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Abstract. Three partial orders, cut-size order, length order, and op-
eration order, defined between labeled multigraphs with the same or-
der are known to be equivalent. This paper extends the result on edge-
capacitated graphs, where the capacities are real numbers, and it presents
a proof of the equivalence of the three relations. From this proof, it is
also shown that we can determine whether or not a given graph precedes
another given graph in polynomial time.

1 Introduction

Let N = {xg,1,...,2,—1} be the set of vertices of a convex polygon P in
the plane, where the vertices are arranged in this order counter-clockwisely, and
hence (x;,x;+1) is an edge of P for i = 0,1,...,n — 1 (We adopt the residue
class on n for treating integers in N, i.e., i & j is ' € N such that i/ =i+
(mod n)). An internal angle of P may be m. We consider graphs whose node
set corresponds to N, i.e., the node set is {0,1,...,n — 1} and each node i is
assigned to z;, and each edge e = (4,5) of the graph is represented by a line
segment x;x;.

We adopt the cyclic order for treating integers (or numbered vertices) in N.

Thus for i,j € N,
. ._{{i,i+1,...,j}, if i <3,
[i,5] =< ¢.) . e
{i,i+1, ..., n—1,0, 1, ..., j},if i > j;
fori,j,k € N, i< j <k means j € [i,k]; for i,j,k,h € N, i < j <k < h means
that , j, k, h appear in this order when we traverse the nodes of [¢, k] from i to h.
For notational simplicity, {¢} may be written as i. For a graph G, F(G) means
the edge set of G.

In this paper all graphs are regarded as weighted graphs, i.e., we introduce a
weight function wg : E(G) — R and a weighted graph G always has a weight
function wg in this paper.

Three relations, cut-size order, length order, and operation order, were intro-
duced between vertex-labeled graphs in Reference [5] and shown that they are
equivalent [4J5]. However, the proof in Reference [5] is for only multigraphs with
the same number of edges and without edge weights. The proof for the general
case have been appeared in only Technical Notes [4]. This paper shows a new
proof, which is more simple than the previous one, for the general case.
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2 Definitions
We introduce some terms as follows.

Linear Cuts. For a graph G and a pair of distinct nodes i,j € N, a linear cut
Ca(i,7) is an edge set:

Cql(i,j) = {(k,h) € E(G) | k € [1,j = 1], h € [j,i—1]}.

Fig. [l show examples of linear cuts. The capacity of a linear cut Cg(i,5) is

defined as
calij)= >, wale)
eECG(i,j)

For two subsets N’ and N of nodes,

’wG(N/vN//) = Z wG(Zaj)
iEN’,jEN"

The degree of a node i € N of a graph G is defined as cg(i,i + 1) = wg (i, [i +
1,4 — 1]) and may be simply denoted by dg(i). As a generalization of degree,
de(N') denotes wg(N', N—N') for N’ C N. From them, ¢ (%, j) = da([i, j—1]),
since they means the same thing.

We introduce a relation based on sizes of linear cuts as follows. For two
weighted graph G and G’, G <. G’ means that ¢ (i, j) < ¢/ (4,7) foralli,j € N,
i # j. This relation is known to be a partial order, since it is easily obtained
from the following result presented by Skiena [7].

Theorem 1. For two weighted graphs G and G', if cq(i,j) = cq(i,7) for all
i,j €N, i#7j, then G=G". O

Sum of Edge Lengths. For an edge (i,7) of a weighted graph G and a convex
n-gon P, let dist(4, j) be a length of the line segment x;x;. We define a sum of
weighted edge length of G with respect to P as

sp(G) = > w(i,j)-dist(i, ).

(1,5)€E(G)

(b)

Fig. 1. Linear cuts: (a) Cg(1,4), (b) Ca(3,4)
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We introduce a relation based on the measure as follows. For two weighted
graph G and G’, G <; G’ means that sp(G) < sp(G’) for all convex n-gons P.
Graph drawing is a very important research aea and the sum of edge lengths is
a crucial criterion for evaluating drawing methods [1].

Cross-Operations. We introduce an operation transforming a graph to another
one. For a weighted graph G, two distinct 4,7 € N and a real value A,
ADD¢(7,7; A) means adding A to w(i,j) (if (4,5) ¢ E(G), adding an edge
(i,4) to E(G) previously). The reverse operation of ADD can be defined, i.e.,
REMOVE¢ (4, j; A) means ADD¢ (i, j; —A). We extend these operations in the
case i = j, i.e., both ADD¢(4,4; A) and REMOVE¢(4,4; A) mean doing nothing.
For nodes 4,5, k,h € N with ¢ < 7 <k < h and a positive A > 0 (see, Fig. 2)), a
cross-operation X (i, j, k, h; A) is applying.

REMOVEc(i, j; A), REMOVEg(k, h; A), ADDg(i, k; A), and ADDg(j, h; A).

»

h i h i

Fig. 2. Cross-operation X (3, j, k, h; 1)

If some of {i,j, k, h} are equal, a cross-operation may increase edges. In fact,
ifi=j<k<h<iori=j<k=h<i (orthe cases symmetric with respect
to one of them), then the total edge weights increases (see, (a) and (b) of Fig. ).
If j = k or ¢ = h, the edge set is not changed (see, (c¢) and (d) of Fig. B).

We introduce a relation based on cross-operations as follows. For two
weighted graph G and G’, G <, G’ means that G’ can be obtained from G by
applying finite number (including zero) of cross-operations. Cross-operations are
very similar to 2-switches, presented by Hakimi [23] and developed by West [§].
The only deference between them is that the order of 4, j, k, h is not a matter in
2-switches.

3 Equivalence of the Three Relations

We have the following theorem.
Theorem 2. Three relations <., =<;, and =<, are equivalent. O

This theorem was shown in [5] for graphs with the same size (number of edges),
but for the general case a proof is shown only in Technical Notes [4]. Moreover,
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Fig. 3. These cross-operations X (4, j, k, h; 1) when some of nodes are the same

these proofs were a bit long and complicated. We show a more simple proof of
this theorem in this section.

In the remaining part of this section, we consider that all weighted graphs
are complete graphs without loss of generality, since (¢,j) ¢ F is equivalent to
weg(4,j) = 0. Hence a weighted graph can be represented by a pair of a node
set N and a weight function w: G = (N,w). Define a zero weighted graph
Gg = (N,wy) as wy(i,j) =0 for all 4,5 € N.

Note that cg,(i,7) = 0 for any i, € N (i # j), and Sp(Gy) = 0 for any
polygon P. For any pair of G = (N,w) and G’ = (N,w'), we define G — G’ =
(N, w") as ¢’(i,5) :=c(i,j) — ¢ (4, j) for every i,j € N. G < G' (X is any one of
=1, 2¢, and <, is equivalent to G— G’ <X Gy. Therefore, it is enough to consider
G’ = Gy for proving Theorem 2] as a result of this fact, the proof of Theorem
consists of three parts:

(1) G =%, Gy = G =; Gy, (Lemma [T])
(2) G =%, Gy = G <. Gp, (Lemma ) and
(3) G %. Gy = G =, Gy. (LemmaB)

Lemma 1 ([5]). If G <, Gy, then G <; Gy.
Proof: 1t is clear from the triangle inequality. a
Lemma 2 ([5]). If G =; Gy, then G <. Gp.

Proof. Suppose that G <. Gy does not hold, i.e., there are i,5 € N such
that cg(i,7) > 0. We construct a polygon P satisfying Sp(G) > 0 as follows.



Three Equivalent Partial Orders on Graphs with Real Edge-Weights 127

X =Aex | keli,j—1}and Y = {z | k € [j,7 — 1]}. Let p,r > 0 be real
numbers. Put all vertices 2; € X in a circle whose center is (0,0) and radius is
r. Put all vertices z; € Y in a circle whose center is (p,0) and radius is r. We
can locate all vertices satisfying the above conditions and convexity for any r
and p. By letting p be far larger than r, Sp(G) > 0. O
Lemma 3. If G 2. Gy, then G =, Gj.

In this paper we show a new proof, which is more simple than the previous
one, for this lemma. The following proposition is well-known. Since the proof is
eagy, it is omitted.

Proposition 1. Let A, B,C C N be three mutually disjoint subsets and G be a
weighted graph, then

dg(AUB)+dg(BUC) =dg(B) +dg(AUBUC) 4+ 2wg(A,C).

Proof of Lemma [Bl Assume that G <. Gy, i.e.,
da([i,7]) = ca(i,j+1) <0 for all i,j € N. (1)

We use an example shown in Fig. @] (a) for a help of understanding. Let ko be
the largest integer such that

da([i,4]) = 0 for all (i,5) € {(i,5) | i,j € N,j —i < ko}. 2)

Note that the residue class is used for the difference. (For an example for
Fig. @ (a), ko = 2 since dg(0) = dg(1l) = -+ = dg(11) = 0, dg([0,1]) =

Fig. 4. An example of G: w(e) = 1 for solid edges and w(e) = —1 for broken edges
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da([1,2]) = -+ = de([11,0]) = 0, and de([0,2]) = =2 < 0.) If kg > |n/2],
G = Gy. Hence, we assume ko < |n/2]. Then their exists (ig,jo) such that
jo - io = k‘o and

dg (lio, jo]) < 0. (3)
(For an example for Fig. [ (a), i = 0 and jo = 2.) By considering Proposition [I]
with A = {io}, B = [io + 1,70 — 1], and C = {jo}, we obtain

da([io, jo — 1]) + de([io + 1, jo))
= dg([io + 1, jo — 1]) + da([io; jo]) + 2we(io, jo)-
Thus

we(io, jo)
_ da(lio, jo = 1)) + de(lio + 1, jo]) — de([io + 1, jo — 1]) — da([io, jo])
2
> 0, (4)
since dg([io, jo—1]) = da([io+1, jo]) = da([io+1,jo—1]) = 0, and d([io, jo]) <
0. (In the example, w(0,2) =1 > 0.) Let I be a set of (i, 7) (i,j € N) satisfying
the following conditions:

(a) i <ig < jo < j, and

(b) da([',4']) <0 for all i < ¢/ <igp and jo < j' < j.

(For an example for Fig. [ (a), I = {(11,3), (11,4), ..., (11,9), (10,3), (10,4),
.+ (10.8), (9.3). (9.4). ... (0.7), (8,3), (8.4), (8.5), (8.6, (7.3). (7.4), (7.5).

(6,3), (6,4), (5,3)}.) I # (Z) since (49 — 1,70 + 1) € I. Let (i1, 1) be an extremal

element of I, i.e., they satisfies (a), (b), and

( ) there are i1 <is < ip and Jjo<je < such that dg([il,jg]) = d(;([ig,jl]) =0
(For an example for Fig. @ (a), i1 = 10, j; = 8, i = 11, jo = 7.) Such i1, j;
(and i2, jo) must exist since dg([i,j]) = 0 for ¢,5 € N with j —¢ > n — ko
(note dg([i,7]) = da([j + 1,i — 1]) and [@2))). By considering Proposition [l with
A = [i1,i — 1], B = [ia,j2], and C' = [j2 + 1, j1] (see, Fig. [l), we obtain
de([ir, j2]) + de(liz, j1])
= dg([iz, j2l) + de([i1, j1]) + 2we([i1,i2 — 1], [j2 + 1, 71])-

Thus

we([ir, iz — 1], [j2 + 1, /1))

_ da([ir, j2]) + da([iz, j1]) ; dg ([iz; j2]) — da([i1, j1]) >0, (5)
since dg([i1, j2]) = de(liz,1]) = 0 from (c), dg([i2,j2]) < 0 from (b), and
de([i1,71]) < 0. (For an example for Fig. M (a), we(10,8) = 1 > 0.) Hence there
is a pair i* € [11,12 — 1] and j* € [j2 + 1, j1] such that

we (i, %) > 0. (6)
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Fig. 5. Relation between nodes and cuts

(For an example for Fig. [ (a), i* =iy = 10 and j* =43 = 8.) Since (i*,j*) € I,
it satisfies (b), i.e.,

de([i,§]) < 0 for all i* < i <ig and jo < j < j*. (7)

From (), (@), and () we can apply a cross-operation X (g, jo,j*,*; A4) on G
with
A= min{wG(i()ij)’wG(i*vj*)’ . min_ {_dG(['Lv]])/Z}} > 0.
1* <i<do,Jjo<J<j*
(For an example for Fig. M (a), A = 1 and we obtain a graph of Fig. @ (b) by
the cross-operation.)

Now, we have found a cross-operation that makes G be closer to Gy. By
applying the preceding discussion iteratively, we can find a sequence of cross-
operations that makes G be closer to Gy. For completing the proof, we must
show that the length of the sequence is finite. It is shown as follows.

Let G’ be a graph obtained by applying X (9, jo, j*,%*; A) to G. There are
three cases: (I) A = we(io, jo), (II) A = ming <i<iy jo<j<j*{—dc([4,])/2}, and
(ITI) A = wg(i*, j*). We consider each case as follows.

(I) A = weg(io,jo). In this case, wgr (i, jo) becomes zero. Then by applying
Proposition [l with A = {ig}, B = [igp + 1, jo — 1], and C' = {jo}, we obtain
de ([i0, jo]) = 0. Thus, the number of zero-linear-cuts of G’ is greater than
the one of G. Therefore (I) occurs at most (%) < n? times.

(II) A = ming«<,<iy, jo<j<j-{—dc([i,j])/2}. Let ¢ and j' be nodes satisfying
i* <i <ig, jo < j < j*, and A = —dg([¢,4])/2. Thus de([¢', j']) becomes
zero. Hence the number of zero-linear-cuts of G’ is greater than the one of
G. Therefore (II) occurs at most (5) < n? times.

(IIT) A = wg(i*,5*). It is enough to consider a case of A < wg(ig, jo), because
if A = wgl(io,jo), then case (I) could be applied. Then we (ig, jo) > 0 and
wer (1%, 7*) = 0. In this case, we try again to find another pair of (i*,j*) for
the same (ig,jo) (the same (i*,5*) be never found since wg (i*,j*) = 0).
Thus (III) occurs successively at most (%) < n? times.
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From (I)—(III), the length of the sequence of cross-operations is less than n*. By
using the sequence, G is transformed into Gy, i.e., G =, Gjy. O

Proof of Theorem [2l Follows immediately from Lemmas [Tl 2, and Bl O
Corollary 1. Three relations <., =i, and =, are all partial orders.

Proof. Clear from Theorem [2] and that <. is a partial order. O

From Theorem [ these three partial orders can be denoted by < simply.
Moreover, we easily get the next.

Corollary 2. Whether or not G <X G’ for a given pair of graphs G and G’ can
be determined in polynomial time.

Proof. Clear from Theorem ] and that the number of linear-cuts is O(n?). O

4 Concluding Remarks and Future Work

This paper extends the three orders, cut-size order, length order, and operation
order, onto real capacitated (vertex labeled) graphs, and presents a proof for the
equivalence of them.

Theorem [l guarantees that there is a sequence of graphs G = Gy, Gq, ...,
Gp = G’ such that G; (i = 1,...,p) can be obtained from G;_; by applying a
cross operation if G < G’. These graphs G; (i = 1,...,p) may be not simple
even if G and G’ are both simple. Whether or not there is a sequence consists
of simple graphs only in this case is an interesting problem. Some results have
been obtained for this problem [6], but our conjecture that such sequence always
exists if dg (i) = dgv(4) for all ¢ € N remains for future work.
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