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Abstract. Let Rd(G) be the d-dimensional rigidity matroid for a graph
G = (V, E). Combinatorial characterization of generically rigid graphs is
known only for the plane d = 2 [11]. Recently Jackson and Jordán [5]
derived a min-max formula which determines the rank function in Rd(G)
when G is sparse, i.e. has maximum degree at most d + 2 and minimum
degree at most d + 1.

We present three efficient algorithms for sparse graphs G that

(i) detect if E is independent in the rigidity matroid for G, and
(ii) construct G using vertex insertions preserving if G is isostatic, and
(iii) compute the rank of Rd(G).

The algorithms have linear running time assuming that the dimension d
is fixed.

1 Introduction

Techniques from Rigidity Theory [4,11] have been recently applied to problems
such as collision free robot arm motion planning [1,8], molecular conformations
[6,10] and sensor and network topologies [2]. We introduce some notation first,
see [4,5,9,11] for more details.

A framework (G, p) in d-space is a graph G = (V,E), n = |V |,m = |E| and
an embedding p : V → R

d. Let p(V ) = {p1, . . . , pn}. The rigidity matrix of the
framework is the m × dn matrix for the system of m equations

(pi − pj) · (p′i − p′j) = 0, (pi, pj) = p(e), e ∈ E

in unknown velocities p′i. The rigidity matrix of (G, p) defines the rigidity matroid
of (G, p) on the ground set E by independence of rows of the rigidity matrix.
A framework (G, p) is generic if the coordinates of the points p(v), v ∈ V are
algebraically independent over the rationals. Any two generic frameworks (G, p)
and (G, p′) have the same rigidity matroid called d-dimensional rigidity matroid
Rd(G) = (E, rd) of G. The rank of Rd(G) is denoted by rd(G).

Lemma 1. [9, Lemma 11.1.3] For a graph G with n vertices, the rank rd(G) ≤
S(n, d) where

S(n, d) =
{

nd − (
d+1
2

)
if n ≥ d + 1(

n
2

)
if n ≤ d + 1.
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(a) (b) (c)

Fig. 1. (a) Rigid graph in the plane, (b) not rigid graph in the plane, and (c) rigid

graph in R
3

We say that a graph G = (V,E) is rigid if rd(G) = S(n, d), see Fig. 1.
We say that G is M -independent, M -dependent, or an M -circuit in R

d if E is
independent, dependent, or a circuit, respectively, in Rd(G). A rigid graph is
minimally rigid in R

d (or generically d-isostatic) if it is M -independent. The
famous Laman Theorem [7] asserts that a graph G with n vertices and m edges
is minimally rigid in R

2 if and only if m = 2n − 3 and every subgraph induced
by k vertices contains at most 2k − 3 edges for any k.

A combinatorial characterization of rigid graphs is not known for dimensions
d ≥ 3. Recently Jackson and Jordán [5] generalized Laman Theorem to sparse
graphs in higher dimensions. Let G = (V,E) be a graph and d ≥ 3 be a fixed
integer. For X ⊆ V let G[X] = (V (X), E(X)) be the subgraph of G induced by
X. Let i(X) = |E(X)|. We say that a graph G is Laman if i(X) ≤ S(|X|, d) for
all X ⊆ V . We denote the maximum and minimum degrees of G by ∆(G) and
δ(G), respectively.

Theorem 1. [5, Theorem 3.5] Let G be a connected graph with ∆(G) ≤ d + 2
and δ(G) ≤ d + 1. Then G is M -independent if and only if G is Laman.

Jackson and Jordán [5] derived a min-max formula for the rank rd(G) of a
sparse graph. A cover of G is a collection X of subsets of V , each of size at
lest two, such that ∪X∈XE(X) = E. For X ⊆ V let f(X) = S(|X|, d) and
val(X ) =

∑
X∈X f(X). A cover X is 1-thin if |X ∩ X ′| ≤ 1 for all distinct

X,X ′ ∈ X .

Theorem 2. [5, Theorem 3.9] Let G be a connected graph with ∆(G) ≤ d + 2
and δ(G) ≤ d+1. Then rd(G) = minX val(X ) where the minimum is taken over
all 1-thin covers X of G.

A direct computation of the rank rd(G) by Theorem 2 leads to an exponential
algorithm since the number of 1-thin covers can be exponential. Thus, it would
be interesting to design an efficient algorithm (with polynomial running time)
for computing the rank rd(G).

Isostatic Graphs. By Theorem 60.1.2 [11], a graph G = (V,E) is generically d-
isostatic if and only if it is rigid and |E| = S(|V |, d). Inductive constructions are
useful for isostatic graphs.
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Fig. 2. Vertex addition for d = 3

Theorem 3. [11, Theorem 60.1.6] Vertex Addition.
Let G be a graph with a vertex v of degree d. Let G′ denote the graph obtained by
deleting v and the edges incident to it. Then G is generically d-isostatic if and
only if G′ is generically d-isostatic.

Theorem 4. [11, Theorem 60.1.7] Edge Split.
Let G be a graph with a vertex v of degree d+1. Let G′ denote the graph obtained
by deleting v and its d + 1 incident edges. Then G is generically d-isostatic if
and only if there is a pair u,w of vertices of G adjacent to v such that (u,w) is
not an edge of G and the graph G′ + (u,w) is generically d-isostatic.

Fig. 3. Edge split for d = 3

1.1 Our Results

We present three efficient algorithms.

Theorem 5. Let G be a graph with ∆(G) ≤ d + 2 and δ(G) ≤ d + 1. The
following problems can be solved in linear time.

(i) Determine whether G is M -independent.
(ii) If G is generically d-isostatic then compute a sequence of vertex additions

and edge splits that yield the graph G.
(iii) Compute the rank rd(G) and a basis of the rigidity matroid Rd(G).

2 Detecting M -Independence of a Sparse Graph

Lemma 2. Let G be a graph with ∆(G) ≤ d + 2 and δ(G) ≤ d + 1. Let E′ ⊆ E
be a minimal M -dependent set and let X be the set of endvertices of the edges
of E′. Then X contains at most Md vertices where

Md =
⌊

(d − 1)(d + 1)
d − 2

⌋
.
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Proof. For every vertex v ∈ X, its degree in G[X] is bounded by d + 2, dX(v) ≤
d + 2. Therefore

2i(X) =
∑
v∈X

dX(v) ≤ (d + 2)|X|.

The graph G[X] is connected since E′ is a minimal M -dependent set. By The-
orem 1, G[X] is not a Laman graph since G[X] is M -dependent. Therefore
i(X) ≥ S(|X|, d) + 1. We assume that |X| > d + 1 (the lemma follows other-
wise). Therefore S(|X|, d) = d|X| − (

d+1
2

)
and

2d|X| − d(d + 1) + 2 ≤ 2i(X) ≤ (d + 2)|X|,
(d − 2)|X| ≤ (d − 1)(d + 2),

|X| ≤ (d − 1)(d + 2)
d − 2

,

|X| ≤ Md.

Algorithm 1.
// Determine whether G is M -independent.
1. For each vertex v of G do
2. Compute A = {u | d(u, v) < Md)}.
3. For each subset X of A such that v ∈ X and |X| ≤ Md

and G[X] is connected
4. Compute i(X).
5. If i(X) > S(|X|, d) then return “G is M -dependent”
6. return “G is M -independent”

�	
Theorem 6. Let G be a graph with ∆(G) ≤ d + 2 and δ(G) ≤ d + 1. The above
algorithm detects in linear time whether G is M -independent or not, in O(n)
time assuming that d is fixed.

Proof. The algorithm checks all subsets of V of size at most Md that induce
connected graphs. By Lemma 2 the graph G is M -dependent if and only if
at least one of these sets induces the connected and M -dependent graph. By
Theorem 1 it is necessary and sufficient to test if the induced graph is Laman.

We analyze the running time in terms of both n and d, and show later that
the dependence on n is linear. The degree of each vertex is bounded by d + 2.
Therefore the size of A is at most

|A| ≤ 1 + (d + 2) + (d + 2)2 + · · · + (d + 2)Md−1 =
(d + 2)Md − 1

d + 1
.

Let Ad be the number of the subsets of A of size at most Md. Then

Ad =
(|A|

1

)
+

(|A|
2

)
+ · · · +

(|A|
Md

)
≤ |A|Md .

The running time is O(Ad(d + 2)Md−1n) since we need O((d + 2)Md−1) time to
compute i(X) for each subset. The theorem follows since d is a constant. �	
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3 Isostatic and M -Independent Graphs

A set X ⊆ V is critical if |X| ≥ 2 and i(X) = S(|X|, d).
We show that M -independent graph with ∆(G) ≤ d + 2 and δ(G) ≤ d + 1

can be constructed using (i) the operations of vertex addition and edge split as
in Theorems 3 and 4, and (ii) addition of a vertex of degree less than d. We need
the following bound on the size of a critical set.

Lemma 3. Let G be a graph with ∆(G) ≤ d + 2 and δ(G) ≤ d + 1. Any critical
set in G contains at most Nd vertices where

Nd =
⌊

d(d + 1)
d − 2

⌋
.

Proof. Let X be a critical set in G. For every vertex v ∈ X, its degree in G[X]
is bounded by d + 2, dX(v) ≤ d + 2. Therefore

2i(X) =
∑
v∈X

dX(v) ≤ (d + 2)|X|.

On the other hand, i(X) = S(|X|, d) since X is critical. We assume that |X| >
d + 1 (the lemma follows otherwise). Therefore S(|X|, d) = |X|d − (

d+1
2

)
and

2i(X) = 2d|X| − d(d + 1) ≤ (d + 2)|X|,
(d − 2)|X| ≤ d(d + 1),

|X| ≤ d(d + 1)
d − 2

,

|X| ≤ Nd.

Algorithm 2.
// Given a M -independent graph G with ∆(G) ≤ d + 2 and δ(G) ≤ d + 1,
// find a sequence of vertex additions and edge splits that creates G.
1. Partition V into sets Vd, Vd+1 and Vd+2 of vertices of degree

≤ d, d and d + 2, respectively.
2. while E 
= ∅ do
3. if Vd 
= ∅ then
4. Remove a vertex v from Vd.
5. Update E, Vd, Vd+1 and Vd+2.
6. else
7. Let v be a vertex of Vd+1.
8. Compute N(v) = {u | (u, v) ∈ E}.
9. Compute A = {u | d(u, v) ≤ Nd)}.
10. Compute the set C of all maximal critical sets C ⊆ A.
11. for each u ∈ N(v)
12. Find C(u) ∈ C such that u ∈ C(u); if C(u) does not

exist then C(u) = {u}.
13. Find a pair u,w ∈ N(v) such that (u,w) /∈ E and C(u) 
= C(w).
14. Remove v from G and add the edge (u,w) to E.
15. Update E, Vd, Vd+1 and Vd+2.

�	
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Theorem 7. Let G be a M -independent graph in R
d with ∆(G) ≤ d + 2 and

δ(G) ≤ d+1. The above algorithm computes in linear time a sequence of additions
of vertices of degree at most d + 1 and edge splits that yields the graph G.

Proof. First, we prove the correctness of the algorithm. There are two updates
of G in the algorithm: the removal of vertex v in the line 4 and the removal of
vertex v with the insertion of edge (u,w) in the line 14. The degree of a vertex
u 
= v does not increase after either update. Therefore the graph G preserves the
property ∆(G) ≤ d + 2 and δ(G) ≤ d + 1 after its modification.

The graph G remains M -independent after the deletion in the line 4 since
the degree of v is at most d. We show that the update of G in the line 14
preserves M -independence of G. Arguing by contradiction we suppose that G
is M -dependent after the update. Then there exists E′ ⊆ E that is dependent
in Rd(G). Let V ′ denote the set of the vertices incident to an edge of E′. The
graph (V ′, E′) is M -circuit since E′ − {(u,w)} is independent. Therefore the
graph G′ = (V ′, E′ − {(u,w)}) is critical. This contradicts the choice of (u,w).

The existence of the edge (u,w) (the line 13) follows from Lemma 4. The
algorithm finds all critical sets in A since the size of a critical set is bounded by
Nd by Lemma 3.

For analysis of the running of the algorithm time we assume that d = O(1).
The running time is linear since (i) |E| = O(n), and (ii) |N(v)| = O(1), |A| =
O(1), |C| = O(1), and (iii) the sets E, Vd, Vd+1 and Vd+2 can be updated in O(1)
time after each modification of G. �	

Corollary 1. Let G be a d-isostatic graph in R
d with ∆(G) ≤ d+2 and δ(G) ≤

d + 1. The above algorithm computes in linear time a sequence of additions of
vertices of degree at most d + 1 and edge splits that yields the graph G.

Proof. The graph G has no vertices of degree less than d. By Theorems 3 and 4
the graph after removal of a vertex of degree d (the line 4) or degree d + 1 (the
line 14) is isostatic. Therefore the new graph does not contain a vertex of degree
less than d. The corollary follows. �	

Lemma 4. [5, Corollary 3.8] Let G be a connected M -independent graph with
∆(G) = d + 2 and δ(G) = d + 1. Let X1,X2 be maximal critical subsets of V
and suppose that |Xi| ≥ d + 2 for each i ∈ {1, 2}. Then X1 ∩ X2 = ∅.

4 Basis of the Rigidity Matroid

An independent set all of whose proper supersets are dependent is called a basis.
We say that a set of vertices X ⊆ V is dependent if the graph induced by X is
M -dependent.

The algorithm for finding a basis of G maintains a graph G′ = (V,E′) by
inserting edges of G that are independent in G′. For a set X ⊂ V , we denote by
i′(X) the number of edges in the graph G′[X] induced by X.
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Algorithm 3.
// Given a graph G with ∆(G) ≤ d + 2 and δ(G) ≤ d + 1,
// compute the rank r of rd(G) and a basis B of the rigidity matroid Rd(G).
1. Initialize r = 0 and B = ∅ and G′ = (V, ∅).
2. for each edge (u, v) of G do
3. flag=TRUE //boolean flag indicates whether (u, v) is independent
4. Compute A = {w | d(u,w) < Nd and d(v, w) < Nd}.
5. for each subset X of A such that u, v ∈ X and |X| ≤ Nd

and X is connected
6. Compute i′(X).
7. if i′(X) = S(|X|, d) then
8. print “(u, v) is dependent” and set flag=FALSE
9. if flag then
10. Add (u, v) to G′.
11. r = r + 1 and B = B ∪ {(u, v)}
12. return r and B

Theorem 8. Let G be a graph with ∆(G) ≤ d + 2 and δ(G) ≤ d + 1. The above
algorithm computes the rank rd(G) and a basis of the rigidity matroid Rd(G) in
linear time.

Proof. The graph G′ has the property that ∆(G′) ≤ d+2 and δ(G′) ≤ d+1. By
Theorem 1 and Lemma 3 the edges rejected for insertion to G′ are dependent
and the set B is M -independent. Therefore B is the basis of G and the rank is
computed correctly.

The running time follows since |E| = O(n) and the number of subsets of A
is O(1). �	

5 Conclusion

We presented three efficient algorithms for sparse graphs for (i) detecting M -
independent graphs, and (ii) constructing M -independent graphs, and (iii) com-
puting the rank of a graph. All algorithms have linear running time assuming
that d is fixed. The hidden constants are exponential in d. In the journal version
we show that the algorithms can be improved so that the dependence of the
running time on d is polynomial.
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