
Grid Vertex-Unfolding Orthostacks

Erik D. Demaine1,�, John Iacono2,� �, and Stefan Langerman3,� � �

1 MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA

edemaine@mit.edu
2 Department of Computer and Information Science, Polytechnic University,

5 MetroTech Center, Brooklyn, NY 11201, USA
http://john.poly.edu

3 Département d’informatique, Université Libre de Bruxelles,
ULB CP212, 1050 Brussels, Belgium

Stefan.Langerman@ulb.ac.be

Abstract. An algorithm was presented in [BDD+98] for unfolding or-
thostacks into one piece without overlap by using arbitrary cuts along
the surface. It was conjectured that orthostacks could be unfolded using
cuts that lie in a plane orthogonal to a coordinate axis and containing
a vertex of the orthostack. We prove the existence of a vertex-unfolding
using only such cuts.

1 Introduction

A long-standing open question is whether every convex polyhedron can be edge
unfolded—cut along some of its edges and unfolded into a single planar piece
without overlap [She75, O’R98, Dem00, DO05]. A related open question asks
whether every polyhedron without boundary1 (not necessarily convex but form-
ing a closed surface) can be generally unfolded—cut along its surface (not just
along edges) and unfolded into a single planar piece without overlap. Biedl et al.
[BDD+98] made partial progress on both of these problems in the context of
orthostacks. An orthostack is an orthogonal polyhedron for which every horizon-
tal planar slice is connected, and for which the interior of the polyhedron is a
connected solid. Thus, every horizontal planar slice of an orthostacks’s interior
is a simple polygon. Biedl et al. showed that not all orthostacks can be edge
unfolded (see Figure 1), but that all orthostacks can be generally unfolded. In

� Research supported in part by NSF grants CCF-0347776, OISE-0334653, and
CCF-0430849, and by DOE grant DE-FG02-04ER25647.

� � Research supported in part by NSF grants OISE-0334653 and CCF-0430849.
� � � Chercheur qualifié du FNRS.

1 For the purposes of this problem, a polyhedron without boundary is an abstract
polyhedral complex without boundary, i.e., a set of polygons and a definition of
incidence between polygons such that every edge is incident to exactly two poly-
gons and every two polygons meet at either a common vertex, a common edge, or
not at all. Note that a polyhedron is treated as a surface throughout this paper.

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 76–82, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Grid Vertex-Unfolding Orthostacks 77

Fig. 1. This orthostack is not edge-unfoldable [BDD+98]

their general unfoldings, all cuts are parallel to coordinate axes, but many of the
cuts do not lie in coordinate planes that contain polyhedron vertices. Given the
lack of pure edge unfoldings, the closest analog we can hope for with (nonconvex)
orthostacks is to find grid unfoldings in which every cut is in a coordinate plane
that contains a polyhedron vertex. In other words, a grid unfolding is an edge
unfolding of the refined (“gridded”) polyhedron in which we slice along every
coordinate plane containing a polyhedron vertex. Biedl et al. [BDD+98] asked
whether all orthostacks can be grid unfolded.

We make partial progress on this problem by showing that every orthostack
can be grid vertex-unfolded, i.e., cut along some of the grid lines and unfolded
into a vertex-connected planar piece without overlap. Vertex-unfoldings were
introduced in [DEE+02, DEE+03]; the difference from edge unfoldings is that
faces can remain connected along single points (vertices) instead of having to be
connected along whole edges.

2 A Grid Vertex Unfolding

Given an orthostack K, let z0 < z1 < · · · < zn be the distinct z coordinates of
vertices of K. Subdivide the faces of K by cutting along every plane perpendic-
ular to a coordinate axis that passes through a vertex of K. This subdivision
rectangulates K. We use the term rectangle to refer to one element of this facial
subdivision, while face refers to a maximal connected set of coplanar rectangles.
We use up and down to refer to the z dimension, and use left and right to refer
to the x dimension.

2.1 Rectangle Categorization

We partition the rectangles of K into several categories. After this categorization,
the description of the unfolding layout is not difficult.

For i = 0, 1, . . . , n − 1, define the i-band to be the set of vertical rectangles
(i.e., that lie in an xz plane or in a yz plane) whose z coordinates are between zi

and zi+1. Each i-band is connected, and all of the rectangles of an i-band have
the same extent in the z dimension, namely, [zi, zi+1].

78 E.D. Demaine, J. Iacono, and S. Langerman

For i = 0, 1, . . . , n, we define the i-faces to be the faces of K in the horizontal
plane z = zi. As we have defined them, an i-face has several properties. It may
have the interior of K above or below it (but not both). The perimeter of the
i-face has a nonempty intersection with the (i − 1)-band, provided i > 0, and
with the i-band, provided i < n. (If an i-face does not meet the (i − 1)-band, it
must be the bottom face of the polyhedron, and if it did not meet the i-band, it
must be the top face of the polyhedron.) By the definition of an orthostack, the
intersection between an i-face and each incident band is connected. That is, the
perimeter of the i-face can be cut into two contiguous intervals such that each
interval intersects solely the (i − 1)-band or the i-band.

Also needed are the notions of the “begin rectangle” and “end rectangle” of
the i-band. Choose the 0-band begin rectangle to be an arbitrary rectangle of
the 0-band. For i ≥ 0, define the i-band end rectangle to be the rectangle of the
i-band that is adjacent to the i-band begin rectangle in the counter-clockwise
direction as viewed from +z. (Thus, the begin and end rectangles of the i-band
are adjacent.) For i ≥ 1, define the i-connecting face to be the i-face that shares
an edge with the (i−1)-band end rectangle, if such a face exists. For i ≥ 1, define
the i-band begin rectangle to be one of the rectangles of the i-band that shares
an edge with the i-connecting face, if it exists, or else the rectangle of the i-band
that shares an edge with the (i − 1)-band end rectangle. The i-band interior
rectangles are rectangles of the i-band that are neither the begin rectangle nor
the end rectangle.

Define the i-connecting sequence to be an edge-connected sequence of rectan-
gles in the i-connecting face, if it exists, starting at the rectangle that shares an
edge with the (i−1)-band end rectangle and ending at the rectangle that shares
an edge with the i-band begin rectangle. This sequence is chosen to contain the
fewest rectangles possible (a shortest path in the dual graph on the rectangles
in the i-connecting face), in order to prevent the path from looping around an
island and thereby isolating interior portions of the i-face. If the i-connecting
face does not exist, the i-connecting sequence is the empty sequence. The rect-
angles in the i-connecting sequence are called i-connecting rectangles; all other
rectangles of the i-face are called normal rectangles.

We now merge all normal rectangles with their normal neighbors in the x
dimension. Call the resultant rectangular regions über-rectangles. Thus i-faces
are partitioned into the i-connecting rectangles and the i-über-rectangles. All
i-über-rectangles are connected to the perimeter of the i-face, and thus are edge-
connected to the (i− 1)-band or the i-band. Define an i-up-über-rectangle to be
an über-rectangle that is incident to the i-band and an i-down-über-rectangle to
be an über-rectangle that is incident to the (i− 1)-band. If an über-rectangle is
incident to both, we classify it arbitrarily.

Thus we have partitioned K into i-band begin rectangles, i-band end rect-
angles, i-band interior rectangles, i-up-über-rectangles, i-down-über-rectangles,
and i-connecting rectangles. We now proceed to a description of the unfolding.

Grid Vertex-Unfolding Orthostacks 79

R

S

Fig. 2. If R and S are anchors of an anchored component, the component may be

unfolded only in the unshaded region

2.2 Unfolding Algorithm

Our unfolding of an orthostack consists of several components strung together
at distinguished rectangles called anchors. Specifically, there are two types of
components, i-main components and i-connecting components, both of which
are anchored at two rectangles, a begin rectangle and an end rectangle. The
i-main component consists of the entire i-band (the i-band begin rectangle, the
i-band end rectangle, and the i-band interior rectangles), the (i+1)-down-über-
rectangles, and the i-up-über-rectangles. The i-connecting component consists
of the (i − 1)-band end rectangle, the i-connecting rectangles (if any), and the
i-band begin rectangle. It serves to connect the (i − 1)-main component and
the i-main component (at the (i − 1)-band end rectangle and the i-band begin
rectangle, respectively).

To ensure that components do not overlap each other, we enforce that the
components are anchored in the following sense. A component is anchored at
anchor rectangles R and S if, in the unfolded layout of the component, no rect-
angles are in the shaded region of Figure 2. More precisely, every rectangle is
strictly right of R and left of S, or directly below R, or directly above S.

We can combine two anchored components with a common anchor while
avoiding overlap. More precisely, given a component C anchored at anchors R
and S, and another component C ′ anchored at S and T , we can combine the two
unfolded layouts by rigidly moving C ′ so that the two copies of S coincide (with
matching orientations). The conditions on the rectangles in the two components
C and C ′ guarantees nonoverlap of the combined unfolded layout.

We unfold the orthostack in such a way that the positive z direction of every
vertical (i-band) rectangle is placed in the positive y direction in the planar
unfolding.

We edge-unfold the i-main component by leaving one edge attached between
the über-rectangles of the component (arbitrarily, if there is a choice), and cut-
ting along all of the other edges of the über-rectangles. As shown in Figure 3,
the layout induced by this edge unfolding consists of a central horizontal rect-

80 E.D. Demaine, J. Iacono, and S. Langerman

Fig. 3. An example of an unfolded i-main component. The shaded rectangles are the i-

begin rectangle (right) and i-end rectangle (left). They are connected by the remainder

of the i-band. Above the i-band are the (i+1)-down-über-rectangles and below are the

i-up-über-rectangles.

angular strip, which contains all i-band rectangles, and has the (i + 1)-down-
über-rectangles connected to the top of this strip, and the i-up-über-rectangles
connected to the bottom of this strip. The rightmost rectangle of this strip is the
i-band begin rectangle, and the leftmost rectangle of the strip is the i-band end
rectangle. There is nothing above the leftmost rectangle or below the rightmost
rectangle because these vacant locations are where the connecting rectangles are
attached, by definition, and we know that connecting rectangles are not über-
rectangles. Therefore the edge unfolding of the i-main component is anchored at
the i-band begin and end rectangles.

We vertex-unfold the i-connecting component by an incremental algorithm,
by performing a sequence of vertex unfoldings, beginning with the (i − 1)-band
end rectangle. This unfolding proceeds in phases: the middle phase and the end
phase.

SR

R

S

RS R

S

S RS R

Fig. 4. How a path of rectangles can be vertex-unfolded so that each rectangle is to

the left of the previous rectangle. In this diagram, R represents the current rectangle,

S represents the next rectangle, and the grey shaded area represent the three possible

positions of the next next rectangle. There are three cases of the possible location of

S in relation to R. Note that the illustrated unfoldings work no matter what the sizes

of the rectangles.

Grid Vertex-Unfolding Orthostacks 81

The middle phase of the vertex unfolding does all unfoldings except for the
last (i.e., it is used for all unfoldings that do not involve the i-band begin rect-
angle). See Figure 4. This phase has the property that every rectangle is to the
left of the previous rectangle. Suppose we are unfolding R and S, and the next
item to be unfolded is T . Our algorithm requires as a precondition that S not
be to the right of R and as a postcondition ensures that T is not to the right
of S. The unfolding begins with the i-band end rectangle and the first rectangle
of the i-connecting sequence. In order to place the i-band begin rectangle with
the proper orientation, the first rectangle of the i-connecting sequence must be
adjacent to its top edge. Thus, it satisfies the precondition for this construction.
The construction has three cases, depending on whether S is above, below, or
to the left of R. In the first two cases, we vertex-unfold 90◦ about the leftmost
point of the edge conneting R and S so that S is to the left of R, while in the
third case we do nothing.

The end phase is trickier because the i-begin rectangle must be oriented
properly. If the i-connecting face does not exist, the i-begin rectangle is connected
to the top edge of the (i−1)-end rectangle, and we are done. Otherwise, because
of the construction in the middle phase, the i-begin rectangle may be connected
to the top, left, or bottom edge of the last rectangle in the i-connecting sequence.
The i-begin rectangle must be oriented so that the edge that connected it to the
last i-connecting rectangle is the bottom edge when unfolded. There are three
cases, illustrated in Figure 5.

Thus, the i-connecting component can always be vertex-unfolded into an
anchored unfolding. Because the main component can also be vertex-unfolded
into an anchored component, we conclude

Theorem 1. Every orthostack can be grid vertex-unfolded.

Fig. 5. How the end phase unfolds the connecting component. The empty rectangle

represents the last i-connecting rectangle, and the rectangle with the arrow represents

the i-begin rectangle. There are three cases for their configuration before unfolding;

after unfolding the arrow must point up in order for this rectangle to be in the same

orientation as in the main component. This figure shows how this is done. Note that

the illustrated unfoldings work no matter what the sizes of the rectangles.

82 E.D. Demaine, J. Iacono, and S. Langerman

Acknowledgments

This work was initated while the authors visited McGill University’s Computa-
tional Geometry Lab. We thank Mirela Damian and Joseph O’Rourke for helpful
discussions. We also thank Koichi Hirata for helpful comments on the paper.

References

[BDD+98] Therese Biedl, Erik Demaine, Martin Demaine, Anna Lubiw, Mark Over-
mars, Joseph O’Rourke, Steve Robbins, and Sue Whitesides. Unfolding
some classes of orthogonal polyhedra. In Proceedings of the 10th Canadian
Conference on Computational Geometry, Montréal, Canada, August
1998. http://cgm.cs.mcgill.ca/cccg98/proceedings/cccg98-biedl-

unfolding.ps.gz.
[DEE+02] Erik D. Demaine, David Eppstein, Jeff Erickson, George W. Hart, and

Joseph O’Rourke. Vertex-unfolding of simplicial manifolds. In Proceedings
of the 18th Annual ACM Symposium on Computational Geometry, pages
237–243, Barcelona, Spain, June 2002.

[DEE+03] Erik D. Demaine, David Eppstein, Jeff Erickson, George W. Hart, and
Joseph O’Rourke. Vertex-unfolding of simplicial manifolds. In Discrete Ge-
ometry: In Honor of W. Kuperberg’s 60th Birthday, pages 215–228. Marcer
Dekker Inc., 2003.

[Dem00] Erik D. Demaine. Folding and unfolding linkages, paper, and polyhedra. In
Revised Papers from the Japan Conference on Discrete and Computational
Geometry, volume 2098 of Lecture Notes in Computer Science, pages 113–
124, Tokyo, Japan, November 2000.

[DO05] Erik D. Demaine and Joseph O’Rourke. A survey of folding and unfolding
in computational geometry. In Jacob E. Goodman, János Pach, and Emo
Welzl, editors, Discrete and Computational Geometry, Mathematical Sci-
ences Research Institute Publications. Cambridge University Press, 2005.
To appear.

[O’R98] Joseph O’Rourke. Folding and unfolding in computational geometry. In
Revised Papers from the Japan Conference on Discrete and Computational
Geometry, volume 1763 of Lecture Notes in Computer Science, pages 258–
266, Tokyo, Japan, December 1998.

[She75] G. C. Shephard. Convex polytopes with convex nets. Mathematical Pro-
ceedings of the Cambridge Philosophical Society, 78:389–403, 1975.

http://cgm.cs.mcgill.ca/cccg98/proceedings/cccg98-biedl-
unfolding.ps.gz

	Introduction
	A Grid Vertex Unfolding
	Rectangle Categorization
	Unfolding Algorithm

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

