
An Optimal Algorithm for the 1-Searchability
of Polygonal Rooms

Xuehou Tan

Tokai University, 317 Nishino, Numazu 410-0395, Japan
tan@wing.ncc.u-tokai.ac.jp

Abstract. The 1-searcher is a mobile guard who can see only along a ray
emanating from his position and can continuously change the direction
of the ray with bounded speed. A polygonal region P with a specified
point d on its boundary is called a room, and denoted by (P, d). The room
(P, d) is said to be 1-searchable if the searcher, starting at the point d,
can eventually see a mobile intruder who moves arbitrarily fast inside P ,
without allowing the intruder to touch d. We present an optimal O(n)
time algorithm to determine whether there is a point x on the boundary
of P such that the room (P, x) is 1-searchable. This improves upon the
previous O(n log n) time bound, which was established for determining
whether or not a room (P, d) is 1-searchable, where d is a given point on
the boundary of P .

1 Introduction

Recently, much attention has been devoted to the problem of searching for a mo-
bile intruder in a polygonal region P by a mobile searcher [6,8,9,10,11,12,13,14,15].
Both the searcher and the intruder are modeled by points that can continuously
move in P . The 1-searcher is a mobile guard who can see only along a ray emanat-
ing from his position and can change the direction of the ray with bounded speed.
A polygonal region P with a specified point d (called the door) on its boundary
is called a room, and denoted by (P, d). The room (P, d) is said to be 1-searchable
if the searcher, starting at the point d, can eventually see a mobile intruder who
moves arbitrarily fast inside P , without allowing the intruder to touch d.

The problem of searching a polygonal room by a single 1-searcher was first
studied by Lee et al. [10]. By characterizing the class of 1-searchable rooms,
they described an O(n log n) time algorithm to determine if a specifed room is
1-searchable. An optimal algorithm for generating a search schedule was later
given in [14]. In this paper, we present an optimal O(n) time and space algorithm
to determine whether there is a point x on the boundary of P such that the
room (P, x) is 1-searchable. Combining with result of [14], we thus obtain an
optimal solution to the problem of searching a polygonal room by a 1-searcher.
Moreover, our algorithm is simple and does not require a triangulation of P .
This simplicity is important as many linear-time geometric algorithms depend
on the triangulation algorithm of Chazelle [3], which is too complicated to be
suitable in practice.

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 174–183, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Optimal Algorithm for the 1-Searchability of Polygonal Rooms 175

2 Preliminary

Let P denote a simple polygon, i.e., it has neither self-intersections nor holes.
Two points x, y ∈ P are said to be mutually visible if the line segment connecting
them, denoted by xy, is entirely contained in P . For two regions Q1, Q2 ⊆ P ,
we say that Q1 is weakly visible from Q2 if every point in Q1 is visible from
some point in Q2. For a vertex x of the polygon P , let Succ(x) denote the
vertex immediately succeeding x clockwise, and Pred(x) the vertex immediately
preceding x clockwise. A vertex of P is reflex if its interior angle is strictly greater
than 180◦; otherwise, it is convex. An important definition for reflex vertices is
that of ray shots: the backward ray shot from a reflex vertex r, denoted by
Backw(r), is the first point of P hit by a “bullet” shot at r in the direction from
Succ(r) to r, and the forward ray shot Forw(r) is the first point hit by the bullet
shot at r in the direction from Pred(r) to r. See Fig. 1.

v
1

v
2

Forw(v)Backw(v)
21

3v

Fig. 1. Forward, backward ray shots and components

Let u, v denote two boundary points of P , and let P [u, v] (resp. P (u, v))
denote the closed (resp. open) clockwise chain of P from u to v. We define the
chain P [r,Backw(r)] (resp. P [Forw(r), r]) as the backward component (resp.
forward component) of the reflex vertex r. The point r is referred to as the
defining vertex of the component. See Fig. 1 for an example, where two different
components of v1 and v2 are shown in bold line. A backward (resp. forward)
component is said to be non-redundant if it does not contain any other backward
(resp. forward) component. A reflex vertex is critical if its backward or forward
component is non-redundant. For example, the vertices v1, v2 and v3 in Fig. 1
are critical.

A polygon P is said to be LR-visible if there is a pair of boundary points u
and v such that P [u, v] and P [v, u] are weakly visible from each other. Clearly,
P is LR-visible with respect to the point pair (u, v) if and only if each non-
redundant component of P contains either u or v. Das et al. have developed a
linear-time algorithm to determine whether a polygon P is LR-visible or not
[4]. Later, Bhattacharya and Ghosh [1] simplified the algorithm such that it
uses only simple data structures and does not require a triangulation of the
polygon. The algorithm also allows one to compute the shortest paths from an
arbitrary vertex to all other vertices of P . If P is LR-visible, then all of its

176 X. Tan

non-redundant components can be computed in linear time [1,4]. (Actually, the
containment relation between forward components and backward components
is further considered in the definition of non-redundant components given by
Das et al. [4]. But, the main part of their algorithm is to compute the set of
non-redundant forward or backward components.)

Lemma 1. [1,4] It takes O(n) time to determine whether or not P is LR-visible.
Also, all non-redundant forward (resp. backward) components of an LR-visible
polygon can be computed in O(n) time.

A pair of reflex vertices x, y is said to give a d-deadlock, where d is a bound-
ary point of P , if both components P (x,Backw(x)] and P [Forw(y), y) do not
contain d, and the points v1, Forw(v2), Backw(v1) and v2 are in clockwise order.
(Note that the point d may be identical to x or y.) See an example in Fig. 2(a).
In the case that P is LR-visible with respect to some point pairs (x, y), all the
x-deadlocks and y-deadlocks in P can be reported in linear time.

Lemma 2. [2] Suppose that P is LR-visible with respect to some point pairs
(x, y). It takes O(n) time to report all the x-deadlocks and y-deadlocks in P .1

3 The Main Result

The characterization of 1-searchable rooms was originally given by Lee et al.
[10]. To obtain the optimality of the algorithm, we make use of the following
alternate characterization, which is given in terms of components and deadlocks
(see also [14]).

Lemma 3. [10,14] A polygonal room (P, d) is not 1-searchable if and only if
one of the following conditions is true.

(A1) A d-deadlock occurs (Fig. 2(a)), or there are two disjoint components
such that both of them do not contain d (Figs. 2(b)-(e)).

(A2) There are three reflex vertices v1, v2 and v3, which are in clockwise
order, such that the pair (v1, v3) gives both the v2-deadlock and the Forw(v2)-
deadlock or Backw(v2)-deadlock (Fig. 2(f)).

(A3) There are two vertices a2 and b2 such that both components P [a2,
Backw(a2)] and P [Forw(b2), b2] do not contain d, and all vertices of the chain
P [a2, b2] have their deadlocks (Fig. 2(g)).

Notice first that the condition A2 is independent of d, which implies that
if A2 is true, then P is not 1-searchable for any room (P, d), where d is an
arbitrary point on the boundary of P . Actually, if A2 is true, then the condition
A1 is true for all the rooms (P, x), x ∈ P [Forw(v1), Backw(v3)]. Note also that

1 This result, together with Lemma 1, gives an optimal algorithm for the two-guard
walkability of simple polygons [2]. In the appendix, we give a polygon that has a 1-
searchable room, but is not walkable by two guards [7]. Thus, our result is stronger
than the result obtained in [2].

An Optimal Algorithm for the 1-Searchability of Polygonal Rooms 177

v

d

1 v
2

(a)

(g)

Forw(v) Backw(v)
2 1

Forw(v)
2

(d)

(e)

(c)

v1

 Forw(v)
1

v
2

d
d

d

v2
v1

v
1

Backw(v)1

v
2

Backw(v)2

 Forw(v)
1

Backw(v)2

(f)

d

v1 v3

Backw(v)
2

d

v2
v'2

a2 2b

 Forw(b)2 Backw(a)
2

v

d

1 v
2

(b)

Forw(v)Backw(v) 21

 Forw(v)Backw(v)
13

Fig. 2. The conditions A1, A2 and A3

if P is not LR-visible, then A1 is true for every point d on the boundary of P ,
and thus no rooms in P are 1-searchable.

We will present an O(n) time algorithm to determine whether there is a
1-searchable room in a simple polygon. Our algorithm is based on the following
observations, which immediately follow from the definition of critical vertices.

Observation 1. If there are two disjoint components such that A1 is true, then
we can assume that these two components are non-redundant, or equally, two
defining vertices of these components are critical.

Observation 2. If A2 is true, then we can assume that the vertex v2 for A2
is critical.

Observation 3. If A3 is true, then we can assume that two vertices a2 and b2

for A3 are critical.

For simplicity, we consider below the ray shot from a critical vertex as two
different vertices of P ; one slightly preceding it and one slightly succeeding it.
Following from Lemma 3 and the observations made above, it suffices to verify
A1, A2 and A3 for all vertex-door rooms (P, d), where d denotes a vertex of P .
Our algorithm can be summarized as follows.

Algorithm searchability

1. Run the linear-time algorithm of [1,4] to determine whether the given poly-
gon P is LR-visible. If P is not LR-visible, report ”no rooms in P are 1-
searchable”. (It means that no room (P, d), where d is an arbitrary point on
the boundary of P , is 1-searchable.) Otherwise, compute all non-redundant
components (i.e., critical vertices) of P , and then mark the ray shots from
critical vertices as the vertices of P .

178 X. Tan

2. Verify the condition A1 for all vertex-door rooms of P . If A1 is true for all
vertex-door rooms, report ”no rooms in P are 1-searchable”.

3. Check whether the condition A2 is true or not. If yes, report ”no rooms in
P are 1-searchable”.

4. For the vertex-door rooms (P, d) for which the condition A1 is not true,
we further verify whether the condition A3 is true for them. If A1 or A3
holds for every vertex-door room, report ”no rooms in P are 1-searchable”.
Otherwise, a 1-searchable room exists and we report it.

Theorem 1.The algorithm searchability takes O(n) time to determine whether
there is a point x on the boundary of P such that the room (P, x) is 1-searchable.

Proof. First, run the linear-time algorithm of Das et al. [1,4] to check if the
polygon P is LR-visible. If P is not LR-visible, report ”no rooms in P are
1-searchable”, and we are done. Otherwise, all non-redundant components as
well as their corresponding ray shots are computed. An order of the polygon
vertices, including the ray shots from critical vertices, on the boundary of P is
then obtained.

The step 2 of the algorithm searchability is to check if A1 is true for every
vertex-door room (P, d). The condition A1 for (P, d), except for the d-deadlock
case, can be verified as follows. Let v1 denote the critical vertex of P such that
it is closest to d counterclockwise and the component P [v1, Backw(v1)] does not
contain d, and v2 the critical vertex such that it is closest to d clockwise and
the component P [Forw(v2), v2] does not contain d. If the points v1, Backw(v1),
Forw(v2) and v2 are in clockwise order, the configuration shown in Fig. 2(b)
occurs, and thus A1 is true for (P, d). Otherwise, the configuration shown in Fig.
2(b) never occurs for (P, d). This is because P [Backw(v1), Forw(v2)] contains
all chains P [Backw(v′

1), Forw(v′
2)], where v′

1, v′
2 are critical and the points v′

1,
Backw(v′

1), Forw(v′
2) and v′

2 are in clockwise order. For each vertex d, the
corresponding vertices v1 and v2 as well as the order of v1, Backw(v1), Forw(v2)
and v2 can be found in (amortized) constant time. Thus, we can determine
in O(1) amortized time if the configuration shown in Fig. 2(b) occurs. Other
situations shown in Figs. 2(c)-2(e) can be dealt with analogously.

Consider now the deadlock case for the condition A1. Suppose that there are
no two disjoint components in P which make the condition A1 be true for (P, d),
but there are two vertices u1 and u2 which give the d-deadlock. (Note that u1 or
u2 may not be critical.) Then, P (Backw(u1), d] (resp. P [d, Forw(u2))) does not
contain any other component; otherwise, the defining vertex of the contained
component and u1 (resp. u2) give some configuration of A1 shown in Figs. 2(b)-
2(e), a contradiction. For the same reason, there are no two disjoint components
in P [u1, u2]. Hence, there is at least one point d′ ∈ P [Forw(u2), Backw(u1)]
such that P is LR-visible with respect to the point pair (d, d′). We can then
use Bhattacharya et al.’s algorithm [2] to determine if a d-deadlock occurs. It
follows from Lemma 2 that all the v-deadlocks can be reported in O(n) time,
provided that the configurations of A1 shown in Figs. 2(b)-2(e) do not occur for
the rooms (P, v).

An Optimal Algorithm for the 1-Searchability of Polygonal Rooms 179

Turn to the step 3 of the algorithm searchability. Suppose that (P, d) is a
vertex-door room, for which A1 is not true. Let v2 be the critical vertex such that
it is closest to d counetrclockwise and the component P [v2, Backw(v2] does not
contain d (if it exists). Let P ′ denote the portion of P obtained by cutting off the
region bounded by P [v2, Backw(v2)] and the line segment v2Backw(v2). None
of the configurations shown in Figs. 2(b)-2(e) occurs for two rooms (P ′, v2) and
(P ′, Backw(v2)) simultaneously; otherwise, there are three disjoint components
in P and thus P is not LR-visible [4], a contradiction. As discussed above, we can
then determine in O(n) time if there is a v2-deadlock or a Backw(v2)-deadlock
in the polygon P ′. If yes, two vertices giving the deadlock and v2 make the
condition A2 be true, and thus no rooms in P are 1-searchable. Otherwise, we
further find the critical vertex v′

2 such that it is closest to d clockwise and the
component P [Forw(v′

2), v
′
2] does not contain d, and perform the same procedure

for v′
2 (if it exists). If A2 is not ever satisfied, it can never be true for the polygon

P , as we have assumed that the condition A1 is not true for the room (P, d).
Finally, consider the step 4 of searchability. Again, let (P, d) denote a vertex-

door room, for which A1 is not true. Let l1, . . ., li be the sequence of critical
vertices on P such that l1 is closest to d counterclockwise and all the components
P [lk, Backw(lk)] (1 ≤ k ≤ i) do not contain d. The points Backw(l1), Backw(l2),
. . ., Backw(li) are then in clockwise order. See Fig. 3. Similarly, let r1, . . ., rj be
the sequence of critical vertices on the boundary of P such that rj is closest to
d clockwise and all the components P [Forw(rk), rk] (1 ≤ k ≤ j) do not contain
d. Also, the points Forw(r1), Forw(r2), . . ., Forw(rj) are in clockwise order.
Assume that both li and r1 exist (otherwise, the room (P, d) is 1-searchable and
we are done), and that the points d, li and r1 are in clockwise order (otherwise,
the d-deadlock occurs, a contradiction). To verify the condition A3 for (P, d),
we first determine if P is LR-visible with respect to both point pairs (d, li) and
(d, r1) [1,4]. If yes, then P is LR-visible with respect to any point pair (d, d′),
d′ ∈ P [li, r1]. So we can verify whether all vertices of P [li, r1] have their deadlocks
(Lemma 2). If there is a vertex in P [li, r1] that does not have the deadlock, then
the room (P, d) is 1-searchable and we are done. Otherwise, A3 is true for (P, d)
as well as the rooms (P, v), v ∈ P (Backw(li), Forw(r1)).

Suppose that A3 is true for the rooms (P, v), v ∈ P (Backw(li), Forw(r1)).
We need to further check whether the condition A3 is true for the vertex-door

d

l1

l2
r1

Backw(l)1

1
 Forw(r)

Backw(l)2

d

l1

l2 r1

Backw(l)1

1 Forw(r)
Backw(l)2

d

l1

l2 r1

Backw(l)1

1
 Forw(r)

Backw(l)2

d

k

dk

d'k d' d'

dk

k

k

Fig. 3. The polygon P is LR-visible with respect to both point pairs (d, li) and (d, r1)

180 X. Tan

(a)

d

l1

li

r1

r2

Forw(r)

1

1
 Forw(r)

Backw(l)P

(b)

d

li

r1

r2

 Forw(r)
2

1

1
 Forw(r)

Backw(l)P'

v
1

v2

2

Fig. 4. The polygon P is LR-visible only with respect to the point pair (d, li)

rooms (P, d), d ∈ P [Backw(l1), Backw(li)] ∪ P [Forw(r1), Forw(rj)]. Since the
condition A1 has previously been verified, by a scan of the polygon boundary, we
can find all the vertex-door rooms (P, dk), dk ∈ P [Backw(li−k), Backw(li−k−1)]
and 0 ≤ k ≤ i−2, for which A1 is not true. Assume that A1 is not true for a room
(P, dk), dk ∈ P [Backw(li−k), Backw(li−k−1)], and dk is contained in P [r1, d] (it
can easily be verified, too). In this case, two chains P [dk, d′k] and P [d′k, dk], for
any point d′k ∈ P [li−k−1, li−k], are mutually weakly visible; otherwise, A1 is
true for (P, dk) or some vertices of l1, . . . , li are not critical, a contradiction in
either case. See Fig. 3 for some examples, where the vertex li−k−1 and the vertex
destroying the weak visibility (the component of that vertex does not contain
dk nor d′k) make A1 be true for (P, dk). Thus, we can determine if all vertices
of P [li−k−1, li−k] have their deadlocks (Lemma 2), and if so the condition A3
is true for the room (P, dk). If A3 is not true for some room (P, dk), then it is
1-searchable and we are done. Otherwise, we perform a symmetric procedure for
the sequence of vertices r1, . . ., rj . In this way, we can determine in O(n) time if
there is a 1-searchable room in P , and if so report such a room. (Note that the
algorithm of Bhattacharya et al. [2] needs to run only once for the polygon P ,
although its outputs (i.e., the deadlocks reported) are used several times in our
algorithm.)

Let us turn to the situation in which the polygon P is LR-visible with respect
to only one point pair, say, (d, li). In this case, r1 (as well as d) is not contained
in the component P [l1, Bcakw(l1)]. See Fig. 4(a). Following from the discussion
made above, the work of verifying the condition A3 is to compute the deadlocks
for the vertices of P [l1, rj]. Since P is LR-visible with respect to both point pairs
(d, li) and (d,Backw(l1)) in this case, we can simply determine if all the vertices
of P [l1, Backw(l1)] have their deadlocks (Lemma 2). But, a new method for
reporting the vertices of P [Backw(l1), rj] having their deadlocks has to be de-
veloped. Let v1 and v2 denote two vertices such that their backward components
(P [vl, Backw(vl)], l = 1, 2) do not contain r1 and all such vertices are contained
in P [v1, v2]. See Fig. 4(a). Clearly, P [v1, v2] ⊂ P [d, li] holds. For any vertex
v ∈ P [v1, v2], no backward shot Backw(v) can contribute to an x-deadlock,
x ∈ P [Backw(l1), rj]; otherwise, the d-deadlock occurs, a contradiction. How-
ever, the shot Forw(v) may contribute to an x-deadlock, x ∈ P [Backw(l1), rj].

An Optimal Algorithm for the 1-Searchability of Polygonal Rooms 181

Let v′ denote the vertex such that two shots Backw(v′) and Forw(v) give the x-
deadlock. Then, the vertex v′ is contained in any component P (Backw(v′′), v′′),
v′′ ∈ P (v, v2]; otherwise, three vertices v, v′ and v′′ make the condition A2 be
true, a contradiction. This implies that the vertex li is contained in P [v, v′].
Since the polygon P is weakly visible with respect to the point pair (d, li), these
x-deadlocks with one defining vertex belonging to P [v1, v2] can thus be found us-
ing Lemma 2. Clearly, when we compute other deadlocks, all vertices of P [v1, v2]
can be ignored. Note that the vertices v1 and v2 can be found by computing the
shortest paths from r1 to all vertices of P [d, li] [5], and marking the vertices v
such that the shortest path from r1 to Succ(v) turns left at v (as viewed from
r1). Let P ′ denote the polygon obtained after the chain P [v1, v2] is deleted (i.e.,
connnecting Pred(v1) and Succ(v2) by a line segment). See Fig. 4(b) for an ex-
ample. The polygon P ′ is now LR-visible with respect to both point pairs (d, rj)
and (d, li) (or (d,Backw(l1) if li is deleted). As discussed above, we can find the
vertices of P ′[Backw(l1), d], which have their deadlocks in the polygon P ′. Since
any pair of reflex vertices giving a deadlock in P ′ corresponds to a unique pair
of reflex vertices of P , the same deadlock also occurs in P . In conclusion, we can
determine in O(n) time whether there is a 1-searchable room in P .

The situation in which the polygon P is LR-visible with respect to only the
point pair (d, r1) can be dealt with analogously. Note that the polygon P is
LR-visible with respect to at least one pair of (d, li)) and (d, r1); otherwise, the
condition A1 is true for (P, d), contradicting our assumption. This completes
the proof. �

4 Conclusion

We have proposed an optimal O(n) time algorithm to determine whether there
is a point d on the boundary of P such that the room (P, d) is 1-searchable. Our
result improves upon the previous O(n log n) time bound, which was established
for determining whether a specified room is 1-searchable. A further work is to give
a linear time algorithm to determine whether a simple polygon is 1-searchable,
without considering any door [8,13,15].

Acknowledgements

This research is partially supported by the Grant-in-Aid of the Ministry of Ed-
ucation, Science, Sports and Culture of Japan.

References

1. B.K.Bhattacharya and S.K Ghosh, Characterizing LR-visibility polygons and re-
lated problems, Comput. Geom. The. Appl. 18 (2001) 19-36.

2. B.K.Bhattacharya, A. Mukhopadhyay and G.Narasimhan, Optimal algorithms for
two-guard walkability of simple polygons, Lect. Notes Comput. Sci. 2125 (2001)
438-449.

182 X. Tan

3. B.Chazelle, Triangulating a simple polygon in linear time, Discrte Comput. Geom-
etry 6 (1991) 485-524.

4. G.Das, P.J.Heffernan and G.Narasimhan, LR-visibility in polygons, Comput.
Geom. Theory Appl. 7 (1997) 37-57.

5. L.J.Guibas, J.Hershberger, D.Leven, M.Sharir and R.E.Tarjan, Linear-time algo-
rithms for visibility and shortest path problems inside triangulated simple poly-
gons, Algorithmica, 2 (1987) 209-233.

6. L.J.Guibas, J.C.Latombe, S.M.Lavalle, D.Lin and R.Motwani, Visibility-based
pursuit-evasion in a polygonal environment, Int. J. Comput. Geom. & Appl. 9,
(1999) 471-493.

7. C. Icking and R. Klein, The two guards problem, Int. J. Comput. Geom. & Appl.
2 (1992) 257-285.

8. S.M.LaValle, B.Simov and G.Slutzki, An algorithm for searching a polygonal region
with a flashlight, in Int. J. Comput. Geom. & Appl. 12 (2002) 87-113.

9. J.H. Lee, S.Y.Shin and K.Y.Chwa, Visibility-based pursuit-evasion in a polygonal
room with a door, Proc. 15th Annu. ACM Symp. Comput. Geom. (1999) 281-290.

10. J.H.Lee, S.M.Park and K.Y.Chwa, Searching a polygonal room with one door by
a 1-searcher, Int. J. Comput. Geom. & Appl. 10 (2000) 201-220.

11. J.H.Lee, S.M.Park and K.Y.Chwa, Simple algorithms for searchng a polygon with
flashlights, Inform. Process. Lett. 81 (2002) 265-270.

12. I.Suzuki and M.Yamashita, Searching for mobile intruders in a polygonal region,
SIAM J. Comp. 21 (1992) 863-888.

13. I.Suzuki, Y.Tazoe, M.Yamashita and T.Kameda, Searching a polygonal region from
the boundary, Int. J. Comput. Geom. & Appl. 11 (2001) 529-553.

14. X.Tan, Efficient algorithms for searching a polygonal room with a door, Lect. Notes
Comput. Sci. 2098 (2001) 339-350.

15. X.Tan, A characterization of polygonal regions searchable from the boundary, Lect.
Notes Comput. Sci. 3330 (Proc. of IJCCGGT 2003) 200-215.

An Optimal Algorithm for the 1-Searchability of Polygonal Rooms 183

Appendix

A simple polygon P with two marked points s, t on its boundary is called a
corridor, and denoted by (P, s, t). The 1-searcher is termed as two guards [7],
if we require that the movement of the endpoint of the ray (as well as the 1-
searcher) be continuous on the polygon boundary. The corridor (P, s, t) is said
to be walkable by two guards if two guards starting at s can force the mobile
intruder out of P through t, without allowing the intruder to touch s [7]. It
has been shown that (P, s, t) is walkable by two guards if and only if P [s, t] and
P [t, s] are weakly visible from each other and neither s-deadlocks nor t-deadlocks
occur [7]. An O(n) time algorithm has been given to determine if there is a point
pair (s, t) on the boundary of P such that (P, s, t) is walkable by two guards [2].

It is clear that if the polygon P is walkable by two guards, then there is
a 1-searchable room in P . However, the converse is not true. The room (P, d)
shown in Fig. 5 is 1-searchable, but P is not walkable by two guards. This is
because all points of P [a, b] have their deadlocks, and any two chains P [u, v] and
P [v, u], u, v ∈ P [b, a), are not weakly visible from each other.

d

a
b

Fig. 5. A polygon has a 1-searchable room, but it is not walkable by two guards

	Introduction
	Preliminary
	The Main Result
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

