barradas, Didier Bert . 327

Session: UML and Statecharts

Consistency Checking of Sequence Diagrams and Statechart Diagrams
Using the π-Calculus

Vitus S.W. Lam, Julian Padget . 347

An Integrated Framework for Scenarios and State Machines
Bikram Sengupta, Rance Cleaveland . 366

Consistency in UML and B Multi-view Specifications
Dieu Donné Okalas Ossami, Jean-Pierre Jacquot,
Jeanine Souquières . 386

Author Index . 407

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 1 – 4, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Family of Mathematical Methods for Professional
Software Documentation

David Lorge Parnas

Software Quality Research Laboratory (SQRL),
Department of Computer Science and Information Systems,

Faculty of Informatics and Electronics,
University of Limerick, Limerick, Ireland

1 Introduction

The movement to integrate mathematically based software development methods is a
predictable response to the fact that none of the many methods available seems
sufficient to do the whole job (whatever that may be) on its own. This talk argues that
integrating separately developed methods is not the most fruitful possible approach.
Instead we propose a family of methods, based on a common model, designed to be
complementary and mutually supportive.

The method family being developed at the Software Quality Research Lab at the
University of Limerick is characterised by two major decisions:

 Software developers must prepare and maintain a set of documents whose content
(not format) is specified by the relational model presented in [3].

 The relations are represented using mathematical expressions in tabular form. [5].

This talk will motivate these decisions, describe the model, illustrate the concept of
tabular expressions, and discuss the uses of such documents in software development.

2 Why We Need Better Software Development Documentation

Software has its, well earned, bad reputation in large part because developers do not
provide an appropriate set of design documentation. When developers are trying to
extend, correct, or interface with a piece of software, they need detailed information
that is both precise and correct. This information is usually hard to find, missing,
imprecisely expressed, or simply wrong. Some developers estimate that they spend
80% of their time seeking information about existing software. When they don’t have
an interface description, they often use implementation information that is subject to
change. The result is software in which small changes have surprising effects.

Engineers who design physical products are taught how to use mathematics to
specify properties of their products and analyse their designs. Software developers
simply do not know how to do that and their managers do not expect them to do it. In
fact, the profession doesn’t know how to do it. Finding ways to use mathematics to
produce precise, well-organized development documentation should be a major
research effort.

2 D.L. Parnas

3 Why Models are not Generally Descriptions

It has become fashionable to propose the use of “model based development” (MBT)
to solve some of these problems. Formal looking1 models are prepared to express
design decisions. Unfortunately, these models do not constitute documentation; to
understand why, it is important to distinguish between descriptions, specifications,
and models.

 A description of a product provides accurate information about that product.
 A specification is a description that states all of the requirements but contains no

other information.
 A model has some of the properties of the product-of-interest but may also have

properties that differ from those of the product. Some models are themselves
products, but here we are concerned primarily with mathematical models.

We use the word “document” to mean either a specification or another description.
It is important to note that the above are statements of intent, most attempts at

descriptions are not completely accurate and it is very difficult to write a complete
specification (using any method).

 A description of a product provides information about that product. A single
description need not be complete; we can use a collection of descriptions.
However, everything that the description states must be true of the product, else
the description is wrong. A description is only useful if it is easier to derive
information from the description than to derive it from the product itself.

 If a specification is correct but not an accurate description of a product, it is the
product that is wrong. If the specification is true of a product, but the product is not
satisfactory, the specification must be wrong (either inaccurate or just incomplete).
If the specification is not true of a product, but the product is satisfactory, the
specification is deficient (either an overspecification or incorrect).

 A model is something with some of the properties of a product; however, not all
of the model’s properties need be true of the product itself. A model may not be a
specification or a description. Models are potentially dangerous because one can
derive information from a model that is not true of the product. All information
that is based on a model must be taken “with a grain of salt”.

4 No New Mathematics

For the work described in the remainder of the talk, there is no new mathematics; we
have merely found new ways to apply classical mathematical concepts. This is
common in Engineering research.

The logic used is very close to the classical logic presented in textbooks. Our only
deviation from the most basic logic is that the meaning of predicates involving partial
functions is fully defined (predicates are total). [2]

We make heavy use of the concepts of function (including functions of time) and
relation. We represent functions in the traditional way, using mathematical expressions.

1 The meaning of these models is often not precisely defined.

 A Family of Mathematical Methods for Professional Software Documentation 3

Relations that are not functions are represented by giving the characteristic predicate of
the set of ordered pairs, again using a mathematical expression. The use of the
relational model in [3] is the most basic innovation in our work.

The only mathematics that may appear new is our use of a multi-dimensional
format for expression, which we call tabular expressions. These are no more
“powerful” than traditional expressions; in fact, we define their meaning by telling
how to construct an equivalent traditional expression. The advantage is purely
notational; For the class of functions/relations of interest to us, the tabular form of the
expression is usually easier to construct, check and read. The talk provides numerous
illustrations of this notation.

5 Need for Document Definitions

When industrial developers take the time to write a basic document such as a
requirements document, there are often debates about what should be in it. While,
there is a plethora of standards in the software field, those standards detail format and
structure but not contents. As a result, even documents that satisfy standards, usually
lack essential information. The standards provide no way of saying that a document is
complete. When we had produced the first such [1], there was widespread agreement
that it was an unusually useful document, but strong disagreement about which
standard it satisfied. In contrast, many documents that fully satisfied the standards that
were in place were not found useful because they did not contain essential
information.

In [1] we have proposed definitions of the following documents:

1. “System Requirements Document”- Treats computer systems as “black-box”.
2. “System Design Document”- Describes computers and communication.
3. “Software Requirements Document” - Describes required software behaviour
4. “Software Function Specification”: Describes actual software behaviour.
5. “Software Module Guide”: How to find your module. (informal document).
6. “Module Interface Specifications”: Treats each module as black-box.
7. “Uses Relation Document”: Range and domain comprise module programs.
8. “Module Internal Design Documents”: Describe data structure and programs.

For each of the above except 5, which is informal, we have stated what variables
should be defined in the document and what relations must be represented/defined by
the document. These definitions provide an unambiguous basis for deciding what
should be contained in a document. Documents may still be incomplete, but we can
identify the missing information and check for important properties.

6 Tabular Notation

Although conventional mathematical notation is capable of describing the functions
and relations called for by our definitions, many find those expressions very hard to
parse. Documents written using conventional notation are precise but difficult to
review and not very useful as reference documents. This is because the nature of the

4 D.L. Parnas

functions that we encounter in software. Traditional engineering mathematics stresses
functions that are continuous and differentiable. With digital computers we implement
functions that approximate piecewise-continuous functions. Through experience we
have discovered that multi-dimensional forms of expressions are well suited to this
class of functions. Many practical applications have shown that tabular expressions
are better accepted, more easily prepared, more easily checked, and more useful than
the conventional expressions that they replace. Of course, conventional expressions
are still essential: (1) the innermost cells of a tabular expression always contain
conventional expressions and (2) our new approach to defining the meaning of these
expressions shows how to transform it to an equivalent conventional expression.

The last point is important. Many who see these expressions find them simpler and
easier to read than “formal method” examples and assume that they are somehow less
formal than other methods. Formality need not mean “hard to read”. Tabular
expressions are just as formal as the conventional expressions that they replace.

7 Practical Advantages of Mathematics

The fact that our documents are based on conventional mathematics has a great many
practical advantages. It allows us to use existing theorem proving programs to check
tables for consistency and completeness, to use computer algebra systems to
transform and simplify documents, to evaluate expressions when simulating
something that we have specified, to generate test oracles from specifications, and to
generate test cases based on black box documents. We have also found these
documents extremely valuable for inspecting critical software. [4]

8 Future Work

Based on our new, much more general (yet simpler) definition of tabular expressions,
we are building a new generation of tools to support the use of this approach.

References

[1] Heninger, K., Kallander, J., Parnas, D.L., Shore, J., “Software Requirements for the A-7E
Aircraft”, NRL Report 3876, November 1978, 523 pgs.

[2] Parnas, D.L., “Predicate Logic for Software Engineering”, IEEE Transactions on Software
Engineering, Vol. 19, No. 9, September 1993, pp. 856 - 862 Reprinted as Chapter 3 in [6]

[3] Parnas, D.L., Madey, J., “Functional Documentation for Computer Systems Engineering”
Science of Computer Programming (Elsevier) vol. 25, no. 1, Oct. 1995, pp 41-61

[4] Parnas, D.L. “Inspection of Safety Critical Software using Function Tables”, Proceedings
of IFIP World Congress 1994, Volume III’’ August 1994, pp. 270 - 277. Also Ch. 19 in [6]

[5] Janicki, R., Parnas, D.L., Zucker, J., “Tabular Representations in Relational Documents”,
Chapter 12 in “Relational Methods in Computer Science”, Ed. C. Brink and G. Schmidt.
Springer Verlag, pp. 184 - 196, 1997, ISBN 3-211-82971-7. Reprinted as Chapter 4 in [6].

[6] Hoffman, D.M., Weiss, D.M. (eds.), “Software Fundamentals: Collected Papers by David
L. Parnas”, Addison-Wesley, 2001, 664 pgs., ISBN 0-201-70369-6.

Generating Path Conditions for Timed Systems

Saddek Bensalem1, Doron Peled2,�, Hongyang Qu2, and Stavros Tripakis1

1 Verimag, 2 Avenue de Vignate, 38610 Gieres, France
2 Department of Computer Science, University of Warwick,

Coventry, CV4 7AL United Kingdom

Abstract. We provide an automatic method for calculating the path
condition for programs with real time constraints. This method can be
used for the semiautomatic verification of a unit of code in isolation, i.e.,
without providing the exact values of parameters with which it is called.
Our method can also be used for the automatic generation of test cases
for unit testing. The current generalization of the calculation of path
condition for the timed case turns out to be quite tricky, since not only
the selected path contributes to the path condition, but also the timing
constraints of alternative choices in the code.

1 Introduction

Software testing often involves the use of informal intuition and reasoning. But
it is possible to employ some formal methods techniques and provide tools to
support it. Such tools can help in translating the informal ideas and intuition
into formal specification, assist in searching the code, support the process of
inspecting it and help analyzing the results. A tester may have a vague idea where
problems in the code may occur. The generation of a condition for a generated
suspicious sequence may help the tester to confirm or refute such a suspicion.
Such a condition relates the variables at the beginning of the sequence. Starting
the execution with values satisfying this condition is necessary to recreate the
execution.

We generalize the calculation of a path condition, taking into account only
the essential conditions to follow a particular path in the execution. We start
with a given path merely from practical consideration; it is simpler to choose a
sequence of program statements to execute. However, we look at the essential
partial order, which is consistent with the real-time constraints, rather than at
the total order. We cannot assume that transitions must follow each other, unless
this order stems from some sequentiality constraints such as transitions belonging
to the same process or using the same variable or from timing constraints.

For untimed systems, there is no difference between the condition for the
partial order execution and the condition to execute any of the sequences (lin-
earizations) consistent with it. Because of commutativity between concurrently
� This research was partially supported by Subcontract UTA03-031 to The University

of Warwick under University of Texas at Austin’s prime National Science Foundation
Grant #CCR-0205483.

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 5–19, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

6 S. Bensalem et al.

executed transitions, we obtain the same path condition either way. However,
when taking the time constraints into account, the actual time and order between
occurrences of transitions does affect the path condition (which now includes
time information).

After the introduction of the untimed path condition in [3], weakest pre-
condition for timed system was studied in [2, 8, 9]. The paper [2] extended the
guarded-command language in [3] to involve time. But it only investigated se-
quential programs with time constraints. The paper [9] gave a definition of the
weakest precondition for concurrent program with time constraints, based on
discrete time, rather than dense time. The weakest precondition in [8] is defined
for timed guarded-command programs or, alternatively, timed safety automata.

We model concurrent systems using timed transition systems. Our model is
quite detailed in the sense that it separates the decision to take a transition
(the enabling condition) from performing the transformation associated with it.
We allow separate timing constraints (lower and upper bounds) for both parts.
Thus, we do not find the model proposed in [7], which assigns a lower and upper
time constraints for a transition that includes both enabling transition and a
transformation, detailed enough. Alternative choices in the code may compete
with each other, and their time constraints may affect each other in quite an
intricate way. Although we do not suggest that our model provides the only
way for describing a particular real-time system, it is detailed enough to demon-
strate how to automatically generate test cases for realistic concurrent real-time
systems.

In our solution, we translate the timed transition system into a collection of
extended timed automata, which is then synchronized with constraints stemming
from the given execution sequence. We then obtain a directed acyclic graph
of executed transitions. We apply to it a weakest precondition construction,
enriched with time analysis based on time zone analysis (using difference bound
matrices).

2 Modeling Concurrent Timed Systems

As mentioned in the introduction, we describe concurrent real-time systems using
timed transition systems (TTS). The latter model is given a semantics in terms of
extended timed automata (ETA). This is done by defining a modular translation
where each process in the TTS model is translated into an ETA. Thus the entire
TTS model is translated into a network of synchronizing ETA. This section
defines the two models and the translation.

2.1 Timed Transition Systems

We consider timed transition systems over a finite set of processes P1 . . . Pn. Each
process consists of a finite number of transitions. The transitions involve checking
and updating control variables and program variables (over the integers). An
enabling condition is an assertion over the program variables. Although the

Generating Path Conditions for Timed Systems 7

processes are not mentioned explicitly in the transitions, each process Pi has its
own location counter loci. It is possible that a transition is jointly performed by
two processes, e.g., a synchronous communication transition. We leave out the
details for various modes of concurrency, and use as an example a model that
has only shared variables.

A transition t includes (1) an enabling condition c, (2) an assertion over the
current process Pj location, of the form locj = l̂, (3) a transformation f of the
variables, and (4) a new value l̂′ for the location of process Pj . For example,
a test (e.g., while loop or if condition) from a control value l̂ of process Pj

to a control value l̂′, can be executed when (locj = l̂) ∧ c, and result in the
transformation f being performed on the variables, and locj = l̂′.

We equip each transition with two pairs of time constraints [l, u], [L, U] such
that:

l is a lower bound on the time a transition needs to be continuously enabled
until it is selected.

u is an upper bound on the time the transition can be continuously enabled
without being selected.

L is a lower bound on the time it takes to perform the transformation of a
transition, after it was selected.

U is the upper bound on the time it takes to perform the transformation of a
transition, after it was selected.

We allow shared variables, but make the restriction that each transition may
change or use at most a single shared variable.

Every process can be illustrated as a directed graph G. A location is repre-
sented by a node and a transition is represented by an edge. Figure 1 shows the
graphic representation of a transition.

[l, u], [L, U]

c → f
l̂′l̂

Fig. 1. The edge

2.2 Extended Timed Automata

An extended timed automaton is a tuple 〈V, X, B, F, S, S0, Σ, Cl, E〉 where

– V is a set of variables.
– X is a finite set of assertions over the set of variables V .
– B is a set of Boolean combinations of assertions over clocks of the form x # ĉ,

where x is a clock, # is a relation from {<, >,≥,≤, =} and ĉ is a constant
(not necessarily a value, as our timed automaton can be parameterized).

– F is a set of transformations for the variables. Each component of F can be
represented e.g., as a multiple assignment to some of the variables in V .

8 S. Bensalem et al.

– S is a finite set of states.1 A state s ∈ S is labeled with an assertion sX from
X and an assertion sB on B that need to hold invariantly when we are at
the state.

– S0 ⊆ S are the initial states.
– Σ is a finite set of labels.
– Cl is a finite set of clocks.
– E the set of edges over S×2Cl×Σ×X×B×F×S. The first component of an

edge e ∈ E is the source state. The second component eCl is the set of clocks
that reset to 0 upon firing this edge. A label eΣ from Σ allows synchronizing
edges from different automata, when defining the product. We allow multiple
labels on edges, as a terse way of denoting multiple edges. An edge e also
includes an assertion eX over the variables, an assertion eB over the time
variables that has to hold for the edge to fire, a transformation eF over the
variables and a target state.

The above definition extends timed automata [1] by allowing conditions over
variables to be associated with the edges and states, and transformations on the
variables on the edges (similar to the difference between finite state machines
and extended finite state machines).

Semantics. The semantics of extended timed automata is defined as a set of
executions. An execution is a (finite or infinite) sequence of triples of the form
〈si, Vi, Ti〉, where

1. si is a state from S,
2. Vi is an assignment for the variables V over some given domain(s), such that

Vi |= sX
i and

3. Ti is an assignment of (real) time values to the clocks in Cl such that Ti |= sB
i .

In addition, for each adjacent pair 〈si, Vi, Ti〉 〈si+1, Vi+1, Ti+1〉 one of the follow-
ing holds:

An edge is fired. There is an edge e from source si to target si+1, where Ti |=
eB, Vi |= eX , Ti+1 agrees with Ti except for the clocks in eCl, which are
set to zero, and Vi+1 = eF (Vi), where eF (Vi) represents performing the
transformation over Vi.

Passage of time. Ti+1 = Ti + δ, i.e., each clock in Cl is incremented by some
real value δ. Then Vi+1 = Vi.

An infinite execution must have an infinite progress of time. An initialized ex-
ecution must start with s ∈ S0 and with all clocks set to zero. However for
generation of test cases we deal here with finite consecutive segments of execu-
tions, which do not have to be initialized.

1 We use the term “state” for extended timed automata to distinguish from “location”
for timed transition systems.

Generating Path Conditions for Timed Systems 9

The Product of ETA. Let ETA1 = 〈V1, X1, Cl1, B1, F1, S1, S
0
1 , Σ1, E1〉 and

ETA2 = 〈V2, X2, Cl2, B2, F2, S2, S
0
2 , Σ2, E2〉 be two ETAs. Assume the clock sets

Cl1 and Cl2 are disjoint. Then the product, denoted ETA1 ‖ ETA2, is the ETA
〈V1 ∪ V2, X1 ∪X2, Cl1 ∪Cl2, B1 ∪B2, F1 ∪F2, S1 × S2, S

0
1 ×S0

2 , Σ1 ∪Σ2, E〉. For
a compound state s = (s1, s2) where s1 ∈ S1 with sX1

1 ∈ X1 and sB1
1 ∈ B1 and

s2 ∈ S2 with sX2
2 ∈ X2 and sB2

2 ∈ B2, sX1∪X2 = sX1
1 ∧ sX2

2 and sB1∪B2 =
sB1
1 ∧ sB2

2 . The set E of edges are defined as follows. For every edge e1 =
〈s1, e

Cl1
1 , eΣ1

1 , eX1
1 , eB1

1 , eF1
1 , s′1〉 in E1 and e2 = 〈s2, e

Cl2
2 , eΣ2

2 , eX2
2 , eB2

2 , eF2
2 , s′2〉

in E2,

– joint edges: if eΣ1
1 ∩ eΣ2

2 �= ∅, E contains
〈(s1, s2), eCl1

1 ∪ eCl2
2 , eΣ1

1 ∪ eΣ2
2 , eX1

1 ∧ eX2
2 , eB1

1 ∧ eB2
2 , eF1

1 ∪ eF2
2 , (s′1, s′2)〉.

Any variable is allowed to be assigned to a new value by either e1 or e2, not
both.

– edges only in ETA1 or ETA2: if eΣ1
1 ∩ eΣ2

2 = ∅, E contains
〈(s1, s

′′), eCl1
1 , eΣ1

1 , eX1
1 , eB1

1 , eF1
1 , (s′1, s

′′)〉 for every state s′′ ∈ S2 and
〈(s′, s2), eCl2

2 , eΣ2
2 , eX2

2 , eB2
2 , eF2

2 , (s′, s′2)〉 for every state s′ ∈ S1.

2.3 Translating a TTS into ETAs

We describe the construction of a set of extended timed automata from a timed
transition system. We should emphasize that this construction defines the se-
mantics of a timed transition system as the semantics of the corresponding set
of extended timed automata.

We first show how to construct states and edges for one particular location.
An ETA is generated after all locations in a TTS process are translated. Any
location in a process is said to be the neighborhood of the transitions that must
start at that location. The enabledness of each transition depends on the lo-
cation counter, as well as an enabling condition over the variables. Location
counters are translated in an implicit way such that each different location is
translated into a different set of states. For a neighborhood with n transitions
t1, . . . , tn, let c1, . . . , cn be the enabling conditions of n transitions respectively.
The combination of these conditions has the form of

C1 ∧ . . . ∧ Cn,

where Ci is ci or ¬ci. Each transition tj in the neighborhood has its own local
clock xj . Different transitions may have the same local clocks, if they do not
participate in the same process or the same neighborhood.

1. we construct 2n enabledness states, one for each Bool-ean combination of
enabling condition truth values. For any enabledness states si and sk (note
that si and sk can be the same state), there is an internal edge starting
at si and pointing to sk. Let Ci and Ck be the combinations for si and
sk, respectively. The edge is associated with Ck as the assertion over the
variables. For any condition Cj which is ¬cj in Ci and cj in Ck, the clock xj

is reset (xj := 0) upon the edge, for measuring the amount of time that the
corresponding transition is enabled. We do not reset xj in other cases.

10 S. Bensalem et al.

2. We also have an additional intermediate state per each transition in the
neighborhood, from which the transformation associated with the selected
transition is performed. For any enabledness state s with the combination C
in which the condition Cj corresponding to the transition tj is cj , let s′j be
the intermediate state for tj and do the following:
(a) We have the conjunct xj < uj as part of sX , the assertion over the

variable of s, disallowing tj to be enabled in s more than its upper limit
uj .

(b) We add a decision edge with the assertion xj ≥ lj from s, allowing the
selection of tj only after tj has been enabled at least lj time continuously
since it became enabled. On the decision edge, we also reset the clock xj

to measure now the time it takes to execute the transformation.
(c) We put the assertion xj < Uj into s′j , not allowing the transformation

to be delayed more than Uj time.
(d) We add an additional transformation edge labeled with xj ≥ Lj and

the transformation of tj to from s′ any of the enabledness states rep-
resenting the target location of tj . Again, this is done according to the
above construction. There can be multiple such states, for the succes-
sor neighborhood, and we need to reset the appropriate clocks. We add
an assertion over variables to the transformation edge. The assertion is
the combination of enabling conditions which is associated to the target
state of the transformation edge.

[l1, u1], [L1, U1]

[l1, u2], [L2, U2]
c2 → f2

t2

t1

c1 → f1 l̂′

l̂′′

l̂

Fig. 2. A neighborhood of two TTS transitions

Figure 2 illustrates a neighborhood with two transitions and Figure 3 provides
the ETA construction for this neighborhood. The states s1, s2, s3 and s4 are
enabledness states, corresponding to the subset of enabling conditions of t1 and
t2 that hold in the current location l̂. The edges to s5 correspond to t1 being
selected, and the edges to s6 correspond to t2 being selected. The edges into s5
also reset the local clock x1 that times the duration of the transformation f1 of
t1, while the edges into s6 zero the clock x2 that times the duration of f2. The
state s5 (s6, respectively) allows us to wait no longer than U1 (U2, resp.) before
we perform t1 (t2). The edge from s5 (s6) to s8 (s8) allows delay of no less than
L1 (L2) before completing t1 (t2). Note that s7 (as well as s8) actually represents

Generating Path Conditions for Timed Systems 11

bcac

bcac

bfaf

x2 := 0

s3

x2 := 0
¬c1 ∧ c2

¬c1 ∧ ¬c2c1 ∧ c2

s8s7

x2 < U2

x2 < u2

x1 < U1

s6s5

x1 := 0

x2 ≥ L2

f2

c1 ∧ ¬c2 x1 := 0

x2 := 0¬c1 ∧ c2

x2 ≥ l2
x2 := 0x1 ≥ l1

x1 := 0

x1 ≥ L1

f1

x1 := 0
c1 ∧ ¬c2

c1∧¬c2

¬c1∧c2

¬c1 ∧ ¬c2

¬c1∧¬c2

c1 ∧ ¬c2

c1 ∧ c2 c1 ∧ c2

x2 := 0

x1 ≥ l1 x2 ≥ l2

x2 < u2x1 < u1
x1 < u1

s1

x1 := 0

x1, x2 := 0
¬c1 ∧ ¬c2

c1 ∧ c2

¬c1 ∧ c2

s2 s4

Fig. 3. The ETA for the neighborhood of two TTS transitions

[l1, u2], [L2, U2][l1, u1], [L1, U1]
l̂′

c2 → f2c1 → f1
l̂′′l̂

Fig. 4. Two sequential TTS transitions

one of a set of enabledness states, in the pattern of s1 to s4, for the location l̂′

(l̂′′, resp), according to the enabledness of transitions in it (depending on the
enabledness of the various transitions in the new neighborhood and including
the corresponding reset of enabledness measuring clocks).

Figure 4 shows two consecutive transitions and Figure 5 provides the ETA
construction for these transitions. For simplicity, the self loops are omitted. Lo-

12 S. Bensalem et al.

¬c1

x1 := 0

c1

x2 := 0

x2 ≥ l2 x2 ≥ L2, f2

¬c2

x2 := 0

c2

s0

s′′

x2 < U2

s′0

s1

x2 < u2x1 < U1x1 < u1

s′s′′s′1ss′x1 ≥ l1

x1 := 0 x2 := 0

x1 ≥ L1

f1

¬c2

x1≥L1, f1, c2

Fig. 5. The ETA for the two sequential TTS transitions

cation l̂ is translated into states s0 and s1, location l̂′ into s′0 and s′1, and location
l̂′′ into s′′. States ss′ and s′s′′ are intermediate states.

2.4 Modeling Shared Variables

We present the procedure of modeling shared variables in a mutual exclusion
manner. A shared variable needs to be protected by mutual exclusion when two
or more transformations attempt to write it concurrently. For each shared vari-
able v we provide a two state automaton, {used , unused}. We synchronize the
decision edge of each transition that references such a variable with an edge from
unused to used, and each transformation edge of such a transition with an edge
from used to unused. When a decision edge acquires v, all other processes access-
ing v are forced to move to corresponding states by synchronizing the decision
edge with proper internal edges in those processes. For the same reason, a trans-
formation releasing v is synchronized with relative edges to enable accessing v.

3 Calculating the Path Conditions

In order to compute the path condition, the first step of our method involves
generating an acyclic ETA (which we will call a DAG, or directed acyclic graph).
Then the path condition is computed by propagating constraints backwards in
this DAG. The DAG is generated using, on one hand, the set of ETAs corre-
sponding to the TTS in question, and on the other hand, the TTS path (i.e.,
program transition sequence) provided by the user.

3.1 The Partial Order in a TTS Path

Given a selected sequence σ of occurrences of transitions, we calculate the es-
sential partial order, i.e., a transitive, reflexive and asymmetric order between
the execution of the transitions, as described below. This essential partial or-
der is represented as a formula over a finite set of actions Act = Ac ∪ Af ,

Generating Path Conditions for Timed Systems 13

where the actions Ac represent the selections of transitions, i.e., waiting for
their enabledness, and the actions Af represent the transformations. Thus, a
transition a is split into two components, ac ∈ Ac and af ∈ Af . The essential
partial order imposes sequencing all the actions in the same process, and pairs
of actions that use or set a mutual variable. In the latter case, the enabledness
part bc of the latter transition succeed the transformation part af of the ear-
lier transition. However, other transitions can interleave in various ways (e.g.,
dc ≺ ec ≺ ef ≺ df). This order relation ≺ corresponds to a partial order over
Act . The formula is satisfied by all the sequences that satisfy the constraints in
≺, i.e., the linearizations (complementation to total orders) over Act . In partic-
ular, σ is one (but not necessarily the only) sequence satisfying the constraints
in ϕ.

The partial order can be illustrated as a directed graph, where a node rep-
resents an action and an edge represents a ≺ relation. For example, we assume
that transitions a and b belong to a process and a transition d belongs to another
process. A partial order requires ac ≺ af , af ≺ bc, bc ≺ bf , dc ≺ df and af ≺ dc.
The partial order is shown in Figure 6.

af

bc dc

bf df

ac

Fig. 6. A partial order

3.2 Generation of an Acyclic ETA from a Partial Order

After we generate the set of the ETAs for the different processes, we label each
transition in the ETAs with respect to Act . For example in Figure 3, the edges
s2 → s5 and s3 → s5 can be labeled with ac, the edges s3 → s6 and s4 → s6 can
be labeled with bc. The edge s5 → s7 can be marked by af and s6 to s8 by bf .

Let A≺ be a finite partial order among occurrences of Act (note that an
action from Act can occur multiple times.). We generate an automaton Lin≺
with edges labeled with actions of Act . The automaton Lin≺ accepts all the
linearizations of A≺. Hence, it also necessary accepts the original sequence from
which we generated A≺.

14 S. Bensalem et al.

The algorithm for generating Lin≺ is as follows. The sets of states of Lin≺
are subsets S ⊆ St , the set of occurrences of A≺, such that for each such subset
S, it holds that if α ≺ β and β ∈ S then also α ∈ S. They are the history closed
subsets of St. A transition is of the form S α−→ S∪{α} where α is an occurrence
of an action. The empty set is the initial state and the set St is the accepting
state. Figure 7 shows the automaton for the partial order in Figure 6.

af

dc

bc
dc

bc

df

bc

ac

{}

{a}

{ac, af}

bf

{ac, af , bc} {ac, af , dc}

{ac, af , bc, bf , dc}

{ac, af , bc, bf} {ac, af , bc, dc} {ac, af , dc, df}

{ac, af , bc, dc, df}

df

df

dc
bf

bf

{ac, af , bc, bf , dc, df}

Fig. 7. A partial order automaton

We generate now the acyclic ETA ETA≺, whose executions are linearizations
of Lin≺, with a collection of extended timed automata T1, . . . , Tn. At first, we
describe the synchronization of a transition ᾱ marked with an action ā ∈ Act
on Lin≺ with the edges in a component Ti:

1. Synchronization of ᾱ with an edge labeled as ā. This corresponds to the
selection or the transformation of a transition in the TTS being taken.

2. Synchronization of ᾱ with an internal edge τ which references a shared vari-
able v if ā acquires or releases v. This corresponds to an enabledness condi-
tion being changed. If there exists an edge which has the same source state
as τ has and is labeled as ā, τ is not allowed to be synchronzed with ᾱ.

Now we generate the initial states of ETA≺. For every participant process
Tj, we find the set Ŝj of enabledness states for the first transition occurring in
A≺. At any initial states of ETA≺, Tj stays at one of the states in Ŝj . If a
process Tk does not have any transitions occurring in A≺, we asssume it stays at
one of its initial states and thus we use the set of initial states as Ŝk. An initial

Generating Path Conditions for Timed Systems 15

state of ETA≺ is composed of such states that each state belongs to a different
set Ŝj . Each initial state of ETA≺ is matched to the initial state of Lin≺.

The successive states of ETA≺ is generated in a deductive way from the
initial states. For clarity, a state g = 〈g1, . . . , gn〉 of ETA≺ is denoted by a global
state and the states g1, . . . , gn composing g are denoted by component states.
Any global state g has a matched state on Lin≺ as this is guaranted by the
deductive generation method. Let g be a global state whose successive global
states have not be generated and ḡ be the matched state of g on Lin≺. The
successive global states of g are generated in the following way:

We synchronize each transition β̄ starting at ḡ on Lin≺ with ETA edges
whose source states are component states of g. For any Tj, let wj be
the set of edges that are synchronized with β̄ and |wj | be the number of
edges in wj . A component state gj in g is the source state of the edges
in wj . A successive state g′ with respect to β̄ is generated by replacing
each gj by the target state of an edge in wj . If |wj | = 0, Tj does not
change its state in g′. If |wj | > 1, the number of successive global states
with respect to β̄ is increased |wj | times. These successive global states
are matched to the target state of β̄ on Lin≺.

Note that we remove any global states from which there is no path leading to
the global states matched to the accepting state on Lin≺. Since there is often
a nondeterministic choice for taking such labeled edges, this choice increases
the branching degree on top of the branching already allowed by A≺. The syn-
chronous execution forms a DAG structure, which will be used later calculating
the path precondition.

3.3 Data Structure for Backward Reachability Analysis

Time constraints are a set of relations among lock clocks. These contraints can
be obtained from reachability analysis of clock zones. Difference-Bound Matrix
(DBM) [4] is a data structure for representing clock zones.

A DBM is a (m + 1) × (m + 1) matrix where m is the number of local
clocks of all processes. Each element Di,j of a DBM D is an upper bound of
the difference of two clocks xi and xj , i.e., xi − xj ≤ Di,j . We x1, · · · , xm to
represent local clocks. The clock x0 is a special clock whose value is always 0.
Therefore, Di,0 (i > 0), the upper bound of xi − x0, is the upper bound of clock
xi; D0,j (j > 0), the lower bound of x0 − xj , is the negative form of the lower
bound of clock xj . To distinguish non-strict inequality ≤ with strict inequality
<, each element Di,j has the form of (r, F) where r ∈ R ∪ {∞} and F ∈ {≤, <}
with an exception that F cannot be ≤ when r is ∞. Addition + is defined over
F, F ′ ∈ {≤, <} as follows:

F + F ′ =
{

F, if F = F ′ and
<, if F �= F ′

Now we define addition + and comparison < for two elements (r1, F1) and
(r2, F2).

(r1, F1) + (r2, F2) = (r1 + r2, F1 + F2).

16 S. Bensalem et al.

(r1, F1) < (r2, F2) iff r1 < r2 or (r1 = r2) ∧ (F1 =<) ∧ (F2 =≤).

The minimum of (r1, F1) and (r2, F2) is defined below:

min((r1, F1), (r2, F2)) =
{

(r1, F1) if (r1, F1) < (r2, F2)
(r2, F2) otherwise

A DBM D is canonical iff for any 0 ≤ i, j, k ≤ m, Di,k ≤ Di,j +Dj,k. A DBM
D is satisfiable iff there is no such a sequence of indices 0 ≤ i1, · · · , ik ≤ m that
Di1,i2 + Di2,i3 + · · · + Dik,i1 < (0,≤). An unsatisfiable DBM D represents an
empty clock zone.

Calculating time constraints following an edge τ backwards from its target
state s to its source state s′ has been explained in [11]. Let I(s′)c be the assertion
on clocks in state invariant of s′, and ψc be the assertion on clocks within the edge
τ . The DBM D represents the time constraints at s. Assertions I(s′)c and ψc

are represented by DBMs too. The time constraints D′ at s′ is defined as follows:

D′ = ((([λ := 0]D) ∧ I(s′)c ∧ ψc) ⇓) ∧ I(s′)c (1)

“∧” is conjunction of two clock zones. Calculating D′ = D1 ∧ D2 is to set
each element D′

i,j in D′ to be the minimum value of the element D1
i,j in D1 and

the element D2
i,j in D2, i.e.,

D′
i,j = min(D1

i,j, D
2
i,j).

“⇓” is time predecessor. Calculating D′ = D ⇓ is to set lower bound of each
clock to 0, i.e.,

D′
i,j =

{
(0,≤) if i = 0
Di,j if i �= 0

“[λ := 0]D” is reset predecessor. Calculating D′ = [λ := 0]D is as follows:

1. Resetting a clock x to 0 can be seen as substituting x by x0. Let x′ be a
clock which is not reset. Before resetting, we have constraints x′ − x0 ≤ c1
and x′ − x ≤ c2. After resetting, we obtain constraints x′ − x0 ≤ c1 and
x′ −x0 ≤ c2 by replacing x with x0. Then these constrains are conjunct into
x′ − x0 ≤ min(c1, c2). Therefore, when we calculate time constraints from
after resetting back to before resetting, we substitute x′ − x0 by min(x′ −
x0, x

′−x) and x0−x′ by min(x0−x′, x−x′). Therefore, for a clock xi which
is not reset, update its upper and lower bounds as follows:
(a) D′

i,0 = min{Di,k|xk ∈ λ ∪ {x0} for every k}.
(b) D′

0,i = min{Dk,i|xk ∈ λ ∪ {x0} for every k}.
2. On the other hand, for a clock xk which is reset, its value before resetting

can be any non-negative real number. Thus its lower bound is 0 and upper
bound is ∞, i.e., D′

0,k = (0,≤) and D′
k,0 = (∞, <). Furthermore, for any

other clock xj (j �= k ∧ j > 0), D′
k,j = (∞, <).

3. For a clock xi which is not reset and a clock xk which is reset, update xi−xk

as D′
i,k = D′

i,0. (Note that this step must be done after the upper bound of
xi is updated.)

4. For two clocks xi and xj that are not reset, D′
i,j = Di,j .

Generating Path Conditions for Timed Systems 17

Note that D′ needs to be changed to canonical form after each operation.
This is done using Floyd-Warshall algorithm [5, 10] to find the all-pairs shortest
paths.

3.4 Path Condition for a DAG

We can now calculate the condition for that DAG from the leaf states backwards.
The condition would use the usual weakest precondition for variables, and a
similar update for time variables that involve local clocks and time parameters.
When a state has several successors, we disjoin the conditions obtained on the
different edges.

At first, we give a brief description of updating a condition over variables
backwards from a given state to another state over an edge with condition c
and transformation of the form v := expr, where v is a variable and expr is an
expression. Let ϕ be the condition over variables at the given state. The new
condition ϕR is defined as follows:

ϕR = ϕ[expr/v] ∧ c, (2)

where ϕ[expr/v] denotes substituting expr for each free occurrence of v in ϕ.
The backward calculation of the precondition for a DAG is described as

follows:

1. Mark each leaf state as old and all other states as new. Attach the assertion
on variables ϕ = true and the assertion on clocks represented by DBM D0
to each leaf, noted by ϕ ∧ D0. The DBM D0 is defined below:

ϕ0 =

⎛⎜⎜⎜⎝
(0,≤) (0,≤) · · · (0,≤)
(∞, <) (0,≤) · · · (∞, <)

...
...

...
...

(∞, <) (∞, <) · · · (0,≤)

⎞⎟⎟⎟⎠ (3)

When we start at a leaf state to calculate time constraints backwards, we do
not know the exact value of any local clock when the system enters the leaf
state. Thus their values ranges from 0 to ∞. Their exact value scopes can
be computed during backward calculation.

2. While there are states marked with new do
(a) Pick up a state z that is marked new such that all its successors Y =

{y1, . . . , yk} are marked old.
(b) Assume each yi ∈ Y is attached an assertion over variables and clocks.

The assertion has the form of∨
1≤j≤mi

(ϕi,j ∧ Di,j).

(note that mi = 1 if yi is a leaf state.) We obtain ϕR
i,j from ϕi,j according

to the formula (2) and DR
i,j from Di,j according to the formula (1).

18 S. Bensalem et al.

(c) Attach ∨
yi ∈ Y

1 ≤ j ≤ mi

(ϕR
i,j ∧ DR

i,j) (4)

to the state z. Mark z as old.
Note: when ϕR

i,j = false or DR
i,j is not satisfiable, ϕR

i,j ∧ DR
i,j is removed

from formula (4).
3. When an initial node is reached backwards, the combination of conditions

over variables that it represents (refer to Section 2.3 for detail) must be con-
juncted with the condition calculated at this state in order to get the initial
precondition for this state, because this combination is not processed during
the backward calculation. The combinations represented by non-initial nodes
are processed through the edges pointing to them. All initial preconditions
of initial states are disjuncted together to form the initial precondition of
the DAG.

4 Discussion

We described here a method for calculating the path condition for a timed sys-
tem. The condition is calculated automatically, then simplified using various
heuristics. Of course we do not assume that the time constraints are given. The
actual time for lower and upper bounds on transitions is given symbolically. Then
we can make various assumptions about these values, e.g., the relative magni-
tude of various time constants. Given that we need to guarantee some particular
execution and not the other, we may obtain the time constraints as path con-
ditions, including e.g., some equations, whose solutions provide the appropriate
required time constants.

We believe that the constructed theory is helpful in the automatic genera-
tion of test cases. The test case construction can also be used to synthesize real
time system time. Another way to use this theory is to extend it to encapsulate
temporal specification. This allows verifying a unit of code in isolation. Instead
of verifying each state in separation, one may verify the code according to the
program execution paths. This was done for the untimed case in [6], and we
are working on extending this framework for the timed case. Such a verifica-
tion method allows us to handle infinite state systems (although the problem
is inherently undecidable, and hence we are not guaranteed to terminate), and
parametric systems e.g., we may verify a procedure with respect to arbitrary
allowed input. This is done symbolically, rather than state by state.

References

1. R. Alur, D.L. Dill, A Theory of Timed Automata, Theoretical Computer Science
126, 1994, 183–235.

2. N. Budhiraja, K. Marzullo, F. B. Schneider, Derivation of sequential, real-time
process-control programs, Foundations of Real-Time Computing: Formal Specifi-
cations and Methods, 1991, 39-54

Generating Path Conditions for Timed Systems 19

3. E. W. Dijkstra, Guarded commands, nondeterminacy and formal derivation of
programs, Communications of the ACM 18, 1975, 453–457

4. D. L. Dill, Timing assumptions and verification of finite-state concurrent systems,
Automatic Verification Methods for Finite State Systems, LNCS 407, 1989, 197–212

5. R. W. Floyd, Algorithm 97: Shortest Path, Communications of the ACM, 5(6),
1962, 345

6. E. Gunter, D. Peled, Unit Checking: Symbolic Model Checking for a Unit of Code,
Verification: Theory and Practice 2003, LNCS 2772, 548–567.

7. T. A. Henzinger, Z. Manna, A. Pnueli, Temporal proof methodologies for timed
transition systems, Information and Computation 112, 1994, 273–337

8. T. A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine, Symbolic model checking for
real-time systems, Information and Computation 111, 1994, 193–244

9. D. J. Scholefield, H. S. M. Zedan, Weakest Precondition Semantics for Time and
Concurrency, Information Processing Letters 43, 1992, 301-308

10. S. Warshall, A theorem on boolean matrices, Journal of the ACM, 9(1), 1962, 11–12
11. S.Yovine, Model checking timed automata, Lectures on Embedded Systems, LNCS

1494, 1998, 114–152

Software Model Checking: Searching for
Computations in the Abstract or the Concrete

Patrice Godefroid1 and Nils Klarlund2,�

1 Bell Laboratories, Lucent Technologies
2 Google

Abstract. We review and discuss the current approaches to software
model checking, including the complementary views of validation versus
falsification and those of static versus dynamic analysis. For falsification,
also known as bug finding, we advocate the need for blended approaches
that combine the strengths of both static and dynamic analysis. We
outline possible directions of research in this area.

1 Introduction

Software model checking is a family of analyses that involve the automatic ex-
ploration of the state space of a program. The state space is at worst all the
possible memory configurations that the program can read and write (such as
RAM and disk space). With the combinatorial explosion that follows from this
view—state spaces are often so big that “astronomical” is a powerless word to
describe their sizes—the challenge is to search intelligently the state spaces of
programs.

Model checking when applied to software has become a somewhat confusing
concept, so we start by explaining its origin and the two complementary mean-
ings it has come to take on. Model checking originally meant to pursue a goal
complementary to testing, namely to verify—to assert with certainty—that the
program satisfies some property. In particular, model checking in its original
meaning rests on an assumption that a finite graph of manageable size, repre-
senting the behavior of the program, can be constructed so that properties of
it can be checked by exhaustive search. The term model checking comes from
mathematical logic, where a model, let us call it M , represents a set of states that
are connected. A program P generates—mathematically speaking—a model M ,
when all possible inputs to it are considered. The states are connected by tran-
sitions, each representing a program step, either in its mathematical semantics
or at the machine level. Thus, the word “model” does not refer to a desired,
abstract specification of the behavior, but to a representation of the behavior of
the program. The model, in turn, describes the set of executions of the program.
Each execution α is a path in the model.

� The work of this author was done partly at Bell Laboratories.

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 20–32, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Software Model Checking 21

2 The Main Approaches to Software Model Checking

We survey the landscape of model checking, static and dynamic analysis tech-
niques.

2.1 The Validation View

For a property φ about models (programs), such as “an error state is never
encountered”, and an execution α of a model M , we say that α of M satisfies φ,
and we write α, M � φ, if φ is true of α. We are interested in knowing whether
φ holds for all α of M . If that is the case, then we say that M satisfies φ, or in
symbols, M � φ.

In practice, it is of course impossible to directly check whether M � φ because
M is anything but manageable, and can even be infinite. Instead, an approach
to model checking attempts to reduce the problem to one that involves a smaller
representation M ′ of M , for example through the technique of predicate abstrac-
tion [17]. Whatever the algorithm is for model checking, the outcome is either
“yes”,“don’t know”, or “no”. If the algorithm does not provide a “yes” or “no”
in reasonable time, we will treat this as a “don’t know” outcome.

If our emphasis is to validate a program, then it is crucial of course that
an answer of “yes” implies M � φ. This criterion is soundness with respect
to validation. It is also desirable but not mandatory—under this view—that if
M � φ holds then the answer delivered by the algorithm is “yes”. This criterion
is completeness with respect to validation.

Note that a model checking algorithm that is both sound and complete never
returns the answer “don’t know”.

2.2 Static Analysis

Model checking under the validation view requires generating a conservative,
“may” abstraction M ′ of the intractable model M , which includes at least all the
behaviors of M and typically many more, and is therefore essentially a method
of static analysis, that is, an automated analysis of the program that does not
involve running the executable code. For instance, type checking can be seen as
a sound, but incomplete, method of verifying that values of program variables
always take their declared types. Type checking is typically incomplete since it is
possible for a program to always assign at runtime values to variables according
to their declared types even though the program does not pass muster with the
limited reasoning powers of a type checker.

In theory, methods of static analysis tend to be sound, but not complete. In
practice however, most software model checking tools based on static analysis
(e.g., [22, 7, 1, 21, 6]) are actually unsound (in addition to being incomplete).
Indeed, it is not always possible to guarantee that an invalidating path found
in the abstracted model M ′ corresponds to a real execution in M , just as type
checking is unsound as a bug finding method.

22 P. Godefroid and N. Klarlund

The weakness of predicate abstraction techniques—and other software model
checking tools based on static analysis—is that a reported error often lacks an ex-
planation that can be readily understood by a human. In contrast, the validation
engine of a type checker is usually able to pinpoint the exact place and circum-
stances of a typing error. From this information, the programmer may take correc-
tive action, such as inserting a type coercion. The best explanation in the context
of static software model checking may be a program execution path fragment that
may or may not be feasible under the concrete semantics. Infeasibility is often a re-
sult of the limited understanding that a typical abstract interpretation framework
has about pointers. The existence of such spurious bugs imposes an extra workload
on the programmer that may lead to frustration and disuse of the tool.

Spurious error reports can be reduced if the tool itself makes assumptions that
seem reasonable. For example, a tool based on local analysis will report many
uses of null pointers for input parameters of functions unless the programmer
has been careful to always test input parameters before they are dereferenced.
To avoid inundating the programmer with error messages, the tool may choose
to not report errors that stem from the dereferencing of input parameters. In
this way, the tool is no longer complete, but is still useful for finding bugs. Most
static-analysis tools sacrifice soundness to reduce the number of false alarms,
and static software model checkers are no exception.

2.3 The Falsification View

Somewhat surreptitiously, model checking in software has evolved to also denote
the complementary goal of validation, namely that of falsification, where success
is exhibiting a path that does not satisfy the property. In this sense, falsification
shares goals with program testing. This change of emphasis is precipitated by
the difficulty of verifying a universally quantified statement, as in the original
model checking problem “does M � φ hold?”. It is sometimes easier to find an
invalidating computation, that is, to solve the negation of M � φ. So, we may
use “bug finding” as a synonym for “falsification”.

The meaning of soundness and completeness for a program analysis algorithm
become interchanged under the bug-finding view. Soundness with respect to fal-
sification means that reported invalidating paths are indeed real bug traces in the
sense that some set of input values does drive the program according to the path;
we call the resulting bugs sound. Completeness now means that if the program is
invalid then an invalidating path is indeed reported, that is, all bugs are found.

With model checking of software, we claim that most researchers have
adopted (consciously or not) the falsification point of view [15]: the main prac-
tical goal of software model checking is to find bugs that would be hard to find
using other techniques, and not to prove the absence of errors. So perhaps the
effort would be better known as model testing.

2.4 Static Analysis for Falsification

One of the earliest proposals for using static analysis as a kind of program
testing method was proposed by King almost 30 years ago [24]. The idea is

Software Model Checking 23

to symbolically explore the tree of all computations a program unit (such as a
function) exhibits when all possible value assignments to input parameters are
considered. For each control path ρ, that is, a sequence of control locations of
the program, a path constraint φρ is constructed that characterizes the input
assignments for which the program executes along ρ. For (small) programs, all
the paths can be enumerated by a search algorithm that explores all possible
branches at conditional statements. The paths ρ for which φρ is satisfiable are
feasible and are the only ones that can be executed by the actual program. The
solutions to φρ exactly characterize the inputs that drive the program through ρ.

A prototype of this system allowed the programmer to be presented with
feasible paths and to experiment with assertions in order to force new and per-
haps unexpected paths. Assuming that the theorem prover used to check the
satisfiability of all formulas φρ is sound and complete, this use of static analysis
amounts to a kind of symbolic testing.

King noticed that assumptions, now called preconditions, also formulated in
the logic could be joined to the analysis forming, at least in principle, an au-
tomated theorem prover for Floyd’s verification method, included the inductive
invariants need for programs that contain loops. Such a general tool for program
verification has proven elusive, even after 30 years.

However, this work was followed by a rich literature on test-vector generation
using static analysis and symbolic execution (e.g., see [29, 10]) and has received
a renewed interest recently (e.g., [4, 3, 39, 40, 8]).

2.5 Dynamic Analysis for Falsification

Dynamic analysis operates by executing a program and observing its executions.
Testing and profiling are standard dynamic analyses.

In the rest of the paper, we discuss a class of software model checkers where
repeated executions, perhaps thousands or millions, are directed using runtime
information collected dynamically through program instrumentation techniques.
The program being analyzed may be a single functional unit whose input val-
ues or formal parameters are open or may be multithreaded and governed by a
nondeterministic scheduler. In any case, the program can execute only if choices
are made along the way by supplying input values and decisions about which
thread to execute next. In this way, the instrumented program runs by itself,
systematically or randomly making choices but—crucially—with built-in aware-
ness that many choices lead to equivalent behaviors and only one such choice
from each equivalence class needs to be considered. We mention two orthogonal
equivalence concepts that have been investigated:

– symbolic execution that characterizes executions paths: equivalent input vec-
tors produce computations that take the same program path (e.g., [25, 16, 5];
and

– partial order reduction that characterizes interleavings of a concurrent soft-
ware system: equivalent interleavings produce the same significant state
changes (e.g., [14, 12]).

24 P. Godefroid and N. Klarlund

We might classify such analyses as directed execution, because the analysis is
execution-based but directed by analysis. Obviously, tools for directed execution
(e.g., [14, 38, 28, 9, 16, 32]) are complementary to and should be used in conjunc-
tion with tools for detecting runtime errors, such as Purify [20] among many
others (e.g., [30, 26, 37]).

Most software model checking methods based on dynamic analysis are sound
with respect to bug finding, simply by virtue of anchoring the analysis in con-
crete executions of the program itself. Since an execution is a real execution,
not an abstraction of an execution as in static analysis, errors encountered will
usually be interesting. These analyses do not produce spurious error reports, for
example suggesting impossible execution paths that are really due to a lack of
computational reasoning power on behalf of the analyzer.

However, with these dynamic analyses, there is no conservative approxima-
tion or warranty typical of static analysis. In fact, the usual goal of static analysis,
to consider all computations, will almost certainly not be attained. Programs are
not verified, they are only tested.

We refer the reader to [11] for a general discussion on the duality and syner-
gies between traditional static and dynamic analysis.

3 Recent Work on Directed Execution

Recently [16], we have proposed a new approach to directed execution for falsi-
fication that addresses the main limitation hampering unit testing, namely the
need to write test driver and harness code to simulate the external environment
of a software application. This approach combines three main techniques:

– automated extraction of the interface of a program with its external envi-
ronment using static source-code parsing;

– automatic generation of a test driver for this interface that performs random
testing to simulate the most general environment the program can operate
in; and

– dynamic analysis of how the program behaves under random testing with
automatic generation of new test inputs that direct the execution along al-
ternative program paths.

Together, these three techniques constitute Directed Automated Random Testing,
or DART for short. Thus, the main strength of DART is that testing can be
performed completely automatically on any program that compiles – there is
no need to write any test driver or harness code. During testing, DART can
detect standard errors such as program crashes, assertion violations, and non-
termination.

DART’s integration of random testing and dynamic test generation using
symbolic reasoning is best explained with an example, taken from [16].

Consider the function h shown in Figure 1. The function h is defective because
it may lead to an abort statement for some value of its input vector, which
consists of the input parameters x and y. Running the program with random

Software Model Checking 25

int f(int x) { return 2 * x; }
int h(int x, int y) {

if (x != y)
if (f(x) == x + 10)

abort(); /* error */
return 0;

}

Fig. 1. Example of program

values of x and y is unlikely to discover the bug. The problem is typical of
random testing: it is difficult to generate input values that will drive the program
through all its different execution paths, which implies that random testing
usually provides low code coverage (e.g., [31]).

In contrast, DART is able to dynamically gather knowledge about the exe-
cution of the program in what we call a directed search. Starting with a random
input, a DART-instrumented program calculates during each execution an input
vector for the next execution. This vector contains values that are the solution
of symbolic constraints gathered from predicates in branch statements during
the previous execution. The new input vector attempts to force the execution of
the program through a new path. By repeating this process, a directed search
attempts to force the program to sweep through all its feasible execution paths.

For the example above, the DART-instrumented h initially guesses the value
269167349 for x and 889801541 for y. As a result, h executes the then-branch
of the first if-statement, but fails to execute the then-branch of the second if-
statement; thus, no error is encountered. The execution defines a path ρ through
the program. Intertwined with the normal execution, the predicates x0 �= y0 and
2 · x0 �= x0 + 10 are formed on-the-fly according to how the conditionals evalu-
ate; x0 and y0 are symbolic variables that represent the values of the memory
locations of variables x and y. Note the expression 2 · x0, representing f(x): it
is defined through an interprocedural, dynamic tracing of symbolic expressions.

The path constraint φρ = 〈x0 �= y0, 2 · x0 �= x0 + 10〉 represents an equiva-
lence class of input vectors, namely all the input vectors that drive the program
through the path that was just executed. To force the program through a dif-
ferent equivalence class, the DART-instrumented h calculates a solution to the
path constraint 〈x0 �= y0, 2 · x0 = x0 + 10〉 obtained by negating, say, the last
predicate of the current path constraint. A solution to this path constraint is
(x0 = 10, y0 = 889801541) and it is recorded. When the instrumented h runs
again, it reads the values of the symbolic variables that have been previously
recorded. In this case, the second execution then reveals the error by driving the
program into the abort() statement as expected.

DART is thus a general framework parameterized by the kinds of constraints
that can be collected and by their solvers. We refer the reader to [16] for a de-
tailed presentation of the DART approach, including its formalization, several
examples, the description of a simple DART implementation for the C program-
ming language, and preliminary results of experiments. For instance, DART was

26 P. Godefroid and N. Klarlund

able to find automatically attacks in various C implementations of a well-known
flawed security protocol (Needham-Schroeder’s), as well as hundreds of ways to
crash the about 600 externally visible functions provided in the oSIP library, an
open-source implementation of the SIP protocol.

The directed search outlined above is closely related to prior work on dynamic
test generation (e.g., [25, 19]). The main difference is that the DART approach at-
tempts to cover all executable program paths in a style similar to model checking,
while prior work on dynamic test generation was mostly focused on generating
test inputs to exercise a specific program path or branch using branch/predicate
classification techniques. DART is also related to test-vector generation using
static analysis and symbolic execution (e.g., see [24, 29, 10, 18, 4, 3, 39, 40, 8]).
Symbolic execution is limited in practice by the imprecision of static analysis and
of theorem provers. As discussed in [16], DART is able to alleviate some of the
limitations of symbolic execution by exploiting dynamic information obtained
from a concrete execution matching the symbolic constraints, by using dynamic
test generation, and by using randomization when automated reasoning is im-
possible or difficult. Thus symbolic execution degrades gracefully in the sense
that randomization takes over, by suggesting concrete values, when automated
reasoning fails to suggest how to proceed.

Independently, Cadar and Engler [5] have recently proposed a testing tech-
nique very similar to the directed search used in DART. They also describe en-
couraging experimental results with their implementation. CUTE [34] is a DART
implementation that extends the one described in [16] by handling simple types
of constraints on pointers (namely equalities and inequalities).

4 Future Work

We believe the next few years will see much research combining the static and
dynamic approaches to software model checking. In this section, we outline sev-
eral possible directions for future work in this area. We start this discussion with
some short-term extensions to prior work on directed execution and on DART
in particular. We then discuss several more open-ended problems and present
specific ideas to tackle these.

4.1 Short Term

Faster Constraint Solvers. The efficiency of DART implementations crit-
ically depends on the availability of efficient constraint solvers. This point is
illustrated by the following experiment. Figure 1 compares the efficiency of two
DART implementations on the Needham-Schroeder protocol benchmark (with
a Dolev-Yao intruder model) discussed in [16].1 The first implementation uses
1 All experiments were performed on a Pentium III 800Mhz processor running Linux;

runtime is user+system time as reported by the Unix time command and is always
roughly equal to elapsed time. The depth parameter limits the number of messages
received by protocol entities.

Software Model Checking 27

Table 1. Impact of constraint solver on DART efficiency

depth error? Implementation 1 Implementation 2
1 no 5 runs (<1 second) 4 runs (<1 second)
2 no 85 runs (<1 second) 30 runs (<1 second)
3 no 6,260 runs (22 seconds) 554 runs (<1 second)
4 yes 328,459 runs (18 minutes) 9,926 runs (57 seconds)

a simple constraint solver that supports only conjunctions and handles disjunc-
tions, such as those arising from inequalities (example: x �= 1 corresponds to
x < 1 ∨ x > 1), by considering in isolation each possible way of satisfying
them. The second implementation uses a smarter constraint solver allowing the
disjunctions that result from inequalities to be handled directly. The different
approaches to inequalities reflect a seemingly innocuous choice: are two different
computations that execute the same sequence of program statements to be con-
sidered distinct, in different equivalence classes, if they satisfy some disjunction
in different ways? Table 1 shows the difference between a “yes” (Implementation
1) and a “no” (Implementation 2) answer to this question: for each implementa-
tion we have stated the number of executions needed to explore all equivalence
classes (in order to reach an error). Table 1 shows that directly dealing with
disjuncts dramatically reduces the search space. We anticipate that even faster
results could be obtained for this benchmark by using general constraint solvers
for handling directly all disjunctions appearing in the program’s conditional
statements.

Out of curiosity, we also ran (on the same machine) the static software model
checker BLAST [21] (version 2.0) on this benchmark. BLAST reports “no error
found” after 20 seconds for depth=1, and after 51 seconds for depth=2, but
stops after reporting a spurious error after 6 minutes of search for depth=3.
This spurious error is likely due to the presence of pointers in this benchmark
and the limitations of the current alias analysis in BLAST.

More Constraint Types and Decision Procedures. DART reduces to ran-
dom testing when no symbolic constraints on inputs can be generated. But code
coverage is usually low with random testing alone, so we know that the more
kinds of constraint are supported, the more effective the search for errors will
be. This is true at least so long as the constraint solving itself does not become
the bottleneck.

The DART framework and tool architecture are not dependent on specific
constraint solvers. For instance, the first DART implementation described in [16]
supported essentially integer linear constraints only, and the corresponding con-
straint solver used was lp solve [27], which can solve efficiently any linear con-
straint using real and integer programming techniques. But we also expect to
see directed execution tools that use symbolic constraints on other popular data
types such as pointers, arrays, strings, or bit-vectors, in combination with more
sophisticated constraint solvers, such as CVC Lite [2], ICS [23], or Simplify [35],
among others. Borrowing again from static program analysis, we may use theories

28 P. Godefroid and N. Klarlund

for uninterpreted functions and algebraic data types to reason about frequently-
used functions in specific application domains such as cryptographic libraries in
security protocols.

Concurrency. We have already pointed out that directed execution encom-
passes separate techniques for dealing with the nondeterminism of concurrency
(whom to schedule) and for the mostly orthogonal issue of nondeterminism of
input data (what values to provide). Indeed, concurrent programs can be sequen-
tialized using an interleaving semantics (e.g., [14, 33]). Therefore, DART can eas-
ily be extended to multi-threaded programs and take advantage of partial-order
reductions (e.g., [13, 12]). This is conceptually easy since all the threads share
the same memory address space, and the formalization of [16] can be used as is.
The case of multi-process programs is more complicated since a good solution
requires tracking symbolic variables across processes boundaries and through
operating systems objects such as message queues.

4.2 Longer Term

Combining Static and Dynamic Software Model Checking. Directed
execution, where the search attempts to systematically sweep all possible execu-
tion paths, may be infeasible due to combinatorial explosion. This is a particular
problem if the property of interest is a localized one, such as a specific assertion
in a program.

In that case, a static analysis can be used to restrict the search space to
program paths that may lead to the assertion, hence eliminating irrelevant paths.
This reduction can be performed using static program slicing (e.g., [36]), possibly
combined with dynamic slicing, in order to prove a priori that some inputs are
irrelevant.

Conversely, the precision (and hence practicality) of current static software
model checker is seriously limited by the presence of calls to unknown library
functions or code fragments that are beyond the capability of current symbolic
execution technology such as hash functions or cryptographic functions. Because
calls to libraries are frequent in systems code, this is a serious practical limita-
tion for these model checkers, which require models for external libraries. The
limitation can be alleviated by using directed execution to test the feasibility of
program paths involving calls to libraries or any code that symbolic execution
cannot handle easily (such as pointer-intensive code, loops, etc.). In this way,
directed execution can be used by static analysis tools as a subroutine to test
the feasibility of specific program paths.

Specifying Preconditions. In order to effectively analyze open programs, an
analysis tool must rely on realistic environment assumptions, which represent
constraints on program inputs that are believed to hold.

Such constraints are also known as preconditions. Two broad approaches
exist for specifying preconditions. The first approach consists in program anno-
tations, usually specified directly in some fragment of mathematical logic that

Software Model Checking 29

is understood by the analysis tool. The second approach consists of adding code
in the program itself to filter out unrealistic inputs, for instance using assertions
that can be turned on for testing purposes or optionally for runtime monitoring.
Ideally, one would like to combine the best of both approaches:

– specify preconditions in the host programming language (say C or Java),
which is already familiar to the programmer and includes constructs for
expressing sophisticated constraints on input data structures,

– yet have those preconditions interpreted without any loss of precision by the
analysis tool as if they had been specified directly in logic.

We call constraint inference the latter problem of interpreting code as precisely
as if specified directly in logic.

Note that many applications already contain input filtering code: for instance,
a protocol implementation will typically first analyze the format of any incoming
packet and discard it if it is not well formed. Analysis of such applications thus
subsumes analysis of input filtering code; in other words, we need constraint
inference capabilities.

Similarly, postconditions could be exploited, not only to check correctness of
outputs, but also to direct executions towards potential postcondition violations.
Moreover, the postcondition of a component is often the precondition of another
one, so specifying pre- and postconditions are closely related problems.

Scalability. As in traditional model checking, state explosion is a significant
practical limitation of software model checking. Systematically exercising all
executable program paths can be prohibitively expensive when the number of
such paths is large (or infinite). This problem can be mitigated by compositional
testing for large programs. For instance, consider a program P that consists of a
main function f that calls exactly once another function g. If the set of inputs to
f is disjoint from the set of inputs to g, the number paths(P) of execution paths
in P is paths(f)∗paths(g); but since the inputs to f are independent of those of g,
both functions could instead be tested in isolation for a cost of paths(f)+paths(g)
while providing the same code and state-space coverage. When the inputs of f
and g are not independent, compositional testing amounts of summarizing the
results of g when analyzing f . The analysis of g could be summarized using pre-
and postconditions constraints, in a manner similar to what is currently done in
interprocedural static analysis. This form of component summarization extended
with temporal behaviors (i.e., information about sequences of inputs/outputs
at the component interface) is also similar to assume/guarantee reasoning in
verification.

5 Conclusions

Over the last ten years, we have seen the birth of the first software model checkers
for programming languages such as C, C++ and Java. Roughly speaking, two
broad approaches have emerged so far. The first approach consists of automati-
cally extracting a model out of a software application by statically analyzing its

30 P. Godefroid and N. Klarlund

code and abstracting away details, applying traditional model checking to ana-
lyze this abstract model, and then mapping abstract counter-examples back to
the code or refining the abstraction (e.g., [1, 21, 7]). The second approach consists
of systematically exploring the state space of a software system by driving its
executions at run-time via a scheduler and specific inputs (e.g., [14, 38, 28, 9, 16]).
As discussed earlier in this paper, both of these approaches to software model
checking have their advantages and limitations.

We strongly believe that, over the next ten years, an important topic of
research will be combining the static and dynamic approaches to software model
checking for falsification purposes. On one hand, there is a real need to improve
the effectiveness of current bug finding tools, which are almost all based on
imprecise, “may” static analysis and therefore prone to report (too) many false
alarms, which in turn has hindered a wider adoption of these tools. On the other
hand, there is a large number of static analysis techniques that have not yet
been adopted to direct execution.

In this paper, we outlined several possible directions for future work in this
area. We also presented specific ideas to tackle some of the key problems faced
in this endeavor.

Acknowledgements

We thank Dennis Dams, Cormac Flanagan, Alan Jeffrey, Rupak Majumdar,
Kedar Namjoshi, Koushik Sen, Howard Trickey, and Vic Zandy for stimulating
discussions on this work. Glenn Bruns provided helpful comments on a draft of
this paper. This work was funded in part by NSF CCR-0341658.

References

1. T. Ball and S. Rajamani. The SLAM Toolkit. In Proceedings of CAV’2001 (13th
Conference on Computer Aided Verification), volume 2102 of Lecture Notes in
Computer Science, pages 260–264, Paris, July 2001. Springer-Verlag.

2. C. Barrett and S. Berezin. CVC Lite: A New Implementation of the Cooperating
Validity Checker. In Proceedings of CAV’2004 (16th Conference on Computer
Aided Verification), Boston, July 2004.

3. D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. Generat-
ing Test from Counterexamples. In Proceedings of ICSE’2004 (26th International
Conference on Software Engineering). ACM, May 2004.

4. C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing based on
Java predicates. In Proceedings of ISSTA’2002 (International Symposium on Soft-
ware Testing and Analysis), pages 123–133, 2002.

5. C. Cadar and D. Engler. Execution Generated Test Cases: How to Make Systems
Code Crash Itself. In Proceedings of SPIN’2005 (12th International SPIN Work-
shop on Model Checking of Software), volume 3639 of Lecture Notes in Computer
Science, San Francisco, August 2005. Springer-Verlag.

6. E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-C Programs . In
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2004)
, volume 2988 of Lecture Notes in Computer Science, pages 168–176. Springer, 2004.

Software Model Checking 31

7. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and
H. Zheng. Bandera: Extracting Finite-State Models from Java Source Code. In
Proceedings of the 22nd International Conference on Software Engineering, 2000.

8. C. Csallner and Y. Smaragdakis. Check’n Crash: Combining Static Checking and
Testing. In Proceedings of ICSE’2005 (27th International Conference on Software
Engineering). ACM, May 2005.

9. M. B. Dwyer, J. Hatcliff, V. R. Prasad, and Robby. Exploiting Object Escape and
Locking Information in Partial Order Reduction for Concurrent Object-Oriented
Programs. To appear in Formal Methods in System Design, 2004.

10. J. Edvardsson. A Survey on Automatic Test Data Generation. In Proceedings of
the 2nd Conference on Computer Science and Engineering, pages 21–28, Linkoping,
October 1999.

11. M. D. Ernst. Static and dynamic analysis: synergy and duality. In Proceedings of
WODA’2003 (ICSE Workshop on Dynamic Analysis), Portland, May 2003.

12. C. Flanagan and P. Godefroid. Dynamic Partial-Order Reduction for Model Check-
ing Software. In Proceedings of POPL’2005 (32nd ACM Symposium on Principles
of Programming Languages), pages 110–121, Long beach, January 2005.

13. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems
– An Approach to the State-Explosion Problem, volume 1032 of Lecture Notes in
Computer Science. Springer-Verlag, January 1996.

14. P. Godefroid. Model Checking for Programming Languages using VeriSoft. In
Proceedings of POPL’97 (24th ACM Symposium on Principles of Programming
Languages), pages 174–186, Paris, January 1997.

15. P. Godefroid. The Soundness of Bugs is What Matters (Position Paper). In Proceed-
ings of BUGS’2005 (PLDI’2005 Workshop on the Evaluation of Software Defect
Detection Tools), Chicago, June 2005.

16. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random
Testing. In Proceedings of PLDI’2005 (ACM SIGPLAN 2005 Conference on Pro-
gramming Language Design and Implementation), pages 213–223, Chicago, June
2005.

17. S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. In Pro-
ceedings of the 9th International Conference on Computer Aided Verification, vol-
ume 1254 of Lecture Notes in Computer Science, pages 72–83, Haifa, June 1997.
Springer-Verlag.

18. E. Gunter and D. Peled. Path Exploration Tool. In Proceedings of TACAS’1999
(5th Conference on Tools and Algorithms for the Construction and Analysis of
Systems), volume 1579 of Lecture Notes in Computer Science, Amsterdam, March
1999. Springer.

19. N. Gupta, A. P. Mathur, and M. L. Soffa. Generating test data for branch coverage.
In Proceedings of the 15th IEEE International Conference on Automated Software
Engineering, pages 219–227, September 2000.

20. R. Hastings and B. Joyce. Purify: Fast Detection of Memory Leaks and Access
Errors. In Proceedings of the Usenix Winter 1992 Technical Conference, pages
125–138, Berkeley, January 1992.

21. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. In Pro-
ceedings of the 29th ACM Symposium on Principles of Programming Languages,
pages 58–70, Portland, January 2002.

22. G. J. Holzmann and M. H. Smith. A Practical Method for Verifying Event-Driven
Software. In Proceedings of the 21st International Conference on Software Engi-
neering, pages 597–607, 1999.

32 P. Godefroid and N. Klarlund

23. Ics. web page: http://www.icansolve.com/.
24. J. C. King. Symbolic Execution and Program Testing. Journal of the ACM,

19(7):385–394, 1976.
25. B. Korel. A dynamic Approach of Test Data Generation. In IEEE Conference on

Software Maintenance, pages 311–317, San Diego, November 1990.
26. E. Larson and T. Austin. High Coverage Detection of Input-Related Security

Faults. In Proceedings of 12th USENIX Security Symposium, Washington D.C.,
August 2003.

27. lp solve. web page: http://groups.yahoo.com/group/lp solve/.
28. M. Musuvathi, D. Park, A. Chou, D. Engler, and D. Dill. CMC: A pragmatic

approach to model checking real code. In Proceedings of OSDI’2002, 2002.
29. G. J. Myers. The Art of Software Testing. Wiley, 1979.
30. G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-Safe Retrofitting of

Legacy Code. In Proceedings of POPL’02 (29th ACM Symposium on Principles of
Programming Languages), pages 128–139, Portland, January 2002.

31. J. Offutt and J. Hayes. A Semantic Model of Program Faults. In Proceedings
of ISSTA’96 (International Symposium on Software Testing and Analysis), pages
195–200, San Diego, January 1996.

32. C. Pasareanu, R. Pelanek, and W. Visser. Concrete Model Checking with Ab-
stract Matching and Refinement. In Proceedings of CAV’2005 (17th Conference
on Computer Aided Verification), Edinburgh, July 2005.

33. S. Qadeer and D. Wu. KISS: Keep It Simple and Sequential. In Proceedings of
PLDI’2004 (ACM SIGPLAN 2004 Conference on Programming Language Design
and Implementation), Washington D.C., June 2004.

34. K. Sen, D. Marinov, and G. Agha. CUTE: A Concolic Unit testing Engine for C.
In Proceedings of FSE’2005 (13th International Symposium on the Foundations of
Software Engineering), Lisbon, September 2005.

35. Simplify. web page: http://research.compaq.com/SRC/esc/Simplify.html.
36. F. Tip. A survey of program slicing techniques. Journal of Programming Languages,

3(3):121–189, 1995.
37. Valgrind. web page: http://valgrind.org/.
38. W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs. In

Proceedings of ASE’2000 (15th International Conference on Automated Software
Engineering), Grenoble, September 2000.

39. W. Visser, C. Pasareanu, and S. Khurshid. Test Input Generation with Java
PathFinder. In Proceedings of ACM SIGSOFT ISSTA’04 (International Sympo-
sium on Software Testing and Analysis), Boston, July 2004.

40. T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A Framework for Gen-
erating Object-Oriented Unit Tests Using Symbolic Execution. In Proceedings of
TACAS’05 (11th Conference on Tools and Algorithms for the Construction and
Analysis of Systems), volume 3440 of LNCS, pages 365–381. Springer, 2005.

Adaptive Techniques for Specification Matching
in Embedded Systems:
A Comparative Study

Robi Malik1 and Partha S. Roop2

1 Department of Computer Science,
The University of Waikato, Hamilton, New Zealand

robi@cs.waikato.ac.nz
2 Department of Electrical and Computer Engineering,
The University of Auckland, Auckland, New Zealand

p.roop@auckland.ac.nz

Abstract. The specification matching problem in embedded systems is
to determine whether an existing component may be adapted suitably
to match the requirements of a new specification. Recently, a refinement
called forced simulation has been introduced to formally address this
problem. It has been established that when a forced similarity relation
exists between a component and its specification, an adapter process can
be constructed so that the composition of the adapter and the compo-
nent fulfil the specification. This looks very similar to synthesis methods
in supervisory control theory, where a controller is constructed to make
a plant satisfy a desired specification. However, due to the need for state-
based hiding in specification matching, supervisory control theory is not
directly applicable. This paper develops a supervisory control based so-
lution to the specification matching problem by modifying the problem
representation. Subsequently, a comparison of the forced simulation and
supervisory control based specification matching methods is made.

KeyWords: Formal verification, specification matching, embedded sys-
tems, supervisory control, finite-state machines, bisimulation.

1 Introduction

Reuse techniques for hardware [4, 13] and software [16] have been the focus of
research fuelled by increasing system complexity, shorter design cycles, and the
obvious need for productivity improvement. Some of the common problems that
need to tackled in both domains to facilitate reuse include:

1. Developmental issues: how to identify and develop generic components that
are easily reusable.

2. Database issues : how to store, index and retrieve reusable components; also,
whether generic, domain specific and open databases can be created.

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 33–52, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

34 R. Malik and P.S. Roop

3. Matching issues : how to decide whether an existing, pre-verified component
matches given requirements.

4. Compositional issues: how to compose a set of matched components to create
a large system.

This paper addresses the third issue of matching in the context of reactive and
embedded systems, hereafter referred to as the specification matching problem.
The specification matching problem addresses the following question: given an
existing component, or device, and a new specification, can the device be used
to implement the specification. Specification matching is a key to automated
retrieval and reuse.

Many researchers have investigated specification matching to facilitate reuse
of transformational software [10, 26, 19, 11]. In this context, the problem is to
check whether a program can be used for a given specification either directly or
with some modification. Some of these techniques [19] rely on heuristics, while
others [10,26,11] use pre- and post-condition matching. Matching of state-based
modular components using Z-like formal notation is addressed in [8], and a graph
transformation-based approach for service discovery in Web services is proposed
in [5]. The problem of adaptation for software components is developed in [7].
These techniques are not directly applicable for the reuse of reactive components
in embedded systems since such components are control-dominated, in contrast
to data-dominated transformational programs.

Similar to specification matching for software, many attempts for matching
hardware components have been made. In [18], an informal mapping algorithm
to automatically map a design function to a system level component is proposed.
Methods for specification matching and verification of circuits using polynomials
are proposed in [24]. Also, low-level components such as ALUs have been suc-
cessfully reused [12]. These techniques, though suitable for low-level components,
are unsuitable for matching system-level components for embedded applications,
which require matching of reactive behaviours (which is control-dominated and
dynamic). Hence, techniques for specification matching of software or low-level
hardware are not directly applicable to embedded applications.

The general problem of specification matching can be described as follows.

“Given a device D and a specification F , does there exist an adapter A
that can make the device D satisfy the new specification F?”

Recently, a tailored solution to solve this problem for embedded systems has been
proposed [22]. This approach uses the new concept of forced simulation, which
provides a necessary and sufficient condition for the existence of an adapter.

At the same time, supervisory control theory of discrete event systems [20,3]
provides a general framework to solve similar problems—namely to determine
whether a controller exists to make a given environment satisfy a given specifi-
cation. However, due to the specific requirements of specification matching, this
framework is not directly applicable. This paper shows how the specification
matching problem can be reformulated for supervisory control theory to become
applicable, proposes a solution to the specification matching based on supervi-
sory control, and compares it to the tailored solution using forced simulation.

Adaptive Techniques for Specification Matching in Embedded Systems 35

In Sect. 2, the specification matching problem is introduced by means of an
example. Next, Sect. 3 provides the formal notation used in the paper. Then two
solutions to specification matching are discussed, first using forced simulation in
Sect. 4 and second using supervisory control in Sect. 5. Finally, Sect. 6 compares
the two approaches, and Sect. 7 makes some concluding remarks.

2 Coffee Brewer Example

This section introduces the problem of component matching for embedded sys-
tems using the specification of a simple coffee brewer, which is used as a running
example throughout this paper. Finite-state machines are used to present the
example, as they are a common means to describe the dynamics of reactive and
embedded system behaviour [3].

Figure 1 shows a finite-state machine model of the coffee brewer. This device
allows the brewing of four or eight cups of coffee. Initially, the user sets the

D:

replenish

ready4m

error

8cups
default strong strong∧ 8cups

brewbrew

reset

brew

ready8merror

ready8s

error

ready4s
error

brew

d9

d0

d8

d4

d7

d3

d10

d5

d1

d6

d2

F :

default

8cups

ready4m
error

reset

ready8m

error

f0

f1

f3

f2

A:

ready4m
error

default 8cups

ready8m

error

[reset]

[brew] [brew]

[replenish]

reset

d10f3

d1f1

d5f1

d9f0

d7f2

d3f2

d0f0

d9f3

Fig. 1. Coffee brewer example

36 R. Malik and P.S. Roop

switches strong to determine the desired coffee strength, medium or strong, and
8cups to choose four or eight cups of coffee. It is possible that no switch is set
(action default), exactly one switch is set (actions strong or 8cups), or that both
switches are set (action strong ∧ 8cups). Then brewing is started by activating
the brewcycle switch (brew). After completion, the device produces the desired
amount of coffee (ready4m, ready8m, ready4s, or ready8s), or reports an error,
indicating that the coffee powder has run out. In this case, the brewer has to be
replenished with powder (replenish). Finally, there is a reset switch to return the
brewer to its initial state and start another operation.

Suppose that such a brewer device has been built and is available. Let D
be its finite-state machine description as shown in Fig. 1. Also suppose that an
altered specification F , also shown in Fig. 1, demands a brewer that provides
either four or eight cups of coffee of medium strength, and the existing device D
should be used to implement it, if possible.

The central idea behind reusing an existing device to implement a new spec-
ification F is to construct an external process which moves in lock-step with D
and adapts D so that D then matches F . Such an external process is called an
adapter. There are a few constraints while constructing an adapter. The device D
cannot be modified directly, so the adapter has to interact with it via the actions
of its external interface. Therefore, the internal states of D are not accessible.
However, the sequence of actions consumed by D may be observed to determine
the state of D.

To achieve its objectives, an adapter has to suppress extraneous behaviours
of the device in certain states (since D is capable of more behaviours than F),
and generate extra inputs to the device (since D is more detailed than F) in
some other states. In the coffee brewer example, for D to match F , the adapter
must perform the following tasks:

1. When the device (D) is in the initial state d0, the adapter must disable the
strength switch, i.e., disable action strong, preventing D from entering states
d2 and d4. Such actions of the adapter are termed as disabling.

2. When D is in state d1, the adapter must set the brewcycle switch to on, i.e,
cause action brew. Such actions of the adapter are termed as forcing.

Process A in Fig. 1 is a possible adapter for the coffee brewer example. When
composed with D, the composite system (D and A acting together) exhibits the
same behaviour as F . When the adapter moves in lock-step with D, it consumes
the same inputs as D from the environment. However, when the adapter forces
an input to D, it must generate that input itself. Hence, forced actions are
different from the actions generated in the environment. In order to distinguish
them, forced actions are written as [σ], in contrast to environment actions which
are written as σ.

Forced actions are common in embedded applications, for example to trigger
an initialisation sequence to select a particular operation mode of a device. In
general, forced actions can occur whenever the device is more detailed than its
specification, so the adapter needs to trigger actions that do not appear in the

Adaptive Techniques for Specification Matching in Embedded Systems 37

specification. Sometimes, it can depend on the state of the device whether an
action is forced or not. In the coffee brewer example, this occurs in state d9
of the device, which has two matching states d9f0 and d9f3 in the adapter. In
state d9f3, reset occurs as an external action from the environment, while it is
forced by the adapter in state d9f0. Thus, a given signal may be hidden in one
state (due to forcing) and be visible in another state (if that signal is obtained
from the environment and not forced by the adapter).

This state-based hiding is characteristic for specification matching in embed-
ded systems. In the coffee brewer example, the specification F is not in any
way directly equivalent to the device D, nor is there an obvious refinement re-
lation [2, 15] between the two. The correspondence between D and F can only
be established by treating the reset action differently in states f0 and f3 of F .

3 Notation and Preliminaries

3.1 Languages

Traces and languages are a simple means to describe process behaviours. Their
basic building blocks are actions, which are taken from a finite alphabet Σ. In
addition, the hidden action τ does not belong to Σ. To include it explicitly, the
alphabet Στ = Σ ∪ {τ} is used.

Σ∗ denotes the set of all finite strings or traces of the form σ1σ2 · · ·σk of
actions from Σ, including the empty trace ε. A language over Σ is any subset
L ⊆ Σ∗. The concatenation of two traces s, t ∈ Σ∗ is written as st. Languages
and alphabets can also be catenated: LΣ = { sσ ∈ Σ∗ | s ∈ L, σ ∈ Σ }. The
prefix-closure L of a language L ⊆ Σ∗ is the set of all prefixes of traces in L,
i.e., L = { s ∈ Σ∗ | st ∈ L for some t ∈ Σ∗ }.

3.2 Processes

Processes are used to describe the components of embedded systems, so the
functions and devices used in specification matching are modelled as processes.
Processes are represented as labelled transition systems

P = 〈Σ, Q,→ , q◦, Qm〉 , (1)

where Σ is the alphabet of actions, Q is the set of states, → ⊆ Q × Στ × Q is
the transition relation, q◦ ∈ Q is the initial state, and Qm is the set of marked
or terminal states. If the state set Q is finite, then P is also called a finite-state
machine. The transition relation is also written as

q
σ→ q′ if and only if (q, σ, q′) ∈ → . (2)

Finite-state machines can be represented graphically as shown in Fig. 1. States
are represented as nodes, with the initial state highlighted by a thick border and
terminal states coloured grey. The transition relation is represented by labelled
edges.

38 R. Malik and P.S. Roop

A process is said to be deterministic if it does not contain any transitions
labelled τ , and q

σ→ q′ and q
σ→ q′′ implies q′ = q′′. In this paper, specifica-

tions, devices, and adapters are assumed to be deterministic. Nondeterministic
processes may result from abstraction and hiding.

The transition relation → is extended to a relation → ⊆ Q × Σ∗
τ × Q by

letting q
ε→ q for all q ∈ Q, and q

sσ→ q′′ if there exists q′ ∈ Q such that
q

s→ q′ and q′
σ→ q′′. To handle the hidden action τ , another transition relation

⇒ ⊆ Q × Σ∗ × Q describes the visible evolutions of a process. It is defined as

q
ε⇒ q′ if q = q1

τ→ · · · τ→ qn = q′ for some q1, . . . , qn ∈ Q ; (3)

q
sσ⇒ q′ if q

s⇒ qs
σ→ qsσ

ε⇒ q′ for some qs, qsσ ∈ Q . (4)

The possible behaviour of a process P = 〈Σ, Q,→ , q◦, Qm〉 is described by the
language

L(P) def= { s ∈ Σ∗ | q◦
s⇒ q for some q ∈ Q } . (5)

When several processes are running in parallel, lock-step synchronisation
in the style of CSP [9] is used. A shared action can only be performed if all
interacting processes can perform that action. This is different from CCS style
synchronisation [17], which allows a process to evolve autonomously ignoring the
other processes.

Definition 1. Let P1 = 〈Σ, Q1,→1 , q◦1 , Qm
1 〉 and P2 = 〈Σ, Q2,→2 , q◦2 , Qm

2 〉 be
two processes, both using the alphabet Σ. The synchronous product P1 ‖ P2 of
P1 and P2 is defined as

P1 ‖ P2
def= 〈Σ, Q1 × Q2,→ , (q◦1 , q◦2), Qm

1 × Qm
2 〉 , (6)

where (q1, q2)
σ→ (q′1, q

′
2) if and only if q1

σ→1 q′1 and q2
σ→2 q′2.

Furthermore, process-algebraic hiding is introduced in the standard way [23].
Given a process P , the result of hiding actions Σ′ ⊆ Σ is denoted by P \ Σ′.
This process has action alphabet Σ \Σ′ and is constructed from P by replacing
every occurrence of an action in Σ′ by the hidden action τ .

3.3 Equivalence

To address questions of specification matching and adaptation, concepts of equiv-
alence are needed to determine whether two processes are to be considered as
equal. As long as only deterministic processes are involved, it is common to use
trace equivalence, which considers processes as equivalent if their languages are
equal. This equivalence is used in supervisory control theory [20].

For nondeterministic processes, various ways of considering two processes as
equivalent exist [25]. The forced simulation approach [22] uses weak bisimulation
or observation equivalence [17] as the underlying equivalence. Two processes P1
and P2 are weakly bisimilar if every action of P1 is matched by an identical action
in P2, possibly preceded and/or succeeded by hidden actions. The definition is
recursive so that the resultant states must also be weakly bisimilar.

Adaptive Techniques for Specification Matching in Embedded Systems 39

Definition 2. Let P1 = 〈Σ, Q1,→1 , q◦1 , Qm
1 〉 and P2 = 〈Σ, Q2,→2 , q◦2 , Qm

2 〉 be
two processes. A relation R ⊆ Q1 × Q2 is a weak bisimulation if, whenever
(q1, q2) ∈ R, the following hold for all σ ∈ Σ.

1. If q1
σ→ q′1 then q2

σ⇒ q′2 for some q′2 ∈ Q2 such that (q′1, q
′
2) ∈ R;

2. If q2
σ→ q′2 then q1

σ⇒ q′1 for some q′1 ∈ Q1 such that (q′1, q
′
2) ∈ R.

P1 and P2 are called weakly bisimilar, written P1 ≈ P2, if there exists a weak
bisimulation R ⊆ Q1 × Q2 such that (q◦1 , q◦2) ∈ R.

3.4 Adapter Processes

Adapters are special processes that interact with a device by performing two
types of actions—disabling and forcing. Disabling is modelled in the standard
way using lock-step synchronisation between the adapter and device. To model
forcing, a special kind of actions is used.

Every action in Σ can be forced by the adapter, and this is written as a
separate forced action [σ] /∈ Σ. For a subset Σ′ ⊆ Σ, it is convenient to write
[Σ′] = { [σ] | σ ∈ Σ′ }. Actions that are not forced, i.e., actions in Σ are called
external as they can be observed by the environment when executed. An adapter
is a process that uses forced and external actions.

Definition 3. An adapter is a process whose set of actions is

Σfsim = Σ ∪ [Σ] . (7)

This general definition allows adapter processes that can execute both forced
and external actions in the same state, which is not desired in practice.

Definition 4. An adapter A = 〈Σfsim, Q,→ , q◦, Qm〉 is said to be well-formed,

if for all q, q′ ∈ Q and α ∈ Σ such that q
[α]→ q′ the following holds:

if q
σ→ q′′ for some σ ∈ Σfsim then σ = [α] . (8)

A well-formed and deterministic adapter has only one successor for states
where forcing is performed. Other states may have more than one successor.
Thus, a well-formed adapter either forces a single action, or enables some of the
external actions of the device and lets the environment execute one of them.

The interaction between an adapter and a device depends on whether an
action is forced or external. To describe it formally, a new forced composition
operator is introduced in [22].

Definition 5. Let A = 〈Σfsim, QA,→A , q◦A, Qm
A 〉 be an adapter, and let D =

〈Σ, QD,→D , q◦D, Qm
D〉 be a device. The forced composition A // D of A and D is

A // D
def= 〈Σ, QA × QD,→ , (q◦A, q◦D), Qm

A × Qm
D〉 , (9)

where

(qA, qD) τ→ (q′A, q′D) if qA
[α]→A q′A and qD

α→D q′D, for some α ∈ Σ; (10)

(qA, qD) σ→ (q′A, q′D) if qA
σ→A q′A and qD

σ→D q′D, for σ ∈ Σ. (11)

40 R. Malik and P.S. Roop

When A forces an action, the forced composition A // D performs an unob-
servable τ transition (10)—this is called a forced move. Otherwise, A // D can
perform an observable or external move, with both D and A simultaneously re-
sponding to the same signal (11). The forced composition A//D is deterministic
if both A and D are deterministic and the adapter A is well-formed.

3.5 Supervisory Control

Supervisory control theory for discrete event systems [20, 3] is a general theory
to describe under which circumstances a system can be controlled in such a way
that it satisfies a given specification. The system to be controlled is called the
environment or plant, and the specification describes a desired behaviour of this
plant. In the context of specification matching, the plant corresponds to the
device, and the specification corresponds to the desired function.

The plant and specification are both represented as languages. The lan-
guage L of the plant, or device, describes the physically possible behaviour of
the device. The specification language K characterises a largest acceptable be-
haviour, or a safety property. The objective is to control the device in such a
way that it never can perform a trace that is not in K.

Supervisory control theory supports uncontrollable actions. These are actions
performed by the plant, i.e., the device that cannot be forced or disabled by an
adapter. Typical examples of uncontrollable actions are the outputs or interrupts
generated by a device, which cannot be stopped by any adapter—the adapter
can only observe them. Therefore, the set Σ of actions is partitioned into two
disjoint subsets: the set Σc of controllable actions and the set Σu of uncontrollable
actions.

Supervisory control theory is concerned about whether a given specification
language K can be achieved by controlling a given device with behaviour L,
with the possibility of uncontrollable actions in mind. This is defined by the
fundamental concept of controllability [20].

Definition 6. Let K and L be two prefix-closed languages. K is said to be
controllable with respect to L if

KΣu ∩ L ⊆ K . (12)

Thus, a language K is controllable with respect to L if there is no trace in K
that can be followed by an uncontrollable action possible in L but not possible
in K. This means that, given a device behaviour L, the behaviour given by K
can be achieved by disabling controllable actions only. Note that the languages
∅, L, and Σ∗ are all trivially controllable with respect to L.

If a language K is controllable with respect to a device, then it is possible to
construct a supervisor which, when running together with the device, produces
exactly the behaviour K. A supervisor is a process running in lock-step with the
device, which can observe all actions of the device, but only disable controllable
actions in order to achieve its objective. It is used in similar ways as an adapter
in specification matching.

Adaptive Techniques for Specification Matching in Embedded Systems 41

Not every language is controllable. If a language K is not controllable, then
it is not possible to construct a supervisor, or adapter, that achieves the be-
haviour K, because this would lead to a critical situation where the device can
execute an uncontrollable action not allowed by the specification K. In order
to avoid such problems, the supervisor needs to disable controllable actions ear-
lier to prevent the critical situation from being reached. In other words, the
behaviour K needs to be restricted to some sub-behaviour K ′.

Therefore, it is of interest to find a sublanguage K ′ of K that is controllable
with respect to L. This leads to the definition of the set C (K, L), which contains
all sublanguages of a language K that are controllable with respect to L:

C (K, L) def= {K ′ ⊆ K | K ′ is controllable with respect to L } . (13)

It is easy to show that the union of any number of controllable languages is again
controllable [20]. Therefore, the set C (K, L) contains a unique supremal element

sup C(K, L) def=
⋃

K′∈C(K,L)

K ′. (14)

This supremal element is known as the supremal controllable sublanguage of K
with respect to L. It characterises the largest possible sub-behaviour within K
that can be achieved by controlling L. Various algorithms to compute it are
discussed in the literature [14, 1].

The existence of the supremal controllable sublanguage leads to the follow-
ing result [20], which is central in supervisory control theory. It answers the
fundamental question under which conditions there exists an adapter that can
control a given device in such a way that its behaviour never exceeds a given
specification.

Theorem 1. Let K and L be two prefix-closed languages. There exists a su-
pervisor S which, when running together with a plant with behaviour L, can
guarantee that its behaviour never exceeds K, if and only if

sup C(K, L) �= ∅ . (15)

Thus, the nonemptiness of the supremal controllable sublanguage is a neces-
sary and sufficient condition for the existence of a supervisor, or adapter, for a
given device and specification. Furthermore, sup C(K, L) characterises the max-
imally permissive behaviour that can be achieved by an adapter controlling the
device without violating the specification.

3.6 Nonblocking

In addition to controllability, supervisors are required to perform some minimum
functionality. In supervisory control theory, this is achieved by imposing a weak
liveness condition, called nonblocking [20]. It is required that the system is always
able to complete its tasks. The completion of a task is traditionally modelled
using a second language, the so-called marked language, which is defined using
the marked states of a process.

42 R. Malik and P.S. Roop

Definition 7. Let P = 〈Σ, Q,→ , q◦, Qm〉 be a process. The marked language
of P is defined as

M(P) def= { s ∈ Σ∗ | q◦
s⇒ qm for some qm ∈ Qm } . (16)

The marked language of a process represents the set of its completed tasks.
Clearly, every prefix of such a completed task is a possible behaviour of a process,
i.e., M(P) ⊆ L(P). The converse inclusion, while certainly desirable, is not
always satisfied. If it is, the process is called nonblocking.

Definition 8. A deterministic process P = 〈Σ, Q,→ , q◦, Qm〉 is said to be non-
blocking if L(P) = M(P).

To be nonblocking is the weak liveness requirement underlying supervisory
control theory. It means that every trace can somehow be extended to form a
completed task, or, in the terminology of labelled transition systems, a marked
state can be reached from every reachable state. All the processes shown in Fig. 1
are nonblocking, because a grey marked state is reachable from every other state.

If a process does not have this property, it is called blocking. A blocking
process contains states from where no terminal state can be reached anymore.
This is usually not desired, as it indicates the possibility of deadlock or livelock
in the system.

The property to be nonblocking is not always easy to establish. When two
nonblocking processes are composed, this may result in a blocking process. Su-
pervisory control synthesis as described by equation (14) removes transitions
from processes and therefore may produce a blocking behaviour. To solve this
problem, supervisory control synthesis has been extended to eliminate blocking
states from the synthesis result and produce a least restrictive sub-behaviour of
the specification that is both controllable and nonblocking [20, 3].

4 Specification Matching Using Forced Simulation

This section introduces the specification matching problem formally and pro-
poses a first solution. Given a specification F and a device D, the task is to
determine whether there exists an adapter A such that A // D has equivalent
behaviour to F . For specification matching, weak bisimulation is the appropriate
equivalence. Therefore, the following definition is introduced in [22].

Definition 9. Let F and D be two processes. D can implement function F , or
D matches F , if there exists a well-formed and deterministic adapter A such
that A // D ≈ F .

The main task in specification matching is to determine whether there exists
an adapter for arbitrary pairs of devices and specifications. In [22], the follow-
ing simulation relation called forced simulation is introduced, which provides a
necessary and sufficient condition for adapter existence.

Adaptive Techniques for Specification Matching in Embedded Systems 43

Definition 10. Let F = 〈Σ, QF ,→F , q◦F , Qm
F 〉 and D = 〈Σ, QD,→D , q◦D, Qm

D〉
be two processes. A relation R ⊆ QF × QD × Σ∗ is called a forced simulation
between F and D, if the three conditions below hold. The notation qF Rs qD is
used as a shorthand for (qF , qD, s) ∈ R.

1. If qF Rε qD, then for all σ ∈ Σ and all q′F ∈ QF such that qF
σ→ q′F , there

exist q′D ∈ QD and s ∈ Σ∗ such that qD
σ→ q′D and q′F Rs q′D;

2. If qF Rσs qD for σ ∈ Σ and s ∈ Σ∗, then there exists q′D ∈ QD such that
qD

σ→ q′D and qF Rs q′D;
3. q◦F Rs q◦D for some s ∈ Σ∗.

In the above definition, there are two ways how states qF ∈ QF and qD ∈ QD

can be related via a forced simulation R.

1. qF and qD are directly related if for every transition qF
σ→ q′F in F , there is a

matching transition qD
σ→ q′D in D where q′F and q′D are also related. In this

case, qF Rε qD. For example, states f1 and d5 in Fig. 1 are directly related.
2. qF and qD are related via forcing sequence s if there exists a successor state

q′D in D such that q′D is reachable from qD via trace s where qF and q′D are
related via R. In this case, qF Rs qD. For example, states f1 and d1 in Fig. 1
are related via forcing sequence brew.

These possibilities are formalised in the first two conditions of definition 10. In
addition, the start states are required to be related via some forcing sequence s.

Definition 11. Let F and D be two processes. F is forced similar to D, written
F �fsim D, if there exists a forced simulation between F and D.

Example 1. In the coffee brewer example, specification F and device D in Fig. 1
are forced similar because of the following forced simulation relation.

R = { (f0, d0, ε), (f0, d9, reset), (f1, d1, brew), (f1, d5, ε),
(f2, d3, brew), (f2, d7, ε), (f3, d9, ε), (f3, d10, replenish) } .

(17)

In this example, R is unique. In general, however, there may be many forced
simulation relations between a specification and a device.

The main result of [22] states that the existence of a forced simulation relation
between specification and device is a necessary and sufficient condition for the
existence of an adapter.

Theorem 2. Let F and D be two deterministic processes. There exists a well-
formed and deterministic adapter A such that A//D ≈ F if and only if F �fsim D.

Forced simulation can be computed either using a modification of simulation
algorithms [22], or using tabled logic programming engines such as XSB [21].
These methods can be used to determine whether an adapter exists for a given
device and specification, and if so, to compute it.

44 R. Malik and P.S. Roop

5 Specification Matching Using Supervisory Control

Supervisory control theory provides an alternative way to determine whether a
given specification can be achieved by controlling a plant. At a first glance, this
looks very similar to the specification matching problem, with the additional
possibility to handle uncontrollable actions.

Unfortunately, it is not possible to apply supervisory control synthesis di-
rectly to component matching of a device D and specification F . The reason for
this is the need for state-based hiding in combination with forcing. To illustrate
the problem, consider the coffee brewer example in Fig. 1 once more. In the
setting of supervisory control, the specification F for the coffee brewer is treated
such that action reset is disallowed in state f0, both as a forced and as an ex-
ternal action. However, the implemented brewer being reused (D) allows reset
to occur in state d9. Moreover, state d9 in D needs to be matched to state f0
in F . Since this matching cannot happen directly, reset needs to be forced, as
it is done by the correct adapter A on its transition from d9f0 to d0f0. Such
a solution is not acceptable as a supervisor, because it allows reset to occur in
state f0 of a specification, which requires that action to be disabled.

Hence, there is a need to alter the models of F and D, so that forced and
external actions can be treated separately by supervisory control synthesis. First,
the device D is modelled as a plant [D] using different actions for the external
and forced steps.

Definition 12. Let D = 〈Σ, Q,→ , q◦, Qm〉 be a process, and Σc ⊆ Σ be the set
of controllable actions. Define the plant process [D] = 〈Σfsim, Q,→[D] , q

◦, Qm〉
where

– q
σ→[D] q′ if σ ∈ Σ and q

σ→ q′;

– q
[σ]→[D] q′ if σ ∈ Σc and q

σ→ q′.

The plant model [D] is obtained from D by adding forced transitions to all
transitions labelled with a controllable action. This assumes that exactly the con-
trollable actions can be forced by the adapter. Other ways of constructing [D] are
conceivable, where forced transitions are included selectively only for particular
actions, or only from particular states.

Example 2. Figure 2 shows the plant model [D] obtained from the device D in
Fig. 1, under the assumption that actions ready4m, ready8m, ready4s, ready8s,
and error are uncontrollable.

The construction of [D] captures the way how an adapter interacts with a
device via the composition operator // developed for forced simulation. Given
an adapter A and a device D, the following relationship is easy to see.

A // D = (A ‖ [D]) \ [Σ] (18)

Having constructed the plant model [D] using the extended alphabet Σfsim,
the specification also needs to be modified to use the same alphabet. This is
done in the standard way of supervisory control theory, by adding selfloops.

Adaptive Techniques for Specification Matching in Embedded Systems 45

[D]:

ready8m
error

brew
[brew]

brew
[brew]

ready4m

error

ready4s

error

reset
[reset]

replenish
[replenish]

brew
[brew]

ready8s

error

default
[default]

strong
[strong]

8cups
[8cups]

strong∧ 8cups
[strong∧ 8cups]

brew
[brew]

d0

d9

d8

d4

d7

d3

d5

d1

d10

d2

d6

Fig. 2. Modified plant for coffee brewer

[F]� :

[brew]
[default]
[replenish]
[reset]
[strong]
[strong∧ 8cups]
[8cups]

error

ready8m

[brew]
[default]
[replenish]
[reset]
[strong]
[strong∧ 8cups]
[8cups]

reset

error

[brew]
[default]
[replenish]
[reset]
[strong]
[strong∧ 8cups]
[8cups]

ready4m

8cups

default

[brew]
[default]
[replenish]
[reset]
[strong]
[strong∧ 8cups]
[8cups]

f0

f1

f2

f3

Fig. 3. Modified specification for coffee brewer

46 R. Malik and P.S. Roop

Definition 13. Let F = 〈Σ, Q,→ , q◦, Qm〉, and Σc ⊆ Σ be the set of control-
lable actions. Define the specification process [F]� = 〈Σfsim, Q,→[�] , q

◦, Qm〉
where

– q
σ→[�] q′ if σ ∈ Σ and q

σ→ q′;

– q
[σ]→[�] q for each σ ∈ Σc and q ∈ Q.

The modified specification [F]� is obtained from F by adding selfloops for all
forced actions to each state. This reflects the interpretation that forced actions
are allowed to occur at any time without violating the specification, and when
the device is forced, the state of the specification remains unchanged. Figure 3
shows the modified specification [F]� obtained in this way from the original
specification F in Fig. 1.

Obviously, [D] and [F]� are deterministic whenever the original device D
and specification F are deterministic.

Given a plant model [D] for a device and a specification automaton [F]�

augmented with selfloops, supervisory control synthesis can be used to compute
an adapter A such that

L(A) = sup C(L([F]�), L([D])) . (19)

When applied to the coffee brewer plant [D] and specification [F]� in Fig. 2,
this leads to an adapter A as shown in Fig. 1. In this case, supervisory control
synthesis produces exactly the same result as the forced simulation method.

By the results of supervisory control theory [20], the adapter process A ob-
tained from (19) has the following properties.

1. L(A // D) ⊆ L(F), i.e., the possible behaviours of the adapter running to-
gether with the device are all included in the allowed behaviour of F . In
other words, the adapter will never allow any traces to occur that are not
permitted by the specification.

2. L(A) is controllable with respect to L([D]), i.e., the adapter will always be
able to react to uncontrollable actions generated by the device.

Within these constraints, L(A) describes the least restrictive possible behaviour.
It includes all possible adapter implementations that can satisfy the specifica-
tion F while still being controllable.

The supervisory control solution A in Fig. 1 obtained for the coffee brewer
can directly be used as a well-formed adapter to implement the specification.
This is not always the case. Being a least restrictive solution, the behaviour of A
may include several possibilities of forced or external actions in some state. If
this happens, the result A can simply be restricted by choosing just one of the
possibilities in each state. Each choice leads to a different adapter implementa-
tion.

This is possible because the two properties 1 and 2 above are not affected
when the behaviour is restricted by disabling controllable actions. This observa-
tion immediately leads to the following result.

Adaptive Techniques for Specification Matching in Embedded Systems 47

Theorem 3. Let F and D be two deterministic processes. There exists a well-
formed and deterministic adapter A, such that L(A) is controllable with respect
to L([D]) and L(A // D) ⊆ L(F), if and only if sup C(L([F]�), L([D])) �= ∅.

Proof (sketch). By theorem 1, supC(L([F]�), L([D])) �= ∅ if and only if there ex-
ists a supervisor process S such that L(S) is controllable with respect to L([D]),
and L(S ‖ [D]) ⊆ L([F]�). Then S can be restricted to a well-formed, determin-
istic, and controllable adapter A such that L(A ‖ [D]) ⊆ L([F]�). Therefore, the
claim follows from (18). ��

Thus, it is a necessary and sufficient condition for adapter existence that
the behaviour obtained from (19) is nonempty. If this test is successful, the
resultant behaviour can be used to implement a well-formed, deterministic, and
controllable adapter satisfying the specification.

Supervisory control synthesis produces the largest sub-behaviour of the spec-
ification that is achievable by control. This result is not guaranteed to be equiv-
alent to the specification and may even contain incomplete traces that lead to
deadlock. To avoid this problem, the synthesis result from (19) needs to be
checked whether it is nonblocking; if it is not, it should not be considered as a
solution to the specification matching problem.

Supervisory control synthesis has been extended to produce a least restrictive
solution that is both controllable and nonblocking [20]. This solves the problem
of incomplete behaviours in the synthesis result while still providing an optimal
solution, but makes it more difficult to construct an adapter implementation.
The result of theorem 3 is lost, because a nonblocking process may become
blocking by removing transitions. This problem has also been studied: ways of
synthesising nonblocking behaviours that can be implemented are shown in [6].

6 Comparison

Forced simulation and supervisory control offer two different solutions to the
specification matching problem. Although both methods produce the same re-
sult in the example discussed so far, there are important differences in the way
how specifications are interpreted and which solutions are obtained. Table 1
summarises the commonalities and differences.

The most important point is that the two approaches use different notions of
process equivalence, and strive to find solutions with different properties. Spec-
ifications have different meanings to the two approaches. The forced simulation
method tries to find behaviours that are observation equivalent to the specifica-
tion. A supervisory control specification is interpreted as a maximally permissible
behaviour, and the method searches its implementable sub-behaviours.

Since forced simulation does not support uncontrollable actions, the two
methods are first compared under the assumption that all actions are control-
lable. In this case, it can be shown that supervisory control more often finds
solutions than forced simulation does. Obviously, there are more likely to be
implementable sub-behaviours than equivalent behaviours.

48 R. Malik and P.S. Roop

Table 1. Comparison of specification matching approaches

Feature Forced simulation Supervisory control

Relationship A // D ≈ F L(A // D) ⊆ L(F)
between A and F

Well-formedness guaranteed requires additional steps
Forced cycles not possible may occur
Nonblocking guaranteed can be guaranteed
Uniqueness solutions weakly bisimilar unique least restrictive solution
Controllability not considered handled
Complexity O(|QF ||QD|2|Σ|) O(|QF ||QD||Σ|) without nonblocking,

O(|QF |2|QD|2|Σ|) with nonblocking

Theorem 4. Assume Σ = Σc. Let F and D be two processes. If there exists
an adapter A such that A // D ≈ F , then L(A // D) ⊆ sup C(L([F]�), L([D])).

Proof (sketch). A // D ≈ F implies L(A // D) = L(F), which in turn implies
L(A‖[D]) ⊆ L([F]�) by (18). Furthermore, L(A//D) is controllable with respect
to L([D]) because Σ = Σc. Therefore, L(A // D) ∈ C (L([F]�), L([D])), and the
claim follows by definition of sup C. ��

If there exists an adapter that can be computed by the forced simulation
method, then its behaviour is contained in the least restrictive solution from
supervisory control. Moreover, the results from forced simulation and supervi-
sory control synthesis have the same possible behaviours when hiding all forced
actions. More specifically, the behaviour obtained using the adapter from forced
simulation can be shown to be observation equivalent to behaviour given by the
supremal controllable sublanguage. They are all equivalent to the specification F .
This follows because

L(F) = L(A // D) ⊆ sup C(L([F]�), L([D])) ⊆ L([F]�) . (20)

Nevertheless, the results obtained from the two methods are not necessarily
equal. They may differ when the forced actions are taken into account.

Example 3. Consider the device D† and specification F † in Fig. 4. Obviously,
there are two ways to achieve the specified behaviour: an adapter may first
force [α] and then enable α, or the other way round. Consequently, there are two
different adapters A†

fsim and A‡
fsim obtained from two different forced simulation

relations. The least restrictive solution A†
supC includes both possibilities.

This example shows that supervisory control does not aim at producing a
well-formed (implementable) adapter. It produces the least restrictive possible
behaviour, which contains all possible adapters. Additional steps are needed to
obtain an implementation.

The least restrictive solution may also include forced cycles. For example,
A†

supC in Fig. 4 permits an infinite loop of forcing [α][α][β] in state d0f0. Such

Adaptive Techniques for Specification Matching in Embedded Systems 49

D†:

α

α

β

d0

d2

d1

F †:

β α

f0

f1

A†
fsim:

β

[α]

α

d1

d2

d0
A‡

fsim:

β

α

[α]

d1

d2

d0
A†

supC :

α

[α]

[β]

β

[α]
[α]

[β]

[α]
α

d0f0

d1f1

d0f1 d2f1

d1f0

d2f0

Fig. 4. Least restrictive versus well-formed adapters

F ′:

default

8cups

ready4m

ready8m

f2

f1

f0

A′
fsim:

ready8m

default 8cups

ready4m

[reset][brew] [brew]

d9f0

d0f0

d1f1

d5f1 d7f2

d3f2

A′
supC :

default
[default]
8cups
[8cups]
[strong]
[strong∧ 8cups]

block

d0f0

Fig. 5. Modified specification of coffee brewer and resulting adapters

loops are ruled out by the definition of forced simulation, which requires a finite
string of forced actions for two states to match (definition 10).

If there is no forced simulation solution, supervisory control theory still tries
to find a solution, which may not achieve the full behaviour of the specification,
but the largest possible part of it.

Such sub-behaviours may include blocking states, i.e., there may be dead-
locks. Therefore, most applications of supervisory control synthesis include ad-
ditional steps to remove blocking states and compute a least restrictive behaviour
that is both controllable and nonblocking. The forced simulation method does
not require such additional effort. Since the result of the forced simulation
method is observation equivalent to the specification, it is guaranteed to be
nonblocking provided that the specification is nonblocking.

The result of theorem 4 is lost when uncontrollable actions are taken into ac-
count. Since forced simulation treats all actions as controllable (and enforcible),
the method may find solutions for some problems to which supervisory control
does not. This is illustrated in the following example.

Example 4. F ′ in Fig. 5 is an alternative specification for the coffee brewer D in
Fig. 1, which represents an attempt to mask the error actions. It is understood
that F ′ disallows error in all states. In this case, the forced simulation method
yields the adapter A′

fsim in Fig. 5, which simply disables error in states d5f1
and d7f2. Supervisory control rejects this solution as uncontrollable, because

50 R. Malik and P.S. Roop

F ′′:
error

ready4m

error

ready8m

default

8cups

error

f2

f1

f0

A′′
supC:

[default]

[reset]

default 8cups

[replenish]

error

ready8mready4m
error

[8cups]

[brew] [brew]

[reset] [reset]

[replenish]

d7f2

d10f2

d9f2

d9f0

d5f1

d10f1

d9f1

d3f2d1f1

d0f0

d0f1 d0f2

Fig. 6. Yet another specification of the coffee brewer

the adapter is trying to disable the uncontrollable action error in a state where
it can be generated by the device. When applied to this example, supervisory
control synthesis yields the least restrictive behaviour A′

supC in Fig. 5, which is
blocking. Alternatively, when trying to synthesise a nonblocking solution, the
result is the empty language. This indicates that there is no controllable and
nonblocking sub-behaviour of F ′ that can be achieved by an adapter.

Example 5. Specification F ′′ in Fig. 6 is a slightly modified version of the speci-
fication F ′ from the previous example. This time, error actions are allowed in all
states. Now, no adapter can achieve a behaviour observation equivalent to F ′′,
because the device cannot produce an error when the specification is in state f0.
Therefore, the forced simulation method finds no solution. But when supervi-
sory control synthesis is applied to [F ′′]� and [D] in Fig. 2, the least restrictive
solution A′′

supC in Fig. 6 is found. This shows that errors can indeed be masked
using forcing—it suffices to replenish and reset the brewer, and then to restart
the operation that caused the error. However, this solution is not observation
equivalent to the original specification F ′′.

These examples show that the two approaches are completely different when
uncontrollable actions are present. There are specification matching tasks that
can be solved using forced simulation but not supervisory control, and vice versa.

The complexity of the forced simulation based matching algorithm is shown
to be O(|QF ||QD|2|Σ|) in [22]. The complexity of supervisory control synthesis
is discussed in [14]. The synthesis of the supremal controllable sublanguage, i.e.,
the computation of (19) can be accomplished in O(|QF ||QD||Σ|). This complex-
ity increases to O(|QF |2|QD|2|Σ|) if nonblocking is required in addition. The
preprocessing step to construct [D] from D does not affect this complexity. It
can be done in a single pass over the transitions of D, i.e., in O(|QD||Σ|). Sim-
ilarly, [F]� can be constructed from F in O(|QF ||Σ|). These automata do not
need to be constructed explicitly: their transitions can be introduced on the fly
while running the synthesis algorithm.

Adaptive Techniques for Specification Matching in Embedded Systems 51

7 Conclusions

Two different approaches for solving the specification matching problem in em-
bedded systems have been presented and compared, namely the forced simula-
tion method [22] and an adaptation of supervisory control theory [20]. Important
differences have been found in the way how these approaches interpret specifi-
cations and accept solutions.

The forced simulation approach is a specially tailored method for component
matching. It computes an adapter with observation equivalent behaviour to the
original specification that can be implemented straight away. Supervisory control
theory is a more general framework, which can be adapted to the specification
matching problem. It then yields the most general sub-behaviour of the specifi-
cation that can possibly be implemented. This result is not as easy to implement
as the result from the tailored approach, but the method makes it possible to use
uncontrollable actions in the model. The results obtained by the two approaches
can be completely different, so it depends on the application which approach is
more appropriate.

This paper opens several perspectives for future research. It would be very
interesting to see how the two approaches to specification matching can be im-
proved using features of the other. Forced simulation may be extended to support
uncontrollable actions, and supervisory control theory may be extended by new
methods that suit the specific needs of specification matching.

References

1. K. Åkesson, H. Flordal, and M. Fabian. Exploiting modularity for synthesis and
verification of supervisors. In Proc. 15th IFAC World Congress on Automatic
Control, Barcelona, Spain, 2002.

2. M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical
Computer science, 82(2):253–284, 1991.

3. C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.
Kluwer, September 1999.

4. H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L. Todd. Surviving the
SOC revolution: a guide to platform based design. Kluwer, 1999.

5. A. Cherchago and R. Heckel. Specification matching of web services using condi-
tional graph transformation rules. In Proc. 2nd International Conference on Graph
Transformations, volume 3256 of LNCS, pages 304–318. Springer, 2004.

6. P. Dietrich, R. Malik, W. M. Wonham, and B. A. Brandin. Implementation con-
siderations in supervisory control. In B. Caillaud, P. Darondeau, L. Lavagno, and
X. Xie, editors, Synthesis and Control of Discrete Event Systems, pages 185–201.
Kluwer, 2002.

7. J. Guo. Software components adaptive integration. In Proc. 8th International
Conference and Workshop on the Engineering of Computer Based Systems, pages
315–321. IEEE Computer Society, 2001.

8. D. Hemer. Specification matching of state based modular components. In Proc.
10th Asia-Pacific Software Engineering Conference. IEEE, 2003.

9. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

52 R. Malik and P.S. Roop

10. C. A. R. Hoare and Jifeng He. The weakest prespecification. Information Processing
Letters, 24(2):127–132, 1987.

11. Jun-Jang Jeng and Betty H. C. Cheng. Specification matching for software reuse:
A foundation. In Proc. ACM SIGSOFT Symposium on Software Reusability
(SSR ’95), pages 97–105, 1995.

12. P. K. Jha and N. D. Dutt. High-level library mapping for arithmetic components.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 4(2):1–13,
1996.

13. M. Keating and P. Bricaud. Reuse methodology manual for System-on-a-chip de-
sign. Kluwer, 1999.

14. Ratnesh Kumar and Vijay K. Garg. Modeling and Control of Logical Discrete
Event Systems. Kluwer, 1995.

15. N. Lynch and F. Vaandrager. Forward and backward simulations part I: Untimed
systems. Information and Computation, 121(2):214–233, September 1995.

16. Hafedh Mili, Fatma Mili, and Ali Mili. Reusing software: Issues and research
directions. IEEE Transactions on Software Engineering, 21(6):528–562, 1995.

17. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
18. R. S. Mitra, P. S. Roop, and A. Basu. A new algorithm for implementation of

design functions by available devices. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 4(2):170–180, June 1996.

19. J. Phenix and P. Alexander. Toward automated component adaptation. In Proc.
9th International Conference on Software Engineering and Knowledge Engineering
(SEKE), 1997.

20. Peter J. G. Ramadge and W. Murray Wonham. The control of discrete event
systems. Proceedings of the IEEE, 77(1):81–98, January 1989.

21. P. S. Roop, A. Sowmya, S. Ramesh, and H. F. Guo. Tabled logic programming
based IP matching tool using forced simulation. IEE Proc. Computer and Digital
Techniques, 151(3):199–208, May 2004.

22. Partha S. Roop, Arcot Sowmya, and S. Ramesh. Forced simulation: A technique for
automating component reuse in embedded systems. ACM Transactions on Design
Automation of Electronic Systems, 6(4):602–628, October 2001.

23. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
24. J. Smith and G. de Micheli. Polynomial methods for component matching and

verification. In Proc. IEEE/ACM International Conference on Computer Aided
Design, pages 678–685. ACM, 1998.

25. R. J. van Glabbeek. The linear time — branching time spectrum I: The semantics
of concrete, sequential processes. In J. A. Bergstra, A. Ponse, and S. A. Smolka,
editors, Handbook of Process Algebra, pages 3–99. Elsevier, 2001.

26. Amy Moormann Zaremski and Jeannette M. Wing. Specification matching of soft-
ware components. ACM Transactions on Software Engineering and Methodology,
6(4):333–360, 1997.

State/Event Software Verification for
Branching-Time Specifications�

Sagar Chaki1, Edmund Clarke2, Orna Grumberg3, Joël Ouaknine4,
Natasha Sharygina2,5, Tayssir Touili6, and Helmut Veith7

1 Carnegie Mellon University, Software Engineering Institute, Pittsburgh, USA
2 Carnegie Mellon University, School of Computer Science, Pittsburgh, USA

3 The Technion, Haifa, Israel
4 Oxford University Computing Laboratory, Oxford, UK

5 USI (Università della Svizzera Italiana), Lugano, Switzerland
6 LIAFA, CNRS & University of Paris7, Paris, France
7 Technische Universität München, Munich, Germany

Abstract. In the domain of concurrent software verification, there
is an evident need for specification formalisms and efficient algo-
rithms to verify branching-time properties that involve both data
and communication. We address this problem by defining a new
branching-time temporal logic SE-AΩ which integrates both state-based
and action-based properties. SE-AΩ is universal, i.e., preserved by
the simulation relation, and thus amenable to counterexample-guided
abstraction refinement. We provide a model-checking algorithm for this
logic, based upon a compositional abstraction-refinement loop which
exploits the natural decomposition of the concurrent system into its
components. The abstraction and refinement steps are performed over
each component separately, and only the model checking step requires
an explicit composition of the abstracted components. For experimental
evaluation, we have integrated our algorithm within the ComFoRT
reasoning framework and used it to verify a piece of industrial robot
control software.

Keywords: Concurrent Software Model Checking, State/Event-based
Verification, Branching-time Temporal Logic, Automated Abstraction
Refinement.

� This research was sponsored by the National Science Foundation (NSF) under grants
no. CCR-9803774 and CCR-0121547, the Office of Naval Research (ONR) and the
Naval Research Laboratory (NRL) under contract no. N00014-01-1-0796, the Army
Research Office (ARO) under contract no. DAAD19-01-1-0485, the Austrian Science
Fund Project N-Z29 N04, the EU Networks GAMES and ECRYPT, and was con-
ducted as part of the PACC project at the Software Engineering Institute (SEI).
The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or
implied, of NSF, ONR, NRL, ARO, SEI, the U.S. Government or any other entity.

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 53–69, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

54 S. Chaki et al.

1 Introduction

The practical effectiveness of model checking is characterized by a trade-off be-
tween the expressive power of the specification formalism and the complexity of
the corresponding model checking algorithm. For software verification, this prob-
lem is even more acute, since software is harder to specify, and state explosion
is exacerbated by the concurrent execution of multiple components. The expres-
sive power of temporal logics such as CTL or LTL is quite limited when it comes
to specifying, e.g., the periodicity of events. The last decade has seen several
attempts at extending the expressiveness of temporal logics [7, 31, 29, 30, 28, 11].
Recently, Clarke et al. [9] have investigated a family of universal branching log-
ics, called AΩ, which are extensions of ACTL1 by sets Ω of ω-regular path
operators. A subtle property of AΩ is the monotonicity of the path operators:
the semantics guarantees that the extended path operators cannot be used to
implicitly define negation. While this property comes for free with the standard
temporal path operators, its presence is crucial for obtaining extended univer-
sal branching logics. Such logics are preserved by simulation, and are therefore
amenable to existential abstraction [8, 9].

Another shortcoming of standard temporal logics stems from the fact that
for the verification of concurrent software conducted at the source code level,
one needs to specify both state information (program counter location, memory
contents) and communication among components. For example, the Bluetooth
L2CAP specification [13] asserts that “when an L2CAP ConnectRsp event is re-
ceived in a W4 L2CAP CONNECT RSP state, within one time unit, an L2CAP process
may send out an L2CA ConnectInd event, disable the RTX timer, and move to
state CONFIG.” As this example shows, both states (W4 L2CAP CONNECT RSP and
CONFIG) and events (L2CAP ConnectRsp and L2CA ConnectInd) are required to
properly capture the desired L2CAP behavior.

Generally, in concurrent programs, communication among modules proceeds
via actions (events) which can represent function calls, requests and acknowledg-
ments, etc. These communications can be data-dependent and carry data on its
channels. Existing model checking techniques typically use either state-based or
event-based formalisms to represent finite-state models of programs. In principle,
both frameworks are interchangeable: an action can be encoded as a change in
state variables, and likewise one can equip a state with different actions to reflect
different values of its internal variables. Neither approach on its own is practical,
however, when it comes to the specification of data-dependent communication
claims: considerable domain expertise is then required to annotate the program
and to specify proper specifications in temporal logic.

In this paper, we define the specification logic SE-AΩ which combines the
high expressive power of AΩ with the ability to refer to states and events si-
multaneously. The hybrid state/event-based semantics of SE-AΩ allows us to

1 ACTL denotes the universal fragment of CTL, in which the formulas range over all
possible execution paths.

State/Event Software Verification for Branching-Time Specifications 55

represent software specifications directly without program annotations or privi-
leged insights into program execution.

Extending branching-time logics with event modalities presents some inter-
esting challenges. For example, there is no natural generic extension of standard
CTL operators such as U (until) to a state/event-based framework (see, e.g.,
[18]); SE-AΩ, however, enables us to employ different variants of CTL operators
for actions and data valuations simultaneously.

Notwithstanding its high expressive power and versatility, SE-AΩ lends itself
naturally to an efficient verification strategy which combines counterexample-
guided abstraction refinement (CEGAR [20, 6]) and compositional reasoning:
starting with a coarse initial abstraction, our CEGAR scheme computes increas-
ingly precise abstractions of the target system by analyzing spurious counterex-
amples until either a real counterexample is obtained or the system is found to
be correct. More precisely, given a system M composed of n concurrent com-
ponents M1, . . . , Mn, and a SE-AΩ specification ϕ, the verification of M |= ϕ
proceeds as follows:

1. Abstract. Create an abstraction M̂ such that all behaviors of M̂ are pre-
served by M . This is done component-wise without constructing the full
state space of M .

2. Verify. Verify whether M̂ |= ϕ. If so, report success and exit. Otherwise,
extract an abstract counterexample Ĉ that indicates in which way ϕ fails
in M̂ .

3. Refine. Check whether Ĉ gives rise to a real counterexample over M . If Ĉ
corresponds to a genuine behavior of M then report a failure along with a
fragment of each Mi that illustrates why M � ϕ. If Ĉ is spurious, on the
other hand, refine M̂ using Ĉ to obtain a more precise abstraction and repeat
from Step 1. This refinement step, like the initial abstraction, is performed
component-wise.

Of the three steps in this abstract-verify-refine process only the verification stage
of our technique requires the explicit composition of a system. The other stages
can be performed one component at a time. Since verification is performed only
on abstractions (which are usually much smaller than the corresponding concrete
systems), our approach is able to significantly alleviate the state space explosion
problem.

Another key characteristic of our algorithm is that the verification step han-
dles both states and events directly, i.e., without conversion into either a pure
state-based or a pure event-based framework. The model checking is therefore
significantly more efficient than alternative conversion-based approaches, since it
has been observed that such conversions can lead to a quadratic blowup in both
time and space even for reachability properties [3, 4]. The core of the model
checking algorithm relies on automata-theoretic methods to evaluate the ω-
regular path operators. Note that the universality of SE-AΩ is crucial to our
approach, in that it enables violations to be concisely represented as (tree-like)
counterexamples.

56 S. Chaki et al.

Previously proposed state/event-based formalisms [25, 18, 16, 3, 4] have been
limited to either linear-time specifications or finite-state systems. The novelty of
our approach is the application of branching-time state/event-based reasoning
to infinite-state concurrent systems using powerful state space reduction tech-
niques, namely CEGAR and compositional reasoning. In this respect, not only
do we substantially extend the expressiveness of the state/event linear temporal
logic SE-LTL presented in [3, 4], but we also show how to validate branching-
time counterexamples in a compositional manner, based on new results relating
simulation and weak simulation relations for parallel processes (see Theorem 4
in Section 5).

We have implemented our approach in the CMU SEI ComFoRT [17] rea-
soning framework, based on the C model checker magic [22]. magic extracts
state/event finite-state models from C programs automatically via predicate ab-
straction [12, 2]. We evaluated the applicability of our framework in experiments
with a piece of robot controller software. In our experiments SE-AΩ has been
extremely useful for both specifying the branching structure of the protocol ex-
ecutions, and in order to make assertions on both actions and data valuations.

The rest of this article is organized as follows. In Section 2 we summarize
related work. This is followed by some preliminary definitions in Section 3. In Sec-
tion 4 we present the SE-AΩ logic, followed by model-checking, counterexample-
validation and abstraction-refinement procedures described in Section 5. Finally,
we discuss the applications of our techniques to an industrial system in Section 6
and conclude by outlining some future work in Section 7.

2 Related Work

Extensions of temporal logics to increase the expressiveness of temporal opera-
tors have been proposed by various authors [7, 31, 29, 30, 28, 11]. Wolper [31] and
Vardi and Wolper [30] extended LTL by regular expressions and Büchi automata
respectively. Vardi and Wolper [29] and Thomas [28] have proposed extended
branching-time logics, but have not addressed model checking. Clarke et al. [7]
describe the logic ECTL that similarly to our work considers ω-regular automata
in the context of branching-time logic. However, this work does not deal with
abstraction refinement or compositional methods. Clarke et al. [9] define a class
AΩ of universal branching logics (cf. Section 1) for a systematic study of the
complexity and completeness of counterexamples in model checking. SE-AΩ ex-
tends AΩ essentially in that it incorporates events in addition to states. Note
moreover that [9] does not offer a model checking algorithm for AΩ. Naturally,
the algorithm for SE-AΩ that we present in this paper also applies to AΩ.

The formalization of a general notion of abstraction first appeared in [10]. The
abstractions used in our approach are conservative in that whenever the abstract
system meets a given specification, then so does the concrete system, but not nec-
essarily vice-versa (see [19, 8]). Conservative abstractions usually lead to signifi-
cant reductions in the state space but in general require an iterated abstraction
refinement mechanism (such as CEGAR) in order to establish specification satis-

State/Event Software Verification for Branching-Time Specifications 57

faction. CEGAR has been used, among others, in [24] (in non-automated form),
and [1, 26, 21, 14]. In particular, CEGAR-based schemes have been used for the
verification of safety properties [1, 6, 14, 2] as well as liveness [3, 4] properties.

Compositionality and abstraction have been extensively studied in process
algebra (e.g., [15, 23, 27]). However, there mainly actions (as opposed to states)
have been considered. Abstraction and compositional reasoning have been com-
bined [5] within a single CEGAR scheme to verify safety properties of concurrent
C programs. Our work, on the other hand, deals with a significantly more ex-
pressive specification language.

3 Preliminaries

Definition 1 (Labeled Kripke Structure). A labeled Kripke structure
(LKS) is a 6-tuple (S , init ,AP ,L, Σ,T) where (i) S is a finite non-empty set
of states, (ii) init ∈ S is an initial state, (iii) AP is a finite set of atomic state
propositions, (iv) L : S → 2AP is a state-labeling function, (v) Σ is a finite set
of actions (alphabet) and (vi) T ⊆ S × Σ × S is a transition relation.

Note that Labeled Kripke Structures are similar to “doubly-labeled transition
systems” introduced in [25].

Given an LKS M = (S , init ,AP ,L, Σ,T), we write S (M), init(M), AP(M),
L(M), Σ(M) and T (M) to mean S , init , AP , L, Σ and T respectively. Given
s, s′ ∈ S and a ∈ Σ we write s

a−→ s′ to mean (s, a, s′) ∈ T . Also, let Succ(s, a) =
{s′ ∈ S | s

a−→ s′} and Enabled(s) = {a ∈ Σ | Succ(s, a) �= ∅}. Finally, a path
of M is an infinite sequence of consecutive transitions s0

a0−→ s1
a1−→ s2

a2−→
Note that we do not require paths to begin with init .

Definition 2 (Parallel Composition). Let M1 and M2 be two LKSs such
that AP(M1) ∩ AP(M2) = ∅. Then the parallel composition of M1 and M2,
denoted by M1‖M2, is an LKS obeying the following conditions: (i) S (M1‖M2) =
S (M1)× S (M2), (ii) init(M1‖M2) = (init(M1), init(M2)), (iii) AP(M1‖M2) =
AP(M1) ∪ AP(M2), and (iv) Σ(M1‖M2) = Σ(M1) ∪ Σ(M2). Moreover, for
all s1, s

′
1 ∈ S (M1), s2, s

′
2 ∈ S (M2), and a ∈ Σ(M1‖M2), the labeling function

L(M1‖M2) and the transition relation T (M1‖M2) are defined as follows:

– L(M1‖M2)((s1, s2)) = L(M1)(s1) ∪ L(M2)(s2).
– If s1

a−→ s′1 and s2
a−→ s′2 then (s1, s2)

a−→ (s′1, s′2).
– If s1

a−→ s′1 and a �∈ Σ(M2) then (s1, s2)
a−→ (s′1, s2).

– If s2
a−→ s′2 and a �∈ Σ(M1) then (s1, s2)

a−→ (s1, s
′
2).

This notion of parallel composition is derived from CSP [15, 27]; it is commu-
tative and associative, so that no parentheses are needed when composing more
than two LKSs together.

Definition 3 (Simulation). Let M1 and M2 be LKSs with Σ(M1) = Σ(M2) =
Σ, and AP(M2) = AP(M1). A relation R ⊆ S (M1) × S (M2) is said to be a
simulation relation iff it satisfies the following conditions:

58 S. Chaki et al.

1. If (s1, s2) ∈ R then L(M1)(s1) = L(M2)(s2).
2. For any s1, s

′
1 ∈ S (M1), s2 ∈ S (M2), and a ∈ Σ, if (s1, s2) ∈ R and

s1
a−→ s′1 then there exists s′2 ∈ S (M2) such that s2

a−→ s′2 and (s′1, s
′
2) ∈ R.

For two LKSs M1 and M2, if there exists a simulation relation R such that
(init(M1), init(M2)) ∈ R then we say that M1 is simulated by M2 and denote
this by M1 � M2. The following is well-known [23]:

Theorem 1. Let M1, . . . , Mn, N1, . . . , Nn be LKSs such that Ni � Mi for 1 ≤
i ≤ n. Then (N1‖ . . . ‖Nn) � (M1‖ . . . ‖Mn).

In our framework, (existential) abstractions are obtained by ‘lumping’ to-
gether states of a concrete LKSs: abstract states are disjoint sets of concrete
states; cf. [8]. In the remainder of this paper, we often use the letter M to denote
a concrete LKS and its hatted counterpart M̂ to denote an abstract LKS. Note
that an abstraction M̂ of M is entirely determined by an equivalence relation
R ⊆ S (M) × S (M). We only consider admissible equivalence relations, i.e., we
require that for all s, s′ ∈ S (M), whenever (s, s′) ∈ R then L(M)(s) = L(M)(s′).
Given a state s ∈ S (M), we denote its corresponding equivalence class by [s]R

(or simply [s] when R is clear from context.)

Definition 4 (Abstraction). Let M be an LKS and R be an admissible equiv-
alence relation on S(M). Then MR is the abstract quotient LKS induced by
R such that (i) S (MR) = {[s] | s ∈ S (M)}, (ii) init(MR) = [init(M)],
(iii) AP(MR) = AP(M), (iv) for all [s] ∈ S (MR), L(MR)([s]) = L(M)(s)
(well-defined since R is admissible), (v) Σ(MR) = Σ(M), and (vi) T (MR) =
{([s], a, [s′]) | (s, a, s′) ∈ T (M)}.

For s ∈ S(M) and a ∈ Σ(M), the set of abstract successors of s along a is
defined to be AbsSucc(s, a) = {[s′] ∈ MR | (s, a, s′) ∈ T (M)}.

It is easy to see that for any M and R, M � MR. Combining this with
Theorem 1 we get the following result.

Lemma 1. Let M1, . . . , Mn be LKSs and R1, . . . , Rn be equivalence relations.
Then (M1‖ . . . ‖Mn) � (MR1

1 ‖ . . . ‖MRn
n).

4 The Logic SE-AΩ

Following [9], we define a universal branching-time logic called State-Event Uni-
versal Logic (SE-AΩ). The logic is interpreted over LKSs and can be used to
specify properties involving both data and actions in a natural manner. SE-AΩ
is defined in negation normal form, i.e., negations are only applied to atomic
propositions. Unlike ACTL or ACTL∗, it does not have a fixed set of operators.
Rather, any ω-regular language can serve as a temporal operator. Since the logic
is universal, every such operator is preceded by a universal path quantifier A.

Similarly to usual temporal operators, the new operators are applied to other
formulas in the logic. Syntactically, this is done by defining an ω-regular language

State/Event Software Verification for Branching-Time Specifications 59

O over a set of markers that serve as placeholders for the formulas to which O is
applied. Since SE-AΩ is aimed at specifying both actions and data, its operators
can be applied to subsets of actions as well as formulas over atomic propositions.

Formally, let Mark = {m1, m2, . . .} be a denumerable set of markers and let
m = {m1, . . . , mn} be a finite subset of Mark . Let O be an ω-regular language
over the alphabet 2m. The corresponding n-ary temporal operator will be de-
noted by O. Let AP be a set of atomic propositions and Σ be a set of actions.
Then the syntax of SE-AΩ is defined inductively as follows.

– If p ∈ AP then p and ¬p are formulas.
– If ϕ1 and ϕ2 are formulas then so are ϕ1 ∨ ϕ2 and ϕ1 ∧ ϕ2.
– Let O be an n-ary temporal operator and for 1 ≤ i ≤ n, ϕi be either a

formula or a subset of Σ. Then AO(ϕ1, . . . , ϕn) is a formula.

The semantics of SE-AΩ is defined over LKSs. More precisely, given an SE-
AΩ formula ϕ, an LKS M , and s ∈ S (M) we write M, s |= ϕ to mean that s
satisfies ϕ, defined inductively as follows:

– For p ∈ AP , M, s |= p iff p ∈ L(s) and M, s |= ¬p iff p �∈ L(s).
– M, s |= ϕ1 ∨ ϕ2 iff M, s |= ϕ1 or M, s |= ϕ2.
– M, s |= ϕ1 ∧ ϕ2 iff M, s |= ϕ1 and M, s |= ϕ2.
– M, s |= AO(ϕ1, . . . , ϕn) iff for every path π starting from s, we have M, π |=

O(ϕ1, . . . , ϕn) [as defined below].

Let π = s0
a0−→ s1

a1−→ s2 . . . be a path of M and πi be its suffix starting from
si. We first define when π satisfies an argument ϕk of the operator O. M, π |= ϕk

iff either ϕk ⊆ Σ and a0 ∈ ϕk, or ϕk is a formula and M, s0 |= ϕk.
Let O(ϕ1, . . . , ϕn) be as above, and O be the ω-regular language correspond-

ing to O. Recall that the alphabet of O is 2m where m = {m1, . . . , mn}. Then
M, π |= O(ϕ1, . . . , ϕk) iff there is a word o = o1o2 · · · ∈ O such that for all i ≥ 0
and for all mk ∈ oi, M, πi |= ϕk. Note that this requires that for every mk ∈ oi,
ϕk must hold. However, other ϕj may, or may not, hold as well. We will need
to take this fact into account in the model checking algorithm, presented in the
next section.

Lastly, we write M |= ϕ to mean M, init(M) |= ϕ.
As an example, let O = {m1, m2}∗{m1, m3}{m4}{}ω be an ω-regular expres-

sion. Then O(ϕ, {a}, {b}, ψ) represents an ‘until’ operator that captures paths
in which ϕUψ holds along a sequence of a actions ending with the action b.
This example demonstrates that in addition to formulas ϕk that should hold,
the logic SE-AΩ allows us to restrict the actions that can be performed, by using
ϕk ⊆ Σ.

As a second example, let O = ({m1}{})ω be another ω-regular expression.
Then O(p) is an operator which requires that the atomic proposition p hold at all
even positions (starting at 0) along every path. Note that this formula does not
constrain states that occur in odd positions. It is well-known that this formula
cannot be captured in LTL.

These two examples illustrate that SE-AΩ formulas are used to describe ω-
regular ‘constraint patterns’ along the paths of LKSs. For a much more principled

60 S. Chaki et al.

and detailed account of the underlying ideas and workings of this logic, we refer
the reader to [9].

An important property of the logic SE-AΩ is that it is preserved by the
simulation relation. This is formalized by the following lemma.

Lemma 2. Given two LKSs M1 and M2 and an SE-AΩ formula ϕ, if M2 |= ϕ
and M1 � M2, then M1 |= ϕ.

5 Compositional CEGAR Verification for SE-AΩ

Let M1, . . . , Mn be LKSs and let ϕ be an SE-AΩ formula. In seeking to determine
whether M = M1‖ . . . ‖Mn |= ϕ, we wish to avoid constructing the full LKS M ,
since the size of its state space increases exponentially with the number of its
components. We therefore first compute a (typically much smaller) abstraction
M̂i of each component Mi, and only then check whether M̂ = M̂1‖ . . . ‖M̂n |= ϕ.
If this holds, we conclude that M |= ϕ as well. Otherwise, we extract from M̂ a
counterexample Ĉ violating ϕ, and check whether this counterexample is valid,
i.e., whether it corresponds to a real execution of M . In the affirmative, we
conclude that M �|= ϕ. Otherwise, we use this spurious counterexample to refine
our abstractions, and repeat the process until either a real counterexample is
found or the property is shown to hold. The main strength of our approach is
the fact that the abstraction, counterexample-validation, and refinement steps
are all carried out one component at a time, so that it is never necessary to
construct the full state space of the concrete system M .2

5.1 Model Checking

Let M̂ be an LKS3, s ∈ S (M̂), and ϕ be an SE-AΩ formula. We give a
model-checking algorithm to determine whether M̂, s |= ϕ. We proceed by
structural induction on ϕ, starting with the case in which ϕ is of the form
AO(ϕ1, . . . , ϕn). Let O be the ω-regular language over m = {m1, . . . , mn} cor-
responding to O. The algorithm consists of the following steps: (i) compute from
M̂ and s the ‘smallest’ ω-regular language Os over the alphabet 2m such that
M̂, s |= AOs(ϕ1, . . . , ϕn), and (ii) check whether Os is ‘subsumed’ by O.

Intuitively, the idea is to interpret each path π in M̂ as a sequence of max-
imal subsets of formulas (among ϕ1, . . . , ϕn) that hold along π. We then check
whether replacing each ϕj with the corresponding marker mj results in a se-
quence belonging to O.

In order to do so we build an automaton Bs obtained from M̂ by replacing
every action a, in transitions of the form (q, a, q′), with the subset of markers
2 Except, of course, in the worst case in which no proper abstraction of the system

leads to a definite answer.
3 In the interests of consistency and clarity, we present our approach in both this

section and the next in terms of the abstract LKS M̂ , although it naturally applies
to concrete systems as well.

State/Event Software Verification for Branching-Time Specifications 61

corresponding to the formulas that hold for the transition. More precisely, if ϕj

is an SE-AΩ formula, we include the corresponding marker mj provided that
M̂, q |= ϕj , and if ϕj ⊆ Σ(M̂), we include mj if a ∈ ϕj .

To make this more rigorous, we first recall the notion of Büchi automata:

Definition 5 (Büchi Automaton). A Büchi automaton is a 5-tuple B =
(S , I , Σ,T ,Acc) where (i) S is a finite non-empty set of states, (ii) I ⊆ S
is a set of initial states, (iii) Σ is a finite alphabet, (iv) T ⊆ S × Σ × S is a
transition relation, and (v) Acc ⊆ S is a set of accepting states.

A path of B is an infinite sequence π = q0
a0−→ q1

a1−→ . . . such that q0 ∈ I,
and for every i, (qi, ai, qi+1) ∈ T . π is accepting if it visits the set Acc infinitely
often.

The language Os is represented by a Büchi automaton Bs, which is derived
from M̂ as follows: Bs = (Ss, Is, Σs,Ts,Accs), where (i) Ss = S (M̂), (ii) Is =
{s}, (iii) Σs = 2m, (iv) Accs = S (M̂), and (v) Ts is the set of transitions such
that for each (q, a, q′) ∈ T (M̂), Ts includes a transition (q, m′, q′) such that
m′ ⊆ m and the following condition holds: for 0 ≤ j ≤ n, mj ∈ m′ iff either
ϕj ⊆ Σ(M̂) and a ∈ ϕj or ϕj is a formula and M̂, q |= ϕj .

Note that in order to construct Bs we need to know whether M̂, q |= ϕi for
every q ∈ S (M̂) and every i ∈ {1, . . . , n}. This is achieved by invoking the model
checking algorithm recursively.

In the second step, we must check whether Os is subsumed by O. Observe
first that it is not enough to simply check whether Os ⊆ O. This is because the
definition of M, π |= O(ϕ1, . . . , ϕn) determines which of the ϕj must be true at
a certain point on π, but allows additional ϕj to be true as well.

We solve this difficulty by introducing the notion of monotonicity (cf. [9]).
In order to define monotonicity of SE-AΩ consider two ω-regular languages O
and O′ over m that satisfy: for every w = w1w2 · · · ∈ O there exists w′ =
w′

1w
′
2 · · · ∈ O′ such that for every i ≥ 1, wi ⊆ w′

i. Then for every model M̂ ,
if M̂ |= AO′(ϕ1, . . . , ϕk) then M̂ |= AO(ϕ1, . . . , ϕk). For example, let m =
{m1, m2, m3}, and suppose that O = {m2}ω and that Os = {m1, m2}ω. Then
M̂, s |= AOs(ϕ1, ϕ2, ϕ3) and, thanks to monotonicity, M̂, s |= AO(ϕ1, ϕ2, ϕ3)
as well, even though Os �⊆ O. It is clear that what is in fact required is to check
whether Os ⊆ ↑O, where ↑O = ({m2}+{m1, m2}+{m2, m3}+{m1, m2, m3})ω.
The language ↑O is called the monotonic closure of O and, intuitively, is obtained
by replacing in O every occurrence of a set of markers m′ ⊆ m by the sum of all
the sets of markers m′′ such that m′ ⊆ m′′ ⊆ m. Formally:

Definition 6 (Monotonic Closure). Let B = (SB, IB, 2m,TB ,AccB) be a
Büchi automaton accepting some ω-regular language O. The monotonic clo-
sure of O is the ω-regular language ↑O accepted by the Büchi automaton
↑B = (S↑B, I↑B, 2m,T↑B,Acc↑B) constructed from B as follows: S↑B = SB,
I↑B = IB, Acc↑B = AccB, and T↑B = {(q, m′′, q′) | ∃m′ ⊆ m′′ � (q, m′, q′) ∈ TB}.

The correctness of our two-step procedure is encapsulated by the following:

62 S. Chaki et al.

Theorem 2. M̂, s |= AO(ϕ1, . . . , ϕn) iff Os ⊆ ↑O.

The other cases (in which ϕ is not an ω-regular operator) are straightforward.
To summarize, M̂, s |= ϕ iff:

– p ∈ L̂(s) if ϕ = p and p �∈ L̂(s) if ϕ = ¬p, where p ∈ AP .
– M̂, s |= ϕ1 and M̂, s |= ϕ2 if ϕ = ϕ1 ∧ ϕ2.
– M̂, s |= ϕ1 or M̂, s |= ϕ2 if ϕ = ϕ1 ∨ ϕ2.
– Os ⊆ ↑O if ϕ = AO(ϕ1, . . . , ϕn), where Os and ↑O are defined as above.

5.2 Counterexample Generation

Let M̂ be an LKS, s ∈ S (M̂), and ϕ be an SE-AΩ formula. Suppose that
M̂, s �|= ϕ. In this section, we show how to compute a counterexample to ϕ, i.e.,
a fragment of M̂ beginning at state s that violates ϕ. As for the model-checking
algorithm of SE-AΩ, we give a recursive procedure:

– If ϕ = ϕ1 ∨ ϕ2, then compute counterexamples Ĉ1 and Ĉ2 to ϕ1 and ϕ2
respectively, and glue Ĉ1 and Ĉ2 at their initial states. Indeed, M̂, s �|= ϕ1∨ϕ2

iff M̂, s �|= ϕ1 and M̂, s �|= ϕ2.
– If ϕ = ϕ1∧ϕ2, then compute a counterexample either to ϕ1 or to ϕ2. Indeed,

M̂, s �|= ϕ1 ∧ ϕ2 iff M̂, s �|= ϕ1 or M̂, s �|= ϕ2.
– If ϕ = AO(ϕ1, . . . , ϕn), proceed as follows. Since M̂, s �|= ϕ, there exists a

pattern in Os that is not in ↑O. Let π = s0
m0−→ s1

m1−→ . . . (where s0 = s) be
an accepting path of Bs such that the ω-word m0m1 . . . does not belong to
↑O. From the theory of Büchi automata we know in fact that such a path can
be chosen to be lasso-like, i.e., end in an infinite loop. Recall now that by the
definition of the automaton Bs, each transition si

mi−→ s′i in TBs corresponds
to a transition si

ai−→ s′i in T (M̂). Let therefore s0
a0−→ s1

a1−→ . . . be the
corresponding path of π in M̂ , itself also a lasso. This path then clearly
violates O(ϕ1, . . . , ϕn). To compute a counterexample to ϕ, it suffices to
take this path and to glue to each state si counterexamples to all formulas
ϕj such that M̂, si �|= ϕj . (Note that, while the path is infinite, it comprises
only a finite prefix followed by an infinitely-repeating finite loop.)

Observe that the counterexample Ĉ thus obtained is an LKS that can be
viewed as a fragment of M̂ . If one desires a tree-like4 counterexample, one needs
simply duplicate states of M̂ during the construction of the counterexample to
avoid inadvertently creating strongly connected components that are not cycles.
In that case Ĉ will not technically be a fragment of M̂ but it will still be simulated
by it (Ĉ � M̂).

4 Intuitively, a tree-like counterexample is an LKS whose underlying directed graph
only has cycles as strongly connected components. We refer the reader to [9] for an
extensive discussion of the subject.

State/Event Software Verification for Branching-Time Specifications 63

Owing to the direct manner in which the counterexample Ĉ is extracted from
the LKS M̂ , there is a canonical mapping ρ : S (Ĉ) → S (M̂) which satisfies the
following conditions: (i) ρ(init(Ĉ)) = init(M̂), (ii) for all q ∈ S (Ĉ), L(Ĉ)(q) =
L(M̂)(ρ(q)), and (iii) if (q, a, q′) ∈ T (Ĉ), then (ρ(q), a, ρ(q′)) ∈ T (M̂). We shall
make use of ρ later on in the refinement step.

Example 1. Figure 1 (a) shows an LKS M with AP(M) = {p, q}, Σ(M) = {a, b},
and initial state S1. (b) shows the abstract quotient LKS MR induced by the
equivalence relation R having equivalence classes {S1, S2} and {S3, S4}. Let ϕ
be the formula (in CTL∗-like notation) AG({a} ⇒ A(p∨Xp∨XXp)). ϕ asserts
that on all paths, whenever the action a occurs from a state s, then the atomic
proposition p either holds at s or, along any path starting at s, in one of the
next two states. It is not hard to see that MR �|= ϕ, and indeed (c) shows a
counterexample Ĉ illustrating this. The dotted arrows from Ĉ to MR represent
the canonical mapping ρ.

{a,b}

b

a

b

M

{p}
[S3,S4]

[S2]
{q}

[S1]
{q}

R’

S1

S2

S4

a

a

b

b

b

{q}

{q}

{p}
S3

{p}

M

a
b

b

b

b

bb

{a,b}

{a,b}

b

{p} {p}
[S3,S4]

{q}

{q}

{q}

{q}

{q}

ρ

ρ

ρ

ρ
MR C

[S1,S2]

ρ

(a) (b) (c) (d)

Fig. 1. (a) concrete LKS M ; (b) Abstract LKS MR; (c) counterexample Ĉ; (d) refined
abstract LKS MR′

Observe, however, that the counterexample is in fact spurious. Indeed, the
abstract LKS MR′

pictured in (d) is a refinement of MR induced by the equiv-
alence relation R′ having equivalence classes {S1}, {S2}, and {S3, S4}. Since
MR′ |= ϕ, we conclude that M |= ϕ as well.

5.3 Counterexample Validation

Suppose that M̂, s �|= ϕ for some SE-AΩ formula ϕ, and let Ĉ be a counterex-
ample to ϕ. Recall that M̂ is an abstraction of a concrete LKS M . We say that
Ĉ is a valid counterexample iff Ĉ � M . Indeed, from Lemma 2 we get:

Theorem 3. Let ϕ be an SE-AΩ formula. If Ĉ � M and Ĉ �|= ϕ, then M �|= ϕ.

64 S. Chaki et al.

Intuitively, this holds because SE-AΩ formulas describe properties that are quan-
tified over all possible paths of the structure.

This result suggests a way to formally check whether a counterexample Ĉ is
valid for a concrete system M or not. However, as mentioned earlier, when M is
a concurrent C program built of components M1, . . . , Mn, we are faced with the
problem that even if each component Mi has a finite state space, constructing the
state space of M might be prohibitive in practice due to exponential blowup. To
overcome this problem, we propose to check if the concrete system M simulates
the counterexample Ĉ in a compositional way by checking whether for every
i ∈ {1, . . . , n}, Mi weakly simulates the ith projection of Ĉ.

Definition 7 (ith Projection). Let M = M1‖ . . . ‖Mn be a parallel compo-
sition of LKSs, and let Ĉ be a further LKS. For any i ∈ {1, . . . , n}, Ĉ �i

is the LKS defined by: (i) S (Ĉ �i) = S (Ĉ), (ii) init(Ĉ �i) = init(Ĉ), (iii)
AP(Ĉ �i) = AP(Mi), (iv) for any s ∈ S(Ĉ�i), L(Ĉ �i)(s) = L(Ĉ)(s) ∩ L(Mi),
(v) Σ(Ĉ�i) = Σ(Mi) ∪ {τ}5, and (vi) T (Ĉ�i) is defined as follows:

– If (s, a, s′) ∈ T (Ĉ) and a ∈ Σ(Mi) then (s, a, s′) ∈ T (Ĉ�i).
– If (s, a, s′) ∈ T (Ĉ) and a �∈ Σ(Mi) then (s, τ, s′) ∈ T (Ĉ�i).

The introduction of τ actions also naturally leads to a weak version of sim-
ulation, which we define next specialized to the case in which only the system
being simulated is capable of performing τ ’s.

Definition 8 (Weak Simulation). Let Ĉ and M be LKSs such that Σ(Ĉ) =
Σ(M) ∪ {τ} and AP (Ĉ) = AP (M). A relation R ⊆ S (Ĉ) × S (M) is said to be
a weak simulation relation iff R satisfies the following conditions:

1. If (s1, s2) ∈ R then L(Ĉ)(s1) = L(M)(s2).
2. For any s1, s

′
1 ∈ S (Ĉ), s2 ∈ S (M), and a ∈ Σ(Ĉ) \ {τ}, if (s1, s2) ∈ R and

s1
a−→ s′1 then there exists s′2 ∈ S (M) such that s2

a−→ s′2 and (s′1, s′2) ∈ R.
3. For any s1, s

′
1 ∈ S (Ĉ) and s2 ∈ S (M), if (s1, s2) ∈ R and s1

τ−→ s′1 then
(s′1, s2) ∈ R.

For two LKSs Ĉ and M , if there exists a weak simulation relation R such
that (init(Ĉ), init(M)) ∈ R then we say that Ĉ is weakly simulated by M and
denote this by Ĉ � M .

The following key result forms the basis of our compositional approach to
counterexample validation.

Theorem 4 (Compositionality). Let M1, . . . , Mn be LKSs and let Ĉ be a
further LKS. Then Ĉ � (M1‖ . . . ‖Mn) iff Ĉ�i � Mi for 1 ≤ i ≤ n.

5 We assume that τ is a fresh action not otherwise present in the alphabet of LKSs.

State/Event Software Verification for Branching-Time Specifications 65

Proof. (Sketch.) Consider the case n = 2; the general case is handled in a similar
manner. Suppose first that Ĉ � M1‖M2. Let R ⊆ S(Ĉ) × S(M1‖M2) be a
corresponding simulation relation. Define R1 = {(s, s1) | ∃s2 �

(
s, (s1, s2)

)
∈ R},

and R2 = {(s, s2) | ∃s1 �
(
s, (s1, s2)

)
∈ R}. It is readily verified that R1 (resp. R2)

is a weak simulation relation between Ĉ�1 and M1 (resp. Ĉ�2 and M2). Therefore
Ĉ�1 � M1 and Ĉ�2 � M2.

In the other direction, let R1 and R2 be two weak simulation relations wit-
nessing Ĉ�1 � M1 and Ĉ�2 � M2 respectively. Let R = {

(
s, (s1, s2)

)
| (s, s1) ∈

R1 ∧ (s, s2) ∈ R2}. It is easy to check that R is a simulation relation between Ĉ
and M1‖M2, as required. ��

Putting everything together, we get:

Corollary 1. Let M1, . . . , Mn be LKSs, ϕ an SE-AΩ formula, and Ĉ an ab-
stract counterexample to M1‖ . . . ‖Mn |= ϕ. Then Ĉ is a valid counterexample
iff Ĉ�i � Mi for every i ∈ {1, . . . , n}.

Checking whether Ĉ�i � Mi is done in a standard manner by a fixpoint
computation of the maximal weak simulation relation between Ĉ�i and Mi.

5.4 Abstraction Refinement

We now describe our counterexample-guided refinement procedure. Suppose that
Ĉ �� M ; then the counterexample Ĉ is spurious, and we need to refine our ab-
straction M̂ = M̂1‖ . . . ‖M̂n. We achieve this by examining each of the abstrac-
tions M̂i individually: for i ∈ {1, . . . , n}, we refine M̂i if Ĉ�i �� Mi. To this end,
fix j an index in {1, . . . , n} such that Ĉ�j �� Mj . Recall that M̂j is a quotient LKS
of the form M

Rj

j , where Rj is an equivalence relation on S(Mj). Our refinement
step consists in producing a strictly finer equivalence relation than Rj .

Recall the canonical mapping ρ : S (Ĉ) → S (M̂) defined in Section 5.2, and
let ρj : S (Ĉ) → S (M̂j) be its corresponding jth projection. We have:

Lemma 3. Suppose that for any s ∈ S (Ĉ), any a ∈ Enabled(s), and any s1, s2 ∈
ρj(s), we have that AbsSucc(s1, a) = AbsSucc(s2, a). Then Ĉ�j � Mj.

Since, by assumption, Ĉ�j �� Mj, it follows from Lemma 3 that there exist a
state s ∈ S (Ĉ), an action a ∈ Enabled(s), and two states s1, s2 ∈ ρj(s) such that
AbsSucc(s1, a) �= AbsSucc(s2, a). Let R′

j be a new equivalence relation derived
from Rj by sub-partitioning the equivalence class ρj(s) as follows: q, q′ belong to
the same sub-partition iff AbsSucc(q, a) = AbsSucc(q′, a). R′

j is clearly a proper
refinement of Rj , and is moreover admissible since Rj was admissible. It should

be noted that the refined abstract LKS M
R′

j

j is however not guaranteed to refute
the (projected) counterexample Ĉ�j .

As an example, Figure 1 shows the abstract LKS MR and its refinement MR′

which, in this case, refutes the spurious counterexample Ĉ.

66 S. Chaki et al.

Since the refinement procedure always yields a proper refinement and since
each LKS is finite, the CEGAR-based SE-AΩ verification algorithm always ter-
minates. In particular, spurious counterexamples are always eventually refuted.

6 Experimental Evaluation

We implemented our compositional approach for verification of branching-time
logics as part of the ComFoRT reasoning framework, which is based on the C
model checker magic developed at Carnegie Mellon [2, 22]. magic extracts finite
LKS models from C programs.We applied our model checking algorithmto verify a
set of benchmarks whose abstractmodels were automatically extracted by magic.

Here, we report on the verification of a piece of code provided by our in-
dustrial partner, one of the market leading robot manufacturers worldwide. We
analyzed the IPC (InterProcess Communication) protocol used to mediate com-
munication in a multi-threaded robot controller program. We model checked the
synchronous communication portion of the IPC protocol which was implemented
in terms of messages passed between queues owned by different threads. In the
synchronous communication protocol, a sender sends a message to a receiver and
blocks until an answer is received or it times out. A receiver asks for its next
message and blocks until a message is available or it times out. Whenever the
receiver gets a synchronous message, it is then expected to send a response to
the message’s sender. The target of our verification was to validate this commu-
nication scheduling.

We specified a set of more than twenty SE-AΩ properties most of which
were expressed using both states and events. That was required to make proper
assertions on the communication actions carrying data. Sample properties that
were verified are summarized in Table 1.

The first property expresses the fact that whenever the message queue
receives a request to queue a new message (p1) when the queue is full (p2) or
receives a request to retrieve a message (p3) when the queue is empty (p4),
then it enters an error state (p5). In this property propositions p1, p3 are

Table 1. Verification properties

N Property IPC Domain Description Informal Description
1 AG(((p1 ∧ p2)

∨ (p3 ∧ p4)) →
AG p5)

Whenever the message queue receives
a request to queue a new message (p1)
when the queue is full (p2) or receives a
request to retrieve a message (p3) when
the queue is empty (p4), then along all
paths it enters an error state (p5)

If a condition ((p1 ∧ p2)
∨ (p3 ∧ p4)) holds, then
assertion (p5) holds glob-
ally for each execution
path.

2 AG(p1 → AF
p2)

If a condition (p1) true, then action
(p2) will eventually occur

For each execution path
if a condition (p1) is
true, then it will eventu-
ally result in action (p2).

State/Event Software Verification for Branching-Time Specifications 67

events addMessage, takeMessage respectively, p2: numMessages == queue size
and p4: numMessages == 0 are the guards of events p1, p2, and p5: error
== 1 is a condition of the queue error state. The second property in Table
1 is a general description of a claim that states that if some condition (p1)
is true, then an action (p2) will eventually occur. We checked the following
instances of this property: p1 was set to define a condition consisting of the
event begin ReadMessageQueue and the state assertion numMessages == 0
(begin ReadMessageQueue ∧ numMessages == 0); p2 was defined for the
following choices: an event ReadMessageQueue (i) retrieves a message from the
queue; (ii) calls PulseEvent; (iii) does not timeout.

In our experiments SE-AΩ has been extremely useful for both (i) specifying
the branching structure of the protocol executions and (ii) for to making as-
sertions on both communications and data valuations. For example, Property 1
from Table 1 both makes use of branching and combines states and actions.

7 Conclusions and Future Work

In this paper we presented a framework for verifying branching-time temporal
logic specifications on concurrent software systems. We defined a powerful uni-
versal branching-time logic, SE-AΩ, that incorporates the ability to make asser-
tions about both states (data) and events (communication). This logic provides
flexibility in specifying properties of complex distributed software systems.

We also presented a compositional abstraction-based model checking algo-
rithm for SE-AΩ. This algorithm increasingly refines abstractions of the system
under consideration based on an analysis of branching counterexamples to the
specification that it generates. In this way the state explosion problem is delayed
for significantly longer than if the entire system were model-checked up front.
To the best of our knowledge, this is the first counterexample-guided, composi-
tional abstraction refinement scheme to perform verification of branching-time
specifications. The key ingredient enabling our compositional approach is a new
result relating simulation and weak simulation relations for parallel processes.

For future work, we would like to evaluate the expressiveness of the SE-AΩ
logic in comparison to other universal logics, and estimate the complexity of our
algorithm.

Acknowledgements. We thank the anonymous referees for their careful read-
ing and many insightful suggestions.

References

1. T. Ball and S. K. Rajamani. Automatically validating temporal safety properties
of interfaces. In Proceedings of the 8th International SPIN Workshop, volume 2057
of Lecture Notes in Computer Science, pages 103–122. Springer, 2001.

2. S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. In Proceedings of the 25th International Conference on
Software Engineering (ICSE), pages 385–395. IEEE Press, 2003.

68 S. Chaki et al.

3. S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. State/event-
based software model checking. In Proceedings of the 4th International Conference
on Integrated Formal Methods (IFM), volume 2999 of Lecture Notes in Computer
Science, pages 128–147. Springer, 2004.

4. S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. Concurrent soft-
ware verification with states, events, and deadlocks. Formal Aspects of Computing
Journal (to appear), 2005.

5. S. Chaki, J. Ouaknine, K. Yorav, and E. M. Clarke. Automated compositional
abstraction refinement for concurrent C programs: A two-level approach. In Pro-
ceedings of the Workshop on Software Model Checking (SoftMC). ENTCS 89(3),
2003.

6. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Proceedings of the 12th International Conference on
Computer Aided Verification (CAV), volume 1855 of Lecture Notes in Computer
Science, pages 154–169. Springer, 2000.

7. E. M. Clarke, O. Grumberg, and R. P. Kurshan. A synthesis of two approaches
for verifying finite state concurrent systems. Journal of Logic and Computation,
2(5):606–618, 1992.

8. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512–1542, 1994.

9. E. M. Clarke, S. Jha, Y. Lu, and H. Veith. Tree-like counterexamples in model
checking. In Proceedings of the 17th Symposium on Logic in Computer Science
(LICS), pages 19–29. IEEE Press, 2002.

10. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the SIGPLAN Conference on Programming Languages, 1977.

11. M. Dam. CTL∗ and ECTL∗ as fragments of the modal µ-calculus. Theoretical
Computer Science, 126:77–96, 1994.

12. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In Proceed-
ings of the 9th International Conference on Computer Aided Verification (CAV),
volume 1254 of Lecture Notes in Computer Science, pages 72–83. Springer, 1997.

13. J. Haartsen, Bluetooth Baseband Specification, version 1.0.
14. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In

Proceedings of the 29th Annual ACM Symposium on Principles of Programming
Languages (POPL), pages 58–70. ACM Press, 2002.

15. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
16. M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems: A foundation

for three-valued program analysis. In Proceedings of the 10th European Symposium
on Programming (ESOP), volume 2028 of Lecture Notes in computer Science, pages
137–154. Springer, 2001.

17. J. Ivers and N. Sharygina. Overview of ComFoRT: A model checking reasoning
framework. CMU/SEI-2004-TN-018, 2004.

18. E. Kindler and T. Vesper. ESTL: A temporal logic for events and states. Lecture
Notes in Computer Science, 1420:365–383, 1998.

19. R. P. Kurshan. Analysis of discrete event coordination. In Proceedings of the
REX Workshop, volume 430 of Lecture Notes in Computer Science, pages 414–
453. Springer, 1989.

20. R. P. Kurshan. Computer-aided verification of coordinating processes: the
automata-theoretic approach. Princeton University Press, 1994.

State/Event Software Verification for Branching-Time Specifications 69

21. Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre. Incremental verification by
abstraction. In Proceedings of the 7th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS), volume 2031 of
Lecture Notes in Computer Science, pages 98–112. Springer, 2001.

22. MAGIC website. http://www.cs.cmu.edu/∼chaki/magic.
23. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
24. G. Naumovich, L. A. Clarke, L. J. Osterweil, and M. B. Dwyer. Verification of

concurrent software with FLAVERS. In Proceedings of the 19th International Con-
ference on Software Engineering (ICSE), pages 594–595. IEEE Press, 1997.

25. R. De Nicola and F. Vaandrager. Three logics for branching bisimulation. Journal
of the ACM, 42(2):458–487, 1995.

26. C. S. Păsăreanu, M. B. Dwyer, and W. Visser. Finding feasible counter-examples
when model checking abstracted Java programs. In Proceedings of the 7th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 2031 of Lecture Notes in Computer Science, pages
284–298. Springer, 2001.

27. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
28. W. Thomas. Computation tree logic and regular ω-languages. In Proceedings

of REX Workshop, Lecture Notes in Computer Science, pages 690–713. Springer,
1988.

29. M. Y. Vardi and P. Wolper. Yet another process logic. In Proceedings of Logic of
Programs, Lecture Notes in Computer Science, pages 501–512. Springer, 1983.

30. M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115(1):1–37, 1994.

31. P. Wolper. Temporal logic can be more expressive. Information and Control,
56:72–99, 1983.

Exp.Open 2.0: A Flexible Tool Integrating
Partial Order, Compositional, and On-The-Fly

Verification Methods

Frédéric Lang

Inria Rhône-Alpes / Vasy,
655, avenue de l’Europe, 38334 Saint-Ismier Cedex, France
Phone: +33 (0)4 76 61 55 11, Fax: +33 (0)4 76 61 52 52

Frederic.Lang@inria.fr
http://www.inrialpes.fr/vasy/people/Frederic.Lang

Abstract. It is desirable to integrate formal verification techniques ap-
plicable to different languages. We present Exp.Open 2.0, a new tool
of the Cadp verification toolbox which combines several features. First,
Exp.Open 2.0 allows to describe concurrent systems as a composition
of finite state machines, using either synchronization vectors, or parallel
composition, hiding, renaming, and cut operators from several process
algebras (Ccs, Csp, Lotos, E-Lotos, µCrl). Second, together with
other tools of Cadp, Exp.Open 2.0 allows state space generation and
on-the-fly exploration. Third, Exp.Open 2.0 implements on-the-fly par-
tial order reductions to avoid the generation of irrelevant interleavings of
independent transitions. Fourth, Exp.Open 2.0 allows to export models
towards other tools using interchange formats such as automata networks
and Petri nets. Finally, we show some practical applications and measure
the efficiency of Exp.Open 2.0 on several benchmarks.

1 Introduction

Enumerative (or explicit state) verification is a method to check the proper
behaviour of safety-critical finite-state systems. It consists in generating the state
space systematically (if possible, exhaustively), and in verifying properties by
model checking, visual checking, or equivalence checking. For systems involving
asynchronous concurrency, the state space is often represented as a Labelled
Transition System (Lts for short) [47].

A well-known problem with enumerative verification is the combinatorial
state explosion, which often occurs as the number of concurrent processes in-
creases. To fight state explosion, several effective techniques have been proposed:

– Partial order reductions (e.g., [26, 57, 50, 32, 52, 30, 48]) try to avoid the gen-
eration of irrelevant interleavings of independent transitions.

– On-the-fly verification (e.g., [16, 15, 38, 33, 46, 45]) consists in performing Lts
generation and verification at the same time. This avoids to generate the
entire Lts when the verification only requires a part of it.

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 70–88, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Exp.Open 2.0: A Flexible Tool Integrating Partial Order 71

– Compositional verification (e.g., [14, 44, 55, 28, 56, 60, 63, 10, 27, 42, 54, 25,
18]) consists in generating the Lts of each concurrent process first (pos-
sibly restricted using constraints derived from its environment [28, 10, 63,
27, 42, 25, 18]), then simplifying these Ltss using abstraction criteria (for in-
stance, label hiding and reductions modulo bisimulations) that preserve the
properties under verification, and finally recomposing the reduced Ltss to
generate the Lts corresponding to the whole system.

In practice, many software tools have been developed to implement these
ideas. Nevertheless, these tools often suffer from several limitations:

– Most tools are often dedicated to one specific input formalism, e.g., Petri
nets, communicating automata, or a particular process algebra. On the oppo-
site, a unified tool accepting several input formalisms would be more flexible
by combining the expressiveness of different input languages and by having
its verification algorithms accessible by a wider community of users.

– Although there exist tools combining two among the three aforementioned
verification techniques, such as Spin [37] (partial order and on-the-fly veri-
fication) and Ara [59] (partial order and compositional verification), to our
knowledge, combining the three techniques has never been done.

In this article, we present Exp.Open 2.0, a new tool that addresses these
issues. Exp.Open 2.0 is part of Cadp [19] (Construction and Analysis of Dis-
tributed Processes)1, a toolbox for protocol engineering that offers functionalities
ranging from mere interactive simulation up to the most recent verification tech-
niques. Exp.Open 2.0 builds upon the existing software components of Cadp,
especially for handling Ltss.

Earlier versions of Cadp contained a tool named Exp.Open 1.0, developed
in 1995 by L. Mounier (Université Joseph Fourier, Grenoble, France), that com-
bined on-the-fly verification and compositional verification for Lotos [39]. To
develop Exp.Open 2.0, we deeply revisited the principles of Exp.Open 1.0 and
rewrote the tool entirely from scratch to extend its input language, to provide
new functionalities, and to support partial order reductions.

This article is organized as follows. Section 2 describes inputs of
Exp.Open 2.0. Section 3 presents its functionalities. Section 4 presents practi-
cal applications and gives experimental results for several applications. Section 5
finally concludes the article.

2 The Exp.Open 2.0 Language

2.1 Labelled Transition Systems and Composition Expressions

The basic concept used by Exp.Open 2.0 is the standard Lts model [47], which
consists of a set of states, an initial state, and a set of transitions between
states, each transition being labelled by an event of the system. A particular
1 http://www.inrialpes.fr/vasy/cadp

72 F. Lang

label written τ represents an invisible (or internal) event. The contents of states
are not observable.

In practice, a label is represented by a character string. Exp.Open 2.0 does
not impose a particular syntax and thus accepts labels from different source
languages, such as Ccs [47], Csp [54], Lotos [39], E-Lotos [40], and µCrl [31].

As regards the semantic structure of labels, most languages assume that a
label consists of a gate (i.e., a port name, a channel name) and a (possibly
empty) list of typed values, here called offers. For instance, if G is a gate, both
labels “G !1 !2” (Lotos notation) and “G(1, 2)” (µCrl notation) are accepted
by Exp.Open 2.0. Labels obtained from Ccs may also start with a co-action
symbol, generally written ’.

Ltss are stored in computer files, using one of the four formats available in
Cadp: Bcg (Binary Coded Graph), Aldébaran (textual), sequential Fc2, and
Seq for transition sequences [20]. Other file formats can be converted into Bcg
using the Bcg Io tool of Cadp.

The input language of Exp.Open 2.0 allows to define compositions of Ltss,
named composition expressions. Figure 1 presents an extended Bnf describing
the abstract syntax of composition expressions. The concrete syntax can be found
in [43]. The symbols in italic are the non-terminal and generic terminal symbols.
Subscripts are used for the sake of readability, e.g., B0, B1, . . . are occurrences
of the same non-terminal B. The symbols “::=”, “|”, “[”, “]”, “(”, “)”, and “. . . ”
are meta-symbols: “::=” introduces the definition of a non-terminal symbol, “|”
separates alternative clauses, “[]” delimit optional clauses, “()” are used for
bracketing as usual, and the infix “. . . ” meta-symbol denotes repetition, e.g.,
“L1 , . . . , Ln” denotes the repetition of n ≥ 0 symbols separated by commas and
“B1 ||. . . || Bn” denotes the repetition of n ≥ 0 symbols separated by ||. All
remaining symbols are the terminal symbols, i.e., the keywords (written in bold
font, such as gate, all) and key symbols (written in teletype font, such as “{”,
“-→”). In particular, “[”, “]”, and “|” are terminal symbols distinct from the
meta-symbols “[”, “]”, and “|”.

The generic terminal symbols L, L′, L0, L1, . . . represent arbitrary character
strings, n, n1, n2, . . . represent arbitrary natural numbers, S, S0, S1, . . . represent
Ltss, and P, P0, P1, . . . represent patterns (which will be defined below). The
non-terminal symbols B, B0, B1, . . . represent composition expressions, op rep-
resents binary infix parallel composition operators, and V, V0, V1, . . . represent
synchronization vectors.

The semantics of a composition expression is itself an Lts that we define in
the following sections.

2.2 Renaming, Hiding, and Cut Operators

Renaming (replacing occurrences of a visible label), hiding (renaming a visible
label into τ), and cut2 (eliminating all transitions with a particular visible label,

2 Cut is also called restriction in Ccs and encapsulation in µCrl.

Exp.Open 2.0: A Flexible Tool Integrating Partial Order 73

B ::= S0 (1)

| [gate | total | single | multiple] rename
(L1 -→ L′

1, . . . , Ln -→ L′
n | using P0) in B0 end rename (2)

| [gate | total | partial] hide
([all but] L1, . . . , Ln | using P0) in B0 end hide (3)

| [gate | total | partial] cut
([all but] L1, . . . , Ln | using P0) in B0 end cut (4)

| [gate | label] par (all | L1 [#n1], . . . , Lm [#nm]) in
[L1

1 , . . . , Lp1
1 -→] B1 || . . . || [L1

n, . . . , Lpn
n -→] Bn end par (5)

| [gate | label] par V1, . . . , Vm in B1 || . . . || Bn end par (6)

| B1 op B2 (7)

| B0 / { L1, . . . , Ln } (8)

| B0 [L1 / L′
1, . . . , Ln / L′

n] (9)

| B0 [[L1 ←- L′
1, . . . , Ln ←- L′

n]] (10)

op ::= | | || | ||| | |[L1, . . . , Ln]|

| [| L1, . . . , Ln |] | [L1, . . . , Ln || L′
1, . . . , L′

n]

V ::= (L1 |) * . . . * (Ln |) -→ L0

Fig. 1. Abstract syntax of the Exp.Open 2.0 input language

possibly at the expense of creating unreachable states), are classical notions in
process algebras.

For convenience, Exp.Open 2.0 supports the usual notations for these op-
erators found in Ccs and Csp (Rules 8, 9, and 10). Rule 8 represents either
Ccs restriction or Csp hiding, which have same syntax but different semantics.
Rules 9 and 10 represent Ccs and Csp renaming, respectively. In these three
rules, L1, L

′
1, . . . , Ln, L′

n are simple gates.
Exp.Open 2.0 also supports more expressive operators for renaming, hiding,

and cut (Rules 2, 3, and 4), which generalize classical operators in several ways:

– The labels to rename, hide, or cut can be specified either as a list (L1 , . . . ,
Ln), or as a pattern (“using P0”), which consists of a reusable list of labels
or renaming rules, stored in a separate file for convenience. The latter allows
to factor rules used several times, or to isolate complex rules.

– For hiding and cut, the “all but L1, . . . , Ln” construct allows to define a
set containing all labels but L1 , . . . , Ln .

– L1 , . . . , Ln can be strings, or regular expressions (following the syntax of
the Posix “regexp” library) that labels may match using three different
semantics: gate means that a label matches only if its gate matches a reg-
ular expression; total means that a label matches if it matches a regular
expression entirely; and partial means that a label matches if it contains
a substring that matches a regular expression. As regards renaming, partial

74 F. Lang

matching is refined into two sub-cases: single means that only the first oc-
currence of a substring matching a regular expression is replaced, whereas
multiple means that all such occurrences are replaced. The gate matching
is the default, as it corresponds to the semantics found in classical process
algebras.

Example 1. The expression “hide G in B0 end hide” hides in B0 every label
whose gate is G, such as “G !1 !2” or “G(1, 2)”. The expression “single rename
"\(.*\) !\(.*\) !\(.*\)" -→ "\1 !\3 !\2" in B0 end rename” permutes
two offers in labels, e.g., “G !A !B !C” is renamed into “G !B !A !C”3.

2.3 Parallel Composition Operators

Exp.Open 2.0 contains various parallel composition operators, which can be
mixed in the same expression:

– Rule 7 represents the usual binary parallel composition operators of Ccs
(“|”), Csp (“[| L1,. . . , Ln |]” and “[L1, . . . , Ln || L′

1, . . .L′
n]”), µCrl4

(“||”), and Lotos (“||”, “|||”, and “|[L1, . . ., Ln]|”).
– Rule 5 represents the n-ary “graphical” parallel composition operator of

E-Lotos [40, 23]. To our knowledge, the Exp.Open 2.0 tool provides the
first implementation of this operator in a software tool.

– Rule 6 represents parallel composition using synchronization vectors, in-
spired from Mec [1] and Fc2 networks [8].

We do not recall in details the semantics of these operators, which are given
elsewhere. However, we present an overview of the semantics of the operators of
Rules 5 and 6, which are the most general and least known of the Exp.Open 2.0
parallel composition operators.

For these par operators, unlike renaming, hiding, and cut, the Li’s and Lj
i ’s

cannot be regular expressions. Nevertheless, Exp.Open 2.0 also extends these
operators with a matching mode, as follows: gate means that the Li ’s denote
gates and that a label A matches Li if and only if Li is the gate of A; label
means that the Li ’s denote full labels and that a label A matches Li if and only
if A equals Li (both gate and offers). The gate matching is the default, as it
corresponds to the semantics found in classical process algebras.

A global state (i.e., a state of the resulting Lts) is a tuple (s1, . . . , sn), where
si (i ∈ 1..n) is a local state of the corresponding Bi. A global transition is
obtained either by synchronization of several local transitions {si

Ai→ ti | i ∈ I ⊆
1..n}, or by asynchronous execution of a single local transition si

Ai→ ti, where
3 The symbols “\(” and “\)” are used to delimit sub-expressions. In the right-hand

side, the symbol “\n”, where n is a number (\1, \2, . . .), is substituted by the
string matched by the nth delimited sub-expression of the left-hand side.

4 µCrl parallel composition depends on user-given synchronization rules, whose scope
is the whole composition expression. For simplicity, we do not reproduce here the
syntax of these rules.

Exp.Open 2.0: A Flexible Tool Integrating Partial Order 75

i ∈ 1..n. The destination state of the global transition is obtained by replacing
every si involved in a local transition by the corresponding ti, whereas the other
local states are not modified.

As regards Rule 5, we briefly recall the main features of the “graphical”
parallel composition operator (see [23] for a formal description and examples):

– The simplest form, “par L1 , . . ., Lm in B1 || . . . || Bn end par”, is a gener-
alization to n operators of the classical binary parallel composition operators
of Csp and Lotos with forced synchronization on L1 , . . ., Lm . Either one
single component evolves asynchronously by executing a transition whose
label A does not match any Li (in such a case, the other components remain
in their current state), or all components evolve synchronously by executing
transitions whose label A (the same for all components) matches some Li. In
both cases, the resulting global transition is also labelled A. The all keyword
denotes the set of all gates or labels (depending on the matching mode) but
the invisible label τ .

– If some Li is followed by “#ni” (2 ≤ ni ≤ n), then only ni (instead of n) of
the components have to synchronize on Li. This implements a relaxed form
of synchronization named “m among n” synchronization, which is useful
to express communication between a subgroup of components, as will be
illustrated later.

– If some Bi is preceded by a list, as in “L1
i , . . . , Lpi

i -→Bi”, then Bi must
synchronize on labels matching one of the Lj

i ’s with all other components
also preceded by a list containing Lj

i . This is another form of relaxed syn-
chronization.

Example 2. In “par in G13 ,G12 -→ B1 || G12 ,G23 -→ B2 || G23 ,G13 -→ B3
end par”, components Bi and Bj (1 ≤ i < j ≤ 3) communicate on gate Gij . In
“par G0#2 in B1 || B2 || B3 end par”, components communicate pairwise
on gate G0 .

Rule 6 implements parallel composition using synchronization vectors of the
form “(L1 |) * . . .* (Ln |) -→ L0”, whose elements at positions 1..n may
be either an Li (i.e., a gate or a label, depending on the matching mode) or
the symbol “ ”. We define the application of a synchronization vector to the
current global state as follows: All components Bi such that the ith element in
the vector is an Li must execute synchronously transitions, such that the label of
each transition matches the corresponding Li (the labels of all transitions must
also have the same offers in gate matching); the label of the resulting global
transition is L0 (followed by the offers of the synchronizing transitions in gate
matching). τ -transitions execute asynchronously.

Example 3. In the expression “gate par Snd ∗Rcv -→ Com in B1 || B2 end
par”, transitions of B1 whose gate is Snd synchronize with transitions of B2
whose gate is Rcv , provided those transitions have the same offers. The label
of the resulting transition consists of the Com gate followed by these offers.
In label matching instead of gate, transitions of B1 whose label is Snd (gate

76 F. Lang

without offers) would synchronize with transitions of B2 whose label is Rcv . The
label of the resulting transition would be Com , without offers.

In principle, Exp.Open 2.0 allows to freely combine operators originating
from different languages, except in case of overloaded symbols that may have dif-
ferent semantics, such as “ /” (Ccs restriction or Csp hiding) and “||” (Lotos
or µCrl parallel composition). In such cases, a command-line option (“-ccs”,
“-csp”, etc.) or a specific keyword is needed to indicate to Exp.Open 2.0 which
language is considered. Command-line options also allow to change syntactic
conventions, such as the concrete notation of the invisible label τ (e.g., tau, i,
t) or case-sensitivity (whether or not labels in lower and upper cases are to be
considered equal).

The static semantics of Exp.Open 2.0 ensure that synchronization vectors
have appropriate length. They also forbid synchronizing, renaming, and cut-
ting τ -transitions, which ensures that bisimulation equivalences (strong, obser-
vational, branching, tau*.a, etc.) are congruences for all Exp.Open 2.0 oper-
ators [61]. Thus, arbitrary composition expressions of Exp.Open 2.0 can be
verified compositionally, for instance by reducing component Ltss separately.

3 State Space Exploration Using Exp.Open 2.0

3.1 Translation into a Flat Network Model

To allow an homogeneous treatment of composition expressions, Exp.Open 2.0
first translates them into a general model, which we call flat network of Ltss (or
simply, flat network).

Flat networks are similar to the par operator with synchronization vectors
presented in Rule 6 of Figure 1. A flat network is a couple ((S1, . . . , Sn),Sync)
consisting of a vector (S1, . . . , Sn) of Ltss, and a set Sync of synchronization
vectors whose left-hand side (the part to the left of the arrow) have size n. The
differences between flat networks and the par operator are that synchronization
vectors contain “full” labels (instead of gates), including τ , and that flat networks
have no nested subterms except Ltss.

Our flat network model is more general than the model used in
Exp.Open 1.0, in which synchronization was represented only by vectors of
gates (instead of labels), and a global predicate indicating whether a given gate
was visible or hidden. This former model allowed to model composition expres-
sions in which a gate was either visible everywhere or hidden everywhere, but not
partially visible and partially hidden at the same time, such as in “B || (hide
G in B)” (B containing an occurrence of G), which is legal Lotos code. This
problem imposed that hide operators occur at the top-level of expressions only.
On the opposite, the whole Exp.Open 2.0 input language can be translated into
flat networks without limitations.

A composition expression B is translated into a flat network (s (B), v (B)),
where s (B) is the vector of all Ltss used in B, in the order of their occurrence
(thus Ltss occurring several times in the composition expression also occur sev-
eral time in the vector), and v (B) is defined recursively as follows:

Exp.Open 2.0: A Flexible Tool Integrating Partial Order 77

– For an Lts S (Rule 1 of Figure 1), v (S) = {A → A | A ∈ labels (S)}.
– For rename, hide, and cut (Rules 2, 3, 4, 8, 9, 10), v (B0) is computed

first. Then, v (B) is obtained by transforming each synchronization vector
whose right-hand side matches a renaming, hiding, or cut rule, as follows: For
renaming (respectively hiding), the right-hand side of the rule is renamed
(respectively hidden) accordingly. For cut, the rule is removed.

– For parallel composition of n sub-expressions B1, . . . , Bn (Rules 5, 6, 7), the
sets v (B1), . . . , v (Bn) are generated first. Their rules are then joined (i.e.,
their left-hand sides are concatenated and/or extended with an appropri-
ate number of “ ” symbols) whenever their respective right-hand sides are
synchronizing labels.

Note that the complexity for computing v (B) depends on the number of
labels in each of the Ltss in s (B), but not on their number of states and transi-
tions. Therefore, the translation from composition expressions into flat networks
is not subject to state explosion.

Example 4. For the Lotos composition expression “B = (S1 ||| S2) |[G]|
S3”, where S1 , S2 , and S3 are Ltss and G a list of gates, s (B) = (S1, S2, S3) and

v (B) = { A * * → A | A ∈ labels (S1), gate (A) /∈ G } ∪
{ * A * → A | A ∈ labels (S2), gate (A) /∈ G } ∪
{ * * A → A | A ∈ labels (S3), gate (A) /∈ G } ∪
{ A * * A → A | A ∈ labels (S1) ∩ labels (S3), gate (A) ∈ G } ∪
{ * A * A → A | A ∈ labels (S2) ∩ labels (S3), gate (A) ∈ G }

Exp.Open 2.0 allows to export flat networks into models suitable for various
verification tools:

– Petri nets in the “low-level” Pep format, which can be verified using the
Pep tool [6] and exported to other Petri net formats.

– Networks of communicating automata in the Fc2 format, which can be ver-
ified using Fc2Tools [8] and Jack [2].

3.2 Integration Within the OPEN/CAESAR Environment

Cadp devotes a great importance to modular programming, using well-thought
intermediate formats and programming interfaces. Exp.Open 2.0 is connected to
Open/Cæsar [17], a modular environment for developing on-the-fly exploration
algorithms on Ltss.

The Open/Cæsar architecture (see Figure 2) is based on a central language-
independent Api (Application Programming Interface), which allows to explore
the states and transitions of an Lts on-the-fly. It describes types that represent
labels and states, a function that computes the initial state of the system, and an
Iterate State() function that enumerates the successor transitions of a given
state.

78 F. Lang

Interactive simulation

Execution

...

Back−ends

Front−ends

libraries

...

Test generation

On−the−fly verification

Random simulation

Networks of

Distributed Lts generation

Lts generation

Open/Cæsar Api

Seq.Open

traces

Cadp

Open/Cæsar

Ltss

Exp.Open

Lts

Bcg Open

Lotos

Cæsar

Sdl

If.Open Umlaut

Uml/Rt

Fig. 2. Architecture of Open/Cæsar

This architecture allows an orthogonal separation between the language-
dependent compilers (front-ends) that translate a particular formalism into a
C program implementing the Open/Cæsar Api, and the language-independent
verification tools (back-ends) that operate on the representation of an Lts using
the Api. Each fromt-end can be combined with any back-end.

Cadp includes four front-ends, namely Exp.Open 2.0, Bcg Open for Ltss
in the Bcg (Binary Coded Graphs) format, Cæsar [22] for Lotos [39], and
Seq.Open for traces [20]. It also includes several back-ends that provide vari-
ous functionalities, such as Lts generation, possibly distributed to use the Cpu
and memory of a set of computers [21], on-the-fly model-checking of regular
alternation-free µ-calculus [46], interactive simulation with X-window interface,
generation of conformance test suites based on verification technology [41], on-
the-fly behavioural comparison of systems modulo various equivalence and pre-
order relations [5], random execution, deadlock detection, reachability analysis,
sequence searching, abstraction of an Lts w.r.t. an interface [42], etc.

Exp.Open 2.0 first translates the composition expression given as input into
a flat network, and then generates a C program implementing the Open/Cæsar
Api, which computes the reachable states and transitions of the composition
expression. The translation performs careful analysis to reduce the number of bits
allocated to represent states, and to optimize speed for the transition function.

3.3 Partial Order Reductions

Partial order reductions aim at avoiding transition interleavings that are irrel-
evant for a given class of properties. Exp.Open 2.0 implements three partial

Exp.Open 2.0: A Flexible Tool Integrating Partial Order 79

order reductions, preserving respectively the existence or absence of deadlocks,
branching bisimulation [62], and stochastic branching bisimulation [36].

Partial order reduction preserving stochastic branching bisimulation operates
on Ltss containing special transitions, called stochastic, of the form “rate λ”,
where λ is a positive real. The stochastic transitions express an internal delay in
the source state, while the other transitions are immediate if their environment
allows their execution. Exp.Open 2.0 implements the technique proposed by
H. Hermanns [35], which consists in eliminating the stochastic transitions in
choice with τ -transitions, the latter being always executable without delay.

To present deadlock and branching preserving partial order reductions, we de-
fine the following standard notions derived from the theory of persistent sets [26]
(of which stubborn sets [57] and ample sets [50] are variations, see [51] for a survey
on persistent set based partial order reductions), and applied to our context:

– A synchronization vector V is enabled in a state s if s has a successor obtained
by application of V . It is deterministic in s if s has exactly one such successor.

– Two synchronization vectors V1 and V2 enabled in a state s are commutative
if the set of states reachable by applying first V1 then V2 is the same as that
obtained by applying first V2 then V1.

– Two synchronization vectors V1 and V2 are independent in a given state s
if 1) V1 and V2 are commutative if they are both enabled in s and 2) V1
(respectively V2) is enabled in a successor state of s obtained by applying V2
(respectively V1) if and only if V1 (respectively V2) is enabled in s.

– A set Sync of synchronization vectors enabled in a state s is persistent in s
if, in every state reachable from s by applying only synchronization vectors
that do not belong to Sync, every synchronization vector that is enabled and
does not belong to Sync is independent of the synchronization vectors that
belong to Sync.

Persistent set computation is done by a careful analysis of the synchronization
vectors, which we do not detail in this paper. Partial order reduction preserving
the presence or absence of deadlocks is done in each reachable state of the system,
by applying only the synchronization vectors that belong to the persistent set
computed in the current state.

For branching bisimulation, the results of [58, 49, 24] state that, applied to
our context, the persistent sets preserving branching bisimulation are those con-
sisting of a single, deterministic synchronization vector, whose right-hand side
is the label τ . In the algorithm below, we will only consider persistent sets that
have this particular form. Unfortunately, finding such a persistent set is not
enough to preserve branching bisimulation — and even weaker relations such
as trace equivalence — because one may enter a circuit that prevents enabled
synchronization vectors from ever being executed. This problem is known as the
ignoring problem [51].

Most tools implementing partial order reductions (e.g., Spin [37], Ara [59],
etc.) solve the ignoring problem by detecting circuits in the back-end. A distinc-
tive feature of Exp.Open 2.0 is to solve the ignoring problem in the front-end,
thus avoiding any modification of verification back-ends, which can thus benefit

80 F. Lang

from partial order reduction for free, independently of the strategy that they use
to explore the Lts.

More precisely, the ignoring problem is dealt with in the Iterate State()
function of the Open/Cæsar Api. When the Iterate State() function is
called to enumerate the successors of a state s, a persistent set (which contains
a single synchronization vector) is searched for. If it exists, this synchronization
vector is executed, leading to a new state s′. The algorithm is then repeated,
starting in s′ instead of s, until reaching a state s′′ that either does not have
a persistent set or was already visited. In the former case, a single τ -transition
from s to s′′ is generated. In the latter case, the explored circuit of τ -transitions
starting in s′′ is just discarded (indeed, all states in a circuit of τ -transitions
are branching equivalent) and the algorithm is continued by searching another
persistent set in s′′.

Note that the intermediate states reachable from s following persistent sets
are only stored in memory temporarily by the front-end and never visible by
the back-end. They are removed once Iterate State() returns, to optimize
memory consumption. These states may possibly be revisited during subsequent
calls to Iterate State(), but such revisits are not penalizing in practice, mostly
due to the fact that persistent set computation is fast in the case of branching
bisimulation. This confirms known results [4] about the fine tuning between
storing or revisiting states, which were made on the basis of various storage
heuristics leading to the conclusion that better verification performance can
often be obtained by storing only a little amount of states.

There exist alternative partial order methods preserving branching bisimula-
tion, which are based on τ -confluence reduction [32, 7, 48]. Persistent set methods
operate a less general form of τ -confluence reduction than the algorithms pre-
sented in [32, 7, 48], but are cheaper in time and memory. In [48], persistent set
methods and τ -confluence reduction are combined to reduce Ltss composition-
ally modulo branching bisimulation, using Exp.Open 2.0.

3.4 Refined Interface Constraints Generation

A potential limitation of compositional verification is that, given a system of
concurrent processes, generating the Lts of each process separately may lead to
state explosion, even though the Lts of the whole system has a tractable size.
Indeed, generating the Lts of a process out of its context (i.e., separately from
the neighbour processes with which it synchronizes) may lead to explore states
that would be unreachable in the global system.

To address this problem, refined compositional verification approaches have
been proposed [28, 10, 63, 11, 12, 27, 42, 9, 25], which allow to generate the Lts
of a process by taking into account interface constraints (also known as envi-
ronment constraints or context constraints). These constraints express the be-
havioural restrictions imposed on each process by the synchronization with its
neighbour processes, thus avoiding globally unreachable states and transitions.
As regards the choice of appropriate interface constraints, two approaches are
possible.

Exp.Open 2.0: A Flexible Tool Integrating Partial Order 81

In the first approach, the articles [28, 42] propose that interface constraints
may be provided by the user (personal insight of the context). The risk is that
these constraints are wrong and thus eliminate states and transitions that would
be reachable in the global system. Exp.Open 2.0 (together with Projector 2.0)
supports this approach. It checks automatically during the recomposition of
the constrained Lts with its environment whether the eliminated states and
transitions are indeed unreachable. Otherwise, it reports an error so that the
user relaxes its constraints.

The second approach [10, 42] consists in building constraints automatically
from the composition expression, for instance by considering a particular Lts
in the environment and computing its interactions with the process to restrict.
Exp.Open 2.0 also implements this approach. Given a flat network, in which
are identified an Lts S whose labels are those of a process P to restrict and
a set of Ltss S1, . . . , Sn corresponding to processes in the environment of P ,
Exp.Open 2.0 computes refined interface constraints consisting of both an Lts
S′ and a set of labels L representing the potential interactions between S1, . . . , Sn

and P . S′ and L are then used to restrict the Lts corresponding to P using the
Projector 2.0 tool of Cadp.

The precise algorithm used by Exp.Open 2.0 to generate interface con-
straints automatically will be detailed in another paper. However, we can briefly
indicate the advantages of the proposed approach:

– By operating on flat networks obtained after translation of composition
expressions, it can be applied to any of the languages supported by
Exp.Open 2.0. By constrast, other methods are specific to one single lan-
guage (e.g., Lotos [42] or Csp [10]).

– It makes possible to build interface constraints obtained from several pro-
cesses in the environment of S, even if these processes are distant in the
composition expression, because flattening reduces the distance between al-
gebraic terms. Other methods allow to build interface constraints only ob-
tained from one single process.

– In the particular (but frequent) case of nondeterministic synchronization
(which is a characteristic of client-server communications), it produces more
accurate interface constraints, leading to better state space reductions. For
instance, in the Lotos expression “(B1 ||| B2) |[G]| B3”, a G-transition of
B3 can synchronize either with a G-transition of B1 or with a G-transition
of B2. The same also applies for more complex situations, such as non-
deterministic multiway synchronization involving more than two processes,
and “m among n” synchronization. Other techniques either forbid such sit-
uations using an input language that does not allow nondeterministic syn-
chronization [10] or under-approximate the interactions between B1 and B3,
and B2 and B3, by ignoring the possible synchronizations on G [42]. Instead,
Exp.Open 2.0 generates interfaces in which every G-transition is duplicated
by a τ -transition with same source and target states, which models nonde-
terministic synchronization.

82 F. Lang

4 Practical Applications and Experimental Results

As part of Cadp, Exp.Open 2.0 is widely disseminated and has already been
used for significant applications. We can mention for instance a few ones:

– At Eindhoven University of Technology, J. Romijn and S. Vorstenboch used
it to verify the Net Update Protocol of the draft standard Ieee P1394.1. By
combining the compositional techniques of Exp.Open 2.0 and the distributed
state space construction tool of Cadp [21], they managed to generate models
of tractable size (up to 28 million states and 487 million transitions).

– At Saarland University, H. Hermanns and S. Johr used the Exp.Open 2.0
tool to analyze the performance of a distributed mutual exclusion algorithm.
By combining Exp.Open 2.0 with the distributed state space construction
tool of Cadp, they generated a stochastic model with 224 million states and
1, 300 million transitions, which was unfortunately too big to fit on a standard
32-bit file system. Using the partial order reduction that preserves stochastic
branching reduction, the state space was reduced to 44 million states and 80
million transitions and could be stored in a file on a single machine.

– At Inria Sophia-Antipolis, E. Madelaine, T. Barros, and L. Henrio used
Exp.Open 2.0 to compute large synchronization products corresponding
to compositions of hierarchical object components [3]. Their work covers
dynamic component updates, such as the dynamic replacement of a sub-
component.

At least four additional examples of Exp.Open 2.0 are available as part of
Cadp:

– A distributed summation algorithm5 inspired from [29]: The use of “m
among n” synchronization allows a nice modeling of the interprocess com-
munications, based on topological constraints encoded using data structures.

– The ODP trader6 inspired from [23]: The use of “m among n” synchro-
nization allows to model communications between arbitrary service providers
and service users, which obtain their respective addresses using a separate
process, called trader.

– The classical distributed Erathostenes sieve7: It consists of a pipeline
of units, each unit blocking every input number that is a multiple of a
given number. Figure 3 shows experimental data for Lts generation using
Exp.Open 2.0 from 1 to 20 units, and confirms the effectiveness of partial
order reductions.

– The HAVi leader election protocol for home audio-video net-
works8 [53]: Exp.Open 2.0 is used to generate interface constraints au-
tomatically. Compared to [53], the Lts corresponding to the largest process

5 http://www.inrialpes.fr/vasy/cadp/demos/demo 35
6 http://www.inrialpes.fr/vasy/cadp/demos/demo 37
7 http://www.inrialpes.fr/vasy/cadp/demos/demo 36
8 http://www.inrialpes.fr/vasy/cadp/demos/demo 27

Exp.Open 2.0: A Flexible Tool Integrating Partial Order 83

units without partial order reduction with partial order reduction
states trans. time (s) mem. (MB) states trans. time (s) mem. (MB)

1 43 59 3.7 2.4 10 9 4.0 2.4
2 159 291 5.1 2.5 10 9 4.9 2.5
3 542 1 233 6.1 2.6 10 9 6.7 2.6
4 1 151 2 909 7.6 2.7 10 9 7.5 2.7
5 3 368 9 831 10.1 2.9 10 9 8.9 2.8
6 12 451 42 423 16.0 3.4 10 9 10.8 3.1
10 166 743 685 951 249.0 11.5 10 9 20.0 5.3
15 — — >2h >113.0 10 9 46.5 17.3
20 — — — — 10 9 99.5 45.8

Fig. 3. Generation of configurations of the Erathostenes sieve with and without partial
order reduction

was reduced from 400, 000 states and 3 million transitions downto 700 states
and 2, 000 transitions; the memory needed for the whole verification was re-
duced from 56 MB downto 8.5 MB; the verification time was divided by 10
(from 100 s downto 10 s).

At last, Figure 4 shows that Exp.Open 2.0 runs from 2 to 10 times faster
and uses 2 times less memory than Exp.Open 1.0 on a benchmark consisting of
the case studies available in the Cadp verification toolbox9.

Fig. 4. Performance comparisons between Exp.Open 1.0 and Exp.Open 2.0

5 Conclusion

In this article, we presented the new Exp.Open 2.0 tool, which has been available
in Cadp since August 2004.

While other tools allowing to compute synchronization products are either
specific to one language (e.g., Ara-Lotos [59] or Exp.Open 1.0) or implement

9 http://www.inrialpes.fr/vasy/cadp/demos

84 F. Lang

a single low-level parallel composition operator (e.g., Mec synchronization vec-
tors [1], Fc2 networks [8], Tvt [34], modular Petri nets [13]), Exp.Open 2.0
combines both synchronization vectors [1, 8] and operators taken from several
languages, namely Ccs [47], Csp [54], Lotos [39], µCrl [31], and E-Lotos [40].
To our knowledge, Exp.Open 2.0 provides the first implementation of the
“graphical” parallel composition operator [23] of E-Lotos, which supports “m
among n” synchronization in particular.

Exp.Open 2.0 combines several verification techniques in order to fight
combinatorial state explosion effectively. Together with other tools of Cadp,
Exp.Open 2.0 allows to generate (possibly using the memory and Cpu of sev-
eral computers) and explore on-the-fly (for interactive simulation, verification of
temporal logics, behavioural equivalence checking, etc.) the Lts of a composi-
tion expression. Generation and exploration can be combined with several par-
tial order reductions preserving deadlocks, branching bisimulation, or stochastic
branching bisimulation. In addition, Exp.Open 2.0 implements an algorithm to
generate interface constraints for compositional verification automatically.

Exp.Open 2.0 has been used for various applications with Lotos and Cadp,
which allowed to show its effectiveness. As regards future work, Exp.Open 2.0
could be combined with other languages and tools. Experiments with the µCrl
toolset are under way in the framework of the Senva collaboration between
Inria and Cwi.

Acknowledgements

The author thanks J. van de Pol for his constructive feedback about the
Exp.Open 2.0 tool, for the time he took to proof read the manual page [43], and
for helping us to correct minor errors about the handling of µCrl labels. The
author is also grateful to H. Garavel for many advices during the development
of Exp.Open 2.0 and for his constructive remarks on this article.

References

1. A. Arnold. MEC: A System for Constructing and Analysing Transition Systems. In
Proceedings of the 1st Workshop on Automatic Verification Methods for Finite State
Systems (Grenoble, France), volume 407 of Lecture Notes in Computer Science,
pages 117–132. Springer Verlag, 1989.

2. A bird’s eye view of JACK. Web page of the JACK project at CNR Pisa,
http://fmt.isti.cnr.it/jack/OLD JACK PAGES/JACK/structure.html

3. T. Barros, L. Henrio, and E. Madelaine. Behavioural Models for Hierarchical
Components, 2005. Submitted to the 12th International SPIN Workshop on Model
Checking of Software.

4. G. Behrmann, K.G. Larsen, and R. Pelánek. To Store or Not to Store. In
Proceedings of the 15th International Conference on Computer Aided Verification
CAV’2003 (Boulder, Colorado, USA), volume 2275 of Lecture Notes in Computer
Science, 2003.

Exp.Open 2.0: A Flexible Tool Integrating Partial Order 85

5. D. Bergamini, N. Descoubes, C. Joubert, and R. Mateescu. BISIMULATOR: A
Modular Tool for On-the-Fly Equivalence Checking. In Proceedings of the 11th In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems TACAS’2005 (Edinburgh, Scotland, UK), volume 3440 of Lecture Notes
in Computer Science, pages 581–585. Springer Verlag, 2005.

6. E. Best, J. Esparza, B. Grahlmann, S. Melzer, S. Römer, and F. Wallner. The
PEP verification system. In Proceedings of FEmSys’97, 1997.

7. S. Blom and J. van de Pol. State Space Reduction by Proving Confluence. In
Computer Aided Verification 2002, volume 2404 of Lecture Notes in Computer
Science, 2002.

8. A. Bouali, A. Ressouche, V. Roy, and R. de Simone. The Fc2Tools set: a Toolset
for the Verification of Concurrent Systems. In Proceedings of the 8th Conference
on Computer-Aided Verification (New Brunswick, New Jersey, USA), volume 1102
of Lecture Notes in Computer Science. Springer Verlag, 1996.

9. K. H. Cheung. Compositional Analysis of Complex Distributed Systems. PhD
thesis, Department of Computer Science, Hong Kong University of Science and
Technology, Hong Kong, 1998.

10. S. C. Cheung and J. Kramer. Enhancing Compositional Reachability Analysis
with Context Constraints. In Proceedings of the 1st ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (Los Angeles, CA, USA),
pages 115–125. ACM Press, 1993.

11. S. C. Cheung and J. Kramer. Compositional Reachability Analysis of Finite-State
Distributed Systems with User-Specified Constraints. In Proceedings of the 3rd
ACM SIGSOFT International Symposium on the Foundations of Software Engi-
neering (Washington, DC, USA), pages 140–150. ACM Press, 1995.

12. S. C. Cheung and J. Kramer. Context Constraints for Compositional Reachability.
ACM Transactions on Software Engineering Methodology TOSEM, 5(4):334–377,
1996.

13. S. Christensen and L. Petrucci. Modular State Space Analysis of Coloured Petri
Nets. In Proceedings of the 16th International Conference on Application and
Theory of Petri Nets, volume 935 of Lecture Notes in Computer Science, 1995.

14. J.-C. Fernandez. ALDEBARAN : un système de vérification par réduction de
processus communicants. Thèse de Doctorat, Université Joseph Fourier (Grenoble),
1988.

15. J.-C. Fernandez, C. Jard, T. Jéron, and L. Mounier. “On the Fly” Verification of
Finite Transition Systems. Formal Methods in System Design, 1992.

16. J.-C. Fernandez and L. Mounier. Verifying Bisimulations “On the Fly”. In Pro-
ceedings of the 3rd International Conference on Formal Description Techniques
FORTE’90 (Madrid, Spain). North-Holland, 1990.

17. H. Garavel. OPEN/CÆSAR: An Open Software Architecture for Verification, Sim-
ulation, and Testing. In Proceedings of the First International Conference on Tools
and Algorithms for the Construction and Analysis of Systems TACAS’98 (Lisbon,
Portugal), volume 1384 of Lecture Notes in Computer Science, pages 68–84, Berlin,
1998. Springer Verlag. Full version available as INRIA Research Report RR-3352.

18. H. Garavel and F. Lang. SVL: a Scripting Language for Compositional Verification.
In Proceedings of the 21st IFIP WG 6.1 International Conference on Formal Tech-
niques for Networked and Distributed Systems FORTE’2001 (Cheju Island, Korea),
pages 377–392. IFIP, Kluwer Academic Publishers, 2001. Full version available as
INRIA Research Report RR-4223.

86 F. Lang

19. H. Garavel, F. Lang, and R. Mateescu. An Overview of CADP 2001. European
Association for Software Science and Technology (EASST) Newsletter, 4:13–24,
2002. Also available as INRIA Technical Report RT-0254 (2001).

20. H. Garavel and R. Mateescu. SEQ.OPEN: A Tool for Efficient Trace-Based Verifi-
cation. In Proceedings of the 11th International SPIN Workshop on Model Checking
of Software SPIN’2004 (Barcelona, Spain), volume 2989 of Lecture Notes in Com-
puter Science, pages 150–155. Springer Verlag, 2004.

21. H. Garavel, R. Mateescu, and I. Smarandache. Parallel State Space Construction
for Model-Checking. In Proceedings of the 8th International SPIN Workshop on
Model Checking of Software SPIN’2001 (Toronto, Canada), volume 2057 of Lecture
Notes in Computer Science, pages 217–234, Berlin, 2001. Springer Verlag. Revised
version available as INRIA Research Report RR-4341 (2001).

22. H. Garavel and J. Sifakis. Compilation and Verification of LOTOS Specifications.
In Proceedings of the 10th International Symposium on Protocol Specification, Test-
ing and Verification (Ottawa, Canada), pages 379–394. IFIP, North-Holland, 1990.

23. H. Garavel and M. Sighireanu. A Graphical Parallel Composition Operator for
Process Algebras. In Proceedings of the Joint International Conference on For-
mal Description Techniques for Distributed Systems and Communication Protocols,
and Protocol Specification, Testing, and Verification FORTE/PSTV’99 (Beijing,
China), pages 185–202. IFIP, Kluwer Academic Publishers, 1999.

24. R. Gerth, R. Kuiper, W. Penczek, and D. Peled. A Partial Order Approach
to Branching Time Logic Model Checking. Information and Computation,
150(2):132–152, 1999. A short version of this paper was previously published at
the Third Israel Symposium on Theory of Computing and Systems ISTCS 1995.

25. D. Giannakopoulou. Model Checking for Concurrent Software Architectures. PhD
thesis, Imperial College of Science, Technology and Medicine — University of Lon-
don — Department of Computer Science, 1999.

26. P. Godefroid. Using Partial Orders to Improve Automatic Verification Methods.
In Proceedings of the 2nd Workshop on Computer-Aided Verification (Rutgers,
New Jersey, USA), volume 3 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 321–340. AMS-ACM, 1990.

27. S. Graf, B. Steffen, and G. Lüttgen. Compositional Minimisation of Finite State
Systems using Interface Specifications. Formal Aspects of Computation, 8(5):607–
616, 1996.

28. S. Graf and B. Steffen. Compositional Minimization of Finite State Systems. In
Proceedings of the 2nd Workshop on Computer-Aided Verification (Rutgers, New
Jersey, USA), volume 531 of Lecture Notes in Computer Science, pages 186–196.
Springer Verlag, 1990.

29. J.F. Groote, F. Monin, and J. Springintveld. A Computer Checked Algebraic
Verification of a Distributed Summation Algorithm. Computer Science Report
97/14, Department of Mathematics and Computer Science, Eindhoven University
of Technology, 1997.

30. J.F. Groote and J. van de Pol. State Space Reduction using Partial τ -Confluence.
In Proceedings of the 25th International Symposium on Mathematical Foundations
of Computer Science MFCS’2000 (Bratislava, Slovakia), volume 1893 of Lecture
Notes in Computer Science, pages 383–393, Berlin, 2000. Springer Verlag. Also
available as CWI Technical Report SEN-R0008, Amsterdam, 2000.

31. J.F. Groote and A. Ponse. Syntax and semantics of µ-CRL. In Algebra of Com-
municating Processes, Workshops in Computing, pages 26–62, 1995.

32. J.F. Groote and M.P.A. Sellink. Confluence for process verification. Theoretical
Computer Science, 170(1–2):47–81, 1996.

Exp.Open 2.0: A Flexible Tool Integrating Partial Order 87

33. H. Hansen, W. Penczek, and A. Valmari. Stuttering-Insensitive Automata for On-
the-fly Detection of Livelock Properties. In 7th International ERCIM Workshop
in Formal Methods for Industrial Critical Systems, volume 66 of Electronic Notes
in Theoretical Computer Science, 2002.

34. H. Hansen, H. Virtanen, and A. Valmari. Merging State-Based and Action-Based
Verification. In Proceedings of the Third International Conference on Application
of Concurrency to System Design. IEEE Computer Society, 2003.

35. H. Hermanns. Interactive Markov Chains and the Quest for Quantified Quality,
volume 2428 of LNCS. Springer Verlag, 2002.

36. H. Hermanns and M. Siegle. Bisimulation Algorithms for Stochastic Process Alge-
bras and their BDD-based Implementation. In Proceedings of the 5th International
AMAST Workshop ARTS’99 (Bamberg, Germany), volume 1601 of Lecture Notes
in Computer Science, pages 244–265. Springer Verlag, 1999.

37. G. Holzmann. The Model Checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279–295, 1997.

38. G.J. Holzmann. On-The-Fly Model Checking. ACM Computing Surveys, 28(4),
1996.

39. ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization — Information Processing Systems — Open Sys-
tems Interconnection, Genève, 1989.

40. ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001, International Organization for Standardization — Information Tech-
nology, Genève, 2001.

41. T. Jéron and P. Morel. Test generation derived from model-checking. In Proceed-
ings of the Conference on Computer-Aided Verification CAV’99 (Trento, Italy),
volume 1633 of Lecture Notes in Computer Science, pages 108–122. Springer Verlag,
1999.

42. J.-P. Krimm and L. Mounier. Compositional State Space Generation from LOTOS
Programs. In Proceedings of TACAS’97 Tools and Algorithms for the Construc-
tion and Analysis of Systems (University of Twente, Enschede, The Netherlands),
volume 1217 of Lecture Notes in Computer Science, Berlin, 1997. Springer Verlag.
Extended version with proofs available as Research Report VERIMAG RR97-01.

43. F. Lang. The Exp.Open 2.0 manual page, 2004. Available online at
http://www.inrialpes.fr/vasy/cadp/man/exp.open.html.

44. J. Malhotra, S. A. Smolka, A. Giacalone, and R. Shapiro. A Tool for Hierarchical
Design and Simulation of Concurrent Systems. In Proceedings of the BCS-FACS
Workshop on Specification and Verification of Concurrent Systems (Stirling, Scot-
land), pages 140–152, Swinton, UK, 1988. British Computer Society.

45. R. Mateescu. A Generic On-the-Fly Solver for Alternation-Free Boolean Equa-
tion Systems. In Proceedings of the 9th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems TACAS’2003 (Warsaw,
Poland), volume 2619 of Lecture Notes in Computer Science, pages 81–96. Springer
Verlag, 2003. Full version available as INRIA Research Report RR-4711.

46. R. Mateescu and M. Sighireanu. Efficient On-the-Fly Model-Checking for Regular
Alternation-Free Mu-Calculus. Science of Computer Programming, 46(3):255–281,
2003.

47. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

88 F. Lang

48. G. Pace, F. Lang, and R. Mateescu. Calculating τ -Confluence Compositionally. In
Proceedings of the 15th International Conference on Computer Aided Verification
CAV’2003 (Boulder, Colorado, USA), volume 2725 of Lecture Notes in Computer
Science, pages 446–459. Springer Verlag, 2003. Full version available as INRIA
Research Report RR-4918.

49. D. Peled. Partial Order Reduction: Linear and Branching Temporal Logics and
Process Algebras. In Peled et al. [51].

50. D.A. Peled. Combining partial order reduction with on-the-fly model-checking.
In Computer Aided Verification 1994, volume 818 of Lecture Notes in Computer
Science. Springer-Verlag, 1994.

51. D.A. Peled, V.R. Pratt, and G.J. Holzmann, editors. Proceedings of the Workshop
on Partial Order Methods in Verification, volume 29 of Dimacs Series in Discrete
Mathematics, 1997.

52. Y.S. Ramakrishna and S.A. Smolka. Partial-Order Reduction in the Weak Modal
Mu-Calculus. In Proceedings of the 8th International Conference on Concurrency
Theory CONCUR’97, volume 1243 of Lecture Notes in Computer Science, pages
5–24. Springer Verlag, 1997.

53. J. Romijn. Model Checking the HAVi Leader Election Protocol. Technical Re-
port SEN-R9915, CWI, Amsterdam, The Netherlands, 1999. submitted to Formal
Methods in System Design.

54. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.
55. K. K. Sabnani, A. M. Lapone, and M. U. Uyar. An Algorithmic Procedure for

Checking Safety Properties of Protocols. IEEE Transactions on Communications,
37(9):940–948, 1989.

56. K. C. Tai and V. Koppol. Hierarchy-Based Incremental Reachability Analysis of
Communication Protocols. In Proceedings of the IEEE International Conference
on Network Protocols (San Francisco, CA), pages 318–325, Piscataway, NJ, 1993.
IEEE Press.

57. A. Valmari. A Stubborn Attack on State Explosion. In Proceedings of the 2nd
Workshop on Computer-Aided Verification (Rutgers, New Jersey, USA), volume 3
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 25–42. AMS-ACM, 1990.

58. A. Valmari. Stubborn Set Methods for Process Algebras. In Peled et al. [51].
59. A. Valmari, J. Kemppainen, M. Clegg, and M. Levanto. Putting Advanced Reach-

ability Analysis Techniques Together: the “ARA” Tool. In Proceedings of the First
International Symposium of Formal Methods Europe FME ’93, volume 670 of Lec-
ture Notes in Computer Science, pages 597–616. Springer-Verlag, 1993.

60. A. Valmari. Compositional State Space Generation. In Proceedings of Advances
in Petri Nets, volume 674 of Lecture Notes in Computer Science, pages 427–457.
Springer Verlag, 1993.

61. J. van de Pol. Proof using the PVS theorem prover that bisimulations are con-
gruences for synchronization vectors that do not rename, cut, nor synchronize
τ -transitions. Personal communication, 2003.

62. R. J. van Glabbeek and W. P. Weijland. Branching-Time and Abstraction in Bisim-
ulation Semantics (extended abstract). CS R8911, Centrum voor Wiskunde en In-
formatica, Amsterdam, 1989. Also in proc. IFIP 11th World Computer Congress,
San Francisco, 1989.

63. W. J. Yeh. Controlling State Explosion in Reachability Analysis. PhD thesis, Soft-
ware Engineering Research Center (SERC) Laboratory, Purdue University, 1993.
Technical Report SERC-TR-147-P.

Chunks: Component Verification in CSP‖B

Steve Schneider1, Helen Treharne1, and Neil Evans2

1 Department of Computing, University of Surrey,
S.Schneider@surrey.ac.uk
H.Treharne@surrey.ac.uk

2 School of Electronics and Computer Science, University of Southampton
ne01@ecs.soton.ac.uk

Abstract. CSP‖B is an approach to combining the process algebra CSP
with the formal development method B, enabling the formal description
of systems involving both event-oriented and state-oriented aspects of be-
haviour. The approach provides architectures which enable the applica-
tion of CSP verification tools and B verification tools to the appropriate
parts of the overall description. Previous work has considered how large
descriptions can be verified using coarse grained component parts. This
paper presents a generalisation of that work so that CSP‖B descriptions
can be decomposed into finer grained components, chunks, which focus
on demonstrating the absence of particular divergent behaviour sepa-
rately. The theory underpinning chunks is applicable not only to CSP‖B
specification but to CSP specifications. This makes it an attractive tech-
nique to decomposing large systems for analysing with FDR.

Keywords: Component based verification, B-Method, CSP, decompo-
sition.

1 Introduction

We begin with a synopsis of the CSP‖B approach which has been under develop-
ment for a number of years. The main feature of the approach is the separation
of event and state based descriptions using the process algebra CSP [9] and
the formal development method B [1]. One primary goal of the approach is to
show that a combined specification is divergence-free [12, 13, 14]. This property
is at the core of the approach, and once it has been established other safety and
liveness properties of the system can be described and shown to be valid [6, 7, 15].

In [14] we discussed how a B machine can have a CSP failures-divergences
semantics. We also established that a component, i.e., a parallel combination of
a controller/machine pair, can be shown to be divergence-free. This means that
the B operations are always called within their preconditions. In this work the
CSP processes (controllers) themselves were divergent-free because we restricted
the language to a sequential non-divergent subset of CSP.

In [12] we began to refer to collections of components as a family of processes
Pi indexed by some indexing set I . Using the fact that both CSP processes and
B machines have a process semantics we presented results which established the

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 89–108, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

90 S. Schneider, H. Treharne, and N. Evans

divergence freedom of a parallel combination ‖i∈I
Pi . While this might be true

if the whole combination ‖i∈I
Pi is considered at once, large systems will make

the application of tool support to demonstrate this property impractical. Thus, we
needed ways of considering parts of the system at a time, and combining the results.

In [13] we introduced a rely-guarantee style of specification which enabled us
to capture assertions, which are predicates on values being passed on channels.
We made clear that divergence freedom of the whole system depended on the
divergent behaviour of individual components being prevented by the rest of the
system. We discussed how to break up the system into component parts and
augment each part with assertions to establish its divergence freedom. This was
sufficient to deduce divergence freedom of the whole system. In that work our
terminology was different. Since [6] we have settled on referring to assertions in
two ways. Blocking assertions, previously known as guards, capture the notion
of what must be true when communicating values along channels. If a blocking
assertion is false communication is not permitted. With diverging assertions,
previously known as assumptions, communication is always permitted. However,
if the assertion does not hold diverging behaviour is exhibited.

The results in [13] were restrictive because the components were broken down
into controller/machine pairs and one large component comprising of all the CSP
processes. Furthermore, that approach does not easily scale up, since the CSP
part of the system has to be checked in its entirety, and this will be subject to
the limitations of CSP model-checkers.

The results presented in this paper aim to further extend our ability to per-
form component verification. We have coined the term chunks because it captures
the notion of splitting the combined specification into constituent parts, i.e. a
small collection of processes. A chunk can comprise of a CSP process and a B
machine, or a collection of CSP processes (not necessarily all of them). We will
see that a chunk gives us a much more flexible component part to deal with
when aiming to establish divergence freedom.

In addition to being an extension to our integrated CSP‖B approach the re-
sults presented in this paper are applicable more generally too. They could be of
potential benefit to CSP specifications that cannot be shown to be divergence-
free due to tool limitations. We prove that if all the identified chunks individually
do not give rise to particular divergences, then we can deduce that the whole
system is divergence-free. In fact the paper is structured in two main parts and
we first focus on describing how to split a collection of CSP processes into con-
stituent parts and establishing divergence freedom to give us general results.
Then the contribution to CSP‖B is presented when we demonstrate the applica-
bility of the general theory to CSP‖B. A smaller and a larger example are used
to motivate the work and illustrate the results being presented.

1.1 Notation

Before presenting the first example we identify some preliminary notation. For
a detailed introduction to CSP operators and the failures-divergences semantic

Chunks: Component Verification in CSP‖B 91

model used in this paper the reader is referred to [11]. Similarly, the reader is re-
ferred to [1] for an overview of the B Method. The most important aspect of B to
understand for this paper is that B operations are associated with preconditions,
and if called outside their preconditions then they diverge. Furthermore, we do
not re-iterate all the details of the syntax of CSP and B used in our approach,
these can be found in [13]. Instead we discuss various points of interest when
presenting the second example in Section 4.

The following introduces the key notation used in this paper, including some
newly coined definitions.

The universal set of events is denoted Σ. Traces are finite sequences of events.
We write tr ′ � tr to denote that tr ′ is a prefix of tr .

Given a trace tr , its projection to a set A is denoted tr � A—this is the
sequence of events from tr which are in the set A. For example,

〈coin, choc, refill , coin〉 � {coin, choc} = 〈coin, choc, coin〉

Given a set of traces D , its projection to a set A of events is defined as
follows:

D � A = {tr � A | tr ∈ D}

CSP semantics associates with a process P a set of traces T [[P]], a set of
failures F [[P]], and a set of divergences D [[P]]. This paper will be most concerned
with the divergences.

The form of parallel combination we use is alphabet parallel (both in binary
and in indexed form), in which processes are associated with an alphabet which
is a set of events. The occurrence of an event in the combination requires the
participation of all processes whose alphabet contains that event.

The following lemma allows us to identify the point on a divergent trace
where the process diverges.

Lemma 1. Given a process P such that 〈〉 �∈ D [[P]], for any non-empty diver-
gence tr ∈ D [[P]] there is a unique event a such that ∃ tr0 � tr .tr0 �∈ D [[P]] ∧
tr0 � 〈a〉 ∈ D [[P]]. In other words, there is a unique event a on which divergence
was introduced in this trace.

Proof. Let tr0 be the maximal prefix tr0 � tr such that tr0 �∈ D [[P]]. There is
such a tr0, since 〈〉 �∈ D [[P]]. tr0 �= tr , since tr ∈ D [[P]]. Thus there is some
unique a such that tr0 � 〈a〉 � tr ∧ tr0 � 〈a〉 ∈ D [[P]] ∧ tr0 �∈ D [[P]].

The above lemma means that the following is well-defined:

Definition 1. Given a process P such that 〈〉 �∈ D [[P]], and a divergence tr �=
〈〉, tr ∈ D [[P]], the diverging event de(tr ,P) is the unique event on which diver-
gence is introduced in tr .

Definition 2. The set of diverging events de(P) of a process P for which 〈〉 �∈
D [[P]] is the set {de(tr ,P) | tr ∈ D [[P]] ∧ tr �= 〈〉}.

92 S. Schneider, H. Treharne, and N. Evans

The minimal divergences MD [[P]] of a process P is the set of divergences of
P that are minimal in the prefix order.

Definition 3.

MD [[P]] = {tr ∈ D [[P]] | ∀ tr ′ ∈ D [[P]].tr ′ � tr ⇒ tr ′ = tr}

Various properties can be established concerning minimal divergences. One
that we will use frequently is the following:

Lemma 2. If tr ∈ MD [[P ‖ Q]] then tr � αP ∈ MD [[P]] ∨ tr � αQ ∈
MD [[Q]].

A minimal divergence of P ‖ Q arises from a minimal divergence of one of its
components.

2 Establishing Divergence-Freedom

Our primary aim is to establish that a system is divergence-free. So we will
consider the collection of components as a family of processes Pi indexed by
some indexing set I . Thus, we aim to establish that the parallel combination
‖i∈I

Pi is divergence-free. While this might be true if the whole combination

‖i∈I
Pi is considered at once it may not be possible to check the entire system

using FDR in one go. Thus, we need ways of considering parts of the system at a
time, and combining the results. In general, the divergence-free operation of one
part of the system might be dependent on the particular behaviour of another
part.

2.1 Toy Example

To illustrate the above point, we consider a small toy example in the CSP tra-
dition: a vending machine, based on the coursework examples associated with
[9]. The machine consists of a number of components, which are concerned with
dispensing chocolates in return for accepting coins, refilling the machine with
chocolates, and ensuring that the machine does not try to dispense chocolates
when it is empty. This gives us several processes that we can group into chunks
and demonstrate that they are individually divergence-free. The combination of
components is illustrated in Figure 1.

The machine can diverge if too many coins are inserted without the removal
of a chocolate:

α(VM) = {coin, choc}
VM = coin → ((choc → VM) � (coin → ⊥))

Each component has the natural alphabet: those events that are mentioned in
its definition.

Chunks: Component Verification in CSP‖B 93

VM PROFIT CUSTOMER

STOCK TOPUP REFILLER

coin

choc

refill

Fig. 1. Components of a vending machine

The profit counter can diverge if more chocolates are dispensed than have
been paid for:

α(PROFIT (i)) = {coin, choc}
PROFIT (0) = (coin → PROFIT (1)) � (choc → ⊥)

PROFIT (n + 1) = (coin → PROFIT (n + 2)) � (choc → PROFIT (n))

Refilling the machine tops it up to 17 chocolates. The stock control tracks
the remaining chocolates, and can diverge if it runs out of stock:

α(STOCK (i)) = {refill , choc}
STOCK (0) = (refill → STOCK (17)) � (choc → ⊥)

STOCK (n + 1) = (refill → STOCK (17)) � (choc → STOCK (n))

The machine should not be refilled when it is full:

α(TOPUP) = {refill , choc}
TOPUP = (refill → FULL) � (choc → TOPUP)

FULL = (refill → ⊥) � (choc → TOPUP)

Finally, a counter is in control of refilling the machine:

α(REFILLER(i)) = {refill , choc}
REFILLER(0) = refill → REFILLER(17)

REFILLER(n + 1) = choc → REFILLER(n)

Finally, we include a description of the customer, who behaves well with
respect to the insertion of coins:

α(CUSTOMER) = {coin, choc}
CUSTOMER = coin → choc → CUSTOMER

94 S. Schneider, H. Treharne, and N. Evans

The customer will never insert more than one coin for a chocolate.
Then the overall system we wish to consider is:

SYSTEM =
CUSTOMER ‖ VM ‖ PROFIT (0) ‖ STOCK (0) ‖ TOPUP ‖ REFILLER(0)

We aim to establish divergence-freedom of this system. However, there are a
number of points where individual components might diverge, so we will need to
check that these cannot arise in the context of the overall system. Furthermore,
for a larger system it may not be possible to model and check the entire system
in FDR in one go.

The way we proceed is to identify for each component P the set of events that
it can diverge on. We then find appropriate associated processes Q1 . . .Qn which
ensure that such divergences cannot occur. We call the subset of components
P ,Q1, . . . ,Qn a chunk, which is adequate to establish that P does not diverge
on events in de(P).

There are four processes which contain diverging behaviour:

– VM can diverge on some occurrences of the event coin. In other words,
using Definition 3, any minimal divergence of VM has coin as its last event.
If we consider VM ‖ CUSTOMER we find that the resulting combination
VM ‖ CUSTOMER cannot diverge on coin. Thus {VM ,CUSTOMER} is a
divergence-free chunk.

– PROFIT (0) can diverge on the event choc. However, the parallel combina-
tion PROFIT (0) ‖ VM cannot diverge on choc. Thus {PROFIT (0),VM } is
the appropriate chunk for this case. Note it can diverge on coin but this is
handled by the chunk which focuses on VM with coin as its diverging event.

– STOCK (0) can diverge on the event choc. However, the parallel combination
STOCK (0) ‖ REFILLER(0) cannot diverge on choc.

– TOPUP can diverge on the event refill . However, TOPUP ‖ REFILLER(0)
cannot diverge on refill .

These are all of the cases of processes diverging on particular events. In the
example all the sets of diverging events are singleton sets. However, this need
not be the case in general. In each case above, there are some other processes
of the system which ensure that such divergences do not occur in the system
overall.

Each chunk only needs to include the process containing the diverging events
and the processes which provide the control to remove those possible divergences.
A chunk dealing with P need not contain all the processes that are involved in the
synchronisation of the events in de(P)—only those that prevent the divergence
from occurring are necessary. Otherwise a chunk may end up being the whole
system, which is clearly not what we want because we would not have achieved
any decomposition.

Furthermore, any particular diverging event can be in the set of diverg-
ing events of more than one process. In the example above, PROFIT (0) and

Chunks: Component Verification in CSP‖B 95

STOCK (0) can both diverge on choc. They are dealt with separately, each with
a different chunk.

As we shall see, this is enough to guarantee that the combination of all the
components, SYSTEM , is divergence-free.

3 Underlying Theory for Chunks

In a parallel system of processes, we aim to establish the property of divergence-
freedom for the whole system by considering each of the processes in turn. The
principal idea is to establish, for each process P , that it cannot diverge in the
context of the rest of the system. Compositionality arises from the fact that we
will only need to consider the relevant context, and do not need to include the
parts of the system that are irrelevant to the analysis of P .

3.1 Divergences of a Process

The first theorems are very general, and are concerned with the way parallel
composition treats divergence. Notationally in these theorems we are thinking
of P as the process which is the focus of the analysis, Q as the part of the system
which ensures that P does not diverge, and R as the rest of the system. Thus
we are ultimately concerned with deducing properties of the system P ‖ Q ‖ R
simply by considering P ‖ Q .

Our first lemma is concerned with the special case where P ‖ Q is divergence-
free. We begin with this special case because it motivates the use of minimal
divergences, and gives a broad idea of the approach, which is reflected in the
more general theorems.

This special case is subsumed by Lemma 4, which is itself a special case
of Lemma 5. Lemma 5 supports the main theorem of this section, Theorem 1,
which states when divergence-freedom of a concurrent system can be deduced
from particular properties of chunks. The lemmas subsequent to Theorem 1
provide different ways of establishing those properties. In general, a variety of
ways of checking chunks are possible, and an analysis will make use of different
approaches for different chunks.

In Lemma 3, we can deduce that any minimal divergence of the whole system
is not a minimal divergence of P . In other words, the divergence was not a result
of P diverging.

Lemma 3. If P ‖ Q is divergence-free, then

MD [[P ‖ Q ‖ R]] � αP ∩MD [[P]] = ∅

Proof. Assume for a contradiction that tr ∈ MD [[P ‖ Q ‖ R]] � αP ∩MD [[P]].
Then there is some tr0 such that tr = tr0 � αP . Then tr0 � αQ ∈ T [[Q]], and
we already have that tr0 � αP ∈ D [[P]]. Thus tr0 � (αP ∪ αQ) ∈ D [[P ‖ Q]],
contradicting the fact that P ‖ Q is divergence-free.

96 S. Schneider, H. Treharne, and N. Evans

Interestingly, the theorem applies even in the case where R can diverge on
events in the alphabet of P . Informally, this is because Q prevents P ’s diver-
gences from occurring, and R cannot reintroduce them because of the blocking
nature of the parallel operator. Of course R can introduce other divergences with
the same diverging event, but it cannot introduce any divergence of P .

For example, consider the vending machine from Section 2.1 again, with VM
for P , CUSTOMER for Q , and define a process BROKEN = coin → ⊥ for R.
In this case the minimal divergence of the parallel combination P ‖ Q ‖ R would
be 〈coin〉 but this is not be a minimal divergence of P , so the intersection would
indeed be empty. The fact that BROKEN diverges on coin does not affect the
argument that VM ’s divergence on coin cannot occur.

Of course, in checking the whole system there would be the separate problem
of finding a chunk for BROKEN . In fact, this will not be possible, since there
is no process that prevents coin from occurring. But what we have established
with the chunk for VM is that if a divergence of the system does occur, it is not
the fault of VM .

Observe also that Lemma 3 must be stated in terms of minimal divergences:
it is not true for general divergence sets. The example above has 〈coin, coin〉 as
a divergence of both VM and VM ‖ CUSTOMER ‖ BROKEN , even though we
have that VM ‖ CUSTOMER is divergence-free. The point is that the divergence
〈coin, coin〉 is not the first point at which the system diverges, so divergence of
the system is the fault of BROKEN , on the divergence 〈coin〉. The intention of
the lemma is to allow us to deduce that VM is not responsible for any divergences
of VM ‖ CUSTOMER ‖ BROKEN , and to establish this we need to consider
the minimal divergences.

The next theorem considers a more general situation, when P ‖ Q possibly
contains some divergences, but not as a result of P .

Lemma 4. If MD [[P ‖ Q]] � αP ∩MD [[P]] = ∅, then

MD [[P ‖ Q ‖ R]] � αP ∩MD [[P]] = ∅

Proof. Assume for a contradiction that tr ∈ MD [[P ‖ Q ‖ R]] � αP ∩MD [[P]].
Then there is some tr0 ∈ MD [[P ‖ Q ‖ R]] such that tr = tr0 � αP . Then tr1 =
tr0 � (αP ∪αQ) ∈ D [[P ‖ Q]], since tr ∈ MD [[P]]. Furthermore, no prefix of tr1
is a divergence of P ‖ Q , since tr0 is a minimal divergence, so tr1 ∈ MD [[P ‖ Q]].
Thus tr1 � αP ∈ MD [[P ‖ Q]] � αP , i.e. tr ∈ MD [[P ‖ Q]] � αP , contradicting
the fact that tr ∈ MD [[P]].

This lemma would be applicable in the case of the VM ‖ PROFIT (0) chunk
from the previous section.

We now obtain a generalisation of Lemma 4, which is concerned only with
divergence of a process P on a particular set of events A. We define MD [[P]]A
to be those minimal divergences ending in some event in A:

MD [[P]]A = {tr ∈ MD [[P]] | last(tr) ∈ A}

Chunks: Component Verification in CSP‖B 97

Lemma 5. If MD [[P ‖ Q]] � αP ∩MD [[P]]A = ∅, then

MD [[P ‖ Q ‖ R]] � αP ∩MD [[P]]A = ∅

Proof. Similar to the proof of Lemma 4.

This lemma is useful because in practice we may need to consider different di-
verging events independently of each other, and using different chunks. This will
particularly arise when considering diverging assertions in process descriptions:
we may wish to consider them separately. We will see an example of this in
Section 4.

The main theorem, concerning the use of chunks to establish divergence free-
dom of a concurrent system, is the following:

Theorem 1. Given a family of processes {Pi}i∈I : if for each Pi and each a ∈
de(Pi) there is some subset of processes {Pj }j∈J such that

1. Pi �∈ {Pj }j∈J (i.e. i �∈ J)
2. a �∈ de(Pi ‖ ‖j∈J

Pj)

then ‖i∈I
Pi is divergence-free.

Proof. Assume for a contradiction that tr ∈ MD [[‖i∈I
Pi]]. Then there is some

i such that tr � αPi ∈ MD [[Pi]]. Let a = last(tr � αPi) ∈ de(Pi). Then we have
a set of processes Pj for j ∈ J meeting the two conditions above. Set

P = Pi

Q = ‖j∈J
Pj

R = ‖k
=i,k
∈J
Pk

Then MD [[P ‖ Q]] � αP ∩ MD [[P]]{a} = ∅, since a �∈ de(P ‖ Q). Then by
Lemma 5 we obtain MD [[P ‖ Q ‖ R]] � αP ∩MD [[P]]{a} = ∅. But tr � αP is

in this intersection, yielding a contradiction. Hence ‖i∈I
Pi has no divergences.

3.2 Blocking Divergences

We now give some results which use blocking on some divergences, and divergence-
freedom of the result, to establish the conditions required to apply Lemmas 4 and 5
above. These results will enable us to use divergence-freedom checks in FDR to
obtain the results we require about the minimal divergences of processes.

We firstly define the process BLOCKA(T) for a set of traces T ⊆ A∗. This
process has alphabet A, and is able to perform any possible traces apart from
those in the set T . It is useful to introduce when reasoning about processes.

Definition 4. The process BLOCKA(T) is defined, for T ⊆ A∗, as follows:

D [[BLOCKA(T)]] = ∅

F [[BLOCKA(T)]] = {(tr ,X) | (∀ t ∈ T .t �prefix tr) ∧ ∀ a ∈ X .tr a 〈a〉 ∈ T}

98 S. Schneider, H. Treharne, and N. Evans

We use Lemma 6 below to pinpoint minimal divergences, and thus the point
where a combination diverges. If a parallel combination P ‖ Q , when blocked
on particular minimal divergences DP and DQ of P and Q respectively, is
divergence-free, then any minimal divergence of P ‖ Q must be from one of
the blocked divergences, DP or DQ .

Lemma 6. If

– DP ⊆ MD [[P]]
– DQ ⊆ MD [[Q]]
– P ‖ BLOCKαP (DP) ‖ Q ‖ BLOCKαQ (DQ) is divergence-free

then if tr ∈ MD [[P ‖ Q]], then tr � αP ∈ DP or tr � αQ ∈ DQ .

Proof. Consider tr ∈ MD [[P ‖ Q]]. Assume that tr � αP �∈ DP , and that
tr � αQ �∈ DQ . We¡ aim to establish a contradiction.

Now from Lemma 2 either tr � αP ∈ MD [[P]] or tr � αQ ∈ MD [[Q]].
Assume without loss of generality that tr � αP ∈ MD [[P]].

No strict prefix of tr � αP is in DP , since otherwise tr is not a minimal
divergence of P ‖ Q . Thus tr � αP ∈ MD [[(P ‖ BLOCKαP (DP))]], since
BLOCKαP (DP) does not restrict tr � αP .

Similarly, no strict prefix of tr � αQ is in DQ , since otherwise tr is not
a minimal divergence. Thus tr � αQ ∈ T [[(Q ‖ BLOCKαQ (DQ))]]. Hence we
obtain that tr ∈ MD [[P ‖ BLOCKαP (DP) ‖ Q ‖ BLOCKαQ (DQ)]], yielding a
contradiction.

The following corollary of Lemma 6 will be useful in establishing condition
(2) for Theorem 1, since it provides a way of establishing the antecedent in
particular cases. It is concerned with divergence on particular events from the
set A. It states that if divergence-freedom can be obtained by blocking some
minimal divergences not ending in A, then no minimal divergence of P ‖ Q
arises from a divergence of P ending in A.

Corollary 1. If

1. DP ⊆ MD [[P]] \ MD [[P]]A
2. DQ ⊆ MD [[Q]] \ MD [[Q]]A
3. P ‖ BLOCKαP (DP) ‖ Q ‖ BLOCKαQ (DQ) is divergence-free

then MD [[P ‖ Q]] � αP ∩MD [[P]]A = ∅

The first condition means that DP cannot contain any traces ending in events
from A; and the second condition means that DQ cannot contain any traces
ending in events from A. Lemma 6 yields that any tr ∈ MD [[P ‖ Q]] either has
tr � αP ∈ DP , or else tr � αQ ∈ DQ , and in both cases last(tr) �∈ A, so we
obtain tr � αP �∈ MD [[P]]A.

Chunks: Component Verification in CSP‖B 99

3.3 Assertions

When we are working with CSP descriptions, we will often aim to decompose
them by introducing assertions onto the channels. This is especially true for
CSP‖B, the driving motivation for this work. We will aim to establish that the
assertions are always true within system executions. This will be achieved by
considering them as diverging assertions (i.e. the process diverges if the assertion
is false), and establishing divergence-freedom of the resulting system.

This is exactly the kind of situation that Theorem 1 is intended to apply to.
That theorem allows consideration of divergences separately, so we can consider
diverging assertions on different channels separately. In order to do this, we can
convert other assertions (those that are not the focus of interest) to blocking
assertions. The following theorems give the justification for this, and relate this
syntactic transformation to the results of the preceding section.

Lemma 7. If Q ′ is Q with diverging assertions on channels in a set C replaced
by blocking assertions, then Q ′ = Q ‖ BLOCKαQ (D) for some set of divergences
D ⊆ MD [[Q]]{|C |}.

Proof. By structural induction over Q . This includes the case for parallel, thus
Q can be a parallel combination of processes.

The following corollary shows how we can use a divergence-freedom check of
P ′ ‖ Q ′, which is P ‖ Q with suitable diverging assertions replaced by blocking
assertions, to show that certain divergences of P are not divergences of P ‖ Q .
Corollary 2. If c is a channel of the process P such that

1. P ′ is the process P with some diverging assertions replaced by blocking as-
sertions, but with no assertions on c replaced

2. {| c |} ∩ de(Q) = ∅

3. Q ′ is the process Q with some diverging assertions replaced by blocking as-
sertions.

4. P ′ ‖ Q ′ is divergence-free

then MD [[P ‖ Q]] � αP ∩MD [[P]]{|c|} = ∅

This is a restatement of Corollary 1 in the light of Lemma 7.
It can also be written in a form which more directly corresponds to condition

(2) of Theorem 1, showing how that condition can be established for particular
process channels.
Corollary 3. Given a family of processes {Pi}i∈I , and a particular Pi and
subset of processes {Pj}j∈J , if c is a channel of the process Pi such that
1. P ′

i is the process Pi with some diverging assertions replaced by blocking as-
sertions, but with no assertions on c replaced

2. For each j ∈ J , {| c |} ∩ de(Pj) = ∅

3. For each j ∈ J , P ′
j is the process Pj with some diverging assertions replaced

by blocking assertions.
4. Pi ‖ ‖j∈J

P ′
j is divergence-free

then for any a ∈ {| c |} we have a �∈ de(Pi ‖ ‖j∈J
Pj).

100 S. Schneider, H. Treharne, and N. Evans

3.4 Chunks with B Machines

The motivation for this work arises from the need to consider CSP processes in
parallel with B machines. B machines have a CSP failures-divergences semantics,
so the theorems from Section 3.3 are applicable, and B machines are considered
as CSP processes from the point of view of Theorem 1. However, they are not
written using CSP syntax, so the syntax-oriented approach from Section 3.3 of
manipulating assertions is not applicable. However, some chunks may require
the consideration of some B machines in a system description, since it may be
the constraints imposed by the B machine that prevent divergence in some other
component. In order to make use of B machines in chunks within Theorem 1,
we need another approach.

There is already a theory for establishing divergence-freedom of P ‖ M ,
where M is a B machine and P is a CSP controller whose alphabet contains
that of M . M interacts with P via its machine channels, where channel in-
puts and outputs correspond to parameters of operation calls of the B machine.
Divergence-freedom is established by identifying a control loop invariant (CLI)
which is true in every recursive call of P , and which ensures that divergence
does not arise on an individual traversal of the control. Further details of this
approach can be found in [14].

The following lemma will be useful in establishing condition (2) of Theorem 1
in cases where the chunk contains a B machine. This will be necessary in cases
where the process under consideration (i.e. the Pi) is the B machine.

Lemma 8. If C is the set of machine channels of machine M , and P is the
controller for M , and P ′ is the process P except that non-machine channels
block in P ′ where they diverge in P, and P ′ ‖ M is divergence-free, then no
event in {| C |} is a diverging event for P ‖ M.

Proof. This is justified by Corollary 1. If D is P ’s set of non-machine channels,
then we are blocking P on MD [[P]]{|D|}. We are also blocking M on ∅. Thus
we have the following conditions (where DM = ∅):

1. DM ⊆ MD [[M]] \ MD [[M]]{|C |}
2. DP ⊆ MD [[P]] \ MD [[P]]{|C |}
3. M ‖ BLOCKαM (DM) ‖ P ‖ BLOCKαP (DP) is divergence-free

The first follows because DM = ∅; the second follows because only minimal
divergences on channels in D are blocked; and the third we have from the fact
that M ‖ P ′ is divergence-free. Thus we can deduce from Corollary 1 that
MD [[M ‖ P]] � αM ∩MD [[M]] = ∅.

This lemma is useful, since we can use CLI techniques to show that P ′ ‖ M is
divergence-free.

3.5 Pulling it all Together

The overall aim is to provide support for establishing that a CSP‖B system
description is divergence-free. Divergences can arise when B operations are called

Chunks: Component Verification in CSP‖B 101

outside their preconditions, and it is the responsibility of the designers of the
CSP controllers to ensure that this does not occur.

The B machines must be considered as chunks with their controllers providing
their environment. In many situations, it may be the case that a CSP controller
cannot guarantee this in isolation for the machine under its control, and that
constraints imposed by the rest of the system also need to be factored in. Existing
results allow divergence-freedom to be established for a machine in parallel with
a single sequential process, and so information from other parallel components
needs to be introduced into the controller as assertions on the channels.

Having introduced diverging assertions onto some of the channels within the
CSP parts of the system, we then need to identify chunks to verify that these
diverging assertions do not introduce new divergences. For chunks consisting
purely of CSP processes, the divergence-freedom check can be carried out using
FDR. The next section will illustrate this process.

4 Example

We will begin by describing the structure of the system and its components.
Then we will show how to verify that the system is divergence-free using the
chunks technique. Consider the following system:

PortSystem = ShipsCtrl ‖ WaitingCtrl ‖ QuayCtrl ‖ Waiting ‖ Quays

It comprises of three controllers and two machines as shown in Figure 2. It
tracks the entering of ships and their docking at quays. A ship can enter a port
and proceed to a waiting queue. A ship can be transferred from the waiting

newship

errornew

waitinghandle

transfer

errortransfer quayhandle

leave
join

emptyquery

dockedreport

newarrival
departure quayvacantquery

errorquay

leaving
vacate

ShipsCtrl

Waiting Quays

QuaysCtrlWaitingCtrl

Fig. 2. Port system architecture

102 S. Schneider, H. Treharne, and N. Evans

MACHINE Waiting
SEES Bool TYPE , Context
VARIABLES waiting
INVARIANT waiting ∈ iseq (SHIP)
INITIALISATION waiting := []
OPERATIONS

join (ss) =̂ PRE ss ∈ SHIP ∧ ss 	∈ ran (waiting)
THEN waiting := waiting ← ss
END ;

ss ←− leave =̂ PRE waiting 	= []
THEN ss := first (waiting) ‖ waiting := tail (waiting)
END ;

bb ←− emptyquery =̂ bb := bool (waiting = [])
END

Fig. 3. Waiting machine

queue to a quay. A ship can also leave a quay so that it is no longer tracked by
the system. Only one ship is allowed to be docked at a particular quay. A ship
cannot be both waiting and docked at a quay at the same time.

The main state associated with this example is the waiting queue, and
the quays at which ships can dock. This information is captured as an injec-
tive sequence of ships, waiting, and a partial injective function, docked. We
would naturally use B to hold this data in separate machines and provide a
rich set of operations to manipulate it. Figure 3 defines the Waiting machine
which contains three operations: join, leave and emptyquery. The first op-
eration appends a new ship to the waiting queue. The second operation ex-
tracts a ship from the head of the waiting queue. The third operation does not
change the state of the queue and simply examines whether the waiting queue
is empty.

Figure 4 defines the Quay machine which also contains three operations:
newarrival, departure and queryvacantquay. The first operation allocates
a ship to a non-deterministically chosen unoccupied quay. The second operation
removes the ship which is docked at a particular quay qq. The third operation
examines whether the quay qq is not occupied by a ship. In both machines we
note that the types for ships and quays are given in a separate context machine,
Context, which is accessible by all machines (but not provided here).

Let us now consider how these operations are called within their associated
controllers. Our initial attempt at defining controllers is given in Figure 5 and
their aim is to co-ordinate the main behaviour of ships we identified earlier. In
addition to WaitingCtrl and QuaysCtrl we have included a ShipsCtrl to illus-
trate that the CSP‖B architecture can accommodate processes which have no
corresponding B machines.

The ShipsCtrl regulates the arrival of new ships using the newship event and
observes their departure using the leaving event. This process keeps track of all
the ships being monitored in the port system using the set ss.

Chunks: Component Verification in CSP‖B 103

MACHINE Quays
SEES Bool TYPE , Context
VARIABLES docked
INVARIANT docked ∈ QUAY ��→ SHIP
INITIALISATION docked := ∅

OPERATIONS
quay, bb ←− newarrival (ss) =̂
PRE ss ∈ SHIP ∧ dom (docked) 	= QUAY ∧ ss 	∈ ran (docked) THEN
ANY qq
WHERE qq ∈ QUAY − dom (docked)
THEN docked (qq) := ss ‖ quay := qq

‖ bb := bool(card(docked) = card(QUAY) −1)
END

END ;
ss ←− departure (qq) =̂ PRE qq ∈ dom (docked)
THEN docked := { qq } −C docked ‖ ss := docked (qq)
END ;

bb ←− quayvacantquery (qq) =̂ PRE qq ∈ QUAY
THEN bb := bool (qq ∈ dom (docked))
END

END

Fig. 4. Quays machine

Once a new ship has arrived along channel waitinghandle the WaitingCtrl
aims to place it appropriately in the waiting queue by interacting with the B
machine along channel join. The WaitingCtrl also transfers a ship from the
waiting queue so that the QuaysCtrl can record its docking at a quay. To achieve
this transfer the WaitingCtrl queries the B machine, using queryemptyquay, to
check that the waiting queue is non-empty, then a communication along leave
extracts an appropriate ship which is passed to QuaysCtrl along quayhandle,
which in turn records the docking using the operation newarrival. This operation
provides the chosen quay as output, and also reports on whether the quays are
now full: if they are, then no further ships will be accepted to add to the quays
until some ship has left, as described by FullQuaysCtrl.

QuayCtrl also can deal with ships vacating a particular quay. A similar pat-
tern of behaviour is followed where the B machine is queried to check that the
quay is occupied, and if it is, the appropriate ship is extracted and QuayCtrl
communicates with the ShipsCtrl to record its removal from the system using
the leaving event.

4.1 Adding Assertions to the Controllers

In the previous section our informal description of the various patterns of be-
haviour that port can undertake glossed over the fact that the four modifying oper-
ations of B have nontrivial preconditions. It is the responsibility of the controllers

104 S. Schneider, H. Treharne, and N. Evans

SC (ss) =newship?s →if (s ∈ ss)
then errornew → SC (ss)
else waitinghandle!s → SC (ss ∪ {s}))

� leaving?s → SC (ss − {s})
ShipsCtrl= SC ({})

WaitingCtrl = waitinghandle?s → join!s → WaitingCtrl
� transfer →emptyquery?b →

if (b = TRUE)
then errortransfer → WaitingCtrl
else leave?s → quayhandle!s → WaitingCtrl

QuaysCtrl = quayhandle?s →newarrival !s?q?b → dockedreport!s!q →
if (b = TRUE)
then FullQuaysCtrl
else QuaysCtrl

� vacate?q →quayvacantquery !q?b →
if (b = TRUE)
then errorquay → QuaysCtrl
else departure!q?s → leaving !s → QuaysCtrl

FullQuaysCtrl = vacate?q → departure!q?s → leaving !s → QuaysCtrl

Fig. 5. Initial CSP Controllers

to make sure that the operations are called within their preconditions so that they
do not contribute any divergent behaviour. Let us re-examine the WaitingCtrl and
the QuaysCtrl controllers. The ShipsCtrl can remain as in Figure 5.

Consider the join and leave operations called by WaitingCtrl. The precon-
dition of the join operation signifies that only a ship that is not already waiting
should be considered. The control flow of the processes gives us this, and so a
synchronisation with waitinghandle ensures that the ship is a valid one. However,
our aim is to prove divergence freedom by considering controller/machine pairs
as single chunks in the following section. Consequently, any assumptions we need
to make about ships in order to ensure that the precondition of join holds have
to be recorded in WaitingCtrl. We have two ways of doing this: first we can call
a query operation to see whether the ship is in the waiting queue before calling
join, second we can annotate the appropriate channel with an assertion as is
shown in Figure 6. The assertion needs to capture the fact that the ship s is not
already in the queue. Therefore, the CSP needs to contain some state so that this
can be expressed. It need not capture all the details of the order of the queue, it
only needs to record the set of ships in the queue, represented by wss. This is an
abstraction of the B state and is duplicated in the CSP for the purposes of proof,
after which it can be dropped again. The assertion is placed at the point in the
process where the value of the ship is bound, i.e., on waitinghandle. We choose
the second option because we know that when the whole system is composed

Chunks: Component Verification in CSP‖B 105

WC (wss) =(waitinghandle?s{s /∈ wss} → join!s → WC (wss ∪ {s}))
� (transfer→ emptyquery?b →

if (b = TRUE)
then errortransfer → WC (wss)
else leave?s{s ∈ wss} → quayhandle!s → WC (wss − {s}))

WaitingCtrl = WC ({})

QC (dss) =(quayhandle?s{s /∈ dss} →newarrival !s?q?b → dockedreport!s!q →
if b = TRUE
then FQC (dss ∪ {s}
else QC (dss ∪ {s}))

� (vacate?q→ quayvacantquery !q?b →
if (b = true)
then errorquay → QC (dss)
else departure!q?s{s ∈ dss} → leaving !s → QC (dss − {s}))

QuaysCtrl = QC ({})

FQC (dss) = vacate?q → departure!q?s{s ∈ dss} → leaving !s → QC (dss − {s}))

Fig. 6. Augmented CSP controllers

together the control flow ensures that the precondition is true and therefore we
don’t need the extra overhead of calling a query operation. We only need these
annotations when breaking down the proof into chunks.

The leave operation should only be called when the queue is non-empty.
Here, we use a query operation to check whether the queue is empty. We cannot
add a diverging assertion because they are checked after communication has
occurred. What we require is a way of blocking the call to the operation when
wss is empty. We cannot use a blocking assertion on the machine channel because
this would violate our non-discriminating property discussed in [13]. Therefore,
a query operation is the only way to provide the required level of control here.

Second, the way in which we augment the QuaysCtrl, so that we will be
in a position to prove the chunk QuaysCtrl ‖ Quays, is similar to the way we
augmented WaitingCtrl. We annotate the quayhandle channel with a diverging
assertion to check that the ship to be docked is not already docked. Thus, when
we call newarrival the precondition will hold. The assertion is expressed using
the set dss in QuaysCtrl. The set is an abstraction of the docked ships. Here
again, the CSP description does not need to be concerned about where the ships
are docked, it simply needs to track whether they are or not. We also provide
a query operation to provide the required level of control prior to calling the
departure operation.

Notice that there are two further assertions in Figure 6, and both of these are
as a result of a factoring in the constraints imposed by the rest of the system.
We need to know that the ship being passed to the QuaysCtrl is in fact in the
waiting queue, and the diverging assertion {s ∈ wss} will enable us to check

106 S. Schneider, H. Treharne, and N. Evans

this. Then we will be sure that the ships in the waiting queue and the quays
do not overlap. Similarly, we need to know that when a ship is leaving that it
was indeed one of the ships in a quay, and the diverging assertion {s ∈ dss} will
enable us to check this. Then when the state of ss in ShipCtrl is updated we
can be sure that the ship removed from the quay will also be removed from the
whole system.

4.2 Splitting the Port System into Chunks

The resulting system from the above discussion is a port system comprising of
two machines, and three controllers, two of which contain diverging assertions.
We will now demonstrate the application of Theorem 1 on each of the processes
to show that the overall PortSystem is divergence-free.

Consider theWaitingmachine.Anappropriate chunk isWaitingCtrl ‖Waiting.
in order todemonstrate that this is divergence-freewewouldneed to showthatnone
of the machine channels are diverging events of WaitingCtrl ‖ Waiting. First we
transformthediverging assertiononwaitinghandle to ablocking assertionbut leave
the diverging assertion on leave, then we can show using the CLI technique that
the transformed controller WaitingCtrl ′ ‖ Waiting is divergence-free. Applying
Lemma 8 enables us to conclude that WaitingCtrl ‖ Waiting is divergence free.

Consider the Quays machine. An appropriate chunk is QuaysCtrl ‖ Quays.
In order to demonstrate that this is divergence-free we need to show that none
of the machine channels are diverging events of QuaysCtrl ‖ Quays. First we
transform the diverging assertion on quayhandle to a blocking assertion but leave
the diverging assertion on departure, then we can show using the CLI technique
that the transformed controller QuaysCtrl ′ ‖ Quays is divergence-free. Applying
Lemma 8 enables us to conclude that QuaysCtrl ‖ Quays is divergence free.

Now we can turn our focus to the controllers and consider the application of
Theorem 1 for each of them. There is nothing to prove for ShipsCtrl because it
does not contain any diverging events.

Consider WaitingCtrl. It can diverge on two channels waitinghandle and leave.
We need not identify a chunk to show the absence of divergence on leave because
we have already done that as part of the first chunk above. Consider diverging
on waitinghandle. We require the co-operation of ShipsCtrl to discharge this.
We transform the leave assertion into a blocking assertions in line with condi-
tion 1 in Corollary 3. Then we can establish that ShipsCtrl ‖ WaitingCtrl is
divergence-free using FDR and this meets condition 4 of Corollary 3. Applying
Lemma 8 enables us to conclude that waitinghandle is not a diverging event of
WaitingCtrl ‖ Waiting.

Consider QuaysCtrl. It can diverge on two channels quayhandle and depar-
ture. We need not identify a chunk to show the absence of the divergence on
departure because we have already done that as part of the second chunk above.
Consider diverging on quayhandle. We require the co-operation of WaitingCtrl
to discharge this diverging assertion. First we transform the diverging asser-
tions on leave from WaitingCtrl and departure from QuayCtrl and this is in line
with conditions 1 and 3 in Corollary 3. Then we can show using FDR that

Chunks: Component Verification in CSP‖B 107

QuaysCtrl ‖ WaitingCtrl is divergence-free and this meets condition 4 of Corol-
lary 3. ShipsCtrl is a simple Pj since it is itself divergence-free and therefore
condition 2 and 3 hold. This allows us to conclude that quayhandle does not
contribute any divergent behaviour.

The above has shown that we can show that all chunks are divergence-free.
Using results from [13] we can then remove any of the assertion annotations and
this allows us to conclude that the original port system is divergence-free.

In the above example, it would have been possible to group all the controllers
together and prove divergence freedom of the controllers on their own, and then
prove the individual controller/machine pairs and deduce that the combination
is divergence-free. This was the necessary approach in [13]. What we have shown
above is that we can systematically go through each process in a combined
system, and show that it is divergence free either by using the CLI technique
or in FDR once we have transformed the chunk into an appropriate form. We
have had some concerns over the scalability of the previous approach because
it may not always be possible to group all the controllers together. This work
gives us a much finer grained way of proving divergence-freedom which we feel
will potentially be more scalable than the previous technique presented in [13].

5 Conclusion

Our principle of composing components and describing their interactions resonates
in the Reo coordination model [2]. The main difference is that Reo does not con-
centrate on the entities that are connected to the interacting components, rather
the method is concerned with governing the flow of data between components and
developing support for dynamic reconfiguration of its connectors. The work that is
most closely related to ours is csp2B [3] and the recent extensions to proB [4]. The
former is a purely syntactic transformation of a CSP description into B. The CSP
descriptions can be very expressive, allowing interleaving, but the work does not
address any compositional verification issues. Very promising new work is emerg-
ing which has the same semantic foundations as our approach. The authors of [4]
also consider a B machine as a process that can engage in events in the same way
that a CSP process can and so an operation call is a synchronisation of a CSP event
with its corresponding operation. To the best of our knowledge they have not yet
examined the issues related to the scalability of their approach. Their work cur-
rently focuses on automating consistency checking of a combined CSP and B spec-
ification. One future avenue worth pursuing would be to investigate whether the
ProB form of consistency checking could be tailored to automating the CLI proof
that we carry out to show that a P ‖ M is divergence-free.

Acknowledgements

Thanks are due to the anonymous referees for their comments on an earlier draft
of this paper. We are also grateful to the EPSRC for the provision of funding
towards this research, both under GR/R96859 and under the TUNA project.

108 S. Schneider, H. Treharne, and N. Evans

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press, 1996.
2. Arbab, F.: Reo: A channel-based coordination model for component composition.

Mathematical Structures in Computer Science (14), 329–366, 2004.
3. Butler M. J.: csp2B: A Practical Approach to Combining CSP and B, Formal

Aspects of Computing, Volume 12 (2000).
4. Butler, M. and Leuschel, M.:Combining CSP and B for Specification and Prop-

erty Verification. In Proceedings of Formal Methods 2005, Newcastle upon Tyne,
Fitzgerald, J., Hayes, I. and Tarlecki, A., Eds. LNCS 3582, Springer, 2005.

5. Cavalcanti A., Sampaio A., and Woodcock J.: Refinement of Actions in Circus, In
REFINE’02, FME Workshop, Copenhagen (2002).

6. Evans, N., Treharne, H.: Investigating a File Transfer Protocol Using CSP and B.
SoSym Journal (accepted for publication 2005).

7. Evans N., Treharne H., Laleau R., Frappier M.: How to Verify Dynamic Properties
of Information Systems. 2nd International Conference on Software Engineering and
Formal Methods, IEEE, China, 2004.

8. Formal Systems (Europe) Ltd.: Failures-Divergences Refinement: FDR2 User Man-
ual 1997.

9. Hoare, C. A. R.: Communicating Sequential Processes. Prentice Hall, Englewood
Cliffs, 1985.

10. Leuschel M., Butler M.: ProB: A Model Checker for B. Proceedings FME 2003,
Pisa, Italy, LNCS 2805, pages 855-874. Springer, 2003.

11. Schneider, S. A.: Concurrent and Real-Time Systems: the CSP Approach, John
Wiley 1999.

12. Schneider S.,Treharne H.: Communicating B Machines. ZB2002, Grenoble, LNCS
2272, Springer, January (2002).

13. Schneider, S., Treharne, H.: CSP Theorems for Communicating B Machines. In
Proceedings of IFM 2004, LNCS 2999, Springer-Verlag, University of Kent, 2004.

14. Treharne H., Schneider S.: Using a Process Algebra to control B OPERATIONS. In
K. Araki, A. Galloway and K. Taguchi, editors, IFM’99, York (1999), pp437–456.

15. Treharne H., Schneider S., Bramble M.: Composing Specifications using Commu-
nication. In ZB2003, LNCS 2651, Springer-Verlag, Finland, 2003.

Agile Formal Method Engineering

Richard F. Paige1 and Phillip J. Brooke2

1 Department of Computer Science, University of York, UK
paige@cs.york.ac.uk

2 School of Computing, Communications, and Electronics, University of Plymouth, UK
phil.brooke@plymouth.ac.uk

Abstract. Software development methods are software products, in the sense
that they should be engineered by following a methodology to meet the be-
havioural and non-behavioural requirements of the intended users of the method.
We argue that agile approaches are the most appropriate means for engineering
new methods, and particularly for integrating formal methods. We show how ag-
ile principles and practices apply to engineering methods, and demonstrate their
application by integrating parts of the Eiffel development method with CSP.

1 Introduction

There are substantial benefits to treating a software development method (such as the
Rational Unified Process combined with UML [16], the B-Method [3], SSADM [12],
etc) as a software product. A method is like any other product that must be engineered
in a rigorous, disciplined, repeatable way. The process of developing a new method –
either from scratch, or by integrating a number of existing methods – should be sub-
jected to the technical and management practices that are critical in modern software
projects. Given that most software projects end up tailoring the methods they use – and,
in fact, some approaches strongly recommend or require tailoring, e.g., EUP [15] – be-
ing able to do so in a disciplined, managed way, following well-understood principles
and practices, is of substantial importance.

Modern software development methods can broadly be classified into two groups:
the model-based methods, and the agile methods, though there is not a precise divi-
sion between the two. The former are characterized by their emphasis on specification
and documentation; models (or specifications) are constructed at all stages of the devel-
opment process, and a successive refinement or transformation process is followed in
mapping these models into an executable format. Along the way, documentation can be
produced to capture the transformations made, the design decisions that have been clar-
ified, the traceability relationships between models, and the consistency arguments that
need to be made. Approaches such as the Model-Driven Architecture (MDA) [19], the
B-Method, various refinement calculi [13], and SSADM generally fit into this category.

The second category of methods are described as agile. These methods tend to de-
emphasize models (and documentation) and are defined in terms of conformance to a
small set of technical and management practices which are generally oriented towards
delivering executable code quickly. These practices, in turn, are implementations of
a small set of agile principles, which are meant to provide guidance when carrying
out technical development and layering management cycles atop the technical process.

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 109–128, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

110 R.F. Paige and P.J. Brooke

Some well-known examples of agile methods include Extreme Programming (XP) [6],
Test-Driven Development [7], Agile Modelling [5], and Feature-Driven Development
[24], but there are many others as well.

Much of the previous work on formal method engineering, language integration,
and formal method integration, has not treated the method to be constructed as a (soft-
ware) product. Instead, the focus has been on language integration or definition (e.g.,
integrations of Object-Z and Timed CSP [17], and formal profiles of UML [2]). There
is some work in the semiformal method community that has treated methods as engi-
neering products, but for the most part this work has focused on heavyweight solutions:
models of methods (e.g., process models [27]), process metamodels such as SPEM
[20], process patterns (e.g., as in Catalysis [11] or those due to Ambler [4]), or the
meta-modelling approaches used to define the concept of an MDA component [25].

In this paper, we argue for the use of agile development methods for integrating
(particularly, but not exclusively) formal methods. Agile principles and practices – par-
ticularly those from the Agile Manifesto, and those from Extreme Programming – are,
for the most part, applicable and helpful in rapidly and flexibly integrating methods. The
result of applying agile techniques to method integration should be to produce simpler,
more flexible methods that are specifically tailored to the functional and non-functional
requirements for a development project.

We emphasise that we are interested in the development of methods, which gen-
erally encompass both modelling languages and technical (and possibly management)
processes. The technical process associated with a method may be loosely and infor-
mally described, or even left implicit. We claim that agile methods are applicable to the
development of software development methods that have explicit or implicit processes.
The case study we present in Section 6 has an implicit process.

The paper starts with an overview of the Agile Manifesto and the principles and
practices of XP, which will be used to carry out the integration of formal methods
later in the paper. We then sketch how XP and the guiding principles of the Manifesto
can be applied in integrating formal methods; in this sense, we are re-configuring the
agile principles and practices specifically to integrating and engineering methods. We
then apply these re-configured practices in a case study in integrating the Eiffel method
[18] and CSP [14]; justifications for why the integration is useful and appropriate in a
specific context will also be provided. We also provide a brief introduction to Eiffel –
and a justification as to why it is a formal method – in Section 2.

2 Background

2.1 The Agile Manifesto

The Agile Manifesto [1] is a set of guiding principles to be observed during an agile
development project. The principles are generally straightforward, and do not in them-
selves lead to technical processes or process phases. Usually, they are implemented
using a set of agile development practices (examples of which are discussed in the
next subsection) which provide technical and management guidance during develop-
ment. One can consider agile principles as the meta-rules to which most, if not all agile
methodologies, conform. The principles of the Agile Manifesto are as follows:

Agile Formal Method Engineering 111

– Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

– Welcome changing requirements, even late in development. Agile processes har-
ness change for the customer’s competitive advantage.

– Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

– Business people and developers must work together daily throughout the project.
– Build projects around motivated individuals. Give them the environment and sup-

port they need, and trust them to get the job done.
– The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.
– Working software is the primary measure of progress.
– Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.
– Continuous attention to technical excellence and good design enhances agility.
– Simplicity – the art of maximizing the amount of work not done – is essential.
– Thebestarchitectures, requirements, anddesignsemerge from self-organizing teams.
– At regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behavior accordingly.

Note the emphases on the customer and teamwork, the requirement to deal with change,
and the focus on simplicity. We will argue that most of these principles apply directly
to method engineering and integration in the next section.

2.2 Extreme Programming Principles and Practices

XP, due to Beck [6], is one of many agile development methods that targets the follow-
ing development problems: the requirements are not met by the system that has been
constructed; the resulting system is out-of-date by deployment; and system quality is
so poor that the system is unusable. All agile development methods rely on two core
practices: the short “inspect and adapt” cycle, and the short feedback loop, where con-
cerns are relayed to and from customers; XP is no different. Each agile method provides
principles and practices that implement these techniques.

The guiding principles of XP provide a concrete description of the method, and it
is important to judge the approach against the complete set of practices and principles,
rather than those that seem to be appropriate in a given context. XP principles are ac-
complished via a number of technical XP practices, which are employed by developers,
coaches, and managers:

– Planning game: quickly determine the scope of the next release using business
priorities and technical estimates.

– Small releases: put a simple system into production quickly, then release new ver-
sions on a very short cycle.

– Metaphor: guide development with a simple shared story of how the system works.
– Simple design: the system is designed as simply as possible; extra complexity is

removed on discovery.

112 R.F. Paige and P.J. Brooke

– Testing: programmers write unit tests, which must run flawlessly for development
to continue. Customers write tests demonstrating that features are finished.

– Refactoring: programmers restructure the system without changing its behaviour
to reduce duplication, improve communication, simplify, or add flexibility.

– Pair programming: all code is written with two programmers at one machine.
– Collective ownership: anyone can change any code in the system at any time.
– Continuous integration: integrate and build the system many times a day, every

time a task is completed.
– 40-hour week: work no more than 40 hours a week as a rule, without working

overtime a second week in a row.
– On-site customer: include users on the team available full-time to answer questions.
– Coding standards: programmers write code in accordance with rules emphasising

communication through the code.

2.3 The Eiffel Formal Method

Eiffel is an object-oriented development method [18]; its specification language pro-
vides constructs typical of the object-oriented paradigm, including classes, objects, rou-
tines (methods) and inheritance. Eiffel supports contracts, via pre- and postconditions
on methods, as well as invariant properties on classes. The full details of Eiffel’s syntax
are not directly relevant to this paper; we introduce syntax where we need it. Compu-
tations in an Eiffel program are constructed via feature calls, i.e., invoking attributes
or routines. These all have the form o. f , where o is an entity (i.e., a local variable, an
attribute, or a parameter), and f a feature. The technical process in the Eiffel method
is generally called seamless development [18]: classes are identified, added to, refined,
and removed in the process from analysis through design and implementation.

A subset of Eiffel can be identified and used as a formal specification language. An
Eiffel formal specification is written using only the following constructs.

– Classes and class interfaces (containing routine signatures and attributes).
– Local variables of routines.
– Boolean expressions, including contracts.
– Routine calls of the form o. f .
– Assignment statements in routine bodies.
– Sequential composition of routine calls and assignment statements.

All other Eiffel constructs are excluded. This subset is roughly similar to the subset
identified in the Eiffel Refinement Calculus [22], which allows Eiffel formal specifica-
tions to be refined to programs. A formal semantics for these constructs can be found
in [22], excepting separate classes (discussed in the sequel).

2.4 SCOOP: Concurrency in Eiffel

SCOOP – Simple Concurrent Object-Oriented Programming – introduces concurrency
to Eiffel by addition of the keyword separate; it is the responsibility of the underlying
run-time system and compiler to deal with the subtle (and, in some cases, complicated)
semantic problems introduced by the addition.

Agile Formal Method Engineering 113

The separate keyword may be attached to the definition of a class, or the declaration
of an entity, or formal routine argument. A separate class (e.g., ROOT) executes in its
own thread (not necessarily an operating system thread). Thus, feature calls to instances
of a separate class may need to block or wait until the underlying processing resource
is available to execute the request.

An entity or argument declared as separate (e.g., the second and third examples
above, respectively) indicates that the data attached to the entity or argument may be
shared between threads. Synchronisation facilities must be provided so that, e.g., mutu-
ally exclusive writes to shared data take place.

SCOOP is based upon the notion of a subsystem, which defines a unit of execu-
tion in an OO system. When a separate object (defined in the sequel) is created, a
new subsystem is also created to handle its processing. This subsystem is also called
the object’s handler. Thus, a processor is an autonomous thread of control capable of
supporting sequential instruction execution [18]. A system in general may have many
processors associated with it.

There are a number of complications with feature calls in SCOOP. Suppose that x
is attached to a separate object, or the type of x is separate. For the command x.c(a),
execution on the current object and x synchronise; x registers the fact that c was called
and either starts execution of c immediately, or when the next opportunity arises (im-
plying that each separate object is associated with a queue). Then both the current call
and x.c(a) can proceed concurrently. If there are multiple pending requests for calls on
x, they are queued and served in first-in-first-out (FIFO) order.

For a query where a result is needed from a separate call, a restricted version of
wait-by-necessity is used, because the result of a call to x. f (a) may not be available
when the assignment y := x. f (a) can take place. In SCOOP, further client calls on x
will wait until the query call x. f (a) has terminated.

Changes are made to the treatment of require clauses, to make it a wait condition: a
call to a routine with a f alse precondition will wait and only proceed when the precon-
dition evaluates to true. SCOOP also alters the semantics of argument passing in order
to prevent arbitrary interleaving of concurrent calls; this is explained further in [18].

3 Agile Development of Methods

Agile principles and practices focus on delivering working software to a customer. A
development method can also be treated as a software product, in the sense that en-
gineering practices can be applied to build it. This is not to say that there is a clear
analogy between the process of developing a software product and building a method,
but there are many obvious similarities:

– Like software products, a method has behaviour, can be tailored and modified by
its users, and should operate successfully on its domain.

– A method has a description, which may be text-based or diagrammatic.
– A method requires experts in order to build it and customize it.
– A method has static characteristics (i.e., its process and the languages it employs)

and dynamic characteristics (i.e., the effects and deliverables it produces when it is
used, the steps actually taken during its application).

114 R.F. Paige and P.J. Brooke

At this point, we should remind the reader that we are referring to a software product,
not just a piece of software; this term means to include deliverables beyond code, e.g.,
documentation such as user manuals.

There are as well obvious differences between methods and software products:

– Software generally has a single formal description, e.g., in a set of files, or a col-
lection of diagrams. This description can be read and translated, interpreted or ex-
ecuted by a machine. By contrast, the description of a method is a predominantly
natural language document that cannot completely be executed (though see [25] for
attempts to describe parts of methods using models).

– There are engineering techniques that can be applied to determine if a software
product is well-formed, e.g., using compilers, safety and security standards. There
is little in the way of assessment criteria as to what constitutes a well-formed
method. Iterative criteria-based assessment could be of value here [26].

– Software has dimensions: size (e.g., in KLOC), complexity, and correctness. A
method may have dimensions (e.g., the size of the development team required to
apply it) but these are more difficult to characterize and measure.

Despite the differences, the process modelling, meta-modelling, and pattern communi-
ties are arguing that treating a method like a software product for the purposes of its
development can produce better methods: methods that are simpler, easier to explain
and understand, more closely meet the needs of their users, and easier to tailor. While
we agree with this argument, we take a different view in terms of how to engineer
methods. Instead of using so-called heavyweight techniques, like meta-modelling, we
instead apply agile principles and practices to build methods.

When we say ‘build methods’, we mean to include both new methods and also
methods that are constructed via integration of ideas, techniques, and notations from
existing methods. There is no conceptual difference between these from the perspective
of applying agile principles to this task. We also include building notations or languages
as part of this: invariably, languages either come with a recommended process, a full
methodology, or a set of well-known practices that guide how to use it. This is partic-
ularly the case with formal languages, e.g., Z, B, and CSP. In these cases, the process
may be implicit, or tailored for a specific problem domain.

In order to explain how the agile approach can be used to build methods, we do three
things. First, we explain precisely how each principle from the Agile Manifesto applies
to building methods. To make this more concrete and practical, we then discuss how
the technical practices of XP apply to method engineering. Then, we present an agile
method for engineering methods. The method, like most agile approaches, consists of
a set of agile practices. This agile method is intended to work in parallel with actual
software development. This is an essential characteristic of realistic and agile method
engineering and integration: it is essential to obtain feedback from users of the method
– while they are using the method – in order to incrementally improve the method
until it is fit-for-purpose. A method should not be viewed as a static entity: it must be
iteratively improved in response to feedback from real-world projects, otherwise it is
always out-of-date and in need of substantial tuning.

The last part of our presentation is to illustrate the approach by integrating the Eiffel
method with CSP. In this case study we show how to build an integrated method, realize

Agile Formal Method Engineering 115

that the method does not fulfill all requirements, and then refactor the method to better
meet its requirements. This type of approach is important in those cases where we do
not know or understand all requirements – particularly methodological requirements
– up front. Of course, some refactorings and changes to a method – e.g., large-scale
modelling language changes, expensive changes in supporting tools – will be difficult
to carry out, but by having technical principles and practices to guide the process of
change, we can hope to make difficult changes easier.

4 The Agile Manifesto of Method Engineering

We now summarize how each principle of the Agile Manifesto applies to engineering
methods. We then summarize how XP practices apply (or fail to apply) to method en-
gineering. From this, we will build up an agile method for method engineering.

We write the principles of the Agile Manifesto in italics, and describe its application
to method engineering in Roman font. There are several re-interpretations of terminol-
ogy that must be made to do this; Table 1 summarises these.

Table 1. Translation of Manifesto terminology to Method Engineering context

Original Terminology Interpretation in
in Manifesto Method Engineering

Software Method
Customer Developer

“Our”/“We” Method Engineer

– Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.
In a realistic environment in which a method must be engineered, the first version
of the method (i.e., a “method prototype” which may not satisfy all customer re-
quirements) must be available quickly, and revisions to it must be made quickly in
response to customer (i.e., developer) requests. We must engage with the customer
and convince them that we can deliver what they want. We can do this by delivering
a method that works (even if it is incomplete) quickly, as well as prompt revisions.

– Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.
Changing requirements here mean changing requirements for the method to be
built. Thus, if during the use of a method, the customer realizes that something
is missing or doesn’t work, they have every right to request the method engineer
to change the method. Moreover, the user of the method has every right to expect
these changes to be made quickly and efficiently; even further, the method engineer
should anticipate that the developer will come requesting changes to the method.
An implication of this is that methods should be designed to change; the other prin-
ciples of agile method engineering in fact help (but do not guarantee) this.

116 R.F. Paige and P.J. Brooke

It is unlikely that there will be massive refactorings of a method in response to
customer requests; moreover, some refactorings may simply be very difficult and
therefore undesirable (a fact that is acknowledged in methods like XP). An example
of a large refactoring of a method might be to introduce certification or risk assess-
ment, or a substantial change to a modelling or specification language (e.g., adding
a process algebra to Object-Z). This would disrupt all phases of a method. Small
refactorings might be to add a new phase to the process (e.g., “build a prototype”)
or to add a new proof technique (e.g., “do satisfiability checking before carrying
out a refinement”). There are more likely to be small changes to requirements for
the modelling languages used, since this is what the customer sees and uses on a
day-to-day basis. For example, there may be a requirement to do autocode genera-
tion of test data late in the process, which may require the specification language to
be strengthened with pre- and postconditions of methods. Changes to the process
may be initiated by responses to standards organizations (e.g., to obtain ISO 9000
certification).

– Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.
The immediate implication of this is that versions of methods should be delivered
frequently. The first, simplest version of the method must be available almost im-
mediately for use, and revisions must be available quickly as well. A release plan
may be useful here to help determine what can be done in the time available. For
example, if the method designers have two weeks to produce Version 1, they can
then take requirement requests (e.g., in the form of user stories – see Section 6)
and say “we can deliver a specification language with these five features, with an
integrated syntax and semantics, plus tool support for static analysis”. Such an ap-
proach is useful for users of methods as well, as they can obtain rapid feedback on
feasibility of requirements.

– Business people and developers must work together daily throughout the project.
The method designers and the developers who will use the method work together.
The developers are the customers of the method designers, and they must provide
user stories. A good example of a user story might be ”I model the protocol using
finite state machines, and then automatically transform it into a machine-readable
implementation that I can import into a CTL-based model checker.”
The emphasis on working together daily is important, from both perspectives: the
developer has someone at hand who can guide them in the use of the method; and
the method engineer has someone at hand who can reveal the flaws, omissions, and
errors in their method based on practical experience.

– Build projects around motivated individuals. Give them the environment and sup-
port they need, and trust them to get the job done.
A method engineer must be motivated to do their job. Part of this motivation will
come from the ability to get frequent feedback from the people who are using the
method in real projects. Additional motivation will come by providing method en-
gineers with the facilities they need to build methods, such as access to standards
documents, development tools, requirements from customers, research documents
on method integration, unifying theories, etc.

Agile Formal Method Engineering 117

– The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.
In the traditional agile development world, this principle suggests that developers
work in teams. For example, if a project requires a method that integrates Z and
Timed CSP for modelling and reasoning about concurrent real-time systems, this
principle says that most efficient and effective way to build the new method would
be by a team, most likely with suitable language experts.
The other implication of this principle, as discussed earlier, is that it is necessary to
have regular meetings between method engineers and the users of the methods. A
complication is that the developers will likely be very busy, particularly early on,
and this is where problems with the early method release may be determined. So
strong coaching and tight interaction loops between method engineers and devel-
opers are needed early on, and this can be loosened later.

– Working software is the primary measure of progress.
A method that works is the primary measure of progress, where ‘works’ means
that it satisfies the functional and non-functional requirements of the developers
(e.g., it’s correct, robust, usable, changes are made in a timely manner). How to
best capture and explain requirements for a method is an interesting and under-
developed area of software engineering research. As well, demonstrating whether
method requirements have been met by a particular method is also challenging.

– Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.
The emphasis here is on building small methods and frequent refactoring in re-
sponse to new requirements from the developers; it also argues for building methods
up, rather than constructing large methods from scratch. In essence, this principle
provides an argument for method integration. It also argues that it is desirable to
avoid large-scale (or whole-scale) changes to a method, since this is expensive and
disruptive. The other agile principles in combination help to avoid this.

– Continuous attention to technical excellence and good design enhances agility.
This principle suggests that we should have criteria for identifying and constructing
well-designed, technically excellent methods. But what is a well-designed method?
There are principles for the design of a good modelling language [23, 10], but what
about a good process? This is difficult but one idea is that if we treat a method as
just another piece of software, then we can use quality attributes for software as a
measure of ‘good design’.

– Simplicity–the art of maximizing the amount of work not done–is essential.
This is absolutely fundamental. When engineering a method, we do so using the
simplest specification language (e.g., the smallest syntax and semantics) and sim-
plest process that meets the requirements of the developers that have been revealed
so far. Simplicity is impossible to quantify since it depends on the functional and
non-functional requirements that are obtained from user stories.

– The best architectures, requirements, and designs emerge from self-organizing teams.
It is not immediately obvious how critical this is for method engineering, since
building a method requires much expertise and it may not require multiple people.
One interpretation of this principle seems to argue against top-down approaches to
method engineering, e.g., as imposed by a standards body. This principle also seems

118 R.F. Paige and P.J. Brooke

to support many existing examples of method integration, performed by stakehold-
ers from different communities (e.g., the Z and Timed CSP example earlier).

– At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.
This principle is entirely compatible with method engineering: the method en-
gineers need feedback from developers in order to evaluate how successful the
method is, and this in turn will influence future changes to the method. Moreover,
method engineers should self-reflect on their work. This is simply good engineer-
ing practice, to always focus on process improvement, and as such it should play a
key role in method engineering as well.

4.1 XP Practices and Method Engineering

We now briefly summarize how XP practices apply to method engineering and integra-
tion. For several of the principles, their applicability is immediately obvious and the
arguments for these can be traced back to the arguments given for the agile principles
discussed previously. In particular, the following XP practices are immediately applica-
ble to method engineering: The Planning Game, Small Releases, Simple Design, Refac-
toring, Continuous Integration, 40-Hour Week, On-Site Customer. The other practices
are more complex, and require some discussion.

– Metaphor. This practice suggests guiding method development with a simple shared
story of how the whole system (method) works. It is not clear what constitutes a
simple story for a method; it is likely to be an example scenario of how a developer
or a development team intends to work. We suggest some stories in the case study
in Section 6, but this area of research is underdeveloped.

– Testing. This practice requires programmers to write unit tests that must run flaw-
lessly in order for development to continue. There is no direct equivalent to unit
tests for methods, and as such this practice does not directly apply. However, we
suggest in the next section that one way to mitigate this is to have a continuous
feedback loop between method engineers and developers in order to rapidly obtain
feedback about progress. We do not argue, though, that this is a direct substitution
for testing. An alternative approach is to define acceptance tests for methods; these
could be derived from user stories, and checked via a customer-developer meeting.
This is more heavyweight than the typical XP testing practice.

– Pair Programming. This practice could be valuable in a method engineering con-
text, in order to catch mistakes and omissions. It is questionable whether necessary
expertise exists in order to implement this (it is not easy to find method engineers).
Moreover, it is not clear what constitutes a mistake in method engineering.

– Collective Ownership, i.e., any method engineer can change the method at any time.
This may be difficult to accomplish, given the diverse skills required for method
engineering (e.g., a Z expert changing the CSP parts of an integration of Z and
CSP). The intent behind this practice is, in part, to help ensure that all stakeholders
believe that their requirements have been met by the method – and as such it may
be useful to try to apply this practice.

Agile Formal Method Engineering 119

– Coding Standards. There are as of yet no coding standards for methods, but we
suggest that process patterns as in Catalysis may be a key first step towards devel-
opment of a standardize way to capture methods.

5 An Agile Method for Method Engineering

Based on the Manifesto for method engineering in Section 4, and the discussion on XP
practices, we now present an agile method for method engineering. The method will
satisfy – as much as is practicable – the principles of the Manifesto, while providing
guidance on how to engineer lightweight, flexible, extensible methods using the agile
principles and practices mentioned in the previous sections.

The basic approach is summarised in Fig. 1; the summary is intentionally simple,
and attempts to draw parallels to process descriptions like Test-Driven Development
[6], which in part will help in presenting a convincing argument that the approach is
agile. The steps in Fig. 1 are intended to be iterated repeatedly (as we discuss below).

1. Construct user stories for how developers would like to apply the new method.
2. Prioritize the stories (i.e., release planning).
3. Deliver a method increment that satisfies the current highest-priority stories.

Fig. 1. Agile method engineering

A small set of user stories is developed, expressing how users of the method under
development (i.e., software engineers) would like to use the method. These stories are
written using the vocabulary of the engineer, and will be in terms of engineering arti-
facts like models, code, hardware, etc. Completeness is not specifically an issue at this
stage; rather, it is identifying key stories, and then prioritizing the stories (Step 2) to
determine what is critical to support in the method from the start, and what is currently
of less importance. Step 2 is thus also called release planning, since it is decided, in
consultation with the users, what will be released and when.

The result of release planning is a priority-ordered list of method features. Method
features include modelling or specification concepts to include in the method’s mod-
elling language and process steps (e.g., risk analysis, integration testing). These are
then used to drive the delivery of a method increment, i.e., a method that may go some
way towards meeting the engineers’ requirements. For example, the first increment of
a method might support only a subset of the modelling languages that the engineers
require (e.g., Simulink models, but not Stateflow models), or it might support only the
design phases of the development process, but not autocode generation or verification.
This method increment is then shown and described to the engineers.

Note that we do not prescribe (a) how to specify a method increment, nor (b) what is
a high-quality method increment. This is in keeping with agile principles and practices:
XP and TDD do not prescribe how to describe software products, nor when an incre-
ment is finished, nor when a high-quality increment has been delivered. These questions
can only be answered in-context, by the method (or software) engineer. For example, a

120 R.F. Paige and P.J. Brooke

method description may take the form of a small manual for the method, or a tool sup-
porting the method, or an instantiation of a meta-tool (e.g., XMF [29]) for the method
increment. The exact form of delivery of the method will depend on non-behavioural
requirements specified by the users, captured in the user stories, though it is likely that
a method manual, written in natural language, will be a desirable deliverable.

The engineers can now start using the method increment in their project. Con-
ceptually, the method increment should be immediately useful – since it captures the
highest-priority user stories – and easier to understand than a full method, since it only
captures a few user stories. That said, the engineers may not be fully satisfied by the
method increment, but they will likely only realize this when they start to apply it. For
example, they may find that elements are missing from the specification language de-
livered with the method increment; while work-arounds may be possible, they may not
be convenient to use. By using the method increment, the engineers will improve their
understanding of what they need from the method, what is currently missing from the
method, and what their current priorities are in terms of improving the method. Pri-
orities in terms of user stories – and hence, method requirements – may change from
increment to increment. Thus, the engineers will likely come up with new requirements,
or changed requirements, which must be fed back to the method engineers in the form
of changed user stories, specific technical requirements for the method (e.g., “add a
message-passing formalism to the modelling language”), and new non-behavioural re-
quirements (e.g., “the next method increment must be delivered in two weeks”). These
requirements will lead to new method increments, which in turn feed back into the
engineering process.

There are several plausible outcomes of this approach.

– The method engineering process and the development process applying the method
arrive at fix-points: a method is developed that satisfies all engineer requirements,
and this method is applied to complete the development of the product of interest.
These fix-points need not be arrived at simultaneously.

– A method fix-point is not reached (i.e., not all engineer requirements are satisfied)
but the incomplete method that is delivered is usefully applied to complete the de-
velopment of the product of interest. It is interesting in this situation to examine the
requirements that have not been met in order to better understand why the engineers
thought they would be useful, and why they were not actually needed in practice.
This type of information is critical in understanding why methods are fit for specific
purposes, and can also help de-clutter methods and method descriptions.

– Fix-points are not reached in both the method development and the product devel-
opment. This might occur because the project is cancelled, or because the method
engineers are assigned elsewhere. We suggest that this is not likely to occur for
technical reasons, i.e., because the method engineers made a mistake. This is be-
cause of the iterative and incremental feedback loops between method development
and system development: catastrophic failures in either process are likely to be de-
tected as early as possible, and mitigation can thereafter be implemented.

The approach is illustrated in Fig. 2. There are two spiral development processes
running in parallel: method engineering, and system engineering, with feedback from
the latter to the former, and with technology insertions from the former to the latter.

Agile Formal Method Engineering 121

Agile Method Engineering Process Software Development Process

Deliver a method increment

Feedback from software developers

Fig. 2. The agile method engineering and development process

Many development projects can occur in parallel with the development of a method,
i.e., the method increments that are delivered can be applied in as many projects as
needed. There is a complexity issue here, since the method engineers will have to re-
spond to feedback from each project, and thereby could potentially produce specifically
tailored methods – perhaps with a common core – for each development project.

6 Case Study: Agile Integration of Eiffel and CSP

We now summarise several iterations of an agile integration of the Eiffel method and
CSP. The focus from the perspective of Eiffel is on its concurrency mechanism (de-
scribed earlier), called SCOOP. A full specification of the features of SCOOP is pre-
sented in [18]. We assume some familiarity with CSP. Thus, the integration is of SCOOP
and CSP; the nature of the integration will become clear shortly.

The initial motivation for integrating SCOOP and CSP was to be able to deter-
mine whether or not the semantics of SCOOP in Eiffel was sound. The specification
of SCOOP in [18] is predominantly informal. Moreover, the nature of SCOOP – which
places limited complexity on the programmer, and substantial complexity on the com-
piler writer – means that it is critical to ensure that its semantics is well understood and
sound. In particular, it is important to be able to check that the informal understanding
of SCOOP behaviour – from the programmer’s perspective – is consistent with what the
(informal) semantics says. The pragmatic motivation for understanding the semantics
of SCOOP is that there is currently substantial, industrially sponsored effort underway
in developing tools for SCOOP [21]. Finally, it is desired to provide a mechanism for
reasoning about SCOOP programs, and an integration between SCOOP and CSP is
reasonable approach, given CSP’s tool support.

6.1 User Stories

Our initial set of user stories is very simple (as is typical of many agile developments),
and is produced by starting to follow the Planning Game. It consists of one story, as
follows.

We desire to be able to reason about the semantics of SCOOP programs.

Note the imprecision in this story: what sort of reasoning does the customer want to
carry out? Does it encompass fully the semantics of SCOOP, or SCOOP as implemented

122 R.F. Paige and P.J. Brooke

in one of its current (incomplete) prototypes? What sort of tools would the customer
like to use, if any? Are there non-functional requirements, e.g., supporting particular
personnel with particular skill sets?

It is at this stage that interactions between the method engineer and developer are
critical: the method engineer must answer questions like the ones above, in order to
know how to proceed. It is dangerous to make assumptions, e.g., about the formalism to
use for capturing the semantics. Given the expense in applying formal techniques – par-
ticularly for concurrent systems – it is vital to have a better understanding of developer
requirements, and thereafter a refined user story, before proceeding. The agile practice
of On-Site Customer is the one to apply to do this.

After discussion with the developers, the story is refined. The point is to not come
up with a complete list of ways in which the developers would like to use the integrated
method, but to provide the method engineer with enough understanding to get started.
The refined user story follows.

We desire to be able to reason, formally, about the semantics of SCOOP
programs. For any SCOOP program we would like to be able to extract its con-
current behaviour in isolation, and reason – ideally with tool support – about
the behaviour of routine calls and object reservations.

Our interpretation of this story is that a formalization of SCOOP’s concurrent seman-
tics (omitting details of object-oriented program semantics, formalized elsewhere [22])
using a suitable process algebraic framework, CSP, would be suitable for satisfying the
story. We propose CSP to the developer, who accepts the argument that it is a more
appropriate formalism than, say, a Hoare logic. One could argue for alternative for-
malisms, e.g., Circus, but the method engineers are familiar with CSP.

The user story does not express which features of SCOOP are of the most impor-
tance: SCOOP possesses a number of features that may be of interest to the user, and
some of these have been mentioned in the story. In a traditional development, we might
attempt to formalize the entirety of SCOOP immediately; in an agile development –
which emphasizes customer/developer interactions – we will talk to the user and find
out what features of SCOOP to prioritize. Here, we continue with the Planning Game
and On-Site Customer, but now we move to iterations and focus on Small Releases,
Simple Design, and Continuous Integration.

6.2 First Iteration: A Subsystem Model

In the Planning Game, The user suggests that the most important feature to understand
is the subsystem mechanism of SCOOP, since this is the underlying architecture that
supports threading and message passing. The method engineers thus focus on this for
their first iteration, and deliver the following method increment/release. In this case, the
release is described using a mixture of informal natural language (explaining the intent
of the formulae) and CSP. The subsystem model can be explained as follows.

A subsystem contains objects. It also contains a ‘controller’, which accepts
additions to a queue of calls for handled objects and engages in the processing of
queued calls. This is expressed by the process SUBSYSTEMP(j), which performs the

Agile Formal Method Engineering 123

processing of a queued call, and the process SUBSYSTEMQ j, which manages the queue
of jobs: calls can be added and then removed when they are to be serviced.

SUBSYSTEMP(j) 	 front. j?t → DOCALL(t);SUBSYSTEMP(j) (1)

In order to specify management of the queue of jobs, we discover that the semantics
of SCOOP is ambiguous with respect to the notion of locking an object: it is not clear
when a lock is released. The method engineers have to make a decision, and choose to
release a lock as soon as possible.

The method engineers now need to record how and when each object is reserved,
including this ‘handing-on’ or ‘subsequent’ reservation. It is complicated by the asyn-
chronous nature of the reservations: a might call b, which itself calls c, with each re-
serving d, but then a finishes before b or c.

So the engineers associate a sequence of indices, Ri, with an object i:

– An index md is in Ri if m has a reservation on i, even if it has handed-on the reser-
vation. The superscript d indicates which instance of the call we refer to; this is a
unique number in this semantics.

– The last index in Ri is the ‘active’ reservation: all objects with earlier reservations
have ‘handed-on’ the reservation to a subsequent object.

So a call d of an object m has exclusive access to i if and only if md is the last index
in sequence Ri. md can remove itself from the list of reservations at any time: this
represents the d-th call of m indicating its completion, thus releasing its interest in i.

SUBSYSTEMQ(j,q) 	 � i∈handledObjects(j)last(Ri) = md ⇒
add.(md , i,r,〈s〉)
→ SUBSYSTEMQ(j,q�〈md , i,r,〈s〉〉)

� q = 〈t〉�q′ ⇒
front. j!t → SUBSYSTEMQ(j,q′) (2)

This completes the semantics for the subsystem, but it does not yet describe how the
subsystem interacts with objects on the subsystem. Following our agile principles and
practices (Simple Design), we do the simplest thing that satisfies the customer require-
ment, and will concern ourselves with refactoring (Refactoring practice) our method to
include object-subsystem interactions in a future increment, when it is of more interest
to the customer. At this stage, we confine ourselves to indicating that there is a set of
objects to be handled by a subsystem, and we place the processes defining subsystems
in parallel with their handled objects.

SUBSYSTEM(j) 	 ‖i∈handledObjects(j)OBJECT(i)
‖SUBSYSTEMQ(j,〈〉)
‖SUBSYSTEMP(j) (3)

124 R.F. Paige and P.J. Brooke

6.3 Second Iteration: Reservations

While the developer finds the CSP formalization of subsystems useful in improving
their understanding, it does not particularly help in understanding dynamic behaviour
in SCOOP. The customer thus requests the next iteration to deliver a formalization
of reservations. This is substantially more difficult. The method engineers retreat to
consider the problem. They realise that formalising reservations actually involves two
sub-steps: formalising the process of being reserved, and collecting and releasing reser-
vations. It is suggested to the customer that focusing this increment on the process of
being reserved will be more profitable1 since (a) this feature is at the heart of SCOOP’s
semantics; and (b) it will allow the developer to carry out deep semantic reasoning about
many SCOOP programs immediately. The customer is convinced by the argument.

The method engineers retreat again to focus on the process of being reserved, and
apply the practice of Simple Design. They quickly draw a rough-sketch illustrating
what they believe to be one of the key challenges. Consider Fig. 3, which illustrates a
(separate) object i being reserved by a second (separate) object m. Additionally, i might
be reserved by n when n itself is called by m during the call that reserved i. Such a rough
sketch can conveniently be shown to the customer to improve their understanding of the
problem, and also to ensure that the method engineer’s intuition is sensible.

3. Routine in n attempts to reserve i

Object i

Object n

Object m

1. m reserves i

2. m calls a routine in n

Fig. 3. Repeated reservations on an object

The method engineers assume for now that m passed on information to n indicating
that it holds the lock on i. This means that n can make a ‘subsequent’ reservation on i.
(Note that if m is the first to reserve i, then it must make both a ‘global’ reservation, and
if it actually wishes to use i, it must also make a ‘local’ reservation.)

The engineers now see the need for a test of the form isCaller(c,m) which is true if
and only if c called m directly or via intermediate calls. This will be useful for checking
whether an object is available for reservation.

1 It is probably better to make a recommendation to the customer than to give them free choice
amongst options. At the very least it focuses the debate on concrete issues.

Agile Formal Method Engineering 125

The engineers can now write down a process representing i’s reservation behaviour:

RESERVATION(i,Ri) 	
Ri = 〈〉∨ isCaller(last(Ri),md) ⇒

reserve.(i,md) → RESERVATION(i,Ri
�〈md〉)

� Ri �= 〈〉∧¬isCaller(last(Ri),md) ⇒
blocked.(i,md) → RESERVATION(i,Ri)� md ∈ σ(Ri) ⇒ free.(i,md) → RESERVATION(i,Ri ↓ {md})

� md /∈ σ(Ri) ⇒ unreserved.(i,md) → RESERVATION(i,Ri) (4)

where s ↓ {A} means the sequence s with the last occurrence of a member of the set A
removed, and σ(s) returns the set of elements contained in that sequence s.

Taking the clauses in the equation above one-by-one, they say:

– the d-th instance of m can reserve i if i is totally unreserved, i.e., Ri = 〈〉; or, if the
last reservation on i was made by c, where c is itself a caller of m.

– If m cannot reserve i, then the model only offers the ‘blocked’ event.
– m can free i (for itself) at any time, provided that m had previously reserved i.
– The last clause handles m attempting to free i when it did not have a reservation.

The new functionality is integrated (Continuous Integration practice) with the pre-
viously developed model of subsystems and can be delivered to the customer for use.

6.4 Third Iteration: Completing the Formalization of Reservations

The user complains that they are unable to reason about releasing reservations: they
wanted to prove that a particular SCOOP object was guaranteed to always be able to
obtain a reservation at a specific time; they could only do this by ensuring that the
reservation had been released. The user had tried to express a SCOOP program in the
machine-readable dialect of CSP supported by FDR2, and discovered that releasing
reservations was ignored. The method engineer admits that this has not been covered
so far, and focuses on this for the third iteration. This is a simple iteration that results in
the following CSP addition to the formalization.

RELEASING(i,〈s〉) 	 (free(s1, i) → Skip � unreserved(s1, i) → Skip)
|||(free(s2, i) → Skip � unreserved(s2, i) → Skip)
...

|||(free(sp, i) → Skip � unreserved(sp, i) → Skip) (5)

This is straightforward CSP: either an object has a reservation, in which case it can
be released (event free) or it was never held, and it is skipped (event unreserved). The
integration of this CSP with previous releases is straightforward.

126 R.F. Paige and P.J. Brooke

6.5 Fourth Iteration: A Refactoring

The user is now happy about being able to reason about subsystems, reservations, and
calls, which make up the essence of SCOOP programs. However, while they accept the
flexible formalization of locking captured in equation (6) (i.e., a lock is released as soon
as possible), they find this difficult to reason about. Moreover, it has been suggested
to the user by their programming team that implementing this semantics in a SCOOP
compiler may be quite difficult. Since the user is interested in prototyping an implemen-
tation of SCOOP quickly, they request an alternative formalization – expected (though
not proven) to be easier to implement – that does not release until all work queued by
the caller on the callee has been completed. This requires the method engineers to ap-
ply the Refactoring practice to the CSP model. The engineers change equation (6) by
adding an extra clause which restricts the availability of the free event.

SUBSYSTEMQ(j,q) 	 � i∈handledObjects(j)last(Ri) = md ⇒
add.(md , i,r,〈s〉)
→ SUBSYSTEMQ(j,q�〈md , i,r,〈s〉〉)

� q = 〈t〉�q′ ⇒
front. j!t → SUBSYSTEMQ(j,q′)

� i∈handledObjects(j)m
d ∈ σ(Ri)

∧(md /∈ σ(q ↓1) ⇒
free.(i,md)
→ SUBSYSTEMQ(j,q′) (6)

By sometimes engaging in the event free, the subsystem queue scheduler now refuses
to allow releasing of an active reservation if there is still queued work for that instance
of the caller. (Here, q ↓1 is means ‘the first element of each tuple in q’.)

Space prevents us from showing additional iterations in the integration, which will
include producing an object model and executing a separate call. One point of inter-
est occurs when producing the object model. Object behaviour needs to be linked with
the subsystem model. Thus, the subsystem model is architecturally refactored to in-
clude this. This should be contrasted with the refactoring in Section 6.5, which was a
behavioural refactoring that did not introduce new processes.

6.6 Final Iteration: A Backwards Mapping

The user is now satisfied, since they have a complete formalisation of SCOOP’s se-
mantics to work with. They spend some time using it, working with FDR2 to verify
properties of SCOOP programs, e.g., deadlock freedom, liveness. Their understanding
of the SCOOP semantics improves and they grow more confident that it is sound. After
a while, they reach a point where the SCOOP programs they are analyzing are suffi-
ciently complex and too large to process in reasonable time using FDR2. They generate
a new user story which is passed to the method engineer: “provide tool support ca-
pable of reasoning (in reasonable time) about large SCOOP programs”. The method

Agile Formal Method Engineering 127

engineer, who is a CSP expert, analyses this requirement and provides two alternatives:
re-expressing the SCOOP semantics using a theorem prover like PVS; or simulation.
The method engineer points out the complexity of formalising semantics of concurrent
systems in PVS (e.g., referring to the thesis of Brooke [8], which shows that even sim-
ple CSP programs become intractable in PVS), and the complexity of using PVS for
verification. The user decides on a simulation scheme.

After considering alternatives, the method engineer suggests an interesting approach
to simulation: encoding CSP in Eiffel directly. In this way, the user can simulate a
SCOOP program by interpreting the CSP semantics in Eiffel. This may provide more
convincing evidence that the CSP semantics is in fact correct, and may also promote
usability: the user is familiar with Eiffel and as such should find it relatively straightfor-
ward to encode simulations, interpret the results, and tailor simulations to their specific
needs.

A presentation of the full encoding of CSP in Eiffel is beyond the space limitations
of this paper; see [9] for details. It has some similarities to JCSP [28].

The method engineer has now delivered a lightweight method integrating SCOOP
and CSP, and has been able to meet user requirements that have developed while apply-
ing early increments of the method. The user is satisfied with what has been delivered,
and is able to carry out their work. Should additional requirements arise, these would
be dealt with in the same way as illustrated above.

7 Conclusions

Software engineering methods are products that should be subject to engineering prac-
tices. But unlike many engineering products, methods – which are less tangible than
software – must be tailored for specific development projects. The specific require-
ments for tailoring may not all be known up-front; thus, method engineers and integra-
tors should be prepared to respond to requests for tailoring even as the method is being
applied. Thus, method engineers should be prepared to be agile, should expect changing
requirements, and should anticipate needing to talk to the users of the methods, even
while the methods are being applied.

This paper has mainly focused on presenting an argument and evidence for apply-
ing agile practices and principles to building methods. There are clearly arguments for
applying heavyweight approaches to method engineering, e.g., for building safety criti-
cal standards or certification standards. In all cases, several key points emerge: methods
should be engineered; method engineers must expect that their methods will have to
be changed; and the tailoring process should be done hand-in-hand with the users of
the method, ideally while the method is being applied. The reality of using methods
in software engineering is that they are always tailored; the successful methods are the
ones that are flexible enough to support easy tailoring, while being prescriptive enough
to prevent dangerous or wholesale changes. Agile development techniques all empha-
size responding to new requirements, and building systems that can be modified easily.
Some changes and refactorings will be hard, but a set of agile practices can help to man-
age and carry out this process. Thus, the compatibility between the needs of method
users, and the facilities offered by agile development, is clear.

128 R.F. Paige and P.J. Brooke

References

1. The Agile Manifesto, 2003. www.agilemanifesto.org.
2. M.S. Abdullah, C. Kimble, R.F. Paige, I.D. Benest, and A.S. Evans. Developing a UML pro-

file for modelling knowledge-based systems. In Proc. MDA: Foundations and Applications
2004, LNCS. Springer-Verlag, 2005.

3. J.-R. Abrial. The B-Book. Cambridge, 1996.
4. S. Ambler. Process Patterns. Cambridge, 1998.
5. S. Ambler. Agile Modeling. John Wiley, 2002.
6. K. Beck. Extreme Programming Explained. Addison-Wesley, 2000.
7. K. Beck. Test-Driven Development. Addison-Wesley, 2002.
8. P.J. Brooke. A timed semantics for a hierarchical design notation, 1999. DPhil Thesis,

University of York.
9. P.J. Brooke and R.F. Paige. Simulating CSP in Eiffel. 2005. In preparation.

10. T. Clark, A. Evans, P. Sammut, and J. Willans. Applied Metamodelling. Available at
www.xactium.com, 2004.

11. D. D’Souza and A.C. Wills. Objects, Components and Frameworks with UML. AWL, 1998.
12. M. Goodland and C. Slater. SSADM Version 4: an Introduction. McGraw-Hill, 1995.
13. E.C.R. Hehner. A Practical Theory of Programming (Second Edition). Springer-Verlag,

2003.
14. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1986.
15. Ronin International. Enterprise unified process. www.enterpriseunifiedprocess.com.
16. P. Kruchten. The Rational Unified Process: an Introduction, Third Edition. AWL, 2003.
17. B. Mahony and J.S. Dong. Deep semantic links of Timed CSP and Object-Z. Formal Aspects

of Computing, 13(2), 2002.
18. B. Meyer. Object Oriented Software Construction, Second Edition. Prentice Hall, 1997.
19. Object Modelling Group. Model Driven Architecture, 2004. http://www.omg.org/mda/.
20. Object Modelling Group. Software Process Engineering Metamodel (SPEM), 2005.

www.omg.org/technology/documents/formal/spem.htm.
21. Chair of Software Engineering. SCOOP web pages, 2005. http://se.inf.ethz.ch/scoop.
22. R.F. Paige and J.S. Ostroff. ERC: an object-oriented refinement calculus for Eiffel. Formal

Aspects of Computing, 16(1), 2004.
23. R.F. Paige, J.S. Ostroff, and P.J. Brooke. Principles of modelling language design. Informa-

tion and Software Technology, 42(10), 2000.
24. S. Palmer and M. Felsing. A Practical Guide to Feature-Driven Development. Prentice-Hall,

2002.
25. ModelWare EC Integrated Project. www.modelware-ist.org.
26. R. Ramsin and R.F. Paige. Criteria-based analysis of object-oriented software development

methodologies, 2005. Technical Report, University of York, UK.
27. W. Scacchi. Process models in software engineering. In Encyclopedia of Software Engineer-

ing (Second Edition). Wiley, 2001.
28. P. Welch, J. Aldous, and J. Foster. CSP networking for Java (CSP.net). In Proc. ICCS 2002,

LNCS. Springer-Verlag, 2002.
29. Xactium. XMF user guide prerelease version 0.1, 2004. www.xactium.com.

An Automated Failure Mode and Effect Analysis
Based on High-Level Design Specification with

Behavior Trees

Lars Grunske1, Peter Lindsay1, Nisansala Yatapanage1,2, and Kirsten Winter1

1 University of Queensland, School of ITEE/ARC Centre for Complex Systems,
4072 Brisbane (St.Lucia), Australia

2 Griffith University, Software Quality Institute,
4111 Brisbane (Nathan), Australia

{grunske, pal, nisansala, kirsten}@itee.uq.edu.au
http://www.accs.edu.au

Abstract. Formal methods have significant benefits for developing safety
critical systems, in that they allow for correctness proofs, model check-
ing safety and liveness properties, deadlock checking, etc. However, formal
methods do not scale very well and demand specialist skills, when devel-
oping real-world systems. For these reasons, development and analysis of
large-scale safety critical systemswill require effective integration of formal
and informal methods. In this paper, we use such an integrative approach
to automate Failure Modes and Effects Analysis (FMEA), a widely used
system safety analysis technique, using a high-level graphical modelling
notation (Behavior Trees) and model checking. We inject component fail-
ure modes into the Behavior Trees and translate the resulting Behavior
Trees to SAL code. This enables us to model check if the system in the
presence of these faults satisfies its safety properties, specified by temporal
logic formulas. The benefit of this process is tool support that automates
the tedious and error-prone aspects of FMEA.

Keywords: Automated Hazard Analysis, FMEA, High-Level Design
Specification, Model Checking, Behavior Trees, SAL.

1 Introduction

Safety critical systems are increasingly making use of embedded software for
critical components [1, 2]. The rising complexity of such systems makes it im-
portant to be able to model and analyze their behaviors early in the development
lifecycle, to ensure that safety is being designed into the system [3].

Failure Modes and Effects Analysis (FMEA) [4] is a widely used “what if”
system-safety analysis technique that systematically considers feasible failure
modes of system components and identifies the circumstances under which a
component fault might lead to a hazardous system failure. With systems of
even moderate complexity, however, the process of considering all possible con-
sequences of all possible component failures, in all possible combinations of cir-
cumstances, is tedious and error-prone; hence FMEA is an ideal candidate for
automation.

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 129–149, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

130 L. Grunske et al.

Model checking [5, 6, 7] has often been applied to system models to check that
hazardous states cannot be reached during normal operation of the system: i.e.,
when the system behaves in accordance with its specification, as represented by
the model. A number of research groups have proposed ways of injecting faults
into models as a way of automating FMEA and other system safety analysis
techniques (see Section 7 for a survey). However, the modelling notations in-
volved are often difficult for system safety specialists to use, since they require
good formal methods and modelling skills.

This paper proposes using model checking with the Behavior Tree (BT) sys-
tem modelling notation, in order to provide automated support for FMEA. BTs
provide a high-level graphical notation for system design specifications that cap-
ture functional requirements of a system given as a description in natural lan-
guage. BTs thus provide a bridge from informal natural language descriptions to
formal methods. The approach can be applied with system models at arbitrary
levels of abstraction, including high-level system descriptions early in design,
before detailed design decisions have been made. Ultimately we aim to make the
formal method aspects of our approach invisible to non-expert users [8], but this
part of our research is still work in progress.

Our integrated method requires users to consider the ways in which system
components can be faulty (i.e., behave in ways other than those intended in the
system specification): we claim that BTs offer a convenient way of doing this and
of capturing the results. The user also needs to consider what are the hazard
conditions of the system: i.e., the system states or conditions that might lead
to harm. Often such system hazards can be expressed simply as combinations
of system states and environment states, but for more complex cases we use
Linear Temporal Logic [9] to formalize such conditions as temporal relationships
between system states and states of the environment.

We describe a way of automatically translating BTs into the input language
of the SAL model checker [10] which is similar to Action Systems [11]. The SAL
model checker can then be used to discover which component faults might lead to
which system hazards, which is the essence of FMEA. Where such a relationship
exists, SAL provides a trace of the system behavior that illustrates how the
component fault leads to the hazard, which can be very helpful for “debugging”
designs. Overall our aim is for a method that enables safety analysts to work
with high level models in a notation that is close to natural language, while
automating the tedious aspects of FMEA.

The remainder of this paper is organized as follows: Section 2 introduces
the notations used (Behavior Trees, SAL). Section 3 overviews the proposed
approach to automating FMEA over high-level design specification. Section 4
presents a procedure for translating Behavior Trees to SAL code in detail. To
illustrate the process and translation, the introduced techniques are applied in
Section 5 to the well known industrial metal press example. Finally, Section 6
discusses related work and Section 7 contains concluding remarks and points out
the directions for future work.

An Automated FMEA Based on High-Level Design Specification with BT 131

2 Preliminaries

2.1 Behavior Trees

The Behavior Tree notation [12] is a graphical notation to capture the functional
requirements of a system given as a description in natural language. The tree-
like form of Behavior Trees (BTs) allows the user to represent sequential and
concurrent behavior, the impact of external events on the system, conditions on
behavior, and data flow between components.

The strength of the BT notation is two-fold. Firstly, the graphical nature of
the notation provides the user with an intuitive understanding of a BT model;
an important factor especially for use in industry. Secondly, the process of cap-
turing requirements is done in a stepwise fashion. That is, single requirements
are modelled as single BTs, called individual requirements trees. In a second step
these individual requirement trees are composed into one large BT, called the
integrated requirements tree. Composition of requirements trees is done on the
graphical level: an individual requirements tree is merged with a second tree
(which can be another individual requirements tree or an already integrated
tree) if its root node matches one of the nodes of the second tree. This stepwise
approach provides a successful solution for handling very large requirements
specifications [12, 13].

The syntax of the BT notation sup-
ports a number of basic constructs, of
which Figure 1 presents the core that is
used throughout this paper (a complete
reference to the syntax can be found in
[14]). Each box or node refers to a com-
ponent of the system and its node type
marks (a) a state realization of a compo-
nent, (b) a state realization of one of the
component’s subcomponents, (c) a condi-
tion on the component’s state, or (d) an
event associated with the component. In

component
[state]

component
? condition ?

component
?? event ??

a.) State Realisation

c.) Condition d.) Event

component
[subcomp[s]]

b.) State Realisation
 of Subcomponent

Fig. 1. Basic Syntax of Behavior Trees

the paper the following textual representation of these constructs is also used:
comp[state], comp[subcomp[s]], comp?condition?, and comp??event??, re-
spectively. References to a subcomponent’s state can also be used as conditions
(e.g., comp?subcomp[s]? is true if the subcomponent is in state s) or as events
(e.g., comp??subcomp[s]?? occurs when the subcomponent realizes the state
s). Any leaf node can be annotated with the symbol ˆ indicating that the
control flow loops back to the matching node (with the same component and
state/event/condition name) further up the tree. Analogously, a leaf node can
be equipped with the symbol = indicating that the flow continues from the match-
ing node (also containing an =) at any other point in the tree. A box annotated
with the symbol -- models a kill-event which kills the thread that starts with
the matching node (i.e., with same component name and node type).

132 L. Grunske et al.

We have three different versions of control flow: sequential, concurrent
and selective flow. Sequential flow of control is simply modelled as a se-
quence of boxes which are linked by an arrow (Figure 2a). Flow of con-
trol can also branch into two or more subtrees. The meaning of a branch-
ing depends on the succeeding boxes: If both branches start with a state re-
alization box then both branches proceed concurrently, i.e., as threads (Fig-

C
[s]

D
[s’]

C
[s]

D
[s’]

E
[s’’]

C
[s]

D
? b ?

E
? b’ ?

a.) Sequential Flow b.) Concurrent Flow

c.) Selected Flow

C
[s]

D
?? e ??

E
?? e’ ??

d.) Selected Event

Fig. 2. Control Flow in Behavior Trees

ure 2b). If a branching
point is followed by con-
dition boxes the flow fol-
lows one of the branches
whose condition is satis-
fied (Figure 2c). In the
case where more than
one condition is satis-
fied one branch is chosen
non-deterministically. If
none of the conditions
is true, the flow of con-
trol terminates. If the
branching leads to event

boxes then we distinguish two cases: Without additional syntax the flow con-
tinues with the branch whose event occurs first (Figure 2d). If the event boxes
additionally carry a || symbol (see e.g., Figures 3a and 3c) then the branches
are executed concurrently (quite similarly to Figure 2b). Hence, || also marks
concurrent flow of control, i.e., the beginning of a thread. Note that in the case
of concurrent flow the components D and E have to be different.

As a textual representation for the different versions of control flow we use the
following shorthands: C[s]->D[s’] for sequential flow, C[s]->(D[s’]->...)||(E[s’’]
->...) for concurrent flow, C[s]->(D?b?->...)|(E?b’?->...) for selected flow, and
C[s]->(D??e??->...)|(E??e’??->...) for selected event.

Concurrent and selected flow arise from a branching structure within the
tree. For branching structures the BT notation allows for more variety than
given in Figure 2. Whereas in the figure only two branches are depicted for
each case, the tree can branch into an arbitrary (but finite) number m of
threads or selections. We represent this textually as C[s]->(...)||1...||m(...)

and C[s]->(...)|1...|m(...), respectively. Moreover, a branching may consist
of branches with different node types, so called mixed branches. In our work
here, we only allow for three different types of mixed branches as shown in Fig-

A
[s]

B
[s’]

C
??e??

......

A
[s]

B
[s’]

C
?c?

......

A
[s]

B
?c?

C
??e??

......

a.) b.) c.)

|| ||

A
[s]

B
[s’]

C
??e??

...

d.)

D
??e’??

...

Fig. 3. Four allowed cases for mixed branches in a Behavior Tree

An Automated FMEA Based on High-Level Design Specification with BT 133

ures 3a, 3b and 3c. Note that in all three cases each of the branches consist
of more than a single box (indicated by . . . in the figure). Case a. of the fig-
ure is interpreted as concurrent flow of two independent threads, one starting
with a state realization and one with an event. We represent this case textu-
ally as A[s]->(B[s’]->...)||(C??e??->...). Case b. also models concurrent flow,
where one flow starts with a state realization and the other is guarded by a
condition. If the condition is not satisfied at the time the control flow reaches
the branching point then the guarded thread does not proceed. Textually, we
get A[s]->(B[s’]->...)||(C?c?->...). Case c. of the figure models two concur-
rent threads, one guarded by the condition and one guarded by the occur-
rence of an event. The left thread can proceed if the condition is satisfied,
and the right thread as soon as the event occurs. In textual form we write
A[s]->(B?c?->...)||(C??e??->...). Note that we assume for all these cases that
component B is different from component C to exclude race conditions on the
behavior of the threads.

All other cases in which concurrent and selected flow are mixed are ruled out
in order to keep the semantics clear. However, we do allow one special case as
depicted in Figure 3d: If a branch consists only of a single state realization box
(and the branch does not continue after that) then it can be paired with branches
of selected events. This construct is interpreted as follows: after component A
realizes state s the flow of control continues with the branch whose event occurs
first (i.e., as selected flow) and independently, component B also realizes state s’.

2.2 Model Checking Using the SAL Tool

SAL [10] is an open suite of tools for the analysis of state machines, including
model checkers for branching and linear time temporal logic (CTL and LTL, re-
spectively, [9]), and a deadlock checker. From this suite we use a symbolic model
checker for LTL. This tool checks if a system, modelled in the SAL language,
satisfies a given property, specified in LTL. If the property is violated the tool
outputs a counter-example, i.e., a sequence of states that leads to a state which
shows the violation.

For our approach this tool provides several benefits: The reachability of haz-
ardous states can easily be modelled in LTL (using operators for next state X ,
always G , until U , and eventually F). Moreover, the SAL language resembles
in its core the basic notion of Action Systems [11]: The transition relation is
given as a set of guarded actions. In each step the system non-deterministically
chooses one of those actions whose guard is satisfied in the current state and
applies its updates in the next state. As will be shown in Section 4, Behavior
Trees can be readily translated into a simple form of Action Systems, i.e., into
SAL code.

We show a simple example of SAL code in the framed box below. Within
a SAL context, types and modules can be defined, of which the latter de-
fines the behavior, i.e., the transitions. Within a module, local, global, in-
put and output variables can be declared. They comprise the state variables
of the system. Local and output variables can be changed by the module

134 L. Grunske et al.

whereas input variables cannot and global variables can change only in a lim-
ited way. The value of input variables is non-deterministically chosen from their
type at each step. The actions
comprise in their simplest form a
guard and a set of updates. For in-
stance, action A1 in the simple
example on the right is guarded
by light=red and contains a sin-
gle update car’=stop. The up-
dates of one action happen atom-
ically and will be apparent in the
next state of the system (SAL
uses primed variables to refer to
variables in the next state). At
each step, the SAL system non-
deterministically chooses from
the list of actions (e.g., A1 to A4)
one whose guard is satisfied in the
current state.

traffic: CONTEXT =
BEGIN Colour:TYPE={red,yellow,green};

Move:TYPE={stop,go};
behavior: MODULE =
BEGIN
LOCAL light: Color, car: Move
INPUT pressButton: BOOLEAN
INITIALIZATION light=yellow;car=stop
TRANSITION
[A1: light=red --> car’=stop
[] A2: pressButton --> light’=yellow
[] A3: light=yellow --> light’=green
[] A4: light=green --> car’=go
[] ...]
END; % of module
END % of context

3 Automated Hazard Analysis

The process of hazard analysis is an essential step in the development of safety
critical systems. A given design of the system is investigated with regard to its
behavior in the case of failures of system components. Two main questions that
determine the acceptability of a design from a safety viewpoint are: what are
the circumstances under which a system behaves hazardously, and what is the
likelihood that these circumstances will arise.

Traditionally, hazard analysis is done on an informal level. The aim of our
work is to support process automation through an integration of formal tech-
niques. Specifically, we advocate the integration of model checking into the pro-
cess. A model checker allows us to (automatically) check if a design shows haz-
ardous behavior under the presence of faulty components. In the case where a
hazardous state can be reached the tool outputs a counter-example that presents
a possible behavior that leads up to the hazard. This general idea leads us to
the procedure as shown in Figure 4 on the facing page.

Generation of Design Behavior Tree. The first step in this process is the
construction of a design BT from the system requirements. Initially, an integrated
requirements BT is created from the system requirements as described in Section
2.1 and [12, 13]. The integrated requirements BT is then decomposed into com-
ponent BTs. We introduce this step to make component fault injection easier.
Following the usual architecture of reactive systems we identify controller, sen-
sor, and actuator components and the environment (including equipment under
control and the operator). The behavior of each of these is captured in a com-
ponent BT. These component BTs are then composed so that each component

An Automated FMEA Based on High-Level Design Specification with BT 135

model
checking

functional
requirements

hazard
conditions

LTL
formulas

SAL
code

fault view
BT

design
BT

FMEA
table

component
faults

Fig. 4. Procedure for an automated hazard analysis

forms a thread of the overall system. Interactions between component threads
are modelled by message-passing realized using BT events. The resulting parallel
composition of components and environment and the communication between
them is called the design BT.

We found in practice that it was necessary to extend the usual system descrip-
tion with an indication of the effect on the environment of all actuator states, not
just the expected actuator states. (For example, what happens if the motor turns
off while the plunger is rising in the case study below.) Such considerations would
not always be noted in a system description which considers only the “all compo-
nents function as specified” case, but are needed for hazard analysis.

Generation of Fault View BTs. A fault view BT describes the behavior of
a system when it is affected by one or more component faults. In this paper, we
consider faults where a component is no longer able to reach one or more of its
normal states, but the general approach is not restricted to these kind of faults.
To inject a fault into a BT, the behavior specification must be changed. The
tree is pruned at nodes that involve state changes, or events, where one of the
failed components is attempting to realize an unreachable state. Condition nodes
describing a test of whether a failed component is in an unreachable state are also
removed, as the test will never succeed. The sequential flow in a BT indicates
that a node will only pass control to subsequent nodes if it has completed its
action, such as a state or event realization or a condition test succeeding. Thus,
if a node describing unreachable behavior is found, all of its child nodes must
also be removed, as subsequent behavior will no longer occur.

In summary, we assume a component C is restricted to the set of states S. All
nodes describing C realizing a state which is not an element of S are removed,
including the sub-tree starting at that node. The resulting Behavior Tree will
represent the system behavior in response to the component faults.

Identification and Specification of Hazard Conditions. We identify the
hazards of the system with traditional risk analysis techniques [3]. To enable the
later model checking, these hazard conditions are specified as temporal logic for-
mulas. This process can be supported by the use of safety patterns [15], which are
natural language constructs that can be transformed into CTL or LTL formulas.

136 L. Grunske et al.

Model Checking. In order to receive information about possible hazardous
behavior of a system in the case of a faulty component, we use the corresponding
fault view BT and a safety property as inputs to the LTL model checker of
the SAL toolkit. The safety properties are simply the negations of the hazard
conditions. The fault view BT is translated into SAL code as will be described in
Section 4. The hazard condition is formalized using LTL. The tool then checks if
the model of the fault view BT is able to reach a state in which the safety
property is false. If yes, we receive a counter-example that presents a trace
through the BT illustrating how the hazardous state can be reached.

Generation of FMEA-Tables. Finally, based on the results of the model-
checking process we can compile an FMEA table, which summarizes which com-
ponent failures lead to which violations of which safety properties. Where such a
relationship exists, we produce a description of the identified counter-example.

4 Transformation from Behavior Trees to SAL Code

We translate a BT into a single SAL module which comprises the choice between
a number of actions. To do so we have to split the BT into atomic transitions,
each of which is then translated into a SAL action. Event and condition boxes
determine the action’s guard, and all state realization and data flow boxes are
captured as updates. The resulting set of actions is conjoined using the SAL
choice operator ([]) into the behavior of the SAL module.

Generating Variable Names. For each component in the BT that changes its
state at some point (see Figure 1a) , we introduce a state variable using the com-
ponent name as identifier. Its type is the enumeration of possible states of that
component. The state realization component[state] can thus be captured as up-
date component’:=state. If a state realization refers to one of the component’s
subcomponents (see Figure 1b) then the subcomponent name, e.g., subcomp,
becomes part of the variable name, i.e., component subcomp. Condition boxes
(see Figure 1c) are translated into boolean queries, e.g., component?condition?
becomes component=condition. We distinguish external and internal events
whereas the latter refers to a component that is controlled by the modelled sys-
tem. Each external event box in the BT (see Figure 1d) is translated into a
boolean input variable. An external event component??event?? is modelled by
boolean input variable componentEvent. Each internal event box is translated
similar to condition boxes.

Splitting BTs into Transitions. Updates within a single SAL action happen
atomically in one step. Consequently, we have to identify transitions of a BT in
such a way that the order (and with it also the causal dependencies) between
the state realization boxes within a transition is not relevant and the transition
can be considered as being atomic. If the order between all state realizations has
to be preserved, we simply choose a fine grained splitting so that each state box
becomes an update of a single transition.

An Automated FMEA Based on High-Level Design Specification with BT 137

If the order within a sequence of state realizations is not relevant to the prob-
lem at hand, we can combine several state realizations into one atomic transition.
However, we have to ensure that within one transition the state of one compo-
nent is not changed more than once. A simple algorithm which traverses the tree
can provide a suitable automatic splitting of the BT: at each condition or event
box and at each branching point a new transition begins. As an alternative to
automatic splitting of the BT, we also allow the user to choose a splitting which
supports a particular view of the system through a particular granularity of ac-
tions. Note that the validity of the chosen granularity becomes an assumption
for the correctness of the results of our approach.

Sequence of Actions. The sequence in which transitions occur has to corre-
spond to the sequence of transitions as given in the BT. We enforce this through
the use of program-counters: At each step the value of an array of program coun-
ters determines a precise point in the BT, which essentially shows the progress
of the system so far. We introduce more than one program counter if the BT
includes concurrent threads. For each thread we use a separate program-counter
to ensure independent progress of different threads. Evaluation of the program-
counter(s) becomes part of the guard of each transition so that a transition is
only “enabled” if the system has progressed to the right point in the BT.

Program-counters also provide a very simple means to regulate the flow of
control at loop-back points: the program-counter is simply set to the value that
corresponds to the place in the BT from which to proceed. Moreover, termination
of threads (either through an explicit kill-event or a loop-back point above the
branching point of threads, see [14]) is simply modelled by setting the program-
counter of the terminated thread to zero.

Translation Scheme. Given the fact that for the BT notation no formal seman-
tics is defined at present we cannot provide a formal definition of our translation
from BTs into the SAL language. To illustrate our approach, however, we give a
schematic template for translating the BT primitives that have to be considered.

Atomic transitions that consist only of a sequence of boxes in a BT (as shown
in Figure 2a) are translated according to the cases 1 to 5 in the table below. If the
transition contains no (leading) event or condition, then the resulting SAL action
is only guarded by the evaluation of the program-counter pci (which we assume
is the program-counter for
this thread). Its value has
to correspond to the loca-
tion in the BT where the
sequence occurs. The up-
date of the action com-
prises all state realizations
of the BT sequence (indi-
cated by . . . in the table)
as well as the increment
of the program-counter to

1. A[s1] ->...-> B[s2]
pci=v --> a’=s1;...;b’=s2;pci’=v+1

2. A?c? ->...-> B[s2]
pci=v AND a=c --> ...;b’=s2;pci’=v+1

3. A??e?? ->...-> B[s2]
pci=v AND ae --> ...;b’=s2;pci’=v+1

4. A??e?? -> B?c? ->...-> C[s2]
pci=v AND ae AND b=c--> ...;c’=s2;pci’=v+1

5. B?c? -> A??e?? ->...-> C[s2]
pci=v AND b=c AND ae --> ...;c’=s2;pci’=v+1

138 L. Grunske et al.

the value v+1. If the sequence contains a leading event or condition (or any
combination of both) then those become part of the guard of the SAL action in
addition to the program-counter evaluation (cases 2-5; note that if the leading
event is internal then the resulting SAL code corresponds to case 2.) Similarly
to case 1, the set of updates of the action contains all state realizations and the
increment of the program-counter.

The possible cases for concurrent flow (as in Figure 2b and Figure 3a-c)
can be subsumed in the translation scheme given in case 6 of our table: For
m concurrent branches, i.e., threads, we introduce m new program-counters
(pci+1 to
pci+m+1)
which are
initially
0. Within
the action

6. ...-> C[s] -> (...)||1 ... ||m(...)
pci=v ... -->...;c’=s; pci’=v+1;pci+1’=1;...;pci+m+1’=1
pci+1=1... -->...; pci+1’=2
...
pci+m+1=1...-->...; pci+m+1’=2

leading up to the branching node C[s], we set the new program-counters to 1.
That is, a program-counter of value 1 indicates that the corresponding thread
is enabled. Apart from introducing and setting new program-counters, the
translation of the transitions of each single thread follows the templates given
in the cases 1 to 5 of the table above.

If the branching in the BT is interpreted as selected flow or selected event
with m cases (as in Figure 2c and d), we can generalize the translation of the
transitions in the following rule: Within the action of the transition that leads
up to the branching, we set the program-counter of our current thread, pci, to
the value that corresponds to the branching point in the BT, v+1. Each branch
is then translated according to the cases 1 to 5 given above so that we keep
the current program-counter pci for each branch. Each of the branching actions
is now guarded by the evaluation of pci at the branching point, i.e., pci=v+1
(additionally to other conjuncts of the guard that arise from the transition in
the branch). That is, all branching
actions are enabled at the branch-
ing point. Within the branching ac-
tions, we increase pci in such a way
that at each point within the whole
branching structure it has a unique
value. That is, we have to avoid

7. ...-> C[s] -> (...)|1...|m(...)
pci=v ... --> ...; c’=s; pci’=v+1
pci=v+1 ... --> pci’=v+2;...
pci=v+1 ... --> pci’=v+n1+1;...
...
pci=v+1 ... --> pci’=v+nm−1 + 1;...

overlaps in the program-counter values.
Finally, we consider the special case of branching as given in Figure 3d,

which is not subsumed by one of the rules above. According to the given inter-
pretation, that in this branching structure the single state realization happens
independently of the se-
lected flow, we translate
this according to case 8
in our table: The up-
date b’=s’ happens in

8. pci=v... --> ...; a’=s; b’=s’; pci’=v+1
pci=v+1 AND ce --> ...; pci’=v+2· · ·
pci=v+1 AND de’ --> ...; pci’=v+nm−1+1

An Automated FMEA Based on High-Level Design Specification with BT 139

the same step as update a’=s. Hence, this translation chooses one possible in-
terleaving of the state realization B[s’] with the selected events C??e1?? and
D??e2?? in the BT.

5 Case Study: Industrial Metal Press

We apply the hazard analysis process to the case-study of an industrial press [16],
which is similar to the one described by [17]. The press is used for compressing
sheets of metal into body parts for vehicles. A motor is used for raising the
plunger, and is controlled by an operator pushing a button. A software controller
is responsible for the press operation, and operates according to inputs from
sensors. The system has the following requirements:

1. A plunger rises and is held at the top of the press with the aid of a motor,
and falls to the bottom of the press when the motor is turned off.

2. Sensors are used to indicate when the plunger is at the top, the bottom or
at the point-of-no-return (PONR). When the plunger is falling below the
PONR, it is pointless to turn on the motor; in fact, it is dangerous to do so.

3. The plunger is initially resting on the bottom. When the power is turned on,
the motor turns on and the plunger starts rising.

4. When the plunger is at the top, the operator can push and hold a button
which turns the motor off, allowing the plunger to fall.

5. The operator may abort this operation by releasing the button, but only if
the plunger is above the PONR. Releasing the button when the plunger is
below the PONR will have no effect.

6. When the plunger reaches the bottom, the motor turns on automatically,
causing the plunger to rise. The cycle then repeats. Pushing the button
while the plunger is rising has no effect.

Failure of the various components of this system can lead to hazards. For
example, turning on the motor after the press is below the PONR can lead to
the motor exploding, exposing the operator to the danger of being hit by flying
parts. Other sensor failures can lead to loss of the abort function, which has
safety implications. Therefore, analysis of the consequences of each component
failure is essential.

The six requirements are captured by six individual requirements BTs which
are then composed into the integrated requirements BT. We identify a plunger as
the environment of the system and six components: a controller, a motor as the
actuator, and four sensors, a top-sensor, a bottom-sensor, a PONR-sensor, and
a button. For each of these components we generate the component BT from the
integrated requirements BT and extend them with the necessary communication
between each other. For instance, the controller has to communicate with the
sensors and the motor but it does not interact with the plunger directly since the
plunger is only influenced by the behavior of the motor. The extended component
BTs are then used as threads in a combined design BT as shown in Figure 5 on
the next page.

140 L. Grunske et al.

Power
[Off]

Motor
[Off]

Plunger
[At bottom]

Bottom Sensor
[High]

Top Sensor
[Low]

PONR Sensor
[High]

Power
?? On ??

Bottom Sensor
Thread

Top Sensor
Thread

Controller
Thread

Plunger
Thread

PONR Sensor
Thread

Button
Thread

Motor
Thread

Fig. 5. Design BT of the press system

Power
?? On ??

Controller
[Opening]

Controller
[Motor [On]]

Controller
?? Top Sensor [High] ??

Controller
?? Button [Released] ??

Controller
??PONR Sensor [Low]??

Controller
[Open]

Controller
?? Button [Pushed] ??

Controller
[Closing]

Controller
[Motor [Off]]

Controller
?? Button [Released] ??

||

Controller
?PONR Sensor [High]?

Controller
??Bottom Sensor [Low]??

Controller
?PONR Sensor [Low]?

Controller
[Opening]

Controller
??Bottom Sensor [High]??

Controller
??Bottom Sensor [Low]??

Controller
[Opening]

Controller
??PONR Sensor [Low]??

Controller
??Bottom Sensor [High]??

Controller
??Bottom Sensor [Low]??

Controller
[Opening]

Controller
??PONR Sensor [High]??

Controller
?? Top Sensor [Low] ??

|| ||

||||||||

^

^

^

--

--

--

Fig. 6. The controller thread of the BT

An Automated FMEA Based on High-Level Design Specification with BT 141

Top Sensor
[Low]

 Top Sensor
?? Low ??

Controller
[TopSensor [Low]]

 Top Sensor
?? High ??

Controller
[TopSensor [High]]

 Top Sensor
?? High ??

 Top Sensor
?? Low ??

= =

= =

Motor
[On]

Controller
?? Motor [On] ??

Motor
[On]

Controller
?? Motor [Off] ??

Motor
[Off]

Controller
?? Motor [Off] ??

Controller
?? Motor [On] ??

= =

= =

Fig. 7. The top sensor and motor threads of the BT

Figure 6 on the facing page shows the thread of the controller component
in the design BT. The controller receives input from the sensor via events. For
example, as soon as the top sensor (as modelled in the left tree in Figure 7 on
the next page) causes the Top sensor subcomponent of the controller to change
its state to High the corresponding event Controller??TopSensor[High]?? in
the controller thread will be activated and trigger the controller to respond.

The sensor and button components all follow a similar structure. The top
sensor example can be seen in Figure 7. The sensors all toggle between two
states: high and low (and pushed and released for the button). A change in
state of the sensors leads to a message passed to the controller. The button
changes state based on the external influence of the operator, but it also in-
forms the controller of the state change in a similar fashion. The motor oper-
ates in an opposite way to the sensors: while the sensors inform the controller
of a change in state, the motor changes state based on input from the con-
troller.

The plunger is modelled by the environment thread shown in Figure 8 on the
following page. This component is only influenced by the motor, and operates
in a cyclic fashion between rising, reaching the top, falling and reaching the
bottom. Changes in plunger state lead directly to changes in relevant sensor
states.

The fault views for each possible component failure are generated, according
to the rules described in Section 3. Each of these new BTs is then translated
into the SAL language for model checking, to determine which failures can cause
hazardous situations. There are four significant hazard conditions concerning the
operation of the press, which lead to hazardous behavior if violated [16]. These
hazard conditions are formalized in LTL as follows (note that G is the temporal
operator for generally (i.e., in every state on the path), and U is the temporal
operator for until):

1. If the plunger is at the top and the operator is not pushing the button, the
motor should remain on.

G ((plunger = attop ∧ operator = releasebutton) → (motor = on))

142 L. Grunske et al.

Plunger
[At bottom]

Motor
?? On ??

Bottom Sensor
[High]

Plunger
[Rising below PONR]

Plunger
??Rising above PONR??

Bottom Sensor
[Low]

Motor
?? Off ??

Plunger
?? Falling fast ??

=Motor
?? Off ??

Plunger
[Falling slow]

=

Plunger
?? At top ??

PONR Sensor
[Low]

Motor
?? Off ??

Top Sensor
[High]

Plunger
[Falling slow]

=

Plunger
?? Falling fast ??

= Top Sensor
[Low]

Motor
?? On ??

Plunger
??Rising above PONR??

^Plunger
?? At bottom ??

^ PONR Sensor
[High]

Motor
?? On ??

Plunger
[Rising below PONR]

^

Fig. 8. The plunger thread of the BT

2. If the plunger is falling below the PONR, known as falling fast, the motor
should remain off.

G ((plunger = fallingfast) → (motor = off))

3. If the plunger is falling above the PONR, known as falling slow, and the
operator releases the button, the motor should eventually turn on, before
the plunger changes state.

G ((plunger = fallingslow ∧ operator = releasebutton)
→ (plunger = fallingSlow U motor = on))

4. The motor should never turn off while the plunger is rising.

G (¬((plunger = risingbelowPONR ∨ plunger = risingabovePONR)
∧ (motor = off)))

When model checking the translated design BT with these hazard conditions
we find a major problem that arises for most model checking tools: the user
is only provided with a single counter-example. If this counter-example is not
useful then it obstructs the overall process of automated hazard analysis. For
our case study, some of the output counter-examples concern only a very small
time-frame, involving an external event occurring after a sensor has changed
state, but before the controller has time to receive a message about this change.

An Automated FMEA Based on High-Level Design Specification with BT 143

That is, the chain of internal events, that represent communication between
system components, is interrupted by an external event. This is due to the fact
that in the SAL tool input variables are uncontrolled and can change the value
arbitrarily at each step. Although these counter-examples are correct they do
not transport useful information since the probability of such an event occurring
is minimal. It is desirable to ignore these cases.

Usually, undesirable counter-examples are excluded by refining the hazard
conditions correspondingly. In our case, however, hazard conditions that limit
the sequence in which events can occur would also exclude some of the interesting
cases to be checked for. Therefore, we suggest a different solution in which we
prioritize the actions in the SAL code.

Generally, our model contains both internal and external events. External
events are events that are instantiated by something outside the system, such as
an input from the operator. Internal events are those associated with another in-
ternal component, and provide the communication between components. An ex-
ample of this is a sensor changing state and the controller waiting for this change
of state. We call actions external if they are triggered by external events. All
other actions in our model are called internal actions. The undesirable counter-
examples all involve external actions interrupting the chain of internal actions as
is possible due to the non-deterministic choice between all enabled actions within
the SAL tool. We exclude these interrupts by allowing external actions only if
no other internal action can occur. We extend the guard for each external action
with the negative conjunction of the guards for each of the internal actions.

This process achieves our desired goal and all unlikely counter-examples are
filtered out. The results of the model-checking are in agreement with the expected
behavior of the press determined manually. They are presented in Table 1. It
should be noted that each of these cases describe a fault which is present from the
start of operation. Thus, the motor faults do not lead to any hazard violations, as
the plunger remains suspended either at the top or bottom, causing no danger.

Table 1. Results of model-checking each component failure mode against the four
hazard conditions

Component Failure HC1 HC2 HC3 HC4

No failures
√ √ √ √

Top Sensor stuck Low
√ √ √ √

Top Sensor stuck High
√ √ √

X

Bottom Sensor stuck Low
√ √ √ √

Bottom Sensor stuck High
√

X
√ √

PONR Sensor stuck Low
√

X
√ √

PONR Sensor stuck High
√ √

X
√

Button stuck released
√ √ √ √

Button stuck pushed X
√

X
√

Motor stuck on
√ √ √ √

Motor stuck off
√ √ √ √

Key:
√

= hazard condition does not arise, X = hazard condition can occur

144 L. Grunske et al.

As an example of a component failure that can cause a hazard, consider the
case of the failure of the bottom sensor, where the bottom sensor permanently
indicates that the plunger is at bottom (Component Failure: Bottom Sensor
stuck High) and consider the hazard condition HC2. This hazard condition
states that the motor should not turn on when the plunger is falling below
the point-of-no-return. The counter-example produced is as follows: The system
operates normally until the plunger reaches the falling fast state, i.e. it is falling
below the point-of-no-return. At this time, the controller is waiting for the event
of the bottom sensor reaching the high state. Since the sensor has failed, the
controller will immediately receive this event, long before the plunger has a
chance to reach the bottom. The controller will then turn on the motor, thus
creating the hazard.

The results demonstrate that the automated hazard analysis process de-
scribed in this paper is successful for the analysis of the Industrial Press case
study. All violations of the hazard conditions are correctly revealed, and the
results are identical to those produced through manual analysis [16].

6 Tool Support

Complex systems may consist of numerous components and states, leading to a
large increase in possible failures. Thus, to manually transform a BT into each

Fig. 9. Screenshot of the tool with a BT analyzed by BTFail for the Bottom Sensor
stuck High failure. The blackened sections indicate blocked behavior.

An Automated FMEA Based on High-Level Design Specification with BT 145

failure view and the failure views into SAL modules would be an arduous task.
For this reason, the hazard analysis process described in this paper has been
fully automated. A software package, BTE, has been developed for designing
and editing Behavior Tree specifications [18]. Add-in packages for BTE have
been created for the aspects relevant to the FMEA process. They consist of
two primary functions: the modification of BT’s to reflect the behavior in the
presence of failures and the translation of Behavior Trees into the SAL language.

The first function was implemented as the BTFail package. The purpose of
this module is to convert an existing BT designed using the BT-Editor into a
fault view. The fault may be comprised of a single or multiple failed components
and each component may be unable to reach one or several of its states. The
failure may be selected to start at the root node of the tree, representing the
start of the system behavior, or at some later point. The BTFail package creates
the fault views by highlighting and removing affected branches of the Behavior
Tree, according to the rules specified in Section 3. Figure 9 shows a screenshot
of the Behavior Tree editor with a BT which has been modified by BTFail.

The next step in the process is the translation of Behavior Trees into the SAL
language. This was implemented as an export function of the BTE tool. After a
BT has been modified to describe failure behavior, it can then be exported to a
SAL file for use in the SAL tool. The translation operates according to the rules
specified in Section 4.

Together, these modules provide a complete environment for preparing a BT
specification for model-checking with the SAL suite of tools.

7 Related Work

As noted in Section 1, model checking has often been used to check safety condi-
tions for system models of varying degrees of abstraction. We briefly survey here
the use of formal methods, and model checking in particular, for automating
system-safety analysis techniques such as FMEA.

A recent approach for the generation of FMEA tables [19] uses the Scade
framework. In this approach, both the system model and the safety require-
ments must be described formally in Lustre. Faults are injected into the system
model and proved by Scade Design Verifier. A similar approach has been ap-
plied using the FSAP/ NuSMV-SA tool [20], using the NuSMV model checker
to identify violations of safety conditions specified in LTL. An additional feature
of FSAP/NuSMV-SA tool is the ability to generate fault trees based on counter
examples. This is useful since fault trees are well suited for visualizing how differ-
ent combinations of component failure modes give rise to system hazards. Both
of these approaches use specialized formal system modelling notations; by con-
trast, our approach works from a graphical specification (using the BT notation),
which we believe will improve acceptance in industrial projects [12].

Papadopoulos et al. [21] describes an FMEA approach based on the fault
tree generation algorithms introduced by the HiPHOPS methodology [22]. This
approach generates fault trees for system-level hazards, which is more general

146 L. Grunske et al.

than FMEA. Hazardous component-level failure modes can be extracted from
fault tress by generating minimal cut-sets. However, in contrast to the technique
presented here, the approach allows only semi-automatic FMEA construction,
since local failure behavior annotations must be added to the system model by
hand. Such annotations specify in tabular form, as sets of failure expressions,
how deviations of component outputs can be caused by internal malfunctions
and deviations of component inputs. In other words, the fault propagation logic
must be supplied by hand, by contrast with our approach whereby the component
fault simply needs to be modelled.

Rae and Lindsay [23] describes an approach to generating fault trees in
which faults are treated as behaviors rather than simply as events or condi-
tions. Their technique has been automated using CSP [24] and the CWB-NC
model checker [25]. Their approach is similar to the approach reported here in
as much as component faults are modelled as behaviors and are injected into
system models. In contrast to our approach, however, modelling of system and
faults is not supported by a graphical notation. The user has to provide both in
CSP.

Atchison et al. [16] describes the use of Z and the Possum specification ani-
mation tool for FMEA, and the use of Spark to formally verify Ada code against
the Z specification for a fault-tolerant version of the Press control logic. The
animator had to be programmed by hand to do an exhaustive search of the state
space, and it is doubtful if such an approach would scale very well; the approach
presented here has the advantage that model checking is fully automated.

8 Conclusion and Future Work

The paper described the use of model checking with the Behavior Tree (BT) no-
tation [12], in order to provide automated support for Failure Modes and Effects
Analysis (FMEA) [4], a widely used system safety analysis technique. BTs have
been successfully applied to several large systems [14]. The main benefit of BTs
is that they can be smoothly translated, generated and integrated from natural
language requirements. The resulting specification is an integrated requirements
BT, which specifies the behavior of the complete system. This specification has
to be decomposed into several component specifications, to allow a distributed
and systematic construction of complex systems. The system decomposition into
components provides also the foundation for component fault injection and our
FMEA approach. In order to perform the FMEA, an integrated requirements BT
must be transformed into a design BT. In the high-level design, each component
operates independently and concurrently, achieved by modelling each compo-
nent’s behavior in a separate thread. Each thread describes only the compo-
nent’s independent behavior and its direct interactions with others. Our method
requires users to consider the ways in which these system components can be
faulty (i.e., behave in ways other than those intended in the system specification)
and the immediate (local) effect of such failure modes; BTs offer a convenient
way of doing this and capturing the results.

An Automated FMEA Based on High-Level Design Specification with BT 147

The component faults considered here are those cases where a component
cannot reach one or more of its normal set of states. Because of the nature of
BTs this covers a wide range of component failure modes. The user also needs to
consider what are the hazard conditions of the system: i.e., the system states or
conditions that might lead to harm. Linear Temporal Logic is used to formalize
such conditions as temporal formulas which specify the relationships between
system states and states of the environment. The SAL model checker is used
to discover which component faults might lead to which system hazards, which
is the essence of FMEA. Where such a relationship exists, SAL also provides a
counter-example in the form of a system behavior trace that illustrates how the
component fault leads to the hazard.

The benefit of our approach is tool support that automates the tedious and
error-prone aspects of FMEA, namely, tracing through all possible consequences
of component faults, through all possible environmental conditions and system
states. The approach can be applied to high-level system descriptions early in
design, before detailed design decisions have been made. The method requires the
user to imagine what kind of functional failures could occur at component level,
what would be their local effect, and what are the hazardous system conditions.

The presented method is the subject of current research and has potential
for new research directions. A fundamental improvement will be to allow the
occurrence of the failure at any time during system operation, rather than simply
ab initio as done in this paper. We are currently working on this extension
by creating the SAL code for all failure views and merging the resulting SAL
modules with the original behavior, so that a transition from the correct system
to a system which contains a failure mode is possible at any time. If we have this
extension, the next step it to use probabilistic model-checking and to determine
the probability of a safety critical situation if the probabilities of all failure modes
are known. This will improve the process and enable the usage of this approach
in the generation of safety cases.

Another suitable extension to our approach is to add more powerful failure
modes to the existing set, in particular commission or protocol failures that
occur if the correct ordering of events at interfaces is violated. This requires a
complex fault injection mechanism and appropriate tool support.

Acknowledgements. This work was produced with the assistance of funding
from the Australian Research Council (ARC) under the ARC Centres of Excel-
lence program. The authors wish to thank their colleagues in the Dependable
Complex Computer-based Systems project for their constructive suggestions,
and Geoff Dromey in particular for his suggestions regarding factoring of Inte-
grated BTs into Design BTs.

References

1. Lutz, R.R.: Software engineering for safety: a roadmap. In: ICSE - Future of SE
Track. (2000) 213–226

2. Neumann, P.G.: Computer-Related Risks. ACM Press / Addison Wesley (1995)

148 L. Grunske et al.

3. Leveson, N.G.: Safeware: System Safety and Computers. Addison-Wesley (1995)
4. Department of Defence: MIL-STD-1629A, Procedures for Performing a Failure

Mode, Effects and Criticality Analysis. Washington (1980)
5. Clarke, E., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
6. Heitmeyer, C., Kirby, J., Labaw, B., Archer, M., Bharadwaj, R.: Using abstraction

and model checking to detect safety violations in requirements specifications. IEEE
Transactions on Software Engineering 24 (1998) 927–947

7. Atlee, J., Gannon, J.: State-based model checking of event-driven system require-
ments. IEEE Transactions on Software Engineering 19 (1993) 24–40

8. Tiwari, A., Shankar, N., Rushby, J.: Invisible formal methods for embedded control
systems. Proceedings of the IEEE 91 (2003) 29–39

9. Emerson, E.A.: Temporal and modal logic. In van Leeuwen, J., ed.: Handbook of
Theoretical Coomputer Science. Volume B. Elsevier Science Publishers (1990)

10. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari,
A.: SAL 2. In Alur, R., Peled, D., eds.: Int. Conference on Computer-Aided
Verification, (CAV 2004). Volume 3114 of LNCS., Springer-Verlag (2004) 496–500

11. Back, R.J., von Wright, J.: Trace refinement of action systems. In Jonsson, B.,
Parrow, J., eds.: Int. Conference on Concurrency Theory (CONCUR’94). Volume
836 of LNCS., Springer-Verlag (1994) 367–384

12. Dromey, R.G.: From requirements to design: Formalizing the key steps. In: Int.
Conference on Software Engineering and Formal Methods (SEFM 2003), IEEE
Computer Society (2003) 2–13

13. Wen, L., Dromey, R.G.: From requirements change to design change: A formal
path. In: Int. Conference on Software Engineering and Formal Methods (SEFM
2004), IEEE Computer Society (2004) 104–113

14. GSE: Genetic Software Engineering: http://www.sqi.gu.edu.au/gse (2005)
15. Bitsch, F.: Safety patterns - the key to formal specification of safety requirements.

In: Int. Conference on Computer Safety, Reliability and Security (SAFECOMP
2001). Volume 2187 of LNCS., Springer-Verlag (2001) 176–189

16. Atchison, B., Lindsay, P., Tombs, D.: A case study in software safety assurance
using formal methods. Technical report, University of Queensland, SVRC 99-31,
www.itee.uq.edu.au/~pal/SVRC/tr99-31.pdf (1999)

17. McDermid, J., Kelly, T.: Industrial press: Safety case. Technical report, High
Integrity Systems Engineering Group, University of York (1996)

18. Smith, C., Winter, K., Hayes, I., Dromey, G., Lindsay, P., Carrington, D.: An
environment for building a system out of its requirements. In: Int. Conference
on Automated Software Engineering (ASE 2004), IEEE Computer Society (2004)
398–399

19. Abdulla, P.A., Deneux, J., Akerlund, O.: Designing safe, reliable systems us-
ing Scade. In: Int. Symposium on Leveraging Applications of Formal Methods
(ISoLA’04). (2004)

20. Bozzano, M., Villafiorita, A.: Improving system reliability via model checking:
The FSAP/NuSMV-SA safety analysis platform. In: Int. Conference on Com-
puter Safety, Reliability, and Security (SAFECOMP 2003). Volume 2788 of LNCS.,
Springer-Verlag (2003)

21. Papadopoulos, Y., Parker, D., Grante, C.: Automating the failure modes and
effects analysis of safety critical systems. In: Int. Symposium on High-Assurance
Systems Engineering (HASE 2004), IEEE Computer Society (2004) 310–311

22. Papadopoulos, Y., McDermid, J.A., Sasse, R., Heiner, G.: Analysis and synthesis of
the behaviour of complex programmable electronic systems in conditions of failure.
Int. Journal of Reliability Engineering and System Safety 71 (2001) 229–247

An Automated FMEA Based on High-Level Design Specification with BT 149

23. Rae, A., Lindsay, P.: A behaviour-based method for fault tree generation. In: Int.
System Safety Conference, System Safety Society (2004) 289–298

24. Hoare, C.: Communicating Sequential Processes. Series in Computer Science.
Prentice Hall (1985)

25. Cleaveland, R., Sims, S.: The NCSU Concurrency Workbench. In Alur, R., Hen-
zinger, T., eds.: Int. Conference on Computer-Aided Verification (CAV’96). Volume
1102 of LNCS., Springer-Verlag (1996) 394–397

Enabling Security Testing from Specification to Code

Shane Bracher� and Padmanabhan Krishnan

Centre for Software Assurance, School of Information Technology,
Bond University, Gold Coast, Queensland 4229, Australia

sbracher@student.bond.edu.au, pkrishna@staff.bond.edu.au

Abstract. In this paper, we present the idea of creating an intermediary model
which is capable of being derived directly from the high-level, abstract model,
but more closely resembles the actual implementation. The focus of our work is
on the security properties of protocols. Not only do we show how an intermediary
model can be constructed, but also how it can be used to automatically generate
test sequences based on the security goals of the protocol being tested. Our aim
is to show that by using this approach, we can derive test sequences suitable for
a tester to use on a working implementation of the protocol.

Keywords: protocol descriptions, security modelling, model-based testing, con-
crete test sequences.

1 Introduction

Exhaustive testing of a software system is one way to guarantee that the system under
test is secure. However, it is not practical to test all possible inputs and all possible paths
through the programs. In practice, key properties are identified and sequences to test
these key properties are generated. Specification or model-based techniques [1, 2, 3, 4]
are approaches to reduce the testing effort. The tests are derived from a model (or a for-
mal specification) of the system. There are two main advantages of this approach. The
first is that the models provide precise knowledge of what each test actually achieves. As
each test sequence is derived from the model, it corresponds directly to some expected
behaviour of the system. The second advantage is that model-based testing increases
the ability to reuse the tests. In many cases, there are small changes to implementa-
tions which do not affect the model of behaviour. Hence the tests generated can be
reused.

While there are many approaches to testing for security properties [5, 6], there are
only a few reported results on using model-based testing for security [7, 8]. This is be-
cause writing formal specifications is not prevalent as constructing the formal model
incurs additional cost. However, given the complexity of security properties, devel-
oping a formal model for analysis is definitely worthwhile. Vulnerability testing by
fault injection [5] is an approach to increase the robustness of a system. In this ap-
proach, the system is tested under a variety of faulty environments. This effectively
checks if a system can continue to operate securely without failing. The efficacy of

� Currently Visiting Siemens Research.

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 150–166, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Enabling Security Testing from Specification to Code 151

this approach depends on the design of appropriate faulty environments. This is not
yet well understood and is very system specific. Hence a model for describing the de-
sired properties and the associated environments (including potential attacks) will be
useful.

Testing of firewalls [7] based on specifications expressed as finite automata is fea-
sible. Resilience against common attacks such as intrusions, spoofing, Trojan horses
etc. can be tested. However, the test sequences are not directly usable for implementa-
tions. Another approach to model-based testing of security properties [9] is to mutate
the specification to detect vulnerabilities. These tests are closer to the implementation.

Bounded exhaustive checking [8] is another approach to identifying faults in the
system. This is based on a fault tree analysis and testing all possible behaviours
up to a certain depth in the state space. The technique is derived from bounded model
checking where all states up to a certain bound are systematically explored. Although
this technique is not specific to security, it can be used to specify security
properties.

Usually a formal model is created to verify the key properties. The more abstract
the formal model, the easier it is to verify. However, for the purposes of testing, it is too
far removed from the implementation.

One of the issues related to testing security is the ability to express the desired prop-
erties. Meca [10] describes a technique for specifying annotations in programs which
can then be verified by static analysis. We use a similar approach. However, the anno-
tations used in the implementation are derived from the verification process.

The aim of our research is to use the model-based techniques idea to generate test
sequences in the context of security protocols. But rather than translate the high-level
test sequences into a sequence relevant for implementations, we translate a high-level
model to a model closer to an implementation. The low-level model is then used to
generate the test sequences. In our approach the required security goals are already
specified in the high-level specification and we generate tests after translating these
goals to assertions in the lower-level specification. This way, the gap between the high-
level test sequences generated from the model and the implementation is narrowed. This
is the main difference between our work and other works on model-based testing. The
models are developed in High Level Protocol Specification Language (HLPSL) but the
test sequences generated are expressed in a Java like language which reduces the effort
required to translate the test sequences for an implementation.

To determine whether this idea is viable, we have conducted case studies based on
the Internet Open Trading Protocol (IOTP) [11] and smaller protocols from the Open
Mobile Alliance (OMA). In this paper we focus on the IOTP case study as it is repre-
sentative of the other protocols. The specific techniques used in this case study are the
HLPSL, Bandera Intermediate Representation (BIR) and the Bogor Model Checking
Framework.

The remainder of this paper is organised as follows: Section 2 provides background
information on technical information necessary for our case study and includes HLPSL,
BIR and Bogor; Section 3 develops the details of the proposed idea; Section 4 reports
on the characteristics of the case study and its results; and finally, Section 5 concludes
the paper.

152 S. Bracher and P. Krishnan

2 Preliminaries

2.1 HLPSL

HLPSL [12] is an abstract, high-level language designed for specifying and verifying a
variety of protocol descriptions. In particular the focus is on large scale protocols and
their security aspects. HLPSL was formulated under the AVISPA project [13], which is
funded by the European Commission and involves academic, research and industrial or-
ganisations from France, Germany, Italy and Switzerland. The language aims to support
the project’s wider aim of providing a “push-button industrial-strength technology for
the analysis of large-scale Internet security-sensitive protocols”. While the semantics of
HLPSL are based on Lamport’s Temporal Logic of Actions (TLA) [14] one of the key
design goals of this language was that it was to be easy to use and human readable and
yet be amenable to automatic verification.

An advantage of using HLPSL to model security protocols is that it contains a number
of built-in components common to such protocols including intruder models (e.g., Dolev-
Yao) and encryption primitives. It also provides an explicit separation between roles and
agents. That is, a protocol in HLPSL is constructed using a collection of roles. The two
types of roles which exist are basic roles and composed roles. Basic roles represent the
actions performed by a single participant (or agent) of the protocol whereas composed
roles are used to instantiate a group of basic roles (such as a session consisting of multiple
agents). It is also possible to specify that a single agent plays multiple roles. HLPSL
permits the definition of separate channels used to communicate between agents playing
different roles. Other aspects such as nonces, keys, inverse keys can also be defined.

Another feature of HLPSL is that it incorporates a notion of state, and as such, all
actions performed by basic roles are described as state transitions. Some of the base
types supported in this language include agent (representing an identity participating in
the protocol), public key, text and channel. By convention, if the agent is an intruder, it
is denoted using the special identifier i. To model an agent’s private key, the inverse of
the public key is used e.g., inv(pubkey). To model nonces, this is commonly done using
text (fresh). This states that subsequent values of this variable should be unique and
consequently, unguessable by the intruder. When modeling communication channels,
an optional parameter can be declared with the data type to state the built-in intruder
model to be used for the channel.

A HLPSL model also lists the security goals (such as secrecy of certain tokens, or
authentication of agents) which need to be satisfied and then these goals are used as the
criteria for when the model is verified. This is done in the context of an environment
where a finite number of agents (along with the roles that they play) is instantiated. To
verify a protocol specification modelled in HLPSL, it is translated into a lower-level
language recognised by model checking tools. Intermediate Format (IF) is one such
language and translation from HLPSL to IF can be automatically achieved using the
tool hlpsl2if which accepts the HLPSL model and outputs it formatted into IF. This IF
model can now be passed into a variety of model checking tools such as On-the-Fly
Model Checker (OFMC) [15] for verification that the protocol’s stated security goals
are not violated. Should an occurrence of a violation be found, a trace showing the path
of events leading to the attack (as well as details of the type of attack e.g., man-of-the-

Enabling Security Testing from Specification to Code 153

middle attack) are displayed. While such counter-examples can be used for model-based
testing, they are too abstract to be directly useful for implementations.

In the context of our work, model checking of HLPSL (which can be performed
using a variety of tools) is useful only to verify that a HLPSL specification meets the se-
curity goals. These tools cannot be used for generating test sequences that are concrete.
In other words, a number of tools are supported; but all of them are at a similar level
of abstraction and hence all the counter examples are at a very high level of abstrac-
tion. Thus all the tools are unsuitable for the purpose of generating concrete sequences
for testing. Although we also use model checking technology, we translate the HLSPL
specification into a more concrete description for the purposes of test generation via
model checking.

2.2 BIR/Bogor

Bandera Intermediate Representation (BIR) is an intermediate language aimed to facili-
tate the translation of Java programs to different analysis tools. The Bandera [16] project
aims to provide automated support to generate finite state abstractions from Java code,
which can then be verified using model checking. In particular, BIR is used by the Bo-
gor model checking framework [17] which is the core aspect of the Bandera project.
Development on BIR and Bogor is presently being conducted by the SAnToS Labora-
tory at Kansas State University and ESQuaReD Group at the University of Nebraska.
BIR has become a human-writable, richer and extensible input language and aims to
support the object-oriented paradigm. For this reason, the constructs used in BIR are
very closely aligned to features found in Java such as objects, inheritance, threads, ex-
ceptions monitor locks and references. Hence it is closer to an implementation, but still
retains a level of abstractness.

In this paper we use BIR in a different fashion. We use BIR as a more concrete in-
termediate language with the BIR specification derived from an abstract specification.
That is, we do not translate a language like Java into BIR to be converted to specifica-
tions that can be used by verification tools. We are translating a high-level specification
to BIR with a view of obtaining concrete test sequences. As the source is already a
high-level specification the Bogor framework can be used effectively. We could have
translated HLPSL to real programming languages like Java or C and used tools such
as Bandera [16], Magic [18] or Blast [19] to generate real test sequences. However, the
sequences generated by the tools available for such languages were not as clear as the
ones generated from an intermediate language like BIR.

In contrast to HLPSL, the design goals of both BIR and Bogor are in fact more fo-
cused towards verifying software applications than protocols. However, both BIR and
HLPSL support the specification of transition systems. Each thread and function in BIR
comprises of a series of locations containing guarded transformations which hence en-
able a BIR model to possess a notion of state. In terms of guarded transformations, these
can exist as either a block transformation (a series of actions performed atomically) or
as an invocation transformation (a function call). The data types and expressions sup-
ported in BIR are very similar to primitive Java. They include types such as boolean, int,
float and double and expressions such as arithmetic, relational and logical. This lowers
the abstraction of BIR specifications in comparison to HLPSL.

154 S. Bracher and P. Krishnan

Bogor [17] is a model checking tool designed for verifying event-driven component-
based software designs. This tool differentiates itself from other model checkers by

1. supporting an extensible input language (in which custom, domain-specific con-
structs can be designed) and

2. by possessing a modular interface design.

Rather than existing as a stand-alone program, Bogor is actually implemented as an
Eclipse plug-in. This plug-in comes equipped with an integrated editor and counter
example display for use within the Eclipse development environment. It is this combi-
nation of the program and counter example displays that is useful in generating the test
sequences.

3 Problem Description

For security modelling and verification, using a high-level model representation of a
protocol specification has the advantage of hiding many of the protocol’s complexities
to expose only the relevant components of interest. Such high-level models can be suit-
ably used for verification and for detecting security vulnerabilities, but they pose the
risk of being too abstract from an implementor’s perspective in regards to testing. As a
result, these models become less beneficial to the implementors and testers of the pro-
tocol implementation as they are unable to provide thorough test sequences which can
be directly applied to a working prototype.

To address this issue, we propose adding an intermediary model to the equation
which bridges the gap between the high-level model and the actual implementation.
An appropriate intermediary language must align the construction of models with the
working protocol implementation but yet, can be directly derived from the high-level
specification. From this new model, it is anticipated that testers of the protocol im-
plementation will be capable of not only comprehending the model, but also be able to
manipulate it to create test sequences detailed enough to be directly applied to the work-
ing implementation. In the previous scenario where we only had a high-level model too
abstract, and perhaps too difficult, for an implementor to understand, we now have an
additional model, derived from the high-level model, which better suits the needs of the
testers working on the actual protocol implementation. Figure 1 illustrates our proposal.

To create the intermediary model, we face the constraint of requiring a modelling
language which can (i) be easily identified with by the implementors/testers and (ii) be
able to translate constructs used in the high-level modelling language. For this research,
we have decided to trial BIR as a potential intermediary modelling language. Our rea-
sons for this decision are based on the fact the BIR is already used and has proven
itself as a suitable language for modelling software applications. Furthermore, using a
BIR model, we can feed it into the Bogor Model Checking Framework to automatically
generate test sequences for testing following the standard techniques [20, 21]. For our
high-level model, although development of the intermediary model should not be con-
strained to a single high-level modelling language, we have decided to concentrate our
experiments on HLPSL as it is an abstract, easily readable and writable specification
language focusing on communication and security protocols.

Enabling Security Testing from Specification to Code 155

Fig. 1. Bridging the gap - how an intermediary model can be used to make model-based testing
techniques more user friendly and beneficial from the implementors’ and testers’ perspectives

4 Case Study Using IOTP

Our aim for this case study was two-fold. Firstly, we wanted to verify that it was in-
deed possible to translate a high-level model into an intermediary model specified in
HLPSL and BIR respectively. The focus is not just on the transition system (which can
be handled by standard techniques) but on issues related to security such as knowledge,
properties of encryption etc. The other aim of the case study was to determine, using this
approach, whether or not it was possible to derive test sequences from the intermediary
model for use on an actual implementation.

To conduct this experiment, we used a HLPSL specification of the Internet Open
Trading Protocol (IOTP) and a song down load protocol from the OMA. In this paper
only the relevant parts of the IOTP protocol are discussed and the results for the song
down load protocol are similar. Our first task involved converting this specification
into a BIR intermediary model to satisfy the first aim of the study. Following this, to
create test sequences from the intermediary model, we experimented with using Bogor
for this task.

156 S. Bracher and P. Krishnan

4.1 IOTP

IOTP is an Internet commerce framework designed with interoperability in mind. De-
veloped by the IETF working group titled Internet Open Trading Protocol (trade), the
protocol aims to provide both a system for online trading that is independent of the
payment system as well as support the situation where the customer and merchant have
not previously traded. In general it aims to promote both business to business (B2B)
commerce and business to consumer (B2C) commerce and supports online transactions
which span over various sites. For example, IOTP supports the case where the catalog,
payment handling and product delivery functions are all executed over different sites.

A relevant subset of IOTP message exchanges expressed in the basic notation is
shown in the first part of Figure 2. The four entities participating in the protocol are the
customer (C), the merchant (M), the payment processor (P) and the delivery agent (D).
The protocol commences with an offer sent from the customer to the merchant detailing
the customer’s desired purchase. On receiving this message, the merchant responds
with a BrandList listing all of the payment options it accepts. The customer selects
their desired payment method and sends this to the merchant before the merchant sends
the customer signed payment amount information. After receiving the signed payment
message, the customer sends to the payment processor (i) details on the merchant, (ii)
desired purchase information and (iii) payment details. Once this has been received and
the transaction has been processed, the payment processor issues the customer with a

C -> M: Offer
M -> C: BrandList, Offer
C -> M: Select, Offer
M -> C: Pay, Offer, Sig_M(Pay)
C -> P: Offer, Pay, M, Sig_C(Pay)
P -> C: Receipt, Sig_P(Pay, Receipt, Offer)
C -> D: Sig_P(Pay, Receipt, Offer), Pay, Receipt, Offer
D -> C: Data, Sig_D(Data)

role Environment() def=
knowledge(i) = {c,m,p,d,i,kc,km,kd,kp,ki,inv(ki)}
composition
Session(c,m,p,d,kc,km,kd,kp,scm,scp,scd,rc,rcm,rcp,rcd) /\
Session(c,i,p,d,kc,ki,kd,kp,sci,scp,scd,rc,rci,rcp,rcd) /\
Session(i,m,p,d,ki,km,kd,kp,sim,sip,sid,ri,rim,rip,rid)

end role

goal
Customer authenticates Merchant on Pay
end goal

Fig. 2. From top: the sequence of events represented in the general notation; the HLPSL code
specifying the intruder’s initial knowledge and the concurrent sessions; the security related goal
of the HLPSL model

Enabling Security Testing from Specification to Code 157

receipt plus a receipt signature validating the payment, receipt and offer. The final step
of this model is the delivery request whereby the customer sends the delivery agent
the receipt signature, payment details, receipt and offer. The delivery agent verifies this
information, schedules a time for the purchased goods to be delivered to the customer
and issues the customer with a signed delivery note.

The entities C, M, P and D (called roles in HLPSL) along with the corresponding data
items are variables and can be instantiated with any concrete values. The simple protocol
description specifies one abstract session which can be instantiated in many ways.

The HLPSL specification uses agents to act out these roles and also specifies how
many concurrent sessions of the protocol are running. The agents declared in the model
were ‘c’ (an authentic customer), ‘m’ (an authentic merchant), ‘p’ (the payment proces-
sor), ‘d’ (the delivery agent) and ‘i’ (an intruder capable of acting as either a customer
or a merchant). We assume that the payment processor and the identity and behaviour
of the delivery agents cannot be forged. Overall, three sessions of the protocol were
modelled and checked concurrently to ensure that the goal of customer authenticates
merchant on Pay was satisfied.

The HLPSL code specifying the composition of the sessions is also shown in Fig-
ure 2. The intruder (i) participates in two of the sessions playing separate roles in each.
In one session, the intruder acts as a merchant (with c) and in the other session, it acts
as a customer (with m). In another session, the genuine customer agent (c) plays the
customer role with the genuine merchant (m). Each session in the environment speci-
fies the parameters for the behaviour including the keys used by the agents (e.g., kc is
the public key of the agent c), the initial knowledge of the intruder (i) and also defines
various channels used in the communication. For instance, ‘scm’ is the channel used by
the customer to send a message to the merchant while ‘rcm’ is the channel used by the
customer to receive a message from the merchant. These channels are assumed to be
open in that the intruder can learn about all the tokens that are exchanged using these
channels. The last section is the actual authentication requirement which is specified as
a goal for the verification process.

4.2 Conversion from High Level Model to Intermediary Model

Devising a plan on how to translate the HLPSL specifications into BIR was a major
challenge we faced during this study. This problem was mostly due to the differing
methodologies the two languages possess. On one hand, we have HLPSL which is par-
ticularly focused on protocols and security controls for that matter. On the other hand,
we have BIR which is closer aligned to a programming language containing constructs
such as threads, functions and records. The critical issue is that verification of a security
property is related to the operational model. As we wish to be as close to an implemen-
tation as possible, we have to make certain HLPSL entities (which are abstract) more
concrete in BIR. Therefore, translating some of the built-in functions of HLPSL, such
as message passing and encryption, into BIR played a key role in our efforts of ac-
complishing this task. The full transition system is also too complex at the code level
– especially given the ability of the intruder. Thus we simplify the transition system
to focus on the basic behaviour and encode the requirements for security properties as
suitable annotations. This enables the automatic translation of HLPSL into BIR.

158 S. Bracher and P. Krishnan

Channels

The first issue was modelling the various channels that can potentially be used in a
HLPSL specification. To simulate message passing in our BIR model, we created a
shared object to represent the communications channel and made this object visible
to the two roles using the channel. The shared object contained the channel’s payload
representing the data in transit along the channel. To send a message using this scheme,
the sender simply sets the payload variable with the data to transmit and the receiver
later reads this variable.

The question, however, is when does the receiver know when there is data waiting in
the channel to be read? To resolve this, an additional variable within the shared object
in the form of a boolean was added to alert the receiver when a message had been
sent. Essentially, this variable functioned much like a switch between the sender and
the receiver to indicate who had possession of the channel at any given time. Once the
sender assigns a value to the payload variable, it then sets the switch variable. In the
meantime, the receiver is in a waiting state waiting for the switch variable to be set so
that it can read the channel and continue its execution. This is just a simple coding of a
one place buffer without queuing. While a more elaborate data structure to hold more
than one value is possible, the above encoding for HLPSL channels suffices for typical
security protocols that we have considered.

Agents

The next issue we faced relates to implementing each of the agents and roles defined
in the HLPSL model. It was not possible to combine, for example, a customer agent
and the Customer role into the one object due to the possibility that an agent could
play a different role in a different session. A situation where this occurs in our model is
when in one session, the intruder agent plays a customer role and in another session, it
plays a merchant role. As a result, we chose to model each agent and role as a separate
object. The agent object basically contained just instance variables representing the
knowledge of the agent. On the other hand, we chose to model roles as a hierarchy
of classes (or records as known in BIR) with each specific role (such as Customer)
extending class Role. Furthermore, each role was also implemented as a thread so that
each could run as a separate lightweight process. Defined within each thread function
were the sequence of state transition statements describing the actions performed by
the role. As for the role’s knowledge, all existing information known to it prior to its
execution was declared as instance variables whereas all data either created by the role
or received from other roles during its execution was stored as local variables within its
thread function. By using this particular approach for implementing agents and roles,
we were able to successfully model concurrent session executions of the protocol.

Data

Modelling data types is straight forward in BIR. The only data type that required special
attention was message encryption. This is because encryption plays an important role in
the security aspects of the behaviour. To achieve this, a special type which captures the

Enabling Security Testing from Specification to Code 159

record (|Customer|) extends (|Role|) {

/* All agents will be specified here*/
(|Agent|) /|Customer.M|\;
(|PublicKey|) /|Customer.Kc|\; /* All keys */
(|Channel|) /|Customer.SND_CM|\; /* All Channels */

/* Snipped */

loc loc1: live { [|brandlist|], [|offer|], [|select|] }
when [|this|]./|Customer.RCV_CM|\.read do invisible {

[|brandlist|] := ((|BrandList|)) [|this|]./|Customer.RCV_CM|\.
/|Channel.payload|\[0];

[|offer|] := ((|Offer|)) [|this|]./|Customer.RCV_CM|\.
/|Channel.payload|\[1];

[|this|]./|Customer.RCV_CM|\.read := false;
[|select|] := new (|Select|);
[|this|]./|Customer.SND_CM|\./|Channel.payload|\[0] := [|select|];
[|this|]./|Customer.SND_CM|\./|Channel.payload|\[1] := [|offer|];
[|this|]./|Customer.SND_CM|\.read := true;

}
goto loc2;

Fig. 3. BIR Fragments

symbolic representation of encrypted items (as specified in HLPSL and other protocol
description languages) was defined. Objects of this type contain both the value to be
encrypted and the key used in the encryption. From this key information, the necessary
decryption key required for the messages to be extracted from the encapsulation object
could then be derived. This method is used for both symmetric and asymmetric key
encryption.

A snippet of the BIR code which corresponds to the HLPSL encoding of the IOTP
protocol is shown in Figure 3. The first part of the code shows a subset of the declara-
tion of the customer role. Within it are the necessary data items such as the other agents
(playing a role) (the corresponding merchant is shown), keys (the customer’s public key
is shown) and channels (the channel used to send a message to the merchant is shown).
The second part shows one transition which is taken after the receipt of a message from
the channel used by the merchant and the corresponding message being sent to the mer-
chant. This is just extracting the relevant fields from the message received, creating a new
Select object and sending it along with theOffer. Another BIR fragment is produced
along with a test case in Figure 4 where it is associated with the HLPSL specification.

The security goals in HLPSL are not explicitly translated as part of the transition
system. They are mainly used to generate the test sequences which is discussed in the
next section. This is similar to their use at the high-level where the verifier determines
if the protocol satisfies the property.

4.3 Deriving Test Sequences Using Bogor

For part two of this case study, once we were able to successfully convert the HLPSL
specifications into BIR, we applied our BIR model to Bogor to check it for errors and

160 S. Bracher and P. Krishnan

to derive a series of test sequences. Although only an authentication related goal is
stated in Figure 2, Bogor is also capable of providing test sequences for secrecy related
goals. The secrecy related goals can be specified in HLPSL using the secrecy_of
keyword in the goals section. To demonstrate this we created an additional hypothetical
goal solely for this purpose. This goal, which will be discussed later, states that Pay is
to remain secret from the Delivery Agent. This can be easily specified in the HLPSL
specification as a secrecy requirement.

Whilst performing a model check, should Bogor detect any errors (e.g., in the form
of a goal not being satisfied), counter examples are returned showing the traces lead-
ing to the error hence producing test sequences. Although this is fine for producing
test sequences leading to an invalid end state, it does not provide us with successfully
completed test sequences. Therefore, to derive such sequences, we negate the goal con-
ditions stated in our BIR model and then recheck it.

For deriving test sequences relating to our authentication goal, we negated the asser-
tion condition representing the request statement in our HLPSL model. To explain how
the authentication related requirements were stated in our HLPSL model, first, a witness
statement was made when Pay was sent from the Merchant to the Customer before later
on, the request statement was made by the Customer to verify that Pay had indeed, been
sent from the Merchant and had not been received previously from a separate agent. The
witness statement was simply modelled as a boolean in BIR and was assigned the value
of true to indicate that this predicate had been declared. So that this predicate, made by
the Merchant, could be later verified by the Customer, the boolean variable was sent to
the Customer in the same transition as the Pay was sent to the Customer. To simulate
the request statement, we simply asserted that the value of the boolean would be true to
show that the predicate had been set. Therefore, by negating this assertion statement, it
reads as though the predicate has not been set and consequently, the Merchant cannot be
authenticated by the Customer based on Pay. This corresponds to the HLPSL semantics
of authentication.

Simplification

When we performed the model check, it found 480 test sequences - too many for the
Bogor Counter Example Environment to display. Hence it is not possible to directly
use these counter examples to generate test sequences. A reason for the large number is
the violation is found in a variety of interleavings of the threads. Hence it is necessary
to identify a sufficiently simple interleaving. To derive a basic set of test sequences
from the Bogor tool, we limited the model check to a single session instance only. An
example test sequence returned from this model check is shown in Figure 4. For brevity,
the details of this trace have been reduced to only the send actions and the associated
Bogor outputs. The transitions in Figure 4 are labelled with HLPSL code showing the
channel used for that particular transition as well as the messages passed along the
channel during the transition.

In general the BIR state values can be interpreted in two ways. One is as a re-
quirement on the received value and usually follows a receive action. The other is the
assignment performed by the program and will usually precede a send action. If the val-
ues received or set are different, the test oracle can signal an error. The actual variables

Enabling Security Testing from Specification to Code 161

Fig. 4. A generated test sequence represented as a state transition diagram

used in the implementation could be quite different from our simple model in BIR. A
mapping of BIR variables to real variables is needed before these test sequences can be
applied to real implementations.

Sequences generated by this process are more concrete than the corresponding se-
quence generated from model checking the HLPSL specification. Such sequences also

162 S. Bracher and P. Krishnan

need to be translated to actual send and receive calls for a particular implementation.
While these are usually socket operations, they could also be operations on shared mem-
ory systems. We have achieved a more concrete test sequence but still retaining a level
of abstraction, especially related to communication values.

In relation to deriving test sequences based on secrecy goals, although the IOTP
specifications do not state that Pay should be secret from the Delivery Agent, we add
this requirement to demonstrate that such goals can be modelled and checked using BIR
and Bogor respectively. Such requirements can indeed be specified in HLPSL. We also
show that it is possible to model knowledge of agents at the implementation level.

To model our secrecy goal, we inserted additional boolean variables in the Customer
role to represent secrecy tokens. Just before the Customer sends a message, if the mes-
sage contains the secret, then the secrecy token is set to true indicating that the secret
message has been sent. To derive a test sequence showing that the secret has been sent
to the Delivery Agent, similarly as before for authentication goals, we can simply add
an assert statement in the Delivery Agent role which assumes that the secret has not
been sent.

This statement will fail if the secrecy token stated in the assert statement is set to
true. However, although this method works fine in situations where the secret has been
sent in clear text, it does not address situations when the secret is encrypted. In this
scenario, it is acceptable for the secret to be sent encrypted provided that the receiver
does not possess the required decryption key. To test this in our model, we inserted
an additional secrecy token to represent the secret in its encrypted form, plus another
variable stating the required decryption key needed to derive the secret. Therefore, to
derive test sequences relating to this scenario, the relevant assertion condition is shown
in Figure 5.

Note that in this example, only one level of encryption has been used. In other
words, the secret has been encrypted using only one key. However, what if the secret
was encrypted multiple times using multiple keys? In order for the receiver to extract the
secret in clear text, they would need knowledge of all of the required decryption keys.

assert (!/|Customer.secretSent|\.value)

assert (
!/|Customer.secretSent|\.value ||
(

!/|Customer.encryptedSecretSent|\.value &&
(

/|Customer.decryptionKeyReqd|\ != [|this|]./|Delivery.Kc|\ ||
/|Customer.decryptionKeyReqd|\ != [|this|]./|Delivery.Km|\ ||
/|Customer.decryptionKeyReqd|\ != [|this|]./|Delivery.Kp|\ ||
/|Customer.decryptionKeyReqd|\ != [|this|]./|Delivery.Kd|\

)
)

);

Fig. 5. Secrecy assert statements used in the BIR model. The first assert statement detects the
secret being received in clear text only. The second assert statement extends on the first statement
to also detect the case where an encrypted secret can be decrypted.

Enabling Security Testing from Specification to Code 163

As our model only contains single level encryption, we did not test for secrets being
encrypted with multiple keys. This keeps the knowledge that needs to be associated
with the intruder to a manageable level. However, the above scheme can be expanded
to include multiple levels of encryption. While the translation scheme can be altered
to accommodate this, it is also possible for the tester to modify the BIR model before
performing the test generation. Our approach has been to adopt a simple (e.g., in the
underlying data structures) automatable translation system. The generated BIR can be
altered by the tester to achieve cases not covered directly by the translator.

4.4 Lessons Learned

From our experiences with this case study, we found that the approaches we used suc-
ceeded in constructing a number of test sequences viable for a protocol implementor
to apply to a working prototype. During the course of this experiment, several reasons
emerged as to why this work is beneficial and of particular interest to protocol imple-
mentors and testers.

When comparing BIR models to high-level, formally specified models, it is clear
that BIR models are closer to protocol implementations. Consequently, protocol testers
and implementors can identify with such models more easily as they are less abstract
than the high-level formal models. By using this approach, testers and implementors
attain both (i) an increased understanding of the abstract model and (ii) an intermediary
model that they can directly use and refer to during the implementation and testing
phases of the protocol deployment. That is, the benefits of verification and testing are
leveraged and a strong link between specifications and implementations is established.

In relation to the BIR language itself, due to its nature of being object-oriented as
well as its close resemblance to the Java programming language, this greatly assists in
lowering the learning curve for protocol implementors and testers familiar with Java or
other object-oriented programming languages. As a result, this can lead to a reduction
in the development time of the BIR model. While the basic BIR model can be automat-
ically translated from HLSPL, using BIR allows the developer to refine or modify the
BIR specification. This is particularly useful when generating tests from requirements
not present in the HLPSL specifications. The basic translation scheme described here
is sound in that, if the BIR model produces a test sequence, the test sequence can be
abstracted to represent a valid run in the HLPSL specification.

To verify that the protocol’s goal was satisfied in the model, we found that we were
able to achieve this by simply using a combination of boolean variables (to represent
predicates/claims) and assertion statements (to verify that the claims had been met).
To see if this method was capable of detecting scenarios where the goal was not satis-
fied, we tried negating the predicates and found that this resulted in “Assertion Failed”
counter examples. While model checking of the HLPSL can also produce counter ex-
amples, these sequences are at the HLPSL level. Hence to enable the generation of more
concrete sequences, we could have translated the high-level counter example to a lower
level. However, it is easier to translate HLPSL to a lower-level specification and use
it for generating sequences. This is possible as the BIR/Bogor framework permits the
model checking of code like specifications.

164 S. Bracher and P. Krishnan

One aspect of Bogor we found useful was that it provided a facility for a tester to
define their own, user-defined, test sequence by performing a user-guided simulation of
the model. Using this facility, the user can interactively decide on the path of execution
for the protocol to take and at the same time, examine current variable values and role
states. In conjunction with this, the Bogor environment also provides a random simu-
lation function which may prove beneficial to other testers trying this approach. This
function randomly selects an execution pathway (test sequence) of the model during
run-time and returns the outcome of the chosen sequence to the user. It is possible to
add extra annotations to the BIR model to check for properties that are not really rel-
evant at the specification level. For instance, the IOTP specifications we used did not
contain any constraint on bounds on values at the HLPSL level. However, we can test
variables to see if it was possible for Bogor to identify test sequences containing illegal
(or out of range) values. To do this, we simply inserted relational expressions within
the assertion statements and performed the model check again. As before, for the test
sequences which did not satisfy the assertion condition, “Assertion Failed” counter ex-
amples were returned, hence identifying protocol traces which produced illegal values.
Additionally, we could also initialise the variables with different starting values and
re-perform the model check and see the results.

The ability to modify the BIR code is a definite pragmatic advantage. As program-
mers are more comfortable with BIR than HLPSL, they can alter the BIR code to gen-
erate tests not directly covered by the high-level specification of security properties. For
instance, situations where messages are dropped, replicated or modified can be added
in the BIR model. Also the effect of different message passing mechanisms can be
tested. This simplifies the translation scheme as otherwise we need to define a general
translator that is parametrised to produce different output.

In summary we have enabled the generation of test sequences for security properties
which are closer to the implementation from a high-level specification. By translating a
high-level language (HLPSL can be viewed as a sugared form of TLA for security pro-
tocols) into an object-oriented language (BIR), the tester is given a model that resem-
bles an implementation. By using a model checker for BIR the advantages of counter
examples as testing sequences is maintained.

5 Conclusion

We have demonstrated the practicability of constructing an intermediary model to use
for automatically deriving test sequences specifically based on predefined security goals.
To show this, we used BIR as the modelling language for our intermediary model and
Bogor [17] as our model checking tool for producing test cases. As a result, we were
successfully able to construct an intermediary model which was produced from a higher-
level, more abstract specification, but appeared more closely aligned to an actual imple-
mentation. Furthermore, we found this approach feasible in regards to automatically
generating test sequences both suitable and reusable for testers to apply to a working
protocol implementation. We have combined the advantages of two specification frame-
works (HLPSL [13] and BIR) in a non-standard way (at least for BIR) to generate more
realistic test sequences.

Enabling Security Testing from Specification to Code 165

The work reported here can be viewed as a specific example of providing descrip-
tions at different levels of abstraction (one for specifications and the other for model-
based test generation). The need for such an approach has been argued by Prenninger
and Pretschner [22]. They make a distinction between test models and specification
models as they argue for appropriate levels of abstraction for all aspects including data,
communication and the functional behaviour. We have shown how HLPSL and BIR
provide different but related features with the HLPSL specifications useful for high-
level specification and BIR useful for lower-level test generation. It will be interesting
to adapt the ideas in this paper with the notion of mutating specifications [9] to generate
other types of test sequences. This can be done at both the HLPSL and the BIR level.

Acknowledgements

The authors thank Jorge Cuellar from Siemens Research for his assistance in explaining
HLPSL and its use in protocol specification.

References

1. Bowen, J.P., Bogdanov, K., Clark, J., Harman, M., Hierons, R., Krause, P.: FORTEST: For-
mal methods and testing. In: Proc. COMPSAC 02: 26th IEEE Annual International Computer
Software and Applications Conference, Oxford, UK, IEEE Computer Society Press (2002)
91–101

2. Dick, J., Faivre, A.: Automating the Generation and Sequencing of Test Cases from Model-
Based Specifications. In: Formal Methods Europe. Number 670 in LNCS (1993) 268–284

3. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state machines from
abstract state machines. In: Proceedings of the International symposium on Software testing
and analysis, ACM Press (2002)

4. Hartman, A., Nagin, K.: The agedis tools for model based testing. In: Proceedings of the
2004 ACM SIGSOFT international symposium on Software testing and analysis, ACM Press
(2004) 129–132

5. Thompson, H.H., Whittaker, J.A., Mottay, F.E.: Software security vulnerability testing in
hostile environments. In: Proceedings of the 2002 ACM symposium on Applied computing,
Madrid, Spain (2002) 260–264

6. Whittaker, J.A., Thompson, H.H.: How to Break Software Security. Addison Wesley (2004)
7. Jürjens, J., Wimmel, G.: Specification-based testing of firewalls. In Bjørner, D., Broy, M.,

Zamulin, A., eds.: Andrei Ershov 4th International Conference ”Perspectives of System In-
formatics” (PSI’01). Number 2244 in LNCS, Springer Verlag (2002) 308–316

8. Sullivan, K., Yang, J., Coppit, D., Khurshid, S., Jackson, D.: Software assurance by bounded
exhaustive testing. In: Proceedings of the 2004 ACM SIGSOFT international symposium on
Software testing and analysis, ACM Press (2004) 133–142

9. Wimmel, G., Jürjens, J.: Specification-based test generation for security-critical systems
using mutations. In: Proceedings of 4th International Conference on Formal Engineering
Methods (ICFEM). Number 2495 in LNCS, Shanghai, China, Springer-Verlag (2002) 471–
482

10. Yang, J., Kremenek, T., Xie, Y., Engler, D.: Meca: an extensible, expressive system and
language for statically checking security properties. In: Proceedings of the 10th ACM con-
ference on Computer and communication security, ACM Press (2003) 321–334

166 S. Bracher and P. Krishnan

11. IOTP: Version 1.0-RFC 2801 (Informational). http://www.ietf.org/rfc/rfc2801.txt (2000)
12. Chevalier, Y., Compagna, L., Cuellar, J., Drieslma, P.H., Mantovani, J., Mödersheim, S.,

Vigneron, L.: A high level protocol specification language for industrial security-sensitive
protocols. Automated Software Engineering 180 (2004) 193–205

13. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J., Drielsma,
P.H., He+m, P., Mantovani, J., Moedersheim, S., von Oheimb, D., Rusinowitch, M., Santiago,
J., Turuani, M., Vigan+, L., Vigneron, L.: The avispa tool for the automated validation of
internet security protocols and applications. In: Computer Aided Verification (CAV) Tool
presentation. (To appear 2005)

14. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Addison-Wesley (2002)

15. Basin, D., Mödersheim, S., Vigano, L.: An on-the-fly model-checker for security protocol
analysis. In Snekkenes, E., Gollmann, D., eds.: Proceedings of ESORICS 03. Number 2808
in LNCS (2003) 253–270

16. Corbett, J., Dwyer, M., Hatcliff, J., Pasareanu, C., Robby, Zheng, H.: Bandera : Extract-
ing Finite-state Models from Java Source Code. In: Proceedings of the 22nd International
Conference on Software Engineering. (2000) 439–448

17. Robby, Dwyer, M.B., Hatcliff, J.: BOGOR: An Extensible and Highly-Modular Software
Model Checking Framework. In: Proceedings of the 11th ACM SIGSOFT Symposium on
Foundations of Software Engineering jointly held with 9th European Sofware Engineering
Conference, ACM Press (2003) 267–276

18. Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular Verification of Software Com-
ponents in C. In: Proceedings of the 25th International Conference on Software engineering,
IEEE Computer Society (2003) 385–395

19. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Software Verification with BLAST. In:
Proceedings of the Tenth International Workshop on Model Checking of Software (SPIN),
Lecture Notes in Computer Science 2648, Springer-Verlag (2003) 235–239

20. Gargantini, A., Heitmeyer, C.: Using Model Checking to Generate Tests from Requirements
Specifications. In Nierstrasz, O., Lemoine, M., eds.: Software Engineering–ESEC/FSE.
Number 1687 in LNCS, Toulouse, France, Springer Verlag (1999) 146–162

21. Jéron, T., Morel, P.: Test generation derived from model-checking. In Halbwachs, N.,
Peled, D., eds.: Computer Aided Verification, CAV ’99. Number 1633 in LNCS, Trento,
Italy, Springer-Verlag (1999) 108–121

22. Prenninger, W., Pretschner, A.: Abstractions for Model-Based Testing. In Pezze, M., ed.:
Proceedings Test and Analysis of Component-based Systems (TACoS0́4). (2004)

Development of Fault Tolerant Grid Applications
Using Distributed B

Pontus Boström and Marina Waldén

Åbo Akademi University, Department of Computer Science,
Turku Centre for Computer Science (TUCS),

Lemminkäisenkatu 14 A, 20520 Turku, Finland
{Pontus.Bostrom, Marina.Walden}@abo.fi

Abstract. Computational grids have become popular for constructing
large scale distributed systems. Grid applications typically run in a very
heterogeneous environment and fault tolerance is therefore very impor-
tant for their correctness. Since the construction of correct distributed
systems is difficult with traditional development methods we propose
the use of formal methods. We use Event B as our formal framework,
which we extend with new constructs such as remote procedures and
notifications for reasoning about grid systems. The extended language,
called Distributed B, ensures that the application can handle both node
and network failures. Furthermore, the new constructs in Distributed B
enable straightforward implementation of the specifications, as well as
automatic generation of the needed proof obligations.

Keywords: Event B, Grid computing, Fault tolerance, Domain specific
languages, Language extensions, Stepwise development.

1 Introduction

Computational grids have become a popular approach to handle vast amounts of
available information and to manage computational resources. Examples of areas
where grids have been successfully used for solving problems include biology,
nuclear physics and engineering. Grid computing [8] is a distributed computing
paradigm that differs from traditional distributed computing in that it is aimed
toward large scale systems that even span organizational boundaries. Since grid
applications run in a very heterogeneous computing environment fault tolerance
is important in order to ensure their correct behaviour.

The development of correct grid applications is difficult with traditional soft-
ware development methods. Hence, formal methods can be beneficial in order to
ensure their correctness and structure their development from specification to
implementation. The Action Systems formalism [4] is a formal method that is
well suited for developing large distributed and concurrent systems, since it sup-
ports stepwise development. However, it lacks good tool support. The B Method
[1], on the other hand, is a formal method provided with good tool support, but
originally developed for construction of sequential programs. The B Method can

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 167–186, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

168 P. Boström and M. Waldén

be combined with Action Systems in order to formally reason about distributed
systems as in the related methods B Action Systems [16] and Event B [2, 3]. B
Action Systems models Action Systems in the B Method, while Event B also
extends original B with new constructs. In this paper we use Event B as the
basis for our work.

With generic formal languages like Event B, specifications are often uninten-
tionally constructed in such a way that they cannot be implemented or are very
difficult to implement efficiently. This can be due to synchronisation issues or
the maintenance of atomicity of events. We have previously added extensions [5]
to Event B to remedy this problem and to enable reasoning about grid appli-
cations using grid communication primitives. However, the extended Event B,
referred to as Distributed B, did not consider fault tolerance. Here we will modify
Distributed B to enable us to develop also fault tolerant grid applications.

The language Distributed B was designed for developing Grid applications
using the Globus Toolkit [11] middleware. We here further develop this lan-
guage to enable us to construct fault tolerant grid applications using only the
fault tolerance mechanisms present in Globus toolkit. We add new constructs
for handling exceptions raised during remote procedure calls and timeouts to
handle lost notifications. These new features introduced to Event B force the
developer to consider the grid environment and fault tolerance throughout the
development. Furthermore, the constructs are introduced in such a manner that
all needed proof obligations can be automatically generated and the system can
be directly implemented.

In Section 2 we give an overview of the grid technology. Event B and the
Distributed B extensions are presented in Section 3. In Section 4 we discuss the
failure modes and the fault tolerance mechanisms used. Section 5 presents the
extensions for developing fault tolerant grid applications. Implementation issues
are discussed in Section 6 and in Section 7 we conclude.

2 Grid Systems

The purpose of grid systems is to share information and computing resources
even over organizational boundaries. This requires security, scalability and pro-
tocols that are suited for Internet wide communication. The Open Grid Service
Architecture (OGSA) [9] aims at providing a common standard to develop grid
based applications. This standard defines what services a grid system should
provide. A technical infrastructure specification defined by Open Grid Service
Infrastructure (OGSI) [6] gives a precise definition of what a grid service is. The
Globus Toolkit 3.x [11] is an implementation of the OGSI specification that has
become de facto standard toolkit for implementing grid systems. We have chosen
this toolkit as grid middleware for our extensions to Event B.

Grid systems usually have a client-server architecture, where the client initi-
ates communication with the server that only responds to the client’s request. A
client may access several servers concurrently. In our grid applications a server
is referred to as a grid service. Grid services as implemented in Globus Toolkit

Development of Fault Tolerant Grid Applications Using Distributed B 169

provide features such as remote procedures, notifications, services that contain
state, transient services and service data. The main communication mechanism
of grid services is remote procedure calls from client to grid service. If a call is
unsuccessful the Globus toolkit will raise an exception for the programmer to
handle. By using notifications a grid service can asynchronously notify clients
about changes in its state. The state of grid services is preserved between calls
and grid service instances can be dynamically created. Service data adds struc-
tured data to any grid service interface. This way not only remote procedures,
but also variables are available to clients. Furthermore, Globus Toolkit contains
an index service for managing information and keeping track of different types
of services in the grid.

A grid application developed with Globus toolkit can be viewed as a collection
of remote objects. A class defining a grid service can be used by first creating an
instance of it with a specified grid service handle. These instances correspond to
remote objects in Java RMI [14] or CORBA [14] and they can be used almost
like normal local objects.

3 The Distributed B Extensions

Since constructing correct distributed applications is difficult with traditional
development methods we here propose the use of formal methods to ensure their
correctness. We have chosen to use Event B [2, 3], since it is a well supported for-
malism for modelling distributed systems. Event B is based on the B Method by
Abrial [1] and Action Systems by Back and Kurki-Suonio [4]. Grid applications
can be specified in Event B. However, it is not straightforward to construct these
specifications in such a manner that they can be efficiently implemented. Earlier
we proposed extensions to Event B [5] for specifying and implementing grid ap-
plications. These extensions introduced grid features such as remote procedure
calls and notifications to Event B. The semantics of the extensions is given by
their translation to B. Note that we translate to B and not Event B, since the
current tools for Event B also translate the specifications to B for verification.

We will here present the Distributed B extensions to Event B by a schematic
example of a grid application. Furthermore, we show how these extensions are
translated to B for verification. The abstract specification of an application is
first written in Event B. Using a special grid refinement grid features are then
introduced into the system in a stepwise manner. For a more formal treatment
of the extensions the reader is referred to our previous paper [5].

3.1 Event B

The abstract specification of a grid application is given in a system-model written
in Event B. A system-model contains constructs for defining sets, variables, an
invariant, as well as events defining the behaviour of the component. The events
consists of guarded substitutions. The semantics of the substitutions are given
by the weakest precondition calculus introduced by Dijkstra [7]. When the guard

170 P. Boström and M. Waldén

of the event evaluates to true the event is said to be enabled. Enabled events are
chosen non-deterministically for execution. When there are no enabled events
left the event system terminates.

SYSTEM
C

VARIABLES
v

INVARIANT
I(v)

INITIALISATION
Init(v)

EVENTS
E1 =̂

ANY y WHERE G1(v, y) THEN S1(v, y) END ;
E2 =̂

WHEN G2(v) THEN S2(v) END
END

The variables-clause defines a set of variables, v. The invariant I(v) defines
the type of these variables as well as additional properties that should be pre-
served during the execution of the system. The initialisation Init(v) assign initial
values to the variables. The events-clause contains the events, here E1 and E2,
that describe the behaviour of the system. In event E1 the values of the local
variables y are non-deterministically chosen. When the predicate G1(v, y) eval-
uates to true the event is enabled and the substitution S1(v, y) can be executed.
The event E2 has no local variables and when G2(v) evaluates to true, S2(v) can
be executed. When both guards G1(v, y) and G2(v) evaluates to false the event
system terminates.

3.2 The Grid Service Machine

The grid service machine [5] has been introduced for giving the abstract specifi-
cation of grid services. It extends the system model of Event B with constructs
for specifying remote procedures and notifications to send. The grid service ma-
chine can be viewed as a class of which clients can obtain remote objects.

The example grid service machine presented below has a set of variables x,
the remote procedures Proc1 and Proc2, as well as the event EA. Moreover,
it can send notifications N1 and N2. A client can call the remote procedures
and thereby enable the event. The event is then executed concurrently with
the events of the client. When all the events in the grid service has become
disabled a notification is sent to the client. The client can obtain the result of
the computation, xi, by a remote procedure call to the remote procedure Proc2.

In order to give our new constructs meaning and to use the tool support of
B the grid service machine is translated to an ordinary B machine. Throughout
this subsection the grid service machine is presented in the left column and its
translation in the right one.

The B translation of the grid service machine generates an additional set, a
constant and a variable. These are needed to model the instance management
in B.

Development of Fault Tolerant Grid Applications Using Distributed B 171

GRID_SERVICE
A

VARIABLES
x

INVARIANT
xi ∈ T ∧ IA(x)

INITIALISATION
InitA(x)

MACHINE
AV

SETS
A_INSTS

CONSTANTS
A_null

PROPERTIES
A_null ∈ A_INSTS

VARIABLES
x, A_Insts

INVARIANT
A_Insts ⊆ A_INSTS∧
A_null /∈ A_Insts∧
xi ∈ A_Insts → T∧
IAV (x, A_Insts)

INITIALISATION
xi := ∅ ‖
. . .
A_Insts := ∅

The deferred set A_INSTS models all possible instances of grid service machine
A. The constant A_null models the empty instance, while the variable A_Insts
models the set of instances that are currently in use by the client. Note that a
grid service machine instance can only be accessed from one client. The variables
are translated to take into consideration the instances. Each variable becomes
a function from instance to the type defined in the grid service machine. The
variables in the translation are initialised to empty sets. The instance will be
initialised to InitA(x(inst)) according to the initialisation clause of the grid
service machine in the constructor of the instance.

The remote procedures are translated to take the instance as an additional
parameter. This is needed since a remote procedure call is always made to an
instance of a grid service machine. The events are also translated to take into
account every possible instance via an any-statement.

REMOTE_PROCEDURES
Proc1(p) =̂

PRE P (p)
THEN Sp(x, p)
END ;

r ← Proc2 =̂
BEGIN r := xi

END

EVENTS
EA =̂

WHEN GA(x)
THEN SA(x)
END ;

OPERATIONS
Proc1(inst, p) =̂

PRE inst ∈ A_Insts ∧ P (p)
THEN Sp(x(inst), p)
END ;

. . .

EA =̂
ANY inst WHERE

inst ∈ A_Insts
THEN

WHEN GA(x(inst))
THEN SA(x(inst))
END

END

Notifications to be sent are defined in the notifications-clause.

NOTIFICATIONS
N1 =̂

GUARANTEES Q1(x)
END ;

N2 =̂
GUARANTEES Q2(x)
END ;

END

172 P. Boström and M. Waldén

Each notification consists of a guarantees-statement. The guarantees-statement
means that a certain condition Qi(x) holds in this grid service when the cor-
responding notification is sent. The notification handling is performed in the
client. However, an invariant is added in the grid service machine to ensure
that when the event system terminates the guarantees-statement of at least
one notification evaluates to true, ∀inst.(inst ∈ A_Insts ∧ ¬GA(x(inst)) ⇒
(Q1(x(inst)) ∨ Q2(x(inst)))).

The translated B machine contains two automatically generated operations.
These are the constructor and destructor of instances.

r ← A_GetNew =̂
ANY inst WHERE

A_Insts
= A_INSTS − {A_null}∧
inst ∈ A_INSTS − A_Insts∧
inst
= A_null

THEN
A_Insts := A_Insts ∪ {inst} ‖
InitA(x(inst)) ‖
r := inst

END ;

A_Destroy(inst) =̂
PRE inst ∈ A_Insts
THEN

A_Insts := A_Insts − {inst}
xi := {inst} << |xi ‖
. . .

END
END

The constructor adds the instance to the set of used instances and initialises it.
In order to find instances to use, the addresses of all the instances are stored in
the index service of Globus toolkit. The client can then locate a new instance by
asking the index service to return the address to new free ones. The destructor
of instances removes the instance from the set of used instances and modifies
the variables x to reflect this change.

3.3 The Grid Refinement Machine

One of the benefits of Event B is that it supports refinement and thereby it en-
ables stepwise development of systems. Refinement of a component preserves the
behaviour of the abstract component while making it more concrete by adding
variables and additional behaviour (events). An event is said to refine another
event if the guard is strengthened and the behaviour of the substitutions is pre-
served.

In order to refine grid service machines and for introducing grid features to
ordinary Event B specifications we introduce a grid refinement machine. The
grid refinement machine extends the ordinary refinement of Event B with con-
structs for accessing grid service machine instances, refining remote procedures
and handling notifications. The instances of grid service machines are modelled
as ordinary variables. Remote procedure calls are modelled by ordinary oper-
ation calls. When all events in a grid service machine instance have become

Development of Fault Tolerant Grid Applications Using Distributed B 173

disabled a notification is received from it. The notification handlers in the grid
refinement are then executed once for each notification. In order to verify that
a grid refinement machine is a refinement of a more abstract specification it is
translated to a refinement machine in B.

Grid refinement machines are here presented with the example C1 that uses
instances of grid service machine A presented in Subsection 3.2. This grid re-
finement is a refinement of the abstract system C presented in Subsection 3.1.
The grid refinement C1 contains the old variables v from C, new variables w and
a set of instances a1, . . . , an of grid service machine A. The events E1 and E2 in
the abstract specification are refined by more concrete events. The grid refine-
ment machine also contains a new event F that only modifies the new variables
w and a notification handler N1Handler for handling notifications of type N1
from instances of A. A notification handler is also considered to be a new event
and, hence, it can only assign to new variables. The grid refinement machine C1
is given below in the left column and its translation to B in the right.

In Distributed B a new structuring mechanism [5], references, is used in the
grid refinement to handle instances of grid service machines. This construct is
translated into an includes statement in B. The concurrent execution of the
events in the grid service machine instances and grid refinement is modelled by
promoting all the events in the grid service machine into the refinement in the
B model.

GRID_REFINEMENT
C1

REFINES
C

REFERENCES
A

VARIABLES
v, w, a1, . . . , an

INVARIANT
a1 ∈ A∧
. . .
an ∈ A∧
J(v, w, a1, . . . , an)

REFINEMENT
C1V

REFINES
C

INCLUDES
AV

PROMOTES
EA

VARIABLES
v, w, a1, . . . , an, A_notif

INVARIANT
a1 ∈ A_INSTS∧
a1 ∈ A_Insts ∪ {A_null}∧
. . .
JV (v, w, a1, . . . , an)∧
A_notif ∈ A_Insts → BOOL

We introduce variables modelling instances of A, ai. The type of the variables ai

are given in the grid refinement as A which is then translated to the correspond-
ing representation of instances in the traditional B model. The invariant J is
also modified by the translation to take into account the changed representation
of instances.

The notification handler can only be executed once for each notification from
A. Hence, we introduce variable A_notif of type function from the instances in
use to boolean values. If the value is true for an instance, notifications can be
received from it. If the value is false the notification has already been handled.

The initialisation of the grid refinement is similar to its B translation. The
automatically generated variable A_notif is initialised to the empty set, which
corresponds to the value of A_Insts.

174 P. Boström and M. Waldén

INITIALISATION
ai := A_null ‖
. . .
an := A_null ‖
Init′(v, w)

INITIALISATION
a1 := A_null ‖
. . .
Init′(v, w) ‖
A_notif := ∅

Events of the grid refinement and the B translation are again similar.

EVENTS
E1 =̂

ANY y WHERE
G′

1(v, y)
THEN

S′
1(v, y);

ai ← A_GetNew
END ;

E2 =̂
WHEN G′

2(v, w)
THEN S′

2(v, w)
END ;

F =̂
WHEN H(v, w, ai)
THEN

Sn(w) ‖
ai.Proc(f(v, w))

END ;

OPERATIONS
E1 =̂

ANY y WHERE
G′

1(v, y)
THEN

S′
1(v, y);

ai ← A_GetNew;
A_notif(ai) := TRUE

END ;
E2 =̂

WHEN G′
2(v, w)

THEN S′
2(v, w)

END ;

F =̂
WHEN H(v, w, ai)
THEN

Sn(w) ‖
Proc(ai, f(v, w));
A_notif(ai) := TRUE

END ;

The remote procedure calls are translated in such a way that the instance is
given as the first parameter to the procedure. Furthermore, the assignment
A_notif(inst) := TRUE is added after each remote procedure call and af-
ter the call to A_GetNew. This is done to enable the correct handling of no-
tification originating from that instance. Note that event above E2 does per-
form any remote procedure calls and hence it does not contain assignment
A_notif(inst) := TRUE.

Finally we study the notification handlers.

NOTIFICATION_HANDLERS
N1Handler =̂

NOTIFICATION N1
SOURCE inst ∈ A
THEN TN1(inst, w, ai, aj)
END

END

N1Handler =̂
ANY inst WHERE

inst ∈ A_Insts∧
A_notif(inst) = TRUE∧
¬GA(x(inst)) ∧ Q1(x(inst))

THEN
TN1(inst, w, ai, aj);
A_notif(inst) := FALSE

END
END

Notifications of type N1 from instance inst of A are handled when all the
events in the instance have become disabled, ¬GA(x(inst)), and the condition in
the guarantees-statement for that notification holds, Q1(x(inst)). The variable
A_notif is assigned false for this instance to denote that the notification has
been handled.

Proof Obligations. Since we develop grid applications in a stepwise manner,
we need to show that each new specification is a refinement of the specification
developed in the previous step. In order to show that an Event B or a Distributed

Development of Fault Tolerant Grid Applications Using Distributed B 175

B component is a refinement of another component the following properties must
hold [2, 16]:

1. The initialisation of the concrete specification has to be a refinement of the
initialisation of the abstract specification.

2. All events in the abstract specification have to be refined by corresponding
events in the concrete specification.

3. New events that refine skip can be introduced in the concrete specification.
4. The new events have to terminate when executed in isolation.
5. The concrete system is not allowed to terminate more often than the abstract

system.
6. The guard of a remote procedure cannot be strengthened.

The proof obligations for rules 1-5 [2, 16] can be automatically generated by the
tools of Event B. The proof obligation for rule 6 [16] needs some additional con-
structs. Alternatively, the developer can be restricted to only use non-guarded
statements in the remote procedures. The proof obligations can then be dis-
charged by the automatic and interactive provers for B.

4 Fault Tolerance Using Globus Toolkit

Grid applications run in a very heterogeneous computing environment. This
means that fault tolerance is highly important for the correct behaviour of the
application. In this paper we develop extensions to Event B for developing fault
tolerant grid applications using the fault tolerance mechanisms in Globus toolkit.
Currently the only fault tolerance mechanism in Globus toolkit is exceptions due
to failed remote procedure calls. More advanced fault tolerance mechanism such
as Replication [14] and Check pointing [14] are not yet supported by the toolkit.
Even with support for advanced fault tolerance mechanisms in the middleware
the application needs to consider faults, since these mechanisms in the middle-
ware might not be sufficient to handle the faults transparently.

It is not feasible to construct a system that can tolerate all types of faults
[14]. We will limit the fault tolerance of Distributed B to handle two types of
faults, which we consider to be most important: Firstly, a grid service instance
can stop (crash) and be restarted. Secondly, network connections can fail to
deliver messages to desired destinations. We do not consider situations where grid
services does not satisfy its specification or where an attacker can deliberately
force a grid service instance to produce erroneous results since we have proved
our application correct and Globus toolkit has a very comprehensive security
infrastructure. Furthermore, the grid middleware can use TLS or other secure
protocols for communication and therefore we can assume that data has not
been corrupted during transmission.

4.1 Faults and Fault Detection

We can identify five distinct faults that can occur in remote procedure calls from
a client to a server grid service instance [14]:

176 P. Boström and M. Waldén

1. The server grid service instance has crashed before the call.
2. The network connection fails when calling a remote procedure.
3. The server instance fails during the call.
4. The network connection fails when returning the result.
5. The client crashes during the remote procedure call.

In the client the faults 1-4 are not easily separated from each other and they
are handled by not using the failed server grid service instance anymore. These
faults are directly detected in the client by the Globus toolkit middleware that
then raises an exception. However, the server grid service instance can crash and
be restarted and it needs to detect the crash in order to respond correctly to the
client. A restart can be detected if the instance creates a file on startup using
its address as the filename. If the file creation fails due to the fact that the file
already exists, it can be assumed that the grid service has been restarted. This
holds, since file creation is atomic if the correct method is used.

In order to handle the fifth fault above the called instance needs to be able to
identify when the calling client has failed, i.e., the instance has become an orphan
[14]. To discover this we introduce an is-alive check in the client and an is-alive
timeout in the server grid service instance. We first introduce a new remote
procedure in every grid service instance called isAlive. This remote procedure
returns true, if the instance is accessible. In the client the is-alive check for a
given grid service instance consists of calling remote procedure isAlive of the
instance periodically with a specified time interval. If the call fails, an exception
is raised by the Globus toolkit and the client knows that there is a problem
with the instance or with the network connection. The client then stops using
the instance. If the isAlive procedure was not called with the specified time
interval in the server grid service instance, an is-alive timeout is triggered. This
means that the client has either failed or stopped using the instance. The server
grid service instance is then reset in order to enable other clients to use it. It is
important to note that the times for the timeout mechanism should be chosen
so that the client will get the exception for a failed call to isAlive before the
server resets itself. This can be accomplished by choosing the timeout in the
server grid service instance to be greater than the time period that the client
calls isAlive with an appropriate amount of buffer time. This check for orphans
is implemented in a layer on top of Globus toolkit that then provides an easy to
use interface to Distributed B.

There is an additional fault, not directly related to remote procedure calls,
that needs to be considered when allocating new grid service instances. There
might not be any available grid service machine instances of the correct type
when the client tries to obtain new instances to use. The problem can be due
to broken network connections, a broken index service or exhaustion of the pool
of available services. Note that the index service is here a single point of failure
for the grid application. Hence, if it fails, the application might not function
correctly. The index service could, however, be transformed into a replicated
index service on several computers or we could use a peer-to-peer index service.

Development of Fault Tolerant Grid Applications Using Distributed B 177

f1

g2

h2h1

g1

Fig. 1. The tree formed by the grid service instances

The instance allocation is also implemented in a layer on top of Globus toolkit
to present a more easy to use interface to Distributed B.

4.2 Use Cases Describing the Fault Tolerance Mechanisms

In order to clarify the behaviour of the system in the presence of faults we here
present the use cases for the two most complicated failure modes. We consider
a tree of grid service instances as shown in Figure 1. The grid service instance
f1 references instances g1 and g2, where g1 then references h1 and h2.

The Middle Node Crashes. The first use case describes the actions taken
when the grid service instance g1 crashes. The instance g1 is here a middle node
that has client f1 and has references to grid service instances h1 and h2.

1. Instance g1 crashes. There are now two cases to consider, steps 2 and 3.
2. If the instance g1 is unreachable from its client, instance f1:

(a) An exception is raised in f1, due to a failed remote procedure call or
is-alive check. (A notification timeout can also be triggered by this con-
dition).

(b) The instance g1 is removed from the set of used instances in f1.
3. If the instance g1 is reachable from f1 but it has recovered from a failure

and is in a restarted state:
(a) The instance g1 waits for an is-alive timeout. It raises exceptions for the

clients remote procedure calls and is-alive checks. That way g1 can make
sure that the client f1 knows that g1 has failed.

(b) Instance f1 detects that instance g1 has failed and it removes it from the
set of used instances.

(c) The instance g1 receives an is-alive timeout and resets itself.
4. The instances hi notice that g1 has failed when they receive is-alive timeouts

and they are then reset.

The Network Connection Fails. The second use case describes the behaviour
of the system when a network connection failure between, the client f1 and the
middle node g1 is noticed.

1. The network connection between f1 and g1 fails.
2. An exception is raised in f1 due to failed remote procedure call or is-alive

check.

178 P. Boström and M. Waldén

3. The instance f1 removes g1 from its set of used instances.
4. The instance g1 receives an is-alive timeout, since its services are not re-

quested anymore. It then resets itself.
5. The instances hi reset themselves when they receive is-alive timeouts due to

the reset of g1.

Final Notes. What applies to a middle node gi also applies to a leaf node hi.
The only difference is that we do not have to consider any child nodes. If the
root node f1 crashes the program terminates and no result is obtained.

5 Fault Tolerance in Distributed B

Previously we have developed a language called Distributed B [5] based on Event
B for constructing fault free grid applications. In this section we modify the
language to also incorporate fault tolerance mechanisms as described in the
previous section, Section 4. Distributed B provided a way to implement grid
applications and the fault tolerance mechanisms will also be introduced in a
manner that ensures that they can be implemented.

5.1 Specification of Instance Management

A challenging problem when introducing fault tolerance is the management of
instances. In order to correctly reason about instances we need to have a model
of the instance management. The model in the original version of Distributed
B is described in Subsection 3.2. During the translation of grid service machine
A to original B we there added features such as a set A_INSTS modelling
all instances of A, a constant A_null modelling the empty instance, a variable
A_Insts modelling the instances in use, as well as a constructor and destructor
of instances. This model of the instance management is not changed when we
introduce fault tolerance into Distributed B. However, we did not specify how an
instance should be treated if a fault was encountered during a remote procedure
call to it or if notification was never received from it. In order to also handle
faults, an instance ai of A is immediately removed from the set of instances in
use, A_Insts, if a problem with it is encountered.

The model of instance management described above serves as an abstract
specification that need to be implemented. To increase the confidence in the
system it can be developed in a stepwise manner using, e.g., Event B. The model
is refined to consider the behaviour of grid service instances, the communication
between them, as well as the faults described in Section 4.

We here give an overview of a refined, more concrete model of the behaviour of
an instance of A using the statechart diagram shown in figure 2. The users of fault
tolerant Distributed B will not have to consider this refined model of instance
management, since it is built into the language. It only serves as an illustration
on how the instance management is implemented using Globus toolkit. The
instance can be in three different states: idle when the instance is not reserved

Development of Fault Tolerant Grid Applications Using Distributed B 179

idle busy

restarted

ia_timeout restart

restart

reserve

release

ia_timeout

Fig. 2. The behaviour of a grid service instance

by a client; busy when a client has reserved the instance and restarted when the
instance has detected that it has been restarted. The event reserve is generated
when a client reserves the instance by a call to the operation A_GetNew. The
reservation is modelled by the transition from state idle to state busy. When
the event reserve occurs the instance is initialised, modelled in Dsitributed B
by executing the initialisation-clause of the grid service machine. The transition
release from state busy to state idle models that the client releases the instance
by a call to operation A_Destroy. The event ia_timeout denotes that an is-
alive timeout occurred and the instance is reset, i.e., it enters the state idle. The
restart event models restart of the grid service instance by taking the instance
to state restarted. When a grid service instance belongs to the set of instances
in use, A_Insts, it is in either state busy or restarted, since it has then been
reserved by a client. Note that the instance will raise an exception when its
remote procedures are called in state restarted.

5.2 Extensions to Distributed B

In order to handle faults as described in Section 4 and to handle instances
as described in the previous subsection we add new constructs to the original
version Distributed B. New constructs are needed for handling exceptions raised
from remote procedures and timeouts for notifications. We also add constructs
for handling orphans with the is-alive check. The mechanism for handling faults
only affects the grid refinement machine and hence, the constructs in the grid
service machine remains the same. For simplicity we will here consider only grid
applications that do not have middle nodes. Hence, a refinement of a grid service
machine cannot here reference other grid service machines.

As an example of a fault tolerant grid refinement machine we modify grid re-
finement C1 in Subsection 3.3 to handle faults. The fault tolerant grid refinement
CFT has the same variables (v, w) and instances (a1, . . . , an) as C1. The remote
procedure calls to instance ai are modified to consider faults. The notification

180 P. Boström and M. Waldén

handling mechanism is also modified to consider timeouts due to lost notifica-
tions. Furthermore, we need an additional event to handle exceptions raised by
is-alive checks. The fault tolerant Distributed B models are again translated to
B for verification purposes. Below the fault tolerant Distributed B constructs
are given in the left column and their translation to B is given to the right. The
complete example can be found in Appendix A.

Remote Procedures. Remote procedure calls can fail in several ways as out-
lined in Subsection 4.1. We add a call -substitution for calling remote procedure
in order to model the exception handling mechanism present in Java and Globus
toolkit.

call_subst::=”CALL” operation_call
“EXCEPTION” NG_Substitution
“END”

The call -part of this construct contains a remote procedure call. The exception-
part then gives the non-guarded substitution that is executed if an exception is
raised during the call. The call -substitution is used whenever a remote procedure
in a grid service instance is called as shown in event F . The call -substitution
also needs to be used when calling A_GetNew to allocate a new instance since
it can fail as described in Subsection 4.1.

F =̂
WHEN H(v, w, ai)
THEN

Sn(w) ‖
CALL ai.Proc(f(v, w))
EXCEPTION Tf (w, ai)
END

END

FOk =̂
WHEN H(v, w, ai)
THEN

Sn(w) ‖
Proc(ai, f(v, w));
A_notif(ai) := TRUE

END ;
FFail =̂

WHEN H(v, w, ai)
THEN

Sn(w) ‖
A_Destroy(ai);
A_notif := {ai} << |A_notif ;
Tf (w, ai)

END ;

The event F is translated to two separate operations in B, FOk and FFail,
which both refine the abstract specification of F . One operation, FOk, models
the successful execution of the remote procedure and the other, FFail, models
the failed execution [2]. The operation FOk is translated as F previously in
Distributed B, i.e., without the exception handler. In FFail the instance ai is
removed from the set of instances in use and the exception handler is executed.
The guard is identical in both events modelling that any remote procedure call
can fail.

Notifications. Failure of grid service instances can cause notifications to never
be sent or a failure of network connections can cause notification messages to
get lost. In order to detect this we introduce a timeout exception that occurs
when a notification has not arrived within the desired time. We do not specify

Development of Fault Tolerant Grid Applications Using Distributed B 181

the time explicitly in B but we model the timeout with an event that is chosen
non-deterministically for execution. The exact time is a detail that is considered
later during the implementation phase.

The grammar of the notification handler substitution is modified in order to
incorporate the timeout mechanism.

Notif_handler::=”NOTIFICATION” Name
“SOURCE” Name “:” Name
“THEN” NG_Substitution
“TIMEOUT” NG_Substitution
“END”

The notification-part gives the name of the notification and the source-part gives
the source of the notification as <instance>:<grid service machine>. When a
notification is received the non-guarded substitution in the then-part is exe-
cuted. The timeout-handler denotes the substitution that is executed when a
notification does not arrive within the desired time.

A notification handler for notification N1 from instance inst of A can be
defined as follows.

NOTIFICATION_HANDLERS
N1Handler =̂

NOTIFICATION N1
SOURCE inst ∈ A
THEN TN1(inst, w, ai, aj)
TIMEOUT Tt(inst, w, ai, aj)
END

N1HandlerOk =̂
ANY inst WHERE

inst ∈ A_Insts∧
A_notif(inst) = TRUE∧
¬GA(x(inst)) ∧ Q1(x(inst))

THEN
TN1(inst, w, ai, aj) ‖
A_notif(inst) := FALSE

END ;
N1HandlerFail =̂

ANY inst WHERE
inst ∈ A_Insts∧
A_notif(inst) = TRUE∧

THEN
A_Destroy(inst);
A_notif := {inst} << |A_notif ;
Tt(inst, w, ai, aj)

END

As for remote procedure calls, the notification handler N1Handler is translated
to two different operations in B, N1HandlerOk and N1HandlerFail. The no-
tification handler is a new event and hence, both translated operations have
to refine skip. The operation, N1HandlerOk, modelling successful notification
handling is translated as in previous version of Distributed B presented in Sub-
section 3.3. Failed delivery of a notification is modelled by the execution of the
timeout handler, N1HandlerFail. Since it is not known if all events in the grid
service machine instance inst of A have become disabled before the failure, only
A_notif(inst) = TRUE is present in the guard. The instance inst is also here
removed from the set of instances in use.

Checking if an Instance Is Alive. In order to handle orphans we introduce an
is-alive check in the grid refinement machine. This check is performed in the grid
refinement machine for all instances of all referenced grid service machines. If an

182 P. Boström and M. Waldén

instance is unavailable an exception is then raised. To handle these exceptions
we introduce a new clause is_alive_handlers

is_alive_handlers ::=”IS_ALIVE_HANDLERS” is_alive_handler+;
is_alive_handler ::= Name “=”

“SOURCE” Name “:” Name
“THEN” NG_Substitution
“END”

The handler substitutions for is-alive check exceptions consists of two parts; a
source given as <instance>:<grid service machine> and a non-guarded substi-
tution describing the behaviour of the system when an exception is raised . The
handler for grid service machine A is given below with its translation.

IS_ALIVE_HANDLERS
IAHandler =̂

SOURCE inst ∈ A
THEN Tia(inst, w, ai, aj)
END

END

IAHandler =̂
ANY inst WHERE

inst ∈ A_Insts
THEN

A_Destroy(inst);
A_notif := {inst} << |A_notif ;
Tia(inst, w, ai, aj)

END
END

The handler is translated to an any-substitution in B. The any-substitution
models that an exception can be raised at any time for all instances in use. The
handler for failed is-alive checks is, like the handlers for notifications, a new
event that refines skip. As for the failed remote procedure calls and notifications
we remove the failed instance from the set of used instances and remove all the
variables of the instance.

6 Implementation in Java

The grid application development in fault tolerant Distributed B continues until
all the non-determinism has been removed and all the used constructs can be
implemented, i.e., they belong to the implementable subset of the B language,
B0. When all substitutions of the system belong to the B0 language, they can be
automatically translated to Java [15]. The event system composed of all events
in the events-clause can be automatically translated to a while-loop in Java, if
all the guards Gi and the substitutions Si belong to the B0 language.

E1 =̂
WHEN G1
THEN S1 END
. . .
En =̂
WHEN Gn
THEN Sn END

while (true) {
if(G1) S1;
...
else if(Gn) Sn;
else <stop loop>;

}

Development of Fault Tolerant Grid Applications Using Distributed B 183

The place holder <stop loop> consists of statements that terminate the loop
in the main program and statements for sending notifications and pausing the
execution in implementations of grid service machines.

In the client the grid service instances are translated to objects encapsulat-
ing the grid specific features. These features include instance allocation, remote
procedure calls, notification handling, notification timeouts and management
of is-alive checks. In the implementation of grid service machines an additional
layer encapsulating grid features such as state management and is-alive timeouts
is inserted between the Globus toolkit and the translated grid service machine.
The code for the objects and the additional layer need to be manually created
once, but can then be reused in all Distributed B applications.

Java code is generated for each concrete grid refinement machine that is a
refinement of a grid service machine and for the root grid refinement machine
that is a refinement of an Event B model. When the code has been generated we
have implemented the grid application in a formal manner, where we can show
that the implementation is a correct refinement of the abstract specification.

7 Conclusions

We have earlier developed a language Distributed B [5] that extends Event B
for designing and implementing correct grid applications. In that paper we in-
troduced two new types of machines, grid service machine and grid refinement
machine, for handling grid specific issues in Event B. In this paper we have
modified Distributed B for developing fault tolerant and robust grid applica-
tions. We introduced exception handling to take care of exceptions raised due to
failed remote procedure calls, as well as timeouts to discover lost notifications.
In order to handle orphan grid service instances we introduced a special checking
mechanism and facilities to handle exceptions raised by it. These new features
force the developer to consider the fault tolerance of grid applications through-
out the development and enables formal proofs of correctness. Hence, we have
proposed a method for implementing fault tolerant grid applications where the
implementation can be proved correct with respect to its specification.

There are several middlewares comparable to Globus toolkit that support
advanced fault tolerance mechanisms. For example, fault tolerance in CORBA
[10, 14] is based on replication. In CORBA replicas of an object form an object
group. Object groups then provide replication transparency and failure trans-
parency. Replication is complementary to the mechanisms presented here and
both can be used together for developing very reliable grid applications. Fault
detection is an important part of a fault tolerant application. A service for de-
tecting faulty components in a grid environment using unreliable fault detectors
is presented in a paper by Stelling et al. [13]. However, the service is no longer
part of the Globus toolkit due to a number of deficiencies, such as excessive
resource usage and difficulties in supporting it.

From a performance perspective our fault tolerant language for developing
grid applications could be improved. One of the most challenging problems when

184 P. Boström and M. Waldén

constructing fault tolerant grid systems is to handle the orphan grid service
instances. Our approach uses timers and extra remote procedure calls, which
might not be optimal. The handling of orphans could be improved as discussed
in detail by Panzieri and Shrivastava [12] and by Tanenbaum and Steen [14].
Furthermore, the fault tolerance mechanism will immediately delete references
to grid service instances that experiences problems. This can lead to the deletion
of an entire subtree of instances for one failure. Hence, more efficient mechanisms
that would maintain the partial results should be investigated.

The language we proposed in this paper provides a convenient formal de-
velopment process for fault tolerant grid applications. The applications will by
construction have an architecture that is fault tolerant and implementable. Fur-
thermore, the applications are modelled in terms of grid primitives with a precise
meaning and the specifications of them will therefore be clear to understand. Our
approach to adapt Event B to the Globus Toolkit middleware is not limited to
that specific middleware, but it can be applied to other middlewares for dis-
tributed systems as well.

References

1. J. R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. J. R. Abrial, D. Cansell and D. Méry. Refinement and Reachability in Event B. In
H. Treharne et al, editors, proceedings of the 4th international conference of Z and
B users: ZB2005. LNCS 3455, Guildford, UK, pp. 144-163, Springer-Verlag, 2005.

3. J. R. Abrial and L. Mussat. Event B Reference Manual, 2001.
http://www.atelierb.societe.com/ressources/evt2b/
eventb_reference_manual.pdf. (accessed 10.08.2005)

4. R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with cen-
tralized control. In Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium of
Principles of Distributed Computing, pp. 131-142, 1983.

5. P. Boström and M. Walden. An extension of Event B for developing grid systems.
In H. Treharne et al, editors, proceedings of the 4th international conference of Z
and B users: ZB2005. LNCS 3455, Guildford, UK, pp. 144-163, Springer-Verlag,
2005.

6. K. Czajkowski, et. al. Open Grid Services Infrastructure, 2003.
http://www-unix.globus.org/toolkit/
draft-ggf-ogsi-gridservice-33_2003-06-27.pdf. (accessed 10.08.2005)

7. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall International, 1976.
8. I. Foster, C. Kesselman and S. Tuecke. The Anatomy of the Grid: Enabling Scalable

Virtual Organizations. The International Journal of Supercomputer Applications,
15(3), 2001.

9. I. Foster, C. Kesselman, J. Nick and S. Tuecke. The Physiology of
the Grid: An Open Grid Services Architecture for Distributed Systems
Integration. Open Grid Service Infrastructure WG, Global Grid Forum,
2002. http://www.globus.org/alliance/publications/papers/ogsa.pdf. (ac-
cessed 10.08.2005)

10. Object Management Group. Fault tolerant CORBA, 2001,
http://www.omg.org/docs/formal/01-09-29.pdf. (accessed 10.08.2005)

Development of Fault Tolerant Grid Applications Using Distributed B 185

11. The Globus Alliance. Globus Toolkit. 2005. http://www.globus.org/. (accessed
10.08.2005)

12. F. Panzieri and S. K. Shrivastava. Rajdoot: A Remote Procedure Call Mecha-
nism Supporting Orphan Detection and Killing. IEEE Transactions on Software
Engineering, 14(1), pp 30-37, 1988.

13. P. Stelling, C. DeMatteis, I. Foster, C. Kesselman, C. Lee, G. von Laszewski. A
Fault Detection Service for Wide Area Distributed Computations, Cluster Com-
puting, 2, pp. 117-128, 1999

14. A. S. Tanenbaum and M. Van Steen. Distributed systems principles and paradigms.
Prentice Hall. 2002

15. J. C. Voisinet, B. Tatibouet and A. Hammand. JBTools: An experimental plat-
form for the formal B method. In Proceedings of the inaugural conference on the
Principles and Practice of programming and Proceedings of the second workshop on
Intermediate representation engineering for virtual machines. National University
of Ireland, 2002

16. M. Waldén and K. Sere. Reasoning About Action Systems Using the B-Method.
Formal Methods in Systems Design, 13:5-35, 1998.

186 P. Boström and M. Waldén

A A Fault Tolerant Grid Refinement Machine

GRID_REFINEMENT
CF T

REFINES
C

REFERENCES
A

VARIABLES
v, w, a1, . . . , an

INVARIANT
a1 ∈ A∧
. . . an ∈ A∧
J(v, w, a1, . . . , an)

INITIALISATION
a1 := A_null ‖
. . .
Init′(v, w)

EVENTS
E1 =̂

ANY y WHERE
G′

1(v, y)
THEN

S′
1(v, y);

CALL ai ← A_GetNew
EXCEPTION Te

END
END ;

E2 =̂
WHEN G′

2(v, w)
THEN S′

2(v, w)
END ;

F =̂
WHEN H(v, w, ai)
THEN

Sn(w) ‖
CALL ai.Proc(f(v, w))
EXCEPTION Tf (w, ai)
END

END
NOTIFICATION_HANDLERS
N1Handler =̂

NOTIFICATION N1
SOURCE inst ∈ A
THEN TN1(inst, w, ai, aj)
TIMEOUT Tt(inst, w, ai, aj)
END

IS_ALIVE_HANDLERS
IAHandler =̂

SOURCE inst ∈ A
THEN Tia(inst, w, ai, aj)
END

END

REFINEMENT
CF T V

REFINES
C

INCLUDES
AV

PROMOTES
EA

VARIABLES
v, w, a1, . . . , an, A_notif

INVARIANT
a1 ∈ A_INSTS∧
a1 ∈ A_Insts ∪ {A_null}∧
. . .
JV (v, w, a1, . . . , an)∧
A_notif ∈ A_Insts → BOOL

INITIALISATION
a1 := A_null ‖
. . .
Init′(v, w) ‖
A_notif := ∅

OPERATIONS
E1Ok =̂

ANY y WHERE
G′

1(v, y)
THEN

S′
1(v, y);

ai ← A_GetNew;
A_notif(ai) := TRUE

END ;
E1Fail =̂ . . .
E2 =̂ . . .
FOk =̂

WHEN H(v, w, ai)
THEN

Sn(w) ‖
Proc(ai, f(v, w));
A_notif(ai) := TRUE

END ;
FFail =̂ . . .
N1HandlerOk =̂

ANY inst WHERE
inst ∈ A_Insts∧
A_notif(inst) = TRUE∧
¬GA(x(inst)) ∧ Q1(x(inst))

THEN
TN1(inst, w, ai, aj) ‖
A_notif(inst) := FALSE

END ;
N1HandlerFail =̂ . . .
IAHandler =̂

ANY inst WHERE
inst ∈ A_Insts

THEN
A_Destroy(inst);
A_notif := {inst} << |A_notif ;
Tia(inst, w, ai, aj)

END
END

Formal Methods Meet Domain Specific
Languages

Jean-Paul Bodeveix1, Mamoun Filali1, Julia Lawall2, and Gilles Muller3

1 IRIT Université Paul Sabatier,
118 route de Narbonne, F-31062 Toulouse Cedex, France

{bodeveix, filali}@irit.fr
2 DIKU University of Copenhagen, 2100 Copenhagen, Denmark

julia@diku.dk
3 Ecole des Mines de Nantes INRIA, LINA, 44307 Nantes cedex 3, France

Gilles.Muller@emn.fr

Abstract. In this paper, we relate an experiment whose aim is to study
how to combine two existing approaches for ensuring software correct-
ness: Domain Specific Languages (DSLs) and formal methods. As ex-
amples, we consider the Bossa DSL and the B formal method. Bossa is
dedicated to the development of process schedulers and has been used in
the context of Linux and Chorus. B is a refinement based formal method
which has especially been used in the domain of railway systems. In this
paper, we use B to express the correctness of a Bossa specification. Fur-
thermore, we show how B can be used as an alternative to the existing
Bossa tools for the production of certified schedulers.

Keywords: DSL, scheduling, formal methods, refinements, decision pro-
cedure.

1 Introduction

During the last decade, the correctness of software has been a major issue. Sev-
eral approaches have been proposed and tools supporting them have been im-
plemented, some of which have been used in industry. One approach is the use
of Domain Specific Languages (DSLs). A DSL contains domain-specific abstrac-
tions as well as domain-specific restrictions that enable verification of domain-
specific properties. Another approach is the use of formal methods. Such meth-
ods associate mathematically rigorous proofs with each step in software design
and development. In this paper, we consider how to combine these approaches,
by showing how a general purpose proof environment based on the B formal
method [1] can be used to express and verify some of the properties relevant to
the DSL Bossa [9].

The Bossa DSL is dedicated to the development of kernel-level process sched-
ulers and has been used in the context of Linux and the Chorus real-time op-
erating system. Process scheduling is at the heart of all operating system (OS)

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 187–206, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

188 J.-P. Bodeveix et al.

behavior, making verification critical in this domain. Bossa has thus been de-
signed with both programmability and verification in mind. It has a formal se-
mantics and provides high-level scheduling-specific abstractions that simplify the
programming of scheduling policies and make explicit information that is useful
in scheduler verification. These features have, for example, enabled undergrad-
uate students with no previous kernel programming experience to implement
scheduling policies in the Linux kernel without crashing the machine.

B is a refinement-based formal method that has been used for the develop-
ment of safety critical software, especially in the domain of railway systems [2, 4].
The main feature of a B development process is that it proves that the final code
implements its formal specification. In this paper, we use B to express the cor-
rectness of a Bossa specification. Furthermore, we show how B can be used as an
alternative to the existing Bossa tools for the production of certified schedulers.

The rest of this paper is organized as follows. Section 2 provides a review of
Bossa with respect to its language and the verifications performed by its com-
piler. Section 3 gives a brief overview of the B method. Section 4 elaborates the B
development of a Bossa specification. Section 5 describes how some of the proof
obligations generated by the B development can be discharged automatically.
Section 6 presents some related work. Section 7 draws some conclusions.

2 Bossa

This section introduces the Bossa DSL and the verifications performed by the
Bossa compiler.

2.1 Bossa in a Nutshell

We introduce the Bossa DSL using excerpts of an implementation of a Rate
Monotonic (RM) scheduling policy [5], shown in Figure 1. This policy manages
a set of periodic processes, each of which is associated with a period attribute.
Process election chooses the process that is ready to run and that has the short-
est period. RM scheduling is useful in the context of general-purpose operating
systems such as Linux for controlling multimedia applications and in the con-
text of real-time operating systems such as Chorus [7] for managing periodic
processes. The complete RM policy is implemented as 110 lines of Bossa code
and is available at the Bossa web site, http://www.emn.fr/x-info/bossa. A
grammar of the Bossa DSL is also available at this web site. Here, we focus on
the main features of the language: declarations and event handlers.

Declarations. The declarations of a scheduling policy define the process at-
tributes, process states, and processes ordering used by the policy.

The process declaration (line 2) lists the policy-specific attributes associated
with each process. For the RM policy, each process is associated with its period.

The states declaration (lines 4-11) lists the set of process states that are
distinguished by the policy. Each state is associated with a state class (RUNNING,

Formal Methods Meet Domain Specific Languages 189

1 scheduler RM = {
process = { time period; ... }

states = {
5 RUNNING running : process;

READY ready : select queue;
READY yield : process;
BLOCKED blocked : queue;
BLOCKED computation_ended : queue;

10 TERMINATED terminated;
}

ordering_criteria = { lowest period }

15 handler(event e) {
On process.end { e.target => terminated; }

On unblock.preemptive {
if (e.target in blocked) {

20 if ((!empty(running)) && (e.target > running)) {
running => ready;

}
e.target => ready;

}
25 }

...
}

}

Fig. 1. Excerpts of the Bossa Rate Monotonic policy

READY, BLOCKED, or TERMINATED) describing the schedulability of processes in the
state and an implementation as either a process variable (process) or a queue
(queue). The names of the states of the RM policy are mostly intuitive. The
ready state is designated as select, indicating that processes are elected from
this state. The computation ended state stores processes that have completed
their computation within the current period.

The ordering criteria (line 14) describes how to compare two processes
in terms of a sequence of criteria based on the values of their attributes. The
RM policy favors the process with the lowest period.

Event Handlers. Event handlers describe how a policy reacts to scheduling-
related events that occur in the kernel. Examples of such events include process
blocking and unblocking and the need to elect a new process. We show only the
definitions of the handlers process.end and unblock.preemptive, which are
used as examples in the B development.

190 J.-P. Bodeveix et al.

Event handlers are parameterized by an event structure, e, that includes
the target process, e.target, affected by the event. The event-handler syntax is
based on that of a subset of C and provides specific constructs and primitives
for manipulating processes and their attributes. These include constructs for
testing the state of a process (exp in state), testing whether there is any process
in a given state (empty(state)), testing the relative priority of two processes
(exp1 > exp2), and changing the state of a process (exp => state).

A process.end event occurs when a process ends its execution. The corre-
sponding handler (line 16) simply sets the state of the process to terminated.
Because the terminated state is not associated with any data structure, this
state change has the effect of removing the process from further consideration
by the scheduler. An unblock.preemptive event occurs when a process un-
blocks. The corresponding handler (lines 18-25) checks whether the process is
actually blocked, and if so sets the state of the target process to ready making it
eligible for election. The handler also checks whether there is a running process
(!empty(running)) and if so whether the target process has a higher priority
than this running process (e.target > running). If both tests are satisfied,
the state of the running process is set to ready, thus causing the process to be
preempted.

2.2 Bossa Verification

The Bossa compiler verifies that a Bossa scheduling policy satisfies both stan-
dard safety properties, such as the absence of null-pointer dereferences, and
safety properties derived from the scheduling requirements of the target OS.
The latter properties are OS-specific and are described by a collection of event
types. Event types are defined in terms of the state classes and specify the pos-
sible preconditions and corresponding required postconditions on process states
at the time of invoking the various event handlers.

We present the event type notation using the types of the process.end and
unblock.preemptive events when used with Linux 2.4. That of process.end is
as follows:

[tgt in BLOCKED] -> [tgt in TERMINATED]

This type rule indicates that the target process of the event is initially in a state
of the BLOCKED state class and that the handler must change the state of this
process to a state of the TERMINATED state class. Because no other state classes
are mentioned in the type, a process.end handler cannot perform any other
state changes. The type for unblock.preemptive is as follows:

[tgt in BLOCKED] -> [tgt in READY]
[p in RUNNING, tgt in BLOCKED] -> [[p,tgt] in READY]
[tgt in BLOCKED] -> [tgt in BLOCKED]
[tgt in RUNNING] -> []
[tgt in READY] -> []

Formal Methods Meet Domain Specific Languages 191

The first three type rules treat the case where the target process is in a state of
the BLOCKED state class. Of these, the first two allow the handler to move the
target process to a state of the READY state class, making the process eligible for
election. The second rule additionally moves the running process to the READY
state class, which causes it to be preempted. In the third rule, the target process
remains in the BLOCKED state class, but is allowed to change state, e.g. to one
representing a different kind of blocking. The remaining rules consider the cases
where the target process is not actually blocked. In these cases, the event handler
may not perform any state changes.

It is straightforward to show that the process.end and unblock.preemptive
handlers presented above satisfy these types. The Bossa compiler includes a ver-
ifier that checks that a scheduling policy satisfies the event types. This verifier
is based on abstract interpretation and uses the various high-level abstractions
found in the Bossa language to infer the source and destination of state change
operations [9].

3 A Brief Overview of the B Method

B is a state-oriented formalism that covers the complete life cycle of software
development. It provides a uniform language, the Abstract Machine Notation,
to specify, design, and implement systems. A typical development in B consists
of an abstract specification, followed by some refinement steps. The final refine-
ment corresponds to an implementation. The correctness of the construction is
enforced by the verification of proof obligations associated with each step of the
development.

A specification in B is composed of a set of modules called (abstract) ma-
chines. Each machine has an internal state, and provides services allowing an
external user to access or modify its state. Syntactically, a machine consists of
several clauses which determine the static and dynamic properties of the state.

Consider the following abstract machine, which specifies a simple system that
stores a set with at most one element and provides various set operations:

MACHINE Singleton(ELEM)
VARIABLES elem, elems
INVARIANT

elem ∈ ELEM
∧ elems ⊆ {elem}
INITIALISATION

elem :∈ ELEM || elems := ∅
OPERATIONS
suppress 	

PRE elems 	= ∅ THEN /* the precondition ensures that suppress
will be called with a nonempty set */

elems := ∅
END;

el ←− extract 	 /* extract returns el */
PRE elems 	= ∅ THEN

192 J.-P. Bodeveix et al.

el := elem || elems := ∅
END;

add(el) 	 /* the precondition specifies the type of el
and ensures that no elements will be overridden */

PRE el ∈ ELEM ∧ elems = ∅ THEN
elem := el || elems := {el} /* B multi assignment */

END;
bb ←− empty 	

IF elems = ∅ THEN bb := TRUE ELSE bb := FALSE END;
bb ←− nonempty 	

IF elems 	= ∅ THEN bb := TRUE ELSE bb := FALSE END;
bb ←− contains(el) 	

PRE el ∈ ELEM THEN
IF el ∈ elems THEN bb := TRUE ELSE bb := FALSE END

END
END

This machine specifies a family of systems all having the same abstract properties
with respect to the parameter ELEM. By convention, a parameter starting with an
uppercase letter is an abstract set. Otherwise, it must be given a type within the
CONSTRAINTS clause. The clause VARIABLES defines the representation of
the state of the machine. In this case, we only use the variables elem and elems.
The clause INVARIANT constrains the domain of these variables. It states that
elem is a member of ELEM and that elems is a subset of the singleton {elem}.
Note that at this stage of the development the domain ELEM is abstract. We just
assume that it is nonempty.1 The initial state of the machine, which must satisfy
the invariant, is specified in the INITIALISATION clause. In this example, the
variable elem is initialized with any element of ELEM and elems is initialized to
the empty set.

The services provided by a machine are specified in the clause OPERA-
TIONS. In this case, we specify some standard set operations. To specify oper-
ations, B uses a mechanism of generalized substitutions. B defines six basic gen-
eralized substitutions: skip, multi-assignment (also called parallel-assignment),
selection, bounded choice, unbounded choice, and preconditioned substitution.
A generalized substitution acts as a predicate transformer. For example, the
generalized substitution

PRE elems 	= ∅ THEN elems := ∅ END

corresponds to the predicate transformer

[elems �= ∅ |elems := ∅]

which is defined for any predicate P as follows:

[elems �= ∅ |elems := ∅]P ⇔ elems �= ∅ ∧ [elems := ∅]P

The soundness of a machine in B is given by proof obligations which verify
that
1 In B, abstract sets are nonempty and finite.

Formal Methods Meet Domain Specific Languages 193

– The initial state satisfies the invariant.
– The invariant is preserved by the operations.
– The call of an operation must satisfy its precondition.

Some other clauses allow the introduction of constants (CONSTANTS) con-
strained by PROPERTIES.

An abstract specification can be materialized as an implementation by a
mechanism of refinement. The abstract machine acts as the interface of the im-
plementation: although the machine will be implemented by low level concrete
variables, the user of a machine is always concerned by the variables and the
operations defined at the abstract level. For example, in a real implementa-
tion of our system, we can implement the preceding singleton using a boolean
variable, full, indicating whether the set is empty and a variable storing the
singleton element managed by an instance of the BASIC ARRAY VAR machine.
We refine the previous Singleton machine by the following IMPLEMENTATION
machine:

IMPLEMENTATION Singleton_r(ELEM)
REFINES Singleton
CONCRETE VARIABLES full

IMPORTS BASIC_ARRAY VAR(0..0,ELEM) /* generic array memory */
INVARIANT

full ∈ BOOL
∧ (full = TRUE ⇒ (elems 	= ∅ ∧ elem = arr_vrb(0)))
∧ (elems 	= ∅ ⇒ full = TRUE)
INITIALISATION
full := FALSE

OPERATIONS
add(el) 	

BEGIN
STR ARRAY(0,el); /* store el at index 0 */
full := TRUE

END;
suppress 	 BEGIN full := FALSE END;
el ←− extract 	 BEGIN el ←− VAL ARRAY(0); full := FALSE END;
bb ←− empty 	 IF full = TRUE THEN bb := FALSE ELSE bb := TRUE END;
bb ←− nonempty 	 BEGIN bb := full END;
bb ←− contains(el) 	

VAR vv IN
vv ←− VAL ARRAY(0);
IF full = TRUE ∧ el = vv THEN bb := TRUE ELSE bb := FALSE END

END
END

The invariant of a refinement relates the abstract variables to the concrete
ones and is called the “coupling invariant”. From a user’s point of view, opera-
tions provided by Singleton are also provided by Singleton r; we cannot distin-
guish a call to a refined operation from a call to the abstract one.

194 J.-P. Bodeveix et al.

The validity of a refinement is guaranteed by proof obligations: each con-
crete operation must be simulated by its abstract operation such that coupling
invariant is preserved. Each abstract operation must be refined.

4 Expressing Bossa Specifications in B

This section describes how event types and scheduling policies specified in Bossa
can be translated into B machines. The event types are translated into a B ma-
chine that models the abstract behavior of a scheduler. A Bossa specification
is then translated into a refinement of this abstract scheduler. Thus, verify-
ing the correctness of a Bossa specification amounts to verifying a refinement,
which requires discharging a set of automatically generated proof obligations.
We use the Rate Monotonic policy [5] presented in Section 2.1 to illustrate this
approach.

In our approach, the information given by a Bossa scheduling policy is grad-
ually taken into account at several levels of refinement. Figure 2 represents the
architecture of the B project used in the conformance verification of the RM
scheduling policy.

– The scheduler machine describes an abstract scheduler specified by Bossa
event types.

– The Classes machine included by the scheduler machine defines classes of
states and their transitions.

– The rm machine describes the rate monotonic policy as a refinement of the
machine scheduler.

– The RmTrans machine and its refinements RmTrans r1 and RmTrans r2 de-
scribe transitions between rate monotonic policy states.

– The machines Singleton, Queue, SelectQueue and VoidSet describe the
various collections of processes that can be used by a Bossa policy.

Singleton

Queue

SelectQueue

VoidSet

RmTrans

Classesscheduler

rm

includes

refines

RmTrans_r1

RmTrans_r2

Fig. 2. Architecture of the B project

Formal Methods Meet Domain Specific Languages 195

Remarks

– The preceding architecture does not depend on the scheduling policy. The
machine Classes specifies state classes that are generic to the Bossa lan-
guage. This machine can be used unchanged for all scheduling policies.
The machines Singleton, Queue, SelectQueue and VoidSet specify vari-
ous kinds of collections of processes that are similarly generic. The machine
scheduler is specific to the event types for a given OS, but can be used
with any policy designed for that OS. The remaining machines have generic
roles, but policy-specific definitions. Of these, the machine rm specifies the
considered policy (rate monotonic here), while the machine RmTrans and its
refinements RmTrans r1 and RmTrans r2 specify the various states defined
by the policy and the elementary transitions between them.

– The B source code of these machines could be generated automatically from
the Bossa event types and from the Bossa specification of a policy.

4.1 Encoding the Event Types

The event types are defined in terms of a collection of abstract state classes.
The B machine Classes associates each state class with the collection of pro-
cesses that it contains. These collections are defined in terms of an abstract set
of processes (Process), so that conformance proofs will not depend on the actual
set of processes. Each state class is associated with a disjoint subset of Process.
Because Bossa assumes that the target architecture has only one processor, the
RUNNING state class can contain at most one process. This constraint is rep-
resented by creating a variable running to record the process in this state class
and specifying that Running is either the empty set or a singleton set containing
the value of this variable. The Classes machine also defines state transition op-
erations. These operations either move a process from one class to another, e.g.
the CBlockedToTerminated operation or allow an unbounded number of state
changes between two given state classes, e.g. the CReadyBlocked operation.

MACHINE Classes
SETS

Process
VARIABLES

Running, Ready, Blocked, Terminated, running
INVARIANT

Running ⊆ Process
& Ready ⊆ Process
& Blocked ⊆ Process
& Terminated ⊆ Process
& running ∈ Process
& Running ∩ Ready = ∅
& Running ∩ Terminated = ∅
& Running ∩ Blocked = ∅

196 J.-P. Bodeveix et al.

& Ready ∩ Terminated = ∅
& Ready ∩ Blocked = ∅
& Terminated ∩ Blocked = ∅
& (Running �= ∅ ⇒ Running = {running})

INITIALISATION
Running, Ready, Blocked, Terminated := ∅,∅,∅,∅

|| running :∈ Process /* running becomes an element of Process
OPERATIONS
CBlockedToTerminated(tgt) 	
PRE tgt ∈ Blocked THEN
Blocked := Blocked - {tgt} || Terminated := Terminated ∪ {tgt}

END;
CReadyBlocked 	
ANY rr WHERE rr ⊆ Ready THEN

Ready := Ready - rr || Blocked := Blocked ∪ rr
END

...
END

The event types describe the state changes allowed between the state classes.
They are expressed by the scheduler abstract machine, which includes the
Classes machine defined above and an operation for each event. The system to
be built is supposed open and preconditions of the events specify call conditions.

We illustrate the translation of a set of event types to a B machine using the
rules for process.end and unblock.preemptive presented in Section 2.1. The
event type for process.end is below. This rule indicates that when the event
occurs, the targeted process (tgt) is blocked and the event handler must cause
the process to become terminated.

MACHINE scheduler
INCLUDES Classes
OPERATIONS
...
/*
[tgt in BLOCKED] -> [tgt in TERMINATED]
*/
Process_end(tgt) 	

PRE tgt : Process & tgt ∈ Blocked THEN
CBlockedToTerminated(tgt)

END
...
END

Event types can also be non-deterministic. For example, the type for unblock.-
preemptive, reproduced below, allows three different behaviors if the target
process is blocked, and specifies additional behaviors if the target process is

Formal Methods Meet Domain Specific Languages 197

running or ready. In the B translation, SELECT is used to identify the current
state classes of relevant processes and CHOICE expresses the non-determinism.

/*
[tgt in BLOCKED] -> [tgt in READY]
[p in RUNNING, tgt in BLOCKED] -> [[p,tgt] in READY]
[tgt in BLOCKED] -> [tgt in BLOCKED]
[tgt in RUNNING] -> []
[tgt in READY] -> []
*/
Unblock_preemptive(tgt) 	
PRE tgt : Process ∧ tgt ∈ (Running ∪ Ready ∪ Blocked) THEN

SELECT tgt ∈ Blocked ∧ Running �= ∅ THEN
CHOICE CRunningBlockedToReadyReady(tgt)

OR CBlockedToReady(tgt)
END

WHEN tgt ∈ Blocked ∧ Running = ∅ THEN CBlockedToReady(tgt)
WHEN PTRUE THEN skip
END

END

Remark. In the scheduler machine, we have only specified the transitions that
can be performed between state classes. The Bossa event types also specify when
transitions are allowed within a state class as is represented by the rule [tgt
in BLOCKED] -> [tgt in BLOCKED] of the unblock.preemptive event type.
While this transition could be expressed in B by refining the specification of the
state classes, we have not done so to maintain readability. It follows that in our
B model, state changes within a class are always allowed.

4.2 Encoding a Scheduling Policy

A scheduling policy is introduced as a refinement of the abstract scheduler. It
redefines the scheduling events using its own states, which refine the previously
introduced state classes. The management of policy-specific states is introduced
gradually in order to factorize some of the proof obligations.

– The first refinement level introduces the representation of states in terms of
collections of processes. In order to establish the link between policy states
and state classes, the machine Classes is included. Elementary state tran-
sitions are defined and apply both to policy states and state classes.

– The next refinement level drops the state classes, which are not used in the
implementation. However, this machine inherits the link between states and
state classes established by the first level.

– The last refinement level introduces the implementation of state membership.

198 J.-P. Bodeveix et al.

Data Representation. The data structures used at the abstract level ensure
the correctness of state changes while preserving some properties, e.g. a pro-
cess cannot be lost, cardinality constraints are enforced. The preservation of
these properties is established by verifying proof obligations. At the abstract
level, states are represented by sets and checking the state of a process amounts
to testing set membership. In order to simplify the proof of the conformity of
scheduling policies, abstract machines defining sets of processes are provided.
Generally, they provide insertion and extraction operations. We have developed
a library of such machines with their efficient implementations.

– The Singleton machine (see Section 3) is used when there is at most one
process in a given state. Its insertion operation is preconditioned so that
processes cannot be overridden and its invariant ensures the cardinality con-
straint. This machine supports Bossa states declared as process (running
and yield for RM).

– The Queue machine can contain any number of processes. This machine
supports Bossa states declared as queue (blocked and computation ended
for RM).

– The SelectQueue machine is used when a state can contain any number of
processes and processes in this state can be accessed in sorted order using
the Bossa operator select. This machine support Bossa states declared as
select queue (ready for RM).

– The VoidSet is used when a state does not record any processes. This ma-
chine supports Bossa states for which no implementation is specified (ter-
minated for RM). The machine does not provide observation operations so
that its implementation does not store any process.

State Transitions. The machine RmTrans establishes the link between policy
states and states classes. Once established, this invariant is reused by machines
including or refining RmTrans. To establish the link, RmTrans includes both the
Classes machine and machines for each kind of state.2 The invariant of RmTrans
specifies how states classes are split into disjoint concrete states. In order to
preserve this invariant, operations are defined as acting both on concrete states
and on state classes. For example, RMRunning2Yield applies if running is non
empty and yield is empty. The running process is deleted from the running state
and added to the yield state. This operation is in parallel performed on state
classes: CRunning2Ready is also called, as Ready is the state class of yield.

MACHINE RmTrans
INCLUDES
Classes,
ru.Singleton(Process), /* running state */
rd.SelectQueue(Process,period), /* ready state */

2 The notation INCLUDES pr.m includes the machine m and adds the prefix pr to the
identifiers of m in order to avoid any conflict.

Formal Methods Meet Domain Specific Languages 199

yl.Singleton(Process), /* yield state */
bl.Queue(Process), /* blocked state */
ce.Queue(Process), /* computation_ended state */
tm.VoidSet(Process) /* terminated state */

INVARIANT
bl.elems ∩ ce.elems = ∅

∧ rd.elems ∩ yl.elems = ∅
∧ Running = ru.elems
∧ Ready = rd.elems ∪ yl.elems
∧ Blocked = bl.elems ∪ ce.elems
∧ Terminated = tm.elems
OPERATIONS
RMRunning2Yield 	

PRE ru.elems �= ∅ ∧ yl.elems = ∅ THEN
yl.add(ru.elem) || ru.suppress || CRunning2Ready

END;
...

END

Elimination of Abstract Data. The refinement step RmTrans r1 is used to
redefine operations without managing state classes. The Classes machine is no
longer included and operations only act on policy states.

REFINEMENT RmTrans_r1 REFINES RmTrans
INCLUDES
ru.Singleton(Process), rd.SelectQueue(Process,period),
yl.Singleton(Process), bl.Queue(Process),
ce.Queue(Process), tm.VoidSet(Process)

OPERATIONS
RMRunning2Yield 	

BEGIN yl.add(ru.elem) || ru.suppress END;
...

END

State Membership. The data-representation machines provide an abstract
variable (elems) containing the set of processes in the corresponding state. In
Bossa, the implementation of state membership relies on an attribute attached to
each process. It is represented in B by the variable state: Process → State
which is introduced in a new refinement. Its declaration is split into INVARIANT
and ASSERTIONS. The ASSERTIONS clause is proved once as being implied
by the invariant. Then, the preservation of the assertion predicates is ensured
provided the invariant is preserved.

REFINEMENT RmTrans_r2 REFINES RmTrans_r1
SETS

200 J.-P. Bodeveix et al.

State = {RmNowhere, RmRunning, RmReady, RmBlocked, RmCompEnded,
RmYield, RmTerminated}

INCLUDES
bl.Queue,
...

VARIABLES
state

INVARIANT
/* state is a relation between Process and State */
state : Process ↔ State

∧ state = Process × {RmNowhere} <+ /* definition of the state */
(rd.elems × {RmReady} ∪ /* relation */
bl.elems × {RmBlocked} ∪
ce.elems × {RmCompEnded} ∪
yl.elems × {RmYield} ∪
ru.elems × {RmRunning} ∪
tm.elems × {RmTerminated})

ASSERTIONS
state : Process → State /* the relation is functional */

The introduction of the state variable avoids referencing abstract sets of
states for testing state membership. The refinement RmTrans r2 thus uses the
operations of the data-collection abstract machines instead of their abstract vari-
ables.

The Algorithm. The scheduling policy is defined as a refinement of the ab-
stract scheduler. Its B code is translated from the Bossa specification. As com-
pared to the abstract scheduler, some tests are added in order to get the current
concrete state of a process and to call the correct state transition operation.

For example, the handler for the unblock.preemptive event is specified in
Bossa as follows:

On unblock.preemptive {
if (e.target in blocked) {
if ((!empty(running)) && (e.target > running)) {

running => ready;
}
e.target => ready;

}
}

The translation of this handler to B is immediate. Note that the process
comparison p1 > p2 is translated into period(p1) < period(p2), thus inlining
the ordering criteria defined in Section 2.1. Furthermore, policy specific variables
are introduced. The Rate Monotonic policy described in Bossa defines a counter
(missed deadlines) and a timer variable.

Formal Methods Meet Domain Specific Languages 201

REFINEMENT rm REFINES scheduler
INCLUDES RmTrans /* state transition machine */
VARIABLES

missed_deadlines, timer /* policy specific variables */
INVARIANT

missed_deadlines : Process --> NATURAL
& timer : Process --> INTEGER
INITIALISATION

missed_deadlines := Process * {0} || timer := Process * {0}
OPERATIONS
Unblock_preemptive(tgt) 	

VAR isbk IN
isbk <-- RMisBlocked(tgt);
IF isbk = TRUE THEN

VAR hru IN
hru <-- RMhasRunning;
IF hru = TRUE ∧ period(tgt) < period(running) THEN
RMRunning2Ready

END;
RMBlocked2Ready(tgt)

END
END

END
END

Proof obligations generated for this machine express that it is a refinement
of the abstract scheduler. They are the main properties that must be checked
in order to ensure that the scheduling policy complies with the event types
associated with the underlying kernel.

5 Proof Automation

The proof obligations generated for the preceding Bossa/B development are
not automatically proved by the provers available with Atelier B. Although, it
should be possible to add some tactics for discharging some of the remaining
proofs, this section instead introduces a decidable logic fragment that supports
the expression of proof obligations. It follows that their verification is automatic.
We believe that identifying logic fragments for automating the proof process is
essential for the scalability of a proof based approach.

5.1 An Overview of Monadic Second Order Logic and Mona

Definition 1 (S1S and WS1S logics). Let {x1, . . . , xn} be a set of first order
variables and {X1, . . . , Xn} a set of monadic second order variables. A minimal
grammar for these logics is defined as follows:

202 J.-P. Bodeveix et al.

– A term t is inductively defined by:

t ::= 0 | xi | s(t)s is the successor symbol

– A formula f is inductively defined by:

f ::= t ∈ Xi set membership
| ¬f | f ∧ f
| ∃1xi. f first order quantification
| ∃2Xi. f second order (set) quantification

This syntax is extended as usual by first order operators and quantifiers (∨,⇒
, ∀ . . .) and some arithmetic relations. For example, a ≤ b is defined by ∀2X. X(a)
∧(∀1x. X(x) ⇒ X(s(x))) ⇒ X(b).

Validity of a formula. A closed formula is valid in S1S or WS1S if it is valid in the
interpretation on the set N of natural numbers, where s is the successor function,
first order variables relate to the natural numbers and second order variables to
the subsets (finite in the case of WS1S) of N. These two logics are decidable [11].
WS1S is concerned with finite sets only while S1S is also concerned with infinite
sets. The Mona tool [6] implements a decision procedure for WS1S.

With respect to our study, we can use Mona to decide some of our proof
obligations, specifically those that concern individual processes and sets of pro-
cesses (regardless of the effective number of processes).

5.2 A Translation Example

As an example of the use of Mona in discharging proof obligations, we consider
the proof obligations associated with the refinement of the ReadyToRunning
operation. According to the B method, the proof obligation for a refinement of
an abstract preconditioned operation opa by a concrete operation opr is:

Inva(sta)
∧ Invr(sta, str) ∧ Pre op(sta) ∧ opr(str, st′r)
⇒ ∃st′a : opa(sta, st′a)

∧ Invr(st′a, st′r)

where:

– Inva(sta)(resp. Invr) is the invariant of the abstract (resp. of the concrete)
machine,3

– Pre op is the precondition of the abstract operation,
– opa(sta, st′a)(resp. opr(str, st′r)) is the before-after predicate of the abstract

(resp. concrete) operation.
3 The invariant of the refinement is expressed over the product of the abstract and

concrete states in order to express the so called “coupling” invariant between the
abstraction and the concretization.

Formal Methods Meet Domain Specific Languages 203

Informally, the preceding formula says that each concrete step opr can be simu-
lated by an abstract step opa so that the coupling invariant Invr is preserved.

Given the abstract and refined states introduced in Section 4.2, we can ex-
press the preceding proof obligation within Mona as follows (the complete Mona
text is given in the appendix A):

all2 Ready, Running, Terminated, Blocked:
all1 running,running’:
all2 rdelems, ruelems, ylelems,

rdelems’, ruelems’, ylelems’:
all1 rdelem, ruelem, ylelem,

rdelem’, ruelem’, ylelem’:
Inv_a(Ready, Running, Terminated, Blocked, running)

& Inv_r(Ready, Running, Terminated, Blocked, running,
rdelems,rdelem,ruelems,ruelem,ylelems,ylelem)

& pre_RunningToReady_a(Ready, Running, Terminated, Blocked, running)
& RunningToReady_r(rdelems,rdelem,ruelems,ruelem,ylelems,ylelem,

rdelems’,rdelem’,ruelems’,ruelem’,ylelems’,ylelem’)
=> ex2 Ready’,Running’,Terminated’,Blocked’: ex1 running’:

RunningToReady_a(Ready, Running, Terminated, Blocked, running,
Ready’,Running’,Terminated’,Blocked’,running’)

& Inv_r(Ready’, Running’, Terminated’, Blocked’,running’,
rdelems’,rdelem’,ruelems’,ruelem’,ylelems’,ylelem’);

Thanks to its decision procedure, the Mona tool establishes that the preced-
ing predicate is valid. It outputs the following result:

AUTOMATON CONSTRUCTION
100% completed
Time: 00:00:00.01

Automaton has 1 state and 1 BDD-node

ANALYSIS
Formula is valid

6 Related Work

A large number of DSLs have been developed for a wide range of domains [12].
Many of these DSLs provide no verification, and those that do typically either
rely on verification provided by a general-purpose host language [10] or use
ad hoc analyzers, as was originally done for Bossa. The former approach is,
however, limited to the facilities of the host language, which are rarely adequate
for expressing and checking domain-specific properties, while the latter puts a
huge burden on the DSL developer.

The DSLs Promela++ [3] and ESP [8] both provide both standard code gen-
erators and translators to code suitable for use with the SPIN model checker.

204 J.-P. Bodeveix et al.

While these approaches are in the spirit of the work presented here, the state ex-
plosion problem implies that these languages use model checking for bug finding,
but not complete verification. Furthermore, these approaches require specifying
properties in the general-purpose specification language of SPIN, while the Bossa
event types are domain-specific. Indeed, the high-level of the event type specifi-
cation is crucial to enable our refinement-based approach.

7 Conclusion

DSLs provide a high-level means of implementing solutions to complex prob-
lems within a given domain. When the domain has critical safety or security
requirements, verification of these implementations is essential. In this paper,
we have shown a systematic means of using the B formal method to verify a
process scheduling policy implemented using the Bossa DSL. This verification
covers within a single framework both verification of the scheduler structure, as
also provided by existing Bossa verification tools, and verification of part of the
implementation strategy (i.e., the use of the state function to optimize state
membership tests), which is not covered by the Bossa verifier. In the develop-
ment presented here, most of the work can be reused directly for verification
of other scheduling policies, except for the proofs related to the event handler
definitions themselves (i.e., the second part of Section 4.2). However, using a
dedicated decision procedure such as Mona should help in automating the ver-
ification of most of the proof obligations. In future work, we plan to generalize
this part of the development as well, to produce an executable code and hence a
certified Bossa compiler. We will also consider how this approach can be applied
to other DSLs.

Acknowledgement

This work was supported in part by the CORSS:“Composition et raffinement de
systèmes sûrs” project of program “ACI: Sécurité Informatique” supported by
the French Ministry of Research and New Technologies.

References

1. J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge University
Press, 1996.

2. F. Badeau and A. Amelot. Using B as a high level programming language in
an industrial project: Roissy VAL. In H. Treharne, S. King, M. Henson, and
S. Schneider, editors, ZB 2005: Formal Specification and Development in Z and
B, volume 2215 of Lecture Notes in Computer Science, pages 298–315. Springer-
Verlag, Guildford, UK, april 2005.

3. A. Basu, M. Hayden, G. Morrisett, and T. von Eicken. A language-based approach
to protocol construction. In Proceedings of the ACM SIGPLAN Workshop on
Domain Specific Languages, Paris, France, Jan. 1997.

Formal Methods Meet Domain Specific Languages 205

4. P. Behm, P. Desforges, and J.-M. Meynadier. Météor : An industrial success in
formal development. In D. Bert, editor, B’98: Recent Advances in the Development
and Use of the B Method, Second International B Conference, Montpellier, volume
1393 of Lecture Notes in Computer Science, page 26. Springer-Verlag, 1998.

5. F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri. Scheduling in Real-Time
Systems. Wiley, West Sussex, England, 2002.

6. J. Henriksen, J. Jensen, M. Jorgensen, N. Klarlund, R. Paige, T. Rauhe, and
A. Sandholm. Mona: Monadic second-order logic in practice. In Work-
shop on Tools and Algorithms for the Construction and Analysis of Systems,
http://www.brics.dk/∼mona, pages 58–73, Aarhus, May 1995.

7. Jaluna. Jaluna Osware. http://www.jaluna.com.
8. S. Kumar, Y. Mandelbaum, X. Yu, and K. Li. ESP: a language for programmable

devices. In Proceedings of the ACM SIGPLAN’01 conference on Programming
Language Design and Implementation, pages 309–320, Snowbird, UT, June 2001.

9. J. Lawall, A.-F. Le Meur, and G. Muller. On designing a target-independent DSL
for safe OS process-scheduling components. In Third International Conference on
Generative Programming and Component Engineering (GPCE’04), volume 3286
of Lecture Notes in Computer Science, pages 436–455, Vancouver, October 2004.
Springer-Verlag.

10. D. Leijen and E. Meijer. Domain specific embedded compilers. In Proceedings of
the Second Conference on Domain-Specific Languages (DSL ’99), pages 109–122,
Austin, TX, Oct. 1999.

11. W. Thomas. Automata on infinite objects. In J. Leeuwen, editor, Handbook of
Theoretical Computer Science, pages 133–192. MIT Press, 1990.

12. A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An annotated
bibliography. ACM SIGPLAN Notices, 35(6):26–36, June 2000.

A Mona Expression of a Proof Obligation

1 pred ajouter(var2 elems, var1 el, var2 elems’) =
elems’ = elems union {el}

;
pred atmostSingleton(var2 S, var1 e) =
/* S1S expression that a set containts at most 1 element */

S sub {e}
;
pred Inv_a(var2 Ready, Running, Terminated, Blocked, var1 running) =

Running inter Ready = {} & Running inter Terminated = {}
10 & Running inter Blocked = {} & Terminated inter Blocked = {}

& Ready inter Terminated = {} & Ready inter Blocked = {}
& atmostSingleton(Running,running)
;
pred pre_RunningToReady_a(var2 Ready, Running, Terminated, Blocked,

var1 running) =
Running ~= {}
;
/* Running2Ready =

PRE HasRunning THEN Ready := Ready \/ Running || Running := {} END;
20 */

206 J.-P. Bodeveix et al.

pred RunningToReady_a(
var2 Ready, Running, Terminated, Blocked, var1 running,
var2 Ready’, Running’, Terminated’, Blocked’, var1 running’) =
Ready’ = Ready union Running & Running’ = {}

& Terminated’ = Terminated & Blocked’ = Blocked & running’ = running
;
/* Running2Ready = BEGIN rd.ajouter(ru.elem) || ru.supprimer END; */

pred RunningToReady_r(
30 var2 rdelems, var1 rdelem, var2 ruelems,

var1 ruelem, var2 ylelems, var1 ylelem,
var2 rdelems’, var1 rdelem’, var2 ruelems’,
var1 ruelem’, var2 ylelems’, var1 ylelem’) =

ajouter(rdelems,ruelem,rdelems’)
& ruelems’ = {} & ylelems’ = ylelems & ylelem’ = ylelem
;
pred Inv_r(

var2 Ready, Running, Terminated, Blocked, var1 running,
var2 rdelems, var1 rdelem, var2 ruelems,

40 var1 ruelem, var2 ylelems, var1 ylelem) =
rdelems = Ready \ ylelems

& Running = ruelems & ylelems sub Ready
& atmostSingleton(ylelems,ylelem) & atmostSingleton(ruelems,ruelem)
;
/* refinement proof obligation */

all2 Ready, Running, Terminated, Blocked: all1 running,running’:
all2 rdelems, ruelems, ylelems, rdelems’, ruelems’, ylelems’:
all1 rdelem, ruelem, ylelem, rdelem’, ruelem’, ylelem’:

50 Inv_a(Ready, Running, Terminated, Blocked, running)
& Inv_r(Ready, Running, Terminated, Blocked,running,

rdelems,rdelem,ruelems,ruelem,ylelems,ylelem)
& pre_RunningToReady_a(Ready, Running, Terminated, Blocked, running)
& RunningToReady_r(rdelems,rdelem,ruelems,ruelem,ylelems,ylelem,

rdelems’,rdelem’,ruelems’,ruelem’,ylelems’,ylelem’)
=> ex2 Ready’,Running’,Terminated’,Blocked’: ex1 running’:
RunningToReady_a(Ready, Running, Terminated, Blocked, running,

Ready’,Running’,Terminated’,Blocked’,running’)
& Inv_r(Ready’, Running’, Terminated’, Blocked’,running’,

60 rdelems’,rdelem’,ruelems’,ruelem’,ylelems’,ylelem’);

Synthesizing B Specifications from eb3 Attribute
Definitions

Frédéric Gervais1,2, Marc Frappier2, and Régine Laleau3

1 Laboratoire CEDRIC, Institut d’Informatique d’Entreprise,
Conservatoire National des Arts et Métiers,

18 Allée Jean Rostand, 91025 Évry Cedex, France, +33 1 69 36 73 73
frederic.gervais@usherbrooke.ca

2 GRIL, Département d’informatique, Université de Sherbrooke,
Sherbrooke, Québec, Canada J1K 2R1, +1 819 821-8000x2096

marc.frappier@usherbrooke.ca
3 Laboratoire LACL, Université de Paris 12,

IUT Fontainebleau, Département informatique,
Route Forestière Hurtault, 77300 Fontainebleau, France, +33 1 60 74 68 40

laleau@univ-paris12.fr

Abstract. eb3 is a trace-based formal language created for the spec-
ification of information systems (IS). Attributes, linked to entities and
associations of an IS, are computed in eb3 by recursive functions on the
valid traces of the system. On the other hand, B is a state-based formal
language also well adapted for the specification of IS. In this paper, we
deal with the synthesis of B specifications that correspond to eb3 at-
tribute definitions, in order to specify and verify safety properties like
data integrity constraints. Each action in the eb3 specification is trans-
lated into a B operation. The substitutions are obtained by an analysis
of the CAML-like patterns used in the recursive functions that define the
attributes in eb3. Our technique is illustrated by an example of a simple
library management system.

Keywords: Information systems, data integrity constraints, attributes,
B, eb3, recursive functions, pattern matching.

1 Introduction

The framework of our project is the formal specification of information systems
(IS). Broadly speaking, an IS is a system that helps an organization to collect
and manipulate all its relevant data.

1.1 Motivation

There exist several paradigms to specify IS, but we are mainly interested by two
specific formal languages. On one hand, eb3 [14] is a trace-based formal language
specially created for the specification of IS. eb3 provides process expressions that
represent the valid traces of the system and recursive functions that compute

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 207–226, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

208 F. Gervais, M. Frappier, and R. Laleau

attribute values from the valid traces. On the other hand, B [1] is a state-based
formal language that is well adapted to specify IS data models [10, 22, 23]. In B,
state variables represent the state space of the system and invariant properties
must be preserved by each operation.

We aim at defining an integrated approach that combines both eb3 and B in
order to consider not only more viewpoints, but also better mechanisms to prove
or verify properties. eb3 and B are complementary to take the main properties of
IS into account [12]. In eb3, liveness properties, especially event ordering prop-
erties, are easier to express than in a state-based language like B. On the other
hand, safety properties like static data integrity constraints, which are numerous
in IS, are very difficult to check in eb3. For instance, in a library management
system, a data integrity constraint requires that the number of loans of a mem-
ber is always less than some maximal number. Such a property is hard to prove
for an eb3 specification. It can be verified by model checking [9], but combina-
torial explosion severely limits the applicability of model checking for IS. In B,
attributes are represented by state variables and updates are specified by opera-
tions. Consequently, static data integrity constraints are represented by invariant
properties on the state variables. Each B operation specifies which, when and
how state variables are changed by its execution. In particular, preconditions are
defined and the B method provides techniques and tools to prove that invariant
properties are preserved when operations are executed within their precondition.

There exist many integrated methods that combine state-based specifications
with event-based specifications, like csp2B [5], CSP-OZ [11] or Circus [24]. How-
ever, none of them is well adapted for the specification of IS [15], althought a
first attempt with CSP || B has been proposed in [9]. An approach like Event
B [3], that is a state-based language using guarded operations to represent action
systems, is not appropriate, because in IS, each action of the system requires an
answer, possibly an error message. Guarded operations cannot be invoked if their
guards are not satisfied, whereas operations with preconditions as in B can be
implemented with the relevant error messages.

1.2 Outline of the Paper

Considering the complementarity between B and eb3 for IS specification, we
are working on a development process that consists in using eb3 to specify the
functional behaviour of IS, and then to use B invariants to specify and prove
safety properties about this specification. To do so, the eb3 specification must
be translated into an equivalent B specification. In [13], Frappier and Laleau
have shown how to prove this equivalence using the B refinement relation. This
paper proposes an algorithm to partly automate the translation from eb3 to B.
This algorithm generates: i) the state space of the B specification; ii) the substi-
tution of each operation body that updates the state variables; iii) the weakest
precondition of each operation so that the invariant of the B specification is sat-
isfied. The only part that is missing for a complete translation is the generation
of the exact operation preconditions that represent the behaviour of the eb3

specification.

Synthesizing B Specifications from eb3 Attribute Definitions 209

For the sake of concision, we show in this paper the main principles of the
translation and we apply them to an example of a library management system.
The complete algorithm and rules are presented in [18]. The paper is organized
as follows. After a general introduction to eb3 in Sect. 2, Sect. 3 deals more
specifically with eb3 attribute definitions. Then, Sect. 4 shows, after a short
introduction to B, how to synthesize B specifications from eb3 attribute defi-
nitions. Section 5 is a discussion about the verification of static data integrity
constraints. Finally, Sect. 6 concludes this paper by giving some perspectives.

2 Specifying Information Systems with the eb3 Method

The core of eb3 [14] includes a process and a formal notation to describe a
complete and precise specification of the input-output behaviour of an IS. An
eb3 specification consists of the following elements:

1. a user requirements class diagram which includes entities, associations, and
their respective actions and attributes. These diagrams are based on the
entity-relationship model concepts [8].

2. a process expression, denoted by main, which defines the valid input traces;
3. recursive functions, defined on the valid input traces of main, that assign

values to entity and association attributes;
4. input-output rules, which assign an output to each valid input trace.

eb3 differs from the other process algebraic languages by the following charac-
teristics. First of all, eb3 has been specially created for IS specification. Hence,
the specification of the inputs and of the outputs of the system is divided in
two parts. The semantics of eb3 is a trace-based semantics. Process expressions
represent the valid input traces of the IS, while outputs are computed from valid
eb3 traces. The syntax of process expressions has been simplified and adapted
to IS with respect to other process algebra languages like CSP [20]. In particu-
lar, eb3 process expressions are close to regular expressions, with the use of the
sequence operator and the Kleene closure (see Sect. 2.2).

The denotational semantics of an eb3 specification is given by a relation R
defined on T (main) × O, where T (main) denotes the finite traces accepted by
main and O is the set of output events. Let trace denote the system trace, which
is a list comprised of valid input events accepted so far in the execution of the
system. Let t::σ denote the right append of an input event σ to trace t, and let
[] denote the empty trace. The operational behaviour is defined as follows.

trace := [];
forever do

receive input event σ;
if main can accept trace::σ then

trace := trace::σ;
send output event o such that (trace, o) ∈ R;

else
send error message;

210 F. Gervais, M. Frappier, and R. Laleau

2.1 Example: A Library Management System

We illustrate the main aspects of this paper by using a simple library manage-
ment system. The system has to manage book loans to members. A book is
acquired by the library. It can be discarded, but only if it is not borrowed. A
member must join the library in order to borrow a book. A member can transfer
a loan to another member. A member can relinquish library membership only
when all his loans are returned or transferred. Figure 1 shows the user require-

Register

Unregister

member

loan

Lend

Return

Transfer

* 0 .. 1

borrower

Acquire

Discard

book

Modify

nbLoans :

DisplayTitle

bookKey : bK_Set memberKey : mK_Set

title : T

Fig. 1. eb3 specification: User requirements class diagram of the library

ments class diagram used to construct the specification. The signature of eb3

actions is the following.

Acquire(bId:bK_Set,bTitle:T):void
Discard(bId:bK_Set):void
Modify(bId:bK_Set,nTitle:T):void
DisplayTitle(bId:bK_Set):(title:T)
Register(mId:mK_Set):void
Unregister(mId:mK_Set):void
Lend(bId:bk_Set,mId:mK_Set):void
Return(bId:bK_Set):void
Transfer(bId:bK_Set,mId:mK_Set):void

The special type void is used to denote an action with no input-output rule; the
output of such an action is always ok.

2.2 Process Expressions

An input event σ is an instantiation of (the input parameters of) an action. The
signature of an action a is given by a declaration

a(q1 : T1, . . . , qn : Tn) : (qn+1 : Tn+1, . . . , qm : Tm)

Synthesizing B Specifications from eb3 Attribute Definitions 211

where q1, . . . , qn are input parameters of types T1, . . . , Tn and qn+1, . . . , qm are
output parameters of types Tn+1, . . . , Tm. An instantiated action a(t1, ..., tn) also
constitutes an elementary process expression. The special symbol “ ” may be
used as an actual parameter of an action, to denote an arbitrary value of the cor-
responding type. Complex eb3 process expressions can be constructed from ele-
mentary process expressions (instantiated actions) using the following operators:
sequence (.), choice (|), Kleene closure (^*), interleaving (|||), parallel compo-
sition (||, i.e., CSP’s synchronisation on shared actions), guard (==>), process
call, and quantification of choice (|x:T:...) and interleaving (|||x:T:...). The
eb3 notation for process expressions is similar to Hoare’s CSP [20]. The complete
syntax and semantics of eb3 can be found in [14].

For instance, the eb3 process expression for entity type book is of the following
form:

book(bId : bK_Set) =
Acquire(bId,_).
(

(| mId : mK_Set : loan(mId,bId))^*
|||

Modify(bId,_)^*
|||

DisplayTitle(bId)^*
).
Discard(bId)

where loan is the process expression for association loan; the definition of loan
has been omitted for the sake of concision. Firstly, book entity bId is produced by
action Acquire. Then, it can be borrowed by only one member entity mId at once
(quantified choice “ | mId : mK Set : ...”). Indeed, process expression book
calls process expression loan, that involves actions Lend, Return and Transfer.
The Kleene closure on loan means that an arbitrary number of loans can be
made on book entity bId. At any moment, actions Modify and DisplayTitle
can be interleaved with the actions of loan. Action Modify is used to change
the title of the book, while action DisplayTitle outputs the title of the book.
Finally, book entity bId is consumed by action Discard. The complete process
expressions for the example are given in [18].

2.3 Input-Output Rules

The system trace is usually accessed through recursive functions that extract
relevant information from it. Relation R is defined using input-output rules and
recursive functions on the system trace. Input-output rules are of the following
form:

RULE Name
Input ActionLabel
Output RecursiveFunction
END;

212 F. Gervais, M. Frappier, and R. Laleau

For instance, the following input-output rule is defined for action DisplayTitle:

RULE R
Input DisplayTitle(bId)
Output title(trace,bId)
END;

When action DisplayTitle is a valid input event, then the recursive function
title is called to compute the value of attribute title. Such recursive functions
defining attributes are presented in Sect. 3.

3 eb3 Attribute Definitions

In IS, attributes of associations and entities are the main elements, because they
represent the knowledge contained in the IS that can be read to answer requests
from users or updated to reflect evolutions of the IS. In eb3, the definition of
an attribute is a recursive function on the traces accepted by process expression
main. This function computes the attribute value. There are two kinds of at-
tributes in a requirements class diagram: key attributes and non-key attributes.

3.1 Defining Key and Non-key Attributes in eb3

In the following definitions, we distinguish functional terms from conditional
terms. A functional term is a term composed of constants, variables and functions
of other functional terms. To make the translation into B easier, we consider
only in these terms operators that are defined in the B language. The data types
in which constants and variables are defined can be abstract or enumerated
sets, useful basic types like N, Z, . . ., Cartesian product of data types and finite
powerset of data types. A conditional term is of the form if pred then w1
else w2 end, where pred is a predicate without quantifiers and wi is either a
conditional term or a functional term. Hence, a conditional term can include
nested if statements, whereas a functional term cannot contain an if statement.

Key Definitions. A key is used in IS to identify entities of entity types or asso-
ciations: each key value corresponds to a distinct entity of the entity type. The
key of an association is formed with the keys of its corresponding entity types.
Let e be an entity type with a key composed of attributes k1, . . . , km. In eb3,
the key of e is defined by a single attribute definition for the set {k1, . . . , km};
it is a total function eKey of the following form:

eKey (s : T (main)) : F(T1 × · · · × Tm) ∆=
match last(s) with

⊥ : u0,
a1(−→p1) : u1,
. . .
an(−→pn) : un,

: eKey(front(s));

Synthesizing B Specifications from eb3 Attribute Definitions 213

where T1, . . . , Tm denote the types of key attributes k1, . . . , km and expression
F(S) denotes the set of finite subsets of set S. A key function typically returns
the set of key values of the active (created) entities of the entity type. A recursive
function definition is always given in this CAML-like style (CAML is a functional
language [7]). Standard list operators are used, such as last and front which
respectively return the last element and all but the last element of the list; they
return the special value ⊥ when the list is empty.

Expressions ⊥ : u0, a1(−→p1) : u1, ..., an(−→pn) : un and : eKey(front(s))
are called input clauses. In an input clause, expression ai(−→pi) denotes a pattern
matching expression, where ai denotes an action label and −→pi denotes a list
whose elements are either variables, or the special symbol ‘ ’ which stands for a
wildcard, or ground functional terms. Special symbol ‘⊥’ in input clause ⊥ : u0
pattern matches with the empty trace, while symbol ‘ ’ in : eKey(front(s))
is used to pattern match with any list element. Expressions u0, . . . , un denote
functional terms. Let var(e) denote the free variables of e. For each input clause,
we have var(ui) ⊆ var(−→pi). The syntax of key definitions is given in [19].

For example, the key of entity type book is defined by:

bookKey(s : T (main)) : F(bK Set) ∆=
match last(s) with

⊥ : ∅,
Acquire(bId,) : bookKey(front(s)) ∪ {bId},
Discard(bId) : bookKey(front(s)) − {bId},

: bookKey(front(s));

Non-key Attributes. The definition of a non-key attribute is quite similar. A
non-key attribute depends on the key of the entity type or of the association. In
eb3, each non-key attribute bi is defined as follows.

bi (s : T (main),
−→
k : T1 × · · · × Tm) : Ti

∆=
match last(s) with

⊥ : u0,
a1(−→p1) : u1,
. . .
an(−→pn) : un,

: bi(front(s),
−→
k);

Parameter
−→
k = (k1, . . . , km) denotes the list of key attributes, and T1, . . . , Tm

are the types of k1, . . . , km. The codomain Ti is the type of non-key attribute bi.
It always includes ⊥ to represent undefinedness; hence, eb3 recursive functions
are always total. Moreover, all the functions and operators are strict, i.e., ⊥ is
mapped to ⊥.

In non-key attribute definitions, expressions u0, . . . , un denote either func-
tional or conditional terms. For each input clause, we have var(uj) ⊆ var(−→pj) ∪
var(

−→
k). Any reference to a key eKey or to an attribute bj (j can be equal to i)

214 F. Gervais, M. Frappier, and R. Laleau

in an input clause is always of the form eKey(front(s)) or bj(front(s), ...). The
syntax of non-key attributes is provided by [19].

For example, the definitions of attributes title and nbLoans are the following
ones.

title(s : T (main), bId : bK Set) : T
∆=

match last(s) with
⊥ : ⊥, (I1)
Acquire(bId, bT itle) : bT itle, (I2)
Discard(bId) : ⊥, (I3)
Modify(bId, nT itle) : nT itle, (I4)

: title(front(s), bId); (I5)

nbLoans(s : T (main), mId : mK Set) : N
∆=

match last(s) with
⊥ : ⊥,
Register(mId) : 0,
Lend(, mId) : 1 + nbLoans(front(s), mId),
Return(bId) : if mId = borrower(front(s), bId)

then nbLoans(mId) − 1 end,
Transfer(bId, mId′) : if mId = mId′

then nbLoans(front(s), mId) + 1
else if mId = borrower(front(s), bId)

then nbLoans(front(s), mId) − 1 end
end,

Unregister(mId) : ⊥,
: nbLoans(front(s), mId);

Since any reference to a key eKey or to an attribute b in an input clause is
always of the form eKey(front(s)) or b(front(s), k1, ..., km), expression front(s)
is now omitted in the next references to recursive functions in the paper, e.g.,
eKey and b(k1, ..., km).

3.2 Computation of Attribute Values and Properties

When the function associated to attribute b is evaluated with valid trace s as
input parameter, then all the input clauses of the attribute definition are anal-
ysed. Let b(s, v1, ..., vn) be the attribute to evaluate and ρ be the substitution−→
k := v1, ..., vn. Each input clause ai(−→pi) : ui generates a pattern condition of
the form

∃ (var(−→pi) −
−→
k) • last(s) = ai(−→pi) ρ .

where the right-hand side of the equation denotes the application of substitution
ρ on input clause ai(−→pi). Such a pattern condition holds if the parameters of the
last action of trace s match the values of variables

−→
k in −→pi . The first pattern

condition that holds in the attribute definition is the one evaluated. Hence, the
ordering of these input clauses is important.

Synthesizing B Specifications from eb3 Attribute Definitions 215

When a pattern condition a(−→p) : u evaluates to true, an assignment of a
value for each variable in var(−→p) has been determined. Functional terms are
directly used to compute the attribute value. Predicates of conditional terms
determine the remaining free variables of u in function of the key values and/or
the values of last(s).

For instance, we have the following values for title (see Sect. 3.1):

title([], b1)
(I1)= ⊥

title([Register(m1)], b1)
(I5)= title([], b1)

(I1)= ⊥
title([Register(m1), Acquire(b1, t1)], b1)

(I2)= t1

In the first example, the value is obtained from input clause (I1), since last([]) =
⊥. In the second example, we first applied the wild card clause (I5), since no
input clause matches Register, and then (I1). In the third example, the value is
obtained immediately from (I2).

Since the size of a valid trace is finite and decreases at each recursive call and
since the input clause for an empty trace is always defined, then the computation
of attribute values terminates. We suppose that eb3 attribute definitions satisfy
the following consistency condition: when a non-key attribute b returns a value
other than ⊥ for a key value, then the key function should contain that key.
In other words, the entities that are concerned by the computation of the new
value of attribute b exist.

4 Generating B Specifications for eb3 Attribute
Definitions

4.1 An Overview of B

B is a formal method [1] that supports a large segment of the software develop-
ment life cycle: specification, refinement and implementation. In B, specifications
are organized into abstract machines (similar to classes or modules). Through
refinement steps and proofs, the code can be proven to satisfy its specification.
The B method is supported by several tools, like Atelier B [6], Click’n Prove [2]
and the B-Toolkit [4].

Let us now focus on the B specification language for the purposes of this pa-
per. Each abstract machine encapsulates state variables (introduced by keyword
VARIABLES), an invariant constraining the state variables (INVARIANT),
an initialization of all the state variables (INITIALISATION), and operations
on the state variables (OPERATIONS). The invariant is a first-order predicate
in a simplified version of the ZF-set theory, enriched by many relational oper-
ators. Abstract sets or enumerated sets (SETS) are used for typing the state
variables.

In B, state variables are modified only by means of substitutions. The initial-
ization and the operations are specified in a generalization of Dijkstra’s guarded
command notation, called the Generalized Substitution Language (GSL), that

216 F. Gervais, M. Frappier, and R. Laleau

allows the definition of non-deterministic and preconditioned substitutions. An
operation in an abstract machine is generally a preconditioned substitution. It
is then of the form PRE P THEN S END, where P , called the precondition,
is a first-order predicate, and S is a substitution. The state transition specified
by a preconditioned substitution is guaranteed only when the precondition is
satisfied.

4.2 The Example Translated into B

The following B specification is generated from the eb3 specification of the li-
brary management system described in Sect. 2.1 with the algorithm presented
in the next subsection Sect 4.3.

The first part of the specification, that contains the state variables and the
invariant properties, is called the static part.

MACHINE B Library
SETS mK Set; bK Set; T
VARIABLES memberKey, nbLoans, bookKey, title, loan
INVARIANT memberKey ⊆ mK Set ∧ nbLoans ∈ memberKey → NAT ∧

bookKey ⊆ bK Set ∧ title ∈ bookKey → T ∧
loan ∈ bookKey �→ memberKey

DEFINITIONS borrower(x) ∆= loan(x)

In the invariant, symbol → denotes a particular kind of relation, that is a to-
tal function, while → is a partial function. NAT is a predefined type of the
B language that represents the natural numbers. The clause DEFINITIONS
introduces the abbreviations used in predicates, expressions and substitutions.

The initialization and the operations compose the dynamic part of a B ma-
chine.

INITIALISATION
memberKey,nbLoans, bookKey, title, loan := ∅, ∅, ∅, ∅, ∅

Symbol := denotes the assignment substitution. The initialization is here a
multiple substitution that initializes each state variable in the left-hand side to
∅.

OPERATIONS
Acquire(bId, bT itle) ∆=
PRE bId ∈ bK Set ∧ bT itle ∈ T
THEN

bookKey := bookKey ∪ {bId} || title := title ∪ {bId �→ bT itle}
END;

Symbol || denotes the parallel composition of substitutions. This means that
substitutions bookKey := bookKey∪{bId} and title := title∪{bId → bT itle} are
simultaneously executed. Notation a → b denotes an element of a relation. For
instance, bId → bT itle is added to title by operation Acquire. In the following
operations, the dom operator, applied to a relation, gives its domain. Symbol �−
denotes the domain anti-restriction operator while <+ is the override operator.

Synthesizing B Specifications from eb3 Attribute Definitions 217

Let r be a relation and A be a set, these three operators are defined as follows:
dom(r) = {a | (a, b) ∈ r}, A �− r = {(a, b) | (a, b) ∈ r ∧ a /∈ A} and
r <+ A = (dom(A)�−r) ∪ A.

Discard(bId) ∆=
PRE bId ∈ bK Set ∧ bId 	∈ dom(loan)
THEN

bookKey := bookKey − {bId} || title := {bId}�−title
END;
Modify(bId, nT itle) ∆=
PRE bId ∈ bK Set ∧ nT itle ∈ T
THEN

title := title<+{bId �→ nT itle}
END;
Transfer(bId,mId) ∆=
PRE bId ∈ bK Set ∧ bId ∈ bookKey ∧ bId ∈ dom(loan) ∧

nbLoans(borrower(bId)) ≥ 1 ∧ mId ∈ mK Set ∧
mId ∈ memberKey ∧ mId 	= borrower(bId)

THEN
loan := loan − {(bId, borrower(bId))} ∪ {(bId, mId)} ||
nbLoans := nbLoans<+{(mId �→ nbLoans(mId) + 1),

(borrower(bId) �→ nbLoans(borrower(bId)) − 1)}
END

For the sake of concision, the other operations have been omitted.

4.3 From eb3 Attribute Definitions to B Substitutions

The main difference between eb3 and B is that eb3 is an event-based language,
while B is a state-based language. The consequences on the attribute definitions
are the following ones. In eb3, the values of an attribute are defined from a
recursive function on the valid traces of the system. For each attribute, its asso-
ciated recursive function specifies what is the effect of each action of the system
on the attribute values when this action is accepted and effectively executed by
the system. In B, the specification is radically orthogonal. Attributes are defined
as state variables of the system. Each B operation, that corresponds to an eb3

action, specifies what are the substitutions on the state variables of the system,
when this operation is executed.

The algorithm for synthesizing B specifications from eb3 attribute definitions
consists of four steps:

1. generate the static part and the signature of operations of the B machine
from the user requirements class diagram, the signature of eb3 attribute
definitions and the signature of actions in eb3,

2. generate the substitutions for the initialization,
3. generate the substitutions for the operations,
4. complete the operation specifications by generating the weakest precondi-

tions.

218 F. Gervais, M. Frappier, and R. Laleau

The main principles of step 1 are presented in Sect. 4.4. We generate from eb3

attribute definitions the substitutions for the initialization (step 2) and the oper-
ations (step 3) of the B specification of the system. This is the topic of Sect. 4.5.
The B specification obtained after step 3 is not sufficient to discharge the proof
obligations linked to the preservation of the invariant properties. In Sect 5, we
show how to use the tool Atelier B [6] to compute the weakest precondition for
each operation such that the invariant obtained from step 1 is preserved (step 4).

4.4 Static Part and Signature of Operations

In practice, B specifications are synthesized with the same identifiers as in eb3.
To syntactically distinguish identifiers of the eb3 specification from those of the
B specification, we denote by idB the B identifier corresponding to identifier idF

in eb3.
The static part of B specifications is automatically obtained by translation

from the requirements class diagram. Each recursive function kF defining a key
in the eb3 specification corresponds to a state variable kB in B. The invariant
for kB is an inclusion of the form kB ⊆ TB, where TB represents the set of
all the possible values of kF . Each non-key attribute bF of the class diagram
corresponds to a state variable bB. The invariant is of the form bB ∈ kB → TB

or bB ∈ kB → TB (depending on whether bF admits null values), where kB is the
state variable that corresponds to the key of the entity type or the association
in which bF is defined and TB represents the set of all the possible values of bF .
The signature of attribute definitions provides the types that are not shown on
the requirements class diagram. We consider only binary associations, because
n-ary associations can always be decomposed into n−1 binary associations with
additional constraints. Each association ascF corresponds to a state variable
ascB that is a relation between the key state variables of the two entity types
that compose the association. According to the multiplicity of ascF , ascB, or its
inverse, is defined by a partial function, an injection, etc. The translation rules
for the static part are presented in [10, 23]. For the sake of concision, we generate
a single B machine that contains all the operations. This has no influence on the
algorithms described in the paper.

For each action defined in eb3, an operation is created in B. The signature
of B operations comes from the signature of actions in the eb3 specification.
Thus, eb3 action aF (q1F : T1F , . . . , qnF : TnF) : (qn+1F : Tn+1F , . . . , qmF : TmF)
is translated into a B operation of the following signature:

qn+1B , . . . , qmB ←− aB(q1B , . . . , qnB) ∆=
PRE q1B ∈ T1B ∧ . . . ∧ qnB ∈ TnB

THEN ...
END;

When the output parameter type of action aF is void, then the operation has no
output in B. Typing constraints in the precondition also come from the signature
of actions.

Synthesizing B Specifications from eb3 Attribute Definitions 219

4.5 General Process for Synthesizing Substitutions

Because step 2 is similar, and even simpler than step 3, we just summarize in
this paper the synthesis of substitutions for the INITIALISATION clause.
For each attribute definition bF , there exists an input clause of the form ⊥ : u.
It denotes the initial value of the attribute and therefore corresponds to the
initialization substitution of the state variable that represents this attribute.
The most common value for u is ∅ (for a key) or ⊥ (for a non-key attribute),
which corresponds in B to a substitution of the form bB := ∅.

To generate the operation substitutions of the B machine, we must analyse
the input clauses of eb3 attribute definitions to determine which attributes are
affected by the execution of action aF and what is the effect of aF on these
attributes. Because of the pattern matching analysis described in Sect. 3.2, an
attribute bF may be affected by action aF if there exists at least one input
clause of the form aF (−→pI) : u in the definition of bF . The set of such attributes is
B(aF). To avoid confusion with the formal parameters of action aF , each actual
parameter p of an input clause is now denoted by pI . For each attribute bF of
B(aF), there may be several input clauses aF (−→pjI) : uj with the same label aF .
The list of these input clauses is denoted by IC(bF , aF). Since the first input
clause that evaluates to true is the one to be executed, analysis of input clauses
of IC(bF , aF) is done in their declaration order.

When expression uj in an input clause is a functional term, its translation
into B is quite straightforward. On the contrary, when expression uj is a con-
ditional term, then we must analyse the different conditions in the if predi-
cates. The crux of the analysis is to determine which key values are affected by
the reception of an input event aF . That is, when event aF is received, what
are the key values {−→v } such that bF (t :: aF ,−→v) �= bF (t,−→v). The variables in−→
k ∩ var(−→p) are determined by the pattern of an input clause aF (−→pI). The
variables in

−→
k − var(−→pI) are determined by the conditions in the conditional

term uj. Moreover, the functional terms in the then parts of uj can be valid
only for some conditions on the parameters −→p described in the if predicates.
We use a binary tree called decision tree to analyse the if predicates. For in-
stance, the conditional term associated to input clause TransferF (bIdI , mId′I)
in attribute definition nbLoansF contains two nested if then else end expres-
sions. With the pattern matching condition itself, one cannot determine the key
variable mId of this input clause. The if conditions then allow us to bind mId
to the formal parameters of TransferF . In the first then expression, the func-
tional term is applied to a key entity mId = mId′I , while, in the second one, it
corresponds to a key value mId = borrowerF (bIdI). Our general algorithm is
provided in Fig. 2.

Once all the substitutions Sb have been generated for each attribute bF of
B(aF), then operation aF is translated into B. If B(aF) = {b1, . . . , bm}, then the
substitution for aB is: Sb1 || . . . || Sbm . We now focus on the construction of
decision trees and on the synthesis of substitutions. The other points are detailed
in [18].

220 F. Gervais, M. Frappier, and R. Laleau

For each action aF of the eb3 specification
determine attributes B(aF) that are affected by the reception of aF

for each attribute bF of B(aF)
determine input clauses IC(bF , aF) of the form aF (−→pI) : u
for each input clause aF (−→pI) : u of IC(bF , aF)

determine the pattern matching condition
identify the free variables of u with the formal parameters −→qI

identify the hypotheses under which u is valid
generate a decision tree for bF

generate a substitution formula Sb for bB

generate the substitutions for operation aB

Fig. 2. The general synthesis algorithm

4.5.1 Decision Tree
A decision tree, whose leaves are all functional terms, is built for each attribute
bF in order to determine, for each input clause aF (−→pjI) : uj of IC(bF , aF),

– the mapping θuj that binds the free variables of input clause aF (−→pjI) to the
formal parameters of action aF (−→qF),

– and, if uj is a conditional term, the functional terms uj,i derived from the
then parts of uj and the associated conditions Φuj,i in the if parts of uj ,

where uj,i is the functional term of the i-th leaf of the subtree corresponding to
the j-th input clause of IC(bF , aF) of attribute bF and Φuj,i is the conjunction
of conditions φ labelling the path’s edges leading to functional term uj,i.

Mapping θuj is determined from the pattern matching condition of input
clause aF (−→pjI) with eb3 action aF (−→qF). For instance, the pattern matching con-
dition for input clause TransferF (bIdI , mId′I) in attribute definition nbLoansF

is bIdI = bIdF ∧ mId′I = mIdF . In practice, θuj is identified to an extended
mapping that binds the free variables of the input clause to the B counterparts
of the eb3 formal parameters. Thus, θuj = {bIdI ← bIdB, mId′I ← mIdB}.

The decision tree associated to attribute bF is built as follows. The root is bF .
The leaves correspond to the different input clauses aF (−→pjI) : uj of IC(bF , aF).
Each leaf is of the form uj, whose edge is labelled by a condition φ on parameters
−→
k to pattern match input clause aF (−→pjI) : uj . The rightmost leaf is always
bF (front(s),

−→
k), that correspond to the recursive call of attribute definition bF

when any input clause matches with the last input of trace s. When an expression
uj is a conditional term, then the corresponding leaf is replaced by a decision
subtree whose leaves are all functional terms. The conditions c in the if parts of
uj are then analysed to generate new nodes such that the children of a node are
its then and else subterms, whose respective edges are labelled by c and ¬c.

For instance, the decision tree of input clause TransferF in attribute definition
nbLoansF is represented in Fig. 3. There is only one input clause for action
TransferF in attribute definition nbLoansF . A first leaf is the functional term
associated to condition mId = mId′I . The second leaf corresponds to predicate

Synthesizing B Specifications from eb3 Attribute Definitions 221

FnbLoans (mId)

mId = mId’ I

FnbLoans

ImId = borrower(bId)

FnbLoans

FnbLoans

(mId) + 1

(mId) − 1

I

I(mId = borrower(bId))

(mId = mId’)

Fig. 3. The decision tree of input clause TransferF in nbLoansF

mId �= mId′I ∧ mId = borrower(bIdI). The last leaf is a recursive call of
nbLoansF .

4.5.2 B Substitutions
In the following formulas, θuj not only binds the free variables of the input clause
to the B formal parameters, but also transforms each occurrence of an attribute
call bF (front(s),−→pF) into a B expression of the form bB(−→pB). The enumeration of
these substitution elements is omitted from the description of θuj in the sequel,
for the sake of concision.

Let bF be a key of B(aF), then expressions uj in the input clauses of
IC(bF , aF) are all functional terms. Substitution bB for aB is directly defined
by:

bB := ujθuj

For instance, the substitution formula for input clause AcquireF (bIdI , bT itleI)
in the key definition bookKeyF of entity type book is:

bookKeyB := (bookKeyF ∪ {bIdI})θu

where θu = {bIdI ← bIdB, bT itleI ← bT itleB}. Then, by applying θu, we
directly obtain the B substitution of operation AcquireB for state variable
bookKeyB.

If bF is a non-key attribute, then its decision tree is analysed to generate
a substitution formula that defines the whole set of substitutions for bB. The
relevant paths are those that start from the root and lead to a leaf which is
distinct from a recursive call of bF . Then, the substitution formula for bB is:

bB := (A�−bB)<+R (1)

where A is the following set defined for every uj,i = ⊥:

A = {c | ∃−→k ·
∨
j

(
c = (

−→
k)θuj ∧

∨
i

Φuj,iθuj

)
}

222 F. Gervais, M. Frappier, and R. Laleau

and R is defined for every uj,i �= ⊥ by:

R = {(c, d) | ∃−→k ·
∨
j

(
c = (

−→
k)θuj ∧

∨
i

(
Φuj,i ∧ d = uj,i

)
θuj

)
}

Let us now explain what sets A and R represent. The disjunction on j rep-
resents the different input clauses with the same label in attribute bF . So each
branch j in A and R corresponds to one input clause. When uj,i is ⊥, then
attribute bF becomes undefined at the corresponding key value determined by
θuj and Φuj,i . Each branch i of the disjunction in set A represents such a key
value. For instance, action DiscardF (bIdF) sets the value of attribute titleF to
⊥ for book entity bId. From (1), we deduce: titleB := A�− titleB, where A is
defined as follows.

A = {c | ∃ bIdI · (c = bIdI) θu ∧ true θu}

Let us note that bIdI is directly bound by the pattern matching condition, and
θu is simply {bIdI ← bIdB}. Consequently, A = {bIdB} and the corresponding
substitution in operation DiscardB is then: titleB := {bIdB}�− titleB.

R is the set of maplets that assign new values to bB. The first disjunction
on j represents the different input clauses with the same label in attribute bF .
Let us now focus on the j-th input clause. If uj is a functional term, then the
corresponding maplet is (c, d), where c is the key value determined by θuj and d is
the attribute value ujθuj . If uj is a conditional term, then several key values are
concerned; they are determined by θuj and Φuj,i . Each branch i represents a key
value and its associated attribute value uj,iθuj . For instance, the conditional term
for input clause TransferF in attribute definition nbLoansF involves two entities
of attribute key mId: mId′I and borrowerF (bIdI). The generated substitution
formula is the following: nbLoansB := nbLoansB<+R, where R is defined by:

R = {(c, d) | ∃mId · (c = mId) θu ∧
((mId = mId′I ∧ d = nbLoansF (mId) + 1) θu) ∨
((mId �= mId′I ∧ mId = borrowerF (bIdI) ∧ d = nbLoansF (mId) − 1) θu)}

Let us note that mId remains a free variable after taking the pattern matching
condition into account: θu = {bIdI ← bIdB, mId′I ← mIdB}.

The general form (1) of substitutions generates a syntactically correct B
substitution but it is not the most suitable format to easily prove invariant
preservation. Hence, we have defined in [18] simplification rules that transform
this substitution into a more suitable format. In particular, some rules are de-
fined to generate IF THEN ELSE substitutions. For instance, let us consider
the above-mentioned set R obtained for attribute borrowerB . To simplify the
substitution, we can apply θu and then remove the existential quantification by
using candidate c for mId (i.e., apply the so-called one-point rule of predicate
calculus):

R = {(c, d) | (c = mIdB ∧ d = nbLoansB(c) + 1) ∨
(c �= mIdB ∧ c = borrowerB (bIdB) ∧ d = nbLoansB(c) − 1)}

Synthesizing B Specifications from eb3 Attribute Definitions 223

Set R is not equal to the simpler set used in operation Transfer in Sect. 4.2:

{(mId → nbLoans(mId)+1), (borrower(bId) → nbLoans(borrower(bId))−1)}

To have an equality, one must consider the condition mIdB �= borrowerB(bIdB)
as an hypothesis. This condition cannot be generated from the recursive functions
defining the attributes. However, it occurs as a guard of action Transfer in the
eb3 process expression, since a member cannot transfer a loan to himself. Hence,
if we take these eb3 action guards as hypotheses in the generation algorithm,
we can propagate the equalities on c and simplify R into an enumerated set and
obtain the B substitution of operation Transfer in Sect. 4.2; moreover, we must
add this condition to the precondition of operation Transfer. This is a general
pattern that often occurs in eb3 specifications.

5 Proving Static Data Integrity Constraints

An operation precondition can generally be divided in three parts:

1. the typing constraints for input parameters,
2. the weakest precondition required to preserve the invariant of the machine,
3. and the condition required to impose ordering constraints on operations.

The first part can be generated from eb3 action signature, as already shown.
The second part is required to preserve static data integrity constraints. Recall
that the first three steps of our approach allows one to systematically generate
the invariant I coming from the constraints of the class diagram and the sub-
stitutions S of each operation of the system. The last one is more difficult to
address and usually requires creativity, except for eb3 action guards which can
be automatically included in the operation precondition.

The second part can be generated as follows. The semantics of B substi-
tutions [1] is defined by their weakest precondition. Let S be a substitution
and R a predicate, expression [S]R denotes the weakest precondition such that
substitution S is guaranteed to establish predicate R. As a proof obligation,
each operation of a B abstract machine must satisfy the following property:
INV ∧ P ⇒ [S]INV , where INV is the invariant of the abstract machine, P is
the operation precondition and S is the operation substitution. To discharge the
proof obligation, we must add at least [S]INV to the precondition. Hence, the
operation preserves the invariant properties generated from the class diagram.

By using Atelier B [6], we have been able to determine the weakest precon-
ditions of the operations from the B machine described in Sect. 4. It consists in
trying to automatically discharge the proof obligations and to deduce from the
unproved subgoals the weakest preconditions. This approach is quite similar to
the identification of preconditions in Z with the tool Z/EVES described in [21].
For instance, operation Discard (see Sect. 4.2) is defined as follows.

Discard(bId) ∆=
PRE bId ∈ bK Set ∧ bId 	∈ dom(loan)

224 F. Gervais, M. Frappier, and R. Laleau

THEN
bookKey := bookKey − {bId} || title := {bId}�−title

END;

Predicate bId �∈ dom(loan) has been generated to preserve the invariant property
loan ∈ bookKey → memberKey. The precondition of this operation still requires
its third part, which is the ordering constraint that a book must have been
created before it can be deleted (i.e., bId ∈ bookKey). However, our algorithm
cannot generate it.

The generation of the weakest precondition takes its relevance in the context
of proving the refinement of an eb3 specification by a B specification [13]. This
proof ensures that the behaviour of the eb3 specification is equivalent to the
behaviour of the B specification. By generating the weakest precondition in B,
we ensure that the eb3 specification satisfies the static data integrity constraints.

Since it is not easy in eb3 to prove static data integrity constraints, we
take advantage of our translation algorithm to use B to state and prove addi-
tional static data integrity constraints, which are fundamental elements of an
IS specification. Static constraints also include safety properties, which cannot
be derived from the static structure described by the requirements class dia-
gram. For instance, the number of loans of each member could be limited to
five books. We can state this property in the B invariant as follows: ∀mId ∈
memberKey•nbLoans(mId) ≤ 5. By proving refinement between B and eb3, we
show that the eb3 specification satisfies this property. When refinement cannot
be proved, the refinement proof obligations highlight missing guards in the eb3

specification or improper scenarios defined by the process expressions and the
attributes.

Missing guards can also be identified by automatically adding to the precondi-
tion the hypothesis required to simplify R obtained from (1) into an enumerated
set. This is a heuristic which has allowed us to identify errors in earlier versions
of our eb3 specification.

6 Conclusion and Perspectives

Several approaches deal with the integration of state-based and event-based spec-
ifications, such as csp2B [5], CSP || B [9], CSP-OZ [11] or Circus [24]. The main
characteristics of IS lead us to choose B and eb3 for specifying them [12, 15].
In particular, eb3 and B are complementary to take the main properties of IS
into account: eb3 provides a formal, quite intuitive, way to specify the life cycles
of the system entities and B is a state-based formal language that allows us to
specify and verify the invariant properties of the system. We aim at defining
an integrated approach called eb4 [15] that consists in using eb3 to specify the
functional behaviour of IS, and then to use B invariants to specify and prove
safety properties about this specification.

eb4 distinguishes itself from the aforementioned approaches as follows. CSP-
OZ and Circus integrate two specification paradigms (state-based and process
expressions) into a single language with a unified semantical framework that

Synthesizing B Specifications from eb3 Attribute Definitions 225

covers both paradigms. CSP || B and csp2B split the specification in two parts:
control is expressed by a process expression; data is described by a B specifi-
cation. In eb4, the eb3 specification is complete in itself; the B specification is
partly generated from the eb3 specification; it is used to state static data in-
tegrity constraints. Moreover, both csp2B and CSP || B do not support arbitrary
process expressions, in order to simplify either the translation process (csp2B) or
the proof process. In addition, CSP || B verifies the consistency between B and
CSP through model checking instead of theorem proving. eb4 is closer to the
csp2B approach, where the CSP specification is translated into B. However, the
syntax of CSP is not convenient for specifying IS (prefixing, no Kleene closure,
cumbersome sequential composition). Moreover, csp2B allows CSP processes to
control B machines by identifying CSP events to B operations, while eb4 does
not provide such mechanisms.

In eb4, the eb3 specification is translated into an equivalent B specification.
In [13], Frappier and Laleau have used the B refinement relation to prove that
the ordering properties specified in eb3 are satisfied by the B counterpart. In this
paper, we have shown how to generate the minimal consistent B specification
that corresponds to eb3 attribute definitions. The generation of explicit B sub-
stitutions is detailed in [18]. The only part that is now missing for a complete
translation is the generation of control preconditions that represent ordering
constraints.

From the B specification, one can use B refinement techniques described
in [22] to implement the system with SQL. In [16, 17], we show how to syn-
thesize relational database transactions from eb3 attribute definitions. We plan
to implement tools to support these translations from eb3 to B and from eb3

to relational databases. A more general work is the translation into B of eb3

process expressions.

References

1. Abrial, J.R.: The B-Book: Assigning programs to meanings, Cambridge University
Press, 1996.

2. Abrial, J.R., Cansell, D.: Click’n Prove: Interactive proofs within set theory. In
TPHOLs 2003, Rome, Italy, LNCS 2758, Springer-Verlag, September 2003.

3. Abrial, J.R., Mussat, L.: Introducing dynamic constraints in B. In 2nd Conf. on
the B Method, LNCS 1393, Springer-Verlag, 1998.

4. B-Core (UK) Ltd.: B-Toolkit, http://www.b-core.com/btoolkit.html
5. Butler, M.: csp2B: a practical approach to combining CSP and B. Formal Aspects

of Computing, 12(4), 2000, pp 182–198.
6. Clearsy: Atelier B, http://www.atelierb-societe.com
7. Cousineau, G., Mauny, M.: The functional approach to programming, Cambridge

University Press, 1998.
8. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 4th edition,

Addison-Wesley, 2004.
9. Evans, N., Treharne, H., Laleau, R., Frappier, M.: How to verify dynamic properties

of information systems. In 2nd IEEE Intern. Conf. SEFM, Beijing, China, IEEE
Computer Society Press, September 2004.

226 F. Gervais, M. Frappier, and R. Laleau

10. Facon, P., Laleau, R., Nguyen, H.P.: Mapping object diagrams into B specifications.
In Method Integration Workshop, Leeds, UK, Series EWICS, Springer-Verlag, 1996.

11. Fischer, C.: Combination and implementation of processes and data: from CSP-OZ
to Java. Ph.D. Thesis, University of Oldenburg, 2000.

12. Fraikin, B., Frappier, M., Laleau, R.: State-Based versus Event-Based Specifica-
tions for Information Systems: a Comparison of B and eb3, Software and System
Modeling, 4(3), July 2005, pp 236–257.

13. Frappier, M., Laleau, R.: Proving event ordering properties for information sys-
tems. In Proc. ZB 2003, Turku, Finland, LNCS 2651, Springer-Verlag, June 2003.

14. Frappier, M., St-Denis, R.: eb3: an Entity-Based Black-Box Specification Method
for Information Systems. Software and System Modeling, 2(2), July 2003, pp 134–
149.

15. Gervais, F.: eb4 : Vers une méthode combinée de spécification formelle des systèmes
d’information. Dissertation for the general examination, GRIL, Université de Sher-
brooke, Québec, June 2004.

16. Gervais, F., Frappier, M., Laleau, R.: Generating relational database transactions
from recursive functions defined on eb3 traces. In Proc. SEFM 2005, Koblenz,
Germany, IEEE Computer Society Press, September 2005.

17. Gervais, F., Frappier, M., Laleau, R.: How to synthesize relational database trans-
actions from eb3 attribute definitions? In Proc. MSVVEIS 2005, Miami, USA,
INSTICC Press, May 2005.

18. Gervais, F., Frappier, M., Laleau, R.: Synthesizing B substitutions for eb3 attribute
definitions. Technical Report 683, CEDRIC, Paris, France, November 2004.

19. Gervais, F., Frappier, M., Laleau, R., Batanado, P.: eb3 attribute definitions: For-
mal language and application. Technical Report 700, CEDRIC, Paris, France,
February 2005.

20. Hoare, C. A. R.: Communicating Sequential Processes. Prentice Hall, Englewood
Cliffs, 1985.

21. Ledru, Y.: Identifying pre-conditions with the Z/EVES theorem prover. In Proc.
13th International Conf. on Automated Software Engineering, IEEE Computer
Society Press, 1998.

22. Mammar, A., Laleau, R.: Design of an automatic prover dedicated to the refine-
ment of database applications In Proc. FM’2003, Pisa, Italy, LNCS 2805, Springer-
Verlag, pp 834-854, September 2003.

23. Nguyen, H.P.: Dérivation de spécifications formelles B à partir de spécifications
semi-formelles. Ph.D. Thesis, CEDRIC, CNAM, Évry, December 1998.

24. Woodcock, J.C.P., Cavalcanti, A.L.C.: The semantics of Circus. In Proc. ZB 2002,
Grenoble, France, LNCS 2272, Springer-Verlag, 2002.

CZT Support for Z Extensions

Tim Miller1, Leo Freitas2, Petra Malik3, and Mark Utting3

1 University of Liverpool, UK
tim@csc.liv.ac.uk

2 University of York, UK
leo@cs.york.ac.uk

3 University of Waikato, New Zealand
{petra, marku}@cs.waikato.ac.nz

Abstract. Community Z Tools (CZT) is an integrated framework for
the Z formal specification language. In this paper, we show how it is
also designed to support extensions of Z, in a way that minimises the
work required to build a new Z extension. The goals of the framework
are to maximise extensibility and reuse, and minimise code duplication
and maintenance effort. To achieve these goals, CZT uses a variety of
different reuse mechanisms, including generation of Java code from a hi-
erarchy of XML schemas, XML templates for shared code, and several
design patterns for maximising reuse of Java code. The CZT framework
is being used to implement several integrated formal methods, which add
object-orientation, real-time features and process algebra extensions to
Z. The effort required to implement such extensions of Z has been dra-
matically reduced by using the CZT framework.

Keywords: Standard Z, Object-Z, TCOZ, Circus, parsing, typechecking,
animation, design patterns, framework, AST.

1 Introduction

The Z language [1] is a formal specification notation that can be used to precisely
specify the behaviour of systems, and analyse them via proof, animation, test
generation, and so on. Z was approved as an ISO standard in 2002, but currently
there are few tools that conform to the standard.1 The Community Z Tools
(CZT) project [2] is an open-source Java framework for building formal methods
tools for standard Z and Z extensions.

CZT2 provides the basic tools expected in a Z environment, such as conver-
sion between LATEX, Unicode and XML formats for Z, and parsing, unparsing,
typechecking and animation tools, with a WYSIWYG Z editing environment
integrated within the jEdit3 editor. There are also several more experimental
1 CADiZ (http://www-users.cs.york.ac.uk/∼ian/cadiz) is the only Z tool that

conforms closely to the Z standard. It is freely available, but is not open-source and
does not aim at supporting Z extensions.

2 See http://czt.sourceforge.net.
3 See http://www.jedit.org.

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 227–245, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

228 T. Miller et al.

tools under development, such as a Z-to-B translator and a semi-automated
GUI-builder for Z specifications. However, the main design goal of CZT is to
provide a framework which makes it easy to develop new Z tools. This paper de-
scribes how the framework also makes it easy to develop tools for extensions of Z.

In recent years, there has been an increasing interest in combining different
programming paradigms within a uniform formal notation, where Z plays a cen-
tral role. This has given rise to many Z extensions, which add features such as
process algebras [3, 4, 5], object orientation [6, 7], time [8, 9], mobility [10], and
so forth.

Among these extensions, CZT supports Object-Z [6], a specification language
that extends Z with modularity and reuse constructs that resemble the object-
oriented programming paradigm. Such constructs include classes, inheritance,
and polymorphism. CZT supports Object-Z in the form of parsing, typechecking,
and other facilities. CZT is also being used to develop extensions for Timed
Communicating Object-Z (TCOZ) [8], which is a blend of Object-Z and Timed-
CSP [11], as well as extensions for Circus [5], a unified refinement language that
combines Z, CSP [12], and the refinement calculus [13], with Hoare and He’s
Unifying Theories of Programming (UTP) as the semantic background [14]4.

This paper describes the engineering techniques used in the CZT framework
to maximise extensibility and reuse. Most of these techniques could also be
applied to frameworks for other integrated formal methods, especially when the
framework must support several different extensions of a common base language
(like the role of Z in CZT).

In Section 2, we present a method for specifying an XML interchange format
that maximises extensibility. Section 3 describes the automatic generation and
design of the Annotated Syntax Tree (AST) classes. Section 4 presents a method
for generating parsers, scanners, and other related tools for the different Z ex-
tensions, and Section 5 presents the design of the CZT typecheckers, which are
tailored for extendibility and reuse. Section 6 briefly presents the CZT animator,
ZLive, and discusses the possibility of using this to animate extensions to Z. Sec-
tion 7 presents the design of the specification manager, an integral component of
CZT that caches information about specifications to improve the efficiency of the
tools. Section 8 gives an overview of related work. Finally, Section 9 concludes
the paper and discusses the future of the CZT project.

2 XML Schemas

The first step in designing the CZT tools and libraries was the development of
an XML schema that describes an XML markup for Z specifications (ZML) [15].
This is an interchange format that can be used to exchange parsed Z specifica-
tions between sessions and tools written in different languages.

Standard Z allows specifications to be exchanged using Unicode, LATEX or
email markup. However, implementing a parser for such specifications is a non-
trivial task that can take several months. ZML, in contrast, can be parsed im-
4 See http://www.cs.york.ac.uk/circus/

CZT Support for Z Extensions 229

mediately since virtually all programming languages provide XML reading and
writing libraries.

The idea of using XML for Z has also been explored in the Z/EVES theorem
prover [16]. It allows one to create a customised theorem prover with additional
tactics tailored for a particular specification by modifying the XML representa-
tion of the Z specification in Z/EVES [17]. The main problem however, is the
lack of a common standard.

The XML schema for ZML was carefully designed, via consensus between
several groups of interested people, by selecting the best features of the abstract
syntaxes of CADiZ, Zeta and the Z standard. ZML supports several kinds of
extensibility:

Extensible Annotations: Each Z construct can be annotated with arbitrary
information, such as type information, comments, anticipated usage, and
source-file location.

Extensible ASTs: This allows Z extensions to add new kinds of expressions,
predicates, paragraphs, etc.

Extensible Schemas: The standard XML schema features, such as namespa-
ces and importing, mean that Z extensions can be defined without modifying
the original ZML schema.

The following strategies have been used to achieve these kinds of extensibility.
The “any” element can be used in an XML schema to enable instance XML

documents to contain additional elements not specified by the schema. This
concept has been used to define annotations. That is, an annotation to a term
can either be one of the annotations defined in the XML schema for Z, or any
other kind of data. New kinds of annotations can be added without changing
the ZML schema. This allows a tool builder to decide what data makes sense for
a particular tool. Tools that do not use a particular kind of annotation simply
ignore those annotations.

A typical style of defining XML schemas or DTDs is to explicitly list the
possible alternatives for expressions, predicates, etc. This makes it difficult to
extend the syntax of ASTs to allow new kinds of expressions or predicates.
In contrast, ZML uses inheritance (substitution groups in XML schema termi-
nology) extensively throughout the XML schema. Abstract elements are used
to provide placeholders for their derived elements. For example, the abstract
element Para is the parent of all concrete Z paragraphs, such as axiomatic para-
graphs (element AxPara), and free types paragraph (element FreePara). Other
elements that contain paragraphs, like Z section (element ZSect), are defined
to contain a reference to the abstract Para element. This allows any subtype of
Para to be used instead. This has the same extensibility advantages as subtyping
in object-oriented languages.

A Z extension can add new kinds of paragraphs, expressions and predicates,
simply by extending these ZML inheritance hierarchies. It is important to note
that this can be done without modifying the ZML schema file. Instead, the Z
extension creates a new XML schema which imports the original ZML schema
file, then defines the additional constructs using a new namespace. This means

230 T. Miller et al.

that several separate extensions of Z can easily coexist. For example, the XML
schema for Object-Z imports the ZML schema file, and defines a new paragraph
for classes (element ClassPara) that is derived from element Para defined in
the ZML schema. Instance documents of the Object-Z schema can now contain
class paragraphs in addition to the standard Z paragraphs wherever an element
Para is expected. Thus, an Object-Z specification in XML format can contain a
mixture of Z and Object-Z constructs, such as:

<Z:ZSect>
<OZ:ClassPara> ... <Z:True/> ... </OZ:ClassPara>

</Z:ZSect>

This process of extending the XML schema can be done multiple times, so
that even a Z extension can be extended. For example, the additional elements
provided by the Object-Z XML schema are further extended by the TCOZ XML
schema. Again, the definitions of the elements for TCOZ are encapsulated into
a TCOZ XML schema file, and the ZML and Object-Z XML schemas do not
need to be modified. Similarly, the Circus extension for CZT is encapsulated
into a Circus XML schema file that extends the main standard Z schema. This
approach of extension via inclusion is explored throughout the different layers of
CZT tools. The resulting net effect is that once one package is finished, it can be
directly extended through inheritance, hence simplifying the task of extending
standard Z to a great extent.

The use of XML in CZT has proved to be an efficient and extensible solution
for representing a Z specification and its extensions. The XML approach helps to
clarify design decisions in a straightforward fashion. This representation is the
key for the integrated development and exchange of information among different
Z tools.

3 Java AST Classes

To manipulate Z Annotated Syntax Trees (AST) within Java (or any other pro-
gramming language), we must convert ZML files into Java objects. This could
easily be done using one of the Java XML reader/writer libraries, such as DOM,
but this would result in a very generic interface to the Java objects — to the
programmer they would appear to be an N-ary tree of Element and Text ob-
jects. This does not accurately reflect Z syntax or semantics, is not elegant, and
is error-prone to use.

Instead, we provide a customised Java interface for each Z construct, with
appropriately named get and set methods for each subcomponent. This makes
programs more readable, and provides much stronger typechecking. However,
there are some situations where the generic N-ary tree view is more convenient
(for example, writing a deep copy procedure), so our Java interfaces also provide
a low-level generic view of each node, via the following two methods:

Object[] getChildren(); // return all children of this node
Term create(Object[] args); // create a new version of this node,

// with the given children.

CZT Support for Z Extensions 231

Having these two alternative views of each node of the AST gives the best of
both worlds — one can write generic tree traversal algorithms using the above
two methods, as well as readable and type-safe Z-specific syntax manipulations
using the node-specific get and set methods.

In fact, these CZT Java AST interfaces and their implementation classes
are automatically generated from the XML schemas described in the previous
section using our code generator GnAST (GeNerator for AST). The generated
code looks similar to the code produced by Java data binding tools like JAXB5

or Castor6. While the main purpose of a Java binding tool is to provide the
ability to convert from XML format to Java objects and vice versa, the main
purpose of GnAST is to generate well-designed AST classes. For example, the
AST classes generated by GnAST support an extensible variant of the visitor
design pattern [18, 19].

The automatic AST generation from the XML schemas dramatically reduces
the time required to develop a new Z extension, ensures a common style of
interface, and improves maintainability. For instance, the complete AST folder
representing standard Z contains around 420 Java files. GnAST has also been
used to generate AST interfaces and classes for Object-Z, TCOZ, and Circus. In
total, from the four XML schema files for standard Z and its extensions, GnAST
automatically generates around 2300 Java files. This provides a very convenient
and consistent way to obtain AST interfaces and classes for Z extensions that
fit well into the AST for standard Z.

The visitor design pattern [18, 19] makes it very easy to write tools like type-
checkers and printers, which need to traverse an AST. It allows new traversal
operations to be defined without modifying the AST classes. To define a new
operation, all one needs to do is to implement a new visitor class.

The visitor design pattern used in CZT has been described in detail in [2].
It is a variant of the acyclic visitor [20] pattern and the default visitor [21]
pattern. Its additional advantages over the standard visitor pattern are that it
allows the AST interfaces and classes to be extended without affecting existing
visitors, and that it allows a visitor to take advantage of the AST inheritance
relationships. For example, a copy visitor that copies an AST can provide a
default behaviour for Term, the base of the AST inheritance hierarchy. Since
AST classes for extensions also derive from Term, this copy visitor works for any
extension. On the other hand, if the default copy behaviour is not wanted for a
particular extension class, say XYZ, one can simply add a visitXYZ method to
the copy visitor, and that method will be used instead of the default visitTerm
method.

This has a big impact on the applicability of visitors for extensions like
Object-Z, TCOZ, and Circus. Firstly, it ensures that the Z AST classes can be
extended without having to modify existing Z visitors like typechecker, printer,
etc. Secondly, it makes it easy to extend existing visitors to handle Z extensions
— one can simply define a new visitor class which inherits behaviour from an

5 See http://java.sun.com/xml/jaxb/
6 See http://www.castor.org/

232 T. Miller et al.

existing Z visitor and adds a few methods for the new or changed language con-
structs. Finally, by defining default behaviours for abstract classes such as Expr
or Decl, it is possible to implement tools that are applicable to all Z extensions.

In conclusion, the CZT AST classes provide:

A Choice of Coding Style: One for generic low-level algorithms and the
other for node-specific high-level algorithms.

Automation: the AST classes are generated automatically by GnAST.
Reuse of Algorithms: The CZT visitor pattern allows AST traversal algo-

rithms to be reused and extended in flexible ways.
Extensibility: the standard Z AST can easily be extended by defining new

XML schemas.

4 Parsers, Scanners, and Related Tools

CZT includes a suite of important tools for operations such as parsing, type-
checking, and markup conversion. In addition to a parser and typechecker for
Z, an Object-Z parser is provided, and Circus and TCOZ parsers, as well as an
Object-Z typechecker, are under development. The Object-Z, TCOZ, and Circus
tools extend the Z tools by adding support for the additional constructs these
languages provide. As each language is an extension of Z, it is tempting to just
keep adding to the tools for each extension, and use the largest superset of all
extensions. For example, use the TCOZ tools to parse and typecheck Z. How-
ever, this has two distinct problems. Firstly, one aim of the CZT project is to
create tools that strongly conform to the Z standard. However, allowing extra
constructs to be parsed and using different type-rules will break the strong con-
formance. Secondly, the extensions of Z are not linear. For example, Object-Z
extends Z with class paragraphs, and TCOZ extends Object-Z with concurrency
operators, but Circus extends neither of these — only Z. Therefore, CZT requires
an approach that produces separate tools for each Z extension, maximises the
commonality between the parsers, and minimises versioning and maintenance
problems via reuse.

4.1 Parsers and Scanners

CZT includes parsers for standard Z specifications given either in Unicode or
LATEX markup. Support for email markup is planned. Java Cup7 is used to gen-
erate the CZT parsers from an LALR grammar, and JFlex8 is used to generate
the scanners.

Unfortunately, it is quite difficult to reuse code from an automatically gen-
erated scanner or parser, and neither Java Cup nor JFlex explicitly supports
inheritance for parser or scanners respectively. To avoid duplicated code, XML
templates that contain the different parser and scanner variants are used. From
this, the different source files for each Z extension are generated using XSLT9,
7 See http://www.cs.princeton.edu/∼appel/modern/java/CUP/
8 See http://jflex.de/
9 See http://www.w3.org/TR/xslt

CZT Support for Z Extensions 233

a language for transforming XML documents. This maximises the commonality
between the parsers and minimises versioning and maintenance problems.

All parser and scanner variants are maintained in master XML files. Each
master file contains several XML tags that are used for substituting text for each
Z extension. For example, the <package/> tag is placed wherever one would nor-
mally write the Java package name, so that each parser and scanner can be con-
tained in their own package. The tags <add:extension> and </add:extension>
are used to wrap around code that are specific to particular Z extensions. Thus,
to add a new type of expression to the Object-Z parser, one would add a new
production to the appropriate grammar rule in the master file, and place it
between the <add:oz> and </add:oz> tags. In other programming languages,
conditional compilation could be used to achieve the same result. However, as
Java does not support conditional compilation, we use the XML template trans-
lation approach.

To generate the individual Java Cup files for each extension of Z, XSLT is
used to include the necessary code, and to substitute in values for tags. For
example, to generate the Object-Z parser, XSLT is applied to the master file,
and supplied with the three arguments below:

1. "class" substituted with "Parser".
2. "package" substituted with "net.sourceforge.czt.parser.oz".
3. code in "oz" tags to be included.

Similar rules are specified for each parser and scanner variants. The result is
a series of Java Cup and JFlex files, one for each language, which can then be
used to generate the parser and scanner code.

The use of XML templates enables parsing code to be reused and easily main-
tained. Extending the parser and scanner for a new language can be done by just
adding the respective grammar and lexer rules together with few modifications
such as those parameters above. For example, we are experimenting the incorpo-
ration of the available Circus parser [22] rules within the flexible CZT framework.
The obvious advantages are the widely tested and supported standard Z classes,
LATEX markup and Unicode, visiting and other facilities.

4.2 Multiple Markups

CZT supports multiple markups for each Z extension. The different markup lan-
guages suit different communities. For example, LATEX is preferred by researchers,
while Unicode WYSIWYG editing might be more attractive for students or in-
dustrial users. At present, Unicode, LATEX, and the XML format are supported.
Adding additional markups is straightforward, as this section will present. XML
markup is not considered any further because it can be parsed immediately using
existing XML parsers. CZT uses JAXB10 to unmarshal an XML document into
a tree of Java objects, and then uses the visitor design pattern to convert this
tree into an AST.
10 See http://java.sun.com/xml/jaxb/

234 T. Miller et al.

In order to avoid having to provide a parser for each markup language, all
specifications are first translated into Unicode and subsequently parsed by a
Unicode parser11. This also makes sure that names in the AST are markup in-
dependent: they are represented in Unicode independently on the actual markup
used in the source document. This is a necessary precondition of allowing differ-
ent sections of a specification to be written in different markups. If a parser for a
new markup is required, only a translator to Unicode needs to be implemented.

A consequence of this architecture is that extensions of Z need to support
at least Unicode. CZT provides a Z Unicode scanner, which performs lexical
analysis on a Unicode stream and breaks it into the necessary tokens. A scanner
for a Z extension can be derived by adding additional scanner rules to the CZT
scanner template as described above. In order to support LATEX markup, it is
convenient to provide a LATEX toolkit section for a given extension that defines
new operators for that language. In addition to defining new operators, these
LATEX markup documents contain LATEX markup directives [1, 2] used to specify
how certain LATEX commands are to be converted into Unicode. The LATEX to
Unicode translator parses these definitions and converts each LATEX command
into the corresponding Unicode sequence. However, LATEX \begin{xxx} and
\end{xxx} environments cannot be defined using LATEX markup directives. If
a Z extension needs to provide new LATEX environments, the LATEX to Unicode
converter needs to be adapted directly. Again, this is possible by adding new
rules to the converter template file.

An additional benefit of this approach is that it reduces the number of con-
verters needed between languages. That is, CZT currently implements LATEX to
Unicode and Unicode to LATEX converters. In the future, we plan to implement
an email to Unicode converter to allow parsing of specifications written in email.
Using this and the Unicode to LATEX converter, we could convert email to LATEX.
So, using an intermediate format reduces the number of converter tools that need
to be implemented from M ∗ (M − 1) to 2 ∗ (M − 1), in which M is the number
of markup languages supported.

In conclusion, CZT supports extensions to parser and scanners using:

XML Templates for Code Sharing: XML templates are used to maximise
code reuse for the parser and scanner scripts.

Unicode as an Intermediate Format: Unicode is used as an intermediate
format to simplify the process of writing scanners and reduce the number of
converters needed between markups.

5 Typecheckers

Typecheckers in CZT are written in a different way from the parsers and scan-
ners. Each Z extension has its own typechecker, and while reuse is of high im-
portance, using XML templates is unnecessary because unlike the parsers, Java
interfaces and inheritance can be used to extend the typecheckers.
11 See [2] for a more detailed description of the parser architecture.

CZT Support for Z Extensions 235

z.TypeChecker

<< interface >>

Visitor

z.Checker

z.ParaChecker z.ExprChecker. . .

6

Fig. 1. UML class diagram for Z Typechecker

The Z typechecker is the base implementation. When a Z specification AST
is passed to this typechecker, it applies all the typechecking rules and, if the
specification is type-correct, it returns TRUE and annotates the original AST
with type information as defined in the ISO standard [1–Section 10]. If the
specification contains type errors, the result is FALSE, the AST is unchanged
and a list of error messages describing the type errors (including their line and
column position) is made available.

Most of the typechecker is written using visitors, which can be extended as
discussed in Section 3. While it is tempting to write the typechecker as one large
visitor, this would create maintenance problems as this visitor would be quite
large and monolithic. So we use a more sophisticated and extensible design,
shown in Fig. 1.

This breaks up the overall task of typechecking into several (currently six)
smaller Checker visitors — each subclass of Checker typechecks a different
kind of syntactic construct such as paragraphs, predicates, expressions, etc. The
Checker class itself defines some shared resources, such as typing environments
and the type unification facilities, as well as common “helper” methods used
throughout the implementation such as error reporting. In addition, each checker
subclass object has a reference back to the top-level TypeChecker object, which
has links to all the checkers — this allows one checker to call another via the
TypeChecker object.

For example, for typechecking a schema text of an AxPara, the ParaChecker
class, which typechecks Z paragraphs, needs to typecheck both the declarations
and the predicate parts of the schema text. Although visiting through the given
AST is the general solution, the typechecking of the declarations part is delegated
to the DeclChecker class, whereas the typechecking of the predicate part is dele-
gated to the PredChecker class. The DeclChecker in turn uses the ExprChecker
to ensure that expressions defining the declaring variables type are well-formed.
Because each of these visitors share the same TypeChecker reference, and hence
the same references to type environments, the declarations added to the type
environment by the DeclChecker will be accessible by the other checkers.

236 T. Miller et al.

There are a few additional classes that are used in the typechecker, but not
shown in Fig. 1, such as the UnificationEnv class that performs the unification
of two types for type inference and for checking type consistency.

The advantages of this typechecker design include:

– Methods that are common to all the Checker subclasses can be put in the
Checker superclass. Data that is shared between the checkers can be man-
aged by the Typechecker class and made accessible to the checkers in a
controlled way via access methods.

– Splitting the overall typechecking task into several parts increases modular-
ity and maintainability, and provides better encapsulation for the different
checkers. This aids debugging and allows development of the checkers to
be somewhat independent (for example, assigned to different teams or to
different iterations of an agile lifecycle).

– Each Checker subclass is typechecking similar kinds of nodes (e.g., all ex-
pressions), so can have a uniform visiting protocol, which increases regular-
ity and helps to reduce errors. For example, all the visitor methods of the
ParaChecker class, which typechecks Z paragraphs, return a Signature of
the name and type pairs declared in that Para. In contrast, the ExprChecker
class typechecks expression nodes and all its visitor methods return a Type
with resolved reference parameters in which type unification has already
been performed.

– By defining several Checker subclasses over the same kinds of AST nodes,
it becomes easy to have multiple algorithms over the same syntax nodes.
For example, post-checking for unresolved set and reference expressions,
which may introduce an unresolved type, is implemented as a second kind of
ExprChecker. This post-typechecking pass ensures that all implicit param-
eters such as generics actuals have been completely determined. This would
not be possible with a single monolithic visitor design, because one could
not have two visitRefExpr methods in the same visitor.

Fig. 2 shows how this design is extended to define a typechecker for a Z ex-
tension — Object-Z in this case. A new package (oz) is created for the Object-Z
typechecker. In this package, a new oz.Checker class is implemented, which
inherits the base z.Checker class. In this new class, any common methods
that are to be used by the Object-Z typechecker are implemented, and exist-
ing methods are overridden or overloaded if additional functionality is needed.
Then, new Checker subclasses are created, one for each kind of language en-
tity that requires Object-Z-specific typechecking. Each of these checkers (the
oz.XXXXChecker subclasses in Fig. 2) implement the visitor methods only for
Object-Z constructs and for any Z constructs that require additional Object-Z-
specific checking. The remaining standard Z constructs are handled by delegation
to the original z.XXXXChecker object.

It is interesting to see how this delegation is achieved, given that Java does
not support multiple inheritance. We rely on the general visiting protocol de-
scribed in Section 3 and in [2]. For example, the oz.ExprChecker class catches
all Object-Z-specific expressions. It also implements an additional visitExpr

CZT Support for Z Extensions 237

z.ExprCheckerz.ParaChecker

z.Checker

<< interface >>

Visitor

z.TypeChecker
6

oz.TypeChecker oz.Checker

oz.ParaChecker oz.ExprCheckeroz.OpExprChecker

7 . . .

. . .

Fig. 2. UML class diagram for Object-Z Typechecker

method which “catches” all remaining Expr AST nodes and uses the visitor
from z.ExprChecker to check those nodes.

private z.ExprChecker zExprChecker_;
...
public Object visitExpr(Expr expr) {
return expr.accept(zExprChecker_);

}

The Z typechecker has a reference to a z.ExprChecker object, but in the
Object-Z typechecker, this points to an oz.ExprChecker instead. When an
Object-Z expression is typechecked, it is handled directly by the oz.ExprChecker
instance. When a standard Z expression is typechecked, the above visitExpr
method is called, delegating the typechecking to an instance of z.ExprChecker.
Any subexpressions of the Z expression are passed back to the top-level typechec-
ker, which uses the oz.ExprChecker instance, to ensure that Object-Z subex-
pressions are checked correctly.

This also allows type-rules to be overridden. For example, a selection expres-
sion, a.b, in standard Z requires that a is a schema binding, whereas in Object-Z,
a can also be an object. The ExprChecker in the Object-Z implements the visit
method for such expressions, and this method first checks if a is an object, and
if not, delegates the call to the Z typechecker.

Although this is an unusual design, it has proven to provide good and el-
egant support for extension. An alternative approach that we considered was
for the Object-Z checkers to directly subclass the Z checker subclasses (e.g.,
oz.ParaChecker to inherit z.ParaChecker). However, this would have meant
that the common code implemented in the current oz.Checker class would have
had to have been implemented in the base Checker class, which would have
resulted in an undesirable strong coupling between all of the typecheckers.

238 T. Miller et al.

Other components are extended using inheritance. For example, the class
UnificationEnv, which is responsible for type unification, is extended by over-
riding its unify method to handle the new Object-Z types, while using the
superclass’s unify method for standard Z types.

Our experience is that the above extensible typechecker design makes it much
easier to build multi-lingual typecheckers. That is, a family of typechecker objects
for Z and various extensions of Z. For example, a static checker for Circus that
checks some context-sensitive rules such as variable and action declaration scope
has been developed following the guidelines for Z and Object-Z typecheckers.
This took only three to four days to develop and the task was made significantly
easier because of the code reuse and elegant object-oriented design of the CZT
typechecker. The information collected by this static checker is being used as
an initial environment for the Circus operational semantics [23]. In the future,
this static checker can also be used as the basis for a full Circus typechecker; the
type-rules for Circus are under development in [24]. An obvious advantage of
reusing the base Z typechecker is that the Circus typechecker will already enforce
standard Z typechecking conformance. Therefore, one can concentrate on the
implementation of new type-rules for Circus in this available skeleton for a Circus
typechecker.

In conclusion, CZT supports extendibility in its typecheckers by:

Using Multiple Visitors: A separate visitor is used for each group of type-
rules; this provides a straightforward way to implement type-rules for new
constructs (by adding new visitors), or override existing type-rules (by sub-
classing existing visitors).

Sharing Common Code via Inheritance and Delegation: Methods used
throughout the typechecker are shared in several abstract super classes that
are reused via both inheritance and delegation.

Sharing Resources: The TypeChecker class is used by visitors to provide ac-
cess to common resources and to other visitors.

6 Animation

Further to parsing and typechecking standard Z and its extensions, CZT also
provides animation facilities with its ZLive tool. Z animation is particularly
useful for testing, rapid prototyping, and experimenting with specifications. In
addition, given suitable restrictions to finite state models, an animator can be
used for finite theorem proving (or theorem testing), and model checking. An ex-
tensive discussion and comparison of Z animation tools available is given in [25].

6.1 Extending ZLive

ZLive is an animator capable of evaluating predicates and expressions using mode
analysis [26]. Mode analysis consists of including additional (type and formulae
ordering) information not present in specifications, which enable evaluation and

CZT Support for Z Extensions 239

animation. The architecture of ZLive is an evolution of a previous Z animator
implemented in Haskell12.

The ZLive architecture is divided into six tasks. Firstly, a target expres-
sion is given. Secondly, the definitions are unfolded so that schema inclusions
are grounded to base terms. Next, the unfolded definitions are flattened into
a normal form of atomic predicates. After that, possible evaluation modes are
calculated for each flatten predicate. These moded-predicates are then reordered
according to the cheapest solution order in terms of number of solutions. Finally,
all solutions are lazily enumerated as requested.

ZLive currently supports basic logic and arithmetic operators (e.g., ∀, ∃, ¬,
∧, −, +, ∗, ≤, <, div, mod, succ), set representations (comprehension, ranges,
and displays), unfolding of simple definitions, tuples, and schema bindings. For
efficient execution, the main issue is to find a good reordering of atomic pred-
icates which minimises the expected enumeration time. Currently ZLive uses a
naive algorithm for this, but in the future we expect to implement a best-first
or A∗ path-finding algorithm.

It is desirable to provide animation facilities for Z extensions as well as for
standard Z. To extend ZLive to animate a new Z extension, there are three
possible approaches:

Explicit Inclusion: Animation support for each new language construct, in-
cluding any new evaluation algorithms, is directly added to ZLive by adding
new Java classes and methods. This would use interfaces, inheritance and
visitors to achieve an extensible architecture, similar to the CZT typechecker.

Transformation to Standard Z: If each new construct of the Z extension can
be transformed back into standard Z using rewriting rules, then ZLive can be
used directly on the result of that translation. This approach is being used
to develop an Object-Z animator, with Object-Z objects being transformed
into Z bindings, etc. This approach of rewriting specifications is similar to
the Z refinement calculus [27, 13].

Meta-Level Animation: If the operational semantics of the new language can
be given in standard Z, one can use ZLive directly to animate the new Z
extension by animating its operational semantics. Although this is a meta-
level approach to execution, which usually results in very slow performance,
the performance impact should be less in this case, because any standard Z
constructs within the Z extension can animated efficiently and directly by
ZLive. That is, only the new constructs have to be animated by the slower,
meta-level approach. This approach is taken for animating the operational
semantics of Circus [23].

Depending on the new language constructs to be animated, these possibilities
can be combined.

12 See http://www.cs.waikato.ac.nz/∼marku/jaza/

240 T. Miller et al.

6.2 Extension Example: Animating Circus

We are currently experimenting using ZLive within the development of a model
checker for Circus [28]. Among other aspects, we are particularly interested in
integration of model checking and theorem proving facilities for Circus. In this
direction, animation plays an important part in the evaluation of Z terms used
to describe state aspects of dependable and distributed systems.

The Circus model checker architecture is divided into four main tasks as
shown in Fig. 3. The first two involve parsing a Circus specification in LATEX
to produce an CZT AST, and typechecking to produce an annotated AST+.
They use the CZT parser and typechecker described in earlier sections. The
last two stages involve compilation and refinement search. From the annotated
AST+ the compiler builds a Predicate Transition System (PTS) that finitely
represent (possibly infinite specifications) base on the operational semantics of
Circus [23]. Both the PTS and the AST+ are given to the model checker engine
that integrates refinement model checking algorithms [29, 30] together with the-
orem proving and debugging functionalities13. The result is a (possibly empty)
set of witnesses representing failed refinement conditions. More details of this
architecture can be found in [28].

Circus Model-checker

Parsing
Contextual
Analysis

Compilation
Model

Checking

AST AST+ AST+

PTS

P(Witness)LaTeX

Fig. 3. Circus Model Checking Stages

In this architecture, ZLive is used from two different perspectives: (i) to
animate the Z part of Circus specifications, and (ii) to evaluate the operational
semantics of Circus given in Z, while performing the model checking search.

To implement the first perspective, we are extending ZLive via direct in-
clusion of several Z constructs (like θ and some schema operators) that are
frequently used in Circus specifications but not yet implemented by ZLive. To
implement the second perspective, we are using the meta-level animation ap-
proach to animate the operational semantics of the CSP parts of Circus.

The transformation to standard Z approach could also be used to animate
the CSP parts of Circus. To have confidence in the correctness of this approach,
it would be desirable to have correctness proofs for the rewriting laws. As Circus
is heavily based on the notion of stepwise refinement, this transformation ap-
proach would fit nicely with the philosophy of Circus. Work in this direction of
a refinement calculus for Circus is under development [31]. It also includes the
basis for a Circus theorem prover [32].

The theorem proving module in the Circus model checker (which is used
both in the compiler and refinement engine), dispatches requests for evaluation
13 See http://www.cs.york.ac.uk/circus/model-checker

CZT Support for Z Extensions 241

of Z expressions and predicates. These are either verification conditions over the
state operations defined in Z, or possible enabling paths available for investi-
gation from the behavioural actions given using CSP. They are both given as
standard Z statements from the operational semantics of Circus. At this point,
theorem proving is usually necessary to discharge proof obligations, and trans-
form expressions or predicates. Nevertheless, for specifications with simple state
operations, animation is also a good idea that could improve the automation
levels of the model checking process.

The role ZLive plays in this scenario is to tackle the requests to evaluate Z
expressions and predicates from the theorem proving module within the com-
piler and refinement engine. As the operational semantics of Circus is given in Z
itself, we can use ZLive as a meta-level animator for simple specifications, hence
enabling automatic model checking of state-rich Circus specifications.

With a few improvements and extensions to the current implementation of
the schema calculus in ZLive, it should be possible to automatically model check
simple-state Circus specifications within ZLive. Furthermore, as the theorem
proving integration architecture of the Circus model checker allows pluggable
solutions suitable for individual contexts, if ZLive cannot handle some complex
Circus specifications, we can still resort to some alternative solution such as SAT
solvers, and general-purpose theorem provers.

These Circus tools, some of which are currently under development, give some
good examples of how to integrate different CZT tools across different notations
and tool boundaries, from standard Z parsing through to extended typechecking
and animation for Circus.

7 Specification Manager

One of the core components of the CZT framework is the specification man-
ager, which is an extensible repository for formal methods objects. Most of
the tools mentioned in the previous sections use the specification manager to
enquire about specific aspects of a specification. For example, to be able to
parse a Z section, the Z parser needs the operator definitions of the parent sec-
tions. In order to typecheck a Z section, the section must be parsed and the
parents of that section typechecked. To print a Z section in LATEX markup,
the operator definitions and LATEX markup directives of the parent sections are
needed.

While it would be possible to hard-code these dependencies and let, for ex-
ample, the LATEX markup printer call the parser for the parent sections directly,
it is more convenient, extensible, and efficient to have a central repository that
is responsible for this task. The CZT specification manager caches information
about all the specifications and Z sections that are being processed and auto-
matically runs tools such as markup converters, parsers and typecheckers when
necessary. The caching of the parsed form of commonly used objects, such as
standard toolkit sections, avoids repeated parsing and analysis of these objects
and can give significant performance improvements.

242 T. Miller et al.

Abstractly, the cache is a mapping from a key to the actual data. The key is
a (String, Class) pair, where the String is usually the name of the section,
and the Class is the Java class of the type of data associated with this key. This
allows several different kinds of objects to be associated with one section, and
provides some dynamic type security. For example, the Z parser adds the AST
of a specification it has parsed to the specification manager. The type of a Z
section in Java is ZSect.class. Thus the AST for a section called foo is cached
under the key (‘‘foo’’, ZSect.class).

The CZT specification manager supports two important kinds of extensibility:

Type Extensibility: Z extensions can easily use the specification manager to
store new types of information, since the flexible (String, Class) key
system allows arbitrary Java objects to be stored and retrieved. That is,
the kinds of objects managed by the specification manager are open-ended,
rather than being a fixed set of Z-related objects.

Command Extensibility: A Z extension can easily add or override the de-
fault commands of the specification manager. The default commands of the
specification manager are responsible for automatically computing requested
objects; they are implemented using the command design pattern [18]. For
example, if the AST for section foo (i.e., data of type ZSect.class) is
required and has not already been cached, the Z parser is called by the spec-
ification manager in order to parse the specification file containing section
foo. Here, the Z parser is the default command to compute data of type
ZSect.class. A Z extension that needs to use a different parser can sim-
ply override the default command associated with the type ZSect.class.
For example, the specification manager can be configured to always use the
Object-Z parser.

A major advantage of this default command approach is that it simplifies
tool development and makes tools more flexible, because a particular tool does
not have to know which other tools to use in order to find information about a
section — it simply requests the key that it wants and the specification manager
will locate the information if it is able. This gives a more flexible, plugin style
of tool development.

8 Related Work

Integrated formal methods frameworks have been investigated in the past. An-
derson et al. [33] discuss a framework for integrating different formal methods
tools. However, their aim is to specify generic interfaces to support integration of
formal methods tools. Three types of interfaces are used: between the engineer
and the tools; between cooperating tools; and between the tools and the project
environment. They achieve this by using an Encapsulation Toolkit to allow a
formal methods tool to communicate with other components in an intermediate
format, and an Active Document Toolkit to allow communication between tools
and their human users. The goals of this project are different to CZT, which

CZT Support for Z Extensions 243

aims to provide components for Z tools that can be extended and integrated
into the project or other tools.

Brillant14 is an open-source project with similar aims to CZT, but for the
B method. It aims to integrate several existing projects (BCaml, jBTools and
ABTools), which all contain parsers and typecheckers for various dialects of B.
Brillant is an approach to integrating these tools in a loosely-coupled style, with
tools being written in several different languages (OCaml, Java and XSLT) and
communicating via a common XML format for B machines. Brillant includes a
translator from UML to B, plus some experimental B extensions (Event B and
a real-time extension of B based on the duration calculus), but the extensions
seem to be designed on an individual basis, rather than being tightly integrated
extensions of a core architecture like in CZT. The extensible architecture of CZT,
and of course, the consistent use of Java for writing the tools, enables a higher
degree of reuse.

Other formal methods toolkits exist, such as the RODIN project15 for the B
specification language, and the Overture toolset16 for VDM, but they focus on
providing specific tool support for their respective languages, whereas CZT aims
to provide extensible components that can also be used by other tools.

Projects such as Eclipse17 and UQ* 18 are projects aimed at providing generic
language-based environments for software development. However, these projects
are not tailored towards formal methods, and provide support for generic lan-
guages, leaving the development of parsers, typecheckers, and other language-
specific tools up to users who want such support. CZT is exactly the opposite of
this, in that it focuses only Z and various Z extensions, allowing specific compo-
nents, such as parsers and typecheckers, to be included within the framework.
Therefore, CZT could be integrated into the Eclipse or UQ* environments.

9 Conclusions and Future Work

In this paper, we have presented a variety of reuse and extensibility mechanisms
that makes the CZT framework an ideal starting point to develop new integrated
formal methods tools for Z and its extensions. We have shown how the XML
schemas for Z, and for extensions of Z, support reuse and extension of the Z
language. They also enable automatic generation of Java AST classes with two
levels of interface, and a consistent implementation of the CZT visitor pattern.

Using examples from Object-Z, TCOZ, and Circus, we have discussed sev-
eral practical strategies and techniques that allow the CZT tools like parsers,
typecheckers, and animators developed for standard Z to be reused within these
Z extensions in a way that minimises code duplication and maintenance. The

14 See https://gna.org/projects/brillant.
15 See http://rodin-b-sharp.sourceforge.net/.
16 See http://www.overturetool.org/.
17 See http://www.eclipse.org/.
18 See http://www.itee.uq.edu.au/∼uqstar/.

244 T. Miller et al.

strategies and techniques presented can also help developers of integrated formal
methods tools not based on Z to make their framework as extensible as possible.

We plan to develop additional tools for Z and its extensions, as well as ex-
tending the CZT framework itself. For instance, extensions of ZLive providing
Object-Z constructs, schema unfolding, predicate reordering, rewriting rules, and
a tactic language in the spirit of ANGEL [34] are on our agenda. These improve-
ments would enable a basis for an extensible theorem prover for standard Z and
its extensions that is open-source and cross-platform.

Z parsing and typechecking is neither a novel idea, nor a unavailable resource.
Nevertheless, flexible and integrated open-source support for ISO standard Z
heavily focused on strong conformance and extensibility has not previously been
available. The philosophy CZT advocates is simple: provide an open-
source framework with a set of tools for editing, parsing, typechecking
and animating formal specifications written in Z, with support for
Z extensions. As new extensions are included and the framework matures,
we expect it to become the common base for a growing number of strongly
conforming tools for Z and its extensions.

References

1. ISO/IEC 13568: Information Technology—Z Formal Specification Notation—
Syntax, Type System and Semantics. First edn. ISO/IEC (2002)

2. Malik, P., Utting, M.: CZT: A Framework for Z Tools. In Treharne, H., King, S.,
Henson, M., Schneider, S., eds.: ZB 2005: Formal Specification and Development
in Z and B: 4th International Conference of B and Z Users, Guildford, UK, April
13-15, 2005. Proceedings, Springer-Verlag (2005)

3. Fischer, C.: How to combine Z with process algebras. Technical report, University
of Oldenburg (1998)

4. Fischer, C.: Combination and Implementation of Process and Data: from CSP-OZ
to Java. PhD thesis, University of Oldenburg (2000)

5. Woodcock, J., Cavalcanti, A.: A Concurrent Language for Refinement. 5th Irish
Workshop on Formal Methods (2001)

6. Smith, G.: The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers (2000)

7. Cavalcanti, A.L.C., Sampaio, A., Woodcock, J.C.P.: Unifying Classes and Pro-
cesses. Journal on Software and Systems Modelling (2005) To appear.

8. Mahony, B., Dong, J.S.: Timed Communicating Object-Z. IEEE Transactions on
Software Engineering 26 (2000) 150–177

9. Sherif, A., He, J.: Toward a Time Model for Circus. In George, C., Miao, H., eds.:
ICFEM 2002. Volume 2495 of LNCS., Springer-Verlag (2002) 613–624

10. Tang, X., Woodcock, J.: Towards Mobile Processes in Unifying Theories. In Cuel-
lar, J., Liu, Z., eds.: SEFM2004: the 2nd IEEE International Conference on Soft-
ware Engineering and Formal Methods. (2004) 44–53

11. Schneider, S., Davies, J.: A Brief History of Timed CSP. Theoretical Computer
Science 138 (1995) 243–271

12. Roscoe, A.W.: The Theory and Practice of Concurrency. 1st edn. International
Series in Computer Science. Prentice-Hall (1997)

13. Morgan, C.: Programming from Specifications. Second edn. Prentice-Hall (1994)

CZT Support for Z Extensions 245

14. Hoare, C., Jifeng, H.: Unifying Theories of Programming. First edn. International
Series in Computer Science. Prentice-Hall (1998)

15. Utting, M., Toyn, I., Sun, J., Martin, A., Dong, J.S., Daley, N., Currie, D.: ZML:
XML Support for Standard Z. In: ZB 2003: Formal Specification and Development
in Z and B: Third International Conference of B and Z Users, Turku, Finland, June
4-6, 2003. Proceedings, Springer-Verlag (2003) 437–456

16. Meisels, I., Saaltink, M.: Z/Eves 1.5 Reference Manual. ORA Canada. (1997)
TR-97-5493-03d.

17. Saaltink, M., Meisels, I.: The Core Z/Eves API (DRAFT). Technical Report
TR-99-5540-xx, ORA Canada (2003)

18. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, USA (1995)

19. Mai, Y., de Champlain, M.: A Pattern Language To Visitors. In: The 8th Annual
Conference of Pattern Languages of Programs (PLoP 2001), Monticello, Illinois,
USA. (2001)

20. Martin, A.C.: Acyclic visitor. In Martin, R.C., Riehle, D., Buschmann, F., eds.:
Pattern Languages of Program Design 3, Addison-Wesley Longman Publishing Co.,
Inc. (1997)

21. Nordberg III, M.E.: Default and Extrinsic Visitor. In Martin, R.C., Riehle, D.,
Buschmann, F., eds.: Pattern Languages of Program Design 3, Addison-Wesley
Longman Publishing Co., Inc. (1997)

22. Barbosa, A.: A Parser for Circus. Graduation Research Project (2002)
23. Woodcock, J., Cavalcanti, A., Freitas, L.: Circus Operational Semantics. In: Pro-

ceedings of Formal Methods Europe. (2005)
24. Xavier, M.: Circus Type-checker. Master’s thesis, Universidade Federal de Per-

nambuco, Brazil (2006) In preparation.
25. Utting, M.: Data Structures for Z Testing Tools. Technical report, University of

Waikato, Hamilton, New Zeland (1999)
26. Winikoff, M.: Analysing modes and subtypes in Z specifications. Technical Re-

port 98/2, University of Melbourne, Department of Computer Science, Parkville,
Victoria 3052, Australia (1998)

27. Cavalcanti, A.: A Refinement Calculus for Z. PhD thesis, Ox-
ford University (1997) Also published as a PRG Technical Monograph at
web.comlab.ox.ac.uk/oucl/publications/monos/prg-123.html.

28. Freitas, L.: Model Checking Circus. PhD thesis, Univeristy of York (2005) To
appear in October 2005.

29. A. W. Roscoe: Model checking CSP. In book: A Classical Mind: Essays in Honour
of C. A. R. Hoare (1994) 353–378

30. Cleaveland, R., Hennessy, M.: Testing Equivalence as a Bisimulation Equivalence.
Formal Aspects of Computing 5 (1993) 1–20

31. Oliveira, M.: A Refinement Calculus for Circus. PhD thesis, University of York
(2005) To appear in December 2005.

32. Oliveira, M., Cavalcanti, A., Woodcock, J.: Unifying Theories in ProofPowerZ.
draft, Univeristy of York (2005)

33. Anderson, P., Goldsmith, M., Scattergood, B., Teitelbaum, T.: An Environment
for Integrating Formal Methods Tools. In: User Interfaces for Theorem Provers.
(1997)

34. Martin, A.P., Gardiner, P.H.B., Woodcock, J.C.P.: A Tactic Calculus. Formal
Aspects of Computing 8 (1996) 244–285

Embedding the Stable Failures
Model of CSP in PVS

Kun Wei and James Heather

Department of Computing, University of Surrey, Guildford, Surrey GU2 7XH, UK
{k.wei, j.heather}@surrey.ac.uk

Abstract. We present an embedding of the stable failures model of CSP
in the PVS theorem prover. Our work, extending a previous embedding
of the traces model of CSP in [6], provides a platform for the formal
verification not only of safety specifications, but also of liveness speci-
fications of concurrent systems in theorem provers. Such a platform is
particularly good at analyzing infinite-state systems with an arbitrary
number of components. We demonstrate the power of this embedding by
using it to construct formal proofs that the asymmetric dining philoso-
phers problem with an arbitrary number of philosophers is deterministic
and deadlock-free, and that an industrial-scale example, a ‘virtual net-
work’ [21], with any number of dimensions, is deadlock-free. We have
established some generic proof tactics for verification of properties of net-
works with many components. In addition, our technique of integrating
FDR and PVS in our demonstration allows for handling of systems that
would be difficult or impossible to analyze using either tool on its own.

Keywords: CSP, theorem prover, liveness, deadlock, determinism.

1 Introduction

Concurrent systems are often complex because they consist of many components
that can run independently and simultaneously. Proving properties of these sys-
tems is also often a difficult task. CSP provides a rich notation for modelling
these kinds of system, and the many laws of CSP can be used to verify specifi-
cations of such systems, thus enabling designers to check whether the systems
meet desired properties or not. However, constructing proofs of correctness by
hand is arduous and error-prone.

One highly successful solution to this problem is FDR [9], which is a powerful
model-checking tool providing automated analysis and verification of CSP pro-
cess descriptions. In conjunction with many advanced techniques including data
independence [11] and hierarchical compression [15], FDR can in many cases deal
efficiently with processes with vast or even infinite state spaces. However, most
classes of infinite-state processes are out of reach of model-checking with cur-
rent techniques. Data independence allows model-checking of systems that have
an infinite state space on account of an infinite datatype, but not of systems
with an arbitrary number of concurrent processes. The alternative is to take a
theorem-proving approach, which allows us to reason about arbitrary processes.

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 246–265, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Embedding the Stable Failures Model of CSP in PVS 247

PVS [4, 5], the Prototype Verification System, is an interactive theorem prover
based on a form of higher-order logic. It provides an environment for constructing
precise specifications, and for efficient mechanized verification. Although it is
similar in many ways to other theorem provers such as Isabelle/HOL [13] and
IMPS [8], it supports a richer type system, and checks semantic consistency for a
PVS specification. PVS is also a natural choice for this work because of previous
work in [6, 19, 7] where the authors represent the denotational semantics of the
traces model of CSP in PVS and then apply their proof strategy to model and
verify various safety properties of security protocols. Since the stable failures
model records both traces and failures information, we choose to take Dutertre
and Schneider’s PVS traces embedding and augment it with stable failures.

The extension from Dutertre and Schneider’s encoding of the traces model
to our embedding of the stable failures model is not at all trivial. They do not
consider various important operators of CSP, such as successful termination and
sequential composition; our embedding, however, does include these operators,
along with various laws about their behaviour. In addition, in order to verify
deadlock freedom and determinism, we have formally proved many crucial rules,
including the unique fixed point theorem, deterministic induction and various
deadlock rules. These rules have previously been proved only by hand; we here
give rigorous machine-verified proofs.

Dutertre and Schneider’s embedding could prove only safety properties; our
platform can verify liveness properties (for example, deadlock freedom and de-
terminism), which cannot be analyzed in the traces model. We will show in
this paper how to prove determinism and deadlock freedom of the asymmetric
dining philosophers network with an arbitrary number of philosophers, using
mathematical induction. In the case of deadlock freedom, the work in PVS es-
sentially reduces the problem to a very small model-checking verification exercise
involving under 100 states. Although the proof could be completed entirely in
PVS, it would be extremely tedious and time-consuming to perform this model-
checking manually in a theorem prover; the more natural approach, and the one
adopted here, is to use FDR to complete the finite-state model-checking part of
the verification. The main idea of the proof comes from [15], which uses a hierar-
chical compression technique in FDR to prove the case with very large numbers
of philosophers.

Moreover, we have formally proved some of the deadlock rules described
in [14], which can be used to construct deadlock-free networks. These formal
proofs provide rigorous verification of the rules. The significance of these rules
is that FDR can then verify deadlock freedom of complex networks by analysis
of individual components of the network. Here we show how to construct the
formal proof of these rules, and then use the rules to prove deadlock freedom of
a case study in PVS.

In contrast to model-checking, embedding the semantics of CSP into higher-
order logics provides mechanical support for verifying the correctness of prop-
erties in a system. In the early stage, Camilleri [2] has shown how a theorem
prover based on higher-order logic can provide a natural framework for mech-

248 K. Wei and J. Heather

anizing CSP. However, his mechanization was slightly restricted since both the
semantics of CSP and theorem-proving tools have been improved over the past
decade.

Tej and Wolff [20] provide a basic platform of encoding the denotational
semantics of the CSP failures/divergences model in Isabelle/HOL, along with
verifying the consistency of theories and a number of algebraic laws. Our experi-
ence suggests, however, that simply providing an embedding is far from sufficient
to allow one to verify properties of systems in practice. We therefore have built
up a large number of theorems and lemmas to support the verification of partic-
ular properties of practical systems. Isobe and Roggenbach [10] propose a new
tool called CSP-Prover which provides an encoding of the CSP stable failures
model. It appears that this encoding, based on the theorem prover Isabelle/HOL,
is essentially an extension of Tej and Wolff’s work; their formalization supports
the theory of complete metric spaces as well as the theory of complete partial
orders, allowing it to deal with a much wider class of properties of recursion. We
have taken a similar approach in our model; furthermore, we have established a
class of generic proof tactics, and shown how to combine the use of FDR and
a theorem prover so that we are able to model and verify properties of many
different types of system.

Brooke [1] uses Timed CSP and PVS and FDR to construct tool-supported
proofs to verify properties of systems on an industrial scale. Another successful
case is the programming language Circus [3, 16], which combines CSP and Z to
specify, validate and develop real-time programs. All Circus refinement laws are
proved using the theorem prover ProofPower-Z.

The remainder of the paper is organized as follows. We will give a brief
introduction to the notation of CSP and the denotational semantics of the stable
failures model; we then show how to embed this model in PVS; we present some
generic proof tactics and our case study, proving using our formalization that
the asymmetric dining philosophers with an arbitrary number of philosophers
is deadlock-free and deterministic, and that a ‘virtual network’ [21] with any
number of dimensions is deadlock-free as a consequence of various deadlock rules;
finally, we give conclusions and discuss future work.

2 CSP Notation

CSP is an event-orientated language for describing concurrent systems and their
interactions. A system can be considered as a process that might be hierarchically
composed of many smaller processes. An individual process can be combined
with events or other processes by operators such as prefixing, choice, parallel
composition, and so on. There are four semantic models available—traces, sta-
ble failures, failures/divergences, and failures/divergences/infinite traces—and
which one is chosen depends on what properties of the system one is trying to
analyze. In this paper, we choose the CSP stable failures model since this pro-
vides a rich enough framework for analysis of deadlock freedom and determinism
(for processes known to be non-divergent).

Embedding the Stable Failures Model of CSP in PVS 249

The traces model is the simplest model, in which processes are described
according to sequences of events they engage in. The stable failures model, de-
scribed in detail in [14, 18], records stable failures as well as traces.

Traces tell us exactly what a process can do, but nothing about what it can
refuse to do. A refusal set is a set of events from which a process can fail to
accept anything no matter how long it is offered; a failure is then defined as a
pair (t ,X), where t ∈ traces(P) and X is a refusal of the process P after it has
performed the trace t . If the trace t can make no internal progress, this failure
is called a stable failure.

The basic syntax of CSP we use is described by the following grammar:

P ::= Div | Stop | Skip | a → P | P1 � P2 | P1 � P2 |
P1 ‖

A
P2 | P \ A | f (P) | P1; P2

where we assume Σ is a universal set including all possible events for processes
under consideration, a is an element of Σ, and A is a subset of Σ.

Div is a process which does nothing except diverge. Stop is a stable dead-
locked process that never performs any events. Skip is used to denote successfully
termination, and it expresses this by means of the termination event
, which
is not a member of Σ. The process a → P behaves like P after performing the
event a.

The external choice P1 � P2 may behave either like P1 or like P2, depending
on what events its environment initially offers. The traces of internal choice
P1 � P2 are the same as those of P1 � P2, but the choice in this case is non-
deterministic.

The interface parallel P1 ‖
A

P2 is the process where all events in the inter-

face A must be synchronized, and other events can be performed independently.
The interleaving and alphabetized parallel operators can be defined in terms of
interface parallel.

The hiding process P \ A will pass through the same events as P, but events
in the set A become be invisible. The renamed process f (P) means that, for
example, an event a in such a process is completely replaced by f (a) where f
is a mapping function. The sequential composition P1; P2 passes control to P2
when P1 terminates successfully.

Note that recording only stable failures is not enough because it is not guar-
anteed that every process has one. For instance, after a process diverges—that is,
after it reaches a state from which it can perform an infinite sequence of internal
events—it may never reach a stable state, and hence has no more stable failures.
Therefore, it is necessary to record traces separately in the stable failures model;
each process is represented as the pair (traces(P), failures(P)).

The stable failures model consists of all those pairs (T ,F) with T ⊆ Σ∗�

and F ⊆ Σ∗� × P(Σ�) 1 that satisfy the following conditions:

1 Σ∗ is the set of all finite sequences over Σ and P(Σ) is a powerset; Σ∗� = Σ∗ ∪{t �
〈
〉 | t ∈ Σ∗} and Σ� = Σ ∪ {
}.

250 K. Wei and J. Heather

T is non-empty and prefix closed (SF1)
(t ,X) ∈ F ⇒ t ∈ T (SF2)
(t ,X) ∈ F ∧ Y ⊆ X ⇒ (t ,Y) ∈ F (SF3)

(t ,X) ∈ F ∧ (∀ a ∈ Y)(t � 〈a〉 �∈ T ⇒ (t ,X ∪ Y) ∈ F) (SF4)

t � 〈
〉 ∈ T ⇒ (t , Σ) ∈ F (SF5)

t � 〈
〉 ∈ T ⇒ (t � 〈
〉,X) ∈ F (SF6)

The stable failures model deliberately ignores divergence; in situations in which
divergence is not an issue, this brings considerable convenience in the form of
reduced complexity of the model. For instance, if we know in advance that a
process is divergence-free, using the stable failures model can greatly reduce
the complexity of the refinement (regardless of whether we are doing theorem-
proving or model-checking).

Divergence is not considered as deadlock in the stable failures model, though
it is considered as deadlock in failures/divergences. This is precisely what we
need here: we shall make considerable use of the fact that hiding of events makes
no difference to deadlock freedom. Our formalization follows the denotational
semantics of CSP. Detailed semantics of the stable failures model can be found
in [14].

3 Embedding CSP Semantics in PVS

As a first step, we need to formalize the CSP notation in PVS. Dutertre and
Schneider’s embedding of the traces model in PVS [6] already defines most of
the notation that we need; we extend it to the stable failures model, introducing
along the way the new operators and laws of CSP that we will require.

The stable failures model is represented by pairs (T ,F) in which T is a set
of traces that forms the semantics of a process in the traces model. The classic
formalization of traces is to simply consider traces as lists of events.

The special event
 is not a member of Σ and can never be performed by a
process unless this is the last event that it engages in. To represent the extended
alphabet Σ�, we define a datatype as follows:

E [T:TYPE]: DATATYPE WITH SUBTYPES TE, NTE
BEGIN
tick:tick?:TE
ES(a:T):non_tick?:NTE
END E

where we also define two subtypes TE and NTE. Here, NTE is used to represent Σ.
PVS provides a predefined abstract datatype list. Thus, the type trace

defined as follows is simply a subtype of list.

trace: TYPE ={ l:list[E] | tick_free?(front(l)) }

Embedding the Stable Failures Model of CSP in PVS 251

where the function front returns the entire list except for the final element, and
tick_free? is a predicate that determines whether or not the list includes the
event
. The expression above therefore ensures that
 cannot appear except
at the end of a trace.

3.1 Processes

Processes in the stable failures model consist of pairs (T ,F) that satisfy the
six conditions mentioned in Section 2. Our definition of processes relies on PVS
subtyping: process is a subtype of SF defined as follows:

SF: VAR [set[trace[T]], set[[trace[T],set[E]]]]
process:TYPE= {SF | SF1(SF) and SF2(SF) and SF3(SF) and

SF4(SF) and SF5(SF) and SF6(SF) }

where SF1–SF6 are the six predicate type functions derived from the stable fail-
ures model’s conditions (SF1)–(SF6) from Section 2. Note that T is a type pa-
rameter which denotes the type of elements of a trace, and trace[T] will auto-
matically add in the special event
.

Table 1. CSP syntax

Operation CSP CSPM PVS

Stop Stop STOP Stop

Skip Skip SKIP Skip

Prefix a → P a -> P a >> P

External choice P1 � P2 P1 [] P2 P1 \/ P2

Internal choice P1 � P2 P1 |~| P2 P1 /\ P2

Interface parallel P1 ‖
A

P2 P1 [|A|] P2 Par(A)(P1,P2)

Alphabetized parallel P1 A‖B P2 P1 [A||B] P2 Par(A,B)(P1,P2)

Interleave P1 ||| P2 P1 ||| P2 P1 // P2

Hiding P \ A P\A P/A

Renaming f (P) P[a<->b] Re(P, f)

Sequential composition P1; P2 P1;P2 Seq(P1,P2)

All of CSP’s main operators are listed in Table 1, with the standard CSP
syntax, the CSPM syntax (as used in FDR), and PVS’s syntax. Note that in
this paper, we consider only injective renaming since it leaves the behaviour of a
process unchanged except for the names of the actions, and it thus has a rich set
of laws. Even so, injectivity is not sufficient for some laws in the stable failures
model: sometimes we need the renaming function to be bijective. (This is clearly
an issue only when Σ is infinite.)

252 K. Wei and J. Heather

We also define indexed versions of the choice and parallel operators, which
are often used in analyzing a large network. In particular, we use Echoice(P)

and Par(A)(P) to denote �i∈I
Pi and ‖n

i=1
(Pi ,Ai) respectively, where P is a

parametric process and A is a parametric set.
FDR’s main function is to determine whether one process refines another.

In the stable failures model, this equates to checking whether the traces and
failures of one process are subsets of the traces and failures of the other:

P "F Q ≡ traces(P) ⊇ traces(Q) ∧ failures(P) ⊇ failures(Q)

The idea of refinement is still kept in verifying properties of processes in PVS.
For example, for proving a process Q deadlock-free, we often explicitly construct
a deadlock-free specification P , then check whether Q refines P or whether Q
is a subset of P . Obviously, if Q refines P and P is deadlock-free, then Q is
deadlock-free as well.

We use the relation ‘<=’ to denote refinement of processes in PVS: Q <= P,
representing P " Q in CSP, corresponds to Q ⊆ P . Since ‘<=’ and subset? have
been predefined in the prelude library of PVS, we rewrite them so that they can
compare a pair of sets. So <= is defined as the following:

<=(Q, P) : bool = subset?(Q, P)

3.2 Fixed Points and Recursive Processes

Some processes, called recursive processes, may run indefinitely, instead of exe-
cuting for a finite number of steps and then stopping; Unfortunately, we cannot
define such processes directly in PVS since a theorem prover will not allow us to
get away with any kind of recursive definition unless we can demonstrate that
it is well-defined.

The formalization used in [6] to deal with recursive processes is the ‘µ-
calculus’ theory, which uses a µ operator (‘mu’ in PVS) to compute the least
fixed point of a monotonic function2. We have extended this to the stable fail-
ures model since all CSP operators are monotonic over the stable failures model
with respect to the refinement order and the subset order. We also have proved
a general fixed point induction theorem, which is crucial in analyzing refinement
of recursive processes:

induction: PROPOSITION
(FORALL X : X<=H IMPLIES F(X)<=H) IMPLIES mu(F)<=H

We also have extended the least-fixed-point theory to represent mutually
recursive processes. The general case of a mutual recursion is concerned with
a family or vector of processes X , and the recursive definition then takes the
2 A monotonic function in this context is a function F such that if Q ≤ P then

F (Q) ≤ F (P).

Embedding the Stable Failures Model of CSP in PVS 253

form X = F (X) where F is a function from a vector of processes to a vector of
processes. It is still appropriate to use the least fixed point of the function F to
represent a mutual recursion. In addition, we have proved that all lemmas and
induction theorems of the least fixed point still hold in mutual recursions.

In order for fixed points to be useful, we will usually want to show that a
function has a unique fixed point. Roscoe [14] shows how to apply a restriction
operator and a constructive function to demonstrate the existence of a unique
fixed point. We first formally define the restriction operator

chop(P, n):process[T]=({t| P‘1(t) and length(t) <= n},
{(t,A)| P‘2(t,A) and length(t) < n})

where the purpose of ‘chop’ is to restrict the process P so that it can never
perform any traces of greater than length n ∈ N. Note that we here use ‘<’
for stable failures in the definition because we want to make such a definition
consistent with a fact that Div is the least element in the subset order.

We then say that F is constructive if

constructive?(F):bool= FORALL P,Q,n: chop(P,n)=chop(Q,n)
IMPLIES chop(F(P),n+1)=chop(F(Q),n+1)

For a function F , we have that whenever F (X) = X and F (Y) = Y then
X = Y , then we say that F has a unique fixed point. The mathematical back-
ground of the unique fixed point theorem is not covered in this paper; Roscoe [14]
gives a detailed explanation in terms of partial orders and of metric spaces.

In addition, we have proven a number of algebraic laws which are essential
in the verification of properties of processes, whereas these laws can help us to
verify the consistency of the CSP semantics.

4 Generic Proof Tactics

Our aim in embedding the denotational semantics of the stable failures model
of CSP into PVS is not only to verify the consistency of theories and algebraic
laws of CSP, but also to build up some strategies so that we can check properties
of various infinite-state systems. The focus is especially on liveness properties,
which cannot be analyzed in the traces model. Our first step in this direction
is the verification of some general properties such as determinism and deadlock
freedom.

4.1 Determinism

A deterministic process always behaves in the same way when offered exactly
the same inputs. The most obvious practical benefit is that this kind of process
is testable because its behaviour does not vary unless the external inputs are
changed.

Of course, only processes known to be divergence-free can be verified in the
stable failures model, because this model cannot detect divergence. In Figure 1,

254 K. Wei and J. Heather

determinism [T:TYPE] : THEORY
BEGIN
IMPORTING fixed_points[T]

t: VAR trace[E]
a: VAR E
n: VAR nat
A,B: VAR set[E]
P,Q,X: VAR process[E]
F: VAR [process[E]->process[E]]

DET?(P):bool= FORALL t,a: P‘1(add(t,a))
IMPLIES NOT P‘2((t,singleton(a)))

det_stop: LEMMA DET?(Stop[E])
det_prefix: LEMMA DET?(P) IMPLIES DET?(a>>P)
det_par: LEMMA DET?(P) AND DET?(Q) IMPLIES DET?(Par(A,B)(P,Q))

det_seq: LEMMA DET?(P) AND DET?(Q) IMPLIES DET?(Seq(P,Q))
det_chop: LEMMA DET?(P) IFF (FORALL n: DET?(chop(P,n)))
det_subset: LEMMA (DET?(P) AND Q <= P) IMPLIES DET?(Q)

det_induction: LEMMA (constructive?(F) AND (EXISTS X: DET?(X))
AND (FORALL X: DET?(X) IMPLIES DET?(F(X))))

IMPLIES DET?(mu(F))

END determinism

Fig. 1. Examples of deterministic rules

the definition DET? states that a deterministic process can not accept an event a
as well as being able to refuse this event; here, add(t,a) adds the event a onto
the end of the trace t. Note that E has been previously defined as a datatype
including the special event
.

Some CSP operators preserve determinism: if P and Q are deterministic then
so are Stop, a → P , P A‖B Q and sequential composition P ;Q . Such laws and
some useful lemmas are also listed in Figure 1. Furthermore, if initials(P) and
initials(Q) are disjoint then P � Q is also deterministic. Here, initials(P) is the
set of all of P ’s initial events; for example, it can be defined as follows:

initials(P) = {a ∈ Σ� | 〈a〉 ∈ traces(P)}

Proving determinism of non-recursive processes is often not difficult but it
can be time consuming. For recursive processes, one has to apply an induction
rule such as det_induction in Figure 1 to make any progress; this rule states

Embedding the Stable Failures Model of CSP in PVS 255

that if F is constructive and determinism-preserving then the least fixed point
of F is also deterministic.

Note that the induction rule here does not imply that every recursive deter-
ministic process is the least fixed point of a constructive determinism-preserving
function. In addition, it is also possible in some cases to infer the determinism of
mu(F) directly. Usually, however, the easiest way to prove that a recursive pro-
cess is deterministic is by means of this theorem. For this reason, the determinism
induction theorem proved here will be extremely useful in many applications.

4.2 Deadlock Freedom

One of the most important concepts concerning concurrent systems is deadlock,
which arises when no further progress can be made. Deadlock is a kind of liveness
property, so we cannot detect or reason about it using traces alone. The stable
failures model, however, is quite suitable for describing deadlock freedom. The
definition of deadlock freedom as well as some laws are given in Figure 2.

Divergence is considered deadlock-free in the stable failures model, while it
is not deadlock-free in the failures/divergences model. The usual way to prove
deadlock freedom of a recursive process is to define a deadlock-free specification
explicitly, and prove that the process is a refinement of the specification; then
obviously the refining process is deadlock-free as well.

deadlock_free [T: TYPE] : THEORY
BEGIN
....
a: VAR E
t: VAR trace[E]
P,Q: VAR process[E]
A: VAR set[E]
f: VAR [set[E]->set[E]]

DLF?(P):bool = FORALL t: P‘1(t) IMPLIES NOT P‘2((t,fullset))

dlf_prefix: LEMMA DLF?(P) IMPLIES DLF?(a>>P)
dlf_echoice: LEMMA DLF?(P) AND DLF?(Q) IMPLIES DLF?(P\/Q)
dlf_hide: LEMMA DLF?(P) IFF DLF?(P/ A)
dlf_rename: LEMMA injective?(f)

IMPLIES (DLF?(P) IFF DLF?(Re(P,f)))
dlf_subset: LEMMA subset?(P,Q) AND DLF?(Q) IMPLIES DLF?(P)
....

END deadlock_free

Fig. 2. Generic deadlock-free rules

256 K. Wei and J. Heather

Figure 2 also shows two important laws, dlf_hide and dlf_rename, that are
extremely useful in the analysis of deadlock freedom in the stable failures model.
These two facts underpin the definition of deadlock freedom: deadlock means
reaching a state where no further progress is possible regardless of whether the
actions are renamed or hidden.

Deadlock freedom is a global property; in other words, we cannot guarantee
that if all components of a network are individually deadlock-free then the whole
network will also be deadlock-free. Often, the complexity and the work of verifi-
cation of a particular property can be greatly reduced by decomposing a global
property of a network into local properties of the network’s components; this is
not easy to do, however, with deadlock freedom.

There are, however, some deadlock rules that can be used to analyze a
large network locally rather than considering the whole network all the time.
Roscoe [14] gives various deadlock rules, and shows how to apply these rules to
prove deadlock freedom of some large networks. We have proved some of these
deadlock rules at a formal level, in order to be able to construct formal proofs
of deadlock freedom of various networks.

The terminology introduced here is taken from [14]. We consider a net-
work V = ‖n

i=1
(Pi ,Ai), which is a parallel composition of a finite sequence

of processes 〈P1, . . . ,Pn〉 and their alphabets. We shall suppose that V is triple-
disjoint3, and that no component process ever terminates or deadlocks. In such
a network, a state is defined as the pair (s , 〈X1, ...,Xn〉) in a network V where
s ∈ (

⋃n
i=1 Ai)∗, (s � Ai ,Xi) ∈ failures(Pi), and Xi ⊇ Σ � initials(Pi/(s � Ai)).

Here, � is the projection operator and � is to calculate difference of two sets.
Therefore, a state is in deadlock if the union of all refusal sets Xi is equal to
the Σ.

The concepts that we shall need, such as ungranted request, conflict and
so on are now straightforward to define formally in Figure 3. Note that we
here completely ignore the event
 since the assumption is that no Pi can
terminate. In a state (s , 〈XP ,XQ〉), we say there is an ungranted request from
P to Q in the composition P A‖B Q if P can communicate in B but they
can not agree on any communication in A ∩ B . Obviously, ungranted requests
are the underlying factors that result in deadlock. We here use a predicate
ung_request?(A,B)(P,Q)(t,X1,X2) in Figure 3 to define such an ungranted
request.

There is a conflict between P and Q if there is an ungranted request in
both directions. The formal definition may be expressed as CF?(A,B)(P,Q) in
Figure 3. Additionally, a strong conflict is a conflict in which one of the two
processes has its only ungranted request to the other. Finally, a network V is
conflict-free if no pair of its nodes is in conflict. We here use CFF?(X)(S) to
describe this property in Figure 3.

The following fundamental result quoted from [14] underlies all of the dead-
lock rules.

3 If Pi , Pj and Pk are three distinct nodes of V , then Ai ∩ Aj ∩ Ak = ∅.

Embedding the Stable Failures Model of CSP in PVS 257

conflict[T:TYPE]: THEORY
BEGIN
....
A,B,X1,X2:VAR set[T]
P,Q: VAR process[T]
t: VAT trace[T]
....
ung_request?(A,B)(P,Q)(t,X1,X2):bool = P‘2(proj(t,A),X1) AND

Q‘2(proj(t,B),X2) AND subset?(sigma(t),union(A,B)) AND
subset?(complement(initials(P,proj(t,A))),X1) AND
subset?(complement(initials(Q,proj(t,B))),X2) AND

subset?(union(complement(X1),complement(X2)), intersection(A,B))
AND intersection(B,complement(X1)) /= emptyset AND
subset?(intersection(B,complement(X1)),X2)

CF?(A,B)(P,Q):bool=EXISTS t,X1,X2: ung_request?(A,B)(P,Q)(t,X1,X2)
AND ung_request?(B,A)(Q,P)(t,X2,X1)

SCF?(A,B)(P,Q):bool=EXISTS t,X1,X2: ung_request?(A,B)(P,Q)(t,X1,X2)
AND ung_request?(B,A)(Q,P)(t,X2,X1)

AND (subset?(complement(X1), B) OR subset?(complement(X2), A))
....
CFF?(X)(S):bool= FORALL i,j: i/=j IMPLIES

NOT CF?(X(i),X(j))(S(i),S(j))
SCFF?(X)(S):bool= FORALL i,j: i/=j IMPLIES

NOT SCF?(X(i),X(j))(S(i),S(j))
....

END conflict

Fig. 3. The definitions of ungranted request and conflict

Fundamental Principle of Deadlock. If V is a network which satisfies our
basic assumptions and which is free of strong conflict, then any deadlock state of
V contains a proper cycle of ungranted requests.

To prove this law, we have to define a finite network, as in Figure 4, which
guarantees the existence of a proper cycle of ungranted requests. One of the
most important laws with regard to ungranted requests is dl_ung_requestwhich
shows that in a deadlock state, for any node, there always exist two other distinct
nodes such that the three nodes together form a sequence of ungranted requests.

The proof of this fundamental law comes as a fairly straightforward conse-
quence of the lemma dl_ung_request, because any ungranted request from any
process Si to another process Sj will then guarantee an ungranted request from
Sj to some Sk , and so on; this sequence must repeat since the network is finite.
In the formal definition listed in Figure 4, we use a predicate DL?(V‘2)(V‘3)

258 K. Wei and J. Heather

deadlock_rules[T:TYPE]: THEORY
BEGIN
....
NET:TYPE=[size,[below[size]->set[E]],[below[size]->process[T]]]
V: VAR NET

dl_ung_request: LEMMA (Assump?(X)(S) AND SCFF?(X)(S) AND DL?(X)(S))
IMPLIES

FORALL i:EXISTS j,k: (S(i)/=S(j) AND S(j)/=S(k) AND S(i)/=S(k))
AND (EXISTS t,X1,X2:ung_request?(X(i),X(j))(S(i),S(j)(t,X1,X2)))
AND (EXISTS t,X1,X2:ung_request?(X(j),X(k))(S(j),S(k)(t,X1,X2)))

....
fundamental_princple: LEMMA (ASSUMP?(V‘2)(V‘3) AND CFF?(V‘2)(V‘3)

AND DL?(V‘2)(V‘3)) IMPLIES cycle?(V)

pre_rule2?(V):bool = ASSUMP?(V‘2)(V‘3) AND CFF?(V‘2)(V‘3) AND
((EXISTS t,X1,X2: V‘3(j)<=V‘3(i) AND

ung_request?(V‘2(i),V‘2(j))(V‘3(i),V‘3(j))(t,X1,x2))
IMPLIES (FORALL (k:{x:nat|V‘3(x)<=V‘3(i) AND

intersection(V‘2(x),V‘2(i))/=emptyset}):
EXISTS t,X1,X2:

ung_request?(V‘2(k),V‘2(i))(V‘3(k),V‘3(i))(t,X1,X2)))

deadlock_rule2: LEMMA pre_rule2?(V) IMPLIES (NOT DL?(V‘2)(V‘3))
....
END deadlock_rules

Fig. 4. The deadlock rules

to denote deadlock of the network, and use a predicate cycle?(V) to show that
there exists at least one cycle of ungranted requests in the network.

By making use of this fundamental principle, we have proved Deadlock Rule 2
quoted from [14] as well:

Deadlock Rule 2. Suppose V is conflict-free and has a node ordering < such
that whenever node Pi has a request to any Pj with Pj < Pi , then it has a request
to all its neighbours Pk such that Pk < Pi . Then V is deadlock free.

The formal proof just translates the one given in [14] into PVS. If V can deadlock,
then there is a cycle of ungranted requests which must contain one maximal Pi ;
necessarily Pi has an ungranted request to Pi+1 less than itself, then it also has
a request to Pi−1; and this violates the assumption of conflict freedom. Such a
rule is formally expressed in Figure 4 where <= denotes a partial order, and we
also find out any process’s neighbours by only comparing their algebras.

Embedding the Stable Failures Model of CSP in PVS 259

5 Case Study

We show the power of the formalization of CSP semantics by two examples: the
dining philosophers problem and the ‘virtual network’ [21].

5.1 The Dining Philosophers Problem

The dining philosophers problem was first described by Edsger W. Dijkstra in
1965. It is a classic multi-process synchronization problem. The problem con-
sists of n philosophers sitting at a table with a bowl of spaghetti in the middle.
Between each pair of adjacent philosophers, there is a single fork; and to eat,
a philosopher must be holding both of the forks that are beside him. We as-
sume all philosophers pick forks up in the same order—right hand first—and
do not put down any fork they have picked up until they have grabbed both.
Figure 5 shows the dining philosophers network’s structure, composed of philoso-
pher/fork pairs.

It is quite straightforward to prove determinism of the n dining philosophers
problem in combination with the det_induction rule in Figure 1 and the proper-
ties of various CSP operators. In Figure 6, H(i,j)(X) and F(i,j)(X) are used to
express the behaviour of an individual philosopher and fork respectively where
i denotes the total number of philosophers; pick(j,j) denotes that the j th
philosopher picks up the j th fork, and so does putdown(j,j); inc(i,j) denotes
addition modulo i . Note that each philosopher and fork process is parameterized
not only by its index but also by the total number of philosophers, since this
affects the modular calculation. Moreover both the philosopher and the fork are
recursive processes, and we use the least fixed points of the functions H and F to
represent them in PVS. Here PandF(i,j) is used to represent the combination of

PHIL

PHIL

PHIL

PHIL

PHIL

PHIL

FORK

FORK

FORK

FORK

FORK
FORK0 0

1

1

2

0

k

k

k−1

k−2

k−2

k−3

PHILk−1

Fig. 5. Inductive structure of dining philosophers

260 K. Wei and J. Heather

philosopher_det: THEORY
BEGIN
....
H(i,j)(X): process[events] = pickup(j,j)>>(pickup(j,inc(i,j))>>

(putdown(j,inc(i,j))>>(putdown(j,j)>>X)))
F(i,j)(X): process[events] =((pickup(j,j)>>(putdown(j,j)>>X))

\/ (pickup(dec(i,j),j)>>(putdown(dec(i,j),j)>>X)))

PHIL(i,j): process[events] = mu(H(i,j))
FORK(i,j): process[events] = mu(F(i,j))
PandF(i,j):process[events] =

Par(AP(i,j),AF(i,j))(PHIL(i,j),FORK(i,j))
....

P(n)(m):process[events] = PandF(n,m)
APF(n)(m):set[events] = union(AP(n,m),AF(n,m))
COLLEGE(n): process[events] = Par(APF(n))(P(n))

fork_det: LEMMA DET?(FORK(i,j))
phil_det: LEMMA DET?(PHIL(i,j))
pair_det: LEMMA DET?(PandF(i,j))
college_det: LEMMA DET?(COLLEGE(n))
....

END philosopher_det

Fig. 6. proving determinism of the dining philosophers problem

a philosopher and his right-hand fork where AP(i,j) and AF(i,j) denote their
alphabets.

For constructing the proof, we need only to prove that the processes
PHIL(i,j) and FORK(i,j) are deterministic; then the alphabetized parallel
combination PandF(i,j) is deterministic by means of the det_par rule in Fig-
ure 1; the entire system COLLEGE(n) is then also deterministic since it consists
of PandF(n,m) for m < n.

Deadlock freedom is a more tricky issue. Obviously for the dining philoso-
phers problem, the one and only one situation causing deadlock is that in which
all philosophers hold their right-hand forks simultaneously and wait for their
neighbours to put down their forks. There are many modifications one can make
to avoid deadlock, one of which results in the asymmetric dining philosophers
problem: one philosopher picks up a left-hand fork first.

The basic strategy we adopt is similar to an induction used in [15], where the
authors use a hierarchical compression technique in FDR to prove the case with
huge numbers of philosophers. The key idea is that by hiding their internal events
and carefully renaming their interface events, we can prove that any number
(n > 1) of right-handed pairs of philosophers and forks are equivalent. The

Embedding the Stable Failures Model of CSP in PVS 261

philosopher_dlf:THEORY
BEGIN

....
H(i,j)(X): process[events] =

IF j=0 THEN pickup(j,inc(i,j))>>(pickup(j,j)>>
(putdown(j,j)>>(putdown(j,inc(i,j))>>X)))

ELSE pickup(j,j)>>(pickup(j,inc(i,j))>>
(putdown(j,inc(i,j))>>(putdown(j,j)>>X)))

ENDIF
....

PL(n:{x:int|x>2})(m:{x:int|m>0 and m<n})
:process[events]= PandF(n,m)

C(n):process[events] = Par(APF(n))(PL(n))
COLLEGE(n):process[events] = Par(I(n))(PandF(n,0),C(n))
....

phil3_dlf: LEMMA DLF?(COLLEGE(3))
phil_key: ASSUMPTION

(Par(APF2(k))(PL2(k))/IE(k)
=Re((Par(APF3(k+1))(PL3(k+1))/IE(k+1)), f)

phil_dlf_hr: LEMMA C(n)/IE(n) = Re(C(n+1)/IE(n+1),f)
phil_dlf: LEMMA DLF?(COLLEGE(n))
....
END philosopher_dlf

Fig. 7. Proving the asymmetric dining philosophers problem deadlock-free

proof starts from the case with n = 3 philosophers; then, for the inductive step,
we assume that the case of n = k philosophers is deadlock-free, and show that
the system remains deadlock-free when the number of philosophers is n = k +1.

Figure 7 roughly shows the inductive steps of proving that the asymmetric
dining philosophers network is deadlock-free. First of all, the definition of the
philosophers has been changed since we force the zeroth philosopher to pick up
his left-hand fork first. Figure 5 also shows how we deduce deadlock freedom
of k + 1 philosophers from the case of k philosophers. The key to achieving
this step is to prove the equivalence of two processes: k philosophers and k + 1
philosophers. Such an idea is proved in the lemma phil_dlf_hr in Figure 7
where C(n) is restricted to be the parallel combination of pairs of philosophers
and forks without involving the pair of the zeroth philosopher and his right-
hand fork.

Certainly, it is unnecessary to compare all pairs, and we need to concentrate
only on the last two pairs in the circle of Figure 5. The key to the induction is

262 K. Wei and J. Heather

that if we hide the internal events of the parallel combination of PandF(k,k-2)
and PandF(k,k-1), it is equivalent to the parallel combination of PandF(k+1,k-
2), PandF(k+1,k-1) and PandF(k+1,k) with their internal events hidden and
pickup(k,0) and putdown(k,0) renamed as pickup(k-1,0) and putdown(k-
1,0) respectively. Therefore, it is transformed into the lemma phil_key in Fig-
ure 7 in which IE(k) and IE(k+1) denote the sets of internal events and f is
a bijective function which performs the renaming operation. To get the final
result that the case of k + 1 philosophers is deadlock-free, we have to combine
two laws, dlf_hide and dlf_rename, which are mentioned in the above section.
Consequently, the proof is completely established in the lemma phil_dlf in
Figure 7.

Note that although it would be possible to prove the lemma phil_key in
PVS, it would be in one sense perverse to do so, since it is essentially a very
small model-checking exercise. It would take a long time to trace through the
states of each side one by one checking for correspondence; FDR, on the other
hand, can verify the equation in a fraction of a second. The approach we take,
therefore, is to build this equation into the PVS theory as an assumption, and
then prove it in FDR. In this way, we harness the power of the theorem prover for
establishing results about an infinite-state system, whilst retaining the speed and
automation of a model-checker for certain small parts of the proof. Using PVS in
combination with FDR, then, we have successfully proven the asymmetric dining
philosophers network with an arbitrary number of philosophers to be deadlock-
free. This strategy of using a theorem prover and a model checker in concert is
extremely powerful: the different types of tool complement each other very well.
By using both together, we can analyze systems that would be out of reach of
either individually.

5.2 The Virtual Network

We now demonstrate the use of Deadlock Rule 2 by means of a routing algorithm
example called the ‘virtual network’, quoted in [14] and originally given in [21].
Suppose we want to send a package from any one of the nodes Ni,j to any other
in a rectangular grid. It seems that the above rule can not directly applied to
this system. Roscoe however wisely divides each node Ni,j in the system into two
parallel processes Ii,j and Oi,j , and defines a partial order such that Ii,j ≤ Ii′,j ′

iff i ≤ i ′ ∧ j ≤ j ′, Oi,j ≤ Oi′,j ′ iff i ≥ i ′∧ j ≥ j ′, and Ii,j ≤ Oi′,j ′ for all i , j , i ′, j ′,
to satisfy the assumptions of this rule.

This partial order implies that a package is transmitted through Ii,j in increas-
ing index order, whereas through Oi,j it is in decreasing index order. For exam-
ple, if a package is sent from N1,3 to N2,2, then the path is 〈I1,3, I2,3,O2,3,O2,2〉.
The CSP code used to represent such a system using mutual recursion can be
found in [14], and we here transform it into PVS in Figure 8 where IN(i,j) and
OUT(i,j) are used to represent the two synchronized processes, and VN denotes
the entire system. Obviously, this system transparently satisfies the requirements
of Rule 2.

Embedding the Stable Failures Model of CSP in PVS 263

virtual_network:THEORY
....
F(i,j)(X)(0):process[events] =

in(x,y,m)>>X(1)\/(I_up(x,y,m)>>X(1) \/ I_left(x,y,m)>>X(1))
F(i,j)(X)(1):process[events] =

IF i<x THEN I_right(x,y,m) >> X(0)
ELSIF j<y THEN I_down(x,y,m) >> X(0)

ELSE over(x,y,m) >> X(0) ENDIF

H(i,j)(Y)(0):process[events]=
over(x,y,m)>>Y(1)\/(O_down(x,y,m)>>Y(1)\/O_right(x,y,m)>>Y(1))

H(i,j)(Y)(1):process[events]=
IF i>x THEN O_left(x,y,m) >> Y(0)

ELSIF j>y THEN O_up(x,y,m) >> Y(0)
ELSE out(x,y,m) >> Y(0) ENDIF

IN(i,j):process[events] = mu(F(i,j))
OUT(i,j):process[events] = mu(H(i,j))
....
deadlock_check: LEMMA pre_rule2?(VN)

END virtual_network

Fig. 8. The virtual network

By making use of Deadlock Rule 2, we have additionally formally proved that
a network with any number of dimensions is deadlock-free. In the definition of
such a rule, we use an interpreted type size to denote the size of the network;
in other words, the number of dimensions of the network can be anything drawn
from the type of size.

Proving the new network to be deadlock-free needs careful work, because
there are a number of issues involved—for instance, checking whether the net-
work meets freedom of conflict, one of the assumptions of Rule 2, and proving
that two mutually recursive processes are conflict-free. Along the way, we have
constructed various theorems such as the conflict free induction theorem to cope
with recursive processes. The final result is a proof of correctness that cannot be
easily established in a model checker.

6 Conclusion and Future Work

In this paper, we have presented an embedding of the stable failures model of
CSP into PVS that preserves the algebraic properties of CSP, and then used this
formalism to prove determinism and deadlock freedom of the asymmetric dining
philosophers problem with an arbitrary number of philosophers, and an example

264 K. Wei and J. Heather

of layered routing. Theorem proving is a good complement of model-checking
tools such as FDR, which can efficiently verify finite-state systems, but which
cannot verify infinite-state systems without outside help.

One of the biggest advantages of a theorem prover is that it is possible to
reason about systems with massive or infinite state spaces, admittedly at the
cost of sacrificing automatic proof. Verifying a system like our example requires
considerable work. However, PVS is a deductive system in which all completed
proofs can be used in later proofs. In the course of constructing this proof,
we have amassed many lemmas and theorems that will make proving prop-
erties of other systems substantially less time-consuming, both for us and for
others.

The stable failures model, as well as allowing one to verify properties relat-
ing to deadlock freedom, contains sufficient detail to specify many other liveness
properties. We are in the process of building up a general platform that provides
mechanical assistance for formal analysis of liveness properties of systems. We
believe that our model can be used in many different application areas, such
as verification of security protocols and general communication protocols. For
example, Schneider [17] has modelled and analyzed some properties of a non-
repudiation protocol using the traces model of CSP, but some of the other (al-
leged) properties of the protocol can be formulated only in terms of liveness, and
treatment of them requires consideration of failures as well as traces. In addition,
we have analyzed and verified the fairness property of the timed Zhou-Gollmann
non-repudiation protocol using FDR, and work is in progress on extending this
analysis in PVS to cover an infinite network of communicating agents. Denial
of service is also naturally specified as a liveness property [12], and one that we
expect to be able to use our work to analyze.

We aim in future work to apply our model to other types of network and
investigate possible ways to analyze liveness properties of other systems. In our
long-term plan, we hope to extend our model to the failures/divergences model;
we would like then to extend it further to include infinite traces, which is an area
that currently has no tool support at all.

References

1. P. Brooke. A Timed Semantics for a Hierarchical Design Notation. PhD thesis,
University of York, 1999.

2. A. J. Camilleri. Higher order logic mechanization of the CSP failure-divergence
semantics. Technical report, HP Lab Bristol, 1990.

3. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement
Strategy for Circus. Formal Aspects of Computing, 15(2-3):146–181, unknown 2003.

4. J. Crow, S. Owre, J. Rushby, and N. Shankar. A tutorial introduction to PVS.
In Workshop on Industrial-Strength Formal Specification Techniques, Boca Raton,
Florida, Apr. 1995.

5. J. Crow, S. Owre, J. Rushby, and N. Shankar. PVS Prover Guide, PVS Language
Reference, PVS System Guide. SRI International, 2001.

Embedding the Stable Failures Model of CSP in PVS 265

6. B. Dutertre and S. A. Schneider. Embedding CSP in PVS: an application to
authentication protocols. In E. Gunter and A. Felty, editors, Theorem Proving in
Higher-Order Logics: 10th International Conference, TPHOLs ’97, volume 1275 of
Lecture Notes in Computer Science. Springer-Verlag, 1997.

7. N. Evans and S. A. Schneider. Analysing Time Dependent Security Properties in
CSP using PVS. In ESORICS 2000, volume 1895 of Lecture Notes in Computer
Science. Springer-Verlag, 2000.

8. W. M. Farmer, J. D. Guttman, and J. F. Thayer. IMPS: An Interactive Math-
metical Proof System. Journal of Automated Reasoning, 11:213–218, 1993.

9. Formal Systems (Europe) Ltd. Failures-Divergence Refinement—FDR 2 user man-
ual, 1997. Available from Formal Systems’ web site at http://www.formal.demon.
co.uk/FDR2.html.

10. Y. Isobe and M. Roggenbach. A generic theorem prover of CSP refinement. TACAS
2005, LNCS 3440, 2005.

11. R. Lazić. A semantic study of data-independence with application to the mechanical
verification of concurrent systems. PhD thesis, Oxford University, 1999.

12. C. A. Meadows. Open issues in formal methods for cryptographic protocol analysis.
In V. I. Gorodetski, V. A. Skormin, and L. J. Popyack, editors, MMM-ACMS,
volume 2052 of Lecture Notes in Computer Science, pages 237–250. Springer, 2001.

13. L. C. Paulson. A formulation of the simple theory of types (for isabelle). In
P. Martin-Löf and G. Mints, editors, Conference on Computer Logic, volume 417
of Lecture Notes in Computer Science, pages 246–274. Springer, 1988.

14. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Interna-
tional, 1998.

15. A. W. Roscoe, P. H. B. Gardiner, M. Goldsmith, J. R. Hulance, D. M. Jackson,
and J. B. Scattergood. Hierarchical compression for model-checking csp or how
to check 1020 dining philosophers for deadlock. In E. Brinksma, R. Cleaveland,
K. G. Larsen, T. Margaria, and B. Steffen, editors, TACAS, volume 1019 of Lecture
Notes in Computer Science, pages 133–152. Springer, 1995.

16. A. Sampaio, J. Woodcock, and A. Cavalcanti. Refinement in Circus. In L. Eriksson
and P. Lindsay, editors, FME 2002: Formal Methods - Getting IT Right, volume
2391 of Lecture Notes in Computer Science, pages 451–470. Springer-Verlag, un-
known 2002.

17. S. A. Schneider. Formal analysis of a non-repudiation protocol. In Proceedings of
the 11th IEEE Computer Security Foundations Workshop, 1998.

18. S. A. Schneider. Concurrent and real-time systems: the CSP approach. John Wiley
& Sons, 1999.

19. S. A. Schneider and J. Bryans. CSP, PVS and a Recursive Authentication Protocol.
In DIMACS Workshop on Formal Verification of Security Protocols, Sept. 1997.

20. H. Tej and B. Wolff. A corrected failure-divergence model for CSP in Isabelle/HOL.
In J. S. Fitzgerald, C. B. Jones, and P. Lucas, editors, FME, volume 1313 of Lecture
Notes in Computer Science. Springer, 1997.

21. J. Yantchev and C. Jesshope. Adaptive, low latency, deadlock-free packet routing
for networks of processors. In IEE Pro E, May 1989.

Model-Based Prototyping of an Interoperability
Protocol for Mobile Ad-Hoc Networks

Lars M. Kristensen1,�, Michael Westergaard1, and Peder Christian Nørgaard2

1 Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

{kris, mw}@daimi.au.dk
2 Ericsson Danmark A/S, Telebit,

Skanderborgvej 222, DK-8260 Viby J, Denmark
Peder.Chr.Norgaard@ericsson.com

Abstract. We present an industrial project conducted at Ericsson Dan-
mark A/S, Telebit where formal methods in the form of Coloured Petri
Nets (CP-nets or CPNs) have been used for the specification of an in-
teroperability protocol for routing packets between fixed core networks
and mobile ad-hoc networks. The interoperability protocol ensures that a
packet flow between a host in a core network and a mobile node in an ad-
hoc network is always relayed via one of the closest gateways connecting
the core network and the mobile ad-hoc network. This paper shows how
integrated use of CP-nets and application-specific visualisation have been
applied to build a model-based prototype of the interoperability protocol.
The prototype consists of two parts: a CPN model that formally specifies
the protocol mechanisms and a graphical user interface for experiment-
ing with the protocol. The project demonstrates that the use of formal
modelling combined with the use of application-specific visualisation can
be an effective approach to rapidly construct an executable prototype of
a communication protocol.

Keywords: Model-driven prototyping; animation; Coloured Petri Nets;
mobile ad-hoc network.

1 Introduction

The specification and development of communication protocols is a complex
task. One of the reasons is that protocols consist of a number of independent
concurrent protocol entities that may proceed in many different ways depending
on when, e.g., packets are lost, timers expire, and processes are scheduled. The
complex behaviour makes the design of protocols a challenging task. Protocols
operating in networks with mobile nodes and wireless communication present
an additional set of challenges in protocol engineering since the orchestration of
realistic scenarios with many mobile nodes is impractical, and the physical char-
acteristics of wireless communication makes reproduction of errors and scenarios
almost impossible.
� Supported by the Danish Natural Science Research Council.

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 266–286, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Model-Based Prototyping of an Interoperability Protocol 267

We present a case study from a joint research project [15] between the
Coloured Petri Nets Group [6] at University of Aarhus and Ericsson Danmark
A/S, Telebit [7]. The research project applies formal methods in the form of
Coloured Petri Nets (CP-nets or CPNs) [13,16] and the supporting CPN Tools [5]
in the development of Internet Protocol Version 6 (IPv6) [12] based protocols for
ad-hoc networking [24]. An ad-hoc network is a collection of mobile nodes, such
as laptops, personal digital assistants, and mobile phones, capable of establish-
ing a communication infrastructure for their common use. Ad-hoc networking
differs from conventional networks in that the nodes in the ad-hoc network op-
erate in a fully self-configuring and distributed manner, without any preexisting
communication infrastructure such as base stations and routers.

CP-nets is a graphical discrete-event modelling language applicable for con-
current and distributed systems. CP-nets are based on Petri nets [27] and the
programming language Standard ML (SML) [30]. Petri nets provide the founda-
tion of the graphical notation and the basic primitives for modelling concurrency,
communication, and synchronisation. The SML programming language provides
the primitives for the definition of data types, modelling data manipulation, and
for creating compact and parameterisable models. CPN models are executable
and describe the states of a system and the events (transitions) between the
states. CP-nets includes a module concept that makes it possible to organise
large models into a hierarchically related set of modules. The CPN modelling
language is supported by CPN Tools and have previously been applied in a num-
ber of projects for modelling and validation of protocols (see, e.g., [17, 8, 9, 23]).

The use of formal modelling languages such as CP-nets for specification and
validation of protocols is attractive for several reasons. One advantage of formal
models is that they are based on the construction of executable models that make
it possible to observe and experiment with the behaviour of the protocol prior
to implementation using, e.g., simulation. This typically leads to more complete
specifications since the model will not be fully operational until all parts of the
protocol have been at least abstractly specified. A model also makes it possible
to explore larger scenarios than is practically possible with a physical setup.
Another advantage of formal modelling is the support for abstraction, making
it possible to specify protocols while ignoring many implementation details.

From a practical protocol engineering viewpoint, the use of formal modelling
also have some shortcomings. Even if the modelling language supports abstrac-
tion and a module concept there is in most cases an overwhelming amount of
detail in the constructed model. This is a disadvantage, in particular when pre-
senting and discussing the design with colleagues unfamiliar with the applied
modelling language. This means that a formal specification in many cases is ac-
companied by informal drawings being developed in parallel. The level of detail
can also be a disadvantage when exploring the protocol design via, e.g., simu-
lation. Furthermore, even if a model is executable, it still lacks the application-
and domain-specific appeal of a conventional prototype.

The contribution of this paper is to present a model-based prototyping ap-
proach where formal modelling is integrated with the use of an animation GUI

268 L.M. Kristensen, M. Westergaard, and P.C. Nørgaard

for visualising system behaviour to address the shortcomings of formal modelling
discussed above. The approach has been applied to an interoperability protocol
for routing packets between nodes in a mobile ad-hoc network and hosts in a
fixed core network. Formal modelling is used for the specification of the pro-
tocol mechanisms and an application- and domain-specific GUI [28] is added
on top of the CPN model. The result is a model-based prototype in which the
animation GUI makes it possible to observe the behaviour of the system and
provide stimuli to the protocol. The use of an underlying formal model is fully
transparent when experimenting with the prototype. The animation GUI has
been used in the project both internally during protocol design and externally
when presenting the designed protocol to management and protocol engineers
not familiar with CPN modelling.

The rest of the paper is organised as follows. Section 2 gives a brief introduc-
tion to the network architecture and the interoperability protocol, and Sect. 3
presents the model-based prototyping approach. Section 4 presents selected parts
of the CPN model specifying the interoperability protocol. Section 5 presents the
graphical animation user interface and package applied in the project. Finally,
Sect. 6 sums up the conclusions and presents related work.

2 The Interoperability Protocol

Figure 1 shows the hybrid network architecture captured by the model-based
prototype. The network architecture consists of two parts: an IPv6 core network
(left) and a mobile ad-hoc network (right). The core network consists of a Domain
Name System (DNS) Server and Host 1. The mobile ad-hoc network contains
three mobile nodes (Ad-hoc Node 3-5). The core network and the mobile ad-
hoc network are connected by Gateway 1 and Gateway 2. A routing protocol for
conventional IP networks (such as OSPF [18]) is deployed in the core network
and a routing protocol for ad-hoc networks (such as OLSR [4]) is used in the
mobile ad-hoc network. The purpose of the interoperability protocol is to ensure
that packets are routed between hosts in the core network and nodes in the
mobile ad-hoc network via the closest gateway.

The gateways periodically announce their presence to nodes in the mobile ad-
hoc network by sending gateway advertisements containing an IPv6 address pre-
fix. The address prefixes announced by the gateways are assumed to be unique,
and the advertisement can be distributed to the ad-hoc nodes using, e.g., flood-
ing. The interoperability protocol does not rely on a specific dissemination mech-
anism for the gateway advertisements. The interoperability protocol generalises
to an arbitrary number of gateways and mobile nodes. Figure 1 shows the con-
crete setup represented in the model-based prototype.

IPv6 addresses [11] are 128-bit and by convention written in hexadecimal
notation in groups of 16 bits separated by colon (:). Leading zeros are skipped
within each group and a double colon (::) is a shorthand for a sequence of ze-
ros. Addresses consists of an address prefix and an interface identifier. Address
prefixes are written on the form x/y where x is an IPv6 address and y is the

Model-Based Prototyping of an Interoperability Protocol 269

Fig. 1. The hybrid network architecture

length of the prefix. The mobile nodes in the ad-hoc network configure IPv6
addresses based on the received gateway advertisements. In the network archi-
tecture depicted in Fig. 1, Gateway 1 is announcing the 64-bit address prefix
3ffe:100:3:405::/64 and Gateway 2 is announcing the prefix 3ffe:100:4:406::/64.
It can be seen from the labels below the mobile nodes that Ad-hoc Node 3 and
Ad-hoc Node 4 have configured IP addresses based on the prefix announced by
Gateway 1, whereas Ad-Hoc Node 5 has configured an IP address based on the
prefix announced by Gateway 2. For an example, Ad-hoc Node 3 has configured
the address 3ffe:100:3:405::3.

Each of the gateways has configured an address on the interface to the ad-hoc
network based on the prefix they are announcing to the ad-hoc network. Gateway
1 has configured the address 3ffe:100:3:405::1 and Gateway 2 has configured the
address 3ffe:100:3:406::1. The gateways have also configured addresses on the
interface to the core network based on the 3ffe:100:3:401::/64 prefix of the core
network. Host 1 in the core network has configured the address 3ffe:100:3:401::2
and the DNS server has configured the address 3ffe:100:3:401::1. The ad-hoc
nodes may receive advertisements from both gateways and configure an IPv6
address based on each of the prefixes. The reachability of the address prefixes
announced by the gateways in the ad-hoc network are announced in the core
network via the routing protocol executed in the core network.

The basic idea in the interoperability protocol is that the mobile nodes reg-
ister the IPv6 address in the DNS database which corresponds to the preferred
(closest) gateway. Updates to the DNS database relies on the Dynamic Domain
Name System Protocol [31]. The entries in the DNS database related to the
mobile nodes are shown to the upper left in Fig. 1. For an example, it can
be seen that the entry for Ad-hoc Node 3 (AHN(3)) is mapped to the address
3ffe:100:3:405::3. When a mobile ad-hoc node discovers that another gateway
is closer, it will send an update to the DNS server causing its DNS entry to
be changed to the IPv6 address based on the prefix announced by the new

270 L.M. Kristensen, M. Westergaard, and P.C. Nørgaard

gateway. It is assumed that the routing protocol executed in the mobile ad-hoc
network will provide the information required for a mobile node to determine
its distances to the currently reachable gateways. This means that when Host
1 wants to communicate, with e.g., Ad-hoc Node 3 and makes a DNS request
to resolve the IP address of Ad-hoc Node 3, the DNS server will return the IP
address corresponding to the prefix announced by the gateway closest to Ad-hoc
Node 3.

3 Model-Based Prototyping Methodology

Figure 2 shows the approach taken to use CPN models to develop a prototype
of the interoperability protocol. A CPN model (lower left of Fig. 2) has been
developed by modelling the natural language protocol specification [22] (lower
right) of the interoperability protocol. The modelling activity transforms the
natural language specification into a formal executable specification represented
by the CPN model. The CPN model captures the network architecture depicted
in Fig. 1 and the protocol mechanisms of the interoperability protocol, e.g.,
the periodic transmission of advertisements, the dynamic updates of the DNS
database, and traffic flows between hosts in the core network and nodes in the
ad-hoc network. The resulting model can already be viewed as an early prototype
since it is possible to execute and experiment with the protocol at the level of
the CPN model. Since CP-nets is a graphical modelling language, it is possible
to observe the execution of the model directly on the CPN model.

The CPN model provides a very detailed view on the execution of the sys-
tem and it can be an advantage to provide a high-level way of interacting and
experimenting with the prototype. Furthermore, when presenting the protocol
design to people not familiar with CP-nets, it can be an advantage to be able

CPN Model

Core

Network

1

1‘(ROUTING,{src="3ffe:100:3:401::2

",dest="3ffe:100:3:401::1",cont=DNS

_REQ("AHN(3)")})

CmdxPacket

AdHoc

Network

2

1‘(RECEIVE("AHN(3)"),{src="3ffe:100

:3:405::1",dest="all-nodes multicas

,cont=GW_ADV(("3ffe:100:3:401::1","

3ffe:100:3:405::"))})++

1‘(RECEIVE("AHN(4)"),{src="3ffe:100

:3:405::1",dest="all-nodes multicas

,cont=GW_ADV(("3ffe:100:3:401::1","

3ffe:100:3:405::"))})

CmdxPacket

Config1
1

1‘("3ffe:100:3:401::3","3ffe:100:3:4

05::1","3ffe:100:3:405::")

GWConfig

Config2
1

1‘("3ffe:100:3:401::4","3ffe:100:3:4

06::1","3ffe:100:3:406::") GWConfig

Core

Network

CoreNetwork

AdHoc

Network

AdHocNetwork

Gateway1

Gateway

Gateway2

Gateway

t

gwassign_ip("gw1", "3ffe:100:3:401::3",

"3ffe:100:3:405::1","3ffe:100:3:405::")

wassign_ip("gw2", "3ffe:100:3:401::4",

3ffe:100:3:406::1","3ffe:100:3:406::")

Protocol specification

Modelling

Demonstrater

Feedback

Input

Explore and interact

Animation GUI

Fig. 2. Model-based prototyping approach

Model-Based Prototyping of an Interoperability Protocol 271

to demonstrate the prototype without directly relying on the CPN model but
more application and domain specific means. To support this, an animation GUI
(top left of Fig. 2) has been added on top of the CPN model. This graphics vi-
sualises the execution of the prototype using the graphical representation of the
network architecture previously shown in Fig. 1. The graphics is updated by the
underlying CPN model according to the execution of the protocol.

In addition to observe feedback on the execution of the system in the ani-
mation GUI, it is also possible to provide input to the system directly via the
animation GUI. In the prototype, it is possible for the demonstrator (e.g., a
protocol engineer) to move the nodes in the ad-hoc network and to define traffic
flows from the host in the core network to the nodes in the mobile ad-hoc net-
work. The animation GUI has been implemented using a general visualisation
package and framework [28] developed in the course of the project (see Sect. 4).

Altogether the approach makes it possible to explore and demonstrate the
prototype of the interoperability protocol based on the CPN model that formally
captures the design, but doing it in such a way that the use an underlying formal
model is transparent for the observer and the demonstrator.

4 The CPN Model

This section presents the CPN model specifying the interoperability protocol.
The complete CPN model is hierarchically structured into 18 modules. As the
CPN model is too large to be presented in full in this paper, we present only
selected parts of the CPN model. The aim is to show how the key aspects of the
interoperability protocol have been modelled. The key concepts of CP-nets will
be briefly introduced as we proceed with the presentation. The reader is referred
to [16] for a comprehensive introduction to CP-nets.

4.1 Model Overview

The module concept of CP-nets is based on the notion of substitution transitions
which have associated submodules describing the compound behaviour repre-
sented by the substitution transition. A submodule of a substitution transition
may again contain substitution transitions with associated submodules. Figure 3
shows the top level module of the CPN model which is composed of three main
parts represented by the rectangular substitution transitions CoreNetwork (left),
Gateway1 and Gateway2 (middle), and AdHocNetwork (right). The substitution
transition CoreNetwork and its submodules model the core network, the substi-
tution transition AdHocNetwork and its submodules model the mobile ad-hoc
network, and the submodules of the two Gateway substitution transitions model
the operation of the gateways connecting the core network and the mobile ad-
hoc network. The text in the small rectangular box attached to each substitution
transition gives the name of the associated submodule.

The state of a CPN model is represented through places (drawn as ellipses).
There are four places in Fig. 3. The places CoreNetwork and AdHocNetwork are

272 L.M. Kristensen, M. Westergaard, and P.C. Nørgaard

� � � � � � � � � � � � 	 � �
 	 � 	 � � �
 � � � � � � �
 � � � 	 �
	 � � �
 � � � � � � � � � �
 	 � 	 � � �
 � � � � � � � � � � 	 �

� � � � � � � � � � � 	 � � � 	 � 	 � � �
 � � � � � � �
 � � � 	 �
 � �
 � � � � � � � � � �
 	 � 	 � � �
 � � � � � � � � � � 	 �

� � � �
� � � � � � �

� � � � � � � � � � �

� � � � �
� � � � � � �

� � � � � � � � � � � �

 � � � � � !

 � � � � � !

 � � � � � ! �
 � � � � � !

� � � �
� � � � � � �

� " � # $ � � � � �

 % � & ' () * � � + � � � , 	 � � �
 � � � � � � �
 � � �
	 � � � � � , 	 � � �
 � � � � � � �
 � �
 	 � � � � � , - � .
� & / 0 � 	 � � � � � � 	 � 1 �

� � � � �
� � � � � � �

� " � # $ � � � � �

�

 % � & / � / * 2 / � 	 � � � � � � 	 � � + � � � , 	 � � �
 � �
� � � � � � � �
 	 � � � � � , 	 � 3 3 4 � � � � � " 5 3 � � � � � � 	

� � � � � , 6 � � - 2 � � 	 � � �
 � � � � � � �
 � �
 	 � 	
� � �
 � � � � � � � � � � 	 � � 1 � 7 7

 % � & / � / * 2 / � 	 � � � � � � 	 � � + � � � , 	 � � �
 � �
� � � � � � � �
 	 � � � � � , 	 � 3 3 4 � � � � � " 5 3 � � � � � � 	

� � � � � , 6 � � - 2 � � 	 � � �
 � � � � � � �
 � �
 	 � 	
� � �
 � � � � � � � � � � 	 � � 1 �

� � � � �

 6 � � � � �

 % � 	 � � �
 � � � � � � �
 � � � 	 � 	 � � �
 � � � � � �
� � � �
 	 � 	 � � �
 � � � � � � � � � � 	 �

� � � � � �
 6 � � � � �

 % � 	 � � �
 � � � � � � �
 � � � 	 � 	 � � �
 � � � � � �
� � � �
 	 � 	 � � �
 � � � � � � � � � � 	 �

Fig. 3. System module – top-level module of the CPN model.

used for model modelling the packets in transit on the core network and ad-hoc
network, respectively. The state of a CPN model is a distribution of tokens on
the places of the CPN model. Figure 3 depicts a state where there is one token on
place CoreNetwork and two tokens on place AdHocNetwork. The number of tokens
on a place is written in the small circle attached to the place. The data values
(colours) of the tokens are given in the filled box positioned next to the small
circle. As an example, place CoreNetwork contains one token with the colours:

(ROUTING, {src="3ffe:100:3:401::2", dest="3ffe:100:3:401::1",
cont=DNSREQ("AHN(3)")})

representing a DNS request in transit from Host 1 to the DNS server. Place Ad-
HocNetwork contains two tokens representing gateway advertisements in transit
to nodes in the ad-hoc network. The two Config places each contains a token
representing the configuration of the corresponding gateway. It consists of the
IP address of the interface connected to the core network, the IP address of the
interface connected to the ad-hoc network, and the prefix announced.

The data values (colours) of tokens that can reside on a place are determined by
the colour set of the place which by convention is written below the place. Colour
sets are similar to types known from conventional programming languages. Fig-
ure 4 lists the definitions of the colour sets (types) used in the System module.
IP addresses, prefixes, and symbolic IP addresses are represented by colour sets
IPAdr, Prefix, and Symname all defined as the set of strings. The colour set Pack-
etCont and Packet are used for modelling the IP packets. The five different kinds
of packets used in the interoperability protocol are modelled by PacketCont:

DNS REQ modelling a DNS request packet. It contains the symbolic IP address
to be resolved.

DNS REP modelling a DNS reply. It contains the symbolic IP address and the
resolved IP address.

Model-Based Prototyping of an Interoperability Protocol 273

(* --- Addressing --- *)
colset Prefix = string; (* address prefixes *)
colset IPAdr = string; (* IP addresses *)
colset SymName = string; (* symbolic names *)

5

colset SymNamexIPAdr = product SymName * IPAdr;
colset IPAdrxPrefix = product IPAdr * Prefix;

(* --- packets --- *)
10 colset PacketCont = union DNS_REQ : SymName + (* DNS Request *)

DNS_REP : SymNamexIPAdr + (* DNS Reply *)
DNS_UPD : SymNamexIPAdr + (* DNS Update *)
GW_ADV : IPAdrxPrefix + (* Advertisments *)
PACKET; (* Generic payload *)

15

colset Packet = record src : IPAdr *
dest : IPAdr *
cont : PacketCont;

20 colset Cmd = union ROUTING +
RECEIVE : IPAdr +
FLOODING : IPAdr +
GWAHNROUTING : IPAdr +
AHNGWROUTING : IPAdr;

25

colset CmdxPacket = product Cmd * Packet;

(* --- Gateways configuration --- *)
colset GWConfig = product IPAdr * IPAdr * Prefix;

Fig. 4. Colour set definitions used in the System module.

DNS UPD modelling a DNS update. It contains the symbolic IP address to be
updated and the new IP address to be bound to the symbolic address.

GW ADV modelling the advertisements disseminated from the gateways. An
advertisement contains the IP address of the gateway and the announced
prefix.

PACKET modelling generic payload packets transmitted between hosts and the
mobile nodes.

The colour set Packet models the packets as a record containing the source,
destination, and the content. The actual payload (content) and layout of pack-
ets are indifferent for modelling the interoperability protocol and has therefore
been abstracted away. The colour set Cmd is used to control the operation of
the various modules in the CPN model. The colour set GWConfig models the
configuration information of the gateway.

274 L.M. Kristensen, M. Westergaard, and P.C. Nørgaard

4.2 Modelling the Core Network

Figure 5 shows the CoreNetwork module modelling the core network. This module
is the immediate submodule of the substitution transition CoreNetwork of the
System module shown in Fig. 3. The port place CoreNetwork is assigned to the
CoreNetwork socket place in the System module (see Fig. 3). Port places are
indicated by the In , Out , or I/O tags associated with them. The assignment
of a port place to a socket place means that the two places are linked together
and will always have identical tokens. By adding and removing tokens from port
places, it is possible for a submodule to exchange tokens with its environment.
The substitution transition Routing represents the routing mechanism in the
core network. The substitution transition Host represents the host on the core
network, and the substitution transition DNS Server represents the DNS server.

� � � �

� � � �

� � �
� � � 	 � �

� � � � � � 	 � �

 � � � � �

� �
 � � � � �

� � � �
� � � � � � �

� � � � � � � � � �

� � �

Fig. 5. Core Network module – modelling the core network

Hosts. Figure 6 depicts the Host module modelling the host on the core network.
The port place CoreNetwork (bottom) is assigned to the CoreNetwork socket place
in the CoreNetwork module (see Fig. 5). The module models the transmission
of packets from the host to one of the mobile ad-hoc nodes. The substitution
transition Flows (top) is used for interfacing with the animation GUI. We will
return to this issue in Sect. 5.

The remaining places and transitions are used for modelling the behaviour of
the host. The rectangles in Fig. 6 are ordinary transitions (i.e., not substitution
transitions) which means that they can become enabled and occur. The dynam-
ics of a CPN model consists of occurrences of enabled transitions that change
the distribution of tokens on the places. An occurrence of a transition removes
tokens from places connected to incoming arcs of the transition and adds tokens
to places connected to outgoing arcs of the transition. The colours of the to-
kens removed from input places and added to output places are determined by
evaluating the arc expressions on the arcs surrounding the transition. The arc
expressions are written in the SML programming language. Data values must
be bound to the variables appearing in the surrounding arc expressions before
the arc expressions can be evaluated. This is done by creating a binding element
which is a pair (t, b) consisting of a transition t and a binding b assigning data
values to the variables of the transition. A binding element (t, b) is enabled iff
the multi-set of tokens obtained by evaluating each input arc expression is a
subset of the tokens present on the corresponding input place.

Model-Based Prototyping of an Interoperability Protocol 275

� � � � � � �

� � � 	 �
 � � � � � � �
� �

� � � � � � � � � �
� � � � � � � � � � ! � � � � � � � � � � � � � � � � " # "

� � � � � � �

� � $ % &
 � ' � � � � � � � � � � �
� �
� � � � � � � � � � (� � � � � � � # "

� � � � � � � �

� � � � � � �

� � � � � � � � � � � � � � � � "

� � $ % &
 � ' � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � !) 	 * � & # "

� � � �

� � � � � � � � � � � � � � � � � "

� � � �
� � � � � + , � � � � � , � � � � � -

� , � , � � " -
� � � � � �
� � � � � � � � � � , � � � � � � " -

� � � � � . �
� � � � � / � � � , � � � � � -

� , � , � � " -
� � � � � �
� � � � � � � � � � � � � � � � " -

� � � �
! � � 0 � �

� � , � � � � � -
� , � , � � " -
� � � � � �
� � � � � � � � � � , � �

1 / � 2 �

1 / � 2 �

	 � � �
� � � 2 � � 0

	 � � 3 ! � � 0 � �

 4 $

5 � � � � � 6

� � � � � � �

7 � � �

 !) � �

� � � � 6 � � � � 8 � 9 � "
�

� : � � � � � � � � � � � � � � � � � 9 �

� � 2 1 / � 2

� � � � � � �

� � � � � � � � � �
� 8 � � � � � �
� / � � � : �) 7 � � � " �

�
� : �) 7 � � � " �

1 / � 2 �
� � � � � � � 3
 !) � �

Fig. 6. Host module – modelling the host

� � � � � � �

� � � 	 �
 � � � � � � �
� �

� � � � � � � � � �
� � � � � � � � � � ! � � � � � � � � � � � � � � � � " # "

� � � � � � �

� � $ % &
 � ' � � � � � � � � � � �
� �
� � � � � � � � � � (� � � � � � � # "

� � � � � � � �

� � � � � � �

� � � � � � � � � � � � � � � � "

� � $ % &
 � ' � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � !) 	 * � & # "

� � � �

� � � � � � � � � � � � � � � � � "

� � � �
� � � � � + , � � � � � , � � � � � -

� , � , � � " -
� � � � � �
� � � � � � � � � � , � � � � � � " -

� � � � � . �
� � � � � / � � � , � � � � � -

� , � , � � " -
� � � � � �
� � � � � � � � � � � � � � � � " -

� � � �
! � � 0 � �

� � , � � � � � -
� , � , � � " -
� � � � � �
� � � � � � � � � � , � � �

1 / � 2 �

1 / � 2 �

	 � � �
� � � 2 � � 0

	 � � 3 ! � � 0 � �

 4 $�
� 5 � � $ % &
 � ' � 6

� �
 � � (� �) 7 � � � " � " # "

8 � � � � � 9

� � � � � � �

�

� 5 �) 7 � � � " �

7 � � �

 !) � �

� � � � 9 � � � � : � 6 � "
�

� 5 � � � � � � � � � � � � � � � � � 6 �

� � 2 1 / � 2

� � � � � � �

� � � � � � � � � �
� : � � � � � �
� / � � � 5 �) 7 � � � " �

1 / � 2 �
� � � � � � � 3
 !) � �

Fig. 7. Host module – after occurrence of SendDNSRequest transition.

When the user defines a flow in the animation GUI, a token will appear in
place NewFlow with a colour corresponding to the symbolic name of the mobile
ad-hoc node which is the destination of the packet flow. An example is given
in Fig. 6, where the NewFlow place contains a token corresponding to the user
having defined a flow to Ad-hoc Node 3. This enables the SendDNSRequest tran-
sition in a binding where the value "AHN(3)" is bound to the variable symname
of type SymName and the variable ipadr is bound to the value of the token on
place Host specifying the IP address of the host.

When the SendDNSRequest transition occurs in the binding described above,
it will remove tokens from places NewFlow and Host, and add tokens to the
output places Host, Waiting, and CoreNetwork. Tokens are added to the Host
place since SendDNSRequest and Host are connected by a double arcs which is

276 L.M. Kristensen, M. Westergaard, and P.C. Nørgaard

a short-hand for an arc in each direction having identical arc expressions. The
colour of the tokens added are determined by evaluating the expressions on the
output arcs. The resulting state is shown in Fig. 7. A token representing the IP
address of the host is put back on place Host, a token representing the symbolic
name to be resolved is put on place Waiting, and a token representing a DNS
request has been put on place CoreNetwork.

The reception of the DNS reply from the DNS server is modelled by the tran-
sition ReceiveDNSReply which causes the token on place Waiting to be removed
and a token to be added on place Flows. This corresponds to the host entering
a state in which packets can be transmitted to the mobile ad-hoc node. The
sending of packets is modelled by the transition SendPacket. The user may then
decide (via the animation GUI) to terminate the packet flow which will cause
the token on place Flows to be removed, and transmission of packets will cease.
A host can have concurrent flows to different mobile ad-hoc nodes.

Domain Name Server and Database. Figure 8 shows the DNSServer module
modelling the DNS Server. The place DNSAdr contains a token corresponding to
the IP address of the DNS Server. Place DNSDatabase models the DNS database
entries on the DNS Server. There is a token on place DNSDatabase for each
entry in the DNS database. The entries in the DNS database are modelled as
tuples where the first component is the symbolic address (name) and the second
component is the IP address bound to the symbolic name in the first component.

There are two possible events in the DNS server modelled by the transitions
DNSRequest and DNSUpdate. The transition DNSRequest models the reception
of DNS requests (from hosts) and the sending of the DNS reply containing the
resolved IP address. The transition DNSUpdate models the reception of DNS
updates from the mobile ad-hoc nodes. Both transitions access the DNSDatabase
for lookup (transition DNSRequest) and modification (transition DNSUpdate).

Core Network Routing. The CPN model does not specify a specific routing
protocol but only the requirements to the core network routing protocol. This

� � � � � � � � � � � 	
 �
�
 � �
 � � � � 	
 �
	 � � � � � � 	
 �
� � � � � � � � � � � � � � � � � � � �

� � � � � � � �
�
 � � � � � 	
 �
	 � � �
 � � � � 	
 �
� � � � � � � � � � � ! � � � � � � � �
 � � � � 	
 � � �

� � � � � � � � � � � 	
 �
�
 � � � � " � � � 	
 �
	 � � � � � � 	
 �
� � � � � � � � � � ! � � � � � � � � � � � " � � � 	
 � � �

� � � � � � � �
 � � � � 	
 �

� � � � � � � �
 � � � � 	
 �

� � � � � � � � � � " � � � 	
 �

� � � 	
 � � � 	

� � � � � # $ � �

� � � $ � � � � 	
 %
� $ � � $ � � � %
� � � � � �
	 � �
 � � � � � � � � � � � � 	
 � %
� � �
 � � � � � � � $ � � � � � 	
 �

� � � � � 	 � � �

� � � $ � � � � � � � � � � � " � � � 	
 � � � � 	
 � %
� $ � � $ � � � %
� � � � � �
	 � �
 � � � � � � � � � � � � 	
 � %
$ � 	 � � � � 	 � � � � � � � � � � � " � � � 	
 � %
� �

� �
 �
� � � " �
 &

� � 	 ' ! � � & � �

� (�

� � �
� � � �) � �

� � � � � � � ' � ! * 	

�
 � � � � � 	 � � � � �
 � + , � - � . /

,

0 1 � 2 * 3 � � , � 2 � 2 , 4 4 � 5 0 6 6 5 , 5 - 6 . 5 5 , 2 � 7 7
0 1 � 2 * 3 � � - � 2 � 2 , 4 4 � 5 0 6 6 5 , 5 - 6 . 5 5 - 2 � 7 7
0 1 � 2 * 3 � � . � 2 � 2 , 4 4 � 5 0 6 6 5 , 5 - 6 8 5 5 . 2 �

� � � * 	

� ! * 	

� � 9 � � � � � 2 	 � 2 � 2 , 4 4 � 5 0 6 6 5 , 5 - 6 0 5 5 0 2 �
0 0 1 2 , 4 4 � 5 0 6 6 5 , 5 - 6 0 5 5 0 2

Fig. 8. DNSServer module – modelling the DNS Server

Model-Based Prototyping of an Interoperability Protocol 277

� � � � � � � � �
	
 � �
 � � � � � � � �

� �
 � � �
 � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
	
 � �
 � � � � � � � � � �
 � � �
 � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �
� � � � �

� � � � � �
 �
� � � � � � � � � � � � � � � � ! � � � � � "
 � #
 � � � � � �
 � � � � � � � � $ % � $ � & $ &
� � � �
 � � ' (�) � ' �
 �
�)
 �
 � � ' (�) � ' � � ! � � � � � "
 � #
 � � � � � �
 � � � � � � � � * � $ + � � , & $ & �

� � � � � � � � � � � � � � � �

- � � � � � � � . � � � � � / � 0 �
 � � � � � � 1

� � � �
� � � ' � � 2

� � � / 3 � � 2 � �

� 4 �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �
- � & % � � � 5 $ * * 5 % 5 6 * 7 5 5 & � & % � � � 5 $ * * 5 % 5 6 * $ 5 5 % & � �

� & % � � � 5 $ * * 5 % 5 6 * + 5 5 & & % � � � 5 $ * * 5 % 5 6 * $ 5 5 6 & � 1

$

$ 8 - � & % � � � 5 $ * * 5 % 5 6 * 7 5 5 & � & % � � � 5 $ * * 5 % 5 6 *
$ 5 5 % & � � � & % � � � 5 $ * * 5 % 5 6 * + 5 5 & � & % � � � 5 $ * * 5 %
5 6 * $ 5 5 6 & � 1

Fig. 9. CNRouting module – Routing in the core network

means that any routing protocol that meets these requirements can be used
to implement the interoperability protocol. The routing mechanism in the core
network is abstractly modelled by the CNRouting module shown in Fig. 9. The
place RoutingInformation models the routing information computed by the spe-
cific routing protocol in operation. This place contains a token that makes it
possible given a prefix, to find the IP address of the corresponding gateway on
the core network. This specifies the requirement that the gateways are required
to participate in the routing protocol of the core network and announce a route
to the prefix that they are advertising in the mobile ad-hoc network. This enables
packets for nodes in the mobile ad-hoc network to be routed via the gateway
advertising the prefix that matches the destination IP address of the packet.
The transition Route models the routing of the packet on the core network. It
uses the routing information on place RoutingInformation to direct the packet to
the proper gateway. The function FindNextHop in the guard expression of the
transition computes the IP address of the next hop gateway using the routing
information and destination IP address of the packet.

4.3 Modelling the Gateways

The role of the gateway is to relay packets between the core network and the
mobile ad-hoc network, and to periodically send advertisements to the mobile
ad-hoc network. Figure 10 shows the Gateway module modelling the operation of
the gateways. This module is the submodule of the two substitution transitions
Gateway1 and Gateway2 on the System module. This means that there will be
two instances of the Gateway module - one for each of the substitution transi-
tions. Figure 10 shows the instance corresponding to Gateway1. The port place
CoreNetwork is assigned to the socket place CoreNetwork and the port place Ad-
HocNetwork is assigned to the socket place AdHocNetwork on the System module.
The place Config contains a token giving the configuration of the gateway.

The relay of packets from the core network to the mobile ad-hoc network
is modelled by the transition AHN CoreTransmit and the relay of packets from
the mobile ad-hoc network to the core network is modelled by the transition
Core AHNTransmit. Packets to be transmitted from the core network to the ad-
hoc network are represented by tokens in the place CoreNetwork. When the tran-
sition Core AHNTransmit occurs corresponding to the relay of a packet from
the core network to the ad-hoc network, this token will be removed from the
CoreNetwork place and a new token representing the packet added to the place

278 L.M. Kristensen, M. Westergaard, and P.C. Nørgaard

� � � � � � � � � � � 	
 � � � � � � �� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � 	
 � � � � � � �� � � � � � � � � � � 	
 � � � � � � � �

� � � � 	
 � � � � � 	
 � �
 � � � � �

� � � � 	
 � � � � � 	
 � �
 � � � � �

� � � � � � �
� 	 � �
 � � � � � ! �

� � � 	 � �
 � � � �

� � � " � � � �
�
 � ! � � �� ! � # � � � � 	
 $

% # � � # � � � $ � � � � % !
� ! �
 � � ! � " % # � � � � � 	
 � $
	 � �
 � � ! � " � ! � � � � 	
 �

� � � � " � � �
�
 � ! � � �

� ! � # � � � � 	
 $

% # � � # � � � $
� � � � % !
� ! �
 � � ! � " % # � � � � � 	
 � $
	 � �
 � � ! � " � ! � � � � 	
 �

� % ! � � &

� � � % ! � � &

� ' �
�

� (�) * � � � + � , , + * + - , � + + *) �) * � � � + � , , + * + -
, . + + �) �) * � � � + � , , + * + - , . + +) �

� %
 �
� � � � %

� 	 � / � � � �

� ' �

� 	 � % �
� � � � %

� 	 � / � � � �

� ' �

Fig. 10. Gateway module – modelling the operation of the gateways

AdHocNetwork. The relay of packets from the AdHocNetwork to the CoreNetwork
is modelled in a similar manner by the transition AHN CoreTransmit. The peri-
odic transmission of advertisements on the mobile ad-hoc network is modelled
by the substitution transition GatewayAdvertisement. The presentation of the
submodule associated with this substitution transition has been omitted.

4.4 Modelling the Mobile Ad-Hoc Network

Figure 11 depicts the AdHocNetwork module which is the top level module of
the part of the CPN model modelling the mobile ad-hoc network. The place
Nodes is used to represent the nodes in the mobile ad-hoc network. The place
RoutingInformation is used to represent the routing information in the ad-hoc
network which is assumed to be available via the routing protocol executed in
the ad-hoc network. This routing information enables among other things the
nodes to determine the distance to the reachable gateways. Detailed information
about the colour of the token on place RoutingInformation has been omitted.

� � � � � � �

� � 	 � � � � � � �

 � � � � � � �

 � � � � � � �

 � � � � � � �

 � � � � � � �

� � 	 � � � �

	 � � �

� � � � �
	 � � � � � �

� � � � � � � � � �

� � �

� � � � � � �
� � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � ! " # � � � � � � $ � � � � � � � % & ' (') * +
� � � � ! " % # � � 	 # & + ' , & � � � - ! . . - & - (.) - - & , ' , & � � � - ! . . - & - (.) - - ! , ' � / � �

# � � 	 # & + ' , , ' , & � � � - ! . . - & - (. 0 - - ! , ' � / � � � # & + + '
# � � 	 # (+ ' , & � � � - ! . . - & - (.) - - (, ' , & � � � - ! . . - & - (.) - - ! , ' � / � � � # & + + '
# � � 	 # (+ ' , , ' , & � � � - ! . . - & - (. 0 - - ! , ' � / � � � # & + + '
# � � 	 #) + ' , & � � � - ! . . - & - (.) - -) , ' , & � � � - ! . . - & - (.) - - ! , ' � / � � � # & + + '
# � � 	 #) + ' , , ' , & � � � - ! . . - & - (. 0 - - ! , ' � / � � � # & + + *

!

	 � � � �

� � 	 � � � � � �

� � � � � � $ � � � � % & ' (') *

&

! " # � � 	 # & + ' % # , & � � � - ! . . - & - (.) - - & , ' , & � � �
- ! . . - & - (.) - - ! , ' , & � � � - ! . . - & - (.) - - , + * + 1
1
! " # � � 	 # (+ ' % # , & � � � - ! . . - & - (.) - - (, ' , & � � �
- ! . . - & - (.) - - ! , ' , & � � � - ! . . - & - (.) - - , + * + 1
1
! " # � � 	 #) + ' % # , & � � � - ! . . - & - (. 0 - -) , ' , & � � �
- ! . . - & - (. 0 - - ! , ' , & � � � - ! . . - & - (. 0 - - , + ' # ,

& � � � - ! . . - & - (.) - -) , ' , & � � � - ! . . - & - (.) - -
! , ' , & � � � - ! . . - & - (.) - - , + * +

Fig. 11. AdHocNetwork module – modelling the ad-hoc network

Model-Based Prototyping of an Interoperability Protocol 279

(* --- ad-hoc nodes --- *)
colset AHId = int with 1..5;
colset AHNode = union AHN : AHId;

5 (* --- distance information --- *)
colset Distance = union REACH : Dist + NOTREACH;
colset DistanceEntry = product AHNode * IPAdr * IPAdr * Distance;
colset DistanceInformation = list DistanceEntry;

10 (* --- configuration information for ad-hoc nodes --- *)
colset AHNIPConfig = product IPAdr * IPAdr * Prefix;
colset AHNIPConfigs = list AHNIPConfig;
colset AHNConfig = product AHNode * AHNIPConfigs;

Fig. 12. Colour definitions used in the AdHocNetwork module

Figure 12 lists the definition of the colour sets used in the AdHocNetwork
module. The topology of the mobile ad-hoc network is abstractly represented by
only representing the distance from each of the ad-hoc nodes to the two gateways.
The reason is that it is only the relative distance to the two gateways which are of
relevance to the operability protocol – not the complete topology. The colour set
DistanceInformation is used to keep track of the reachability between the nodes in
the ad-hoc network and the gateways. The distance information is a list with an
entry for each pair of ad-hoc node and gateway. Each entry is again list consisting
of a four-tuple (colour set DistanceEntry). Each entry consists of the symbolic
name of the mobile ad-hoc node, its IP address (if configured), the IP address of
the gateway (if configured), and the distance to the gateway. The gateway may
also be unreachable in which case the distance is set to NOTREACH.

The colour set AHNConfig is used to model the configuration information for
the mobile ad-hoc nodes. Each ad-hoc node is represented by a token on place
Nodes and the colour of the tokens specifies the name of the node and a list
of configured IP addresses. Each configuration of an IP address specifies the IP
address configured, and the IP address and prefix of the corresponding gateway.
It is possible for a mobile ad-hoc node to configure an IP address for multiple
gateways. The node will ensure that the DNS database always contains the IP
address corresponding to the preferred gateway.

There are four substitution transitions in the AdHocNetwork module corre-
sponding to the components of the ad-hoc network represented:

AHNodes represents the behaviour of the nodes in the mobile ad-hoc network.
This will be presented in more detail below.

Mobility represents the mobility of nodes in the ad-hoc network, i.e., that the
nodes may move closer or further away from the gateways. We will return
to the modelling of mobility in Sect. 5.

Routing represents the routing protocol executed in the ad-hoc network. The
purpose of the routing protocol in the context of the interoperability protocol
is to provide the nodes with information about distances to the gateways.

280 L.M. Kristensen, M. Westergaard, and P.C. Nørgaard

� � � � � � � �

� � � � � � � �

� � � 	 � �
 � � � � � �

� � � 	 � �
 � � � � � �

 � �
 � � � � � �

 � �
 � � � � � �

� � � � �

 � � � � � � � �

� � �

�
� � � � � � � � � � ! � � � � " � # # " � " $ # % " " � ! � ! � � � �
" � # # " � " $ # % " " � ! � ! � � � � " � # # " � " $ # % " " ! � & � '
'
� � � � � � $ � � � ! � � � � " � # # " � " $ # % " " $! � ! � � � �
" � # # " � " $ # % " " � ! � ! � � � � " � # # " � " $ # % " " ! � & � '
'
� � � � � � % � � � ! � � � � " � # # " � " $ # (" " % ! � ! � � � �
" � # # " � " $ # (" " � ! � ! � � � � " � # # " � " $ # (" " ! � & �

 �) � � � �
� � � � * + � � � � �

� � � � � � � � � � � � * + � � � � �

� � ��

 � � � �
� � � , � * 	

� + � - � � � 	 � �

� � �

Fig. 13. Node module – modelling an ad-hoc node

The routing is abstractly modelled in a similar way as the routing mechanism
in the core network and will not be discussed further in this paper.

Flooding models the dissemination of advertisements from the gateways. A de-
tailed presentation of this part of the model has been omitted.

Figure 13 depicts the Node module specifying the operation of the ad-hoc
nodes. The module has three substitution transitions. PacketReceive represents
the reception of packets from hosts in the core network. The submodule Packe-
tReceive of this substitution transition is shown in Fig. 14. The transition Pack-
etReceive models the reception of a packet and consumes the token on place
AdHocNetwork corresponding to the packet being received. AdvReceive repre-
sents the reception of advertisements from the gateways. A node changes its
preferred IP address if the received advertisement is from a gateway which is
closer than the gateway corresponding to the currently preferred gateway (if
any). If the node configures a new preferred IP address based on the received
advertisement, then it will send an update to the DNS server containing the
new preferred IP address. DeleteGW represents the case where the gateway cor-
responding to a configured IP address becomes unreachable. The assumption is
that this will be detected via the routing protocol executed in the ad-hoc net-
work or if advertisement has not been received for a specified amount of time.
The submodules of the AdvReceive and DeleteGW are similar in complexity as
the submodule of the PacketReceive substitution transition in Fig. 14 and has
been omitted.

� � � � � � � � � � � 	
 �
�
 � �
 � � � � 	
 �

	 � � � � � � 	
 �
� � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � �

� � � ! � � � � 	
 " � ! � � ! � � � " � � � � � �
	 � �
 � # � � � $ � � � � � � 	
 � "

% � � � � � � � � !
 � 	 � � � � � � � � � � � � � � � � � � � � � � � 	
 � &

� 	 � � �
� � � ' �
 �

� # 	 (� � � � � �

� �

� � 	 �

� � � � � � � � �

�) * +

Fig. 14. PacketReceive module – modelling reception of payload packets

Model-Based Prototyping of an Interoperability Protocol 281

5 The Animation Graphical User Interface

The animation GUI has been implemented based on a general animation pack-
age [28] developed in the course of the project. The animation package provides
a general framework for adding various diagram types on top of executable mod-
els. The animation package is not designed specifically for CPN models, but is
applicable also to other modelling formalisms.

The architecture of the model-based prototype developed in the project is
depicted in Fig. 15 and consists of three main parts: The CPN Tools GUI (left),
the CPN simulator (middle), and the animation GUI (right). The CPN Tools
GUI and the CPN simulator constitute the CPN computer tools used in the
project. CPN models are constructed using the CPN Tools GUI and the CPN
simulator implements the formal semantics of CP-nets for execution of CPN
models. The simulator communicates via the XML-RPC [32] infrastructure with
the animation GUI to display the execution of the CPN model using the domain-
specific graphics and for receiving stimuli/input from the demonstrator. The
specific visualisation means are determined by the set of animation plug-ins used
in the animation GUI. One animation plug-in was used to obtain interaction
graphics in the form shown in Fig. 16. A second animation plug-in was used to
obtain feedback in the form of message sequence charts (MSCs).

XML−RPC
client

XML−RPC
server

Animation
package

CPN
simulator

CPN Tools
GUI

plugins
Animation

Fig. 15. Architecture of the model-based prototype

Fig. 16 shows a representative snapshot of the application-specific during
the execution of the CPN model. The IP addresses configured by the individual
nodes are shown as labels below the nodes. For an example, Ad-hoc Node 3 has
configured two IP addresses: 3ffe:100:3:405:3 and 3ffe:100:3:406:3. The conven-
tion is that the preferred IP address is the topmost address in the list below the
node. The entries in the DNS database are shown in the upper left corner. It
shows the entries for each of the three ad-hoc nodes. The two numbers written
at the top of each node are counters that provide information about the number
of packets on the incoming (left) and outgoing (right) interfaces of the nodes.
Transmissions of advertisements from the gateways are visualised by green dots.
Transmission of payload packets are visualised using read dots, and DNS pack-
ets are visualised using blue dots. Fig. 16 shows an example where Host 1 is
transmitting a payload packet to Ad-hoc Node 3.

282 L.M. Kristensen, M. Westergaard, and P.C. Nørgaard

Fig. 16. Snapshot of the interaction graphics

Fig. 17. Message sequence chart generated by the animation GUI

The user can move the nodes in the ad-hoc network thereby changing the
distances to the two gateways. It is also possible to define a flow from the host
in the core network to one of the nodes in the mobile ad-hoc network by clicking
on the read square positioned next to each of the ad-hoc nodes. The square will
change its colour to green once the CPN model has registered the flow. The flow
can be stopped again by clicking on the (now green) square next to the mobile
ad-hoc node. Finally, it is possible to force the transmission of an advertisement
from a gateway by clicking on the gateway.

Figure 17 shows an example of a MSC creating based on a simulation of the
CPN model. The MSC shows a scenario where Ad-hoc Node 3 makes a Move and
discovers that Gateway 2 is now the closest gateway. This causes it to send a DNS
update to the DNS server. The last part of the MSC shows the host initiating a
packet flow to Ad-hoc Node 3.

Model-Based Prototyping of an Interoperability Protocol 283

Fig. 18. Poll module – Polling the animation GUI for events

Graphical feedback from the execution of the CPN model is achieved by
attaching code segments to the transitions in the CPN model. These code seg-
ments are executed whenever the corresponding transition occurs in the simu-
lation/execution of the CPN model. As an example, the transition Route (see
Fig. 9) has an attached code segment which invokes the primitives required for
animating the transmission of packets in the core network.

The CPN model receives input from the animation GUI by polling the an-
imation GUI for events. The Poll module shown in Fig. 18 polls the animation
GUI for events at regular intervals during the execution of the CPN model and
puts events into a list on the place Events, thereby implementing an event queue
between the animation GUI and the CPN model. Parts of the CPN model that
is to react on events from the animation GUI are linked to the Event place and
are able to consume events from the event queue. The transition Produce polls
the animation GUI for events.

6 Conclusions
We have presented our model-based prototype approach and demonstrated its
use on an interoperability protocol. In addition to providing a detailed specifi-
cation of the interoperability protocol via the constructed CPN model, the work
has also highlighted the following characteristics and aspects of a model-based
(virtual) prototyping approach:

Representation. The use of an animation GUI on top of the CPN model has the
advantage that the behaviour observed by the user is as defined by the underlying
model that formally specifies the design. The alternative would have been to
implement a separate visualisation package in, e.g., JAVA, totally detached from
the CPN model. We would then have obtained a model closer to the actual
implementation. The disadvantage of this approach would have been a double
representation of the dynamics of the interoperability protocol.

Transparency. The use of a domain specific graphical user interface (the anima-
tion GUI) has the advantage that the design can be experimented with and ex-
plored without having knowledge of the CPN modelling language. This has been
shown in practise at a demonstration to management with no CPN knowledge.

Controllability. A model-based prototype is easier to control compared to a
physical prototype, in particular in the case of mobile nodes and wireless com-
munication where scenarios can be very difficult to control and reproduce.

284 L.M. Kristensen, M. Westergaard, and P.C. Nørgaard

Abstraction. Implementation details can be abstracted away and only the key
part of the design have to be specified in detail. As an example, in the CPN model
of the interoperability protocol we have abstracted away the routing mechanisms
in the core and ad-hoc networks, and the mechanism used for distribution of
advertisements. Instead, we have modelled the service provided by these compo-
nents. The possibility of making abstraction means that it is possible to obtain
an executable prototype without implementing all components.

Feasibility. The use of a model means that there is no need to invest in physical
equipment and there is no need to setup the actual physical equipment. This
also makes it possible to investigate larger scenarios, e.g., scenarios that may
not be feasible to investigate with the available physical equipment.

Related Work. Integrated use of visualisation and formal modelling has also
been considered for CP-nets in earlier work in the area of embedded systems [26],
telecommunication protocols [3], pervasive electronic patient records [2], and
software for mobile phones [19]. The case studies in [26, 3, 2, 19] all applied the
Mimic/CPN [25] package, an internal part of the Design/CPN [1] tool. The
approach presented in this paper relies on an external application handling the
visualisation, which we find is a more flexible approach as it allows us to use
existing software libraries supporting different diagram types. In Mimic/CPN,
input from the user is only possible by showing a modal dialog, meaning the
simulation of the model is stopped while the user is expected to input infor-
mation. The animation package presented in this paper avoids this by using an
asynchronous event queue polled by a transition in the model. As part of future
work, we plan to eliminate polling by allowing external applications to directly
produce and consume tokens on special external places.

Visualisation is also available in other tool sets. ExSpect [29] allows the user
to view the model state by associating widgets with the state of the model and
asynchronously interact with the model using simple widgets. In this way, one
creates simple user interfaces for displaying information and simple interaction.
LTSA [20] allows users to animate models using an animation library called
SceneBeans [21]. In LTSA animations are tied to the models by associating each
animation activity with a clock; resetting a clock corresponds to starting an an-
imation sequence, and events in the animation corresponds to progress of the
clock. PNVis [14] associates objects of a 3D world with tokens, and is suitable for
modelling physical systems, but not immediately applicable for network proto-
cols. The Play-Engine [10] supports the developer in implementing a prototype
by inputting scenarios (play-in) via an application-specific GUI, and then ex-
ecute the resulting program (play-out). Compared to our approach this makes
the model implicit as the model is created indirectly via the input scenarios. We
view an explicitly created model as an advantage when the prototype is to serve
as a basis for an actual implementation of the system. The reason is that an
implicitly created model is difficult to interpret as it is automatically generated.

In conclusion, the work presented in this paper has demonstrated that using
CP-nets and the supporting computer tools for building a model-based proto-

Model-Based Prototyping of an Interoperability Protocol 285

type can be a viable and useful alternative to building a physical prototype.
Furthermore, the CPN model can also serve as a basis for further development
of the interoperability protocol, e.g., by refining the modelling of the routing
and dissemination mechanisms to the concrete protocols that would be required
to implement the solution. There is still a gap from the CPN model to the ac-
tual implementation of the interoperability protocol, but the CPN modelling has
yielded an executable prototype that can be used to explore the solution and
serve as a basis for the later implementation.

Acknowledgements. The authors gratefully acknowledge the support of their
colleagues in BAE SYSTEMS plc, Ericsson Microwave Systems AB and Ericsson
Danmark A/S, Telebit, and support from the UK, Swedish and Danish MoDs
under the EUCLID/Eurofinder programme, Project RTP6.22 (B2NCW). The
authors would also like to acknowledge Rolf Christensen for his contributions.

References

1. Design/CPN. Online www.daimi.au.dk/designCPN.
2. C. Bossen and J.B. Jørgensen. Context-descriptive prototypes and their application

to medicine administration. In DIS ’04: Proc. of the 2004 conference on Designing
interactive systems, pages 297–306, New York, NY, USA, 2004. ACM Press.

3. C. Capellmann, S. Christensen, and U. Herzog. Visualising the Behaviour of In-
telligent Networks. In Services and Visualisation, Towards User-Friendly Design,
volume 1385 of LNCS, pages 174–189. Springer-Verlag, 1998.

4. T. Clausen and P. Jacquet. Optimised Link State Routing Protocol (OLSR). RFC
3626, October 2003.

5. CPN Tools. www.daimi.au.dk/CPNTools.
6. The CPN Group at University of Aarhus. www.daimi.au.dk/CPnets.
7. Ericsson Danmark A/S, Telebit. www.tbit.dk.
8. S. Gordon, L.M. Kristensen, and J. Billington. Verification of a Revised WAP

Wireless Transaction Protocol. In Proc. of ICATPN’02, volume 2360 of LNCS,
pages 182–202. Springer-Verlag, 2002.

9. B. Han and J. Billington. Formalising the TCP Symmetrical Connection Manage-
ment Service. In Proc. of Design, Analysis, and Simulation of Distributed Syste
ms, pages 178–184. SCS, 2003.

10. D. Harel and R. Marelly. Come, Let’s Play. Springer-Verlag, 2003.
11. R. Hinden and S. Deering. Internet Protocol Version 6 (IPv6) Addressing Archi-

tecture. RFC 3513, April 2003.
12. C. Huitema. IPv6: The New Internet Protocol. Prentice-Hall, 1998.
13. K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical

Use. Vol. 1-3. Springer-Verlag, 1992-1997.
14. E. Kindler and C. Páles. 3D-Visualization of Petri Net Models: Concept and

Realization. In Proc. of ICATPN 2004, volume 3099 of LNCS, pages 464–473.
Springer-Verlag, 2003.

15. L.M. Kristensen. Ad-hoc Networking and IPv6: Modelling and Validation.
www.pervasive.dk/projects/IPv6/IPv6 summary.

16. L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to
Coloured Petri Nets. Journal on Software Tools for Technology Transfer, 2(2):98–
132, 1998.

286 L.M. Kristensen, M. Westergaard, and P.C. Nørgaard

17. L.M. Kristensen and K. Jensen. Specification and Validation of an Edge Router
Discovery Protocol for Mobile Ad-hoc Networks. In Integration of Software Spec-
ification Techniques for Application in Engineering, volume 3147 of LNCS, pages
248–269. Springer-Verlag, 2004.

18. A. Lindem. OSPF for IPv6. Internet-draft, March 2005.
19. L. Lorentsen, A-P Tuovinen, and J. Xu. Modelling Features and Feature Inter-

actions of Nokia Mobile Phones Using Coloured Petri Nets. In Proc. of ICATPN
2002, volume 2360 of LNCS, pages 294–313, 2002.

20. J. Magee and J. Kramer. Concurrency – State Models and Java Programs. John
Wiley & Sons, 1999.

21. J. Magee, N. Pryce, D. Giannakopoulou, and J. Kramer. Graphical Animation of
Behavior Models. In Proc. of 22nd International Conference on Software Engi-
neering, pages 499–508. ACM Press, 2000.

22. P.C. Nørgaard. NCW Routing in Tactical Networks. Ericsson Danmark A/S,
Telebit. Technical Report.

23. C. Ouyang and J. Billington. On Verifying the Internet Open Trading Protocol.
In Proc. of 4th International Conference on Electronic Commerce and Web Tech-
nologies, volume 2738 of LNCS, pages 292–302. Springer-Verlag, 2003.

24. C.E. Perkins. Ad Hoc Networking. Addison-Wesley, 2001.
25. J. L. Rasmussen and M. Singh. Mimic/CPN. A Graphical Simulation Utility for

Design/CPN. User’s Manual. www.daimi.au.dk/designCPN.
26. J.L. Rasmussen and M. Singh. Designing a Security System by Means of Coloured

Petri Nets. In Proc. ICATPN 1996, volume 1091 of LNCS, pages 400–419. Springer-
Verlag, 1996.

27. W. Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, 1985.

28. TIN-CPN. wiki.daimi.au.dk/tincpn.
29. The ExSpect tool. www.exspect.com.
30. J.D. Ullman. Elements of ML Programming. Prentice-Hall, 1998.
31. P. Vixie. Dynamic Updates in the Domain Name System. RFC 2136, April 1997.
32. D. Winer. XML-RPC Specification. www.xmlrpc.org/spec.

Translating Hardware Process Algebras into
Standard Process Algebras: Illustration with

CHP and LOTOS

Gwen Salaün and Wendelin Serwe

INRIA Rhône-Alpes / VASY, 655, avenue de l’Europe,
F-38330 Montbonnot St Martin, France

{Gwen.Salaun, Wendelin.Serwe}@inria.fr

Abstract. A natural approach for the description of asynchronous hard-
ware designs are hardware process algebras, such as Martin’s Chp (Com-
municating Hardware Processes), Tangram, or Balsa, which are exten-
sions of standard process algebras with particular operators exploiting
the implementation of synchronisation using handshake protocols.

In this paper, we give a structural operational semantics for value-
passing Chp. Compared to existing semantics of Chp defined by trans-
lation into Petri nets, our semantics handles value-passing Chp with
communication channels open to the environment and is independent of
any particular (2- or 4-phase) handshake protocol used for circuit imple-
mentation.

In a second step, we describe the translation of Chp into the stan-
dard process algebra Lotos, in order to allow the application of the
Cadp verification toolbox to asynchronous hardware designs. A proto-
type translator from Chp to Lotos has been successfully used for the
compositional verification of the control part of an asynchronous circuit
implementing the DES (Data Encryption Standard).

1 Introduction

In the currently predominating synchronous approach to hardware design, a
global clock is used to synchronise all parts of the designed circuit. This method
has the drawback that the global clock requires significant chip space and power.
Asynchronous design methodologies [12] abandon the notion of global clock: the
different parts of an asynchronous circuit evolve concurrently at different speeds,
with no constraints on communication delays. The advantages of asynchronous
design include reduced power consumption, enhanced modularity, and increased
performance. However, asynchronous design raises problems that do not exist
in the synchronous approach, e.g. proving the absence of deadlocks in a circuit.
Furthermore, an established asynchronous design methodology with industrial
tool support is still lacking.

Adequate description languages are necessary to master the design of asyn-
chronous circuits. Several process algebras dedicated to the description of asyn-
chronous hardware have been proposed, as for instance Chp (Communicating

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 287–306, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

288 G. Salaün and W. Serwe

Hardware Processes) [17], Tangram [14], or Balsa [6], which allow the descrip-
tion of concurrent processes communicating via handshake synchronisations. In
these languages, there is no global clock, but each process may have its own local
clock as in GALS (Globally Asynchronous, Locally Synchronous) architectures.
The global control flow results from processes waiting for their partner to engage
in a handshake communication. These hardware process algebras are based on
similar principles as standard process algebras [2, 7] (such as Acp, Ccs, Csp,
Lotos, µCrl, etc.). Especially, they provide operators such as nondeterministic
choice, sequential and parallel composition. However, compared to standard pro-
cess algebras, they offer extensions that capture the low-level aspects of hardware
communications. In particular, communication in Chp, Tangram, or Balsa is
not necessarily atomic (as it is in standard process algebras), and may combine
message-passing with shared memory communication. For instance, the probe
operator [16] of Chp allows to check if the communication partner is ready for
a communication, but without performing the communication actually.

Chp, Tangram, and Balsa are supported by synthesis tools that can gen-
erate the implementation of a circuit from its process algebraic description. For
instance, the Tast tool [19] can generate netlists from Chp descriptions and is
being used to design complex circuits, e.g. by STMicroelectronics, France Tele-
com R&D, and the asynchronous hardware group of the CEA/Leti laboratory
[1]. Our goal is to enable the verification of asynchronous hardware designs with
Cadp [9], a toolbox for verifying Lotos [13] specifications.

In this paper, we give an SOS (Structural Operational Semantics) [2, chap-
ter 3] semantics for value-passing Chp. Compared to the most recent seman-
tics [20] for Chp, which is defined by translation into Petri nets, our semantics
handles value-passing Chp with communication channels open to the environ-
ment and is independent of any particular (2- or 4-phase) handshake protocol
(cf. Section 2.2) used for circuit implementation. We present in a second step
the principles of a translation from Chp into Lotos. A prototype translator has
been implemented and successfully used for the compositional verification of an
asynchronous implementation of the DES (Data Encryption Standard) [18].

As regards related work, we notice that the semantics of hardware process
algebras is usually not given in terms of SOS rules (as it is the case for standard
process algebras), but rather by means of a translation into another formalism,
as for instance handshake circuits for Tangram [22], Petri nets for Chp [20],
and Csp for Balsa [23]; in that respect, we believe that our SOS semantics
is an original contribution. As regards verification of asynchronous circuits de-
scribed using process algebra, there is very little related work. [4] proposes a
translation of Chp into networks of communicating automata. Contrary to our
approach, [4] can only handle Chp processes with intertwined sequential and
parallel compositions by flattening parallel processes, which is less efficient than
the compositional approach presented in this paper. [23] sketches, but does not
detail, a translation of Balsa into Csp. A major difference between [23] and our
approach is that [23] cannot translate a Balsa process B independently of the

Translating Hardware Process Algebras into Standard Process Algebras 289

Balsa processes communicating with B, whereas our approach is generic in the
sense that each Chp process is translated into Lotos regardless of its context.

The remainder of the paperis organised as follows. Section 2 presents Chp and
highlights its probe operator. An SOS semantics for Chp is given in Section 3,
and compared to the Petri net based semantics given for Chp in [20]. Section 4
presents translation rules from Chp into Lotos, and reports on an experiment
with a prototype translator. Finally, Section 5 gives some concluding remarks.

2 Main Principles of CHP

In this section, we focus on the behavioural part of Chp and omit additional
structures such as modules or component libraries present in the full Chp [19].

2.1 Syntax

A Chp description is a tuple
〈
C, X , B̂1 ‖ · · · ‖ B̂n

〉
consisting of a finite set of

channels C = {c1, . . . , cn} for handshake communication, a finite set of variables
X = {x1, . . . , xn} and a finite set of concurrent processes B̂i communicating by
the channels. Without loss of generality, we suppose that all identifiers (channels
and variables) are distinct — this can be achieved by using a suitable renaming.

A channel c is either binary (between two processes) or unary (between a
process and the environment); in the latter case, c is also called a port ; the
predicate port(c) holds iff c is a port. Channels are unidirectional, i.e. a pro-
cess can use a channel either for emissions or for receptions. Also, a process is
either active or passive for a given channel. We write active(i, c) (respectively
passive(i, c)) if process B̂i is active (respectively passive) for channel c. This
distinction between active and passive is also present in other hardware pro-
cess algebras such as Tangram and Balsa. Note that passive(i, c) is not the
negation of active(i, c), since for a process B̂i not using c both active(i, c) and
passive(i, c) do not hold. Binary channels can only connect matching processes,
i.e. for each binary channel, there is one emitter and one receiver, as well as an
active and a passive process, both notions being orthogonal. Let Ci be the set of
channels used by B̂i.

Each variable is local to a single process, i.e. the set X is the disjoint union
of n sets X1, . . . , Xn, each Xi containing the local variables of process B̂i. There
are no shared variables between processes. We suppose the existence of a set of
predefined data types (natural numbers, Booleans and bit vectors) with side-
effect-free operations, written f1, . . . , fn. Variables and channels are typed; the
type of a variable x (respectively a channel c) is written as type(x) (respectively
type(c)).

The behaviour of a process B1 is described using assignments, communication
actions, collateral and sequential compositions, and nondeterministic guarded
commands, according to the following grammar:

B ::= nil deadlock2

1 B stands for any process, whereas B̂i is one of the n processes of the Chp description.

290 G. Salaün and W. Serwe

| skip null action
| x:=V assignment
| c!V emission on channel c
| c?x reception on channel c
| B1;B2 sequential composition
| B1,B2 collateral composition
| @[G1 ⇒ B1;T1 . . . Gn ⇒ Bn;Tn] guarded commands

G ::= V Boolean value expression
| c #V | c # probe on passive channel

T ::= break | loop terminations
V ::= x | f(V1, . . . , Vn) value expression

Collateral composition has higher priority than sequential composition, but
brackets can be used to express the desired behaviour, e.g. “B1, (B2;B3)”.

The collateral composition “,” and the parallel composition of processes “‖”
correspond to two different notions of concurrency. The parallel composition
“‖” specifies concurrent execution with handshake communications between pro-
cesses, whereas collateral composition “,” specifies concurrent execution without
any communication, neither by handshakes nor by variables. The following con-
straints hold for a process “B1,B2”: if B1 modifies a variable x, B2 must neither
access the value of x nor modify x, and the sets of channels used by B1 and B2
must be disjoint (which also prohibits two interleaved emissions or receptions on
a same channel).

As regards guarded commands, the guards are either Boolean value expres-
sions or probes on channels for which the process is passive. The keyword break
indicates that the execution of the guarded command terminates, whereas loop
indicates that @[G1 ⇒ B1;T1 . . . Gn ⇒ Bn;Tn] must be executed once more,
thus allowing loops to be specified in Chp. The version of Chp implemented
in Tast [19] also allows deterministic guarded commands which are a particu-
lar case of nondeterministic guarded commands with mutually exclusive guards.
Therefore we consider only nondeterministic guarded commands in this paper.

2.2 Informal Semantics of Handshake Communication in CHP

Communication between concurrent processes in Chp is implemented by means
of hardware handshake protocols. There exists different protocols, as for instance
the 2-phase protocol (based on transition signalling) and the 4-phase protocol
(based on level signalling) [20]. Each Chp channel c is translated into a set of
wires xc needed to carry data transmitted on c and two control wires creq and cgr
implementing an access protocol to xc. The 2-phase protocol for communication
between two processes B1 (active) and B2 (passive) on a channel c consists of
the following phases:

2 The deadlocking process nil is not present in the version of Chp implemented in
Tast [19], but is required for the definition of the SOS semantics.

Translating Hardware Process Algebras into Standard Process Algebras 291

1. Initiation. B1 sends a request to B2 by performing an electronic transition
(“zero-to-one” or “one-to-zero”) on creq .

2. Completion. B2 sends an acknowledgement (or grant) to B1 by performing an
electronic transition on cgr and the emitted value is assigned to the variable
of the receiver, using the wires xc.

In a 4-phase protocol, sending a request (respectively acknowledgement) is im-
plemented by a value of 1 on wire creq (respectively cgr). After two phases similar
to a 2-phase protocol, two additional phases implement the return-to-zero, first
of creq , then of cgr . Common to both protocols is that a communication on a
channel c is initiated by the process active for c, which is blocked as long as the
communication has not been completed by the passive process.

The probe operation of Chp was introduced in [16] and has been found to
be useful in the design of asynchronous hardware. The notation “c #” allows
a passive process (either emitter or receiver) to check if its active partner has
already initiated a communication on c. The notation “c #V ”, which can only
be used by a receiver, checks if the sender has initiated the emission of the
particular value V . Contrary to classical process algebra operators, the probe
allows a process to obtain information about the current internal state (com-
munication initiated or not) of a concurrent process without performing the
communication actually. Typically, probes are used for multiple reads, execut-
ing “c #V ” several times, which avoids the introduction of an additional variable
to store V .

Similar operators are also present in other hardware process algebras. For
instance, Balsa provides a particular form of reception, called input enclosure
[6], that allows the receiver to perform several commands before acknowledging
the reception, whereas the sender witnesses an atomic communication.

2.3 Running Example: An Asynchronous Arbiter

Throughout this paper we consider the example of an asynchronous arbiter pre-
sented in [20], which we generalise in two ways: we use value-passing commu-
nications instead of pure synchronisations and we model an arbiter open to its
environment by keeping the shared resource outside of the arbiter example itself.

Arbiters are commonplace in digital systems, wherever a restricted num-
ber of resources (such as memories, ports, buses, etc.) have to be allocated
to different client processes. We consider the situation where two clients com-
pete for accessing a common resource. Each client transmits a request for the
resource to the arbiter via an individual channel (c1 or c2). A third chan-
nel allows the arbiter to send the number of the selected client (1 or 2) to
the environment, i.e. the resource. The arbiter chooses nondeterministically be-
tween the clients with pending requests. The corresponding Chp description is〈
{c, c1, c2}, {x}, client-1 ‖ client-2 ‖ arbiter

〉
, where all three channels have an

active emitter and a passive receiver, where variable x — taking values in the
set {1, 2} — is local to the arbiter, and where the three processes are described
as follows:

292 G. Salaün and W. Serwe

client-1: @[true ⇒ c1!1; loop]
client-2: @[true ⇒ c2!2; loop]
arbiter: @[c1 #1 ⇒ (c!1, c1?x); loop c2 #2 ⇒ (c!2, c2?x); loop]

In this example, the arbiter uses the probe operator to check if a client has a
pending request for the resource.

3 A Structural Operational Semantics for CHP

In this section, we give an SOS semantics for Chp with value-passing commu-
nications. Contrary to the existing semantics for Chp [17, 20], we define the
semantics of Chp without expanding communications according to a particular
handshake protocol. Thus, our approach is general in the sense that it gives to
any Chp description

〈
C, X , B̂1 ‖ · · · ‖ B̂n

〉
a unique behavioural semantics

by means of an Lts (Labelled Transition System). In this Lts, a state contains
two parts (data and behaviour); a transition corresponds either to an observable
action (communication on a channel)3 or an internal action, written τ , of a pro-
cess. Following [20], internal actions are generated whenever a process assigns
one of its local variables. Our definitions adopt the usual interleaving seman-
tics of process algebras, i.e. at every instant, at most one observable or internal
action can take place.

We first present the notion of environment describing the data part of our
semantics. Then, we define the behavioural part in two steps, starting with the
semantics of a single process evolving independently, followed by the semantics
of a set of communicating processes B̂1 ‖ · · · ‖ B̂n. Finally, we compare our
semantics with the two semantics of [20] for 2- and 4-phase handshake protocols.

3.1 Environments

The main semantic difficulty in Chp is the handling of the probe, since this
operator exploits the fact that communication is not atomic at the lower level
of implementation. Inspired by the actual hardware implementation of Chp,
we associate to each channel c a variable noted xc that is modified only by the
process active for c, but might be read by the process passive for c. For a channel
c with an active emitter, the type of xc is type(c); the active emitter assigns the
emitted value to xc when initiating the communication, and resets xc (to the
undefined value, written ⊥) when completing the communication. A variable
xc is equal to ⊥ iff all initiated communications on c have been completed.
For a channel with an active receiver, the type of xc is the singleton {ready}
representing that the active receiver has initiated the communication. Formally,
we define the extended set of variables as X ∗ = X ∪ {xc | c ∈ C}, and define X ∗

i

as the set of the local variables of B̂i and all the variables xc such that channel
c is used by B̂i. Notice that the additional variables xc allow to ensure that a

3 Chp has no hiding or restriction operator; thus all inputs and outputs are observable.

Translating Hardware Process Algebras into Standard Process Algebras 293

value sent by the active process on channel c can be read — or probed — as
often as desired by the passive process before completion of the communication.

We define an environment E on X ∗ as a partial mapping from X ∗ to ground
values (i.e. constants), and write environments as sets of associations x → v of
a ground value v to a variable x. Environment updates are described by the
operator %, which is defined as follows:

(∀x ∈ X ∗)
(
E1 % E2

)
(x) =

{
E1(x) if E2(x) = ⊥
E2(x) otherwise

The environment obtained by resetting a variable x to ⊥ in an environment E
is described by the function reset(E, x).

The semantics of a value expression V is defined by the usual evaluation
function eval (E, V) extended for the probe operator:

eval(E, x) = E(x)
eval

(
E, f(V1, . . . , Vn)

)
= f

(
eval(E, V1), . . . , eval (E, Vn)

)
eval(E, C #) = true ⇐⇒ E(xc) = ready
eval(E, C #V) = true ⇐⇒ E(xc) = eval (E, V)

3.2 Behavioural Semantics for a Single Process

Our semantics associates to each process B̂i an Lts
〈
Si,Li,−→i, 〈Ei, B̂i〉

〉
, where

– The set of states Si contains pairs 〈E, B〉 of a process B and an environment
E on X ∗

i .
– The set of labels Li contains emissions, receptions, τ (representing assign-

ments to local variables), and a particular label
√

representing successful
termination.

– The transition relation “−→i” is defined below by SOS rules similar to those
used for BPAε (Basic Process Algebra with ε) in [2, chapter 3]; as for BPAε,

we write 〈E, B〉√ to mean 〈E, B〉
√
−→i 〈E, nil〉.

– The initial state is 〈Ei, B̂i〉, where the initial environment Ei assigns the
undefined value ⊥ to all variables of X ∗

i .

Rules for nil and skip. There are no rules for nil. The process skip always
terminates successfully.

〈E, skip〉√

Rules for Assignments. An assignment can always be executed and modifies
the environment by updating the value associated to the assigned variable:

〈
E, x:=V

〉 τ−→i

〈
E % {x → eval (E, V)}, skip

〉

294 G. Salaün and W. Serwe

Rules for Emissions. A passive emission is always possible. An active emis-
sion on a channel c involves two transitions: the first one assigns a value to xc

and the second one completes the communication by resetting xc.

passive(i, c)〈
E, c!V

〉 c!eval(E,V)−−−−−−−−→i

〈
E, skip

〉
active(i, c) eval(E, xc) = ⊥〈

E, c!V
〉 τ−→i

〈
E % {xc → eval(E, V)}, c!V

〉
active(i, c) eval(E, xc) �= ⊥〈

E, c!V
〉 c!eval(E,V)−−−−−−−−→i

〈
reset(E, xc), skip

〉
Rules for Receptions. These rules are dual of those for emissions.

passive(i, c)〈
E, c?x

〉 c?eval(E,xc)−−−−−−−−→i

〈
E % {x → eval(E, xc)}, skip

〉 (Recvp)

active(i, c) eval(E, xc) = ⊥〈
E, c?x

〉 τ−→i

〈
E % {xc → ready}, c?x

〉
active(i, c) eval (E, xc) �= ⊥ V ∈ type(c)〈
E, c?x

〉 c?V−−−→i

〈
reset(E, xc) % {x → V }, skip

〉 (Recva)

Contrary to rule (Recvp), which uses the value of xc as the received value,
rule (Recva) enumerates all possible values that might be received on channel c.

Rules for Sequential Composition. These rules are as usual.

〈E, B1〉 L−→i 〈E′, B′
1〉

〈E, B1;B2〉 L−→i 〈E′, B′
1;B2〉

〈E, B1〉
√ 〈E, B2〉 L−→i 〈E′, B′

2〉
〈E, B1;B2〉 L−→i 〈E′, B′

2〉

Rules for Collateral Composition. These rules are as usual.

〈E, B1〉 L−→i 〈E′, B′
1〉

〈E, B1,B2〉 L−→i 〈E′, B′
1,B2〉

〈E, B2〉 L−→i 〈E′, B′
2〉

〈E, B1,B2〉 L−→i 〈E′, B1,B′
2〉

〈E, B1〉
√ 〈E, B2〉

√

〈E, B1,B2〉
√

Rules for Guarded Commands. The rules for guarded commands express
that a branch whose guard is true can be selected. If the chosen branch ends with
break, the guarded command terminates when the branch terminates; if it ends
with loop the guarded command will be executed once more after executing the
branch.

(∃i) eval (E, Gi) = true Ti = break 〈E, Bi〉 L−→i 〈E′, B′
i〉〈

E, @[G1 ⇒ B1;T1 . . . Gn ⇒ Bn;Tn]
〉 L−→i

〈
E′, B′

i

〉

Translating Hardware Process Algebras into Standard Process Algebras 295

(∃i) eval(E, Gi) = true Ti = loop 〈E, Bi〉
L−→i 〈E′, B′

i〉〈
E, @[G1 ⇒ B1;T1 . . . Gn ⇒ Bn;Tn]

〉 L−→i〈
E′, B′

i; @[G1 ⇒ B1;T1 . . . Gn ⇒ Bn;Tn]
〉

3.3 Semantics for Communicating Processes

The semantics of a Chp description
〈
C, X , B̂1 ‖ · · · ‖ B̂n

〉
is defined

by the parallel composition of the Ltss
〈
Si,Li,−→i, 〈Ei, B̂i〉

〉
produced for

the individual processes B̂i as defined in Section 3.2. This yields a new Lts〈
S, L, −→, 〈E, B̂1, . . . , B̂n〉

〉
, where:

– The set of states S contains tuples 〈E, B1, . . . , Bn〉 of n processes B1, . . . ,
Bn and a global environment E on X ∗ =

⋃n
i=1 X ∗

i . E is the union of the
local environments Ei on X ∗

i of the processes B̂i. The sets X ∗
i are disjoint

for the sets Xi (local variables of B̂i), but for each binary channel c, the
variable xc occurs in X ∗

i and X ∗
j (i �= j); this is not a problem, since xc is

only modified by the process active for c.
– The set of labels L is the union of the sets of labels Li minus labels corre-

sponding to receptions on binary channels. We represent synchronised com-
munications (i.e. an emission and a reception) using the same symbol “!” as
for emissions (following the convention used in Cadp).

– The transition relation “−→” is defined by the three SOS rules below.
– The initial state is 〈E, B̂1, . . . , B̂n〉, with an empty initial environment E.

Let internal(i, L) be the predicate that holds iff L is internal or a communication
on a port (i.e. a unary channel open to the environment):

(∀i, L) internal(i, L) ⇐⇒ L = τ ∨
(
(∃c, V) (L = c!V ∨ L = c?V) ∧ port(i, c)

)
The first SOS rule describes the local — or internal — evolution of the i-

th process Bi independently of the others. It models either an assignment to a
variable, or the communication on a port c which is open to the environment
and does not need to be synchronised with another process Bj (i �= j).

(∃i) 〈E, Bi〉 L−→i 〈E′, B′
i〉 internal(i, L)〈

E, B1, . . . , Bi, . . . , Bn

〉 L−→
〈
E′, B1, . . . , B′

i, . . . , Bn

〉
The next rule describes the synchronisation between processes Bi and Bj

communicating on channel c, Bi being the emitter and Bj the receiver.

(∃i) 〈E, Bi〉 c!V−−−→i 〈E′, B′
i〉 (∃j) 〈E, Bj〉 c?V−−−→i 〈E′′, B′

j〉〈
E, B1, . . . , Bi, . . . , Bj, . . . , Bn

〉 c!V−−−→〈
reset(E′′, xc), B1, . . . , B

′
i, . . . , B

′
j , . . . , Bn

〉 (Com)

Note that i and j in rule (Com) are different and uniquely defined, since the
communication model is binary (one sender, one receiver for a given channel).

296 G. Salaün and W. Serwe

Note also that, if E′ and E differ in rule (Com), then the only possible modifi-
cation (resetting xc) is applied to E′′ in the right hand side of the conclusion of
rule (Com).

The rules presented so far are sufficient to define the semantics of (closed)
systems without passive ports, i.e. unary channels for which no process B̂i is
active. The following rule completes the semantics by modelling the environment
as an active process that communicates with each passive port c.

(∃i) passive(i, c) (∀j) ¬active(j, c) eval(E, xc) = ⊥ V ∈ type(xc)〈
E, B1, . . . , Bn

〉 τ−→
〈
E % {xc → V }, B1, . . . , Bn

〉 (Env)

This rule is similar to those employed in the definition of semantics for asyn-
chronous processes communicating via shared memory, as for instance concur-
rent constraint programming [5] or concurrent declarative programming [21, Ta-
ble 5.3, page 142].

Example 1. This example shows the necessity of rule (Env). Consider the fol-
lowing two processes B1 = @[c1 #1 ⇒ (c!1, c1?x); loop] and B2 = @[c2 #2 ⇒
(c!2, c2?x); loop] corresponding to the two branches of the arbiter of Sec-
tion 2.3. Here, c1 and c2 are passive ports open to the environment. Without
rule (Env), both B1 and B2 would be equivalent to the deadlock process nil.
However, while “B1 ‖ client-2” is equivalent to nil, “B2 ‖ client-2” is not (the
corresponding Lts has 8 states and 12 transitions). Rule (Env) solves this issue
by giving a different semantics to B1 and B2.

Example 2. Figure 1 gives the Lts generated for the arbiter of Section 2.3. To
keep the size of Figure 1 as small as possible, we minimised the Lts with respect
to strong bisimulation (merging states that differ only in the value of variable
x when x is no longer used). This is similar to the state reduction approach for
process algebra described in [10].

3.4 Comparison with the Existing Petri Net Translation

In this section, we compare our SOS semantics with the “implicit” semantics pro-
posed for Chp in [20] by a translation of Chp into Petri nets. [20] only handles
a subset of Chp that, compared to full Chp presented in Section 2, is restricted
in two ways: it allows only pure synchronisations (instead of value-passing com-
munications) and forbids ports open to the environment. By handling full Chp,
our semantics allows to describe circuits with inputs and outputs properly.

Translation of CHP to Petri Nets. Similar to our SOS semantics, [20]
defines the translation of a Chp description

〈
C, X , B̂1 ‖ · · · ‖ B̂n

〉
into Petri

nets in two successive steps:

– In a first step the Petri nets corresponding to the processes B̂i are con-
structed separately following the patterns sketched in [20]. Petri net places

Translating Hardware Process Algebras into Standard Process Algebras 297

c!2
c!2

τ τ

c1!1c2!2
τ

τ

τ

c2!2 τ

τ
τ

τ

τ

ττ

c!1

c!2c2!2
c2!2

c1!1

τ

c!1

τ τ τ
c!1

τ τ

c!1
c!1

c1!1

τ

τ

τ

τ

c!2
c!2

c1!1 c2!2

τ

c!2

ττ

c2!2

τ

τ

τ

τ

τ

c!1
c1!1

τ

τ

c1!1τ

τ
τ

τ

Fig. 1. Lts for the arbiter example

may be labelled with assignments, emissions, and receptions. Petri net tran-
sitions may be labelled with the guards of Chp guarded commands. To fire
a transition, its input places must contain a token and the guard (if any)
must be true.

– In a second step, the separate Petri nets are merged into one global Petri
net. To model synchronisation on channels, [20] gives two different trans-
lations, depending on the handshake protocol (2- or 4-phase) used for the
implementation. In both cases, channels are modelled by additional places
and transitions that encode the chosen handshake protocol. Notice that for
each channel c the places labelled “c!” and “c?” are kept separate, i.e. there
is no transition merging as in [11].

The generated Petri net is one-safe, i.e. in every reachable marking, each place
contains at most one token.

Example 3. Consider the Chp description
〈
{c1, c2}, {x}, client-1 ‖ client-2 ‖

arbiter
〉
, where channels c1 and c2 have an active emitter and a passive receiver,

where variable x is local to the arbiter, and where the three processes are defined
as follows:

client-1: @[true ⇒ c1!; loop]
client-2: @[true ⇒ c2!; loop]
arbiter: @[c1 #1 ⇒ x:=1; c1?; loop c2 #2 ⇒ x:=2; c2?; loop]

This example is an adaptation of the arbiter of Section 2.3 in order to meet
the restrictions of [20]. The corresponding Petri net for a 4-phase protocol is
(adapted from [20, Figure 11]) shown in Figure 2. Places are represented by
circles, and transitions by thick lines. Whenever a place is both an input and
an output place of some transition, we use a double-headed arrow (as for places
labelled c1req, c1gr, c2req, and c2gr). The Petri nets corresponding to the three

298 G. Salaün and W. Serwe

client 2arbiterclient 1

c2 #c1 #

c2?

x:=2

c2gr

c2req

c2s

c2R2 c2R1

c2

c2!

c1

c1gr

c1?

c1!

c1req

c1R1 c1R2

c1s

x:=1

Fig. 2. Petri net for the arbiter example

aq

1 2

q1 q2

1 2

3 443

a

becomes

Fig. 3. Duplication of Petri net places

processes are framed in dotted boxes. The places modelling the channels c1 and
c2 are framed in dashed boxes.

Relation Between SOS and Petri Net Semantics. In order to relate the
Petri nets proposed in [20] with the Ltss produced by our semantics, one needs
to generate the Ltss corresponding to the Petri nets. This is not immediate,
since the Petri nets of [20] have a different behaviour than ordinary Petri nets.
For instance, if two places with action (e.g. “c1!” and “c2!” in Figure 2) have
a token, then interleaved transitions have to be created for these actions. From
[20] and following discussions with the first author of [20], we conjecture that
these Ltss can be obtained by the following two steps.

– First, the Petri net model of [20] with actions attached to places needs to
be transformed into a more standard model where actions are attached to
transitions. As shown in Figure 3, each Petri net place q labelled with an
action a (i.e. emission, reception, or assignment) is replaced by two places
q1 and q2 and a new Petri net transition labelled with action a. Place q is
replaced by q1 (respectively q2) in the sets of output (respectively input)
places of all transitions. In the case a transition t has q both as an input and
an output place (i.e. t corresponds to a double-headed arrow), q is replaced
by q2 in the sets of input and output places of t.

Translating Hardware Process Algebras into Standard Process Algebras 299

– Then, we compute the Lts for the modified Petri net by applying the stan-
dard marking graph construction algorithm. We label the transitions of the
generated Lts with emissions and receptions labelling Petri net transitions.
If a Petri net transition is not labelled with an emission or a reception, the
corresponding Lts transition is labelled with τ .

We can now compare the LtsSOS obtained by our SOS semantics and LtsPN
obtained after translation of Chp into Petri nets, transformation, and marking
graph construction. Given that [20] does not deal with value-passing commu-
nications and open systems, this is only possible for closed systems with pure
synchronisations.

A first remark is that the places and transitions added to the Petri nets for the
communication channels introduce τ transitions in LtsPN that might not have a
counterpart in LtsSOS . Thus, LtsSOS and LtsPN are not strongly equivalent. A
second remark is that the sets of labels of LtsSOS and LtsPN might be different.
On the one hand, LtsPN might contain both, “c!” and “c?” as labels, since the
places labelled “c!” and “c?” are kept separate in the Petri nets of [20]. On the
other hand, for closed systems LtsSOS does not contain labels of the form “c?”.
Establishing an equivalence relation between LtsSOS and LtsPN would probably
require to rename into τ all labels of LtsPN corresponding to communications
by active processes and to replace all remaining “?” by “!”; we conjecture that
after these transformations, LtsSOS and LtsPN are equivalent with respect to
branching equivalence, but this remains to be proved.

4 Principles of a Translation from CHP to LOTOS

In order to check the correctness of asynchronous circuit designs (e.g. absence of
deadlocks), our approach is to translate Chp into Lotos so that existing tools
(namely, the Cadp verification toolbox [9]) can be applied. A tutorial of the ISO
standard Lotos [13] can be found in [3]. We highlight first the main features of
the translation of Chp into Lotos:

– Chp types (natural numbers, Booleans, bit vectors, etc.) are translated into
Lotos sorts (i.e. algebraic data types).

– Chp functions are translated into Lotos operations, the semantics of which
is defined using algebraic equations.

– A Chp channel c is translated into a Lotos gate with the same name c.
– A Chp variable x is translated into one or more Lotos variables (i.e. value

identifiers in the Lotos standard terminology) with the same name and the
same type as x. Several Lotos variables might be required since Lotos vari-
ables are single-assignment, whereas Chp variables are multiple-assignment.

– Sequential composition “;” in Chp is symmetric, whereas Lotos has two
different operators for sequential composition: an asymmetric action prefix
“;” and a symmetric sequential composition “>>”. Variables assigned on the
left hand side of a Chp “;” can be used on the right hand side, whereas
variables assigned on the left hand side of a Lotos “>>” must be explicitly

300 G. Salaün and W. Serwe

listed (in an accept clause) to be used in the right hand side. Furthermore,
“>>” creates an internal τ transition, contrary to the “;” operator of both
Chp and Lotos. There are two options when translating Chp to Lotos. A
simple approach is to use only “>>”. A better approach is to use the Lotos
“;” whenever possible, and “>>” only when needed. In this paper, we adopt
the second approach which generates better Lotos code at the expense of
a more involved translation.

– Chp has a neutral element (skip) for its sequential composition, whereas
Lotos lacks neutral elements both for “;” (which is asymmetric) and for
“>>” (which creates a τ transition).

– Chp has a loop operator, whereas Lotos does not; Chp loops have to be
translated into recursive processes in Lotos.

– Chp guards are either Boolean expressions or probes, whereas Lotos guards
are Boolean expressions only.

4.1 Principles of Translating a Single Process

The translation of a Chp process B̂i is described by the recursive function
c2l i(B, D, U, ∆) with four parameters: B is a Chp process to translate and D,
U , and ∆ are alphabetically ordered sets of variables necessary to compute the
variables to explicitly pass over Lotos sequential compositions “>>”. Intuitively,
D is the set of variables that have a defined value before execution of B, U is
the set of variables used after execution of B, and ∆ ⊆ D is an auxiliary set of
defined variables used to translate collateral compositions.

Data-flow Analysis. We introduce the following data-flow sets inspired from
[10, Section 3]. Let def (B) be the set of variables defined by process B:

def (nil) = def (skip) = def (c!V) = ∅ def (x:=V) = def (c?x) = {x}
def (B1;B2) = def (B1) ∪ def (B2) def (B1,B2) = def (B1) ∪ def (B2)
def (@[G1 ⇒ B1;T1 . . . Gn ⇒ Bn;Tn]) =

⋃n
i=1 def (Bi)

Let usev(V) be the set of variables used by value expression V :

usev(x) = {x} usev

(
f(V1, . . . , Vn)

)
=

⋃n
i=1 usev(Vi)

Let useg(G) be the set of variables used by guard G:

useg(V) = usev(V) useg(c #) = ∅ useg(c #V) = usev(V)

Let use(B) be the set of variables used by process B before they are defined:

use(nil) = use(skip) = use(c?x) = ∅ use(x:=V) = use(c!V) = usev(V)
use(B1;B2) = use(B1) ∪

(
use(B2) \ def (B1)

)
use(B1,B2) = use(B1) ∪ use(B2)
use(@[G1 ⇒ B1;T1 . . . Gn ⇒ Bn;Tn]) =

⋃n
i=1

(
useg(Gi) ∪ use(Bi)

)

Translating Hardware Process Algebras into Standard Process Algebras 301

Functionalities. The functionality of a Chp process B is given by the function
func(B, D, U), where D and U are two alphabetically ordered sets of variables
with the same intuition as for c2l i. A functionality is either noexit or exit(X),
X being a possibly empty alphabetically ordered set of variables.

func(nil, D, U)=noexit func(skip, D, U)= func(c!V, D, U)=exit(D ∩ U)
func(x:=V, D, U) = func(c?x, D, U) = exit

(
(D ∪ {x}) ∩ U

)
func(B1;B2, D, U) = func(B1,B2, D, U) =

if func(B1, D, U) = noexit ∨ func(B2, D, U) = noexit
then noexit else exit

(
(D ∪ def (B1) ∪ def (B2)) ∩ U

)
func(@[G1 ⇒ B1;T1 . . . Gn ⇒ Bn;Tn], D, U) =

if (∀i) func(Bi, D, U) = noexit ∨ Ti = loop
then noexit else exit

(
D ∪

⋃n
i=1 def (Bi)

)
∩ U

Using func, let inf (B) be the predicate that holds iff func(B, ∅, ∅) = noexit.

Preliminary Transformations. We first simplify the Chp processes by ap-
plying the following transformations successively:

– All occurrences of skip are removed wherever possible, based on the facts
that (1) skip is neutral element for sequential and collateral composition,
(2) any branch “G ⇒ skip; loop” of a guarded command can be removed,
and (3) any B̂i equal to skip can be removed from B̂1 ‖ · · · ‖ B̂n. After these
transformations, skip may occur only in branches “G ⇒ skip; break” of
guarded commands.

– The abstract syntax tree of each Chp process is reorganised so as to be
right bracketed (based on the associativity of Chp sequential composi-
tion). After transformation, each sequence “B1; B2; B3” is bracketed as
“B1; (B2;B3)”.

– If the rightmost process Bn of a maximal sequence “B1; . . .;Bn” (n ≥ 1) is
of the form “x:=V ”, “c!V ”, or “c?x” (and not followed by break or loop),
a final skip is added, leading to the sequence “B1; . . . ;Bn; skip”.

– For each process of the form “B1;B2” such that inf (B1), B2 will never be
executed and can be removed. Similarly, in each process of the form “B1,B2”
such that inf (B1) is the negation of inf (B2), we replace the process Bi

(i ∈ {1, 2}) such that inf (Bi) does not hold, by “Bi; nil”. Also, if ¬inf (B̂i),
then B̂i is replaced by “B̂i;nil”. These transformations are needed to obey
the static check of functionalities in Lotos.

After these transformations, all assignments and all communications (emissions
and receptions) are used in prefix-style, i.e. they occur only in processes of one
of the forms “x:=V ; B”, “c!V; B”, and “c?x; B”.

Translation of nil and skip. nil is translated into stop. After the pre-
liminary transformations skip occurs only in a guarded command as a branch
“G ⇒ skip; break” (this case is handled below with guarded commands) or at
the end of a sequence; in this case: c2l i(skip, D, U, ∆) = exit(ξ1, . . . , ξn),where
the ξi are defined as follows. Let {x1, . . . , xn} = D ∩ U . Then (∀i) ξi = xi if
xi ∈ ∆ or ξi = “any type(xi)” otherwise.

302 G. Salaün and W. Serwe

Translation of “x:=V ;B”. An assignment to a variable x of type S is trans-
lated (generating an internal transition as in our SOS semantics and [20]) into:

c2l i(“x:=V ;B”, D, U, ∆) = let x:S = V in τ; c2l i
(
B, D ∪ {x}, U, ∆ ∪ {x}

)
Translation of Guards. Boolean expressions “V ⇒” are directly translated
into “V ->”. To model the Chp probe operator for a channel c, we introduce an
additional synchronisation on the corresponding Lotos gate c. Probes are dis-
tinguished from actual communications by an additional offer “!Probe”, where
Probe is a special constant belonging to an enumerated type with a single value.
This translation is based on the value-matching feature of Lotos synchronisa-
tion, which ensures that two offers “!Probe” will synchronise.

c2lg(c #) = c!Probe c2lg(c #V) = c!Probe!V ,

Translation of “c!V ;B” and “c?x;B”. Translation of an emission or a
reception on a channel c of type S = type(c) depends whether process B̂i is
active or passive for c.

– The translation is straightforward if passive(i, c) holds:
c2l i(“c!V ;B”, D, U, ∆) = c!V ; c2l i(B, D, U, ∆)
c2l i(“c?x;B”, D, U, ∆) = c?x:S; c2l i(B, D ∪ {x}, U, ∆ ∪ {x})

– If active(i, c) holds, the translation is more involved because the active pro-
cess B̂i needs to allow its passive partner to probe channel c an arbitrary
number of times. After a synchronisation labelled with “!Probe”, B̂i can only
perform further synchronisations labelled with “!Probe”, until the commu-
nication is completed. Therefore, for every occurrence of an active emission
or an active reception on channel c in B̂i, we define an auxiliary Lotos pro-
cess probed c, the definition of which depends whether c is used for emission
or reception.
• An active emission “c!V ;B” translates as follows:

c2l i(“c!V ;B”, D, U, ∆) =
τ; probed c[c](V, x1, . . . , xn) >> accept x1:S1, . . . , xn:Sn in
c2l i(B, D′, U, ∆ ∩ D′)

where D′ = D∩(use(B)∪U), {x1, . . . , xn} = D′, and (∀i) Si = type(xi).
Process probed c is defined by:
process probed c[c](x:S, x1:S1, . . . , xn:Sn): exit(S1, . . . , Sn) :=

c!x; exit(x1, . . . , xn) [] c!Probe!x; probed c[c](x, x1, . . . , xn)
endproc

• An active reception “c?x;B” translates as follows:
c2l i(“c?x;B”, D, U, ∆) =

τ; probed c[c](x1, . . . , xn) >> accept x1:S1, . . . , xn:Sn in
c2l i(B, D′, U, ∆ ∩ D′)

where D′ = (D ∪ {x}) ∩ (use(B) ∪ U), {x1, . . . , xn} = D′, and (∀i)
Si = type(xi). Process probed c is defined by:

process probed c[c](x1:S1, . . . , xn:Sn): exit(S1, . . . , Sn) :=
c?x:S; exit(x1, . . . , xn) [] c!Probe; probed c[c](x1, . . . , xn)

endproc

Translating Hardware Process Algebras into Standard Process Algebras 303

If x ∈ {x1, . . . , xn} and x �∈ D, then x is removed from the parameters
of process probed c.

In both cases, the τ action preceding the call to probed c is created by the
assignment to xc (cf. Section 3) and models the asymmetry of Chp com-
munications, i.e. the fact that the active process chooses first. Notice that
redundant process definitions can be avoided by defining probed c only for
all relevant subsets of {x1, . . . , xn}; an approximation of these subsets can
be computed by data-flow analysis.
Contrary to our approach, the translation from Balsa into Csp sketched
in [23] uses pairs of actions with different names for representing (passive)
input enclosures; the active process is translated accordingly. Our approach
has the advantage that the translation of an active process is independent
of the fact that the passive process probes or not.

Translation of “B1;B2”. This translation rule applies only if B1 is a collateral
composition or a guarded command; all other cases have been handled before.

c2l i(“B1;B2”, D, U, ∆) =
c2l i(B1, ∆

′, U ′, ∆′) >> accept x1:S1, . . . , xn:Sn in c2l i(B2, D
′, U, ∆′)

where U ′=use(B2) ∪
(
U \ def (B2)

)
, D′=

(
D ∪ def (B1)

)
∩ U ′,

∆′ =
(
∆ ∪ def (B1)

)
∩ U ′, and {x1, . . . , xn}=∆′.

Translation of “B1,B2”. A collateral composition is translated as follows:
c2l i(“B1,B2”, D, U, ∆) = c2l i(B1, D

′, U, ∆1) ||| c2l i(B2, D
′, U, ∆2)

where D′ = D ∪ def (B1)∪ def (B2), ∆1 = D′ \ def (B2), and ∆2 = D′ \ def (B1).

Translation of Guarded Commands. Every guarded command B =
“@[G1⇒ B1;T1 . . . Gn⇒ Bn;Tn]” is translated into a call to a process PB

c2l i(@[G1 ⇒ B1;T1 . . . Gn ⇒ Bn;Tn], D, U, ∆) = PB[Ci](x1, . . . , xn)

where {x1, . . . , xn} = D. The auxiliary process PB is defined by:

process PB[Ci](x1:S1, . . . , xn:Sn): F
c2l g(G1) c2l i(B1, D, U, ∆) >> c2l t(T1, B1, D, U, ∆) [] · · ·[]
c2l g(Gn) c2l i(Bn, D, U, ∆) >> c2l t(Tn, Bn, D, U, ∆)

endproc

c2l t(loop, B, D, U, ∆) = accept x1:S1, . . . , xn:Sn in PB[Ci](x1, . . . , xn)
c2l t(break, B, D, U, ∆) =

accept x′
1:S1, . . . , x

′
m:Sm in c2l i

(
skip, (D ∪ def (B)) ∩ U, U, ∆

)
with {x′

1, . . . , x
′
m} =

(
D ∪ def (B)

)
∩ U . If inf (B) then F = noexit; otherwise

func(B, D, U) = exit({x′′
1 , . . . , x′′

k}) and F = exit(type(x′′
1), . . . , type(x′′

k)).
If a guarded command is the left hand side of a sequential composition

“@[. . .];B′”, we generate a second auxiliary process PB′ (for B′); each break
is translated into a call to PB′ and the functionality F is computed with respect
to B′. This avoids the introduction of a τ transition due to the exit (generated
by the translation of break). For each Bi such that inf (Bi), Ti is not translated
at all.

304 G. Salaün and W. Serwe

4.2 Principles of Translating Several Concurrent Processes

The parallel composition “‖” of Chp is translated into the Lotos operator
“|[· · ·]|”. In Chp, processes synchronise implicitly on channels with the same
name, whereas in Lotos the set of gates for synchronisation has to be stated
explicitly. Our translation relies on the fact that the channels have pairwise
distinct names. The translation of

〈
C, X , B̂1 ‖ · · · ‖ B̂n

〉
is defined recursively:

c2l(“B̂1 ‖ · · · ‖ B̂n”, C) = if n = 1 then c2l1(B̂1, ∅, ∅, ∅) else
c2l1(B̂1, ∅, ∅, ∅) |[chan(B̂1) ∩ C]| c2l

(
“B̂2 ‖ · · · ‖ B̂n”, C \ chan(B̂1)

)
where chan(B̂) stands for the set of binary channels occurring in process B̂.

4.3 Example of the Arbiter

The Lotos behaviour obtained as translation of the arbiter described in Sec-
tion 2.3 is defined by the following Lotos code fragment:

client -1[c1] |[c1]|
(
client -2[c2] |[c2]| arbiter[c, c1, c2]

)
where (∀i ∈ {1, 2})
process client -i[ci] : noexit :=
τ; probed ci[ci](i) >> client -i[ci]

endproc
process arbiter[c, c1, c2] : noexit :=(

c1!Probe!1; (τ; probed c[c](1) ||| c1?x:S; exit) >> arbiter[c, c1, c2]
)
[](

c2!Probe!2; (τ; probed c[c](2) ||| c2?x:S; exit) >> arbiter[c, c1, c2]
)

endproc

where the processes probed c(j) are defined as described in Section 4.1.
The Lts corresponding to this Lotos specification has 82 states and 212

transitions. The Lts obtained after hiding all labels with “!Probe” offers was
found (by the Bisimulator tool of Cadp) to be observationally (but not branch-
ing) equivalent to the one presented in Figure 1.

The reason why our translation does not preserve branching equivalence is
that a probe is translated into a τ transition that is not present in the SOS
semantics of Section 3. For instance, the Lts of Figure 1 contains a state (lower
middle of the graph) with two outgoing transitions labelled “c1!1” and “c2!2”,
but no such state exists in the Lts obtained after our Lotos translation, since
both branches of the “[]” choice in the arbiter start with a τ transition corre-
sponding to a probe.

4.4 Application: An Asynchronous Implementation of the DES

We developed a prototype Chp to Lotos translator, called chp2lotos, us-
ing the Syntax and Lotos NT compiler construction technologies [8]. So far,
chp2lotos consists of about 2,000 lines of Syntax, 6,000 lines of Lotos NT,
and 500 lines of C.

Translating Hardware Process Algebras into Standard Process Algebras 305

We have experimented chp2lotos on a case study tackled in [4], namely a
Chp description (1,600 lines) of an asynchronous implementation of the DES
(Data Encryption Standard) [18], from which chp2lotos produced about 1,600
lines of Lotos. Since this case study contains many concurrent processes, direct
generation of the Lts failed due to lack of memory (after 70 minutes, the gener-
ated Lts had more than 17 million states and 139 million transitions). However,
using the compositional verification techniques (decomposing, minimising, and
recomposing processes) [15] of the Cadp toolbox we generated an equivalent,
but smaller Lts (50,956 states and 228,136 transitions) in 8 minutes on a Sun-
Blade 100 (500 Mhz Ultra Sparc II processor, 1.5 GB of RAM). Compared to
[4]4, compositional techniques improves verification performance.

5 Concluding Remarks

In this paper, we gave an SOS semantics for the hardware process algebra Chp
with value-passing communication and ports open to the environment. Our se-
mantics clarifies the definition of the probe operator. We investigated the relation
of our semantics with existing semantics based on a translation of Chp into Petri
nets. Based on our semantics, we outlined a translation of Chp into Lotos, in
order to allow the reuse of existing formal verification tools, such as Cadp, for
the analysis and validation of asynchronous hardware. Finally, we reported on a
first experiment with a prototype translator.

As regards future work, it would be interesting to characterise precisely the
weak equivalence preserved by our translation from Chp into Lotos. We conjec-
ture that observational equivalence is preserved, and that if the Chp description
does not contain any probe, branching equivalence is also preserved.

Acknowledgements. We are grateful to E. Beigné, F. Bertrand, D. Borrione,
M. Renaudin, and P. Vivet for interesting discussions on Chp and Tast, in
particular on the semantics of the probe operator. We thank the anonymous
referees for helpful comments on the preliminary version of this paper. We are
indebted to H. Garavel for his significant contributions to the final version.

References

1. E. Beigné, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin. An Asynchronous
NOC Architecture Providing Low Latency Service and Its Multi-Level Design
Framework. In ASYNC’05, pp. 54–63. IEEE Computer Society, Mar. 2005.

2. J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process Algebra.
Elsevier, 2001.

4 [4] managed to generate an Lts directly (5.3 million states, 30 million transitions) in
65 minutes after replacing collateral compositions by sequential compositions in some
well-chosen processes of the Chp description (according to the second author of [4]).
When applying the same transformations on a Lotos specification, we generated an
equivalent Lts of the same size in 15 minutes.

306 G. Salaün and W. Serwe

3. T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Networks and ISDN Systems, 14(1):25–59, Jan. 1988.

4. D. Borrione, M. Boubekeur, L. Mounier, M. Renaudin, and A. Sirianni. Validation
of Asynchronous Circuit Specifications using IF/CADP. In VLSI-SoC 2003, pp.
86–91, Dec. 2003.

5. F. S. de Boer and C. Palamidessi. A Fully Abstract Model for Concurrent Con-
straint Programming. In CAAP’91, LNCS 493, pp. 296–319. Springer, Apr. 1991.

6. D. Edwards and A. Bardsley. Balsa: An Asynchronous Hardware Synthesis Lan-
guage. The Computer Journal, 45(1):12–18, 2002.

7. W. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer
Science. Springer, 2000.

8. H. Garavel, F. Lang, and R. Mateescu. Compiler Construction using LOTOS NT.
In CC 2002, LNCS 2304, pp. 9–13. Springer, Apr. 2002.

9. H. Garavel, F. Lang, and R. Mateescu. An Overview of Cadp 2001. EASST
Newsletter, 4:13–24, Aug. 2002.

10. H. Garavel and W. Serwe. State Space Reduction for Process Algebra Specifica-
tions. In AMAST’2004, LNCS 3116, pp. 164–180. Springer, July 2004.

11. H. Garavel and J. Sifakis. Compilation and Verification of LOTOS Specifications.
In International Symposium on Protocol Specification, Testing and Verification,
pages 379–394. IFIP, North-Holland, June 1990.

12. S. Hauck. Asynchronous Design Methodologies: An Overview. Proceedings of the
IEEE, 83(1):69–93, Jan. 1995.

13. ISO/IEC. Lotos — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, Geneva, 1989.

14. J. L. W. Kessels and A. M. G. Peeters. The Tangram Framework (Embedded
Tutorial): Asynchronous Circuits for Low Power. In ASP-DAC 2001, pp. 255–260.
ACM, 2001.

15. F. Lang. Compositional Verification using SVL Scripts. In TACAS’2002,
LNCS 2280, pp. 465–469. Springer, Apr. 2002.

16. A. J. Martin. The Probe: An Addition to Communication Primitives. Information
Processing Letters, 20(3):125–130, Apr. 1985.

17. A. J. Martin. Compiling Communicating Processes into Delay-Insensitive VLSI
Circuits. Distributed Computing, 1(4):226–234, 1986.

18. Data Encryption Standard (DES). Federal Information Processing Standards FIPS
PUB 46-3, National Institute of Standards and Technology, Oct. 25 1999.

19. M. Renaudin. TAST Compiler and TAST CHP Language, Version 0.6. TIMA
Laboratory, CIS Group, 2005.

20. M. Renaudin and A. Yakovlev. From Hardware Processes to Asynchronous Circuits
via Petri Nets: an Application to Arbiter Design. In TOBACO’04, June 2004.

21. W. Serwe. On Concurrent Functional-Logic Programming. Thèse de doctorat,
Institut National Polytechnique de Grenoble, Mar. 2002.

22. K. van Berkel. Handshake Circuits: An Asynchronous Architecture for VLSI Pro-
gramming. Cambridge University Press, 1993.

23. X. Wang, M. Kwiatkowska, G. Theodoropoulos, and Q. Zhang. Towards a Uni-
fying CSP approach for Hierarchical Verification of Asynchronous Hardware. In
AVoCS’04, ENTCS 128, pp. 231–246, 2004.

Formalising Interactive Voice Services with SDL

Kenneth J. Turner

Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK
kjt@cs.stir.ac.uk

Abstract. IVR (Interactive Voice Response) services are introduced with refer-
ence to VoiceXML (Voice eXtensible Markup Language). It is explained how
IVR services can benefit from an underlying formalism and rigorous analysis.
IVR services are modelled using CRESS (Chisel Representation Employing Sys-
tematic Specification) as a high-level graphical notation. Apart from being able to
describe services, CRESS also introduces the notion of features. The translation
of IVR descriptions into SDL is explored, along with how the generated SDL can
be formally analysed.

Keywords: Feature, IVR (Interactive Voice Response), SDL (Specification and
Description Language), Service, VoiceXML (Voice eXtensible Markup Language).

1 Introduction

1.1 Interactive Voice Response

The research reported here combines the power of two communications standards. IVR
(Interactive Voice Response [17]) allows an automated enquiry system to deal with nat-
ural speech. SDL (Specification and Description Language [5]) is a standardised formal
language for communications systems, although it has wider applicability. The primary
goal has been to integrate a formal method into the currently informal practice used in
industry. To enhance industrial attractiveness and usability, IVR services are described
graphically. However, the graphical notation then needs a formal underpinning. This is
achieved by denotational mapping that gives an SDL interpretation of each graphical
construct. The work has introduced formal specification and rigorous analysis into the
pragmatic and empirical development practices followed at present. It has thus been
possible to integrate a formal method with informal and graphical techniques.

As an example of IVR, an airline might have an automated telephone system for
booking flights or enquiring about arrivals. In comparison, touch-tone systems require
the user to go through a series of menu selections. This style of system is much more
inflexible and is often disliked by callers. It is therefore not surprising that IVR is a
major growth area. IVR supports a high degree of automation that benefits the service
provider through lower staff costs. IVR systems are also typically multi-lingual, sup-
porting speech synthesis and speech recognition in multiple languages.

A number of approaches have been used for IVR, but among these VoiceXML
(Voice eXtensible Markup Language [17]) has emerged as a major force. The exis-
tence of a standard increases compatibility among vendors. However the standard is
not formalised, and leaves a number of areas open to interpretation. A formalisation of
VoiceXML is helpful in making such aspects clear.

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 307–326, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

308 K.J. Turner

IVR applications are usually developed with a specialised development environ-
ment. For some IDEs, the application can be debugged in this environment prior to
deployment. For others, the application has to be debugged in the deployment environ-
ment. In either case, debugging is like program debugging: the code is run with sample
inputs and the outputs are checked. There is little automated support for validation.

IVR languages tend to encourage complex control flow and spaghetti code – the
kind of things that structured programming was developed to avoid. Even in a small
IVR application there can be very many paths to test, so it is easy to miss some error
cases. This paper uses the example of a hotel booking system. In just the basic applica-
tion of figure 1, there are 266,304 paths that might be tested! Allowing for significant
variations in the input data, the number of plausible test cases is very much larger. For-
malising IVR descriptions gives access to rigorous analysis techniques. For example, an
IVR application can be checked for general properties such as freedom from deadlock,
livelock, unreachable code and unspecified receptions. More specialised properties can
be investigated through the use of property checking or observer processes. Formal the-
ories of test generation can be used to create useful test suites automatically.

IDEs for IVR development differ significantly even if they generate code for the
same language. This means that the IVR source may then not be portable among differ-
ent vendors. The IDEs also tend to be close to their target language, i.e. to be ‘window
dressing’ on the underlying language. This means that the IVR application description
is accessible only to specialists. There are usually many stakeholders in IVR develop-
ment, including non-technical people such as managers, sales staff and customers. It
would be useful if the description of an IVR application were meaningful to such indi-
viduals. Ideally, the description would be a graphical representation since this seems to
find most favour in industry.

Although some IDEs can present an IVR application graphically, this is often struc-
tured in a way that closely reflects the supporting IVR language. This does not help to
give a high-level overview of what is often a complex control structure. The IDEs focus
on the details, hiding the ‘big picture’ of what is being described.

1.2 Developing Services with CRESS

CRESS (Chisel Representation Employing Systematic Specification) was developed for
defining and formalising services of all types. The inspiration for CRESS was the Chisel
notation developed by BellCore for telephony services. However, CRESS has grown
considerably beyond Chisel in its capabilities and range of applications.

CRESS describes services graphically using a simple notation. BellCore’s experi-
ence with Chisel was that this kind of notation can be understood by many stakeholders
in service development. In fact, CRESS offers simplifications over Chisel that make it
even more accessible. CRESS is relatively neutral with respect to the graphical notation.
It merely requires directed graphs with three kinds of nodes: behaviour, comment and
rule. As a result, any reasonable graph editor can be used. CRESS has its own editor
called CHIVE (CRESS Hierarchical Interactive Visual Editor), but can also be used with
the free graphical editors Diagram! and yEd.

CRESS is designed to be extensible for new application domains. The vocabulary
and concepts used in each domain are defined by plug-in modules. CRESS has been used

Formalising Interactive Voice Services with SDL 309

to define services from the IN (Intelligent Network [9]), Internet telephony [10, 12],
IVR (Interactive Voice Response [12, 13, 14]) and Web Services [15]. These papers have
focused on certain aspects such as the application domain or the target language. The
contribution of the present paper is an explanation of how SDL is used to support CRESS

descriptions of IVR services. The paper is complementary to [14], which discusses the
same application domain from a LOTOS perspective. Since SDL is more widely used
in industry than LOTOS, it is advantageous to underpin IVR services with SDL. From a
technical perspective, SDL supports different kinds of formal analysis from LOTOS. In
particular, analysis based on state space exploration is well supported by SDL tools.

CRESS diagrams are checked for syntactic and static semantic correctness. How-
ever to give the diagrams meaning, it is necessary to translate them into some target
language. CRESS is neutral with respect to the choice of language; almost any construc-
tive language should be suitable. It is, however, useful to classify the target languages
as formal ones or implementation ones. Among formal languages, CRESS currently
supports translation to SDL (Specification and Description Language [5]) and LOTOS

(Language Of Temporal Ordering Specification [3]). The formal languages are used to
give precise meaning to CRESS diagrams, and to support formally-based analysis and
validation. Among implementation languages, CRESS currently supports translation to
VoiceXML (for IVR) and BPEL (Business Process Execution Logic for web services).

1.3 Relationship to Other Work

There are many graphical notations in software engineering. However there are not
so many graphical notations for services. Even fewer graphical notations have a formal
interpretation. In data communications, SDL and MSCs (Message Sequence Charts [4])
are major examples. UCMs (Use Case Maps, e.g. [1]) have also been proven useful for
describing services. However all the foregoing approaches are lacking in one or more
of the following respects:

– they are too language-specific; a description reflects one language and cannot read-
ily be translated to another form (e.g. for implementation or other formal analysis)

– they are too general; there is no support for particular application domains (which
often require specialised functions and frameworks)

– they are too technical; descriptions can be understood only by those with spe-
cialised knowledge

– they are too informal; there may be no formal basis or only a limited one, and there
is no support for rigorous analysis techniques.

CRESS aims to fill this void. It offers a graphical notation that is accessible to non-
specialists, it provides a rigorous underpinning through formal languages, and it sup-
ports practical realisation through translation to implementation languages. It is impor-
tant to realise that the same CRESS diagrams are used for all three purposes.

VoiceXML is one of many XML-based languages. Much work has, of course, been
undertaken on formalising the data models and schemas implied by such languages.
However, the semantics of XML-based documents if of course application-specific. The
work of this paper can thus be seen as giving formal meaning to a particular class of
XML documents (using VoiceXML).

310 K.J. Turner

Surprisingly, IVR has attracted almost no attention from the formal methods com-
munity. Apart from some general work on formally modelling multimodal systems [6],
the author is not aware of any research comparable to the work reported here.

2 CRESS for IVR Services

2.1 IVR Services

The main behaviour of an IVR application (its service) is described by a CRESS root
diagram. Suppose that the imaginary Happy Hotel wishes to allow automated telephone
booking of rooms. Callers should be connected to an IVR application that takes their
arrival date, length of stay and type of room. A sample dialogue might be as follows:

System: Happy Hotel Automated Reservation. Say Help or Exit at any time. Please
book your room. What arrival date?

User: 12-25.
System: For how many nights?
User: 7
System: What kind of room?
User: Pardon?
System: Choose from Single, Double, Suite. What kind of room?
User: Single
System: You arrive 12-25 staying 7 nights in a Single. Do you wish to proceed?
User: Yes
System: Thank you for calling – goodbye.

The Booking diagram in figure 1 shows the core of the room booking application.
A diagram often contains a rule box (rounded rectangle). In IVR applications, a Uses
clause defines any variables used by the diagram. A rule box may also contain (param-
eterised) macro definitions, such as Welcome in this example. For other application do-
mains, a rule box may define how diagrams depend on each other, and how input/output
changes the state variables. Types apart from Value are possible in other domains.

A CRESS diagram contains behaviour nodes (ovals) that define actions, fields, inputs
and outputs. Nodes are numbered for reference. The CRESS tools check the syntax and
static semantics of diagrams, e.g. node numbers must not be repeated, and a node must
not be immediately followed by both input and output behaviours. An empty behaviour
node can be useful to connect other nodes (e.g. the one preceding nodes 4 and 9 in
figure 1). The plug-in domain vocabulary defines what behaviour nodes may contain.

IVR applications usually collect information in forms. These contain fields that the
user ‘fills in’ by speaking. Each field has an associated variable that holds the entered
value. Fields are usually processed in sequence (though mixed-mode initiative forms
allow flexibility as to order). An important characteristic of IVR is that once a field has
been completed, then by default it plays no further part. (This may be overridden by
design, e.g. a field variable can be cleared because a later choice invalidated it.) Two
kinds of field are used in this example, though a Menu field is also possible for selection
from a list of choices. The commonest kinds of field are:

Formalising Interactive Voice Services with SDL 311

1 Audio "Please
book your room"

2 Request arrival
"What arrival date?"

Date

11 Audio "Say
which date you

are arriving"

12 Reprompt

Catch "Help NoInput"

3 Request stay
"For how many nights?"

Number

9 Audio "Say one or
more nights"

10 Retry

Filled

Else

Filled

Uses Value arrival, stay, room

Welcome <- "Happy Hotel Automated Reservation"

5 Audio "You arrive
$arrival staying $stay

nights in a $room"

Catch "Help NoInput"

4 Option room
"What kind of room?"
"Single Double Suite"

6 Submit booking.jsp
"arrival stay room"

stay > 0 &&
IsInteger(stay)

7 Audio "Choose
from $enumerate"

8 Reprompt

Catch "Help NoInput"Filled

Fig. 1. CRESS Root Diagram for Hotel Room Booking Request

Option variable prompt options [condition] asks the user to speak input from a fixed
set of options. The field variable and the user prompt message are given. Selection
of the field may be made subject to an optional boolean condition. Figure 1 offers
the Single, Double and Suite options for the choice of room (node 4).

Request variable prompt grammar [condition] resembles Option, but the speech in-
put conforms to some grammar. In practice, IVR languages use many different
types of grammar – often some BNF variant to define the syntax of what users may
say. Speaker-independent speech recognition is very difficult, but IVR circumvents
this by giving specific guidance to the speech recogniser as to what to expect. It
is impracticable for CRESS to support the full variety of IVR grammar notations.
Instead, CRESS supports the same predefined grammars as VoiceXML: booleans,
currency amounts, dates, digit strings, numbers, phone numbers and times. These

312 K.J. Turner

are sufficient for many practical applications. Figure 1 makes use of the predefined
grammars Date (node 2) and Number (node 3). Like IVR, CRESS does not have a
grammar for natural numbers. The length of stay collected in node 3 is therefore
checked to be a positive integer (guard before nodes 4 and 9).

An IVR application such as figure 1 continues until a terminal node like node 6,
where it cycles back to the start. What is not obvious in IVR is that many loops are
implied. A Reprompt node or a Retry node implicitly loops back to the start as well.

In IVR, the actions may include:

Audio message speaks a message to the caller. The message may contain various kinds
of markup. Variable values can be interpolated into the message using the notation
$variable. As a special case, $enumerate means the current options that the user
may select. Other forms of markup are used to give the pronunciation of a word,
to say text in a particular way (e.g. as a phone number), or to give emphasis in the
speech. Strings (e.g. messages) use double quotes. If necessary, a substring may be
enclosed in single quotes.

Clear [variables] is used to clear the specified variables (making them undefined). If
no variables are named, then all field variables are cleared.

Reprompt requires the user to repeat speech input, usually because what the user said
was not understood.

Retry is like Reprompt, but clears the current field variable first. This action is sup-
ported by CRESS as a convenience for the case where user input is syntactically
correct but semantically wrong.

Submit URL variables sends information from the user to a server for processing. For
example, the user’s information might be stored in a database or may trigger a
further IVR application.

Behaviour nodes are linked by arcs whose traversal may be controlled by a guard.
Event guards are enabled asynchronously by the occurrence of some event, while ex-
pression guards are immediately evaluated. Guard types are domain-defined, with event
guards being distinguished by their names. Guards have the form:

expression is a boolean guard, with Else being used as the logical complement.
event [count] [condition] is an event guard. An optional prompt count and condition

may determine when the event guard applies. The predefined events are Can-
cel (user cancellation), Exit (user termination), Help (user information request),
NoInput (no user response), and NoMatch (invalid user response). In addition, a
program-defined event may be thrown by the application. This may be a simple
identifier such as booking, or may be a hierarchically constructed name such as
error.booking.room. In IVR, events are caught and handled at four levels: platform
(generic support), application, form and field. In fact, CRESS merges application
and form level into one (i.e. all fields are collected into a single form).

Catch events [count] [condition] is a composite event guard for a list of events.
Filled is an event guard meaning the user has filled in a field with a valid response.

Formalising Interactive Voice Services with SDL 313

2.2 IVR Features

Features in General. CRESS allows the root diagram to be modified by additional
diagrams. This follows telephony practice, where features are often used to extend the
basic behaviour of a phone call. The use of IVR features is a new possibility created
by CRESS. An approximate equivalent in VoiceXML is SubDialog, which behaves like
a procedure call. However sub-dialogues execute in a separate context, limiting their
applicability. They also have to be programmed explicitly into the application logic.

Experience from telephony shows that it is valuable to have additional features trig-
gered implicitly by conditions that arise in a call. Similarly, it is useful to to have trig-
gered features in IVR. Features encourage a more modular and reusable approach to
IVR development.

Features in CRESS. The example of figure 1 is obviously incomplete as there is no
way of identifying the caller. Although this could easily be included in the root diagram,
this is likely to be a requirement of several applications. A separate Contact feature is
therefore defined as shown in figure 2. The notation is very similar to that for a root
diagram.

2 Request contact
"What is your contact number?"

Phone

3 Audio "We will
contact you on phone

number $contact"

Filled

5 Audio "Please give a
phone number where
we can contact you"

6 Reprompt

Catch "Help NoInput NoMatch"

Uses Value contact 1- Submit U V

Finish

4 Submit "contact.jsp"
contact

Fig. 2. CRESS Feature Diagram to obtain a Contact Phone Number

CRESS supports spliced (cut-and-paste) features and template (macro) features.
Most features, like Contact, are of the template type. A template diagram resembles
a root diagram, but begins with a trigger. In this case, the template matches any node
that contains Submit with URL U and variables V. Parameters are pattern-matched to
the triggering node; although not used in this template, their actual values may be used
in the template definition.

314 K.J. Turner

The first template node also defines how it relates to the triggering node. Once a
template instance has been created with actual parameters, it may be prefixed (‘–’) or
appended (‘+’) to the triggering node. The effect of figure 2 is to instantiate the Contact
feature and place it immediately before Submit in node 6 of figure 1.

A template may contain at most one Finish node where behaviour continues with
the triggering diagram. The Contact feature captures the user phone number and stores
it on the server. The idea is that hotel staff can then phone the user to confirm the
reservation, and collect other information such as name and payment details.

Features and Event Handling. An IVR platform defines default handling for all the
predefined events. However this is likely be too general for most applications. It is there-
fore normal to define appropriate event handlers for each application. Although only a
room booking application is considered in this paper, the hotel is likely to require other
IVR applications. These might, for example, give information about room availability,
guest accounts and special events. It would be desirable if all these applications had a
common ‘feel’, such as the way they respond to incorrect or missing user input.

Introduction in figure 3 is a template feature defined to introduce the hotel applica-
tions. If a graph is cyclic, its start node may be ambiguous. In such a case, an explicit
Start node can be used. The designation 1+ Start as the trigger for Introduction means
it is placed after the implicit start node at the beginning of figure 1. That is, the intro-
duction feature is applied before the main booking behaviour.

7 Audio "Not
recognised - try again"

8 Reprompt

6 Audio "Sorry - too
many attempts"

5 Audio "Thank you
for calling - goodbye"

4 Audio "Sorry - an
internal error occurred"

NoMatch
Catch "NoInput

NoMatch" 3
Error

Exit

2 Audio Welcome

1+ Start

/ timeout <- 3

Finish

3 Audio "Say Help
or Exit at any time"

Fig. 3. CRESS Feature Diagram to introduce Happy Hotel Applications

Introduction may be used with the Booking application, but also with other hotel
applications. In fact, it is sufficiently general that it could be used with a wide range of
applications. For this reason, it uses the opening Welcome message defined as a macro
by the root diagram (figure 1 in this case).

The Introduction feature includes several application-specific event handlers. Those
for Error, Exit and NoMatch are likely to apply throughout the application. They are

Formalising Interactive Voice Services with SDL 315

defined at form level, i.e. they apply to all fields. Each field will probably define its own
handling of Help (which needs to be field-specific) and NoInput (which will probably
be field-specific). Notice that NoInput is then handled at two levels (per field, and in
the introduction), while NoMatch is handled in two places by the introduction.

It is undesirable to issue an indefinite number of prompts if the user repeatedly
gives the wrong input. An event handler may be qualified by a prompt count and a
condition. The first time a field prompt is issued, an internal prompt counter is set to 1;
it is incremented on each subsequent reprompt. If the user does not respond correctly,
the changed prompt count can select a different event handler. More explicit guidance
might be issued, for example. In figure 3, the call is disconnected after three prompts.

The event model that CRESS inherits from IVR is comprehensive but complex. Sup-
pose that some part of the booking system throws the event error.booking.room. It is first
checked whether a handler for this event has been defined by the current field. If not,
it is checked whether there is a handler for the more generic event error.booking (or
failing that, just error). If a relevant field handler exists, the current prompt count is
checked against that for the handler. If the handler has a condition, that too is evaluated.
A handler is invoked only if matches the (hierarchic) name, prompt count and condi-
tion. If no matching field handler is found, the same procedure is repeated at form level.
This allows forms to define generic event treatment on behalf of all their fields. If no
form handler matches, then (in CRESS) the generic platform handlers are tried. If there
is still no match, the application terminates with an error.

Apart from internal variables like the prompt count, an IVR environment defines
platform variables. The most important of these are bargein (whether the user can inter-
rupt a prompt or announcement) and timeout (which triggers a NoInput event). As part
of the common properties for hotel applications, figure 3 sets timeout to three seconds.

Besides Contact and Introduction, other features may be useful for hotel bookings.
The full hotel application suite is not discussed here. It includes features for collecting
a guest’s account number, asking for confirmation before proceeding, disallowing user
barge-in, collecting a PIN for payment information, and disabling input timeout. These
generic features are described for another IVR application in [14].

3 Translating IVR Diagrams to SDL

3.1 Specification Framework

CRESS diagrams for IVR can be translated into SDL for rigorous analysis and valida-
tion. The same diagrams are also translated into LOTOS for complementary analysis,
and into VoiceXML for deployment. The generated SDL is embedded in a specification
framework that provides general support for an IVR application. A framework is spe-
cific to a target language and an application domain, but is independent of any services
or features that might be deployed. Developing a framework is thus a one-off activity.

Figure 4 shows the specification framework for IVR with SDL. For readers not
familiar with SDL, [7] can be consulted as an introduction. SDL is based on communi-
cating Extended Finite State Machines with Abstract Data Types. SDL has a graphical
syntax, partly illustrated in figure 4: octagons are processes, arcs are signal routes, and
signal lists are given in square brackets. SDL also has a mostly obvious textual syntax,

316 K.J. Turner

used later in the paper. Each process State starts a transition with Input followed by
other actions. These include Output, Task (typically assignments to variables), Deci-
sion (conditional branch) and Join (unconditional branch to a label for part of a tran-
sition). A transition usually ends with NextState (change to a new state) but may also
Stop (process execution ceases). Free-standing code outside a transition may be pre-
fixed by Connection.

SDL does not, of course, deal with speech so all input/output is in the form of text
strings. The User channel is used for communication between the user and the IVR
system. The Serv channel is used to receive submissions to the (web) server.

Recogniser

Application

User

Serv

RecogUser
(RecogUser)

(UserRecog)

ApplRecog

(ApplRecog)

(RecogAppl)

UserAppl
(ApplUser)

ApplServ

(ApplServ)

Fig. 4. CRESS Specification Framework for SDL Support of IVR

The system has one instance of the following processes that interact with the user:

Application. This is entirely generated from the CRESS diagrams to define the applica-
tion logic. A clean separation is thus maintained between application-specific code
and generic ‘speech’ recognition functions.

Recogniser. The ‘speech’ recogniser is fixed in the framework. When the application
needs to fill in a field, it sends a request to the recogniser. This issues audio sig-
nals to the user as prompts. The recogniser parses user input according to the field
grammar, responding with the filled-in field value or a failure response.

The signal routes between the processes are as follows:

UserAppl. From application to user: Audio (‘spoken’ messages).
RecogUser. From user to recogniser: Voice (what the users ‘says’), Tone (touch-tone

signals), Event (special requests such as for help). From recogniser to user: Audio.
ApplRecog. From application to recogniser: Menu (prompt for user selection from a

menu), Option (prompt for user input from options), Request (prompt for user input
conforming to some grammar). From recogniser to application: Failed (invalid user
response), Filled (valid user response).

ApplServ. From application to server: Submit (web server submissions).

The specification framework defines a complex set of data types and associated op-
erators (1,700 lines of SDL). The need for such elaborate data types is not so surprising,

Formalising Interactive Voice Services with SDL 317

as the framework is broadly equivalent to an IVR platform. This has to parse user input
according to many different kinds of grammars. It is not feasible for CRESS to support
the entirety of JAVASCRIPT, which is part of VoiceXML. Instead, the SDL framework
supports the main JAVASCRIPT functions for logical, arithmetic and string operations.

3.2 Variables and Expressions

Unlike SDL, VoiceXML variables are dynamically typed: the same variable may hold
different kinds of values at different times. These values may be booleans, reals or
strings. In addition, null (void) and undefined values are permitted. It is therefore nec-
essary to translate VoiceXML variables into SDL variables with a variant type. Each
SDL Value carries along its type as well as its actual value. All the usual SDL operators
therefore have to be re-specified. For example, the ‘>’ operator checks it is given values
of type Real. The comparison is then performed on the actual values, and the result is
converted to a value of type Boolean. Expressions in decisions and in operator calls also
have to be converted into Value form.

Besides the application-defined variables, the translation includes the platform vari-
ables for barge-in and speech timeout. Internal variables are also defined for the current
event, field number, options list and prompt count.

3.3 Behaviour

CRESS has generic support for translating signal inputs and outputs. As explained in
[11], it can be extremely complex to translate CRESS inputs into SDL. Fortunately, the
IVR use of inputs is straightforward. CRESS outputs are readily translated as SDL signal
outputs. Each output is labelled with its diagram and node number so that another part
of the diagram may branch to it. In IVR, the outputs are mainly Audio and Submit.

The translation of actions is domain-specific. In IVR, the actions predominate but
have a simple translation. Clear gives variables undefined values. Reprompt branches
to the first field. Retry is similar, but first assigns the current field variable an undefined
value. It follows that the CRESS compiler must keep track of fields during translation.

A field first checks if its field variable has already been defined. If it is defined, the
rules of IVR require the field to be ignored (i.e. to continue with the next field). If it is
not defined, the prompt count is incremented and a Menu, Option or Request signal is
sent to the recogniser. It is then necessary to wait for a Filled or Failed signal, as dictated
by the user reaction. A Filled response conveys the input value for a field variable. A
Failed response carries an error event (e.g. no input). In both cases, the response is sent
to an event dispatcher generated for the application.

3.4 Guards

Guards in General. Expression guards simply map onto SDL decisions, with minor
conversions to the operator and functions names used in SDL. The only small compli-
cation is that expression guards of type Value have to be converted into SDL booleans.

Event guards are, however, extremely difficult to translate. The behaviour following
an event guard is translated as the start of an SDL connection (isolated piece of labelled

318 K.J. Turner

code). If the corresponding event occurs, the event dispatcher branches to this label.
This means the SDL is broken up into sections of code as dictated by the presence of
event guards. Although the SDL control flow is then rather fragmented, it faithfully
reflects the IVR logic.

The IVR event model was explained in section 2.2. A key problem is that IVR
events are handled dynamically, whereas SDL requires a static definition of event han-
dlers. The name of a program-defined event may in fact be constructed during execu-
tion. Fortunately the hierarchy of event handlers can be determined statically during
translation. The CRESS compiler builds a table of the event handlers that apply at each
level: platform, application/form and field. At each level, a handler is identified by its
event name, prompt count (if any) and condition (if any).

An event may be explicitly thrown by the application, or may occur implicitly as a
result of recognition. Event dispatcher code is generated by the CRESS compiler. The
dispatcher uses the current field number (field), event name (event) and prompt count
(prompt) to branch to the currently applicable handler.

The Event Dispatcher. As an example of the approach, figure 5 shows part of the
SDL generated for the hotel booking system in section 2. The event dispatcher has
Event.0 as its entry point; the application branches to this label when an event occurs.
Figure 5 deals with events in the scope of the contact field in figure 2 node 2. This field
is numbered 5 within the full hotel application. The code has also been abbreviated
by omitting uninteresting False branches and the ends of decisions. Comparison with
figures 2 and 3 should show how the event dispatcher has been derived.

As it happens, all the events here are predefined ones. However program-defined
event names (strings) are also possible. If an event matches a handler, the dispatcher
branches to the given label. Platform event handlers are named Event.1, Event.2, etc.
Form and field event handlers are labelled with the corresponding diagram name and
node number. Since Introduction and Contact are defined by feature templates, they
may have several instances. Their diagrams are therefore qualified by the instance num-
ber (Introduction.1 and Contact.1).

To accommodate the event hierarchy, more specific handlers are checked first. Here,
checks for prompt count 3 (or more) appear before other checks for the same event.
If program-defined events were in use, the more specific ones would be checked first
(e.g. error.booking.room before error.booking). If no handler matches, an error event is
caused (translated as Err since Error is an SDL keyword).

The platform event handlers are generated by the translation. As examples, Event.1
(Cancel) restarts from the first field, and Event.2 (Error) terminates the application:

Connection Event.1: /* start platform handler for Cancel */
Join BOOKING.2; /* restart from first field */

Connection Event.2: /* start platform handler for Error */
Output Audio(′There was an internal error′); /* Error audio */
Stop; /* end of behaviour */

Formalising Interactive Voice Services with SDL 319

Connection Event.0: /* start event dispatcher */
Decision field; /* check field */
... /* fields 0 to 4 */
(5): /* field Contact.2? */
Decision Match(event,Cancel); /* Cancel? */

(True): Join Event.1; /* to Event 1 */
Decision Match(event,Err); /* Error? */

(True): Join Introduction.1.4; /* to Introduction.4 */
Decision Match(event,Exit); /* Exit? */

(True): Join Introduction.1.5; /* to Introduction.5 */
Decision Match(event,Filled); /* Filled? */

(True): Join Contact.1.3; /* to Contact.3 */
Decision Match(event,Help); /* Help? */

(True): Join Contact.1.5; /* to Contact.5 */
Decision Match(event,NoInput) And prompt >= 3; /* NoInput prompt 3? */

(True): Join Introduction.1.6; /* to Introduction.6 */
Decision Match(event,NoInput); /* NoInput? */

(True): Join Contact.1.5; /* to Contact.5 */
Decision Match(event,NoMatch) And prompt >= 3; /* NoMatch prompt 3? */

(True): Join Introduction.1.6; /* to Introduction.6 */
Decision Match(event,NoMatch); /* NoMatch? */

(True): Join Contact.1.5; /* to Contact.5 */
(False): /* no event match */
Task event := Err; /* set error event */
Join Event.0; /* dispatch event */

Fig. 5. Extract of Event Dispatcher Code

3.5 Sample Translation to SDL

It was decided to translate CRESS diagrams into SDL 92 and not some later version.
This is because tool support for SDL 96 onwards is often incomplete. By choosing
SDL 92, CRESS can be used on the maximum number of systems.

The SDL specification equivalent to a CRESS description is substantially larger. For
example, the complete hotel booking application consists of seven CRESS diagrams
spanning three pages in total. These are automatically translated into 2,900 lines of SDL
(including the 1,700 lines which are fixed in the specification framework). CRESS is
thus a compact notation, as well as being reasonably comprehensible to non-specialists.

As a representative sample of the SDL generated from IVR diagrams, the following
code shows how the Contact feature in figure 2 is translated. What follows is the literal
output of the CRESS compiler. As will be seen, neatly laid out code is produced. Exten-
sive comments are also generated to link the SDL back to the original diagrams. This is
important since the code is analysed in SDL terms. If there are design errors, it must be
easy to relate these to the original diagrams.

The Request field of figure 2 node 2 checks if the contact variable is defined. As this
is template instance 1, its diagram is labelled Contact.1 and its field variable is named
contact.1. If the contact field has already been filled in, execution continues with the
next field (i.e. the first instance of the Confirm feature). Otherwise the options list is

320 K.J. Turner

emptied (this is not an Option field) and the prompt count is incremented. A Request
signal is sent to the recogniser with the prompt string and the Phone grammar.

Contact.1.2: /* Contact.1 request 2 */
Decision contact.1 /= Undefined; /* check field */
(True): /* ignore field? */
Join Confirm.1.2; /* to Confirm.1 field 2 */

(False): /* enter field */
Task options := ′′, prompt := prompt + 1; /* local variable update */
Output Request(′What is your contact number?′,Phone); /* request field */
NextState Contact.1.2A; /* for recognition input */

EndDecision; /* end check field */

The feature now waits in state Contact.1.2A for the recogniser answer. A Filled re-
sponse will set the field variable contact.1. The field number and event type are set prior
to calling the event dispatcher; as shown in figure 5, this will branch to Contact.1.3. The
prompt count is also reset, ready for the next field. If the recogniser gives a Failed re-
sponse, this is also passed to the event dispatcher for action.

State Contact.1.2A; /* Contact.1 field 2 */
Input Filled(contact.1); /* filled event */

Task field := 5, event := Filled, prompt := 0; /* set up event */
Join Event.0; /* dispatch event */

Input Failed(event); /* failed event */
Task field := 5; /* set up event */
Join Event.0; /* dispatch event */

A Filled response leads to audio confirmation for the user. The field variable con-
tact.1 is converted by the String operator and appended to the rest of the message. The
contact phone number is also submitted to the server as a string. Since a list of variable
values is sent, MkString converts the phone number to a one-item list. The application
then continues with other parts of its logic.

Connection Contact.1.3: /* Contact.1 output 3 */
Output Audio(′We will contact you on phone number ′ // String(contact.1));

/* Contact.1 audio */
Contact.1.4:

Output Submit(′contact.jsp′,MkString(String(contact.1))); /* Contact.1 submit 4 */

If instead the recogniser gives a Failed response, the event dispatcher will analyse
the event. As shown in figure 5, a Help, NoInput or NoMatch event will ordinarily
cause a branch to Contact.1.5. Only after three prompts will the application/form han-
dler for NoInput or NoMatch be invoked. For the initial attempts at input, the user is
given an explanatory message and execution resumes from the first field. Since previous
fields should have been defined by this point, the effect is to re-enter Contact.1.2 and
request a contact number again.

Connection Contact.1.5: /* Contact.1 output 5 */
Output Audio(′Please give a phone number where we can contact you′);

/* Contact.1 audio */
Contact.1.6:

Join BOOKING.2; /* Contact.1 reprompt 6 */

Formalising Interactive Voice Services with SDL 321

4 Validating the SDL Translation of IVR

4.1 Validation Cost

The translation of CRESS diagrams into SDL is fully automatic. The additional cost of
validation is therefore defining what must be validated and performing this. As will be
seen, desirable properties and use-case scenarios can be formulated compactly. Valida-
tion times are measured in seconds or minutes. The main cost of rigorous validation
is thus identifying what must be checked. This, of course, requires human insight and
effort, but is required anyway for any kind of testing. In fact, formalising desirable prop-
erties and behaviours is beneficial as it clarifies thinking about the system and what it
must do. The scenarios used for validating CRESS also apply to testing the actual im-
plementation. The costs of performing rigorous validation thus do not add much to the
overall testing effort. And of course it is beneficial to find problems early before com-
mitting to an implementation.

Developers probably find operational thinking easier, so validation with use case
scenarios is probably more natural. In fact, modern development practices often expect
use case scenarios to be defined early on. It is reasonably straightforward to translate
these into the form needed for validating SDL (see section 4.3). Defining abstract prop-
erties to be model-checked is more difficult, but nonetheless desirable in its own right.

The SDL validator used in this work supports several features to make validation
practical. In particular, validation is viable even for large or infinite state spaces. For
example, the validator can be instructed to treat certain classes of states as equivalent
by coalescing certain values of state variables. Scenarios, being finite and concrete, can
also be validated against specifications with infinite states.

4.2 Property-Based Validation

Validation in General. The benefit of translating IVR to SDL is that rigorous analysis
can be performed. Simulation can, of course, be used to exercise the resulting specifica-
tion. However as explained in section 1.1, the possible paths through an IVR application
are usually too numerous for exhaustive evaluation. As a result, manual simulation is
practical for only the main paths.

Automated validation is therefore desirable. However the sheer number of states
makes this time-consuming or impracticable. In addition, the state variables usually
take an infinite number of values. The validation should combine such variations into a
number of equivalence classes. For example, the SDL validator can be told to treat as
one any states where the prompt count exceeds 3. Another possible simplification is to
omit certain state variables from the state if they are not significant. The current list of
options, for example, might be unimportant. However if the options list is interpolated
into user messages (with $enumerate), then this becomes significant.

The Telelogic TAU SDL tool suite [8] eases validation. Nonetheless, it requires
an environment to supply suitable input values. A range of correct and incorrect user
responses must be provided. For example in response to the prompt ‘For how many
nights?’, the validator can be told to answer: 3, 1, 0, -1, 3.1, Cancel, Help or Exit.

322 K.J. Turner

The TAU validator also allows problems to be checked and reported using assertions.
As this requires a descent into C, it is a less desirable approach and has not been used
in the work reported here.

Rule Checking. SDL specifications of IVR are validated by checking the state space
for certain properties. This is equivalent to model-checking. The TAU validator allows
user-defined rules to be checked. Look again at the booking service in figure 1. Can this
loop indefinitely? The most common cause of this in IVR is not setting a bound on the
number of reprompts. The following user-defined rule can be validated:

exists R:Recogniser | R−>prompt > 3;
i.e. is there a state (exists) of the recogniser process R in which the internal prompt
count (R−>prompt) exceeds 3? Running the validator with this rule shows that it can.
The validator exhibits a trace with this property: the prompt for arrival date in figure 1
node 2 can be repeated indefinitely. This problem disappears when the Introduction
feature of figure 3 is added to the base service. However the complex event model for
IVR, especially its hierarchic nature, makes it difficult to be sure that no such ‘holes’
have been left in the specification. Formal validation confirms this.

The Contact feature of figure 2 should always announce a definite value for the
contact phone number. However, an error in the application logic might fail to define
this value. This is checked with the following validator rule:

siall S:Audio | S−>1 != ′We will contact you on phone number undefined′;
i.e. do all signal instances (siall) for Audio avoid a first parameter (S −> 1) with an un-
defined phone number? As would be hoped, the validator confirms this cannot happen.

An IVR application should not cause any Error events (Err in SDL). The following
validator rule checks for this:

siexists S:Failed | S−>1 = Err;
i.e. is there a signal instance (siexists) for signal Failed whose first parameter (S−>1)
is Err? This should happen only if the application explicitly throws an Error event, e.g.
due to some internal inconsistency that should not occur. Running the validator on the
hotel booking example shows that this situation cannot arise.

Observer Processes. TAU also allows properties to be checked with observer pro-
cesses. These allow very similar properties to be validated as user-defined rules. Slightly
different checks are possible, e.g. for process termination. When it has finished handling
one caller, an IVR application should cycle back to the beginning for the next caller. As
an example of an observer process, the following monitors an IVR application to see if
it ever stops:

Start; /* start observer */
Task A := GetPId(′Application′ ,1); /* get process id for application instance 1 */
NextState Ready; /* monitor system transitions */
State Ready; /* wait for next transition */

Provided Terminated(A); Priority 1; /* application has terminated? */
Call Report(′Application Died′); /* report termination */
Stop; /* finish observer */

Provided True; Priority 2; /* otherwise */
NextState −; /* continue */

Formalising Interactive Voice Services with SDL 323

If the TAU toolset is not being used, observer processes can still be defined explicitly
to check system properties. However these cannot then benefit from the special support
given by TAU. It is instead necessary to modify the system so that the observer processes
can receive copies of the signals being sent and received. In fact, this approach allows
monitoring of more complex situations than the isolated states and signals checked by
the TAU validator. For example, section 2.2 mentions a confirmation feature for the hotel
booking system. If the user decides not to proceed with a booking, the details should not
be submitted to the server. An observer process can be defined to check the following
situation: if the user does not agree to proceed, a Submit signal must not follow without
an intervening request for new information.

4.3 Scenario-Based Validation

As an alternative to property checking, services/features can be characterised by use-
case scenarios. These should capture the essential variations in how the service/feature
ought to behave. Scenario-based testing can be performed using MSCs (Message Se-
quence Charts [4]). However it is convenient to have a language-neutral notation for
defining scenarios. The approach described in this section is independent of the specifi-
cation language (e.g. SDL) and the application domain (e.g. IVR). However, it dovetails
neatly with the CRESS approach to service description.

This is the role of MUSTARD (Multiple-Use Scenario Test And Refusal Descrip-
tion) – the culinary complement to CRESS. As well as defining what scenarios must
allow, MUSTARD allows also scenarios to define what must not be permitted. These
refusal tests ensure that a specification is not too loose in what lets happen. For use
with SDL, the MUSTARD scenarios are translated into MSCs. For space reasons, only a
few short examples can be given here of MUSTARD. See [16] for an explanation of the
approach. MUSTARD for validating LOTOS specifications is illustrated in [14].

The following scenario checks the booking service of figure 1. The environment
may send signals to the IVR system or may read signals from it. These primitive actions
are grouped by combinators into more complex scenarios. In the following, succeeds
reports a pass verdict if the sequence of actions is respected by the system:

test(Booking, % booking scenario
succeed(% successful booking

read(Audio,Happy Hotel Reservations), % get welcome message
read(Audio,Say Help or Exit at any time), % get help message
read(Audio,Please book your room), % get booking message
read(Audio,What arrival date?), % get date prompt
send(Voice,20041031), % select 31st Oct 2004
read(Audio,For how many nights?), % get nights prompt
send(Voice,14), % select 14 nights
read(Audio,What kind of room?), % get room prompt
send(Voice,Double), % select double room
read(Audio,You arrive 20041031 staying 14 nights in a Double))) % get confirm

The Booking scenario defines a complete trace of the system behaviour. However, it
is often desirable to focus on just the key behaviour. With initial capitals, the Send and
Read actions absorb (i.e. allow but ignore) intervening system output.

324 K.J. Turner

As an example of a refusal test, the following checks that booking details are not
sent to the server if the user decides not to confirm the booking. A refusal test is defined
with refuses. This defines the initial behaviour steps in the scenario. The last behaviour
step (which may be composite) must not occur. In the following example, the user
books a room and then declines to proceed. The final step (recording the booking on
the server) must not occur. If it does, the system is incorrect and the scenario fails. If
the booking is not sent to the server, the system is correct and the scenario passes.

test(Confirm, % confirmation scenario
refuse(% refusal sequence

Send(Voice,0521), % select 21st May
Send(Voice,1), % select 1 night
Send(Voice,Suite), % select a suite
Read(Audio,Do you wish to proceed?), % get confirm prompt
Send(Voice,No), % disagree
Read(Server,booking.jsp,0521,1,Suite))) % get server request (must not happen)

MUSTARD has other capabilities for defining flexible scenarios, e.g. alternative or
parallel behaviour. Scenarios may also depend on the presence or absence of certain
features. MUSTARD scenarios are automatically validated against IVR specifications
generated by CRESS. In fact, a double benefit is obtained from the scenarios. When
the implementation is deployed, the same scenarios can be used to validate the actual
system.

Although MUSTARD is used to validate scenarios in isolation, it is particularly use-
ful for investigating interactions where a combination of independently designed fea-
tures interfere with each other. Feature interaction is a well-studied topic in telephony
[2]. An insight is given by [14] into how feature interactions can arise in IVR.

When MUSTARD validates a specification, it should yield pass verdicts for all fea-
tures. If a scenario fails, MUSTARD exhibits traces leading up to the failure point. This
allows the specifier to investigate the problem, e.g. using simulation. The failure traces
are re-presented in MUSTARD form, irrespective of the validation language or tool. This
is essential since the aim of CRESS and MUSTARD is to hide the underlying formalism
from the tool user; a user of CRESS need not be familiar with formal methods.

5 Conclusion

An introduction and examples have been given to IVR services (Interactive Voice Re-
sponse). Given the complex control flow and pragmatic nature of IVR, it has been ar-
gued that it is beneficial to have formal support using SDL (the standardised Specifica-
tion and Description Language). It has been seen how IVR services can be described us-
ing CRESS (Chisel Representation Employing Systematic Specification). An overview
has been presented of how these graphical descriptions are translated into SDL. For
rigorous analysis of the generated specifications, validation of properties and scenarios
has been discussed.

Using CRESS and SDL, it has been possible to support a significant portion of IVR
services. The coverage is not complete, however, because IVR standards like Voice-
XML are extremely large. For example, they include voice grammars, JAVASCRIPT

Formalising Interactive Voice Services with SDL 325

and interfacing to web servers. Nonetheless, CRESS allows the key functionality of
IVR applications to be captured. It has been argued that the graphical representation of
IVR services is more accessible than VoiceXML. This opens up the description of IVR
applications to a wider audience.

The major benefits of integrating SDL with IVR have been formalisation, rigorous
analysis and validation of IVR services. In addition, insight has been gained into loosely
specified aspects of the VoiceXML standard. In contrast, the pragmatic methods used
currently in industry have to rely on expensive manual testing. The same CRESS dia-
grams are translated into SDL for formal analysis, and also into VoiceXML for real-life
deployment. CRESS thus gains as both a specification aid and an implementation aid.
The work has shown how to integrate an accessible notation with a formal underpinning
into industrial practice.

[14] describes how IVR services were modelled and analysed using LOTOS (the
standardised Language Of Temporal Ordering Specification). Superficially, LOTOS and
SDL are similar in being constructive specification languages; however, they are very
different in their details. LOTOS focuses on behaviour expressions that describe how
a system evolves; SDL focuses on system states and transitions between these. LO-
TOS data operations are defined equationally, while SDL data operators are defined
imperatively. In practice, the difference between these approaches is not so great. The
same MUSTARD scenarios are used with both languages. CRESS generates LOTOS and
SDL specifications of comparable size. The only significant difference between the ap-
proaches is in tool support. LOTOS tools are the result of research projects and are free;
SDL tools are commercial. In practice, tools for both languages have been found to be
suitable for rigorous analysis of different types.

CRESS has now been demonstrated in four application domains: Intelligent Net-
works, Internet Telephony, Interactive Voice Response and Web Services. It has shown
itself to be adaptable and expressive for a variety of types of services. It has been possi-
ble to use CRESS on a wide range of features and to validate their behaviour in isolation
and in combination.

Acknowledgements

Telelogic kindly provided an academic licence for the TAU toolset used in this work.
The author also thanks Nuance Corporation for an academic licence to use Nuance
V-Builder TM in the development of IVR applications.

References

1. D. Amyot, L. Charfi, N. Gorse, T. Gray, L. M. S. Logrippo, J. Sincennes, B. Stepien, and
T. Ware. Feature description and feature interaction analysis with use case maps and LOTOS.
In M. H. Calder and E. H. Magill, editors, Proc. 6th. Feature Interactions in Telecommuni-
cations and Software Systems, pages 274–289. IOS Press, Amsterdam, Netherlands, May
2000.

2. E. J. Cameron, N. D. Griffeth, Y.-J. Lin, M. E. Nilson, W. K. Schnure, and H. Velthuijsen. A
feature-interaction benchmark for IN and beyond. IEEE Communications Magazine, pages
64–69, Mar. 1993.

326 K.J. Turner

3. ISO/IEC. Information Processing Systems – Open Systems Interconnection – LOTOS – A
Formal Description Technique based on the Temporal Ordering of Observational Behaviour.
ISO/IEC 8807. International Organization for Standardization, Geneva, Switzerland, 1989.

4. ITU. Message Sequence Chart (MSC). ITU-T Z.120. International Telecommunications
Union, Geneva, Switzerland, 2000.

5. ITU. Specification and Description Language. ITU-T Z.100. International Telecommuni-
cations Union, Geneva, Switzerland, 2000.

6. J. A. Larson. Standard languages for developing multimodal applications.
http://www.larson-tech.com/Writings/multimodal.pdf , Mar. 2005.

7. A. Sarma. Introduction to SDL-92. Computer Networks, 28(12):1603–1615, June 1996.
8. Telelogic. TAU 3.5 manuals, Aug. 2005.
9. K. J. Turner. Formalising the CHISEL feature notation. In M. H. Calder and E. H. Magill,

editors, Proc. 6th. Feature Interactions in Telecommunications and Software Systems, pages
241–256. IOS Press, Amsterdam, Netherlands, May 2000.

10. K. J. Turner. Modelling SIP services using CRESS. In D. A. Peled and M. Y. Vardi, editors,
Proc. Formal Techniques for Networked and Distributed Systems (FORTE XV), number 2529
in Lecture Notes in Computer Science, pages 162–177. Springer, Berlin, Germany, Nov.
2002.

11. K. J. Turner. Formalising graphical service descriptions using SDL. In R. Reed and J. Reed,
editors, SDL 2003, number 2708 in Lecture Notes in Computer Science, pages 183–202.
Springer, Berlin, Germany, July 2003.

12. K. J. Turner. Representing new voice services and their features. In D. Amyot and L. Lo-
grippo, editors, Proc. 7th. Feature Interactions in Telecommunications and Software Systems,
pages 123–140. IOS Press, Amsterdam, Netherlands, June 2003.

13. K. J. Turner. Specifying and realising interactive voice services. In H. König, M. Heiner, and
A. Wolisz, editors, Proc. Formal Techniques for Networked and Distributed Systems (FORTE
XVI), number 2767 in Lecture Notes in Computer Science, pages 15–30. Springer, Berlin,
Germany, Sept. 2003.

14. K. J. Turner. Analysing interactive voice services. Computer Networks, 45(5):665–685, Aug.
2004.

15. K. J. Turner. Formalising web services. In F. Wang, editor, Proc. Formal Techniques for
Networked and Distributed Systems (FORTE XVIII). Springer, Berlin, Germany, June 2005.
in press.

16. K. J. Turner. Validating feature-based specifications. Software Practice and Experience, May
2005. In press.

17. VoiceXML Forum. Voice eXtensible Markup Language. VoiceXML Version 2.0. VoiceXML
Forum, Jan. 2003.

A Fixpoint Semantics of Event Systems With
and Without Fairness Assumptions

Héctor Rúız Barradas1,2 and Didier Bert2

1 Universidad Autónoma Metropolitana Azcapotzalco, México D. F., México
hrb@correo.azc.uam.mx, Hector.Ruiz@imag.fr

2 Laboratoire Logiciels, Systèmes, Réseaux, LSR-IMAG, Grenoble, France
Didier.Bert@imag.fr

Abstract. We present a fixpoint semantics of event systems. The se-
mantics is presented in a general framework without concerns of fairness.
Soundness and completeness of rules for deriving leads-to properties are
proved in this general framework. The general framework is instantiated
to minimal progress and weak fairness assumptions and similar results
are obtained. We show the power of these results by deriving sufficient
conditions for leads-to under minimal progress proving soundness of proof
obligations without reasoning over state-traces.

Keywords: Liveness properties, event systems, action systems, unity
logic, fairness, weak fairness, minimal progress, set transformer, fixpoints.

1 Introduction

Action systems, or event systems, are useful abstractions to model discrete sys-
tems. Many formalisms have been proposed to model action systems. In these
formalisms, the behavior of a system is specified by a collection of events (actions)
executed atomically and it is described in terms of observations about the state
of the system. As examples of action-based systems, we can cite Back’s action
system formalism [5], unity [8] and tla [16]. Rigorous development of action
systems has been tackled through stepwise refinement. Fairness is an important
notion which helps to increase the abstraction level of a parallel or distributed
system specification. In this context, fairness means that if a certain operation
is possible, then the system must eventually execute it [16].

In this paper, we consider event systems where specification of events is
given in a program-like notation, and we use temporal logic to specify liveness
properties under two kinds of fairness assumptions: weak fairness and minimal
progress. In our work, we consider modalities of type P leads-to Q, where P
and Q are predicates on the state space of a system, with the informal meaning:
“when the system arrives into a state satisfying P , eventually it reaches a state
satisfying Q”, and we demonstrate that the proof of this modality, under a weak
fairness or minimal progress assumption, is equivalent to the proof of termination
of iteration of events in the system.

Our study is founded on the fixpoint semantics of event systems, instead of
sequences of states (computations), as it is traditionally done in the action-based

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 327–346, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

328 H. Rúız Barradas and D. Bert

systems cited above. Our approach is not a matter of predilection of habits, it al-
lows us to make the notion of reachability under fairness assumptions equivalent
to the one of termination of iteration of events. Moreover, it gives the founda-
tions to our approach of stepwise refinement of event systems where preservation
under refinement of liveness has a central role [24, 26].

This work has been originated in [23], where we proposed the integration
of unity logic in the specification and proof of liveness properties in B event
systems. In this manner, modalities correspond to liveness properties specified
by the leads-to or ensures operators of unity logic. Our treatment of the equiv-
alence between reachability and termination has been inspired from [14] where
the results of soundness and completeness of rules to derive leads-to properties in
unity logic are presented. As outcomes of our approach we give two examples of
applications of these results: First we prove the sufficient conditions for liveness
properties under minimal progress given in [2]. The second example is an orig-
inal proof which gives sufficient conditions to derive a liveness property under
minimal progress when the given property holds under weak fairness. This last
result gives a deep insight into implementing fairness assumptions by abstract
schedulers through stepwise refinement.

This paper is structured as follows. In Section 2, we recall the main works
dealing with fairness in parallel programming and with the use of weakest pre-
condition semantics in concurrent programs. We discuss about the new insights
of our approach. In Section 3, we present a system as a set transformer and
we give syntax and semantics of common set transformers used to model events
in the system. In Section 4, we develop our semantics of event systems and we
prove equality (soundness and completeness) between notions of termination and
reachability. In Section 5, we give examples of sufficient conditions to derive live-
ness properties using the results of the previous section, as well as an example
of application. Finally we give our conclusions and future work in Section 6.

2 Related Works

In this section we review some related works and we discuss about the positioning
of our work and the contributions of this paper. The works presented have studied
fairness in the context of program verification, program development, semantics
or implementation of parallelism.

In [3, 4] an approach to program transformation is proposed, where weak
or strong fair parallelism is reduced to ordinary parallelism. Apart from giving
insight on fairness implementation, the transformation allows applying an ex-
tension of the proof system of Owicki-Gries [21] to the verification of programs.
The transformation embeds a scheduler in the program, modeled by random
assignment, which guarantees fair computations. Implementation of random as-
signment can provide concrete scheduling policies as round robin or queueing.

Fairness has been clearly defined in temporal logic, as well as different sorts of
safety and liveness properties [18]. In [17] a proof system, founded in assertional
reasoning, is proposed to verify reactive or concurrent programs. In the context

A Fixpoint Semantics of Event Systems 329

of verification of temporal properties, model checking is a useful technique that
can be applied in the case of finite-state systems. In [11] fairness assumptions
are used to reduce the combinatorial explosion in the verification of abstract
transition systems by model checking.

Computational models, for concurrent program development, can be repre-
sented by the do od construction of guarded commands. Different works can
be distinguished according to the guards of the commands. The following para-
graphs give a brief survey of formalisms where fairness plays a fundamental role.

The computational model of unity [8] can be modeled by a do od construc-
tion where the guard of the commands is always true. These statements are
executed according to an “unconditional fairness” assumption, which indicates
that in any computation any statement is infinitely often executed. Liveness
properties are specified and proved by two relations on state predicates known
as ensures and leads-to. ensures relation is defined by the Hoare triplets quan-
tified over the statements of a program; the fairness assumption guarantees the
execution of the helpful statement performing the basic progress specified by this
relation. leads-to is defined as the transitive and disjunctive closure of ensures.

Following the computational model of unity, in [9] a calculus of predicate
transformers is proposed to reason about safety and liveness properties. A pro-
gram is a set of variables and a set of predicate transformers denoting the weakest
precondition of non miraculous, always terminating and bounded nondeterminis-
tic statements. Progress properties are defined by a predicate transformer defined
in [15] which is the strongest solution of a set of equations where the ensures
relation forms the base case. In [19], the study of composition of leads-to proper-
ties is pursued. In this approach the predicate transformers defining ensures and
leads-to properties proposed in [13] are used to develop a general theory of com-
position of leads-to. These predicate transformers are defined by the fixpoints of
equations relating the weakest precondition of statements in a program.

More general computation models, where the guards of commands in the
do od construction are state predicates, allow different definitions of fairness like
weak or strong fairness. An early proposal of a predicate transformer, defined by
fixpoint equations, characterizing the weakest precondition of do od construc-
tions under weak fairness assumptions is presented in [22].

In [14], a methodology for designing proof systems for leads-to properties
under various fairness assumptions is proposed. This work shows how the spec-
ification and proof of liveness properties in unity can be adapted to reason
about different kinds of fairness. The methodology characterizes different kinds
of fairness by CTL∗ formulae. These formulae are then characterized by fixpoint
in the µ-calculus. Finally these fixpoint characterizations are used to propose
various definitions of the ensures relation according to fairness assumptions.

Another approach to program development is given by tla [16]. It is a tem-
poral logic for specifying and reasoning, about concurrent and reactive systems.
A specification is made up of formulae, expressing safety and fairness constraints
on the execution of actions. Actions are modeled by the before-after relation be-
tween state variables. In this framework, refinement consists in providing more

330 H. Rúız Barradas and D. Bert

details in the specification of actions, and the correctness proof, becomes logical
implication between specifications.

Actions systems [5] is an approach to program development, where actions
are expressed in familiar sequential programming notations, and executed atom-
ically. Refinement is verified by refinement relations defined among the abstract
and concrete actions. In [6] the refinement of action systems is extended by con-
sidering fair action systems. Refinement relations under weak or strong fairness
assumptions are defined. These definitions give sufficient conditions to guarantee
total correctness of iteration of actions. Therefore, this approach of fairness is
based on the basic techniques developed mainly for sequential programming.

Discussion

Our work is placed in the context of program development by stepwise refine-
ment. It improves the original approach of modalities in B event systems pro-
posed in [2]. We propose the use of unity logic in the specification and proof
of liveness properties, under weak fairness or minimal progress assumptions. On
another hand, it clarifies the close relation between reachability, as specified by
leads-to properties, and termination of weak fair and unfair iteration of actions.

The original approach of modalities in [2] is very restricted. Specification of
modalities requires definition of invariant predicates and variant functions. The
reason of this restrictions is that the computational model, used to reason about
modalities, is a do od construction without fairness assumptions. So, the proof
of modalities becomes a proof of total correctness of a do od construction.

The computational model in our framework does not correspond to the model
of unity, because the guards of events are not always enabled. Therefore, results
of unity logic in [8, 9, 15, 19, 13], do not apply directly to our framework if the
definition of the basic relation ensures is not changed. Our definition of ensures
relation, in a more general computational model where the guards of actions are
state predicates, is inspired from [14]. From this work, we get as well the idea of
set transformers to denote leads-to properties.

Our set transformers for minimal progress (unfair) or weak fairness assump-
tions are defined in an original way. Our definition deepens and clarifies the idea
of [2] and [6], about the relation between (unfair or weak fair) termination of
iteration of events and reachability, as reflected by leads-to properties. Apart
from set transformers denoting the actions of the system, our set transformers
for leads-to are constructively built and use primitive set transformers such as
iteration, unfair choice, fair choice, sequencing, guard and precondition, and it is
not only a fixpoint equation, as the predicate transformers described above. We
prove that our definitions fulfill the requirement of a sound and relative com-
plete proof system for leads-to properties, as it was done in [14]. This is the first
contribution of this paper.

The choice of definitions of leads-to properties, under minimal progress and
weak fairness assumptions, is a result of our approach to program development
by stepwise refinement. In fact, we expect that systems under weak fairness
assumptions would be implemented, by refinements into concrete systems, where

A Fixpoint Semantics of Event Systems 331

events are iterated under minimal progress assumptions. For this reason, we were
interested in defining set transformers for leads-to properties in close relation
with iteration of events. In this way, refining events gives insight in the sufficient
conditions to guarantee the refinement of liveness properties [26]. Moreover, when
a leads-to property holds in a refinement under weak fairness assumptions, and
the refinement contains some mechanisms to ensure a fair interleaving of actions,
we can guarantee, by conditions imposed to the events in the refinement, that the
leads-to property yet holds under minimal progress assumptions. In this paper
we state formally these facts by a proof rule which replace the ideas of program
transformation to implement weak fairness, presented in [3], in the framework
of refinement. This is the second contribution of this paper.

3 Set Transformers and Unity Logic in Event Systems

In this section, we introduce the main considerations about event systems and
the specification of liveness properties in unity logic. This section is divided
in two parts. The first part presents an event system as a set transformer and
introduces the notion of liberal set transformer, as well as the dovetail operator
that is used to model a weak fairness assumption. In the second part, we recall
the main ideas for the specification and proof of liveness properties under two
fairness assumptions in unity logic.

3.1 Set Transformers

A set transformer is a total function of type P(U) → P(U) for a certain set U .
An event system is made out of a family of events. Any event may be executed
in any state where its guard , predicate on the state, holds. When the guard of
an event holds, we say that the event is enabled. As in event-B systems, we
considered a system with state variable x and invariant I. The state space u of
the system are those states where I holds: u = { z | I(z) }. Therefore events in
the system are modeled by conjunctive set transformers Ei of type P(u) → P(u),
where i belongs to certain finite index set L. Consequently, the system is modeled
by a conjunctive set transformer S which is the bounded choice of events Ei:
S =[]i∈L Ei. We denote by S the set of events in S: S = {Ei | i ∈ L}.

For any set transformer T of type P(u) → P(u) and subset r of u, T (r)
denotes the largest subset of states where execution of T must begin in order for
T to terminate in a state belonging to r [1]. Primitive set transformers considered
in this paper are similar to the primitive generalized substitutions in B: skip,
bounded choice, sequence, guarded and conditioned set transformer. Following
the work reported in [26], for any set transformer T , and subset r of u, we denote
by L(T)(r) the liberal set transformer of T , which denotes the largest subset of
states where the execution of S must begin in order for T to terminate in a state
belonging to r or loop. Common set transformers and liberal set transformers
are defined as follows:1
1 For any set transformer T , (L)(T)(r) denotes the definition, either for the set T (r)

or for the set L(T)(r).

332 H. Rúız Barradas and D. Bert

(L)(skip)(r) = r
(L)(F [] G)(r) = (L)(F)(r) ∩ (L)(G)(r)

(L)(F ; G)(r) = (L)(F)((L)(G)(r))
(L)(p =⇒ F)(r) = p ∪ (L)(F)(r)

In the guarded event, p denotes u − p. For the preconditioned event we have
(p | F)(r) = p ∩ F (r) and L(p | F)(r) = p ∩ L(F)(r) if r �= u and L(p | F)(r) =
L(F)(r) if r = u; this distinction is necessary to guarantee L(p | F)(u) = u
as required. Definitions of liberal set transformers presented here are the set
counterpart of definitions in [10].

The set transformers F (r) and L(F)(r) for event F and postcondition r are
related by the pairing condition: F (r) = L(F)(r) ∩ pre(F), where pre(F) is the
termination set of F . So, we have pre(F) = F (u). From the pairing condition we
conclude F (u) = u ⇒ F (r) = L(F)(r). We say that a set transformer F is strict
when it respect the excluded miracle law: F (∅) = ∅.

For any set transformer F , when F (r) or L(F)(r) are recursively defined:
F (r) = F(F (r)) of L(F)(r) = G(L(F)(r)), for monotonic functions F and G,
according to [12] we take F (r) as the strongest solution of the equation X =
F(X) and L(F)(r) as the weakest solution of the equation X = G(X). As these
solutions are fixpoints, we take F (r) as the least fixpoint of F (denoted fix(F))
and L(F)(r) as the greatest fixpoint of G (denoted FIX(G)).

The Dovetail Operator. To model a weak fairness assumption, we use the
dovetail operator � [7], which is a fair nondeterministic choice operator. The
dovetail operator is used to model the notion of fair scheduling of two activities.

A motivating example of the use of the dovetail operator is given in [7]. In
that example the recursive definition: X = (n := 0 � (X ; n := n + 1)) which
has as solution “set n to any natural number”, is contrasted with the recursion
Y = (n := 0 [] (Y ; n := n + 1)) which has as solution “set n to any natural
number or loop”. The possibility of loop in X is excluded with the dovetail
operator because the fair choice of statement n := 0 will certainly occur. In Y
the execution of that statement is not ensured.

The semantic definition for dovetail operator in [7] is given by definition of
its weakest liberal precondition predicate transformer (wlp) and its termina-
tion predicate hlt . We give an equivalent definition using the weakest liberal set
transformer L and its termination set pre:

L(F � G)(r) = L(F)(r) ∩ L(G)(r) (1)
pre(F � G) = (F (u) ∪ G(u)) ∩ (F (∅) ∪ G(u)) ∩ (G(∅) ∪ F (u)) (2)

We recall that grd(F) = F (∅). From these definitions, in [26] we prove the guard
of the dovetail: grd(A � B) = grd(A) ∪ grd(B).

3.2 Liveness Properties in Event Systems

In this section, we give a summary of some results in the specification and proof
of liveness properties presented in [23], [24] and [26]. In these works, we propose
the use of unity logic to specify and prove liveness properties in event-B systems.

A Fixpoint Semantics of Event Systems 333

Liveness properties are divided in two groups: basic and general liveness
properties. Each one of these properties is specified by relations on the state of
the system. In order to specify and prove these properties we consider a minimal
progress or a weak fairness assumption.

Basic Properties Under Weak Fairness. A weak fairness assumption states
that any continuously enabled event is infinitely often executed. For any event
G in S we write G ·P (w Q (pronounced “by event G, P ensures Q”) to specify
that by the execution of event G in a state satisfying P the system goes to
another state satisfying Q, under a weak fairness assumption. In [24] we proposed
sufficient conditions WF0 and WF1, to guarantee the intended meaning of these
properties. These conditions were stated in terms of state predicates P and Q,
but we present them as set expression:

p ∩ q ⊆ S(p ∪ q) ∩ grd(G) ∩ G(q) ⇒ G · x ∈ p (w x ∈ q (3)

where x is the state variable of S, p = {z|z ∈ u ∧ P} and q = {z|z ∈ u ∧ Q}.

Basic Properties Under Minimal Progress. In a minimal progress assump-
tion, if two or more statements are enabled in a given state, the selection of the
statement enabled for execution is nondeterministic. We write P (m Q (pro-
nounced “P ensures Q”) to specify that execution of any event of S, in a state
satisfying P , terminates into a state establishing Q. In [23] we gave sufficient
conditions MP0 and MP1 to prove basic properties under minimal progress. We
present them as a set expression as follows, for sets p and q defined as above:

p ∩ q ⊆ S(q) ∩ grd(S) ⇒ x ∈ p (m x ∈ q (4)

General Properties. General liveness properties are specified by the leads-to
operator �. Depending on the fairness assumption considered, we have general
liveness properties under minimal progress or weak fairness assumptions. How-
ever, the leads-to relation is defined, in the same way, as the closure relation,
containing the base relation and it is both transitive and disjunctive. A property
P � Q holds in an event system, if it is derived by a finite number of applications
of the rules defined by the unity theory:

ANTECEDENT CONSEQUENT

BRL P (Q P � Q

TRA P � R, R � Q P � Q

DSJ ∀m · (m ∈ M ⇒ P (m) � Q) ∃m · (m ∈ M ∧ P (m)) � Q

P (Q, in the BRL rule stands for the basic liveness property G · P (w Q
for some G in S in case where we consider a property under a weak fairness
assumption or P (m Q, in the case where we consider a minimal progress
assumption.

334 H. Rúız Barradas and D. Bert

4 Reachability and Termination

In this section, we prove soundness and (relative) completeness of rules BRL,
TRA and DSJ for leads-to properties under minimal progress and weak fairness
assumptions. The rules are sound if for any derived property P � Q, iteration
of events, under minimal progress or weak fairness assumptions, starting in a
state satisfying P , leads to a state where Q holds. Completeness of these rules is
proved by showing that P � Q can be derived from the fact that any iteration
of events, starting in a state where P holds, terminates into a state satisfying Q.

We do not expect that any iteration of events in a system terminates into
a certain state. However, an always terminating iteration can be modeled by
supposing, just for the reasoning, that the events in the system are embedded
in a certain guarded command. The iteration only proceeds when the guard
of that event is enabled. Termination of the iteration will be in a state where
the guard does not hold. In this way, if the guard of the iteration is ¬Q, and
the iteration starts in a state where P holds, the system reaches a state where
Q holds. Reachability from P to Q is then associated to termination of the
iteration of events. In the following subsections, we formalize our claims in a
general framework without concerns of fairness, and then we instantiate these
results to minimal progress or weak fairness assumptions.

To simplify matters, the strongest invariant SI [27] is not considered here.
Therefore, instead of implications in proof obligations (3) and (4), we consider it
as equivalences. In [25] we restate the results given in this section to consider SI .

4.1 A General Framework

In this subsection, we define a set transformer to model iteration of events and
we state its main characteristics. The set transformer is used to define the termi-
nation relation. Then, we give a representation of the leads to relation of unity
as a relation between subsets of u and we use it to define the reachability relation.
Finally we prove equality between termination and the reachability relations.

4.1.1 Termination
We consider a set transformer W which models a step of the iteration of events
in a system S. At this time we only state that W must be monotonic and strict.
When we instantiate the iteration under a fairness assumption, the meaning of
W will be given in terms of S. For any r in P(u), W (r) denotes the largest subset
of states where the execution of W must begin in order for W to terminate in a
state belonging to r.

To model the iteration of events until the system reaches a state in a certain
set r in P(u), we define a guarded event F(r):

F(r) =̂ (r =⇒ W) (5)

for any r ∈ P(u), which allows iteration of W when the system stays in any state
in r. Iteration of F(r) is modeled by the ̂ operator: F(r)̂ . As this operator has
a recursive definition: F(r)̂ = (F(r) ; F(r)̂) [] skip, the set where termination
of F(r)̂ is guaranteed (pre(F(r)̂)) is given by fix(F(r)) [1].

A Fixpoint Semantics of Event Systems 335

As W may model an unbounded non deterministic set transformer, we use
the Generalized Limit Theorem to formally justify that any iteration of F(r)
starting in pre(F(r)̂) terminates in some state of r. This theorem characterizes
the least fixpoint of monotonic functions as an infinite join. We use the version
presented in [20], instantiating the theorem to monotonic set transformers:

Theorem 1. (Generalized Limit Theorem) Let f be a monotonic set trans-
former, and let fα, for ordinal α, be defined inductively by

fα =
⋃

β · (β < α | f(fβ)) (6)

Then fix(f) = fα for some ordinal α.

As W is a monotonic function, F(r) is a monotonic set transformer, and
theorem 1 can be applied to calculate the least fixpoint of F(r). According to
the theorem, we conclude that F(r)0 = ∅ and F(r)1 = r because W is strict.
Moreover, for any ordinal α, F(r)α+1 = F(r)(F(r)α) and F(r)α ⊆ F(r)α+1.
This fact formally supports our claim that the termination set of F(r)̂ contains
states where any iteration of F(r) terminates in a state into r. Now, we can define
the termination relation T as follows:

Definition 1. (Termination Relation)

T =̂ { a → b | a ⊆ u ∧ b ⊆ u ∧ a ⊆ fix(F(b)) } (7)

4.1.2 Reachability
As presented in section 3.2, leads-to relation of unity logic is defined as a re-
lation between predicates on the state of programs. In this section we define
an equivalent relation, L, but instead of predicates, we define it as a relation
between subsets of states in u (L ⊆ P(u)×P(u)). Any pair a → b in L indicates
that the system reaches a state in b, when its execution arrives at any state in
a. For this reason, L is called the reachability relation.

Definition of L is given by induction. The base case needs definition of the
basic relation E which is equivalent to the ensures relation. At this time E
cannot be defined. As indicated in section 3.2, basic liveness properties depend
on fairness assumptions. E will be defined in the following sections according to
minimal progress or weak fairness assumptions. However, these definitions must
satisfy two requirements. The first requirement is as follows: If a ⊆ b, for any
a and b in P(u), then a → b ∈ E must hold. The second requirement relates
E with the set transformer W : For any ordered pair a → b ∈ E , the inclusion
a∩b ⊆ W (b) must hold. This inclusion indicates that any execution of W starting
in a ∩ b, terminates into a state of b.

Definition 2. (Reachability Relation)
The reachability relation L is defined by the following induction scheme:
(SBR): E ⊆ L

(STR): L ; L ⊆ L

(SDR): ∀(q, l) · (q ∈ P(u) ∧ l ⊆ P(u) ⇒ (l × {q} ⊆ L ⇒
⋃

(l) → q ∈ L))

336 H. Rúız Barradas and D. Bert

Closure: ∀l ′ · (l′ ∈ u ↔ u ∧ E ⊆ l ′ ∧ l ′ ; l ′ ⊆ l ′ ∧
∀(q, l) · (q ∈ P(u) ∧ l ⊆ P(u) ∧ l × {q} ⊆ l ′ ⇒

⋃
(l) → q ∈ l ′) ⇒ L ⊆ l ′)⋃

(l) in the SDR rule and the closure clause, denotes the generalized union of
subsets in l. Rules SBR, STR and SDR are the set counterpart of BRL, TRA
and DSJ rules defined in section 3.2.

L is related to the leads-to relation by the following equivalence:

P (x) � Q(x) ≡ set(P) → set(Q) ∈ L (8)

where set(R), for any state predicate R, is the set { z | z ∈ u ∧ R(z) }. We note
that property P � Q in unity is equivalent to P ∧ I � Q ∧ I, considering I
as an invariant of S, because the leads-to relation is defined in states reachable
from the initial conditions [27]. The proof of this equivalence is given in [25].

4.1.3 Soundness and Completeness
We are now ready to state our main theorem, formally indicating that termina-
tion and reachability relations are equal:

Theorem 2. (Soundness and Completeness)
Let W be a monotonic and strict set transformer and F(r) = (r =⇒ W) for any
r in P(u). Let relations T and L be defined as definitions 1 and 2 respectively.
Considering (a) a → b ∈ E ⇒ a ∩ b ⊆ W (b), (b) a ⊆ b ⇒ a → b ∈ E and (c)
W (r) → r ∈ L, for any a, b and r in P(u), the equality L = T holds.

Premises (a) and (b) were commented upon in the previous section. Premise (c)
asserts that any set r is reached from the set W (r) which is the largest subset
of states where a step of the iteration terminates in r.

The proof of this theorem is given in two parts: first we prove the inclusion
L ⊆ T and then T ⊆ L.

Proof of L ⊆ T . The proof of this inclusion follows from the closure clause in
definition 2, instantiating the quantified variable l′ to relation T . Then L ⊆ T
follows from E ⊆ T , T ; T ⊆ T and l × {q} ⊆ T ⇒

⋃
(l) → q ∈ T for any l in

P(P(u)) and q in P(u).
The proof of E ⊆ T uses the following property for monotonic function f

and iteration defined in (6):

∀α · (fα ⊆ fix(f)) (9)

which is easily proved by transfinite induction. The proof of E ⊆ T is given by
the proof of a → b ∈ E ⇒ a → b ∈ T . From the premise and hypothesis (a)
follows a ∩ b ⊆ W (b). From this inclusion, (5), (6) and (9) follows a ⊆ fix(F(b)).
Finally, from this inclusion and (7) the proof follows.

In order to prove the transitivity of T , we need the following property:

a → b ∈ T ⇒ fix(F(a)) ⊆ fix(F(b)) (10)

for any a and b in P(u). Taking a → b ∈ T as a premise, and considering
fix(F(a)) as the least fixpoint of F(a), in order to prove property (10) it suffices

A Fixpoint Semantics of Event Systems 337

to prove F(a)(fix(F(b))) ⊆ fix(F(b)), which follows directly from a → b ∈ T and
F(b)(fix(F(b))) = fix(F(b)). Now the proof of T ; T ⊆ T is equivalent to prove
a → b ∈ T ; T ⇒ a → b ∈ T for any a and b in P(u). From the premise of the
goal and (7) we derive ∃c ·(a ⊆ fix(F(c)) ∧ c → b ∈ T). Now, from this inclusion,
(10) and transitivity of the inclusion, we obtain a ⊆ fix(F(b)). Our goal follows
from this last inclusion and (7).

Finally, the proof of l × {q} ⊆ T ⇒
⋃

(l) → q ∈ T is as follows: From the
premise and (7) we derive ∀p · (p ∈ l ⇒ p ⊆ fix(F(q))). Our goal follows from
(7) and

⋃
(l) ⊆ fix(F(q)), which is derived from the last predicate. This last

deduction concludes the proof of L ⊆ T .

Proof of T ⊆ L. The proof of this inclusion requires the following property:

∀r · (r ∈ P(u) ⇒ F(r)α → r ∈ L) for any ordinal α (11)

This property indicates that any iteration of F(r) eventually reaches r. The proof
of (11) is done by transfinite induction; it is given in [25]. Using (11), we prove
L ⊆ T by the proof of a → b ∈ T ⇒ a → b ∈ L for any a and b in P(u) as follows:
From the premise and theorem 1 we derive: ∃α·(a ⊆ F(b)α). From this derivation,
hypothesis (b) of the theorem and SBR rule follows: ∃α · (a → F(b)α ∈ L).
From this derivation and transitivity with (11) the goal follows. This deduction
concludes the proof of theorem 2.

4.1.4 Link with Traces Semantics
At this point, the meaning of leads-to properties is given in terms of the least
fixpoint of the set transformer F(b) for certain subset b of u. This set transformer
denotes a step in the computations of the system if it is executed in a state where
b holds. Therefore, fix(F(b)) denotes the set of states where any computation can
start and terminates in a state where b holds.

For any set transformer F , the associated before-after relation can be defined
as in [2], for any subset p of u, by: rel(F)−1[p] = F (p). Any pair σ → τ in this
relation, indicates that execution of F in a state σ can reach the state τ . In
the special case where p = u in the above definition, we note that the guard
of F corresponds to the domain of rel(F), that is, to the set of states where
F is enabled. Therefore rel(F)∗, the transitive and reflexive closure of rel(F),
contains all pairs σ → τ , where τ can be reached from a repeated execution
of F starting in σ. Moreover, from [1], the before-after relation of the iteration
operator is given by: rel(F ̂) = pre(F ̂) × u ∪ rel(F)∗, where pre(F ̂), the set
where termination of the iteration of F is guaranteed, is equal to fix(F). From
this equality, we can observe that the before-after relation of F ̂ contains the
transitive and reflexive closure of rel(F), as well as the Cartesian product {δ}×u,
for any set δ where the iteration does not terminate. If for any different states σ
and τ , such that σ → τ ∈ rel(F)∗ holds, we can conclude that there is a sequence
of states, or state traces, σ0, σ1, . . . , σn where σ0 = σ, σn = τ and for any i ≥ 0,
σi → σi+1 ∈ rel(F) holds. Any state sequence starting in a state in pre(F ̂),
is a divergent sequence. On the other hand, if the sequence starts in a state in
pre(F ̂), the sequence is finite and its last state is in dom(rel(F)).

338 H. Rúız Barradas and D. Bert

From the above discussion, in a way similar to [4], a semantic function in
terms of state traces can be associated to F(b), for any σ in u, as follows:

M�F(b)�(σ) = {τ | τ ∈ b ∧ σ → τ ∈ rel(F(b))∗} ∪ {⊥ | σ ∈ fix(F(b))}
where the symbol ⊥ is a special state denoting divergence. Now, if for any subset
a of u, the inclusion M�F(b)�(a) ⊆ b holds 2, that means that the iteration of
events in the system leads to a state into b when its execution starts in a state
in a. This interpretation of the inclusion allows us to define the truth value of a
leads-to property: for any predicate P and Q, a liveness property P � Q holds
in a system (|= P � Q) if M�F(b)�(set(P)) ⊆ set(Q) holds.

Considering the set of pairs a → b satisfying M�F(b)�(a) ⊆ b, allow us
to obtain an equivalent definition of the termination relation T presented in
section 4.1.1. In this way, soundness of the rules BRL, TRA and DSJ, means
that if P � Q is derived from these rules () set(P) → set(Q) ∈ L), then
|= P � Q holds. Relative completeness of these rules is proved by the implication
|= P � Q ⇒) set(P) → set(Q) ∈ L. These results are stated and proved in
theorem 2 by the equality L = T .

Finally we note that the instantiation of F(b) to Fm(b) or Fw(b), as it will
be done in the following sections, allows a rigorous definition of the semantic
function under minimal progress or weak fairness assumptions respectively.

4.2 Minimal Progress

In this subsection, we define the termination and reachability relations under
minimal progress and we prove that they satisfy the premises of theorem 2.
Therefore we claim that relations T and L are equal in the case of minimal
progress.

4.2.1 Termination Under MP
To model a step of the iteration of events of system S under minimal progress
assumptions, we note that if we need to establish a certain postcondition when
this step is achieved, any event in S must be able to establish the postcondi-
tion. Moreover, as we are interested in the execution of any event, we need to
start the execution step in a state satisfying the guard of at least one event.
Therefore, taking into account these considerations, we propose the following
preconditioned set transformer:

Wm =̂ grd(S) | S (12)

From the definition of preconditioned set transformer in section 3.1 we have
Wm(r) = grd(S) ∩ S(r). From monotonicity of S , we derive the monotonicity
of Wm and Wm(∅) = (grd(S) ∩ S(∅)) = ∅ which proves the strictness of Wm.

The body of the iteration of events under minimal progress is the guarded
event Fm(r) defined as follows:

Fm(r) =̂ r =⇒ Wm (13)
2 For any subset t of u, M�F(b)�(t) =

⋃
σ∈t M�F(b)�(σ).

A Fixpoint Semantics of Event Systems 339

Definition of the termination relation under minimal progress is given by all
ordered pairs a → b satisfying a ⊆ pre(Fm(b)̂):

Tm =̂ { a → b | a ⊆ u ∧ b ⊆ u ∧ a ⊆ fix(Fm(b)) } (14)

4.2.2 Reachability Under MP
According to (4), the basic relation under minimal progress contains all ordered
pairs a → b from which we can derive a property x ∈ a (m x ∈ b:

Em =̂ { a → b | a ⊆ u ∧ b ⊆ u ∧ a ∩ b ⊆ S(b) ∩ grd(S) } (15)

From the definitions of Em and Wm, the proof of premise (a) of theorem 2 for
the case of minimal progress, a → b ∈ Em ⇒ a∩b ⊆ Wm(b), follows immediately.

From the definition of Em, the implication a ⊆ b ⇒ a → b ∈ Em, premise (b)
of theorem 2, follows immediately because a ∩ b = ∅.

Now, we use an induction scheme to define the reachability relation under
minimal progress Lm similar to definition 2. Therefore Lm is the smallest relation
containing the base relation Em and it is both, transitive and disjunctive.

Finally we prove that the weakest precondition Wm(r), for any r ∈ P(u) leads
to r: Wm(r) → r ∈ Lm. First, we note that grd(S) ∩ S(r) ∩ r ⊆ grd(S) ∩ S(r)
holds trivially. From this inclusion, (15) and (12), we derive Wm(r) → r ∈ Em.
The goal follows from this derivation and rule SBR. It proves premise (c) of
theorem 2 for the case of minimal progress.

At this time, monotonicity and strictness of Wm and premises (a), (b) and
(c) of theorem 2 instantiated to the case of minimal progress have been proved.
Therefore the equality between termination and reachability relations is stated:

Tm = Lm (16)

4.3 Weak Fairness

In this subsection, we define the termination and reachability relations for weak
fairness assumptions. We prove that premises of theorem 2, instantiated to the
case of weak fairness assumptions, are satisfied with these definitions. Therefore
we claim the equality between these relations.

4.3.1 Termination Under WF
We use the dovetail operator presented in section 3.1 to model a fair loop for a
certain event G in S:

Y (q)(G) =̂ q =⇒ ((S ; Y (q)(G)) � (grd(G) | G)) (17)

The guard q of this loop prevents iteration of the fair choice in any state
belonging to q. Informally, we expect that any execution of Y (G)(q) in any
state in q ∪ grd(G) terminates. Execution of Y (q)(G) in q ∩ grd(G) cannot
loops forever because the dovetail operator prevents unlimited execution of the
branch S ; Y (q)(G). Moreover the set transformer grd(G) | G is always enabled

340 H. Rúız Barradas and D. Bert

(grd(grd(G) | G) = u) and therefore it will be eventually executed. All our claims
are formally justified by the calculi of termination set and the liberal weakest
precondition of Y (q)(G), for any q and r, r �= u in P(u):

pre(Y (q)(G)) = fix(q ∩ G(∅) =⇒ S(q) | S) (18)
L(Y (q)(G))(r) = FIX(q =⇒ (grd(G) ∩ G(r) | S)) (19)

The calculus of the termination set of Y (q)(G) indicates that it contains chains
of states related by the before-after relation associated with the set transformer
q∩G(∅) =⇒ S(q) | S, and terminating in (q∩G(∅) =⇒ S(q) | S)(∅) = q∪G(∅),
which corresponds to the complement of the guard of the set transformer. The
liberal set transformer of Y (q)(G) to establish r corresponds to the union of
subsets p of u, satisfying the condition p ∩ q ⊆ G(∅) ∩ G(r) ∩ S(p). We remark
that any state in L(Y (q)(G))(r) is in q or in the set where the helpful event G
is enabled and able to establish r.

Properties (18) and (19) follow from the definitions of set transformers given
in section 3.1 and the extreme solutions of the generated recursive equations.
The proofs are in [25].

Using the pairing condition and L(Y (q)(G))(r) ⊆ pre(Y (q)(G)), for any q
and r, the set transformer associated with the fair loop is:

Y (q)(G)(r) = FIX(q =⇒ (grd(G) ∩ G(r) | S)) (20)

From this definition follows the monotonicity of Y (q)(G).
The fair loop Y (q)(G) models a fair G-step in the iteration of events under

weak fairness assumptions. We say that G is the helpful event in this G-step. A
fair step in the iteration of events is modeled by the following set transformer:

Ww =̂ λr · (r ⊆ u |
⋃

G · (G ∈ S | Y (r)(G)(r))) (21)

From the guard of the dovetail operator defined in section 3.1 and (17), we
conclude grd(Y (q)(G)) = q for any G in S and q ∈ P(u); therefore strictness
of Ww follows. In the other hand, from monotonicity of Y (q)(G) follows the
monotonicity of Ww.

The body of the iteration of events under weak fairness is the guarded event
Fw(r) defined as follows:

Fw(r) =̂ r =⇒ Ww (22)

Definition of the termination relation under weak fairness is:

Tw =̂ { a → b | a ⊆ u ∧ b ⊆ u ∧ a ⊆ fix(Fw(b)) } (23)

4.3.2 Reachability Under WF
We define the basic relation E(G) for a helpful event G, as the set of pairs a → b
from which we can derive a property G · x ∈ a (w x ∈ b (3):

E(G) =̂ { a → b | a ⊆ u ∧ b ⊆ u ∧ a ∩ b ⊆ S(a ∪ b) ∩ G(∅) ∩ G(b) } (24)

A Fixpoint Semantics of Event Systems 341

Now, the basic relation for weak fairness is:

Ew =̂
⋃

G · (G ∈ S | E(G)) (25)

The proof of premise (a) of theorem 2 instantiated to weak fairness requires
the following property:

∀G · (G ∈ S ∧ a → b ∈ E(G) ⇒ a ⊆ Y (b)(G)(b)) (26)

In order to prove this property, we remark from (24) and premise of (26) that
inclusion a ∪ b ⊆ (b =⇒ grd(G) ∩ G(b) | S)(a ∪ b) holds. This inclusion proves
that a ∪ b ⊆ FIX(b =⇒ grd(G) ∩ G(b) | S) holds and from (20), a ⊆ Y (b)(G)(b)
follows. Then we give the proof of a → b ∈ Ew ⇒ a ∩ b ⊆ Ww(b): From (26) and
(21) we derive ∃G · (G ∈ S ∧ a → b ∈ E(G)) ⇒ a ⊆ Ww(b). From this derivation
and (25) we obtain a → b ∈ Ew ⇒ a ⊆ Ww(b). The goal follows from this last
derivation and b ⊆ Ww(b).

From (24) immediately follows a → b ∈ E(G), for any G in S if a ⊆ b holds,
and from (25) follows a ⊆ b ⇒ a → b ∈ Ew. It proves premise (b) of theorem 2.

We use an induction scheme to define the reachability relation under weak
fairness Lw similar to definition 2. Therefore Lw is the smallest relation contain-
ing the base relation Ew and it is both, transitive and disjunctive.

From (20) and (24) follows the property:

∀(G, r) · (G ∈ S ∧ r ⊆ u ⇒ Y (r)(G)(r) → r ∈ E(G)) (27)

We use this property to prove the premise (c) of theorem 2: Ww(r) → r ∈ Lw as
follows: From (27), (24) and SBR rule we derive ∀G · (G ∈ S ⇒ Y (r)(G)(r) →
r ∈ Lw). From this predicate and the SDR rule we derive

⋃
({ Y (r)(G)(r) |G ∈

S }) → r ∈ Lw . The goal follows from this derivation and (21).
At this time termination (Tw), basic relation (Ew) and reachability (Lw)

relations for weak fairness assumptions have been defined. Monotonicity and
strictness of the set transformer Ww , and premises (a), (b) and (c) of theorem 2
instantiated to the case of weak fairness have been proved. Therefore, the equality
between termination and reachability relations under weak fairness is stated:

Tw = Lw (28)

5 Deriving Liveness Properties

In this section, we present two examples where we show practical usefulness of
equalities between termination and reachability relations under minimal progress
and weak fairness assumptions. This section is divided in three parts. In the first
part we state and prove the Variant Theorem, which allows us to prove termi-
nation of iterations over a set transformer if a variant decreases. In the second
part we use this theorem to prove a sufficient condition allowing derivation of
liveness properties under minimal progress. Finally, we give another sufficient
condition to derive a liveness property under minimal progress when a similar
property holds in weak fairness assumptions

342 H. Rúız Barradas and D. Bert

5.1 The Variant Theorem

The variant theorem allows us to prove termination of iteration of conjunctive set
transformers. This theorem considers a total function which maps each element
of the state space to an element of a well founded order and a set which is
invariant at each iteration of the set transformer. The theorem states that if any
execution of the set transformer starting in a state in the invariant set and a
certain value of the variant function, terminates in a state where the value of the
variant is decremented, then the invariant set is contained in the termination set
of the iteration of the set transformer. Formally, the theorem is stated as follows3:

Theorem 3. (Variant Theorem)
Let V ∈ u → N, v = λn · (n ∈ N | { z | z ∈ u ∧ V (z) = n }) and v ′ =
λn · (n ∈ N | { z | z ∈ u ∧ V (z) < n }). For any conjunctive set transformer f in
P(u) → P(u) and p in P(u), such that v(n) ∩ p ⊆ f(v ′(n)) and p ⊆ f(p) , for
any n in N, the inclusion p ⊆ fix(f) holds.

The proof of this theorem uses the following property which holds under the
premises of theorem 3:

∀n · (n ∈ N ⇒
⋃

i · (i ∈ N ∧ i ≤ n | v(i)) ∩ p ⊆ fn+1) (29)

This premise indicates that any state x of p, such that V (x) = n, for any value
n of N, is a state where the set transformer f can be iterated at most n times
and terminate into a state where it is disabled. The proof of (29) proceeds by
induction; it is presented in [25]. The proof of theorem 3 is as follows: From (29),
(9), and definitions of v and v′, we derive ∀n · (n ∈ N ⇒ v ′(n + 1) ∩ p ⊆ fix(f)).
From definitions of v and v′ follows

⋃
n · (n ∈ N | v ′(n+1)) =

⋃
i · (i ∈ N | v(i)).

From the last two derivations we deduce
⋃

i · (i ∈ N | v(i)) ∩ p ⊆ fix(f). Finally,
the goal follows from this inclusion and

⋃
i · (i ∈ N | v(i)) = u.

5.2 A Sufficient Condition for Minimal Progress

A system reaches a certain set from any set of starting states under minimal
progress, if the set of depart is invariant in the system, it is contained in the
guard of the system and each execution of the system decrements a variant.
Formally, these conditions are stated as follows:

ANTECEDENT CONSEQUENT

∀n · (n ∈ N ⇒ a ∩ b ∩ v(n) ⊆ S(v ′(n))) a → b ∈ Lm

a ∩ b ⊆ grd(S) ∩ S(a)

The proof of these conditions is as follows: From premises and (13) we derive
∀n · (n ∈ N ⇒ a ∩ v(n) ⊆ Fm(b)(v ′(n))). On the other hand, from premises
3 In this theorem, the well-founded ordered set is taken to be N, but we could take

any other well-founded set.

A Fixpoint Semantics of Event Systems 343

and (13) follows: a ⊆ Fm(b)(a). From the last two derivations and theorem 3
we conclude a ⊆ fix(Fm(b)). Finally, from this last derivation, (14) and equality
(16), the goal follows.

The antecedent of this rule corresponds to the sufficient conditions in [2] to
prove liveness properties and it is the only rule concerning the proof of liveness
properties. Soundness of this rule is proved here in a more direct way.

Soundness of this rule is given without reasoning over state-traces, taking
advantage of the fixpoint semantics approach.

5.3 From Weak Fairness to Minimal Progress

Using the variant theorem, we prove a sufficient condition to establish that a
liveness property under minimal progress, follows from a corresponding property
proved under weak fairness and from the decrement of a variant:

ANTECEDENT CONSEQUENT

∀n · (n ∈ N ⇒ b ∩ v(n) ⊆ S(v ′(n))) a → b ∈ Lm

a → b ∈ Lw

As S is a conjunctive set transformer, from (12) and (13) we conclude that
Fm(b) is conjunctive as well. Therefore the Variant Theorem can be used to
prove this rule. However, in order to apply the theorem we need to identify an
invariant set under Fm(b). The sets a and b cannot be proved as invariants,
therefore we prove that the least fixpoint of Fw(b) is invariant under Fm(b),
that is fix(Fw(b)) ⊆ Fm(b)(fix(Fw(b))). This proof requires the following lemma:

∀α · (Fw(b)α ⊆ b ∪ (grd(S) ∩ S(fix(Fw(b)))) (30)

The proof of (30) is done by transfinite induction; the proof is given in [25]. Using
(30), the proof of sufficient conditions is as follows: From theorem 1, (30) and
(13) we derive fix(Fw(b)) ⊆ Fm(b)(fix(Fw(b))). From this derivation, premise
and (13) follows ∀n · (n ∈ N ⇒ fix(Fw(b))∩ v(n) ⊆ Fm(b)(v ′(n))). From the last
two conclusions, and theorem 3 we conclude fix(Fw(b)) ⊆ fix(Fm(b)). On the
other hand, from premise, equality (28) and (23) follows a ⊆ fix(Fw(b)). Finally,
the goal follows from the last two conclusion, (14) and equality (16).

5.4 An Example of Application

In this section, we present an example where a leads-to property, proved in an
abstraction under weak fairness assumption, is preserved in a refinement under
minimal progress assumptions. By space considerations, we do not present any
proof. All of them have been mechanically verified with the Click’n’Prove prover.

In figure 1 there is an abstract model of a producer-consumer system. It
is made up of two events, which model the producer (Prd) and the consumer
(Cns). The producer gets a data from a set DATA and puts it into a buffer buf
(buf ⊆ DATA). The consumer gets a data from the buffer and saves it in a store

344 H. Rúız Barradas and D. Bert

str (str ⊆ DATA). We consider that event Cns is executed under a weak fairness
assumption. We specify that the liveness property “any data in the buffer will
be eventually consumed” must be satisfied by the system. Formally, it is stated
as follows: d ∈ buf � d ∈ str , where d is universally quantified over DATA. As
explained in [24], application of (3), allows us to claim that the basic property
Cns ifx = d · d ∈ buf (w d ∈ str , holds in the abstract model. That means that
the helpful transition is performed by event Cns, when the chosen element is x,
denoted by Cns if x = d. Then, by the BRL rule, the liveness property holds.

In figure 2 we show a refinement of the abstract system. The abstract buffer
is refined by qu, an (injective) sequence of DATA, with gluing invariant buf =
ran(qu). Two invariants are specified: size(qu) ≤ mx (mx is the maximum size
of qu) and ran(qu) ∩ str = ∅. As explained in [24, 26], two sufficient conditions
(LIP and SAP) must be proved to guarantee the preservation of the leads-to
property. The variant qu−1(d) was used in the proofs.

At this time, the property d ∈ ran(qu) � d ∈ str holds in the refined sys-
tem, under weak fairness assumptions. However, we can proof that the variant
[card(DATA − str),mx − size(qu)] is decremented in a lexicographical order by
events Prd and Cns when d �∈ str holds. Therefore, application of the rule of
section 5.3, allows us to claim that d ∈ ran(qu) � d ∈ str holds in the refined
system under a minimal progress assumption.

Prd = any x where x ∈ DATA then
buf := buf ∪ {x}

end;
Cns = any x where x ∈ buf then

buf := buf − {x} ‖
str := str ∪ {x} end

Prd = any x where x ∈ DATA ∧ x 	∈ str
∧ size(qu) < mx ∧ x 	∈ ran(qu)

then qu := qu ← x end;
Cns = select qu 	= [] then

qu := tail(qu) ‖
str := str ∪ {first(qu)} end

Fig. 1. Abstract producer-consumer Fig. 2. Refined producer-consumer

6 Conclusions

We have presented a fixpoint semantics of event systems under minimal progress
and weak fairness assumptions. Then we have proved soundness and complete-
ness of rules for deriving leads-to properties under weak fairness and minimal
progress assumptions. Finally we have proved sufficient conditions to prove a
liveness property under minimal progress in two cases of hypothesis: every event
decrements a variant under an invariant, or every event decrements a variant
and the property holds under weak fairness.

The development of our semantics is structured. First we establish a gen-
eral framework, without concerns of fairness, and we elaborate our notions of
termination and reachability. Soundness and completeness of rules for leads-to
are proved in this framework. The general framework is then instantiated to the
cases of minimal progress and weak fairness assumptions and the corresponding

A Fixpoint Semantics of Event Systems 345

results are proved. Each element in our models has a concrete representation as
a set transformer. In particular, we stress how the weak fairness assumption is
modeled by the dovetail operator.

We have stated a simple form of the variant theorem and given a simple
proof of it. We remark the usefulness of this theorem in the proofs of liveness
properties. Particularly we note the importance of conditions which guarantee
the derivation of a certain liveness property P under minimal progress if P holds
under weak fairness, and every element of the system decrements a variant. This
is a new result which gives the possibility to implement fairness in a system.

Coming back to the various forms of description and semantics of action-
based systems, we know that the program-like notation is very suitable for ef-
fective derivation of programs (e.g. action systems), while the logic-like notation
is very suitable for the specification of properties and reasoning, when it is com-
pleted by a proof system (e.g. unity, tla). The event-B formalism is in between,
in the sense that the notation is program-like, but there is a way to express prop-
erties and to consider the system as predicate transformers, i.e. in the domain of
logic reasoning. However, the semantics of action-based systems is either based
on traces of states, or on properties of predicate transformers, without formal
links between them. Here we represent both semantics in the framework of itera-
tion of set transformers, and we prove that the reachability and the termination
relations are equal under the conditions stated in the paper. We unify two fair-
ness conditions (minimal progress and weak fairness) by considering them as
various modalities to perform a fair progressing step in the system.

By using this formalization, we are able to justify the proof rules of the proof
systems already presented in other frameworks, and also we can find out other
theorems to justify new proof rules or new refinement rules, as it is done in the
last section.

As a future work, we investigate how our approach can be extended to deal
with composition of distributed event systems. Another line will be to consider
how to instantiate the general framework for strong fairness and to investigate
the links between strong fairness, weak fairness and minimal progress.

References

1. J.-R. Abrial. The B-Book, Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. J.-R. Abrial and L. Mussat. Introducing Dynamic Constraints in B. In B’98:
Recent Advances in the Development and Use of the B Method, LNCS 1393, pages
83–128. Springer-Verlag, april 1998.

3. K. R. Apt and E.-R. Olderog. Fairness in parallel programs, the transformational
approach. ACM Transactions on Programming Languages and Systems, 10(3):420–
455, 1988.

4. K. R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs.
Graduate texts in computer science. Springer-Verlag, second edition edition, 1997.

5. R.-J. Back and R. Kurki-Suonio. Decentralization of Process Nets with Central-
ized Control. In 2nd ACM SIGACT-SIGOPS Symp. on Principles of Distributed
Computing, pages 131–143, 1983.

346 H. Rúız Barradas and D. Bert

6. R.-J. Back and Q. Xu. Refinement of Fair Action Systems. Acta Informatica,
35:131–165, 1998.

7. M. Broy and G. Nelson. Adding Fair Choice to Dijkstra’s Calculus. ACM Trans-
actions on Programming Languages and Systems, 16(3):924–938, May 1994.

8. K. M. Chandy and J. Misra. Parallel Program Design. A Foundation. Addison-
Wesley, 1988.

9. K. M. Chandy and B. A. Sanders. Predicate transformers for reasoning about
concurrent computation. Science of Computer Programming, 24:129–148, 1995.

10. S. Dune. Introducing Backward Refinement into B. In ZB 2003: Formal Specifi-
cation and Development in Z an B, LNCS 2651, pages 178–196. Springer-Verlag,
June 2003.

11. S. Chouali F. Bellegarde and J. Julliand. Verification of Dynamic Constraints for B
Event Systems under Fairness Assumptions. In ZB 2002 International Conference,
LNCS 2272, pages 481–500. Springer-Verlag, january 2002.

12. E.C.R. Hehner. do Considere od: A Contribution to the Programming Calculus.
Acta Informatica, 11:287–304, 1979.

13. C. S. Jutla, E. Knapp, and J. R. Rao. A predicate transformer approach to the se-
mantics of parallel programs. In Proceedings of the Eight Annual ACM Symposium
on the Principles of Distributed Computing, pages 249–263, 1989.

14. C. S. Jutla and J. R. Rao. A Methodology for Designing Proof Rules for Fair
Parallel Programs. Formal Aspects of Computing, 9:359–378, 1997.

15. E. Knapp. A predicate transformer for progress. Information Processing Letters,
33:323–330, 1989.

16. L. Lamport. The Temporal Logic of Actions. ACM Trans. Program. Lang. Syst.,
16(3):872–923, 1994.

17. Z. Manna and A. Pnueli. Completing the temporal picture. Theoretical Computer
Science, 83(1):97–130, 1991.

18. Z. Manna and A. Pnueli. The Temporal logic of reactive and concurrent systems :
specification . Springer, 1992.

19. D. Meier and B. A. Sanders. Composing leads-to properties. Theoretical Computer
Science, 243:339–361, 2000.

20. G. Nelson. A Generalization of Dijkstra’s Calculus. ACM Transactions on Pro-
gramming Languages and Systems, 11(4):517–561, October 1989.

21. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, 6:319–340, 1976.

22. D. Park. A predicate transformer for weak fair iteration. In Proceedings of the
6th IBM Symposium on Mathematical Foundations in Computer Science, Hakone,
Japan, pages 257–275. IBM, 1981.

23. H. Rúız-Barradas and D. Bert. Specification and Proof of Liveness Properties under
Fairness Assumptions in B Event Systems. In Integrated Formal Methods, Third
International Conference IFM 2002, LNCS 2335, pages 360–379. Springer-Verlag,
May 2002.

24. H. Rúız-Barradas and D. Bert. Propriétés dynamiques avec hypothèses d’équité en
B événementiel. In AFADL’2004, pages 299–313. LIFC, Besançon, France, 2004.

25. H. Rúız-Barradas and D. Bert. A Fixpoint Semantics of Event Systems with and
without Fairness Assumptions. Technical report, LSR-IMAG, Grenoble, 2005.

26. H. Rúız-Barradas and D. Bert. Proof Obligations for Specification and Refinement
of Liveness Properties under Weak Fairness. Technical Report 1071-I LSR 20,
LSR-IMAG, Grenoble, 2005.

27. B. A. Sanders. Eliminating the Substitution Axiom from UNITY Logic. Acta
Informatica, 3:189–205, 1991.

Consistency Checking of Sequence Diagrams and
Statechart Diagrams Using the π-Calculus

Vitus S.W. Lam and Julian Padget

Department of Computer Science, University of Bath
{lsw, jap}@cs.bath.ac.uk

Abstract. UML 2.0, like UML 1.x, provides only a set of notations for
specifying different aspects of a system. The problem of checking consis-
tency between various types of models in software development is still
not fully addressed. In this paper, we suggest the use of an algebraic
approach for verifying whether consistency between sequence diagrams
and statechart diagrams is preserved. First, statechart diagrams are en-
coded in the π-calculus. Then, each object in a sequence diagram is
translated into its equivalent π-calculus definitions and verified against
the corresponding statechart diagram represented in the π-calculus using
the Mobility Workbench. The applicability of the proposed approach is
illustrated with an agent-based payment protocol.

1 Introduction

In the Unified Modeling Language (UML) [15, 16], the dynamic behaviour of a
model is represented using various types of diagrams including statechart dia-
grams and sequence diagrams. A statechart diagram specifies the complete life-
cycle of an object, whereas a sequence diagram specifies the partial lifecycle of
each object which takes part in an interaction. Due to the existence of two model
views as well as different model versions, inconsistency between statechart dia-
grams and sequence diagrams occurs inevitably during the software development
and software evolution processes. To ensure intra-model consistency (horizontal
consistency [22]) is preserved in software development, this paper explores how
the open bisimulation of the π-calculus [14, 12] is used for checking that a set of
sequence diagrams is consistent with a corresponding set of statechart diagrams.

The remainder of the paper is organized as follows. Section 2 reviews related
work. Section 3 gives a brief overview of sequence diagrams and statechart dia-
grams. Section 4 summarizes the major concepts of the π-calculus. The encoding
of sequence diagrams and statechart diagrams in the π-calculus is described in
Sections 5 and 6, respectively. Section 7 discusses the consistency checks between
sequence diagrams and statechart diagrams. Concluding remarks are given in
Section 8.

2 Related Work

There have been a number of attempts such as [6, 26, 25, 21, 4, 5, 3] on (i) generat-
ing a model from another type of model; and (ii) checking the consistency of dif-

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 347–365, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

348 V.S.W. Lam and J. Padget

ferent types or versions of models. Approaches for generating statechart diagrams
from a set of collaboration diagrams and synthesizing statechart diagrams from a
collection of sequence diagrams are proposed in [6] and [26, 25], respectively.

Tsiolakis and Ehrig [21] use attributed graphs, graphical constraints and at-
tributed graph grammars for checking consistency between class diagrams and
sequence diagrams. Class diagrams are mapped to attributed graphs and graphi-
cal constraints and sequence diagrams are translated into attributed graph gram-
mars. A class diagram is consistent with a sequence diagram if all the generated
graphs of the attributed graph grammar coincide with the attributed graph and
graphical constraints.

Engels et al. [4] propose an approach for checking consistency between (i) cap-
sule statecharts and (ii) capsule statechart and protocol statechart. A capsule,
which is regarded as a stereotyped active class [4], may have a number of ports
linked up by connectors for communicating with other capsules. A capsule stat-
echart associated with a capsule depicts how the capsule responds to various
received signals, while a protocol statechart associated with a connector defines
the sequence of signals exchanged through the connector between two capsules.

In [3], the evolution consistency between different versions of UML-RT mod-
els is analyzed using Communicating Sequential Processes (CSP). Likewise, En-
gels et al. in [5] determine the consistency between an old capsule statechart and
a new capsule statechart of UML-RT models by verifying that the old capsule
statechart is a refinement of the new capsule statechart. Unlike these previous
studies [6, 26, 25, 21, 4, 5, 3], our work focuses on the verification of consistency
between sequence diagrams and statechart diagrams using an algebraic approach.

Closely related work on the preservation of consistency between sequence di-
agrams and statechart diagrams includes [22, 2, 1]. Van Der Straeten et al. [22]
transform class diagrams, sequence diagrams and statechart diagrams into de-
scription logic for checking consistency between different versions of these dia-
grams. Engels et al. [2] verify the consistency of sequence diagrams and state-
chart diagrams using dynamic meta modelling (DMM) rules. In contrast to [22, 2]
which implement the consistency checks using description logic and testing, our
approach is based on the open bisimulation of the π-calculus. In addition, our
approach supports (i) incremental consistency checks by allowing a partial model
i.e. an object of a sequence diagram to verify against its corresponding statechart
diagram; and (ii) UML 2.0 instead of UML 1.x.

Dumond et al. [1] adopt the π-calculus as the underlying formalism for con-
sistency checking. However, our work is significant different from their study as:

(i) our encoding of sequence and statechart diagrams is different;
(ii) we formally define the translation rules of sequence diagrams in terms of

the π-calculus;
(iii) no translation rules of statechart diagrams are given in [1] and it is not

clear how complete their transformation is;
(iv) an evaluation of our proposed approach by a case study is provided;
(v) only UML 1.x is considered in [1]; and
(vi) consistency between sequence and statechart diagrams is not formally spec-

ified in [1].

Consistency Checking of Sequence Diagrams and Statechart Diagrams 349

3 Behavioural Modelling in UML 2.0

Sequence diagrams and statechart diagrams, which are behavioural diagrams of
UML, are graphical notations for modelling the dynamic aspects of a system. A
sequence diagram shows in temporal order how interactions between a set of ob-
jects are represented as a sequence of messages exchanged. A statechart diagram
specifies how an object responds to various events throughout its lifetime.

Figures 1–9 are sequence diagrams that model an extended SET/A proto-
col [10]. The SET/A protocol [19], which is an agent-based payment protocol
based on Secure Electronic Transaction (SET) [11], provides a secure credit card
payment in a mobile computing environment. The mobile agent travels from the
cardholder’s computer to the merchant’s server, sends a purchase request to the
merchant upon arriving at the merchant’s server and waits for a response. On
receipt of a response, the mobile agent departs the merchant’s server and travels
back to the cardholder’s computer. To ensure that a transaction is resilient to
the failure of the mobile agent, an extended SET/A which allows the cardholder
to send an inquiry request directly to the merchant is proposed in [10].

Unlike UML 1.x [15], there is a rectangular frame around a sequence diagram
in UML 2.0 [16]. The name of an interaction represented by the sequence diagram
is in the upper left corner of the frame. It starts with a keyword sd as shown in
Figures 1–9. An object is denoted as a rectangle. The objects, which take part in
an interaction, are placed across the top of the sequence diagram. The dashed line
connecting to an object represents the lifeline of the object. An asynchronous
message visualized as an open arrow specifies a communication between two

Fig. 1. A normal transaction of extended SET/A

350 V.S.W. Lam and J. Padget

objects. When compared with UML 1.x, UML 2.0 supports the reuse of an
interaction through an interaction occurrence. The interaction operator ref of an
interaction occurrence, like sd, is in the upper left corner of the frame. Similarly,
the interaction operator alt introduced in UML 2.0 signifies a choice between a
number of interaction fragments separated by dashed lines.

The sequence diagram Transaction in Figure 1 describes a normal transac-
tion of the extended SET/A protocol. It consists of five objects that are instances
of classes Environment, Cardholder, Agent, Merchant and Paygate. An interac-
tion begins by referring to interaction occurrences DispatchRequest (Figure 4)
and InitRequest (Figure 5). Asynchronous messages are sent from the object
merchant to the object agent, the object agent to the object merchant and the
object merchant to the object paygate, respectively. Two choices of behaviour,
which represent positive and negative responses of the objects paygate, merchant
and agent, are modelled as two interaction fragments using the interaction op-
erator alt.

Figures 2 and 3 illustrate how the failures of the agent which are exceptional
transactions of the extended SET/A protocol are specified as sequence diagrams.
Figure 2, which refers to Figures 4, 6 and 7, depicts how the agent fails while

Fig. 2. Agent fails while travelling

Fig. 3. Agent fails after arriving the merchant’s server

Consistency Checking of Sequence Diagrams and Statechart Diagrams 351

Fig. 4. A dispatch request

Fig. 5. An initialization request

Fig. 6. An agent failure (while travelling)

travelling to the merchant’s server. Figure 3, which refers to Figures 4, 8 and 9,
shows how the agent fails after arriving the merchant’s server.

Figures 10–13 show the statechart diagrams of the cardholder, agent, mer-
chant and payment gateway. In statechart diagrams there are two basic entities:
state and transition. CBrowseCatalog and CWaitPchaseRespn in Figure 10 are
basic states. The arrow between the source state CBrowseCatalog and the tar-

352 V.S.W. Lam and J. Padget

Fig. 7. A negative inquiry response (while travelling)

Fig. 8. An agent failure (after arriving)

Fig. 9. A negative inquiry response (after arriving)

get state CWaitPchaseRespn is a notation for a transition. On receipt of an
event cPchaseReq, the state CBrowseCatalog is exited, an event cDpatchReq is
sent to the object agent and the state CWaitPchaseRespn is entered. The card-
holder continues to wait in state CWaitPchaseRespn for a dispatch response or
timeout event. Depending on whether a positive or negative dispatch response
is received, the cardholder enters either a commit or an abort state and the

Consistency Checking of Sequence Diagrams and Statechart Diagrams 353

Fig. 10. Statechart diagram of the cardholder

���������	
�����

���
���
����������������

������

��
��

�������

���������	��

���������	��

��������	
�����

���
���
�����������������

���	

��������

��������������

���������

����������	��

���	
!�	�

�����"�����

���
���
����������"

�����#�����

���
���
����������#

��������������

����������������$

��������������

����������������� �������������

������������

����	��

�%�&

�������������

�!����'(�������

����������������

�����"�����

���
���
����������"

Fig. 11. Statechart diagram of the agent

transaction terminates. A timeout1 event is generated if the agent fails while
travelling to the merchant’s server, a timeout2 event is generated if the agent
crashes after arriving at the merchant’s server. An inquiry request is sent to the
merchant whenever a timeout (timeout1 or timeout2) occurs. Upon receiving an
inquiry response from the merchant, the transaction terminates.

ATravel in Figure 11 is a non-concurrent composite state which only one of
its direct substates is active at a time. The arrow which connects the source state
APchaseTravel to the target state AArvd is an interlevel transition. It exits the
state APchaseTravel and enters the substate AArvd by crossing the borders of
the non-concurrent composite state ABusy.

The agent (Figure 11) travels from the cardholder’s computer to the mer-
chant’s server across the network upon receipt of the dispatch request (cD-
patchReq). After arriving at the merchant’s server, the agent recommences exe-
cution, generates an initialization request (aInitReq), waits for an initialization
response (mInitRespn) and returns a purchase request (aPchaseReq) to the mer-
chant. On receiving a positive or negative purchase response, the agent departs
the merchant’s server, travels back to the cardholder’s computer and returns a
positive or negative dispatch response to the cardholder.

354 V.S.W. Lam and J. Padget

)�����������

)������������

)�
��

)������

)�����

)������ ����

��� �� "�����

���
���
��������� ����

������� ����

���������������

���������������

���
���
�������� ����

��� �� "�����

���
���
�������� ����

����������������

���
���
��������� ����

����������������

������������������

�������� �����
���&������������

��� �� #�����

���
���
��������� ����

�������$

�����������������

�������������������

��� �� "�����

���
���
���

������ ����

��� �� #

)�����������

)��� �� #

)�������$

)����������

��� �� #�����

���
���
��������� ����

�������$

��� �� #�����

���
���
��������� ����

Fig. 12. Statechart diagram of the merchant

PIdle

PVer i fyAuthReq
PCommi t

PAbor t
mAuthReq

issuApproved /
send merchant .pPosAuthRespn

issuNotApproved /
send merchant .pNegAuthRespn

Fig. 13. Statechart diagram of the payment gateway

Upon receiving the initialization request (aInitReq), the merchant (Figure 12)
generates an initialization response (mInitRespn), blocks until a purchase re-
quest (aPchaseReq) is received, sends an authorization request (mAuthReq) to
the payment gateway and returns a purchase response to the agent when an
authorization response is received from the payment gateway.

The payment gateway (Figure 13) returns either a positive or negative au-
thorization response to the merchant according to the issuer’s approval code.

4 The π-Calculus

The π-calculus is a process algebra for specifying concurrent systems in which the
processes communicate over channels. As many variants of the π-calculus have
been proposed, we briefly review the syntax and semantics of the π-calculus in
this section. The reader is referred to [13, 17] for details.

We let A be a set of processes ranged over by P, Q, R, N be a set of channels
(names) ranged over by x, y and * be a set of process identifiers. A tuple of
channels x1, x2, . . . , xn is abbreviated to �x. The syntax and semantics of π-
calculus process expressions are defined as follows:

Consistency Checking of Sequence Diagrams and Statechart Diagrams 355

x(�y).P : is an input prefix which receives channels along channel x and continues
as process P with y1, y2, . . . , yn replaced by the received channels. The input
prefix x().P is abbreviated as x.P .

x〈�y〉.P : is an output prefix which sends channels y1, y2, . . . , yn along channel x
and continues as process P . The output prefix x〈〉.P is abbreviated as x.P .

P |Q : represents concurrent processes P and Q are executing in parallel.
P + Q : represents a non-deterministic choice which either process P or Q pro-

ceeds. Σn
i=1Pi abbreviates P1 + . . . + Pn.

(ν�x)P : is a restriction which creates new channels x1, x2, . . . , xn used for com-
munication in process P .

[x = y]P : is a matching construct which proceeds as process P if channels x
and y are identical; otherwise, behaves like a null process.

τ.P : is an unobservable prefix which performs an internal action τ and continues
as process P.

A(x1, x2, . . . , xn) def= P : denotes a process identifier A which takes n parameters
and behaves like process P. Process P may contain occurrences of A.

The input prefix x(�y).P and restriction operator (ν�x)P bind �y and �x in P ,
respectively. Unlike the input prefix, the channels �y in output prefix x〈�y〉.P are
free. The bound names and free names of P are defined as bn(P) and fn(P). The
expression fn(P) ∪ fn(Q) is abbreviated as fn(P, Q).

In the π-calculus, the notion of open bisimulation is used for determining
whether two π-calculus processes are equivalent. Depending on the treatment of
the internal actions, open bisimulation is classified into strong open bisimulation
and weak open bisimulation. Weak open bisimulation is coarser as it does not
differentiate between two π-calculus processes which differ from each other in
sequences of internal actions.

5 Encoding Sequence Diagrams in the π-Calculus

In this section, we extend our previous work [9] by providing a theoretical foun-
dation for the analysis and reasoning about the behaviour of sequence diagrams.
An examination on how a subset of sequence diagrams are modelled in the π-
calculus is given. The formalization is only limited to notational elements which
are relevant to this paper. We do not consider synchronous messages, object
creation and object destruction.

Rule 1. Given an object o1 is an instance of class C1. The receipt of an asyn-
chronous message e1 as exemplified in Figure 14 is modelled in the π-calculus as:

S1(evento1 , �e)
def=

evento1(x).
([x = e1]S2(evento1 , �e) +
Σi
=1[x = ei]S1(evento1 , �e))

356 V.S.W. Lam and J. Padget

Fig. 14. An incoming asynchronous message

The processes S1(evento1 , �e) and S2(evento1 , �e) represent, respectively, the states
of the object o1 before and after the message e1 is received. The process
S1(evento1 , �e) waits on channel evento1(x) for an event. If an event e1 is re-
ceived, it evolves to process S2(evento1 , �e). Otherwise, it proceeds as itself.

Rule 2. Given two objects o1 and o2 are instances of classes C1 and C2, re-
spectively. The receipt of an asynchronous message e1 by the object o1 and the
sending of an asynchronous message e2 to the object o2 as shown in Figure 15
are encoded in the π-calculus as:

S1(evento1 , �e, evento2)
def=

evento1(x).
([x = e1]evento2〈e2〉.S2(evento1 , �e, evento2) +
Σi
=1[x = ei]S1(evento1 , �e, evento2))

Upon receipt of an event e1, the process S1(evento1 , �e, evento2) outputs an event
e2 on channel evento2 and continues as process S2(evento1 , �e, evento2).

Fig. 15. Incoming and outgoing asynchronous messages

Rule 3. Given an object o1 of class C1. The receipt of asynchronous messages
e1 and e2 in an alternative combined fragment which corresponds to a choice
between two alternatives as illustrated in Figure 16 is implemented in the π-
calculus as:

S1(evento1 , �e)
def=

evento1(x).
([x = e1]S2(evento1 , �e) +
[x = e2]S3(evento1 , �e) +
Σi/∈{1,2}[x = ei]S1(evento1 , �e))

Consistency Checking of Sequence Diagrams and Statechart Diagrams 357

Fig. 16. An alt interaction operator

The interaction operator alt is represented in the π-calculus as a non-
deterministic choice. Depending on whether event e1 or e2 is received, the
process S1(evento1 , �e) proceeds as either process S2(evento1 , �e) or S3(evento1 , �e).

Example 1. We now illustrate how part of the sequence diagram Transaction,
which is related to the object cardholder, is translated into the π-calculus. To make
the π-calculus specifications easier to read, we define an abbreviation as follows:

ẽC1 = cPchaseReq, cDpatchReq, aPosDpatchRespn, aNegDpatchRespn

The sequence diagram DispatchRequest (Figure 4), which is referred by the
sequence diagram Transaction (Figure 1), AgentFailsWhileTravelling (Figure 2)
and AgentFailsAfterArriving (Figure 3), is described according to Rule 2 by the
following π-calculus process:

C1(eventC , ẽC1 , eventA) def=
eventC(x).
([x = cPchaseReq]eventA〈cDpatchReq〉.C2(eventC , ẽC1 , eventA) +
[x = aPosDpatchRespn]C1(eventC , ẽC1 , eventA) +
[x = aNegDpatchRespn]C1(eventC , ẽC1 , eventA))

The sequence diagram Transaction then refers to the sequence diagram Ini-
tRequest. As the object cardholder in the sequence diagram InitRequest does
not have any incoming or outgoing message, we only need to consider how the
alternative combined fragment is transformed into the π-calculus.

Based on Rule 3, the receipt of the messages aPosDpatchRespn and
aNegDpatchRespn in the alternative combined fragment of the sequence diagram
Transaction is expressed as a π-calculus process of the following form:

C2(eventC , ẽC1, eventA) def=
eventC(x).
([x = aPosDpatchRespn]C3(eventC , ẽC1 , eventA) +
[x = aNegDpatchRespn]C4(eventC , ẽC1 , eventA) +
[x = cPchaseReq]C2(eventC , ẽC1 , eventA))

Likewise, the objects agent, merchant and paygate in the sequence diagram
Transaction are translated, respectively, into the π-calculus as 8, 5 and 4 process
definitions.

358 V.S.W. Lam and J. Padget

6 Encoding Statechart Diagrams in the π-Calculus

This section presents a subset of translation rules and definitions proposed in [9,
7]. The formalizations of statechart diagrams in the π-calculus presented in [9, 7]
cover the essential notational elements including events, states, guard-conditions,
actions, non-concurrent composite states, concurrent composite states and pa-
rameterized events. Unlike our previous work [9, 7], this section focuses on the
observable behaviour of statechart diagrams rather than on the execution se-
mantics of statechart diagrams. For a formal treatment of execution semantics
including run-to-completion step, event queue, conflicting transitions and firing
priority scheme, we refer the reader to [9] for details.

We define SC as a set of statechart diagrams ranged over by F, G,H , ST as
a set of states ranged over by S,T,V,W , E as a set of events ranged over by E, Ep

as a set of parameterized events ranged over by E(p1, . . . , pn) and T R as a set
of transitions ranged over by t. In addition, an infinite set of natural numbers N

and infinite set of positive integers Z+ are assumed.

Rule 4. The function φevent : E → N maps each event in a statechart diagram
to a channel in the π-calculus.

Rule 5. The function φstate : ST → * returns a unique process identifier for
each state. Each process identifier S1(event, �e, . . .) ∈ * is defined as

event(x).([x = e1] . . . + . . . + [x = en] . . .)

where �e stands for e1, . . . , en and ∀a ∈ {�e}.φ−1
event(a) ∈ E .

Rule 4 specifies that an event is modelled as a channel in the π-calculus. The
inverse of φevent denoted by φ−1

event is a function from N to E . Rule 5 stipulates
that a state is encoded in the π-calculus as a process. The process determines
what the event is by using a number of matching constructs.

We define Ain = {x(�y)|x, �y ∈ N} to be a set of input actions and Aout =
{x〈�y〉|x, �y ∈ N} to be a set of output actions.

Definition 1. The function arity: (Ain ∪ Aout) → N returns the number of
channels which an input or output action takes as parameters.

Rule 6. A mapping between guard-conditions and output actions is defined as
φguard : GCond → {α|α ∈ Aout ∧ arity(α) = 1} where GCond is a set of
guard-conditions. The Boolean value of a guard-condition is tested by

g〈x〉.x(y).([y = true] · · · + [y = false] · · ·)
where g, x, y, true, false ∈ N and φ−1

guard(g〈x〉) ∈ GCond.

Rule 7. Each action representing the invocation of an operation or the send-
ing of a signal to an object is related to an output action in the π-calculus by
φaction :Act → Aout where Act is a set of actions.

Consistency Checking of Sequence Diagrams and Statechart Diagrams 359

Rules 6 and 7 say that the guard-condition and action of a transition are both
represented as an output action. Rule 6 defines how a guard-condition and its
evaluation are formalized. The encoding uses two matching constructs to distin-
guish between the two truth values.

Rule 8. The function φpevent : Ep → N maps a parameterized event to a chan-
nel.

Rule 9. The receipt of a parameterized event E1(p1, . . . , pn) ∈ Ep is encoded as:

event(x).([x = e1]x(p1, . . . , pn). · · · + · · · + [x = en] · · ·)

Rule 8 states that a parameterized event is translated into a channel. The pa-
rameters p1, . . . , pn of the parameterized event E1 are received along the event
channel e1 as defined by Rule 9.

Definition 2. The function substates: ST → 2ST returns the direct substates
that are directly contained in a composite state.

Rule 10. A non-concurrent composite state S1 and its active direct substate V1
are denoted as φstate(S1)|φstate(V1) where V1 ∈ substates(S1) and φstate(S1) and
φstate(V1) are defined by:

S1(eventS, �e, eventV , pos, neg) def=
eventS(x).(νack)
eventV 〈x ack〉.ack(y).([y = pos] · · · + [y = neg] · · ·)

V1(eventV , �e, pos, neg) def=
eventV (x ack).
([x = e1]ack〈value1〉. · · · + · · · + [x = en]ack〈valuen〉. · · ·)

where valuei ∈ {pos, neg} for i = 1, . . . , n.
Rules 10 specifies that a non-concurrent composite state and its active direct

substates are denoted as processes which are running in parallel. The composite
state broadcasts any received events to its substates. As the substates process
the received event before the composite state, the lowest-first firing priority of
UML semantics is preserved in our translation.

Example 2. The statechart diagrams for the cardholder, agent, merchant and
payment gateway are given in Figures 10, 11, 12 and 13, respectively. As an
illustration, we translate the states CBrowseCatalog and CWaitPchaseRespn
in Figure 10 into the π-calculus. To improve the readability of the π-calculus
specifications, an abbreviation is defined as follows:

ẽC2 = cPchaseReq, cDpatchReq, aNegDpatchRespn, aPosDpatchRespn,

timeout1, timeout2, cInqReq1, cInqReq2,mNegInqRespn,mPosInqRespn

360 V.S.W. Lam and J. Padget

According to Rules 4, 5 and 7, the state CBrowseCatalog is specified in the
π-calculus as:

CBrowseCatalog(eventC , ẽC2 , eventA, eventM) def=
eventC(x).
([x = cPchaseReq]eventA〈cDpatchReq〉.CWaitPchaseRespn(eventC, ẽC2,

eventA, eventM) +
[x = aNegDpatchRespn]CBrowseCatalog(eventC, ẽC2 , eventA, eventM) +
[x = aPosDpatchRespn]CBrowseCatalog(eventC, ẽC2 , eventA, eventM) +
[x = timeout1]CBrowseCatalog(eventC , ẽC2, eventA, eventM) +
[x = timeout2]CBrowseCatalog(eventC , ẽC2, eventA, eventM) +
[x = mNegInqRespn]CBrowseCatalog(eventC, ẽC2 , eventA, eventM) +
[x = mPosInqRespn]CBrowseCatalog(eventC , ẽC2 , eventA, eventM))

The process CBrowseCatalog inputs events on channel eventC . On receiving
the event cPchaseReq, it sends the event cDpatchReq on the channel eventA and
continues as process CWaitPchaseRespn. Otherwise, it proceeds as itself.

In the π-calculus, the state CWaitPchaseRespn and the conflicting transitions
are encoded as:

CWaitPchaseRespn(eventC, ẽC2 , eventA, eventM) def=
eventC(x).
([x = aNegDpatchRespn]CAbort(eventC, ẽC2 , eventA, eventM) +
[x = aPosDpatchRespn]CCommit(eventC, ẽC2, eventA, eventM) +
[x = timeout1]eventM〈cInqReq1〉.CWaitInqRespn(eventC, ẽC2 , eventA,

eventM) +
[x = timeout2]eventM〈cInqReq2〉.CWaitInqRespn(eventC, ẽC2 , eventA,

eventM) +
[x = cPchaseReq]CWaitPchaseRespn(eventC, ẽC2 , eventA, eventM) +
[x = mNegInqRespn]CWaitPchaseRespn(eventC, ẽC2 , eventA, eventM) +
[x = mPosInqRespn]CWaitPchaseRespn(eventC, ẽC2 , eventA, eventM))

The conflicting transitions are modelled as a non-deterministic choice which
evolves to process CAbort, CCommit or CWaitInqRespn depending on whether
the event aNegDpatchRespn, aPosDpatchRespn, timeout1 or timeout2 is received
on the channel eventC . Similarly, we translate all other states into the π-calculus.

7 Verifying Intra-model Consistency

In UML, the behaviour of a system is modelled as collections of sequence dia-
grams and statechart diagrams. This section demonstrates the use of weak open

Consistency Checking of Sequence Diagrams and Statechart Diagrams 361

bisimulation for verifying that a collection of sequence diagrams and a collection
of statechart diagrams are consistent.

We let SD be a set of sequence diagrams. We define OBJSD as a set of
objects of a sequence diagram SD ∈ SD.

Definition 3. The function φ : SC → 2� translates a statechart diagram into
the π-calculus as a set of process identifiers.

Definition 4. The function ψobj : OBJSD → 2� transforms an object o ∈
OBJSD of a sequence diagram SD ∈ SD into the π-calculus as a set of process
identifiers.

Definition 5. The function ψSD : SD → 2�, defined below, transforms a se-
quence diagram SD ∈ SD containing a set of objects OBJSD into the π-calculus
as a set of process identifiers.

ψSD(SD) =
⋃

o∈OBJSD

ψobj(o)

A statechart diagram and an object of a sequence diagram are both encoded
in the π-calculus as a set of process identifiers. The transformation of a sequence
diagram into the π-calculus is performed incrementally by converting each object
of the sequence diagram to its equivalent π-calculus representation using the
function ψobj defined in Definition 4.

Next, we introduce the name substitution function [14, 12, 17] and a number
of labelled transitions [17, 24]. Then we recall the notion of weak open bisimula-
tion [17, 23, 20, 18] in the π-calculus.

Definition 6. The name substitution function σ : N → N , written {�x/�y},
replaces each yi ∈ N by xi ∈ N for 1, . . . , n.

The syntax and semantics of labelled transitions used in the definition of
weak open bisimulation are given below:

P
α−→ P ′ : the execution of action α and process P becomes P ′.

P =⇒ P ′ : process P becomes P ′ after zero or more internal actions.
P

α=⇒ P ′ : is equivalent to P =⇒ α−→=⇒ P ′.

P
α̂=⇒ P ′ :

⎧⎨⎩P
α=⇒ P ′ if α �= τ

P =⇒ P ′ if α = τ

Definition 7 (Weak Open Bisimulation [17]). A symmetric binary relation
R on processes is a weak open bisimulation if (P, Q) ∈ R implies ∀σ whenever
Pσ

α−→ P ′ where bn(α)∩fn(Pσ, Qσ) = ∅ then, ∃Q′ : Qσ
α̂=⇒ Q′ ∧(P ′, Q′) ∈ R.

P is weakly open bisimilar to Q, written P
.≈o Q, if they are related by a weak

open bisimulation.

362 V.S.W. Lam and J. Padget

We choose open bisimulation rather than early and late bisimulations as
(i) the name instantiation of open bisimulation adopts a call-by-need approach
which greatly reduces the number of substitutions and provides an efficient
path for tool development; and (ii) the automated tool Mobility Workbench
(MWB) [23, 24] supports only open bisimulation instead of early and late bisim-
ulations.

Definition 8. For a statechart diagram F ∈ SC containing events E1, E2, . . . ,
Ej and an object o ∈ OBJSD of a sequence diagram SD consisting of mes-
sages E1, E2, . . . , Ek where j, k ∈ Z

+ and j ≥ k, the object o is consistent
with the statechart diagram F , written o obj F , iff ψobj(o)

.≈o (νφevent(Ek+1)
φevent(Ek+2). . .φevent(Ej))φ(F).

We define the consistency between an object of a sequence diagram and a
statechart diagram in terms of the weak open bisimulation [17, 23, 20, 18]. The
consistency check is limited to the common behaviour of both diagrams through
the use of a restriction.

Definition 9. For a set of statechart diagrams SCsys ⊆ SC of a system sys
which contains statechart diagrams Fi for i = 1, . . . , n and a sequence dia-
gram SD which consists of objects oi for i = 1, . . . , n, the sequence diagram
SD is consistent with the set of statechart diagram SCsys, written SD SD

SCsys, iff
∧n

i=1(oi obj Fi).

Definition 10. Given a system sys consisting of a set of statechart diagrams
SCsys ⊆ SC and a set of sequence diagrams SDsys ⊆ SD ranged over by SDi for
i = 1, . . . , n, the set of sequence diagrams is consistent with the set of statechart
diagrams, written as SDsys sys SCsys, iff

∧n
i=1(SDi SD SCsys).

A sequence diagram and a set of statechart diagrams are consistent provided
that each object of the sequence diagram is consistent with its corresponding
statechart diagram in the set of statechart diagrams. Similarly, a set of sequence
diagrams and a set of statechart diagrams are consistent if and only if each se-
quence diagram is consistent with the set of statechart diagrams.

Example 3. To verify the object cardholder of the sequence diagram Trans-
action (Figure 1) is consistent with the statechart diagram of the cardholder
(Figure 10), we need to prove that the equivalence

C1(eventC , ẽC1 , eventA)
.≈o

(νtimeout1 timeout2 cInqReq1 cInqReq2 mNegInqRespn
mPosInqRespn eventM)

CBrowseCatalog(eventC , ẽC2 , eventA, eventM)

This statement of equivalence based on Definition 8 checks whether the cor-
responding π-calculus specifications of the object cardholder of the sequence
diagram Transaction and statechart diagram of the cardholder are weakly open
bisimilar or not.

Consistency Checking of Sequence Diagrams and Statechart Diagrams 363

Table 1. Performance of equivalence checking

Statechart Diagrams
payment

cardholder agent merchant gateway
Sequence Diagrams
Transaction
cardholder 0.000 - - -
agent - 0.859 - -
merchant - - 0.078 -
paygate - - - 0.000

AgentFailsWhileTravelling
cardholder 0.016 - - -
agent - 0.016 - -
merchant - - 0.000 -

AgentFailsAfterArriving
cardholder 0.016 - - -
agent - 0.047 - -
merchant - - 0.000 -

In order to prove the equivalence automatically, the π-calculus specifications
are imported into the MWB. Table 1 shows the real time elapsed for the equiv-
alence checking in seconds is 0.000. The value 0.000 means that an equivalence
check finishes in a very short time which tends to zero. The test runs under
Windows XP on a 2.4 GHz Pentium 4 PC with 512 MB of memory using MWB
3.122.

By a similar line of reasoning, we prove that the objects agent, merchant and
payment gateway of the sequence diagram Transaction are weakly open bisim-
ilar to the statechart diagrams of the agent, merchant and payment gateway,
respectively. The results for the equivalence checks are given in Table 1. Apply-
ing Definition 9, we prove that the sequence diagram Transaction is consistent
with the set of statechart diagrams of the extended SET/A protocol.

Likewise, we check that the sequence diagrams AgentFailsWhileTravelling
and AgentFailsAfterArriving are consistent with the set of statechart diagrams
of the extended SET/A protocol. Based on Definition 10, we conclude that the
set of sequence diagrams and the set of statechart diagrams are consistent with
respect to the extended SET/A protocol.

8 Conclusions

One of the challenges of UML is how to maintain intra-model consistency (hor-
izontal consistency). In this paper, we have introduced three notions of consis-
tency between (i) an object of a sequence diagram and a statechart diagram;
(ii) a sequence diagram and a set of statechart diagrams; and (iii) a set of se-
quence diagrams and a set of statechart diagrams. The consistency checking
problem between sequence diagrams and statechart diagrams is transformed into

364 V.S.W. Lam and J. Padget

a problem of verifying whether the corresponding π-calculus specifications are
weakly open bisimilar or not using the MWB. A running example, which is an
agent-based payment protocol, has been given for illustrating that the proposed
approach works in practice. Following the approach of SC2PiCal [8] which trans-
lates statechart diagrams into the π-calculus, we are currently developing a tool
for transforming sequence diagrams into equivalent π-calculus representations.

References

1. Y. Dumond, D. Girardet, and F. Oquendo. A relationship between sequence and
statechart diagrams. In UML 2000, 2000. http://www.disi.unige.it/person/
ReggioG/UMLWORKSHOP/Girardet.pdf ; accessed August 12, 2005.

2. G. Engels, J. Hausmann, R. Heckel, and S. Sauer. Testing the consistency
of dynamic UML diagrams. In IDPT 2002, 2002. http://wwwcs.upb.de/cs/
ag-engels/Papers/2002/EngelsHHS-IDPT02.pdf; accessed February 9, 2005.

3. G. Engels, R. Heckel, J.M. Küster, and L. Groenewegen. Consistency-preserving
model evolution through transformations. In UML 2002, LNCS 2460, pages 212–
227, 2002.

4. G. Engels, J.M. Küster, R. Heckel, and L. Groenewegen. A methodology for
specifying and analyzing consistency of object-oriented behavioral models. In
ESEC/SIGSOFT FSE 2001, pages 186–195. ACM Press, 2001.

5. G. Engels, J.M. Küster, R. Heckel, and L. Groenewegen. Towards consistency-
preserving model evolution. In Proceedings of the International Workshop on Prin-
ciples of Software Evolution, pages 129–132. ACM Press, 2002.

6. I. Khriss, M. Elkoutbi, and R. Keller. Automating the synthesis of UML statechart
diagrams from multiple collaboration diagrams. In UML 1998, LNCS 1618, pages
132–147, 1999.

7. V.S.W. Lam and J. Padget. Consistency checking of statechart diagrams of a
class hierarchy. To appear in Proceedings of 19th European Conference on Object-
Oriented Programming.

8. V.S.W. Lam and J. Padget. An integrated environment for communicating UML
statechart diagrams. To appear in Proceedings of 3rd ACS/IEEE International
Conference on Computer Systems and Applications.

9. V.S.W. Lam and J. Padget. On execution semantics of UML statechart diagrams
using the π-calculus. In Proceedings of the International Conference on Software
Engineering Research and Practice, pages 877–882. CSREA Press, 2003.

10. V.S.W. Lam and J. Padget. Formal specification and verification of the SET/A
protocol with an integrated approach. In Proceedings of 2004 IEEE International
Conference on E-Commerce Technology, pages 229–235. IEEE Computer Society,
2004.

11. MasterCard and VISA. SET Secure Electronic Transaction Books 1–3, May 1997.
12. R. Milner. The polyadic π-calculus: A tutorial. In Logic and Algebra of Spec-

ification, Proceedings of International NATO Summer School, volume 94, pages
203–246. Springer-Verlag, 1993.

13. R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, 1999.

14. R. Milner, J. Parrow, and D. Walker. A calculus of mobile process (Parts I and
II). Information and Computation, 100:1–77, 1992.

Consistency Checking of Sequence Diagrams and Statechart Diagrams 365

15. OMG. OMG Unified Modeling Language specification version 1.5, March 2003.
http://www.omg.org; accessed January 20, 2005.

16. OMG. UML 2.0 superstructure specification, August 2003. http://www.omg.org;
accessed January 20, 2005.

17. J. Parrow. An introduction to the π-calculus. In A. Bergstra, J.A. Ponse and S.A.
Smolka, editors, Handbook of Process Algebra, chapter 8, pages 479–543. Elsevier
Science, 2001.

18. P. Quaglia. The π-calculus: Notes on labelled semantics. Bulletin of the EATCS,
68, June 1999.

19. A. Romão and M.M. da Silva. An agent-based secure internet payment system for
mobile computing. In Proceedings of TREC ’98, LNCS 1402, pages 80–93, 1998.

20. D. Sangiorgi. A theory of bisimulation for the π-calculus. In CONCUR ’93, LNCS
715, pages 127–142, 1993.

21. A. Tsiolakis and H. Ehrig. Consistency analysis between UML class and sequence
diagrams using attributed graph gammars. In Proceedings of GraTra 2000 - Joint
APPLIGRAPH and GETGRATS Workshop on Graph Transformation Systems,
pages 77–86, 2000.

22. R. Van Der Straeten, T. Mens, J. Simmonds, and V. Jonckers. Using description
logic to maintain consistency between UML models. In UML 2003, LNCS 2863,
pages 326–340, 2003.

23. B. Victor. A Verification Tool for the Polyadic π-Calculus. Department of Com-
puter Systems, Uppsala University, 1994. Licentiate thesis.

24. B. Victor and F. Moller. The mobility workbench: A tool for the π-calculus. In
CAV ’94, LNCS 818, pages 428–440, 1994.

25. J. Whittle and J. Schumann. Generating statechart designs from scenarios. In
Proceedings of the 22nd International Conference on Software Engineering, pages
314–323, 2000.

26. T. Ziadi, H. Hélouët, and Jean-Marc Jézéquel. Revisiting statechart synthesis
with an algebraic approach. In Proceedings of the 26th International Conference
on Software Engineering, pages 242–251, 2004.

An Integrated Framework for
Scenarios and State Machines

Bikram Sengupta1 and Rance Cleaveland2

1 IBM India Research Laboratory,
Block 1, Indian Institute of Technology,

Hauz Khas, New Delhi - 110016
bsengupt@in.ibm.com

2 Department of Computer Science,
SUNY at Stony Brook, Stony Brook, NY 11794-4400, USA

rance@cs.sunysb.edu

Abstract. This paper develops a semantic framework for interpreting heteroge-
neous system specifications consisting of a mixture of scenario-based require-
ments and state-based design. Such specifications arise naturally in spiral- and
refinement-based development methodologies in which parts of a system have
detailed designs while others exist in more abstract form as a collection of re-
quirements. More precisely, we consider the scenario-based notation of Triggered
Message Sequence Charts (TMSCs) and the state-based notation of Communicat-
ing State Machines (CSMs), and show how they may be integrated in a semantic
framework that is founded on the mathematical theory of acceptance trees. Our
semantic theory is also equipped with a robust notion of refinement, which allows
us to relate one heterogeneous specification with another. A case-study serves to
illustrate the utility of our framework as a basis for the principled evolution of
higher-level requirements to lower-level operational specifications.

Keywords: scenarios, state-machines, heterogeneous specifications, refinement
orderings.

1 Introduction

Ample motivations exist for heterogeneous specifications that feature a mixture of high-
level requirements and lower-level design artifacts . For example, in spiral system-
development processes, requirements elicitation and system design often proceed hand
in hand, with new requirements being added into specifications that contain signifi-
cant design content. Again, intermediate stages of refinement-based strategies typically
contain mixtures of designs and requirements, while the earliest phases of component-
based software processes include both requirements for the eventual system to be imple-
mented and detailed models of existing components to be used in the implementation.
Finally, the Unified Modeling Language (UML) [13] supports notations for both re-
quirements modeling (sequence diagrams) and operational design (state machines); for
a truly “unified” framework, these notations should seamlessly integrate.

Any sort of precise reasoning about such heterogeneous specifications would re-
quire a formal semantic theory for uniformly interpreting and relating the constituent

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 366–385, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Integrated Framework for Scenarios and State Machines 367

notations. While there have been several efforts towards formalizing individual require-
ments/design languages (e.g. [2, 11]), research in the area of heterogeneous specifica-
tions has remained largely confined to the more theoretical domains of process algebra,
temporal logic and mu-calculus (e.g. [18, 5, 17, 20]). However, given the flexibility that
an integrated framework for requirements and design may bring to the development pro-
cess, it is important to explore how the ideas from theoretical research may be adapted
to more accessible notations used in practice.

The goal of this paper is to propose such a framework for system specifications
consisting of a mixture of higher-level scenario-based requirements and lower-level
state-machine-based subsystem designs. More precisely, we consider the problem of in-
terweaving scenario-based requirements given as Triggered Message Sequence Charts
(TMSCs) [25] and subsystem designs given as Communicating State Machines (CSMs),
and show how they may be freely mixed in a semantic framework that is founded on
acceptance trees [14]. The rest of the paper is structured as follows. Section 2 reviews
relevant background information, while Section 3 details considerations for the formal
combination of TMSCs and CSMs. Section 4 presents a language for defining hetero-
geneous system specifications based on TMSCs and CSMs, and introduces our notion
of refinement. Section 5 uses a simple case study derived from an actual automated car-
diopulmonary resuscitation device to highlight the utility of our theory. Section 6 then
gives our acceptance-tree semantics for this language, while the remaining sections dis-
cuss related work, and offer our conclusions and directions for future research.

2 Background

In this section, we introduce the TMSC and CSM notations and the main ideas behind
the acceptance tree semantic model.

out(I1, I2, a)

loc(I1, l2)

end(I1)
end(I1)

in(I1, I2, a)

end(I2)
loc(I1, l1)

I1 I2 I3

a

b

c

d la

A1 A2

(b) An Example CSM(a) An Example TMSC

Fig. 1. An Example TMSC and CSM

Triggered Message Sequence Charts: TMSCs have been proposed in [25] as a
scenario-based visual formalism for distributed systems. Like Message Sequence Charts
(MSCs) ([2],[21]), TMSCs describe system scenarios in terms of the sequence of atomic
events (message sends and receives, and local actions) that each parallel process (or in-
stance) may engage in. The key novelty of TMSCs is that they enrich the MSC notation
with capabilities to express conditional and partial behavior.

368 B. Sengupta and R. Cleaveland

Graphically, we represent TMSCs as in Fig. 1a. There are two new features in the
visual syntax of TMSCs when compared to traditional MSCs. The first is the dashed
horizontal line running through the instances, which partitions the sequence of events on
an instance’s axis into two subsequences: the first, located above the line, constitutes the
instance’s trigger, and the second, below the line, constitutes its action. This partition,
in effect, forms the basis of a conditional scenario: for each instance, the execution of
the action is conditional on the occurrence of the trigger. In other words, the behavior of
the instance is constrained to its action only when it has executed its trigger; otherwise,
there are no restrictions. The second new feature in a TMSC is the presence/absence of
a small bar at the foot of each instance. The presence of such a bar (as in instance I1
in Fig 1a) indicates that the instance cannot proceed beyond this point in the TMSC,
while the absence (as in instance I2) means that the behavior of this instance beyond
the TMSC is left unspecified i.e. there are no constraints on its subsequent behavior.
Such a scenario is thus partial, and may be extended in future.

The TMSC in Fig.1a may be read as follows: “If I1 sends a to I2, then it should
receive b from I2 and terminate; if I2 receives a from I1 and c from I3, then it should
send b to I1 and d to I3, and its subsequent behavior is left unspecified; if I3 sends c to
I2 and receives d from I2, then it should perform the local-action la and terminate”.

Note that the instances are assumed to communicate asynchronously, and the trig-
ger/action requirements are localized to each instance; also, a traditional MSC would
correspond to an equivalent TMSC scenario where the trigger of each instance is empty,
and all the instances terminate.

Communicating State Machines: In contrast to scenario-based notations that specify
a system by depicting the interactions between the instances, state-based notations like
Communicating State Machines (CSMs) [10] describe the behavior of the individual
instances, with the parallel composition of these machines then describing the system
behavior. An example CSM is shown in Fig. 1b. There are two instances in this CSM,
I1 and I2, which are assumed to communicate asynchronously. A1 and A2 are automata
describing the behaviors of I1 and I2 respectively. The transitions are labeled by events,
where: out(I1, I2, a) corresponds to the sending of message a by I1 to I2; in(I1, I2, a)
represents the reception of a from I1 by I2; loc(I1, l) denotes the performance of a local
action l by I1; and end terminates an instance.

Acceptance Trees: Acceptance trees and the must preorder arise in the theory of testing
of concurrent processes given in [14]. In this theory, tests, which may also be thought
of as processes that are capable of reporting “success”, interact with a process under
test. When processes and tests are nondeterministic, a process may be capable both of
passing and failing a test, depending on how nondeterministic choices are resolved. A
process must pass a test if, regardless of how such choices are made, the process passes
the test. One process refines another with respect to the must preorder if it must pass
every test that the less refined process must. We now present some of the theory of this
relation in a simplified setting in which there are no (1) unobservable actions and (2)
divergent processes. We use an alternative characterization of the must preorder that is
given in terms of the processes themselves, rather than tests. Specifically, the must pre-
order may be characterized in terms of acceptance sets when the processes are given as
Labeled Transitions Systems (LTSs).

An Integrated Framework for Scenarios and State Machines 369

T [L1]
T [L2]

a a

b c

L1

{∅}

⇒ a

b c

{{b}, {c}, {b, c}}

⊇

L2

{∅}

a

b c

{{a}}

{{b, c}}
⇐ a

b c

{{a}}

{∅}{∅}

Fig. 2. The must preorder: L1 �must L2

Definition 1. Let P = 〈P, E,−→, pI〉 be a Labeled Transition System (LTS),where P
is a set of states, E a set of events, −→⊆ P ×E×P the transition relation, and pI ∈ P
the start state. Then, for p ∈ P and w ∈ E∗. the following may be defined.

L(P) = {w ∈ E∗ | ∃p′ ∈ P.pI
w−→ p′} (Language)

SP(p) = {a | ∃p′ ∈ P.p
a−→ p′} (Successors)

Acc(P , w) = {SP(p′) | pI
w−→ p′} (Acceptance set)

The language of a system contains its “execution sequences”, while the successors of a
state are the events enabled in the state. The acceptance set of a system after a sequence
of events is a measure of nondeterminism: for each state reachable via w from the start
state of P , Acc(P , w) contains as an element, the events that are enabled in that state.

We now define a saturation operator, sat, on acceptance sets. Let A ⊆ 2E; then
sat(A) is the least set satisfying:

1. A ⊆ sat(A).
2. If A1, A2 ∈ sat(A) then A1 ∪ A2 ∈ sat(A).
3. If A1, A2 ∈ sat(A) and A1 ⊆ A ⊆ A2, then A ∈ sat(A).

The alternative characterization of "must can now be given as follows [14].

Theorem 1. Let P1 = 〈P1, E1,−→1, pI1〉 and P2 = 〈P2, E2, −→2, pI2〉 be two LTSs,
and let E = E1 ∪ E2. Then P1 "must P2 iff for all w ∈ E∗, sat(Acc(P1, w)) ⊇
sat(Acc(P2, w)).

Intuitively, P2 refines P1 if it has “less nondeterminism.” This alternative characteri-
zation forms the basis for representing processes as acceptance trees [14], which map
sequences of events to acceptance sets.

Definition 2. Let E be a finite set of events. Then an acceptance tree T is a function in
E∗ → 22E

satisfying:

1. For any w ∈ E∗, sat(T (w)) = T (w).
2. For any w, w′ ∈ E∗, if T (w) = ∅ then T (w · w′) = ∅.
3. For any w ∈ E∗, e ∈ E , T (w · e) �= ∅ iff there exists A ∈ T (w) such that e ∈ A.

We say that T1 ⊇ T2 if for all w ∈ E∗, T1(w) ⊇ T2(w).

For any LTS P there is an immediate way to construct an acceptance tree T [P]: T [P]
(w) = sat(Acc(P , w)). It immediately follows that P1 "must P2 if and only if T [P1] ⊇
T [P2]. For example, in Fig. 2, L1 "must L2 because T [L1] ⊇ T [L2].

370 B. Sengupta and R. Cleaveland

3 Combining TMSCs and CSMs

As described in the introduction, our goal in this paper is to propose a framework that
would allow TMSC and CSM specifications to interoperate. Our work is motivated by
the fact that achieving a clean separation between requirements (where MSC-like sce-
narios are most often used) and design phases (where state-based notations are popular),
as envisaged by the waterfall model of development, is frequently not feasible in prac-
tice. Firstly, requirements may change, or new requirements may emerge even as design
proceeds, and these often have to be factored into the development process immediately.
Secondly, a design prototype often provides an opportunity for detecting new/missed re-
quirements, which may lead to a modification of the existing design. Then again, state
machines are used as detailed requirements specification in many areas of practice e.g.
aerospace industry, or they become de-facto requirements when non-functional require-
ments prescribe the re-use of existing state-based designs. For these reasons, scenarios
and state machines frequently need to co-exist; while modeling languages like the UML
include both notations, there is no underlying theory/framework that supports meaning-
ful combination of scenarios and state machines. A truly unified approach to system
development needs to address this missing link.

3.1 Semantic Considerations for a Common Framework

A natural question that arises is what are the requirements on an integrated framework
for TMSCs and CSMs. Scenario-based approaches like TMSCs and state-machine de-
scriptions like CSMs both specify system behavior in terms of sequences of events that
may occur. However, the key difference is that a TMSC shows just one possible in-
teraction between the instances; it is inherently incomplete in that no information is
given about what else might happen. State-machine based descriptions like CSMs, on
the other hand, are inherently more complete. The individual behavior of each instance
is given, not in the context of a particular interaction, but generally over all of the inter-
actions the instance takes part in; a behavior that is not explicitly shown, may thus be
assumed to be forbidden.

Accordingly, any common account of TMSCs and CSMs should have the following
features. (1) It should be able to express both underspecified behavior (e.g. TMSCs) as
well as fully specified behavior (e.g. CSMs) in a uniform manner. (2) It should provide
operators so that multiple scenarios may be woven together to provide more complete be-
havioral descriptions; it should allow networks of CSMs to be formed; it should also allow
existing designs/requirements to be constrained by new requirements. (3) It should pre-
scribe when one heterogeneous specification refines another; this relation should, among
other things, define when a CSM correctly implements a TMSC specification.

We argue that a framework based on acceptance trees will have the right ingredi-
ents in these respects. Firstly, acceptance trees capture behavior that is execution-based,
as is the case with TMSCs and CSMs. Secondly, acceptance sets can be used to rep-
resent behaviors at various levels of detail: informally, the less specified the behavior,
the larger will be the acceptance set, whereas a singleton acceptance set will indicate
fully specified (i.e. deterministic) behavior. Finally, the must pre-order is a robust re-
finement relation already defined on acceptance trees, that may be used to check the

An Integrated Framework for Scenarios and State Machines 371

relationship between scenarios, state-machines, and a mixture of these notations, once
they are interpreted as acceptance trees.

4 A Common Framework

We will now present a framework for integrating TMSCs and CSMs that is based on
the ideas outlined above. The framework is an extension of the model we previously
developed for TMSC-based requirements specifications [25] [23]. To support hetero-
geneity, we now advance that work in the following directions: (i) First, we incorporate
facilities for describing state-based behavior of individual instances, and for composing
these behaviors to generate CSMs. These are seamlessly integrated into our specifi-
cation language to provide support for heterogeneous models. We also discuss practi-
cal considerations that arise from this integration (ii) In the next section, we illustrate
through an extended case-study, how TMSC requirements and CSM designs may be in-
terweaved using our integrated framework. The example is intended to give insight into
the methodological aspects of the integration (iii) Finally, in Section 6, we present the
formal semantics of the framework. The key additions are the acceptance tree semantics
of individual state machines, their composition, and associated properties. Interestingly,
this development helped us improve our previous formulation of the TMSC semantics,
which we also outline.

We begin by presenting the syntactic details of the framework. The basic units of the
framework are single TMSC scenarios (e.g. Fig. 1a) and single instance state machines
(ISMs), e.g. A1 in Fig. 1b. In addition, the framework offers a suite of composition oper-
ators, presented in the grammar below. The operators are driven by three considerations
one may have for organizing system definitions. (i) Structural: A system might consist
of parallel components, each with its individual requirements/design specification. The
operators belonging to this category are • and ‖. (ii) Temporal: A system might consist
of several phases (e.g. initialization, operation, termination), occurring in a given order
and specified independently. This is captured through the ; operator. Repetitive cycles
may be captured through recursion (X). (iii) Alternative: Multiple specifications might
be provided for a given behavior description, with the understanding that some or all of
the specifications must be met. The ∓ and ⊕ operators support this consideration.

In addition, a requirements specification often contains a set of constraints “and”-ed
together, which is captured through the ∧ operator.

The specifications that may be built through the use of these operators are called
“heterogeneous expressions”, defined by the following grammar:

H ::= M (single TMSC)
| S (single ISM)
| X (variable)
| H • H (communicating parallel composition)
| H ‖ H (interleaving parallel composition)
| H ∓ H (delayed choice)
| H ⊕ H (internal choice)
| H ; H (sequential composition)
| H ∧ H (logical and)
| recX.H (recursive operator)

372 B. Sengupta and R. Cleaveland

We now briefly explain the intended meaning of each operator. • is a communi-
cation operator between instances that are running concurrently. It is used to connect
instance state-machines, and also instances within a single TMSC. H1 ‖ H2 denotes the
“interleaving” parallel composition of expressions H1 and H2: it allows the interleav-
ing of events from H1 and H2 while the expressions execute independently. H1 ∓ H2
represents the “deterministic choice” between H1 and H2: a correct refinement must
be able to behave like both H1 and H2 until their behaviors differ, at which point a
choice is allowed. H1 ⊕ H2 is the nondeterministic choice between H1 and H2; a
successful refinement can choose either. In this respect ⊕ has overtones of logical dis-
junction. H1; H2 denotes the “instance-level” (asynchronous) sequential composition
[3, 21]; an instance in H1 is intended to execute to completion before being resumed
in H2, although an instance that terminates in H1 may “continue” in H2 even though
other instances in H1 have not finished. H1 ∧ H2 represents logical conjunction, and
is primarily used in our framework to weave together individual constraints on system
behavior and for refining initial design prototypes. Finally, the recursive operator recX
allows us to model infinite behavior of processes, where a new execution cycle starts
whenever there is a reference to the variable used in the recursive definition (say X).
Our framework may be extended further to include scope through the use of process
algebraic constructs like restriction [22].

Practical Considerations. While our theory permits these operators to be used on any
type of heterogeneous expressions, in practice, we anticipate that some operators may
apply more readily to scenarios, and others to state-machines. For example, the oper-
ators ∓, ⊕ and ‖ will probably be more useful in joining TMSC scenarios rather than
instance state machines, since in the latter, choices are local and the notion of parallel
execution is intrinsically linked to inter-instance communication (captured by •). The
same is the case with rec, since infinite behavior in state-machines may be easily ex-
pressed through loops. However, the sequential composition operator, ;, may be useful
in connecting CSMs also, since it composes instance-by-instance i.e. it is based on the
same level of granularity as CSMs. Finally ∧ is a truly heterogeneous operator. It can
be used to combine multiple TMSCs, each representing a different constraint, and also
in combining an initial CSM design with a TMSC constraint to refine the former.

The formal semantics of heterogeneous expressions will be presented in Section 6.
The basic idea is to interpret an expression H as an acceptance tree T σ[H], where σ is
an environment mapping variables to acceptance trees, and is needed because heteroge-
neous expressions may contain variables. This will allow us to formulate a refinement
relationship on heterogeneous expressions as follows:

Definition 3. Let H1 and H2 be heterogeneous expressions. Then H1 "must H2 if and
only if T σ[H1] ⊇ T σ[H2], for any σ.

Tool Support. Practical support for the above framework may be provided through the
use of two tools, the Concurrency Workbench [6] and the Process Algebra Compiler
[19]. These provide a platform where semantic rules may be encoded for constructing
acceptance trees from heterogeneous expressions, which may also be checked for re-
finement. The TRIM tool [4] for TMSCs is based on this approach. Detailed discussion
on this is however, beyond the scope of the current paper.

An Integrated Framework for Scenarios and State Machines 373

5 Case Study: Automated Resuscitation and Stabilization System

To illustrate the practical utility of our integrated framework, we will now present a case
study in which TMSCs and CSMs will be effectively interweaved to support a step-wise
evolution of system behavior from requirements to design. The system we consider
is a medical device called Automated Resuscitation and Stabilization System (ARSS),
which is a simplified version [24] of an automated resuscitation system developed by the
Walter Reed Army Institute of Research [1]. The specification will be derived formally
in a series of refinement steps, starting with high-level requirements expressed through
TMSC scenarios, moving through intermediate heterogeneous descriptions consisting
of a mixture of scenarios and state machines, and ultimately leading to precise per-
instance state-based behavioral definitions.

BR

qry

perr

M2

R

pval

D

frate

M5

R P

dflt

setd

M4

R B

qry

pval

M1

R

alrm

D

R P

frate

setf

M3

M6

comp

qry

frate

pval

frate

setf

R B P D

pval

T1

comp

(a) Interactions between R,B,P and D (b) Overall Constraint

Fig. 3. System Requirements

ARSS consists of a blood pressure measuring device (B), an infusion pump (P), a
display and alarm unit (D), and a software component (R) that controls the resuscitation
process. The goal is to automatically track a patient’s blood pressure, and add fluids as
necessary to stabilize the patient’s condition. Each of B, P and D interacts only with R,
and not with each other. Thus R and any one of the other physical units essentially form
a sub-system, whose behavior may be independently modeled.

The requirements for ARSS are given by two types of scenarios: (i) there are MSC-
like traditional scenarios depicting the possible interactions in each sub-system (Fig.
3a); these are grouped together using appropriate operators, to yield sub-system re-
quirements specifications (ii) in addition, conditional scenarios based on TMSCs are
used to convey requirements that span sub-systems (Fig. 3b).

Sub-system Requirements R and B. The possible interactions between R and B are
depicted in TMSCs M1 and M2. R sends a query message (qry) to B and B responds
by either sending the current blood-pressure pval to R (as in M1), or sending an er-
ror message perr to R (as in M2) in case there was an error in reading the pressure

374 B. Sengupta and R. Cleaveland

end(R)

out(R, B, qry)

loc(R, comp)

in(B, R, pval)

in(R, B, qry)

out(B, R, pval)

end(B)

in(R, P, frate) in(R, P, dflt)

loc(P, setd)

end(P)

loc(P, setf)

in(R, D, pval)

end(R)

in(R, D, frate)

in(R, B, qry)

out(B, R, pval)

end(B)

in(B, R, perr)
out(B, R, perr)

in(R, D, alrm)

out(R, B, qry)

loc(R, comp)

in(B, R, pval)

τ τ

out(R, P, dflt)

τ τ

R

R

R

B

P

D

C1

C2

C3

(a) CSMs for sub-systems

(b) Initial Design ID

in(B, R, perr)

τ τ

end(R)

out(R, P, dflt)out(R, P, frate)

τ τ

out(R, D, alrm)

end(R)

out(R, D, pval)

out(R, D, frate)

out(R, P, frate)

out(R, D, alrm)

end(R)

out(R, D, frate)

out(R, D, pval)

R

out(B, R, perr)

in(R, P, frate) in(R, P, dflt)

loc(P, setd)

end(P)

loc(P, setf)

in(R, D, pval)

end(R)

in(R, D, frate)

in(R, D, alrm)

D

B

P

Fig. 4. Initial Design

(e.g. if the pressure source is lost for some reason). If R receives the correct value,
it uses the current pressure to determine the rate at which fluids should be supplied
to the patient; this is indicated by the local-action comp. The overall interaction be-
tween R and B is specified by the TMSC expression RB = M1 ∓ M2. We use ∓
because the choice between M1 and M2 is delayed until B sends either pval or perr
to R.

R and P. R may send two types of messages to P : (i) under normal operation, it sends
the rate (frate) at which P should supply fluids to the patient (M3) (ii) in case R is
unable to compute the correct rate, it asks P to set the rate to a pre-determined safe
default value (dflt) (M4). In each case, P responds to these messages by performing
appropriate local-actions to adjust the flow. The specification for this sub-system is
given by RP = M3 ⊕ M4. Here ⊕ is used because whether R can correctly compute
the flow-rate depends on factors (in this case R’s interaction with B) that are outside
the purview of the interaction between R and P .

R and D. R may interact with D in the following ways: (i) R sends the current pressure
value pval and flow-rate frate for display to D. This is depicted by the TMSC scenario
M5 (ii) if immediate attention of the care-giver is required, then R instructs D to sound
an alarm (alrm), as shown in M6. The interaction between R and D is expressed by RD
= M5⊕M6. As before, ⊕ is used as the choice will be made internally by R depending
on its interaction with the rest of the system.

An Integrated Framework for Scenarios and State Machines 375

Overall Constraints. These requirements constrain the way the sub-systems interact,
and their role is to ensure that the desired functionality of the overall system is pre-
served. For ARSS, TMSC T1 in Fig. 3b, is the initial global requirement that has to
be satisfied. T1 constrains the system behavior when the blood pressure has been read
correctly, and ensures that the correct flow-rate is set and displayed when this happens.

Requirements Specification. We now glue together the “local” and “global” require-
ments to get the initial requirements specification. R begins each cycle by querying B
about the current blood-pressure. It subsequently sends messages to P and D to con-
trol the flow-rate, and display appropriate messages or warn the care-giver. The base
requirements BS is thus given by

BS = RB; RP ; RD

These requirements are however, too coarse, and may lead to some undesirable ex-
ecution sequences e.g. R sounding the alarm even when the pressure has been read
correctly. Hence, the global constraint T1 is used to refine BS. The initial requirements
specification is thus given by

RS = BS ∧ T1

Initial Design. The availability of sub-system level requirements means that instead
of trying to design the whole system in a single attempt, we can first design each sub-
system in isolation. A major benefit of this approach is that it promotes modular design
and greatly aids subsequent system maintenance. Hence in the next step, we consider

out(R, B, qry)

in(B, R, pval)

loc(R, comp)

end(R)

in(B, R, perr)

τ τ

τ τ

out(R, D, frate)

out(R, D, pval)

out(R, P, frate)

out(R, D, pval)

out(R, D, frate)

out(R, P, frate)

qry

perr

dflt

alrm

setd

R B P D

T2

in(R, D, alrm)

(a) Refined Design RD

in(R, B, qry)

out(B, R, pval)

end(B)

in(R, P, frate) in(R, P, dflt)

loc(P, setd)

end(P)

loc(P, setf)

in(R, D, pval)

end(R)

in(R, D, frate)

out(B, R, perr)

R B

P

D

out(R, P, dflt)

out(R, D, alrm)

(b) A New Requirement

Fig. 5. Refined Design

376 B. Sengupta and R. Cleaveland

CSMs (Fig. 4a) for each scenario-based sub-system specification obtained above. It
may be shown that RB "must C1, RP "must C2 and RD "must C3. Note that R’s τ
transitions in C2 and C3 reflect the fact that it has to internally choose between M3 and
M4 in RP and between M5, M6 in RD. Also, the • operator is implicit in each design
e.g. C1 is actually AR • AB , where AR and AB denote the state-machines of R and B
respectively, in C1.

Replacing the sub-system specifications in BS by the corresponding refined CSMs,
we obtain:

BS′ = C1; C2; C3

From the compositionality of our semantics (Section 6), it follows that BS "must BS′.
We now sequentially compose C1, C2 and C3, to obtain our initial design ID,

shown in Fig 4b. The state-machines for B, P and D in ID are the same as in BS′.
The state-machine for R is obtained by “stitching” together its state machines in C1,
C2 and C3. Since R will terminate a cycle only after its interaction with D, this state
machine is obtained by removing the end(R) transition in C1 (and C2), and starting
the execution of C2 (and C3) instead. We thus obtain the state-machine for R as shown
in ID. It can again be proved that BS′ "must ID. By transitivity of "must, we get the
sequence BS "must BS′ "must ID.

Intermediate Heterogeneous Design. Since BS "must ID, our initial design con-
forms to the base requirements. However, we now need to refine ID to ensure that it
also satisfies the “global” constraint represented by T1. Thus a “tighter” specification
for the design is ID∧T1. This heterogeneous expression enables us to precisely capture
the current design state, where we have a coarse state-based design that must satisfy an
additional scenario requirement T1.

Refined Design. Since the constraint in T1 is localized to each instance, and since we
already have ISMs for these instances, refining ID is easy. We simply “walk through”
each ISM in ID and remove execution traces that do not conform to the constraint on
the instance as documented in T1. This gives us the refined design RD (Fig. 5a). Note
that in RD, unlike in ID, R always correctly sets the flow and displays messages on
receiving pval.

New Requirement. In spiral/refinement-based development processes, new require-
ments are incrementally added to existing designs/prototypes. Now that we have a de-
sign RD that refines the requirements specification RS, let us assume that a new re-
quirement T2 (Fig. 5b) is added, which specifies how R should handle the erroneous
condition when the pressure source is lost. Such a requirement may simply be part of
the “scope” of the current iteration (e.g. requirements for normative (T1) and erroneous
(T2) behavior may be handled in separate iterations of spiral development) or may have
been discovered by analyzing the existing design (e.g. the CSM for R in RD indicates
that R does not always sound the alarm when the pressure source is lost, i.e. when it
receives perr); either way, the new requirement combined with the existing design is
specified by the heterogeneous expression RD ∧ T2.

An Integrated Framework for Scenarios and State Machines 377

Final Design. The behavior of R in RD is then refined to ensure that execution
traces that violate T2 are removed. Now that both normal and erroneous behaviors
have been accounted for, the designers may choose CSM FD in Fig. 6 as the final
design.

out(R, B, qry)

in(B, R, pval)

in(R, B, qry)

out(B, R, pval)

end(B)

in(R, P, frate) in(R, P, dflt)

loc(P, setd)

end(P)

loc(P, setf)

in(R, D, pval)

end(R)

in(R, D, frate)

out(B, R, perr)

in(R, D, alrm)

out(R, P, dflt)

in(B, R, perr)

out(R, D, alrm)

end(R)

R B

P

D

Final Design FD

out(R, D, pval)

out(R, D, frate)

out(R, P, frate)

loc(R, comp)

Fig. 6. Final Design

It may be shown that RD∧T2 "must FD. We thus have the sequence RS "mustBS′

∧T1"mustID∧T1"must RD"must RD∧T2"must FD, as the specification evolved from
scenario-based requirements (RS), to an imprecise CSM-based initial design (ID), that
was refined using the requirement T1 to get RD, which was again constrained using a
new requirement T2, to finally yield the correct design (FD).

Discussion. The above case study illustrates some general methodological advantages
that our integrated framework offers. By providing a common platform for scenarios
and state machines, the requirements and design phases are allowed to overlap. Thus
we can have an initial design that implements base requirements, and then impose ad-
ditional requirements on it. The final design may be built incrementally through several
iterations, some involving scenarios, some state machines, and others a mix of both.
Equally importantly, the framework brings technical rigor to bear on this process; while
compositionality of the semantics supports uniform reasoning and promotes modular
design, the precise notion of refinement provides a formal basis for assessing at each
step, whether or not a more detailed specification is indeed faithful to the specification
it is intended to elaborate on.

378 B. Sengupta and R. Cleaveland

6 Semantics of Heterogeneous Expressions

We will now describe how heterogeneous expressions may be formally interpreted as
acceptance trees. First, ISMs will be equipped with an acceptance tree semantics. Next
we will define the • operator that may be used to weave ISMs into CSMs. We then
describe how similar ideas may be used to derive acceptance trees of individual TM-
SCs from acceptance trees of the TMSC instances. Finally, the semantics of the other
operators, and also their properties are mentioned.

Events and Sequences. We fix finite sets I, M and A as the set of all instances, message
types and local action names, respectively. We write R = {in(Ii, Ij , m) | Ii, Ij ∈
I, m ∈ M} for the set of all receive events, and similarly define S = {out(Ii, Ij , m) |
Ii, Ij ∈ I, m ∈ M} as the set of all send events, and L = {loc(Ii, �) | Ii ∈ I, � ∈
A} as the set of all local actions. Our semantics also uses events of form end(Ii),
where Ii ∈ I, which instances emit when they terminate, and “potential events” of form
wait(r), where r ∈ R, to denote that an instance is capable of performing r once the
corresponding send event occurs. T and W denote the set of all end events and wait
events respectively. We write E = S ∪ R ∪ L ∪ T as the set of all concrete events that
may occur. For any event e, active(e) returns the instance that can perform e.

active(e) =
{

Ii if e = out(Ii, Ij , m), loc(Ii, �), end(Ii)
Ij if e = in(Ii, Ij , m), wait(in(Ii, Ij , m))

For any set of events E and instances I, we then define EI = {e | e ∈ E, active(e) ∈
I}, i.e. the set of events in E for which some instance in I is active.

Definition 4. Let w, w1, w2 ∈ E∗.

1. w1 - w2 holds if w1 is a prefix of w2. Also, |w|a denotes the number of occurrences
of a in w.

2. The projection, w.I, of w onto I ⊆ I is the longest (not necessarily contiguous)
subsequence of w containing only events in which instances in I are active:

w.I =

⎧⎨⎩ ε if w = ε
e · (w′.I) if w = e · w′, active(e) ∈ I
w′.I if w = e · w′, active(e) �∈ I

3. The receive event in(Ii, Ij , m) is called enabled by w if |w|out(Ii,Ij ,m)
> |w|in(Ii,Ij ,m). We use eR(w) to stand for all receive events enabled by w.

4. w is called well-balanced over an instance set I if for every w′ - w such that
w′ = w′′ · in(Ii, Ij , m) and Ii ∈ I, it is the case that in(Ii, Ij , m) ∈ eR(w′′).

Acceptance Sets and Trees. If A1 and A2 are two acceptance sets, then we define

A1 ⊗A2 = sat{A1 ∪ A2 | A1 ∈ A1, A2 ∈ A2}

⊗ thus takes the saturated pairwise union of the operand acceptance sets. We use ⊗k∈K

as the indexed version of ⊗.

An Integrated Framework for Scenarios and State Machines 379

By TI , we will denote an acceptance tree constructed over an universe of instances
I ⊆ I. Acceptance trees will ultimately be defined over the set of all instances I, and
such acceptance trees are represented as TI, or simply T . However, as we will see, we
may sometimes need to start with a reduced universe, say I, and then “lift” it to a bigger
universe, say J ⊇ I. This is done using a function lift(J , TI) = TJ , where,

TJ (w) = ∅, if

(i) ∃e ∈ w.active(e) �∈ J , or

(ii) ∃e ∈ w.active(e) = Ip ∈ J − I ∧ e �= end(Ip), or

(iii) ∃Ip ∈ J .|w|end(Ip) > 1
= {S} ⊗ TI(w.I) otherwise

where, S = {end(Ip) | Ip ∈ J − I ∧ end(Ip) �∈ w}. lift “lifts” an acceptance tree
defined using a restricted universe of instances I, to the larger universe of instances J ,
by adding in end(Ip) events ∀Ip ∈ J − I. Intuitively, when we have a specification
S in which some instances are “missing”, but we need to define an acceptance tree
for S, we assume that all instances not explicitly mentioned in S are only capable
of terminating. Towards that end, we define Ins(S) to be the set of instances that are
explicitly mentioned in S, where Ins(M) = I, where M is a TMSC with instance
set I, Ins(S1opS2) = Ins(S1) ∪ Ins(S2), where op is any of the heterogeneous binary
operators, etc.

6.1 ISMs as Acceptance Trees

An Instance State Machine or ISM is a tuple 〈Ip, Ap〉, where Ip is the name of the
instance, and Ap = 〈Qp, q0

p, Ep, δp〉 represents the operational behavior of instance Ip,
defined over a set of states Qp, a start state q0

p , a set of events Ep (= E{Ip}), and a
transition relation δp ⊆ Qp × (Ep ∪ {τ}) × Qp, where τ is a distinguished internal
action used to represent internal nondeterministic choice behavior. Given any two states
q, q′ ∈ Qp we write q

e−→ q′ in lieu of (q, e, q′) ∈ δp, and q
e=⇒ q′, if there is a

path from q to q′ that contains event e, preceded or succeded by some number of τ
transitions. For a sequence of events w, q

w=⇒ q′, if q
e1=⇒ q1

e2=⇒ q2 . . .
en=⇒ q′, where

w = e1 . . . en, and q1, q2 etc. are intermediate states. Note that although we handle τ
transitions in an ISM (in the same manner as [14]), we do not permit divergence i.e.
infinite τ transitions. We define L(Ap), the language of Ap as the set of all its execution
sequences: L(Ap) = {w ∈ E∗

p | ∃q′ ∈ Qp.q
0
p

w=⇒ q′} Also, for q ∈ Qp, let Ev(q) =

{e | ∃q′ ∈ Qp.q
e−→ q′}. Ev(q) thus denotes the set of events labeling the outgoing

transitions of state q in the automaton Ap. Finally, for a set of concrete (i.e. non-wait)
events E, we define the enabled set EN(E) as:

EN(E) = {e | e ∈ E ∧ e �∈ R} ∪ {wait(r) | r ∈ R ∩ E}

An out, loc and end is always enabled; an in event r ∈ R is not enabled unless the
sender emits the corresponding out, and until then wait(r) is enabled.

380 B. Sengupta and R. Cleaveland

Definition 5. The acceptance tree T σ
{Ip}[I] of an ISM I = 〈Ip, Ap〉, after a sequence

of events w ∈ E∗
p and for an environment σ is defined as:

T σ
{Ip}[I](w) =⎧⎪⎪⎨⎪⎪⎩
∅

if w �∈ L(Ap)
sat{EN(Ev(q′)) | q0

p
w=⇒ q′, q′ � τ−→}

otherwise

The acceptance tree T σ[I] is now defined as T σ[I] = lift(I, T{Ip}).

6.2 CSMs: Network of ISMs

We will now describe the semantics of CSMs. Intuitively, CSMs consist of a “network”
of ISMs connected via the • operator. Accordingly, the acceptance tree for a CSM C
consisting of ISMs {IS1, IS2, . . . ISn} will be derived by by first computing the accep-
tance trees of the individual ISMs in isolation, and then allowing them to communicate,
so that a message sent by one instance may be received by another.

When we combine the acceptance sets of two ISMs that are communicating, the
wait events have to be handled carefully. Firstly, some of the wait events may now
become concrete in events; e.g. if Ip is waiting to receive m from Iq , then wait(in(Iq , Ip,
m)) becomes in(Iq , Ip, m) when Ip and Iq are allowed to communicate and Iq sends
m to Ip. Secondly, if Ip is capable of receiving a message m that Iq has sent, then our
semantics disallows Ip from continuing to wait for any other message from Iq (though
it can wait for messages from other instances). Accordingly, we define two functions,
convert-wait to transform wait events into in events once the relevant messages have
been sent, and remove-wait to disable wait events when another in event involving the
same sender becomes enabled. These are defined below, where A is any acceptance set,
and R any set of in events (that have become enabled).

convert-wait(A, R) =
⋃

A∈A
{convert-wait-set(A, R)}

convert-wait-set(A, R) =
⋃
e∈A

convert-wait-event(e, R)

convert-wait-event(e, R) =

⎧⎨⎩
{e} if (e ∈ S ∪ R ∪ L ∪ T)

∨(e = wait(r) ∧ r �∈ R)
{r} if e = wait(r) ∧ r ∈ R

In an analogous way, we can define remove-wait(A), which ultimately invokes

remove-wait-event(e, A) =

⎧⎨⎩
∅ if e = wait(in(Ii, Ij , m))

∧∃m′.in(Ii, Ij , m
′) ∈ A

{e} otherwise

for each A ∈ A. We now define a new function handle-wait, that takes an acceptance set
A and an event sequence w, and suitably modifies the wait events in A based on the in
events enabled by w: handle-wait(A, w) = sat(remove-wait(convert-wait(A, eR(w)))).
We are now in a position to define the semantics of the • operator.

An Integrated Framework for Scenarios and State Machines 381

Definition 6. Let H1 and H2 be two heterogeneous expressions where Ins(H1) = I1,
and Ins(H2) = I2, and let I = I1 ∪ I2. Then, for w ∈ E∗

I , and an environment σ,

T σ
I [H1 • H2](w) = ∅, if

(i) I1 ∩ I2 �= ∅, or

(ii) w is not well-balanced over I
= handle-wait((T σ

I1
[H1](w1) ⊗ T σ

I2
[H2](w2)), w)

o.w., where w1 = w.I1, w2 = w.I2

We then have T σ
J [H1 • H2] = lift(J , T σ

I [H1 • H2]), and when J = I, we get T σ[H1 •
H2]. Note that when H1 and H2 are ISMs, H1 •H2 is a CSM, which may communicate
with another ISM through •. In fact the clause I1 ∩ I2 = ∅ in the above definition is
there primarily because we want to use • to compose state-machines of instances.

6.3 From TMSCs to Acceptance Trees

We now briefly sketch how single TMSCs may be interpreted as acceptance trees. The
definition that we present here improves the one in [25], [23], where the acceptance tree
of an instance in a TMSC was computed with respect to an environment that represented
the set of enabled in events. Thus the acceptance tree function for an instance needed
an additional parameter to model this environment. In contrast, here we first compute
“pure” acceptance trees of instances, and then compose the trees in the same manner
in which ISMs were composed using • to yield CSMs. This leads to a more intuitive
semantics for TMSCs.

We first informally introduce the notion of a language LM (Ii), of an instance Ii in
a TMSC M . The language records the possible sequences of events the instance might
generate as it executes. Intuitively, if a sequence does not “satisfy” the trigger of Ii, then
it is admitted as a sequence. Otherwise, it is constrained to satisfy the action of Ii. For
a formal definition, the interested reader is referred to [25].

We also need the following operation on languages. Let E be a set of events, and let
L ⊆ E∗. Then, for w ∈ E∗,

next(L, w) = {e | ∃w′ ∈ L.w · e - w′ ∧ (e ∈ S ∪ L ∪ T}
∪{wait(e) | ∃w′ ∈ L.w · e - w′ ∧ e ∈ R}

Definition 7. Let I be the set of instances in a TMSC M , and Ii ∈ I. Then, for w ∈
E∗
{Ii}, the acceptance tree of Ii in M is defined as follows:

T{Ii}[Ii, M](w) =⎧⎪⎪⎨⎪⎪⎩
∅

if w �∈ LM (Ii)
sat{{e} | e ∈ next(LM (Ii), w)}

o.w.

The first clause handles the case when Ii is incapable of performing w, while the second
one allows Ii to non-deterministically choose one of the possible “next” events (there

382 B. Sengupta and R. Cleaveland

may be more than one possible next event if, for example, the behavior of Ii in M is
conditional or partial). We now define the acceptance tree of TMSC M .

Definition 8. Let I be the set of instances in a TMSC M , and let w ∈ E
∗
I . Then for any

environment σ,

T σ
I [M](w) = ∅

if w is not well-balanced over I
= handle-wait((⊗Ii∈IT{Ii}[Ii, M](w.{Ii}), w)

otherwise

We now set T σ[M] = lift(I, T σ
I [M]).

6.4 Semantics of Expressions

As with •, the other operators are interpreted in terms of acceptance trees, and the
construction of T σ[H] for an expression H , proceeds inductively on the structure of
H . A full treatment of the other operators appear in [23] (an early version appeared in
[25]). The definitions may be readily adapted in the heterogeneous context, and due to
space constraints, we do not present the entire semantics here. As an example, however,
here is the semantics of the ⊕ operator.

Internal Choice: ⊕ offers non-deterministic choice. Given two expressions H1 and
H2, and a sequence of events w, T σ[H1 ⊕ H2](w) = sat(T σ[H1](w) ∪ T σ[H2](w)).

6.5 The Must Pre-order and Properties of the Semantics

Our semantics for heterogeneous expressions may be shown to have the following prop-
erties:

Theorem 2. The operators •,∓,⊕,∧ and ‖ are commutative and associative, the op-
erator ; is associative, and ∓, ⊕ and ∧ are idempotent.

The next result establishes that "must is substitutive.

Theorem 3. Let H1, H2 and H3 be TMSC expressions such that H1 "must H2. Then
the following hold:

1. H1 ∓ H3 "must H2 ∓ H3
2. H1 ⊕ H3 "must H2 ⊕ H3
3. H1 ∧ H3 "must H2 ∧ H3
4. H1 ‖ H3 "must H2 ‖ H3
5. H1; H3 "must H2; H3 and H3; H1 "must H3; H2
6. If Ins(H1) = Ins(H2), then H1 • H3 "must H2 • H3.
7. If Ins(H1) = Ins(H2), then rec X.H1 "must rec X.H2.

This theorem establishes that our semantics is compositional in the following sense: a
heterogeneous expression may be refined by refining its subexpressions in isolation.

An Integrated Framework for Scenarios and State Machines 383

7 Related Work

Several researchers have investigated scenario-based (e.g.[7],[9]) and state-based
(e.g. [11],[10]) approaches to distributed system development. In the context of
MSCs, a number of authors (e.g.[16],[15],[27]) have also investigated the translation
of scenarios to state-based models. In particular, [26], [12] present methodologies that
support an incremental elaboration of behavioral models, whereby intermediate state-
based designs are analyzed and possible but unspecified scenarios are presented to
the user, which may lead to a more comprehensive description of desired behavior.
These are all useful approaches for automating, partially or completely, the
extraction of design artifacts from scenarios, and for iterating between the requirements
and design phases. In contrast to these approaches, however, the work presented in this
paper is motivated by a different challenge: can we allow the requirements and de-
sign phases of distributed systems to truly overlap? If TMSC requirements and CSM
designs are available, how do we integrate and analyze them? Accordingly, our contri-
bution in this paper is not a translation scheme from TMSCs to CSMs but an integrated
framework that (i) allows heterogeneous specifications involving TMSCs and CSMs
to be formed and given a precise semantics (ii) relates one heterogeneous
specification with another. Developers can use this framework to verify if an
innovative design they have come up with indeed meets the original requirements,
and at the same time, seamlessly “add-in” to this design, new requirements as they
arise.

Another novel aspect of our framework is the use of the acceptance tree model as
a common semantic basis for TMSCs and CSMs. Previous approaches have primarily
explored trace equivalence relationships between scenarios and state machines. How-
ever, traces by themselves do not capture the level of detail in a specification, nor can
they distinguish between behavior which is mandatory from that which is optional;
this limits their usefulness as a semantic model in the early phases of the software
life-cycle, where such issues naturally arise. We believe the acceptance tree model pro-
vides researchers with a far richer framework for analyzing evolving behavior, and is
more suited as a common basis for scenarios and state machines. In fact its roots in
the testing theory of processes also opens up possibilities of some interesting applica-
tions (e.g. automatic test case generation) in the software domain that we have begun to
explore.

Previous work (e.g.[18],[5]) have also looked into the relation between temporal
logic specifications and refinement-based ones. [20] presented a Logical Process Calcu-
lus (LPC) formalism for combining operational and declarative specifications; it com-
bines the algebraic operators of Milner’s Calculus of Communicating Systems (CCS)
[22] with the logical operators of the Alternation Free Linear Time µ Calculus LTµ [8]
along with a refinement preorder that conservatively extends both the must preorder as
well as the LTµ satisfaction relation. While there are similarities between our work and
[20] (e.g. the acceptance tree algebra presented here also includes both behavioral and
logical operators), the specification notations we have considered here (scenarios and
state-machines) are both execution-based.

384 B. Sengupta and R. Cleaveland

8 Conclusions and Future Work

In this paper, we motivated the need for a common semantic platform that will allow
requirements and design notations to inter-operate. We then proposed such a framework
for requirements expressed in the TMSC language, and designs expressed as CSMs. The
semantics is defined by translating heterogeneous expressions of TMSCs and CSMs to
acceptance trees, which are equipped with a precise notion of refinement based on the
must pre-order. A case-study illustrated the utility of our theory as a basis for the prin-
cipled evolution of higher-level requirements to lower-level operational specifications.

One can visualize different specification formalisms to be placed on a continuum
from “very partial” (e.g. temporal logic) to “very complete” (e.g. operational specifi-
cations), with scenarios placed somewhere in between. Thus a broader motivation for
combining scenarios and state machines is to ultimately have a platform where system
descriptions given in various levels of behavioral detail may be plugged in and allowed
to interact. Hence, extending the framework presented here to cater to other notations,
performing a detailed evaluation, and extending tool support [4], are directions we plan
to investigate in future. Additionally, we intend to study the implementability of TMSC
expressions, and how operational specifications may be synthesized from them.

References

1. Integrated medical systems inc.-lstat. URL:http://www.lstat.com/lstat.html.
2. Message sequence charts (MSC). ITU-TS Recommendation Z.120, 1996.
3. R. Alur and M. Yannakakis. Model checking of message sequence charts. 10th International

Conference on Concurrency Theory, LNCS 1664, Springer:82–97, 1999.
4. B.Sengupta and R.Cleaveland. TRIM: A tool for triggered message sequence charts. Pro-

ceedings of 15th Computer Aided Verification Conference (CAV’03), pages 106–109, 2003.
5. B.Steffen and A.Ingólfsdóttir. Characteristic formulae for processes with divergence. Inter-

national Journal on Information and Computation, 110(1):149–163, 1994.
6. R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A semantics based

tool for the verification of concurrent systems. ACM Transactions on Programming Lan-
guages and Systems, 15(1):36–72, 1993.

7. C.Rolland and C.Ben Achour et al. A proposal for a scenario classification framework.
Requirements Engineering journal, 3, No. 1:23–47, 1998.

8. C.Stirling. Modal and temporal logics. Handbook of Logic in Computer Science, Vol.2:477–
563, 1992.

9. W. Damm and D. Harel. LSCs: Breathing life into message sequence charts. Formal Methods
in System Design, 19(1):45–80, 2001.

10. D.Brand and P.Zafiropulo. On communicating finite state machines. Journal of the ACM,
30(2):323–342, 1983.

11. J.P.Schmidt D.Harel, A.Pnueli and R.Sherman. On the formal semantics of statecharts. Pro-
ceedings of 2nd IEEE Symposium on Logic in Computer Science, pages 54–64, 1987.

12. E.Makinen and T.Systa. Mas - an interactive synthesizer to support behavioral modeling in
uml. 23rd International Conference on Software Engineering, pages 15–24, 2001.

13. G.Booch, I.Jacobson, and J.Rumbaugh. The unified modeling language user guide.
14. M. Hennessy. Algebraic theory of processes. The MIT Press, 1988.
15. J.Whittle and J.Schumann. Generating statechart designs from scenarios. Internal Confer-

ence on Software Engineering, pages 314–323, 2000.

An Integrated Framework for Scenarios and State Machines 385

16. I. Kruger, R. Grosu, P. Scholz, and M. Broy. From MSCs to statecharts. International
Workshop on Distributed and Parallel Embedded Systems, pages 61–71, 1999.

17. L.Lamport. The temporal logic of actions. TOPLAS, 16(3):872–923, 1994.
18. M.C.B.Hennessy and R.Milner. Algebraic laws for nondeterminism and concurrency. Jour-

nal of the ACM, 32(1):137–161, 1985.
19. R.Cleaveland, E.Madelaine, and S.Sims. A front-end generator for verification tools. Tools

and Algorithms for the Construction and Analysis of Systems (TACAS), 1995, LNCS volume
1019:153–173.

20. R.Cleaveland and G.Luettgen. A logical process calculus. 9th Int’l Workshop on Expressive-
ness in Concurrency, Vol.68 of Electronic Notes in Theoretical Computer Science, 2002.

21. M. A. Reniers. Message sequence chart: Syntax and semantics. PhD Thesis, Eindhoven
University of Technology, 1998.

22. R.Milner. Communication and concurrency. 1989.
23. B. Sengupta. Triggered message sequence charts. Ph.D Thesis, SUNY Stony Brook, 2003.
24. B. Sengupta and R. Cleaveland. Refinement-based requirements modeling using triggered

message sequence charts. 11th IEEE Int’l Requirements Engineering Conference, 2003.
25. B. Sengupta and R. Cleaveland. Triggered message sequence charts. ACM SIGSOFT 2002,

10th Int’l Symposium on the Foundations of Software Engineering (FSE-10), pages 167–176.
26. S.Uchitel, J.Kramer, and J.Magee. Behavior model elaboration using partial labelled transi-

tion systems. Proceedings of ESEC/FSE, pages 19–27, 2003.
27. S.Uchitel, J.Kramer, and J.Magee. Synthesis of behavioral models from scenarios. IEEE

Transactions on Software Engineering, Volume 29, Number 2, 2003.

Consistency in UML and B Multi-view Specifications

Dieu Donné Okalas Ossami, Jean-Pierre Jacquot, and Jeanine Souquières

LORIA, Université Nancy 2, UHP Nancy 1,
Campus scientifique, BP 239,

54506 Vandœuvre-lès-Nancy Cedex, France
{okalas, jacquot, souquier}@loria.fr

Abstract. We present the notion of consistency relation in UML and B multi-
view specifications. It is defined as a semantic relation between both views. It
provides us with a sound basis to define the notion of development operator. An
operator models a development step; it separates the design decisions from their
expression in the specification formalisms. Operator correctness is defined as a
property which guarantees that the application of an operator on a consistent spec-
ification state yields a consistent new state. An operator can be proven once and
for all to be correct. A classical case-study, the Generalized Railroad Crossing
(GRC), demonstrates how the different notions can be put in practice to provide
specifiers with a realistic development model.

Keywords: consistency, verification, operator, multi-view, UML, B.

1 Motivations

It has been recognized for a long time that the development of quality software de-
pends crucially on the quality of the initial specification. Currently, there are two mains
streams of specification languages: graphical notations such as UML which are very
effective for the discussion between users and developers but are poor for formal ver-
ifications, and mathematical notations such as B which are effective for verification
but very poor for discussion. Our aim is to design a framework where both kinds of
notations can be used together to fulfill the needs of all the people involved.

The approach aims to capitalize on existing languages rather than to define a new
one. This allows us to reuse the efforts that have been made in the production of in-
dustrial tools such as Rational Rose1 or ArgoUML2 for the edition of UML diagrams,
and such as Atelier B [24], B−Toolkit [3], or B4Free [4] for the formal verification of
specifications.

Our approach builds on the works made on the transformation between UML and
B. [7, 10, 11, 13, 14, 16, 22] have defined precise sets of transformation rules to gener-
ate a B specification from UML diagrams. These works allow specifiers to check UML
specifications by using B-based theorem provers. On the other way, [5, 6, 25, 26] define
rules to generate UML diagrams from a B specification. These works allow specifiers to
present users with a “readable” specification in order to ease the discussion and agree-
ment on what the planned software is supposed to do.

1 http://www-306.ibm.com/software/rational/
2 http://www.argouml.tigris.org

J. Romijn, G. Smith, and J. van de Pol (Eds.): IFM 2005, LNCS 3771, pp. 386–405, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Consistency in UML and B Multi-view Specifications 387

Currently, case tools based on transformation rules, such as those proposed in [12,
23, 27], work with transformations in one direction. This is a consequence of the dif-
ficulty to integrate formalisms founded on different paradigms: object theory on the
one hand and set theory on the other hand. This situation introduces a new problem:
the specification development process is constrained in a highly unrealistic way. Let us
suppose a specifier writes a first specification in UML; he then transforms it in B and
checks it with the prover; likely, he will need to edit the B specification to discharge
the proof. How can the changes be retrofitted in the UML design? The problem is the
same in the other direction where the check will consist in a validation with users. Us-
ing a “reverse” set of transformation rules is not realistic since the result may lead to a
specification very far from the original.

More generally, the transformation approach makes impossible opportunistic strate-
gies where the specifier chooses at some time to focus his work on structural design with
UML and at some other time to define formal properties with B, without any predefined
order. Another approach consists in integrating formal definitions like data-types in
UML state diagrams [2].

In our model, a specification is defined as a couple 〈 SpecUML, SpecB 〉 where
SpecUML is a set of UML diagrams and SpecB a set of B machines. Both parts are views
of the same specification. The development of a multi-view specification is modeled
as a sequence of applications of operators [18]. An operator models a development
technique by separating the design decisions from their impact on the UML and B parts.
In practice, application of an operator makes both views evolve simultaneously through
the application of specific editing actions on each part while ensuring that both parts are
kept consistent. The notion of consistency is then central to our model. It gives a precise
meaning to the notion of multi-view specification. It provides us with the formal tool to
define the correctness of operators.

The paper is organized as follows. Section 2 explicits the concept of operator and
the consistency relation. Section 3 introduces the case study of the generalized railroad
crossing (GRC). Section 4 presents an example of operator : Refine−Data. Section 5
presents the application of operators on the case study. Section 6 gives proofs on the
preservation of the consistency relation with respect to the applied operators. Section 7
concludes the paper.

2 Operators and Multi-view Consistency

2.1 Framework for Operators

The development of a UML and B multi-view specification Spec = 〈SpecUML, SpecB〉
is done by the application of operators, making parallel couples of specifications
〈SpecUML, SpecB〉 evolve. An operator is composed of two parts: one working on
SpecUML and the second on SpecB. These parts constitute language specific operators,
denoted by OUML and OB.

An operator has application conditions, ensuring the preservation of a global prop-
erty of the whole specification Spec. To make the couple of specifications 〈SpecUML,
SpecB〉 evolve, we have to determine the kind of changes we want to achieve as well

388 D.D. Okalas Ossami, J.-P. Jacquot, and J. Souquières

as their location. This corresponds to the selection of an operator. To guide the devel-
opment, the “Remain To Be Done” clause provides information about which operators
can be applied next in order to terminate a given development process. This means that
operators must support the following combination features:

• Recursion. An operator can call itself.
• Sequencing. Operators can be sequenced to fire one after another.

2.2 Operator Template

The standard template for the definition of an operator is composed of various clauses.
Each clause is optional except the first one. Each clause is described as follows:

1. Parameters. Determines parameters of the operator which are of two kinds, In and
Result. They are both optional.
• In. Designates elements needed to calculate the Result representations.
• Result. Designates elements created by the operator. The Result parameters

that are not included, default to the In parameters.

2. Application conditions. Defines the conditions which specify when the operator
can be applied. Two kinds of conditions are identified : conditions related to UML
(CONd UML) and conditions related to B (COND B).

Operator:operator Name

Description. Natural language description of the purpose and effects of the operator.

Parameters.
• In.

〈PARAM Name : TYPE PARAM〉*
• Result.

〈PARAM Name : TYPE PARAM〉*

Application conditions.

• Related to SpecB
〈COND B〉*

• Related to SpecUML
〈COND UML〉*

Definition.

• Context. 〈context〉
• 〈OPERATOR DEF〉

Remains To Be Done. 〈To Do Next〉

Fig. 1. Operator template

Consistency in UML and B Multi-view Specifications 389

3. Definition. Consists of:
– Context. Determines the element(s) the operator is applied to.
– 〈OPERATOR DEF〉. Determines the sequence of operators to be applied.

OPERATOR DEF is given by the following grammar:

OPERATOR DEF ::= 〈OUML, OB〉
| OPERATOR APP

| OPERATOR DEF [; OPERATOR DEF]*

| IF 〈 COND 〉 THEN OPERATOR DEF [; OPERATOR DEF]*

where:
• COND denotes a condition on the context or the parameters.
• OPERATOR APP denotes an operator’s application consisting of the name

of the operator and its parameters.

4. Remains To Be Done. Indicates which part of the specification has to be defined
next.

2.3 Multi-view Consistency Relation

We consider the question of how the application of an operator has to be constrained so
that its application on a current consistent specification state 〈SpecUML, SpecB〉, yields
a consistent specification state 〈SpecUML′, SpecB′〉. Let us denoteRelC the consistency
relation between SpecUML and SpecB.

Let TU→B be the set of UML to B transformation rules [9, 17] which associate
each UML artifact with one or more B artifacts. These transformations are relative to
UML 1.x [19]. RelC is defined as a conjunction of four conditions:

1 Syntactic conformance. It states that both SpecUML and SpecB must be well-
formed. It ensures that the specification conforms to abstract syntax specified by the
meta-model, i.e. UML meta-model or B abstract syntax tree. Let WF(SpecUML)
and WF(SpecB) be two predicates defining if a UML and a B specifications are
well-formed.

2 Local consistency. It requires that both specifications must be internaly consistent.
That means they do not contain contradictions, but they could be incompletely de-
fined. We write it consistent(SpecUML) and consistent(SpecB).

The global consistency is defined with respect to UML to B transformation rules
designed by Meyer, Souquières and Ledang [9, 17].

3 Elements traceability. It states that for any elements of ID(SpecUML), eU, that can
be transformed by a rule T, there exists in ID(SpecB) a set of artifacts {eB} result-
ing from the application of T to eU .

4 Semantic preservation. It states that any statement φ satisfying the semantics of
SpecUML must satisfy SpecB. The semantics of SpecUML is defined as TU→B

(SpecUML). This means that UML artifacts that have no B semantics defined in

390 D.D. Okalas Ossami, J.-P. Jacquot, and J. Souquières

TU→B are not concerned by the consistency relation RelC. This has important im-
plications throughout the verification process. For example, it is well known that
checking pairwise integration of a set of software specifications is only possible if
one is able to transform them into a semantic domain supported by tools. B is our
semantic domain and any UML statement that has no B formalization cannot be
verified in our framework.

We use the B theorem prover to prove that a statement φ holds in SpecB (condition
(2)) and due to condition (3), we derive the consistency of SpecUML, and therefore the
consistency of the multi-view specification Spec.

Oi

OUML

OB

RelC RelC

SpecUML SpecUML′

SpecB SpecB′

Fig. 2. UML and B consistency relation

Formally, the RelC relation is defined as follows:

Definition 1 (Consistency relation)
SpecUML RelC SpecB :

(1) WF(SpecUML) ∧ WF(SpecB)

(2) consistent(SpecUML) ∧ consistent(SpecB)

(3) ∀ eU .(eU ∈ ID(SpecUML|TU→B
) a ⇒

∃ {eB}, T .({eB} ⊆ ID(SpecB) ∧ T ∈ TU→B ∧ T(eU) = {eB}))

(4) ∀ φ.(TU→B(SpecUML)b � φ ⇒ SpecB � φ))

a SpecUML|TU→B
denotes the restriction of SpecUML to elements for which there is a

transformation rule to B defined in TU→B
b

TU→B(SpecUML) denotes the application of the set of UML to B transformation rules
on SpecUML

3 A Case Study

The evolution of the specification and the verification of the consistency relation de-
scribed in section 2.3 will be applied to the generalized railroad crossing example,
called GRC in the sequel. We give a short description of the problem and an abstract
specification on which the refinement can be introduced. Fig. 3 illustrates the structure
of the GRC extracted from [21]. The system to be modeled consists of a gate, a con-
troller and trains at a railroad crossing.

Consistency in UML and B Multi-view Specifications 391

arrive leave

onnear

R

far far

Fig. 3. The generalized railroad crossing

The railroad crossing lies in a region
of interest R. Trains travel in one direction
through R, and only one train per track is
allowed to be in R at any moment. Sensors
indicate when a train enters or exits the re-
gion R. For space and clarity reasons, we
do not present in details the GRC prob-
lem, but only details which are relevant to
illustrate our approach.

We will describe the development of the system step by step, starting with the UML
specification which identifies some important entities. Note that we only focus on static
aspects.

3.1 A First UML Specification

A Train may be in three states: far, near and on. The state of the train is determined
by the information provided by sensors positioned on the track and by a clock. When
a train leaves a region and enters another one, a signal is sent to the controller which
reacts by sending appropriate signals to the gate. A train takes 2 to 5 time units to reach
state on after it entered state near. It then leaves state on and therefore region R and
reaches state far between 1 and 2 time units. Time information is stored in the variable
Ht, which is initialized to 0 when a train enters state near and state on. The system must
be safe: the gate must be down when trains reache state on. In order to have the gate
closed when the fastest train reaches state on, the gate must be closed between 1 and 2
time units after trains entered region R.

The class Train is characterized by the following variables:

– Ht, which models the time taken by the train to reach each state,
– pos, which models the train states.

The class Train provides three methods, arrive(), cross() and leave(), for entering,
crossing and leaving region R, respectively. The class diagram of the GRC and the be-
havior of the Train are presented in Fig. 4(a) and 4(b).

arrive()
cross()
leave()

Ht : int
pos : TSTATES

Train

raising
lowering
closed
opened

on
near
far

doClose()
doOpen()
exit()
enter()
counter : int

Hg : int

close()
open()

«enumeration»

«enumeration»

Gate

TSTATES

pos : GSTATES

GSTATES

Controller

(a) Class diagram of the GRC

far

on

near

arrive()/^Controller.enter(); Ht = 0

cross()[Ht>2 and Ht<5]/Ht = 0

leave()[Ht>1 and Ht<2]/^Controller.exit()

(b) State diagram of Train

Fig. 4. A first UML specification

392 D.D. Okalas Ossami, J.-P. Jacquot, and J. Souquières

3.2 The Corresponding B Specification

Figure 5 represents the abstract specification of the class Train obtained by an auto-
matic translation of the UML specification (cf. Fig. 4). Each class with name Class is
represented by an abstract machine with the same name, as discussed in [16]. For each
class Class, a set CLASS is introduced to represent all possible instances of Class. A
variable class ⊆ CLASS is used to identify current instances of Class. Attributes are
modeled as functions from class to the attribute type as defined in the class. The type
of functions reflects the participation and cardinality of the entity. Class operations are
derived as B operations (e.g. arrive, cross and leave in the Train machine of Fig. 5)
mirroring the syntactical structure of the associated state diagram. Operation parame-
ters are typed and further constrained in the operation precondition. Operation bodies
are automatically derived from transitions in the state diagram. In addition to machines
representing classes, we introduce a special machine Types, which declares a number
of shared sets or types. The others classes are derived in a similar way.

MACHINE Types
SETS
OBJECTS
CONSTANTS
TRAIN
PROPERTIES
TRAIN ⊆ OBJECTS
END

MACHINE Train
SEES Types

SETS
TSTATES = {far, near, on}

VARIABLES
train, pos, Ht

INVARIANT
train ⊆ TRAIN ∧
pos ∈ train → TSTATES ∧
Ht ∈ train → NAT

INITIALISATION
ANY tt
WHERE tt ⊆ TRAIN ∧ tt
= {}
THEN

train := tt ||
pos := tt × {far} ||
Ht := tt × {0}

END

OPERATIONS
arrive(tt) =
PRE

tr : train ∧ pos(tr) = far
THEN

pos(tr) := near || Ht(tr) := 0
END;

cross(tt)
∧
= ...

leave(tt)
∧
= ...

END

Fig. 5. Associated B Machines

3.3 Improving the Specification

Let’s take the UML and B specification couple of Fig. 4(a) and 5 and consider that the
user focuses his work on the B specification. He decides to observe more in details the

Consistency in UML and B Multi-view Specifications 393

behavior of the train in the state near, as described informally in Fig. 7 and graphically
illustrated in Fig. 6.

arrive 1<Hg<2 leave

far
on1<Ht<2

near

R

far

stop−S

crt−S
1<Ht<2

2<Ht<5

Fig. 6. Detailed GRC

If the train moves at great speed towards the crossing and arrives at point crt-S
(critical state) in less than 2 time units, it must stop at stop-S (stop state). It then
starts to move again, when the time variable Ht is greater than two time units. This
is the time needed by the gate to be completely closed.

Fig. 7. Example of a critical property

The description of this property requires new variables, states, types, and constraints
to be added to the initial specification of the train. This means that we have to improve
the current couple of specifications so that it captures this new requirement. The refine-
ment is an appropriate technique to express this critical property. For this purpose, we
provide users with the Refine-Data operator, allowing to enrich the current specification
in a stepwise manner. It also provides a way to strengthen invariants and to add details
omitted in previous abstractions. The Refine-Data operator defined in this paper is used
to replace some types and data in a specification by more concrete ones in order to
increase efficiency or implementability. The replacement ends up in new entities, sets
and constraints on the data space being introduced in the specification. Note that we do
not attempt to provide a new definition of data refinement, rather we use the standard
definition of refinement of state variables. From a practical perspective, we present the
data refinement process as follows.

– First, concepts (e.g., refinement component, variables, types, classes, attributes,
etc.) that form the basis for expressing properties are modeled. The Refine-Data
operator is defined to act this role.

– Second, we consider concepts such as gluing invariants or additional constraints
over data introduced previously to express logical links between concrete data and
their abstract versions. This is achieved by using the Model-Constraint operator.

For naming UML and B model elements, we will consider the following notations:

– ID the set of all identifiers of the specification (ID = ID(SpecB) ∪ ID(SpecUML)).
– CMP(SpecB) ⊆ ID(SpecB) the finite set of B components (machine, refinement,

implementation) names appearing in SpecB.

394 D.D. Okalas Ossami, J.-P. Jacquot, and J. Souquières

– CLASS(SpecUML) ⊆ ID(SpecUML) the finite set of class names appearing in
SpecUML.

– ATT(C) the finite set of attributes of a class C ∈ CLASS(SpecUML).
– DATA(Ma) the finite set of data, such as variables and constants, appearing in a B

component Ma ∈ CMP(SpecB).

4 An Example of Operator: Refine-Data

Operator: Refine-Data
Description. This operator provides a scheme to refine data, replacing some types and
data in a specification by more concrete ones in order to support the addition of func-
tional details, to increase efficiency or implementability. Users must designate:

– a B component Ma to which the data to be refined belongs,
– a variable v: S the user wants to refine,
– a state si the user wants to precise, if the type S of v is a set of states {s0, ..., si, ..., sn}
– a set of concrete versions {sri , ..., srj} the user wants to replace si with. If S is an

abstract set, the user will give explicit values {sri ,...srj} to it.

The following modifications are made to 〈SpecUML, SpecB〉:

In SpecB

1. If there is no already existing refinement Mar of Ma3 (denoted by Ma " Mar), a
refinement Mar is automatically introduced. It models the following elements:

(a) a REFINES Ma clause immediately after its header, identifying the single com-
ponent Ma that it refines,

(b) a set:
i. Sr = S ∪ {sri , ..., srj} that refines the more abstract set S (S " Sr) if S is an

enumerated set. Note that Sr is composed of new state values, as well as of
all values4 in S or

ii. Sr = {sri ,...srj} if the to refined set S is abstract,

(c) a set of state variables {vr0 , ..., vri , ..., vrn } which take their values in Sr, if v
must be refined by several variables,

(d) a comment line < To do J(v, vri) > denoting the location to be replaced with the
gluing invariant that relates the abstract state variable v and the concrete state
variables {vr0, ..., vri , ..., vrn} and extra constraints (refinement conditions).

2. If there is already a refinement Mar of Ma, two cases can occur:

(a) in the first case, additional local types, data and extra constraints may be added
to Mar in a similar way than 1b and 1c,

3 This is the case when the operator is applied for the first time on Ma.
4 They are renamed in Sr in order to satisfy B naming conventions. For instance, si in S is

renamed by siR in Sr .

Consistency in UML and B Multi-view Specifications 395

(b) in the second case, Mar may be precised by means of a serie of refinements in
a similar way than in the case 1. The refinement process will also iterate.

3. If the type of v is a predefined type, no new types are introduced.

In SpecUML

1. In the class diagram

(a) a refinement component Mar corresponds to the class Mar,

(b) a B variable vr in Mar corresponds to an attribute vr in the class that represents
the refinement component Mar. The type and initial value of this attribute cor-
respond to the type invariant and initialization substitution of the corresponding
B variable,

(c) a set Sr in B corresponds to an enumerated type in UML or in OCL,

(d) the REFINES clause is modeled by an abstraction/refinement association with
a <<refines>> stereotype,

(e) the comment line < To do J(v, vri) > leads to the creation of a comment note
in the class diagram, referencing the refinement link between the abstract and
the refinement class.

2. In the state diagram

(a) For a state sri that refines a state si, a super-state si with sub-state sri is drawn
by nesting in the state diagram attached with the class Ma.

(b) A set of state values Sr = {s0R, ..., siR, sri , ..., srj , ..., snR} refining an abstract
set of state values S (S " Sr) leads to the generation of a state diagram as shown
below.

v : S

Ma
S

«enumeration»

s0

s0

si

si

evti

evti

evtj

evtj

MACHINE Ma
SETS MA ; S = {s0, si}
VARIABLES v, ma
INVARIANT

ma ⊆ MA ∧
v ∈ ma → S

INITIALISATION
ANY oo
WHERE oo ⊆ MA ∧ oo
= {}
THEN ma := oo || v := oo × {s0} END

END

Refine−Data

396 D.D. Okalas Ossami, J.-P. Jacquot, and J. Souquières

v : S

Ma

Ma_r
<<J(v, v_r)>>
see

on the B view

«refines»

«enumeration»

s0R

s0R

siR

siR

vr : Sr

sri

sri

srj

srj

Sr

evti

evti

evti

evtj

evtj

evtj
MACHINE Ma
...
END

REFINEMENT Mar

REFINES Ma
SETS Sr = {s0R, siR, sri , srj}
VARIABLES vr

INVARIANT
vr ∈ ma → Sr

/*To Be Done 〈〈 J(v, vr) 〉〉 */
INITIALISATION

ANY oo
WHERE oo ⊆ MA ∧ oo
= {}
THEN vr := oo × {s0R} END

END

Result of the Refine-Data operator application

Parameters.
In

– Ma : identifier
– v : identifier
– [si : State]5

– [{sri , ..., srj} : States]

Result.

– Mar : identifier
– vr : identifier
– Sr : identifier

Application conditions.

1. Related to SpecB
– Ma ∈ CMP(SpecB) ∧ Ma ::= MACHINE | REFINEMENT
– si ∈ S
– v : S ∧ v ∈ DATA(Ma)
– ∀ sk.(sk ∈ {sri , ..., srj} ⇒ sk �∈ si)

2. Related to SpecUML
– ∃ C.(C ∈ CLASS(SpecUML) ∧ C → Ma)
– ∃ a.(a ∈ ATT(C) ∧(a → v))
– ∃ T.(T ∈ TYPE(SpecUML) ∧ T → S)

5 [x] denotes that x is optional.

Consistency in UML and B Multi-view Specifications 397

Definition.

Context: Ma
IF (Ma ::= MACHINE ∨ Ma ::= REFINEMENT) ∧

(v ∈ DATA(Ma) ∧ (S ::= AbstractSet ∨ S ::= EnumeratedSet))
THEN
OUML OB

(AddClass(Mar) ; AddDependency(Ma, Mar, «refines»)) ;

AddType(Sr , {sri , ..., srj})* ;

AddAttribute(Mar, vr)*

AddRefinement(Ma, Mar)
AddSet(Sr , {sri , ..., srj})* ;

AddVariable(Mar , vr)*

;

IF (Ma ::= MACHINE ∨ Ma ::= REFINEMENT) ∧
(v ∈ DATA(Ma) ∧ S ::= PredefinedType)

THEN
OUML OB

(AddClass(Mar) ; AddDependency(Ma, Mar, «refines»)) ;

AddAttribute(Mar, vr)*
AddRefinement(Ma, Mar)
AddVariable(Mar , vr)*

;

IF Ma ::= REFINEMENT ∧
v ∈ DATA(Ma) ∧ (S ::= AbstractSet ∨ S ::= EnumeratedSet) ∧
∃ Max.(Max ∈ ID(Spec) ∧ Ma " Max)

THEN
OUML OB

AddType(Sr , {sri , ..., srj})* ;

AddAttribute(Max, vr)*
AddSet(Sr , {sri , ..., srj})* ;

AddVariable(Max, vr)*
;

IF Ma ::= REFINEMENT ∧
v ∈ DATA(Ma) ∧ S ::= PredefinedType ∧
∃ Max.(Max ∈ ID(Spec) ∧ Ma " Max)

THEN
OUML OB

AddAttribute(Max, vr)* AddVariable(Max, vr)*

Remains To Be Done. The introduced variable can be improved:
• Invariant and initialization comment lines have to be replaced by concrete constraints
using for example the Model-Constraint operator.

5 Application to the Case Study

Let’s take the couple of specifications of Fig. 4 and Fig. 5 and enrich it with new vari-
ables posR and HtR in order to model the property of Fig. 7. We decide to refine the
Train machine, using the Refine-Data operator. The train machine and its related UML
class and state diagram are interdependent representations. As one changes, the other
one undergoes changes too. So, we instantiate twice the Refine-Data operator in order

398 D.D. Okalas Ossami, J.-P. Jacquot, and J. Souquières

to introduce variables posR and HtR. The instantiation of this operator requires to set
the actual parameters as shown in Fig. 8(a) and 8(b).

Parameters
In

(Train, pos, near, {crt S, stop S}
Results

Train R, posR, TSTATES R

(a) First instantiation to introduce the variable
posR

Parameters
In

(Train, Ht)
Results
HtR

(b) Second instantiation to
introduce the variable HtR

Fig. 8. Two instantiations of the Refine−Data operator

Fig.9 illustrates the result of the instantiation of the Refine−Data operator on the
Train machine, where variables posR and HtR are introduced one after the other.

doClose()
doOpen()
exit()
enter()
counter : int

Controller

Hg : int
pos : GSTATES

close()
open()

Gate

raising
lowering
closed
opened
GSTATES
«enumeration»

on
near
far
TSTATES
«enumeration»

«enumeration»

farR
onR
crt_S
stop_S

TSTATES_R

farR

onR

J(pos, posR)

J(Ht, HtR)

arrive()
cross()
leave()

posR : TSTATES_R
HtR : int

TrainR

arrive()
cross()
leave()

pos : TSTATES
Ht : int

Train

crt_S stop_S

nearR

«refines»

cross()[Ht>2 and Ht<5]/Ht = 0

leave()[Ht>1 and Ht<2]/^Controller.exit()

arrive()/^Controller.enter(); Ht = 0

MACHINE Train
...
END

REFINEMENT TrainR
REFINES Train
SEES Types

SETS
TSTATES R =

{nearR,farR, crt S, stop S, onR}
VARIABLES
posR, HtR

INVARIANT
posR ∈ train → TSTATES R ∧
HtR ∈ train → NAT
/* <To Do J(pos,posR)> */
/* <To Do J(Ht,HtR)> */

INITIALISATION
ANY tt
WHERE tt ⊆ TRAIN ∧ tt
= {}
THEN

posR := tt × {farR} ||
HtR := tt × {0}

END

OPERATIONS
arrive(tt) =
PRE tr : train ∧ posR(tr) = farR
THEN
posR(tr) := nearR || HtR(tr) := 0
END;
...
END

Fig. 9. Application of the Refine−Data operator on the train machine

Consistency in UML and B Multi-view Specifications 399

One of the most important steps when refining specifications in B is formulating glu-
ing invariants that relate concrete variables with their abstract versions. We assume that
the data refinement process ends with formulating invariants over variables and types
previously introduced by the Refine-Data operator in the first step. This is achieved by
the Model-Constraint operator as indicated in the Remains To Be Done clause of the
Refine−Data operator. Once the Model-Constraint operator has been applied, we can
move on to deal with the consistency checking. For space and clarity reasons, we do
not present the definition of the Model-Constraint operator in this paper.

For the Model-Constraint operator to work, users have to write the invariant I to be
added, and to designate the component to which this constraint has to be introduced.
The application ends with new constraints in B and OCL constraints or comment notes
in UML. We give below one possible formulation of the gluing invariant (over vari-
ables posR and HtR, and their abstract versions pos and Ht) and constraints on the new
functionality that can be given as parameter when instantiating the Model-Constraint
operator.

Parameters
In

TrainR

/* gluing invariants */
∀ tr.(tr : train ⇒
(posR(tr) = farR ⇒ pos(tr) = far) ∧
((posR(tr) = crt S or posR(tr) = stop S) ⇒ pos(tr) = near) ∧
(posR(tr) = onR ⇒ pos(tr) = on) ∧
(HtR(tr) : 0..5 ⇒ HtR(tr) = Ht(tr)) ∧
/* constraints on the new functionality */
(posR(tr) : { crt S, stop S, onR} ⇒ HtR(tr) < 5) ∧
(posR(tr) = crt S or posR(tr) = onR ⇒ HtR(tr) < 2))

Fig. 10 shows the B specification of TrainR after the application of the
Constraint−Modeling operator. Because existing OCL to B rules [11] are only defined
for simple expressions, there is no creation of an OCL constraint for the introduced B
invariant I.

6 Verification of the Operator’s Correctness

In this section, we look at the correction aspect of the case-study. We show concretely
how the definitions apply to the UML and B parts manipulated in the case-study. We
also give some hints on how the correctness of the operators Refine-Data and Model-
Constraint could be assessed.

6.1 Syntactic Well-Formedness

Both specifications must be checked for syntax and type correctness with their corre-
sponding support tool. The B support tool we use for this case study, atelierB, confirms
the well-formedness of the text shown in Fig. 10. The UML diagrams are also well-
formed according to ArgoUML.

400 D.D. Okalas Ossami, J.-P. Jacquot, and J. Souquières

REFINEMENT TrainR
REFINES Train
SEES Types
SETS TSTATES R = {nearR, farR, crt S, stop S, onR}
VARIABLES posR, HtR
INVARIANT
posR ∈ train → TSTATES R ∧
HtR ∈ train → NAT ∧
/* gluing invariants */
∀ tr.(tr : train ⇒
(posR(tr) = farR ⇒ pos(tr) = far) ∧
((posR(tr) = crt S or posR(tr) = stop S) ⇒ pos(tr) = near) ∧
(posR(tr) = onR ⇒ pos(tr) = on) ∧
(HtR(tr) : 0..5 ⇒ HtR(tr) = Ht(tr)) ∧
/* constraints on the new functionality */
(posR(tr) : { crt S, stop S, onR} ⇒ HtR(tr) < 5) ∧
(posR(tr) = crt S or posR(tr) = onR ⇒ HtR(tr) < 2)
)
INITIALISATION
...
END

Fig. 10. B refinement of the class Train

6.2 Internal Consistency

The definition of operator correctness uses the strong hypothesis that each view in the
initial state is internally consistent. While this condition is not much more than the
well-formedness for the UML, it means full logical consistency for the B part.

Project status
+-----------+----+-----+-----+-----+-----+-----+
| COMPONENT | TC | POG | Obv | nPO | nUn | %Pr |
+-----------+----+-----+-----+-----+-----+-----+
Train	OK	OK	0	4	0	100
TrainR	OK	OK	3	10	0	100
Types	OK	-				
+-----------+----+-----+-----+-----+-----+-----+						
TOTAL	OK	-	3	14	0	100
+-----------+----+-----+-----+-----+-----+-----+

Fig. 11. Result of the verification of the B specification

The checking of SpecB follows the usual approach of the B method: to check initial-
ization, to check pre and postconditions of operations with respect to the preservation
of machine invariants, and to check inter-machine relations such as refinements. On
the case-study, it is clear that the verification is done on two levels. The first level is

Consistency in UML and B Multi-view Specifications 401

the verification that the elements automatically introduced by the operator in SpecB are
correct. The second level checks that the elements introduced by the user are consis-
tent. In our case, the first level is mainly exemplified by the operator Refine-Data, while
Model-Constraint is mostly about the second level.

SpecB has been submitted to the atelierB. All proof obligations generated by the
REFINEMENT status of the TrainR have been discharged through the gluing invariant
which was introduced by the application of the Model-Constraint operator. Figure 11
shows the summary of the verification printed by the tool.

6.3 Consistency Between Views

It is decomposed into the elements traceability and semantics preservation conditions.
Let’s consider:

– 〈SpecUML, SpecB〉 the specification couple of Fig. 4 and 5, respectively.
– 〈SpecUML′, SpecB′〉 the specification couple of Fig. 9 and 10, resulting from the

application of the operators on 〈SpecUML, SpecB〉. Note that Fig. 10 includes the
machine Train of Fig. 9.

– TU→B the set of UML to B transformation rules by Meyer [15] and Ledang [8].

MACHINE Train*
SEES Types
SETS
TSTATES = {far, near, on}
VARIABLES
train, pos, Ht
INVARIANT
train ⊆ TRAIN ∧
pos ∈ train → TSTATES ∧
Ht ∈ train → NAT
INITIALISATION
ANY

tt
WHERE

tt ⊆ TRAIN ∧ tt
= {}
THEN

train := tt ||
pos := tt × {far} ||
Ht := tt × {0}

END
OPERATIONS
arrive(tt) =
PRE

tr : train ∧ pos(tr) = far
THEN

pos(tr) := near || Ht(tr) := 0
END;

cross(tt)
∧
= ...

leave(tt)
∧
= ...

END

MACHINE TrainR*
SEES Types
SETS
TSTATES R = {farR,nearR, crt S, stop S, onR}
VARIABLES
trainR, posR,HtR
INVARIANT
trainR ⊆ TRAINR ∧
posR ∈ trainR → TSTATES R ∧
HtR ∈ trainR → NAT
INITIALISATION
ANY

tt
WHERE

tt ⊆ TRAINR ∧ tt
= {}
THEN

trainR := tt ||
posR := tt × {far} ||
HtR := tt × {0}

END
OPERATIONS
arrive(tt) =
PRE

tr : trainR ∧ posR(tr) = farR
THEN

posR(tr) := nearR || HtR(tr) := 0
END;

cross(tt)
∧
= ...

leave(tt)
∧
= ...

END

Fig. 12. B specification obtained by applying transformation rules

402 D.D. Okalas Ossami, J.-P. Jacquot, and J. Souquières

To check, we apply the transformation rules TU→B to SpecUML′. The interesting
part of the B specification, the machines Train* and TrainR*, is given in Figure 12. It
then proceeds by the verification of conditions 3 and 4 of RelC .

Condition 3 is proved by verifying that ID(TU→B(SpecUML′)) = ID(SpecB′). This
is asserted in two steps:

– all new names introduced by the operators are present. This is easily seen,
– condition 3 holds for 〈SpecUML, SpecB〉. This is true by construction, cf. subsec-

tion 3.2.

The verification of condition 4 is more complex. When we look at Figure 12, we
can see the following differences between SpecB and TU→B(SpecUML′):

1. TrainR* is a machine and is not related to Train* by a refinement relation.
2. The machine TrainR* introduces a new variable trainR6 which is a subset of the set

TRAINR representing possible instances of the class TrainR. trainR and TRAINR
do not appear in SpecB′. As a consequence, variables posR and HtR in the ma-
chine TrainR* which are modeled as functions from current instances set (train)
to the corresponding type (STATES R and NAT respectively), have now different
domains.

3. the UML abstraction/refinement dependency is not modeled,
4. the added invariants in the machine TrainR of SpecB′ do not appear since they have

been represented as a comment note in SpecUML′.

So, to establish the property, we have to prove that the machine TrainR* is a re-
finement of the machine Train*. Concretely, we must find an abstraction function, ρ,
defined as follows. Let us consider:

– SMar and SMa the sets of states of Mar and Ma respectively,
– EvtMar and EvtMa the sets of events of state machines of Mar and Ma respectively,
– TransMar and TransMa the sets of transitions of state machines of Mar and Ma re-

spectively,

ρ : Mar → Ma is an abstraction relation which is a function from SMar ∪ EvtMar ∪
TransMar to SMa ∪ EvtMa ∪ TransMa and which maps

– Each state sr of Mar to a state ρ(sr) of Ma,
– Each event er of Mar to an event ρ(er) of Ma and
– Each transition tr of Mar to a transition ρ(tr) of Ma.

Such that

– ρ(sinitMar
) = sinitMa

– EvtMa(ρ(tr)) = ρ(EvtMar (tr))
– sourceMa(ρ(tr)) = ρ(sourceMar(tr)) ∧ targetMa(ρ(tr)) = ρ(targetMar (tr))

6 For modeling effective instances of the class TrainR.

Consistency in UML and B Multi-view Specifications 403

ρ is an abstraction function equivalent to a B refinement if the following properties hold:

1. ∀ s. ∃ sr.(s ∈ SMa ∧ sr ∈ SMar ∧ ρ(sr) = s) ∧
2. ∀ s. ∃ t.(s ∈ SMa ∧ t ∈ TransMa ∧ EvtMa(t) = e ∧ sourceMa(t) = s ⇒

(∀ sr.(sr ∈ SMar ∧ ρ(sr) = s ⇒ ∃ tr.(tr ∈ TransMar ∧
ρ(EvtMar(tr)) = e ∧
ρ(tr) = t ∧
sourceMar(tr) = sr

)))
)

The first condition states that every state s of an abstraction Ma has some corre-
sponding states of its refinement Mar. The second states that every event e which has an
abstract transition from some state s has also a corresponding concrete transition from
each corresponding state.

These conditions ensure that all properties expressed in Mar hold in the abstraction
Ma and therefore the semantic preservation criteria is ensured. Actually, this condition
is similar to the preservation of precondition requirement of B refinement.

The definition of ρ on our case study is as follows:

ρ = {farR → far, stop S → near, crt S → near, onR → on} ∪
{arrive → arrive, cross → cross, leave → leave} ∪
{(farR, arrive, nearR) →(far, arrive, near), (nearR, cross, onR) → (near, cross, on),

(onR, leave, farR) → (on, leave, far)}

It is easily verified that the preceding properties holds by considering the gluing
invariant.

7 Conclusion and Future Work

Combining UML notations and the B method is important for the use and the acceptance
of formal methods as part of the development of high quality systems. We propose a
framework allowing to define development operators making evolve UML and B multi-
view specifications. The approach is not based on the application of transformation
rules from UML to B or B to UML, but on the development of both specifications in
an incremental way by applying operators. Operators enable the specifier to focus on
methodological issues before addressing technical details related to each specification
language.

We have proposed a definition of the consistency relation between both views of a
specification expressed with UML and B, and two consecutive development states. The
verification of the consistency is done once for all for each operator when defining them,
relatively to a set of UML to B systematic transformation rules. It is partly automated
and supported by the B prover.

As the case study shows, our approach does not pretend to automate the entire
development of the specification. Technical and tedious syntactical details are taken
care of by the operators but the design of important properties is still the specifier’s
responsibility.

404 D.D. Okalas Ossami, J.-P. Jacquot, and J. Souquières

An implementation of this framework with some operators is under development.
It is an extension of the ArgoUML+B [12] platform, allowing to automatically trans-
form some UML diagrams to B specifications (ArgoUML+B is based on the ArgoUML7

project, dedicated to the edition and design of UML diagrams). This extension includes
SmartTools [1, 20] to dynamically represent B specifications as instances of the B AST
(abstract syntax tree), taking into account the multi-view specification.

We are looking at developing a library of useful operators. We have already identi-
fied and defined some restructuring operators such as modeling abstraction of generic
classes from existing classes. We also need operators for the specification of system
behaviours.

References

[1] I. Attali, C. Courbis, P. Degenne, A. Fau, J. Fillon, D. Parigot, C. Pasquier, and C. S.
Coen. SmartTools: a development environment generator based on XML technologies. In
In XML Technologies and Software Engineering, Toronto, Canada. ICSE’01, ICSE work-
shop proceedings, 2001.

[2] C. Attiogbé, P. Poizat, and G. Salaün. Integration of Formal Datatypes within State Dia-
grams. In FASE’2003 - Fundamental Approaches to Software Engineering, volume 2621
of LNCS, pages 341–355. Springer-Verlag, 2003.

[3] Oxford(UK) B-Core(UK) Ltd. B-Toolkit User’s Manual. 1996.
[4] ClearSy. http://www.b4free.com/index.php.
[5] F. Houda and Stephan Merz. Transformation de spécifications B en diagrammes UML. In

Proceedings of AFADL’04, Besançon (Fr), 2004.
[6] A. Idani and Y. Ledru. Object Oriented Concepts Identification from Formal B Specifica-

tions. In 9th Int.Workshop on Formal Methods for Industrial Critical Systems (FMICS’04),
Linz (AT), 2004.

[7] R. Laleau and F. Polack. A Rigorous Metamodel for UML Static Conceptual Modelling
of Information Systems. In Advanced Information Systems Engineering. 13th Int. Conf.,
CAiSE 2001, Proceedings, volume 2068 of LNCS, pages 402–416. Springer, 2001.

[8] H. Ledang. Traduction Systématique de Spécifications UML vers B. PhD thesis, LORIA
-Université Nancy2, novembre, 2002.

[9] H. Ledang and J. Souquières. Modeling class operations in B: application to UML behav-
ioral diagrams. - ASE2001: 16th IEEE International Conference on Automated Software
Engineering, IEEE Computer Society, November, 2001.

[10] H. Ledang and J. Souquières. Integrating Formalizing UML Behavioral Diagrams with B.
Workshop on Integration and Transformation of UML models, Malàga (S), 2002.

[11] H. Ledang and J. Souquières. Integration of UML and B Specification Techniques: Sys-
tematic Transformation from OCL Expressions into B. In Proceedings of APSEC 2002
IEEE Computer Society, 2002.

[12] H. Ledang, J. Souquières, and S. Charles. ArgoUML+B : Un outil de transformation sys-
tématique de spécifications UML vers B. In Proceedings of AFADL’03, Rennes (Fr), 2003.

[13] R. Marcano and N. Levy. Transformation rules of OCL constraints into B formal expres-
sions. In Jürjens, Cengarle, Fernandez, Rumpe, and Sandner, editors, Critical Systems
Development with UML – Proceedings of the UML’02 workshop, pages 155–162, 2002.

7 http://www.argouml.tigris.org

Consistency in UML and B Multi-view Specifications 405

[14] R. Marcano and N. Levy. Using B formal specifications for analysis and verification of
UML/OCL models. In L. Kuzniarz, G. Reggio, J. L. Sourrouille, and Z. Huzar, editors,
Workshop on Consistency Problems in UML-based Software Development. Workshop Ma-
terials, pages 91–105, 2002.

[15] E. Meyer. Développements formels par objets: utilisation conjointe de B et d’UML. PhD
thesis, LORIA -Université Nancy2, mars, 2001.

[16] E. Meyer and J. Souquières. A systematic approach to transform OMT diagrams to a B
specification. FM’99: World Congress on Formal Methods in the Development of Comput-
ing Systems, Toulouse (Fr), 1999.

[17] E. Meyer and J. Souquières. A systematic approach to transform OMT diagrams to a B
specification. FM’99: World Congress on Formal Methods in the Development of Comput-
ing Systems, Toulouse (Fr), 1999.

[18] D. Okalas Ossami, J. Souquières, and J.-P. Jacquot. Opérations de construction de spé-
cifications multi-vues UML et B. In Proceedings of AFADL’04, Besançon, France, June
16-18. INRIA, 2004.

[19] OMG. Unified modeling language specification, version 1.5, March 2003. available from
hhtp:://www.omg.org.

[20] D. Parigot and C. Courbis. avaible at : http://www-sop.inria.fr/smartool/.
[21] P. Schnoebelen, B. Bérard, M. Bidoit, F. Laroussine, and A. Petit. Vérification de logiciels

-Techniques et outils du model-checking-. Paris,Vuibert, 1999. ISBN 2- 7117-8646-3.
[22] C. Snook, M. Butler, and I. Oliver. Towards a UML profile for UML-B. Technical report,

DSSE-TR-2003-3, Electronics and Computer Science, University of Southampton, 2003.
[23] C. Snook and M. Buttler. U2B: a tool for combining UML and B. Avaible at

http://www.ecs.soton.ac.uk/ cfs/U2Bdownloads/.
[24] STERIA. Manuel de référence du langage B. -ClearSy-, novembre, 1998.
[25] B. Tatibouet, A. Hammad, and J.-C. Voisinet. From an abstract B specification to UML

class diagrams. In 2nd IEEE International Symposium on Signal Processing and Informa-
tion Technology (ISSPIT’2002), pages 5–10, 2002.

[26] B. Tatibouet and J.-C. Voisinet. Generating statecharts from B specifications. In 16th
International Conference Software & Systems Engineering and their applications (IC-
SSEA’2003), Paris (Fr), 2003.

[27] B. Tatibouet and J.C. Voisinet. jBtools and B2UML : a plateform and a tool to provide a
UML class diagram since a B specification. In ICSSEA : 14th International Conference on
Software and Systems Engineering and Their Applications, Paris (Fr), volume 2, 2001.

Author Index

Bensalem, Saddek 5
Bert, Didier 327
Bodeveix, Jean-Paul 187
Boström, Pontus 167
Bracher, Shane 150
Brooke, Phillip J. 109

Chaki, Sagar 53
Clarke, Edmund 53
Cleaveland, Rance 366

Evans, Neil 89

Filali, Mamoun 187
Frappier, Marc 207
Freitas, Leo 227

Gervais, Frédéric 207
Godefroid, Patrice 20
Grumberg, Orna 53
Grunske, Lars 129

Heather, James 246

Jacquot, Jean-Pierre 386

Klarlund, Nils 20
Krishnan, Padmanabhan 150
Kristensen, Lars M. 266

Laleau, Régine 207
Lam, Vitus S.W. 347
Lang, Frédéric 70
Lawall, Julia 187
Lindsay, Peter 129

Malik, Petra 227
Malik, Robi 33
Miller, Tim 227
Muller, Gilles 187

Nørgaard, Peder Christian 266

Okalas Ossami, Dieu Donné 386
Ouaknine, Joël 53

Padget, Julian 347
Paige, Richard F. 109
Parnas, David Lorge 1
Peled, Doron 5

Qu, Hongyang 5

Roop, Partha S. 33
Rúız Barradas, Héctor 327

Salaün, Gwen 287
Schneider, Steve 89
Sengupta, Bikram 366
Serwe, Wendelin 287
Sharygina, Natasha 53
Souquières, Jeanine 386

Touili, Tayssir 53
Treharne, Helen 89
Tripakis, Stavros 5
Turner, Kenneth J. 307

Utting, Mark 227

Veith, Helmut 53

Waldén, Marina 167
Wei, Kun 246
Westergaard, Michael 266
Winter, Kirsten 129

Yatapanage, Nisansala 129

	Frontmatter
	Invited Papers
	A Family of Mathematical Methods for Professional Software Documentation
	Generating Path Conditions for Timed Systems
	Software Model Checking: Searching for Computations in the Abstract or the Concrete

	Session: Components
	Adaptive Techniques for Specification Matching in Embedded Systems: A Comparative Study

	Session: State/Event-Based Verification
	State/Event Software Verification for Branching-Time Specifications
	Exp.Open 2.0: A Flexible Tool Integrating Partial Order, Compositional, and On-The-Fly Verification Methods
	Chunks: Component Verification in CSP \parallel B

	Session: System Development
	Agile Formal Method Engineering
	An Automated Failure Mode and Effect Analysis Based on High-Level Design Specification with Behavior Trees
	Enabling Security Testing from Specification to Code

	Session: Applications of B
	Development of Fault Tolerant Grid Applications Using Distributed B
	Formal Methods Meet Domain Specific Languages
	Synthesizing B Specifications from {\sc eb}<Superscript>3</Superscript> Attribute Definitions

	Session: Tool Support
	CZT Support for Z Extensions
	Embedding the Stable Failures Model of CSP in PVS
	Model-Based Prototyping of an Interoperability Protocol for Mobile Ad-Hoc Networks

	Session: Non-software Domains
	Translating Hardware Process Algebras into Standard Process Algebras: Illustration with CHP and LOTOS
	Formalising Interactive Voice Services with SDL

	Session: Semantics
	A Fixpoint Semantics of Event Systems With and Without Fairness Assumptions

	Session: UML and Statecharts
	Consistency Checking of Sequence Diagrams and Statechart Diagrams Using the π-Calculus
	An Integrated Framework for Scenarios and State Machines
	Consistency in UML and B Multi-view Specifications

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

