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Abstract. The asymptotic security of the Blum-Blum-Shub (BBS) pseu-
dorandom generator has been studied by Alexi et al. and Vazirani and
Vazirani, who proved independently that O(log log N) bits can be ex-
tracted on each iteration, where N is the modulus (a Blum integer).
The concrete security of this generator has been analyzed previously by
Fischlin and Schnorr and by Knuth.

In this paper we continue to analyse the concrete security the BBS
generator. We show how to select both the size of the modulus and the
number of bits extracted on each iteration such that a desired level of se-
curity is reached, while minimizing the computational effort per output
bit. We will assume a concrete lower bound on the hardness of inte-
ger factoring, which is obtained by extrapolating the best factorization
results to date.

While for asymptotic security it suffices to give a polynomial time
reduction a successful attack to factoring, we need for concrete security
a reduction that is as efficient as possible. Our reduction algorithm relies
on the techniques of Fischlin and Schnorr, as well as ideas of Vazirani
and Vazirani, but combining these in a novel way for the case that more
than one bit is output on each iteration.

1 Introduction

Generally speaking, a pseudorandom generator is a deterministic algorithm that,
given a truly random binary sequence of length n, outputs a binary sequence
of length M > n that ”looks random”. The input to the generator is called
the seed and the output is called the pseudorandom bit sequence. Security of a
pseudorandom generator is a characteristic that shows how hard it is to tell the
difference between the pseudorandom sequences and truly random sequences. For
the Blum-Blum-Shub (BBS) pseudorandom generator [2] distinguishing these
two distributions is as hard as factoring a large composite integer.

Although asymptotic security of the BBS generator is thoroughly analyzed
[1,15] it has been uncertain how to select the size of the modulus and the num-
ber of bits extracted on each iteration such that a desired level of security is
reached, while minimizing the computational effort per output bit. In this paper
we answer this question. We construct an efficient reduction of a successful at-
tack on the BBS generator to factoring. Then we assume a concrete lower bound
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on the hardness of integer factoring, which is obtained by extrapolating the best
factorization results to date. It gives a lower bound for the running time of the
successful attack on the BBS generator (Theorem 3). This lower bound is used
for selecting the optimal values for the size of the modulus and the number of
bits extracted on each iteration.

1.1 Notation

Throughout we use the following notation.

– s ∈R S indicates that s is chosen uniformly at random from set S.
– N is a Blum integer, that is N = pq, where p, q are prime, p ≡ q ≡ 3 mod 4.
– n is the size (in bits) of N .
– ZN (+1) is the set of integers of Jacobi symbol +1 modulo N .
– ΛN = ZN (+1) ∩ (0, N

2 ).
– [y]N = y mod N ∈ [0, N) for y ∈ Z.
– y mod N ∈ (−N

2 , N
2

)
denotes the smallest absolute residue of y modulo N .

– �i(y) denotes the i-th least significant bit of y, i = 1, 2, . . . .
– EN (y) = |y2 mod N |, which is referred to as the absolute Rabin function.

Note that the absolute Rabin function EN permutes ΛN [5].

1.2 Security of Pseudorandom Generators

Let G be a pseudorandom generator that produces binary sequences of length
M . Let S ⊂ {0, 1}M be the set of these sequences.

Consider a probabilistic algorithm A that, given a binary sequence s =
s1 . . . sM , outputs a bit A(s) ∈ {0, 1}. We may think of A as a statistical test of
randomness.

Definition 1. A pseudorandom generator G passes statistical test A with toler-
ance ε > 0 if

|Pr(A(s) = 1 | s ∈R S) − Pr(A(s) = 1 | s ∈R {0, 1}M)| < ε.

Otherwise the pseudorandom generator G fails statistical test A with tolerance
ε. The probability is taken over all choices of s, and internal coin flips of A.

We refer to a sequence s ∈R {0, 1}M as a truly random binary sequence.
Throughout this paper we often call A an adversary that tries to distinguish
pseudorandom sequences from truly random sequences.

Note that the maximum possible value of ε is ε = 1 − 2n−M . It corresponds
to the statistical test that with probability 1 outputs 1 if s ∈ S and outputs 0 if
s ∈ {0, 1}M\S.

Definition 2. A pseudorandom generator is asymptotically secure if it passes
all polynomial time statistical tests with tolerance negligible in n.
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The above definition originates from [16]. Asymptotic security guarantees
that, as the seed length increases, no polynomial time statistical test can dis-
tinguish the pseudorandom sequences from truly random sequences with non-
negligible probability. However, this definition says little about the security of
the pseudorandom generator in practice for a particular choice of seed length
and against adversaries investing a specific amount of computational effort. For
practical considerations it is important to focus on concrete security reductions
which give explicit bounds on running time and success probability of statistical
tests. The following definition is due to [9,3,14].

Definition 3. A pseudorandom generator is (TA, ε)-secure if it passes all sta-
tistical tests with running time at most TA with tolerance ε.

We determine the values for TA and ε such that the BBS pseudorandom
generator defined below is (TA, ε)-secure.

1.3 The BBS Generator

The following definition is due to [5].

Definition 4 (The BBS pseudorandom generator). Let k, j be positive
integers. Let x1 ∈R ΛN be the seed. Consider a deterministic algorithm that
transforms the seed into a binary sequence of length M = jk by repeating the
following steps for i = 1, . . . , k.

1. For r = 1, . . . , j output b(i−1)j+r = �j−r+1(xi).
2. xi+1 = EN (xi).

We call this algorithm the BBS pseudorandom generator with j output bits per
iteration.

In order to output a pseudorandom sequence (a BBS sequence) of length M the
generator iterates the absolute Rabin function k times generating j bits on each
iteration.

Remark 1. Strictly speaking, the above definition of the BBS differs from the
original one presented in [2]. The original generator iterates the Rabin function
E∗

N (x) = x2 mod N and outputs only one bit on each iteration (j = 1). We do
not introduce a new name for the sake of simplicity.

1.4 Known Results and Our Contributions

Intuitively, the performance of the BBS generator can be improved in two ways.
We can either use a modulus of a smaller size or extract more bits per iteration.
However, in both cases the security of the algorithm is weakened. What are the
optimal values for the parameters given that a certain level of security has to be
reached? For instance, what is the optimal value for j?
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The security of the BBS generator is proved by reduction. It is shown that if
the generator is insecure then there exists an algorithm that factors the modulus.
When analyzing asymptotic security the only requirement is that the reduction
has to be polynomial time. In case of concrete security the reduction has to be
as tight as possible. A tight reduction gives rise to a small modulus, which in
turn ensures that the pseudorandom generator is efficient.

The following reductions are known for the BBS generator. The case j = 1 has
been studied extensively. The tightest reduction is due to Fischlin and Schnorr
[5], which gives rise to a rather efficient generator. For the case j > 1, the
asymptotic security has been analyzed fully by Alexi et al. [1], and independently,
by Vazirani and Vazirani [15], who proved that the BBS generator is secure if
j = O(log log N). However, using their reductions as a basis for the concrete
security of the BBS generator would imply that in practical case it does not pay
off to extract more than 1 bit on each iteration. Fischlin and Schnorr [5] already
suggested ways to tighten the reductions for the case j > 1. However, as they
point out, the first approach is completely impractical. The second one, though,
is similar to our analysis, but they provide no sufficient detail.

Inspired by the ideas of [5] and [15] we construct a new security proof for the
BBS generator with j output bits per iteration for j > 1. The new reduction is
more efficient than all previously known reductions for j > 1.

We show how to select both the size of the modulus and the number of bits
extracted on each iteration such that a desired level of security is reached, while
minimizing the computational effort per output bit. Although the complexity of
the reduction grows exponentially in j it does not mean that one should always
choose j = 1. In Example 7.3 the optimal value is j = 5 rather than j = 1. We
emphasize that the optimal parameter j depends on the length of the output
sequence M and on the security parameters TA, ε.

The rest of the paper is organized as follows. In Section 2 we describe a general
idea of the security proof for the BBS generator. The result of [9,16] implies that
if the generator is insecure then there exists an algorithm B that, given EN (x) for
some x ∈ ΛN , and j−1 least significant bits of x, guesses the j-th least significant
bit �j(x). In Section 4 the algorithm B is used for inversion of the absolute Rabin
function. Before that, in Section 3, we discuss a simplified inversion algorithm as
a stepping stone to the general case. The simplified algorithm is of independent
interest since it is almost optimal in terms of the running time. In Section 5
we analyze the success probability of the inversion algorithm of Section 4. We
determine the complexity of this algorithm in Section 6. In Section 7 we state
our main result about the concrete security of the BBS generator.

2 Security of the BBS Generator

In this section we describe a general idea of the security proof for the BBS
generator.

Lemma 1. Suppose the BBS generator is not (TA, ε)-secure. Then there exists
an algorithm B that, given EN (x) for some x ∈R ΛN , j − 1 least significant bits
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of x, guesses the j-th least significant bit �j(x) with advantage M−1ε. Here the
probability is taken over all choices of x ∈R ΛN , and internal coin flips of B.
The running time TB ≤ TA + O(kn2).

The proof of the above lemma can be found, for instance, in [9].
In Section 4 we show that the algorithm B can be used for the inversion of

the absolute Rabin function. Before that, in Section 3, we show how to invert the
absolute Rabin function using a ”simpler” oracle. Section 3 serves as a stepping
stone to the general case.

According to the following lemma inversion of the absolute Rabin function
is as hard as factoring Blum integers.

Lemma 2 (Rabin). Suppose there exists a probabilistic algorithm R that re-
covers x ∈ ΛN from EN (x) in expected time TR. Then there exists an algorithm
F that factors the modulus N in expected time TF = 2(TR + 2 log2 N).

Since factoring Blum integers is assumed to be a hard problem (in Section 7.1
we will assume a concrete lower bound on the hardness of factoring) ”attacking”
BBS sequences is also a hard problem.

In practice the terms kn2 and log2 N are small in comparison with TA and
TR respectively. We omit these terms in the further analysis.

3 The Simplified Inversion Algorithm

To complete our concrete security analysis of the BBS generator, we need to show
how to invert the absolute Rabin function EN , given an oracle of a particular
type. However, in this section we will consider the related problem of inverting
EN given a more powerful oracle O1, see below, and assuming that 2 ∈ ZN (+1)
(which holds if N ≡ 1 mod 8, see e.g. [12]). The treatment of this case serves as
a stepping stone to the general case, and, additionally, we will point out that in
this case the reduction can be shown optimal up to a factor of lnn.

The oracle O1 is defined as a probabilistic algorithm that for all x ∈ ΛN ,
given EN (x), guesses bit �1(x) with advantage δ > 0, where the probability is
taken over internal coin flips of O1.

3.1 Binary Division

The main tool of the inversion algorithm is the binary division technique [5],
which is a means to solve the following problem. The problem is to recover a
value α, 0 ≤ α < N , given �1(α), �1([2−1α]N ), . . . , �1([2−(n−1)α]N ), where n is
the bit length of N .

The solution to this problem is given in terms of rational approximations.
For a rational number β, 0 ≤ β < 1, we call βN a rational approximation of
integer α, 0 ≤ α < N , with error |α − βN |. Given a rational approximation
βN for α we can get a rational approximation β1N for α1 = [2−1α]N for which
the error is reduced by a factor of 2 as follows. If α is even, then α1 = α/2
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so put β1 = β/2; otherwise, α1 = (α + N)/2 so put β1 = (β + 1)/2. Then we
have |α1 − β1N | = 1

2 |α − βN |. Note that to determine β1, the only required
information on α is its parity.

Given �1(α), �1([2−1α]N ), . . . , �1([2−(n−1)α]N ), the value of α can be recov-
ered as follows. Put β0 = 1/2, then β0N is a rational approximation of α with
error at most N/2. Next, we apply the above technique n times to obtain ratio-
nal approximations β1N, . . . , βnN for [2−1α]N , . . . , [2−nα]N respectively, at each
step reducing the error by a factor of 2. We thus get a rational approximation
βnN to [2−nα]N , for which the error is less than N/2n+1 < 1/2. The closest
integer to βnN is therefore equal to [2−nα]N , and from this value we find α.

3.2 Majority Decision

The bits �1(α), �1([2−1α]N ), . . . , �1([2−(n−1)α]N ) used to recover α by means
of the binary division technique will be obtained from the oracle O1, which
essentially outputs �1(α) on input EN (α) for α ∈ ΛN . However, since the output
bit of O1 is not always correct, we have to run O1 several times and use some
form of majority decision.

Suppose we know EN (α) and our goal is to determine �1(α) for some α ∈ ΛN .
We run O1 on input EN (α) m times and assign the majority bit to �1(α). We will
show that for m = 1

2 (ln n + ln p−1)δ−2, where 0 < p < 1, the majority decision
errs with probability at most p/n.

Let τ1, . . . , τm be the outputs of O1. Without loss of generality, assume that
�1(α) = 0. Then the majority decision errs if

1
m

m∑

i=1

τi >
1
2
. (1)

Since for each α ∈ ΛN the probability that O1 successfully guesses �1(α) equals
1
2 + δ the expected value E[τi] = 1

2 − δ, i = 1, . . . , m. (1) implies that

1
m

m∑

i=1

τi − E[τi] > δ.

Since τ1, . . . , τm are mutually independent Hoeffding’s bound [8] gives

Pr

[
1
m

m∑

i=1

τi − E[τi] > δ

]

≤ exp
(−2mδ2

)
.

It implies that for m = 1
2 (ln n + ln p−1)δ−2 the majority decision errs with

probability p/n.

3.3 The Simplified Algorithm

Remark 2. Before describing the simplified inversion algorithm we point out an
important fact about oracle O1. For every y ∈ ΛN there always exist two different
values x1 and x2 such that EN (xi) = y and xi ∈ ZN (+1), i = 1, 2. Without loss
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of generality, let x1 < N/2. Then x1 ∈ ΛN , x2 = N − x1. On input y oracle O1

predicts �1(x1) rather than �1(x2). This property will be used on step 3 of the
algorithm.

The inversion algorithm, given EN (x) for some x ∈ ΛN and parameter p,
0 < p < 1/2, runs as follows.

1. Pick a random multiplier a ∈R ZN (+1). Let m = 1
2 (ln n + ln p−1)δ−2.

2. Set u0 = 1/2. u0N is a rational approximation of [ax]N with error at most
N/2. Set l−1 = 0.

3. For t = 0, . . . , n− 1 do the following. Compute EN ([atx]N ) = EN (at)EN (x)
mod N . Run O1 on input EN ([atx]N ) m times. Let rt be the majority output
bit. Assign lt = rt + lt−1 mod 2. Let at+1 = [2−(t+1)a]N . To determine a
rational approximation ut+1N for [at+1x]N , set ut+1 = (ut + lt)/2.

4. Compute x′ = a−1
n �unN + 1/2� mod N . If EN (x′) = EN (x) output x′, oth-

erwise repeat the above procedure starting from step 1.

If no error occurs in the above algorithm we have lt = �1([atx]N ) for t =
0, . . . , n − 1. Setting l−1 = 0 at step 2 means that the algorithm works only if
�1([2ax]N ) = 0. Since a is chosen at random, �1([2ax]N ) = 0 with probability
1/2.

The goal of step 3 is to determine �1([atx]N ). The bit is obtained via the
majority decision. Note that on input EN ([atx]N ) O1 predicts either �1([atx]N )
(if �1([at−1x]N ) = 0) or �1(N − [atx]N ) (if �1([at−1x]N ) = 1). Since �1(N) = 1,
we have �1([atx]N ) = �1(N − [atx]N ) + 1 mod 2. Therefore the majority bit rt

has to be added by lt−1 modulo 2 (see also Remark 2).
Since a single majority decision errs with probability at most p/n the proba-

bility that EN (x′) = EN (x) at step 4 is at least 1/2− p. Thus the expected run-
ning time of the inversion algorithm is at most (1−2p)−1n(ln n+ln p−1)δ−2TO1 ,
where TO1 is the running time of O1. For instance, for p = 1/4 the running time
is essentially 2n(ln n)δ−2TO1 .

Remark 3. The information-theoretic approach of Fischlin and Schnorr [5] im-
plies that inversion of the absolute Rabin function needs to run O1 at least
(ln 2/4)nδ−2 times. Therefore the running time of the above algorithm is opti-
mal up to a factor of lnn.

4 The Inversion Algorithm

In this section we show how to invert the absolute Rabin function EN , having
access to oracle B that, given EN (x) for some x ∈R ΛN , j − 1 least significant
bits of x, guesses j-th least significant bit �j(x) with advantage M−1ε.

We build the inversion algorithm for j ≥ 1 combining the inversion algorithm
of [5] for j = 1 with the result of [15]. Basic idea of our inversion algorithm is
the following. First B is converted into an algorithm Oxor that, given EN (x) for
some x ∈ ΛN , guesses the exclusive OR of some subset of first j least significant
bits of x with advantage δ, where δ = (2j − 1)−1M−1ε. Then EN (x) is inverted
using Oxor as an oracle.
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4.1 Oracle for Exclusive OR

Let π be a subset of the set of positive integers. For an integer y, y ≥ 0, let

π(y) =
∑

i∈π

�i(y) mod 2.

Note that the subset and the corresponding exclusive OR function are denoted
by the same character π.

Let y ∈ ΛN . On input (π, EN (y)), where π ⊂ {1, . . . , j} is a nonempty subset,
algorithm Oxor guesses π(y) as follows

1. Select r1, . . . , rj ∈R {0, 1}. Let r, 0 ≤ r < 2j, be an integer such that
�k(r) = rk, k = 1, . . . , j.

2. Output π(r) if B(EN (y), r1, . . . , rj−1) = rj , otherwise output π(r)+1 mod 2.

The below statement follows explicitly from the Computational XOR Propo-
sition proposed by Goldreich [7].

Lemma 3. For the above algorithm Oxor we have Pr[Oxor(π, EN (y)) = π(y)] =
1/2 + δ, δ = (2j − 1)−1M−1ε, where the probability is taken over all choices of
y ∈R ΛN , nonempty subsets π ⊆ {1, . . . , j} with uniform probability distribution,
and internal coin flips of Oxor.

4.2 Inversion of the Absolute Rabin Function Using Oxor

The inversion algorithm described below is based on the same ideas as the sim-
plified inversion algorithm of Section 3. The main difference between these two
algorithms is due to the fact that, in comparison with O1, the advantage of
Oxor does not have to be the same for all input values. In order to use Oxor for
the majority decision we have to randomize the input values. For this purpose
we use two multipliers a, b ∈R ZN and we call Oxor on inputs proportional to
EN (ct,ix), where ct,i is a function of a and b such that ct,i’s for a fixed t are
pairwise independent random variables.

Tightening the Rational Approximations. Suppose EN (x) is given for
x ∈ ΛN . The goal is to recover x.

Let a, b ∈R ZN . Let u0N and vN be rational approximations of [ax]N and
[bx]N . In below algorithm we search through a certain number of quadruples
(u0N, vN, la,0, lb), where la,0, lb ∈ {0, 1}, so that for at least one of them

la,0 = �1([ax]N ), lb = �1([bx]N ),
|[ax]N − u0N | ≤ ηaN, |[bx]N − vN | ≤ ηbN,

(2)

where ηa = 2−j−6δ3, ηb = 2−j−4δ (these values result from the analysis of the
inversion algorithm, which appears in the extended version of this paper). (2)
implies that we have to try at most η−1

a η−1
b quadruples.
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Let at = [2−ta]N , t = 1, . . . , n. By means of the binary division technique we
construct rational approximations utN for [atx]N so that if (2) holds then

|[atx]N − utN | ≤ ηaN

2t
, t = 1, . . . , n.

For t = n we have |[anx]N − unN | < 1/2, i.e. the closest integer to unN is
[anx]N . Therefore x = [a−1

n �unN + 1
2�]N .

The binary division technique works only if for all t = 0, . . . , n − 1 the bits
�1([atx]N ) are determined. Note that if (2) holds then �1([ax]N ) = la,0. For
t = 1, . . . , n − 1 we determine the bits �1([atx]N ) using oracle Oxor.

Finding �1([atx]N) Via Majority Decision. Consider step t of the inversion
algorithm for 1 ≤ t < n. At this step we know the rational approximation utN
for [atx]N . The goal is to determine �1([atx]N ).

Let i be an integer from a multiset σt (we will define the multisets in the end
of this section). Using Oxor we will determine �1([atx]N ) for a fraction of indices
i ∈ σt with probability slightly higher than 1/2. Then the majority decision will
provide us with a reliable value �1([atx]N ). The details follow.

Let ct,i = at(1 + 2i) + b. Then

[ct,ix]N = [atx]N (1 + 2i) + [bx]N mod N.

Let wt,i = ut(1 + 2i) + v, w̃t,i = wt,i mod 1. Here w̃t,iN is an approximation of
[ct,ix]N , whereas wt,iN is an approximation of [atx]N (1 +2i)+ [bx]N . Note that
if the error of the rational approximation wt,iN is small enough we have

[2jct,ix]N = 2j ([atx]N (1 + 2i) + [bx]N ) − �2jwt,i�N. (3)

We will see that if (3) holds for a certain value of i then the i-th vote in the
majority decision is correct with probability 1/2 + δ (this probability cannot be
higher since Oxor guesses correctly with probability 1/2 + δ). In Section 5 we
analyze the probability that (3) holds. In the rest of this section we assume that
(3) does hold.

It can be shown that if (3) holds then

[ct,ix]N = [atx]N (1 + 2i) + [bx]N − �wt,i�N.

Since �1(N) = 1, we get

�1([ct,ix]N ) = �1([atx]N ) + �1([bx]N ) + �wt,i� mod 2. (4)

If (2) holds then �1([bx]N ) = lb and the only unknown components in (4) are
�1([ct,ix]N ) and �1([atx]N ). We will determine �1([ct,ix]N ) through Oxor and then
we will use (4) for the majority decision on �1([atx]N ).

Let πt,i be a random nonempty subset of {1, 2, . . . , j}. Denote r = max{k | k ∈
πt,i}, r ≤ j. Each time (for each values of t and i) a new random subset πt,i is
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selected. The value of r also depends on t and i. We write r instead of rt,i for
the sake of simplicity. Denote

Lk(y) = y mod 2k

for y ∈ Z, k = 1, 2, . . . . If y ≥ 0 Lk(y) gives an integer that equals k least
significant bits of y.

Lemma 4. If (3) holds then

�1([ct,ix]N ) = πt,i([2r−1ct,ix]N ) + πt,i(Lr(−�2r−1w̃t,i�N)) mod 2.

We prove this lemma in Appendix A. Lemma 4 combined with (4) gives

�1([atx]N ) = πt,i([2r−1ct,ix]N ) + πt,i(Lr(−�2r−1w̃t,i�N))+
�1([bx]N ) + �wt,i� mod 2.

If [2r−1ct,ix]N ∈ ΛN in the above formula then we can replace πt,i([2r−1ct,ix]N )
by Oxor(πt,i, EN ([2r−1ct,ix]N )). However, since the output bit of Oxor is not
always correct we have to use some form of majority decision to determine
�1([atx]N ).

The majority decision on bit �1([atx]N ) works as follows. If for majority of
indices i ∈ σt such that [2r−1ct,ix]N ∈ ΛN

Oxor(πt,i, EN ([2r−1ct,ix]N )) + πt,i(Lr(−�2r−1w̃t,i�N))+
�1([bx]N ) + �wt,i� = 0 mod 2,

(5)

the inversion algorithm decides that �1([atx]N ) = 0, otherwise it decides that
�1([atx]N ) = 1.

Note that we can check if [2r−1ct,ix]N ∈ ΛN as follows. By definition,
[2r−1ct,ix]N ∈ ΛN if 2r−1ct,i ∈ ZN (+1) and [2r−1ct,ix]N < N

2 . The first con-
dition can be checked by computing Jacobi symbol of 2r−1ct,i modulo N . We
check the second condition via the rational approximation of [2r−1ct,ix]N . It can
be shown that if (3) holds then for all r, 0 ≤ r < j, [2r−1ct,ix]N < N

2 if and
only if �2rwt,i� is even. If [2r−1ct,ix]N /∈ ΛN we discard the index i. Since ct,i

is uniformly distributed in ZN , [2r−1ct,ix]N ∈ ΛN with probability 1/4 (each of
the above conditions is satisfied with probability 1/2).

Multisets σt. In this section we define the multisets σt, t = 1, . . . , n − 1. For
t < log2 n + 4 denote mt = 4 · 2tδ−2. Let

σt = {i | |1 + 2i| < mt}, t = 1, . . . , log2 n + 3.

As t grows we choose a larger value for mt. Therefore the majority decisions
become more reliable as t grows. We cannot choose large mt for small t for the
following reason. For small t the error |utN − [atx]N | is large. If mt is also large
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then [atx]N (1 + 2i) + [bx]N can differ much from wt,i = ut(1 + 2i) + v so that
(3) does not hold and (5) cannot be used for the majority decision.

Define ρ = {i | |1 + 2i| < 26nδ−2}. We randomly select m = 8δ−2 log2 n
elements σ = {i1, . . . , im} with repetition from ρ and let

σt = σ, mt = m, t = log2 n + 4, . . . , n − 1.

For t = 1, . . . , n − 1 |σt| = mt. For t ≥ log2 n + 4 all the σt are the same, the
number of elements (not necessarily different) in this multiset is m.

Note that there exist two basic bounds for error probabilities of major-
ity decisions: Hoeffding’s bound and Chebyshev’s inequality. Hoeffding’s bound
(see also Section 3.2) is asymptotically stronger than Chebyshev’s inequality.
However, Hoeffding’s bound requires mutual independence of the votes. For
t = log2 n + 4, . . . , n − 1 the multisets σt are chosen in such a way that Ho-
effding’s bound can be used. For t < log2 n + 4 the votes are just pairwise
independent so only Chebyshev’s inequality can be used. However, as mentioned
above, the number of votes cannot be large for small t so in this case we can-
not gain from using Hoeffding’s bound rather than Chebyshev’s inequality. This
issue is addressed in more details in Section 5.

4.3 The Algorithm

In this section we formally describe the inversion algorithm. Suppose we know
EN (x) for some x ∈ ΛN . Let Oxor be an algorithm that, given EN (x) for some
x ∈ ΛN and a subset π ⊂ {1, . . . , j}, guesses π(x) with advantage δ. The inversion
algorithm that uses Oxor as an oracle and outputs x runs as follows.

Input EN (x), N, j and oracle Oxor

---- First part: oracle calls ----
Select random integers a, b ∈ ZN

For t = 1, . . . , n do
at = [2−ta]N
For i ∈ σt do

ct,i = at(1 + 2i) + b

If (2r−1ct,i

N ) = +1 then
Select a random nonempty subset πt,i ⊂ {1, . . . j}
Set r = max{k | k ∈ πt,i}
gt,i = Oxor(πt,i, EN ([2r−1ct,ix]N )), validity bit dt,i = 1

Else
dt,i = 0

End if
End do

End do
---- Second part: tightening the rational approximations ----
For ũ = 0, . . . , �η−1

a /2�; ṽ = 0, . . . , �η−1
b /2�; la,0 = 0, 1; lb = 0, 1 do

Reset dt,i with the values calculated in the first part
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Rational u = 2ηaũ, v = 2ηbṽ, set u0 = u
For t = 1, . . . , n − 1 do

Rational ut = 1
2 (la,t−1 + ut−1)

For i ∈ σt such that dt,i = 1 do
Rational wt,i = ut(1 + 2i) + v
If �2rwt,i� = 0 mod 2 then

Set r = max{k | k ∈ πt,i}, assign w̃t,i = wt,i mod 1
ei = lb + πt,i(Lr(−�2r−1w̃t,i�N)) + �wt,i� mod 2

Else
dt,i = 0

End if
End do
la,t = MajorityDecision(gt,∗ + e∗ mod 2, dt,∗)

End do
x′ = [a−1

n �unN + 1
2�]N

If (x′
N ) = +1 and EN (x′) = EN (x) then output x′

End do

On step t the goal of the algorithm is to determine �1([atx]N ). This bit is
determined via majority decision. Note that ei = lb + πt,i(Lr(−�2r−1w̃t,i�N) +
�wt,i� mod 2 and gt,i = Oxor(πt,i, EN ([2r−1ct,ix]N )) (see also (5)). If for a ma-
jority of indices i ∈ σt such that dt,i = 1 we have gt,i = ei then the majority
decision outputs 0, otherwise it outputs 1 (in terms of the above algorithm
dt,i = 1 if and only if [2r−1ct,ix]N ∈ ΛN ). If the majority decision is correct then
la,t = �1([atx]N ).

5 Analysis of the Inversion Algorithm

In this section we determine the success probability of the above inversion algo-
rithm. More formally, we prove the following lemma.

Lemma 5. The above algorithm, given EN (x) for x ∈ ΛN , j, and N , outputs
x with probability 2/9, where the probability is taken over internal coin flips of
the algorithm (which includes the coin flips of Oxor.

Recall that the inversion algorithm works as follows. For a, b ∈R ZN , we
search through a certain number of quadruples (u0N, vN, la,0, lb) such that for at
least one of them (2) holds, i.e. la,0 = �1([ax]N ), lb = �1([bx]N ); |[ax]N −u0N | ≤
ηaN, |[bx]N −vN | ≤ ηbN . Throughout this section we only consider a quadruple
for which (2) holds (for the other quadruples we assume that the algorithm
outputs x with probability 0).

At each step t, 1 ≤ t < n, the goal of the inversion algorithm is to determine
�1([atx]N ). Using Oxor this bit is determined via the majority decision, which
depends on a certain number of votes. For i ∈ σt such that [2r−1ct,ix]N ∈ ΛN ,
the i-th vote is set to 0 if (5) holds, otherwise it is set to 1. The decision on
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�1([atx]N ) is set to the majority vote. The decision is correct if the majority of
the votes is correct.

Consider step t, 1 ≤ t < n. Assume that for all s < t we have determined
correctly the bits �1([asx]N ). There exist two reasons why for some i ∈ σt the
i-th vote could be incorrect.

– The error of the rational approximation wt,iN is too large so that (3) does
not hold.

– Oracle Oxor outputs a wrong bit (recall that it outputs the correct bit only
with probability 1/2 + δ).

5.1 The Probability That (3) Does Not Hold

Lemma 6. Assume that (2) holds and for all s < t the bits �1([asx]N ) are
determined correctly. Then the probability that (3) does not hold for some i ∈ σt

is at most δ/4. Here the probability is taken over all choices of random multipliers
a, b ∈R ZN .

Proof. Let us rewrite (3) again:

[2jct,ix]N = 2j ([atx]N (1 + 2i) + [bx]N ) − �2jwt,i�N.

Intuitively, (3) does not hold if there exists a multiple of N between 2j([atx]N (1+
2i) + [bx]N ) and 2jwt,iN . Denote ∆t,i = 2jwt,iN − 2j([atx]N (1 + 2i) + [bx]N ).
Then (3) does not hold if and only if

|∆t,i| ≥
∣
∣2j([atx]N (1 + 2i) + [bx]N )

∣
∣
N

=
∣
∣2jct,ix

∣
∣
N

,

where for z ∈ Z |z|N = min([z]N , N − [z]N) denotes the distance from z to the
closest multiple of N .

If (2) holds and for all s < t we have determined correctly the bits �1([asx]N )
then

|[atx]N − utN | = 2−t ([ax]N − u0N) ≤ 2−t−j−6δ3N,

|[bx]N − v| = 2−j−4δN.

Since 2−tδ2|1+2i| ≤ 4 for i ∈ σt (see Section 4.2) the triangular inequality gives

|∆t,i| = 2j |utN(1 + 2i)− [atx]N (1 + 2i) + vN − [bx]N | ≤
δ

64
(2−tδ2|1 + 2i| + 4)N ≤ δ

8
N.

Thus (3) does not hold only if
∣∣2jct,ix

∣∣
N

≤ δN/8. Since ct,i is uniformly dis-
tributed in ZN , the probability that (3) does not hold is at most δ/4. It completes
the proof of Lemma 6.
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5.2 Error Probability of the Majority Decisions

Throughout this section we will refer to indices i such that [2r−1ct,ix]N ∈ ΛN

as valid indices. The i-th vote in the majority decision on �1([atx]N ) is correct if
(3) holds and the reply of Oxor is correct. Following the notation of [5] we define
boolean variables τi such that τi = 1 only if the i-th vote is incorrect:

τi = 1 if and only if (3) does not hold or Oxor([ct,ix]N , πt,i) 
= πt,i([ct,ix]N ).

It is shown [5] that for any fixed t, 1 ≤ t < n, the multipliers ct,i are pairwise
independent. Thus boolean variables τi, i ∈ σt, are also pairwise independent.

Let µt be the number of valid indices i ∈ σt. The majority decision errs only
if

1
µt

∑

valid i∈σt

τi >
1
2
.

Due to the different choice of σt for t < log2 n + 4 and for t ≥ log2 n + 4 (see
Section 4.2) we divide our analysis into two parts.

Case t < log2 n + 4. Consider a step t < log2 n + 4. Since Oxor guesses
correctly with probability 1

2 +δ, Lemma 6 implies that the expected value E[τi] ≤
1/2 − 3δ/4. The majority decision errs only if

1
µt

∑

valid i∈σt

τi − E[τi] ≥ 3
4
δ.

Since the variance of any boolean variable is at most 1/4, Var[τi] ≤ 1/4. Cheby-
shev’s inequality for µt pairwise independent random variables τi gives

Pr

[
1
µt

∑

valid i∈σt

τi − E[τi] ≥ 3
4
δ

]

≤
(

3
4
δ

)−2

Var

[
1
µt

∑

valid i∈σt

τi

]

≤ 4
9µtδ2

.

Here the probability is taken over all choices of random multipliers a, b ∈R ZN ,
and internal coin flips of Oxor.

Since on average µt = mt/4 = 2tδ−2, the majority decision for �1([atx]N )
errs with probability 4

92−t. Thus the probability that at least one of the majority
decisions for t < log2 n + 4 errs is at most 4/9.

Case t ≥ log2 n+4. The technique we use for t ≥ log2 n+4 is called subsample
majority decision. It is proposed by Fischlin and Schnorr [5].

Consider a step t ≥ log2 n+4. Instead of using indices from a large sample ρ =
{i | |1 + 2i| < 26nδ−2} we use only indices from a small random subsample σ =
{i1, . . . , im} ⊂ ρ, where m = 8δ−2 log2 n (see also Section 4.2). Although original
τi, i ∈ ρ, are just pairwise independent τi1 , . . . , τim are mutually independent.
Therefore for these random variables we can use a stronger bound instead of
Chebyshev’s inequality, namely Hoeffding’s bound [8].
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Let µt be the number of valid indices i ∈ σ (the number of i ∈ σ such that
[2r−1ct,ix]N ∈ ΛN). The majority decision errs only if

1
µt

∑

valid is∈σ

τis − E[τi] ≥ 3
4
δ,

Let νt denote the number of valid indices in ρ. Denote

τ =
1
νt

∑

valid i∈ρ

τi,

where |ρ| = 26nδ−2. The majority decision errs if either τ − E[τ ] ≥ δ/4 or

1
µt

∑

valid is∈σ

τis − τ ≥ 1
2
δ.

Chebyshev’s inequality for pairwise independent τi, i ∈ ρ, gives Pr[τ − E(τ) ≥
δ/4] ≤ 4/(νtδ

2). Hoeffding’s bound [8] implies that for fixed τi, i ∈ ρ, and a
random subsample σ ⊂ ρ

Pr

[
1
µt

∑

valid is∈σ

τis − τ ≥ 1
2
δ

]

≤ exp

(

−2µt

(
δ

2

)2
)

= exp
(
−1

2
µtδ

2

)
. (6)

Since on average µt = m/4 and νt = |ρ|/4 (on average only 1/4 of the indices
are valid) the majority decision at each step t ≥ log2 n + 4 errs with probability
at most 16/(|ρ|δ2) + exp(mδ2/8) = 1/(4n) + n−1/ ln 2 < 1/(3n) for n > 29.
Thus the probability that at least one of the subsample majority decisions for
t ≥ log2 n + 4 errs is at most 1/3.

Therefore the inversion algorithm of Section 4, given EN (x), j, and N , out-
puts x with probability at least 1− (4/9 + 1/3) = 2/9. It completes the proof of
Lemma 5.

6 Complexity of the Inversion Algorithm

In this section we determine the running time of the inversion algorithm. The
unit of time we use throughout this paper is a clock cycle.

The first part of the algorithm (oracle calls) consist of n steps t = 1, . . . , n.
On average we run the algorithm Oxor mt/2 = 2 · 2tδ−2 times for t < log2 n + 4
and m/2 = 4δ−2 log2 n for t ≥ log2 n+4, therefore in total we run Oxor 32nδ−2+
4n(log2 n)δ−2 ≈ 4n(log2 n)δ−2 times. Note that the number of oracle calls does
not depend on the number of quadruples (u, v, �1([ax]N ), �1([bx]N )).

In the second part (tightening the rational approximations) we do not use
Oxor but we run a large exhaustive search cycle. The bottleneck of the second
part is multiplication �2r−1w̃t,i� · N . The size (in bits) of w̃t,i is log2(η

−1
b ) =

log2(δ−1)+ j+4 and the size of N is n. For instance, for ε = 1/2, M = 220, j = 5
we have δ = 2−26 and hence log2(η

−1
b ) = 35. Therefore we may assume that a

single multiplication takes n clock cycles. Hence the complexity of the second
part is at most the product of the following factors:
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1. Number of quadruples (u, v, �1([ax]N ), �1([bx]N )), that is η−1
a η−1

b ;
2. Number of steps t, that is n;
3. Number of votes for the majority decision, that is m/4 = 2δ−2 log2 n;
4. Complexity of the multiplication �2r−1w̃t,i� · N , that is n;

Since ηa = 2−j−6δ3, ηb = 2−j−4δ, the complexity of the second part is
211δ−6n2 log2 n clock cycles. Recall that the running time of Oxor is essentially
the same as the one of B. Thus the running time of the inversion algorithm is
4n(log2 n)δ−2(TB + 22j+9nδ−4). Lemma 5 implies that there exists algorithm R
that inverts the absolute Rabin function in expected time

TR ≤ 18n(log2 n)δ−2(TB + 22j+9nδ−4). (7)

Remark 4. The argument of [5] implies that inversion of the absolute Rabin
function needs at least (ln 2/4)nδ−2 runs of B (see also Remark 3). Therefore
the number of oracle runs in the above inversion algorithm is optimal up to a
factor of log2 n. However, in (7) we also have a second component that cannot
be neglected in practice.

7 Concrete Security of the BBS

In this section we state our main result about the concrete security of the BBS
pseudorandom generator. We give a bound for running time TA and advantage
ε such that the BBS generator is (TA, ε)-secure (Theorem 3).

Theorem 1. Suppose the BBS pseudorandom generator is not (TA, ε)-secure.
Then there exist an algorithm F that factors the modulus N in expected time

TF ≤ 36n(log2 n)δ−2(TA + 22j+9nδ−4),

where δ = (2j − 1)−1M−1ε.

Proof. The statement follows from (7), Lemma 1, and Lemma 2.

Therefore a statistical test that distinguishes the BBS sequences from random
sequences can be used to factor the modulus N . However, we observe that the
reduction is not tight in the sense that for a practical choice of parameters TF �
TA. Furthermore, Remark 4 implies that the reduction for the BBS generator
cannot be significantly tighter. There is a large gap between security of this
pseudorandom generator and the factoring problem.

In order to complete the concrete security analysis of the BBS generator we
will assume a concrete lower bound on the hardness of integer factoring, which
is obtained by extrapolating the best factorization results to date.



Concrete Security of the BBS Pseudorandom Generator 371

7.1 Hardness of Factoring

The fastest general-purpose factoring algorithm today is the general number field
sieve. According to [4,11] on heuristic grounds the number field sieve is expected
to require time proportional to γ exp((1.9229 + o(1))(ln N)1/3(ln lnN)2/3) for
a constant γ. Following [4] we make an assumption that the o(1)-term can be
treated as zero. From this we can calculate γ.

Let L(n) be the number of clock cycles needed to factor an n-bit integer.
We assume that L(n) ≈ γ exp(1.9229(n ln 2)1/3(ln(n ln 2))2/3). Experience from
available data points suggests that L(512) ≈ 3 · 1017 clock cycles, therefore
γ ≈ 2.8 · 10−3 and

L(n) ≈ 2.8 · 10−3 · exp(1.9229(n ln 2)1/3(ln(n ln 2))2/3). (8)

Assumption 2. No algorithm can factor a randomly chosen n-bit Blum-integer
in expected time T < L(n), where L(n) is given by (8).

All the results below hold under the above assumption.

Theorem 3 (Concrete security of the BBS). Under Assumption 2, the
BBS pseudorandom generator is (TA, ε)-secure if

TA ≤ L(n)
36n(log2 n)δ−2

− 22j+9nδ−4, (9)

where δ = (2j − 1)−1M−1ε.

7.2 Comparison with Known Results

Thus we have shown that there exist a reduction a successful attack on the
BBS generator to factoring. While for asymptotic security it suffices to give a
polynomial time reduction, we need for concrete security a reduction that is
as efficient as possible. In this subsection we compare the complexity of our
reduction, given by Theorem 3, with the results of [1,15,5].

A close look at the security proof of Alexi et al. [1] gives the following lemma.

Lemma 7 (Alexi et al.). Under Assumption 2, the BBS pseudorandom gen-
erator is (TA, ε)-secure if

TA ≤ L(n)
22724jn3ε−8M8

. (10)

Recall that M denotes the length of the output of the BBS generator (e.g.,
M = 220). Formula (10) has M8 in the denominator whereas (9) has M2. Thus
our security proof is stronger than the one of [1].

A disadvantage of [15] is that this paper deals only with deterministic sta-
tistical tests, thus the result can not be expressed in terms of Definition 3.
Furthermore [15] uses [1] as a building block so the complexity of the reduction
proposed is of the same order.

The lemma below is due to Fischlin and Schnorr [5]. It establishes the con-
crete security of the BBS generator with 1 output bit per iteration.
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Lemma 8 (Fischlin and Schnorr). Under Assumption 2, the BBS pseudo-
random generator with 1 output bit per iteration is (TA, ε)-secure if

TA ≤ L(n)
6n(log2 n)ε−2M2

− 27nε−2M2 log2(8nε−1M). (11)

Here the denominator of the first component in the righthand side is essen-
tially the same as the one in (9) for j = 1. The second component in (11) is
smaller in the absolute value than the second component in (9) by a factor of
ε−2M−2. The reason is that there is a trick in the reduction [5] (namely, process-
ing all approximate locations simultaneously) that allows to decrease the second
component. We do not know if it is possible to apply this trick for j > 1 and
we leave this question as an open problem. In the below example the factor of
ε−2M−2 in the second component does not affect the final conclusion about the
optimal value of j.

7.3 Example

An important application of Theorem 3 is that it can be used to determine the
optimal values for the parameters of the BBS generator.

Suppose our goal is to generate a sequence of M = 220 bits such that no
adversary can distinguish this sequence from truly random binary sequence in
time TA = 2100 clock cycles with advantage ε = 1/2. The question is what length
of the modulus n and parameter j should be used to minimize the computational
effort per output bit.

Inequalities (9) and (11) connect the security parameters (TA, ε) with pa-
rameters of the BBS (M, n, j) for j ≥ 1 and j = 1 respectively. In order to find
the optimal n and j we fix TA, ε, M and consider n as a function of j.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
j

5�106

1�107

1.5�107

2�107

nj
2

�����������
j Computationalwork of the BBS

Fig. 1. The computational work of the BBS is minimal for j = 5
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The computational work of the BBS (the running time needed to output
a pseudorandom sequence) is proportional to n2/j (each modular multiplica-
tion costs O(n2) binary operations so the generation of a BBS sequence takes
O(Mn2/j) operations). Figure 1 displays the computational work of the BBS
for j ∈ [1, 15]. There are two values of the computational work for j = 1 on the
figure. The smaller value results from (11) and the larger one results from (9).
For j = 1 the reduction [5] is more efficient. Nevertheless, the difference turns
out to be not significant and we observe that extraction of 5 bits per iteration
makes the BBS about 2 times faster in comparison with 1 bit case. However, even
for j = 5 the BBS is quite slow since the corresponding length of the modulus
n = 6800.

It is not true that it always pays off to extract more that 1 bit on each
iteration. The optimal number of bits to be extracted on each iteration depends
on the length of the output sequence M and on the security parameters TA, ε.
For instance, for M = 230 it turns out that the best choice is j = 1.

8 Concluding Remarks and Open Problems

Security of the BBS genarator has been thoroughly analyzed [1,2,5,6]. Never-
theless, it has been uncertain how to select the size of the modulus and the
number of bits extracted on each iteration such that a desired level of security is
reached, while minimizing the computational effort per output bit. In this paper
we answer this question.

Generalizing the ideas of [5,15] we propose a new security proof for the BBS
generator with several output bits per iteration. The new reduction is more
efficient than all previously known reductions.

With minor changes our argument can be applied for the analysis of the RSA
pseudorandom generator.

However, the new reduction is still not tight. There is a large gap between
the security of BBS generator and the factoring problem. Moreover, using the
information-theoretic approach, Fischlin and Schnorr [5] show that the security
reduction for BBS cannot be significantly tighter. Searching for the construc-
tions based on the factoring problem with tight security reduction is one of the
challenging problems in the theory of provably secure pseudorandom generators.
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A Proof of Lemma 4

Lemma 4 states that if (3) holds then

πt,i([2r−1ct,ix]N ) = �1([ct,ix]N ) + +πt,i(Lr(−�2r−1w̃t,i�N)) mod 2.

To prove this lemma we will show that

πt,i([2r−1ct,ix]N ) = πt,i(2r−1[ct,ix]N − �2r−1w̃t,i�N) (12)

and

�1([ct,ix]N ) + πt,i(Lr(−�2r−1w̃t,i�N)) =

πt,i(2r−1[ct,ix]N − �2r−1w̃t,i�N) mod 2.
(13)
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It can be shown that if (3) holds then for all r, 0 ≤ r ≤ j,

[2r−1ct,ix]N = 2r−1[ct,ix]N − �2r−1w̃t,i�N. (14)

Applying function πt,i to both sides of (14) gives (12). To prove (13) we first
note that

Lr(2r−1[ct,ix]N − �2r−1w̃t,i�N) =

(2r−1�1([ct,ix]N ) + Lr(−�2r−1w̃t,i�N)) mod 2r.
(15)

From (14) follows that 2r−1[ct,ix]N − �2r−1w̃t,i�N ≥ 0. Hence in this case Lr

corresponds to r least-significant bits. Thus applying function πt,i to the left-
hand side of (15) gives

πt,i(Lr(2r−1[ct,ix]N − �2r−1w̃t,i�N)) = πt,i(2r−1[ct,ix]N − �2r−1w̃t,i�N). (16)

Then we apply πt,i to the right-hand side of (15):

πt,i((2r−1�1([ct,ix]N ) + Lr(−�2r−1w̃t,i�N)) mod 2r) =

πt,i(2r−1�1([ct,ix]N ) + Lr(−�2r−1w̃t,i�N)) =

�1([ct,ix]N ) + πt,i(Lr(−�2r−1w̃t,i�N)) mod 2,

(17)

since πt,i ⊂ {1, . . . , r}, r ∈ πt,i. (15), (16), and (17) result in (13). It completes
the proof of Lemma 4.
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