

Lecture Notes in Computer Science 3742
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jin Akiyama Mikio Kano Xuehou Tan (Eds.)

Discrete and
Computational
Geometry

Japanese Conference, JCDCG 2004
Tokyo, Japan, October 8-11, 2004
Revised Selected Papers

13

Volume Editors

Jin Akiyama
Tokai University, Research Institute of Educational Development
2-28-4 Tomigaya, Shibuya-ku, Tokyo, 151-0063, Japan
E-mail: fwjb5117@mb.infoweb.ne.jp

Mikio Kano
Ibaraki University, Department of Computer and Information Sciences
Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan
E-mail: kano@cis.ibaraki.ac.jp

Xuehou Tan
Tokai University, School of High-Technology for Human Welfare
317 Nishino, Numazu, Shizuoka 410-0395, Japan
E-mail: tan@wing.ncc.u-tokai.ac.jp

Library of Congress Control Number: 2005936697

CR Subject Classification (1998): I.3.5, G.2, F.2.2, E.1

ISSN 0302-9743
ISBN-10 3-540-30467-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30467-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11589440 06/3142 5 4 3 2 1 0

Preface

This volume consists of the refereed proceedings of the Japan Conference on
Discrete and Computational Geometry (JCDCG 2004) held at Tokai University
in Tokyo, Japan, October, 8–11, 2004, to honor János Pach on his 50th year.
János Pach has generously supported the efforts to promote research in discrete
and computational geometry among mathematicians in Asia for many years.
The conference was attended by close to 100 participants from 20 countries.

Since it was first organized in 1997, the annual JCDCG has attracted a
growing international participation. The earlier conferences were held in Tokyo,
followed by conferences in Manila, Philippines, and Bandung, Indonesia. The
proceedings of JCDCG 1998, 2000, 2002 and IJCCGGT 2003 were published by
Springer as part of the series Lecture Notes in Computer Science (LNCS) volumes
1763, 2098, 2866 and 3330, respectively, while the proceedings of JCDCG 2001
were also published by Springer as a special issue of the journal Graphs and
Combinatorics, Vol. 18, No. 4, 2002.

The organizers of JCDCG 2004 gratefully acknowledge the sponsorship of
Tokai University, the support of the conference secretariat and the participa-
tion of the principal speakers: Ferran Hurtado, Hiro Ito, Alberto Márquez, Jǐŕı
Matoušek, János Pach, Jonathan Shewchuk, William Steiger, Endre Szemerédi,
Géza Tóth, Godfried Toussaint and Jorge Urrutia.

July 2005 Jin Akiyama
Mikio Kano
Xuehou Tan

Organization

The Organizing Committee

Co-chairs: Jin Akiyama and Mikio Kano

Members: Tetsuo Asano, David Avis, Vašek Chvátal, Hiroshi Imai, Hiro Ito,
Naoki Katoh, Midori Kobayashi, Chie Nara, Toshinori Sakai, Kokichi Sugihara,
Xuehou Tan, Takeshi Tokuyama, Masatsugu Urabe and Jorge Urrutia

Members of the Executive Committee: Takako Kodate, Yoichi Maeda,
Haruhide Matsuda and Mari-Jo P. Ruiz

Table of Contents

Matching Points with Circles and Squares
Bernardo M. Ábrego, Esther M. Arkin, Silvia Fernández-Merchant,
Ferran Hurtado, Mikio Kano, Joseph S.B. Mitchell, Jorge Urrutia . . . 1

The Minimum Manhattan Network Problem: A Fast Factor-3
Approximation

Marc Benkert, Alexander Wolff, Florian Widmann 16

Algorithms for the d-Dimensional Rigidity Matroid of Sparse Graphs
Sergey Bereg . 29

Sliding Disks in the Plane
Sergey Bereg, Adrian Dumitrescu, János Pach . 37

Weighted Ham-Sandwich Cuts
Prosenjit Bose, Stefan Langerman . 48

Towards Faster Linear-Sized Nets for Axis-Aligned Boxes in the Plane
Hervé Brönnimann . 54

Farthest-Point Queries with Geometric and Combinatorial Constraints
Ovidiu Daescu, Ningfang Mi, Chan-Su Shin, Alexander Wolff 62

Grid Vertex-Unfolding Orthostacks
Erik D. Demaine, John Iacono, Stefan Langerman 76

A Fixed Parameter Algorithm for the Minimum Number Convex
Partition Problem

Magdalene Grantson, Christos Levcopoulos . 83

Tight Time Bounds for the Minimum Local Convex Partition Problem
Magdalene Grantson, Christos Levcopoulos . 95

I/O-Efficiently Pruning Dense Spanners
Joachim Gudmundsson, Jan Vahrenhold . 106

On the Minimum Size of a Point Set Containing Two Non-intersecting
Empty Convex Polygons

Kiyoshi Hosono, Masatsugu Urabe . 117

VIII Table of Contents

Three Equivalent Partial Orders on Graphs with Real Edge-Weights
Drawn on a Convex Polygon

Hiro Ito . 123

Wedges in Euclidean Arrangements
Jonathan Lenchner . 131

Visual Pascal Configuration and Quartic Surface
Yoichi Maeda . 143

Nonexistence of 2-Reptile Simplices
Jǐŕı Matoušek . 151

Single-Vertex Origami and Spherical Expansive Motions
Ileana Streinu, Walter Whiteley . 161

An Optimal Algorithm for the 1-Searchability of Polygonal Rooms
Xuehou Tan . 174

Crossing Stars in Topological Graphs
Gábor Tardos, Géza Tóth . 184

The Geometry of Musical Rhythm
Godfried Toussaint . 198

Author Index . 213

Matching Points with Circles and Squares

Bernardo M. Ábrego1, Esther M. Arkin2, Silvia Fernández-Merchant1,
Ferran Hurtado3, Mikio Kano4, Joseph S.B. Mitchell2, and Jorge Urrutia5

1 Department of Mathematics, California State University, Northridge
2 Department of Applied Mathematics and Statistics,

State University of New York at Stony Brook
3 Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya

4 Ibaraki University
5 Instituto de Matemáticas, Universidad Nacional Autónoma de México

Abstract. Given a class C of geometric objects and a point set P , a
C-matching of P is a set M = {C1, . . . , Ck} of elements of C such that
each Ci contains exactly two elements of P . If all of the elements of P
belong to some Ci, M is called a perfect matching ; if in addition all the
elements of M are pairwise disjoint we say that this matching M is strong.
In this paper we study the existence and properties of C-matchings for
point sets in the plane when C is the set of circles or the set of isothetic
squares in the plane.

1 Introduction

Let C be a class of geometric objects and let P be a point set with n elements
p1, . . . , pn in general position, with n even. A C-matching of P is a set M =
{C1, . . . , Ck} of elements of C, such that every Ci contains exactly two elements
of P . If all of the elements of P belong to some Ci, M is called a perfect matching.
If in addition all of the elements of M are pairwise disjoint we say that the
matching M is strong.

Let GC(P) be the graph whose vertices are the elements of P , two of which
are adjacent if there is an element of C containing them and no other element
from P . Then, a perfect matching in GC(P) in the usual graph-theoretic sense
corresponds naturally with our definition of GC(P)-matchings.

There are several natural classes C of geometric objects of interest, including
line segments, isothetic rectangles, isothetic squares, and disks. For these cases,
we refer to the corresponding matching M as a segment-matching, a rectangle-
matching, a square-matching, or a circle-matching, respectively. Notice that
these four classes of objects have in common the shrinkability property: if there
is an object C ′ in the class that contains exactly two points p and q in P , then
there is an object C ′′ in the class such that C ′′ ⊂ C ′, p and q lie on the boundary
of C ′′, and the relative interior of C ′′ is empty of points from P . In the case of
rectangles we can even assume the points p and q to be opposite corners of C ′′.

It is easy to see that P always admits a strong segment-matching and a strong
rectangle-matching, which in fact are respectively non-crossing matchings in the

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 1–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 B.M. Ábrego et al.

complete geometric graph induced by P (in the sense in which geometric graphs
are defined in [4]) and in the rectangle of influence graph associated with P [3].

On the contrary, the situation is unclear for circles and squares, and gives
rise to interesting problems, That is the topic of this paper, in which we study
the existence of perfect and non-perfect, strong and non-strong matchings for
point sets in the plane when C is the set of circles or the set of isothetic squares
in the plane.

It is worth mentioning that our results on square-matchings prove, as a side
effect, the fact that Delaunay triangulations for the L1 and L∞ metrics contain
a Hamiltonian path, a question that, to best of our knowledge, has remained
unsolved since it was posed in the conference version of [2].

2 Matching with Disks

In this section we study circle-matchings. We show that a perfect circle-matching
is always possible, but that there are collections of points for which there is no
perfect strong circle-matching. We give bounds on the size of the largest strong
circle-matching that any set P of n points admits. We also consider the special
case in which the point set P is in convex position.

2.1 Existence of Circle-Matchings

First, notice that the fact that two points from P can be covered by a disk
that contains no other point in P is equivalent to fact that the two points are
neighbors in the Delaunay triangulation of P , DT (P). In other words, when C
is the set of all circles on the plane, the graph GC(P) is DT (P). Thus, a point
set admits a circle-matching if and only if the graph DT (P) contains a perfect
matching, which is the case if and only if P has an even number of points, as
proved by Dillencourt in 1990 [2]. Therefore we get the following result, which
is a direct consequence of Dillencourt’s result:

Theorem 1. Every point set with an even number of elements admits a circle-
matching.

Nevertheless, for even n, a perfect strong circle-matching is not always pos-
sible, as we show next. Consider a circle C with unit radius and a point set P
with n elements p1, . . . , pn, where p1 = a is the center of C and p2, . . . , pn are
points evenly spaced on the boundary of C. The point a must be matched with
some point b ∈ {p2, . . . , pn}; this forces the rest of points to be matched consec-
utively (see Figure 1). In particular, the following and preceding neighbors of b
on the boundary must be matched using “large” circles, with centers outside of
C, and these circles are forced to overlap for n large enough. In fact, elementary
trigonometric computations show that this happens exactly for n ≥ 74.

We do not describe here the details of the preceding construction. The under-
lying idea of the construction, however, can be extended to yield an arbitrarily
large set of points such that at most a certain fraction of the points can be
strongly matched. More precisely, the following result holds:

Matching Points with Circles and Squares 3

ba

C

Fig. 1. The elements of a set S are n−1 points evenly distributed on C and the center
of C. For n ≥ 74 this point set does not admit a strong perfect circle-matching.

Theorem 2. There is an n-element point set in the plane, where n can be ar-
bitrarily large, such that at most a fraction 72

73n of its points can be strongly
circle-matched.

The proof of this result is omitted from this extended abstract, since it is
very long and requires several technical lemmas.

2.2 Subsets That Can Be Strongly Matched

According to Theorem 2, not every point set P admits a strong circle-matching.
In this subsection, we prove that for any point set P one can always find a linear
number of disjoint disks each one covering exactly two points from P :

Theorem 3. For any set P of n points in general position, there is a strong
circle-matching using at least 2�(n − 1)/8� points of P .

The proof utilizes several lemmas. Let M be a matching of m = �n/2� pairs
of (distinct) points of P that minimizes the sum of the squared Euclidean dis-
tances between pairs of matched points. Let the m pairs in the matching M
be (p1, q1), (p2, q2), . . . , (pm, qm). We let |piqi| denote the Euclidean distance be-
tween pi and qi. We let Di = DD(piqi) be the diametrical disk, with segment piqi

as diameter, and let oi denote the center of this disk. Let C = {D1, D2, . . . , Dm}
be the set of diametrical disks determined by the pairs (pi, qi) of the matching M .

Lemma 1. If DD(ab), DD(cd) ∈ C then {c, d} � DD(ab).

Proof. Suppose that c, d ∈ DD(ab). Note that ∠dcb + ∠bdc < π, so we may
assume that ∠dcb < π/2. Thus |bd|2 < |cd|2 + |bc|2, and since c ∈ DD(ab), we
know that ∠bca ≥ π/2 and bc2 + ac2 ≤ ab2. Combining these inequalities we get
|bd|2 + |ac|2 < |ab|2 + |cd|2, contradicting the optimality of M . �

4 B.M. Ábrego et al.

Fig. 2. Proof of Lemma 2

Lemma 2. If DD(ab), DD(cd) ∈ C and p is in the intersection of the bounding
circles of DD(ab) and DD(cd), then triangles
apb and
dpc do not overlap.

Proof. Suppose that
apb and
dpc overlap. Assume
−→
pd is between

−→
pb and −→pa

as in Figure 2. Since ab and cd are diameters of their respective circles, we know
that ∠dpc = ∠apb = π/2, implying that ∠apd < π/2 and ∠bpc < π/2. Then
|ad|2 < |pa|2 + |pd|2, |bc|2 < |pb|2 + |pc|2, and

|ad|2 + |bc|2 < |pa|2 + |pb|2 + |pc|2 + |pd|2 = |ab|2 + |cd|2,

which contradicts the optimality of M . �

Lemma 3. No three disks in C have a common intersection.

Proof. Suppose I = DD(p1q1) ∩ DD(p2q2) ∩ DD(p3q3) = ∅. By Lemma 1,
the boundary of I must contain sections of at least two of the bounding circles
of DD(p1q1), DD(p2q2) and DD(p3q3). Thus, we may assume there is a point
p ∈ I such that p is in the intersection of the bounding circles of DD(p1q1) and
DD(p2q2). By Lemma 2 the triangles
pp1q1 and
pp2q2 do not overlap. Now
we consider three cases depending on the number of triangles that overlap with

pp3q3.

Fig. 3. Case 1: �pp3q3 does not overlap with �pp1q1 or with �pp2q2

Matching Points with Circles and Squares 5

Case 1.
pp3q3 does not overlap with
pp1q1 or with
pp2q2.

We may assume that the relative order of the triangles
ppiqi is as in Figure 3.
Then, since ∠q1pp1, ∠q2pp2, ∠q3pp3 ≥ π/2, we have that

∠p2pq1 + ∠p3pq2 + ∠p1pq3 ≤ π/2.

Thus, each of these angles is at most π/2, and at least two of them strictly acute
(or zero). Thus,

|q1p2|2 + |q2p3|2 + |q3p1|2 < |pq1|2 + |pp2|2 + |pq2|2 + |pp3|2 + |pq3|2 + |pp1|2.

Also, since none of the angles ∠q1pp1,∠q2pp2,∠q3pp3 is acute,

|pp1|2 + |pq1|2 + |pp2|2 + |pq2|2 + |pp3|2 + |pq3|2 ≤ |p1q1|2 + |p2q2|2 + |p3q3|2.

Thus, |q1p2|2 + |q2p3|2 + |q3p1|2 < |p1q1|2 + |p2q2|2 + |p3q3|2, which contradicts
the optimality of M .

Fig. 4. Case 2: �pp3q3 overlaps with �pp2q2, but not with �pp1q1

Case 2.
pp3q3 overlaps with
pp2q2, but not with
pp1q1.

Assume −→pp3 is between −→pp2 and −→pq2. We may also assume that ∠q3pp3 > π/2;
otherwise, p is in the bounding circle of DD(p3q3) and then, by Lemma 2,
pp3q3

and
pp2q2 do not overlap. Since ∠q3pp3 > π/2, |p3q3|2 > |pp3|2 + |pq3|2.
If ∠q3pq2 ≤ π/2 (Figure 4a) then, as in the proof of Lemma 2, |q2q3|2 ≤

|pq2|2 + |pq3|2, |p2p3|2 ≤ |pp2|2 + |pp3|2, and thus

|q2q3|2 + |p2p3|2 ≤ |pp2|2 + |pq2|2 + |pp3|2 + |pq3|2 < |p2q2|2 + |p3q3|2,

which contradicts the optimality of M .
If ∠q3pq2 > π/2 (Figure 4b), then ∠p1pq3 + ∠p2pq1 < π/2. Thus, ∠p1pq3,

∠p2pq1 < π/2, and thus p1q
2
3 < pp2

1 + pq2
3 and p2q

2
1 < pp2

2 + pq2
1 . Also, since −→pp3

is between −→pp2 and −→pq2, ∠q2pq3 < π/2 and q2p
2
3 < pq2

2 + pp2
3. Putting all of these

inequalities together, we get

|p1q3|2 + |p2q1|2 + |q2p3|2 < |pp1|2 + |pq1|2 + |pp2|2 + |pq2|2 + |pp3|2 + |pq3|2.

6 B.M. Ábrego et al.

Fig. 5. Case 3: �pp3q3 overlaps �pp2q2 and �pp1q1

Moreover, |pp1|2 + |pq1|2 = |p1q1|2, |pp2|2 + |pq2|2 = |p2q2|2, and |pp3|2 + |pq3|2 <
|p3q3|2. Thus,

|p1q3|2 + |p2q1|2 + |q2p3|2 < |p1q1|2 + |p2q2|2 + |p3q3|2,

which contradicts the optimality of M .

Case 3.
pp3q3 overlaps
pp2q2 and
pp1q1.

We may assume that −→pp3 (resp., −→pq3) is between −→pp1 and −→pq1 (resp., −→pp2 and −→pq2).
Refer to Figure 5. Again, by Lemma 2, we may assume that ∠q3pp3 > π/2 and
|p3q3|2 > |pp3|2 + |pq3|2.

If ∠p1pq2 ≤ π/2 (Figure 5a), then |p1q2|2 ≤ |pp1|2+|pq2|2. From the locations
of p3 and q3, we have that ∠q1pp3, ∠q3pp2 < π/2, so |p3q1|2 < |pq1|2 + |pp3|2
and |p2q3|2 < |pp2|2 + |pq3|2. Thus,

|p1q2|2 + |p3q1|2 + |p2q3|2 < |pp1|2 + |pq1|2 + |pp2|2 + |pq2|2 + |pp3|2 + |pq3|2.

As |ppi|2 + |pqi|2 = |piqi|2 for i = 1, 2 and |pp3|2 + |pq3|2 < |p3q3|2, we get

|p1q2|2 + |p3q1|2 + |p2q3|2 < |p1q1|2 + |p2q2|2 + |p3q3|2.

If ∠p1pq2 > π/2 (Figure 5b), then, similarly, we get

|p2q1|2 + |p1p3|2 + |q2q3|2 < |p1q1|2 + |p2q2|2 + |p3q3|2.

In both cases we get a contradiction to the optimality of M . �

Lemma 4. If D1, D2, D3, D4 ∈ C with D1 ∩D2 = ∅ and D3 ∩D4 = ∅ then the
segments o1o2 and o3o4 do not intersect.

Proof. Suppose o1o2 and o3o4 intersect at a point c, and let p ∈ D1 ∩D2 ∩ o1o2,
and q ∈ D3 ∩ D4 ∩ o3o4. Assume that p ∈ co2 and q ∈ co4. By the triangle
inequality, |o1q| ≤ |o1c| + |cq| and |o3p| ≤ |o3c| + |cp|; thus,

|o1q| + |o3p| ≤ |o1c| + |cp| + |o3c| + |cq| = |o1p| + |o3q|.

Matching Points with Circles and Squares 7

Thus, either |o1q| ≤ |o1p| or |o3p| ≤ |o3q|, which implies that either q ∈ D1 or
p ∈ D3. This is a contradiction to Lemma 3, since either q ∈ D1 ∩ D3 ∩ D4 or
p ∈ D1 ∩ D2 ∩ D3. �
Proof of Theorem 3. Let G be the graph with vertex set equal to the set of
centers of the disks in C and with two vertices connected by an edge if and only
it the corresponding disks intersect. By Lemma 4, G is a planar graph. Then,
by the Four Color Theorem, the maximum independent set of G has at least
�m/4� = ��n/2�/4� = �(n− 1)/8� vertices. Thus, the corresponding diametrical
disks are pairwise disjoint. Therefore, P has a circle-matching using at least
2�(n − 1)/8� points. It may happen that these diametrical disks have points of
P in their interior; however, it is always possible to find a circle inside one of
these diametrical disks containing only two points of P .

2.3 Convex Position

For n points on a line, with n even, it is obvious that a strong perfect matching
with disks is always possible, as we can simply take the diametrical circles defined
by consecutive pairs. As a consequence a strong perfect matching is also always
possible when we are given any set P of n points lying on a circle C: using an
inversion with center at any point in C\P the images of all points from P become
collinear and admit a matching, which, applying again the same inversion, gives
the desired matching (because inversions are involutive and map circles that do
not pass through the center of inversion to circles).

This may suggest that a similar result should hold for any set of points in
convex position, but this is not the case, as we show next using the same kind
of arguments.

Let Q be a point set consisting of the center a of a circle C, and 73 additional
points evenly distributed on C; as remarked earlier (see Figure 1), Q does not
admit a strong perfect circle-matching.

Let P be the point set obtained from Q by applying any inversion with
center at some point p ∈ C \Q; the point set P does not admit a strong perfect
circle-matching. Note that all of the points in P with the exception of the image
of a lie on a line. Applying an infinitesimal perturbation to the elements of P
in such a way that they remain in convex position but no three are collinear
produces a point set P ′ in convex position for which no strong perfect circle-
matching exists, since the inverse set Q′ is an infinitesimal perturbation of Q
and therefore does not admit a strong perfect circle-matching. Therefore we have
proved the following result:

Proposition 1. There are point sets in convex position in the plane for which
there is no strong perfect circle-matching.

3 Isothetic Squares

In this section we consider the following variation of our geometric matching
problem. Let P be a set of 2n points in general position in the plane. As in the

8 B.M. Ábrego et al.

previous section, we define a graph G(P) in which the points P are the vertices
of G(P) and two points are adjacent if and only if there is an isothetic square
containing them that does not contain another element of P .

3.1 Existence of Square-Matchings

We show here that P always admits a square-matching. We need a result that
is part of folklore, yet we prove here for the sake of completeness:

Lemma 5. G(P) is planar.

Proof. For any two points qs, qt ∈ P , let us denote by Rs,t the smallest isothetic
rectangle containing them. Suppose now that qi is adjacent to qj , and qk to ql,
and that the segments joining qi to qj and qk to ql intersect; it is straightforward
to see that Ri,j and Rk,l have to cross each other. Let us denote by a′ and a′′

the base and height of Ri,j , and by b′ and b′′ the base and height of Rk,l. Then,
if we assume without loss of generality that b′′ = max{a′, a′′, b′, b′′}, any square
containing qk and ql contains qi or qj , a contradiction. �

Let C be a square that contains all of the elements of P in its interior, and let
P

′
be the point set obtained by adding to P the vertices of C. Let G be the graph

obtained from G(P ′) by adding an extra point p∞ adjacent to the vertices of C.
We are going to see that G is 4-connected; first, we prove a technical lemma.

Lemma 6. Let S be a point set containing the origin O and a point p from the
first quadrant, such that all of the others points in S lie in the interior of the
rectangle R with corners at O and p. Then there is path in G(S) from O to p
such that every two consecutive vertices can be covered by an isothetic square
contained in R, empty of any other point from S.

Proof. The proof is by induction on |S|. If |S| = 2 the result is obvious. If |S| > 2
we grow homothetically from O a square with bottom left corner at O until a
first point q from S, different from O, is encountered. This square is contained
in R and gives an edge in G(S) between O and q; now we apply induction to
the points from S covered by the rectangle with q and p as opposite corners. �

Obviously, the preceding result can be rephrased for any of the four quadrants
to any point taken as origin. We are now ready to prove the following result:

Lemma 7. G is 4-connected.

Proof. We show that the graph G′ resulting from the removal of any three ver-
tices from G is connected.

Suppose first that none of the suppressed vertices is p∞, and let us show that
p∞ can be reached from any vertex of G′. If a vertex v ∈ G′ is a corner of C,
then it is adjacent to p∞. If v is not such a corner, consider the four quadrants
it defines. In at least one of them no vertex from G has been suppressed. Thus,
we can apply Lemma 6 to this quadrant and obtain a path in G′ from v to a
surviving corner of C; from there we arrive to p∞.

Matching Points with Circles and Squares 9

If we suppress from G two points from P and p∞, then G′ contains the 4-
cycle given by the corners of C. From any vertex v ∈ P in G′ we can reach
one of these corners (and therefore any of them), because in at least two of the
quadrants relative to v no vertex has been removed.

The cases in which p∞ and one or two corners of C are suppressed are handled
similarly. �

p

p

5

6

p

p

2

p
3

p4 p1

p
7

8

Fig. 6. Final step in showing the existence of square-matchings

Since it is clear that G is planar, it now follows using a classic result of
Tutte [7] that G is Hamiltonian. This almost proves our result, since the removal
of p∞ from G results in a graph that has a Hamiltonian path. Using this path,
we can now obtain a perfect matching in G(P ′). A remaining issue is to find
a matching in G(P), which requires that we identify the elements of P to be
matched to the corners of C.

We address this issue in a way similar to that used in [1]. Consider the five
shaded squares and eight points p1, . . . , p8 (represented by small circles) as shown
in Figure 6. Within each of the shaded squares, place a copy of P , and let P ′′

be the point set containing the points of the five copies of P plus p1, . . . , p8.
Consider the graph G(P ′′) and add to it a vertex p∞ adjacent to p1, p2, p3, p4.
The resulting graph G(P ′′) is planar and 4-connected, so by Tutte’s Theorem it
is Hamiltonian. The removal of p∞ gives a Hamiltonian path w in the resulting
graph, with extremes in the set {p1, p2, p3, p4}. At least one of the five copies

10 B.M. Ábrego et al.

q
4 q

3 q
2

q

q

q
q

q

8

76

5
1

p
1

p
2

p
3

p
4

q
4 q

3 q
2

q

q

q
q

q

8

76

5
1

p
1

p
2

p
3

p
4

Fig. 7. Twelve points that do not admit a perfect strong square-matching

of P does not contain any neighbor of p1 or p3 in the path, because these two
vertices have altogether at most four neighbors. Suppose, for example, that this
is the case for the copy of P inside the box between p5 and p6; since the path
has to arrive to the points inside the box and leave the set, and this can only be
done through p5 and p6, the points inside the box have to be completely visited
by the path w before leaving the box. Thus, we have obtained a Hamiltonian
path in G(P), which gives a perfect matching in G(P), and thus we have proved:

Theorem 4. P has a perfect square-matching.

Remark. Under standard non-degeneracy assumptions the graph G(P) is sim-
ply the Delaunay triangulation for the L∞ metric (or the L1 metric, after a
45-degree rotation). Therefore, our preceding considerations prove that these
triangulations admit a Hamiltonian path, a question that to best of our knowl-
edge has remained unsolved since it was posed in the conference version of [2]).

3.2 Subsets That Can Be Strongly Square-Matched

We show first a family of 12 points that allows no perfect strong square-matching.
Consider the point set with twelve points shown in Figure 7: there are four
extreme points, labelled p1, ..., p4 and eight more points that are very close to
the midpoints of an auxiliary dashed square as shown in the same figure; four
of them, q1, q3, q5, q7, are internal, while four of them, q2, q4, q6, q8, are external.
The points can all be drawn in general position, with no two on a common
vertical/horizontal line.

Notice that no pair can be matched inside {p1, ..., p4}; therefore, two pairs
have to appear in any matching by picking points from {q1, q2, ..., q8}. No two
external points can be matched, and matching a close pair such as (q1, q2) would
leave an extreme point (p1 in the example) without a partner for a matching.
Distributing the four internal points into two matched pairs produces always
overlapping rectangles.

Matching Points with Circles and Squares 11

Fig. 8. Extending the 12-point example for strong square-matchings

This leaves only two possibilities for two pairs taken from {q1, q2, ..., q8}:
either using three internal points and one external point, or using two internal
points and two external points. In the first case, the situation must be as in
Figure 7, left, where q1 is matched to q7 and q4 to q5; this forces (p3, q6) and
(p4, q8) to be matched pairs and causes overlap. In the second case, the situation
must be as in Figure 7, right, where q2 is matched to q3 and q6 to q7; this forces
(p1, q1) and (p4, q8) to be matched pairs and causes overlap. This concludes the
proof.

We now prove that the preceding result can be used to construct arbitrarily
large sets that do not admit perfect strong square-matchings:

Proposition 2. There are sets with 13m points such that any strong square-
matching of them contains at most 6m pairs of matched points.

Proof. On the line y = x consider the points with coordinates (i, i), i = 1, ..., 2m,
with m even. For j = 2i+1, i = 0, ...,m− 1, consider an ε-neighborhood around
the point (j, j) and insert a copy of the 12-point configuration P12 (scaled down
to fit within this ε-neighborhood). The remaining points (i, i), i even, remain as
singletons. Let P be the point set containing all of these 12m + m points, and
let M be a strong square-matching of P . See Figure 8

Observe that the 12-point set close to the point (1,1) cannot be matched
within themselves. Thus, M matches at most 10 of these points. This leaves
two points pending. One of these points can be matched with point (2, 2). The
remaining point cannot be square-matched with any point in P . Similarly, one
of the points in the ε-neighborhood of (2i + 1, 2i + 1) cannot be matched to any
element of P . This leaves at least m elements of P unmatched in M . Our result
follows. �

We determine next a lower bound on the number of points of a point set that
can always be strongly square-matched.

12 B.M. Ábrego et al.

Theorem 5. For any set P of n points in general position, there is a strong
square-matching using at least 2�n

5 � points of P .

In fact, we prove a slightly stronger result, from which the preceding theorem
is immediately derived:

Lemma 8. Let S be a square that contains a set P of n ≥ 2 elements. Then it
is always possible to find a strong square-matching of P with �n

5 � elements.

Proof. The claim is obviously true for n = 2. Suppose that it is true for sets P
of size n− 1 (n− 1 ≥ 2); we now prove it is true for sets of size n. Observe first
that if n = 5k + i, i = 2, 3, 4, 5 then �n

5 � = �n−1
5 �, and, by induction, we are

done. Suppose then that n = 5k + 1 for some k.
Partition S into four squares, S1, S2, S3, S4, of equal size. Assume that square

Si contains ri points. If each ri is greater than 2, or equal to zero, we are done,
since for any integers such that r1 + ... + r4 = n we have

⌈r1

5

⌉
+ ... +

⌈r4

5

⌉
≥
⌈n

5

⌉
.

Suppose then that some of the ri’s are one. A case analysis follows.

Case 1. Three elements of the set {r1, r2, r3, r4} are equal to one; say, r2 = r3 =
r4 = 1, and r1 = 5(k − 1) + 3.

Let S
′
1 be the smallest square, one of whose corners is p, containing all ele-

ments of P in S1 except for one point, say p1. Suppose, without loss of generality,
that p1 lies below the horizontal line through the bottom edge of S

′
1. Then S

′
1

contains 5(k − 1) + 2 points, and thus, by induction, we can find k disjoint
squares in that square containing exactly two elements of Pn. It is easy to see
that there is a square contained in S − S

′
1 that contains p1 and the element of

Pn in S3. This square contains a square that contains exactly two elements of
P . See Figure 9.

S4

S1 S2

S3 S4

S1 S2

S3

’

p
1

p pq q

rr ss

Fig. 9. Proof of Case 1 in Lemma 8

Matching Points with Circles and Squares 13

Case 2. Two elements of {r1, r2, r3, r4} are equal to one.
Suppose that ri and rj are not 1. Observe that ri + rj = 5k − 1 and that

� ri

5 � + � rj

5 � ≥ �n−1
5 �. If � ri

5 � + � rj

5 � > �n−1
5 � = k, we are done. Suppose then

that � ri

5 � + � rj

5 � = �n−1
5 � = k; this happens only if one of them, say ri = 5r

and the other element rj = 5s − 1 for some r and s greater than or equal to
zero.

Up to symmetry two subcases arise: (i). r1 = 5r and r3 = 5s − 1; and (ii).
r1 = 5r and r4 = 5s − 1.

In case (i) let S
′
1 be the smallest square contained in S1 that contains all

but three of the elements, say p1, p2 and p3, of P in S1, such that p is a ver-
tex of S

′
1. If two of these elements, say p1 and p2, are below the horizontal

line through the lower horizontal edge of S
′
1, then there is a square S

′
3 con-

tained in S − S
′
1 that contains all of the elements of P in S3 and also con-

tains p1 and p2; see Figure 10(a). Then, by induction, we can find in S
′
1 and

S
′
3 � 5r−3

5 � = r and � 5s+1
5 � = s + 1 disjoint squares, i.e. r + s + 1 = k + 1

disjoint squares contained in S each of which contains exactly two elements
of Pn.

S4

S1 S2

S3

(a)

p q

rs

p

S4

S1 S2

S3

'

p
1

(b)

q

rs

S4

S1 S2

S3
'

(c)

q

rs

p

Fig. 10. Proof of Case 2 in Lemma 8

If no two elements of p1, p2 and p3 lie below the horizontal line through the
lower horizontal edge of S

′
1, then there is a square contained in S1∪S2−S

′
1 that

contains two of these elements. Applying induction to the elements of P in S
′
1,

the elements of P in S3 and the square we just obtained prove our result. See
Figure 10(b).

If r = 0, and thus s > 0, choose S
′
3 such that it contains all but two points

of Pn in S3. If two points in S3 lie above line containing the top edge of S
′
3 or to

the right of the line L containing the rightmost vertical edge of S
′
3, an analysis

similar to the one above follows. Suppose then that there is exactly one point in
S3 to the right of L. Then S

′
3 contains 5s − 3 ≥ 2 points, and there is a square

contained in S containing the point of Pn in S4. See Figure 10(c). By induction
on the number of elements in S

′
3, and using the last square we obtained, our

result follows.

14 B.M. Ábrego et al.

Case (ii) can be solved similarly.

Case 3. The remaining case, when only one of {r1, r2, r3, r4} is one, can be
solved in a similar way to the previous cases. For example, the case when only
r4 = 1, (in which case r1, r2 and r3 are multiples of 5) r1 = 0, and r2 = 0 is
solved in almost the same way as case 2(i). We leave the details to the reader.

�

3.3 A Perfect Strong Square-Matching for the Convex Case

When several points may have the same x-coordinate or the same y-coordinate,
a perfect strong matching is not always possible., For example, in the point
configuration of Figure 11 p cannot be matched (using a square) to any of the
points on the horizontal line.

p

Fig. 11. Point p cannot be matched

Nevertheless, we can prove that for points in convex position having no re-
peated coordinates a perfect strong matching always exists:

Theorem 6. Any even-cardinality set P of points in the plane in convex posi-
tion, with no two points on a common vertical or horizontal line, admits a perfect
strong square-matching.

The proof of this result is omitted from this extended abstract, since it is
long and requires several technical lemmas.

4 Open Problems

We have proved that (weak) matchings with circles and isothetic squares are
always possible. It is natural to ask which other classes of convex objects enjoy
the same property and to try to characterize them. On the algorithmic side,
there are also decision and construction problems that are very interesting. These
issues are the main lines of our ongoing research on this topic.

Remarks and Acknowledgments

It has been pointed out to us that the question of whether every sufficiently large
even-cardinality set of points in the plane has a strong perfect circle-matching

Matching Points with Circles and Squares 15

was recently raised independently by the participants of a school mathematics
club in Budapest run by Luis Posa, and that, as a consequence, Theorem 2 was
found independently by Andras Lazar and János Pach.

The research in this paper was initiated at the International Workshop on
Combinatorial Geometry at the Departament de Matemàtica Aplicada II, Uni-
versitat Politècnica de Catalunya, Jun. 30–Jul. 4, 2003. The authors would like to
thank the other workshop participants, namely, Gabriela Araujo, Elsa Omaña-
Pulido, Eduardo Rivera-Campo and Pilar Valencia for helpful discussions.

E. Arkin and J. Mitchell acknowledge support from the National Science
Foundation (CCR-0098172, CCF-0431030). In addition, J. Mitchell acknowl-
edges support from the U.S.-Israel Binational Science Foundation (grant No.
2000160), NASA Ames Research (NAG2-1620), NSF grant ACI-0328930, and
Metron Aviation. Ferran Hurtado is partially supported by Projects MEC-
MCYT-FEDER BFM2003-00368 and Gen. Cat 2001SGR00224. Jorge Urrutia
is partially supported by CONACYT of Mexico grant 37540-A.

References

1. J. Czyzowicz, E. Rivera-Campo, J. Urrutia and J. Zaks, Guarding rectangular art
galleries, Discrete Mathematics, 50, 1994, 149-157.

2. M. Dillencourt, Toughness and Delaunay Triangulations, Discrete and Computa-
tional Geometry, 5(6), 1990, 575-601. Preliminary version in Proc. of the 3rd Annual
Symposium on Computational Geometry, Waterloo, 1987, 186-194.

3. G. Liotta, A. Lubiw, H. Meijer and S. H. Whitesides, The Rectangle of Influence
Drawability Problem, Discrete and Computational Geometry, 5(6), 1990, 575-601.

4. J. Pach, Editor, Towards a Theory of Geometric Graphs, Amer. Math. Soc., Con-
temp. Math. Series/342, 2004.

5. F. P. Preparata and M. I. Shamos, Computational Geometry. An Introduction,
Springer-Verlag, 1995.

6. M. Sharir, On k-Sets in Arrangements of Curves and Surfaces, Discrete and Com-
putational Geometry, 6, 1991, 593-613.

7. W. T. Tutte. A theorem on planar graphs, Trans. Amer. Math. Soc. 82, 1956, 99-116.

The Minimum Manhattan Network Problem:

A Fast Factor-3 Approximation�

Marc Benkert, Alexander Wolff, and Florian Widmann

Faculty of Computer Science, Karlsruhe University, P.O. Box 6980,
D-76128 Karlsruhe, Germany

i11www.ira.uka.de/algo/group

Abstract. Given a set of nodes in the plane and a constant t ≥ 1, a
Euclidean t-spanner is a network in which, for any pair of nodes, the
ratio of the network distance and the Euclidean distance of the two
nodes is at most t. These networks have applications in transportation
or communication network design and have been studied extensively.

In this paper we study 1-spanners under the Manhattan (or L1-) met-
ric. Such networks are called Manhattan networks. A Manhattan network
for a set of nodes can be seen as a set of axis-parallel line segments whose
union contains an x- and y-monotone path for each pair of nodes. It is
not known whether it is NP-hard to compute minimum Manhattan net-
works, i.e. Manhattan networks of minimum total length. In this paper
we present a factor-3 approximation algorithm for this problem. Given
a set of n nodes, our algorithm takes O(n log n) time and linear space.

1 Introduction

For many applications it is desirable to connect the nodes of a transportation
or communication network by short paths within the network. In the Euclidean
plane this can be achieved by connecting all pairs of nodes by straight line seg-
ments. While the complete graph minimizes node-to-node travel time, it max-
imizes the network-construction costs. An interesting alternative are Euclidean
t-spanners, i.e. networks in which the ratio of the network distance and the Eu-
clidean distance between any pair of nodes is bounded by a constant t ≥ 1.
Euclidean spanners have been studied extensively, and researchers have tried
to combine the spanner property with other desirable properties, such as small
node degree, small total edge length, and small diameter. Euclidean spanners
with one or more of these properties can be constructed in O(n log n) time [1],
where n is the number of nodes.

Under the Euclidean metric, in a 1-spanner (which is the complete graph)
the location of each edge is uniquely determined. This is not the case in the
Manhattan (or L1-) metric, where an edge {p, q} of a 1-spanner is a Manhattan
p–q path, i.e. an x- and y-monotone path between p and q. A 1-spanner under
the Manhattan metric for a set P ⊂ R2 is called a Manhattan network (MMN)

� This work was supported by grant WO 758/4-1 of the German Science Foundation.

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 16–28, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Minimum Manhattan Network Problem 17

and can be seen as a set of axis-parallel line segments whose union contains a
Manhattan p–q path for each pair {p, q} of points in P .

In this paper we investigate how the extra degree of freedom in routing edges
can be used to construct Manhattan networks of minimum total length, so-called
minimum Manhattan networks (MMN). The MMN problem may have applica-
tions in city planning or VLSI layout. Lam et al. [5] also describe an interesting
application in computational biology. Approximation algorithms for the MMN
problem have been considered before. Gudmundsson et al. [3] have proposed an
O(n log n)-time factor-8 and an O(n3)-time factor-4 approximation algorithm.
Later, Kato et al. [4] have given an O(n3)-time factor-2 approximation algo-
rithm. However, their correctness proof is incomplete. It is not known whether
the MMN problem is NP-hard.

In this paper we present an O(n log n)-time factor-3 approximation algo-
rithm. We use some of the ideas of [4], but our algorithm is simpler, faster and
uses only linear (instead of quadratic) storage. The main novelty of our ap-
proach is that we partition the plane into two regions and compare the network
computed by our algorithm to an MMN in each region separately.

This paper is structured as follows. In Section 2 we give some basic definitions
and observations. In Section 3 we show how the backbone of our network is
computed. We describe the algorithm in Section 4 and analyze it in Section 5.

2 Preliminaries

We use |M | to denote the total length of a set M of line segments. For all such
sets M we assume throughout the paper that each segment of M is inclusion-
maximal with respect to

⋃
M . It is not hard to see that for every Manhattan

network M there is a Manhattan network M ′ with |M ′| ≤ |M | that is contained
in the grid induced by the input points, i.e. M ′ is a subset of the union U of the
horizontal and vertical lines through the input points. Therefore we will only
consider networks contained in U . It is clear that any meaningful Manhattan
network of a point set P is contained in the bounding box BBox(P) of P . Finding
a Manhattan network for given P is trivial, e.g. the parts of U within BBox(P)
yield a Manhattan network. However, this network can be n times longer than
an MMN, as the point set {(1, 1), . . . , (n, n)} shows.

We will use the notion of a generating set [4]. A generating set Z is a subset of
P ×P with the property that a network containing Manhattan paths for all pairs
in Z is already a Manhattan network of P . The authors of [4] define a linear-size
generating set Z. We use the same generating set Z, but more intuitive names
for the subsets of Z. We define Z = Zhor ∪ Zver ∪ Zquad. These subsets are
defined below. Our algorithm will establish Manhattan paths for all point pairs
of Z—first for those in Zhor ∪ Zver and then for those in Zquad.

Definition 1 (Zver). Let P = {p1, . . . , pn} be the set of input points in lex-
icographical order, where pi = (xi, yi). Let x1 < · · · < xu be the sequence
of x-coordinates of the points in P in ascending order. For i = 1, . . . , u let
P i = {pa(i), pa(i)+1, . . . , pb(i)} be the set of all p ∈ P with x-coordinate xi. Then

18 M. Benkert, A. Wolff, and F. Widmann

Zver = {(pi, pi+1) | xi = xi+1 and 1 ≤ i < n}
∪ {(pa(i), pb(i+1)) | ya(i) > yb(i+1) and 1 ≤ i < u}
∪ {(pb(i), pa(i+1)) | yb(i) < ya(i+1) and 1 ≤ i < u}.

In Figure 1 all pairs of Zver are connected by an edge. Note that Zver consists
of at most n − 1 point pairs. If no points have the same x-coordinate, then
Zver = {(pi, pi+1) | 1 ≤ i < n}, i.e. Zver is the set of neighboring pairs in the
lexicographical order. The definition of Zhor is analogous to that of Zver with
the roles of x and y exchanged. Figure 2 shows that Zhor ∪ Zver is not always
a generating set: Since (p, h) ∈ Zhor and (p, v) ∈ Zver, no network that consists
only of Manhattan paths between pairs in Zhor∪Zver contains a Manhattan p–q
path. This shows the necessity of a third subset Zquad of Z.

Definition 2 (Zquad). For a point r ∈ R2 denote its Cartesian coordinates by
(xr, yr). Let Q(r, 1) = {s ∈ R2 | xr ≤ xs and yr ≤ ys} be the first quadrant of
the Cartesian coordinate system with origin r. Define Q(r, 2), Q(r, 3), Q(r, 4)
analogously and in the usual order. Then Zquad is the set of all ordered pairs
(p, q) ∈ P × P with q ∈ Q(p, t) \ {p} and t ∈ {1, 2, 3, 4} that fulfill

(a) q is the point that has minimum y-distance from p among all points in
Q(p, t) ∩ P with minimum x-distance from p, and

(b) there is no q′ ∈ Q(p, t) ∩ P with (p, q′) or (q′, p) in Zhor ∪ Zver.

Obviously Zquad consists of at most 4n point pairs.
For our analysis we need the following regions of the plane. Let Rhor =

{BBox(p, q) | {p, q} ∈ Zhor}, where BBox(p, q) is the smallest axis-parallel closed
rectangle that contains p and q. Note that BBox(p, q) is just the line segment
Seg[p, q] from p to q, if p and q lie on the same horizontal or vertical line.
In this case we call BBox(p, q) a degenerate rectangle. Define Rver and Rquad

analogously. Let Ahor, Aver, and Aquad be the subsets of the plane that are
defined by the union of the rectangles in Rhor, Rver, and Rquad, respectively.

Any Manhattan network has to bridge the vertical (horizontal) gap between
the points of each pair in Zver (Zhor). Of course this can be done such that at the
same time the gaps of adjacent pairs are (partly) bridged. The corresponding
minimization problem is defined as follows.

Definition 3 (Kato et al. [4]). A set of vertical line segments V is a cover of
(or covers) Rver, if any R ∈ Rver is covered, i.e. for any horizontal line � with
R ∩ � = ∅ there is a V ∈ V with V ∩ � ∩ R = ∅. We say that V is a minimum
vertical cover (MVC) if V has minimum length among all covers of Rver. The
definition of a minimum horizontal cover (MHC) is analogous.

For an example, see Figure 3. Since any MMN covers Rver and Rhor, we have:

Lemma 1 (Kato et al. [4]). The union of an MVC and an MHC has length
bounded by the length of an MMN.

The Minimum Manhattan Network Problem 19

To sketch our algorithm we need the following notation. Let N be a set
of line segments. We say that N satisfies a set of point pairs S if N contains a
Manhattan p–q path for each {p, q} ∈ S. We use

⋃
N to denote the corresponding

set of points, i.e. the union of the line segments in N . Let ∂M be the boundary
of a set M ⊆ R2.

Our algorithm proceeds in four phases. In phase 0, we compute Z. In phase I,
we construct a network N1 that contains the union of a special MVC and a special
MHC and satisfies Zver ∪ Zhor. In phase II, we identify a set R of open regions
in Aquad that do not intersect N1, but need to be bridged in order to satisfy
Zquad. The regions in R are staircase polygons. They give rise to two sets of
segments, N2 and N3, which are needed to satisfy Zquad. For each region A ∈ R
we put the segments that form ∂A \

⋃
N1 into N2, plus, if necessary, an extra

segment to connect ∂A to N1. Finally, in phase III, we bridge the regions in R
by computing a set N3 of segments in the interior of the regions. This yields a
Manhattan network N = N1 ∪ N2 ∪ N3.

The novelty of our analysis is that we partition the plane into two areas
and compare N to an MMN in each area separately. The area A3 consists of
the interiors of the regions A ∈ R and contains N3. The other area A12 is the
complement of A3 and contains N1 ∪ N2. For a fixed MMN Nopt we show that
|N ∩A12| ≤ 3|Nopt ∩A12| and |N ∩A3| ≤ 2|Nopt ∩A3|, and thus |N | ≤ 3|Nopt|.
The details will be given in Section 4.

We now define vertical and horizontal neighbors of points in P . Knowing
these neighbors helps to compute Z and R.

Definition 4 (Neighbors). For a point p ∈ P and t ∈ {1, 2, 3, 4} let p.xnbor[t]
= nil if Q(p, t) ∩ P = {p}. Otherwise p.xnbor[t] points to the point that has
minimum y-distance from p among all points in Q(p, t)∩P \ {p} with minimum
x-distance from p. The pointer p.ynbor[t] is defined by exchanging x and y in
the above definition.

All pointers of types xnbor and ynbor can be computed by a simple plane
sweep in O(n log n) time. Then we compute Zver by going through the points
in lexicographical order and examining the pointers of type xnbor. This works
analogously for Zhor. Note that by Definition 1 each point q ∈ P is incident to
at most three rectangles of Rver, at most two of which can be (non-) degenerate.
We refer to points p ∈ P with (p, q) ∈ Zver as vertical predecessors of q and to
points r ∈ P with (q, r) ∈ Zver as vertical successors of q. We call a predecessor
or successor of q degenerate if it has the same x-coordinate as q. Note that
each point can have at most one degenerate vertical predecessor and successor,
and at most one non-degenerate vertical predecessor and successor. Horizontal
predecessors and successors are defined analogously with respect to Zhor. For
each t ∈ {1, 2, 3, 4} the pair (q, q.xnbor[t]) lies in Zquad if and only if q.xnbor[t] =
nil and no vertical or horizontal predecessor or successor of q lies in Q(q, t). Thus:

Lemma 2. All pointers of type xnbor, ynbor and the generating set Z can be
computed in O(n log n) time.

20 M. Benkert, A. Wolff, and F. Widmann

3 Minimum Covers

In general the union of an MVC and an MHC does not satisfy Zver ∪ Zhor.
Additional segments must be added to achieve this. To ensure that the total
length of these segments can be bounded, we need covers with a special property.
We say that a cover is nice if each cover segment contains an input point.

Lemma 3. For any nice MVC V and any nice MHC H there is a set S of line
segments such that V ∪ H ∪ S satisfies Zver ∪ Zhor and |S| ≤ W + H, where W
and H denote width and height of BBox(P), respectively. We can compute the
set S in linear time if for each R ∈ Rver (Rhor) we have constant-time access to
the segments in V (H) that intersect R.

Proof. We show that there is a set SV of horizontal segments with |SV | ≤ W
such that V ∪ SV satisfies Zver. Analogously it can be shown that there is a set
SH of vertical segments with |SH| ≤ H such that H ∪ SH satisfies Zhor. This
proves the lemma.

Let (p, q) ∈ Zver. If R = BBox(p, q) is degenerate, then by the definition of a
cover, there is a line segment s ∈ V with R ⊆ s, and thus V satisfies (p, q).

Otherwise R defines a non-empty vertical open strip σ(p, q) bounded by p
and q. Note that by the definition of Zver, R is the only rectangle in Rver that
intersects σ(p, q). This yields that the widths of σ(p, q) over all (p, q) ∈ Zver sum
up to at most W . Thus if we can show that there is a horizontal line segment h
such that the length of h equals the width of σ(p, q) and V ∪ {h} satisfies (p, q),
then we are done.

Now observe that no line segment in V intersects σ(p, q) since V is nice and
σ(p, q) ∩ P = ∅. Hence the segments of V that intersect R in fact intersect only
the vertical edges of R. We assume w.l.o.g. that xp < xq and yp < yq (otherwise
rename and/or mirror P at the x-axis). This means that due to the definition
of Zver, there is no input point vertically above p. Thus if there is a segment sp

in V that intersects the left edge of R, then sp must contain p. Analoguously,
a segment sq in V that intersects the right edge of R must contain q. Since V
covers R, sp or sq must exist. Let � be the horizontal through the topmost point
of sp or the bottommost point of sq. Then h = � ∩ R does the job, again due to
the fact that V covers R. Clearly h can be determined in constant time. ��

In order to see that every point set has in fact a nice MVC, we need the
following definitions. We restrict ourselves to the vertical case.

For a horizontal line � consider the graph G�(V�, E�), where V� is the inter-
section of � with the vertical edges of rectangles in Rver, and there is an edge in
E� if two intersection points belong to the same rectangle. We say that a point
v in V� is odd if v is contained in a degenerate rectangle or if the number of
points to the left of v that belong to the same connected component of G� is
odd, otherwise we say that v is even. For a vertical line g let an odd segment
be an inclusion-maximal connected set of odd points on g. Define even segments
accordingly. For example, the segment s (drawn bold in Figure 4) is an even seg-
ment, while f \s is odd. We say that parity changes in points where two segments

The Minimum Manhattan Network Problem 21

of different parity touch. We refer to these points as points of changing parity.
The MVC with the desired property will simply be the set of all odd segments.
The next lemma characterizes odd segments. Strictly speaking we have to state
the parity of segment endpoints, but since a closed segment has the same length
as the corresponding open segment, we consider odd segments closed.

Lemma 4. Let g : x = xg be a vertical line through some p = (xp, yp) ∈ P .

(i) Let e be a vertical edge of a rectangle R ∈ Rver. Then either all points on
e are even or the only inclusion-maximal connected set of odd points on e
contains an input point.

(ii) Let R1, . . . , Rd and R′
1, . . . , R

′
d′ be the degenerate and non-degenerate rect-

angles in Rver that g intersects, respectively. Then d = |g ∩ P | − 1 and
d′ ≤ 2. If d = 0 then d′ > 0 and each R′

i has a corner in p. Else, if d > 0,
there are p1, p2 ∈ P such that g ∩ (R1 ∪ · · · ∪ Rd) = Seg[p1, p2]. Then each
R′

i has a corner in either p1 or p2.
(iii) There are bg < tg ∈ R such that g ∩ Aver = {xg} × [bg, tg].
(iv) The line g contains at most two points of changing parity and at most one

odd segment. For each point c of changing parity there is an input point
with the same y-coordinate.

Proof. For (i) we assume without loss of generality that e is the right vertical
edge of R = BBox(p, q) and that q is the topmost point of e. If R is degenerate
it is clear that all points on e (including p and q) are odd, and we are done.
Thus we can assume that xp < xq. Let p0 = q, p1 = p, p2 . . . , pk be the input
points in order of decreasing x-coordinate that span the rectangles in Rver that
are relevant for the parity of e. Let pi = (xi, yi). For 2 ≤ i ≤ k define recursively
yi = min{yi, yi−2} if i is even, and yi = max{yi, yi−2} if i is odd. Let pi = (xi, yi),
and let L be the polygonal chain through p0, p1, p2, p3, . . . , pk, see Figure 4. Note
that the parity of a point v on e is determined by the number of segments of L
that the horizontal hv through v intersects. If hv is below pk, then it intersects
a descending segment for each ascending segment of L, hence v is even. If on
the other hand hv is above pk, then it intersects an ascending segment for each
descending segment—plus p1p0, hence v is odd. In other words, if yk = y0, all
points of e are even, if yk = y1, all points of e are odd, and otherwise parity
changes only in (x0, yk) and q is odd. This settles (i).

(ii) follows directly from the definition of Zver, and (iii) follows from (ii).
For (iv) we first assume d = 0. Then (ii) yields d′ ∈ {1, 2} and g ∩ P = {p}.

By (i) we know that the only inclusion-maximal connected set of odd points on
each vertical rectangle edge on g contains an input point, i.e. p. Thus there are
at most two points of changing parity and at most one odd segment on g. Also
according to the above proof of (ii), parity can change only in points of type
(x0, yk), and yk is the y-coordinate of some input point in the set {p0, . . . , pk}.

Now if d > 0 note that all degenerate rectangles consist only of odd points.
By (ii) we have that g ∩ (R1 ∪ · · · ∪ Rd) = Seg[p1, p2] and that each of the at
most two non-degenerate rectangles has a corner in either p1 or p2. Thus again
the statement holds. ��

22 M. Benkert, A. Wolff, and F. Widmann

p

q

Q(p, 1)

v

h

⎫⎪⎬
⎪⎭e

⎫⎬
⎭s

f

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩ L

pk

pk

p0

p1

p2

p2

p3

p4

Fig. 1. Point
pairs in Zver

Fig. 2. The pair
(p, q) is in Zquad

Fig. 3. The
odd MVC

Fig. 4. Proof
of Lemma 4

Lemma 5. The set V of all odd segments is a nice MVC, the odd MVC.

Proof. Clearly V covers Rver. Let � be a horizontal line that intersects Aver.
Consider a connected component C of G� and let k be the number of vertices
in C. If k is even then any cover must contain at least k/2 vertices of C, and V
contains exactly k/2. On the other hand, if k > 1 is odd then any cover must
contain at least (k − 1)/2 vertices of C, and V contains exactly (k − 1)/2. If
k = 1 any cover must contain the vertex, and so does V since the vertex belongs
to a degenerate rectangle. Thus V is an MVC. Lemma 4 (i) shows that V is
nice. ��

Lemma 6. The odd MVC can be computed in O(n log n) time using linear space.

To compute the odd MVC we sweep the plane from bottom to top. For
each point c of changing parity there is an input point p with yc = yp. Thus,
the event-point queue can be implemented as a sorted list of the y-coordinates
of the input points. The sweep-line status is a balanced binary tree in which
each node corresponds to a connected components of G�, where � is the current
position of the horizontal sweep line. For details we refer to the full version of this
paper [2].

4 An Approximation Algorithm

Our algorithm ApproxMMN proceeds in four phases, see Figure 5.

Phase 0. In phase 0 we compute all pointers of types xnbor and ynbor, and
the set Z. From now on we will organize our data structures such that we have
constant-time access to all relevant information such as xnbor, ynbor, vertical
and horizontal predecessors and successors from each point p ∈ P .

Phase I. First we compute the nice odd MVC and the nice odd MHC, denoted
by Cver and Chor, respectively. Then we compute the set S of additional segments
according to Lemma 3. We compute Cver, Chor and S such that from each point
p ∈ P we have constant-time access to the at most two cover segments (i.e.
segments in Cver∪Chor) that contain p and to the at most four additional segments
in rectangles incident to p.

The Minimum Manhattan Network Problem 23

Lemmas 1, 3, and 6 show that N1 = Cver ∪ Chor ∪ S can be computed in
O(n log n) time and that |N1| ≤ |Nopt| + H + W holds. Recall that Nopt is a
fixed MMN.

Phase II. In general N1 does not satisfy Zquad; further segments are needed.
In order to be able to bound the length of these new segments, we partition the
plane into two areas A12 and A3 as indicated in Section 2. We wanted to define
A3 such that |Nopt ∩ A3| were large enough for us to bound the length of the
new segments. However, we were not able to define A3 such that we could at
the same time (a) satisfy Zquad by adding new segments exclusively in A3 and
(b) bound their length. Therefore we put the new segments into two disjoint
sets, N2 and N3, such that N1 ∪ N2 ⊆ A12 and N3 ⊆ A3. This enabled us to
bound |N1 ∪ N2| by 3|Nopt ∩A12| and |N3| by 2|Nopt ∩ A3|.

We now prepare our definition of A3. Recall that Q(q, 1), . . . , Q(q, 4) are the
four quadrants of the Cartesian coordinate system with origin q. Let P (q, t) =
{p ∈ P ∩ Q(q, t) | (p, q) ∈ Zquad} for t = 1, 2, 3, 4. For example, in Figure 7,
P (q, 1) = {p1, . . . , p5}. Due to the definition of Zquad we have Q(p, t)∩P (q, t) =
{p} for each p ∈ P (q, t). Thus the area Aquad(q, t) =

⋃
p∈P (q,t) BBox(p, q) is a

staircase polygon. The points in P (q, t) are the “stairs” of the polygon and q
is the corner opposite the stairs. In Figure 7, Aquad(q, 1) is the union of the
shaded areas. In order to arrive at a definition of the area A3, we will start from
polygons of type Aquad(q, t) and then subtract areas that can contain segments
of N1 or are not needed to satisfy Zquad.

Let Δ(q, t) = int
(
Aquad(q, t) \ (Ahor ∪ Aver)

)
, where int(M) denotes the

interior of a set M ⊆ R2. In Figure 7, Δ(q, 1) is the union of the three areas
with dotted boundary. Let δ(q, t) be the union of those connected components
A of Δ(q, t), such that ∂A ∩ P (q, t) = ∅. In Figure 7, δ(q, 1) is the union of the
two dark shaded areas A and A.

Due to the way we derived δ(q, t) from Aquad(q, t), it is clear that each con-
nected component A of δ(q, t) is a staircase polygon, too. The stairs of A corre-
spond to the input points on ∂A, i.e. P (q, t) ∩ ∂A. Let qA be the point on ∂A
that is closest to q. This is the corner of A opposite the stairs. The next lemma,
which is proved in [2], is crucial for estimating the length of our network within
the δ(q, t) regions.

Lemma 7. Areas of type δ(q, t) are pairwise disjoint.

By Lemma 7 we are sure that we can treat each connected component A
of δ(q, t) independently. Finally we define A3 =

⋃
t∈{1,2,3,4}

⋃
q∈P δ(q, t) and

A12 = R2 \ A3. This definition ensures that N1 ⊂ A12 as desired. The set N2

will be constructed as follows: for each connected component A of A3, we put
∂A \

⋃
N1 into N2 and test whether N1 contains a Manhattan path from qA to

q. If not, we add a further segment to N2. This segment lies in Ahor and will be
defined below. Since Ahor as well as ∂A are contained in A12, we have N2 ⊂ A12.
The set N3 will be defined in phase III and will be arranged such that N3 ⊂ A3.

We now describe how to compute P (q, t) and how to find the connected
components of δ(q, t). We compute all sets P (q, t) by going through the input

24 M. Benkert, A. Wolff, and F. Widmann

points and checking their Zquad-partners. This takes linear time since |Zquad| =
O(n). We sort the points in each set P (q, t) according to their x-distance from
q. This takes O(n log n) total time. The remaining difficulty is to decide which
points in P (q, t) are incident to the same connected component of δ(q, t). In
Figure 7, {p1, p2} ⊂ ∂A and {p3, p4, p5} ⊂ ∂A. For our description how to figure
this out we assume t = 1 and P (q, 1) = (p1, . . . , pm). Note that each connected
component of δ(q, 1) corresponds to a sequence of consecutive points in P (q, 1).
By definition, for each connected component A of δ(q, 1) and all pi, pj ∈ A we
have pi.ynbor[3] = pj .ynbor[3].

We detect these sequences by going through p1, . . . , pm. Let pi be the current
point and let A be the current connected component. If and only if pi.ynbor[3] =
pi+1.ynbor[3] there is a rectangle RA ∈ Rhor that separates A from the next
connected component of δ(q, 1). The rectangle RA is defined by the point vA =
pi.ynbor[3] and its horizontal successor wA, which in this case is unique, see
Figure 7. It remains to specify the coordinates of the corner point qA of A. Let
p0 be the (unique) vertical successor of q. Then xqA = xp0 and yqA = ywA .

At last, we want to make sure that N1∪N2 contains a Manhattan q–qA path.
The reason for this is that in phase III we will only compute Manhattan paths
from each pi ∈ ∂A to qA. Concatenating these paths with the q–qA path yields
Manhattan pi–q paths since qA ∈ BBox(q, pi). Note that segments in N3 lie in
A3 and thus cannot help to establish a q–qA path within BBox(q, qA) ⊂ A12.

The set N1 contains a Manhattan q–p0 path Pver and a Manhattan vA–wA

path Phor, since (q, p0) ∈ Zver and (vA, wA) ∈ Zhor. If qA ∈ Pver, then clearly
N1 contains a Manhattan q–qA path. However, N1 also contains a Manhattan
q–qA path if qA ∈ Phor. This is due to the fact that Pver and Phor intersect. If
qA ∈ Pver ∪Phor, then Phor contains the point cA = (xqA , yvA), which lies on the
vertical through qA on the opposite edge of RA. Thus, to ensure a Manhattan
q–qA path in N1 ∪ N2, it is enough to add the segment sA = Seg[qA, cA] to N2.
We refer to such segments as connecting segments.

The algorithm ApproxMMN does not compute Pver and Phor explicitly, but
simply tests whether qA ∈

⋃
N1. This is equivalent to qA ∈ Pver ∪ Phor since

our covers are minimum and the bounding boxes of Pver and Phor are the only
rectangles in Rver ∪ Rhor that contain sA. Due to the same reason and to the
fact that cover edges are always contained in (the union of) edges of rectangles
in Rver ∪ Rhor, we have that sA ∩

⋃
N1 = {cA}. This shows that connecting

segments intersect N1 at most in endpoints. The same holds for segments in N2

that lie on ∂A3. We summarize:

Lemma 8. In O(n log n) time we can compute the set N2, which has the follow-
ing properties: (i) N2 ⊂ A12, (ii) a segment in N1 and a segment in N2 intersect
at most in their endpoints, and (iii) for each region δ(q, t) and each connected
component A of δ(q, t), N1 ∪ N2 contains ∂A and a Manhattan q–qA path.

Proof. The properties of N2 follow from the description above. The runtime is
as follows. Let A be a connected component of A3 and mA = |P ∩∂A|. Note that∑

mA = O(n) since each point is adjacent to at most four connected components

The Minimum Manhattan Network Problem 25

ApproxMMN(P)

Phase 0: Neighbors and generat. set.
for each p ∈ P and t ∈ {1, 2, 3, 4} do

compute p.xnbor[t] and p.ynbor[t]
compute Z = Zver ∪ Zhor ∪ Zquad.

Phase I: Compute N1.
compute odd MVC Cver and MHC Chor

compute set S of additional segments
N1 ← Cver ∪ Chor ∪ S , N2 ← ∅, N3 ← ∅
Phase II: Compute N2.
compute A3

for each connected comp. A of A3 do
N2 ← N2 ∪ (∂A \⋃N1)
if qA �∈ ⋃

N1 then
N2 ← N2 ∪ {sA}

Phase III: Compute N3.
for each connected comp. A of A3 do

N3 ← N3 ∪ Bridge(A)

return N = N1 ∪ N2 ∪ N3

Fig. 5.

Bridge
(
A = (qA, p1, . . . , pm)

)

for i = 1 to m − 1 do
compute αi and βi

return SubBridge
(
1, m, 0, 0

)

SubBridge
(
k, l, xoff , yoff

)

Acurr = (qA + (xoff , yoff), pk, . . . , pl)
if l − k < 2 return ∅
Λ =

{
j ∈ {k, . . . , l − 1} :
αj − xoff ≤ βj − yoff

}
i = max Λ ∪ {k}
if i < l − 1 and αi − xoff ≤ βi+1 − yoff

then i = i + 1
B = ∅
if i > 1 then B = B∪{ai−1 ∩Acurr}
if i < l− 1 then B = B ∪{bi+1 ∩Acurr}
xnew = x(pi+1) − x(qA)
ynew = y(pi) − y(qA)
return B ∪

∪ SubBridge(l, i − 1, xoff , ynew)
∪ SubBridge(i + 2, l, xnew, yoff)

Fig. 6.

of A3, according to Lemma 7. After sorting P (q, t) we can compute in O(m) time
for each A the segment sA and the set ∂A \

⋃
N1. This is due to the fact that

we have constant-time access to each of the O(m) rectangles in Rhor ∪Rver that
intersect ∂A and to the O(m) segments of N1 that lie in these rectangles. ��

Phase III. Now we finally satisfy the pairs in Zquad. Due to Lemma 8 it is
enough to compute, for each connected component A of A3, a set of segments
B(A) such that the union of B(A) and ∂A contains Manhattan paths from any
input point on ∂A to qA. We say that such a set B(A) bridges A. The set
N3 will be the union over all sets of type B(A). The algorithm Bridge that
we use to compute B(A) is similar to the “thickest-first” greedy algorithm for
rectangulating staircase polygons, see [3]. However, we cannot use that algorithm
since the segments that it computes do not lie entirely in A3.

For our description of algorithm Bridge, and also in the pseudocode in Fig-
ure 6, we assume that A lies in a region of type δ(q, 1). Let again (p1, . . . , pm)
denote the sorted sequence of points on ∂A. Note that ∂A already contains Man-
hattan paths that connect p1 and pm to qA. Thus we are done if m ≤ 2. Oth-
erwise let p′j = (xpj , ypj+1), aj = Seg[(xqA , yp′

j
), p′j] and bj = Seg[(xp′

j
, yqA), p′j]

for j ∈ {1, . . . , m − 1}, see Figure 8. We denote |aj | by αj and |bj | by βj . From
now on we identify staircase polygon A with the tupel (qA, p1, . . . , pm). Let B be
the set of segments that algorithm Bridge computes. Initially B = ∅. The algo-
rithm chooses an i ∈ {1, . . . , m−1} and adds—if they exist—ai−1 and bi+1 to B.

26 M. Benkert, A. Wolff, and F. Widmann

p1

p3

p2

p4 p5

p0

A
qA

qA

cA

cA

A

RA

RA

vA = q
wA

vA

wA

qA

p1

pi

pi+1
ai−1

bi+1

xoff

yoff Aoff

Aright

pm

Atop

p′i

Fig. 7. Notation: Aquad(q, 1) shaded, Δ(q, 1) with
dotted boundary, and δ(q, 1) = A∪A′ dark shaded

Fig. 8. Notation for
algorithm Bridge

This satisfies
{
(pi, q), (pi+1, q)

}
. In order to satisfy

{
(p2, q), . . . , (pi−1, q)

}
and{

(pi+2, q), . . . , (pm−1, q)
}
, we solve the problem recursively for the two staircase

polygons
(
(xqA , ypi), p1, . . . , pi−1

)
and

(
(xpi+1 , yqA), pi+2, . . . , pm

)
.

Our choice of i is as follows. Note that α1 < · · · < αm−1 and β1 > · · · > βm−1.
Let Λ = {j ∈ {1, . . . , m − 1} | αj ≤ βj}. If Λ = ∅, we have α1 > β1, i.e. A is
flat and broad. In this case we choose i = 1, which means that only b2 is put
into B. Otherwise let i′ = maxΛ. Now if i′ < m − 1 and αi′ ≤ βi′+1, we choose
i = i′ + 1. In all other cases let i = i′. The idea behind this choice of i is
that it yields a way to balance αi−1 and βi+1, which in turn helps to compare
αi−1 + βi+1 to min{αi, βi, αi−1 + βi+1}, i.e. the length of the segments needed
by any Manhattan network to connect pi and pi+1 to q.

To avoid expensive updates of the α- and β-values of the staircase polygons
in the recursion, we introduce offset values xoff and yoff that denote the x-
respectively y-distance from the corner of the current staircase polygon to the
corner qA of A. In order to find the index i in a recursion, we compare αj − xoff

to βj − yoff instead of αj to βj as in the definition of Λ above.
Running time and performance of algorithm Bridge are as follows:

Theorem 1. Given a connected component A of A3 with |P ∩ ∂A| = m, al-
gorithm Bridge computes in O(m log m) time a set B of line segments with
|B| ≤ 2|Nopt ∩ A| and

⋃
B ⊂ A that bridges A.

Our proof of Theorem 1 is similar to the analysis of the greedy algorithm for
rectangulation, see Theorem 10 in [3]. The details can again be found in [2].

We conclude this section by analyzing the running time of ApproxMMN.

Theorem 2. ApproxMMN runs in O(n log n) time and uses O(n) space.

Proof. Each of the four phases of our algorithm takes O(n log n) time: for phase 0
refer to Lemma 2, for phase I to Lemmas 3 and 6, for phase II to Lemma 8 and
for phase III to Theorem 1. ApproxMMN outputs O(n) line segments. ��

The Minimum Manhattan Network Problem 27

5 The Approximation Factor

As desired we can now bound the length of N in A12 and A3 separately. Theo-
rem 1 and Lemma 7 directly imply that |N ∩ A3| = |N3| ≤ 2|Nopt ∩ A3|. Note
that by |Nopt ∩ A3| we actually mean |{s ∩ A3 : s ∈ Nopt}|. It remains to show
that |N ∩ A12| = |N1 ∪ N2| is bounded by 3|Nopt ∩A12|.

Recall that by Lemmas 1 and 3, |N1| ≤ |Nopt|+H+W . Since the segments of
Nopt that were used to derive the estimation of Lemma 1 lie in Aver∪Ahor ⊂ A12,
even the stronger bound |N1| ≤ |Nopt ∩ A12| + H + W holds. It remains to
analyze the length of N2 segments. Let Nver

2 (Nhor
2) denote the set of all vertical

(horizontal) segments in N2. We call segments of N2 that lie on ∂A3 boundary

q

wA

p0

qA

sA

A

q

wA

p0

qA

sA

Fig. 9. Left: In the network N1 neither
the wA–q nor the p0–q path (thick) con-
tain qA. Thus sA ∈ N . Right: MMN of
the same point set.

segments. Due to Lemma 8, segments in
Nver

2 and segments in Cver intersect at
most in segment endpoints. Thus, a hori-
zontal line � with �∩P = ∅ does not con-
tain any point that lies at the same time in⋃
Cver and in

⋃
Nver

2 . In the full version [2]
we characterize the sequences that are ob-
tained by the intersection of such a line �
with cover segments, boundary segments,
and connecting segments. A counting ar-
gument then yields #Nver

2 ≤ 2#Cver − 1
(and analogously #Nhor

2 ≤ 2#Chor − 1),
where #Nver

2 and #Cver denote the num-
ber of segments in Nver

2 and Cver intersected by �, respectively. By integrating
this inequality over all positions of �, we obtain the following lemma.

Lemma 9. |Nver
2 | ≤ 2|Cver| − H and |Nhor

2 | ≤ 2|Chor| − W .

This finally settles the approximation factor of ApproxMMN.

Theorem 3. |N | ≤ 3|Nopt|.

Proof. By Lemma 9 and |Cver∪Chor| ≤ |Nopt∩A12| we have |N2| ≤ 2|Nopt∩A12|−
H−W . Together with |N1| ≤ |Nopt|+H+W this yields |N1∪N2|/|Nopt∩A12| ≤
3. Theorem 1 and Lemma 7 show that |N3|/|Nopt∩A3| ≤ 2. Then, A12∩A3 = ∅
yields |N |/|Nopt| ≤ max{|N1 ∪ N2|/|Nopt ∩ A12|, |N3|/|Nopt ∩ A3|} ≤ 3. ��

Figure 9 shows that there are point sets for which |N |/|Nopt| can be made ar-
bitrarily close to 3. However, an experimental evaluation of ApproxMMN shows
that it behaves much better on point sets under various random distributions.
The average performance was around 1.2. Details can be found in [2]. Our algo-
rithm can be tested under the URL http://i11www.ira.uka.de/manhattan/.
We close with the obvious question: is it NP-hard to compute an MMN?

28 M. Benkert, A. Wolff, and F. Widmann

References

1. S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean spanners: Short,
thin, and lanky. In Proc. 27th Annu. ACM Sympos. Theory Comput. (STOC’95),
pages 489–498, Las Vegas, 29 May–1 June 1995.

2. M. Benkert, F. Widmann, and A. Wolff. The minimum Manhattan network problem:
A fast factor-3 approximation. Technical Report 2004-16, Fakultät für Informatik,
Universität Karlsruhe, 2004. Available at http://www.ubka.uni-karlsruhe.de/

cgi-bin/psview?document=/ira/2004/16.
3. J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Approximating a minimum

Manhattan network. Nordic J. Comput., 8:219–232, 2001.
4. R. Kato, K. Imai, and T. Asano. An improved algorithm for the minimum Manhat-

tan network problem. In P. Bose and P. Morin, editors, Proc. 13th Int. Symp. Alg.
and Comp. (ISAAC’02), vol. 2518 of LNCS, pp. 344–356, 2002. Springer-Verlag.

5. F. Lam, M. Alexandersson, and L. Pachter. Picking alignments from (Steiner) trees.
Journal of Computational Biology, 10:509–520, 2003.

Algorithms for the d-Dimensional Rigidity
Matroid of Sparse Graphs

Sergey Bereg

Department of Computer Science, University of Texas at Dallas,
Box 830688, Richardson, TX 75083, USA

besp@utdallas.edu

Abstract. Let Rd(G) be the d-dimensional rigidity matroid for a graph
G = (V, E). Combinatorial characterization of generically rigid graphs is
known only for the plane d = 2 [11]. Recently Jackson and Jordán [5]
derived a min-max formula which determines the rank function in Rd(G)
when G is sparse, i.e. has maximum degree at most d + 2 and minimum
degree at most d + 1.

We present three efficient algorithms for sparse graphs G that

(i) detect if E is independent in the rigidity matroid for G, and
(ii) construct G using vertex insertions preserving if G is isostatic, and
(iii) compute the rank of Rd(G).

The algorithms have linear running time assuming that the dimension d
is fixed.

1 Introduction

Techniques from Rigidity Theory [4,11] have been recently applied to problems
such as collision free robot arm motion planning [1,8], molecular conformations
[6,10] and sensor and network topologies [2]. We introduce some notation first,
see [4,5,9,11] for more details.

A framework (G, p) in d-space is a graph G = (V,E), n = |V |,m = |E| and
an embedding p : V → Rd. Let p(V) = {p1, . . . , pn}. The rigidity matrix of the
framework is the m × dn matrix for the system of m equations

(pi − pj) · (p′i − p′j) = 0, (pi, pj) = p(e), e ∈ E

in unknown velocities p′i. The rigidity matrix of (G, p) defines the rigidity matroid
of (G, p) on the ground set E by independence of rows of the rigidity matrix.
A framework (G, p) is generic if the coordinates of the points p(v), v ∈ V are
algebraically independent over the rationals. Any two generic frameworks (G, p)
and (G, p′) have the same rigidity matroid called d-dimensional rigidity matroid
Rd(G) = (E, rd) of G. The rank of Rd(G) is denoted by rd(G).

Lemma 1. [9, Lemma 11.1.3] For a graph G with n vertices, the rank rd(G) ≤
S(n, d) where

S(n, d) =
{

nd −
(
d+1
2

)
if n ≥ d + 1(

n
2

)
if n ≤ d + 1.

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 29–36, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

30 S. Bereg

(a) (b) (c)

Fig. 1. (a) Rigid graph in the plane, (b) not rigid graph in the plane, and (c) rigid
graph in R3

We say that a graph G = (V,E) is rigid if rd(G) = S(n, d), see Fig. 1.
We say that G is M -independent, M -dependent, or an M -circuit in Rd if E is
independent, dependent, or a circuit, respectively, in Rd(G). A rigid graph is
minimally rigid in Rd (or generically d-isostatic) if it is M -independent. The
famous Laman Theorem [7] asserts that a graph G with n vertices and m edges
is minimally rigid in R2 if and only if m = 2n − 3 and every subgraph induced
by k vertices contains at most 2k − 3 edges for any k.

A combinatorial characterization of rigid graphs is not known for dimensions
d ≥ 3. Recently Jackson and Jordán [5] generalized Laman Theorem to sparse
graphs in higher dimensions. Let G = (V,E) be a graph and d ≥ 3 be a fixed
integer. For X ⊆ V let G[X] = (V (X), E(X)) be the subgraph of G induced by
X. Let i(X) = |E(X)|. We say that a graph G is Laman if i(X) ≤ S(|X|, d) for
all X ⊆ V . We denote the maximum and minimum degrees of G by Δ(G) and
δ(G), respectively.

Theorem 1. [5, Theorem 3.5] Let G be a connected graph with Δ(G) ≤ d + 2
and δ(G) ≤ d + 1. Then G is M -independent if and only if G is Laman.

Jackson and Jordán [5] derived a min-max formula for the rank rd(G) of a
sparse graph. A cover of G is a collection X of subsets of V , each of size at
lest two, such that ∪X∈XE(X) = E. For X ⊆ V let f(X) = S(|X|, d) and
val(X) =

∑
X∈X f(X). A cover X is 1-thin if |X ∩ X ′| ≤ 1 for all distinct

X,X ′ ∈ X .

Theorem 2. [5, Theorem 3.9] Let G be a connected graph with Δ(G) ≤ d + 2
and δ(G) ≤ d+1. Then rd(G) = minX val(X) where the minimum is taken over
all 1-thin covers X of G.

A direct computation of the rank rd(G) by Theorem 2 leads to an exponential
algorithm since the number of 1-thin covers can be exponential. Thus, it would
be interesting to design an efficient algorithm (with polynomial running time)
for computing the rank rd(G).

Isostatic Graphs. By Theorem 60.1.2 [11], a graph G = (V,E) is generically d-
isostatic if and only if it is rigid and |E| = S(|V |, d). Inductive constructions are
useful for isostatic graphs.

Algorithms for the d-Dimensional Rigidity Matroid of Sparse Graphs 31

Fig. 2. Vertex addition for d = 3

Theorem 3. [11, Theorem 60.1.6] Vertex Addition.
Let G be a graph with a vertex v of degree d. Let G′ denote the graph obtained by
deleting v and the edges incident to it. Then G is generically d-isostatic if and
only if G′ is generically d-isostatic.

Theorem 4. [11, Theorem 60.1.7] Edge Split.
Let G be a graph with a vertex v of degree d+1. Let G′ denote the graph obtained
by deleting v and its d + 1 incident edges. Then G is generically d-isostatic if
and only if there is a pair u,w of vertices of G adjacent to v such that (u,w) is
not an edge of G and the graph G′ + (u,w) is generically d-isostatic.

Fig. 3. Edge split for d = 3

1.1 Our Results

We present three efficient algorithms.

Theorem 5. Let G be a graph with Δ(G) ≤ d + 2 and δ(G) ≤ d + 1. The
following problems can be solved in linear time.

(i) Determine whether G is M -independent.
(ii) If G is generically d-isostatic then compute a sequence of vertex additions

and edge splits that yield the graph G.
(iii) Compute the rank rd(G) and a basis of the rigidity matroid Rd(G).

2 Detecting M -Independence of a Sparse Graph

Lemma 2. Let G be a graph with Δ(G) ≤ d + 2 and δ(G) ≤ d + 1. Let E′ ⊆ E
be a minimal M -dependent set and let X be the set of endvertices of the edges
of E′. Then X contains at most Md vertices where

Md =
⌊

(d − 1)(d + 1)
d − 2

⌋
.

32 S. Bereg

Proof. For every vertex v ∈ X, its degree in G[X] is bounded by d + 2, dX(v) ≤
d + 2. Therefore

2i(X) =
∑
v∈X

dX(v) ≤ (d + 2)|X|.

The graph G[X] is connected since E′ is a minimal M -dependent set. By The-
orem 1, G[X] is not a Laman graph since G[X] is M -dependent. Therefore
i(X) ≥ S(|X|, d) + 1. We assume that |X| > d + 1 (the lemma follows other-
wise). Therefore S(|X|, d) = d|X| −

(
d+1
2

)
and

2d|X| − d(d + 1) + 2 ≤ 2i(X) ≤ (d + 2)|X|,
(d − 2)|X| ≤ (d − 1)(d + 2),

|X| ≤ (d − 1)(d + 2)
d − 2

,

|X| ≤ Md.

Algorithm 1.
// Determine whether G is M -independent.
1. For each vertex v of G do
2. Compute A = {u | d(u, v) < Md)}.
3. For each subset X of A such that v ∈ X and |X| ≤ Md

and G[X] is connected
4. Compute i(X).
5. If i(X) > S(|X|, d) then return “G is M -dependent”
6. return “G is M -independent”

��

Theorem 6. Let G be a graph with Δ(G) ≤ d + 2 and δ(G) ≤ d + 1. The above
algorithm detects in linear time whether G is M -independent or not, in O(n)
time assuming that d is fixed.

Proof. The algorithm checks all subsets of V of size at most Md that induce
connected graphs. By Lemma 2 the graph G is M -dependent if and only if
at least one of these sets induces the connected and M -dependent graph. By
Theorem 1 it is necessary and sufficient to test if the induced graph is Laman.

We analyze the running time in terms of both n and d, and show later that
the dependence on n is linear. The degree of each vertex is bounded by d + 2.
Therefore the size of A is at most

|A| ≤ 1 + (d + 2) + (d + 2)2 + · · · + (d + 2)Md−1 =
(d + 2)Md − 1

d + 1
.

Let Ad be the number of the subsets of A of size at most Md. Then

Ad =
(
|A|
1

)
+
(
|A|
2

)
+ · · · +

(
|A|
Md

)
≤ |A|Md .

The running time is O(Ad(d + 2)Md−1n) since we need O((d + 2)Md−1) time to
compute i(X) for each subset. The theorem follows since d is a constant. ��

Algorithms for the d-Dimensional Rigidity Matroid of Sparse Graphs 33

3 Isostatic and M -Independent Graphs

A set X ⊆ V is critical if |X| ≥ 2 and i(X) = S(|X|, d).
We show that M -independent graph with Δ(G) ≤ d + 2 and δ(G) ≤ d + 1

can be constructed using (i) the operations of vertex addition and edge split as
in Theorems 3 and 4, and (ii) addition of a vertex of degree less than d. We need
the following bound on the size of a critical set.

Lemma 3. Let G be a graph with Δ(G) ≤ d + 2 and δ(G) ≤ d + 1. Any critical
set in G contains at most Nd vertices where

Nd =
⌊

d(d + 1)
d − 2

⌋
.

Proof. Let X be a critical set in G. For every vertex v ∈ X, its degree in G[X]
is bounded by d + 2, dX(v) ≤ d + 2. Therefore

2i(X) =
∑
v∈X

dX(v) ≤ (d + 2)|X|.

On the other hand, i(X) = S(|X|, d) since X is critical. We assume that |X| >
d + 1 (the lemma follows otherwise). Therefore S(|X|, d) = |X|d −

(
d+1
2

)
and

2i(X) = 2d|X| − d(d + 1) ≤ (d + 2)|X|,
(d − 2)|X| ≤ d(d + 1),

|X| ≤ d(d + 1)
d − 2

,

|X| ≤ Nd.

Algorithm 2.
// Given a M -independent graph G with Δ(G) ≤ d + 2 and δ(G) ≤ d + 1,
// find a sequence of vertex additions and edge splits that creates G.
1. Partition V into sets Vd, Vd+1 and Vd+2 of vertices of degree

≤ d, d and d + 2, respectively.
2. while E = ∅ do
3. if Vd = ∅ then
4. Remove a vertex v from Vd.
5. Update E, Vd, Vd+1 and Vd+2.
6. else
7. Let v be a vertex of Vd+1.
8. Compute N(v) = {u | (u, v) ∈ E}.
9. Compute A = {u | d(u, v) ≤ Nd)}.
10. Compute the set C of all maximal critical sets C ⊆ A.
11. for each u ∈ N(v)
12. Find C(u) ∈ C such that u ∈ C(u); if C(u) does not

exist then C(u) = {u}.
13. Find a pair u,w ∈ N(v) such that (u,w) /∈ E and C(u) = C(w).
14. Remove v from G and add the edge (u,w) to E.
15. Update E, Vd, Vd+1 and Vd+2.

��

34 S. Bereg

Theorem 7. Let G be a M -independent graph in Rd with Δ(G) ≤ d + 2 and
δ(G) ≤ d+1. The above algorithm computes in linear time a sequence of additions
of vertices of degree at most d + 1 and edge splits that yields the graph G.

Proof. First, we prove the correctness of the algorithm. There are two updates
of G in the algorithm: the removal of vertex v in the line 4 and the removal of
vertex v with the insertion of edge (u,w) in the line 14. The degree of a vertex
u = v does not increase after either update. Therefore the graph G preserves the
property Δ(G) ≤ d + 2 and δ(G) ≤ d + 1 after its modification.

The graph G remains M -independent after the deletion in the line 4 since
the degree of v is at most d. We show that the update of G in the line 14
preserves M -independence of G. Arguing by contradiction we suppose that G
is M -dependent after the update. Then there exists E′ ⊆ E that is dependent
in Rd(G). Let V ′ denote the set of the vertices incident to an edge of E′. The
graph (V ′, E′) is M -circuit since E′ − {(u,w)} is independent. Therefore the
graph G′ = (V ′, E′ − {(u,w)}) is critical. This contradicts the choice of (u,w).

The existence of the edge (u,w) (the line 13) follows from Lemma 4. The
algorithm finds all critical sets in A since the size of a critical set is bounded by
Nd by Lemma 3.

For analysis of the running of the algorithm time we assume that d = O(1).
The running time is linear since (i) |E| = O(n), and (ii) |N(v)| = O(1), |A| =
O(1), |C| = O(1), and (iii) the sets E, Vd, Vd+1 and Vd+2 can be updated in O(1)
time after each modification of G. ��

Corollary 1. Let G be a d-isostatic graph in Rd with Δ(G) ≤ d+2 and δ(G) ≤
d + 1. The above algorithm computes in linear time a sequence of additions of
vertices of degree at most d + 1 and edge splits that yields the graph G.

Proof. The graph G has no vertices of degree less than d. By Theorems 3 and 4
the graph after removal of a vertex of degree d (the line 4) or degree d + 1 (the
line 14) is isostatic. Therefore the new graph does not contain a vertex of degree
less than d. The corollary follows. ��

Lemma 4. [5, Corollary 3.8] Let G be a connected M -independent graph with
Δ(G) = d + 2 and δ(G) = d + 1. Let X1, X2 be maximal critical subsets of V
and suppose that |Xi| ≥ d + 2 for each i ∈ {1, 2}. Then X1 ∩ X2 = ∅.

4 Basis of the Rigidity Matroid

An independent set all of whose proper supersets are dependent is called a basis.
We say that a set of vertices X ⊆ V is dependent if the graph induced by X is
M -dependent.

The algorithm for finding a basis of G maintains a graph G′ = (V,E′) by
inserting edges of G that are independent in G′. For a set X ⊂ V , we denote by
i′(X) the number of edges in the graph G′[X] induced by X.

Algorithms for the d-Dimensional Rigidity Matroid of Sparse Graphs 35

Algorithm 3.
// Given a graph G with Δ(G) ≤ d + 2 and δ(G) ≤ d + 1,
// compute the rank r of rd(G) and a basis B of the rigidity matroid Rd(G).
1. Initialize r = 0 and B = ∅ and G′ = (V, ∅).
2. for each edge (u, v) of G do
3. flag=TRUE //boolean flag indicates whether (u, v) is independent
4. Compute A = {w | d(u,w) < Nd and d(v, w) < Nd}.
5. for each subset X of A such that u, v ∈ X and |X| ≤ Nd

and X is connected
6. Compute i′(X).
7. if i′(X) = S(|X|, d) then
8. print “(u, v) is dependent” and set flag=FALSE
9. if flag then
10. Add (u, v) to G′.
11. r = r + 1 and B = B ∪ {(u, v)}
12. return r and B

Theorem 8. Let G be a graph with Δ(G) ≤ d + 2 and δ(G) ≤ d + 1. The above
algorithm computes the rank rd(G) and a basis of the rigidity matroid Rd(G) in
linear time.

Proof. The graph G′ has the property that Δ(G′) ≤ d+2 and δ(G′) ≤ d+1. By
Theorem 1 and Lemma 3 the edges rejected for insertion to G′ are dependent
and the set B is M -independent. Therefore B is the basis of G and the rank is
computed correctly.

The running time follows since |E| = O(n) and the number of subsets of A
is O(1). ��

5 Conclusion

We presented three efficient algorithms for sparse graphs for (i) detecting M -
independent graphs, and (ii) constructing M -independent graphs, and (iii) com-
puting the rank of a graph. All algorithms have linear running time assuming
that d is fixed. The hidden constants are exponential in d. In the journal version
we show that the algorithms can be improved so that the dependence of the
running time on d is polynomial.

References

1. R. Connelly, E. D. Demaine, and G. Rote. Straightening polygonal arcs and con-
vexifying polygonal cycles. In Proc. 41th Annu. Sympos. on Found. of Computer
Science, pp. 432–442, 2000.

2. T. Eren, B. D. Anderson, W. Whiteley, A. S. Morse, and P. N. Belhumeur. In-
formation structures to control formation splitting and merging. In Proc. of the
American Control Conference, 2004. to appear.

36 S. Bereg

3. T. Eren, W. Whiteley, A. S. Morse, P. N. Belhumeur, and B. D. Anderson. Sensor
and network topologies of formations with direction, bearing and angle information
between agents. In Proc. of the 42nd IEEE Conference on Decision and Control,
pp. 3064–3069, 2003.

4. J. Graver, B. Servatius, and H. Servatius. Combinatorial Rigidity, volume 2. Amer.
Math. Soc., Graduate Studies in Mathematics, 1993.

5. B. Jackson and T. Jordán. The d-dimensional rigidity matroid of sparse graphs.
Technical Report TR-2003-06, EGRES Technical Report Series, 2003.

6. D. Jacobs, A. J. Rader, L. Kuhn, and M. Thorpe. Protein flexibility predictions
using graph theory. Proteins, 44:150–165, 2001.

7. G. Laman. On graphs and rigidity of plane skeletal structures. J. Engineering
Math., 4:331–340, 1970.

8. I. Streinu. A combinatorial approach to planar non-colliding robot arm motion
planning. In Proc. 41st Annu. IEEE Sympos. Found. Comput. Sci., pp. 443–453,
2000.

9. W. Whiteley. Some matroids from discrete applied geometry. In J. E. Bonin, J. G.
Oxley, and B. Servatius, editors, Contemp. Mathematics, 197, pp. 171–311. Amer.
Math. Soc., Seattle, WA, 1997.

10. W. Whiteley. Rigidity of molecular structures: generic and geometric analysis. In
M. F. Thorpe and P. M. Duxbury, editors, Rigidity Theory and Applications, pp.
21–46. Kluwer, 1999.

11. W. Whiteley. Rigidity and scene analysis. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, chapter 60, pp. 1327–
1354. CRC Press LLC, Boca Raton, FL, 2004.

Sliding Disks in the Plane

Sergey Bereg1, Adrian Dumitrescu2, and János Pach3,�

1 Computer Science, University of Texas at Dallas,
P.O. Box 830688, Richardson, TX 75083, USA

besp@utdallas.edu
2 Computer Science, University of Wisconsin–Milwaukee,

3200 N. Cramer Street, Milwaukee, WI 53211, USA
ad@cs.uwm.edu

3 Courant Institute of Mathematical Sciences,
251 Mercer Street, New York, NY 10012-1185, USA

pach@cims.nyu.edu

Abstract. Given a pair of start and target configurations, each consist-
ing of n pairwise disjoint disks in the plane, what is the minimum num-
ber of moves that suffice for transforming the start configuration into the
target configuration? In one move a disk slides in the plane without inter-
secting any other disk, so that its center moves along an arbitrary (open)
continuous curve. We discuss efficient algorithms for this task and esti-
mate their number of moves under different assumptions on disk radii and
disk placements. For example, with n congruent disks, 3n

2
+O(

√
n log n)

moves always suffice for transforming the start configuration into the
target configuration; on the other hand,

(
1 + 1

15

)
n − O(

√
n) moves are

sometimes necessary.

1 Introduction

Consider a set (system) of n pairwise disjoint objects in the plane that need
to be brought from a given start (initial) configuration S into a desired goal
(target) configuration T . The motion planning problem for such a system is
that of computing a sequence of object motions (schedule) that achieves this
task. Depending on the existence of such a sequence of motions, we say that
the problem is feasible or respectively, infeasible. Here we restrict ourselves to
systems of disks with pairwise disjoint interiors, as objects, and moves that slide
a disk without intersecting any other disk throughout the motion. The disks are
not labeled, therefore if there exist congruent disks in the system, occupying any
of the target positions with a congruent disk is allowed.

It is easy to see that, for the class of disks, the problem is always feasible.
More generally, it is also feasible for the class of all convex objects, using sliding
moves (Theorem 1 below). This old result appears in the work of Fejes Tóth and
Heppes [8], but it can be traced back to de Bruijn [5]; the algorithmic aspects

� Supported by NSF grant CCR-00-98246, by an NSA grant, a PSC-CUNY Research
Award, and grant OTKA-T-032-452 from the Hungarian Science Foundation.

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 37–47, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

38 S. Bereg, A. Dumitrescu, and J. Pach

of the problem have been studied by Guibas and Yao [9]. We refer to this set of
motion rules (moves) as the sliding model. Other reconfiguration rules (models)
for systems of disks have been examined recently, for example: in [6] moves are
restricted so that a disk can only be placed in a position where it is adjacent to at
least two other disks; in [1] moves are translations along a fixed direction at each
step. Reconfiguration for modular systems acting in a grid-like environment, and
where moves must maintain connectivity of the whole system has been recently
addressed in [7].

Theorem 1. Any set of n convex objects in the plane can be separated via trans-
lations all parallel to any given fixed direction, with each object moving once only.
If the topmost and bottommost points of each object are given (or can be com-
puted in O(n log n) time), an ordering of the moves can be computed in O(n log n)
time.

The following simple universal algorithm that can be adapted to any set of
n convex objects performs 2n moves for reconfiguration of n disks. In the first
step (n moves), in decreasing order of the x-coordinates of their centers, slide the
disks initially along a horizontal direction, one by one to the far right. Note that
no collisions can occur. In the second step (n moves), bring the disks ”back” to
target positions in increasing order of the x-coordinates of their centers. (Gen-
eral convex objects need rotations and translations in the second step). Already
for the class of disks, one cannot do much better in terms of the number of
moves (see Theorem 3). For the class of segments (as objects), it is easy to con-
struct examples that require 2n−1 moves for reconfiguration, even for congruent
segments.

A move is a target move if it slides a disk to a final target position. Otherwise,
it is a non-target move. Our lower bounds use the the following argument: if no
target disk coincides with a start disk (so each disk must move), a schedule with
x non-target moves consists of at least n + x moves.

Our paper is organized as follows. In Section 2 (Theorem 2), we estimate the
number of necessary moves for the reconfiguration of systems of congruent disks.
In Section 3 (Theorem 3), we estimate the number of necessary moves for the
reconfiguration of systems of disks of arbitrary radii.

2 Congruent Disks

We now consider reconfiguring sets of congruent disks in the plane. First, we
prove the existence of a line bisecting the set of centers of the start disks such
that the strip of width 6 around this line contains a small number of disks. A
slightly weaker statement guaranteeing the existence of a bisecting line that cuts
through few disks was given by by Alon et. al [2]. We have included our almost
identical proof for completeness.

Lemma 1. Let S be a set of n pairwise disjoint unit (radius) disks in the plane.
Then there exists a line � that bisects the centers of the disks such that the parallel

Sliding Disks in the Plane 39

strip of width 6 around � (that is, � runs in the middle of this strip) contains
entirely at most O(

√
n log n) disks.

Proof. Set m = c2

√
n log n where c2 > 0 is a suitable large constant to be chosen

later. Assume for contradiction that the strip of width w = 6 around each line
bisecting the set of centers of S contains at least m disks. Set k = �

√
n/ logn�

and consider the k bisecting lines that form angles iθ with the positive direction
of the x-axis (in counterclockwise order), where i = 0, . . . , k − 1, and θ = π/k.

Let Ai be the set of disks contained (entirely) in the i-strip of width w = 6
around the ith bisecting line, i = 0, . . . , k − 1. Clearly

n ≥ |A0 ∪ . . . Ak−1| ≥
k−1∑
i=0

|Ai| −
∑

0≤i<j≤k−1

|Ai ∩ Aj | (1)

by the inclusion-exclusion formula. By our assumption
∑k−1

i=0 |Ai| ≥ km. The
summand |Ai ∩ Aj | counts the number of disks contained in the intersection of
the strips i and j. This intersection is a rhombus whose area is

Fij =
w2

sin(j − i)θ
.

Since the disks are pairwise disjoint,

|Ai ∩ Aj | ≤
Fij

π
.

We thus have

∑
0≤i<j≤k−1

|Ai ∩ Aj | = O

⎛
⎝ ∑

0≤i<j≤k−1

1
sin (j − i)θ

⎞
⎠ .

The identity sinα = sin(π − α) yields

∑
0≤i<j≤k−1

1
sin (j − i)θ

≤ k

�k/2�∑
i=1

1
sin iθ

.

For 1 ≤ i ≤ k/2
1

sin iθ
=

1
sin iπ

k

= O

(
k

i

)
.

Consequently the second sum in Equation (1) is bounded as follows:

∑
0≤i<j≤k−1

|Ai ∩ Aj | = O

⎛
⎝k2

�k/2�∑
i=1

1
i

⎞
⎠ = O(k2 log k).

40 S. Bereg, A. Dumitrescu, and J. Pach

Let c1 > 0 be an absolute constant such that
∑

0≤i<j≤k−1 |Ai∩Aj | ≤ c1 ·k2 log k.
Since log k ≤ (log n)/2 for n ≥ 16, and using the above estimates, Equation (1)
can be rewritten as

n ≥ mk − c1 · k2 log k ≥ c2

√
n log n

√
n

log n
− 2c1

n

log n

log n

2
= (c2 − c1)n.

Take now c2 = c1 + 2, and obtain n ≥ 2n which is a contradiction. ��
Theorem 2. Given a pair of start and target configurations S and T , consisting
of n congruent disks each, 3n

2 +O(
√

n log n) moves always suffice for transforming
the start configuration into the target configuration. The entire motion can be
computed in O(n3/2(log n)−1/2) time. On the other hand, there exist pairs of
configurations that require

(
1 + 1

15

)
n − O(

√
n) moves for this task.

Proof. We start with the upper bound. Let S′ and T ′ be the centers of the
start disks and target disks, respectively, and let � be the line guaranteed by
Lemma 1. Without loss of generality we can assume that � is vertical. Denote by
s1 = �n/2� and s2 = �n/2� the number of centers of start disks to the left and
to the right of �. Let m = O(

√
n log n) be the number of start disks contained in

the vertical strip around �. Denote by t1 and t2 the number of centers of target
disks to the left and to the right of �, respectively. By symmetry we can assume
that t1 ≤ n/2 ≤ t2.

Let R be a region containing all start and target disks (e.g., the smallest
axis-aligned rectangle that contains all disks). The algorithm has three steps.
All moves in the region R are taken along horizontal lines, i.e., perpendicularly
to the line �.

Step 1. Slide to the far right all start disks whose centers are to the right of �
and the (other) start disks in the strip, one by one, in decreasing order
of their x-coordinates (with ties broken arbitrarily). At this point all
t2 ≥ n/2 target disks whose centers are right of � are free.

Step 2. Using all the s′1 ≤ n/2 remaining disks whose centers are to the left of
�, in increasing order of their x-coordinates, we fill free target positions
to the right of �, in increasing order of their x-coordinates: each disk
slides first to the left, then to the right on a wide arc and to the left
again in the end. Note that s′1 ≤ n/2 ≤ t2. Now all the target positions
whose centers are to the left of � are free.

Step 3. Move to place the far away disks: first continue to fill target positions
whose centers are to the right of �, in increasing order of their x-
coordinates. When we are done, we fill target positions whose centers
are to the left of �, in decreasing order of their x-coordinates. Note
that at this point all target positions to the left of � are “free.”

The only non-target moves are those done in Step 1 and their number is
n/2 + O(

√
n log n), so the total number of moves is 3n/2 + O(

√
n logn).

Algorithm. A trivial implementation of the algorithm examines all
k = �

√
n/ log n� strip directions each in O(n) time, in order to find a suit-

able one, as described in the proof of Lemma 1. After that, O(n log n) time is

Sliding Disks in the Plane 41

spent for this direction for sorting and performing the moves. The resulting time
complexity is O(n3/2(log n)−1/2).

Lower Bound. The target configuration consists of a set of n densely packed
unit (radius) disks contained, for example, in a square of side length ≈ 2

√
n.

The disks in the start configuration enclose the target positions in a ring-like
structure with long “legs.” Its design is more complicated and uses “rigidity”
considerations as described below.

A packing C of unit (radius) disks in the plane is said to be stable if each disk
is kept fixed by its neighbors [4]. More precisely, C is stable if none of its elements
can be translated by any small distance in any direction without colliding with
the others. It is easy to see that any stable system of (unit) disks in the plane has
infinitely many elements. K. Böröczky [3] showed that there exist stable systems
of unit disks with arbitrarily small density.

O

Y

X

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

c1 c2 c3 c4

b∗1

a∗
1

�

Fig. 1. A double bridge and its vertical line of symmetry �. The part left of � forms
the initial section of a one-way infinite bridge.

The main building block used in Böröczky’s construction was a one-way
infinite “bridge” made up of disks, which can be defined as follows. In Fig. 1,
the initial section of such a one-way infinite bridge appears on the left of the
vertical line �. Fix an x-y rectilinear coordinate system in the plane. Let us start
with five unit disks centered at

a1 = (0, 2 +
√

3), b1 = (0,
√

3), c1 = (1, 0), b∗1 = −b1, a∗
1 = −a1,

that serve as an “abutment.” The bridge will be symmetric about the x-axis, so
it is sufficient to describe the part of the packing in the upper half-plane. The
set of centers of the disks is denoted by C.

Take a strictly convex function f(x) defined for all x ≥ 0 such that f(0) =
2 +

√
3 and limx→∞ f(x) = 2

√
3. Starting with a1, choose a series of points

a2, a3, a4, . . . belonging to the graph of f such that the distance between any
two consecutive points satisfies

|ai − ai+1| = 2 (i = 1, 2, 3, . . .).

42 S. Bereg, A. Dumitrescu, and J. Pach

All unit disks around these points belong to the packing, so that ai ∈ C for
every i. These points will uniquely determine all other elements of C, according
to the following rules.

Let b2 be the point at distance 2 from both c1 and a2, which lies to the right
of the line c1a2. Once b2 is defined, let c2 be the point on the x-axis, different
from c1, whose distance from b2 is 2. In general, if bi and ci have already been
defined, let bi+1 denote the point at distance 2 from both ci and ai+1, lying on
the right-hand side of their connecting line, and let ci+1 = ci be the (other)
point of the x-axis at distance 2 from bi+1. Let C, the set of centers of the
disks forming the bridge, consist of all points ai, bi, ci (i = 1, 2, 3, . . .) and their
reflections about the x-axis. Note that the points ci ∈ C lie on the x-axis, so
they are identical with their reflections.

We need four properties of this construction, whose simple trigonometric
proofs can be found in [3]:

1. the distance between any two points in C is at least 2;
2. all unit disks around ai, bi, ci (i = 2, 3, 4, . . .) are kept fixed by their neigh-

bors;
3. all points b2, b3, b4, . . . lie strictly below the line y =

√
3;

4. the x-coordinate of ci is smaller than that of ai+1 (i = 1, 2, 3, . . .).

It is not hard to see that the difference between the x-coordinates of ci and ai+1

tends to zero as i tends to infinity.
Next, we slightly modify the above construction. Take a small positive ε and

replace f(x) by the strictly convex function

fε(x) := (1 + ε)f(x) − εf(0)

whose asymptote is the line y = 2
√

3 − (2 −
√

3)ε. Clearly, fε(0) = f(0). If
we carry out the same construction as above, nothing changes before we first
find a point ai that lies below the line y = 2

√
3. However, if ε is sufficiently

large, sooner or later we get stuck: the construction cannot be continued forever
without violating any of the conditions listed above. Let k be the first integer
for which such an event occurs, involving ak, ak+1, bk, or ck. By varying ε > 0, it
can be shown by a simple case analysis that the construction can be realized up
to level k so that the difference between the x-coordinates of bk and ak is 1. It
follows that the disk around ak is tangent to the vertical line � passing through
bk. Remove the rightmost disk centered at ck from the set. Thus from the above
condition, by taking the union of the part of C built so far together with its
reflection about �, we obtain the following:

Lemma 2. There exist arbitrarily long finite packings (“double-bridges”) con-
sisting of five rows of unit disks, symmetric about the coordinate axes, in which
all but eight disks are kept fixed by their neighbors. These eight exceptional
disks are at the two abutments of the double-bridge and their y-coordinates are
±
√

3,±(2 +
√

3).

Sliding Disks in the Plane 43

Bridge 1

Bridge 2
Bridge 3

Fig. 2. Junction of type 1

Notice that three such bridges can be connected at a “junction” depicted in
Fig. 2 so that the angles between their “long” half-axes of symmetries (corre-
sponding to the positive x-axis) are 2π

3 . Consequently, using six double-bridges
connected by six junctions one can enclose an arbitrarily large hexagonal region
H . Let us attach a one-way infinite bridge to each of the unused sides of the
junctions. As Böröczky pointed out, the resulting packing is stable.

Let us refer to the disks in the start (resp. target) configuration as white
(resp. black) disks. Now fix a large n, and take n white disks. Use O(

√
n) of them

to build six junctions connected by six double-bridges (as described above) to
enclose a hexagonal region that can accommodate the n nonoverlapping black
disks. See also Fig. 3. Divide the remaining white disks into six roughly equal
groups, each of size n

6 − O(
√

n), and rearrange each group to form the initial
section of a one-way infinite bridge attached to the unused sides (“ports”) of the
junctions. Notice that the number of necessary moves is at least

(
1 + 1

30

)
n −

O(
√

n). To see this, it is enough to observe, that in order to fill the first target,
we have to break up the hexagonal ring around the black disks. That is, we have
to move at least one element of the six double-bridges enclosing H . However,
with the exception of the at most 6 × 5 = 30 white disks at the far ends of the
truncated one-way infinite bridges, every white disk is fixed by its neighbours.
Each of these bridges consists of five rows of disks of “length” roughly n

30 , where
the length of a bridge is the number of disks along its side. Therefore, before we
could move any element of the ring around H , we must start at a far end and
move a sequence of roughly n

30 white adjacent disks.
Instead of enclosing the n black disks by a hexagon, we can construct a

triangular ring T around them, consisting of three double-bridges (see Fig. 3). To
achieve this, we have to build a junction of three sides establishing a connection
between the abutments of three bridges such that the angles between their half-

44 S. Bereg, A. Dumitrescu, and J. Pach

H

junctions
of type 1

double bridges

one-way infinite
bridges

T

double bridges

one-way infinite
bridges

junctions
of type 2

(a) (b)

Fig. 3. Two start configurations based on hexagonal and triangular rings

Bridge 2 Bridge 3

Bridge 1

Fig. 4. Junction of type 2

axes of symmetry are 5π
6 , 5π

6 , and π
3 . Such a junction is shown on Fig. 4. The

convex hull of the disk centers (for the disks in the junction) is a pentagon
symmetric with respect to a vertical line passing through the top vertex. Four
out of the five centers along each of the three sides of the pentagon connected to
bridges are collinear. The disk centers on the other two sides form two slightly
concave chains. The number of necessary moves is at least

(
1 + 1

15

)
n − O(

√
n)

for this second construction. This completes the proof of Theorem 2. ��

Sliding Disks in the Plane 45

Remarks. We believe that our lower bound in Theorem 2 is closer to the truth.
Closing the gap between the bounds remains an interesting problem which seems
to require new ideas.

Note that moving out in Step 1 only start disks whose centers are right of �
and those disks intersecting � would not necessarily free all targets whose centers
are right of �. This is the reason for working with a strip of width 6 around �;
in fact imposing a bound on the number of disks contained in a strip of width
4, which extends three units to the left of � and one unit to the right of � would
be enough.

3 Arbitrary Disks

For the reconfiguration of systems of arbitrary disks we obtain tight bounds
(modulo lower order terms):

Theorem 3. Given a pair of start and target configurations, consisting of n
disks of arbitrary radii each, 2n moves always suffice for transforming the start
configuration into the target configuration. The entire motion can be computed
in O(n log n) time. On the other hand, there exist pairs of configurations that
require 2n − o(n) moves for this task, for every sufficiently large n.

Proof. The upper bound is immediate, using the universal reconfiguration algo-
rithm described above. The recursive lower bound construction is depicted in
Figure 6. The basic construction in Figure 5 (which will be repeated recursively)

Fig. 5. A simple lower bound construction (basic step for the recursive construction)
for sliding disks of arbitrary radii

gives a lower bound of ≈ 3n/2: it consists of a large disk surrounded by n − 1
small disks, whose centers form a regular polygon with n − 1 vertices (let n be
even). The target configuration has all small disks inside the original big disk
and the large disk somewhere else. No small disk target can be filled before the
large disk moves away, that is, before roughly half of the n− 1 small disks move
away. So about 3n/2 moves in total are necessary.

The recursive construction is obtained by replacing the small disks around a
big one by the ”same” construction scaled (see Figure 6). To make it work we

46 S. Bereg, A. Dumitrescu, and J. Pach

0 0

Fig. 6. Recursive lower bound construction for sliding disks of arbitrary radii: m = 2
and k = 3

choose: 1) all disks of distinct radii, and 2) the small disks on the last level or
recursion have targets inside the big ones they surround (the other disks have
targets somewhere else). Since all disks have distinct radii, one can think of them
as being labeled. If there are k levels in the recursion, about n/2+n/4+· · ·+n/2k

non-target moves are necessary. The precise calculation follows.
There is one large disk labeled 0, and 2m + 1 groups of smaller disks around

it close to the vertices of a regular (2m + 1)-gon (m ≥ 1). Let m be fixed, and
k be the number of levels in the recursion (m and k will be chosen later). Let
n = N(k) be the number of disks in the set, and x = X(k) be the number of
non-target moves performed (at level k). We have

N(0) = 1, X(0) ≥ 0, N(1) = 2m + 2, X(1) ≥ m.

N(k) and X(k) satisfy the following recurrences:

N(k) = (2m + 1)N(k − 1) + 1,

X(k) ≥ mN(k−1)+(m+1)mN(k−2)+ . . .+(m+1)k−2mN(1)+(m+1)k−1m.

The first recurrence gives

N(k) = (2m + 1)k + . . . + (2m + 1) + 1 =
(2m + 1)k+1 − 1

2m
.

Plugging this into the inequality for X(k) yields

X(k) ≥ m

k−1∑
i=0

(2m + 1)k−i − 1
2m

(m + 1)i =
1
2

k−1∑
i=0

((2m + 1)k−i − 1)(m + 1)i.

Using standard manipulations, the above inequality becomes

X(k) ≥ (2m + 1)k+1 − 2(m + 1)k+1 + 1
2m

.

Sliding Disks in the Plane 47

This can be rewritten as

X(k) ≥ (2m + 1)k+1 − 1 − 2(m + 1)k+1 + 2
2m

= n − (m + 1)k+1 − 1
m

.

Put

z =
(m + 1)k+1 − 1

m
.

Then

z

n
= 2

(m + 1)k+1 − 1
(2m + 1)k+1 − 1

≤ 2
(

m + 1
2m + 1

)k+1

→ 0, for k → ∞.

Thus n + x ≥ 2n − z = 2n − o(n) and the lower bound follows for n = N(k).
The same result carries over for all sufficiently large n. In particular for m = 1,
we get n + x = 2n − O(nlog3 2) = 2n − O(n0.631). ��

Acknowledgement. The authors thank Jan Siwanowicz for his valuable re-
marks and for many interesting conversations on the topic.

References

1. M. Abellanas, F. Hurtado, A. G. Olaverri, D. Rappaport, and J. Tejel, Moving
coins. Short version in Abstracts of Japan Conference on Discrete and Computa-
tional Geometry, 2004. Full version submitted to LNCS Proceedings.

2. N. Alon, M. Katchalski, and W. R. Pulleyblank, Cutting disjoint disks by straight
lines, Discrete & Computational Geometry, 4 (1989), 239–243.

3. K. Böröczky, Über stabile Kreis- und Kugelsysteme (in German), Ann. Univ. Sci.
Budapest. Eötvös Sect. Math. 7 (1964), 79–82.

4. P. Brass, W. O. J. Moser, and J. Pach, Research Problems in Discrete Geometry,
Springer–Verlag, 2005, to appear.

5. N. G. de Bruijn, Aufgaben 17 and 18 (in Dutch), Nieuw Archief voor Wiskunde 2
(1954), 67.

6. E. Demaine, M. Demaine, and H. Verrill, Coin-moving puzzles, in More Games of
No Chance, edited by R. J. Nowakowski, pp. 405-431, Cambridge University Press,
2002.

7. A. Dumitrescu and J. Pach, Pushing squares around, Proceedings of the 20-th
Annual Symposium on Computational Geometry, (SOCG’04), NY, June 2004, 166–
123.

8. L. Fejes Tóth and A. Heppes, Über stabile Körpersysteme (in German), Compositio
Mathematica, 15 (1963), 119–126.

9. L. Guibas and F. F. Yao, On translating a set of rectangles, in Computational Ge-
ometry, F. Preparata (ed.), pp. 61–67, Vol. 1 of Advances in Computing Research,
JAI Press, London, 1983.

Weighted Ham-Sandwich Cuts

Prosenjit Bose1,� and Stefan Langerman2,��

1 School of Computer Science, Carleton University, Canada
jit@scs.carleton.ca

2 Département d’Informatique, Université Libre de Bruxelles, Belgium
stefan.langerman@ulb.ac.be

Abstract. Let R and B be two sets of n points. A ham-sandwich cut is
a line that simultaneously bisects R and B, and is known to always exist.
This notion can be generalized to the case where each point p ∈ R ∪ B
is associated with a weight wp. A ham-sandwich cut can still be proved
to exist, even if weights are allowed to be negative. In this paper, we
present a O(n log n) algorithm to find a weighted ham-sandwich cut, but
we show that deciding whether that cut is unique is 3-SUM hard.

1 Introduction

Let R, B ⊆ R2 be two finite point sets, with |R|+ |B| = n. We call the elements
of R the red points and the elements of B the blue points. A line L is said to
bisect a set S ⊆ R2 if each of the two open halfplanes L+ and L− bounded by L
contain no more than half of the points, i.e., if ||S∩L+|−|S∩L−|| ≤ |S∩L|. The
ham-sandwich cut theorem for point sets states that there always exists a line L
that simultaneously bisect R and B. Such a line is called a ham-sandwich cut.

Megiddo [21] showed that, if the sets R and B are linearly separable (there
exists a line that separates R from B) then a ham-sandwich cut can be found
in O(n) time. Edelsbrunner and Waupotitisch [10] modified Meggido’s method
and obtained an O(n log n) time algorithm for the general case. An optimal
O(n) time algorithm was found by Lo and Steiger [19]. In [7], it was shown that
although a ham-sandwich cut can be computed in linear time, determining if that
ham-sandwich cut is unique has a lower bound of Ω(n log n). The best known
algorithm for that task constructs and walks the median level of an arrangement
of lines and so runs O(n4/3) expected time [6].

The problem of computing ham-sandwich cuts in d dimensions, d ≥ 3 has
been considered by Lo et al [18]. Several generalizations of planar ham-sandwich
cuts have also been proposed [1,2,3,4,5,8,15,16,23,24].

In this paper, we consider a generalization where every point p is associated
with a weight wp ∈ R, positive or negative. Let W (S) =

∑
p∈S wp. A line L

bisects a set S of weighted points if

|W (S ∩ L+) − W (S ∩ L−)| ≤ |W (S ∩ L)|
� Research supported in part by NSERC.

�� Chercheur qualifié du FNRS.

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 48–53, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Weighted Ham-Sandwich Cuts 49

and a ham-sandwich cut for R and B is a line that bisects both weighted sets
simultaneously. The ham-sandwich cut theorem can be shown to hold in the
weighted case: a careful reading of the proof using the Borsuk-Ulam theorem
[20] reveals that the proof never requires the weights to be positive.

In the next section, we give a O(n log n) algorithm that finds such a cut, but
we show in section 3 that deciding if the ham-sandwich cut is unique is 3-SUM
hard, and so, that it is unlikely that a o(n2) algorithm exists for this problem.
Determining uniqueness, or finding all ham-sandwich cuts, can be done in O(n2)
time using topological sweep algorithm in the dual arrangement.

2 Algorithm

To simplify the algorithm, we assume that the points are in general position (no
three points collinear, no two points on the same vertical). This assumption can
be removed using known techniques [9]. We also add a formal infinitesimal to
the weight of one of the red points and one of the blue points. This ensures that
any line bisecting the blue set (respectively red set) is incident to at least one
blue (red) point. Thus, the ham-sandwich cut L is incident to exactly one red
point and one blue point, and L is also a valid ham-sandwich cut for the original
weights.

Duality Transform. We use the standard duality transform that maps a the
point p = (a, b) to the line Tp = {(x, y)|y = ax+ b}, and the line L = {(x, y)|y =
mx+c} to the point (−m, c). This duality preserves incidences and above/below
relations. The sets of points R and B then become sets of lines TR and TB.
Because a bisecting line for R (respectively B) is incident to at least one point
of R (respectively B), the bisectors of R (respectively B) correspond to a set of
piecewise linear curves composed of edges of the arrangement TR (respectively
TB). The curves are infinite or closed. A point at the intersection between a blue
curve and a red curve is the dual of a ham-sandwich cut. It is easy to show, e.g.
using the Borsuk-Ulam theorem, that the number of intersections between red
and blue curves is odd.

Pruning Mechanism. We use the line partition pruning mechanism from [17]:
given lines L = {�1, . . . , �n} in general position in R2 (i.e. no three lines intersect
in a common point and no line is vertical) and two other non-parallel lines �A

and �B, not in L, nor parallel to any line in L, we write C = �A ∩ �B. Every line
in L crosses both �A and �B. The lines in L are partitionned into 4 sets, one for
each quadrant (I = +, +, II = +,−, III = −,−, IV = −, +), depending on
whether the line crosses �A above or below C, and whether it crosses �B above
or below C (see Fig. 1). A line that belongs to one of these sets (quadrants)
avoids the opposite quadrant. The lines �A and �B form an α-partition of L if
each of the four groups contains at least αn lines. We use the following lemma
from [17]:

Lemma 1. Let L = {�1, . . . , �n} be a set of n lines in general position in R2.
There exists an (1/4)-partition of L and it can be found in time O(n).

50 P. Bose and S. Langerman

lA

l
B

C

+

+

III

II

I

IV

Fig. 1. Pruning Mechanism

The algorithm will start by constructing a (1/4)-partition of the set of lines
TR∪TB. Each of the 4 quadrants constructed will thus be intersected by at most
3n/4 lines.

Because the total number of intersections between the red and blue curves
is odd, at least one of the four quadrants contains an odd number of those
intersections. After finding that quadrant, we prune the lines it does not intersect,
and recurse restricting the search to that quadrant. As we prune lines, we keep
track of the restricted region in which we concentrate the search, and maintain
the total weight of the pruned red and blue lines above and below that region.
After each pruning step, a quarter of the lines is eliminated.

Parity. We still have to explain how to compute the parity of the intersections
inside a region. We use the following lemma. A d-dimensional version of this
lemma was proved by Edgar Ramos [22].

Lemma 2. Consider a jordan curve C, a set of red curves R and a set of blue
curves B, where all curves are infinite or closed. Let r1, . . . , rk be the intersec-
tions of the curves of R and C, in clockwise order along C, and let xi be the
number of intersections of C with the curves from B between ri and ri+1. Then
the parity of the number of intersections between red and blue curves inside C is
the parity of x2 + x4 + x6 + . . . + xk.

This implies that we can check in O(n log n) time if the number of points
dual to ham-sandwich cuts inside a given triangle is odd. This completes the
algorithm.

Theorem 1. Given two sets R, B ⊆ R2 of weighted points, with |R| + |B| = n,
a weighted ham-sandwich cut can be computed in O(n log n) time.

Weighted Ham-Sandwich Cuts 51

3 Hardness

In this section, we show that determining whether or not a weighted ham-
sandwich cut is unique is a 3SUM hard problem. The class of 3SUM hard
problems was initially studied by Gajentaan and Overmars [14]. Many differ-
ent problems are known to be 3SUM hard. Quadratic lower bounds for 3SUM
hard problems have been shown in restricted models of computation [13,12,11].
Thus, showing that a problem is 3SUM hard provides some evidence that there
may not exist a o(n2) time solution for the problem.

For the reduction, we use the following 3SUM hard problem [14]: Given
three sets A, B, and C of n integers total, determine if there are three integers
a ∈ A, b ∈ B and c ∈ C such that a + b = 2c.

Theorem 2. Given two sets R, B ⊆ R2 of weighted points, with |R| + |B| = n,
determining whether the weighted ham-sandwich cut is unique is 3SUM hard.

Proof. Given the three sets A, B, and C of n integers total, we produce a set
of 2n+4 weighted blue and red points, placed on three horizontal lines, one line
for each set. Points in A, B, and C are placed on horizontal lines z = 3, z = 1,
and z = 2, respectively. The points on lines A and C are colored blue, while all
points on B are colored red. Each integer s is represented by a pair of points on
the line corresponding to its set. One point of weight +1 at x coordinate s − ε
and one point of weight −1 at x coordinate s + ε, for some small 0 < ε < 1/2.
We will refer to this pair of points as a weighted pair. Let S be the set of 2n
weighted points created so far.

To S, we now add four points of weight 1 far on the right of the three lines,
one red point on line A, and three blue points on line B (by “far on the right”,
we mean that the distance from the newly added points to any point in S is at
least twice the diameter of S). Thus, the total weight of the blue set of points is
3, and the total weight of the red set of points is 1. Because the total weights of
both sets is odd, any ham-sandwich cut must be incident to one blue point and
one red point. See Fig. 2.

We claim that the rightmost vertical line is the unique ham-sandwich cut if
and only if there are no three integers a ∈ A, b ∈ B, c ∈ C, such that a+ b = 2c.
Clearly, if three such integers exist, then there is a line � incident to the three
right points of the pair corresponding to these three elements, each having a
weight of −1. The weight of the blue points is 2 to the left of �, 3 to the right
of � and −2 on �, while the weight of the red points is 1 to the left and to the

+ - + - + - + -

+ - + - + - + -

+ - + - + - + - + +

+

+

A

C

B

Fig. 2. Uniqueness of the weighted ham-sandwich cut is 3SUM hard

52 P. Bose and S. Langerman

right of � and −1 on �, so � is a weighted ham-sandwich cut and so the weighted
ham-sandwich cut is not unique.

If no such three integers exist, then we have to show that no line other than
the rightmost vertical one is a ham-sandwich cut. To show this, consider the
red and blue point incident to a candidate cut line �, and first assume that the
incident points are not the rightmost extra points. Now, we claim that no line
� can separate a weighted pair on each of the three lines. This is because the
existence of such a line implies the existence of three integers integers a ∈ A,
b ∈ B, c ∈ C, such that a + b = 2c. Therefore, � can separate at most two
weighted pairs.

However, this implies that � has blue weight 0 or 1 to the left of �, +1 or −1
on � and 2 or 3 to the right of �, respectively, depending on whether the blue
incident point is of weight +1 or -1. So � cannot be a ham-sandwich cut.

If line � goes through one of the blue points on the line of B, then it can only
be incident to a red point by going through the red point on A (which is the
claimed unique cut), or � is the horizontal line corresponding to set B, which is
not a ham-sandwich cut since the red weight is 0 below �, 0 on �, and 1 above �.

If � goes through the red point on A, then there are three cases: � can be
incident to one of the 3 points on B (which is again the claimed unique cut),
or � is the horizontal line corresponding to set A, (which is not a ham-sandwich
cut since the blue weight is 3 below �, 0 on � and 0 above �). In the third case, �
could be incident to some blue point on C. But then, the blue weight incident to
� is at most 1, the blue weight to the left of � is 0 or 1 (if � goes through a blue
point of weight +1 or −1, respectively) and the blue weight to the right � is 2 if
� is incident to a blue point of weight +1 or 3 otherwise. Since the difference is
2, � is not a ham-sandwich cut. �

References

1. T. Abbott, E. D. Demaine, M. L. Demaine, D. Kane, S. Langerman, J. Nelson,
and V. Yeung. Dynamic ham-sandwich cuts of convex polygons in the plane. In
Proceedings of the 17th Canadian Conference on Computational Geometry (CCCG
2005), Windsor, Ontario, Canada, to appear.

2. J. Akiyama, G. Nakamura, E. Rivera-Campo, and J. Urrutia. Perfect divisions of
a cake. In Proc. Canad. Conf. Comput. Geom. (CCCG 98), pages 114–115, 1998.

3. S. Bereg, P. Bose, and D. Kirkpatrick. Equitable subdivisions of polygonal regions.
Comput. Geom. Theory and Appl., to appear.

4. S. Bespamyatnikh, D. Kirkpatrick, and J. Snoeyink. Generalizing ham sandwich
cuts to equitable subdivisions. Discrete Comput. Geom., 24:605–622, 2000.

5. P. Bose, E. D. Demaine, F. Hurtado, J. Iacono, S. Langerman, and P. Morin.
Geodesic ham-sandwich cuts. In Proc. of the 2004 ACM Symp. on Computational
Geometry, pages 1–9, 2004.

6. T. Chan. Remarks on k-level algorithms in the plane. Manuscript, 1999.
7. H. Chien and W. Steiger. Some geometric lower bounds. In Proc. 6th Annu. Inter-

nat. Sympos. Algorithms Comput., volume 1004 of LNCS, pages 72–81. Springer-
Verlag, 1995.

Weighted Ham-Sandwich Cuts 53

8. M. Dı́az and J. O’Rourke. Ham-sandwich sectioning of polygons. In Proc. Canad.
Conf. Comput. Geom. (CCCG 90), pages 282–286, 1990.

9. H. Edelsbrunner and E. P. Mücke. Simulation of Simplicity: A technique to cope
with degenerate cases in geometric algorithms. ACM Transactions on Graphics,
9(1):66–104, 1990.

10. H. Edelsbrunner and R. Waupotitisch. Computing a ham sandwich cut in two
dimensions. J. Symbolic Comput., 2:171–178, 1986.

11. J. Erickson. Lower bounds for linear satisfiability problems. Chicago J. Theoret.
Comp. Sci., (8), 1999.

12. J. Erickson. New lower bounds for convex hull problems in odd dimensions. SIAM
J. Comput., 28:1198–1214, 1999.

13. J. Erickson and R. Seidel. Better lower bounds on detecting affine and spherical
degeneracies. Discrete Comput. Geom., 13:41–57, 1995.

14. A. Gajentaan and M. Overmars. On a class of O(n2) problems in computational
geometry. Comput. Geom. Theory and Appl., 5:165–185, 1995.

15. H. Ito, H. Uehara, and M. Yokoyama. 2-dimension ham sandwich theorem for
partitioning into three convex pieces. In Proc. Japan. Conf. Discrete Comput.
Geom. (JCDCG’98), volume 1763 of Lecture Notes in Computer Science, pages
129–157. Springer-Verlag, 1998.

16. H. Ito, H. Uehara, and M. Yokoyama. A generalization of 2-dimension ham sand-
wich theorem. TIEICE: IEICE Trans. Comm./Elec./Inf./Sys., 2001.

17. S. Langerman and W. Steiger. Optimization in arrangements. In Proceedings
of the 20th International Symposium on Theoretical Aspects of Computer Science
(STACS 2003), volume 2607 of LNCS, pages 50–61. Springer-Verlag, 2003.

18. C.-Y. Lo, J. Matoušek, and W. L. Steiger. Algorithms for ham-sandwich cuts.
Discrete Comput. Geom., 11:433–452, 1994.

19. C.-Y. Lo and W. L. Steiger. An optimal time algorithm for ham-sandwich cuts in
the plane. In Proc. Canad. Conf. Comput. Geom. (CCCG 90), pages 5–9, 1990.

20. J. Matousek. Using the Borsuk-Ulam theorem. Springer, 2003.
21. N. Megiddo. Partitioning with two lines in the plane. J. Algorithms, pages 430–433,

1985.
22. E. A. Ramos. Equipartition of mass distributions by hyperplanes. Discrete Comput.

Geom., 15(2):147–167, Feb. 1996.
23. I. Stojmenovic. Bisections and ham-sandwich cuts of convex polygons and polyhe-

dra. Inf. Process. Lett., 38(1):15–21, 1991.
24. A. H. Stone and J. W. Tukey. Generalized ‘sandwich’ theorems. Duke Math. J.,

9:356–359, 1942.

Towards Faster Linear-Sized Nets
for Axis-Aligned Boxes in the Plane

Hervé Brönnimann�

Computer and Information Science, Polytechnic University,
Six Metrotech Center, Brooklyn, NY 11201, USA

Abstract. Let B be any set of n axis-aligned boxes in Rd, d ≥ 1. We
call a subset N ⊆ B a (1/c)-net for B if any p ∈ Rd contained in more
than n/c boxes of B must be contained in a box of N , or equivalently
if a point not contained in any box in N can only stab at most n/c
boxes of B. General VC-dimension theory guarantees the existence of
(1/c)-nets of size O(c log c) for any fixed d, the constant in the big-Oh
depending on d, and Matoušek [8,9] showed how to compute such a net
in time O(ncO(1)), or even O(n log c + cO(1)) which is O(n log c) if c is
small enough. In this paper, we conjecture that axis-aligned boxes in R2

admit (1/c)-nets of size O(c), and that we can even compute such a net
in time O(n log c), for any c between 1 and n. We show this to be true
for intervals on the real line, and for various special cases (quadrants and
skylines, which are unbounded in two and one directions respectively).
In a follow-up version, we also show this to be true with various fatness
We also investigate generalizations to higher dimensions.

1 Introduction

Let B be any set of n axis-aligned boxes in Rd, d ≥ 1. For any point p, we define
the subset Bp of B as Bp = {B ∈ B : p ∈ B}. A box B in Bp is said to be stabbed
by p. A subset N ⊆ B is a (1/c)-net for B if Np = ∅ for any p ∈ Rd such that
|Bp| > n/c, or equivalently, if a point not contained in any box in N can only
stab |Bp| ≤ n/c boxes of B. In particular, ∅ is a 1-net, and B is a 0-net.

The shatter function b(n) of boxes is the maximum possible number of dis-
tinct ways to stab B, i.e. subsets of the form Bp, over all sets B of n boxes.
A set B of k boxes is shattered if there exist 2k points p1, . . . , p2k such that
{Bpi

: i = 1, . . . , 2k} = 2B, i.e. their arrangement gives rise to all possible
combinations of boxes. The VC-dimension k of is the maximum size of a shat-
tered set of boxes, or equivalently the largest integer k such that b(k) = 2k.
The set system described above has finite VC-dimension at most 2d. A classical
lemma, rediscovered independently by (Perles and) Shelah [15], Sauer [14], and
Vapnik-Červonenkis [16], implies that the shatter function of a set system of
VC-dimension k is bounded above by

∑k
i=0

(
n
i

)
= O(nk). On the other hand,

direct considerations imply that the number of distinct subsets Bp is at most

� Research of the author has been supported by NSF CAREER Grant CCR-0133599.

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 54–61, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Towards Fast Linear-Sized Nets for Axis-Aligned Boxes 55

(2n+1)d, since this is an upper bound to the number of cells in the arrangement
of B. This ensures that there always exists (1/c)-nets of size O(dc log(dc)), and
that they can be found in time Od(n)cd, using quite general machinery (see for
example the books by Matoušek [6] or by Pach and Agarwal [12]).

In this paper, we investigate a fast, O(n+n log c)-time construction of (1/c)-
nets of size O(c) for any value 1 ≤ c ≤ n and d = 2. The following unfortunately
remains a conjecture:

Conjecture 1. Let B be a set of n axis-aligned boxes in R2 and c be any parameter
1 ≤ c ≤ n. Then there exists a (1/c)-net N for B of size O(c).

We can prove a similar result only for special cases: segments on the real line
(the one-dimensional case), quadrants of the form (−∞, x]× (−∞, y] in R2, and
unbounded boxes of the form [x1, x2] × (−∞, y] (which we call a skyline). The
conjecture still stands for boxes. In those cases, however, we can also provide
algorithms that run in time O(n + n log c) and return a (1/c)-net of size O(c).
There are very few systems that are known to admit O(c)-size (1/c)-nets [7], and
so our conjecture, if it were true, would provide another interesting example. In
addition, finding small nets efficiently has various applications, for instance for
divide-and-conquer, or for computing the area of a union of rectangles (the Klee
measure problem). One should note that recently, Ezra and Sharir [4] used a
similar construction for an output-sensitive construction of the union of triangles
in two phases: first cover the ”deep” region of the union with a (1/c)-net, and
then do extra work to find the ”shallow” remainder of the union. Even more
recently, Clarkson and Varadarajan [2] proved that unit cubes admit O(c)-size
(1/c)-nets in any dimension, and give a randomized polynomial time algorithm
to find such a net.

As in [7], our constructions do not generalize to higher dimensions although
we can prove a bound of O(cd−1) for the size of the resulting net in the special
case of orthants. Although much higher than O(dc log(dc)) for large values of c,
the running time of O(n+n log c) might still make the deterministic construction
attractive.

Our results are related to a technique developed by Nielsen for fast stabbing
of boxes [10]. In his paper, he selects a small set of points that stabs all the boxes
in B, a problem which for congruent boxes is dual to covering a set of points by
boxes. (For intervals, Katz et al. [11] apply similar techniques to maintain the
piercing set under dynamic updates.) Interestingly, our problem can be phrased
as selecting a small subset of the boxes that covers all the portion of depth at
least n/c in the arrangement of the boxes.

2 Intervals on the Line

We first prove that it is easy to find small nets for intervals on the line, the
one-dimensional case of the problem above.

56 H. Brönnimann

Theorem 1. Let B be a set of n intervals on the real line R and c be any
parameter 1 ≤ c ≤ n. There exists a subset N of at most 2�c − 1� boxes in B
that is a (1/c)-net for B. Such a set can be found in O(n + n log c) time.

Proof. We give three constructions for such nets N . The first one shows the
intuition very clearly, but does not lead to a good runtime. The second has a
good runtime, and is historically our first. The third builds on the first two and
is the one that will best generalize for the sequel.

1. Consider the set E of all endpoints of the segments, be they left or right
endpoints. The set E contains 2n real numbers. We may assume that they are
all distinct and sorted. (In fact, the construction will yield only fewer segments
if some segments share their endpoints.) Now select all the �2kn/c�-th elements
in E , for k = 1, . . . , �c − 1�, in order to form a set E ′. Between two consecutive
elements in E ′, there can be at most 2n/c elements of E . (See Figure 2.)

For each element x in E ′, compute the set of segments stabbed by x. Of
all these segments, choose the one whose right endpoint is the rightmost. In a
similar way, choose the interval stabbed by x whose left endpoint is the leftmost.
This yields a set N of at most 2�c − 1� segments. (Some segments may be picked
several times.)

Now let’s see that it is a (1/c)-net. Indeed, if a point p does not stab any of
the segments in N , then any segment that it stabs must be entirely contained
between two consecutive points of E ′. There are at most 2n/c endpoints between
two consecutive points in E ′ and each of these segments takes two, so there can
be at most n/c such segments.

2. Unfortunately, it is prohibitively expensive to compute all the segments
stabbed by each point of E ′, because there can be Ω(nc) such pairs. Another
construction in the spirit of Nielsen [10] is to compute the median endpoint pm

and split the segments into three groups, C consisting of all the segments con-
taining pm, L and R consisting of those segments entirely on the left or on the
right of pm. (Note that L and R have at most n/2 segments each.) We compute
the leftmost and rightmost segments in C and add both to N , and recurse on
L and R unless 1. there are fewer than n/c segments left to recurse into, or 2.
those segments are completely covered by the segments in N (this can easily be
checked in O(1) time by maintaining the union of the segments in N during the
recursion). The depth of the recursion is at most O(log c) and there are at most
c medians computed, hence the size of N is at most 2c and the time spent in all
the median and splitting computations at a given level of recursion is O(n) for
a total of O(n log c).

3. Our final construction uses a set E ′′ similar to E ′ but with only n/c endpoints
between two consecutive positions. E ′′ decomposes the line R into 2c elementary
intervals, and we construct a complete binary tree on top of these where, to
each internal node, corresponds an interval that is the union of the elementary
intervals in its subtree (as with a segment tree, see [1]). Each segment in B is
inserted in the tree by locating both endpoints, and is appended into the at

Towards Fast Linear-Sized Nets for Axis-Aligned Boxes 57

p1
p2

p

pm

C

L R
rightmost(p1) leftmost(p2)

Fig. 1. For the proof of Theorem 1, construction 2: (left) The set of segments stabbed
by a point p (drawn with dashes on the left) must stay within the two endpoints in
E ′ enclosing p, or else it p must also stab rightmost(p1) or leftmost(p2). (right) The
median endpoint pm partitions the intervals into three groups, C (crossing) and L

and R.

p

p

Fig. 2. On the left, the net for the quadrants is shown in bold; a point p that avoids N
can only stab the quadrants between two consecutive positions of E ′ (shown in vertical
dashed lines). On the right, a skyline is shown and its net is in bold; a point p that
doesn’t stab N cannot stab too many boxes.

most 2(log c) nodes whose interval it maximally contains (see Figure 2). Finally,
for every elementary interval (leaf of the tree), we pick any segment in B that
completely spans it and collect those as N : if such a segment exists, it is stored
at one of the ancestors of the leaf. If none exists, any segment that intersects
the elementary interval of the leaf must have one endpoint in it and so there can
be only at most n/c such segments. Any point that does not stab a segment of
N can only intersect those n/c segments for the elementary interval into which
it falls. As described, the whole tree and list of segments at every node take
O(n log c) storage and time to construct. With a bit of care, the construction
can be realized without actually constructing the tree, in O(n log c) time and
O(n) space. ��

3 Rectangles in the Plane

We generalize the method of the previous paragraph to the plane. We begin with
the easier problem when all the boxes are south-west quadrants, i.e. they contain
the point (−∞,−∞).

Theorem 2. Let B be a set of n quadrants with the same orientation in R2

(north/south-east/west) and c be any parameter 1 ≤ c ≤ n. Then there exists a
(1/c)-net N for B of size �c − 1�. Such a net can be found in time O(n+n log c).

58 H. Brönnimann

Proof. Project the rightmost vertical boundaries on the x-axis, forming a set E
of abscissae. As in the previous section, we may form a set E ′ by selecting all
the �kn/c�-th elements in E , for k = 1, . . . , �c − 1�. The other elements may be
sorted within E ′ by binary searching E ′, in total time O(n + n log c) again. So
each quadrant is assigned the point of E ′ immediately to its left. The set N may
be selected by sweeping over the positions in E ′ from the right to the left and
maintaining the higher quadrant visited so far. Each time the sweep line sweeps
over an abscissa x in E ′, the current higher quadrant B is updated with the
quadrants assigned to x. This can all be performed in time O(n).

The union of all these quadrants is a set N of size �c − 1�. Then N is a (1/c)-
net because each point can only stab the quadrants between two consecutive
elements of E ′. ��

A skyline is a set of boxes that all intersect a common line. We are only in-
terested in what happens on one side of that line, so we can consider unbounded
boxes of the form [x1, x2]×(−∞, y]. We can extend the previous result to a skyline.

Theorem 3. Let B be a set of n axis-aligned boxes, all unbounded in some
common direction, and c be any parameter 1 ≤ c ≤ n. Then there exists a
(1/c)-net N for B of size at most �2c − 1�. Such a net can be found in time
O(n + n log c).

Proof. Without loss of generality, assume that boxes all intersect the x-axis and
are unbounded south, i.e. unbounded boxes of the form [x1, x2] × (−∞, y]. As
before, project the vertical boundaries on the x-axis and form a set E of abscissae,
and select E ′ as the �kn/c�-th elements in E , for k = 1, . . . , �2c − 1�. For each
elementary interval [xi, xi+1] between two consecutive elements of E ′, define hi

(if any) to be a box which spans the interval entirely and whose top side is
the highest among all such boxes. The union of all the hi’s is N and has the
(1/c)-net property. Indeed, a point p in [xi, xi+1] that does not stab a box of N
does not stab any of the boxes that contain the elementary interval, and thus
can only stab a box which is entirely contained in the interval, or whose right
or left endpoint falls in that interval. In any case, each box it stabs contributes
one or two endpoints in that interval, and there are only n/c endpoints between
two consecutive elements of E ′.

For the computation, reuse the segment tree method of Theorem 1 (construc-
tion 3). This time, the only variation is that instead of storing a segment in an
internal node, we store the highest box that spans the interval corresponding
to that node (the union of the elementary intervals at the leaves of that node’s
subtree). For finding hi, we take the highest of those at the O(log c) ancestor
nodes of the i-th leaf. The whole computation is done using O(n) space and time
O(n log c). ��

4 Orthants in Higher Dimension

Quadrants and skylines easily generalize to higher dimensions, we call them
(generalized) orthants and skylines. Unfortunately, we do not have a construction

Towards Fast Linear-Sized Nets for Axis-Aligned Boxes 59

for generalized skylines, but we now present how small nets we can find efficiently
for orthants. The bound is far from optimal for dimensions greater than 2, as nets
of size Od(c log c) exist but take much longer to compute (see the introduction).
We use the notation Od(. . .) to indicate that the constant in the big oh may
depend (often exponentially) on d but not on n or c.

Theorem 4. Let B be a set of n orthants with the same orientation in Rd and
c be any parameter 1 ≤ c ≤ n. Then there exists a (1/c)-net N for B of size
Od(cd−1). Such a net can be found in time O(n + n log c).

Proof. The proof goes by induction on d. Choosing a direction, say that of xd,
and projecting the xd-boundaries of B on that direction yields a set E of xd

values. As in the previous section, we may form a set E ′ by selecting all the
�k(αn/c)�-th elements in E , for k = 1, . . . , c/α. For now, we leave the choice of
the constant α < 1 undetermined. The other elements may be sorted within E ′

by binary searching E ′, in total time O(n + n log c) again. So each orthant is
assigned the point of E ′ with the xd value immediately smaller. Now for each xd

in E ′ and its assigned orthants, we select a ((1−α)/c)-net for the (d−1)-orthants
in the plane xd. Collecting the c/α nets yields a subset N of orthants.

Clearly, a point that does not stab a box of N can stab only the boxes
assigned to its slice, or a fraction ((1−α)/c) of the boxes of the slices above, for
a total of at most n/c. Thus N is a (1/c)-net.

If the size of N is bounded by a function fd(c), we obtain the induction
fd(c) ≤ (c/α)fd−1(c/(1 − α)), with f2(c) = 64c. Hence

fd(c) ≤
64cd−1

αd−1(1 − α)(d−2)(d−1)/2
.

Optimizing for α, we find that the size is O((
√

ed/4)d−2cd−1), which is Od(cd−1).
��

Corollary 1. Let B be a set of n boxes in Rd and c be any parameter 1 ≤ c ≤ n.
Then there exists a (1/c)-net N for B of size Od(cd−1). Such a net can be found
in time O(n + n log c).

For points and halfspaces in Rd, Matoušek, Seidel, and Welzl [7] have shown
that there exist (1/c)-nets of size O(c). They also show that it suffices to restrict
to points in convex position, albeit by having nets bigger by a factor of d. We
prove an analog result for orthants, without the blowup factor. The analogue of
convex position for orthants is maximal position, as defined by Preparata and
Shamos [13].

Theorem 5. Suppose there exists a (1/c)-net of size s(c) for any set of orthants
in Rd in maximal position. Then there exists an (1/c)-net of size s(c) for any
set of orthants in Rd.

Proof. Consider any set B of n orthants, which we may assume to be in general
position, and call max (B) the subset of orthants in B that are maximal. Suppose

60 H. Brönnimann

that each orthant is unbounded towards negative coordinates, and call v the
vector (1, . . . , 1).

We replace each orthant B not in max (B) by an orthant B̄ which is maximal,
using the following construction: we first find the orthant max (B), which is the
last orthant in max (B) that is hit by the ray originating at the corner of B
towards v, and then put the orthant B̄ with the corner slightly beyond the last
hit point (in the direction of the face of max (B) that is hit). In this way, the
orthant B̄ is in maximal position. There is nothing special about v, all we need
is an orthant in B that completely dominates B. The construction is explained
in Figure 3. If B is in max (B), then we let B̄ = B, of course. Doing this for
every orthant in B yields a set B̄ of n orthants that are in maximal position.

v q'
v

B B

q
BB

Fig. 3. On the left, how to build a set B̄ of orthants in maximal position. The orthants
in max (B) are drawn in bold lines, the new orthant created for the box B is drawn in
dashed line. On the right, the problematic case when q stabs an orthant B̄ in B̄ which
is not in max (B): then we replace q by a point q′ just outside B̄.

By assumption, this set admits a (1/c)-net N̄ of size s(c). For each orthant
X in N̄ , if X is in max (B), then we put X into N ; otherwise, X = B̄ for some
non-maximal orthant B in B, and we put max (B) into N . Clearly, N has as
many elements as N̄ , or less.

Now why should N be a (1/c)-net for B? Suppose a point q stabs more than
n/c orthants in B. Then q can only stab even more orthants in B̄ since we only
move orthants upwards in any direction. So q must also stab an orthant X in
N̄ . If this orthant is in max (B), then we have proven that q stabs a orthant
in N . Otherwise, X = B̄ for some orthant B in B. If q stabs max (B), then
again it does stab an orthant in N , so a problem only occurs when q stabs an
orthant X = B̄ in N̄ but not its corresponding max (B). As shown in Figure 3,
we might move q towards a point q′ slightly above X. Then q′ does not stab
X any more, but it still stabs the same set of orthants in B. Then we can do
the same reasoning again with q′. Each time we move q into q′, the number of
orthants in N̄ that it stabs decreases, so the process must eventually stop, and
the only way to stop is to find a orthant X in N that is stabbed by the final
q′. Since the coordinates of q′ only increase, that orthant in N must contain the
original q. ��

Towards Fast Linear-Sized Nets for Axis-Aligned Boxes 61

5 Conclusion

The main point of this research is to obtain small nets, fast. All the runtimes
we give are O(n log c), for the whole range of values of c. This research hints
at another very natural set system (axis-aligned boxes in the plane) where the
general bound O(c log c) for a (1/c)-net can be improved to O(c), and more
efficient algorithms can be found. In this paper, we prove this is true for a
number of special cases. Komlos, Pach and Woeginger [5] have shown that there
exist set systems for which (1/c)-nets must have size Ω(c log c).

This also poses the analog problem of finding good approximations, in the
sense that not only does p hit few boxes if it misses N , but the number of hits
in N reflects the number of hits in B (scaled by |N |/|B|). The approach above
seems to collapse because nothing guarantees the representativity of N .

References

1. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Second Edition. Springer-Verlag, Heidel-
berg, 2000.

2. K. Clarkson, K. Varadarajan. Improved Approximation Algorithms for Geometric
Set Cover. To appear in Proceedings of the Twenty First Annual Symposium on
Computational Geometry, 2005, Pisa, Italy.

3. T. Cormen, C. Leiserson, R. Rivest and C. Stein. Introduction to Algorithms (2nd
edition). MIT Press, Cambridge, MA, 2002.

4. E. Ezra and M. Sharir. Output-sensitive construction of the union of triangles
In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 420—429, 2004.

5. J. Komlòs, J. Pach, G.J. Woeginger. Almost Tight Bounds for epsilon-Nets. Dis-
crete & Computational Geometry 7:163–173, 1992.

6. J. Matoušek. Lectures on Discrete Geometry. Springer, Berlin, 2002.
7. J. Matoušek, R. Seidel and E. Welzl. How to net a lot with little: small ε-nets for

disks and halfspaces. In Proceedings of the Sixth Annual Symposium on Computa-
tional Geometry, pp.16—22, June 7-9, 1990, Berkeley, California.

8. J. Matoušek. Approximations and optimal geometric divide-and-conquer. J. Com-
put. Syst. Sci. 50(2):203–208, 1995.

9. J. Matoušek. Efficient partition trees. Discrete & Computational Geometry 8:315–
334, 1992.

10. F. Nielsen, Fast Stabbing of Boxes in High Dimensions. Theoretical Computer
Science, Elsevier Science, 246(1-2): , 2000.

11. M.J. Katz, F. Nielsen and M. Segal. Maintenance of a Piercing Set for Intervals
with Applications Algorithmica 36(1):59–73, 2003.

12. J. Pach and P.K. Agarwal. Combinatorial Geometry. J. Wiley, New York, 1995.
13. F. Preparata and M.I. Shamos. Computational Geometry. Springer, New York, 1985.
14. N. Sauer. On the density of families of sets. J. Combinatorial Theory Ser. A,

13:145–147, 1972.
15. S. Shelah. A combinatorial problem; stability and order for models and theories in

infinitary languages, Pacific J. Math. 41:247-261, 1972.
16. V. Vapnik and A.Ya. Červonenkis. On the uniform convergence of relative frequen-

cies of events to their probabilities. Theory Probab. Appl. 16:264-280, 1971.

Farthest-Point Queries

with Geometric and Combinatorial Constraints

Ovidiu Daescu1,�, Ningfang Mi2, Chan-Su Shin3,��, and Alexander Wolff4,� � �

1 Department of Computer Science,
University of Texas at Dallas, Richardson, TX 75083, USA

daescu@utdallas.edu
2 Department of Computer Science, College of William and Mary,

P.O. Box 8795, Williamsburg, VA 23187-8795, USA
ningfang@cs.wm.edu

3 School of Electronics and Information Engineering,
Hankuk University of Foreign Studies, Korea

cssin@hufs.ac.kr
4 Department of Computer Science, Karlsruhe University,

P.O. Box 6980, D-76128 Karlsruhe, Germany
http://i11www.ira.uka.de/people/awolff

Abstract. In this paper we discuss farthest-point problems in which
a set or sequence S of n points in the plane is given in advance and
can be preprocessed to answer various queries efficiently. First, we give
a data structure that can be used to compute the point farthest from a
query line segment in O(log2 n) time. Our data structure needs O(n log n)
space and preprocessing time. To the best of our knowledge no solution
to this problem has been suggested yet. Second, we show how to use this
data structure to obtain an output-sensitive query-based algorithm for
polygonal path simplification. Both results are based on a series of data
structures for fundamental farthest-point queries that can be reduced to
each other.

1 Introduction

Proximity problems are fundamental in computational geometry and have been
studied intensively since Knuth [15] posed the post-office problem about three
decades ago. In this paper we discuss farthest-point problems in which a set or
sequence S of n points in the plane is given in advance and can be preprocessed
to answer various queries efficiently. Our main results are the following.

First, we present a data structure that can be used to compute the point
farthest from a query line segment in O(log2 n) time. Our data structure needs
O(n log n) space and preprocessing time. To the best of our knowledge no solution
to this problem has been suggested yet.

� Supported by NSF grant CCF-0430366.
�� Supported by Hankuk University of Foreign Studies Research Fund of 2005.

� � � Supported by grant WO 758/4-1 of the German Science Foundation (DFG).

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 62–75, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Farthest-Point Queries with Geometric and Combinatorial Constraints 63

Second, we design a data structure that can be used to simplify polygonal
paths in the following sense: given a path P = (p1, . . . , pn) and a real Δ > 0
we want to find a subpath P ′ of P that goes from p1 to pn and consists ex-
clusively of Δ-approximating segments according to the tolerance-zone crite-
rion, i.e. a sequence of line segments pipk with the property that each pj with
i < j < k is at most Δ away from pipk. We are interested in a min-# sub-
path, i.e. a subpath with the minimum number of vertices. This is motivated
by data reduction (e.g. in geographic information systems) and considered an
important problem—finding a near-linear solution is listed as problem 24 in the
Open Problems Project [17]. Our query-based algorithm finds a min-# subpath
in O(n2 log3 n) worst-case running time. This is slightly worse than the quadratic
running time of the best incremental algorithm [6], but much better in practice
since, as we will see later, the running time of our algorithm is output sensitive.
Our algorithm has the same structure as a query-based algorithm [11] for the
weaker infinite-beam criterion which requires that a vertex pj of P that is short-
cut by an edge pipk of P ′ must be within distance Δ from the line through pi

and pk. The algorithm [11] outperformed an incremental algorithm similar to [6]
in an experimental evaluation.

Both main results are based on our solution of the following basic problem:

FarthestVertexInHalfplane (FV-halfplane): Preprocess a convex n-gon
C for queries of the following type. Given (q, lq), where q is a point and lq is
a directed line through q, decide whether there is a vertex of C to the left of
lq. If yes, report the one farthest from q. (See Figure 1.)

Other than one might think at first glance, this problem cannot be solved sim-
ply by binary search on the vertices of C since the distance from the query point
q is not unimodal on the boundary of C. Our data structure for FV-halfplane
answers queries in O(log2 n) time given O(n log n) space and preprocessing time.

Next we address a problem whose solution yields our first main result, an
efficient data structure for finding points farthest from query line segments.

FarthestPointInHalfstrip (FP-halfstrip): Preprocess a set S of n points
for queries of the following type. Given a triplet (q, lq, Δ), where q is a point
and lq is a directed line through q such that all points in S are within distance
Δ from lq, decide whether there is a point p ∈ S such that (i) |qp| ≥ Δ, and
(ii) the projection of p on lq lies before q. If yes, report the point farthest
from q that fulfills conditions (i) and (ii). (See Figure 2.)

We prove that if there are points fulfilling conditions (i) and (ii), then among
these the one farthest from q among them lies on the convex hull of S. Note
that this statement does not hold if we drop condition (i): in Figure 3 the point
p is farthest from q among all points in S that fulfill condition (ii), but p does
not lie on the convex hull of S. Thanks to condition (i), our data structure for
FV-halfplane in fact solves FP-halfstrip within the same asymptotic bounds.
This in turn yields our first main result: we can preprocess a set S of n points

64 O. Daescu et al.

p

lq

q
max!

Fig. 1.
FV-halfplane

Δ

q lq

p

Fig. 2.
FP-halfstrip

q

p

lq

Fig. 3.
Counterexample

Δ

pi

pj

pk

pipj

Fig. 4.
FIP-halfstrip

in O(n log n) time and space such that the point in S farthest from a query line
segment s can be reported in O(log2 n) time.

For our second main result, which deals with polygonal path simplification,
point order is important. Thus we consider an indexed version of FP-halfstrip:

FarthestIndexedPointInHalfstrip (FIP-halfstrip): Preprocess a se-
quence S = (p1, . . . , pn) of points for queries of the following type. Given
a triplet (i, j, Δ) such that all points pk with i < k < j are within distance
Δ from the line pipj , decide whether there is a point pk with i < k < j such
that (i) |pipk| ≥ Δ, and (ii) the projection of pk on pipj lies before pi. If yes,
report the point pk farthest from pi that fulfills (i) and (ii). (See Figure 4.)

Our time and space bounds for FIP-halfstrip are a log-factor above those
for FV-halfplane. The data structure for FIP-halfstrip yields an output-sensitive
query-based algorithm for polygonal path simplification. Given a polygonal path
P = (p1, . . . , pn) in R2 and a real Δ > 0, the algorithm computes a sub-
path of P with the minimum number mtz of vertices among all subpaths sat-
isfying the tolerance-zone criterion. The algorithm runs in O(Ftz(mtz)n log3 n)
time and uses O(n log2 n) space, where Ftz(mtz) ≤ n is the number of ver-
tices that can be reached from p1 with at most (mtz − 2) Δ-approximating
segments.

Next we look at a batched version of an indexed farthest-point problem.
Given a sequence S of points, we want to observe how the point farthest from
a fixed point p changes over time while we insert the points of S one after the
other. In each round we ignore all those points that lie in a halfplane determined
by the newly inserted point. Our solution assumes knowledge of S before the
observation starts.

BatchedFarthestIndexedPointInHalfplane (BFIP-halfplane): Given
a sequence S = (p1, . . . , pn) of points and a point p /∈ S, decide for each
i ∈ {1, . . . , n} whether there is a point pf ∈ {p1, . . . , pi} that lies on the same
side as p with respect to the perpendicular bisector of p and pi. If yes, report
the point pf farthest from p that has the above property.

Our algorithm for this problem takes O(n log2 n) time and O(n log n) space.

Farthest-Point Queries with Geometric and Combinatorial Constraints 65

Our paper is structured as follows. In Section 2 we briefly review related work.
In Section 3 we first consider the problem FP-halfplane, a generalization of FV-
halfplane where points do not have to be in convex position. In Section 4 we solve
the convex case, i.e. FV-halfplane. In Section 5 we show that FP-halfstrip can be
reduced to FV-halfplane and how this helps to solve the farthest-point-to-line-
segment problem. In Section 6 we show how the data structure for FV-halfplane
can be used to solve the indexed problem FIP-halfstrip. Section 7 settles the
connection between FIP-halfstrip and polygonal path simplification. In Section 8
we address the batched problem BFIP-halfplane.

2 Previous Work

The problems we study are related to the nearest-point query problem [9, 18,
19] and to the all-pairs farthest- and closest-neighbors problem [21, 1, 3]. Cole
and Yap [9] consider closest-point-to-line queries and present a data structure
with O(log n) query time that needs O(n2) preprocessing time and space. A
data structure with O(n0.695) query time that needs O(n log n) preprocessing
time and O(n) space is presented by Mitra and Chaudhuri [18]. Using simplicial
partitions, Mukhopadhyay [19] constructs in O(n1+ε) time a data structure of
size O(n log n) that finds a point closest to a query line in O(n

1
2+ε) time for

arbitrary ε > 0. Finding a point farthest from a query line seems to be easier:
it can be done by O(log n) time given O(n log n) preprocessing and O(n) space,
see Section 5. This data structure helps us to show how to find a point farthest
from a query line segment in O(log2 n) time given O(n log n) preprocessing and
space. Bespamyatnikh and Snoeyink [5] show how to preprocess a set S of n
points in O(n log n) time using O(n) space such that the point closest to a query
line segment outside the convex hull of S can be reported in O(log n) time.
Using this data structure, Bespamyatnikh [4] shows how to solve in O(n log2 n)
time a batched problem where n points and n disjoint line segments are given
and for each segment the closest point has to be determined. In contrast, our
data structure for FP-halfstrip (see Section 5) answers farthest-point queries for
an arbitrary line segment in O(log2 n) time each, given O(n log n) space and
preprocessing time.

While the all-pairs nearest neighbors of n points in a fixed dimension can
be computed in optimal O(n log n) time [21], no algorithm is known to compute
the all-pairs farthest neighbors of n points within the same time bound. Agarwal
et al. [1] show that the all-pairs farthest neighbors in R3 can be computed in
O(n4/3 log4/3 n) time. If the points are the vertices of a convex polygon in R2,
the all-pairs farthest neighbors can be computed in linear time, even though the
problem has a complexity of Ω(n log n) for arbitrary points [3]. In R3 the convex
case can be solved in O(n log2 n) expected time [8].

Although the closest-point-to-line query problem and the all-pairs farthest
neighbors problem are well understood, we are not aware of any published work
on the farthest-point problems we consider.

66 O. Daescu et al.

3 Farthest Point in Halfplane

In this section, for completeness we address the following natural generalization
of FV-halfplane.

FarthestPointInHalfplane (FP-halfplane): Preprocess a set S of n
points for queries of the following type. Given (q, lq), where q is a point
and lq is a directed line through q, decide whether there is a point in S to
the left of lq. If yes, report the one farthest from q.

We use the following structure: a simplicial partition for a set S of n points
in the plane is a collection of pairs Ψ(S) = {(S1, t1), (S2, t2), . . . , (Sr, tr)}, where
the sets of type Si partition S, and ti is a triangle that contains Si for i = 1, . . . , r.
An example of a point set S and a simplicial partition of S of size 4 are given
in Figure 5. For a given simplicial partition Ψ(S), the crossing number of a
line l is the number of triangles of Ψ(S) that l intersects. For example, the
line l in Figure 5 has crossing number 3. The crossing number of Ψ(S) is the
maximum crossing number over all possible lines l. We say that a simplicial
partition Ψ(S) is fine if |Si| ≤ 2n/r, for every 1 ≤ i ≤ r. Matoušek [16] showed
the following important result on the construction of fine simplicial partitions
with low crossing number:

Theorem 1 ([16]). Let S be a set of n points in the plane, and let r be an
integer with 1 ≤ r ≤ n/2. Then a fine simplicial partition Ψ(S) of size r with
crossing number O(

√
r) exists. If r is constant, Ψ(S) can be constructed in O(n)

time and space.

Simplicial partitions are the basis of an efficient search data structure, called
partition tree. The root of a partition tree of S has r children v1, . . . , vr that
correspond one-to-one to the sets Si in Ψ(S). Each child vi is the root of a
recursively defined partition tree of Si. The partition tree of n points can be
computed in O(n log n) time and uses O(n) space [16].

To solve the problem FP-halfplane we will take advantage of the farthest-
point Voronoi diagram. Given a set of n sites in the plane, the farthest-point
Voronoi diagram is a partition of the plane into cells, each of which is associated
with a site and contains all the points in the plane that are farther from that
site than from any other site. Unlike the nearest-point Voronoi diagram, in the
farthest-point Voronoi diagram only the sites on the convex hull have a non-
empty Voronoi region associated with them. In the plane, the farthest-point
Voronoi diagram can be constructed in O(n log n) time if the sites are in general
position [20]. When the sites are the vertices of a convex polygon, the diagram
can be constructed [2] and preprocessed for planar point-location queries [12] in
linear time.

We start by constructing the partition tree of S. Recall that for a node vi

of the tree, Si is the subset of S stored at vi, and ti is the triangle of Ψ(S)
that contains Si. Let ni = |Si|. For each node vi we compute and store the

Farthest-Point Queries with Geometric and Combinatorial Constraints 67

l

t1

t2

t3

t4

Fig. 5. A simplicial partition

C

lq

q

C

lq

q

s

t

C
lq

q

(a) (b) (c)

Fig. 6. Cases for the intersection of lq with C

farthest-point Voronoi diagram of Si and preprocess it for planar point-location
queries. This takes τ(ni) = O(ni log ni) time and uses σ(ni) = O(ni) space. Let
T (n) and S(n) be the total construction time and space consumption of these
secondary data structures, respectively. They satisfy the following recurrences:
T (n) ≤ τ(n) +

∑r
i=1 T (ni) and S(n) = σ(n) + r +

∑r
i=1 S(ni) for n > 1, and

T (1) = S(1) = 1. Since we have that
∑r

i=1 ni = n, that ni ≤ 2n/r, and that r
is a constant, the general version of the Master theorem [10] yields that T (n) =
O(n log2 n).

When we query the partition tree, we want to find the point in S farthest
from the query point q that is left of the directed line lq. We have to consider
two different kinds of point sets Si. First we consider the O(

√
r) point sets Si

with ti ∩ lq = ∅. For each such point set Si, we recursively search in its simplicial
partition Ψ(Si). Second we have to consider those point sets Si that lie left of
the line lq. For each of these at most r − O(

√
r) point sets, we locate the query

point q in the farthest-point Voronoi diagram to find the point farthest from q.
Point location takes time logarithmic in the size of the partition. Therefore, we
get the following recurrence for the query time: Q(1) = 1 and for n > 1

Q(n) ≤ r +
∑

ti∩lq=∅
O(log ni) +

∑
ti∩lq =∅

Q(ni). (1)

Let c
√

r = O(
√

r) be the crossing number of Ψ(S). Given an arbitrary ε > 0, we
can set r = �2(c

√
2)1/ε�, which makes r a constant and yields Q(n) = O(n1/2+ε)

for n large enough, i.e. n ≥ 2r. This can be seen by bounding the first sum in
Inequality 1 by O(r log n) and the second sum by c

√
r · Q(2n/r). We sum up:

Theorem 2. There is a data structure for FP-halfplane that answers queries in
O(n1/2+ε) time given O(n log2 n) preprocessing time and O(n log n) space.

4 Farthest Vertex in Halfplane

We now tackle FV-halfplane, the convex case of FP-halfplane. It is the basis of
our solutions for the problems FP-halfstrip and FIP-halfstrip. The problem is to
preprocess a convex n-gon C such that for a query pair (q, lq), where q is a point
and lq is a directed line through q, one can efficiently decide whether there is a
vertex of C left of lq and if yes, report the one farthest from q.

68 O. Daescu et al.

Given a query pair (q, lq), we first compute potential intersection points of lq
with the boundary ∂C of C. This can be done by binary search in O(log n) time
since the distance from lq is a unimodal function on ∂C. There are three possible
cases, see Figure 6: (a) lq ∩ C = ∅ and C lies to the right of lq; (b) lq ∩ C = ∅
and C lies to the left of lq; (c) lq has nonempty intersection with C. Knowing
that lq ∩ C = ∅, case (a) can be handled in constant time. Case (b) reduces to
finding the point on C farthest from lq. This can be achieved in O(log n) time
by locating the query point in the farthest-point Voronoi diagram of the vertices
of C. In the remainder of this section we show how to handle case (c).

In the preprocessing phase, we construct a balanced binary tree T in
O(n log n) time as follows. The vertices of the convex polygon C, in counter-
clockwise order from the rightmost vertex, are associated with the leaves of T .
At each internal node u, we compute and store the farthest-point Voronoi dia-
gram Vu of the leaf descendants of u. This takes linear time for each level of T
since all point sets are in convex position [2]. Within the same asymptotic time
bound we then preprocess Vu for planar point-location queries [12]. Thus the
computation of T takes O(n log n) time in total.

We query T as follows. Consider the edges of C intersected by lq. If these
edges are incident to the same vertex v of C to the left of lq then we report v.
Otherwise the edges have two different endpoints to the left of lq. Let s be the
first and t the second endpoint in counter-clockwise order on C, see Figure 6. We
assume that the sequence of points on C that lie to the left of lq does not contain
both the rightmost vertex and its counter-clockwise predecessor. Otherwise the
words left and right in the following description have to be exchanged.

We walk in T from s to t and collect a set V of O(log n) farthest-point Voronoi
diagrams in two phases. In the ascending phase we go upwards from s until we
reach the least common ancestor a of s and t. Whenever we get to a node u = a
from its left child, we add to V the Voronoi diagram stored at the right child of
u. In the descending phase we go down from a towards t. Whenever we go to
the right child of a node u = a, we add to V the Voronoi diagram stored at the
left child of u. Clearly, all points associated with these Voronoi diagrams are to
the left of lq and thus the sought vertex is either s, t or one of these points. We
locate q in O(log n) time in each farthest-point Voronoi diagram in V and keep
track of the point farthest from q. This answers a query in O(log2 n) time.

Theorem 3. There is a data structure for FV-halfplane that answers queries
in O(log2 n) time given O(n log n) space and preprocessing time.

5 Farthest Point in Halfstrip

In this section we want to preprocess a set S of n points for queries of the
following type. Given a triplet (q, lq, Δ), where q is a point and lq is a directed
line through q such that all points in S are within distance Δ from lq, decide
whether there is a point p ∈ S such that (i) |qp| ≥ Δ, and (ii) the projection
of p on lq lies before q. If yes, report the point farthest from q that fulfills (i)
and (ii). (See Figure 2.)

Farthest-Point Queries with Geometric and Combinatorial Constraints 69

FP-halfstrip can be solved by the same approach as for FP-halfplane: con-
struct a partition tree based on a fine simplicial partition in O(n1+ε) time [16]
and enhance it with a second-level data structure. For the points at each internal
node of the partition tree, the second-level structure consists of the farthest-point
Voronoi diagram preprocessed for planar point location.

We would prefer to use the faster solution for FV-halfplane, i.e. for the convex
case. At first glance it seems that this is not possible, since among the points
that fulfill condition (ii), the point p′ farthest from the query point q may lie
inside the convex hull C of S, see Figure 3. Condition (i), however, does in fact
give us a way to use the data structure for FV-halfplane to solve FP-halfstrip.
For a point q and a directed line lq with q ∈ lq let l′q be the directed line that
results from turning lq around q by +90◦. Then the points whose projection on
lq lies before q are exactly the points to the left of l′q.

Lemma 1. Given a set S ⊂ R2 and a triplet (q, lq, Δ), where q is a point and lq
is a directed line through q such that all points in S are within distance Δ from
lq, if there is a point p ∈ S such that (i) |qp| ≥ Δ, and (ii) p lies to the left of l′q,
then among all points in S to the left of l′q the point farthest from q is a vertex
of the convex hull C of S.

Proof. Let Σ be the closed strip that is bounded by the two lines at distance
Δ from lq and let H be the part of S to the right of l′q. In Figure 7, Σ is the
whole shaded area, H is the darker part. Let p be the point farthest from q to
the left of l′q, let D be a disk centered at q that touches p, and let D′ = D ∩ Σ.
In Figure 7, the boundary of D is dotted, that of D′ is bold solid. Finally let
U = D′ ∪ H . Then p lies on the boundary of U . If |pq| ≥ Δ, U is convex. Thus
for any (finite) set F with p ∈ F ⊂ U it holds that p is a vertex of the convex
hull of F . ��

Since the convex hull of S can be computed in O(n log n) time, we have:

Theorem 4. There is a data structure for FP-halfstrip that answers queries in
O(log2 n) time given O(n log n) space and preprocessing time.

This yields our first main result, a data structure for finding the point farthest
from a query segment.

Theorem 5. Given a set S of n points, we can construct in O(n log n) space
and preprocessing time a data structure that for any line segment s determines
in O(log2 n) time the point in S farthest from s.

Proof. Let s = uv and let � = uv be the line that is directed from u to v. There
are two mutually exclusive cases. In the first case the point farthest from s is
also the point farthest from �. For this case we preprocess S by computing in
O(n log n) time the convex hull C of S. Then this case can be solved by binary
search in O(log n) time since the distance from � is unimodal on C. Note that the
point farthest from � also gives us the smallest value Δ such that S lies within
a Δ-strip around �. For the second case, let Sw (w ∈ {u, v}) be the set of all

70 O. Daescu et al.

points in S that are separated from s by the line orthogonal to s in w. In this
case the point farthest from s is the point in Su farthest from u or the point in
Sv farthest from v. These two points can be determined within the desired time
and space bounds by querying a data structure for FP-halfstrip with the triplets
(u, uv, Δ) and (v, vu, Δ). ��

6 Farthest Indexed Point in Halfstrip

We solve FIP-halfstrip, the indexed version of FP-halfstrip, in a way similar to
FV-halfplane. At the same time we use the data structure for FV-halfplane as a
plug-in. Let the points in the input sequence S be denoted by p1, . . . , pn. In the
preprocessing phase we construct a balanced binary tree T of the same structure
as for FV-halfplane. The i-th leaf of T is associated with the point pi ∈ S. We
build the tree T bottom-up. At each internal node v, we compute and store
the convex hull Cv of the leaf descendants pi(v), . . . , pj(v) of v. We also compute
and store at v a secondary level data structure, namely the tree described in
Section 4 that solves FV-halfplane (i.e. FP-halfstrip) for the vertices of Cv. The
overall computation of T requires O(n log2 n) time and space.

A query is also very similar to FV-halfplane: for a query (i, j, Δ), we follow
the unique path from pi to pj in T collecting a set C of O(log n) convex hulls
whose union contains all points pk with i < k < j. This is done in the same
way as with the set of farthest-point Voronoi diagrams in Section 4. For each
convex hull Cv ∈ C, we solve FP-halfstrip for the triplet (pi, pipj , Δ) using the
secondary data structure stored at vertex v of T . (Compare the situations in
Figures 2 and 4!) Thus we can decide in O(log2 |Cv|) time whether there is a k,
i(v) ≤ k ≤ j(v), such that the point pk satisfies the two FIP-halfstrip conditions.
Since the size of the set C is O(log n), the overall query time is O(log3 n).

Theorem 6. There is a data structure for FIP-halfstrip that answers queries
in O(log3 n) time given O(n log2 n) space and preprocessing time.

7 Polygonal Path Simplification and FIP-Halfstrip

In this section we use our solution of FIP-halfstrip to extend a recent result
of Daescu and Mi [11] for the min-# version of the polygonal path simplifica-
tion problem: Given a polygonal path P = (p1, p2, . . . , pn), with n vertices, and
an error tolerance Δ, find a subpath P ′ = (pi1 = p1, pi2 , . . . , pim = pn) of P
such that the vertices of P ′ are an ordered subset of the vertices of P , each
line segment pij pij+1 of P ′ is a Δ-approximation of the corresponding subpath
(pij , pij+1, . . . , pij+1) of P , and the number of vertices m of P ′ is minimized.

To decide whether a line segment of P ′ is a Δ-approximation of the corre-
sponding subpath of P , two error criteria are commonly used: the tolerance-zone
criterion and the infinite-beam criterion. The first criterion produces a com-
pressed version that better captures the features of the original path, while the

Farthest-Point Queries with Geometric and Combinatorial Constraints 71

second gives a better degree of compression. According to the tolerance-zone cri-
terion, all vertices of the approximated subpath of P must be within distance Δ
from the approximating line segment of P ′, while according to the infinite-beam
criterion all vertices of the approximated subpath must be within distance Δ
from the line supporting the approximating line segment.

In [11] an output sensitive, query based algorithm is presented for solving
the min-# problem according to the infinite-beam criterion. There, it is also
shown that the algorithm is very fast in practice and outperforms previous algo-
rithms. Since a Δ-approximation segment according to the tolerance-zone crite-
rion is also a Δ-approximation segment according to the infinite-beam criterion,
extending the algorithm in [11] to the tolerance-zone criterion reduces to an-
swering queries on indexed points, as formulated in problem FIP-halfstrip. More
precisely, if the line segment pij pij+1 of P ′, for j ∈ {1, . . . , mtz − 1}, approx-
imates the subpath P [ij, ij+1] = (pij , pij+1, . . . , pij+1) of P according to the
infinite-beam criterion, then all the vertices of the subpath P [ij, ij+1] are within
distance Δ from the line pij pij+1 . Let lj and l′j denote the lines orthogonal to
pij pij+1 in pij and pij+1 , respectively. If for each vertex pk of P , ij ≤ k ≤ ij+1,
with the property that lj separates pk and pij+1 or l′j separates pk and pij , we
have that pk is within distance Δ from pij or pij+1 , respectively, then every
vertex on the subpath P [ij, ij+1] is within distance Δ from the line segment
pij pij+1 . Clearly, this reduces to solving FIP-halfstrip, see Section 6. The result
is an output sensitive, query-based algorithm for solving the min-# problem
under the tolerance-zone criterion.

Theorem 7. Given a polygonal path P = (p1, p2, . . . , pn) in the plane,
the min-# problem under the tolerance-zone criterion can be solved in
O(Ftz(mtz) n log3 n) time using O(n log2 n) space, where Ftz(mtz) ≤ n is the
number of vertices that can be reached from p1 with at most (mtz − 2) Δ-
approximating segments, and mtz is the number of vertices on an optimal ap-
proximating path.

Proof. The algorithm is similar to the query-based algorithm in [11], except
that now each query takes O(log n + log3 n) time instead of O(log n) time: as
in [11] we first spend O(log n) time to decide whether some segment pipj is a
Δ-approximating segment according to the infinite-beam criterion. If the answer
is positive, we now use Theorem 6 and spend additional O(log3 n) time to de-
cide whether pipj is a Δ-approximating segment according to the tolerance-zone
criterion. ��

8 Batched Farthest Indexed Point in Halfplane

In this section we consider the problem BFIP-halfplane: given a sequence S =
(p1, . . . , pn) of points and a point p /∈ S, decide for each i ∈ {1, . . . , n} whether
there is a point pf ∈ {p1, . . . , pi} that lies on the same side as p with respect to
the perpendicular bisector of p and pi. If yes, report the point pf farthest from
p that has the above property.

72 O. Daescu et al.

A version of BFIP-halfplane without the index restriction has been considered
in [14]. There the problem of computing the minimum-sum dipolar spanning tree
(MSST) is considered. The MSST of a point set S is a tree with vertex set S
and two non-leaf nodes x, y ∈ S that minimizes |xy| + max{rx, ry}, where rx

and ry are the radii of two disks centered at x and y whose union covers S. In
the computation of the MSST the following subproblem shows up: report for
each point pi ∈ S a point farthest from the fixed point p ∈ S that lies on the
same side as p with respect to the perpendicular bisector of p and pi. In [14] the
problem is reduced to the problem of finding for each pi ∈ S the first disk in
a sequence of disks that does not contain pi. This problem has been addressed
in [7] under the name off-line ball exclusion search (OLBES). The authors set up
a tree data structure with a space requirement of O(n log n) and then query this
structure with each point in S. This results in a total running time of O(n log n)
for OLBES in the plane. In [14], a version of OLBES where all disks intersect
a common point is solved in O(n log n) time and O(n) space by sweeping an
arrangement of circular arcs. The same problem is solved in [13] in O(n log n)
time and space using a tree data structure and fractional cascading.

We are interested in the problem BFIP-halfplane since it adds a time com-
ponent to the pure query problem FIP-halfplane. We want to keep track on how
the point farthest from the fixed point p changes over time while we insert the
points of S one after the other and ignore all those points that lie in a halfplane
determined by the newly inserted point. We solve this problem by setting up a
tree data structure similar to that in the proof of Lemma 2 in [13]. Here, how-
ever, we must solve a different OLBES problem in each query and thus need to
modify our tree successively.

We need some notation. Let D(x, p) be the open disk centered at x that
touches p and let h(p, q) be the closed halfplane that contains p and whose
boundary is the perpendicular bisector of p and q. Note that x ∈ h(p, q) is
equivalent to |xp| ≤ |xq|, which in turn is equivalent to q /∈ D(x, p).

Now we give our algorithm for BFIP-halfplane. Let p1, . . . , pn be the sequence
of input points. We first sort the n disks D(pi, p) in order of non-increasing radius.
Let D1, . . . , Dn be the resulting sequence. Thus, a disk Dk in this sequence
corresponds to some disk D(pi, p) and in general k = i. Let Dn+1 = ∅. We
build a binary tree T as follows. The leaves of T correspond to the sequence
D1, . . . , Dn+1, from left to right. Each inner node v stores the intersection Iv of
the leaf descendants of v (excluding Dn+1). We label each node v with a pair
[av, bv] encoding the set Sv = {av, . . . , bv} of consecutive indices that correspond
to the disks associated with the leaves of the subtree of T rooted at v. In Figure 8
a tree with n = 13 is depicted. We build T in a bottom-up fashion. Each inner
node has two children in the previous level, except possibly a level’s rightmost
node, which can have a right child in an earlier level, see the node with label
[9, 13] in Figure 8. We query T with the points in S, and the answer of a query
will correspond to the index of the first disk in the sequence D1, . . . , Dn+1 that
does not contain the query point.

Farthest-Point Queries with Geometric and Combinatorial Constraints 73

Σ

lq

l′q

q

p

H
D′

D

C

Δ

Δ

Fig. 7. Proof of Lemma 1

1 2 3 4 5 6 7 8

[1, 2] [3, 4] [5, 6] [7, 8]

9 10 11 12

[9, 10] [11, 12]

[1, 4] [5, 8] [9, 12]

[1, 8] [9, 13]

[1, 13]

∅

,,no” ,,yes”

13

[13, 13]

q /∈ I[1,8] q ∈ I[1,8]

Fig. 8. The tree T for n = 13. Bold arrows indicate
the search path for a point q ∈ (D1 ∩ · · · ∩ D10) \D11

Unlike [7, 13] we start with an empty skeleton of T , i.e. all inner nodes v are
labeled by [av, bv], but all leaves and all intersections Iv are set to R2. The order
in which we query becomes crucial. We go through the points p1, . . . , pn ∈ S
in order of increasing index. When we query with the point pi, only the disks
D(p1, p), . . . , D(pi−1, p) have been inserted in T . Before querying T with pi we
update T by adding the new disk Dk = D(pi, p) (recall that usually k = i) to
the intersection Iv for each node v on the path from the root to the leaf that
corresponds to Dk. Querying T with pi amounts to following a path from the
root to a leaf. In each inner node v with left child �, the test pi ∈ I� is performed.
If pi ∈ I�, the query continues with the right, otherwise with the left child of
v, see Figure 8. The leaf at the end of the query path π determines what our
algorithm reports. Let Dj be the disk corresponding to that leaf. If j ≤ n, then
we report that pj is the point farthest from p in {p1, . . . , pi}∩h(p, pi). Otherwise
(i.e. if j = n + 1) we report that {p1, . . . , pi} ∩ h(p, pi) is empty. This algorithm
yields the following.

Theorem 8. Given a sequence S of n points and a point p ∈ S, BFIP-halfplane
can be solved in O(n log2 n) time and O(n log n) space.

Proof. We first show the correctness of the above algorithm. Depending on the
index of the disk Dj we consider two cases. The first case is that j = n + 1.
Then π is the rightmost root–leaf path. Consider the left children of the nodes
on π. The sets S� that belong to these left children partition {1, . . . , n}. In
other words, the intersection of I� over these children is D1 ∩ · · · ∩ Dn. Since
π is the rightmost root–leaf path, the containment queries in all nodes on π
were answered positively. Thus pi is contained in all disks currently in T , i.e.
pi ∈ D(p1, p) ∩ · · · ∩ D(pi, p). This means that none of p1, . . . , pi lies in h(p, pi).
Otherwise Lemma 1 in [14] would guarantee that pi ∈ D(pk, p) for the point
pk ∈ {p1, . . . , pi} farthest from p in h(p, pi).

The second case is j ≤ n. Again we consider the left children of the nodes
on the query path π of pi. The sets S� partition {1, . . . , j − 1} if we take only
those left children � into account that do not themselves lie on π. Similarly to
above, the intersection of I� over these children is D1 ∩ · · · ∩ Dj−1. Thus, pi

74 O. Daescu et al.

is contained in all Dk with k < j that are currently in T . On the other hand,
since π is not the rightmost root–leaf path, π contains at least one node that is
a left child of a node on π. The last such left child v is the root of the subtree
whose rightmost leaf corresponds to Dj . Thus v is associated with some set
Sv = {iv, . . . , j}, where 1 ≤ iv ≤ j. Since we have already observed that pi

is contained in all Dk with k < j that are currently in T , but π came to v
via a “no”-branch (pi /∈ Iv), we now know that pi ∈ Dj . Let m be such that
Dj = D(pm, p). Note that pi ∈ D(pm, p) means that D(pm, p) was inserted in T
before querying with pi, and thus m ≤ i. Since pi ∈ D(pm, p), and pi ∈ D(pr, p)
for all r ≤ i with |ppr| > |ppm|, Lemma 1 in [14] yields that pm is farthest from
p in {p1, . . . , pi} ∩ h(p, pi).

The total running time is O(n log2 n) since both querying and updating T
take O(log2 n) time for each pi. The space consumption is O(n log n) since each
disk contributes at most one arc to each intersection stored on the path from
the root to “its” leaf. For details refer to the full version of this paper. ��

The definition of BFIP-halfplane and Theorem 8 can be generalized with-
out much effort as follows. Instead of insisting that the separator of p and pi

splits ppi in a ratio of 1:1, any other ratio can be used as long as the split is
orthogonal.

9 Conclusions

We have presented solutions to some very basic farthest-point problems and have
shown how they can be used to solve other, more complex problems efficiently,
such as simplifying polygonal paths or determining the point farthest from a
query segment. Both these problems can be solved more efficiently if the solution
of the underlying problem FV-halfplane can be improved. It is possible to reduce
the query time to O(log n), e.g. by storing the farthest-point Voronoi diagrams
of all Θ(n2) subsets of vertices that are consecutive on the given convex polygon.
However, it seems hard to achieve the same improvement under the condition
that space consumption and preprocessing time remain in O(n log n).

Acknowledgments

We thank Raimund Seidel for pointing us to the work of Edelsbrunner et al. [12],
which helped us to reduce the preprocessing time of our data structure for FV-
halfplane. We thank Raghavan Dhandapani for pointing out the alternative solu-
tion for FV-halfplane with O(log n) query time and O(n3) preprocessing time. We
finally wish to thank the DIMACS center where this research was started.

References

[1] P. K. Agarwal, J. Matoušek, and S. Suri. Farthest neighbors, maximum span-
ning trees and related problems in higher dimensions. Computational Geometry:
Theory and Applications, 1(4):189–201, 1992.

Farthest-Point Queries with Geometric and Combinatorial Constraints 75

[2] A. Aggarwal, L. J. Guibas, J. B. Saxe, and P. W. Shor. A linear-time algorithm for
computing the Voronoi diagram of a convex polygon. Discrete & Computational
Geometry, 4(6):591–604, 1989.

[3] A. Aggarwal and D. Kravets. A linear time algorithm for finding all farthest
neighbors in a convex polygon. Information Processing letters, 31(1):17–20, 1989.

[4] S. Bespamyatnikh. Computing closest points for segments. Int. J. Comput. Geom.
Appl., 13(5):419–438, 2003.

[5] S. Bespamyatnikh and J. Snoeyink. Queries with segments in Voronoi diagrams.
Comput. Geom. Theory Appl., 16(1):23–33, 2000.

[6] D. Z. Chen and O. Daescu. Space-efficient algorithms for approximating polyg-
onal curves in two dimensional space. International Journal of Computational
Geometry and Applications, 13(2):95–112, 2003.

[7] D. Z. Chen, O. Daescu, J. Hershberger, P. M. Kogge, and J. Snoeyink. Polygonal
path approximation with angle constraints. In Proc. 12th Ann. ACM-SIAM Symp.
on Discrete Algorithms (SODA’01), pp. 342–343, 2001.

[8] O. Cheong, C.-S. Shin, and A. Vigneron. Computing farthest neighbors on a
convex polytope. Theoretical Computer Science, 296:47–58, 2003.

[9] R. Cole and C.-K. Yap. Geometric retrieval problems. In Proc. 24th Ann. IEEE
Symposium on Foundations of Computer Science (FOCS’83), pp. 112–121, 1983.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, Cambridge, MA, 1990.

[11] O. Daescu and N. Mi. Polygonal path approximation: A query based approach.
Computational Geometry: Theory and Applications, 30(1):41–58, 2005.

[12] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a monotone
subdivision. SIAM Journal on Computing, 15:317–340, 1986.

[13] J. Gudmundsson, H. Haverkort, S.-M. Park, C.-S. Shin, and A. Wolff. Facility
location and the geometric minimum-diameter spanning tree. In Proc. 5th Int.
Workshop on Approx. Algorithms for Combinatorial Optimization (APPROX’02),
vol. 2462 of Lecture Notes Comput. Sci., pp. 146–160. Springer-Verlag, 2002.

[14] J. Gudmundsson, H. Haverkort, S.-M. Park, C.-S. Shin, and A. Wolff. Facility
location and the geometric minimum-diameter spanning tree. Computational Ge-
ometry: Theory and Applications, 27(1):87–106, 2004.

[15] D. E. Knuth. The Art of Computer Programming, volume 3, chapter Sorting and
Searching. Addison-Wesley, Reading, MA, 1973.

[16] J. Matoušek. Efficient partition trees. Discrete and Computational Geometry,
8:315–334, 1992.

[17] J. S. B. Mitchell and J. O’Rourke. Computational geometry column 42. SIGACT
News, 32(3):63–72, 2001.

[18] P. Mitra and B. Chaudhuri. Efficiently computing the closest point to a query
line. Pattern Recognition Letters, 19(11):1027–1035, 1998.

[19] A. Mukhopadhyay. Using simplicial partitions to determine a closest point to a
query line. In Proc. Canadian Conf. Comp. Geom. (CCCG’02), pp. 10–12, 2002.

[20] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, 1990.

[21] P. M. Vaidya. An O(n log n) algorithm for the all-nearest-neighbors problem.
Discrete and Computational Geometry, 4:101–115, 1989.

Grid Vertex-Unfolding Orthostacks

Erik D. Demaine1,�, John Iacono2,� �, and Stefan Langerman3,� � �

1 MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA

edemaine@mit.edu
2 Department of Computer and Information Science, Polytechnic University,

5 MetroTech Center, Brooklyn, NY 11201, USA
http://john.poly.edu

3 Département d’informatique, Université Libre de Bruxelles,
ULB CP212, 1050 Brussels, Belgium

Stefan.Langerman@ulb.ac.be

Abstract. An algorithm was presented in [BDD+98] for unfolding or-
thostacks into one piece without overlap by using arbitrary cuts along
the surface. It was conjectured that orthostacks could be unfolded using
cuts that lie in a plane orthogonal to a coordinate axis and containing
a vertex of the orthostack. We prove the existence of a vertex-unfolding
using only such cuts.

1 Introduction

A long-standing open question is whether every convex polyhedron can be edge
unfolded—cut along some of its edges and unfolded into a single planar piece
without overlap [She75, O’R98, Dem00, DO05]. A related open question asks
whether every polyhedron without boundary1 (not necessarily convex but form-
ing a closed surface) can be generally unfolded—cut along its surface (not just
along edges) and unfolded into a single planar piece without overlap. Biedl et al.
[BDD+98] made partial progress on both of these problems in the context of
orthostacks. An orthostack is an orthogonal polyhedron for which every horizon-
tal planar slice is connected, and for which the interior of the polyhedron is a
connected solid. Thus, every horizontal planar slice of an orthostacks’s interior
is a simple polygon. Biedl et al. showed that not all orthostacks can be edge
unfolded (see Figure 1), but that all orthostacks can be generally unfolded. In

� Research supported in part by NSF grants CCF-0347776, OISE-0334653, and
CCF-0430849, and by DOE grant DE-FG02-04ER25647.

� � Research supported in part by NSF grants OISE-0334653 and CCF-0430849.
� � � Chercheur qualifié du FNRS.

1 For the purposes of this problem, a polyhedron without boundary is an abstract
polyhedral complex without boundary, i.e., a set of polygons and a definition of
incidence between polygons such that every edge is incident to exactly two poly-
gons and every two polygons meet at either a common vertex, a common edge, or
not at all. Note that a polyhedron is treated as a surface throughout this paper.

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 76–82, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Grid Vertex-Unfolding Orthostacks 77

Fig. 1. This orthostack is not edge-unfoldable [BDD+98]

their general unfoldings, all cuts are parallel to coordinate axes, but many of the
cuts do not lie in coordinate planes that contain polyhedron vertices. Given the
lack of pure edge unfoldings, the closest analog we can hope for with (nonconvex)
orthostacks is to find grid unfoldings in which every cut is in a coordinate plane
that contains a polyhedron vertex. In other words, a grid unfolding is an edge
unfolding of the refined (“gridded”) polyhedron in which we slice along every
coordinate plane containing a polyhedron vertex. Biedl et al. [BDD+98] asked
whether all orthostacks can be grid unfolded.

We make partial progress on this problem by showing that every orthostack
can be grid vertex-unfolded, i.e., cut along some of the grid lines and unfolded
into a vertex-connected planar piece without overlap. Vertex-unfoldings were
introduced in [DEE+02, DEE+03]; the difference from edge unfoldings is that
faces can remain connected along single points (vertices) instead of having to be
connected along whole edges.

2 A Grid Vertex Unfolding

Given an orthostack K, let z0 < z1 < · · · < zn be the distinct z coordinates of
vertices of K. Subdivide the faces of K by cutting along every plane perpendic-
ular to a coordinate axis that passes through a vertex of K. This subdivision
rectangulates K. We use the term rectangle to refer to one element of this facial
subdivision, while face refers to a maximal connected set of coplanar rectangles.
We use up and down to refer to the z dimension, and use left and right to refer
to the x dimension.

2.1 Rectangle Categorization

We partition the rectangles of K into several categories. After this categorization,
the description of the unfolding layout is not difficult.

For i = 0, 1, . . . , n − 1, define the i-band to be the set of vertical rectangles
(i.e., that lie in an xz plane or in a yz plane) whose z coordinates are between zi

and zi+1. Each i-band is connected, and all of the rectangles of an i-band have
the same extent in the z dimension, namely, [zi, zi+1].

78 E.D. Demaine, J. Iacono, and S. Langerman

For i = 0, 1, . . . , n, we define the i-faces to be the faces of K in the horizontal
plane z = zi. As we have defined them, an i-face has several properties. It may
have the interior of K above or below it (but not both). The perimeter of the
i-face has a nonempty intersection with the (i − 1)-band, provided i > 0, and
with the i-band, provided i < n. (If an i-face does not meet the (i − 1)-band, it
must be the bottom face of the polyhedron, and if it did not meet the i-band, it
must be the top face of the polyhedron.) By the definition of an orthostack, the
intersection between an i-face and each incident band is connected. That is, the
perimeter of the i-face can be cut into two contiguous intervals such that each
interval intersects solely the (i − 1)-band or the i-band.

Also needed are the notions of the “begin rectangle” and “end rectangle” of
the i-band. Choose the 0-band begin rectangle to be an arbitrary rectangle of
the 0-band. For i ≥ 0, define the i-band end rectangle to be the rectangle of the
i-band that is adjacent to the i-band begin rectangle in the counter-clockwise
direction as viewed from +z. (Thus, the begin and end rectangles of the i-band
are adjacent.) For i ≥ 1, define the i-connecting face to be the i-face that shares
an edge with the (i−1)-band end rectangle, if such a face exists. For i ≥ 1, define
the i-band begin rectangle to be one of the rectangles of the i-band that shares
an edge with the i-connecting face, if it exists, or else the rectangle of the i-band
that shares an edge with the (i − 1)-band end rectangle. The i-band interior
rectangles are rectangles of the i-band that are neither the begin rectangle nor
the end rectangle.

Define the i-connecting sequence to be an edge-connected sequence of rectan-
gles in the i-connecting face, if it exists, starting at the rectangle that shares an
edge with the (i−1)-band end rectangle and ending at the rectangle that shares
an edge with the i-band begin rectangle. This sequence is chosen to contain the
fewest rectangles possible (a shortest path in the dual graph on the rectangles
in the i-connecting face), in order to prevent the path from looping around an
island and thereby isolating interior portions of the i-face. If the i-connecting
face does not exist, the i-connecting sequence is the empty sequence. The rect-
angles in the i-connecting sequence are called i-connecting rectangles; all other
rectangles of the i-face are called normal rectangles.

We now merge all normal rectangles with their normal neighbors in the x
dimension. Call the resultant rectangular regions über-rectangles. Thus i-faces
are partitioned into the i-connecting rectangles and the i-über-rectangles. All
i-über-rectangles are connected to the perimeter of the i-face, and thus are edge-
connected to the (i− 1)-band or the i-band. Define an i-up-über-rectangle to be
an über-rectangle that is incident to the i-band and an i-down-über-rectangle to
be an über-rectangle that is incident to the (i− 1)-band. If an über-rectangle is
incident to both, we classify it arbitrarily.

Thus we have partitioned K into i-band begin rectangles, i-band end rect-
angles, i-band interior rectangles, i-up-über-rectangles, i-down-über-rectangles,
and i-connecting rectangles. We now proceed to a description of the unfolding.

Grid Vertex-Unfolding Orthostacks 79

R

S

Fig. 2. If R and S are anchors of an anchored component, the component may be
unfolded only in the unshaded region

2.2 Unfolding Algorithm

Our unfolding of an orthostack consists of several components strung together
at distinguished rectangles called anchors. Specifically, there are two types of
components, i-main components and i-connecting components, both of which
are anchored at two rectangles, a begin rectangle and an end rectangle. The
i-main component consists of the entire i-band (the i-band begin rectangle, the
i-band end rectangle, and the i-band interior rectangles), the (i+1)-down-über-
rectangles, and the i-up-über-rectangles. The i-connecting component consists
of the (i − 1)-band end rectangle, the i-connecting rectangles (if any), and the
i-band begin rectangle. It serves to connect the (i − 1)-main component and
the i-main component (at the (i − 1)-band end rectangle and the i-band begin
rectangle, respectively).

To ensure that components do not overlap each other, we enforce that the
components are anchored in the following sense. A component is anchored at
anchor rectangles R and S if, in the unfolded layout of the component, no rect-
angles are in the shaded region of Figure 2. More precisely, every rectangle is
strictly right of R and left of S, or directly below R, or directly above S.

We can combine two anchored components with a common anchor while
avoiding overlap. More precisely, given a component C anchored at anchors R
and S, and another component C ′ anchored at S and T , we can combine the two
unfolded layouts by rigidly moving C ′ so that the two copies of S coincide (with
matching orientations). The conditions on the rectangles in the two components
C and C ′ guarantees nonoverlap of the combined unfolded layout.

We unfold the orthostack in such a way that the positive z direction of every
vertical (i-band) rectangle is placed in the positive y direction in the planar
unfolding.

We edge-unfold the i-main component by leaving one edge attached between
the über-rectangles of the component (arbitrarily, if there is a choice), and cut-
ting along all of the other edges of the über-rectangles. As shown in Figure 3,
the layout induced by this edge unfolding consists of a central horizontal rect-

80 E.D. Demaine, J. Iacono, and S. Langerman

Fig. 3. An example of an unfolded i-main component. The shaded rectangles are the i-
begin rectangle (right) and i-end rectangle (left). They are connected by the remainder
of the i-band. Above the i-band are the (i+1)-down-über-rectangles and below are the
i-up-über-rectangles.

angular strip, which contains all i-band rectangles, and has the (i + 1)-down-
über-rectangles connected to the top of this strip, and the i-up-über-rectangles
connected to the bottom of this strip. The rightmost rectangle of this strip is the
i-band begin rectangle, and the leftmost rectangle of the strip is the i-band end
rectangle. There is nothing above the leftmost rectangle or below the rightmost
rectangle because these vacant locations are where the connecting rectangles are
attached, by definition, and we know that connecting rectangles are not über-
rectangles. Therefore the edge unfolding of the i-main component is anchored at
the i-band begin and end rectangles.

We vertex-unfold the i-connecting component by an incremental algorithm,
by performing a sequence of vertex unfoldings, beginning with the (i − 1)-band
end rectangle. This unfolding proceeds in phases: the middle phase and the end
phase.

SR

R

S

RS R

S

S RS R

Fig. 4. How a path of rectangles can be vertex-unfolded so that each rectangle is to
the left of the previous rectangle. In this diagram, R represents the current rectangle,
S represents the next rectangle, and the grey shaded area represent the three possible
positions of the next next rectangle. There are three cases of the possible location of
S in relation to R. Note that the illustrated unfoldings work no matter what the sizes
of the rectangles.

Grid Vertex-Unfolding Orthostacks 81

The middle phase of the vertex unfolding does all unfoldings except for the
last (i.e., it is used for all unfoldings that do not involve the i-band begin rect-
angle). See Figure 4. This phase has the property that every rectangle is to the
left of the previous rectangle. Suppose we are unfolding R and S, and the next
item to be unfolded is T . Our algorithm requires as a precondition that S not
be to the right of R and as a postcondition ensures that T is not to the right
of S. The unfolding begins with the i-band end rectangle and the first rectangle
of the i-connecting sequence. In order to place the i-band begin rectangle with
the proper orientation, the first rectangle of the i-connecting sequence must be
adjacent to its top edge. Thus, it satisfies the precondition for this construction.
The construction has three cases, depending on whether S is above, below, or
to the left of R. In the first two cases, we vertex-unfold 90◦ about the leftmost
point of the edge conneting R and S so that S is to the left of R, while in the
third case we do nothing.

The end phase is trickier because the i-begin rectangle must be oriented
properly. If the i-connecting face does not exist, the i-begin rectangle is connected
to the top edge of the (i−1)-end rectangle, and we are done. Otherwise, because
of the construction in the middle phase, the i-begin rectangle may be connected
to the top, left, or bottom edge of the last rectangle in the i-connecting sequence.
The i-begin rectangle must be oriented so that the edge that connected it to the
last i-connecting rectangle is the bottom edge when unfolded. There are three
cases, illustrated in Figure 5.

Thus, the i-connecting component can always be vertex-unfolded into an
anchored unfolding. Because the main component can also be vertex-unfolded
into an anchored component, we conclude

Theorem 1. Every orthostack can be grid vertex-unfolded.

Fig. 5. How the end phase unfolds the connecting component. The empty rectangle
represents the last i-connecting rectangle, and the rectangle with the arrow represents
the i-begin rectangle. There are three cases for their configuration before unfolding;
after unfolding the arrow must point up in order for this rectangle to be in the same
orientation as in the main component. This figure shows how this is done. Note that
the illustrated unfoldings work no matter what the sizes of the rectangles.

82 E.D. Demaine, J. Iacono, and S. Langerman

Acknowledgments

This work was initated while the authors visited McGill University’s Computa-
tional Geometry Lab. We thank Mirela Damian and Joseph O’Rourke for helpful
discussions. We also thank Koichi Hirata for helpful comments on the paper.

References

[BDD+98] Therese Biedl, Erik Demaine, Martin Demaine, Anna Lubiw, Mark Over-
mars, Joseph O’Rourke, Steve Robbins, and Sue Whitesides. Unfolding
some classes of orthogonal polyhedra. In Proceedings of the 10th Canadian
Conference on Computational Geometry, Montréal, Canada, August
1998. http://cgm.cs.mcgill.ca/cccg98/proceedings/cccg98-biedl-

unfolding.ps.gz.
[DEE+02] Erik D. Demaine, David Eppstein, Jeff Erickson, George W. Hart, and

Joseph O’Rourke. Vertex-unfolding of simplicial manifolds. In Proceedings
of the 18th Annual ACM Symposium on Computational Geometry, pages
237–243, Barcelona, Spain, June 2002.

[DEE+03] Erik D. Demaine, David Eppstein, Jeff Erickson, George W. Hart, and
Joseph O’Rourke. Vertex-unfolding of simplicial manifolds. In Discrete Ge-
ometry: In Honor of W. Kuperberg’s 60th Birthday, pages 215–228. Marcer
Dekker Inc., 2003.

[Dem00] Erik D. Demaine. Folding and unfolding linkages, paper, and polyhedra. In
Revised Papers from the Japan Conference on Discrete and Computational
Geometry, volume 2098 of Lecture Notes in Computer Science, pages 113–
124, Tokyo, Japan, November 2000.

[DO05] Erik D. Demaine and Joseph O’Rourke. A survey of folding and unfolding
in computational geometry. In Jacob E. Goodman, János Pach, and Emo
Welzl, editors, Discrete and Computational Geometry, Mathematical Sci-
ences Research Institute Publications. Cambridge University Press, 2005.
To appear.

[O’R98] Joseph O’Rourke. Folding and unfolding in computational geometry. In
Revised Papers from the Japan Conference on Discrete and Computational
Geometry, volume 1763 of Lecture Notes in Computer Science, pages 258–
266, Tokyo, Japan, December 1998.

[She75] G. C. Shephard. Convex polytopes with convex nets. Mathematical Pro-
ceedings of the Cambridge Philosophical Society, 78:389–403, 1975.

A Fixed Parameter Algorithm for the

Minimum Number Convex Partition Problem

Magdalene Grantson and Christos Levcopoulos

Department of Computer Science,
Lund University, Box 118, 221 Lund, Sweden

{magdalene, christos}@cs.lth.se

Abstract. Given an input consisting of an n-vertex convex polygon
with k hole vertices or an n-vertex planar straight line graph (PSLG)
with k holes and/or reflex vertices inside the convex hull, the param-
eterized minimum number convex partition (MNCP) problem asks for
a partition into a minimum number of convex pieces. We give a fixed-
parameter tractable algorithm for this problem that runs in the following
time complexities:

– linear time if k is constant,
– time polynomial in n if k = O(log n

log log n
),

or, to be exact, in O(n · k6k−5 · 216k) time.

1 Introduction

A convex partition of a planar straight line graph (PSLG) G is a planar subdi-
vision of the interior of the convex hull of G into convex polygons. A minimum
number convex partition (MNCP) of G is a convex partition of G such that
the number of convex polygons is minimized. It is known that the MNCP of G
is NP-hard [7,5], either allowing or disallowing Steiner points. We give a fixed-
parameter tractable algorithm for this problem with respect to an n-vertex con-
vex polygon with k hole vertices [3], disallowing Steiner points. Our algorithm
solves the problem in the following time complexities:

– For any constant k, it is solved in O(n) time.
– For k = O(log n

log log n) it is solved in time polynomial in n, or, to be exact, in
O(n · k6k−5 · 216k) time.

Our results hold also for the more general case where the input is a PSLG and
k is the total number of holes and/or reflex vertices inside the convex hull.

Known results for related problems include the following: With respect to
n-vertex polygons without holes, disallowing Steiner points, Greene [4] gave an
optimal algorithm which runs in O(N2n2) time, where N is the number of reflex
vertices. Independently, Keil [5] developed an (N2n log n) time algorithm for
the same problem. Later Keil and Snoeyink [6] improved this time bound to
O(n + N2 min(N2, n)).

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 83–94, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

84 M. Grantson and C. Levcopoulos

2 An Algorithm for the MNCP Problem

Let the input of the MNCP problem be an n-vertex convex polygon P with
k hole vertices. See Figure 1 for an example of a MNCP of a convex polygon
with two hole vertices.

Fig. 1. Minimum weight (left) and minimum number convex partition (right) of a
polygon with two hole vertices

We assume that we are given the n vertices of the perimeter CH(P) of P to
be {CH(P) = v0, v1, . . . , vn−1} in clockwise order. The algorithm we give has
preprocessing phase and a dynamic programming phase.

2.1 Preprocessing Phase of the MNCP Algorithm

We consider all possible combinations of non-crossing edges going between hole
vertices, i.e., all non-crossing super-graphs on the k hole vertices. The total
number of such non-crossing graphs (as we will call them for short) is at most
(23 · 59)kO(k−6) [2,8].

It can be shown that given a convex polygon P with hole vertices, apart from
edges going between hole vertices, at most 3 p-edges incident to a hole vertex are
sufficient to induce a convex partition [3], where a p-edge is an edge from a hole
vertex to any vertex on the perimeter of P . (At most three p-edges suffice for
each hole vertex because if a hole vertex is incident to four p-edges, there must
be one that can be removed without introducing a concavity at the hole vertex.
Removing it also does not introduce a concavity at the perimeter, because the
polygon we consider is convex.) Therefore, for each non-crossing graph on the
k hole vertices in the convex polygon, we allocate a label i ∈ {1, 2, 3} to each
non-convex hole vertex, which is meant to indicate how many p-edges a hole
vertex would have in a convex partition if it can be constructed. There are no
more than 3k of such labellings for any non-crossing graph.

For each labelling L, we precompute the number of convex polygons N a
convex partitioning of P would have if such a convex partition can be constructed
from the labelling L. N is equal to the sum of the number of convex faces in the
non-crossing graph plus the total number of p-edges in L (sum of the assigned
labels). We then sort the labellings of all non-crossing graphs with respect to
these numbers N and process them in the order of increasing N .

The idea is that, for each labelling L in the sorted list, we perform some pre-
processing and thereafter run the dynamic programming algorithm given below
(see Section 2.2). When we find out that a convex partition can be constructed
for the current non-crossing super-graph and current labelling L we stop, since
the result must be the minimum number convex partition.

A Fixed Parameter Algorithm for the MNCP Problem 85

To process one labelling, we allocate unique names to each hole’s p-edges as
follows: An edge name is a tuple (h, x), where h is a hole vertex and x ∈ {a, b, c}
distinguishes between the (at most) three edges the hole vertex h has.

We then consider the arrangement of lines, such that for each pair of hole
vertices we have a line including them. We look at all intersections of this arrange-
ment with the perimeter. There are O(k2) such intersections. The intersections
of these lines with the perimeter partition the perimeter into O(k2) pieces. We
will refer to each such piece as a “topologically homogeneous perimeter piece”
(or “homogeneous piece” for short). We assume that the homogeneous pieces of
the perimeter CH(P) of P are {CH(P) = C1, C2, . . . , Cμ} in clockwise order.
To simplify our algorithm, if an endpoint of a homogeneous piece is a perimeter
vertex, we treat the perimeter vertex as a homogeneous piece on its own. Thus
a homogeneous piece is either a perimeter vertex or a piece C of the perimeter
where the endpoints of C are not perimeter vertices.

We assign to each p-edge name a homogeneous piece. Since there are at most
3k p-edge names and each p-edge name can be assigned to each of the O(k2)
homogeneous pieces, there are O(k6k · 23k) such assignments to be considered
for a given labelling L.

For each homogeneous piece assignment Π to p-edge names we then take a
(arbitrary) point on each homogeneous piece and connect it to all hole vertices
that should have an edge going to it. Let E be the set of edges created in this
way, for all homogeneous pieces. We do this to:

1. Check for possible edge intersections. (We have no intersections if and only
if the set E together with all input edges do not include any intersections.)
If the set E together with all edges going between hole vertices include any
intersections we discard the current labelling being considered. (A convex
partition consists of non-intersecting edges).

2. Find the clockwise ordering in which the geometric p-edges of p-edge names
will go to the perimeter. That is, we obtain an ordering Φ of the p-edge
names in the considered labelling L corresponding to the clockwise order in
which the geometric p-edges will appear on the shrunk perimeter. This step
takes O(k log k) time, because it is basically a sorting operation.

We then precompute the following information:

1. We store the homogeneous piece each perimeter vertex lies on.
2. For each homogeneous piece Ci, we store the most counterclockwise ver-

tex vcc and the most clockwise vertex vc on it.
3. For each non-crossing super-graph in P , we precompute the following in-

formation and store it in a 3-dimensional table before starting the dynamic
programming algorithm. For each homogeneous piece Ci, for each perimeter
vertex vj on Ci and for each hole vertex h, whose concavity is not removed
by edges of the non-crossing graph, we store:
– The collinear perimeter vertex v of vj if such a vertex exists, otherwise

we store ⊥ indicating no such vertex exists.
– The closest clockwise perimeter vertex vc on Ci of vj if such a vertex

exists, otherwise we store ⊥.

86 M. Grantson and C. Levcopoulos

– The collinear perimeter vertex v of the half-line extension of (vj , h) if
such a vertex exists, otherwise we store ⊥.

– The closest clockwise perimeter vertex vc of the half-line extension of
(vj , h).

The above table entries can be computed in linear time by sweeping over
each perimeter vertex at most once.

4. For each non-crossing super-graph in P , we also precompute the following
information and store it in two-dimensional tables before starting the dy-
namic programming algorithm. For each hole vertex h whose concavity is
not removed by edges of the non-crossing graph:
(a) Let β be the concave angle at h and α its complements. We store the

two edges el and er, which bound the edges in the non-crossing graph
incident to h such that the edge er is first encountered if we traverse β
clockwise. (el and er bound the angles α and β incident to h).

(b) Let ls be the half-line extension of an edge es in the current non-crossing
super-graph. We store the closest clockwise and counterclockwise perime-
ter vertices from ls.

Before we start the dynamic programming (see Section 2.2) we know:

1. The hole vertex an edge name’s corresponding geometric p-edge is inci-
dent to.

2. To which homogeneous piece a p-edge should go.
3. The clockwise order in which the geometric p-edges cross the shrunk perime-

ter. That is, the clockwise ordering Φ of the p-edge names belonging to the
current labelling L.

4. All edges connecting hole vertices.

We then use dynamic programming to determine whether it is possible to place
the p-edges on perimeter vertices.

2.2 Dynamic Programming Phase of the MNCP Algorithm

We define O(k2) subproblems for each perimeter vertex as follows: We look
at coherent subsequences of p-edge names in the considered clockwise ordering
(where coherent means that a hole vertex has all its p-edge names in it or none of
them). For each coherent subsequence and for each possible starting perimeter
vertex v we try to place the p-edges on the perimeter (this is one subproblem).
To be precise, each subproblem is considered to be in the form (v, f, m, {A or B})
where

v ∈ 1 . . . n represents the starting vertex on the perimeter for the subproblem.
f ∈ 1 . . . 3k indicates the position of the first element of the coherent subse-

quence in the clockwise ordered list of edge names. Recall that the name of
a p-edge (h, a) holds the information about the hole vertex h the p-edge is
incident to.

m ∈ 1 . . . 3k represents the length of the coherent subsequence (number of
named p-edges in the subsequence.)

A Fixed Parameter Algorithm for the MNCP Problem 87

A: Tells us we are in the problem instance where the subproblem’s first p-edge
is required to be incident to the starting vertex v.

B: Tells us we are in the problem instance where there is no restriction as to
which vertex on the perimeter the first p-edge may be incident to.

The solution to a subproblem is the smallest perimeter piece clockwise from
v that is needed to remove concavity around all hole vertices in the coherent
subsequence. This solution is represented by the perimeter vertex the last p-
edge in the sequence goes to.

The coherent subsequences are processed in the order of increasing length,
so that processing longer subsequences can draw on the solutions for shorter
subsequences.

For a given f and m, we first solve all type A subproblems and use their
solutions to solve the type B subproblems. Let M be the total number of p-
edges in a labelling L. If there is a solution to the MNCP problem, which can
be constructed from a clockwise ordering Φ of an homogeneous piece assign-
ment Π of edge names of a labelling L of a non-crossing super-graph, then such
a solution can be found in the solutions of (v, f, M, B) subproblems. Thus if
there is a solution to the MNCP problem for a given input, solving any subprob-
lem (v, f, M, B), the dynamic programming algorithm will always report “yes,
there is a solution.” Otherwise it will return “no, there is no a solution.”

2.3 Solving Type B Subproblems (v, f, m, B)

For a given f and m, we first solve all type A subproblems (see Subsection 2.4)
and use their solutions to solve all type B subproblems in linear time. So sup-
pose that all type A subproblems for given f and m have already been solved.
We confine ourselves to the clockwise problems, because the counterclockwise
problems are symmetric. We solve the (clockwise) type B problems by moving
three vertices v, v∗, and vs (counterclockwise) round the perimeter, where v is
the vertex for which we desire a type B solution, v∗ is the closest vertex clock-
wise from v for which a type A solution is known, and vs is the solution of this
type A subproblem.

First we find a vertex v0, for which a type A solution exists. Finding such a
vertex v0 obviously takes linear time, because checking for a given vertex whether
it possesses a type A solution takes a single table access and thus constant time.
Initially, we place v at v0. Next we iterate the following steps, where h denotes
the hole vertex in the edge name at position f :

1. We access the solution table to check whether the subproblem (v, f, m, A)
has a solution. If it does, we retrieve its solution v′ and set v∗ = v and
vs = v′. (Note that in the first iteration v∗ and vs will necessarily be set,
because we have v = v0, for which a type A solution exists.)

2. If the clockwise angle between (h, v) and (h, v∗) is less than the clockwise
angle between (h, v) and (h, vs), we store vs as the solution of the subproblem
(v, f, m, B). Otherwise the solution “wraps round” to v or even beyond v and

88 M. Grantson and C. Levcopoulos

thus is useless for solving type A subproblems for bigger m (for which we need
the solutions of the type B subproblems, see Subsection 2.4). Consequently
we store ⊥ in the solution table to indicate that the subproblem is unsolvable
(or rather that its solution is useless).

3. We find the next vertex v′ counterclockwise from v. If v′ = v0, we are done
and can terminate the process. Otherwise we set v = v′ and go to step 1.

Since both v and v∗ are moved to each perimeter vertex at most once and since
the checks and actions required for each movement take constant time, the total
time complexity is linear in the number of perimeter vertices.

2.4 Solving Type A Subproblems (v, f, m, A)

Let h be the hole vertex in the edge name at position f and let Cj , 1 ≤ j ≤ μ,
be the homogeneous piece allocated to the edge name at position f . We check
the following cases:

1. Initialization m = 1.

Let el and er be the edges incident to h in the non-crossing super-graph,
which bound all edges incident to h in the non-crossing super-graph. (el and
er are precomputed and thus obtainable in constant time. Note that it may
be el = er). We check whether v lies on Cj . If does not, the subproblem
(v, f, m, A) is unsolvable, so we store ⊥. Otherwise we check whether the
clockwise angle from (h, v) to el as well as the clockwise angle from er to
(h, v) are both less than or at most equal to 180o. If one of them is not, the
subproblem (v, f, m, A) is unsolvable, so we store ⊥. Otherwise we store the
vertex v (since in this case the first and the last edge names are the same).

2. The first and the last of the m edge names contain different hole
vertices.

Let f ′, f ≤ f ′ < f + m − 1, be the position of the last edge name in
the subsequence that contains the same hole vertex h as the edge name at
position f (i.e. the first in the subsequence). Note that there may be only
one edge name that contains the hole vertex h, i.e., it may be f ′ = f .

We check whether the subsequence of edge names starting at position f
and ending at f ′ is valid (i.e., contains either all or none of the edge names
containing a given hole vertex). This can be done in constant time by simply
checking whether the solution table contains an entry for (v, f, f ′− f +1, ∗),
where ∗ may be A or B, since invalid subsequences are not stored.

If the subsequence is not valid, the subproblem (v, f, m, A) is unsolvable
and we store ⊥ in the solution table, because then there must be edge names
at positions f1, f < f1 < f ′, and f2, f ′ < f2 ≤ m + f − 1, which contain
the same hole vertex h′ and thus connecting both h and h′ to the perimeter
must lead to intersecting edges.

If, however, the subsequence starting at position f and ending at f ′ is valid,
we access the solution table to check whether the subproblem (v, f, f ′ − f +
1, B) has a solution. If it has not, the subproblem (v, f, m, A) is unsolvable

A Fixed Parameter Algorithm for the MNCP Problem 89

and we store ⊥. Otherwise we retrieve the solution v1 of the subproblem
(v, f, f ′ − f + 1, B).

Next we check whether the subproblem (v1, f
′ +1, m−f ′+f −1, B) has a

solution. If it has not, (v, f, m, A) is unsolvable and we store ⊥. Otherwise we
retrieve the solution v2 of the subproblem (v1, f

′ + 1, m− f ′ + f − 1, B) and
check whether the clockwise angle between (h, v1) and (h, v2) is less than the
clockwise angle between (h, v1) and (h, v). If it is, we store v2 as the solution
of the subproblem (v, f, m, A), otherwise it is unsolvable and we store ⊥.

Since all table accesses take constant time, this case can be solved in
constant time.

3. The first and the last of the m edge names contain the same hole
vertex h.

Let Cl, 1 ≤ l ≤ μ, be the homogeneous piece allocated to the last edge name.
(Cj is the homogeneous piece allocated to the first edge name.) In this case
we have to distinguish three cases:

(a) h is contained in exactly two of the m edge names and is not incident to
an edge of the current non-crossing super-graph.

Since h is not incident to an edge of the non-crossing super-graph,
the two p-edges must be collinear in order to remove the concavity at
h. Since we solve a type-A subproblem, one p-edge must be (h, v). We
check whether v lies on Cj . If does not, the subproblem (v, f, m, A) is
unsolvable, so we store ⊥.

Otherwise we check whether there is a perimeter vertex v1 collinear
to h and v. This can be done in constant time using the precomputed
information. If there is not or if v1 does not lie on Cl, the subproblem
(v, f, m, A) is unsolvable and we store ⊥.

If now m = 2, we are already done and can store v1 as the solution of
the subproblem (v, f, m, A).

If m > 2, we access the solution table to check whether the subproblem
(v, f + 1, m − 2, B) is solvable. If it is not, the subproblem (v, f, m, A)
is unsolvable and we store ⊥. Otherwise we retrieve the solution v2 of
the subproblem (v, f + 1, m − 2, B). If does not exist, the subproblem
(v, f, m, A) is unsolvable, so we store ⊥. Otherwise we check whether the
clockwise angle between (h, v) and (h, v2) is less than or at most equal
to the clockwise angle between (h, v) and (h, v1). If it is, we store v1 as
the solution. Otherwise the subproblem (v, f, m, A) is unsolvable and we
store ⊥.

(b) h is contained in exactly two of the m edge names and is incident to at
least one edge of the current non-crossing super-graph.

We check whether v lies on Cj , if it does not, the subproblem
(v, f, m, A) is unsolvable and we store ⊥. Otherwise, if m > 2, we access
the solution table to check whether the subproblem (v, f + 1, m − 2, B)
is solvable. If it is not, we store ⊥ as the solution of the subproblem
(v, f, m, A). Otherwise we retrieve the solution v1 of the subproblem

90 M. Grantson and C. Levcopoulos

(v, f + 1, m− 2, B). If, however, m = 2, we set v1 to the next perimeter
vertex clockwise from v.

Next, we find a perimeter vertex v2 with v2 equal to v1 if v1 lies on Cl.
If, however, v1 does not lie on Cl we set v2 to the most counterclockwise
vertex on Cl. The vertex v2 can be obtained from the precomputed infor-
mation in constant time. We check whether the edges (h, v) and (h, v2)
together with the edges of the non-crossing super-graph incident to h
remove the concavity at h. This check can be done in constant time, be-
cause there are at most k +1 edges we have to consider. If the concavity
is removed, we store v2 as the solution of the subproblem (v, f, m, A).

If, however, the concavity is not removed, there must be edges e1

and e2 incident to h (among (h, v), (h, v2), and the edges of the non-
crossing super-graph), between which the clockwise angle (from e1 to e2)
is greater than 180o and between which there is no other edge incident
to h. These two edges can be determined in the concavity check carried
out above.

If e1 = (h, v2), then the subproblem (v, f, m, A) is unsolvable, because
we can only move v2 further clockwise to obtain a solution and this
obviously does not remove the concavity if by this we do not move e1.
Otherwise we determine the vertex v3 that is closest clockwise from the
half-line extension of e2 (obtainable from the precomputed information
in constant time). If v3 does not lie in Cl we store ⊥ as the solution of
the subproblem (v, f, m, A).

Similar to the above, we check whether the edges (h, v) and (h, v3)
together with the edges of the non-crossing super-graph incident to h
remove the concavity at h. If they do, we store v3 as the solution. Oth-
erwise the subproblem (v, f, m, A) is unsolvable, so we store ⊥.

Since all table accesses take constant time, the whole case can be
solved in constant time.

(c) h is contained in exactly three of the m edge names.
(Note that h is not incident to an edge of the current non-crossing super-
graph in this case.)

Let f ′, f < f ′ < f + m − 1, be the position of the middle edge name
containing h. (Note that f and f + m− 1 are the positions of the other
two edge names.) We define the middle p-edge as the closest clockwise
p-edge from v, which together with the last p-edge eliminate concavity
at h.

For any given (fixed) f and m we solve all the n subproblems together
(there are O(n) perimeter vertices for each fixed f and m) in a coordi-
nated way in total linear time. The general idea is that we move three
vertices, v, v1 and v2, (clockwise) around the perimeter, with v1 and v2

being the end points of the edges corresponding to the edge names at
positions f ′ and f + m − 1. Based on certain conditions, we move v1

and v2 clockwise in order to find a solution, or to find out that no solu-
tion exists. In this way we can exploit information gathered by solving

A Fixed Parameter Algorithm for the MNCP Problem 91

a subproblem (for a given v) to speed up the search for a solution of the
next.

Let u, u1, u2, respectively, be the most counterclockwise vertex in
the homogeneous pieces Cj , Ck, Cl, (1 ≤ j, k, l,≤ μ) allocated to the
first, middle, and last edge name containing h. Initially, let v = u and
v1 = u1, v2 = u2. If Cj = Ck = Cl, then we would not be able to remove
the concavity around h (unless, of course, h is the only hole vertex in
the whole polygon, but this easy case can be solved separately, without
dynamic programming).

Thus in the case where Cj = Ck = Cl we store ⊥ in the solution table
for all the n subproblems indicating they are all unsolvable. Otherwise
we try to find the solution of a subproblem (v, f, m, A) by processing
the checklist below. If in a point of the checklist v1 or v2 is moved, we
restart the checks at the beginning of the list. If, we get through the
whole checklist without moving v1 or v2, we store v2 as the solution of
the subproblem (v, f, m, A).

However, if any check or action we carry out in the checklist indicates
that the currently processed subproblem (v, f, m, A) is unsolvable, we
store ⊥ in the solution table. In both the cases, where we find out the
subproblem is unsolvable or we store v2 as solution of subproblem, we
continue by finding the next vertex v∗ clockwise from v. If v∗ is not on
Cj we are done with all subproblems. Otherwise we start to work on the
new subproblem (with v = v∗) by processing the same checklist. When
we start solving the new subproblem, v1 and v2 are at the positions they
ended up at when we processed the checklist in the preceding turn.

Checklist

i. Checks and actions needed when v, v1, and v2 are not on Cj, Ck and
Cl respectively.
A. If v is not on Cj we are done with all subproblems for the given

fixed f and m. Stop.

B. If v1 is not on Ck, then the subproblem (v, f, m, A) is unsolvable.

C. If v2 is not on Cl then the subproblem (v, f, m, A) is unsolvable.

ii. For a given v, checks and actions needed to ensure that v1 is clockwise
from v and counterclockwise from v2.
A. If v = v2, the subproblem (v, f, m, A) is unsolvable.

B. If v = v1, we find the next vertex v′ clockwise from v1 and set
v1 ← v′.

C. If v1 = v2, we find the next vertex v′ clockwise from v2 and set
v2 ← v′.

iii. Checks and actions that ensure the angles clockwise from (h, v2) to
(h, v), from (h, v1) to (h, v2) and from (h, v) to (h, v1) are all not
greater than 180o.

92 M. Grantson and C. Levcopoulos

A. If the clockwise angle from (h, v2) to (h, v) is greater than 180o,
we find the next vertex v′ clockwise from v2. and set v2 ← v′.

B. If the clockwise angle from (h, v1) to (h, v2) is greater than 180o,
we find the next vertex v′ clockwise from v1 and set v1 ← v′.

C. If the clockwise angle from (h, v) to (h, v1) is greater than 180o,
the subproblem (v, f, m, A) is unsolvable.

iv. Checking the subproblem (v1, f
′ + 1, m − f ′ + f − 2, B).

We access the solution table to check whether the subproblem
(v1, f

′ + 1, m − f ′ + f − 2, B) has a solution. If it does not, the
subproblem (v, f, m, A) is unsolvable. Otherwise we retrieve the so-
lution v′ of the subproblem (v1, f

′ + 1, m − f ′ + f − 2, B). If the
clockwise angle from (h, v1) to (h, v′) is greater than the clockwise
angle from (h, v1) to (h, v2) we find the next vertex v′ clockwise from
v2 and set v2 ← v′.

v. Checking the subproblem (v, f + 1, f ′ − f − 1, B).
We access the solution table to check whether the subproblem
(v, f + 1, f ′ − f − 1, B) has a solution. If it does not, the subprob-
lem (v, f, m, A) is unsolvable. Otherwise we retrieve the solution v′

of the subproblem (v, f + 1, f ′ − f − 1, B). If the clockwise angle be-
tween (h, v) and (h, v′) is greater than the clockwise angle between
(h, v) and (h, v1), we find the next vertex v′ clockwise from v1 and
set v1 ← v′.

We observe that v, v1 and v2 visit each perimeter vertex at most once.
That is, in the above algorithm v, v1 and v2 start at the most counter-
clockwise perimeter vertex of their respective homogeneous pieces. When
they are moved away from their respective homogeneous pieces, they are
never moved back into their respective homogeneous pieces anywhere in
the algorithm. In fact in the entry i. in the checklist,

– Step A. sees to it that v is never moved into Cj when v leaves the
most clockwise vertex on Cj .

– Step B. sees to it that v1 is never moved into Ck when v1 leaves the
most clockwise vertex on Ck.

– Step C. sees to it that v2 is never moved into Cl when v2 leaves the
most clockwise vertex on Cl.

Thus it is clear that v, v1 and v2 visit each perimeter vertex at most once.
Since the total movement of v, v1 and v2 is linear and each movement
takes constant time, it takes in total linear time to solve all subproblems
for a given fixed f and m. There are a constant number of fixed f and
m, thus all subproblems can be solved together in total linear time.

A Fixed Parameter Algorithm for the MNCP Problem 93

2.5 Space and Time Complexity of the Dynamic Programming
Algorithm

The memory requirement in the worst case is dominated by the O(n · k2) space
for the table entries.

For a given f and m, we solve all type A subproblems in linear time. We then
solve the type B subproblems for given f and m also in linear time using the
type A subproblems. Thus each call of the dynamic programming takes O(n ·k2)
time. We call the dynamic programming algorithm at most O(k6k−7 ·216k) times.

2.6 Outputting the Actual MNCP

We can output the actual MNCP as follows: For a homogeneous piece assign-
ment Π of a labelling L where the dynamic programming algorithm outputs that
a MNCP can be constructed, we can obtain the actual MNCP by running the
dynamic programming algorithm and storing for each subproblem not only the
vertex on the perimeter where the last p-edge goes, but also the middle p-edge,
if a middle p-edge is required. See 3(c) of Section 2.4 above for the case when a
middle p-edge is needed.

3 Analysis of the MNCP Algorithm

We considered all possible combinations of non-crossing super-graphs on the
k hole vertices. There are (23 ·59)kO(k−6) such non-crossing super-graphs [3]. It
takes (23 · 59)kO(k−6) time to enumerate all such non-crossing super-graphs [3].

For each non-crossing super-graph G′, we considered all the possible la-
bellings, with each labelling indicating the number of p-edges corresponding to
each hole vertex. There are not more than 3k such labellings for each non-crossing
super-graph.

For each labelling L, we considered all possible homogeneous piece assign-
ments Π . There are O(k6k · 23k) such assignments to be considered for a given
labelling L. For each assignment, we then obtained the clockwise ordering Φ of
the corresponding edge names in O(k log k) time.

For the ordering Φ of an assignment Π of a labelling L, we then check for
possible edge intersections in time polynomial in k and then run the dynamic
programming algorithm which takes linear ime each time it is called.
From the given MNCP algorithm we arrive at the following theorem:

Theorem 1. For any convex polygon P with k hole vertices, the MNCP problem
can be solved in the following time complexities:

– For any constant k, it can be solved in linear time.
– For k = O(log n

log log n), it can be solved in time polynomial in n.

Proof. From the analysis of the MNCP algorithm the total time taken to solve
the MNCP problem for a constant number k of hole vertices is O(n). For k =
O(log n

log log n), it can be solved in O((23 ·59 ·3)k) ·k−6 ·k6k ·23k ·n) which simplifies

94 M. Grantson and C. Levcopoulos

to O(n · k6k−5 · 216k). When k grows and k ≥ 8, by far the fastest growing
factor in the time complexity of Theorem 1 is k6k−5. If k = O(log n

log log n) then
the value of k6k−5 is polynomial in n like all the other factors in the given time
complexity [3]. Therefore Theorem 1 holds.

We observe that the above problem is fixed-parameter tractable when the
problem is parameterized by the number k of the hole vertices [1]. It is straight-
forward to generalize this result to the case where we have as input a PSLG G
and k is the total number of holes and/or reflex vertices in the convex hull of G.

References

1. Downey, R., Fellows, M.: Parameterized Complexity. Springer-Verlag, New York
(1999).

2. Garcia, A., Noy, M., Tejel, J.: Lower Bounds on the Number of Crossing-free Sub-
graphs of KN . Computational Geometry, Theory and Applications, Vol. 16. Elsevier
Science, Amsterdam, Netherlands (2000) 211–221.

3. Grantson, M.: Fixed-Parameter Algorithms and Other Results for Optimal Convex
Partitions. LU-CS-TR:2004-231, ISSN 1650-1276 Report 152. Lund University,
Sweden (2004).

4. Greene, D.: The Decomposition of Polygons into Convex Parts. In: F.P. Preparata,
editor,Computational Geometry, vol. 1 of Adv. Comput. Res. JAI Press, London,
England, (1983) 235–259

5. Keil, J.: Decomposing a Polygon into Simpler Components. SIAM Journal on
Computing. Society of Industrial and Applied Mathematics, Vol 14. Philadelphia,
PA, USA (1985) 799–817

6. Keil, J., Snoeyink, J.: On the Time Bound for Convex Decomposition of Simple
Polygons. In proceedings of the 10th Canadian Conference on Computational Ge-
ometry. Montreal, Canada (1998) 54–55

7. Lingas, A.: The Power of Non-Rectilinear Holes. Lecture Notes in Computer Science,
Vol. 140. Springer-Verlag, Heidelberg, Germany (1982) 369-383

8. Santos, F., Seidel, R.: A Better Upper Bound on the Number of Triangulations of
a Planar Point Set. arXiv:math.CO/0204045 v2 (2002).

Tight Time Bounds for the

Minimum Local Convex Partition Problem

Magdalene Grantson and Christos Levcopoulos

Department of Computer Science,
Lund University, Box 118, 221 Lund, Sweden

{magdalene, christos}@cs.lth.se

Abstract. Let v be a vertex with n edges incident to it, such that the
n edges partition an infinitesimally small circle C around v into convex
pieces. The minimum local convex partition (MLCP) problem asks for
two or three out of the n edges that still partition C into convex pieces
and that are of minimum total length. We present an optimal algorithm
solving the problem in linear time if the edges incident to v are sorted
clockwise by angle. For unsorted edges our algorithm runs in O(n log n)
time. For unsorted edges we also give a linear time approximation algo-
rithm and a lower time bound.

1 Introduction

We consider the minimum local convex partition (MLCP) problem. Its input is
a vertex v with n incident edges, such that the edges partition an infinitesimally
small circle C around v into convex pieces. (The radius of C is less than the
shortest edge incident to v). It is solved by selecting two or three out of the
n edges that still partition C into convex pieces and that are of minimum total
length.

We present an optimal algorithm which solves the MLCP problem in lin-
ear time when the edges are sorted clockwise by angle and in O(n log n) time
otherwise. For unsorted edges we also give:

1. A linear time algorithm, which finds a (1 + ε)- or (1.5 + ε)-approximation
depending on whether the optimal solution has 3 or 2 edges, respectively.

2. An Ω(n log n) worst-case time lower bound for approximating the MLCP
problem in the algebraic computation tree within any factor less than 1.5.

Our optimal algorithm can be used directly to solve the minimum weight convex
partition (MWCP) problem [4] where the input is a convex polygon with a
single hole vertex. The general MWCP problem (a convex polygon with several
hole vertices) can be solved by partitioning the input polygon into some kind
of convex pieces such that each piece contains a hole vertex, and then using
our optimal algorithm to remove the concavity around each hole vertex [4]. The
MWCP problem has applications in computer graphics [10], image processing [9],
and database systems [7].

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 95–105, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

96 M. Grantson and C. Levcopoulos

2 Optimal Algorithm for the MLCP Problem

To simplify the explanation of our optimal MLCP algorithm, we assume that
no two edges are of the same length. If any two edges are of the same length,
we consider the edge with the larger index — w.r.t. some arbitrary order of the
edges — as the longer edge among the two.

es

e

Ls

Li

i

ei’

 v

Fig. 1. Shortest edge es and its half-line extension

Our algorithm works in two phases: First we check for a two edge solution
and then for a three edge solution. The minimum of the two obtained solutions
solves the MLCP problem.

Let es be the shortest edge incident to v and let Ls be its half-line extension
(see Figure 1). We denote the region bounded by a clockwise walk from es

(including es) to Ls (excluding Ls) by Rcw and its complement w.r.t. C by
Rccw. (We assume that neither Rcw nor Rccw are empty, because otherwise the
problem has no solution.) We number the edges in Rcw in clockwise order such
that es = e1. Let ek, 1 ≤ k < n, denote the last edge in Rcw.

If el and er are edges s.t. er is at most 180o clockwise from el and if Ll and
Lr are the half-line extensions of el and er, we refer to the region bounded by a
clockwise walk from el to er and from Ll to Lr as the wedge and the op-wedge
(opposite wedge) of (el, er), respectively.

2.1 Checking for a Two Edge Solution

With the help of a sweep-line l rotating around v, for each edge ei, 1 ≤ i ≤ k,
in Rcw we try to find an edge e′i in Rccw, such that ei and e′i are collinear. Since
each edge is considered exactly once in this search, the overall time complexity
is O(n) if the edges are sorted by angle. Otherwise we have a time complexity
of O(n log n), which stems from the complexity of sorting the edges.

Tight Time Bounds for the Minimum Local Convex Partition Problem 97

2.2 Checking for Three Edge Solution

Observation 1. The shortest edge incident to v must always be selected for
three edge solutions.

Proof. We show that the assumption that es is not selected leads to a contra-
diction. So let us assume that es does not have to be selected. In this case there
are three edges e′, e′′, e′′′ ∈ E − {es}, which constitute a solution to the MLCP
problem. Hence, e′, e′′, and e′′′ partition the circle C into three convex pieces.
W.l.o.g. we may assume that es lies in the sector of C bounded by e′ and e′′. The
edges es and e′′′ partition C into two pieces, one containing e′ and the other con-
taining e′′. At least one of the two has to be convex, so we may assume w.l.o.g.
that e′ lies in the convex region. Now we observe that the edges es, e′′ and e′′′

also partition C into convex pieces, and since es is shorter than e′, we obtain
a contradiction. (Contrary to our assumption, e′, e′′, and e′′′ are no solution to
the MLCP problem, because they do not have minimum total length.)

The remaining two edges are selected as follows: For each edge ei, 2 ≤ i ≤ k,
in Rcw we find the edge e′i in Rccw that forms a convex partition of minimum
length (among those containing es and ei, see Figure 1). Since only edges in the
op-wedge (es, ei) can form a convex partition with es and ei, we need not search
all of Rccw; the op-wedge (es, ei) suffices. Even better: only for i = 2, we have to
search the whole op-wedge (es, e2) for e′2. For i > 2 the search can be restricted
to the op-wedge (ei−1, ei), reusing previous results. Thus each edge is considered
exactly once, yielding a linear time complexity if the edges are sorted by angle
and O(n log n) time otherwise.

Theorem 1. The MLCP problem can be solved in linear time if the n edges
incident to the vertex v are sorted by angle and in O(n log n) time otherwise.

3 Linear Time Approximation

For unsorted edges we designed a linear time approximation algorithm by:

1. Showing that we can get a 2-approximation in linear time.
2. Using the 2-approximation solution we select a subset of m edges incident

to v, where m depends on a chosen approximation quality ε (ε > 0). We
show that running our optimal MLCP algorithm on these m edges yields a
solution that is a (1+ε)- or (1.5+ε)-approximation depending on whether the
optimal solution consists of three or two edges, respectively. In the algebraic
computation tree the overall running time is O(n log 1

ε).

3.1 A 2-Approximation Algorithm for the MLCP Problem

Let E be the set of edges incident to v. The following algorithm reduces the
number of edges in the set E to three by recursively:

98 M. Grantson and C. Levcopoulos

– Finding the upper median edge length |eM | and grouping the edges in E
into two sets ES = {e ∈ E | |e| ≤ |eM |} and EL = {e ∈ E | |e| > |eM |}.

– If the edges in ES partition C into convex pieces, we discard all edges in EL

and apply the algorithm recursively to ES .
– If the edges in ES do not partition C into convex pieces, there must be

bounding edges b1, b2 ∈ ES , such that a half-line starting at v rotated clock-
wise around v from b1 to b2 sweeps an angle of θ < 180o and meets all edges
in ES . In this case we apply the algorithm recursively to EL ∪ {es, b1, b2}.

The edges b1 and b2 can be found during the split of the edges into ES and EL

as follows: The first two edges assigned to ES are used to initialize b1 and b2

ensuring that the clockwise angle from b1 to b2 is ≤ 180o. Afterwards if a new
edge is added to ES , it is checked whether it lies on a clockwise walk from the
current b1 to the current b2. If it is, the old b1 and b2 are kept. If it is not, it
is checked to which of the two edges b1 and b2 it is closer and this edge is then
replaced by the new edge. This also allows a simple check whether the edges in
ES partition C into convex pieces. If the angle measured in clockwise direction
from b1 to b2 is less than 180 degrees, the edges in ES do not induce a convex
partition, otherwise they do.

Pseudocode of the 2-Approximation Algorithm
Input: A set E of n distinct edges partitioning the infinitesimally small circle C

around v into convex pieces.
Output: Edges es, e′′, e′′′ that partition the infinitesimally small circle C around

v into convex pieces and that satisfy |es|+ |e′′|+ |e′′′| ≤ 2lopt, where lopt

is the length of the optimal solution of the MLCP problem.

1. Select the edge with minimum length es.
2. if n ≤ 5
3. then use a brute force algorithm to find 2 edges e′′, e′′′ partitioning C

into convex pieces s.t. |es| + |e′′| + |e′′′| is minimal
4. stop
5. else Select the edge eM with the upper median length.
6. ES ← {e ∈ E | |e| ≤ |eM | }
7. EL ← {e ∈ E | |e| > |eM | }
8. Let b1, b2 ∈ ES be the two edges bounding the maximum piece of C.
9. if edges in ES partition C into convex pieces

(∗ b1, b2 enclose a maximum angle θ ≥ 180, see above. ∗)
10. then E ← ES (∗ Discard all edges in EL ∗)
11. else E ← EL ∪ {es, b1, b2} (∗ Discard all edges in ES − {es, b1, b2} ∗)
12. Let n = the number of edges in E.
13. goto step 2.

Theorem 2. There is a linear time approximation algorithm which achieves an
approximation ratio of 2 for the MLCP problem.

Proof. Using the worst-case linear-time median-finding algorithm devised by
Blum, Floyd, Pratt, Rivest, and Tarjan [3], step 5 in the pseudocode above

Tight Time Bounds for the Minimum Local Convex Partition Problem 99

Just before e
last

is added to v

e
last

C
C

Adding e
last

gives a convex partition

v v

Fig. 2. Figure showing a convex partition of C after adding elast

takes linear time. The rest of the steps in all take linear time, because the main
work to be done is the split into the two sets ES and EL. For this split each
edge has to be considered once. In the recursion, the set of edges to be split
has roughly half the size of the set used in the previous step. So the total num-
ber of operations is basically cn + cn

2 + cn
4 + cn

8 + ... = 2cn ∈ O(n), where
c is a constant that measures the costs of processing one edge and n is the
initial number of edges. Thus the total time complexity of above algorithm is
linear.

To show that the above algorithm gives a 2-approximation of the optimum,
we observe that the shortest edge es is always in the solution produced by this
algorithm (because it is in ES and in EL ∪ {es, b1, b2} and thus is never dis-
carded). In order to get information about the lengths of the other two edges,
let us assume for the moment that the edges emanating from v are sorted by
length into a list and one by one they are added to v from the shortest until we
arrive at a convex partition of C (see Figure 2).

Let elast be the last edge added to v, which eventually resulted in a convex
partition of C, and let R be the concave region before elast was inserted (see
Figure 2). We observe that the above algorithm finds the solution that consists
of the edges elast, es and an appropriate third edge e′′ with |e′′| ≤ |elast|. Con-
sequently, we know that for the length lapx of the result of the above algorithm,
lapx ≤ |es| + 2|elast| holds. This implies

lapx ≤ 2(|es| + |elast|). (1)

In addition, we observe that the optimal solution has to contain an edge e′ in the
region R for the convex partition property to be fulfilled (regardless of whether
the optimal solution has two or three edges). Since the region R contains only
edges of length ≥ |elast| (all shorter edges have already been added beforehand),
we conclude that

100 M. Grantson and C. Levcopoulos

|e′| ≥ |elast|. (2)

As a consequence we have that the length lopt of the optimal result is lopt ≥
2|es| + |elast| if the optimal solution is made up of three edges and lopt ≥ |es| +
|elast| if it is made up of two edges. Thus in any case we have lopt ≥ |es|+ |elast|.
Substituting this into (1) we get

lapx ≤ 2(|es| + |elast|) ≤ 2lopt.

This completes the proof.

Note that it may be possible to tighten the bound on the quality of the
result of the approximation algorithm after it has terminated and one knows the
solution it yields. We know that

lapx ≤ |es| + 2|elast|

and that
|es| + |elast| ≤ lopt.

Therefore we also know (by multiplying the two inequalities — from a ≤ b and
c ≤ d it follows ac ≤ bd) that

lapx(|es| + |elast|) ≤ lopt(|es| + 2|elast|)

and consequently

lapx ≤ lopt
|es| + 2|elast|
|es| + |elast|

.

Depending on the values of |es| and |elast| the factor on the right may be much
smaller than 2 (its value can be computed, because we know the values of |es|
and |elast| from the result of the approximation algorithm).

3.2 A Linear Time Approximation Algorithm

We now use the length of the longest edge elast in the solution of the approxi-
mation algorithm above to discard long edges which we know cannot be part of
the optimal solution.

Reducing the Number of Edges in the Input Set E.
In this section, we select a constant number m of edges from the input set E
of n edges using the length of the longest edge elast in the solution of the 2-
approximation algorithm. We then run our optimal MLCP algorithm on the m
edges to obtain a (1 + ε)- or (1.5 + ε)-approximation, depending on the number
of edges in the optimal solution.

Let es, e′′, and elast be the edges found by the approximation algorithm. Then
we have |es| < |e′′| < |elast| and |es|+ |e′′|+ |elast| = lapx. If the optimal solution

Tight Time Bounds for the Minimum Local Convex Partition Problem 101

has three edges es, e and e′ we have |es| < |e| < |e′| and |es|+ |e|+ |e′| = lopt. If
the optimal solution has two edges e and e′, we have |e| ≤ |e′| and |e|+|e′| = lopt.
We observe that in both cases |e′| must be less than or equal to 2|elast|, because
if |e′| > 2|elast|, then we have

optimal solution has two edges:

lopt = |e| + |e′|
> |e| + 2|elast|
≥ |es| + 2|elast|
≥ |es| + |e′′| + |elast| = lapx

optimal solution has three edges:

lopt = |es| + |e| + |e′|
> |es| + |e| + 2|elast|
> |es| + 2|elast|
≥ |es| + |e′′| + |elast| = lapx

That is, we can derive lopt > lapx, which is a contradiction.
Using the observation that the longest edge e′ in the solution of the opti-

mal algorithm cannot be longer than 2|elast| we select a constant number m of
“potential edges” as follows:

– Execute the above algorithm to find the longest edge elast in the approxima-
tion solution.

– From the set E of all n edges we select (in linear time) a set

E′ = {e ∈ E | |e| ≤ 2|elast|}.

– We group the edges in E′ into buckets such that each bucket contains edges
within a given range of length. That is:
• Partition the range of lengths from |es| to 2|elast| (all edges in E′ have

a length in this range) in such a way that the length difference within a
bucket is at most ε

2 |elast|. Let k be the number of buckets created. It is

k ≤
⌈

2|elast|
ε
2 |elast|

⌉
=
⌈

4
ε

⌉
.

Since there is no edge of length less than |es|, a more precise upper bound
on the number of buckets is

k =
⌈

2|elast| − |es|
ε
2 |elast|

.

⌉

• Each bucket i, 1 ≤ i ≤ k, contains edges of length in the interval
[
|es| + (i − 1)

ε

2
|elast|, |es| + i

ε

2
|elast|

)

The only exception is the last bucket k where we include the right bound-
ary. This is because the fraction 2|elast|−|es|

ε
2 |elast| may evaluate to an integer.

In the algebraic computation tree model it takes O(n log 4
ε) time to group

the edges in E′ into their respective buckets if we do a binary search on the⌈
4
ε

⌉
buckets.

102 M. Grantson and C. Levcopoulos

One can also group the edges in E′ into their respective buckets in linear
time by using an index computation scheme as follows: For each edge e ∈ E′,
we compute the corresponding bucket index i as:

i =

⎧⎨
⎩

k, if |e| = 2|elast|,⌊
|e| − |es|

ε
2 |elast|

⌋
+ 1, otherwise.

Since 1 ≤ i ≤ k, it takes constant time to locate the bucket i, a given edge e
belongs to. We note, however, that the floor function is not contained (or
takes more than constant time) in the algebraic computation tree model.

– W.l.o.g. let us assume the shortest edge es ∈ E′ incident to v is vertical and
above v. Let Ls be the half line extension of es. For each bucket i, 1 ≤ i ≤ k,
let edge ecw be the edge which is first reached when one walks clockwise
from Ls along the circle C. In a similar way let edge eccw be the edge in
bucket i which is reached first when one moves counter-clockwise from Ls

along the circle C. From each bucket i, we select the edges ecw and eccw (if
they exist) giving us no more than 2k edges, where 2k is upper bounded by
a constant depending on ε. The number of edges obtained in this way we
denote by m. The shortest edge es and its half-line extension Ls divides C
into two parts which we call Ccw and Cccw. For each bucket i, the edges ecw

with ecw ∩ Ccw = ∅ and eccw with eccw ∩ Cccw = ∅ are selected to “replace”
the rest of the edges intersecting Ccw and Cccw, respectively. The rest of the
edges intersecting Ccw and Cccw are deleted, because:
1. In terms of their angular position, ecw and eccw induce the largest angles

from es. Thus they can replace any other edge in bucket i which can be
in the optimal 3-edge solution. (ecw and eccw are further away from es

than any other edge in bucket i.)
2. The maximum length difference between two edges in a bucket is ε

2 |elast|.

We show how to get from the selected number of edges an (1 + ε)- or (1.5 + ε)-
approximation of the optimal solution of the MLCP problem in linear time.

Theorem 3. If the optimal solution to the MLCP problem is made up of three
edges, there is a linear time (1 + ε)-approximation to the optimum.

Proof. We assume that the optimal solution is made up of three edges, which
partition C into convex pieces. Let es, e, and ei with |es| < |e| < |e′| be these
edges. Let |es| < |e′′| < |e′′′| be the edges in the approximate solution obtained
by running the optimal MLCP algorithm on the set of m ≤ 2 ·

⌈
4
ε

⌉
selected

edges. (It takes O(1
ε log 1

ε) time to run our optimal MLCP algorithm given the
selected m edges as input). We observe that discarding some of the n input edges
emanating from v may result in discarding edge(s) which are in the optimal
solution. Let lopt = |es|+ |e|+ |e′| be the total length of the edges in the optimal
solution and lapx = |es| + |e′′| + |e′′′| be the total length of the edges in the
approximate solution.

If an edge in the optimal solution in Cccw is deleted from bucket i, we could
choose the edge eccw in bucket i to replace it. In the same way if we eliminated

Tight Time Bounds for the Minimum Local Convex Partition Problem 103

an edge in Ccw, we could choose the edge ecw from the same bucket to replace
it. Thus the total edge length of the counterpart of e and e′ will be longer
than |e| + |e′| by at most ε|elast|. (The maximum length difference between two
edges in a bucket is ε

2 |elast|.) Thus we infer that if we run the optimal MLCP
algorithm on the chosen m edges we always get a solution which is not more
than lopt + ε|elast|. From Equation 2 (in proof of Theorem 2) we know

|elast| ≤ |e′|

and consequently
|elast| ≤ lopt.

Hence
lapx ≤ lopt + ε|elast| ≤ (1 + ε) · lopt.

So far we assumed that the optimal solution is made up of three edges.
However, there are cases where it contains only two edges. For these cases we
have the following theorem:

Theorem 4. If the optimum solution to the MLCP problem is made up of two
edges, there is a linear time (1.5 + ε)-approximation to the optimum.

Proof. Let lopt be the total length of edges (e, e′) in the optimal solution (in this
case the shortest edge es need not be selected), and lapx be the total length of
edges in the approximate solution when the optimal MLCP algorithm is run on
the chosen m edges as input. From the way we choose the edges, we know that
|elast| < lopt. Among the m edges we could choose es and the counterparts of
(e, e′) using the same reasoning as in the proof of Theorem 3. Thus we have

lapx ≤ |es| + lopt(1 + ε).

We observe that |es| ≤ 1
2 lopt, since |es| ≤ |e| and |es| ≤ |e′|, and thus

lapx ≤ 0.5lopt + lopt(1 + ε) = (1.5 + ε) · lopt.

Note that the approximation factor of (1.5 + ε)lopt obtained by our algorithm
almost matches the lower bound given in the next section.

4 Lower Time Bound

We give an Ω(n log n) worst-case time lower bound for approximating the MLCP
problem for unsorted edges within a factor less than 1.5 by a reduction from the
set disjointness (SD) problem.

The SD Problem
Input: Two sets S1 and S2 of real numbers.
Output: Whether S1 ∩ S2 is empty.

104 M. Grantson and C. Levcopoulos

The SD problem has a Ω(n log n) lower bound in the algebraic computation tree
model [1,2,6,5].

To reduce the SD problem to the MLCP problem, we transform the sets S1

and S2 into sets of (unit length) edges that are θ, (180+θ) degrees, respectively,
clockwise from the upward half-line incident to a vertex v (see Figure 3). We
then run the optimal MLCP algorithm on these edges. To ensure that it always
finds a solution, we add three dummy edges ed, e∗d, e∗∗d as shown in Figure 3.

S1

S2

: 83.2, 85.4, 90.0, 94.6

: 264.6, 270.0, 274.6, 279.1

Mapping R

83.2
85.4
90.0
94.6264.6

270
274.6

279.1

0

 120240

ed

ed*ed**

Fig. 3. Reducing the SD to the MLCP problem

A solution of length 2 indicates that the set intersection is non-empty (i.e.,
there exist two edges, e ∈ S1 and e∗ ∈ S2, which are collinear). A solution of
length 3 indicates that the set intersection is empty. There are cases where the
optimum solution is of length 2 and the approximate MLCP algorithm yields a
solution with length 3. In this case we have a 1.5-approximation. Hence in the
worst case, the length of the non-optimal solution can never be < 1.5 times the
length of the optimal solution.

As a consequence we deduce that if we could solve the MLCP problem in
o(n log n) time with an approximation factor < 1.5, we could solve the SD prob-
lem in o(n log n) time. However, this contradicts the known lower time bound of
the SD problem. We thus obtain the following theorem:

Theorem 5. Solving the MLCP problem with an approximation factor < 1.5
takes Ω(n log n) time in the worst case in the algebraic computation tree.

References

1. M. Ben-Or. Lower Bounds for Algebraic Computation Trees. Proc. ACM Symp.
Th. Comp., 80–86. ACM Press, New York, NY, USA 1983

2. M. Ben-Or. Algebraic Computation Trees in Characteristic p > 0. Proc. IEEE
Symp. Found. Comp. Sci., 534–539. IEEE Press, Piscataway, NJ, USA 1994

Tight Time Bounds for the Minimum Local Convex Partition Problem 105

3. M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and R.E. Tarjan. Time Bounds
for Selection. Journal of Computer and System Sciences, 7(4):448–461. Academic
Press, San Diego, CA, USA 1973

4. M. Grantson. Fixed-Parameter Algorithms and Other Results for Optimal Convex
Partitions. Licentiate thesis, LU-CS-TR:2004-231, ISSN 1650-1276 Report 152.
Lund University, Sweden 2004

5. D. Grigoriev. Randomized Complexity Lower Bounds. Proc. ACM Symp. Th.
Comp., 219–223. ACM Press, New York, NY, USA 1998

6. D. Grigoriev, M. Karpinski, F. Meyer auf der Heide, and R. Smolensky. A
Lower Bound for Randomized Algebraic Decision Trees. Computational Complexity
6(4):357–375. Birkhäuser Verlag, Basel, Switzerland 1997

7. E. Lodi, F. Luccio, C. Mugnai, and L. Pagli. On Two-Dimensional Data Organi-
zation, Part I. Fundaments Informaticae 2:211–226. Polish Mathematical Society,
Warsaw, Poland 1979

8. A. Lubiw. The Boolean Basis Problem and How to Cover Some Polygons by
Rectangles. SIAM Journal on Discrete Mathematics 3:98–115. Society of Industrial
and Applied Mathematics, Philadelphia, PA, USA 1990

9. D. Moitra. Finding a Minimum Cover for Binary Images: An Optimal Parallel
Algorithm. Algorithmica 6:624–657. Springer-Verlag, Heidelberg, Germany 1991

10. D. Plaisted and J. Hong. A Heuristic Triangulation Algorithm. Journal of Algo-
rithms 8:405–437 Academic Press, San Diego, CA, USA 1987

I/O-Efficiently Pruning Dense Spanners

Joachim Gudmundsson1 and Jan Vahrenhold2

1 NICTA�, Sydney, Australia
joachim.gudmundsson@nicta.com.au

2 Westfälische Wilhelms-Universität Münster,
Institut für Informatik, 48149 Münster, Germany

jan@math.uni-muenster.de

Abstract. Given a geometric graph G = (S, E) in Rd with constant
dilation t, and a positive constant ε, we show how to construct a (1+ ε)-
spanner of G with O(|S|) edges using O(sort(|E|)) I/O operations.

1 Introduction

Complete graphs represent ideal communication networks but they are expen-
sive to build; sparse spanners represent low cost alternatives. The number of
edges of the spanner network is a measure of its sparseness; other sparseness
measures include the weight, the maximum degree, and the number of Steiner
points. Spanners for complete Euclidean graphs as well as for arbitrary weighted
graphs find applications in robotics, network topology design, distributed sys-
tems, design of parallel machines, and many other areas, and have been subject
to considerable research [2,6,12,16,25]. Recently spanners found interesting prac-
tical applications in areas such as metric space searching [29,30] and broadcasting
in communication networks [3,26].

Consider a set S of n points in the Euclidean space Rd. Throughout this
paper, we will assume that d is constant. A network on S can be modeled as
an undirected graph G with vertex set S and with edges e = (u, v) of weight
wt(e). We will study Euclidean networks, which are geometric networks where
the weight of the edge e = (u, v) is equal to the Euclidean distance |uv| between
its two endpoints u and v. If G is a geometric graph, then δG(p, q) denotes the
Euclidean length of a shortest path in G between p and q. Hence, G is a t-spanner
for S if δG(p, q) ≤ t|pq| for any two points p and q of S. The minimum value t
such that G is a t-spanner for S is called the dilation of G. A subgraph G′ of G
is a t′-spanner of G, if δG′(p, q) ≤ t′ · δG(p, q) for any two points p and q of S.

Many algorithms are known that compute t-spanners with O(|S|) edges that
have additional properties such as bounded degree, small spanner diameter (i.e.,
any two points are connected by a t-spanner path consisting of only a small
number of edges), low weight (i.e., the total length of all edges is proportional
to the weight of a minimum spanning tree of S), and fault-tolerance; see, e.g.,

� National ICT Australia is funded through the Australian Government’s Backing
Australia’s Ability initiative, in part through the Australian Research Council.

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 106–116, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

I/O-Efficiently Pruning Dense Spanners 107

[2,6,7,8,12,15,16,17,21,24,25,31,34], and the surveys [18,32]. All these algorithms
compute t-spanners for any given constant t > 1. Chen et al. [13] showed that
the lower bound for computing any t-spanner for a given set S of points in Rd

is Ω(|S| log |S|) in the algebraic computation tree model.
For the analysis in this paper we use the standard two-level I/O model [1]

which defines the following parameters:

N = # of objects in the problem instance,
M = # of objects fitting in internal memory,
B = # of objects per disk block,

where N � M and 1 ≤ B ≤ M/2. An input/output operation (or simply
I/O) consists of reading a block of contiguous elements from disk into internal
memory or writing a block from internal memory to disk. Computations can
only be performed on objects in internal memory. This model of computation
captures the characteristics of working with massive data sets that are too large
to fit into main memory and thus are stored on disk. Examples of massive graphs
include the “web graph”, telecommunication networks, or social networks [9,19].

In the two-level I/O model, we measure the efficiency of an algorithm by the
number of I/Os it performs, the amount of disk space it uses (in units of disk
blocks), and the internal memory computation time. Aggarwal and Vitter [1]
developed matching upper and lower I/O bounds for a variety of fundamen-
tal problems such as sorting and permuting. For example, they showed that
sorting N items in external memory requires Θ(N

B logM/B
N
B) I/Os while scan-

ning N items in external memory obviously can be done in Θ(N
B) I/Os. The

upper bounds for sorting and for scanning N items are often abbreviated as
O(sort(N)) = O(N

B logM/B
N
B) and as O(scan(N)) = O(N

B), and we will use
these notations throughout this paper.

I/O-efficient algorithms have been developed for several problem domains, in-
cluding computational geometry, graph theory, and string processing. The prac-
tical merits of the developed algorithms have been explored by a number of
authors. General recent surveys can be found in [4,35], and there are also more
specific surveys that consider I/O-efficient graph algorithms [23,33]. Results re-
lated to I/O-efficiently constructing (planar) spanners for point sets, sometimes
allowing Steiner points and/or respecting polygonal obstacles in the plane, have
been obtained by several authors [20,27,28].

In this paper we consider the problem of I/O-efficiently pruning a given t-
spanner, even if it has a super-linear number of edges. That is, given a geometric
graph G = (S,E) in Rd with constant dilation t, and a positive constant ε, we
consider the problem of constructing a (1 + ε)-spanner of G with O(|S|) edges.1

In the internal memory model two algorithms are known to prune a given
t-spanner in time O(|E| log |S|). The greedy algorithm of [16,21] can be used to
compute a (1 + ε)-spanner G′ of G. However, efficient implementations of the
greedy algorithm are very complex. In [21], the edge set is partitioned into a

1 The constants implicit in the “Big-Oh” notation depend on 1/εd.

108 J. Gudmundsson and J. Vahrenhold

logarithmic number of sets that are processed in phases. In each phase a cluster
cover and a cluster graph is computed by running Dijkstra’s algorithm in parallel
from all the cluster centers. A simpler approach was presented in [22], using the
well-separated pair decomposition, that produces a (1+ε)-spanner G′ of G with
O(|S|) edges. The I/O-efficient algorithm presented in this paper is inspired by
the latter algorithm. More specifically, given a geometric graph G = (S,E) in Rd

with constant dilation t, and a positive constant ε, we show how to I/O-efficiently
construct a (1+ε)-spanner of G with only O(|S|) edges using O(sort(|E|)) I/Os.
This bound matches the (internal memory) complexity of the algorithm in [22].

While building a sparse spanner is asymptotically faster than pruning a dense
spanner, the latter technique allows to specifically designate edges that should
participate and edges that are not allowed in the sparse spanner to be con-
structed.

2 Preliminaries

Our algorithm is similar to the internal memory algorithm by Gudmundsson et
al. [22] in that it uses the well-separated pair decomposition to decide which
edges that can be pruned. We briefly review their algorithm in this section.

In [22] it was shown that a simple way of pruning an existing t-spanner G
into a (1 + ε)-spanner of G with only O(|S|) edges is to use the well-separated
pair decomposition (WSPD). For completeness we include a description of the
WSPD.

Definition 1. Let s > 0 be a real number, and let A and B be two finite sets of
points in Rd. We say that A and B are well-separated with respect to s if there
are two disjoint balls CA and CB, having the same radius, such that CA contains
A and, CB contains B, and the distance between CA and CB is at least s times
the radius of CA. We refer to s as the separation ratio.

Definition 2 ([11]). Let S be a set of points in Rd, and let s > 0 be a real
number. A well-separated pair decomposition (WSPD) for S with respect to s is
a sequence {Ai, Bi}, 1 ≤ i ≤ m, of pairs of non-empty subsets of S, such that

1. Ai ∩ Bi = ∅ for all i = 1, . . . , m,
2. for each unordered pair {p, q} of distinct points of S, there is exactly one

pair {Ai, Bi} in the sequence, such that (i) p ∈ Ai and q ∈ Bi, or (ii) q ∈ Ai

and p ∈ Bi,
3. Ai and Bi are well-separated with respect to s for all i = 1, . . . , m.

The integer m is called the size of the WSPD. Callahan and Kosaraju show
that a WSPD of size m = O(|S|) can be computed in O(|S| log |S|) time. Their
algorithm uses a binary tree T , called the split tree. We briefly describe the main
idea. They start by computing the bounding box of S, which is successively split
by d-dimensional hyperplanes, each of which is orthogonal to one of the axes.
If a box is split, they take care that each of the two resulting boxes contains at

I/O-Efficiently Pruning Dense Spanners 109

least one point of S. As soon as a box contains exactly one point, the process
stops (for this box). The resulting binary tree T stores the points of S at its
leaves; one leaf per point. Also, each node u of T is associated with a subset of
S. We denote this subset by Su; it is the set of all points of S that are stored in
the subtree of u.

The split tree T can be computed in O(|S| log |S|) time. Callahan and Kosa-
raju show that, given T , a WSPD of size m = O(|S|) can be computed in O(|S|)
time. Each pair {Ai, Bi} in this WSPD is represented by two nodes ui and vi of
T , i.e., we have Ai = Sui

and Bi = Svi
.

Even though
∑�

i=1(|Ai| + |Bi|) can be quadratic in |S|, it was shown by
Callahan [10] that

∑�
i=1 min(|Ai|, |Bi|) = O(|S| log |S|).

Theorem 1 ([11]). Let S be a set of points in Rd, and let s > 0 be a real
number. A WSPD for S with respect to s having size O(sd|S|) can be computed
in O(|S| log |S| + sd|S|) time.

Now, assume that we are given a t-spanner G = (S,E). Compute a WSPD
{Ai, Bi}, 1 ≤ i ≤ m, for S, with separation ratio s = 4(1 + (1 + ε)t)/ε and
m = O(|S|). Let G′ = (S,E′) be the graph that contains for each i, exactly one
(arbitrary) edge (xi, yi) of E with xi ∈ Ai and yi ∈ Bi, provided such an edge
exists. It holds that G′ is a (1 + ε)-spanner of G [22], and hence:

Fact 1 (Theorem 3.1 in [22]). Given a real constant ε > 0 and a t-spanner
G = (S,E), for some real constant t > 1, one can compute a (1 + ε)-spanner G′

of G with O(|S|) edges in time O(|E| log |S|).

WSPD in External Memory. Govindarajan et al. [20] showed how to com-
pute a split tree and the well-separated pair decomposition I/O-efficiently.

Fact 2 (Theorem 1 in [20]). Given a set P of N points in Rd and a separation
constant s > 0, a well-separated pair decomposition for P can be computed in
O(sort(N)) I/Os using O(N/B) blocks of external memory.

In the process they build a split tree T of P . The idea is to construct T
recursively. They construct a partial split tree T ′ whose leaves have size O(Nα)
for some constant 1 − 1

6d ≤ α < 1. Then recursively build the split tree for
the leaves, proceeding with an optimal internal memory algorithm for every leaf
whose size is at most M . When the split tree has been computed they simu-
late the internal memory algorithm by Callahan and Kosaraju [11] in external
memory by applying time-forward processing on the computation trees.

3 Tree-Labeling Techniques

Pruning algorithms based on the concept of well-separated pairs need to iden-
tify, for each edge, the unique pair of a well-separated pair decomposition sep-
arating the endpoints of the edge. To do so, the internal memory algorithm

110 J. Gudmundsson and J. Vahrenhold

of Gudmundsson et al. [22] answers a number of ancestor queries in the split
tree corresponding to the well-separated pair decomposition. Mimicking this be-
haviour, i.e. asking queries one-by-one, in the external memory seems to lead
to a prohibitive Ω(|S| logB |S|/B) I/O-complexity, and thus we will reformulate
the pruning algorithm in terms of orthogonal range searching where the query
ranges correspond to well-separated pairs.

As each component of a well-sepatated pair can be seen as the union of
points stored in some subtree, we introduce a labeling of the tree in which each
subtree is labeled with (integers from) some interval in [1 . . . |S|]. Exploiting the
specific properties of the labeling, we also establish a natural mapping from
well-separated pairs to query ranges (Section 4).

The following three lemmas demonstrate the specifics of the labeling scheme
and show that any tree can be labeled I/O-efficiently in a hierarchical manner.

Lemma 1. Given a tree T with N nodes, we can label all O(N) leaves in left-
to-right order in O(sort(N)) I/Os.

Proof. We first compute an Euler-Tour for T using the algorithm of Chiang et
al. [14] and, based upon this tour, we compute a labeling of the nodes according
to the BFS-levels of T . The overall process takes O(sort(N)) I/Os. Then, we
again traverse T according to the Euler-Tour and, observing that leaves corre-
spond to local minima of the BFS-level labeling, we can identify and label them
during this traversal. The correctness of the left-to-right labeling follows from
the fact that each node in the tree is visited in pre-order and thus, each node is
visited before its right sibling. As the cost for the traversals is dominated by the
cost for computing the Euler-Tour, the overall complexity of labeling the leaves
is O(sort(N)) I/Os. ��

Lemma 2. Given a tree T with N nodes whose leaves are labeled in left-to-right
order, we can label each internal node v with an interval [lv, rv], lv, rv ∈ N, such
that the following holds:

1. Each leaf in the subtree rooted at v is labeled with some integer �(v) ∈ [lv, rv].
2. There exists at least one leaf in the subtree rooted at v that is labeled with an

integer �(v) ∈ [lv, rv].
3. The interval [lv, rv] is the minimal interval having this property.

The I/O-cost for computing this labeling is in O(sort(N)).

Proof. We prove Lemma 2 by giving an algorithm with an I/O-complexity
O(sort(N)) and showing that it computes a labeling with the desired properties.

The approach of this algorithm is to label the tree bottom-up and to assign
to each internal node the minimal interval encompassing the intervals assigned
to its children. For the “base case” of our algorithm we transform the label �(v)
assigned to a leaf v into an interval [�(v), �(v)]. This labeling obviously conforms
with requirements of Lemma 2.

To propagate these levels upwards, we first sort the nodes of the tree ac-
cording to their BFS-level in decreasing order and also label each node with its

I/O-Efficiently Pruning Dense Spanners 111

BFS-level, its BFS-number, and the BFS-number of its parent. Computing the
BFS-level, the BFS-number, and the parents’ BFS-number for each node can be
done using Euler-Tour techniques in O(sort(N)) I/Os. Starting with i set to the
maximum BFS-level. We then repeatedly extract all nodes on BFS-level i and
i − 1 from the sorted array. We sort all nodes on BFS-level i according to the
BFS-number of their parent and sort all nodes on BFS-level i − 1 according to
their BFS-number. We then simultaneously scan both arrays and update each
node v on BFS-level i−1 with the minimum interval encompassing the intervals
assigned to the nodes on BFS-level i having v as their parent (i.e. v’s children).

Inductively, we see that the correctness of the labeling follows from the cor-
rectness of the labeling on leaf level. The overall complexity is O(sort(N)) I/Os
as the algorithm performs a constant number of Euler-Tour computations and
as each node participates in a constant number of sorting steps. ��

Observation 1. The bounds and properties derived in Lemma 1 and Lemma 2
also hold if each leaf v is labeled with an interval [lv, rv] such that all these
intervals are disjoint and the interval endpoints lv are assigned to the leaves in
increasing order from left to right.

Note that the labeling proposed in Observation 1 can be applied to a split
tree T built for the vertices of a geometric graph G = (S,E). In this setting,
the vertices in S are labeled according to the left-to-right order in which they
appear in the leaves of T . The process described in Lemma 1 together with
Observation 1 then implies a relabeling of the graph’s vertices, i.e., each vertex
s ∈ S is labeled with a unique integer in �(s) ∈ [1 . . . |S|]. The following lemma
shows that this labeling can be mapped to the edges in an I/O-efficient way.

Lemma 3. Given a unique relabeling of the vertices of a geometric graph G =
(S,E), we can relabel the edges in E such that each edge e = (v, w) ∈ E is labeled
(�(v), �(w)) where �(v), �(w) ∈ [1 . . . |S|] are the unique labels assigned to v and
w. Given the set E of edges and a tree storing the labeled vertices in its leaves,
we can relabel all edges in O(sort(|E|)) I/Os.

Proof. To relabel the edge, we first extract the labeled vertices from the tree
using Euler-Tour techniques in O(sort(|S|)) I/Os and sort them according to
their original label. We then sort all edges according to the (original) label of
their respective source vertices, and in a synchronized scan over both sorted lists,
we can relabel the source vertices of all edges. Finally, we repeat this process
for the list of edges sorted according to the (original) labels of their respective
target vertices and obtain a relabeling of the target vertices. The above algorithm
clearly runs in O(sort(|S| + |E|)) = O(sort(|E|)) time. ��

4 An Algorithm for Pruning Dense Spanners

We are now ready to describe our algorithm for I/O-efficiently pruning a dense
t-spanner G = (S,E) such that the resulting graph is a (1 + ε)-spanner of G
with O(|S|) edges.

112 J. Gudmundsson and J. Vahrenhold

Our algorithm first computes a well-separated pair decomposition {Ai, Bi}
with separation ratio s = 4(1+(1+ε)t)/ε, using the algorithm of Govindarajan et
al. [20] and spending an overall number of O(sort(|S|)) I/Os. The well-separated
pair decomposition is represented by a split tree having O(|S|) leaves which is
laid out on disk in O(|S|/B) disk blocks.

We then use the technique presented in the proof of Lemma 1 to label all
vertices stored in the leaves from left to right and to label each leaf v with the
minimal interval containing the labels of the points stored with v, that is we
assign to each vertex v of the graph an unique integer �(v) ∈ [1 . . . |S|]. Finally,
we perform a labeling of the internal nodes that fulfills the requirements of
Lemma 2. By Lemma 1 and Lemma 2 the complexity computing this labeling is
O(sort(|S|)).
Lemma 4. The above labeling of the nodes in the split tree has the property that
each component C of a well-separated pair {Ai, Bi} corresponds to an interval
[l(C), r(C)], C ∈ {Ai, Bi}, and that the points whose labels fall into [l(C), r(C)]
are exactly the members of the component C.

Proof. Fix a component C of a given well-separated pair {Ai, Bi}. By definition
of the split tree, there exist nodes wAi

and wBi
corresponding to the compo-

nents of this well-separated pair. Let v ∈ {wAi
, wBi

} be one of these nodes, and
let [lv, rv] be the interval assigned to v by the algorithm given in the proof of
Lemma 2. This algorithm guarantees that there exists at least one point that
is stored in the subtree rooted at v whose label falls into [lv, rv], and that all
other points stored in this subtree are also labeled with an integer � ∈ [lv, rv].
By the definition of the split tree, the points stored in the subtree rooted at
v are exactly the points in the component of {Ai, Bi} corresponding to v. For
the reverse inclusion assume that there exists a point p that is not stored in the
subtree rooted at v and whose label �(p) also falls into [lv, rv]. As the points
are labeled according to the left-to-right order of the leaves (see Observation 1),
this means that the labels of points in the subtree rooted at v are either all
less than or greater than �(p). Assume that they are all less than �(p). Let �max

be the maximum label of all elements in the subtree rooted at v. Then the la-
bels of all elements in the subtree rooted at v are contained in [lv, �max]. As
�max < �(p) ≤ rv, we derive a contradiction to the minimality of [lv, rv] (see
Lemma 2). This completes the proof. ��

The algorithm of Gudmundsson et al. [22] prunes a dense spanner by only
keeping one edge connecting the two components of each well-separated pair
{Ai, Bi} considered. Based upon Lemma 4, we can restate this pruning processes
as a special case of the range-reporting problem. We first identify each edge
e = (v, w) in the original spanner with a point pe := (�(v), �(w)) ∈ [1 . . . |S|]2
(see Lemma 3). Using this terminology, we can derive a corollary to Lemma 4:

Corollary 1. Let T be a split tree for G = (S,E) whose nodes have been labeled
with intervals according to Lemma 2 and let a and b two nodes of T that cor-
respond to a well-separated pair {Ai, Bi}. An edge e = (v, w) ∈ E connects two
vertices v ∈ Aj and w ∈ Bi if and only if �(v) ∈ [la, ra] and �(w) ∈ [lb, rb].

I/O-Efficiently Pruning Dense Spanners 113

Let the set E be defined as E := {(�(v), �(w)) ∈ [1 . . . |S|]2 | (v, w) ∈ E}.
The above corollary allows us to perform the pruning algorithm for each well-
separated pair {Ai, Bi} corresponding to two nodes a and b in the split tree by
performing an orthogonal range reporting query with query range [la, ra]×[lb, rb]
on the set E while reporting exactly one point. Except for the edge corresponding
to the point reported, all edges connecting points in Ai and Bi can be pruned, and
this implies that the pruned spanner consists exactly of all edges corresponding
to the results of all range queries.

What remains to show is that all range reporting queries can be performed
I/O-efficiently. First of all, note that constructing the set E from the set E of
edges can be done in O(sort(|E|)) I/Os using the algorithm described in the proof
of Lemma 3. In a similar way, we can construct the query ranges [la, ra]× [lb, rb]
for all pairs {Ai, Bi} in the well-separated pair decomposition: We extract the
labels of all nodes in the split tree and use two successive sort-merge steps to
generate the set Q of O(|S|) query ranges in O(sort(|S|)) I/Os. The next lemma
shows that we can I/O-efficiently process all |Q| range queries while reporting
at most a constant number of answers per query.

Lemma 5. Given a set Q of orthogonal range queries on a set E of points in
the plane where |Q| ∈ O(|E|), we can process all queries in O(sort(|E|)) I/Os
while at the same time reporting no more than two answers per query.

Proof. We will process all queries in a batched manner using a variant of the
algorithm proposed by Arge et al. [5]. Their algorithm can answer a set of N
queries on a set of O(N) points in O(sort(N) + K/B) I/Os where K is the
size of the answer set. Their algorithm utilizes a technique called distribution
sweeping that combines multi-way divide-and-conquer with a plane-sweeping
approach. Roughly speaking, the plane is subdivided into Θ(

√
M/B) vertical

strips each containing approximately the same number of points. Each strip is
then swept top-to-bottom, and for each query range spanning a strip, all points
inside the range are reported. The algorithm is then applied recursively to (parts
of) query ranges falling within one of the strips. As, on each level, each query
range appears at most three times (at most one “middle” part spanning one
or more strips and at most two “excess” parts falling within a strip) there are
O(|Q|) = O(|E|) query ranges (or parts thereof) on each level, and it can be
shown that processing one level can be done in O(|E|/B) I/Os. As the recur-
sion tree is of height O(logM/B |E|/B) and is processed top-down, the overall
algorithm takes O(sort(E)) I/Os not counting the I/Os needed to report the
answer set.

Unfortunately, we cannot bound the size of the (complete) answer set in our
problem setting by a better bound than O(|Q| · |E|), and thus we need to modify
the algorithm of Arge et al. as follows: we first use one top-down-sweep to process
the query ranges on the current level of recursion with respect to their “middle”
parts and as soon as we find a point p contained in the current query range q,
we label q with the name of p, output the answer (q, p), and stop processing q.
In a second top-down sweep we distribute the “excess” parts of the query ranges
that have not been labeled with an answer to the corresponding sub-problems,

114 J. Gudmundsson and J. Vahrenhold

that is we stop processing ranges for which we already have found an answer. As
each query range appears in at most two subproblems on each level where it can
span a slab, there are at most two answers that can be reported before a query
range is not processed anymore, and this in turn results in an answer set of size
O(|E|). The I/O-complexity of processing one level of recursion is not affected
by this modification, hence the overall algorithm runs in O(sort(|E|)) I/Os. ��

As mentioned above, we run the algorithm described in the proof of Lemma 5
on a point set of size O(|E|) and a query set of size O(|S|), and thus we obtain
an answer set of size O(|S|) spending no more than O(sort(|E|)) I/Os. A simple
duplicate-removal step taking O(sort(|S|)) I/Os then reduces the output to at
most one answer per query. The O(|S|) edges corresponding to the points in
the answer set then form the desired pruned spanner [22]. This yields our main
result:

Theorem 2. Given a geometric graph G = (S,E) in Rd which is a t-spanner
for S for some constant t > 1 and given a constant ε > 0, we can compute
a (1 + ε)-spanner G′ = (S,E′) of G with E′ ⊆ E and |E′| ∈ O(|S|) spending
O(sort(|E|)) I/Os.

The obvious open problem is whether the complexity of I/O-efficiently prun-
ing dense spanners can be improved to O(scan(|E|) + sort(|S|)) I/Os.

References

1. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, Sept. 1988.

2. I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners
of weighted graphs. Discrete & Computational Geometry, 9:81–100, 1993.

3. K. M. Alzoubi, X.-Y. Li, Y. Wang, P.-J. Wan, and O. Frieder. Geometric span-
ners for wireless ad hoc networks. IEEE Transactions on Parallel and Distributed
Systems, 14(4):408–421, 2003.

4. L. A. Arge. External memory data structures. In J. Abello, P. M. Pardalos, and
M. G. C. Resende, editors, Handbook of Massive Data Sets. Kluwer, 2002. 313-357.

5. L. A. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter. Theory
and practice of I/O-efficient algorithms for multidimensional batched searching
problems. In Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, pages
685–694, 1998.

6. S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean spanners:
short, thin, and lanky. In Proc. 27th ACM Symposium on Theory of Computing,
pages 489–498, 1995.

7. S. Arya, D. M. Mount, and M. Smid. Randomized and deterministic algorithms
for geometric spanners of small diameter. In Proc. 35th IEEE Symposium on
Foundations of Computer Science, pages 703–712, 1994.

8. P. Bose, J. Gudmundsson, and P. Morin. Ordered theta graphs. Computational
Geometry: Theory and Applications, 28:11–18, 2004.

9. A. L. Buchsbaum and J. R. Westbrook. Maintaining hierarchical graph views. In
Proc. 11th ACM-SIAM Symposium on Discrete Algorithms, pages 566–575, 2000.

I/O-Efficiently Pruning Dense Spanners 115

10. P. B. Callahan. Dealing with higher dimensions: the well-separated pair decompo-
sition and its applications. Ph.D. thesis, Department of Computer Science, Johns
Hopkins University, Baltimore, Maryland, 1995.

11. P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. Journal
of the ACM, 42:67–90, 1995.

12. B. Chandra, G. Das, G. Narasimhan, and J. Soares. New sparseness results on
graph spanners. International Journal of Computational Geometry and Applica-
tions, 5:124–144, 1995.

13. D. Z. Chen, G. Das, and M. Smid. Lower bounds for computing geometric spanners
and approximate shortest paths. Discrete Applied Mathematics, 110:151–167, 2001.

14. Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S.
Vitter. External-memory graph algorithms. In Proc. 6th ACM-SIAM Symposium
on Discrete Algorithms, pages 139–149, 1995.

15. G. Das, P. Heffernan, and G. Narasimhan. Optimally sparse spanners in 3-
dimensional Euclidean space. In Proc. 9th Annual ACM Symposium on Com-
putational Geometry, pages 53–62, 1993.

16. G. Das and G. Narasimhan. A fast algorithm for constructing sparse Euclidean
spanners. International Journal of Computational Geometry & Applications, 7:297–
315, 1997.

17. G. Das, G. Narasimhan, and J. Salowe. A new way to weigh malnourished Eu-
clidean graphs. In Proc. 6th ACM-SIAM Symposium on Discrete Algorithms, pages
215–222, 1995.

18. D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors,
Handbook of Computational Geometry, pages 425–461. Elsevier Science Publishers,
Amsterdam, 2000.

19. S. Eubank, V. A. Kumar, M. V. Marathe, A. Srinivasany, and N. Wang. Structural
and algorithmic aspects of massive social networks. In J. I. Munro, editor, Proc.
15th ACM-SIAM Symposium on Discrete Algorithms, pages 718–727, 2004.

20. S. Govindarajan, T. Lukovszki, A. Maheswari, and N. Zeh. I/O-efficient well-
separated pair decomposition and its application. In Proc. 8th European Sympo-
sium on Algorithms, volume 1879 of Lecture Notes in Computer Science, pages
220–231. Springer-Verlag, 2000.

21. J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Improved greedy algo-
rithms for constructing sparse geometric spanners. SIAM Journal of Computing,
31(5):1479–1500, 2002.

22. J. Gudmundsson, C. Levcopoulos, G. Narasimhan, and M. Smid. Approximate
distance oracles for geometric graph. In Proc. 13th ACM-SIAM Symposium on
Discrete Algorithms, pages 828–837, 2002.

23. I. Katriel and U. Meyer. Elementary graph algorithms in external memory. In
U. Meyer, P. Sanders, and J. Sibeyn, editors, Algorithms for Memory Hierarchies,
volume 2625 of Lecture Notes in Computer Science, pages 62–84. Springer, Berlin,
2003.

24. J. M. Keil. Approximating the complete Euclidean graph. In Proc. 1st Scandina-
vian Workshop on Algorithmic Theory, pages 208–213, 1988.

25. C. Levcopoulos, G. Narasimhan, and M. Smid. Improved algorithms for construct-
ing fault-tolerant spanners. Algorithmica, 32:144–156, 2002.

26. X.-Y. Li. Applications of computational geometry in wireless ad hoc networks.
In X.-Z. Cheng, X. Huang, and D.-Z. Du, editors, Ad Hoc wireless networking.
Kluwer, 2003.

116 J. Gudmundsson and J. Vahrenhold

27. T. Lukovszki, A. Maheshwari, and N. Zeh. I/O-efficient batched range counting and
its applications to proximity problems. In Proc. 21st Conference on Foundations
of Software Technology and Theoretical Computer Science, volume 2245 of Lecture
Notes in Computer Science, pages 244–255, Berlin, 2001. Springer.

28. A. Maheshwari, M. Smid, and N. Zeh. I/O-efficient shortest path queries in ge-
ometric spanners. In F. Dehne, J.-R. Sack, and R. Tamassia, editors, Proc. 7th
Workshop on Algorithms and Data Structures, volume 2125 of Lecture Notes in
Computer Science, pages 287–299, Berlin, 2001. Springer.

29. G. Navarro and R. Paredes. Practical construction of metric t-spanners. In 5th
Workshop on Algorithmic Engineering and Experiments, pages 69–81. SIMA Press,
2003.

30. G. Navarro, R. Paredes, and E. Chávez. t-spanners as a data structure for met-
ric space searching. In 9th International Symposium on String Processing and
Information Retrieval, volume 2476 of Lecture Notes in Computer Science, pages
298–309. Springer, 2002.

31. J. S. Salowe. Constructing multidimensional spanner graphs. International Journal
of Computational Geometry & Applications, 1:99–107, 1991.

32. M. Smid. Closest point problems in computational geometry. In J.-R. Sack and
J. Urrutia, editors, Handbook of Computational Geometry, pages 877–935. Elsevier
Science Publishers, Amsterdam, 2000.

33. L. I. Toma and N. Zeh. I/O-efficient algorithms for sparse graphs. In U. Meyer,
P. Sanders, and J. Sibeyn, editors, Algorithms for Memory Hierarchies, volume
2625 of Lecture Notes in Computer Science, pages 85–109. Springer, Berlin, 2003.

34. P. M. Vaidya. A sparse graph almost as good as the complete graph on points in
K dimensions. Discrete & Computational Geometry, 6:369–381, 1991.

35. J. S. Vitter. External memory algorithms and data structures: Dealing with massive
data. ACM Computing Surveys, 33(2):209–271, June 2001.

On the Minimum Size of a Point Set Containing
Two Non-intersecting Empty Convex Polygons

Kiyoshi Hosono and Masatsugu Urabe

Department of Mathematics, Tokai University,
3-20-1 Orido, Shimizu, Shizuoka, 424-8610 Japan

Abstract. Let n(k, l) be the smallest integer such that any set of n(k, l)
points in the plane, no three collinear, contains both an empty convex
k-gon and an empty convex l-gon, which do not intersect. We show that
n(3, 5) = 10, 12 ≤ n(4, 5) ≤ 14, 16 ≤ n(5, 5) ≤ 20.

1 Introduction

Erdős [1] asked the following combinatorial geometry problem in 1979: Find the
smallest integer n(k) such that any set of n(k) points in the plane, in general
position, i.e., no three points are collinear, contains the vertices of a convex k-
gon, whose interior contains no points of the set. Such a subset is called an empty
convex k-gon or a k-hole. Klein [2] found n(4) = 5, and n(5) = 10 was determined
by Harborth [3]. Horton [4] showed that n(k) does not exist for k ≥ 7. The value
of n(6) is still open.

We consider a related problem. Let H1 and H2 be a pair of holes in a given
point set. We say that H1 and H2 are vertex disjoint if H1∩H2 = ∅. If, moreover,
their convex hulls are disjoint, we simply say that the two holes are disjoint;
ch(H1)∩ch(H2) = ∅ where ch stands for the convex hull. We study the following
function: Let n(k, l) denote the smallest integer such that any set of n(k, l) points
in general position in the plane contains a pair of disjoint holes with a k-hole
and a l-hole. Clearly, n(3, 3) = 6 and n(k, 7) = +∞. In [5] and [6], we studied
the maximum number of pairwaise disjoint k-holes and we found n(3, 4) = 7
and n(4, 4) = 9, where Figure 1 gives n(4, 4) ≥ 9. In this paper, we estimate the
other values; n(3, 5) = 10, 12 ≤ n(4, 5) ≤ 14, 16 ≤ n(5, 5) ≤ 20.

Fig. 1

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 117–122, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

118 K. Hosono and M. Urabe

2 Definitions and Notations

In this paper, we consider only planar point sets in general position. For such a
set P , we denote P = V (P) ∪ I(P) such that V (P) is the boundary vertices on
ch(P). We denote a k-hole by (v1v2 · · · vk) if the vertices are located with order
anti-clockwise. When indexing a set of t points, we identify indices modulo t.

Let a, b and c be any three points in the plane. We denote the convex cone
between r(a; b) and r(a; c) by C(a; b, c), where r(a; b) is the ray emanating from
a and passing through b. For δ = b or c of C(a; b, c), let δ′ be a point collinear
with a and δ so that a lies on the segment δδ′. A convex region is also said to
be empty if its interior contains no elements of P . Namely, if C(a; b, c) is not
empty, we can consider an element p of P in the interior of C(a; b, c) such that
C(a; b, p) is empty. We call such p the attack point from r(a; b) to r(a; c).

Let R be a convex region and consider C(a; b, c) such that {a, b, c} is contained
in R. For CR(a; b, c) = C(a; b, c)∩R, we define αR(a; b, c) as the element of P in
the interior of CR(a; b, c) such that CR(a; b, αR(a; b, c)) is empty. Finally, H(ab; c)
or H(ab; c) denotes the open half-plane bounded by the line ab, containing c or
not, respectively.

3 Results

In this section, we estimate the values n(k, 5) for k = 3, 4, 5. We first show the
following result.

Theorem 1. n(3, 5) = 10.

Before showing Theorem 1, we propose the next lemma.

Lemma 1. If a 10 point set P contains a 6-hole Q, then P has a pair of disjoint
holes with a 3-hole and a 5-hole.

Proof. Let Q = (q1q2q3q4q5q6) and consider the convex cone Γi determined by
r(qi+3; qi) and r(qi−1; qi+2) for i = 1, 3, 5, where Γ1 ∪ Γ3 ∪ Γ5 covers the area
R2\ch(Q) and each Γi contains exactly one point qi+1 of Q in the interior.
Since Γi contains at least two points of P\Q for some i, we obtain a 5-hole
Q′ = Q\{qi+1} and three points in the convex region Γi\ch(Q′). ��

Proof of Theorem 1. The lower bound holds by n(5) = 10 as shown in Fig. 2.

For the upper bound we show that every 10 point set P has a disjoint pair of
a 3-hole and a 5-hole. By n(5) = 10 we obtain a 5-hole F = (p1p2p3p4p5) in P .
Denote the finite or infinite region bounded with r(pi−1; pi), r(pi+2; pi+1) and
the line segment pipi+1 by Bi for 1 ≤ i ≤ 5. If some Bi contains a point of P ,
we are done by Lemma 1 since P has a 6-hole. Suppose that every Bi is empty.

We claim that there are consecutive vertices, say p3 and p4 in F such that
 p2p3p4+ p3p4p5 > π. Then we consider three convex regions R1 = H(p4p5; p1),
R2 = H(p2p3; p1)\R1 and R3 = C(p1; p′2, p

′
5)\(R1 ∪ R2). If some Ri contains at

On the Minimum Size of a Point Set 119

Fig. 2

Fig. 3

least three points, we have a triangle in this region and a 5-hole F . We can
suppose that each Ri is not empty and contains one or two points.

We first suppose that R3 contains exactly two points. Then we can assume
that C1 = C(p5; p′1, p

′
4) is empty since, otherwise, the convex region R3∪C1∪B5

contains at least three points. Similarly, C2 = C(p2; p′1, p
′
3) is also empty, which

implies that C3 = H(p3p4; p1)\(C1 ∪C2) contains exactly three points. Then we
have a triangle in C3 and a 5-hole F . See Fig. 3.

Suppose that R3 contains exactly one point. If C1 or C2 contains at least
two points, we are immediately done. Then we suppose that C3 has exactly
two points and that each of C1 and C2 contains exactly one point. Moreover,
H(p3p4; p1) ∩ (C1 ∪ C2) can be assumed to be empty. Then if C(p4; p3, p

′
5) is

empty, R1 contains exactly three points. Therefore, we can assume that each of
C(p4; p3, p

′
5) and C(p3; p4, p

′
2) contains exactly one point by symmetry.

120 K. Hosono and M. Urabe

Fig. 4

Fig. 5

Let q1, q2 or q3 be in R3, C2 or C(p4; p3, p
′
5), respectively. If both q1 and q3

are in H(p1p3; p4), a 6-hole (q1p1p3q3p4p5) appears and we are done. If either q1

or q3 is in H(p1p3; p4), we obtain a 5-hole and a 3-hole in H(p1p3; p2). Hence, the
remaining case is that H(p1p3; p4) contains both q1 and q3. If
q1q2q3 contains
p2, we obtain a 5-hole (q1p2q3p3p1) and a 3-hole in H(p1p3; p4). If not so, we
obtain F itself and
q1q2q3. ��

Theorem 2. 12 ≤ n(4, 5) ≤ 14.

Proof. Figure 4 gives an 11 point set which does not contain both a 4-hole and
a 5-hole, following that n(4, 5) ≥ 12.

For a 14 point set P , we take any edge uv of ch(P) and consider the point p1

with {u, v, p1} anti-clockwise order such that C(u; v, p1) is empty. If C(p1;u, v′) is
not empty, we obtain a 4-hole Q = (uvp1α(p1;u, v′)). Since C(p1;u′, α(p1;u, v′))

On the Minimum Size of a Point Set 121

Fig. 6

Fig. 7

contains precisely 10 points in the interior, we also obtain a 5-hole in it by
n(5) = 10.

Suppose that C(v;u, p1) is empty and let p2 = α(p1; v′, u′). We can assume
that
vp2p1 is empty since, otherwise, we obtain a 4-hole (p2up1α(p2; p1, v)) and
H(α(p2; p1, v)p2; v) contains 10 points. Then since, if C(p2; v, u′) is empty, we
obtain a 4-hole (p2p1vα(p2;u′, p′1)) and H(p2α(p2;u′, p′1);u) contains 10 points,
we consider p3 = α(p2; v, u′).

We can assume that C(p3; p′2, u
′) is empty. In fact, if this region contains a

unique interior point q, we obtain a 4-hole (vqp3p1) and H(up3; p2) ∪ {u} with
10 points. If this contains at least two points, we consider two attack points of
r1 = α(u; p1, p3) and r2 = α(u; r1, p3). If
p1vr2 contains r1, we have a 5-hole

122 K. Hosono and M. Urabe

(up1r1r2p3) or (up1r1r2α(r2;u, p3)), respectively if C(r2;u, p3) is emty or not.
Then since H(r2p3; p2) or H(r2α(r2;u, p3); p2) contains 8 points, it has a 4-hole
by n(4) = 5. See Fig. 5 where the shaded portions are empty. For otherwise,
we have a 4-hole of either (r1r2p1v) or (r2r1p1v) and H(ur2; p3) ∪ {u} with 10
points.

We now suppose that C(p3;u′, p′1) is empty since, otherwise, we ob-
tain a 4-hole (p3p1vα(p3;u′, p′1)) and H(p3α(p3;u′, p′1);u) with 10 points. We
can assume that C(p2; p3, u

′) is empty since, otherwise, we have a 5-hole
(p2up1p3α(p2; p3, u

′)) and H(p2α(p2; p3, u
′);u) with 8 points. By symmetry,

C(p3; p2, v
′) is also empty. For p4 = α(p3; v′, p′1), we suppose that C(p2; p4, u

′)
is empty since, otherwise, we obtain a 5-hole (p4p2p1p3αR(p4; p3, p

′
2)) where

R = C(p1; p2, p3) and H(p4αR; p1) with 7 or 8 points.
We consider p5 = α(p4; p′3, p

′
1) by symmetry. If αR′(p5; p4, u

′) exists for R′ =
C(p2; p4, u), we obtain a 5-hole (p5up2p4αR′) and H(p5αR′ ; p4) with at least
6 points. If CR′(p5; p4, u

′) is empty, we obtain a 5-hole (p6p5p4p3v) for p6 =
α(p5;u′, p′4) and C(p5; p6, p

′
4) contains 6 points in the interior as shown in Fig. 6.

��

Theorem 3. 16 ≤ n(5, 5) ≤ 20.

Proof. Figure 7 gives a 15 point set which does not contain two disjoint 5-holes,
referred to in [5]. For any set of 20 points, there is a line which halves the set.
Then the upper bound holds by n(5) = 10. ��

References

1. Erdős, P.: Some combinatorial problems in geometry. Proceedings Conference Uni-
versity Haifa, Lecture Notes in Mathematics 792 (1980) 46–53

2. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math. 2
(1935) 463–470

3. Harborth, H.: Konvexe Fünfecke in ebenen Punktmengen. Elem. Math. 33 (1978)
116–118

4. D.Horton, J.: Sets with no empty convex 7-gons. Canad. Math. Bull. 26 (1983)
482–484

5. Hosono, K., Urabe, M.: On the number of disjoint convex quadrilaterals for a plannar
point set. Comp. Geom. Theory Appl. 20 (2001) 97–104

6. Urabe, M.: On a partition into convex polygons. Disc. Appl. Math. 64 (1996) 179–
191

Three Equivalent Partial Orders on Graphs with
Real Edge-Weights Drawn on a Convex Polygon

Hiro Ito

Department of Communications and Computer Engineering,
School of Informatics, Kyoto University, Kyoto 606-8501, Japan

itohiro@i.kyoto-u.ac.jp

Abstract. Three partial orders, cut-size order, length order, and op-
eration order, defined between labeled multigraphs with the same or-
der are known to be equivalent. This paper extends the result on edge-
capacitated graphs, where the capacities are real numbers, and it presents
a proof of the equivalence of the three relations. From this proof, it is
also shown that we can determine whether or not a given graph precedes
another given graph in polynomial time.

1 Introduction

Let N = {x0, x1, . . . , xn−1} be the set of vertices of a convex polygon P in
the plane, where the vertices are arranged in this order counter-clockwisely, and
hence (xi, xi+1) is an edge of P for i = 0, 1, . . . , n − 1 (We adopt the residue
class on n for treating integers in N , i.e., i ± j is i′ ∈ N such that i′ ≡ i ± j
(mod n)). An internal angle of P may be π. We consider graphs whose node
set corresponds to N , i.e., the node set is {0, 1, . . . , n − 1} and each node i is
assigned to xi, and each edge e = (i, j) of the graph is represented by a line
segment xixj .

We adopt the cyclic order for treating integers (or numbered vertices) in N .
Thus for i, j ∈ N ,

[i, j] =
{
{i, i + 1, . . . , j}, if i ≤ j,
{i, i + 1, . . . , n − 1, 0, 1, . . . , j}, if i > j;

for i, j, k ∈ N , i ≤ j ≤ k means j ∈ [i, k]; for i, j, k, h ∈ N , i ≤ j ≤ k ≤ h means
that i, j, k, h appear in this order when we traverse the nodes of [i, h] from i to h.
For notational simplicity, {i} may be written as i. For a graph G, E(G) means
the edge set of G.

In this paper all graphs are regarded as weighted graphs, i.e., we introduce a
weight function wG : E(G) → R and a weighted graph G always has a weight
function wG in this paper.

Three relations, cut-size order, length order, and operation order, were intro-
duced between vertex-labeled graphs in Reference [5] and shown that they are
equivalent [4,5]. However, the proof in Reference [5] is for only multigraphs with
the same number of edges and without edge weights. The proof for the general
case have been appeared in only Technical Notes [4]. This paper shows a new
proof, which is more simple than the previous one, for the general case.

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 123–130, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

124 H. Ito

2 Definitions

We introduce some terms as follows.

Linear Cuts. For a graph G and a pair of distinct nodes i, j ∈ N , a linear cut
CG(i, j) is an edge set:

CG(i, j) = {(k, h) ∈ E(G) | k ∈ [i, j − 1], h ∈ [j, i − 1]}.

Fig. 1 show examples of linear cuts. The capacity of a linear cut CG(i, j) is
defined as

cG(i, j) =
∑

e∈CG(i,j)

wG(e).

For two subsets N ′ and N ′′ of nodes,

wG(N ′, N ′′) =
∑

i∈N ′,j∈N ′′
wG(i, j).

The degree of a node i ∈ N of a graph G is defined as cG(i, i + 1) = wG(i, [i +
1, i − 1]) and may be simply denoted by dG(i). As a generalization of degree,
dG(N ′) denotes wG(N ′, N−N ′) for N ′ ⊂ N . From them, cG(i, j) = dG([i, j−1]),
since they means the same thing.

We introduce a relation based on sizes of linear cuts as follows. For two
weighted graph G and G′, G �c G′ means that cG(i, j) ≤ cG′(i, j) for all i, j ∈ N ,
i = j. This relation is known to be a partial order, since it is easily obtained
from the following result presented by Skiena [7].

Theorem 1. For two weighted graphs G and G′, if cG(i, j) = cG′(i, j) for all
i, j ∈ N , i = j, then G = G′. ��

Sum of Edge Lengths. For an edge (i, j) of a weighted graph G and a convex
n-gon P , let dist(i, j) be a length of the line segment xixj . We define a sum of
weighted edge length of G with respect to P as

sP (G) =
∑

(i,j)∈E(G)

w(i, j) · dist(i, j).

10

2

3

4

6

5

(a) (b)

10

2

3
4

6

5

Fig. 1. Linear cuts: (a) CG(1, 4), (b) CG(3, 4)

Three Equivalent Partial Orders on Graphs with Real Edge-Weights 125

We introduce a relation based on the measure as follows. For two weighted
graph G and G′, G �l G′ means that sP (G) ≤ sP (G′) for all convex n-gons P .
Graph drawing is a very important research aea and the sum of edge lengths is
a crucial criterion for evaluating drawing methods [1].

Cross-Operations. We introduce an operation transforming a graph to another
one. For a weighted graph G, two distinct i, j ∈ N and a real value Δ,
ADDG(i, j;Δ) means adding Δ to w(i, j) (if (i, j) /∈ E(G), adding an edge
(i, j) to E(G) previously). The reverse operation of ADD can be defined, i.e.,
REMOVEG(i, j;Δ) means ADDG(i, j;−Δ). We extend these operations in the
case i = j, i.e., both ADDG(i, i;Δ) and REMOVEG(i, i;Δ) mean doing nothing.
For nodes i, j, k, h ∈ N with i ≤ j ≤ k ≤ h and a positive Δ > 0 (see, Fig. 2), a
cross-operation XG(i, j, k, h;Δ) is applying.

REMOVEG(i, j;Δ), REMOVEG(k, h;Δ), ADDG(i, k;Δ), and ADDG(j, h;Δ).

i

j

h

k

i

j

h

k

Fig. 2. Cross-operation X(i, j, k, h; 1)

If some of {i, j, k, h} are equal, a cross-operation may increase edges. In fact,
if i = j < k < h < i or i = j < k = h < i (or the cases symmetric with respect
to one of them), then the total edge weights increases (see, (a) and (b) of Fig. 3).
If j = k or i = h, the edge set is not changed (see, (c) and (d) of Fig. 3).

We introduce a relation based on cross-operations as follows. For two
weighted graph G and G′, G �o G′ means that G′ can be obtained from G by
applying finite number (including zero) of cross-operations. Cross-operations are
very similar to 2-switches, presented by Hakimi [2,3] and developed by West [8].
The only deference between them is that the order of i, j, k, h is not a matter in
2-switches.

3 Equivalence of the Three Relations

We have the following theorem.

Theorem 2. Three relations �c, �l, and �o are equivalent. ��

This theorem was shown in [5] for graphs with the same size (number of edges),
but for the general case a proof is shown only in Technical Notes [4]. Moreover,

126 H. Ito

i=j

h

k

(a)

i=j

h

k

i=j

(b)

i=jk=h k=h

(c) (d)

j=k

h h

i

j=k

i i=j=k
hh

i=j=k

Fig. 3. These cross-operations X(i, j, k, h; 1) when some of nodes are the same

these proofs were a bit long and complicated. We show a more simple proof of
this theorem in this section.

In the remaining part of this section, we consider that all weighted graphs
are complete graphs without loss of generality, since (i, j) /∈ E is equivalent to
wG(i, j) = 0. Hence a weighted graph can be represented by a pair of a node
set N and a weight function w: G = (N,w). Define a zero weighted graph
G∅ = (N,w∅) as w∅(i, j) = 0 for all i, j ∈ N .

Note that cG∅(i, j) = 0 for any i, j ∈ N (i = j), and SP (G∅) = 0 for any
polygon P . For any pair of G = (N,w) and G′ = (N,w′), we define G − G′ =
(N,w′′) as c′′(i, j) := c(i, j)− c′(i, j) for every i, j ∈ N . G � G′ (� is any one of
�l, �c, and �o) is equivalent to G−G′ � G∅. Therefore, it is enough to consider
G′ = G∅ for proving Theorem 2, as a result of this fact, the proof of Theorem 2
consists of three parts:

(1) G �o G∅ ⇒ G �l G∅, (Lemma 1)
(2) G �l G∅ ⇒ G �c G∅, (Lemma 2) and
(3) G �c G∅ ⇒ G �o G∅. (Lemma 3)

Lemma 1 ([5]). If G �o G∅, then G �l G∅.

Proof: It is clear from the triangle inequality. �

Lemma 2 ([5]). If G �l G∅, then G �c G∅.

Proof. Suppose that G �c G∅ does not hold, i.e., there are i, j ∈ N such
that cG(i, j) > 0. We construct a polygon P satisfying SP (G) > 0 as follows.

Three Equivalent Partial Orders on Graphs with Real Edge-Weights 127

X = {xk | k ∈ [i, j − 1]} and Y = {xk | k ∈ [j, i − 1]}. Let p, r > 0 be real
numbers. Put all vertices xi ∈ X in a circle whose center is (0, 0) and radius is
r. Put all vertices xi ∈ Y in a circle whose center is (p, 0) and radius is r. We
can locate all vertices satisfying the above conditions and convexity for any r
and p. By letting p be far larger than r, SP (G) > 0. �

Lemma 3. If G �c G∅, then G �o G∅.

In this paper we show a new proof, which is more simple than the previous
one, for this lemma. The following proposition is well-known. Since the proof is
easy, it is omitted.

Proposition 1. Let A,B,C ⊂ N be three mutually disjoint subsets and G be a
weighted graph, then

dG(A ∪ B) + dG(B ∪ C) = dG(B) + dG(A ∪ B ∪ C) + 2wG(A,C).

�

Proof of Lemma 3. Assume that G �c G∅, i.e.,

dG([i, j]) = cG(i, j + 1) ≤ 0 for all i, j ∈ N. (1)

We use an example shown in Fig. 4 (a) for a help of understanding. Let k0 be
the largest integer such that

dG([i, j]) = 0 for all (i, j) ∈ {(i, j) | i, j ∈ N, j − i < k0}. (2)

Note that the residue class is used for the difference. (For an example for
Fig. 4 (a), k0 = 2 since dG(0) = dG(1) = · · · = dG(11) = 0, dG([0, 1]) =

(a)
0

1

2

3

4

5
6

11

10

8

7

9

(b)
0=i

1

2=j

3

4

5
6

11

10=i
=i

8=j
=j

7

9

0

01

1

*

*

Fig. 4. An example of G: w(e) = 1 for solid edges and w(e) = −1 for broken edges

128 H. Ito

dG([1, 2]) = · · · = dG([11, 0]) = 0, and dG([0, 2]) = −2 < 0.) If k0 ≥ �n/2�,
G = G∅. Hence, we assume k0 < �n/2�. Then their exists (i0, j0) such that
j0 − i0 = k0 and

dG([i0, j0]) < 0. (3)

(For an example for Fig. 4 (a), i0 = 0 and j0 = 2.) By considering Proposition 1
with A = {i0}, B = [i0 + 1, j0 − 1], and C = {j0}, we obtain

dG([i0, j0 − 1]) + dG([i0 + 1, j0])
= dG([i0 + 1, j0 − 1]) + dG([i0, j0]) + 2wG(i0, j0).

Thus

wG(i0, j0)

=
dG([i0, j0 − 1]) + dG([i0 + 1, j0]) − dG([i0 + 1, j0 − 1]) − dG([i0, j0])

2
> 0, (4)

since dG([i0, j0−1]) = dG([i0+1, j0]) = dG([i0+1, j0−1]) = 0, and dG([i0, j0]) <
0. (In the example, wG(0, 2) = 1 > 0.) Let I be a set of (i, j) (i, j ∈ N) satisfying
the following conditions:

(a) i < i0 ≤ j0 < j, and
(b) dG([i′, j′]) < 0 for all i < i′ ≤ i0 and j0 ≤ j′ < j.

(For an example for Fig. 4 (a), I = {(11, 3), (11, 4), . . ., (11, 9), (10, 3), (10, 4),
. . ., (10, 8), (9, 3), (9, 4), . . ., (9, 7), (8, 3), (8, 4), (8, 5), (8, 6), (7, 3), (7, 4), (7, 5),
(6, 3), (6, 4), (5, 3)}.) I = ∅ since (i0 − 1, j0 + 1) ∈ I. Let (i1, j1) be an extremal
element of I, i.e., they satisfies (a), (b), and

(c) there are i1 <i2 ≤ i0 and j0 ≤ j2 < j1 such that dG([i1, j2]) = dG([i2, j1]) = 0

(For an example for Fig. 4 (a), i1 = 10, j1 = 8, i2 = 11, j2 = 7.) Such i1, j1
(and i2, j2) must exist since dG([i, j]) = 0 for i, j ∈ N with j − i > n − k0

(note dG([i, j]) = dG([j + 1, i − 1]) and (2)). By considering Proposition 1 with
A = [i1, i2 − 1], B = [i2, j2], and C = [j2 + 1, j1] (see, Fig. 5), we obtain

dG([i1, j2]) + dG([i2, j1])
= dG([i2, j2]) + dG([i1, j1]) + 2wG([i1, i2 − 1], [j2 + 1, j1]).

Thus

wG([i1, i2 − 1], [j2 + 1, j1])

=
dG([i1, j2]) + dG([i2, j1]) − dG([i2, j2]) − dG([i1, j1])

2
> 0, (5)

since dG([i1, j2]) = dG([i2, j1]) = 0 from (c), dG([i2, j2]) < 0 from (b), and
dG([i1, j1]) ≤ 0. (For an example for Fig. 4 (a), wG(10, 8) = 1 > 0.) Hence there
is a pair i∗ ∈ [i1, i2 − 1] and j∗ ∈ [j2 + 1, j1] such that

wG(i∗, j∗) > 0. (6)

Three Equivalent Partial Orders on Graphs with Real Edge-Weights 129

i

j

0

0

i 2
i 1 A

B

C j 2
j
1

Fig. 5. Relation between nodes and cuts

(For an example for Fig. 4 (a), i∗ = i1 = 10 and j∗ = i1 = 8.) Since (i∗, j∗) ∈ I,
it satisfies (b), i.e.,

dG([i, j]) < 0 for all i∗ < i ≤ i0 and j0 ≤ j < j∗. (7)

From (4), (6), and (7) we can apply a cross-operation X(i0, j0, j∗, i∗;Δ) on G
with

Δ = min{wG(i0, j0), wG(i∗, j∗), min
i∗<i≤i0,j0≤j<j∗

{−dG([i, j])/2}} > 0.

(For an example for Fig. 4 (a), Δ = 1 and we obtain a graph of Fig. 4 (b) by
the cross-operation.)

Now, we have found a cross-operation that makes G be closer to G∅. By
applying the preceding discussion iteratively, we can find a sequence of cross-
operations that makes G be closer to G∅. For completing the proof, we must
show that the length of the sequence is finite. It is shown as follows.

Let G′ be a graph obtained by applying X(i0, j0, j∗, i∗;Δ) to G. There are
three cases: (I) Δ = wG(i0, j0), (II) Δ = mini∗<i≤i0,j0≤j<j∗{−dG([i, j])/2}, and
(III) Δ = wG(i∗, j∗). We consider each case as follows.

(I) Δ = wG(i0, j0). In this case, wG′(i0, j0) becomes zero. Then by applying
Proposition 1 with A = {i0}, B = [i0 + 1, j0 − 1], and C = {j0}, we obtain
dG′([i0, j0]) = 0. Thus, the number of zero-linear-cuts of G′ is greater than
the one of G. Therefore (I) occurs at most

(
n
2

)
< n2 times.

(II) Δ = mini∗<i≤i0, j0≤j<j∗{−dG([i, j])/2}. Let i′ and j′ be nodes satisfying
i∗ < i′ ≤ i0, j0 ≤ j′ < j∗, and Δ = −dG([i, j])/2. Thus dG′([i′, j′]) becomes
zero. Hence the number of zero-linear-cuts of G′ is greater than the one of
G. Therefore (II) occurs at most

(
n
2

)
< n2 times.

(III) Δ = wG(i∗, j∗). It is enough to consider a case of Δ < wG(i0, j0), because
if Δ = wG(i0, j0), then case (I) could be applied. Then wG′(i0, j0) > 0 and
wG′(i∗, j∗) = 0. In this case, we try again to find another pair of (i∗, j∗) for
the same (i0, j0) (the same (i∗, j∗) be never found since wG′(i∗, j∗) = 0).
Thus (III) occurs successively at most

(
n
2

)
< n2 times.

130 H. Ito

From (I)–(III), the length of the sequence of cross-operations is less than n4. By
using the sequence, G is transformed into G∅, i.e., G �o G∅. �

Proof of Theorem 2. Follows immediately from Lemmas 1, 2, and 3. �

Corollary 1. Three relations �c, �l, and �o are all partial orders.

Proof. Clear from Theorem 2 and that �c is a partial order. ��

From Theorem 2, these three partial orders can be denoted by � simply.
Moreover, we easily get the next.

Corollary 2. Whether or not G � G′ for a given pair of graphs G and G′ can
be determined in polynomial time.

Proof. Clear from Theorem 2 and that the number of linear-cuts is O(n2). ��

4 Concluding Remarks and Future Work

This paper extends the three orders, cut-size order, length order, and operation
order, onto real capacitated (vertex labeled) graphs, and presents a proof for the
equivalence of them.

Theorem 2 guarantees that there is a sequence of graphs G = G0, G1, . . .,
Gp = G′ such that Gi (i = 1, . . . , p) can be obtained from Gi−1 by applying a
cross operation if G ≺ G′. These graphs Gi (i = 1, . . . , p) may be not simple
even if G and G′ are both simple. Whether or not there is a sequence consists
of simple graphs only in this case is an interesting problem. Some results have
been obtained for this problem [6], but our conjecture that such sequence always
exists if dG(i) = dG′(i) for all i ∈ N remains for future work.

References

1. Battista, G. D., Eades, P., Tamassia, R., Tollis, I. G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, NJ (1999)

2. Hakimi, S. L.: On Realizability of a Set of Integers as Degrees of the Vertices of a
Linear Graph. I. J. Soc. Indust. Appl. Math., 10 (1962) 496–506

3. Hakimi, S. L.: On Realizability of a Set of Integers as Degrees of the Vertices of a
Linear Graph II. Uniqueness. J. Soc. Indust. Appl. Math., 11 (1963) 135–147

4. Ito, H.: Relation among Edge Length of Convex Planar Drawings, Size of Linear
Cuts, and Cross-Operations on Graphs. IPSJ SIG Notes, 2002, 29 (2002) 27–34

5. Ito, H.: Sum of Edge Lengths of a Multigraph Drawn on a Convex Polygon. Com-
putational Geometry, 24 (2003) 41–47

6. Ito, H.: On Transformation of Graphs with Preserving Their Simpleness. IPSJ SIG
Notes, 2004, 109 (2004) 1–8

7. Skiena, S. S.: Reconstructing Graphs from Cut-Set Sizes. Information Processing
Letters, 32 (1989) 123–127

8. West, D. B.: Introduction to Graph Theory. Prentice Hall, NJ (1996)

Wedges in Euclidean Arrangements

Jonathan Lenchner

IBM T.J. Watson Research Institute,
Yorktown Heights, NY 10598

lenchner@us.ibm.com

Abstract. Given an arrangement of n not all coincident lines in the
Euclidean plane we show that there can be no more than 4n/3� wedges
(i.e. two-edged faces) and give explicit examples to show that this bound
is tight. We describe the connection this problem has to the problem
of obtaining lower bounds on the number of ordinary points in arrange-
ments of not all coincident, not all parallel lines, and show that there
must be at least �(5n + 6)/39� such points.

1 Introduction

As an extension of our investigation of Euclidean line arrangements where not
all lines are coincident and not all lines are parallel [10], we have been led to
consider bounds on the number of faces (cells) that contain just two (unbounded)
edges. We call such an unbounded face a wedge.

Given a collection of points, a line which passes through precisely two of the
points is called an ordinary line. Analogously, given an arrangement of lines,
call a point which lies at the intersection of precisely two lines an ordinary
point. The classical Theorem of Sylvester states that given a collection of not all
collinear points there must exist an ordinary line. In [10] we prove the following
sharp dual to Sylvester’s Theorem:

Theorem 1. Given any finite set of lines in the Euclidean plane, not all coinci-
dent and not all parallel, then there is a point where precisely two lines intersect.

The proof relies on results of Kelly and Moser [9] and Csima and Sawyer [3]
which give lower bounds on the number of ordinary lines in the dual collection
of not all collinear points. In [10] we give analogous bounds on the number of
ordinary points in line arrangements satisfying the hypotheses of Theorem 1.

In the following section we explain the connection between ordinary points
and wedges and motivate our investigation. The next section develops the theory
of wedges and culminates with a proof of the �4n/3� bound on the maximum
number of wedges. We then point out that a known algorithm for finding the
envelope of an arrangement can also be used to find all wedges in time O(n log n).
We wrap up by sharpening our lower bound on the number of ordinary points
satisfying the conditions of Theorem 1, using the theory of wedges to remove
caveats for small n.

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 131–142, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

132 J. Lenchner

2 Euler’s Relation: Connection to Wedges

We begin by transferring our arrangement of lines in the Euclidean plane to an
arrangement of circles on the sphere, all of which pass through the south pole.
To do this, imagine the plane sitting on top of the sphere and project points
from the plane to the sphere by stereographic projection through the south
pole. Finally join up all circles by adding the south pole itself. If V denotes the
number of vertices, E the number of edges, and F the number of faces in the
induced arrangement on the sphere, then

V − E + F = 2. (1)

Now, putting

tj = number of vertices where j lines cross

pk = number of faces surrounded by k edges

following the example of Melchior [11] as given in [6], write

Y =
∑
j≥2

(3 − j)tj +
∑
k≥2

(3 − k)pk. (2)

With this notation we have∑
j≥2

tj = V,
∑
k≥2

pk = F. (3)

Furthermore, since every edge is shared by two faces,
∑
k≥2

kpk = 2E (4)

and every edge is incident to two vertices,
∑
j≥2

jtj = E. (5)

Plugging relations (3), (4), (5) together with Euler’s relation (1) into equation
(2) gives

Y = 3(V − E + F) = 6. (6)

Now, returning to the Euclidean plane, the point at the south pole has n
lines crossing, so if we exclude this point from the vertex set, and denote by τj

and ρk the analogs of tj and pk, then in the plane, we obtain
∑
j≥2

(3 − j)τj +
∑
k≥2

(3 − k)ρk = n + 3. (7)

In equation (7) only the τ2 and ρ2 terms are positive and they both have
coefficient 1. τ2 is the number of vertices where two lines cross, and ρ2 is the

Wedges in Euclidean Arrangements 133

Fig. 1. Example with n + 3 wedges

number of wedges. Upper bounds on the number of wedges therefore immediately
imply lower bounds on the number of ordinary points. In particular, if we knew
that there could be no more than n + 2 wedges, relation (7) would immediately
imply Theorem 1.

However, there are line arrangements with n + 3 wedges. Figure 1 gives an
arrangement of 9 lines with 12 wedges.

This arrangement has a family of “essentially equivalent variations” with
respect to the property of having n + 3 wedges as the examples of Figure 2
illustrate. The essential ingredients are two oppositely oriented similar triangles,
with coinciding medians which each cut pairs of adjacent wedges.

Fig. 2. Essentially equivalent variations in the case of n = 9 lines and 12 wedges

One might be tempted to conjecture that these are the only line arrangements
with n + 3 wedges. However, Figure 3 gives an example with 16 lines and 12
wedges and another with 20 wedges and 15 lines. We describe a process for
generating arrangements with 4n/3 wedges for any n ≥ 6, n ≡ 0 (mod 3) in
Theorem 3.

3 The Theory of Wedges

Lemma 1. In any arrangement of n ≥ 3 lines, not all of which are coincident
and no two of which are parallel, there are at most n wedges.

Proof. Order the lines cyclically by slope l1, ..., ln. One obtains n adjacency pairs
(l1, l2), ...,(ln−1, ln), (ln, l1). A wedge must be formed between some such pair,

134 J. Lenchner

Fig. 3. 4n/3 examples

on one unbounded end or the other (what we shall refer to as either the “top”
or “bottom,” where the choice of “top” is arbitrary). Since no two lines are
parallel, each line contains at least two points of intersection. Hence, if (li, li+1)
corresponds to a wedge on “top,” it cannot correspond to a wedge on “bottom”
(and vice versa). The lemma follows. ��

It is very easy to achieve an arrangement of n lines, no two parallel, with n
wedges, as the example in Figure 4 shows.

Fig. 4. n wedges with no two lines parallel

Another example is provided by extending the edges of a regular n-gon. If
we label the lines which extend the edges in counter-clockwise order according
to how they are attached in the n-gon, starting with an arbitrary l1, as l1, ..., ln,
then (l1, l�n/2�) is a wedge. Continuing around cyclically we obtain n wedges.
While there are other convex n-gons whose extended edges yield n wedges, many
do not.

Lemma 2. An arrangement of n lines with n + k wedges must contain k pairs
of parallel lines, no two pairs of which are parallel to one another.

Proof. Adding a line to an arrangement can add at most two wedges: one at
the “top” of the line and one at the “bottom.” To see this, suppose that adding
a line lk could add more than one wedge at the “top.” Far from all points of
intersection, in the direction of “top,” lk lies between two lines, l1 and l2 say.
For lk to create more than one wedge at the “top” there must not have been a
wedge between l1 and l2 before placing lk, and there must be a pair of such faces
after placing lk. But for there to have been no wedge earlier means that there

Wedges in Euclidean Arrangements 135

l

B

U

p

q

r

Fig. 5. 4 or more lines with just 3 wedges

had to be a line lj intersecting both l1 and l2 in the direction of “top” after the
point where l1 and l2 intersect (i.e closer to “top”). But then clearly the newly
placed line lk can create a wedge with l1 or l2, but not both.

Adding a third parallel line between two existing parallel lines clearly cannot
contribute any wedges. The lemma follows by first placing a maximal subset of
the n lines, no two of which are parallel, and then placing the remaining lines
and recording the maximum number of wedges that can be thereby obtained. ��

Figure 5 is an example of 4 lines with 3 wedges, and is thus an example of
n lines with less than n wedges. It is also an example of a convex n-gon whose
edges do not extend to form n wedges. In fact one can produce examples with
3 wedges and arbitrarily many lines. In Figure 5, we may either add many lines
parallel to the line l, all placed between points p and r, or if we prefer an example
with no two lines parallel, add lines through p which pass into the regions U and
B, but do not pass through the point q.

Lemma 3. Let L be a line arrangement and let C denote the extreme points
of the convex hull of the intersection points of the members of L. Then L must
contain at least one wedge for each element of C.

Proof. C is formed by first taking intersection points of the members of L, finding
those points in the collection of intersection points which lie in the convex hull,
and then removing non-extreme points. Hence the elements of C are all them-
selves intersection points. Any two edges ei, ej, which emanate from a point
p ∈ C and extend from p to infinity, each form an edge of a wedge. There may be
an edge between ei and ej but nonetheless we can associate at least one wedge
with the point p ∈ C. The same is true for any other point q ∈ C, and clearly any
edge extending from p to infinity is distinct from any edge extending from q to
infinity, and hence their associated wedges are distinct. The lemma follows. ��

Corollary 1. In any arrangement of n lines, not all of which are parallel, there
must be at least 3 wedges.

Proof. If all the intersection points of the collection of lines L lie on one line
then we have a family of parallel lines cutting a single line. In this case there are
4 wedges. Otherwise some three intersection points form a triangle and Lemma
3 applies. ��

The following was first proved by Ching and Lee in [2].

136 J. Lenchner

Corollary 2. In any arrangement of n lines it is possible to find the convex hull
of the set of intersection points in time O(n log n).

Proof. Without loss of generality, assume no line has infinite slope. Sort the
lines by increasing slope, and in case of ties, by increasing y-intercept, labelling
the sorted sequence l1, ..., ln. Follow this with a sequence l′1, ..., l′n which is the
same sequence, but this time sorted by increasing slope, and in case of ties, by
decreasing y-intercept. Consider in turn the intersection of pairs

(l1, l2), ..., (ln−1, ln), (ln, l′1), (l
′
1, l

′
2), ..., (l

′
n−1, l

′
n), (l′n, l1).

Each wedge appears in this list. Lemma 3 implies that the set of intersection
points of line pairs in this list includes the extreme points of the convex hull of
intersection points of all pairs. Compute the convex hull of this set of up to 2n
intersection points, not a priori knowing which are the extreme points, using any
of the known O(n log n) algorithms. ��

Once we have found the convex hull it is easy enough to generate a list of all
intersection points on the hull, still in O(n log n) time. For each point found in
the final convex hull above, keep track of the “first” and “last” lines intersecting
at that point in the cyclical ordering l1, .., ln, l′1, ..., l

′
n, l1. In other words if l2, l3, l4

intersect at a point p, then l2 is first and l4 last. If l′n, l1, l2 intersect at p, then l′n
is first and l2 last. If l, k ∈ {l1, .., ln, l′1, ..., l

′
n} are the first and last lines crossing

at a point pi and l̂, k̂ ∈ {l1, .., ln, l′1, ..., l
′
n} are the first and last lines crossing

at the next point pi+1 of the convex hull, where points are ordered in clockwise
order, then we must just gather the intersection points of each line between k, l̂
(in the cyclical ordering), and the line segment connecting pi, pi+1. The collection
of all such points, together with the original hull points, is a complete hull point
enumeration.

It is also possible to enumerate all wedges in O(n log n) time, however, not
simply by enumerating the hull points. There may be “inner” wedges - wedges
that emanate from a point inside the convex hull of the intersection points. The
left hand diagram in Figure 6 provides an example.

Fig. 6. Inner wedges and the difficulty detecting them

Wedges in Euclidean Arrangements 137

The convex hull points are marked with solid dots. The vertex of the inner
wedge is marked with a hollow dot on the left. The difficulty is detecting the
difference between the diagram on the left, which has an inner wedge, and the
diagram on the right, which does not. Note that we can fit arbitrarily many inner
wedges next to the wedge on the left, thus showing that there can be Ω(n) inner
wedges. In fact it is not clear that one can tell whether an arbitrary face, given by
(li, li+1) in the cyclical ordering, is a wedge in less than O(n) time. Nonetheless,
finding wedges is related to computing the envelope of an arrangement. Recall
that the envelope of an arrangement is defined as the polygon whose boundary
consists of the bounded edges of all the unbounded faces. Keil’s algorithm [8] for
computing the envelope of an arrangement actually pieces together the envelope
by completely delineating all unbounded faces. As a result we have:

Theorem 2 (Keil). In any arrangement of n lines in the plane, it is possible
to completely describe all unbounded faces in time O(n log n).

Corollary 3. In any arrangement of n lines in the plane, it is possible to find
all wedges in time O(n log n).

Our main result is the following:

Theorem 3. In an arrangement of n lines, not all of which are coincident, there
are at most �4n/3� wedges. Furthermore, this bound is tight.

Proof. We begin by establishing the �4n/3� bound. Given n lines, in order for
there to be n + k wedges, by Lemma 2, requires k independent pairs of parallel
lines. But between the k pairs of parallel lines there can be no wedge. In other
words, of the 2n pairs

(l1, l2), . . . , (ln−1, ln), (ln, l′1), . . . , (l
′
n−1, l

′
n), (l′n, l1),

2k of the pairs cannot be wedges. It follows that n + k ≤ 2n − 2k, i.e. k ≤ n/3.
So the number of wedges is at most �4n/3�.

It remains to establish tightness of the bound. To this end we give explicit
examples showing the bound being attained. We first give examples for the case
when n ≥ 6 is a multiple of 3. Start with a convex 2n/3-gon with opposite sides
parallel (for example a regular 2n/3-gon) and extend the edges to infinity1.
Label the extended edges (lines) in clockwise order according to how they are
attached on the polygon, starting with an arbitrary edge: l1,l2,...,l2n/3. Then the
wedges are formed by (l1, ln/3), (l2, ln/3+1), etc. By virtue of the fact that we
started with a convex polygon with opposite sides parallel, the line that bisects
the wedge (l1, ln/3) also bisects the wedge formed by the pair of corresponding
parallel lines, i.e. (ln/3+1, l2n/3). There is one bisector line for each such pair
of wedges. Since there were 2n/3 original lines with 2n/3 wedges, adding n/3

1 It is also possible to do this construction starting with two identically oriented regular
n/3-gons with a common center point, of arbitrary relative sizes, with one n/3-gon
rotated by π/(n/3) degrees.

138 J. Lenchner

bisector lines adds 2n/3 additional wedges, yielding a total of n lines with 4n/3
wedges.

The case n ≥ 6 where n is a multiple of 3 is thus established. Figure 7
establishes the cases n = 3, 4, and 5.

Fig. 7. 4n/3� cases n = 3, 4 and 5

It remains to consider the cases of n = m + 1 and n = m + 2 where m ≥ 6
with m a multiple of 3. Note that � 4(m+1)

3 � = 4m
3 + 1 and � 4(m+2)

3 � = 4m
3 + 2

so we need to show how to add a line at a time to an example like those of
Figures 1 through 3 while also adding a single wedge. For this purpose, find
a circle big enough so that it contains all intersection points. Traverse the cir-
cle clockwise beginning at its intersection with any pair of parallel lines. Label
the lines as they are encountered l1, l2,...,ln,l2,l1,l3,l5,l4,l6,...,ln. We encounter
a pair of parallel lines, followed by a splitting line, a pair of parallel lines, fol-
lowed by a splitting line, and so forth, until we run through all lines. After
reaching ln we encounter the parallel lines in reverse order, but otherwise the
overall order is unchanged. Now suppose we add a new line ln+1 that splits
the wedge (l2, l3). Since this new line has no parallel, the new ordering will be
l1,l2,ln+1,l3...,ln,l2,l1,ln+1,l3,l5,l4,l6,...,ln. Previously (l1, l3) was a wedge. Now
(l1, ln+1) is a wedge since ln+1 plainly intersects l1 after l3 does, which was the
previous last point of intersection. Of course, (ln+1, l3) is not a wedge, since it is
also bounded by l1. In any case, the net result of adding the splitter ln+1 is that
we have added a wedge. Similarly we can split the wedge (l3, l4) with a line ln+2

yielding the sequence l1,l2,ln+1,l3,ln+2,l4,...,ln,l2,l1, ln+1,l3,ln+2,l5,l4,l6,...,ln, and
thereby adding another wedge. Figure 8 illustrates this construction, beginning
with a regular hexagon.

We have thus established the tightness of the �4n/3� bound and hence the
theorem follows. ��

Given a suitable random distribution on the space of lines, it is interesting
to now consider the expected number of wedges in an arrangement. If we could
ignore the possibility of there being inner wedges, the problem would reduce to
that of determining the expected number of extreme points of the convex hull
of the vertices of the arrangement, since (i) almost surely the vertex of a wedge
does not happen to lie somewhere in the middle of a supporting line, and (ii)
we can assume there is no more than one wedge at an extreme point, because
almost surely, no three lines are coincident.

Wedges in Euclidean Arrangements 139

It is an interesting fact that the expected number of extreme points in the
convex hull of the points of intersection of lines chosen randomly as duals from a
uniform distribution of points in the unit square [0, 1]2 or unit disk {z : ‖z‖ ≤ 1}
is actually bounded by a constant for all n, where n is the number of lines. See
[7] and [5] respectively.

l1

l2
l3 l4

l5
l6

l7

l8

l9

l10
l11

Fig. 8. Adding a wedge at a time in the cases n ≡ 1, 2 (mod 3)

As n → ∞ it clearly becomes more and more unlikely that a randomly chosen
internal unbounded face is a wedge, but this does not necessarily imply that the
number of internal wedges goes to zero, or is even bounded.

4 Bound Results

In [10] we give a lower bound of �5n/39� on the number of ordinary points in an
arrangement of n not all coincident, not all parallel lines. A famous conjecture
of Dirac and Motzkin states that if n = 7, 13 then in not all collinear collections
of n points there must be n/2 ordinary lines. If this conjecture is true then the
�5n/39� bound can be improved to �n/6�, except for the cases n = 7, 13. We
can use the theory of wedges to get a precise statement in the n = 7 case.

Lemma 4. An arrangement of n = 7 not all coincident, not all parallel lines
must contain at least 2 ordinary points.

Proof. Let L be an arrangement of lines satisfying the conditions of the lemma.
If the number of wedges, ρ2 ≤ 8 then relation (7) implies that there must be at
least 2 ordinary points. Hence assume ρ2 = 9. By Lemma 2, L must contain at
least two pairs of parallel lines. See Figure 9.

For there to be only one ordinary point, some two of the remaining three
lines must intersect some two adjacent points {a, b, c, d} in the given cyclical
point ordering. Thus assume that the line l5 intersects the point a and line l6
intersects the point b. If l5 does not pass through d and l6 does not pass through
c, then the 6 lines {l1, ..., l6} form just 6 wedges. Laying the last line can add

140 J. Lenchner

at most 2 wedges, contradicting ρ2 = 9. Hence assume that l5 intersects both
points a, d. If now l6 does not pass through point c, then prior to the placement
of l7, l6 intersects l5, l2, and l3 at ordinary points. Laying just one line can only
take care of one of these points - so at least two will remain ordinary.

a b

cd

l1l1

l2l2

l3l3 l4l4

Fig. 9. Initial placement of the 2 mandatory sets of parallel lines

We are thus left with one final case, where l6 passes through both points b
and c. Now line l7 must create one new wedge so that ρ2 = 9. Without loss
of generality, suppose l7 passes through the point a. We are then in one of the
situations of Figure 10 and so clearly have more than one ordinary point. The
lemma follows. ��

a b

cd

l1l1

l2l2

l3l3 l4l4l6

l5

l7l7

a b

cd

l1l1

l2l2

l3l3

l4l4

l6

l5

l7l7

Fig. 10. Possible placements of l7

A configuration of 7 lines meeting the hypotheses of Lemma 4 with 2 or-
dinary points is given in Figure 11. Additional best-possible bounds are easily
obtained as in Table 1. The case of 8 lines comes from the �5n/39� bound plus

Table 1. Ordinary point bounds for small n

lines 3 4 5 6 7 8
Min # of ordinary points 2 2 2 1 2 2

the observation that if we remove the top horizontal line from Figure 1 we obtain
an arrangement of 8 lines with 2 ordinary points.

With these results in hand it is possible to slightly refine the �5n/39� result,
while simplifying the basic counting argument from [10].

Wedges in Euclidean Arrangements 141

Theorem 4. In an arrangement of n not all collinear, not all coincident lines
in the Euclidean plane, there must be at least �(5n + 6)/39� ordinary points.

Proof. We consider the problem embedded in the real projective plane, where
the Csima-Sawyer Theorem [3] says that there must be at least �6n/13� ordinary
points except when n = 7. The n = 7 case is handled by Lemma 4.

Fig. 11. An example with 7 lines and just 2 ordinary points

If our result were false then more than � 6n
13 − 5n+6

39 � = �n
3 − 2

13� of these
ordinary points would have to lie on the line at infinity. In other words there
would have to be at least n

3 − 2
13 pairs of parallel lines. To this arrangement add

the line at infinity. This “kills off” the at least �n
3 − 2

13� ordinary points and
creates at most �n − 2n

3 + 4
13� = �n

3 + 4
13� new ordinary points.

By Csima-Sawyer applied to the new arrangement (as long as n = 6, a case
which is covered by Table 1) we have at least � 6(n+1)

13 � ordinary points. But then
there must have been at least � 6(n+1)

13 − n
3 − 4

13� = � 5n+6
39 � finite ordinary points

earlier, contradicting our initial assumption. The result is thus proved. ��

5 Concluding Remarks

We leave a number of problems for future work. Given an arrangement of lines
chosen randomly as duals from a uniform distribution of points in either the unit
square or unit disk, does the expected number of internal wedges tends to zero
as the number n of lines tends to infinity? Given these distributions we could
then conclude that the expected number of wedges was bounded by a constant
for all n.

Theorem 4 does not help resolve the exceptional n = 13 case, left over in case
the n/2 conjecture is true. In the standard Sylvester problem, not all collinear
point configurations with minimal possible numbers of ordinary lines are known
for n = 3, ..., 14, 16, 18, 22 [1]. In the Sharp Dual case, computing best possible
bounds on the number of ordinary points in arrangements of not all parallel, not
all coincident lines for low n appears harder. It is not apparent how to push the
methods of Lemma 4 much further.

In the Sharp Dual case it would be nice to get insights into best possible
bounds for arbitrarily large n, and thus see if the 5n/39 (respectively n/6, as-
suming the n/2 conjecture) bound is asymptotically tight for any n → ∞. In

142 J. Lenchner

the standard Sylvester case it is known that if the n/2 conjecture is true, then
n/2 would be a tight bound, at least for even n due to the examples of Böröczky
(see [3]). I conjecture that my bounds are not asymptotically tight for any n and
that the asymptotically best bound is likely the same as it is in the standard
Sylvester problem.

Finally, it would be interesting to extend the analysis of wedges to 3 and
higher dimensions. In dimension 3 the unbounded cells that take the place of
wedges are the “three-faced cells.” In exceptional cases there can also be two-
faced cells. Such an analysis could inform the “ordinary plane problem” akin to
Sylvester’s ordinary line problem. See for example the paper of Devillers and
Mukhopadhyay [4].

Acknowledgements

I thank Hervé Brönnimann, H. Richard Gail and Bill Steiger for their discussions
and the anonymous referees for their valuable commentary.

References

1. P. Borwein and W. Moser. A survey of Sylvester’s problem and its generalizations.
Aequationes Mathematicae, 40: 111-135, 1990.

2. Y. T. Ching and D. T. Lee. Finding the diameter of a set of lines. Pattern Recog-
nition, 18: 249-255, 1985.

3. J. Csima and E. Sawyer. There exist 6n/13 ordinary points. Discrete and Compu-
tational Geometry, 9: 187-202, 1993.

4. O. Devillers and A. Mukhopadhyay. Finding an ordinary conic and an ordinary
hyperplane. Nordic Journal of Computing, 6: 462-468, 1999.

5. L. Devroye and G. Toussaint. Convex hulls for random lines. Journal of Algorithms,
14: 381-394, 1993.

6. S. Felsner. Geometric Graphs and Arrangements. Vieweg and Sohn-Verlag, Wies-
baden, Germany, 2004.

7. M. Golin, S. Langerman and W. Steiger. The convex hull for random lines in the
plane. Proceedings of Japan Conference on Computational Geometry, 2002.

8. M. Keil. A simple algorithm for determining the envelope of a set of lines. Infor-
mation Processing Letters, 39: 121-124, 1991.

9. L. Kelly and W. Moser. On the number of ordinary lines determined by n points.
Canadian Journal of Mathematics, 10: 210-219, 1958.

10. J. Lenchner. On the dual and sharpened dual of Sylvester’s theorem in the plane.
IBM Research Report, RC23411 (W0409-066), 2004.

11. E. Melchior. Über vielseite der projektiven eberne. Deutsche Math., 5: 461-475,
1940.

Visual Pascal Configuration and Quartic Surface

Yoichi Maeda

Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
maeda@keyaki.cc.u-tokai.ac.jp

Abstract. For any two lines and a point in R3, there is a line having
intersections with these two lines and the point. This fact implies that two
lines in R3 make a visual intersection from any viewpoint even if these
lines are in twisted position. In this context, the well-known Pappus’
theorem in R2 is simply extended as that in R3, i.e., if the vertices of
a spatial hexagon lie alternately on two lines, then from any viewpoint,
three visual intersections of opposite sides are visual collinear. In a similar
way, Pascal’s theorem is also extended in R3, i.e., if the vertices of a
spatial hexagon lie on a cone, three visual intersections of opposite sides
are visual collinear from the viewpoint at the vertex of the cone. In this
case, for six vertices in R3 we obtain a quartic surface as the set of
viewpoints. We will investigate this surface depending on the vertices
of a spatial hexagon. A relation between non-singular cubic curve and
complete quadrilateral is naturally and geometrically derived.

1 Introduction

In general, two lines in R3 look like having an intersection from any viewpoint
even if these lines are in twisted position. This visual intersection is precisely
defined as a ray from the viewpoint passing through these two lines. In this con-
text, the well-known Pappus’ theorem in R2 is simply extended as that in R3,
i.e., if the vertices of a spatial hexagon lie alternately on two lines, then from
any viewpoint, three visual intersections of opposite sides are visual collinear,
the state that rays from the viewpoint lie on a plane. In a similar way, Pascal’s
theorem as the generalization of Pappus’ theorem is also extended in R3, how-
ever, the viewpoints, which satisfy visual collinear are generally restricted in a
quartic surface. We will investigate this surface depending on the vertices of a
spatial hexagon.

In this paper, let us focus on the cases that the equation of the quartic surface
is reducible. We will classify these reducible quartic surfaces into three types;
Desargues type(1,1,1,1), Quadratic type(2,1,1), and Cubic type(3,1) in Section
2. In the study of these types, a relation between non-singular cubic curve and
complete quadrilateral is naturally and geometrically derived. In Section 2, the
equation of the quartic surface is introduced. We start to study the simplest
Desargues type(1,1,1,1) in Section 3. Moreover, Quadratic(2,1,1) and Cubic(3,1)
types are investigated in Section 4 and 5, respectively.

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 143–150, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

144 Y. Maeda

2 Pascal Configuration and Quartic Surface

Let {Pi}i=1,2,...,6 be distinct six points in R3 and S be the set of viewpoints from
where these six points are in visual Pascal configuration which means that six
points look like on a conic from the viewpoint. Actually, S is the set of vertex
V = (x, y, z) of a cone(possibly degenerated into two planes) on which all six
points lie. This set S is generally a quartic surface represented in the following
theorem.

Theorem 1. S is the set which satisfies the quartic equation:

D314D425D516D623 = D324D415D526D613 (1)

where Dijk is the determinant:

Dijk :=

∣∣∣∣∣∣∣

x y z 1
xi yi zi 1
xj yj zj 1
xk yk zk 1

∣∣∣∣∣∣∣
. (2)

Proof. The idea is the projection on a plane and the cross ratio of conic section.
Six points {Pi = (xi, yi, zi)}i=1,2,...,6 are on a cone centered at V = (x, y, z).
Without loss of generality(or adequate coordinate transformation), assume that
zi = z. Regard V as the origin, and consider the central projection to the z = 1
plane with respect to the origin. On the plane, the projected six points are given
as {P ′

i = ((xi − x)/(zi − z), (yi − y)/(zi − z), 1)}i=1,2,...,6. These coplanar points
are on a conic, if and only if, the following cross ratios are equal [2](pp.131):

[
−−−→
P ′

1P
′
3,
−−−→
P ′

1P
′
4,
−−−→
P ′

1P
′
5,
−−−→
P ′

1P
′
6] = [

−−−→
P ′

2P
′
3,
−−−→
P ′

2P
′
4,
−−−→
P ′

2P
′
5,
−−−→
P ′

2P
′
6]. (3)

Equation (3) is equivalent to

sin P ′
3P

′
1P

′
4 · sin P ′

5P
′
1P

′
6 : sin P ′

4P
′
1P

′
5 · sin P ′

6P
′
1P

′
3

= sin P ′
3P

′
2P

′
4 · sin P ′

5P
′
2P

′
6 : sin P ′

4P
′
2P

′
5 · sin P ′

6P
′
2P

′
3, (4)

where these angles are oriented. Moreover, using cross product(|−→OA × −−→
OB| =

|−→OA||−−→OB| sin AOB), Equation (4) is equivalent to

(
−−−→
P ′

1P
′
3 ×

−−−→
P ′

1P
′
4)z(

−−−→
P ′

1P
′
5 ×

−−−→
P ′

1P
′
6)z : (

−−−→
P ′

1P
′
4 ×

−−−→
P ′

1P
′
5)z(

−−−→
P ′

1P
′
6 ×

−−−→
P ′

1P
′
3)z

= (
−−−→
P ′

2P
′
3 ×

−−−→
P ′

2P
′
4)z(

−−−→
P ′

2P
′
5 ×

−−−→
P ′

2P
′
6)z : (

−−−→
P ′

2P
′
4 ×

−−−→
P ′

2P
′
5)z(

−−−→
P ′

2P
′
6 ×

−−−→
P ′

2P
′
3)z .

Finally, the following direct calculation completes the proof:

(
−−−→
P ′

jP
′
i ×

−−−→
P ′

jP
′
k)z =

∣∣∣∣∣
xi−x
zi−z − xj−x

zj−z
yi−y
zi−z − yj−y

zj−z
xk−x
zk−z − xj−x

zj−z
yk−y
zk−z − yj−y

zj−z

∣∣∣∣∣ =
Dijk

(zi − z)(zj − z)(zk − z)
.

��

Visual Pascal Configuration and Quartic Surface 145

Remark 1. If S is regarded as a set in projective space P3, the determinant Dijk

in (2) is defined as follows:

Dijk :=

∣∣∣∣∣∣∣

x y z w
xi yi zi 1
xj yj zj 1
xk yk zk 1

∣∣∣∣∣∣∣
. (5)

Remark 2. By the permutation
(

2 3 4
4 2 3

)
, Equation (1) is equivalent to

D123D345D561D246 = D612D234D456D135, (6)

which we use in the succeeding sections.

Note that Dijk = 0 is the equation of the plane passing through three points Pi,
Pj , and Pk. Hence, the intersection line of two planes defined by three points and
the others(for example [D123 = 0]∩ [D456 = 0]) is included in S because D123 =
D456 = 0 in Equation (6). In addition, the lines PiPj(i = j) are included in S
because, for example, if P (x, y, z) ∈ P1P2, then D123 = D612 = 0 in Equation
(6). In consequence, S includes 25(=6C3/2+6C2) lines in general. Geometrically,
these facts are trivial, i.e., from a viewpoint in [D123 = 0] ∩ [D456 = 0], P1, P2

and P3 are visual collinear, and also P4, P5 and P6, therefore, these points are in
visual Pappus configuration. On the other hand, from a viewpoint in P1P2, P1

and P2 look like one point, therefore, these points are generally in visual Pascal
configuration (a conic section is determined by five points in R2).

Now it is also trivial that S = R3 if six points are on two lines (P1, P2 and
P3 are collinear, and also P4, P5 and P6, then D123 = D456 = 0 in Equation (6)).
In the following argument, let us assume that any five points are not coplanar,
and any three points are not collinear. Under these conditions, the possibility of
reducible surface is the following three types in degree:⎧⎨

⎩
Desargues type: (1, 1, 1, 1)
Quadratic type: (2, 1, 1)
Cubic type: (3, 1),

where Desargues type is named after the figure which is used in the proof of
Desargues’ theorem(see, Fig. 1(left)). This classification is determined by the
number of coplanar 4-tuples; three, two, and one, respectively.

3 Desargues Type

In this section, assume that there exist three planes on which four of the six
points lie. Then there are concurrent three edges as the intersection of two planes
such that exact two points are on each edge(see, Fig. 1(left)). Let P0 be the
intersection point(possibly at infinity) of three edges. The problem is the relation
between the fourth plane and the given six points.

146 Y. Maeda

Theorem 2. Let four points {P1, P2, P3, P4} be on the same plane, and also
{P3, P4, P5, P6}, {P5, P6, P1, P2} be coplanar. Then the surface S is composed of
four planes: three planes P1P2P3P4, P3P4P5P6, P5P6P1P2, and the fourth plane
which is the polar plane of P0 with respect to any quadratic surface passing
through the six points Pi.

Fig. 1. Desargues and Quadratic types

Proof. Under an appropriate affine transformation, the coordinates of the six
points are given by:

P1(x1, 0, 0), P2(x2, 0, 0), P3(0, y1, 0), P4(0, y2, 0), P5(0, 0, z1), P6(0, 0, z2),

where x1x2y1y2z1z2 = 0 and x1 = x2, y1 = y2, z1 = z2. Then, P0 is the origin
(0, 0, 0), and using Equation (6), the set S is determined by three planes xyz = 0
and the fourth plane given by:

x1 + x2

x1x2
x +

y1 + y2

y1y2
y +

z1 + z2

z1z2
z − 2 = 0.

This plane passes through R1(2x1x2
x1+x2

, 0, 0), R2(0, 2y1y2
y1+y2

, 0), and R3(0, 0, 2z1z2
z1+z2

).
Let Q be a quadratic surface passing through the six points Pi. To complete the
proof, it is enough to show the three cross ratios [P0, R1, P1, P2], [P0, R2, P3, P4],
and [P0, R3, P5, P6] are equal to −1 (harmonic division).

[P0, R1, P1, P2] =
0 − x1

x1 − 2x1x2
x1+x2

2x1x2
x1+x2

− x2

x2 − 0
= −1,

even if x1 + x2 = 0. In the same way, the other cross ratios are also equal to −1.
��

Example 1. If the six points are the vertices of a regular octahedron, then P0 is
the center of the octahedron and the fourth plane is the infinite plane. The other
simple example is the vertices of a prism. In this case, P0 is at infinity, and the
fourth plane is the plane which is parallel to the upper and lower base cutting
the prism in half.

Visual Pascal Configuration and Quartic Surface 147

4 Quadratic Type

In the next, let us consider the case that there are two planes on which four of
the six points lie(see, Fig. 1(right)).

Theorem 3. Assume that both {P1, P2, P3, P4} and {P3, P4, P5, P6} are copla-
nar, however, {P1, P2, P5, P6} are not coplanar. Then the set S is composed of
the two planes and a doubly ruled surface Q(hyperbolic paraboloid or hyperboloid
of one sheet). In addition, the two points Q1, Q2 in Q∩P3P4 are harmonic with
respect to P3 and P4, i.e., the cross ratio [P3, P4, Q1, Q2] is equal to −1.

Proof. Since {P1, P2, P5, P6} are not coplanar, the four lines P1P5, P5P2, P2P6

and P6P1 are on the quadratic surface Q, that is to say, Q is doubly ruled.
Under an appropriate affine transformation, the coordinates of the six points
are given by:

P1(0, 1, 1), P2(0,−1, 1), P3(x3, y3, z3), P4(x4, y4, z4), P5(1, 0,−1), P6(−1, 0,−1),

where z3−1 : x3 = z4−1 : x4 and z3 +1 : y3 = z4 +1 : y4. Then, using Equation
(6) the two planes are (z3 − 1)x − (z − 1)x3 = 0 and (z3 + 1)y − (z + 1)y3 = 0,
and the quadratic surface Q is written as:

(4y3y4 − (z3 + 1)(z4 + 1)) (2x − z + 1)(2x + z − 1) −
(4x3x4 − (z3 − 1)(z4 − 1)) (2y − z − 1)(2y + z + 1) = 0,

or, equivalently,

2(2x3x4 + 2y3y4 − z3z4 − 1)p(x, y, z) + (2x3x4 − 2y3y4 + z3 + z4)h(x, y, z) = 0, (7)

where p(x, y, z) = x2 − y2 + z and h(x, y, z) = −2x2 − 2y2 + z2 + 1.
Let (λx3 + μx4, λy3 + μy4, λz3 + μz4) be an intersection with Q and the line

P3P4 where λ + μ = 1. Applying this to Equation (7)(exchange the constant
term of h(x, y, z) for (λ + μ)2),

λ2 (2(2x3x4 +2y3y4−z3z4−1)p(x3, y3, z3)+(2x3x4−2y3y4 +z3 +z4)h(x3, y3, z3)) +

μ2 (2(2x3x4 +2y3y4−z3z4−1)p(x4, y4, z4)+(2x3x4−2y3y4 +z3 +z4)h(x4, y4, z4)) = 0.

(8)

If it is proved that neither P3 nor P4 lie on Q, then there are two solutions
(possibly complex) in the equation above, say, (λ1, μ1) and (λ2, μ2), and note
that λ1μ2 + λ2μ1 = 0. Then, the cross ratio is(use λ1 + μ1 = λ2 + μ2 = 1)

[P3, P4, Q1, Q2] = [P3, P4, λ1P3 + μ1P4, λ2P3 + μ2P4] =
μ1λ2

λ1μ2
= −1.

The rest is to prove the next lemma. ��

148 Y. Maeda

Lemma 1. Neither P3 nor P4 lie on Q.

Proof. Let α be the plane on which P1, P2, P3 and P4 lie, and P0 be the inter-
section point α ∩ P5P6(possibly at infinity)(Fig. 2(center)). Then three points
P0, P3 and P4 are collinear on α. In addition, the line P0P1 is tangent to Q at P1,
because both P1P5 and P1P6 lie on Q, i.e., the plane P1P5P6 is tangent to Q at
P1. In the same way, the line P0P2 is tangent to Q at P2. If P3 ∈ Q and P4 /∈ Q,
then the solution of Equation (8) is (λ, μ) = (1, 0), hence P3P4 is tangent to Q
at P3. This means that P3 = P1 or P2 which is contradiction. In the same rea-
son, the case that P3 /∈ Q and P4 ∈ Q is also impossible. Finally, suppose that
P3, P4 ∈ Q. Then Equation (8) is satisfied for any (λ, μ), therefore, the line P3P4

lies on Q. Since any three points of Pi are not collinear, α ∩ Q = P1P2 ∪ P3P4,
in particular, P1P2 lies on Q. For Q is doubly ruled, it is impossible that three
lines P1P2, P1P5 and P1P6 lie on Q. ��

Example 2. In the case that x3 = y3 = x4 = y4 = 0, Q is a hyperbolic paraboloid
if and only if z3 + z4 = 0(see, Fig. 1). On the other hand, Q is a hyperboloid of
one sheet if and only if z3z4 = −1.

5 Cubic Type

Finally, let us investigate the cubic type(3, 1). Already seen in the previous sec-
tions, harmonic division(cross ratio is −1) plays an important role. This har-
monic division has a close relation with complete quadrilateral. We can also see
this relation in the cubic type. In this section, assume that P1, P2, P3, P4 are
coplanar and lie on the plane α, and let P0 be the intersection point α ∩ P5P6.
Let us focus on the intersection curve C with the plane α and the other cubic
surface. In Fig. 2, thick curves represent the intersection C; three lines, one line
and a conic, and a cubic curve, respectively. It seems that three diagonal in-
tersections D1, D2, D3 of quadrilateral P1P2P3P4 are on C. In Desargues type,
this is trivial, because D1 is P0, and D2 and D3 are on the polar of P0 with
respect to any quadratic curve passing through four points Pi(i = 1, 2, 3, 4). As

Fig. 2. Intersection of the plane α and the cubic surface: Desargues(left),
Quadratic(center), Cubic(right) type

Visual Pascal Configuration and Quartic Surface 149

Fig. 3. Period Parallelogram

for Quadratic type, it is proved by Pascal’s theorem. In fact, let D2, D3 be inter-
sections of the conic section and P2P3, P1P3 respectively as in Fig. 2(center). Let
us regard P1, P1, D3, P2, P2, D2 as vertices of a hexagon and P0P3 as the Pascal
line [1](pp.176,213). Then P0, P3 and R1 ≡ P1D2 ∩ P2D3 are collinear, and the
fact [P3, P4, Q1, Q2] = −1 implies that R1 = P4.

On the other hand, it also seems that the line P0Pi is tangent to C at
Pi(i = 1, 2, 3, 4), in each case of Fig. 2. This fact is trivial in Desargues type.
As for Quadratic type, it is proved in the proof of Lemma 1. In this way, the
following theorem is naturally and geometrically introduced. The statement is
more generalized in complex.

Theorem 4. For any non-singular cubic curve C and a point P0 on C, there
are four points Pi(i = 1, 2, 3, 4) such that the line P0Pi are tangent to C at
Pi(i = 1, 2, 3, 4). In addition, three diagonal intersections Di(i = 1, 2, 3) of the
quadrilateral P1P2P3P4 lie on C.

Proof. The key point of the proof is the group law on a cubic curve. For any
non-singular cubic curve C, there exist complex numbers ω1, ω2(called periods)
in the complex u plane, and the mapping u → P (u) which is a homomorphism
from the additive group of complex numbers onto the group of complex points
on C [3](pp.43-45). Note the kernel of this homomorphism is the lattice L =
Zω1 +Zω2 = {n1ω1 +n2ω2 : n1, n2 ∈ Z}, hence one can identify any point on C
with a complex number which lies in the period parallelogram (the parallelogram
whose sides are the period ω1 and ω2(Fig. 3)). Now let P0 correspond to p0, i.e.,
P (p0) = P0. Since the line P0Pi is tangent to C at Pi(i = 1, 2, 3, 4), 2Pi+P0 = O
in the addition law on C where O is the zero element for the group law. Therefore,
without loss of generality, we can set P (− p0

2) = P1, P (− p0
2 + ω1

2) = P2, P (− p0
2 +

ω2
2) = P3, and P (− p0

2 + ω1+ω2
2) = P4. Let u1 = p0 + ω1

2 , then,
(
p0 + ω1

2

)
+(

− p0
2

)
+
(
− p0

2 + ω1
2

)
≡ 0 and

(
p0 + ω1

2

)
+
(
− p0

2 + ω2
2

)
+
(
− p0

2 + ω1
2 + ω2

2

)
≡ 0,

which means that the point P (u1) ∈ C satisfies P (u1) + P1 + P2 = O and
P (u1)+P3+P4 = O, i.e., both {P1, P2, P (u1)} and {P3, P4, P (u1)} are collinear.
Consequently, P1P2∩P3P4 ∈ C. In the same way, two other diagonal intersections
also lie on C. ��

150 Y. Maeda

References

1. Berger, M.: Geometry II Springer-Verlag, Berlin Heidelberg. (1987)
2. Jennings, G.: Modern Geometry with Applications. Springer-Verlag, New York.

(1994)
3. Silverman, J. H., Tate, J.: Rational Points on Elliptic Curves. Springer-Verlag, New

York. (1992)

Nonexistence of 2-Reptile Simplices

Jǐŕı Matoušek

Department of Applied Mathematics,
and Institute of Theoretical Computer Science (ITI),

Charles University, Malostranské nám. 25, 118 00 Praha 1 Czech Republic
matousek@kam.mff.cuni.cz

Abstract. A simplex S is called an m-reptile if it can be tiled without
overlaps by simplices S1, S2, . . . , Sm that are all congruent and similar to
S. The only m-reptile d-simplices that seem to be known for d ≥ 3 have
m = kd, k ≥ 2. We prove, using eigenvalues, that there are no 2-reptile
simplices of dimensions d ≥ 3. This investigation has been motivated by
a probabilistic packet marking problem in theoretical computer science,
introduced by Adler in 2002.

1 Introduction

A closed set A ⊂ Rd with nonempty interior is called an m-reptile (sometimes
written “m rep tile” or “m rep-tile”) if there are sets A1, A2, . . . , Am with disjoint
interiors and with A = A1 ∪ A2 ∪ · · · ∪ Am that are all congruent and similar
to A. Such sets have been studied in connection with fractals and also with
crystallography and tilings of Rd; see, for example, [4], [14], [9], [8], [12]. The
connection with tilings stems mainly from the simple observation that any m-
reptile, m ≥ 2, tiles Rd.

Here we consider the following question: For what m and d there exist d-
dimensional simplices that are m-reptiles? This investigation was motivated by
a paper of Adler [1] on probabilistic marking of Internet packets. We will briefly
discuss this connection and the quite interesting questions arising there in Sec-
tion 3 (see [2] for more details). From this point of view, it would be interesting
to find d-dimensional m-reptile simplices with m as small as possible.

In the plane, there are several types of m-reptile triangles. The following list
exhausts all possible cases [14] (see Fig. 1):

(a) Any triangle is a k2-reptile for all k = 2, 3,
(b) A right triangle with acute angles π

6 and π
3 is a 3k2-reptile for all k = 1, 2,

(c) A right triangle whose two shorter sides have ratio k : � is a (k2 + �2)-reptile,
k, � = 1, 2,

Higher-dimensional simplex reptiles seem to be much more rare. At a first
encounter with the problem it is tempting to think that the dissection of an equi-
lateral triangle, say, into four equilateral triangles (a special case of (a) above)
can be generalized to a dissection of a regular tetrahedron, but once one cuts off
the corners of the tetrahedron, one obtains a regular octahedron, which cannot

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 151–160, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

152 J. Matoušek

(a) (b) (c)

Fig. 1. Planar reptile triangles

e2

e1

e3

Fig. 2. A 3-dimensional Hill simplex as an 8-reptile

be tiled by regular simplices. The only known construction, at least as far as I
could find, of higher-dimensional simplex m-reptiles has m = kd and is known
as the Hill simplex (or Hadwiger-Hill simplex). A d-dimensional Hill simplex is
the convex hull of vectors 0, b1, b1 + b2,. . . ,b1 + · · · + bd, where b1, b2, . . . , bd are
vectors of equal length such that the angle between any two of them is the same
and lies in the interval (0, 2π

3). Fig. 2 shows the decomposition of a 3-dimensional
Hill simplex, with (b1, b2, b3) = (e1, e2, e3) the standard orthonormal basis, into
8 congruent pieces similar to it.

In the absence of constructions of m-reptile simplices with m < 2d one can try
to prove nonexistence results, but the general problem seems quite challenging.
The only known result on this question I could find is by Hertel [10], who proves
that a 3-dimensional simplex is a k3-reptile using a “standard” way of dissection
if and only if it is a Hill simplex. He conjectures that Hill simplices are the only 3-
dimensional reptile simplices. Simplex dissection was considered in several other
papers (e.g., [6], [15], [3]) but from different points of view.

In this note we establish the following partial result:

Theorem 1. For d ≥ 3 no d-dimensional simplex is a 2-reptile.

It is easy to see that there is just one way of dissecting a a simplex into two
simplices. So supposing that a 2-reptile simplex exists, one can quickly derive

Nonexistence of 2-Reptile Simplices 153

a lot of information about the volume of its facets, the edge lengths, and the
dihedral angles (Coxeter diagram). It is possible that a simple proof of Theorem 1
can be obtained using this information, but at least it didn’t look obvious.

The proof presented here is based on eigenvalues of the linear transformations
associated with the similarity maps that send the simplex onto the two tiles.
This approach arose naturally while considering a problem associated with the
probabilistic packet marking; that problem is more general than the existence of
m-reptile simplices and geometric quantities such as facet volume or edge length
cannot be directly used in it. Perhaps this approach could be of some interest in
tiling problems.

2 Proof of Theorem 1

We proceed by contradiction, assuming that S is a d-dimensional 2-reptile sim-
plex. Let v1, v2, . . . , vd+1 ∈ Rd be the vertices of S. Let S1 and S2 be the two
tiles; that is, S = S1∪S2, where S1 and S2 are congruent, similar to S, and have
disjoint interiors. Here is the observation mentioned in the introduction:

Lemma 1. The numbering of the vertices of S can be chosen in such a way that
S1 has the vertex set v1, v2, . . . , vd, w, where w = 1

2 (vd + vd+1), and S2 has the
vertex set v1, v2, . . . , vd−1, vd+1, w; see Fig. 3.

Proof. The interiors of S1 and of S2 are disjoint convex sets, and so they can be
separated by a hyperplane h. Let V 0, V +, V − be the subsets of vertices of S lying
on h, on one side of h, and on the other side of h, respectively. Each edge of S
connecting a vertex from V + to a vertex from V − gives rise to a vertex of both S1

and S2. Hence |V +|+|V 0|+|V +|·|V −| = d+1 and |V −|+|V 0|+|V +|·|V −| = d+1,
and we get |V +| = |V −| = 1, |V 0| = d − 1. Hence h contains d − 1 vertices of S
and it has to bisect the edge connecting the two remaining vertices so that S1

and S2 have the same volume. ��
From now on, we assume that the vertex sets of S1 and of S2 are as in the

lemma. Let fk be the similarity map sending S to Sk, k = 1, 2. That is, fk is an
isometry followed by scaling in the ratio α = 2−1/d (since the volume of Sk is
half of the volume of S).

vd

w

S1

S2

vd+1

v2

v1

Fig. 3. The dissection of S into S1 and S2

154 J. Matoušek

Let us write v′
i = vi for i = 1, 2, . . . , d and v′

d+1 = w, and let π1 be the
permutation of {1, 2, . . . , d + 1} defined by f1(vi) = v′

π1(i)
, i = 1, 2, . . . , d + 1.

Lemma 2. The permutation π1 either has a single cycle (of length d + 1), or it
has d as a single fixed point and 1, 2, . . . , d− 1, and d + 1 form a single cycle of
length d.

Proof. Let us suppose that π1 has at least two cycles, and let U be the union
of all cycles that do not contain d + 1. Then the face F of S spanned by the
vertices vi, i ∈ U , is fixed (setwise) by f1. Since the diameter of the image of S
under the iterated mapping f1 ◦ f1 ◦ · · · ◦ f1 (t-fold composition) tends to 0 as
t → ∞, F has to be 0-dimensional, and hence |U | = 1. So either π1 is unicyclic
or it has one fixed point, different from d + 1, and one cycle of length d.

Let j be the fixed point of π1 and let Fj be the facet of S not containing
vj . If j = d, then f1(F) ⊂ F , and again the diameter of the image of S under
iterations of f1 would not shrink to 0. Hence j = d as claimed. ��

We define the permutation π2 analogously using f2. That is, we set v′′
i = vi

for i ∈ {1, 2, . . . , d − 1, d + 1} and v′′d = w, and we define π2 by f2(vi) = v′′
π2(i)

.
The analogy of Lemma 2 holds for π2; i.e., π2 either is unicyclic or has a fixed
point d + 1 and a cycle of length d.

Let us write fk(x) = Akx+bk, k = 1, 2, for d×d matrices A1 and A2. Since fk

is an isometry followed by scaling by α, Ak is an orthogonal matrix multiplied by
α, and hence all of its eigenvalues have absolute value α. More generally, for any
sequence (k1, k2, . . . , k2t) of integers, the product matrix Ak1

1 Ak2
2 · · ·Ak2t

2 must
have all eigenvalues with absolute value αk1+k2+···+k2t , since the corresponding
composed map is a similarity map with the appropriate ratio. We will show that
these conditions cannot hold.

The eigenvalues of matrices are preserved under similarity (of matrices, i.e.
TAT−1 is similar to A; this should not be confused with similarity maps consid-
ered elsewhere in this paper). Hence we can choose a basis of Rd as convenient:
we will assume that vd+1 = 0 (which can be achieved by translation of S) and we
will use the basis (v1, v2, . . . , vd). Expressing f1 and f2 with respect to this basis,
we obtain explicit and simple matrices Ā1 and Ā2, depending only on the per-
mutations π1 and π2, which have to satisfy the eigenvalue condition formulated
above for A1 and A2. We will now compute the characteristic polynomials. The
possibility of unicyclic π1 can be excluded based on the eigenvalues of Ā1 alone,
while for π1 with a single fixed point we will use the product Ā−1

2 Ā1 as well.

1d 2 k
d+1 k+1 d−1k+2

Fig. 4. The permutation π1 in the unicyclic case

Nonexistence of 2-Reptile Simplices 155

The Unicyclic Case. Here we assume that π1 has a single cycle.We note that
while the vertices vd and vd+1 are distinguished (by the split edge), the roles
of the others are completely symmetric, and so the only thing that matters is
number k of elements between d and d+1 in the single cycle of π1, 0 ≤ k ≤ d−1.
Let us fix the numbering of v1 through vd−1 so that π1 looks as in Fig. 4. The
ith column of Ā1 is f1(vi) − f1(vd+1) = v′

π1(i)
− v′

π1(d+1) expressed in the basis
(v1, . . . , vd). Here the coordinate vector of v′

i with respect to this basis is ei

(the standard basis vector) for 1 ≤ i ≤ d and it is 1
2ed for i = d (we have

v′
d+1 = w = 1

2 (vd + vd+1) = 1
2vd).

The matrices Ā1 look as follows (they are shown for d = 5 and k = 0, 1, 2
and 4):

The characteristic polynomial, easily calculated, is

pk(x) = −
(

xd + xd−1 + · · · + xd−k+1 +
xd−k

2
+

xd−k−1

2
+ · · · + 1

2

)

=
2xd+1 − xd−k − 1

2(1 − x)
.

Lemma 3. For d ≥ 3 and for every k = 0, 1, . . . , d−1, there is at least one root
of pk(x) with absolute value different from α = 2−1/d.

We postpone the proof to the end of this section. This verifies that the case
of a unicyclic permutation yields no 2-reptile simplices.

The Case of a Single Fixed Point. Here π1(d) = d and the remaining
points form a single cycle. Since v1, v2, . . . , vd−1 are completely symmetric, we
can choose the notation so that π1(1) = 2, π1(2) = 3,. . . , π1(d − 2) = d − 1,
π1(d−1) = d+1, and π1(d+1) = 1. The characteristic polynomial of the matrix
Ā1 turns out to be xd − 1

2 , and it does have all roots with absolute value α. This
means, as is easy to check, that one can indeed choose the vertices v1, . . . , vd+1

so that the mapping f1 determined by π1 as above is a similarity with ratio α.
We thus have to consider both f1 and f2 simultaneously.

Since we have excluded the unicyclic case, π2 also has to consist of one cycle
of length d and a single fixed point, which in this case is d+1 (vd+1 plays the same

156 J. Matoušek

role in S2 as vd does in S1). However, if we consider π1 and π2 simultaneously,
we can no longer choose the numbering of the vertices along the cycle of π2, as
we did for π1.

In order to determine the possibilities for π2, we will consider the volumes of
the facets of S, S1, S2. Let Fi be the facet of S that does not contain vi, let Vi

be its (d− 1)-dimensional volume, let F ′
i be the facet of S1 not containing v′

i, of
volume V ′

i , and let F ′′
i and V ′′

i be defined analogously for S2.

Lemma 4. If π1 is as above and π2 has fixed point d + 1, then we have Vi =
2i/d · Vd, i = 1, 2, . . . , d − 1 and Vd+1 = Vd.

Proof. By the geometry of the slicing of S into S1 and S2 (see Fig. 3) we have
V ′

d = V ′′
d+1 (this facet is shared by S1 and S2), V ′

d+1 = Vd+1 (the facet shared
by S1 and S), V ′′

d = Vd (the facet shared by S2 and S), and V ′
i = V ′′

i = 1
2Vi for

i = 1, 2, . . . , d − 1 (these facets of S are halved by the slicing).
Since f1 and f2 change (d − 1)-dimensional volumes by the factor αd−1, we

have V ′
π1(i)

= V ′′
π2(i)

= αd−1Vi. Since π1(d) = d, π2(d+1) = d+1, and V ′
d = V ′′

d+1,
we obtain Vd = Vd+1.

Next, from V ′
2 = 1

2V2 and V ′
2 = V ′

π1(1)
= αd−1V1 we get V2 = 2α−(d−1)V1 =

2·2−(d−1)/dV1 = 21/dV1. Similarly we calculate V3, . . . , Vd−1 and Vd+1 and obtain
the values in the lemma. ��

The lemma shows that the facet volumes are uniquely determined by π1. Since
V1, . . . , Vd−1 are all distinct, π1 can be reconstructed from the facet volumes (in
other words, if the numbering of v1, . . . , vd−1 is hidden, we can reconstruct it
from the facet volumes). By symmetry, π2 is also uniquely determined by the
facet volumes, and we have π2(1) = 2, π2(2) = 3,. . . , π2(d − 1) = d, π(d) = 1
(and π2(d + 1) = d + 1).

We can now write down both the matrices Ā1 and Ā2 (we show them again
for d = 5):

The matrix Ā−1
2 Ā1 has the following particularly simple form:

Nonexistence of 2-Reptile Simplices 157

The characteristic polynomial is (1− x)d−2(x2 − 2x + 3). By the necessary con-
dition on Ā1 and Ā2, all roots should have absolute value 1, but the roots of
x2 − 2x + 3 are 1 ± i

√
2. This concludes the proof of Theorem 1. �

Proof of Lemma 3. We use (the first part of) the following criterion due to
Lehmer [11]:

For a polynomial g of the form g(z) = anzn + an−1z
n−1 + · · ·+ a0 we define

the polynomial T (g) by T (g)(z) = a0g(z) − anzng(z−1), where the bar above a
symbol denotes complex conjugation. Let g be a polynomial that has no (com-
plex) root on the unit circle Γ = {z ∈ C : |z| = 1} and such that g(0) = 0.
If, for some integer h > 0, Th(g)(0) < 0, then g has at least one root inside
Γ (Th denotes an h-fold composition of the operator T). If T i(g)(0) > 0 for
i = 1, 2, . . . , h and Th(g) is a constant polynomial, then g has no root inside Γ .

We note that T (g)(0) = |a0|2 − |an|2, which will be useful later.
We apply the criterion to show that qk(x) = 2xd+1−xd−k−1, the numerator

in the second expression for pk(x), has a root strictly inside the circle Γ ′ =
{z ∈ C : |z| = 2−1/d}. To this end, we check by Lehmer’s criterion that for
some β < 2−1/d the polynomial gk(z) = qk(βz) has a root in the unit circle.
We calculate gk(z) = 2βd+1zd+1 − βd−kzd−k − 1, and T (gk)(z) = βd−kzd−k +
2β2d+1−kzk+1 − (2βd+1)2 + 1.

For β sufficiently close to 2−1/d, the absolute term of T (gk)(z) satisfies 1 −
(2βd+1)2 ≤ 1 − 2−2/d + ε ≤ 1 − 2−2/3 + ε < 1

2 . The leading term of T (gk)(z) is

βd−k for d > 2k + 1,
2β2d+1−k for d < 2k + 1,
β(d+1)/2 + 2β3d/2+1 for d = 2k + 1.

In all three cases the leading term is at least 1
2 , and hence T 2(gk)(0) < 0.

Lehmer’s criterion shows that pk(x) has a root with absolute value below 2−1/d

and the lemma is proved. �

3 Probabilistic Packet Marking

In this section we outline some ideas from [1] and [2] directly related to the
present paper.

The denial-of-service attacks on the Internet operate by sending an enormous
number of packets to the attacked computer through the network. For defense
against such attacks it would be very helpful to trace such packets back to their
source. Internet packets contain the address of origin, but that can easily be
forged. Along its path through the network, each packet passes through sev-
eral routers, so the source could be traced if each router added its address to
each packet passing through it. However, the packets have a standard format
which doesn’t leave much room for information added by the routers, and even
if the packet format could be changed, sending along the addresses of all routers
would burden the network significantly. The idea of probabilistic packet marking
(suggested in [5], with the first actual schemes given in [13] and [7]) is to take

158 J. Matoušek

advantage of the large number of packets used in attacks and encode information
about the route into the probability distribution of the values of a small number
of bits in the packets.

We explain a simple and ingenious packet marking scheme from [1] (ignoring
some technical issues). For simplicity we assume that just one bit B is available
for the marking in each packet, with possible values B = 0 and B = 1. We
assume that in some considered period, all packets reaching some destination
pass through routers R1, R2, . . . , Rn in this order. Each Ri wants to “record” a
one-bit message ri, with value 0 or 1, into B (actual addresses of routers have
more than 1 bit, of course, but we want to explain the principle). It proceeds
according to the following protocol.

• For ri = 0: A received packet with B = 0 is sent further with B = 0. A
received packet with B = 1 is sent further with B set at random, to B = 0
with probability 1

2 and to B = 1 with probability 1
2 (the random choice is

independent of the choices for other packets and in the other routers).
• For ri = 1: A received packet with B = 1 is sent further with B = 1. A

received packet with B = 0 is sent further with B set at random, again to 0
or 1 with probability 1

2 each.

According to this protocol, if the packets incoming to Ri have probability x
of having B = 1, then the outgoing packets have probability of B = 1 equal to
1
2x if ri = 0, and equal to 1

2 + 1
2x if ri = 1. Thus, if we interpret the probability

distribution of B as a point x ∈ [0, 1], then for ri = 0, the router Ri performs the
affine map g0:x → 1

2x, while for ri = 1 it performs the affine map g1:x → 1
2 + 1

2x.
If the initial probability distribution of B entering R1 is given by y ∈ [0, 1], then
distribution “seen” at the destination after Rn is given by x = 2−1rn+2−2rn−1+
· · · + 2−nr1 + 2−n−1y, and hence the messages of the routers can be read off as
the n most significant bits of x. (The technical issues ignored here include how
precisely x can be determined, what are effects of “noisy” packets coming along
alternative routes, etc.)

Geometrically, the above packet marking scheme is based on the tiling of
[0, 1] by the two intervals [0, 1

2] and [12 , 1]. Now one may want to generalize
the scheme: First, more than one bit may be available in each packet for the
marking; generally one can assume that the marking part of the packet may
attain d + 1 distinct values. Then the probability distribution is specified by a
point in the standard d-dimensional simplex Δd = {x ∈ Rd+1 : x1, . . . , xd+1 ≥
0, x1 + x2 + · · · + xd+1 = 1} ⊂ Rd+1, where xj represents the probability of
the jth value among the d + 1 possible values. And second, the messages of the
routers may attain some number m of distinct values, say 1, 2, . . . ,m. In such a
situation, we would need m affine maps g1, g2, . . . , gm:Δd → Δd, where a router
with message i converts an incoming probability distribution x ∈ Δd into the
probability distribution gi(x) (it is easy to check that any affine map Δd → Δd

can be realized by a suitable protocol, which works with one packet at a time
and for which one need not know the incoming probability distribution). We
would like to choose the gi so that the messages of all routers along the path can

Nonexistence of 2-Reptile Simplices 159

be reconstructed from the probability distribution at the destination, allowing
for as large error margin in reading off that distribution as possible.

The exact requirements on the gi can be discussed at great length and are
a subject for further research. Here we mention a condition which, if it can be
satisfied, yields “asymptotically optimal” marking schemes.

The simplices g1(Δd), g2(Δd),. . . , gm(Δd) tile Δd without overlap, and there
exists a constant c > 0 such that for any finite sequence i1, i2, . . . , in, 1 ≤ ij ≤ m,
the composed map g = gi1 ◦ gi2 ◦ · · · ◦ gin

doesn’t contract distances too much:
it satisfies ‖g(x) − g(y)‖ ≥ c · m−n/d · ‖x − y‖ for every x, y ∈ Δd.

It is easy to check that if S is a d-dimensional simplex that is an m-reptile,
f1, . . . , fn are the similarity maps sending S to the tiles S1, . . . , Sm, and T is an
affine isomorphism S → Δd, then the maps g1, . . . , gm given by gi = T ◦ fi ◦
T−1 satisfy the above requirement and thus lead to an asymptotically optimal
protocol. Unfortunately, so far it seems that simplex m-reptiles with small m,
which would be useful in this context, exist very seldom.

Finally, let us remark that the above condition for the gi implies the eigen-
value condition formulated in the proof of Theorem 1 (in the special case m = 2).
Thus, the part of that proof using only the eigenvalue condition also applies to
the existence of the maps gi for an asymptotically optimal protocol. However,
the part considering the facet volumes does not seem to apply directly in this
greater generality.

Acknowledgment

I thank Micah Adler and Uri Zwick for discussions about probabilistic packet
marking, which were a starting point of the research reported in this paper. For
kind answers to my queries about reptiles, matrices, and similar things I would
like to thank Christoph Bandt, Maurice Cochand, David Eppstein, Eike Hertel,
Krystyna Kuperberg, W�lodek Kuperberg, and Petr Plecháč, and finally, I thank
Petr Škovroň for pointing out a gap in an earlier version of the proof.

References

1. M. Adler. Tradeoffs in probabilistic packet marking for IP traceback. In Proc. 34th
Annu. ACM Symposium on Theory of Computing, pages 407–418, 2002.

2. M. Adler, J. Edmonds, and J. Matoušek. Towards asymptotic optimality in prob-
abilistic packet marking. In Proc. 37th Annu. ACM Symposium on Theory of
Computing 450–459, 2005.

3. G. L. Alexanderson and J. E. Wetzel. Dissections of a simplex. Bull. Amer. Math.
Soc., 79:170–171, 1973.

4. C. Bandt. Self-similar sets. V. Integer matrices and fractal tilings of Rn. Proc.
Amer. Math. Soc., 112(2):549–562, 1991.

5. H. Burch and B. Cheswick. Tracing anonymous packets to their approximate
source. Contribution at the conference Usenix LISA (New Orleans), 2000.

6. H. E. Debrunner. Tiling Euclidean d-space with congruent simplexes. In Discrete
geometry and convexity (New York, 1982), volume 440 of Ann. New York Acad.
Sci., pages 230–261. New York Acad. Sci., New York, 1985.

, pages

160 J. Matoušek

7. T. W. Doeppner, P. N. Klein, and A. Koyfman. Using router stamping to iden-
tify the source of IP packets. In Proc. 7th ACM conference on Computer and
communications security, pages 184–189, 2000.

8. G. Gelbrich. Crystallographic reptiles. Geom. Dedicata, 51(3):235–256, 1994.
9. G. Gelbrich. Self-affine lattice reptiles with two pieces in Rn. Math. Nachr.,

178:129–134, 1996.
10. E. Hertel. Self-similar simplices. Beiträge Algebra Geom., 41(2):589–595, 2000.
11. D. H. Lehmer. A machine method for solving polynomial equations. J. Assoc.

Comput. Mach., 8:151–162, 1961.
12. S.-M. Ngai, V. F. Sirvent, J. J. P. Veerman, and Y. Wang. On 2-reptiles in the

plane. Geom. Dedicata, 82(1-3):325–344, 2000.
13. S. Savage, D. Wetherall, A. Karlin, , and T. Anderson. Practical network support

for IP traceback. In Proc. of the Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication (ACM SIGCOMM), pages
295–306, 2000.

14. S. L. Snover, C. Waiveris, and J. K. Williams. Rep-tiling for triangles. Discrete
Math., 91(2):193–200, 1991.

15. T. Zaslavsky. Maximal dissections of a simplex. J. Combinatorial Theory Ser. A,
20(2):244–257, 1976.

Single-Vertex Origami and Spherical Expansive

Motions

Ileana Streinu1,� and Walter Whiteley2,��

1 Computer Science Department, Smith College, Northampton, MA 01063, USA
streinu@cs.smith.edu, http://cs.smith.edu/~streinu

2 Department of Mathematics, York University, Toronto, M3J 1P3, Canada
whiteley@mathstat.yorku.ca, http://mathstat.yorku.ca/~whiteley

Abstract. We prove that all single-vertex origami shapes are reachable
from the open flat state via simple, non-crossing motions. We also con-
sider conical paper, where the total sum of the cone angles centered at
the origami vertex is not 2π. For an angle sum less than 2π, the configu-
ration space of origami shapes compatible with the given metric has two
components, and within each component, a shape can always be recon-
figured via simple (non-crossing) motions. Such a reconfiguration may
not always be possible for an angle sum larger than 2π.

The proofs rely on natural extensions to the sphere of planar Eu-
clidean rigidity results regarding the existence and combinatorial char-
acterization of expansive motions. In particular, we extend the concept
of a pseudo-triangulation from the Euclidean to the spherical case. As
a consequence, we formulate a set of necessary conditions that must
be satisfied by three-dimensional generalizations of pointed pseudo-
triangulations.

1 Introduction

Imagine making creases in a flat sheet of paper, all of them originating at a
single vertex, and then folding along the creases without tearing, stretching or
bending the paper, to obtain a three dimensional origami shape. Assume that the
planar regions bounded by creases behave more like metal sheets than paper,
i.e. they move rigidly, and do not go through each other during the motion. See
Fig. 1. The single-vertex origami problem asks: are there origami shapes which
are compatible with the creases and the induced metric of the paper, but which
cannot be folded by such a process?

Here, we answer this question and generalize it in several ways. We prove
that all single-vertex origami shapes can be folded from the flat state. This
implies that the configuration space of all origami shapes with the same crease
pattern is connected: any shape can be reconfigured into any other shape, via
simple (non-self-intersecting) motions. We begin by formulating the problem

� Supported by NSF grants CCR-0105507 and NSF-DARPA CARGO-0310661.
�� Supported by grants from NSERC (Canada) and NIH (US).

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 161–173, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

162 I. Streinu and W. Whiteley

(a) (b) (c)

Fig. 1. A single-vertex origami fold: (a) the creased sheet of paper; (b, c) two of its
possible folded shapes

in terms of conical panel-and-hinge structures, which have incident hinge-axes
and in terms of spherical polygonal linkages. If the spherical perimeter (defined
below) is no more than 2π, we show that then they can be reconfigured to a
spherically convex configuration. But if the perimeter is more than 2π, then the
configuration space may be disconnected. We leave open the question of whether
simple spherical polygonal paths of length between π and 2π, with short links
(less than π) is connected or not.

Our proofs rely on a generalization to the sphere of the planar Carpenter’s
Rule Problem, which asks whether every simple planar polygon can be unfolded
to a convex position, in such a way that the edges maintain their lengths and do
not cross throughout the motion. An expansive motion never decreases any inter-
distance between two points, therefore no collisions may occur. The two solutions
of the Carpenter’s Rule problem for simple planar polygonal linkages [4,17] rely
on expansive motions. In dimension two, the infinitesimal expansive motions are
well understood. They form a polyhedral cone [15] whose extreme rays have
a combinatorial characterization, given by pointed pseudo-triangulation mech-
anisms [17]. Their three-dimensional counterparts also form a polyhedral cone,
defined by similar linear inequalities, but finding a combinatorial interpretation
for its rays has so far remained elusive.

In this paper, we also initiate the study of expansive motions on the sphere
and in 3d and give the first provable classes of spherical and 3d expansive mech-
anisms with one-degree-of-freedom: hemispherical pseudo-triangulations, resp.
pointed cone pseudo-triangulations. By applying them to the spherical Carpen-
ter’s Rule Problem of perimeter ≤ 2π, we obtain the proof that all simple folds
can be opened to a spherical convex position.

Historical Background. Computational origami is a relatively recent endeavor,
see [6] for a survey. The mathematical and computational origami literature
addresses questions of feasibility, characterization and NP-hardness of flat-folds,
as well as applications, see e.g. [13,1,7]. According to Tom Hull [10], only two
published articles deal with the mathematics of rigid origami [9,14].

The topology of the configuration space for spherical linkages and single-
vertex origami folds (allowing self-crossings) is studied in [12,11].

Polygonal linkages in the plane have received a lot of attention in recent years.
Relevant for our paper are the previously mentioned results on the Carpenter’s

Single-Vertex Origami and Spherical Expansive Motions 163

Rule Problem using expansive motions [4] and pseudo-triangulations [17]. To the
best of our knowledge, there are no other results studying or applying spherical
or 3d expansive motions.

Rigidity for non-Euclidean geometries (including spherical and hyperbolic)
is the topic of an unpublished paper of the second author [16]. The projective
connections between motions of cones, motions on spheres, and motions in plane
projections go back to [19]. We achieve the extension of the Carpenter’s Rule
problem to spherical polygons and single-vertex origami folds via spherical ge-
ometry techniques, building on ideas from [19,16] but handling signed motions
(expansive and contractive).

2 Definitions and Preliminaries

For rigidity theoretic terminology and concepts, we refer the reader to the clas-
sical monograph [8] and the handbook chapter [20]. For pseudo-triangulations,
see [17] and [15].

Frameworks in Two and Three Dimensions. A bar-and-joint framework (simply,
a framework) G(p) is a graph G = (V, E), V = [n] := {1, · · · , n}, embedded on
a set of points p = {p1, · · · , pn}, pi ∈ Rd. In this paper d = 2 or d = 3. A
pair of indices (i, j) ∈ [n]2 may be denoted simply as ij. The embedded edges
(segments) pipj are also called bars, and their endpoints pi are called joints.
When the underlying graph is a path or a cycle, the framework is called a chain
(open, resp. closed).

Infinitesimal rigidity of frameworks. An infinitesimal motion of a framework
G(p) is a set of velocity vectors v = {v1, · · · , vn}, vi ∈ Rd preserving the lengths
of the bars:

〈pi − pj , vi − vj〉 = 0, ∀ij ∈ E

An infimitesimal motion is trivial if it is a rigid transformation of the whole
space. A framework is infinitesimally rigid if it has only trivial infinitesimal
motions, and infinitesimally flexible otherwise.

A flex or motion of a framework is a set of continuous point trajectories

p(t) = {p1(t), · · · , pn(t)}

which preserve the edge lengths l2ij = 〈pi − pj , pi − pj〉, ∀ij ∈ E of the initial
framework G(p) = G(p(0)) at any moment in time t:

〈pi(t) − pj(t), pi(t) − pj(t)〉 = l2ij , ∀ij ∈ E

164 I. Streinu and W. Whiteley

(a) (b)

Fig. 2. A pointed pseudo-triangulation mechanism (a) in the plane, and (b) on the
sphere

Expansion and Contraction. Given a point set p and infinitesimal velocities v, let
us denote by εij the quantity εij(p, v) := 〈pi−pj, vi−vj〉. For a pair ij of indices
(not necessarily an edge of a graph G), we say that the diagonal ij expands if
εij > 0, contracts if εij < 0 or is frozen if εij = 0. An infinitesimal motion v of
G(p) is expansive (resp. contractive) if all the non-frozen diagonals expand (resp.
contract). A framework is infinitesimally expansive if it is infinitesimally flexible
and supports a non-trivial infinitesimally expansive motion.

Pointed Pseudo-Triangulations and Mechanisms. A special class of planar frame-
works are those with no crossing edges and where every vertex is pointed: inci-
dent to an angle larger than π. Such frameworks are planar graph embeddings
and can have at most 2n − 3 edges. When they have the maximum number of
edges, the outer face is convex and all the internal faces are pseudo-triangles:
simple polygons with exactly three inner convex angles. As frameworks, pointed
pseudo-triangulations are minimally rigid. Removing any edge makes then flexi-
ble mechanisms, with one degree of freedom. If the removed edge is a convex hull
edge, the mechanism is expansive: the unique motion that increases the length
of the removed convex hull edge, never decreases any distance between a pair of
points. See [17] and Fig. 2(a).

Panel and Hinge Structures. A bounded panel is a simple polygon embedded
flat in 3d, and intended to behave like a rigid object, i.e. to remain flat and to
maintain its metric properties (edge lengths and angles). The simplest case is a
triangle. We will also work with unbounded panels which are wedges defined by
two semi-infinite rays.

A hinge is a line segment or ray common to at least two panels. In this paper
we consider only hinges that appear as complete bounding edges of their incident
panels. In particular, a hinge does not run through the interior of a panel and
does not extend beyond its boundary. The panels are attached rigidly to hinges:
they are allowed to rotate about hinges, but not to slide along them.

A panel-and-hinge structure is a collection of panels connected via hinges.
Examples include those in Fig. 1, where all hinges are concurrent, and Fig. 3,
where each hinge is incident to two panels.

Single-Vertex Origami and Spherical Expansive Motions 165

(a) (b)

Fig. 3. Examples of panel-and-hinge structures. (a) Some hinges may be incident with
several panels. (b) A triangulated polyhedral surface is a special case of a panel and
hinge structure.

Conical Panel-and-Hinge Structures. In this paper we work only with conical
panel-and-hinge structures, in which all the hinges are concurrent to a unique
vertex called the cone vertex, as in Fig. 3(a). In this case, each panel contains at
most two hinges. The conical structures are bounded, if all panels are bounded
polygons and the hinges are line segments, as in Fig. 3(a), or unbounded, when
the hinges are infinite rays and the panels are wedges. For the purpose of this
paper, in the bounded case it suffices to work only with triangular faces. We
distinguish two cases, pointed and non-pointed conical structures, depending on
whether the cone vertex is pointed (all incident segments are contained in a
half-space defined by a plane through the cone vertex) or not. See Fig. 4.

(a) (b)

Fig. 4. (a) A pointed and (b) a non-pointed conical framework arising from conical
panel-and-hinge structures. The cone vertex is black.

From Conical Panel-and-Hinge Structures to Bar-and-Joint Frameworks. To
each bounded conical panel-and-hinge structure we associate a bar-and-joint
framework G0(p) in 3d. The vertices of G0 correspond to those of the conical
structure and the edges to sides of the triangular panels. The cone-vertex is
always labeled with 0, and is incident with all the other vertices, labeled from
1 to n. G0 is embedded as G0(p) on the set of points bounding the triangular

166 I. Streinu and W. Whiteley

panels, pi ∈ R3, i = 0, 1, · · · , n. Such a bar-and-joint framework is called a cone
framework.

An infinitesimal motion of a bounded conical panel-and-hinge structure is an
infinitesimal motion of the associated conical bar-and-joint framework.

For unbounded conical panel-and-hinge structures, we first bound the panels
by cutting them into triangles. Then we define the infinitesimal motion of the
bounded structure. The following straightforward lemma shows that the motion
can be uniquely extended to all the points of the original unbounded panels.

Lemma 1. (Infinitesimal velocities of arbitrary points). Any point p′ sit-
uated on the supporting line of a hinge p0pi or on the supporting plane of a
panel p0pipj can be assigned an infinitesimal velocity v′ uniquely determined by
the velocities of the points bounding the hinge or panel.

Spherical Frameworks. If we intersect an unbounded conical structure with a
sphere centered at the cone vertex, we obtain a spherical framework. It consists
of spherical bars along great-circle arcs on the sphere, and joints which are the
intersection of the hinges with the sphere. The incidence structure of a spherical
framework is a graph G obtained from G0 by deleting the cone-vertex 0 and its
incident edges. The remaining graph G has the vertex set [n]. The length of a
spherical edge ij is the size of the angle ∠pip0pj centered at the cone vertex.

A spherical framework fully contained in a hemisphere is called hemispherical.
It arises from a pointed conical panel-and-hinge structure. See Fig. 5.

Fig. 5. A hemispherical framework, and the corresponding pointed conical panel-and-
hinge structure. The cone-vertex (black) is the center of the sphere.

3 Infinitesimal Rigidity of Conical and Spherical
Frameworks

In this section we show how to associate to every planar framework a 3d pointed
conical framework, and therefore also a hemispherical framework and a pointed
conical panel-and-hinge structure, and vice-versa. The association preserves in-
finitesimal rigidity and maintains the expansion pattern.

Single-Vertex Origami and Spherical Expansive Motions 167

The Cone of a Planar Framework. Let G(p) be a planar framework embedded
in R2, viewed as the affine plane z = 1 in R3. The cone over G is the graph
G0 = (V0, E0), V0 = V ∪ {0} (0 is the cone vertex) and E0 = E ∪ {0i}i∈V .
The canonical conical framework G0(p) over G(p) with center p0 ∈ R3 is an
embedding of the cone G0 over G so that it extends G(p) and embeds the cone
vertex at the center p0. In this paper we take p0 = 0. More generally, a cone
framework G0(q) over G(p) will have the cone vertex at q0 and the ith vertex qi

on the line p0pi.

Infinitesimal Motions of Planar and Conical Frameworks. The association we
just described induces a projection map carrying a conical framework1 G0(q)
with no points on the plane z = 0 into a framework G(p) in R2 embedded in
the plane z = 1 (and vice-versa). We now turn our attention to establishing and
proving the connection between infinitesimal motions of a planar framework and
the associated conical framework.

0

e

pi

qi ui

vi

Fig. 6. The projection map, shown here in a section along the plane spanned by a
point qi on the sphere and the z-axis. It takes a point qi on the sphere to a point pi

in the z = 1 plane, and an infinitesimal velocity ui of qi to an infinitesimal velocity vi

of pi.

Let G0(q) be a conical framework with the cone vertex at the origin, q =
(q0, q1, · · · , qn), q0 = 0 and qi = (xi, yi, zi), zi = 0. Let u = (u0, u1, · · · , un),
u0 = 0 be an infinitesimal motion of the framework G0(q) in R3, with the cone
vertex pinned down. Let e the unit vector along the z-axis. See Fig. 6.

Proposition 1. Consider the map R3 → R2 taking the points qi = (xi, yi, zi)
on the sphere to points pi = (xi

zi
, yi

zi
, 1) in the z = 1 plane and velocities ui to:

vi =
1
zi

(ui − 〈ui, e〉e)

1 In this section, we denote by p a planar point set and by q a 3d point set.

168 I. Streinu and W. Whiteley

Then u = (0, u1, · · · , un) is an infinitesimal motion of the conical framework
G0(q) in R3 iff v = (v1, · · · , vn) is an infinitesimal motion in R2 of the frame-
work G(p).

If two points qi and qj are in the same hemisphere (z > 0 or z < 0), then
u is expansive for the pair qi, qj iff v is expansive on pi, pj in the plane. If qi

and qj are on opposite hemispheres, then u is expansive for the pair qi, qj iff v
is contractive on pi, pj in the plane.

Proof. The bars from the cone vertex give the equations 〈qi − q0, ui − u0〉 =

〈qi, ui〉 = 0. Applying them on i and j, the expansion values become:

〈pi − pj, vi − vj〉 = 〈qi

zi
− qj

zj
,

1
zi

(ui − 〈ui, e〉e) − 1
zj

(uj − 〈uj, e〉e) =

= −〈qi, uj〉 + 〈qj , ui〉
zizj

+ [
〈ui, e〉

zi
− 〈uj , e〉

zj
− 〈ui, e〉

zi
+

〈uj, e〉
zj

] =

= −〈qi, uj〉 + 〈qj , ui〉
〈e, qi〉〈e, qj〉

+
1

zizj
[〈qi, ui〉−〈qi, uj〉−〈qj , ui〉〈qj , uj〉]=

1
zizj

〈qi−qj , ui−uj〉

Thus the sign (positive, negative or zero) of 〈pi−pj, vi−vj〉 is the same as the
sign of 〈qi−qj , ui−uj〉 when the two points qi and qj are in the same hemisphere
(zizj > 0) and opposite when in different hemispheres (zizj < 0). ��

As a simple corollary we obtain:

Lemma 2. Let G(p) be a planar framework and let G0(p) be an associated 3-
dimensional cone framework. Then:

1. If G(p) is infinitesimally rigid, then so is G0(p).
2. If G(p) is infinitesimally expansive, and the cone vertex is pointed, then

G0(p) is also expansive.

If the planar framework G(p) is a pseudo-triangulation mechanism, then the
spherical framework associated to the cone framework G0(p) will be called a
hemispherical pointed pseudo-triangulation mechanism. See Fig. 2(b). Interpret-
ing Lemma 2 in this case leads to:

Lemma 3. A hemispherical pseudo-triangulation mechanism is expansive.

As another corollary we also obtain the following simple necessary condition
for 3d expansive motions. Given a graph G and a vertex i, let Vi be the vertex
i together with the set of neighbors of i. The ith star Gi of G is the subgraph
induced on Vi.

Lemma 4. Let G(q) be a spatial flexible framework and let Gi(q) be the conical
framework induced on the star Gi. If a conical framework Gi(q) is not infinites-
imally expansive, then G(q) is not infinitesimally expansive. In other words, the
following two local pointedness conditions are necessary for infinitesimal expan-
siveness:

Single-Vertex Origami and Spherical Expansive Motions 169

1. The cone vertex of each star Gi(q) is pointed (in 3d), and
2. Each induced cone framework projects to a pointed and non-crossing 2d

framework.

Part 2 of the previous lemma relies on the existence of expansive motions for
planar pointed graphs (which are subgraphs of pointed pseudo-triangulations),
see [17,15]. Lemma 4 gives a necessary condition for a 3d framework to be expan-
sive, and thus precludes any rigidity-theoretic generalization of planar pointed
pseudo-triangulation mechanisms to 3d.

4 Convexifying Spherical Polygonal Linkages

A spherical framework is a graph G embedded on the surface of a sphere, with
edges going along arcs of great circles. The length of an edge qiqj is the angle
between the two line segments joining the center of the sphere to the two end-
points of the edge. To simplify the presentation, we will assume that edges have
lengths different from 0 and π, i.e the endpoints of every edge are distinct and
not-antipodal (the results hold even without this assumption).

A great-circle cuts the sphere into two hemispheres. With respect to a hemi-
sphere, the defining great-circle is called its equator, and the point where the
normal to the equator plane crosses the hemisphere is called the pole of the
hemisphere.

A hemispherical framework is one lying on a hemisphere. A proper frame-
work has all its edge lengths at most π. Of special interest are spherical and
hemispherical polygons and polygonal paths. The perimeter of a polygon and
the length of a polygonal path is the total sum of its edge lengths. A hemispher-
ical polygon is convex if the projection on the plane going through the pole and
parallel to the plane of the equator is a convex polygon.

Theorem 1. Every simple hemispherical polygon of perimeter ≤ 2π and every
simple hemispherical polygonal path of length ≤ π can be unfolded to a convex
polygon using expansive motions.

Proof. Note that any polygon of perimeter at most 2π must lie inside a closed
hemisphere. If it lies inside an open hemisphere, we proceed with the following
case. We return below to the extreme case, when there are antipodal points.

Project the polygon in an open hemisphere to a plane tangent to the pole of
the hemisphere. Find an expansive infinitesimal motion of the planar polygon,
e.g. one induced by a pointed pseudo-triangulation mechanism as in [17], or an
arbitrary one obtained by a linear program as in [4]. Lemmas 2 and 3 imply that
the induced cone framework is also moving expansively.

Move the spherical mechanism until an alignment event occurs, as in [17]. No-
tice that the alignment of two incident edges in a spherical pseudo-triangulation
mechanism happens exactly when the projection on the z = 1 plane has the
corresponding edges aligned (but beware, the projection does not move as a pla-
nar rigid framework). The combinatorial structure of the spherical and planar

170 I. Streinu and W. Whiteley

pseudo-triangulations is the same. Therefore, as long as the polygon stays inside a
hemisphere, there is always an expanding motion given by a pseudo-triangulation
mechanism, and the convexification algorithm of [17] applies identically.

There is a concern that the motion might leave an open hemisphere. This
occurs when two antipodal points appear. With two antipodal points in a poly-
gon, there must be two paths joining the points, each of length at least π. This
implies that the polygon must have length exactly 2π, and the two paths must
each be great circle segments joining the antipodal points. In this situation, we
may have the entire polygon on a single great circle, and we are finished with
a flat spherical polygon. The alternative is that we have a ‘wedge’ formed by
two intersecting great circles. Freezing one, we can rotate the other to make
them flat, on opposite segments of a great circle. This motion is obviously ex-
pansive. Finally, we note that if we did not start with antipodal points, we can
only achieve this configuration at an alignment event, so our previous process is
complete and only requires a check for a wedge after each alignment event.

Finally, we note that if the algorithm terminates with a convex polygon which
is not flat, then we have a convex cone from the center of the sphere which has
a total angle of less than 2π. This means the spherical polygon had perimeter
less than 2π. Therefore, any polygon of perimeter 2π will terminate with a flat
configuration on a single great circle.

The polygonal path of length not more than 2π can be reduced to the closed
polygon case by joining the endpoints of the path via a geodesic spherical path
(which stays inside the hemisphere and bends at vertices and edges of the polyg-
onal path). The total length of the added geodesic edges is at most the length
of the polygon, so we have reduced to the previous case. Moreover, for any path
less than π we could choose the additional edges to make the total length exactly
2π and terminate with a flat (collinear) polygonal path. If the length is exactly
π, a limiting argument guarantees we can also achieve flatness. ��

Let’s emphasize as separate corollaries two ideas from the previous proof.

Lemma 5. A spherical polygon of perimeter 2π can be unfolded to a great circle
using expansive motions.

Corollary 1. If the geodesic line added between the endpoints of a spherical
polygonal path doesn’t increase the total length to more than 2π, then the polyg-
onal path can be made flat on a great circle using expansive motions.

The case not covered by the previous corollary, the hemispherical polygonal
path (even when its total length is under 2π) may need contractive (or par-
tially contractive) motions to convexify. We conjecture that the convexification
is always possible.

Conjecture 1. Every spherical polygonal path of length at most 2π can be flat-
tened without collisions onto a great circle.

Single-Vertex Origami and Spherical Expansive Motions 171

Just as in the planar case, we obtain:

Corollary 2. Two similarly oriented configurations of a simple spherical poly-
gon with fixed edge lengths and perimeter ≤ 2π lie in the same component of the
configuration space.

Indeed, one can move each one into convex position and then reverse one un-
folding path to achieve the reconfiguring motion.

What happens for spherical polygons and paths longer than 2π? They obvi-
ously cannot be convexified, since they do not fit on a great circle. The question
is whether they can always be reconfigured to any other position. The following
simple example shows that this may not be always possible.

Example 1. Consider a spherical quadrilateral with all edge lengths equal to
2π
3 − εi, for four distinct values εi. Its perimeter is 8π

3 −
∑

εi > 2π, and any
consecutive pair of edges adds to over π in length. The framework fits into a
hemisphere in two ways, which cannot be reconfigured one to another without
self-intersections.

Moreover, even when a reconfiguration os such spherical linkages is possible,
a combination of expansive and contractive motions may have to be used.

5 Unfolding Single-Vertex Origami

A single-vertex origami is a creased piece of paper with all the creases incident to
one vertex. Assume first that the vertex lies in the interior of the piece of paper.
For simplicity, assume that the paper has a polygonal boundary with one vertex
on each crease line. The total angular length of the corresponding spherical
polygon or path framework is 2π in this case. We also consider the case when
the polygonal piece of paper has the fold-vertex situated on a boundary edge or
at a corner of the paper. The total angular length of the corresponding spherical
polygon or path framework is π in the first case, and it can be either strictly less
than or larger than 2π in the second case, depending on the corner angle being
convex or reflex. See Fig. 7. Theorem 1 implies:

(a) (b) (c)

Fig. 7. Single-vertex origami with the fold-vertex on the boundary of the piece of paper:
(a) on an edge, (b) at a convex corner and (c) at a reflex corner

172 I. Streinu and W. Whiteley

Corollary 3. Every simple single-vertex origami fold with the fold-vertex inte-
rior to the paper or interior to a boundary edge or situated at a convex vertex
can be unfolded with expansive motions.

Corollary 4. The configuration space of simple single-vertex origamis with the
fold-vertex interior to the paper, or to a boundary edge or situated at a con-
vex vertex is connected. Two shapes can be reconfigured one into the other with
simple, non-self-intersecting motions.

Conjecture 1 extends to single-vertex origamis with the fold-vertex situated
on a reflex corner of the paper.

References

1. M. Bern and B. Hayes. The complexity of flat origami. In Proc. 7th ACM-SIAM
Symp. on Discrete Algorithms (SODA), pages 175–183, Atlanta, January 1996.

2. T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O’Rourke,
M. Overmars, S. Robbins, I. Streinu, G. Toussaint and S. Whitesides. Locked
and unlocked polygonal chains in three dimensions. Discrete & Computational
Geometry, 26(3):269–281, 2001.

3. J. Cantarella and H. Johnston. Nontrivial embeddings of polygonal intervals and
unknots in 3-space. J. Knot Theory Ramifications, 7(8):1027–1039, 1998.

4. R. Connelly, E. Demaine and G. Rote. Straightening polygonal arcs and con-
vexifying polygonal cycles. Discrete & Computational Geometry, 30(5):205–239,
2003.

5. H. Crapo and W. Whiteley. Statics of frameworks and motions of panel structures:
a projective geometric introduction. Structural Topology, 6:43–82, 1982.

6. E. Demaine and M. Demaine. Recent results in computational origami. In Proc.
3rd Int. Meeting of Origami Science, Math, and Education (OSME 2001), pages
3–16, Monterey, California, March 9–11 2001.

7. E. Demaine, M. Demaine, and J. Mitchell. Folding flat silhouettes and wrap-
ping polyhedral packages: New results in computational origami. In Proc. 15th
ACM Symp. on Computational Geometry (SoCG’99), pages 105–114, Miami Beach,
Florida, June 13–16 1999.

8. J. Graver, B. Servatius and H. Servatius. Combinatorial Rigidity. Graduate
Studies in Mathematics vol. 2. American Mathematical Society, 1993.

9. D. Huffman. Curvature and creases: a primer on paper. IEEE Transactions on
Computers, C-25(10):1010–1019, Oct. 1976.

10. T. Hull. Rigid origami. http://www.merrimack.edu/˜thull/rigid/rigid.html, 2003.
11. M. Kapovich and J. Millson. Hodge theory and the art of paper-folding. Publi-

cations of RIMS, Kyoto, 33(1):1–33, 1997.
12. M. Kapovich and J. Millson. On the moduli space of a spherical polygonal linkage.

Canad. Math. Bull., 42(3):307–320, 1999.
13. R. Lang. A computational algorithm for origami design. In Proc. 12th ACM

Symposium on Computational Geometry, pages 98–105, 1996.
14. K. Miura. A note on intrinsic geometry of origami. Proc. First International

Meeting of Origami Science and Technology (H. Huzita ed.), pages 239–249, 1989.

Single-Vertex Origami and Spherical Expansive Motions 173

15. G. Rote, F. Santos and I. Streinu. Expansive motions and the polytope of
pointed pseudo-triangulations. In J. Pach, B. Aronov, S. Basu and M. Sharir,
editors, Discrete and Computational Geometry - The Goodman-Pollack Festschrift,
Algorithms and Combinatorics, pages 699–736. Springer Verlag, Berlin, 2003.

16. F. Saliola and W. Whiteley. Notes on the equivalence of first-order rigidity in
various geometries. Preprint, 2002.

17. I. Streinu. A combinatorial approach to planar non-colliding robot arm motion
planning. In Proc. ACM-IEEE Symposium on Foundations of Computer Science
(FOCS), pages 443–453, 2000.

18. T.S. Tay and W. Whiteley. Generating isostatic graphs. Structural Topology,
11:21–68, 1985.

19. W. Whiteley. Cones, infinity and one-story buildings. Structural Topology, 8:53–70,
1983.

20. W. Whiteley. Rigidity and scene analysis. In J.E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, pages 893–916. CRC
Press, Boca Raton New York, first edition, 1997.

An Optimal Algorithm for the 1-Searchability
of Polygonal Rooms

Xuehou Tan

Tokai University, 317 Nishino, Numazu 410-0395, Japan
tan@wing.ncc.u-tokai.ac.jp

Abstract. The 1-searcher is a mobile guard who can see only along a ray
emanating from his position and can continuously change the direction
of the ray with bounded speed. A polygonal region P with a specified
point d on its boundary is called a room, and denoted by (P, d). The room
(P, d) is said to be 1-searchable if the searcher, starting at the point d,
can eventually see a mobile intruder who moves arbitrarily fast inside P ,
without allowing the intruder to touch d. We present an optimal O(n)
time algorithm to determine whether there is a point x on the boundary
of P such that the room (P, x) is 1-searchable. This improves upon the
previous O(n log n) time bound, which was established for determining
whether or not a room (P, d) is 1-searchable, where d is a given point on
the boundary of P .

1 Introduction

Recently, much attention has been devoted to the problem of searching for a mo-
bile intruder in a polygonal region P by a mobile searcher [6,8,9,10,11,12,13,14,15].
Both the searcher and the intruder are modeled by points that can continuously
move in P . The 1-searcher is a mobile guard who can see only along a ray emanat-
ing from his position and can change the direction of the ray with bounded speed.
A polygonal region P with a specified point d (called the door) on its boundary
is called a room, and denoted by (P, d). The room (P, d) is said to be 1-searchable
if the searcher, starting at the point d, can eventually see a mobile intruder who
moves arbitrarily fast inside P , without allowing the intruder to touch d.

The problem of searching a polygonal room by a single 1-searcher was first
studied by Lee et al. [10]. By characterizing the class of 1-searchable rooms,
they described an O(n log n) time algorithm to determine if a specifed room is
1-searchable. An optimal algorithm for generating a search schedule was later
given in [14]. In this paper, we present an optimal O(n) time and space algorithm
to determine whether there is a point x on the boundary of P such that the
room (P, x) is 1-searchable. Combining with result of [14], we thus obtain an
optimal solution to the problem of searching a polygonal room by a 1-searcher.
Moreover, our algorithm is simple and does not require a triangulation of P .
This simplicity is important as many linear-time geometric algorithms depend
on the triangulation algorithm of Chazelle [3], which is too complicated to be
suitable in practice.

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 174–183, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Optimal Algorithm for the 1-Searchability of Polygonal Rooms 175

2 Preliminary

Let P denote a simple polygon, i.e., it has neither self-intersections nor holes.
Two points x, y ∈ P are said to be mutually visible if the line segment connecting
them, denoted by xy, is entirely contained in P . For two regions Q1, Q2 ⊆ P ,
we say that Q1 is weakly visible from Q2 if every point in Q1 is visible from
some point in Q2. For a vertex x of the polygon P , let Succ(x) denote the
vertex immediately succeeding x clockwise, and Pred(x) the vertex immediately
preceding x clockwise. A vertex of P is reflex if its interior angle is strictly greater
than 180◦; otherwise, it is convex. An important definition for reflex vertices is
that of ray shots: the backward ray shot from a reflex vertex r, denoted by
Backw(r), is the first point of P hit by a “bullet” shot at r in the direction from
Succ(r) to r, and the forward ray shot Forw(r) is the first point hit by the bullet
shot at r in the direction from Pred(r) to r. See Fig. 1.

v
1

v
2

Forw(v)Backw(v)
21

3v

Fig. 1. Forward, backward ray shots and components

Let u, v denote two boundary points of P , and let P [u, v] (resp. P (u, v))
denote the closed (resp. open) clockwise chain of P from u to v. We define the
chain P [r,Backw(r)] (resp. P [Forw(r), r]) as the backward component (resp.
forward component) of the reflex vertex r. The point r is referred to as the
defining vertex of the component. See Fig. 1 for an example, where two different
components of v1 and v2 are shown in bold line. A backward (resp. forward)
component is said to be non-redundant if it does not contain any other backward
(resp. forward) component. A reflex vertex is critical if its backward or forward
component is non-redundant. For example, the vertices v1, v2 and v3 in Fig. 1
are critical.

A polygon P is said to be LR-visible if there is a pair of boundary points u
and v such that P [u, v] and P [v, u] are weakly visible from each other. Clearly,
P is LR-visible with respect to the point pair (u, v) if and only if each non-
redundant component of P contains either u or v. Das et al. have developed a
linear-time algorithm to determine whether a polygon P is LR-visible or not
[4]. Later, Bhattacharya and Ghosh [1] simplified the algorithm such that it
uses only simple data structures and does not require a triangulation of the
polygon. The algorithm also allows one to compute the shortest paths from an
arbitrary vertex to all other vertices of P . If P is LR-visible, then all of its

176 X. Tan

non-redundant components can be computed in linear time [1,4]. (Actually, the
containment relation between forward components and backward components
is further considered in the definition of non-redundant components given by
Das et al. [4]. But, the main part of their algorithm is to compute the set of
non-redundant forward or backward components.)

Lemma 1. [1,4] It takes O(n) time to determine whether or not P is LR-visible.
Also, all non-redundant forward (resp. backward) components of an LR-visible
polygon can be computed in O(n) time.

A pair of reflex vertices x, y is said to give a d-deadlock, where d is a bound-
ary point of P , if both components P (x,Backw(x)] and P [Forw(y), y) do not
contain d, and the points v1, Forw(v2), Backw(v1) and v2 are in clockwise order.
(Note that the point d may be identical to x or y.) See an example in Fig. 2(a).
In the case that P is LR-visible with respect to some point pairs (x, y), all the
x-deadlocks and y-deadlocks in P can be reported in linear time.

Lemma 2. [2] Suppose that P is LR-visible with respect to some point pairs
(x, y). It takes O(n) time to report all the x-deadlocks and y-deadlocks in P .1

3 The Main Result

The characterization of 1-searchable rooms was originally given by Lee et al.
[10]. To obtain the optimality of the algorithm, we make use of the following
alternate characterization, which is given in terms of components and deadlocks
(see also [14]).

Lemma 3. [10,14] A polygonal room (P, d) is not 1-searchable if and only if
one of the following conditions is true.

(A1) A d-deadlock occurs (Fig. 2(a)), or there are two disjoint components
such that both of them do not contain d (Figs. 2(b)-(e)).

(A2) There are three reflex vertices v1, v2 and v3, which are in clockwise
order, such that the pair (v1, v3) gives both the v2-deadlock and the Forw(v2)-
deadlock or Backw(v2)-deadlock (Fig. 2(f)).

(A3) There are two vertices a2 and b2 such that both components P [a2,
Backw(a2)] and P [Forw(b2), b2] do not contain d, and all vertices of the chain
P [a2, b2] have their deadlocks (Fig. 2(g)).

Notice first that the condition A2 is independent of d, which implies that
if A2 is true, then P is not 1-searchable for any room (P, d), where d is an
arbitrary point on the boundary of P . Actually, if A2 is true, then the condition
A1 is true for all the rooms (P, x), x ∈ P [Forw(v1), Backw(v3)]. Note also that

1 This result, together with Lemma 1, gives an optimal algorithm for the two-guard
walkability of simple polygons [2]. In the appendix, we give a polygon that has a 1-
searchable room, but is not walkable by two guards [7]. Thus, our result is stronger
than the result obtained in [2].

An Optimal Algorithm for the 1-Searchability of Polygonal Rooms 177

v

d

1 v
2

(a)

(g)

Forw(v) Backw(v)
2 1

Forw(v)
2

(d)

(e)

(c)

v1

 Forw(v)
1

v
2

d
d

d

v2
v1

v
1

Backw(v)1

v
2

Backw(v)2

 Forw(v)
1

Backw(v)2

(f)

d

v1 v3

Backw(v)
2

d

v2
v'2

a2 2b

 Forw(b)2 Backw(a)
2

v

d

1 v
2

(b)

Forw(v)Backw(v) 21

 Forw(v)Backw(v)
13

Fig. 2. The conditions A1, A2 and A3

if P is not LR-visible, then A1 is true for every point d on the boundary of P ,
and thus no rooms in P are 1-searchable.

We will present an O(n) time algorithm to determine whether there is a
1-searchable room in a simple polygon. Our algorithm is based on the following
observations, which immediately follow from the definition of critical vertices.

Observation 1. If there are two disjoint components such that A1 is true, then
we can assume that these two components are non-redundant, or equally, two
defining vertices of these components are critical.

Observation 2. If A2 is true, then we can assume that the vertex v2 for A2
is critical.

Observation 3. If A3 is true, then we can assume that two vertices a2 and b2

for A3 are critical.

For simplicity, we consider below the ray shot from a critical vertex as two
different vertices of P ; one slightly preceding it and one slightly succeeding it.
Following from Lemma 3 and the observations made above, it suffices to verify
A1, A2 and A3 for all vertex-door rooms (P, d), where d denotes a vertex of P .
Our algorithm can be summarized as follows.

Algorithm searchability

1. Run the linear-time algorithm of [1,4] to determine whether the given poly-
gon P is LR-visible. If P is not LR-visible, report ”no rooms in P are 1-
searchable”. (It means that no room (P, d), where d is an arbitrary point on
the boundary of P , is 1-searchable.) Otherwise, compute all non-redundant
components (i.e., critical vertices) of P , and then mark the ray shots from
critical vertices as the vertices of P .

178 X. Tan

2. Verify the condition A1 for all vertex-door rooms of P . If A1 is true for all
vertex-door rooms, report ”no rooms in P are 1-searchable”.

3. Check whether the condition A2 is true or not. If yes, report ”no rooms in
P are 1-searchable”.

4. For the vertex-door rooms (P, d) for which the condition A1 is not true,
we further verify whether the condition A3 is true for them. If A1 or A3
holds for every vertex-door room, report ”no rooms in P are 1-searchable”.
Otherwise, a 1-searchable room exists and we report it.

Theorem 1.The algorithm searchability takes O(n) time to determine whether
there is a point x on the boundary of P such that the room (P, x) is 1-searchable.

Proof. First, run the linear-time algorithm of Das et al. [1,4] to check if the
polygon P is LR-visible. If P is not LR-visible, report ”no rooms in P are
1-searchable”, and we are done. Otherwise, all non-redundant components as
well as their corresponding ray shots are computed. An order of the polygon
vertices, including the ray shots from critical vertices, on the boundary of P is
then obtained.

The step 2 of the algorithm searchability is to check if A1 is true for every
vertex-door room (P, d). The condition A1 for (P, d), except for the d-deadlock
case, can be verified as follows. Let v1 denote the critical vertex of P such that
it is closest to d counterclockwise and the component P [v1, Backw(v1)] does not
contain d, and v2 the critical vertex such that it is closest to d clockwise and
the component P [Forw(v2), v2] does not contain d. If the points v1, Backw(v1),
Forw(v2) and v2 are in clockwise order, the configuration shown in Fig. 2(b)
occurs, and thus A1 is true for (P, d). Otherwise, the configuration shown in Fig.
2(b) never occurs for (P, d). This is because P [Backw(v1), Forw(v2)] contains
all chains P [Backw(v′

1), Forw(v′
2)], where v′

1, v′
2 are critical and the points v′

1,
Backw(v′

1), Forw(v′
2) and v′

2 are in clockwise order. For each vertex d, the
corresponding vertices v1 and v2 as well as the order of v1, Backw(v1), Forw(v2)
and v2 can be found in (amortized) constant time. Thus, we can determine
in O(1) amortized time if the configuration shown in Fig. 2(b) occurs. Other
situations shown in Figs. 2(c)-2(e) can be dealt with analogously.

Consider now the deadlock case for the condition A1. Suppose that there are
no two disjoint components in P which make the condition A1 be true for (P, d),
but there are two vertices u1 and u2 which give the d-deadlock. (Note that u1 or
u2 may not be critical.) Then, P (Backw(u1), d] (resp. P [d, Forw(u2))) does not
contain any other component; otherwise, the defining vertex of the contained
component and u1 (resp. u2) give some configuration of A1 shown in Figs. 2(b)-
2(e), a contradiction. For the same reason, there are no two disjoint components
in P [u1, u2]. Hence, there is at least one point d′ ∈ P [Forw(u2), Backw(u1)]
such that P is LR-visible with respect to the point pair (d, d′). We can then
use Bhattacharya et al.’s algorithm [2] to determine if a d-deadlock occurs. It
follows from Lemma 2 that all the v-deadlocks can be reported in O(n) time,
provided that the configurations of A1 shown in Figs. 2(b)-2(e) do not occur for
the rooms (P, v).

An Optimal Algorithm for the 1-Searchability of Polygonal Rooms 179

Turn to the step 3 of the algorithm searchability. Suppose that (P, d) is a
vertex-door room, for which A1 is not true. Let v2 be the critical vertex such that
it is closest to d counetrclockwise and the component P [v2, Backw(v2] does not
contain d (if it exists). Let P ′ denote the portion of P obtained by cutting off the
region bounded by P [v2, Backw(v2)] and the line segment v2Backw(v2). None
of the configurations shown in Figs. 2(b)-2(e) occurs for two rooms (P ′, v2) and
(P ′, Backw(v2)) simultaneously; otherwise, there are three disjoint components
in P and thus P is not LR-visible [4], a contradiction. As discussed above, we can
then determine in O(n) time if there is a v2-deadlock or a Backw(v2)-deadlock
in the polygon P ′. If yes, two vertices giving the deadlock and v2 make the
condition A2 be true, and thus no rooms in P are 1-searchable. Otherwise, we
further find the critical vertex v′

2 such that it is closest to d clockwise and the
component P [Forw(v′

2), v
′
2] does not contain d, and perform the same procedure

for v′
2 (if it exists). If A2 is not ever satisfied, it can never be true for the polygon

P , as we have assumed that the condition A1 is not true for the room (P, d).
Finally, consider the step 4 of searchability. Again, let (P, d) denote a vertex-

door room, for which A1 is not true. Let l1, . . ., li be the sequence of critical
vertices on P such that l1 is closest to d counterclockwise and all the components
P [lk, Backw(lk)] (1 ≤ k ≤ i) do not contain d. The points Backw(l1), Backw(l2),
. . ., Backw(li) are then in clockwise order. See Fig. 3. Similarly, let r1, . . ., rj be
the sequence of critical vertices on the boundary of P such that rj is closest to
d clockwise and all the components P [Forw(rk), rk] (1 ≤ k ≤ j) do not contain
d. Also, the points Forw(r1), Forw(r2), . . ., Forw(rj) are in clockwise order.
Assume that both li and r1 exist (otherwise, the room (P, d) is 1-searchable and
we are done), and that the points d, li and r1 are in clockwise order (otherwise,
the d-deadlock occurs, a contradiction). To verify the condition A3 for (P, d),
we first determine if P is LR-visible with respect to both point pairs (d, li) and
(d, r1) [1,4]. If yes, then P is LR-visible with respect to any point pair (d, d′),
d′ ∈ P [li, r1]. So we can verify whether all vertices of P [li, r1] have their deadlocks
(Lemma 2). If there is a vertex in P [li, r1] that does not have the deadlock, then
the room (P, d) is 1-searchable and we are done. Otherwise, A3 is true for (P, d)
as well as the rooms (P, v), v ∈ P (Backw(li), Forw(r1)).

Suppose that A3 is true for the rooms (P, v), v ∈ P (Backw(li), Forw(r1)).
We need to further check whether the condition A3 is true for the vertex-door

d

l1

l2
r1

Backw(l)1

1
 Forw(r)

Backw(l)2

d

l1

l2 r1

Backw(l)1

1 Forw(r)
Backw(l)2

d

l1

l2 r1

Backw(l)1

1
 Forw(r)

Backw(l)2

d

k

dk

d'k d' d'

dk

k

k

Fig. 3. The polygon P is LR-visible with respect to both point pairs (d, li) and (d, r1)

180 X. Tan

(a)

d

l1

li

r1

r2

Forw(r)

1

1
 Forw(r)

Backw(l)P

(b)

d

li

r1

r2

 Forw(r)
2

1

1
 Forw(r)

Backw(l)P'

v
1

v2

2

Fig. 4. The polygon P is LR-visible only with respect to the point pair (d, li)

rooms (P, d), d ∈ P [Backw(l1), Backw(li)] ∪ P [Forw(r1), Forw(rj)]. Since the
condition A1 has previously been verified, by a scan of the polygon boundary, we
can find all the vertex-door rooms (P, dk), dk ∈ P [Backw(li−k), Backw(li−k−1)]
and 0 ≤ k ≤ i−2, for which A1 is not true. Assume that A1 is not true for a room
(P, dk), dk ∈ P [Backw(li−k), Backw(li−k−1)], and dk is contained in P [r1, d] (it
can easily be verified, too). In this case, two chains P [dk, d′k] and P [d′k, dk], for
any point d′k ∈ P [li−k−1, li−k], are mutually weakly visible; otherwise, A1 is
true for (P, dk) or some vertices of l1, . . . , li are not critical, a contradiction in
either case. See Fig. 3 for some examples, where the vertex li−k−1 and the vertex
destroying the weak visibility (the component of that vertex does not contain
dk nor d′k) make A1 be true for (P, dk). Thus, we can determine if all vertices
of P [li−k−1, li−k] have their deadlocks (Lemma 2), and if so the condition A3
is true for the room (P, dk). If A3 is not true for some room (P, dk), then it is
1-searchable and we are done. Otherwise, we perform a symmetric procedure for
the sequence of vertices r1, . . ., rj . In this way, we can determine in O(n) time if
there is a 1-searchable room in P , and if so report such a room. (Note that the
algorithm of Bhattacharya et al. [2] needs to run only once for the polygon P ,
although its outputs (i.e., the deadlocks reported) are used several times in our
algorithm.)

Let us turn to the situation in which the polygon P is LR-visible with respect
to only one point pair, say, (d, li). In this case, r1 (as well as d) is not contained
in the component P [l1, Bcakw(l1)]. See Fig. 4(a). Following from the discussion
made above, the work of verifying the condition A3 is to compute the deadlocks
for the vertices of P [l1, rj]. Since P is LR-visible with respect to both point pairs
(d, li) and (d, Backw(l1)) in this case, we can simply determine if all the vertices
of P [l1, Backw(l1)] have their deadlocks (Lemma 2). But, a new method for
reporting the vertices of P [Backw(l1), rj] having their deadlocks has to be de-
veloped. Let v1 and v2 denote two vertices such that their backward components
(P [vl, Backw(vl)], l = 1, 2) do not contain r1 and all such vertices are contained
in P [v1, v2]. See Fig. 4(a). Clearly, P [v1, v2] ⊂ P [d, li] holds. For any vertex
v ∈ P [v1, v2], no backward shot Backw(v) can contribute to an x-deadlock,
x ∈ P [Backw(l1), rj]; otherwise, the d-deadlock occurs, a contradiction. How-
ever, the shot Forw(v) may contribute to an x-deadlock, x ∈ P [Backw(l1), rj].

An Optimal Algorithm for the 1-Searchability of Polygonal Rooms 181

Let v′ denote the vertex such that two shots Backw(v′) and Forw(v) give the x-
deadlock. Then, the vertex v′ is contained in any component P (Backw(v′′), v′′),
v′′ ∈ P (v, v2]; otherwise, three vertices v, v′ and v′′ make the condition A2 be
true, a contradiction. This implies that the vertex li is contained in P [v, v′].
Since the polygon P is weakly visible with respect to the point pair (d, li), these
x-deadlocks with one defining vertex belonging to P [v1, v2] can thus be found us-
ing Lemma 2. Clearly, when we compute other deadlocks, all vertices of P [v1, v2]
can be ignored. Note that the vertices v1 and v2 can be found by computing the
shortest paths from r1 to all vertices of P [d, li] [5], and marking the vertices v
such that the shortest path from r1 to Succ(v) turns left at v (as viewed from
r1). Let P ′ denote the polygon obtained after the chain P [v1, v2] is deleted (i.e.,
connnecting Pred(v1) and Succ(v2) by a line segment). See Fig. 4(b) for an ex-
ample. The polygon P ′ is now LR-visible with respect to both point pairs (d, rj)
and (d, li) (or (d, Backw(l1) if li is deleted). As discussed above, we can find the
vertices of P ′[Backw(l1), d], which have their deadlocks in the polygon P ′. Since
any pair of reflex vertices giving a deadlock in P ′ corresponds to a unique pair
of reflex vertices of P , the same deadlock also occurs in P . In conclusion, we can
determine in O(n) time whether there is a 1-searchable room in P .

The situation in which the polygon P is LR-visible with respect to only the
point pair (d, r1) can be dealt with analogously. Note that the polygon P is
LR-visible with respect to at least one pair of (d, li)) and (d, r1); otherwise, the
condition A1 is true for (P, d), contradicting our assumption. This completes
the proof. �

4 Conclusion

We have proposed an optimal O(n) time algorithm to determine whether there
is a point d on the boundary of P such that the room (P, d) is 1-searchable. Our
result improves upon the previous O(n log n) time bound, which was established
for determining whether a specified room is 1-searchable. A further work is to give
a linear time algorithm to determine whether a simple polygon is 1-searchable,
without considering any door [8,13,15].

Acknowledgements

This research is partially supported by the Grant-in-Aid of the Ministry of Ed-
ucation, Science, Sports and Culture of Japan.

References

1. B.K.Bhattacharya and S.K Ghosh, Characterizing LR-visibility polygons and re-
lated problems, Comput. Geom. The. Appl. 18 (2001) 19-36.

2. B.K.Bhattacharya, A. Mukhopadhyay and G.Narasimhan, Optimal algorithms for
two-guard walkability of simple polygons, Lect. Notes Comput. Sci. 2125 (2001)
438-449.

182 X. Tan

3. B.Chazelle, Triangulating a simple polygon in linear time, Discrte Comput. Geom-
etry 6 (1991) 485-524.

4. G.Das, P.J.Heffernan and G.Narasimhan, LR-visibility in polygons, Comput.
Geom. Theory Appl. 7 (1997) 37-57.

5. L.J.Guibas, J.Hershberger, D.Leven, M.Sharir and R.E.Tarjan, Linear-time algo-
rithms for visibility and shortest path problems inside triangulated simple poly-
gons, Algorithmica, 2 (1987) 209-233.

6. L.J.Guibas, J.C.Latombe, S.M.Lavalle, D.Lin and R.Motwani, Visibility-based
pursuit-evasion in a polygonal environment, Int. J. Comput. Geom. & Appl. 9,
(1999) 471-493.

7. C. Icking and R. Klein, The two guards problem, Int. J. Comput. Geom. & Appl.
2 (1992) 257-285.

8. S.M.LaValle, B.Simov and G.Slutzki, An algorithm for searching a polygonal region
with a flashlight, in Int. J. Comput. Geom. & Appl. 12 (2002) 87-113.

9. J.H. Lee, S.Y.Shin and K.Y.Chwa, Visibility-based pursuit-evasion in a polygonal
room with a door, Proc. 15th Annu. ACM Symp. Comput. Geom. (1999) 281-290.

10. J.H.Lee, S.M.Park and K.Y.Chwa, Searching a polygonal room with one door by
a 1-searcher, Int. J. Comput. Geom. & Appl. 10 (2000) 201-220.

11. J.H.Lee, S.M.Park and K.Y.Chwa, Simple algorithms for searchng a polygon with
flashlights, Inform. Process. Lett. 81 (2002) 265-270.

12. I.Suzuki and M.Yamashita, Searching for mobile intruders in a polygonal region,
SIAM J. Comp. 21 (1992) 863-888.

13. I.Suzuki, Y.Tazoe, M.Yamashita and T.Kameda, Searching a polygonal region from
the boundary, Int. J. Comput. Geom. & Appl. 11 (2001) 529-553.

14. X.Tan, Efficient algorithms for searching a polygonal room with a door, Lect. Notes
Comput. Sci. 2098 (2001) 339-350.

15. X.Tan, A characterization of polygonal regions searchable from the boundary, Lect.
Notes Comput. Sci. 3330 (Proc. of IJCCGGT 2003) 200-215.

An Optimal Algorithm for the 1-Searchability of Polygonal Rooms 183

Appendix

A simple polygon P with two marked points s, t on its boundary is called a
corridor, and denoted by (P, s, t). The 1-searcher is termed as two guards [7],
if we require that the movement of the endpoint of the ray (as well as the 1-
searcher) be continuous on the polygon boundary. The corridor (P, s, t) is said
to be walkable by two guards if two guards starting at s can force the mobile
intruder out of P through t, without allowing the intruder to touch s [7]. It
has been shown that (P, s, t) is walkable by two guards if and only if P [s, t] and
P [t, s] are weakly visible from each other and neither s-deadlocks nor t-deadlocks
occur [7]. An O(n) time algorithm has been given to determine if there is a point
pair (s, t) on the boundary of P such that (P, s, t) is walkable by two guards [2].

It is clear that if the polygon P is walkable by two guards, then there is
a 1-searchable room in P . However, the converse is not true. The room (P, d)
shown in Fig. 5 is 1-searchable, but P is not walkable by two guards. This is
because all points of P [a, b] have their deadlocks, and any two chains P [u, v] and
P [v, u], u, v ∈ P [b, a), are not weakly visible from each other.

d

a
b

Fig. 5. A polygon has a 1-searchable room, but it is not walkable by two guards

Crossing Stars in Topological Graphs

Gábor Tardos and Géza Tóth

Rényi Institute, Hungarian Academy of Sciences, Budapest, Hungary,
{tardos, geza}@renyi.hu

Abstract. Let G be a graph without loops or multiple edges drawn in
the plane. It is shown that, for any k, if G has at least Ckn edges and n
vertices, then it contains three sets of k edges, such that every edge in
any of the sets crosses all edges in the other two sets. Furthermore, two
of the three sets can be chosen such that all k edges in the set have a
common vertex.

1 Introduction

A topological graph is a graph drawn in the plane with no loops or multiple edges
so that its vertices are represented by points, and its edges by Jordan curves
connecting the corresponding points. We do not distinguish these points and
curves of the topological graph from the vertices and edges of the underlying
abstract graph they represent. We assume that (i) the edges of a topological
graph do not pass through any vertex, (ii) two edges share a finite number of
interior points and they properly cross at each and (iii) no three edges cross at
the same point. A topological graph is called simple if any pair of its edges have
at most one point in common (either a common endpoint or a crossing).

It is well known that every planar graph with n vertices has at most 3n − 6
edges. Equivalently, every topological graph G with n vertices and more than
3n− 6 edges has a pair of crossing edges. This simple statement was generalized
in several directions.

Pach et al. [8], [7] proved that a topological graph of n vertices and more
than (r+2)(n−2) edges must have r edges that cross the same edge. This bound
is tight for r = 1, 2, 3, but can be substantially improved for large values of r.

Agarwal et al. [1] (for simple topological graphs) and then, with a shorter
and more general argument, Pach et al. [3] proved that for some c > 0, every
topological graph with n vertices and more than cn edges has three pairwise
crossing edges. In [4], this result was further strengthened: for every integer
r > 0, there exists a constant cr > 0, such that every topological graph with n
vertices and more than crn edges has r + 2 edges such that the first two cross
each other and both of them cross the remaining r edges (see Fig. 1a).

In [5] another generalization was shown. For any k and l there is a constant
ck,l with the following property. Every topological graph with n vertices and
more than ck,ln edges has k + l edges such that the first k have a common
vertex, and each of them crosses all of the remaining l edges (see Fig. 1b).

In this note we prove a common generalization of the above results.

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 184–197, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Crossing Stars in Topological Graphs 185

(a) (b)

Fig. 1. A topological graph without either configuration has only a linear number of
edges

Let k be a positive integer. The edges A∪B ∪Z of a topological graph form
a k-star grid if A is a set of k edges incident to a common endpoint x, B is a set
of k edges incident to a common endpoint y and any edge from A crosses any
edge from B; furthermore, Z also contains k edges and any edge in Z crosses all
edges in A ∪ B. See Figure 2. In this definition we allow for the case x = y and
we also allow the edges of Z to be incident to x or y. These pathological cases
are not possible in a simple topological graph.

Theorem 1. For any k ≥ 1, there is a constant Ck such that every topological
graph with n vertices and at least Ckn edges contains a k-star grid.

If we could guarantee any further edge-crossing in a k-star grid, then we
would have four pairwise crossing edges. Therefore, k-star grids seem to represent
the natural last configuration before one attacks the following well-established
conjecture:

Conjecture 1. There is a C > 0 such that every topological graph with n vertices
and Cn edges contains four pairwise crossing edges.

2 Proof of the Theorem

The proof of Theorem 1 is rather technical and consists of several steps. First we
give an overview and indicate which steps of the proofs can be eliminated if we
only consider simple topological graphs. Note that we do not strive for absolute
preciseness in this overview. The reader finds the precise definitions later in the
proof.

Fix k and take an arbitrary topological graph F . We let C = |E(F)|/|V (F)|.
Our goal is to prove that if C is large enough (as a function of k), then we find
a k-star grid in F . This clearly establishes Theorem 1.

First we take a densest subgraph F0 of F and concentrate on F0 only.
Next we redraw F0, i. e., we take another topological graph G0 which has

the same underlying abstract graph as F0 but eliminates certain unnecessary

186 G. Tardos and G. Tóth

y

x

Fig. 2. A 4-star grid

crossings. This step of the proof is not needed if F is a simple topological graph,
i. e., we may take G0 = F0.

We then use subdivisions, i. e., we introduce vertices at certain edge-crossings.
We obtain a subdivision G1 of G0 with a crossing-free spanning tree T . This step
is taken from [3] and [5].

We further subdivide G1 to obtain G2 and its crossing-free spanning subgraph
H with no proper cut. This means that any two consecutive crossing points of
any edge e in G2 \H with H are with “close-by” edges of H . This step is taken
from [5]. In this and the previous step we make sure that the size (number
of vertices) of the graph increases by a constant factor only. Note also that
subdivisions in these two steps can create k-star grids. This does not happen for
simple topological graphs.

The next step represents the new idea in this paper. For many vertices we
find a large number of edges emanating from that vertex with the property that
they go “parallel” (with respect to H) for a long time and then one by one they
“depart” from the rest of the edges. All these “departures” take place in separate
cells of H . We call these sets of edges bundles.

Using that C is large enough we find a cross-track configuration in G2, i. e.,
k edges of a bundle, another k edges of a (perhaps different) bundle such that
these 2k edges go parallel through l − 1 cells of H but still, eventually the first
k edges cross the second k edges. Here l is an exponential function of k. Note
that for simple topological graphs we can choose l = k and the proof ends here.
Indeed, the 2k edges in the cross-track configuration plus k edges of H form a
k-star grid. In the general case however, some of the edges of H crossed by the
edges in the cross-track configuration may coincide or may be parts of the same
edge of G0 separated only by our subdivision process.

The final step of the proof takes care of the technical difficulties mentioned
above. We use a result of Schaefer and Stefankovič [9] to show that if l is large
enough, then out of the l edges of H crossed by the parallel track of the edges
of the cross-track configuration at least k must come from distinct edges of G0.

Crossing Stars in Topological Graphs 187

We continue with the detailed execution of the above plan.
Let k ≥ 1 fixed, and let F be a topological graph with n′ vertices and Cn′

edges. Our goal is to prove that F contains a k-star grid if C is large enough.
The bound on C may depend on k but not on n′. This will establish the validity
of Theorem 1.

Let F0 be the densest non-empty connected subgraph of F that is, F0 ⊆ F
connected and |E(F0)|/|V (F0)| is maximal. Clearly, the requirement that F0

has to be connected does not change the value of the maximum, so we have
|E(F0)|/|V (F0)| ≥ |E(F)|/|V (F)| = C. Removing a vertex of F0 of degree d
increases the ratio if d < C, therefore each vertex in F0 has degree at least C.
Let n denote the number of vertices of F0. Clearly, n > C so we may assume
n ≥ 5.

Redraw F0 so that the resulting topological graph G0 satisfies the following
two conditions:

(i) If two edges of G0 cross each other, then the corresponding edges also cross
in F0;

(ii) G0 has the minimum number of crossings among all drawings with prop-
erty (i).

It is enough to find a k-star grid in G0 as property (i) shows that the corre-
sponding edges form a k-star grid in F0 and thus in F too.

We will apply a subdivision to G0, i. e., we declare a certain intersection
point of two edges as a new vertex and replace each of the two edges by their
two segments up to and from that new vertex. Notice that this way we may
create two edges connecting the same pair of vertices, thus we have to extend
our definition of topological graph to allow for this. No pair of vertices will ever
be connected by more than two edges. The graph obtained from G0 by several
subdivisions is called a subdivision of G0. To distinguish from the new vertices
of the subdivision, vertices of G0 are called old vertices.

Notice that subdivision does not introduce a k-star grid in a simple topolog-
ical graph, so if G0 is simple it is enough to find a k-star grid in a subdivision of
G0. The situation is somewhat more complex if G0 is not simple. If G0 contains
two k-edge stars A and B such that each edge of A is crossed by each edge of
B and another edge e0 crosses every edge in A ∪ B k times, then the repeated
subdivision of e0 may result in a k-star grid.

Obviously, no edge of G0 intersects itself, otherwise we could reduce the
number of crossings by removing the loop. Suppose that G0 has two distinct
edges, e and f , that meet at least twice (including their common endpoints, in
the case they have). A simply connected region whose boundary is composed of
an arc of e and an arc of f is called a lens.

Claim 1. Every lens in G0 has a vertex in its interior.

Proof. Suppose, for a contradiction, that there is a lens � that contains no vertex
of G in its interior. Consider a minimal lens �′ ⊆ �, by containment. Notice that
by swapping the two sides of �′, we could reduce the number of crossings without

188 G. Tardos and G. Tóth

Fig. 3. Swapping the two sides of a lens

creating any new pair of crossing edges, contradicting property (ii) above. See
Fig. 3. ��

Clearly, subdivisions of G0 inherit the property of having no self-intersecting
edge and the property stated in Claim 1.

Let G be a topological graph, H a subgraph of G. Let e be an edge of
G not contained in H . We always consider e with an orientation. Each edge
can be considered with either orientation. The edge e has a finite number of
intersection points with edges of H , these points split the Jordan curve e into a
finite number of shorter curves. We call these shorter curves the segments of the
edge e determined by H and denote them by s1(e), s2(e), . . . in the order they
appear on e. The dependence on H is not explicit in the notation but H will
always be clear from the context. If e does not cross the edges of H the entire
edge is a single segment.

We consider a crossing-free subgraph H of a topological graph G that is
connected and contains all vertices. Such a graph H subdivides the plane into
cells. The boundary of a cell is a closed walk in H that may visit vertices several
times and may even pass through an edge twice. The size of a cell is the length of
the corresponding walk. A segment s of an edge e not in H inherits its orientation
from e. It is contained in single cell α, the endpoints of s are on the boundary
of α. See Fig. 4. We call the cell α and the vertex or edge of the boundary walk
of α where s starts the origin of s. Similarly, α and the vertex or edge of this
walk where s ends is the destination of s. Notice that in case the boundary of α
visits the relevant vertex or edge more than once the origin or destination of e
contains more information than the vertex or edge itself, it tells us “which side”
of the vertex or edge is involved. If two segments have the same origin and the
same destination we call them parallel and say that their type is the same. If two
segments s and s′ have the same origin but different destinations, then they are
contained in the same cell. We say that s turns left from s′ if the common origin,
the destination of s, and the destination of s′ appear in this order in the clockwise
tour of the boundary of the cell. Notice that the common origin must differ from
either of the destinations. A segment with equal origin and destination would
define an “empty lens” contradicting Claim 1. As a consequence, for segments s
and s′ with a common origin, either s and s′ are parallel, or s turns left from s′,
or s′ turns left from s.

As in [3] and [5], first we construct a subdivision G1 of G0 that contains a
crossing-free spanning tree T .

Crossing Stars in Topological Graphs 189

s

Fig. 4. A cell of H and a segment of an edge

e

e

T

e5e
e

T

1 2

4

3

~
5 5

Fig. 5. Constructing T̃5 from T5

Since the abstract underlying graph of G0 is connected, we can choose a
sequence of edges e1, e2, . . . , en−1 ∈ E(G0) such that e1, e2, . . . , ei form a tree
Ti, for every 1 ≤ i ≤ n − 1. In particular, e1, e2, . . . , en−1 form a spanning tree
Tn−1 of G.

Construct the crossing-free topological graphs T̃1, T̃2, . . . , T̃n−1, as follows.
Each is a subtree of a subdivision of G0. Let T̃1 be defined as a topological graph
of two vertices, consisting of the single edge e1. Suppose that T̃i has already been
defined for some 1 ≤ i < n − 1, and let v denote the endpoint of ei+1 that does
not belong to Ti. Then we define T̃i+1 as follows. Add to T̃i the piece of ei+1

between v and its first crossing with T̃i. More precisely, follow the edge ei+1 from
v up to the point v′ where it hits T̃i for the first time. If this is a vertex of T̃i

simply add ei+1 to T̃i to get T̃i+1. If v′ is in the interior of an edge e then we
apply subdivision: we introduce v′ as a new vertex. We replace the edge e of T̃i

with the two resulting parts and add the segment of ei+1 between v and v′ to
obtain T̃i+1.

We let T = T̃n−1 and G1 be the subdivision of G0 obtained in the process.
Note that G1 has n old and at most n − 2 new vertices. See Fig. 5.

190 G. Tardos and G. Tóth

Next, just like in [5], we further subdivide G1 to obtain G2 and a crossing-free
subgraph H of G2.

Start with H0 = T and G̃0 = G1. Define H1, . . . , Hu and G̃1, . . . , G̃u recur-
sively, maintaining that Hi is a crossing-free subgraph of a subdivision G̃i of G0.
Furthermore Hi is connected, it contains all vertices of G̃i and all the cells of Hi

are of size at least 8. This clearly holds for H0 and G̃0 if n ≥ 5.
Having defined Hi and G̃i consider the segments of the edges of G̃i as deter-

mined by Hi. Let s be such a segment. By adding s to Hi we mean constructing
a subdivision of G̃i by inserting new vertices for the endpoints of s if necessary
and defining a subgraph Hs

i of it by adding s to Hi. More precisely, we also
have to replace any edge of Hi that contains in its interior an endpoint of s
by the two new edges resulting from the subdivision. Notice that s itself is an
edge after the subdivision. The resulting graph Hs

i is a crossing-free connected
spanning subgraph of the resulting subdivision of G̃i. The cell of Hi containing
s is now subdivided into two cells, the other cells remain intact (but their size
may increase). We call s a proper cut of Hi if both new cells of Hs

i are of size at
least 8. See Fig. 6.

s

Fig. 6. A proper cut

If there exist a proper cut of Hi, then we choose one such segment s and set
Hi+1 = Hs

i and let G̃i+1 be the resulting subdivision of G̃i. If there is no proper
cut of Hi we set u = i, H = Hu and G2 = G̃u.

The number of cells starts at one cell, at H0 = T , and increases by one in
every step, so Hi contains i+1 cells. Each of these cells is of size at least 8, so we
have at least 4i+ 4 edges in Hi. From the Euler formula, the number of vertices
vi of Hi is at least 3i + 5. As H0 = T contains at most 2n − 2 vertices and we
introduce at most 2 new vertices in every step, so we also have vi ≤ 2i + 2n− 2.
The upper and lower bounds on vi imply i ≤ 2n−7. Therefore, the above process
terminates in u ≤ 2n − 7 steps. This proves the following

Crossing Stars in Topological Graphs 191

Claim 2. G2 is a subdivision of G0 with at most 6n − 16 vertices. H is a con-
nected, spanning, crossing-free subgraph of G2 with no proper cut. H has at most
8n − 24 edges.

We call an old vertex of G2 important if its degree in H is less than 32. By
Claim 2 H has less than n/2 vertices of degree 32 or more. Out of the n old
vertices we must have more than n/2 important vertices.

Let l = 2k+1k2 +1. Consider an edge e of G2 not in H . Call any l consecutive
segments si(e), . . . , si+l−1(e) a track of e. The type of a track is simply the
sequence of the types of its l segments. Tracks (of possibly different edges) of the
same type are called parallel. Consider two edges e and f of G2 that are not in
H . Let d(e, f) be the largest index i ≥ 1 such that for all 1 ≤ j < i the segments
sj(e) and sj(f) exist and are parallel. For example, if e and f start at different
vertices or in different cells we have d(e, f) = 1.

Notice that for any origin of a segment at most 24 destinations are possible.
For large cells of H more choices would be possible, but they yield proper cuts
of H which do not exist by Claim 2. By the same claim there are less than 32n
possible origins and therefore less than 768n types of segments. The destination
of a segment determines the origin of the next segment, therefore there are less
than 32 · 24ln different types of tracks.

Let m = 300k ·24l. We call the sequence e1, . . . , e2m of 2m edges of G2 not in
H a bundle if l < d(e1, e2m) < d(e2, e2m) < . . . < d(e2m−1, e2m). Notice that the
edges of a bundle start at a common vertex. We say that the bundle emanates
from this common starting vertex.

Claim 3. If C > 31 · 242m+l + 31, then there exist an bundle emanating from
every important vertex.

Proof. Consider an important vertex x. Let S0 be the set of edges of G2 not in
H that start at x. The vertex x has degree at least C in G0 and it has the same
degree in its subdivision G2. Its degree in H is at most 31, so |S0| ≥ C − 31. For
i ≥ 1 we define Si to be a subset of maximal size of Si−1 with si(e) existing and
having equal type for each e ∈ Si. The number of possible origins for the type
of segment s1(e) of an edge e ∈ S0 is the degree of x in H . Since x is important,
at most 31 origins and at most 744 types of s1(e) may exist for e ∈ S0. Thus,
|S1| ≥ |S0|/744. Notice that the type of si(e) determines if e ends with the
segment si(e) and if so, then it determines the ending vertex. So if one of the
edges e ∈ Si ends with its ith segment, then all do, and they all connect the
same pair of vertices. Thus, as long as |Si| > 2, si+1(e) exists for all e ∈ Si.
Furthermore, the type of si(e) determines the origin of si+1(e). So if |Si| > 2
then |Si+1| ≥ |Si|/24.

The finiteness of the entire topological graph G2 implies that Si = ∅ for
large enough i. Let l ≤ d1 < d2 < . . . < dv be all the indices d ≥ l such that
|Sd+1| < |Sd|. The above calculations yield |Sd1 | ≥ 242m and Sdi+1 = Sdi+1 ≥
242m−i for i ≤ 2m. We choose ei to be an arbitrary element of Sdi \ Sdi+1. We
have d(ei, e2m) = di + 1 for i < 2m. This establishes that (e1, . . . , e2m) form a
bundle. ��

192 G. Tardos and G. Tóth

Fix a bundle Bx = {ex
1 , . . . , ex

2m} from every important vertex x. The exis-
tence is given by Claim 3. These will be all the bundles, and in fact all the edges
of G2 \ H we consider from now on.

The segments s1(ex
2m), s2(ex

2m) . . . , sdx(ex
2m) for dx = d(ex

m, ex
2m) form the

backbone of the bundle Bx. The tracks of ex
2m contained in the backbone are

called the vertebrae. We denote the vertebra starting with the segment si(ex
2m)

by txi . Notice that the vertebrae interleave: the last l − 1 segments of a vertebra
is the first l−1 segments of the next vertebra. With a vertebra txi there are m−1
parallel tracks: the tracks starting with the segments si(ex

m+1), . . . , si(ex
2m−1).

Let e = txi and f = tyj be two distinct parallel vertebrae. Notice that i > 1
and j > 1 must hold, since we only consider a single bundle from any (impor-
tant) vertex. Let e′ and f ′ be the inverse orientation of the “previous” segments
si−1(ex

2m) and sj−1(e
y
2m), respectively. Notice that e′ and f ′ have the same ori-

gin. We say that e < f if e′ turns left from f ′. We also say that e < f if txi−1

and tyj−1 are parallel, and txi−1 < tyj−1. Notice that the recursive definition is
well founded and it defines a linear order among parallel vertebrae. We call a
vertebra extremal if it is smallest or largest among the vertebrae of its type. If
e is a non-extremal vertebra we let e+ stand for the next larger vertebra of the
same type, while e− stands for the next smaller vertebra. We say that a vertebra
e is special if it is either extremal or one of e+ or e− is the last vertebra in a
backbone.

Claim 4. The number of special vertebrae is at most 65 · 24ln.

Proof. We have at most two extremal vertebrae for every type, that is at most
64 · 24ln extremal vertebrae. We have one last vertebra in every backbone, that
is at most n last vertebrae. Each last vertebra makes its two (or less) neighbors
special, so the claimed bound holds. ��

We define a cross-track configuration as two sets of k edges such that every
edge from the first set crosses every edge from the second set, and all 2k edges
go parallel for a long time. More precisely, let A and B both be a set of k
edges. We say that A ∪ B is a cross-track configuration if the following condi-
tions hold.

(i) Every a ∈ A crosses every b ∈ B.
(ii) Every a ∈ A is incident to an old vertex x and every b ∈ B is incident to

an old vertex y.
(iii) There is α, β > 0 such that for every a ∈ A, b ∈ B, and 0 ≤ i < l − 1,

sα+i(a) and sβ+i(b) exist and are parallel.

Notice that for simple topological graphs a cross-track configuration A ∪ B
can be appended with the set Z ⊆ E(H) consisting of k of the origins of the
segments in the parallel tracks of the edges in A ∪ B. These edges cross every
edge in A∪B, therefore A∪B∪Z form a k-star grid. Unfortunately, if G2 is not
simple, then Z may contain fewer than k edges, in extreme situations Z might
consist of a single edge (the edges in A ∪ B cross this single edge many times).
Also, finding a k-star grid in G2 is not enough in this case.

Crossing Stars in Topological Graphs 193

Our immediate goal is to find a cross-track configuration in G2, see Claim 6.
As explained above this leads immediately to a k-star grid in G2, and also in G0

if G2 is simple. For non-simple topological graphs we will also use the cross-track
configuration to find k-star grids in G0, but the argument is more involved.

The following claim is based on a similar observation in [1].

Claim 5. Let e and f be two consecutive vertebrae of the bundle Bx, neither
special. Then e+ and f+ are also consecutive vertebrae of a backbone or there
exists a cross-track configuration in G2. The same holds for e− and f−.

Proof. Assume f follows e in Bx and let e+ = tyi . We have to show that f+ =
tyi+1. Suppose that f+ = tzj .

Since e is not special, e∗ = si+l(e
y
2m) is still in the backbone of By. Let f∗ be

the last segment of f . These two segments have a common origin. We distinguish
three cases. See Fig. 7.

Case 1: e∗ and f∗ are parallel. Then, by the definition of the order of vertebrae
tyi+1 must be f+.

Case 2: f∗ turns left from e∗. In this case all edges ex
a intersect all edges ey

b

for m < a, b ≤ 2m. This provides a cross-track configuration. See Fig 7 (a).
Case 3: e∗ turns left from f∗. Now the edges ey

a and ez
b must cross for m <

a, b ≤ 2m, and this also provides a cross-track configuration. See Fig 7 (b).

The proof for e− and f− is similar. ��

We considered at least n/2 bundles. By Claim 4 we have at most 65 · 24ln
special vertebrae, so the pigeonhole principle gives the existence of a bundle Bx

with at most 130 ·24l special vertebrae. We fix such a bundle Bx and let ei stand
for the ith segment in the backbone of Bx: ei = si(ex

2m) for 1 ≤ i ≤ d(ex
m, ex

2m).
We call ei a departure point if i = d(ex

j , ex
2m) for some 1 ≤ j ≤ m. We look for

an interval of the backbone of Bx without special vertebrae but with the most
departure points. There are m departure points, so at least �m/(130 ·24l+1)� of
them are in an interval that has no special vertebra. Formally, we have 1 ≤ i <
j ≤ d(ex

m, ex
2m)− l+1, such that none of the vertebrae txi , txi+1, . . . , t

x
j are special,

but for some indices 1 ≤ i′ < j′ ≤ m we have i + l ≤ d(ex
i′ , e

x
2m) < d(ex

j′ , e
x
2m) ≤

j + l − 1 and j′ − i′ + 1 ≥ �m/(130 · 24l + 1)�.
By Claim 5 we either have a cross-track configuration or the vertebrae (txi)+,

(txi+1)
+, . . . , (txj)+ are consecutive tracks of some bundle By, while (txi)−, (txi+1)

−,
. . . , (txj)− are also consecutive tracks of some bundle Bz. In the latter case for
any i′ ≤ v ≤ j′ the edge ex

v crosses all edges ey
w with m < w ≤ 2m or it crosses

all edges ez
w with m < w ≤ 2m. One of the options must occur with at least

�m/(260 · 24l + 2)� ≥ k edges. This provides a set A of k edges of the bundle
Bx, another set B of k edges of a bundle such that the properties of cross-
track configuration are satisfied. Thus, a cross-track configuration must exist.
See Figure 8. This proves the following

Claim 6. For C > 31 · 242m+l + 31, there exists a cross-track configuration
in G2.

194 G. Tardos and G. Tóth

(a) (b)

*

e+e

f

f

e*
*

e+e

f

f f
+

*e

x y x y z

Fig. 7. e+ and f+ are consecutive vertebrae

H

H
H

y

x
z

Fig. 8. Hy and Hz envelope a vertebra of Hx

Let A ∪ B be a cross-track configuration in G2. We use it to find a k-star
grid in G0.

There is α, β > 0 such that for every a ∈ A, b ∈ B and 0 ≤ i < l − 1, the
segments sα+i(a) and sβ+i(b) are parallel. Let s∗i (e) = sα+i(e) for e ∈ A and
s∗i (e) = sβ+i(e) for e ∈ B. We say that 0 ≤ i < l − 1 is bad if two distinct
segments from the set {s∗i (e) | e ∈ A ∪ B} intersect.

Observe that we counted at most one crossing for each pair of edges in A∪B,
otherwise we would get an empty lens contradicting Claim 1. Therefore, there

Crossing Stars in Topological Graphs 195

are at most
(
2k
2

)
bad values of i. So there are 0 ≤ i0 < i1 ≤ l − 1, i1 − i0 + 2 >

l/(
(
2k
2

)
+1) > 2k +1 such that there is no bad i with i0 ≤ i ≤ i1. For i0 ≤ i ≤ i1,

let hi be the edge of H that is the common origin of the segments s∗i (e) for
e ∈ A∪B. Order the edges e ∈ A∪B according to the order the starting points
of s∗i (e) appear on hi. Notice that we get the same order for each i. Let a and
b be the first and last edge in this order. Let pi and qi be the starting point of
s∗i (a) and s∗i (b), respectively. Let a∗ be “relevant” part of a that is, a∗ is the
interval of a between pi0 and pi1 .

At this point we shift attention from G2 and H to the original graph G0 and
modify its drawing in the plane. Let S be the set of edges of G0 containing the
edges A ∪ B of G2. Note that S contains 2k distinct edges, as edges in A are
incident to the same old vertex, therefore they cannot be different segments of
an edge of G0, the same holds for edges of B, while an edge of A and an edge
of B intersect, therefore they are not different segments of the same edge. We
do not redraw the edge containing a but redraw some segments of other edges
making sure that conditions (i) and (ii) defining G0 are satisfied and furthermore
every edge that intersects a∗ intersects also all edges in S.

Let i0 ≤ i < i1 and consider the interval of hi between pi and qi, s∗i (a),
the interval of hi+1 between pi+1 and qi+1, and s∗i (b). These segments bound a
quadrilateral shaped region Ri, with “vertices” pi, qi, pi+1 and qi+1. See Figure
9. We cannot rule out that some of the regions Ri are not disjoint and, in fact,
we cannot even rule out that hi = hi+1 in which case the shape of Ri is more
complicated but it does not effect the argument to be presented. The region Ri

does not contain vertices, therefore no edge of G0 entering Ri through s∗i (a) may
leave Ri through s∗i (a) again, as that would contradict Claim 1. We distinguish
three types of edges of G0 entering Ri through s∗i (a). Note that an edge can
cross s∗i (a) several times, in this case we consider all the segments of e inside Ri

separately.

Type 1: Edge e enters Ri through s∗i (a) and leaves Ri through s∗i (b). In this
case, e crosses each edge in S.

Type 2: Edge e enters Ri through s∗i (a) and leaves Ri through hi.

Type 3: Edge e enters Ri through s∗i (a) and leaves Ri through hi+1.

We describe procedure Redraw. If there exists i0 ≤ i < i1 with an edge
of type 2 crossing s∗i (a), then we choose an arbitrary such i and the edge e of
type 2 crossing s∗i (a) closest to pi. Let ea be the point of e where it enters Ri

and eh be the point where it leaves Ri. Let e′a and e′h be points on e outside Ri

but close to ea and eh, respectively. Replace the interval e′ae′h of e by a curve
outside Ri, which follows very closely the interval of a between ea and pi, and
then the interval of hi between pi and eh. In case hi = hi+1 the new curve is
drawn similarly, but it does not go outside the region Ri. It is easy to verify
that if the new segment of e follows the boundary of Ri close enough, then no
new crossings are created and therefore the modified topological graph satisfies
properties (i) and (ii). See Figure 9.

196 G. Tardos and G. Tóth

b

a
p

hi+1

qi+1

hi

qi

i+1

p
i

e

Ri

Fig. 9. Procedure Redraw

If there exists i0 ≤ i < i1 and an edge of type 3 crossing s∗i (a), then we
proceed analogously. We choose such an i arbitrarily, we choose a type 3 edge
that crosses s∗i (a) closest to pi+1 and redraw the segment of the edge in Ri taking
a detour around pi+1.

As long as there is an i, i0 ≤ i < i1 with a type 2 or type 3 edge, execute
Redraw.

If a∗ enters the region Ri (we cannot rule out this possibility), then Redraw
choosing this i effects other regions Rj . In the extreme case when pi+1 is on hi

between pi and qi redrawing edges of type 2 we create another crossing with
s∗i (a) itself, possibly another type 2 crossing. Nevertheless, it can be shown that
the procedure terminates after finitely many steps. To see this, consider an edge
e. The set ∪i1−1

i=i0
Ri divides e into several intervals. Let e∗ be one of them. For

each crossing p of e∗ and a∗ let r(p) = i if and only if p is on s∗i (a). Let r(e∗, a∗)
be the sum of all r(p) over all crossings. This sum will either always decrease or
always increase when we execute Redraw involving e∗, therefore e∗ is involved
in finitely many steps only. To see this “monotonicity condition” notice that
each segment of a∗ entering Ri has the “same orientation”, that is, it enters Ri

through hi and leaves through hi+1.
Let G′

0 be the topological graph obtained in the process. All edges of G′
0

crossing the curve a∗ cross all edges in S. We did not create any additional
crossing, so the graph G′

0 satisfies properties (i) and (ii) in the definition of G0.
These properties and a result of Schaefer and Stefankovič [9] imply the following.

Claim 7. For any edge e of G′
0 and for any i > 0, any 2i consecutive crossings

on e arise from at least i different edges.

The interval a∗ of a crosses H at least 2k times and we did not “redraw”
these segments of edges of G0. Therefore, we can take 2k consecutive crossings
of a∗ in G′

0 and by Claim 7 they are from at least k edges. Let Z be a set of k
edges of G′

0 crossing a∗. Clearly, S ∪ Z is a k-star grid in G′
0.

Crossing Stars in Topological Graphs 197

Clearly, the corresponding edges form a k-star grid in F too. This finishes
our proof of Theorem 1. ��

References

1. P. K. Agarwal, B. Aronov, J. Pach, R. Pollack, and M. Sharir, Quasi-planar graphs
have a linear number of edges, Combinatorica 17 (1997), 1–9.

2. J. Pach, Geometric graph theory, in: Surveys in Combinatorics, 1999 (J. D. Lamb
and D. A. Preece, eds.), London Mathematical Society Lecture Notes 267, Cam-
bridge University Press, Cambridge, 1999, 167–200.

3. J. Pach, R. Radoičić, and G. Tóth, Relaxing planarity for topological graphs, in:
Discrete and Computational Geometry (J. Akiyama, M. Kano, eds.), Lecture Notes
in Computer Science 2866, Springer-Verlag, Berlin, 2003, 221–232.

4. J. Pach, R. Radoičić, and G. Tóth: A generalization of quasi-planarity in: Towards
a Theory of Geometric Graphs, (J. Pach, ed.), Contemporary Mathematics 342,
AMS, 2004, 177-183.

5. J. Pach, R. Pinchasi, M. Sharir, and G. Tóth, Topological graphs with no large
grids, Graphs and Combinatorics Special Issue dedicated to Victor Neumann-Lara.

6. J. Pach, R. Pinchasi, G. Tardos, and G. Tóth, Geometric graphs with no self-
intersecting path of length three, in: Graph Drawing (M. T. Goodrich, S. G.
Kobourov, eds.), Lecture Notes in Computer Science 2528, Springer-Verlag, Berlin,
2002, 295–311.

7. J. Pach, R. Radoičić, G. Tardos, and G. Tóth, Improving the Crossing Lemma by
finding more crossings in sparse graphs, Proceedings of the 20th Annual Symposium
on Computational Geometry (SoCG 2004), 2004, 76–85.

8. J. Pach and G. Tóth, Graphs drawn with few crossings per edge, Combinatorica 17
(1997), 427–439.

9. M. Schaefer and D. Stefankovič, Decidability of string graphs, in: Proceedings of the
33rd Annual Symposium on the Theory of Computing (STOC 2001), 2001, 241–246.

The Geometry of Musical Rhythm

Godfried Toussaint�

School of Computer Science,
McGill University Montréal, Québec, Canada

godfried@cs.mcgill.ca

Dedicated to János Pach on the occasion of his 50th birthday.

Abstract. Musical rhythm is considered from the point of view of ge-
ometry. The interaction between the two fields yields new insights into
rhythm and music theory, as well as new problems for research in mathe-
matics and computer science. Recent results are reviewed, and new open
problems are proposed.

1 Introduction

Imagine a clock which has 16 hours marked on its face instead of the usual
12. Assume that the hour and minute hands have been broken off so that only
the second-hand remains. Furthermore assume that this clock is running fast
so that the second-hand makes a full turn in about 2 seconds. Such a clock is
illustrated in Figure 1. Now start the clock ticking at “noon” (16 O’clock) and
let it keep running for ever. Finally, strike a bell at positions 16, 3, 6, 10 and
12, for a total of five strikes per clock cycle. These times are marked with a
bell in Figure 1. The resulting pattern rings out a seductive rhythm which, in a
short span of fifty years during the last half of the 20th century, has managed
to conquer our planet. It is known around the world (mostly) as the Clave Son
from Cuba. However, it is common in Africa, and probably travelled from Africa
to Cuba with the slaves [65]. In Africa it is traditionally played with an iron bell.
In Cuba it is played with two sticks made of hard wood also called claves [43].
More relevant to this paper, there exist purely geometric properties that may
explain the world-wide popularity of this clave rhythm [58].

The Clave Son rhythm is usually notated for musicians using standard music
notation which affords many ways of expressing a rhythm. Four such examples
are given in the top four lines of Figure 2. The fourth line displays the rhythm us-
ing the smallest convenient durations of notes and rests. Western music notation
is not ideally suited to represent African music [3], [18]. The fifth and sixth lines
show two popular ways of representing rhythms that avoid Western notation.
The representation on line five is called the Box Notation Method developed by
Philip Harland at the University of California in Los Angeles in 1962 and is also
known as TUBS (Time Unit Box System). The TUBS representation is popu-
lar among ethnomusicologists [18], and invaluable to percussionists not familiar
� This research was partially supported by NSERC and FCAR.

J. Akiyama et al. (Eds.): JCDCG 2004, LNCS 3742, pp. 198–212, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Geometry of Musical Rhythm 199

1
2

3

4

6

5

789

10

11

12

13

14

15 16

Fig. 1. A clock divided into sixteen equal intervals of time

.4
4

.

..C

....4
4

....4
4

x . . x . . x . . . x . x . . .

1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0

3 3 4 2 4

1.

2.

3.

4.

5.

6.

7.

8.

Fig. 2. Eight common ways of representing the clave Son rhythm

with Western notation. It is also convenient for experiments in the psychology
of rhythm perception, where a common variant of this method is simply to use
one symbol for the note and another for the pause [17], as illustrated in line
six. In computer science the clave Son might be represented as the 16-bit binary
sequence shown on line seven. Finally, line eight depicts the interval length rep-
resentation of the clave Son, where the numbers denote the lengths (in shortest
convenient units) of the durations between consecutive onsets (beginning points
in time of notes). The compactness and ease of use in text, of this numerical
interval-length representation, are two obvious advantages, but its iconic value
is minimal. For a description of additional (more geometric) methods used to
represent rhythms see [61].

In this paper several geometric properties of musical rhythm are analysed
from the musicological and mathematical points of view. Several connecting
bridges between music theory, mathematics, and computer science are illumi-
nated. Furthermore, new open problems at the interface are proposed.

2 Measures of Rhythmic Evenness

Consider the following three 12/8 time rhythms expressed in box-like notation:
[x . x . x . x . x . x .], [x . x . x x . x . x . x] and [x . . . x x . . x x x .]. It is in-
tuitively clear that the first rhythm is more even (well spaced) than the second,

200 G. Toussaint

and the second is more even than the third. In passing we note that the second
rhythm is internationally the most well known of all the African timelines. It
is traditionally played on an iron bell, and is known on the world scene mainly
by its Cuban name Bembé [60]. Traditional rhythms have a tendency to exhibit
such properties of evenness to one degree or another. Therefore mathematical
measures of evenness, as well as other geometric properties, find application in
the new field of mathematical ethnomusicology [9], [62], where they may help to
identify, if not explain, cultural preferences of rhythms in traditional music.

2.1 Maximally Even Rhythms

In music theory much attention has been devoted to the study of intervals used in
pitch scales [24], but relatively little work has been devoted to the analysis of time
duration intervals of rhythm. Two notable exceptions are the books by Simha
Arom [3] and Justin London [36]. Clough and Duthett [12] introduced the notion
of maximally even sets with respect to scales represented on a circle. According
to Block and Douthett [5], Douthet and Entringer went further by constructing
several mathematical measures of the amount of evenness contained in a scale
(see the discussion on p. 41 of [5]). One of their measures simply adds all the
interval arc-lengths (geodesics along the circle) determined by all pairs of pitches
in the scale. This definition may be readily transferred to durations in time, of
cyclic rhythms represented on a unit circle, as illustrated in Figure 1. However,
the measure is too coarse to be useful for comparing rhythm timelines such as
those studied in [58] and [60]. Admitedly, the measure does differentiate between
rhythms that differ widely from each other. For example, the two four-onset
rhythms [x . . . x . . . x . . . x . . .] and [x . x . x . . x] yield evenness
values of 32 and 23, respectively, reflecting clearly that the first rhythm is more
evenly spaced than the second. However, all six fundamental 4/4 time clave/bell
patterns illustrated in Figure 3, and discussed in [58], have an equal evenness
value of 48, and yet the Rumba clave is clearly more uneven than the Bossa-
Nova clave. The use of interval chord-lengths (as opposed to geodesic distances),
proposed by Block and Douthet [5], yields a more discriminating measure, and
is therefore the preferred measure of evenness.

Shiko

Son

Soukous

Rumba

Bossa

Gahu

Fig. 3. The six fundamental 4/4 time clave and bell patterns in box notation

The Geometry of Musical Rhythm 201

2.2 Maximizing the Sum of Distances

The evenness measure of Block and Douthet [5], which sums all the pairwise
straight-line distances of a set of points on the circular lattice, brings up the
question of which configurations of points (rhythms) achieve maximum evenness.
In fact, this problem had been investigated by the Hungarian mathematician
Fejes Tóth [55] some forty years earlier without the restriction of placing the
points on the circular lattice. He showed that the sum of the pairwise distances
determined by n points in a circle is maximized when the points are the vertices
of a regular n-gon inscribed on the circle.

The discrete version of this problem, of interest in music theory [5], is a special
case of several problems studied in computer science and operations research. In
graph theory it is a special case of the maximum-weight clique problem [22]. In
operations research it is studied under the umbrella of obnoxious facility location
theory. In particular, it is one of the dispersion problems called the discrete p-
maxian location problem [20], [21]. Because these problems are computationally
difficult, researchers have proposed approximation algorithms [30], and heuris-
tics [21], [66], for the general problem, and have sought efficient solutions for
simpler special cases of the problem [49], [54].

Fejes Tóth also showed in [55] that in three dimensions four points on the
sphere maximize the sum of their pairwise distances when they are the vertices
of a regular tetrahedron. The problem remains open for more than four points on
the sphere. Some upper and lower bounds on the maximum value that the sum
may attain are known. Alexander [1] proved an upper bound of (2/3)n2− (1/2).
It has also been shown that the points must be well spaced in some sense.
Stolarsky [53] proved that if n points are placed on the sphere so that the sum
of their distances is maximized, then the distance between the closest pair is at
least 2/3n. Additional bounds and references may be found in the survey paper
by Chakerian and Klamkin [8].

In 1959 Fejes Tóth [56] asked a more difficult question by relaxing the spher-
ical constraint. He asked for the maximum sum of distances of n points in the
plane under the constraint that the diameter of the set is at most one. Pil-
lichshammer [46] found upper bounds on this sum but gave exact solutions only
for n = 3, 4, and 5. For n = 3 the points form the vertices of an equilateral
triangle of unit side lengths. For n = 5 the points form the vertices of a regular
pentagon with unit length diagonals. For n = 4 the solution may be obtained
by placing three points on the vertices of a Reuleaux unit-diameter triangle,
and the fourth point at a midpoint of one of the Reuleaux triangle arcs. The
problem remains open for more than five points in the plane. In the mathematics
literature such problems have also been investigated with the Euclidean distance
replaced by the squared Euclidean distance [45], [47], [67].

3 Interval Spectra of Rhythms

Rather than focusing on the sum of all the inter-onset duration intervals of a
rhythm, as in the preceeding section, here we examine the shape of the spectrum

202 G. Toussaint

Bossa
1 2 3 4 5 6 7 8

Soukous
1 2 3 4 5 6 7 8

Gahu
1 2 3 4 5 6 7 8

Rumba
1 2 3 4 5 6 7 8

Shiko
1 2 3 4 5 6 7 8

Son
1 2 3 4 5 6 7 8

Fig. 4. The full-interval histograms of the 4/4 time clave-bell patterns

of the frequencies with which all the inter-onset durations are present in a
rhythm. Again we assume rhythms are represented as points on a circle as in Fig-
ure 1. In music theory this spectrum is called the interval vector (or full-interval
vector) [39]. For example, the interval vector for the clave Son pattern of Figure 1
is given by [0,1,2,2,0,3,2,0]. It is an 8-dimensional vector because there are eight
different possible duration intervals (geodesics on the circle) between pairs of
onsets defined on a 16-unit circular lattice. For the clave Son there are 5 onsets
(10 pairs of onsets), and therefore the sum of all the vector elements is equal
to ten. A more compelling and useful visualization of an interval vector is as a
histogram. Figure 4 shows the histograms (interval vectors) of the full-interval
sets of all six (4/4)-time clave-bell patterns pictured in Figure 3.

Examination of the six histograms leads to questions of interest in a variety of
fields of enquiry: musicology, geometry, combinatorics, and number theory. For
example, David Locke [35] has given musicological explanations for the char-
acterization of the Gahu bell pattern (shown at the bottom of Figure 3) as
“rhythmically potent”, exhibiting a “tricky” quality, creating a “spiralling ef-
fect”, causing “ambiguity of phrasing” leading to “aural illusions.” Comparing
the full-interval histogram of the Gahu pattern with the five other histograms
in Figure 4 leads to the observation that the Gahu is the only pattern that has
a histogram with a maximum height of 2, and consisting of a single connected
component of occupied histogram cells. The only other rhythm with a single
connected component is the Rumba, but it has 3 intervals of length 7. The only
other rhythm with maximum height 2 is the Soukous, but it has two connected
components because there is no interval of length 2. Only Soukous and Gahu use
seven out of the eight possible interval durations.

The preceeding observations suggest that perhaps other rhythms with rela-
tively uniform (flat) histograms, and few, if any, gaps may be interesting from
the musicological point of view as well. Does the histogram shape of the Gahu
rhythm play a significant role in the rhythm’s special musicological properties?
If so, this geometric property could provide a heuristic for the discovery and
automatic generation of other “good” rhythms. Such a tool could be used for

The Geometry of Musical Rhythm 203

music composition by computer. With this in mind one may wonder if rhythms
exist with the most extreme values possible for these properties. Let us denote
the family of all rhythms consisting of k onsets in a time span cycle of n units by
R[k, n]. In other words R[k, n] consists of all n-bit cyclic binary sequences with
k 1’s. Thus all the 4/4 time clave-bell patterns in Figure 3 belong to R[5, 16].

The first natural question that arizes is whether there exist any rhythms
whose inter-onset intervals have perfectly flat histograms of height one with no
gaps. This is clearly not possible with R[5, 16]. Since there are only 8 possible
different interval lengths and 10 distance pairs, there must exist at least one
histogram cell with height greater than one. The second natural question is
whether there exists an R[5, 16] rhythm that uses all eight intervals. The answer
is yes; one such pattern is [x x . . . x . x x . .] with interval vector given
by [1,1,1,2,1,2,1,1]. However, the rhythm [x x . . x . x] belonging to the
family R[4, 12] depicted on the circle in Figure 5 (a) does have a perfectly flat
histogram: every one of the inter-onset intervals occurs exactly once; its interval
vector is [1,1,1,1,1,1].

For a rhythm to have “drive” it should not contain silent intervals that are
too long, such as the silent interval of length six in Figure 5 (a). One may wonder
if there are other rhythms in R[4, 12] with interval vectors equal to [1,1,1,1,1,1],
and if they exist, are there any with shorter silent gaps. It turns out that the
answer is yes. The rhythm [x x . x . . . x] shown in Figure 5 (b) satisfies
all these properties; its longest silent gap is five units.

1

2

3

4

5
6

7

8

9

10

11
0

1

2

3
45

6

1

2

3

4

5
6

7

8

9

10

11
0

1

2
3

4

5 6

(a) (b)

Fig. 5. Two flat-histogram rhythms

A cyclic sequence such as [x x . . x . x] is an instance of a necklace
with “beads” of two colors [33]; it is also an instance of a bracelet. Two necklaces
are considered the same if one can be rotated so that the colors of its beads cor-
respond, one-to-one, with the colors of the other. Two bracelets are considered
the same if one can be rotated or turned over (mirror image) so that the colors
of their beads are brought into one-to-one correspondence. The rhythms in Fig-
ure 5 clearly maintain the same interval vector (histogram) if they are rotated,
although this rotation may yield rhythms that sound quite different. Therefore it
is useful to distinguish between rhythm-necklaces, and just plain rhythms (neck-
lace instances in a fixed rotational position with respect to the underlying beat).

204 G. Toussaint

The number of onsets in a rhythm is called the density in combinatorics, and
efficient algorithms exist for generating all the necklaces with a specified fixed
density [51].

3.1 Rhythms with Specified Duration Multiplicities

In 1989 Paul Erdős [19] asked whether one could find n points in the plane (no
three on a line and no four on a circle) so that for every i, i = 1, ...n−1 there is a
distance determined by these points that occurs exactly i times. Solutions have
been found for 2 ≤ n ≤ 8. Palásti [44] considered a variant of this problem with
further restrictions: no three form a regular triangle, and no one is equidistant
from three others. A musical scale whose pitch intervals are determined by points
drawn on a circle, and that has the property asked for by Erdős is known in
music theory as a deep scale [31]. We will transfer this terminoly from the pitch
domain to the time domain and refer to cyclic rhythms with this property as deep
rhythms. Deep scales have been studied as early as 1967 by Carlton Gamer [26],
[27], and it turns out that the ubiquitous Western diatonic scale is a deep scale.
Also, the Bembé rhythm mentioned in the preceeding is a deep rhythm since it
is isomorphic to the diatonic scale.

The question posed by Erdős is closely related to the general problem of re-
constructing sets from interpoint distances: given a distance multiset, construct
all point sets that realize the distance multiset. This problem has a long history
in crystallography [34], and more recently in DNA sequencing [52]. Two non-
congruent sets of points, such as the two different necklaces of Figures 5, are
called homometric if the multisets of their pairwise distances are the same [50].
For an extensive survey and bibliography of this problem see [34]. The special
cases relevant to the theory of rhythm, when points lie on a line or circle, have
received some attention, and are called the turnpike problem and the beltway
problem, respectively [34].

Some existing results on homometric sets on the circular lattice are most
relevant to the theory of rhythm. For example many drumming patterns have
two sounds (such as the high and low congas) that together tile the lattice. It
is known that every n-point subset of the regular 2n-gon is homometric to its

1

2

3

4
5

6

7
0

1

1

2

3

3

4

1

2

3

4
5

6

7
0

1

1
2

3

3

4

Low Conga High Conga

Fig. 6. Two complementary homometric rhythms

The Geometry of Musical Rhythm 205

complement [34]. This leads immediately to a simple method for the generation
of two-tone tiling rhythms in which each of the two parts is homometric. One
example is illustrated in Figure 6. It is also known that two rhythms are homo-
metric if, and only if, their complements are [10]. This concept provides another
tool that may find use in music composition by computer.

4 Measuring the Similarity of Rhythms

At the heart of any algorithm for comparing, recognizing or classifying rhythms,
lies a measure of the similarity between a pair of rhythms. The type of similarity
measure chosen is in part predetermined by the manner in which the rhythm
is represented. Furthermore, the design of a measure of similarity is guided by
at least two fundamental ideas: what should be measured, and how should it be
measured.

There exists a wide variety of methods for measuring the similarity of two
rhythms represented by strings of symbols [59]. Indeed the resulting approxi-
mate pattern matching problem is a classical problem in pattern recognition and
computer science in general [16]. Traditionally similarity between two patterns
is measured by a simple template matching operation. More recently similarity
has been measured with more powerful and complex functions such as the earth
mover’s distance [7], [64], weighted geometric matching functions [37], the swap
distance [61], and the directed-swap distance [15], [13].

4.1 Swap Distance

A well known distance measure between two n-bit binary sequences is the Ham-
ming distance trivially computed in O(n) time. However, this distance measure
is not appropriate for rhythm similarity, when used with a binary-string repre-
sentation, because although it measures the existence of an onset missmatch, it
does not measure how far the missmatch occurs. Furthermore, if a note onset
of a rhythm is displaced a large distance, the resulting modified rhythm will in
general sound more different than if the onset is moved a small distance.

To combat this inherent weakness of the Hamming distance, variants and
generalizations of the Hamming distance have been proposed over the years. One
early generalization is the edit distance which allows for insertions and deletions
of notes. Discussions of the application of the edit-distance to the measurement
of similarity in music can be found in Mongeau and Sankoff [40] and Orpen
and Huron [42]. A noteworthy more recent generalization is the fuzzy Hamming
distance [6] which allows shifting of notes as well as insertions and deletions.
Using dynamic programming these distances may be computed in O(n2) time.

The problem of comparing two binary strings of the same length with the
same number of one’s suggests an extremely simple edit operation called a swap.
A swap is an interchange of a one and a zero that are adjacent to each other in
the binary string. Interchanging the position of elements in strings of numbers is
a fundamental operation in many sorting algorithms [14]. However, in the sort-
ing literature a swap may interchange non-adjacent elements. When the elements

206 G. Toussaint

are required to be adjacent, the swap is called a mini-swap or primitive-swap [4].
Here we use the shorter term swap to mean the interchange of two adjacent
elements. The swap distance between two rhythms is the minimum number of
swaps required to convert one rhythm to the other. The swap distance may be
viewed as a simplified version of the generalized Hamming distance [6], where
only the shift operation is used, and the cost of the shift is equal to its length.
Such a measure of dissimilarity appears to be more appropriate than the Ham-
ming distance between the binary vectors in the context of rhythm similarity [58],
[60]. The swap distance may also be viewed as a special case of the more gen-
eral earth mover’s distance (also called transportation distance) used by Typke
et al. [64] to measure melodic similarity. Given two sets of points called sup-
ply points and demand points, each assigned a weight of material, the earth
movers distance measures the minimum amount of work (weight times distance)
required to transport material from the supply points to the demand points. No
supply point can supply more weight than it has and no demand point receives
more weight than it needs. Typke et al. [64] solve this problem using linear pro-
gramming, a relatively costly computational method. The swap distance is a one
dimensional version of the earth mover’s distance with all weights equal to one.
Furthermore, in the case where both binary sequences have the same number of
“one’s” (or onsets), there is a one-to-one correspondence between the indices of
the ordered onsets of the sequences [32].

The swap distance may of course be computed by actually performing the
swaps, but this is inefficient. If X has one’s in the first n/2 positions and zero’s
elsewhere, and if Y has one’s in the last n/2 positions and zero’s elsewhere,
then a quadratic number of swaps would be required. On the other hand, if we
compare the distances instead, a much more efficient algorithm results. First
scan the binary sequence and store a vector of the x-coordinates at which the k
onsets occur. Then the swap distance between the two onset-coordinate vectors
U and V with k onsets is given by:

dSWAP (U, V) =
k∑

i=1

|ui − vi| (1)

Computing U and V from X and Y is done trivially in O(n) time with a
simple scan. Therefore O(n) time suffices to compute dSWAP (U, V), resulting in
a large gain over the linear or dynamic programming algorithms.

5 Introducing Melody into Rhythm

ÓMaid́ın [41] proposed a geometric measure of the distance between two melodies
modelled as monotonic pitch-duration rectilinear functions of time as depicted
in Fig. 7. ÓMaid́ın measures the distance between the two melodies by the area
between the two polygonal chains (shown shaded in Fig. 7). Note that if the
area under each melody contour is equal to one, the functions can be viewed
as probability distributions, and in this case ÓMaid́ın’s measure is identical to

The Geometry of Musical Rhythm 207

f1(x)

f2(x)

Fig. 7. Two melodies as rectilinear pitch-duration functions of time

the classical Kolmogorov variational distance used to measure the difference
between two probability distributions [57]. If the number of vertices (vertical
and horizontal segments) of the two polygonal chains is n then it is trivial to
compute ÓMaid́ın’s distance in O(n) time using a line-sweep algorithm.

In a more general setting, such as music information retrieval systems, we
are given a short query segment of music, denoted by the polygonal chain Q =
(q1, q2, ..., qm), and a longer stored segment S = (s1, s2, ..., sn), where m < n.
Furthermore, the query segment may be presented in a different key (transposed
in the vertical direction) and in a different tempo (scaled linearly in the horizontal
direction). Note that the number of keys (horizontal levels) is a small finite
constant. Time is also quantized into fixed intervals (such as eighth or sixteenth
notes). In this context it is desired to compute the minimum area between the two
contours under vertical translations and horizontal scaling of the query. Francu
and Nevill-Manning [25] claim that this distance measure can be computed in
O(mn) time but they do not describe their algorithm in detail.

6 New Open Problems

Let us assume that we are given a circular lattice with n points (evenly spaced),
and we would like to create a rhythm consisting of k onsets by choosing k of these
n lattice points. For example, perhaps n = 16 and k = 5 as in Figure 1. Further-
more we would like to select the k onsets that maximize the sum of the lengths of
all pairwise chords between these onsets. Evaluating all n-choose-k subsets may
in general be too costly. However, interesting rhythms often have additional mu-
sicological constraints that may be couched in a geometric setting [3], and may
permit simpler solutions. One may also consider an approximation method using
the following snap heuristic: construct a regular k-gon with one vertex coinci-
dent with one lattice point, and then move the remaining onset points to their
nearest lattice points. One would expect such a rhythm to have high evenness
value. How close to optimal is this procedure?

The two sequences shown in Figure 5 are the only possible rhythm bracelets
with flat histograms, for any values of k greater than three [48]. Therefore in
order to be able to generate additional rhythms with near-flat histograms the
constraints outlined in the preceeding need to be relaxed. We may proceed in
several directions. For example, it is desirable for timelines that can be played
fast, and that “roll along” (such as the Gahu already discussed), that the rhythm
contain silent gaps that are neither too short nor too long. Therefore it would be

208 G. Toussaint

desirable to be able to efficiently generate rhythms that either contain completely
prescribed histogram shapes, or have geometric constraints on their shapes, and
to find good approximations when such rhythms do not exist.

The analysis of cyclic rhythms suggests another variant of the question asked
by Erdős. First note that if a rhythm R[k, n] has k ≤ n/2, then a solution
to Erdős’ problem always exists: simply place points at positions 0, 1, 2, ..., k.
However, as mentioned in the preceeding, from the musicological point of view
it may be desirable sometimes not to allow empty semicircles. These constraints
suggest the following problem. Is it possible to have k points on a circular lattice
of n points so that for every i, i = ks, ks+1, ..., kf (s and f are pre-specified)
there is a geodesic distance that occurs exactly i times, with (or without) the
further restriction that there is no empty semicircle?

The preceeding discussion on the swap distance was restricted to comparing
two linear strings. However, many rhythms such as the timelines considered here
are cyclic, and there are applications, such as music information retrieval, where
it is desired to compute the best alignement of two cyclic rhythms over all pos-
sible rotations. In other words, it is of interest to compute the distance between
two rhythms minimized over all possible rotations of one with respect to the
other. Some work has been done with cyclic string matching for several defini-
tions of string similarity [28], [38], [11]. Consider two binary sequences of length
n and density k (k ones and (n − k) zeros). It is desired to compute the mini-
mum swap distance between the two strings under all possible alignments. I call
this distance the cyclic swap-distance or also the necklace swap-distance, since
it is the swap distance between two necklaces. From the preceeding discussion it
follows that the cyclic swap distance may be computed in O(n2) time by using
the linear-time algorithm in each of the n possible alignment positions of the
two rhythms. Note that swaps may be performed in whatever direction (clock-
wise or counter-clockwise) yields the fewest swaps. Can the cyclic swap distance
be computed in o(n2) time? In contrast, if the swap distance is replaced with
the Hamming distance, then the cyclic (or necklace) Hamming distance may be
computed in O(n log n) time with the Fast Fourier Transform [23], [29].

The work of ÓMaid́ın [41] and Francu and Nevill-Manning [25] suggests sev-
eral interesting open problems. In the acoustic signal domain the vertical trans-
position is continuous rather than discrete. The same can be said for the time
axis. What is the complexity of computing the minimum area between a query
Q = (q1, q2, ..., qm) and a longer stored segment S = (s1, s2, ..., sn) under these
more general conditions?

A simpler variant of the melody similarity problem concerns acoustic rhyth-
mic melodies, i.e., cyclic rhythms with notes that have pitch as a continuous
variable. Here we assume two rhythmic melodies of the same length are to be
compared. Since the melodies are cyclic rhythms they can be represented as
closed curves on the surface of a cylinder. What is the complexity of computing
the minimum area between the two rectilinear polygonal chains under rotations
around the cylinder and translations along the length of the cylinder? Aloupis
et al. [2] present an O(n) time algorithm to compute this measure if rotations

The Geometry of Musical Rhythm 209

are not allowed, and an O(n2 log n) time algorithm for unrestricted motions (ro-
tations around the cylinder and translations along the length of the cylinder).
Can this complexity be improved?

In the preceeding sections several tools were pointed out that can be used
for computer composition. We close the paper by mentioning one additional tool
for automatically selecting rhythm timelines that can be used for generating
new music. In [63] it is shown that the Euclidean algorithm for finding the
greatest common divisor of two numbers can be used to generate very good
rhythm timelines when the two numbers that serve as input to the Euclidean
algorithm are the number of onsets (k) and the time-span (n), respectively,
of the desired rhythm. The resulting rhythms, called Euclidean rhythms, are
particularly attractive when k and n are relatively prime. What is the relation
between Euclidean rhythms and maximally even rhythms under the different
definitions of even considered in the preceeding?

References

1. R. Alexander. On the sum of distances between n points on a sphere. Acta. Math.
Acad. Sci. Hungar., 23:443–448, 1972.

2. Greg Aloupis, Thomas Fevens, Stefan Langerman, Tomomi Matsui, Antonio Mesa,
Yurai Nuñez, David Rappaport, and Godfried Toussaint. Computing a geometric
measure of the similarity between two melodies. In Proc. 15th Canadian Conf.
Computational Geometry, pages 81–84, Dalhousie University, Halifax, Nova Scotia,
Canada, August 11-13 2003.

3. Simha Arom. African Polyphony and Polyrhythm. Cambridge University Press,
Cambridge, England, 1991.

4. Therese Biedl, Timothy Chan, Erik D. Demaine, Rudolf Fleischer, Mordecai Golin,
James A. King, and Ian Munro. Fun-sort – or the chaos of unordered binary search.
Discrete Applied Mathematics, 144(Issue 3):231–236, December 2004.

5. Steven Block and Jack Douthett. Vector products and intervallic weighting. Jour-
nal of Music Theory, 38:21–41, 1994.

6. Abraham Bookstein, Vladimir A. Kulyukin, and Timo Raita. Generalized Ham-
ming distance. Information Retrieval, 5(4):353–375, 2002.

7. Sung-Hyuk Cha and Sargur N. Srihari. On measuring the distance between his-
tograms. Pattern Recognition, 35:1355–1370, 2002.

8. G. D. Chakerian and M. S. Klamkin. Inequalities for sums of distances. The
American Mathematical Monthly, 80(9):1009–1017, November 1973.

9. M. Chemillier. Ethnomusicology, ethnomathematics. The logic underlying orally
transmitted artistic practices. In G. Assayag, H. G. Feichtinger, and J. F. Ro-
drigues, editors, Mathematics and Music, pages 161–183. Springer, 2002.

10. C. Chieh. Analysis of cyclotomic sets. Zeitschrift Kristallographie, 150:261–277,
1979.

11. Kuo-Liang Chung. An improved algorithm for solving the banded cyclic string-to-
string correction problem. Theoretical Computer Science, 201:275–279, 1998.

12. J. Clough and J. Douthett. Maximally even sets. Journal of Music Theory, 35:93–
173, 1991.

13. Justin Colannino and Godfried Toussaint. An algorithm for computing the restric-
tion scaffold assignment problem in computational biology. Information Processing
Letters, 2005. in press.

210 G. Toussaint

14. N. G. de Bruijn. Sorting by means of swapping. Discrete Mathematics, 9:333–339,
1974.

15. Miguel Dı́az-Bañez, Giovanna Farigu, Francisco Gómez, David Rappaport, and
Godfried T. Toussaint. El compás flamenco: a phylogenetic analysis. In Proc.
BRIDGES: Mathematical Connections in Art, Music and Science, Southwestern
College, Kansas, July 30 - August 1 2004.

16. Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. John
Wiley and Sons, Inc., New York, 2001.

17. Douglas Eck. A positive-evidence model for classifying rhythmical patterns. Tech-
nical Report IDSIA-09-00, Instituto Dalle Molle di studi sull’intelligenza artificiale,
Manno, Switzerland, 2000.

18. Laz E. N. Ekwueme. Concepts in African musical theory. Journal of Black Studies,
5(1):35–64, September 1974.

19. Paul Erdős. Distances with specified multiplicities. American Math. Monthly,
96:447, 1989.

20. E. Erkut, T. Baptie, and B. von Hohenbalken. The discrete p-maxian location
problem. Computers in Operations Research, 17(1):51–61, 1990.

21. E. Erkut, T. Ulkusal, and O. Yenicerioglu. A comparison of p-dispersion heuristics.
Computers in Operations Research, 21(10):1103–1113, 1994.

22. Sándor P. Fekete and Henk Meijer. Maximum dispersion and geometric maximum
weight cliques. Algorithmica, 38:501–511, 2004.

23. M. J. Fisher and M. S. Patterson. String matching and other products. In
Richard M. Karp, editor, Complexity of Computation, volume 7, pages 113–125.
SIAM-AMS, 1974.

24. A. Forte. The Structure of Atonal Music. Yale Univ. Press, New Haven, 1973.
25. Cristian Francu and Craig G. Nevill-Manning. Distance metrics and indexing

strategies for a digital library of popular music. In Proceedings of the IEEE Inter-
national Conference on Multimedia and EXPO (II), 2000.

26. Carlton Gamer. Deep scales and difference sets in equal-tempered systems. In
Proceedings of the Second Annual Conference of the American Society of University
Composers, pages 113–122, 1967.

27. Carlton Gamer. Some combinational resources of equal-tempered systems. Journal
of Music Theory, 11:32–59, 1967.

28. J. Gregor and M. G. Thomason. Efficient dynamic programming alignment of
cyclic strings by shift elimination. Pattern Recognition, 29:1179–1185, 1996.

29. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge, 1997.

30. R. Hassin, S. Rubinstein, and A. Tamir. Approximation algorithms for maximum
dispersion. Operations Research Letters, 21:133–137, 1997.

31. Timothy A. Johnson. Foundations of Diatonic Theory: A Mathematically Based
Approach to Music Fundamentals. Key College Publishing, Emeryville, California,
2003.

32. Richard M. Karp and Shou-Yen R. Li. Two special cases of the assignment problem.
Discrete Mathematics, 13:129–142, 1975.

33. Michael Keith. From Polychords to Pólya: Adventures in Musical Combinatorics.
Vinculum Press, Princeton, 1991.

34. Paul Lemke, Steven S. Skiena, and Warren D. Smith. Reconstructing sets from
interpoint distances. Tech. Rept. DIMACS-2002-37, 2002.

35. David Locke. Drum Gahu: An Introduction to African Rhythm. White Cliffs Media,
Gilsum, New Hampshire, 1998.

The Geometry of Musical Rhythm 211

36. Justin London. Hearing in Time. Oxford University Press, Oxford, England, 2004.
37. Anna Lubiw and Luke Tanur. Pattern matching in polyphonic music as a weighted

geometric translation problem. In Proceedings of the Fifth International Symposium
on Music Information Retrieval, pages 289–296, Barcelona, Spain, October 2004.

38. Maurice Maes. On a cyclic string-to-string correction problem. Information Pro-
cessing Letters, 35:73–78, 1990.

39. Brian J. McCartin. Prelude to musical geometry. The College Mathematics Jour-
nal, 29(5):354–370, 1998.

40. M. Mongeau and D. Sankoff. Comparison of musical sequences. Computers and
the Humanities, 24:161–175, 1990.

41. D. ÓMaid́ın. A geometrical algorithm for melodic difference. Computing in Musi-
cology, 11:65–72, 1998.

42. Keith S. Orpen and David Huron. Measurement of similarity in music: A quantita-
tive approach for non-parametric representations. In Computers in Music Research,
volume 4, pages 1–44. 1992.

43. Fernando Ortiz. La Clave. Editorial Letras Cubanas, La Habana, Cuba, 1995.
44. Ilona Palásti. A distance problem of Paul Erdős with some further restrictions.

Discrete Mathematics, 76:155–156, 1989.
45. F. Pillichshammer. On the sum of squared distances in the Euclidean plane. Arch.

Math., 74:472–480, 2000.
46. F. Pillichshammer. A note on the sum of distances in the Euclidean plane. Arch.

Math., 77:195–199, 2001.
47. F. Pillichshammer. On extremal point distributions in the Euclidean plane. Acta.

Math. Acad. Sci. Hungar., 98(4):311–321, 2003.
48. John Rahn. Basic Atonal Theory. Schirmer, 1980.
49. S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Heuristic and special case algorithms

for dispersion problems. Operations Research, 42(2):299–310, March-April 1994.
50. Joseph Rosenblatt and Paul Seymour. The structure of homometric sets. SIAM

Journal of Algebraic and Discrete Methods, 3:343–350, 1982.
51. Frank Ruskey and Joe Sawada. An efficient algorithm for generating necklaces

with fixed density. SIAM Journal of Computing, 29(2):671–684, 1999.
52. S. S. Skiena and G. Sundaram. A partial digest approach to restriction site map-

ping. Bulletin of Mathematical Biology, 56:275–294, 1994.
53. Keneth B. Stolarsky. Spherical distributions of N points with maximal dis-

tance sums are well spaced. Proceedings of the American Mathematical Society,
48(1):203–206, March 1975.

54. Arie Tamir. Comments on the paper: “Heuristic and special case algorithms for
dispersion problems” by S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Operations
Research, 46:157–158, 1998.

55. L. Fejes Tóth. On the sum of distances determined by a pointset. Acta. Math.
Acad. Sci. Hungar., 7:397–401, 1956.

56. L. Fejes Tóth. Über eine Punktverteilung auf der Kugel. Acta. Math. Acad. Sci.
Hungar., 10:13–19, 1959.

57. Godfried T. Toussaint. Sharper lower bounds for discrimination information in
terms of variation. IEEE Transactions on Information Theory, pages 99–100, Jan-
uary 1975.

58. Godfried T. Toussaint. A mathematical analysis of African, Brazilian, and Cuban
clave rhythms. In Proc. of BRIDGES: Mathematical Connections in Art, Music
and Science, pages 157–168, Towson University, MD, July 27-29 2002.

212 G. Toussaint

59. Godfried T. Toussaint. Algorithmic, geometric, and combinatorial problems in
computational music theory. In Proceedings of X Encuentros de Geometria Com-
putacional, pages 101–107, University of Sevilla, Sevilla, Spain, June 16-17 2003.

60. Godfried T. Toussaint. Classification and phylogenetic analysis of African ternary
rhythm timelines. In Proceedings of BRIDGES: Mathematical Connections in Art,
Music and Science, pages 25–36, Granada, Spain, July 23-27 2003.

61. Godfried T. Toussaint. A comparison of rhythmic similarity measures. In Proc.
5th International Conference on Music Information Retrieval, pages 242–245,
Barcelona, Spain, October 10-14 2004. Universitat Pompeu Fabra.

62. Godfried T. Toussaint. A mathematical measure of preference in African rhythm.
In Abstracts of Papers Presented to the American Mathematical Society, volume 25,
page 248, Phoenix, January 7-10 2004. American Mathematical Society.

63. Godfried T. Toussaint. The Euclidean algorithm generates traditional musical
rhythms. In Proc. of BRIDGES: Mathematical Connections in Art, Music and
Science, Banff, Canada, July 31 - August 3 2005.

64. Rainer Typke, Panos Giannopoulos, Remco C. Veltkamp, Frans Wiering, and René
van Oostrum. Using transportation distances for measuring melodic similarity. In
Holger H. Hoos and David Bainbridge, editors, Proceedings of the Fourth Interna-
tional Symposium on Music Information Retrieval, pages 107–114, Johns Hopkins
University, Baltimore, 2003.

65. Chris Washburne. Clave: The African roots of salsa. In Kalinda!: Newsletter for the
Center for Black Music Research. Columbia University, New York, 1995. Fall-Issue.

66. Douglas J. White. The maximal dispersion problem and the “first point outside the
neighbourhood heuristic. Computers in Operations Research, 18(1):43–50, 1991.

67. H. S. Witsenhausen. On the maximum of the sum of squared distances under
a diameter constraint. The American Mathematical Monthly, 81(10):1100–1101,
December 1974.

Author Index

Ábrego, Bernardo M. 1
Arkin, Esther M. 1

Benkert, Marc 16
Bereg, Sergey 29, 37
Bose, Prosenjit 48
Brönnimann, Hervé 54

Daescu, Ovidiu 62
Demaine, Erik D. 76
Dumitrescu, Adrian 37

Fernández-Merchant, Silvia 1

Grantson, Magdalene 83, 95
Gudmundsson, Joachim 106

Hosono, Kiyoshi 117
Hurtado, Ferran 1

Iacono, John 76
Ito, Hiro 123

Kano, Mikio 1

Langerman, Stefan 48, 76
Lenchner, Jonathan 131
Levcopoulos, Christos 83, 95

Maeda, Yoichi 143
Matoušek, Jǐŕı 151
Mi, Ningfang 62
Mitchell, Joseph S.B. 1

Pach, János 37

Shin, Chan-Su 62
Streinu, Ileana 161

Tan, Xuehou 174
Tardos, Gábor 184
Tóth, Géza 184
Toussaint, Godfried 198

Urabe, Masatsugu 117
Urrutia, Jorge 1

Vahrenhold, Jan 106

Whiteley, Walter 161
Widmann, Florian 16
Wolff, Alexander 16, 62

	Frontmatter
	Matching Points with Circles and Squares
	The Minimum Manhattan Network Problem: A Fast Factor-3 Approximation
	Algorithms for the {\itshape d}-Dimensional Rigidity Matroid of Sparse Graphs
	Sliding Disks in the Plane
	Weighted Ham-Sandwich Cuts
	Towards Faster Linear-Sized Nets for Axis-Aligned Boxes in the Plane
	Farthest-Point Queries with Geometric and Combinatorial Constraints
	Grid Vertex-Unfolding Orthostacks
	A Fixed Parameter Algorithm for the Minimum Number Convex Partition Problem
	Tight Time Bounds for the Minimum Local Convex Partition Problem
	I/O-Efficiently Pruning Dense Spanners
	On the Minimum Size of a Point Set Containing Two Non-intersecting Empty Convex Polygons
	Three Equivalent Partial Orders on Graphs with Real Edge-Weights Drawn on a Convex Polygon
	Wedges in Euclidean Arrangements
	Visual Pascal Configuration and Quartic Surface
	Nonexistence of 2-Reptile Simplices
	Single-Vertex Origami and Spherical Expansive Motions
	An Optimal Algorithm for the 1-Searchability of Polygonal Rooms
	Crossing Stars in Topological Graphs
	The Geometry of Musical Rhythm
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

