
The Minimum Manhattan Network Problem:

A Fast Factor-3 Approximation�

Marc Benkert, Alexander Wolff, and Florian Widmann

Faculty of Computer Science, Karlsruhe University, P.O. Box 6980,
D-76128 Karlsruhe, Germany

i11www.ira.uka.de/algo/group

Abstract. Given a set of nodes in the plane and a constant t ≥ 1, a
Euclidean t-spanner is a network in which, for any pair of nodes, the
ratio of the network distance and the Euclidean distance of the two
nodes is at most t. These networks have applications in transportation
or communication network design and have been studied extensively.

In this paper we study 1-spanners under the Manhattan (or L1-) met-
ric. Such networks are called Manhattan networks. A Manhattan network
for a set of nodes can be seen as a set of axis-parallel line segments whose
union contains an x- and y-monotone path for each pair of nodes. It is
not known whether it is NP-hard to compute minimum Manhattan net-
works, i.e. Manhattan networks of minimum total length. In this paper
we present a factor-3 approximation algorithm for this problem. Given
a set of n nodes, our algorithm takes O(n log n) time and linear space.

1 Introduction

For many applications it is desirable to connect the nodes of a transportation
or communication network by short paths within the network. In the Euclidean
plane this can be achieved by connecting all pairs of nodes by straight line seg-
ments. While the complete graph minimizes node-to-node travel time, it max-
imizes the network-construction costs. An interesting alternative are Euclidean
t-spanners, i.e. networks in which the ratio of the network distance and the Eu-
clidean distance between any pair of nodes is bounded by a constant t ≥ 1.
Euclidean spanners have been studied extensively, and researchers have tried
to combine the spanner property with other desirable properties, such as small
node degree, small total edge length, and small diameter. Euclidean spanners
with one or more of these properties can be constructed in O(n log n) time [1],
where n is the number of nodes.

Under the Euclidean metric, in a 1-spanner (which is the complete graph)
the location of each edge is uniquely determined. This is not the case in the
Manhattan (or L1-) metric, where an edge {p, q} of a 1-spanner is a Manhattan
p–q path, i.e. an x- and y-monotone path between p and q. A 1-spanner under
the Manhattan metric for a set P ⊂ R

2 is called a Manhattan network (MMN)

� This work was supported by grant WO 758/4-1 of the German Science Foundation.

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 16–28, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Minimum Manhattan Network Problem 17

and can be seen as a set of axis-parallel line segments whose union contains a
Manhattan p–q path for each pair {p, q} of points in P .

In this paper we investigate how the extra degree of freedom in routing edges
can be used to construct Manhattan networks of minimum total length, so-called
minimum Manhattan networks (MMN). The MMN problem may have applica-
tions in city planning or VLSI layout. Lam et al. [5] also describe an interesting
application in computational biology. Approximation algorithms for the MMN
problem have been considered before. Gudmundsson et al. [3] have proposed an
O(n log n)-time factor-8 and an O(n3)-time factor-4 approximation algorithm.
Later, Kato et al. [4] have given an O(n3)-time factor-2 approximation algo-
rithm. However, their correctness proof is incomplete. It is not known whether
the MMN problem is NP-hard.

In this paper we present an O(n log n)-time factor-3 approximation algo-
rithm. We use some of the ideas of [4], but our algorithm is simpler, faster and
uses only linear (instead of quadratic) storage. The main novelty of our ap-
proach is that we partition the plane into two regions and compare the network
computed by our algorithm to an MMN in each region separately.

This paper is structured as follows. In Section 2 we give some basic definitions
and observations. In Section 3 we show how the backbone of our network is
computed. We describe the algorithm in Section 4 and analyze it in Section 5.

2 Preliminaries

We use |M | to denote the total length of a set M of line segments. For all such
sets M we assume throughout the paper that each segment of M is inclusion-
maximal with respect to

⋃
M . It is not hard to see that for every Manhattan

network M there is a Manhattan network M ′ with |M ′| ≤ |M | that is contained
in the grid induced by the input points, i.e. M ′ is a subset of the union U of the
horizontal and vertical lines through the input points. Therefore we will only
consider networks contained in U . It is clear that any meaningful Manhattan
network of a point set P is contained in the bounding box BBox(P) of P . Finding
a Manhattan network for given P is trivial, e.g. the parts of U within BBox(P)
yield a Manhattan network. However, this network can be n times longer than
an MMN, as the point set {(1, 1), . . . , (n, n)} shows.

We will use the notion of a generating set [4]. A generating set Z is a subset of
P ×P with the property that a network containing Manhattan paths for all pairs
in Z is already a Manhattan network of P . The authors of [4] define a linear-size
generating set Z. We use the same generating set Z, but more intuitive names
for the subsets of Z. We define Z = Zhor ∪ Zver ∪ Zquad. These subsets are
defined below. Our algorithm will establish Manhattan paths for all point pairs
of Z—first for those in Zhor ∪ Zver and then for those in Zquad.

Definition 1 (Zver). Let P = {p1, . . . , pn} be the set of input points in lex-
icographical order, where pi = (xi, yi). Let x1 < · · · < xu be the sequence
of x-coordinates of the points in P in ascending order. For i = 1, . . . , u let
P i = {pa(i), pa(i)+1, . . . , pb(i)} be the set of all p ∈ P with x-coordinate xi. Then

18 M. Benkert, A. Wolff, and F. Widmann

Zver = {(pi, pi+1) | xi = xi+1 and 1 ≤ i < n}
∪ {(pa(i), pb(i+1)) | ya(i) > yb(i+1) and 1 ≤ i < u}
∪ {(pb(i), pa(i+1)) | yb(i) < ya(i+1) and 1 ≤ i < u}.

In Figure 1 all pairs of Zver are connected by an edge. Note that Zver consists
of at most n − 1 point pairs. If no points have the same x-coordinate, then
Zver = {(pi, pi+1) | 1 ≤ i < n}, i.e. Zver is the set of neighboring pairs in the
lexicographical order. The definition of Zhor is analogous to that of Zver with
the roles of x and y exchanged. Figure 2 shows that Zhor ∪ Zver is not always
a generating set: Since (p, h) ∈ Zhor and (p, v) ∈ Zver, no network that consists
only of Manhattan paths between pairs in Zhor∪Zver contains a Manhattan p–q
path. This shows the necessity of a third subset Zquad of Z.

Definition 2 (Zquad). For a point r ∈ R
2 denote its Cartesian coordinates by

(xr, yr). Let Q(r, 1) = {s ∈ R
2 | xr ≤ xs and yr ≤ ys} be the first quadrant of

the Cartesian coordinate system with origin r. Define Q(r, 2), Q(r, 3), Q(r, 4)
analogously and in the usual order. Then Zquad is the set of all ordered pairs
(p, q) ∈ P × P with q ∈ Q(p, t) \ {p} and t ∈ {1, 2, 3, 4} that fulfill

(a) q is the point that has minimum y-distance from p among all points in
Q(p, t) ∩ P with minimum x-distance from p, and

(b) there is no q′ ∈ Q(p, t) ∩ P with (p, q′) or (q′, p) in Zhor ∪ Zver.

Obviously Zquad consists of at most 4n point pairs.
For our analysis we need the following regions of the plane. Let Rhor =

{BBox(p, q) | {p, q} ∈ Zhor}, where BBox(p, q) is the smallest axis-parallel closed
rectangle that contains p and q. Note that BBox(p, q) is just the line segment
Seg[p, q] from p to q, if p and q lie on the same horizontal or vertical line.
In this case we call BBox(p, q) a degenerate rectangle. Define Rver and Rquad

analogously. Let Ahor, Aver, and Aquad be the subsets of the plane that are
defined by the union of the rectangles in Rhor, Rver, and Rquad, respectively.

Any Manhattan network has to bridge the vertical (horizontal) gap between
the points of each pair in Zver (Zhor). Of course this can be done such that at the
same time the gaps of adjacent pairs are (partly) bridged. The corresponding
minimization problem is defined as follows.

Definition 3 (Kato et al. [4]). A set of vertical line segments V is a cover of
(or covers) Rver, if any R ∈ Rver is covered, i.e. for any horizontal line � with
R ∩ � �= ∅ there is a V ∈ V with V ∩ � ∩ R �= ∅. We say that V is a minimum
vertical cover (MVC) if V has minimum length among all covers of Rver. The
definition of a minimum horizontal cover (MHC) is analogous.

For an example, see Figure 3. Since any MMN covers Rver and Rhor, we have:

Lemma 1 (Kato et al. [4]). The union of an MVC and an MHC has length
bounded by the length of an MMN.

The Minimum Manhattan Network Problem 19

To sketch our algorithm we need the following notation. Let N be a set
of line segments. We say that N satisfies a set of point pairs S if N contains a
Manhattan p–q path for each {p, q} ∈ S. We use

⋃
N to denote the corresponding

set of points, i.e. the union of the line segments in N . Let ∂M be the boundary
of a set M ⊆ R

2.
Our algorithm proceeds in four phases. In phase 0, we compute Z. In phase I,

we construct a network N1 that contains the union of a special MVC and a special
MHC and satisfies Zver ∪ Zhor. In phase II, we identify a set R of open regions
in Aquad that do not intersect N1, but need to be bridged in order to satisfy
Zquad. The regions in R are staircase polygons. They give rise to two sets of
segments, N2 and N3, which are needed to satisfy Zquad. For each region A ∈ R
we put the segments that form ∂A \ ⋃

N1 into N2, plus, if necessary, an extra
segment to connect ∂A to N1. Finally, in phase III, we bridge the regions in R
by computing a set N3 of segments in the interior of the regions. This yields a
Manhattan network N = N1 ∪ N2 ∪ N3.

The novelty of our analysis is that we partition the plane into two areas
and compare N to an MMN in each area separately. The area A3 consists of
the interiors of the regions A ∈ R and contains N3. The other area A12 is the
complement of A3 and contains N1 ∪ N2. For a fixed MMN Nopt we show that
|N ∩A12| ≤ 3|Nopt ∩A12| and |N ∩A3| ≤ 2|Nopt ∩A3|, and thus |N | ≤ 3|Nopt|.
The details will be given in Section 4.

We now define vertical and horizontal neighbors of points in P . Knowing
these neighbors helps to compute Z and R.

Definition 4 (Neighbors). For a point p ∈ P and t ∈ {1, 2, 3, 4} let p.xnbor[t]
= nil if Q(p, t) ∩ P = {p}. Otherwise p.xnbor[t] points to the point that has
minimum y-distance from p among all points in Q(p, t)∩P \ {p} with minimum
x-distance from p. The pointer p.ynbor[t] is defined by exchanging x and y in
the above definition.

All pointers of types xnbor and ynbor can be computed by a simple plane
sweep in O(n log n) time. Then we compute Zver by going through the points
in lexicographical order and examining the pointers of type xnbor. This works
analogously for Zhor. Note that by Definition 1 each point q ∈ P is incident to
at most three rectangles of Rver, at most two of which can be (non-) degenerate.
We refer to points p ∈ P with (p, q) ∈ Zver as vertical predecessors of q and to
points r ∈ P with (q, r) ∈ Zver as vertical successors of q. We call a predecessor
or successor of q degenerate if it has the same x-coordinate as q. Note that
each point can have at most one degenerate vertical predecessor and successor,
and at most one non-degenerate vertical predecessor and successor. Horizontal
predecessors and successors are defined analogously with respect to Zhor. For
each t ∈ {1, 2, 3, 4} the pair (q, q.xnbor[t]) lies in Zquad if and only if q.xnbor[t] �=
nil and no vertical or horizontal predecessor or successor of q lies in Q(q, t). Thus:

Lemma 2. All pointers of type xnbor, ynbor and the generating set Z can be
computed in O(n log n) time.

20 M. Benkert, A. Wolff, and F. Widmann

3 Minimum Covers

In general the union of an MVC and an MHC does not satisfy Zver ∪ Zhor.
Additional segments must be added to achieve this. To ensure that the total
length of these segments can be bounded, we need covers with a special property.
We say that a cover is nice if each cover segment contains an input point.

Lemma 3. For any nice MVC V and any nice MHC H there is a set S of line
segments such that V ∪ H ∪ S satisfies Zver ∪ Zhor and |S| ≤ W + H, where W
and H denote width and height of BBox(P), respectively. We can compute the
set S in linear time if for each R ∈ Rver (Rhor) we have constant-time access to
the segments in V (H) that intersect R.

Proof. We show that there is a set SV of horizontal segments with |SV | ≤ W
such that V ∪ SV satisfies Zver. Analogously it can be shown that there is a set
SH of vertical segments with |SH| ≤ H such that H ∪ SH satisfies Zhor. This
proves the lemma.

Let (p, q) ∈ Zver. If R = BBox(p, q) is degenerate, then by the definition of a
cover, there is a line segment s ∈ V with R ⊆ s, and thus V satisfies (p, q).

Otherwise R defines a non-empty vertical open strip σ(p, q) bounded by p
and q. Note that by the definition of Zver, R is the only rectangle in Rver that
intersects σ(p, q). This yields that the widths of σ(p, q) over all (p, q) ∈ Zver sum
up to at most W . Thus if we can show that there is a horizontal line segment h
such that the length of h equals the width of σ(p, q) and V ∪ {h} satisfies (p, q),
then we are done.

Now observe that no line segment in V intersects σ(p, q) since V is nice and
σ(p, q) ∩ P = ∅. Hence the segments of V that intersect R in fact intersect only
the vertical edges of R. We assume w.l.o.g. that xp < xq and yp < yq (otherwise
rename and/or mirror P at the x-axis). This means that due to the definition
of Zver, there is no input point vertically above p. Thus if there is a segment sp

in V that intersects the left edge of R, then sp must contain p. Analoguously,
a segment sq in V that intersects the right edge of R must contain q. Since V
covers R, sp or sq must exist. Let � be the horizontal through the topmost point
of sp or the bottommost point of sq. Then h = � ∩ R does the job, again due to
the fact that V covers R. Clearly h can be determined in constant time.
�

In order to see that every point set has in fact a nice MVC, we need the
following definitions. We restrict ourselves to the vertical case.

For a horizontal line � consider the graph G�(V�, E�), where V� is the inter-
section of � with the vertical edges of rectangles in Rver, and there is an edge in
E� if two intersection points belong to the same rectangle. We say that a point
v in V� is odd if v is contained in a degenerate rectangle or if the number of
points to the left of v that belong to the same connected component of G� is
odd, otherwise we say that v is even. For a vertical line g let an odd segment
be an inclusion-maximal connected set of odd points on g. Define even segments
accordingly. For example, the segment s (drawn bold in Figure 4) is an even seg-
ment, while f \s is odd. We say that parity changes in points where two segments

The Minimum Manhattan Network Problem 21

of different parity touch. We refer to these points as points of changing parity.
The MVC with the desired property will simply be the set of all odd segments.
The next lemma characterizes odd segments. Strictly speaking we have to state
the parity of segment endpoints, but since a closed segment has the same length
as the corresponding open segment, we consider odd segments closed.

Lemma 4. Let g : x = xg be a vertical line through some p = (xp, yp) ∈ P .

(i) Let e be a vertical edge of a rectangle R ∈ Rver. Then either all points on
e are even or the only inclusion-maximal connected set of odd points on e
contains an input point.

(ii) Let R1, . . . , Rd and R′
1, . . . , R

′
d′ be the degenerate and non-degenerate rect-

angles in Rver that g intersects, respectively. Then d = |g ∩ P | − 1 and
d′ ≤ 2. If d = 0 then d′ > 0 and each R′

i has a corner in p. Else, if d > 0,
there are p1, p2 ∈ P such that g ∩ (R1 ∪ · · · ∪ Rd) = Seg[p1, p2]. Then each
R′

i has a corner in either p1 or p2.
(iii) There are bg < tg ∈ R such that g ∩ Aver = {xg} × [bg, tg].
(iv) The line g contains at most two points of changing parity and at most one

odd segment. For each point c of changing parity there is an input point
with the same y-coordinate.

Proof. For (i) we assume without loss of generality that e is the right vertical
edge of R = BBox(p, q) and that q is the topmost point of e. If R is degenerate
it is clear that all points on e (including p and q) are odd, and we are done.
Thus we can assume that xp < xq. Let p0 = q, p1 = p, p2 . . . , pk be the input
points in order of decreasing x-coordinate that span the rectangles in Rver that
are relevant for the parity of e. Let pi = (xi, yi). For 2 ≤ i ≤ k define recursively
yi = min{yi, yi−2} if i is even, and yi = max{yi, yi−2} if i is odd. Let pi = (xi, yi),
and let L be the polygonal chain through p0, p1, p2, p3, . . . , pk, see Figure 4. Note
that the parity of a point v on e is determined by the number of segments of L
that the horizontal hv through v intersects. If hv is below pk, then it intersects
a descending segment for each ascending segment of L, hence v is even. If on
the other hand hv is above pk, then it intersects an ascending segment for each
descending segment—plus p1p0, hence v is odd. In other words, if yk = y0, all
points of e are even, if yk = y1, all points of e are odd, and otherwise parity
changes only in (x0, yk) and q is odd. This settles (i).

(ii) follows directly from the definition of Zver, and (iii) follows from (ii).
For (iv) we first assume d = 0. Then (ii) yields d′ ∈ {1, 2} and g ∩ P = {p}.

By (i) we know that the only inclusion-maximal connected set of odd points on
each vertical rectangle edge on g contains an input point, i.e. p. Thus there are
at most two points of changing parity and at most one odd segment on g. Also
according to the above proof of (ii), parity can change only in points of type
(x0, yk), and yk is the y-coordinate of some input point in the set {p0, . . . , pk}.

Now if d > 0 note that all degenerate rectangles consist only of odd points.
By (ii) we have that g ∩ (R1 ∪ · · · ∪ Rd) = Seg[p1, p2] and that each of the at
most two non-degenerate rectangles has a corner in either p1 or p2. Thus again
the statement holds.
�

22 M. Benkert, A. Wolff, and F. Widmann

p

q

Q(p, 1)

v

h

⎫⎪⎬
⎪⎭

e

⎫⎬
⎭s

f

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩ L

pk

pk

p0

p1

p2

p2

p3

p4

Fig. 1. Point
pairs in Zver

Fig. 2. The pair
(p, q) is in Zquad

Fig. 3. The
odd MVC

Fig. 4. Proof
of Lemma 4

Lemma 5. The set V of all odd segments is a nice MVC, the odd MVC.

Proof. Clearly V covers Rver. Let � be a horizontal line that intersects Aver.
Consider a connected component C of G� and let k be the number of vertices
in C. If k is even then any cover must contain at least k/2 vertices of C, and V
contains exactly k/2. On the other hand, if k > 1 is odd then any cover must
contain at least (k − 1)/2 vertices of C, and V contains exactly (k − 1)/2. If
k = 1 any cover must contain the vertex, and so does V since the vertex belongs
to a degenerate rectangle. Thus V is an MVC. Lemma 4 (i) shows that V is
nice.
�
Lemma 6. The odd MVC can be computed in O(n log n) time using linear space.

To compute the odd MVC we sweep the plane from bottom to top. For
each point c of changing parity there is an input point p with yc = yp. Thus,
the event-point queue can be implemented as a sorted list of the y-coordinates
of the input points. The sweep-line status is a balanced binary tree in which
each node corresponds to a connected components of G�, where � is the current
position of the horizontal sweep line. For details we refer to the full version of this
paper [2].

4 An Approximation Algorithm

Our algorithm ApproxMMN proceeds in four phases, see Figure 5.

Phase 0. In phase 0 we compute all pointers of types xnbor and ynbor, and
the set Z. From now on we will organize our data structures such that we have
constant-time access to all relevant information such as xnbor, ynbor, vertical
and horizontal predecessors and successors from each point p ∈ P .

Phase I. First we compute the nice odd MVC and the nice odd MHC, denoted
by Cver and Chor, respectively. Then we compute the set S of additional segments
according to Lemma 3. We compute Cver, Chor and S such that from each point
p ∈ P we have constant-time access to the at most two cover segments (i.e.
segments in Cver∪Chor) that contain p and to the at most four additional segments
in rectangles incident to p.

The Minimum Manhattan Network Problem 23

Lemmas 1, 3, and 6 show that N1 = Cver ∪ Chor ∪ S can be computed in
O(n log n) time and that |N1| ≤ |Nopt| + H + W holds. Recall that Nopt is a
fixed MMN.

Phase II. In general N1 does not satisfy Zquad; further segments are needed.
In order to be able to bound the length of these new segments, we partition the
plane into two areas A12 and A3 as indicated in Section 2. We wanted to define
A3 such that |Nopt ∩ A3| were large enough for us to bound the length of the
new segments. However, we were not able to define A3 such that we could at
the same time (a) satisfy Zquad by adding new segments exclusively in A3 and
(b) bound their length. Therefore we put the new segments into two disjoint
sets, N2 and N3, such that N1 ∪ N2 ⊆ A12 and N3 ⊆ A3. This enabled us to
bound |N1 ∪ N2| by 3|Nopt ∩A12| and |N3| by 2|Nopt ∩ A3|.

We now prepare our definition of A3. Recall that Q(q, 1), . . . , Q(q, 4) are the
four quadrants of the Cartesian coordinate system with origin q. Let P (q, t) =
{p ∈ P ∩ Q(q, t) | (p, q) ∈ Zquad} for t = 1, 2, 3, 4. For example, in Figure 7,
P (q, 1) = {p1, . . . , p5}. Due to the definition of Zquad we have Q(p, t)∩P (q, t) =
{p} for each p ∈ P (q, t). Thus the area Aquad(q, t) =

⋃
p∈P (q,t) BBox(p, q) is a

staircase polygon. The points in P (q, t) are the “stairs” of the polygon and q
is the corner opposite the stairs. In Figure 7, Aquad(q, 1) is the union of the
shaded areas. In order to arrive at a definition of the area A3, we will start from
polygons of type Aquad(q, t) and then subtract areas that can contain segments
of N1 or are not needed to satisfy Zquad.

Let ∆(q, t) = int
(Aquad(q, t) \ (Ahor ∪ Aver)

)
, where int(M) denotes the

interior of a set M ⊆ R
2. In Figure 7, ∆(q, 1) is the union of the three areas

with dotted boundary. Let δ(q, t) be the union of those connected components
A of ∆(q, t), such that ∂A ∩ P (q, t) �= ∅. In Figure 7, δ(q, 1) is the union of the
two dark shaded areas A and A.

Due to the way we derived δ(q, t) from Aquad(q, t), it is clear that each con-
nected component A of δ(q, t) is a staircase polygon, too. The stairs of A corre-
spond to the input points on ∂A, i.e. P (q, t) ∩ ∂A. Let qA be the point on ∂A
that is closest to q. This is the corner of A opposite the stairs. The next lemma,
which is proved in [2], is crucial for estimating the length of our network within
the δ(q, t) regions.

Lemma 7. Areas of type δ(q, t) are pairwise disjoint.

By Lemma 7 we are sure that we can treat each connected component A
of δ(q, t) independently. Finally we define A3 =

⋃
t∈{1,2,3,4}

⋃
q∈P δ(q, t) and

A12 = R
2 \ A3. This definition ensures that N1 ⊂ A12 as desired. The set N2

will be constructed as follows: for each connected component A of A3, we put
∂A \ ⋃

N1 into N2 and test whether N1 contains a Manhattan path from qA to
q. If not, we add a further segment to N2. This segment lies in Ahor and will be
defined below. Since Ahor as well as ∂A are contained in A12, we have N2 ⊂ A12.
The set N3 will be defined in phase III and will be arranged such that N3 ⊂ A3.

We now describe how to compute P (q, t) and how to find the connected
components of δ(q, t). We compute all sets P (q, t) by going through the input

24 M. Benkert, A. Wolff, and F. Widmann

points and checking their Zquad-partners. This takes linear time since |Zquad| =
O(n). We sort the points in each set P (q, t) according to their x-distance from
q. This takes O(n log n) total time. The remaining difficulty is to decide which
points in P (q, t) are incident to the same connected component of δ(q, t). In
Figure 7, {p1, p2} ⊂ ∂A and {p3, p4, p5} ⊂ ∂A. For our description how to figure
this out we assume t = 1 and P (q, 1) = (p1, . . . , pm). Note that each connected
component of δ(q, 1) corresponds to a sequence of consecutive points in P (q, 1).
By definition, for each connected component A of δ(q, 1) and all pi, pj ∈ A we
have pi.ynbor[3] = pj .ynbor[3].

We detect these sequences by going through p1, . . . , pm. Let pi be the current
point and let A be the current connected component. If and only if pi.ynbor[3] �=
pi+1.ynbor[3] there is a rectangle RA ∈ Rhor that separates A from the next
connected component of δ(q, 1). The rectangle RA is defined by the point vA =
pi.ynbor[3] and its horizontal successor wA, which in this case is unique, see
Figure 7. It remains to specify the coordinates of the corner point qA of A. Let
p0 be the (unique) vertical successor of q. Then xqA = xp0 and yqA = ywA .

At last, we want to make sure that N1∪N2 contains a Manhattan q–qA path.
The reason for this is that in phase III we will only compute Manhattan paths
from each pi ∈ ∂A to qA. Concatenating these paths with the q–qA path yields
Manhattan pi–q paths since qA ∈ BBox(q, pi). Note that segments in N3 lie in
A3 and thus cannot help to establish a q–qA path within BBox(q, qA) ⊂ A12.

The set N1 contains a Manhattan q–p0 path Pver and a Manhattan vA–wA

path Phor, since (q, p0) ∈ Zver and (vA, wA) ∈ Zhor. If qA ∈ Pver, then clearly
N1 contains a Manhattan q–qA path. However, N1 also contains a Manhattan
q–qA path if qA ∈ Phor. This is due to the fact that Pver and Phor intersect. If
qA �∈ Pver ∪Phor, then Phor contains the point cA = (xqA , yvA), which lies on the
vertical through qA on the opposite edge of RA. Thus, to ensure a Manhattan
q–qA path in N1 ∪ N2, it is enough to add the segment sA = Seg[qA, cA] to N2.
We refer to such segments as connecting segments.

The algorithm ApproxMMN does not compute Pver and Phor explicitly, but
simply tests whether qA �∈ ⋃

N1. This is equivalent to qA �∈ Pver ∪ Phor since
our covers are minimum and the bounding boxes of Pver and Phor are the only
rectangles in Rver ∪ Rhor that contain sA. Due to the same reason and to the
fact that cover edges are always contained in (the union of) edges of rectangles
in Rver ∪ Rhor, we have that sA ∩ ⋃

N1 = {cA}. This shows that connecting
segments intersect N1 at most in endpoints. The same holds for segments in N2

that lie on ∂A3. We summarize:

Lemma 8. In O(n log n) time we can compute the set N2, which has the follow-
ing properties: (i) N2 ⊂ A12, (ii) a segment in N1 and a segment in N2 intersect
at most in their endpoints, and (iii) for each region δ(q, t) and each connected
component A of δ(q, t), N1 ∪ N2 contains ∂A and a Manhattan q–qA path.

Proof. The properties of N2 follow from the description above. The runtime is
as follows. Let A be a connected component of A3 and mA = |P ∩∂A|. Note that∑

mA = O(n) since each point is adjacent to at most four connected components

The Minimum Manhattan Network Problem 25

ApproxMMN(P)

Phase 0: Neighbors and generat. set.
for each p ∈ P and t ∈ {1, 2, 3, 4} do

compute p.xnbor[t] and p.ynbor[t]
compute Z = Zver ∪ Zhor ∪ Zquad.

Phase I: Compute N1.
compute odd MVC Cver and MHC Chor

compute set S of additional segments
N1 ← Cver ∪ Chor ∪ S , N2 ← ∅, N3 ← ∅
Phase II: Compute N2.
compute A3

for each connected comp. A of A3 do
N2 ← N2 ∪ (∂A \⋃

N1)
if qA �∈ ⋃

N1 then
N2 ← N2 ∪ {sA}

Phase III: Compute N3.
for each connected comp. A of A3 do

N3 ← N3 ∪ Bridge(A)

return N = N1 ∪N2 ∪N3

Fig. 5.

Bridge
(
A = (qA, p1, . . . , pm)

)

for i = 1 to m− 1 do
compute αi and βi

return SubBridge
(
1, m, 0, 0

)

SubBridge
(
k, l, xoff , yoff

)

Acurr = (qA + (xoff , yoff), pk, . . . , pl)
if l − k < 2 return ∅
Λ =

{
j ∈ {k, . . . , l − 1} :
αj − xoff ≤ βj − yoff

}
i = max Λ ∪ {k}
if i < l − 1 and αi − xoff ≤ βi+1 − yoff

then i = i + 1
B = ∅
if i > 1 then B = B∪{ai−1 ∩Acurr}
if i < l− 1 then B = B ∪{bi+1 ∩Acurr}
xnew = x(pi+1)− x(qA)
ynew = y(pi)− y(qA)
return B ∪
∪ SubBridge(l, i− 1, xoff , ynew)
∪ SubBridge(i + 2, l, xnew, yoff)

Fig. 6.

of A3, according to Lemma 7. After sorting P (q, t) we can compute in O(m) time
for each A the segment sA and the set ∂A \ ⋃

N1. This is due to the fact that
we have constant-time access to each of the O(m) rectangles in Rhor ∪Rver that
intersect ∂A and to the O(m) segments of N1 that lie in these rectangles.
�

Phase III. Now we finally satisfy the pairs in Zquad. Due to Lemma 8 it is
enough to compute, for each connected component A of A3, a set of segments
B(A) such that the union of B(A) and ∂A contains Manhattan paths from any
input point on ∂A to qA. We say that such a set B(A) bridges A. The set
N3 will be the union over all sets of type B(A). The algorithm Bridge that
we use to compute B(A) is similar to the “thickest-first” greedy algorithm for
rectangulating staircase polygons, see [3]. However, we cannot use that algorithm
since the segments that it computes do not lie entirely in A3.

For our description of algorithm Bridge, and also in the pseudocode in Fig-
ure 6, we assume that A lies in a region of type δ(q, 1). Let again (p1, . . . , pm)
denote the sorted sequence of points on ∂A. Note that ∂A already contains Man-
hattan paths that connect p1 and pm to qA. Thus we are done if m ≤ 2. Oth-
erwise let p′j = (xpj , ypj+1), aj = Seg[(xqA , yp′

j
), p′j] and bj = Seg[(xp′

j
, yqA), p′j]

for j ∈ {1, . . . , m − 1}, see Figure 8. We denote |aj | by αj and |bj | by βj . From
now on we identify staircase polygon A with the tupel (qA, p1, . . . , pm). Let B be
the set of segments that algorithm Bridge computes. Initially B = ∅. The algo-
rithm chooses an i ∈ {1, . . . , m−1} and adds—if they exist—ai−1 and bi+1 to B.

26 M. Benkert, A. Wolff, and F. Widmann

p1

p3

p2

p4 p5

p0

A
qA

qA

cA

cA

A

RA

RA

vA = q
wA

vA

wA

qA

p1

pi

pi+1
ai−1

bi+1

xoff

yoff Aoff

Aright

pm

Atop

p′i

Fig. 7. Notation: Aquad(q, 1) shaded, ∆(q, 1) with
dotted boundary, and δ(q, 1) = A∪A′ dark shaded

Fig. 8. Notation for
algorithm Bridge

This satisfies
{
(pi, q), (pi+1, q)

}
. In order to satisfy

{
(p2, q), . . . , (pi−1, q)

}
and{

(pi+2, q), . . . , (pm−1, q)
}
, we solve the problem recursively for the two staircase

polygons
(
(xqA , ypi), p1, . . . , pi−1

)
and

(
(xpi+1 , yqA), pi+2, . . . , pm

)
.

Our choice of i is as follows. Note that α1 < · · · < αm−1 and β1 > · · · > βm−1.
Let Λ = {j ∈ {1, . . . , m − 1} | αj ≤ βj}. If Λ = ∅, we have α1 > β1, i.e. A is
flat and broad. In this case we choose i = 1, which means that only b2 is put
into B. Otherwise let i′ = maxΛ. Now if i′ < m − 1 and αi′ ≤ βi′+1, we choose
i = i′ + 1. In all other cases let i = i′. The idea behind this choice of i is
that it yields a way to balance αi−1 and βi+1, which in turn helps to compare
αi−1 + βi+1 to min{αi, βi, αi−1 + βi+1}, i.e. the length of the segments needed
by any Manhattan network to connect pi and pi+1 to q.

To avoid expensive updates of the α- and β-values of the staircase polygons
in the recursion, we introduce offset values xoff and yoff that denote the x-
respectively y-distance from the corner of the current staircase polygon to the
corner qA of A. In order to find the index i in a recursion, we compare αj − xoff

to βj − yoff instead of αj to βj as in the definition of Λ above.
Running time and performance of algorithm Bridge are as follows:

Theorem 1. Given a connected component A of A3 with |P ∩ ∂A| = m, al-
gorithm Bridge computes in O(m log m) time a set B of line segments with
|B| ≤ 2|Nopt ∩ A| and

⋃
B ⊂ A that bridges A.

Our proof of Theorem 1 is similar to the analysis of the greedy algorithm for
rectangulation, see Theorem 10 in [3]. The details can again be found in [2].

We conclude this section by analyzing the running time of ApproxMMN.

Theorem 2. ApproxMMN runs in O(n log n) time and uses O(n) space.

Proof. Each of the four phases of our algorithm takes O(n log n) time: for phase 0
refer to Lemma 2, for phase I to Lemmas 3 and 6, for phase II to Lemma 8 and
for phase III to Theorem 1. ApproxMMN outputs O(n) line segments.
�

The Minimum Manhattan Network Problem 27

5 The Approximation Factor

As desired we can now bound the length of N in A12 and A3 separately. Theo-
rem 1 and Lemma 7 directly imply that |N ∩ A3| = |N3| ≤ 2|Nopt ∩ A3|. Note
that by |Nopt ∩ A3| we actually mean |{s ∩ A3 : s ∈ Nopt}|. It remains to show
that |N ∩ A12| = |N1 ∪ N2| is bounded by 3|Nopt ∩A12|.

Recall that by Lemmas 1 and 3, |N1| ≤ |Nopt|+H+W . Since the segments of
Nopt that were used to derive the estimation of Lemma 1 lie in Aver∪Ahor ⊂ A12,
even the stronger bound |N1| ≤ |Nopt ∩ A12| + H + W holds. It remains to
analyze the length of N2 segments. Let Nver

2 (Nhor
2) denote the set of all vertical

(horizontal) segments in N2. We call segments of N2 that lie on ∂A3 boundary

q

wA

p0

qA

sA

A

q

wA

p0

qA

sA

Fig. 9. Left: In the network N1 neither
the wA–q nor the p0–q path (thick) con-
tain qA. Thus sA ∈ N . Right: MMN of
the same point set.

segments. Due to Lemma 8, segments in
Nver

2 and segments in Cver intersect at
most in segment endpoints. Thus, a hori-
zontal line � with �∩P = ∅ does not con-
tain any point that lies at the same time in⋃ Cver and in

⋃
Nver

2 . In the full version [2]
we characterize the sequences that are ob-
tained by the intersection of such a line �
with cover segments, boundary segments,
and connecting segments. A counting ar-
gument then yields #Nver

2 ≤ 2#Cver − 1
(and analogously #Nhor

2 ≤ 2#Chor − 1),
where #Nver

2 and #Cver denote the num-
ber of segments in Nver

2 and Cver intersected by �, respectively. By integrating
this inequality over all positions of �, we obtain the following lemma.

Lemma 9. |Nver
2 | ≤ 2|Cver| − H and |Nhor

2 | ≤ 2|Chor| − W .

This finally settles the approximation factor of ApproxMMN.

Theorem 3. |N | ≤ 3|Nopt|.

Proof. By Lemma 9 and |Cver∪Chor| ≤ |Nopt∩A12| we have |N2| ≤ 2|Nopt∩A12|−
H−W . Together with |N1| ≤ |Nopt|+H+W this yields |N1∪N2|/|Nopt∩A12| ≤
3. Theorem 1 and Lemma 7 show that |N3|/|Nopt∩A3| ≤ 2. Then, A12∩A3 = ∅
yields |N |/|Nopt| ≤ max{|N1 ∪ N2|/|Nopt ∩ A12|, |N3|/|Nopt ∩ A3|} ≤ 3.
�

Figure 9 shows that there are point sets for which |N |/|Nopt| can be made ar-
bitrarily close to 3. However, an experimental evaluation of ApproxMMN shows
that it behaves much better on point sets under various random distributions.
The average performance was around 1.2. Details can be found in [2]. Our algo-
rithm can be tested under the URL http://i11www.ira.uka.de/manhattan/.
We close with the obvious question: is it NP-hard to compute an MMN?

28 M. Benkert, A. Wolff, and F. Widmann

References

1. S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean spanners: Short,
thin, and lanky. In Proc. 27th Annu. ACM Sympos. Theory Comput. (STOC’95),
pages 489–498, Las Vegas, 29 May–1 June 1995.

2. M. Benkert, F. Widmann, and A. Wolff. The minimum Manhattan network problem:
A fast factor-3 approximation. Technical Report 2004-16, Fakultät für Informatik,
Universität Karlsruhe, 2004. Available at http://www.ubka.uni-karlsruhe.de/

cgi-bin/psview?document=/ira/2004/16.
3. J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Approximating a minimum

Manhattan network. Nordic J. Comput., 8:219–232, 2001.
4. R. Kato, K. Imai, and T. Asano. An improved algorithm for the minimum Manhat-

tan network problem. In P. Bose and P. Morin, editors, Proc. 13th Int. Symp. Alg.
and Comp. (ISAAC’02), vol. 2518 of LNCS, pp. 344–356, 2002. Springer-Verlag.

5. F. Lam, M. Alexandersson, and L. Pachter. Picking alignments from (Steiner) trees.
Journal of Computational Biology, 10:509–520, 2003.

	Introduction
	Preliminaries
	Minimum Covers
	An Approximation Algorithm
	The Approximation Factor

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

