Algorithms for the *d***-Dimensional Rigidity Matroid of Sparse Graphs**

Sergey Bereg

Departm[ent](#page-7-0) of Computer Science, University [of](#page-7-1) Texas at Dallas, Box 830688, Richardson, TX 75083, USA besp@utdallas.edu

Abstract. Let $\mathcal{R}_d(G)$ be the *d*-dimensional rigidity matroid for a graph $G = (V, E)$. Combinatorial characterization of generically rigid graphs is known only for the plane $d = 2$ [11]. Recently Jackson and Jordán [5] derived a min-max formula which determines the rank function in $\mathcal{R}_d(G)$ when *G* is *sparse*, i.e. has maximum degree at most $d + 2$ and minimum degree at most $d+1$.

We present three efficient algorithms for sparse graphs *G* that

(i) detect if *E* is independent in the rigidity matroid for *G*, and

(ii) const[ru](#page-7-2)[ct](#page-7-0) *G* using vertex insertions preserving if *G* is isostatic, and [\(](#page-7-3)iii) compute the rank of $\mathcal{R}_d(G)$ $\mathcal{R}_d(G)$ $\mathcal{R}_d(G)$.

The algorithms h[ave](#page-6-1) linear running time assuming that the dimension *d* is fixed.

1 Introduction

Techniques from Rigidity Theory [4,11] have been recently applied to problems such as collision free robot arm motion planning [1,8], molecular conformations [6,10] and sensor and network topologies [2]. We introduce some notation first, see [4,5,9,11] for more details.

A *framework* (G, p) in d-space is a graph $G = (V, E), n = |V|, m = |E|$ and an embedding $p: V \to \mathbb{R}^d$. Let $p(V) = \{p_1, \ldots, p_n\}$. The *rigidity matrix* of the framework is the $m \times dn$ matrix for the system of m equations

$$
(p_i - p_j) \cdot (p'_i - p'_j) = 0, (p_i, p_j) = p(e), e \in E
$$

in unknown velocities p *ⁱ*. The rigidity matrix of (G, p) defines the *rigidity matroid* of (G, p) on the ground set E by independence of rows of the rigidity matrix. A framework (G, p) is *generic* if the coordinates of the points $p(v), v \in V$ are algebraically independent over the rationals. Any two generic frameworks (G, p) and (G, p) have the same rigidity matroid called d-dimensional *rigidity matroid* $\mathcal{R}_d(G)=(E,r_d)$ of G. The r[ank](#page-6-2) of $\mathcal{R}_d(G)$ is denoted by $r_d(G)$.

Lemma 1. [9, Lemma 11.1.3] *For a graph* G *with* n *vertices, the rank* $r_d(G) \leq$ S(n, d) *where*

$$
S(n,d) = \begin{cases} nd - \binom{d+1}{2} & \text{if } n \ge d+1 \\ \binom{n}{2} & \text{if } n \le d+1. \end{cases}
$$

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 29–36, 2005.

⁻c Springer-Verlag Berlin Heidelberg 2005

30 S. Bereg

Fig. 1. [\(a](#page-7-4)) Rigid graph in the plane, (b) not rigid graph in the plane, and (c) rigid graph in \mathbb{R}^3

We say that a graph $G = (V, E)$ is *rigid* if $r_d(G) = S(n, d)$, see Fig. 1. We say that G is [M](#page-7-1)-independent, M-dependent, or an M-circuit in \mathbb{R}^d if E is independent, dependent, or a circuit, respectively, in $\mathcal{R}_d(G)$. A rigid graph is *minimally rigid* in \mathbb{R}^d (or *generically d-isostatic*) if it is M-independent. The famous Laman Theorem $[7]$ asserts that a graph G with n vertices and m edges is minimally rigid in \mathbb{R}^2 if and only if $m = 2n - 3$ and every subgraph induced by k vertices contains at most $2k-3$ edges for any k.

A combinatorial characterization of rigid graphs is not known for dimensions $d \geq 3$. Recently Jackson and Jordán [5] generalized Laman Theorem to sparse graphs in higher dimensions. Let $G = (V, E)$ be a graph and $d \geq 3$ be a fixed integ[er.](#page-7-1) For $X \subseteq V$ let $G[X] = (V(X), E(X))$ be the subgraph of G induced by X. Let $i(X) = |E(X)|$. We say that a graph G is *Laman* if $i(X) \le S(|X|, d)$ for all $X \subseteq V$. We denote the maximum and minimum degrees of G by $\Delta(G)$ and $\delta(G)$, respectively.

Theorem 1. [5, Theorem 3.5] *Let* G *be a connected graph with* $\Delta(G) \leq d+2$ and $\delta(G) \leq d+1$. Then G is M-independent if and only if G is Laman.

Jackson and Jordán [5] derived a min-max formula for the rank $r_d(G)$ of a sparse graph. A *cover* of G is a collection $\mathcal X$ of subsets of V, each of size at lest two, such that $\bigcup_{X\in\mathcal{X}} E(X) = E$ $\bigcup_{X\in\mathcal{X}} E(X) = E$ $\bigcup_{X\in\mathcal{X}} E(X) = E$. For $X \subseteq V$ let $f(X) = S(|X|, d)$ and $val(X) = \sum_{X \in \mathcal{X}} f(X)$. A cover X is 1-*thin* if $|X \cap X'| \leq 1$ for all distinct $X, X' \in \mathcal{X}$.

Theorem 2. [5, Theorem 3.9] *Let* G *be a connected graph with* $\Delta(G) \leq d+2$ and $\delta(G) \leq d+1$. [Then](#page-7-0) $r_d(G) = min_{\mathcal{X}} val(\mathcal{X})$ where the minimum is taken over *all 1-thin covers* X *of* G *.*

A direct computation of the rank $r_d(G)$ by Theorem 2 leads to an exponential algorithm since the number of 1-thin covers can be exponential. Thus, it would be interesting to design an efficient algorithm (with polynomial running time) for computing the rank $r_d(G)$.

Isostatic Graphs. By Theorem 60.1.2 [11], a graph $G = (V, E)$ is generically disostatic if and only if it is rigid and $|E| = S(|V|, d)$. Inductive constructions are useful for isostatic graphs.

Fig. 2. Vertex addition for $d = 3$

Theorem 3. [11, Theorem 60.1.6] *Vertex Addition.* Let G be a graph with a vertex v of degree d . Let G' denote the graph obtained by *deleting* v *and the edges incident to it. Then* G *is generically* d*-isostatic if and only if* G' *is generically d-isostatic.*

Theorem 4. [11, Theorem 60.1.7] *Edge Split.*

Let G be a graph with a vertex v of degree $d+1$. Let G' denote the graph obtained *by deleting* v *and its* d + 1 *incident edges. Then* G *is generically* d*-isostatic if and only if there is a pair* u, w *of vertices of* G *adjacent to* v *such that* (u, w) *is not an edge of* G *and the graph* $G' + (u, w)$ *is generically d-isostatic.*

Fig. 3. Edge split for $d = 3$

1.1 Our Results

We present three efficient algorithms.

Theorem 5. Let G be a graph with $\Delta(G) \leq d + 2$ and $\delta(G) \leq d + 1$. The *following problems can be solved in linear time.*

- (i) *Determine whether* G *is* M*-independent.*
- (ii) *If* G *is generically* d*-isostatic then compute a sequence of vertex additions and edge splits that yield the graph* G*.*
- (iii) *Compute the rank* $r_d(G)$ *and a basis of the rigidity matroid* $\mathcal{R}_d(G)$ *.*

2 Detecting *M***-Independence of a Sparse Graph**

Lemma 2. Let G be a graph with $\Delta(G) \leq d+2$ and $\delta(G) \leq d+1$. Let $E' \subseteq E$ *be a minimal* M*-dependent set and let* X *be the set of endvertices of the edges of* E *. Then* X *contains at most* M*^d vertices where*

$$
M_d = \left\lfloor \frac{(d-1)(d+1)}{d-2} \right\rfloor.
$$

32 S. Bereg

Proof. For every vertex $v \in X$, its degree in $G[X]$ is bounded by $d+2$, $d_X(v) \leq$ $d+2$. Therefore

$$
2i(X) = \sum_{v \in X} d_X(v) \le (d+2)|X|.
$$

The graph $G[X]$ is connected since E' is a minimal M-dependent set. By Theorem 1, $G[X]$ is not a Laman graph since $G[X]$ is M-dependent. Therefore $i(X) \geq S(|X|, d) + 1$. We assume that $|X| > d + 1$ (the lemma follows otherwise). Therefore $S(|X|, d) = d|X| - \binom{d+1}{2}$ and

$$
2d|X| - d(d+1) + 2 \le 2i(X) \le (d+2)|X|,
$$

\n
$$
(d-2)|X| \le (d-1)(d+2),
$$

\n
$$
|X| \le \frac{(d-1)(d+2)}{d-2},
$$

\n
$$
|X| \le M_d.
$$

Algorithm 1.

Theorem 6. Let G be a graph with $\Delta(G) \leq d+2$ and $\delta(G) \leq d+1$. The above *algorithm detects in linear time whether* G *is* M -independent or not, in $O(n)$ *time assuming that* d *is fixed.*

 \Box

Proof. The algorithm checks all subsets of V of size at most M_d that induce connected graphs. By Lemma 2 the graph G is M -dependent if and only if at least one of these sets induces the connected and M-dependent graph. By Theorem 1 it is necessary and sufficient to test if the induced graph is Laman.

We analyze the running time in terms of both n and d , and show later that the dependence on n is linear. The degree of each vertex is bounded by $d + 2$. Therefore the size of A is at most

$$
|A| \le 1 + (d+2) + (d+2)^2 + \dots + (d+2)^{M_d-1} = \frac{(d+2)^{M_d}-1}{d+1}.
$$

Let A_d be the number of the subsets of A of size at most M_d . Then

$$
A_d = \binom{|A|}{1} + \binom{|A|}{2} + \dots + \binom{|A|}{M_d} \le |A|^{M_d}.
$$

The running time is $O(A_d(d+2)^{M_d-1}n)$ since we need $O((d+2)^{M_d-1})$ time to compute $i(X)$ for each subset. The theorem follows since d is a constant. \square

3 Isostatic and *M***-Independent Graphs**

A set $X \subseteq V$ is *critical* if $|X| \geq 2$ and $i(X) = S(|X|, d)$.

We show that M-independent graph with $\Delta(G) \leq d+2$ and $\delta(G) \leq d+1$ can be constructed using (i) the operations of vertex addition and edge split as in Theorems 3 and 4, and (ii) addition of a vertex of degree less than d . We need the following bound on the size of a critical set.

Lemma 3. *Let* G *be a graph with* $\Delta(G) \leq d+2$ *and* $\delta(G) \leq d+1$ *. Any critical set in* G *contains at most* N*^d vertices where*

$$
N_d = \left\lfloor \frac{d(d+1)}{d-2} \right\rfloor.
$$

Proof. Let X be a critical set in G. For every vertex $v \in X$, its degree in $G[X]$ is bounded by $d+2$, $d_X(v) \leq d+2$. Therefore

$$
2i(X) = \sum_{v \in X} d_X(v) \le (d+2)|X|.
$$

On the other hand, $i(X) = S(|X|, d)$ since X is critical. We assume that $|X| >$ $d+1$ (the lemma follows otherwise). Therefore $S(|X|, d) = |X|d - \binom{d+1}{2}$ and

$$
2i(X) = 2d|X| - d(d+1) \le (d+2)|X|,
$$

\n
$$
(d-2)|X| \le d(d+1),
$$

\n
$$
|X| \le \frac{d(d+1)}{d-2},
$$

\n
$$
|X| \le N_d.
$$

Algorithm 2.

// Given a M-independent graph G with $\Delta(G) \leq d+2$ and $\delta(G) \leq d+1$, $//$ find a sequence of vertex additions and edge splits that creates $G.$ 1. Partition V into sets V_d , V_{d+1} and V_{d+2} of vertices of degree $\leq d, d$ and $d + 2$, respectively. 2. while $E \neq \emptyset$ do 3. **if** $V_d \neq \emptyset$ then 4. Remove a vertex v from V*d*. 5. Update E, V_d, V_{d+1} and V_{d+2} . 6. **else** 7. Let v be a vertex of V_{d+1} . 8. Compute $N(v) = \{u \mid (u, v) \in E\}.$ 9. Compute $A = \{u \mid d(u, v) \leq N_d\}$. 10. Compute the set C of all maximal critical sets $C \subseteq A$. 11. **for each** $u \in N(v)$ 12. Find $C(u) \in \mathcal{C}$ such that $u \in C(u)$; if $C(u)$ does not exist then $C(u) = \{u\}.$ 13. Find a pair $u, w \in N(v)$ such that $(u, w) \notin E$ and $C(u) \neq C(w)$. 14. Remove v from G and add the edge (u, w) to E . 15. Update E, V_d, V_{d+1} and V_{d+2} . \Box

34 S. Bereg

Theorem 7. Let G be a M-independent graph in \mathbb{R}^d with $\Delta(G) \leq d + 2$ and $\delta(G) \leq d+1$. The above algorithm computes in linear time a sequence of additions *of vertices of degree at most* $d+1$ *and edge splits that yields the graph* G *.*

Proof. First, we prove the correctness of the algorithm. There are two updates of G in the algorithm: the removal of vertex v in the line 4 and the removal of vertex v with the insertion of edge (u, w) in the line 14. The degree of a vertex $u \neq v$ does not increase after either update. Therefore the graph G preserves the property $\Delta(G) \leq d+2$ and $\delta(G) \leq d+1$ after its modification.

The graph G remains M -independent after the d[ele](#page-5-0)tion in the line 4 since the degree of v is at most d . We show that the update of G in the line 14 preserves M-independence of G. Arguing by contradiction we suppose that G is M-dependent after the update. Then there exists $E' \subseteq E$ that is dependent in $\mathcal{R}_d(G)$. Let V' denote the set of the vertices incident to an edge of E'. The graph (V', E') is M-circuit since $E' - \{(u, w)\}\$ is independent. Therefore the graph $G' = (V', E' - \{(u, w)\})$ is critical. This contradicts the choice of (u, w) .

The existence of the edge (u, w) (the line 13) follows from Lemma 4. The algorithm finds all critical sets in A since the size of a critical set is bounded by N*^d* by Lemma 3.

For analysis of the running of the algorithm time we assume that $d = O(1)$. The running time is linear since (i) $|E| = O(n)$, and (ii) $|N(v)| = O(1)$, $|A|$ $O(1), |\mathcal{C}| = O(1)$, a[n](#page-2-1)d (iii) the sets E, V_d, V_{d+1} and V_{d+2} V_{d+2} V_{d+2} can [b](#page-2-1)e updated in $O(1)$ time after each modification of G .

Corollary 1. *Let* G *be a d-isostatic graph in* \mathbb{R}^d *with* $\Delta(G) \leq d+2$ *and* $\delta(G) \leq$ $d+1$. The above algorithm computes in linear time a sequence of additions of *vertices of degree at most* $d+1$ *and edge splits that yields the graph* G *.*

Proof. The graph G has no vertices of degree less than d. By Theorems 3 and 4 the graph after removal of a vertex of degree d (the line 4) or degree $d+1$ (the line 14) is isostatic. Therefore the new graph does not contain a vertex of degree less than d . The corollary follows.

Lemma 4. [5, Corollary 3.8] *Let* G *be a connected* M*-independent graph with* $\Delta(G) = d + 2$ and $\delta(G) = d + 1$ *. Let* X_1, X_2 *be maximal critical subsets of* V *and suppose that* $|X_i| \geq d + 2$ *for each* $i \in \{1, 2\}$ *. Then* $X_1 \cap X_2 = \emptyset$ *.*

4 Basis of the Rigidity Matroid

An independent set all of whose proper supersets are dependent is called a *basis*. We say that a set of vertices $X \subseteq V$ is *dependent* if the graph induced by X is M-dependent.

The algorithm for finding a basis of G maintains a graph $G' = (V, E')$ by inserting edges of G that are independent in G' . For a set $X \subset V$, we denote by $i'(X)$ the number of edges in the graph $G'[X]$ induced by X.

Algorithm 3. // Given a graph G with $\Delta(G) \leq d+2$ and $\delta(G) \leq d+1$, // compute the rank r of $r_d(G)$ and a basis B of the rigidity matroid $\mathcal{R}_d(G)$. 1. Initialize $r = 0$ and $B = \emptyset$ and $G' = (V, \emptyset)$. 2. **for each** edge (u, v) of G **do** 3. flag=TRUE //boolean flag indicates whether (u, v) is independent 4. Compute $A = \{w \mid d(u, w) < N_d \text{ and } d(v, w) < N_d\}.$ 5. **for each** subset X of A such that $u, v \in X$ and $|X| \leq N_d$ and X is connected 6. Compute $i'(X)$. 7. **if** $i'(X) = S(|X|, d)$ **then** 7. **if** $i'(X) = S(|X|, d)$ **then**
8. print " (u, v) is dependent" and set flag=FALSE 9. **if** flag **then** 10. Add (u, v) to G' . 11. $r = r + 1$ and $B = B \cup \{(u, v)\}\$ 12. **[re](#page-4-0)turn** r and B

Theorem 8. *Let* G *be a graph with* $\Delta(G) \leq d+2$ *and* $\delta(G) \leq d+1$ *. The above algorithm computes the rank* $r_d(G)$ *and a basis of the rigidity matroid* $\mathcal{R}_d(G)$ *in linear time.*

Proof. The graph G' has the property that $\Delta(G') \leq d + 2$ and $\delta(G') \leq d + 1$. By Theorem 1 and Lemma 3 the edges rejected for insertion to G' are dependent and the set B is M-independent. Therefore B is the basis of G and the rank is computed correctly.

The running time follows since $|E| = O(n)$ and the number of subsets of A is $O(1)$.

5 Conclusion

We presented three efficient algorithms for sparse graphs for (i) detecting Mindependent graphs, and (ii) constructing M -independent graphs, and (iii) computing the rank of a graph. All algorithms have linear running time assuming that d is fixed. The hidden constants are exponential in d . In the journal version we show that the algorithms can be improved so that the dependence of the running time on d is polynomial.

References

- 1. R. Connelly, E. D. Demaine, and G. Rote. Straightening polygonal arcs and convexifying polygonal cycles. In *Proc. 41th Annu. Sympos. on Found. of Computer Science*, pp. 432–442, 2000.
- 2. T. Eren, B. D. Anderson, W. Whiteley, A. S. Morse, and P. N. Belhumeur. Information structures to control formation splitting and merging. In *Proc. of the American Control Conference*, 2004. to appear.
- 3. T. Eren, W. Whiteley, A. S. Morse, P. N. Belhumeur, and B. D. Anderson. Sensor and network topologies of formations with direction, bearing and angle information between agents. In *Proc. of the 42nd IEEE Conference on Decision and Control*, pp. 3064–3069, 2003.
- 4. J. Graver, B. Servatius, and H. Servatius. *Combinatorial Rigidity*, volume 2. Amer. Math. Soc., Graduate Studies in Mathematics, 1993.
- 5. B. Jackson and T. Jord´an. The *d*-dimensional rigidity matroid of sparse graphs. Technical Report TR-2003-06, EGRES Technical Report Series, 2003.
- 6. D. Jacobs, A. J. Rader, L. Kuhn, and M. Thorpe. Protein flexibility predictions using graph theory. *Proteins*, 44:150–165, 2001.
- 7. G. Laman. On graphs and rigidity of plane skeletal structures. *J. Engineering Math.*, 4:331–340, 1970.
- 8. I. Streinu. A combinatorial approach to planar non-colliding robot arm motion planning. In *Proc. 41st Annu. IEEE Sympos. Found. Comput. Sci.*, pp. 443–453, 2000.
- 9. W. Whiteley. Some matroids from discrete applied geometry. In J. E. Bonin, J. G. Oxley, and B. Servatius, editors, *Contemp. Mathematics*, 197, pp. 171–311. Amer. Math. Soc., Seattle, WA, 1997.
- 10. W. Whiteley. Rigidity of molecular structures: generic and geometric analysis. In M. F. Thorpe and P. M. Duxbury, editors, *Rigidity Theory and Applications*, pp. 21–46. Kluwer, 1999.
- 11. W. Whiteley. Rigidity and scene analysis. In J. E. Goodman and J. O'Rourke, editors, *Handbook of Discrete and Computational Geometry*, chapter 60, pp. 1327– 1354. CRC Press LLC, Boca Raton, FL, 2004.