

Lecture Notes in Computer Science 3796
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Nigel P. Smart (Ed.)

Cryptography
and Coding

10th IMA International Conference
Cirencester, UK, December 19-21, 2005
Proceedings

13

Volume Editor

Nigel P. Smart
University of Bristol
Department of Computer Science
Woodland Road, Bristol, BS8 1UB, UK
E-mail: nigel@cs.bris.ac.uk

Library of Congress Control Number: 2005936359

CR Subject Classification (1998): E.3-4, G.2.1, C.2, J.1

ISSN 0302-9743
ISBN-10 3-540-30276-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30276-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11586821 06/3142 5 4 3 2 1 0

Preface

The 10th in the series of IMA Conferences on Cryptography and Coding was held
at the Royal Agricultural College, Cirencester, during 19–21 December 2005. As
usual, the venue provided a relaxed and informal atmosphere for attendees to
discuss work and listen to the collection of talks.

The program consisted of four invited talks and 26 contributed talks. The
invited talks where given by Tuvi Etzion, Ueli Maurer, Alfred Menezes and Amin
Shokrollahi, and three of these invited talks appear as papers in this volume.
Special thanks must go to these four speakers as they helped to set the tone, by
covering all the areas the meeting aimed to cover, from cryptography through to
coding. In addition the best speakers are often the hardest to persuade to come
to a meeting, as they are usually the most busy. We therefore feel privileged to
have had a meeting with four such distinguished speakers.

The contributed talks were selected from 94 submissions. This is nearly twice
the number of submissions for the previous meeting in 2003. This is an indication
of the strength of the subject and the interest in the IMA series of meetings as
a venue to present new work. The contributed talks ranged over a wide number
of areas, including information theory, coding theory, number theory and asym-
metric and symmetric cryptography. Subtopics included a number of current
“hot topics,” such as algebraic cryptanalysis and cryptographic systems based
on bilinear pairings.

Assembling the conference program and these proceedings required the help
of a large number of individuals. I would like to thank them all here.

Firstly, thanks must go to the Program Committee and their subreferees who
aided in evaluating the contributed papers and coming to a difficult decision as
to what to include and what to exclude. We had to reject a number of papers
simply due to lack of space.

For the first time the IMA Program Committee used the WebReview software
from K.U. Leuven. This is an excellent program, which greatly helped myself as
Program Chair in collating and mediating the referee reports. Thanks must go
to the authors and maintainers of this program. Particular thanks must also go
to Richard Noad, one of my Research Assistants at Bristol, who dealt with all
the technical issues with mounting the servers and generally acted as a right-
hand-man throughout the process.

Thanks must also go to the authors of the submitted papers, and in particular
to those whose papers were accepted. The authors of the accepted papers co-
operated in compiling this volume, often meeting very tight deadlines imposed
by the publication schedule. Thanks must also go to the staff of Springer, in
particular Alfred Hofmann who helped in a large number of ways.

Valuable sponsorship of the meeting was provided by Hewlett-Packard Labo-
ratories and Vodafone. We thank them for their contributions.

VI Preface

Finally, thanks must go to the staff of the IMA, in particular Pamela Bye and
Lucy Nye, who dealt with all the day-to-day issues and allowed the Program
Committee to concentrate on the science. A conference such as this could not
take place without their help.

September 2005 Nigel Smart
Program Chair

Cryptography and Coding 2005
December 19–21, 2005, Cirencester, United Kingdom

Sponsored by the
The Institute of Mathematics and its Applications (IMA)

in cooperation with
Hewlett-Packard Laboratories and Vodafone Ltd.

Program Chair

Nigel Smart .University of Bristol

Program Committee
Steve Babbage . Vodafone Group Services Ltd.
Bahram Honary . University of Lancaster
Steven Galbraith . Royal Holloway, University of London
Chris Mitchell . Royal Holloway, University of London
David Naccache . École Normale Supérieure
Matthew Parker . University of Bergen
Kenny Paterson . Royal Holloway, University of London
Ana Salagean . Loughborough University
Frederik Vercauteren . K.U. Leuven
Mike Walker . Vodafone Group Services Ltd.
Gilles Zemor . ENST, Paris

External Referees

Claude Barral
Eric Brier
Alister Burr
Julien Cathalo
Benoit Chevallier-Mames
Carlos Cid
Mathieu Ciet
Gerard Cohen
Nicolas Courtois
Alex Dent
Jean-François Dhem
Eran Edirisinghe

Nicolas Gresset
Helena Handschuh
Marc Joye
Caroline Kudla
Arjen Lenstra
John Malone-Lee
Keith Martin
Philippe Martins
Jean Monnerat
David M’Raihi
Gregory Neven
Katie O’Brien

Dan Page
Havard Raadum
Vincent Rijmen
Jasper Scholten
Martijn Stam
Emmanuel Thomé
Claire Whelan
Andreas Winter
Christopher Wolf

Table of Contents

Invited Papers

Abstract Models of Computation in Cryptography
U. Maurer . 1

Pairing-Based Cryptography at High Security Levels
N. Koblitz, A. Menezes . 13

Improved Decoding of Interleaved AG Codes
A. Brown, L. Minder, A. Shokrollahi . 37

Coding Theory

Performance Improvement of Turbo Code Based on the Extrinsic
Information Transition Characteristics

W.T. Kim, S.H. Kang, E.K. Joo . 47

A Trellis-Based Bound on (2, 1)-Separating Codes
H.G. Schaathun, G.D. Cohen . 59

Tessellation Based Multiple Description Coding
C. Cai, J. Chen . 68

Exploiting Coding Theory for Collision Attacks on SHA-1
N. Pramstaller, C. Rechberger, V. Rijmen . 78

Signatures and Signcryption

Hash Based Digital Signature Schemes
C. Dods, N.P. Smart, M. Stam . 96

A General Construction for Simultaneous Signing and Encrypting
J. Malone-Lee . 116

Non-interactive Designated Verifier Proofs and Undeniable Signatures
C. Kudla, K.G. Paterson . 136

X Table of Contents

Symmetric Cryptography

Partial Key Recovery Attacks on XCBC, TMAC
and OMAC

C.J. Mitchell . 155

Domain Expansion of MACs: Alternative Uses of the FIL-MAC
U. Maurer, J. Sjödin . 168

Normality of Vectorial Functions
A. Braeken, C. Wolf, B. Preneel . 186

Related-Key Differential Attacks on Cobra-H64
and Cobra-H128

C. Lee, J. Kim, J. Sung, S. Hong, S. Lee, D. Moon 201

Side Channels

The Physically Observable Security of Signature Schemes
A.W. Dent, J. Malone-Lee . 220

On the Automatic Construction of Indistinguishable Operations
M. Barbosa, D. Page . 233

Efficient Countermeasures for Thwarting the SCA Attacks on the
Frobenius Based Methods

M. Hedabou . 248

Algebraic Cryptanalysis

Complexity Estimates for the F4 Attack on the Perturbed
Matsumoto-Imai Cryptosystem

J. Ding, J.E. Gower, D. Schmidt, C. Wolf, Z. Yin 262

An Algebraic Framework for Cipher Embeddings
C. Cid, S. Murphy, M.J.B. Robshaw . 278

Probabilistic Algebraic Attacks
A. Braeken, B. Preneel . 290

Table of Contents XI

Information Theoretic Applications

Unconditionally Secure Information Authentication in Presence of
Erasures

G. Jakimoski . 304

Generalized Strong Extractors and Deterministic Privacy Amplification
R. König, U. Maurer . 322

On Threshold Self-healing Key Distribution Schemes
G. Sáez . 340

Number Theoretic Foundations

Concrete Security of the Blum-Blum-Shub Pseudorandom Generator
A. Sidorenko, B. Schoenmakers . 355

The Equivalence Between the DHP and DLP for Elliptic Curves Used
in Practical Applications, Revisited

K. Bentahar . 376

Pairings on Elliptic Curves over Finite Commutative Rings
S.D. Galbraith, J.F. McKee . 392

Public Key and ID-Based Encryption Schemes

A Key Encapsulation Mechanism for NTRU
M. Stam . 410

Efficient Identity-Based Key Encapsulation to Multiple Parties
M. Barbosa, P. Farshim . 428

Security Proof of Sakai-Kasahara’s Identity-Based Encryption Scheme
L. Chen, Z. Cheng . 442

Author Index . 461

Abstract Models of Computation in
Cryptography

Ueli Maurer�

Department of Computer Science,
ETH Zurich, CH-8092 Zurich, Switzerland

maurer@inf.ethz.ch

Abstract. Computational security proofs in cryptography, without un-
proven intractability assumptions, exist today only if one restricts the
computational model. For example, one can prove a lower bound on the
complexity of computing discrete logarithms in a cyclic group if one con-
siders only generic algorithms which can not exploit the properties of the
representation of the group elements.

We propose an abstract model of computation which allows to capture
such reasonable restrictions on the power of algorithms. The algorithm
interacts with a black-box with hidden internal state variables which al-
lows to perform a certain set of operations on the internal state variables,
and which provides output only by allowing to check whether some state
variables satisfy certain relations. For example, generic algorithms corre-
spond to the special case where only the equality relation, and possibly
also an abstract total order relation, can be tested.

We consider several instantiation of the model and different types of
computational problems and prove a few known and new lower bounds
for computational problems of interest in cryptography, for example that
computing discrete logarithms is generically hard even if an oracle for
the decisional Diffie-Hellman problem and/or other low degree relations
were available.

1 Introduction and Motivation

1.1 Restricted Models of Computation

Proving the security of a certain cryptographic system means to prove a lower
bound on the hardness of a certain computational problem. Unfortunately, for
general models of computation no useful lower bound proofs are known, and it is
therefore interesting to investigate reasonably restricted models of computation
if one can prove relevant lower bounds for them.

In a restricted model one assumes that only certain types of operations are
allowed. For example, in the monotone circuit model one assumes that the circuit
performing the computation consists only of AND-gates and OR-gates, excluding
NOT-gates. Such a restriction is uninteresting from a cryptographic viewpoint
since it is obvious that an adversary can of course perform NOT-operations.
� Supported in part by the Swiss National Science Foundation.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 1–12, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 U. Maurer

Nevertheless, some restricted models are indeed meaningful in cryptography,
for example the generic model which assumes that the properties of the repre-
sentation of the elements of the algebraic structure (e.g. a group) under con-
sideration can not be exploited. In view of the fact that for some problems, for
example the discrete logarithm problem on general elliptic curves, exploiting the
representation is not known to be of any help and hence generic algorithms are
the best known, such an assumption is reasonable from a practical viewpoint.1

The purpose of this paper is to provide a simple framework for such restricted
models of computation and to prove some lower bounds. Generic algorithms
are the simplest case. Some of the presented results are interpretations and
generalizations of previous results, for instance of [10] and [4].

1.2 Generic Algorithms and Computing Discrete Logarithms

In order to compute with the elements of a set S (e.g. a group), one must repre-
sent the elements as bitstrings (without loss of generality). A representation is
a bijective mapping from S to the set of bitstrings. A generic algorithm works
independently of the representation. The term generic means that one can not
exploit non-trivial properties of the representation of the elements, except for
two generic properties that any representation has. First, one can test equality of
elements, and second one can impose a total order relation � on any representa-
tion, for example the usual lexicographic order relation on the set of bitstrings.
However, one can generally not assume that the representation is dense or sat-
isfies any regularity or randomness condition.

In order to motivate the model to be introduced, we briefly discuss generic
algorithms for computing discrete algorithms in a cyclic group G. A cyclic group
G of order n, generated by a generator g, is isomorphic to the additive group Zn.
A generic algorithm for computing the discrete logarithm (DL) x of an element
b = gx to the base g in G can be modeled as follows. The algorithm is given a
black-box which contains x. It can also input constants into the box2 and add
values in the box. The only information reported back from the box is when an
equality (collision) between two computed elements occurs. The algorithm’s task
is to extract x by provoking collisions and computing x from the collision pattern.
The order relation allows to establish ordered tables of the generated values and
thus reduces the number of equality tests required, but it does not allow to reduce
the number of computed values and is ignored in most of the following.

If one is interested in proving a lower bound on the number of operations
for any generic algorithm, then one can consider the simpler objective of only
provoking a single collision and that all equalities of elements are reported for
free. Since only additions and the insertion of constants are allowed, every value
computed in the box is of the form ax + b (modulo n) for known values a and
1 In contrast, for computing discrete logarithms in Z∗

p for a prime p, quite sophisti-
cated algorithms are known (e.g. index calculus) which exploit that the elements are
integers that can be factored into primes.

2 One can also assume that the box contains only 1 and x initially and constants must
be computed explicitly from 1 by an addition-and-doubling algorithm.

Abstract Models of Computation in Cryptography 3

b. For uniform x the probability that two such values ax + b and a′x + b′ collide
is easily seen to be at most 1/q, where q is the largest prime factor of n. Hence
the total probability of provoking a collision is upper bounded by

(
k
2

)
/q and

therefore the running time of any algorithm with constant success probability is
at least O(

√
q).

The simplest non-trivial generic DL algorithm is the so-called baby-step
giant-step algorithm with complexity O(

√
n log n). It need not know the group

order n, an upper bound on n suffices, and it is the best known algorithm when
the group order is unknown. The Pohlig-Hellman algorithm [7] is also generic
and a bit more sophisticated. It makes use of the prime factorization of n and
has complexity O(

√
q log q), which is essentially optimal.

1.3 Discussion and Generalization of the Model

This view of a generic algorithm appears to be simpler than the model usu-
ally considered in the literature, introduced by Shoup [10], where one assumes
that access to group elements is via a randomly selected representation. This
complicates the random experiment in which the algorithm’s success probabil-
ity is to be analyzed. Also, in a realistic setting one has no guarantee that the
representation corresponds in any way to a random mapping.

As a generalization of the described approach, one can also model that one
can exploit certain additional information from the representation of the ele-
ments, for instance that one can test certain relations efficiently. As an example,
one can imagine that one can efficiently test for any three elements x, y and z
whether xy = z, which corresponds to assuming the availability of a decisional
Diffie-Hellman (DDH) oracle. For this setting one can still prove an O(3

√
q) lower

bound for the discrete logarithm problem.

2 An Abstract Model of Computation

2.1 The Model

We consider an abstract model of computation characterized by a black-box
B which can store values from a certain set S (e.g. a group) in internal state
variables V1, V2, . . . , Vm. The storage capacity m can be finite or unbounded.

The initial state consists of the values of V d := [V1, . . . , Vd] (for some d < m,
usually d is 1, 2, or 3), which are set according to some probability distribution
PV d (e.g. the uniform distribution).

The black-box B allows two types of operations, computation operations on
internal state variables and queries about the internal state. No other interaction
with B is possible.3 We give a more formal description of these operations:
3 This model captures two aspects of a restricted model of computation. The com-

putation operations describe the types of computations the black-box can perform,
and the state queries allow to model precisely how limited information about the
representation of elements in S can be used. A quantum computer is another type of
device where only partial information about the state can be obtained, but it could
not be captured in our model.

4 U. Maurer

– Computation operations. For a set Π of operations on S of some arities
(nullary, unary, binary, or higher arity), a computation operations consist of
selecting an operation f ∈ Π (say t-ary) as well as the indices i1, . . . , it+1 ≤
m of t + 1 state variables.4 B computes f(Vi1 , . . . , Vit) and stores the result
in Vit+1 .5

– Queries. For a set Σ of relations (of some arities) on S, a query consist of
selecting a relation ρ ∈ Σ (say t-ary) as well as the indices i1, . . . , it ≤ m of
t state variables. The query is replied by ρ(Vi1 , . . . , Vit).

A black-box B is thus characterized by S, Π , Σ, m, and d. As mentioned
above, one can include an abstract total order relation �.

2.2 Three Types of Problems

We consider three types of problems for such black-boxes, where the problem
instance is encoded into the initial state of the device.

– Extraction: Extract the initial value x of V1 (where d = 1).6

– Computation: Compute a function f : Sd → S of the initial state within B,
i.e., one must achieve Vi = f(x1, . . . , xd) for some (known) i, where x1, . . . , xd

are the initial values of the state variables V1, . . . , Vd.
– Distinction: Distinguish two black-boxes B and B′ of the same type with

different distributions of the initial state V d.

An algorithm for solving one of these problems is typically assumed to be
computationally unbounded, but it is restricted in terms of the number k of
interactions with the black-box it can perform. The memory capacity m can
also be seen as a parameter of the algorithm.

One is often only interested in the computation queries, especially when
proving lower bounds, and can then assume that, for every (say t-ary) relation
ρ ∈ Σ, B provides all lists (i1, . . . , it) such that ρ(ui1 , . . . , uit) for free. We prove
lower bounds in this model.

The success probability of an algorithm is taken over the choice of the initial
state V1, . . . , Vd and the (possible) randomness of the algorithm. The advantage
of a distinguisher is defined as usual.

3 Concrete Settings

In this section we consider a few concrete instantiations of the model which are
of interest in cryptography.
4 This information is the input to B.
5 A special case are constant functions, i.e., the operation of setting an internal state

variable Vi to a particular value c ∈ S. If m is unbounded, then one can assume
without loss of generality that each new result is stored in the next free state variable.

6 More generally, one could consider the problem of extracting more general informa-
tion about the initial state. This can be formalized by a function g : Sd → Q for
some Q, where the task is to guess g(V1, . . . , Vd).

Abstract Models of Computation in Cryptography 5

3.1 Notation

We introduce some notation. Let C denote the set of constant (nullary) opera-
tions, which correspond to inserting a constant into the black-box. For a ring
S, let L denote the set of linear functions (of the form a1V1 + · · · + adVd) on
the initial state V d. For a multiplicatively written operation (e.g. of a ring) S,
let square denote the binary relation {(x, y) : y = x2}, let power(e) denote
{(x, y) : y = xe}, and let prod denote the ternary relation {(x, y, z) : z = xy}.

For a given set Π of operations, let Π be the set of functions on the initial
state that can be computed using operations in Π .

3.2 Extraction Problems with Constant and Unary Operations

The simplest case of an extraction problem to consider is when Π = C and
Σ = {=}, i.e., one can only input constants and check equality.7 It is trivial
that the best strategy for the extraction problem is to randomly guess, and the
success probability of any k-step algorithm is bounded by k/|S|, i.e., the com-
plexity for achieving a constant success probability is O(|S|). This bound holds
independently of whether one counts equality checks or whether one assumes a
total order � on S. This bound is trivially achievable with constant memory m.

If one would also allow to check a more general relation than equality (i.e.,
Σ = {=, ρ} for some ρ), then better algorithms may exist. But the above upper
bound generalizes easily to kd/|S|, where

d = max
u∈S

|{v ∈ S : uρv ∨ vρu}|

is the maximal vertex degree of the relation graph. Note that d = 1 for the
equality relation. If d is large, there can exist efficient algorithms. For example,
if Σ = {=, ≤} and S is totally ordered by the relation ≤, then one can use the
binary search algorithm with running time O(log |S|), which is optimal.8 It may
be interesting to consider other relations.

We return to the case Σ = {=} but now allow some unary operations.

Theorem 1. Let � be a group operation on S, let Π = C ∪ {x 	→ x � a | a ∈ S}
consist of all constant functions and multiplications by constants, and let Σ =
{=}. The success probability of every k-step algorithm for extraction is upper
bounded by 1

4k2/|S|, and by km/|S| if m is bounded.

Proof. We use three simple general arguments which will be reused implicitly
later. First, we assume that as soon as some collision occurs (more generally, some
relation in Σ is satisfied for some state variables) in the black-box, the algorithm

7 This corresponds to a card game where one has to find a particular card among n
cards and the only allowed operation is to lift a card, one at a time.

8 Note that the previously discussed order relation � can not be used to perform
a binary search because it is not known explicitly, but only accessible through an
oracle.

6 U. Maurer

is successful.9 One can therefore concentrate on algorithms for provoking some
collision by computing an appropriate set of values in the black-box.

Second, we observe, as a consequence of Lemma 2 in Appendix B, that if the
only goal is to provoke a deviation of a system from a fixed behavior (namely
that it reports no collisions), then adaptive strategies are not more powerful than
non-adaptive ones.

Third, for lower-bound proofs we can assume that an algorithm can not only
perform operations in Π but can, in every step, compute a function in Π (of
the initial state V d). This can only improve the algorithm’s power. Without
loss of generality we can assume that only distinct functions are chosen by the
algorithm.

In the setting under consideration, the composition of two operations in Π is
again in Π , i.e., Π = Π . For all x ∈ S and distinct a and b we have x� a
= x� b.
Thus collisions can occur only between operations of the form x 	→ x � a and
constant operations. Let u and v be the corresponding number of operations
the algorithm performs, respectively. Then the probability of a collision is upper
bounded by uv/|S|. The optimal choice is u = v ≈ k/2, which proves the first
claim.

If m is finite, then in each of the k steps the number of potential collisions is
at most m−1. The total number of x for which any of these collisions can occur
is at most k(m − 1). �

The implied lower bound k = O(
√

n) for constant success probability can
essentially be achieved even by only allowing a certain single unary operation,
for example increments by 1 when S = Zn, i.e., Π = C ∪ {x 	→ x + 1}. This
is the abstraction of the baby-step giant-step (BSGS) algorithm: One inserts
equidistant constants with gap t ≈ √

n and increments the secret value x until
a collision with one of these values occurs. If one considers a total order relation
� one can generate a sorted table of stored values.10

3.3 The Group {0, 1}�

We consider the group {0, 1}� with bit-wise XOR (denoted ⊕) as the group
operation. As an application of Theorem 1 we have:

Corollary 1. For S = {0, 1}�, Π = C∪{⊕} and Σ = {=} the success probability
of every k-step extraction algorithm is upper bounded by 1

4k22−�.

Proof. Any sequence of operations is equivalent wither to a constant function
or the addition of a constant, i.e., the set Π of computable functions is Π =
C ∪ {x ⊕ a | a ∈ {0, 1}�}. Hence we can apply Theorem 1. �

9 Phrased pictorially, we assume a genie who provides x for free when any collision
occurs.

10 Note that the BSGS algorithm can also be stated as an algorithm for a group with
group operation �, where Π = {1, �}, Σ = {=, �}, and the addition operation is
needed to compute other constants from the constant 1.

Abstract Models of Computation in Cryptography 7

It is easy to give an algorithm essentially matching the lower bound of O(2�/2)
implied by the above corollary.

3.4 Discrete Logarithms in Cyclic Groups

We now consider the additive group Zn. The extraction problem corresponds to
the discrete logarithm (DL) problem for a cyclic group of order n.11

In the sequel, let p and q denote the smallest and largest prime factor of n,
respectively.

Theorem 2. For S = Zn, Π = C ∪ {+} and Σ = {=} the success probability
of every k-step extraction algorithm is upper bounded 1

2k2/q and by km/q if the
memory m is bounded.

Proof. We have Π = L = {ax + b | a, b ∈ Zn}. As argued above, we need to
consider only non-adaptive algorithms for provoking a collision. Consider a fixed
algorithm computing in each step (say the ith) a new value aix+bi, keeping m−1
of the previously generated values in the state. A collision occurs if aix + bi ≡n

ajx + bj for some distinct i and j, i.e., if (ai − aj)x + (bi − bj) ≡n 0. Considered
modulo q, this congruence has one solution for x (according to Lemma 1). The
total number of x for which any collision modulo q (which is necessary for a
collision modulo n) can occur is bounded by k(m−1). If m is unbounded (actually
O(

√
q) is sufficient), then the number of such x is bounded by

(
k
2

)
.12 �

The case of unbounded m corresponds to the results of Nechaev [6] and
Shoup [10], but the proof in [10] is somewhat more involved because a random
permutation of the group representation is explicitly considered and makes the
random experiment more complex. The Pohlig-Hellman algorithm requires k =
O(

√
q log q) operations and essentially matches this bound. If the equality checks

are also counted in k and no order relation is available, then k = O(n) is required.
It is worthwhile to discuss the bounded-memory case. The theorem implies

that the complexity of every algorithm achieving a constant success probability
is O(n/m), which is linear in n for constant m. Since memory is bounded in
reality and m = O(

√
q) is typically infeasible, it appears that this result is a

significant improvement of the lower bound over the unbounded memory case.
However, this is in conflict with the fact that the Pollard-ρ algorithm [8] requires
constant memory and also has (heuristic) complexity O(

√
q). The reason is that

when a representation for S is explicitly available, then one can explicitly define
a function on S, for example to partition the set S in a heuristically random
manner into several subsets (three subsets in case of the Pollard-ρ algorithm).
It is interesting to model this capability abstractly in the spirit of this paper.

11 For other groups, such as {0, 1}� discussed in the previous section, the extraction
problem can be seen as a generalization of the DL problem.

12 If no collision has occurred, one could allow the algorithm one more guess among the
values still compatible with the observation of no collision, but this can be neglected.

8 U. Maurer

3.5 The DL-Problem with a DDH-Oracle or Other Side Information

Let us consider the following natural question: Does a DDH-oracle help in com-
puting discrete logarithms? Or, stated differently, can one show that even if the
DDH-problem for a given group is easy, the DL-problem is still hard for generic
algorithms. It turns out that the DDH oracle can indeed be potentially helpful,
but not very much so.

Theorem 3. For S = Zn, Π = C ∪ {+} and Σ = {=, prodn} the success
probability of every k-step extraction algorithm is upper bounded by 2k3 + 1

2k2.
Every algorithm with constant success probability has complexity at least O(3

√
q).

Proof. Each computed value is of the form aix + bi for some ai and bi. The
product relation is satisfied for three computed values if

(aix + bi)(ajx + bj) = akx + bk

for some i, j, k, which is equivalent to

aiajx
2 + (aibj + ajbi − ak)x + bibj − bk = 0,

a quadratic equation for x which has two solutions modulo q. There are k3 such
triples i, j, k. When also counting the potential collisions for the equality relation,
the number of x modulo q for which one of the relations holds is bounded by
2k3 +

(
k
2

)
. �

A similar argument shows that when one considers a relation involving more
than three variables, then the complexity lower bound decreases. For example,
if we consider an oracle for the triple-product relation {(w, x, y, z) : z = wxy},
then we get a lower bound of O(4

√
q). It would be interesting to show that these

bounds can be (or can not be) achieved.
A similar argument as those used above shows that when an oracle for the

e-th power relation (i.e., xj = xe
i) is available, then every generic algorithm has

complexity O(
√

q/e).

3.6 Product Computation in Zn and the CDH Problem

We now consider the computation problem for the product function (x, y) 	→ xy
in Zn. This corresponds to the generic computational Diffie-Hellman (CDH)
problem in a cyclic group of order n analyzed already in [10]. Essentially the
same bounds can be obtained for the squaring function x 	→ x2 in Zn. This
theorem shows that for generic algorithms, the DL and the CDH problems are
essentially equally hard.

Theorem 4. For S = Zn, Π = C ∪{+} and Σ = {=} the success probability of
every k-step algorithm for computing the product function is upper bounded by
1
2 (k2 + 3k)/q.

Abstract Models of Computation in Cryptography 9

Proof. Again, to be on the safe side, we can assume that as soon as a collision
occurs among the values aix + bi, the algorithm is successful. In addition, we
need to consider the events aix + bi ≡n xy (for some i). For every i there
are two solutions modulo q (according to Lemma 1). Hence the total number
of x (modulo q) for which one of the collision events occurs is bounded by(
k
2

)
+ 2k = 1

2 (k2 + 3k). �
One can also show a O(3

√
n) generic lower bound for the CDH-problem when

given a DDH-oracle.

3.7 Decision Problems for Cyclic Groups

We consider the decision problem for the squaring and product relations in Zn.

Theorem 5. For S = Zn, Π = C ∪ {+} and Σ = {=} the advantage of every
k-step algorithm for distinguishing a random pair (x, y) from a pair (x, x2) is
upper bounded by k2/p.

Proof. Again we can assume that as soon as a collision occurs among the values
aix + bi, the algorithm is declared successful. Hence it suffices to compute the
probabilities, for the two settings, that a collision can be provoked, and take the
larger value as an upper bound for the distinguishing advantage. For the pair
(x, x2) the set of computable functions is {ax2 + bx + c | a, b, c ∈ Zn}, i.e., the
ith computed value is of the form

aix
2 + bix + ci

(in Zn) for some ai, bi, ci. For any choice of (ai, bi, ci)
= (aj , bj , cj) we must
bound the probability that

aix
2 + bix + ci ≡n ajx

2 + bjx + cj

for a uniformly random value x. This is equivalent to

(ai − aj)x2 + (bi − bj)x + (ci − cj) ≡n 0.

There must be at least one prime factor p of n (possibly the smallest one) such
that (ai, bi, ci) and (aj , bj , cj) are distinct modulo p. The number of solutions x
of the equation modulo p is at most 2 (according to Lemma 1). Hence the total
probability of provoking a collision modulo p (and hence also modulo n) is upper
bounded by

(
k
2

)
2/p < k2/p.

This should be compared to the case where the pair (x, y) consists of two
independent random values. The number of solutions (x, y) of

(ai − aj)y + (bi − bj)x + (ci − cj) ≡q 0

for any choice of (ai, bi, ci)
= (aj , bj, cj) is at most p. Hence the collision prob-
ability is, for all generic algorithms, upper bounded by

(
k
2

)
/p < 1

2k2/p. This
concludes the proof. �

10 U. Maurer

A very similar argument can be used to prove the same bound for the decision
problem for the product relation, which corresponds to the generic decisional
Diffie-Hellman (DDH) problem in a cyclic group of order n (see also [10]). To
illustrate our approach we prove a lower bound for the DDH problem, even when
assuming an oracle for the squaring relation.

Theorem 6. For S = Zn, Π = C ∪ {+} and Σ = {=, squaren} the advantage
of every k-step algorithm for distinguishing a random triple (x, y, z) from a triple
(x, y, xy) is upper bounded by 5

2k2/p.

Proof. We only analyze the case where the initial state is (x, y, xy). The set Π
of computable functions is {ax + by + cxy + d | a, b, c, d ∈ Zn}, i.e., the ith
computed value is of the form

aix + biy + cixy + di

for some ai, bi, ci, di. For any choice of (ai, bi, ci, di)
= (aj , bj, cj , dj) we must
bound the probability that

aix + biy + cixy + di ≡n ajx + bjy + cjxy + dj

or that
(aix + biy + cixy + di)2 ≡n ajx + bjy + cjxy + dj

The latter is a polynomial relation of degree 4 that is non-zero if (ai, bi, ci, di)
=
(aj , bj , cj, dj), except when ai = bi = ci = aj = bj = cj = 0 and d2

i ≡n dj .
However, we need not consider this case since it is known a priori that such a
relation holds for all x and y.13 The fraction of pairs (x, y) for which one of these
relations can be satisfied modulo p is at most 5

(
k
2

)
/p. �

3.8 Reducing the DL-Problem to the CDH-Problem

If one includes multiplication modulo n in the set Π of allowed operations for
the generic extraction problem, i.e., one considers the extraction problem for the
ring Zn, then this corresponds to the generic reduction of the discrete logarithm
problem in a group of order n to the computational Diffie-Hellman problem for
this group. The Diffie-Hellman oracle assumed to be available for the reduction
implements multiplication modulo n. There exist an efficient generic algorithm
for the extraction problem for the ring Zn [3] (see also [5]) for most cases. For
prime n the problem was called the black-box field problem in [1].

Acknowledgments

I would like to thank Dominic Raub for interesting discussions and helpful
comments.
13 More formally, this can be taken into account when defining the system output

sequence to be deviated from according to Lemma 2.

Abstract Models of Computation in Cryptography 11

References

1. D. Boneh and R. J. Lipton, Algorithms for black-box fields and their application to
cryptography, Advances in Cryptology - CRYPTO ’96, Lecture Notes in Computer
Science, vol. 1109, pp. 283–297, Springer-Verlag, 1996.

2. W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Transactions
on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

3. U. Maurer, Towards the equivalence of breaking the Diffie-Hellman protocol and
computing discrete logarithms, Advances in Cryptology - CRYPTO ’94 , Lecture
Notes in Computer Science, vol. 839, pp. 271–281, Springer-Verlag, 1994.

4. U. Maurer and S. Wolf, Lower bounds on generic algorithms in groups, Advances
in Cryptology - EUROCRYPT 98 , Lecture Notes in Computer Science, vol. 1403,
pp. 72–84, Springer-Verlag, 1998.

5. U. Maurer and S. Wolf, On the complexity of breaking the Diffie-Hellman protocol,
SIAM Journal on Computing, vol. 28, pp. 1689–1721, 1999.

6. V. I. Nechaev, Complexity of a deterministic algorithm for the discrete logarithm,
Mathematical Notes, vol. 55, no. 2, pp. 91–101, 1994.

7. S. C. Pohlig and M. E. Hellman, An improved algorithm for computing logarithms
over GF (p) and its cryptographic significance, IEEE Transactions on Information
Theory, vol. 24, no. 1, pp. 106–110, 1978.

8. J. M. Pollard, Monte Carlo methods for index computation mod p, Mathematics
of Computation, vol. 32, pp 918–924, 1978.

9. J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identi-
ties, Journal of the ACM, vol 27, no. 3, pp. 701–717, 1980.

10. V. Shoup, Lower bounds for discrete logarithms and related problems, Advances
in Cryptology - EUROCRYPT ’97, Lecture Notes in Computer Science, vol. 1233,
pp. 256–266, Springer-Verlag, 1997.

A Polynomial Equations Modulo n

We make use of a lemma due to Schwartz [9] and Shoup [10] for which we give
a simple proof.

Lemma 1. The fraction of solutions (x1, . . . , xk) ∈ Zn of the multivariate poly-
nomial equation p(x1, . . . , xk) ≡n 0 of degree d is at most d/q, where q is the
largest prime factor of n.14

Proof. A solution of a multivariate polynomial equation p(x1, . . . , xk) ≡n 0 over
Zn is satisfied only if it is satisfied modulo every prime factor of n, in particular
modulo the largest prime q dividing n, i.e., p(x1, . . . , xk) ≡q 0. It follows from
the Chinese remainder theorem that the fraction of solutions (x1, . . . , xk) in Zk

n

is upper bounded by the fraction of solutions (x1, . . . , xk) in Zk
q .

Note that Zq is a field. It is well-known that a univariate polynomial (i.e.,
k = 1) of degree ≤ d over a field F has at most d roots, unless it is the 0-
polynomial for which all field elements are roots. The proof for multivariate
14 The degree of a multivariate polynomial p(x1, . . . , xk) is the maximal degree of an

additive term, where the degree of a term is the sum of the powers of the variables
in the term.

12 U. Maurer

polynomials is by induction on k. Let e be the maximal degree of xk in any
term in p(x1, . . . , xk). The polynomial p(x1, . . . , xk) over Zn can be considered
as a univariate polynomial in xk of degree e with coefficients of degree at most
d − e in the ring Zn[x1, . . . , xk−1]. By the induction hypothesis, for any of these
coefficients the number of (x1, . . . , xk−1) for which it is 0 is at most (d − e)qk−2,
which is hence also an upper bound on the number of tuples (x1, . . . , xk−1) for
which all coefficients are 0, in which case all values for xk are admissible. If one
of the coefficients is non-zero, then the fraction of solutions for xk is at most
e/q. Thus the total number of solutions (x1, . . . , xk) in Zq is upper bounded by

(d − e)qk−2 · q + (q − d + e)qk−2 · e < dqk−1. �

B A Simple Lemma on Random Systems

Consider a general system which takes a sequence X1, X2, . . . of inputs from
some input alphabet X and produces, for every input Xi, an output Yi from
some output alphabet Y. The system may be probabilistic and it may have
state.

Lemma 2. Consider the task of provoking, by an appropriate choice of the in-
puts X1, . . . , Xk, that a particular output sequence yk := [y1, . . . , yk] does not
occur. The success probability of the best non-adaptive strategy (without access
to Y1, Y2, . . .) is the same as that of the best adaptive strategy (with access to
Y1, Y2, . . .).

Proof. Any adaptive strategy with access to Y1, Y2, . . . can be converted into an
equally good non-adaptive strategy by feeding it, instead of Y1, Y2, . . ., the (fixed)
values y1, . . . , yk. As long as the algorithm is not successful, these constant inputs
y1, y2, . . . correspond to what happens in the adaptive case. �

Pairing-Based Cryptography at High
Security Levels

Neal Koblitz1 and Alfred Menezes2

1 Department of Mathematics, University of Washington
koblitz@math.washington.edu

2 Department of Combinatorics & Optimization,
University of Waterloo
ajmeneze@uwaterloo.ca

Abstract. In recent years cryptographic protocols based on the Weil
and Tate pairings on elliptic curves have attracted much attention. A no-
table success in this area was the elegant solution by Boneh and Franklin
[8] of the problem of efficient identity-based encryption. At the same
time, the security standards for public key cryptosystems are expected
to increase, so that in the future they will be capable of providing se-
curity equivalent to 128-, 192-, or 256-bit AES keys. In this paper we
examine the implications of heightened security needs for pairing-based
cryptosystems. We first describe three different reasons why high-security
users might have concerns about the long-term viability of these systems.
However, in our view none of the risks inherent in pairing-based systems
are sufficiently serious to warrant pulling them from the shelves.

We next discuss two families of elliptic curves E for use in pairing-
based cryptosystems. The first has the property that the pairing takes
values in the prime field Fp over which the curve is defined; the second
family consists of supersingular curves with embedding degree k = 2.
Finally, we examine the efficiency of the Weil pairing as opposed to the
Tate pairing and compare a range of choices of embedding degree k,
including k = 1 and k = 24.

1 Introduction

Let E be the elliptic curve y2 = x3 + ax + b defined over a finite field Fq, and
let P be a basepoint having prime order n dividing #E(Fq), where we assume
that n does not divide q. Let k be the multiplicative order of q modulo n; in
other words, it is the smallest positive k such that n | qk − 1. The number k,
which is called the embedding degree, has been of interest to cryptographers ever
since it was shown in [37] how to use the Weil pairing to transfer the discrete
log problem in the group 〈P 〉 ⊂ E(Fq) to the discrete log problem in the finite
field Fqk .

In recent years, the Tate pairing (introduced to cryptographers by Frey-Rück
[17]) and the Weil pairing have been used to construct a number of different cryp-
tosystems. These systems were the first elliptic curve cryptosystems not

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 13–36, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

14 N. Koblitz and A. Menezes

constructed by analogy with earlier versions that used the multiplicative group of
a finite field. Rather, pairing-based cryptosystems use properties of elliptic curves
in an essential way, and so they cannot be constructed in simpler settings (such
as finite fields or the integers modulo N). In the next section we shall describe
a particularly elegant example of such a cryptosystem, namely, the solution of
Boneh and Franklin [8] of the problem of efficient identity-based encryption.

Meanwhile, it is becoming increasingly apparent that we are approaching a
transitional moment in the deployment of cryptography. Calls are going out for
heightened security standards for public key cryptosystems, so that in the future
they will be capable of providing security equivalent to 128-, 192-, or 256-bit AES
keys. In this paper we examine the implications for pairing-based elliptic curve
cryptography of a move to higher levels of security.

Our first purpose is to describe three general questions about efficiency and
security that arise. These concerns are not new to people working in the area, but
they are rarely mentioned explicitly in print. By calling the reader’s attention to
these issues we have no intention of sounding alarmist or of discouraging deploy-
ment of these systems. On the contrary, in our view none of the considerations
discussed below are sufficiently worrisome to justify abandoning pairing-based
cryptography.

Our second purpose is to describe two very simple families of elliptic curves
defined over a prime field Fp with embedding degrees k = 1 and k = 2, respec-
tively, that could be used in pairing-based cryptosystems. The main advantage
of these families is the flexibility one has in choosing the two most important
parameters of the system — the field size p and the prime order n of the base-
point P ∈ E(Fp). One can easily get n and p both to have optimal bitlengths
and at the same time to be Solinas primes [51] (that is, the sum or difference
of a small number of powers of 2). In earlier papers on parameter selection for
pairing-based systems we have not found any discussion of the advantages and
disadvantages of low-Hamming-weight p.

On the negative side, when k = 1 one does not have any of the speedups that
come from working in a subfield at various places in the pairing computations.
When k = 2 our curves are supersingular, and so one must anticipate some
resistance to their use because of the traditional stigma attached to the word
“supersingular” by implementers of elliptic curve cryptography. Moreover, in
both cases the use of a Solinas prime p could possibly enable an attacker to
use a special form of the number field sieve. It remains to be seen whether the
increased field sizes which would then be necessary offset the efficiency advantage
provided by the use of such a prime.

Our third purpose is to compare different choices of k, ranging from 1 to
24, for different security levels. Our comparisons are simple but realistic, and
incorporate most of the important speedups that have been discovered so far.
Although much depends on the implementation details, it appears that for non-
supersingular curves the choice k = 2 that is recommended by some authors
[48] is probably less efficient than higher values of k. We also find that for very

Pairing-Based Cryptography at High Security Levels 15

high security levels, such as 192 or 256 bits, the Weil pairing computation is
sometimes faster than the Tate pairing.

Earlier work in this area has focused on providing 80 bits of security, which is
sufficient for most current applications. In contrast, we are particularly interested
in how the choice of parameters will be affected by the move to the higher AES
standard of 128, 192, or 256 bits of security that is anticipated in the coming
years.

2 Identity-Based Encryption

One of the most important applications of the Weil (or Tate) pairing is to
identity-based encryption [8]. Let’s recall how the basic version of the Boneh–
Franklin scheme works. Suppose that E over Fq is an elliptic curve on which (a)
the Diffie–Hellman problem is intractable and (b) the Weil pairing ê(P, Q) ∈ Fqk

can be efficiently computed. (For an excellent treatment of the Weil and Tate
pairings, see [18].) Here P and Q are Fqk -points of prime order n, where n |
#E(Fq), and the embedding degree k (for which E(Fqk) contains all n2 points
of order n) must be small.

Bob wants to send Alice a message m, which we suppose is an element of
Fqk , and he wants to do this using nothing other than her identity, which we
suppose is hashed and then embedded in some way as a point IA of order n in
E(Fq). In addition to the field Fq and the curve E, the system-wide parameters
include a basepoint P of order n in E(Fqk) and another point K ∈ 〈P 〉 that is
the public key of the Trusted Authority. The TA’s secret key is the integer s
that it used to generate the key K = sP .

To send the message m, Bob first chooses a random r and computes the
point rP and the pairing ê(K, IA)r = ê(rK, IA). He sends Alice both the point
rP and the field element u = m + ê(rK, IA). In order to decrypt the message,
Alice must get her decryption key DA from the Trusted Authority; this is the
point DA = sIA ∈ E(Fq) that the TA computes using its secret key s. Finally,
Alice can now decrypt by subtracting ê(rP, DA) from u (note that, by bilinearity,
we have ê(rP, DA) = ê(rK, IA)).

3 Clouds on the Horizon?

The first reservation that a high-security user might have about pairing-based
systems relates to efficiency. A necessary condition for security of any pairing-
based protocol is that discrete logarithms cannot be feasibly found in the fi-
nite field Fqk . In practice, q is either a prime or a power of 2 or 3, in which
case the number field sieve [20,45] or function field sieve [15,1,46] will find
a discrete log in time of order L(1/3); this means that the bitlength of qk

must be comparable to that of an RSA modulus offering the same security.

16 N. Koblitz and A. Menezes

In both cases the bitlength should be, for example, at least 15360 to provide
security equivalent to a 256-bit AES key [31,42].1

As in the case of RSA, the loss of efficiency compared to non-pairing-based
elliptic curve cryptography (ECC) increases steeply as the security level grows.
Unlike RSA, pairing-based systems can achieve certain cryptographic objectives
— notably, identity-based encryption — that no one has been able to achieve
using ordinary ECC. So one has to ask how badly one wants the features that
only pairing-based methods can provide. As the security requirements increase,
the price one has to pay for the extra functionality will increase sharply.

It should be noted that in certain applications bandwidth can be a reason
for using pairing-based systems (see, for example, [6,7,9]). We shall not con-
sider bandwidth in this paper, except briefly in §4.1 for Boneh–Lynn–Shacham
signatures.

The other two concerns about pairing-based systems are more theoretical,
and both relate to security. In the first place, in most pairing-based protocols
security depends upon the assumed intractability of the following problem, which
Boneh and Franklin [8] called the Bilinear Diffie–Hellman Problem (BDHP):
Given P, rP, sP, Q ∈ E(Fqk) such that ζ = ê(P, Q)
= 1, compute ζrs.

The BDHP is a new problem that has not been widely studied. It is closely
related to the Diffie–Hellman Problem (DHP) in the elliptic curve group E(Fqk),
which is the problem, given P , rP , and sP , of computing rsP . Since ζrs =
ê(rsP, Q), it follows that if one has an algorithm for the DHP on the curve, one
can immediately solve the BDHP as well. But the converse is not known, and it
is possible that the BDHP is an easier problem than the DHP on the curve.

In the early discussions of discrete-log-based cryptosystems it was a source
of concern that security depended on the presumed intractability of the Diffie–
Hellman Problem rather than the more natural and more extensively studied
Discrete Log Problem (DLP). That is why cryptographers were very pleased
when a series of papers by den Boer, Maurer, Wolf, Boneh, Lipton and oth-
ers (see [35] for a survey) developed strong evidence for the equivalence of the
Diffie–Hellman and Discrete Log Problems on elliptic curves. But unfortunately,
no such evidence has been found for hardness of the Bilinear Diffie–Hellman
Problem. Of course, no one knows of any way to solve the BDHP except by
finding discrete logs, so perhaps it is reasonable to proceed as if the BDHP is
equivalent to the DHP and the DLP on elliptic curves — despite the absence of
theoretical results supporting such a supposition.

The BDHP is also closely related to the Diffie–Hellman Problem in the finite
field Fqk , and any algorithm for the DHP in the field will immediately enable
us to solve the BDHP too. But it is possible that the BDHP is strictly easier
than the DHP in the field. In the DHP we are given only the values ζ, ζr , and
ζs, whereas in the BDHP the input also includes the inverse images of these

1 For fields of small characteristic, qk should be significantly larger than for q a prime.
In [31] the bitlengths 4700, 12300, and 24800 are suggested for security levels 128,
192, and 256 bits, respectively.

Pairing-Based Cryptography at High Security Levels 17

n-th roots of unity under the Menezes-Okamoto-Vanstone [37] embedding from
〈P 〉 ⊂ E(Fqk) to the finite field given by X �→ ê(X, Q) for X ∈ 〈P 〉.

This brings us to the third major concern with pairing-based cryptosystems,
namely, Verheul’s theorem [53].

Even if one is willing to suppose that the Bilinear Diffie–Hellman Problem
on a low-embedding-degree curve is equivalent to the DHP and the DLP on the
curve, in practice one really considers the DHP and DLP in the multiplicative
group of a finite field, because it is there that the problem has been extensively
studied and index-calculus algorithms with carefully analyzed running times
have been developed. Using the MOV embedding, the DHP and DLP on the
low-embedding-degree curve reduce to the corresponding problems in the finite
field. At first it seems that it would be nice to have reductions in the other
direction as well. That is, a homomorphism in the opposite direction to the
MOV embedding would show that the problems on the curve and in the field are
provably equivalent. Indeed, in special cases construction of such a homomor-
phism was posed as an open problem in [30] and [38]. However, in [53] Verheul
dashed anyone’s hopes of ever strengthening one’s confidence in the security of
pairing-based systems by constructing such a reduction.

Verheul proved the following striking result. Let μn denote the n-th roots of
unity in Fp6 , where n|(p2 − p + 1), and hence μn is not contained in a proper
subfield; this is called an XTR group [32]. Suppose that an efficiently computable
nontrivial homomorphism is found from μn to 〈P 〉 ⊂ E(Fp2), where E is an
elliptic curve defined over Fp2 with #E(Fp2) = p2 −p+1. Here we are assuming,
as before, that P is a point of prime order n. Then Verheul’s theorem states that
the DHP is efficiently solvable in both μn and 〈P 〉.

A generalization of Verheul’s theorem, which was conjectured but not proved
in [53], would give the same result whenever a group μn ⊂ Fqk can be efficiently
mapped to a supersingular curve E(Fq). (Note that q = p2 and k = 3 for the
XTR group.) It is this generalized version that prompted Verheul to suggest
that his results “provide evidence that the multiplicative group of a finite field
provides essentially more...security than the group of points of a supersingular
elliptic curve of comparable size.”

The following observation, which was not made in [53], seems to give further
support for Verheul’s point of view. Given an arbitrary finite field Fq, suppose
that one can efficiently construct a trace-zero elliptic curve E over Fq, that is, a
curve for which #E(Fq) = q+1. (If q ≡ −1 (mod 4) or q ≡ −1 (mod 6), then the
curve (3) or (4) in §7 has this property; more generally, see §7.6 and Exercise 2
in Chapter 7 of [14] for the prime field case.) We then have the following theorem
about the so-called class-VI supersingular curves, which can be viewed as curves
of embedding degree k = 1/2.

Theorem 1. Let Fq be an arbitrary finite field, and let E be a trace-zero elliptic
curve over Fq. Suppose that E has equation y2 = f(x) for odd q and y2+y = f(x)
for q a power of 2. Let β ∈ Fq2 be a nonsquare in Fq2 for odd q and an element
of absolute trace 1 for q a power of 2 (that is, TrFq2/F2(β) = 1). Let Ẽ be the
“twisted” curve over Fq2 with equation βy2 = f(x) for odd q and y2+y+β = f(x)

18 N. Koblitz and A. Menezes

for q a power of 2. Then Ẽ(Fq2) is a product of two cyclic groups of order q − 1,
each of which is isomorphic to the multiplicative group of Fq under the MOV
embedding.

This theorem is an immediate consequence of the classification of supersin-
gular elliptic curves (see Table 5.2 in [36]). Notice that for a trace-zero curve
E we have #E(Fq) = q + 1 = q + 1 − α − α with α2 = −q, and hence
#E(Fq2) = q2 + 1 − α2 − α2 = q2 + 1 + 2q. Thus, for the twist we have
#Ẽ(Fq2) = q2 + 1 − 2q.

It is reasonable to think that Verheul’s theorem can be generalized to the
curves in the above theorem. One would need to describe algorithms for obtaining
a trace-0 curve for arbitrary q and a “distortion” map in the twisted curve over
Fq2 . In that case the construction of a Verheul homomorphism would make the
DHP easy in all finite fields.

Thus, there are two possible interpretations of Verheul’s theorem in its (con-
jectured) general form. The “optimistic” interpretation is that a Verheul homo-
morphism will never be constructed, because to do so would be tantamount to
making the Diffie–Hellman problem easy in all finite fields. Under this inter-
pretation we are forced to conclude that the DHP that arises in pairing-based
cryptography is not likely to be provably equivalent to the DHP in finite fields.
The “pessimistic” interpretation is that a Verheul homomorphism might some
day be constructed. Even if it were constructed just for the class-VI supersingular
elliptic curves, that would be enough to render all pairing-based cryptosystems
(and also many XTR protocols) completely insecure.

Remark 1. This issue does not arise in the usual non-pairing-based elliptic
curve cryptography (ECC). In ECC protocols one uses nonsupersingular curves
having large embedding degree k. In fact, k is generally of size comparable to
n itself (see [2]), in which case even the input to the Verheul inversion function
would have exponential size. Thus, the danger posed by such a map — if it could
be efficiently computed — applies only to small k.

Remark 2. The third concern with pairing-based systems — that the problem
that their security relies on is not likely to be provably equivalent to a standard
problem that is thought to be hard unless both problems are easy — is analogous
to a similar concern with RSA. In [11] Boneh and Venkatesan proved that an
“algebraic” reduction from factoring to the RSA problem with small encryption
exponent is not possible unless both problems are easy.

Remark 3. In [21] Granger and Vercauteren study improved index-calculus
algorithms for finding discrete logarithms in subgroups μn ⊂ Fpk where k = 2m
or k = 6m and n|pm + 1 or n|p2m − pm + 1, respectively. Although their results
do not give a faster algorithm for any of the parameters discussed below, they
indicate that the type of group used in pairing-based protocols at high security
levels may become vulnerable to “algebraic tori attacks” of the type in [21]. Like
Verheul’s work, the paper by Granger and Vercauteren highlights the special
nature of the groups μn that correspond to elliptic curves with low embedding
degree.

Pairing-Based Cryptography at High Security Levels 19

4 Parameter Sizes

For the remainder of this paper, unless stated otherwise, we shall suppose that
Fq is a prime field, and we set q = p. As mentioned in the last section, in order
for a pairing-based cryptosystem to be secure, the field Fpk must be large enough
so that discrete logs cannot feasibly be found using the best available algorithms
(the number field and function field sieves). It is also necessary for the prime
order n of the basepoint P to be large enough to withstand the Pollard-ρ attack
on discrete logs in the group 〈P 〉. Table 1 (see [31,42]) shows the minimum
bitlengths of n and pk as a function of the desired security level.

Table 1. Minimum bitlengths of n and pk

security level (in bits) 80 128 192 256
bn (min. bits of prime subgroup) 160 256 384 512

bpk (min. bits of big field) 1024 3072 8192 15360
γ = the ratio bpk/bn 6.4 12 21 1

3 30

4.1 Short Signatures

One of the best known uses of pairings is to produce short signatures [10]. With-
out using pairing methods, the shortest signatures available are the ECDSA,
where the length is roughly 2bn bits, and the Pintsov–Vanstone [43] and Naccache
–Stern [41] schemes, where the length is roughly 1.5bn. The pairing-based Boneh–
Lynn–Shacham signatures have length approximately equal to the bitlength of
p, which is ρbn, where ρ = log p/ logn.

Thus, in order to have short Boneh–Lynn–Shacham signatures, one must
choose the parameters so that ρ = log p/ log n is close to 1 and hence k = γ/ρ
is nearly equal to γ = bpk/bn (see Table 1). Starting with [40], techniques have
been developed to do this with nonsupersingular curves when k can be taken
equal to 2, 3, 4, 6, or 12. For k = 2, 3, 4, or 6 the k-th cyclotomic polynomial is
linear or quadratic, and the resulting Diophantine equations are computationally
tractable. When k = 12, the cyclotomic polynomial is quartic, and recently
Barreto and Naehrig [5] were able to achieve ρ = 1 using a combination of
quadratic polynomials. For larger k — notably, for k = 24 — the best results
are due to Brezing–Weng [12], who obtain ρ = 1.25. For example, at the 256-bit
security level with 512-bit n they can produce 640-bit signatures, compared to
768 bits for Pintsov–Vanstone and Naccache–Stern and 1024 bits for ECDSA.

It should also be noted that at very high security levels the Boneh–Lynn–
Shacham public keys are much larger than in the Pintsov–Vanstone, Naccache–
Stern and ECDSA schemes. For instance, at the 256-bit level the latter public
keys are roughly 512 bits long, whereas in the pairing-based short signature
scheme the public key is a point of E(Fpk), where pk has about 15360 bits. It
suffices to give the x-coordinate of the public-key point, and for even k we may

20 N. Koblitz and A. Menezes

assume that this coordinate is in the smaller field Fpk/2 (see the end of §8.2).
But even then the public key is about 7680 bits.

4.2 Changes as Security Requirements Increase

As our security needs increase, the gap between the desired sizes of n and of
pk increases (see Table 1). At the same time, the optimal choices of algorithms
in implementations — and hence the decisions about what families of curves
provide greatest efficiency — are likely to be affected. That is, certain tricks
that were useful at lower security levels may become less important than other
considerations, such as the ability to choose parameters of a special form.

Our first observation is that as bn and bpk increase for greater security, the
parameter selection methods proposed with nonsupersingular curves of embed-
ding degree k ≥ 2 do not seem to yield values of n (the prime order of the
basepoint) and p (the size of the prime field) that are both Solinas primes. In
the literature we have found one construction, due to Scott and Barreto [50],
that comes close to solving this problem at the 128-bit security level. Namely,
one can apply their construction for k = 6 in §5 of [50] with x = 12Dz2 + 1,
where D is a small power of 2 and z is a roughly 80- to 90-bit power of 2 or sum
or difference of two powers of 2 that is chosen so that both n = x2 − x + 1 and
p = (x3 − 2x2 + 14x − 1)/12 are primes. Then the bitlengths of n and p6 are
roughly equal to the optimal values in Table 1; moreover, n and p are each equal
to a sum or difference of a relatively small number of powers of 2. However, for
higher security levels and k ≥ 2 we do not know of any similar method to achieve
nearly-optimal characteristics.

Example 1. Set D = 1, z = 281+255. Then n is a 332-bit prime with Hamming
weight 19, and p is a 494-bit prime with Hamming weight 44.

Our second observation is that for k > 2 at the higher security levels it is
probably not possible to find suitable supersingular elliptic curves with n having
the optimal bitlength that one uses for nonsupersingular curves. The greatest
value of k that one can get is k = 6, and there are only two supersingular elliptic
curves E, both defined over F3, that have embedding degree 6. Because of the
efficiency of the function field sieve in finding discrete logs in characteristic-
3 fields, it would be advisable to choose fields F3m such that the bitlength of
36m is larger than the value of bpk in Table 1. But even using the values in
Table 1, there is a serious question of whether one can find a field extension degree
m ≈ bpk/(6 log2 3) such that #E(F3m) has a prime factor n of the appropriate
size. There are a relatively small number of possible choices of extension degree,
so an elliptic curve group whose order has such a factor n might simply not
exist. Moreover, even if it does exist, to find it one needs to factor #E(Fq),
q = 3m, which cannot feasibly be done unless one is lucky and this number
is fairly smooth. For example, at the 256-bit security level we would want the
2560-bit integer #E(Fq) to be the product of a roughly 512-bit prime and a
2048-bit cofactor made up of primes that are small enough to be factored out of

Pairing-Based Cryptography at High Security Levels 21

#E(Fq) by the Lenstra elliptic curve factorization method [33]. This is not very
likely; in fact, standard estimates from analytic number theory imply that the
probability of a random 2048-bit integer being 2150-smooth is less than 2−50.

Very recently, however, techniques have been developed to speed up the pair-
ing computations in the low-characteristic supersingular case to make them vir-
tually independent of the bitlength of n (see [3]). A detailed analysis has not yet
been done, so it is still unclear how these supersingular implementations com-
pare with the nonsupersingular ones as the security level increases. In particular,
the field operations in the former case are in characteristic 2 or 3, and in the
latter case they are in a large prime field.

Our third observation is that as n and pk increase, one should look more
closely at the possibility of switching back to use the Weil pairing rather than
the Tate pairing. We shall examine this question when we study efficiency com-
parisons in §8.

5 Pairing-Friendly Fields

Suppose that we have an elliptic curve E defined over Fp with even embedding
degree k. We shall say that the field Fpk is pairing-friendly if p ≡ 1 (mod 12)
and k is of the form 2i3j .2 The following theorem is a special case of Theorem
3.75 of [34]:

Theorem 2. Let Fpk be a pairing-friendly field, and let β be an element of
Fp that is neither a square nor a cube in Fp.3 Then the polynomial Xk − β is
irreducible over Fp.

The field Fpk can thus be constructed from Fp as a tower of quadratic and
cubic extensions by successively adjoining the squareroot or cuberoot of β, then
the squareroot or cuberoot of that, and so on (see Figure 1). It is easy to
see that, if an element of Fpk = Fp[X]/(Xk − β) is written as a polynomial∑

�<k a�X
�, then it belongs to a subfield Fpk′ , where k′ = 2i′3j′ , if and only if

 is a multiple of k/k′ = 2i−i′3j−j′ in all of the nonzero terms. Namely, if we
set Fpk′ = Fp[Y]/(Y k′ − β), then the map Y �→ Xk/k′

gives an embedding of
the elements of Fpk′ (regarded as polynomials in Y) into Fpk . Thus, when we do
arithmetic in the field Fpk , we can easily work with the tower of quadratic and
cubic field extensions used to construct it.

In practice, it is easy to find a small value of β that satisfies the conditions
of the theorem. In that case multiplication by β in Fp is much faster than a
general multiplication in that field, and so can be neglected in our count of
field multiplications. Then the Karatsuba method reduces a multiplication in
a quadratic extension to 3 (rather than 4) multiplications in the smaller field;
and the Toom–Cook method reduces a multiplication in a cubic extension to 5
(rather than 9) small field multiplications (see §4.3.3 of [27]). This means that we
2 If j = 0, we only need p ≡ 1 (mod 4).
3 If j = 0, it is enough for β to be a nonsquare.

22 N. Koblitz and A. Menezes

N = M [X]/(X2 − Y)

M = L[Y]/(Y 2 − Z)

2

L = K[Z]/(Z2 − T)

2

K′ = Fp[T ′]/(T ′2 − β) K = Fp[T]/(T 3 − β)

2

Fp

2

�������������������

3

Fig. 1. Tower of pairing-friendly fields

can expect to perform a field operation in Fpk in time ν(k)m, where ν(k) = 3i5j

for k = 2i3j, and m denotes the time to perform a multiplication in Fp.
In what follows we shall occasionally perform multiplications in a quadratic

subfield Fpk/2 ⊂ Fpk . Because of the Karatsuba technique, we suppose that an
Fpk/2-operation is equivalent to 1/3 of an Fpk -operation.

Another nice feature of k = 2i3j is that many of the best examples of families
of curves for pairing-based cryptography have embedding degree 2, 6, 12, or 24.
For instance, we noted in §4.1 that examples with ρ = log p/ logn = 1.25 were
constructed in [12] with k = 24.

6 Curves with Embedding Degree 1

Let p > 2 be a prime of the form A2 + 1. If 4 | A, let E be the elliptic curve
defined over Fp with equation

y2 = x3 − x. (1)

If, on the other hand, A ≡ 2 (mod 4), then let E be the curve

y2 = x3 − 4x. (2)

Theorem 3. The elliptic curve group E(Fp) is isomorphic to Z/AZ ⊕ Z/AZ.
In addition, the map (x, y) �→ (−x, Ay) is a “distortion map” on this group in
the sense of §4.2 of [53].

Proof. The curve E is the reduction modulo p of a rational elliptic curve of
the form y2 = x3 − N2x, where N = 1 in (1) and N = 2 in (2). This curve
has endomorphism ring Z[i], where i corresponds to the map (x, y) �→ (−x, iy);

Pairing-Based Cryptography at High Security Levels 23

modulo p the endomorphism i corresponds to the map (x, y) �→ (−x, Ay) (note
that A is a squareroot of −1 in Fp). According to the theorem in §2 of [29], the
Frobenius endomorphism of E is the (unique up to complex conjugation) element
α of Z[i] having norm p and satisfying the congruence α ≡ (

N
p

)
(mod 2 + 2i),

where
(
N
p

)
denotes the Legendre symbol. When 4 divides A, we see that α =

1 + Ai ≡ 1 (mod 2 + 2i); when A ≡ 2 (mod 4), we note that p ≡ 5 (mod 8) and
hence

(
2
p

)
= −1, and so again α = 1 + Ai ≡ −1 (mod 2 + 2i). Thus, in both

cases the number of Fp-points on E is |α − 1|2 = A2. Moreover, all Fp-points on
E are in the kernel of the endomorphism α − 1 = Ai, and E(Fp) is isomorphic
as a Z[i]-module to Z[i]/AiZ[i] � Z/AZ ⊕ Z/AZ. In the first place, this implies
that E(Fp) is isomorphic as an abelian group to Z/AZ ⊕ Z/AZ. In the second
place, if P = (x, y) is a point of prime order n | A, the whole n-torsion group is
generated over Z by P and iP = (−x, Ay); in other words, the endomorphism i
is a distortion map.

Remark 4. As noted in [2] (see Remark 2 of §2), if n is a prime dividing A,
then most curves E over Fp with the property that n2 | #E(Fp) have cyclic
n-part, that is, they do not have n2

Fp-points of order n, and one has to go to
the degree-n extension of Fp to get all the points of order n. Thus, the property
E(Fp) � Z/AZ ⊕ Z/AZ of the curves (1) and (2) is very unusual, statistically
speaking. On the other hand, our elliptic curves are much easier to construct
than ones with n2 | #E(Fp) and only n points of order n.

Remark 5. The coefficient of x in (1) and (2) can be multiplied by any fourth
power N4

0 in Fp without changing anything, as one sees by making the substitu-
tion x �→ x/N2

0 , y �→ y/N3
0 .

Remark 6. In general, a distortion map exists only for supersingular curves; it
can exist for a nonsupersingular curve only when k = 1 (see Theorem 6 of [53]).

6.1 History of Embedding Degree 1

Although many papers have proposed different families of elliptic curves for use
in pairing-based systems, until now no one has seriously considered families with
embedding degree k = 1. Most authors stipulate from the beginning that k ≥ 2.
We know of only three papers ([23,25,53]) that briefly discuss curves E over Fp

with #E(Fp) = p − 1. In [23], Joux points out that no efficient way is known
to generate such curves with p − 1 divisible by n but not by n2, a condition
that he wants to have in order to ensure that the Tate pairing value 〈P, P 〉 must
always be nontrivial. In [25], Joux and Nguyen repeat this observation. Even
though they then show that 〈P, P 〉 is nontrivial for most P even when there are
n2 points of order n, they leave the impression that such curves are less desirable
than the supersingular ones that they use in their examples.

In [53], Verheul discusses the nonsupersingular k = 1 curves. However, he
erroneously states that the discrete logarithm problem in the subgroup 〈P 〉 of
prime order n reduces to the discrete log in the field Fn, in which case one needs

24 N. Koblitz and A. Menezes

bn ≥ 1024 to achieve 80 bits of security. This mistake leads him also to over-
estimate the required bitlength of p, and apparently accounts for his negative
view of the practicality of such curves. Thus, the few papers that include the
k = 1 case quickly dismiss it from serious consideration. No valid reason has
been given, however, for excluding such curves.

6.2 Choice of Parameters

We must choose A = nh such that n and p = A2 +1 are prime; and, to maximize
efficiency, we want

(a) n and p to have respective bitlengths approximately bn and bpk corresponding
to the desired security level (see Table 1);

(b) n to be a Solinas prime, that is, equal to a sum or difference of a small
number of powers of 2;

(c) p also to be a Solinas prime.

The bitlengths of n and p in the following examples are equal to or just
slightly more than the minimum values given in Table 1 for the corresponding
security level.

Example 2. For 128 bits of security let n be the prime 2256 − 2174 + 1 and let
h = 21345. Then p = (nh)2 + 1 = 23202 − 23121 + 23038 + 22947 − 22865 + 22690 + 1
is prime.

Example 3. For 192 bits of security let n be the prime 2386 − 2342 − 1 and let
h = 23802. Then p = (nh)2 + 1 = 28376 − 28333 + 28288 − 27991 + 27947 + 27604 + 1
is prime.

Example 4. For 256 bits of security let n be the Mersenne prime n = 2521 − 1
and let h = 27216. Then p = (nh)2 + 1 = 215474 − 214954 + 214432 + 1 is prime.

Remark 7. If p is of a certain special form, then discrete logarithms can be
found using a special version of the number field sieve (see, for example, [16,24]).
Then the running time for 2b-bit primes is roughly comparable to the running
time of the general number field sieve for b-bit primes. For this reason it is
important to avoid the special number field sieve when choosing p. It is clear
that certain Solinas primes that one might want to use are of a form that permits
the use of a modification of the special number field sieve with running time
somewhere between that of the general and the special number field sieves. An
analysis by Schirokauer [47] has shown that the primes in Examples 3 and 4
provide significantly less security than general primes of the same bitlength.
In Example 2, however, his modified number field sieve did not yield a faster
algorithm. More work remains to be done in order to determine which Solinas
primes are vulnerable to faster versions of the number field sieve.

Example 5. For the prime p = 21007 +21006 +21005 +21004 −1 = 240 ·21000 −1
discrete logs in Fp can be found using the special sieve. The reason is that 2200

is a root mod p of the polynomial f(X) = 240X5 − 1, which has small degree
and small coefficients.

Pairing-Based Cryptography at High Security Levels 25

7 Supersingular Curves with k = 2

Suppose that n is a prime and p = nh − 1 is also a prime, where 4 | h. If h is
not divisible by 3, we let E be the elliptic curve defined over Fp with equation

y2 = x3 − 3x; (3)

if 12 | h, then we let E be either the curve (3) or else the curve

y2 = x3 − 1. (4)

It is an easy exercise to show that in these cases #E(Fp) = p + 1 = nh, and so
E is a supersingular elliptic curve with embedding degree k = 2. Note also that
β = −1 is a nonsquare in Fp, and so Fp2 = Fp[X]/(X2 + 1). In addition, the
map (x, y) �→ (ζx, εy) is a distortion map in the sense of [53], where ζ = −1 and
ε is a squareroot of −1 in Fp2 for the curve (3), and ε = 1 and ζ is a nontrivial
cuberoot of 1 in Fp2 for the curve (4).

7.1 History of Embedding Degree 2 (Supersingular Case)

In the early days of elliptic curve cryptography, before the publication of [37]
caused people to turn away from such elliptic curves, the supersingular curves
(3) with p ≡ −1 (mod 4) and (4) with p ≡ −1 (mod 6) were the most popular ex-
amples, because of the simple form of the equation, the trivial determination of
the group order, and the easy deterministic coding of integers as points (see Ex-
ercise 2 of Chapter 6 of [28]). For similar reasons, Boneh and Franklin used these
curves as examples in [8]. On the other hand, authors who study implementation
issues tend to shun supersingular curves, perhaps because of the subconscious
association of the word “supersingular” with “insecure.”

Despite the customary preference for nonsupersingular elliptic curves, there
is no known reason why a nonsupersingular curve with small embedding degree k
would have any security advantage over a supersingular curve with the same em-
bedding degree. Of course, it is not inconceivable that some day someone might
find a way to use the special properties of supersingular elliptic curves to attack
the security of the system, perhaps by constructing a Verheul homomorphism
from μn to the curve (see §3). However, one consequence of a generalized ver-
sion of Verheul’s theorem (see the end of §3) is that if supersingular curves were
broken in this way, then the Diffie–Hellman problem in any finite field would be
easy, and hence nonsupersingular curves of low embedding degree would be in-
secure as well. This means that the only way that supersingular curves could fall
without bringing down all low-embedding-degree curves with them is through
some special attack unrelated to a Verheul homomorphism.

Thus, on the one hand one has the remote possibility of a vulnerability of
supersingular elliptic curves that is not shared by other curves of low embed-
ding degree. On the other hand, one has the very real efficiency advantages of
supersingular curves with k = 2. Namely, they provide the benefits of both the
k = 1 case (flexibility in the choice of n and p) and also the k ≥ 2 case (speedups
coming from subfields).

26 N. Koblitz and A. Menezes

7.2 Choice of Parameters

It is a simple matter to select n and h so that both n and p are Solinas primes.

Example 6. At the 80-bit security level let n be the prime 2160 + 23 − 1, and
let h = 2360; then p = nh − 1 = 2520 + 2363 − 2360 − 1 is prime.

Example 7. At the 128-bit level let n = 2256+2225−1, h = 21326, p = nh−1 =
21582 + 21551 − 21326 − 1.

Example 8. At the 192-bit level let n = 2384 −260 +1, h = 23847, p = nh−1 =
24231 − 23907 + 23847 − 1.

Example 9. At the 256-bit level let n = 2521 − 1, h = 26704(2521 + 1), p =
nh − 1 = 27746 − 26704 − 1. Note that here 12 | h, so we can use either curve (3)
or (4).

As in the k = 1 case (see Remark 7), certain Solinas primes can be handled
by a special version of the number field sieve for Fp2 which is faster than the
general algorithm. In particular, Schirokauer [47] has shown that the four choices
of p in Examples 6–9 provide less security than non-Solinas primes of the same
bitlength. It is not yet clear whether primes p can be found that are sparse
enough to provide enhanced efficiency of field arithmetic and are also resistant
to speedups of the number field sieve.

8 Efficiency Comparisons

Let’s briefly recall the ingredients in pairing computations. According to Propo-
sition 8 of [39] (see also [13]), the Weil pairing ê(P, Q) is given by the formula

(−1)n FP (Q)
FQ(P)

, P
= Q,

in which FP , FQ are functions whose divisors are n(P)−n(∞) and n(Q)−n(∞),
respectively. Here FP and FQ must be normalized so that FP (∞)/FQ(∞) = 1.

In recent years most authors have preferred to use the Tate pairing rather
than the Weil pairing. To evaluate the Tate pairing at points P and Q, one first
chooses an auxiliary point R (which must not be equal to P , −Q, P −Q, or ∞).
One then evaluates the ratio

FP (Q + R)
FP (R)

,

with FP as above. This preliminary value is an element of F
∗
pk that must be

raised to the ((pk − 1)/n)-th power to convert it to an n-th root of unity.
In pairing computations the procedure to compute FP (Q), FQ(P), or FP (Q+

R)/FP (R) resembles the double-and-add method for finding a point multiple.
If n is a Solinas prime, then the number of adds/subtracts is negligible com-
pared to the number of doublings. For each bit of n we have to perform a point

Pairing-Based Cryptography at High Security Levels 27

doubling which leads to two functions
 =
1/
2 and v = v1/v2 with constant
denominators, and then we have a function-evaluation step of the form

f1

f2
← f2

1

f2
2

· v2
1(Q)

2v1(Q)

.

for the numerator (or denominator) in the Weil pairing and

f1

f2
← f2

1

f2
2

·
1(Q + R)v1(R)

1(R)v1(Q + R)

.

for the ratio in the Tate pairing (note that the denominators
2 and v2 cancel
in the Tate pairing). Such a procedure is called a “Miller operation” [39].

For this type of computation it is usually most efficient to use Jacobian coor-
dinates (see [22], §3.2.2). A point (X, Y, Z) in Jacobian coordinates corresponds
to the point (x, y) in affine coordinates with x = X/Z2, y = X/Z3. In Jaco-
bian coordinates the formula for doubling a point T = (X, Y, Z) takes the form
2T = (X3, Y3, Z3) with X3 = (3X2 +aZ4)2 −8XY 2, Y3 = (3X2 +aZ4)(4XY 2 −
X3) − 8Y 4, Z3 = 2Y Z. The functions
 and v correspond, respectively, to the
tangent line to the curve at T and the vertical line through the point 2T :

v(x) = v1(x)/v2 = (Z2
3x − X3)/Z2

3 ;

(x, y) =
1(x, y)/
2 = (Z3Z
2y − 2Y 2 − (3X2 + aZ4)(xZ2 − X))/(Z3Z

2).

8.1 The Case k = 1

We first examine the case k = 1, where E has equation (1) or (2). Using the
above formulas, we count the number S of squarings and the number M of
multiplications in Fp that must be performed for each bit of n. In the case of the
Weil pairing, after initially setting T = P , f1 = f2 = 1, for each bit of n we do

T ← 2T, f1 ← f2
1 v2
1(Q), f2 ← f2

2
2v1(Q). (5)

Our field operation count is 9S+12M .4 Since we must go through essentially the
same procedure twice — once for FP (Q) and once for FQ(P) — the total number
of operations per bit of n required to evaluate the Weil pairing is 18S + 24M .

The Tate pairing has the advantage that the procedure is needed only once.
Namely, we choose R to be the point (0, 0) for k = 1, and after initially setting
T = P , f1 = f2 = 1, for each bit of n we do

T ← 2T, f1 ← f2
1
1(Q + R)v1(R), f2 ← f2

2
1(R)v1(Q + R). (6)
4 In the case k ≥ 2, without loss of generality we may assume that the coefficient a

in the elliptic curve equation y2 = x3 + ax + b is equal to −3, in which case in the
doubling one saves two squarings. (This is because 3X2 +aZ4 = 3(X +Z2)(X −Z2)
when a = −3.) When k = 1, we suppose that the curve is given by (1) or (2), and
so we still have the extra squarings but save one multiplication (by a). If we want
to use the equation y2 = x3 − 3x instead of (1) or (2), we may do so, provided that
3 | h = A/n (so that 3 is a quadratic residue in Fp) and 3 is a fourth power in Fp

when 4 | A but not when A ≡ 2 (mod 4).

28 N. Koblitz and A. Menezes

When k = 1, we have 9S +13M rather than 18S +24M for each bit of n, and
in the case k ≥ 2 one can gain further savings by working in subfields, as we’ll
see later. On the other hand, in the Tate pairing computation the preliminary
result is an element of F

∗
pk that must be raised to the ((pk − 1)/n)-th power

to convert it to an n-th root of unity. For high security levels the bitlength of
pk is large compared to that of n (the ratio is what we denoted γ in Table 1),
and so the time required for this exponentiation is not negligible. If k = 1 and
(p − 1)/n has sparse binary representation, or if we use window methods, then
the exponentiation is essentially bpk − bn = (γ − 1)bn squarings in the field.
This adds (γ − 1)S to our operation count for each bit of n. If we suppose that
S ≈ M , then we see that the Tate method retains its advantage as long as
(γ − 1)S < 9S + 11M ≈ 20S. But when γ > 21 the Weil computation is faster
in the case k = 1. According to Table 1, the cross-over point when we should
switch to the Weil pairing for k = 1 occurs just around the 192-bit security level.

8.2 The Case k ≥ 2

Now suppose that k ≥ 2, and k is even. In that case one distinguishes between
full field multiplications in Fpk , multiplications in the quadratic subfield Fpk/2

(each of which takes one third as long as a multiplication in the full field, see §5),
and multiplications where one or both elements are in Fp. We let S and M , as
before, denote squaring and multiplication in the large field Fpk , and we let s and
m denote squaring and multiplication in Fp; we suppose that a multiplication of
an element in Fpk by an element in Fp takes time km. When we make efficiency
comparisons, we shall further assume that S ≈ M , s ≈ m, and M ≈ ν(k)m,
where k = 2i3j and ν(k) = 3i5j (see §5).

In most cryptographic protocols there is some flexibility in the choice of
order-n subgroups generated by P and by Q. In particular, one of the two —
say, P — can be chosen in E(Fp). Then 〈P 〉 is the unique subgroup of order
n in E(Fp). In this case the Miller operation for computing FP (Q) in the Weil
pairing is quicker than that for FQ(P), and so has been dubbed “Miller lite” by
Solinas [52].

In addition, in [4] it was pointed out that when the embedding degree k is
even, the subgroup 〈Q〉 ⊂ E(Fpk) can be chosen so that the x-coordinates of all
of its points lie in the quadratic subextension Fpk/2 and the y-coordinates are
products of elements of Fpk/2 with

√
β, where β is a fixed nonsquare in Fpk/2 and√

β denotes a fixed squareroot in Fpk . We shall call such values of x and y “real”
and “imaginary,” respectively, by analogy with the familiar complex plane.

To see that Q can be chosen in this way, we consider the “twisted” elliptic
curve Ẽ with equation βy2 = x3 + ax + b. It is easy to show that if E has
pk/2 +1− t points over the field Fpk/2 , then Ẽ has pk/2 +1+ t points over Fpk/2 .
Over the big field Fpk the number of points on E is equal to the product of
the orders of E and its twist Ẽ over Fpk/2 . Since n2 divides #E(Fpk) and only

Pairing-Based Cryptography at High Security Levels 29

n (but not n2) divides #E(Fpk/2), it follows that n | #Ẽ(Fpk/2).5 Thus, there
is a point Q̃ ∈ Ẽ(Fpk/2) of order n. The map (x, y) �→ (x, y

√
β) maps Q̃ and its

multiples to Fpk -points of E (because (y
√

β)2 = x3 + ax + b) that have “real” x
and “imaginary” y.6

8.3 Operation Count for k ≥ 2

When computing the Tate pairing, major savings can be obtained by ignoring
terms that are contained in a proper subfield of Fpk (see [18,4,48]). The reason
such terms can be ignored is that when raised to the ((pk − 1)/n)-th power
at the end of the Tate pairing computation, they become 1; this is because k
is the multiplicative order of p modulo n, and so (pk − 1)/n is a multiple of
pk′ −1 for any proper divisor k′ of k. In addition, in Theorem 1 of [4] it is shown
that (again because of the exponentiation to the ((pk − 1)/n)-th power in the
Tate pairing) the auxiliary point R can be ignored; that is, the Tate pairing
value is FP (Q)(p

k−1)/n. Since the x-coordinate of Q — and hence v1(Q) — is
in Fpk/2 , it follows that we can drop the entire denominator in (6), and the
function-evaluation step becomes simply

f1 ← f2
1
1(Q). (7)

An operation count for a Miller lite point doubling and function evaluation gives
4s + 8m + S + M for k = 2 and 4s + (k + 7)m + S + M for k ≥ 4 even.

The final stage of the Tate pairing computation is the exponentiation. This
can be expedited if we use the fact that n | Φk(p), where Φk is the k-th cyclotomic
polynomial; once again, this is a consequence of the assumption that k is the
multiplicative order of p modulo n. We then write

y(pk−1)/n =
(
y(pk−1)/Φk(p)

)Φk(p)/n

.

Now raising to the power (pk − 1)/Φk(p) takes very little time (since the p-th
power map takes negligible time in extensions Fp[X]/(Xk − β) once Xpi mod
(Xk − β) has been precomputed for i = 1, 2, . . . , k − 1). Thus, our estimate for
the number of field operations (squarings in Fpk) is the bitlength of Φk(p)/n,
which is ϕ(k)

k bpk − bn = (τkγ − 1)bn, where we define

τk =
ϕ(k)

k
=

{
1/2 if k = 2i, i ≥ 1;
1/3 if k = 2i3j , i, j ≥ 1.

Thus, the operation count for the exponentiation in the Tate pairing is (τkγ−1)S
for each bit of n.
5 Another way to see this is to note that n | (pk/2 +1) and also n | (pk/2 +1− t), from

which it follows that n | (pk/2 + 1 + t).
6 In [5] it is shown that for certain curves with k = 12 a further speedup can be

achieved by using a sextic rather than quadratic twist. However, we won’t be con-
sidering this speedup in our operation counts.

30 N. Koblitz and A. Menezes

However, a further speedup is possible because the element that is raised to
the (Φk(p)/n)-th power has norm 1 over any proper subfield of Fpk . In particular,
this element is “unitary” over the quadratic subextension Fpk/2 . As explained in
[49], this means that one need only keep track of the “real” part of powers of the
element and can use Lucas sequences to process each bit of the exponent using
only one squaring and one multiplication in Fpk/2 .7 When k = 2, this allows us
to replace (γ

2 −1)S by (γ
2 −1)(s+m) for the exponentiation in the Tate pairing;

when k ≥ 4 is even, the operation count is (τkγ − 1)(S̃ + M̃), where S̃ denotes
a squaring and M̃ denotes a multiplication in the subfield Fpk/2 .

If k > 2 is a multiple of 6 (as it will be for us), then instead of Lucas sequences
one could use the trace representations in Fpk/3 that Lenstra and Verheul [32]
developed in order to make their XTR cryptosystem more efficient (see [49]).
This would not necessarily give a better speedup than the Lucas sequences; it is
an open question whether the use of the quadratic or cubic subfield is best.

The results so far are summarized in the first two columns of Table 2.

Table 2. Operation counts for each bit of n

Exponentiation at
end of Tate Miller Full

pairing computation lite Miller

k = 1 (γ − 1)S not applicable 9S+12M (Weil)
9S+13M (Tate)

k = 2 (γ
2 − 1)(s + m) 4s + 8m + S + M 4s + 8m + S + M

k ≥ 4 even (τkγ − 1)(S + M) 4s + (k + 7)m + S + M km + 4S + 6M + S + M

8.4 Weil or Tate? The Case k ≥ 2

If we want to compute the Weil pairing rather than the Tate pairing, we need
to go through two Miller procedures, one to find FP (Q) and the other to find
FQ(P). In the case k ≥ 2, we suppose that P ∈ E(Fp), in which case the former
is the “Miller lite” part and the latter is the full Miller computation. At first
glance it appears that even the Miller lite part is more time-consuming than
in the case of the Tate pairing, because we can no longer neglect terms whose
((pk − 1)/n)-th power equals 1. However, we make the following observation. In
any cryptographic application of the pairing it makes no difference if the pairing
is replaced by its m-th power, where m is a fixed integer not divisible by n. In
particular, for k even we can replace ê by its (1 − pk/2)-th power.8 That means

7 The use of Lucas sequences is closely analogous to computing the n-th power of a
complex number on the unit circle; one can use the formula for cos(nθ) and work
only with the real part. See [49] for details of the Lucas method.

8 In [26] it was noted that the (1−pk/2)-th power of e is the same as e2; this is because
n | (pk/2 + 1), and so the (1 − pk/2)-th power of an n-th root of unity is the same as
the (1 − pk/2 + pk/2 + 1)-th power.

Pairing-Based Cryptography at High Security Levels 31

that, just as in the case of the Tate pairing, terms in the Miller computations
that lie in Fp or Fpk/2 can be ignored.

In the Miller lite computation the point Q has “real” x-coordinate and “imag-
inary” y-coordinate; and in the full Miller computation (where we stay with the
notation in (5) but with Q now an Fp-point) the point Q has coordinates in Fp.
In both the Miller lite and full Miller computations all of the
- and v-terms in
(5) except for
1(Q) lie in Fpk/2 (or are “purely imaginary”), and so the process
(5) again simplifies to (7).

If we make a careful count of the number of operations required for each bit
of n, we find that the operation count for the full Miller step is km+4S̃ +6M̃ +
S + M , where, as before, S̃ is a squaring and M̃ is a multiplication in Fpk/2 .9

We can decide between the Tate and Weil pairings by comparing the expo-
nentiation column in Table 2 with the full Miller column. As before, we assume
that S ≈ M , s ≈ m, and M ≈ ν(k)m; we also suppose that S̃ ≈ 1

3M and
M̃ ≈ 1

3M (see §5). We find that when k = 2 the Tate pairing is quicker as long
as γ < 20; but for higher values of γ — that is, starting at the 192-bit security
level — we should switch to the Weil pairing. When k ≥ 4 is even, the value of
γ after which the advantage shifts to the Weil pairing is 28.8 for k = 6, 28.2 for
k = 12, and 27.8 for k = 24. Thus, for those values of k we should switch to the
Weil pairing at the 256-bit security level.

Remark 8. These conclusions about the relative speed of the Tate and Weil
pairing computations are not definitive. Indeed, not nearly as much effort has
been put into finding ways to speed up the full Miller operation in the Weil
pairing as has been put into speeding up the exponentiation stage of the Tate
pairing. So it is possible that further study of the matter will result in an earlier
switch to the Weil pairing, which asymptotically at least is the faster method.

8.5 Time Comparison When k = 1, 2, 6, 12, 24

Let T (b) denote the time required for a multiplication in Fp for general b-bit p,
and let T̃ (b) denote the time required when p is a b-bit Solinas prime. As before,
we assume that s ≈ m, S ≈ M , S̃ ≈ 1

3M , M̃ ≈ 1
3M , M ≈ ν(k)m.

For k = 1 the operation count is 9S +13M +min((γ −1)S, 9S+11M), where
the latter minimum determines the choice of Tate versus Weil pairing. For k = 2
the operation count is

4s + 8m + S + M + min((
γ

2
− 1)(s + m), 4s + 8m + S + M),

or approximately (16 + min(γ, 20))m. For k = 6, 12, 24 the operation count is

≈
(
k + 11 +

4
3
ν(k) + min(

2
9
γν(k), k + 6ν(k))

)
m.

9 In the supersingular case (4) with k = 2, where a = 0 rather than −3, a multiplication
can be replaced by a squaring in the point-duplication part of both the Miller lite
and full Miller computations. Of course, this has no effect on Table 3.

32 N. Koblitz and A. Menezes

These formulas give us the time estimates in Table 3. Notice that for non-
supersingular curves Table 3 suggests that even at the 80-bit security level the
choice k = 2 is less efficient than higher k, and that, more generally, for k ≥ 2
large k has an advantage. The comparison between k = 1 and k ≥ 2 is harder
to make, because it depends on how much of a saving we are able to achieve
when multiplying modulo a Solinas prime rather than an arbitrary prime. It is
not clear, for example, whether 42T̃ (15360) is greater or less than 36T (7680) or
1049T (640). The limited experiments we have conducted with integer multipli-
cation packages were inconclusive.

We estimate that T (512) is at least twice T̃ (512), and so for k = 2 supersin-
gular curves are at least twice as fast as nonsupersingular curves at the 80-bit
security level.

Finally, we emphasize that the above analysis is imprecise, and definitive
conclusions will be possible only after extensive experimentation. In addition,
the relative merits of k = 1 and k ≥ 2 depend on the protocol being used and
the types of optimization that are desirable in the particular application.

Table 3. Pairing evaluation time for each bit of n (ss=“supersingular,”
ns=“nonsupersingular”)

Security (bits) 80 128 192 256
bitlength of pk 1024 3072 8192 15360

k = 1 27T (1024) 33T (3072) 42T (8192) 42T (15360)

k = 2 (ss) 22T (512) 28T (1536) 36T (4096) 36T (7680)
k = 2 (ns) 22T (512) 28T (1536) 36T (4096) 36T (7680)

k = 6 58T (171) 77T (512) 108T (1365) 133T (2560)
k = 12 203T (256) 296T (683) 365T (1280)
k = 24 1049T (640)

For example, in identity-based encryption suppose that we are very concerned
about the time it takes to convert Alice’s identity to a public key, which in the
Boneh–Franklin system is a point IA ∈ E(Fp). One is then at a disadvantage
when k = 1. The reason is that after Alice’s identity is hashed into the curve,
the resulting point must be multiplied by h =

√
(p − 1)/n to get a point IA of

order n. The bitlength of h is 1
2 (γ − 1)bn. In contrast, when k ≥ 2 the cofactor

h ≈ p/n is usually small; its bitlength is (ρ − 1)bn, where ρ = log p/ logn is
generally between 1 and 2. In the k = 1 case, to avoid the point multiplication
by h one might want to use a different identity-based encryption scheme, such
as the one in [44] or [54], where Alice’s public key is an integer rather than a
point.

Pairing-Based Cryptography at High Security Levels 33

9 Open Problems

(1) Prove Verheul’s theorem for class-VI supersingular elliptic curves, which, as
we saw at the end of §3, contain subgroups isomorphic to the multiplicative
groups of all finite fields.

(2) To what extent can the special number field sieve be applied to Fp for
Solinas primes p? For what Solinas primes can we be confident that only
the general number field sieve and not the special one can be used to find
discrete logarithms?

(3) What Solinas primes can be used with embedding degree k = 2 without
allowing an attacker to use the special number field sieve for Fp2?

(4) At the 80-bit security level with nonsupersingular elliptic curves, is em-
bedding degree 6 faster than embedding degree 2, as suggested by the
preliminary results in §8.5?

(5) For higher security levels such as 192 and 256 bits, is it possible to construct
nonsupersingular examples with k ≥ 2 where n and pk have roughly bn and
bpk bits and both n and p are Solinas primes?

(6) Try to find ways to speed up the full Miller operation, and then reexamine
the relative speed of the Tate and Weil pairing computations.

(7) Determine more precisely the relative efficiency of curves with embedding
degree 1.

(8) When k is a multiple of 6, investigate the use of trace methods similar to
the one in [32] to speed up the exponentiation stage of the Tate pairing
computation.

(9) Compare implementations in large characteristic p with supersingular im-
plementations in characteristic 2 and 3 [3].

(10) More generally, analyze the efficiency of pairing-based protocols at the AES
security levels.

10 Conclusions

It is still hard to say whether pairing-based cryptosystems will be able to provide
satisfactory security and efficiency as the desired level of security rises. None of
the concerns raised in §3 give sufficient cause to avoid these systems, but they
certainly point to the need to proceed with caution.

Despite the spate of recent papers on curve selection for pairing-based cryp-
tosystems, the simplest cases — that of embedding degree 1 and that of super-
singular curves with embedding degree 2 — have been largely neglected. To be
sure, the k = 1 case has some drawbacks, since all of the arithmetic must be
done in the large field (there being no subfield) and certain simplifications of
the pairing computations when k ≥ 2 are unavailable. On the other hand, the
greater flexibility in choosing the pair (n, p) is a compensating advantage. Thus,
the embedding degree 1 case should be seriously considered by implementers of
pairing-based cryptography.

Similarly, unless someone finds a way to exploit some special properties of
supersingular curves to attack the Bilinear Diffie–Hellman Problem — and we

34 N. Koblitz and A. Menezes

see no reason to believe that this will happen — implementers should pay special
attention to supersingular curves with k = 2. Those curves have the efficiency
advantages of both k = 1 (flexibility in the choice of n and p) and also k ≥ 2
(speedups coming from subfields).

When k = 1 the Weil pairing rather than the Tate pairing should be used at
security levels significantly above 192 bits, such as the 256-bit level. For k = 2
the Weil pairing should be used at the 192-bit level and above, and for k ≥ 4
even the Weil pairing should be used at the 256-bit level.

For nonsupersingular curves with k ≥ 2 our preliminary results do not seem
to support the viewpoint expressed in [48] that k = 2 is the embedding degree
that leads to the fastest implementation. Rather, at all security levels considered
it appears that among the possible values of k ≥ 2 one should choose k = 2i3j

as large as possible.
There is a need for further study of the relative merits of different values of

k as our security requirements increase from the present 80 bits to 128, 192, 256
bits and beyond.

Acknowledgments

We would like to thank Darrel Hankerson and Arjen Lenstra for answering our
questions about efficient finite field arithmetic, Oliver Schirokauer for answer-
ing questions about the number field sieve, Paulo Barreto and Michael Scott
for calling our attention to the papers [49] and [3], and Steven Galbraith for
commenting extensively on an earlier version of the paper.

References

1. L. Adleman and M. Huang, Function field sieve methods for discrete logarithms
over finite fields, Information and Computation, 151 (1999), 5-16.

2. R. Balasubramanian and N. Koblitz, The improbability that an elliptic curve has
subexponential discrete log problem under the Menezes–Okamoto–Vanstone algo-
rithm, J. Cryptology, 11 (1998), 141-145.

3. P. Barreto, S. Galbraith, C. Ó hÉigeartaigh, and M. Scott, Efficient pairing com-
putation on supersingular abelian varieties, http://eprint.iacr.org/2004/375/

4. P. Barreto, B. Lynn, and M. Scott, On the selection of pairing-friendly groups,
Selected Areas in Cryptography – SAC 2003, LNCS 3006, 2004, 17-25.

5. P. Barreto and M. Naehrig, Pairing-friendly elliptic curves of prime order, Selected
Areas in Cryptography – SAC 2005, to appear; http://eprint.iacr.org/2005/133/

6. D. Boneh, X. Boyen, and E.–J. Goh, Hierarchical identity based encryption with
constant size ciphertext, Advances in Cryptology – EUROCRYPT 2005, LNCS
3494, 2005, 440-456.

7. D. Boneh, X. Boyen, and H. Shacham, Short group signatures, Advances in Cryp-
tology – CRYPTO 2004, LNCS 3152, 2004, 41-55.

8. D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, Ad-
vances in Cryptology – CRYPTO 2001, LNCS 2139, 2001, 213-229.

Pairing-Based Cryptography at High Security Levels 35

9. D. Boneh, C. Gentry, and B. Waters, Collusion resistant broadcast encryption
with short ciphertexts and private keys, Advances in Cryptology – CRYPTO 2005,
LNCS 3621, 2005, 258-275.

10. D. Boneh, B. Lynn, and H. Shacham, Short signatures from the Weil pairing,
Advances in Cryptology – ASIACRYPT 2001, LNCS 2248, 2001, 514-532.

11. D. Boneh and R. Venkatesan, Breaking RSA may not be equivalent to factoring,
Advances in Cryptology – EUROCRYPT ’98, LNCS 1233, 1998, 59-71.

12. F. Brezing and A. Weng, Elliptic curves suitable for pairing based cryptography,
Designs, Codes and Cryptography, 37 (2005), 133-141.

13. L. Charlap and R. Coley, An Elementary Introduction to Elliptic Curves
II, CCR Expository Report 34, 1990, available from http://www.idaccr.org/
reports/reports.html

14. H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag,
1993.

15. D. Coppersmith, Fast evaluation of logarithms in fields of characteristic two, IEEE
Transactions on Information Theory, 30 (1984), 587-594.

16. T. Denny, O. Schirokauer, and D. Weber, Discrete logarithms: the effectiveness
of the index calculus method, Algorithmic Number Theory Symp. II, LNCS 1122,
1996, 337-361.

17. G. Frey and H. Rück, A remark concerning m-divisibility and the discrete logarithm
in the divisor class group of curves, Math. Comp., 62 (1994), 865-874.

18. S. Galbraith, Pairings, Ch. IX of I. F. Blake, G. Seroussi, and N. P. Smart, eds.,
Advances in Elliptic Curve Cryptography, Vol. 2, Cambridge University Press, 2005.

19. S. Galbraith, J. McKee and P. Valença, Ordinary abelian varieties having small
embedding degree, http://eprint.iacr.org/2004/365/

20. D. Gordon, Discrete logarithms in GF (p) using the number field sieve, SIAM
J. Discrete Math., 6 (1993), 124-138.

21. R. Granger and F. Vercauteren, On the discrete logarithm problem on algebraic
tori, Advances in Cryptology – CRYPTO 2005, LNCS 3621, 2005, 66-85.

22. D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptography,
Springer-Verlag, 2004.

23. A. Joux, A one round protocol for tripartite Diffie–Hellman, J. Cryptology, 17
(2004), 263-276.

24. A. Joux and R. Lercier, Improvements to the general number field sieve for discrete
logarithms in prime fields, Math. Comp., 72 (2003), 953-967.

25. A. Joux and K. Nguyen, Separating Decision Diffie–Hellman from Computational
Diffie–Hellman in cryptographic groups, J. Cryptology, 16 (2003), 239-247.

26. B. Kang and J. Park, On the relationship between squared pairings and plain
pairings, http://eprint.iacr.org/2005/112/

27. D. Knuth, The Art of Computer Programming, 3rd ed., Vol. 2, Addison-Wesley,
1997.

28. N. Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag, 1987.
29. N. Koblitz, Introduction to Elliptic Curves and Modular Forms, 2nd ed., Springer-

Verlag, 1993.
30. N. Koblitz, An elliptic curve implementation of the finite field digital signature

algorithm, Advances in Cryptology – CRYPTO ’98, LNCS 1462, 1998, 327-337.
31. A. Lenstra, Unbelievable security: matching AES security using public key systems,

Advances in Cryptology – ASIACRYPT 2001, LNCS 2248, 2001, 67-86.
32. A. Lenstra and E. Verheul, The XTR public key system, Advances in Cryptology

– CRYPTO 2000, LNCS 1880, 2000, 1-19.

36 N. Koblitz and A. Menezes

33. H. W. Lenstra, Jr., Factoring integers with elliptic curves, Annals Math., 126
(1987), 649-673.

34. R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge University Press,
1997.

35. U. Maurer and S. Wolf, The Diffie–Hellman protocol, Designs, Codes and Cryp-
tography, 19 (2000), 147-171.

36. A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publish-
ers, 1993.

37. A. Menezes, T. Okamoto, and S. Vanstone, Reducing elliptic curve logarithms to
logarithms in a finite field, IEEE Trans. Inform. Theory, IT-39, 1993, 1639-1646.

38. A. Menezes and S. Vanstone, ECSTR (XTR): Elliptic Curve Singular Trace Rep-
resentation, Rump Session of Crypto 2000.

39. V. Miller, The Weil pairing and its efficient calculation, J. Cryptology, 17 (2004),
235-261.

40. A. Miyaji, M. Nakabayashi, and S. Takano, New explicit conditions of elliptic curve
traces for FR-reduction, IEICE Trans. Fundamentals, E84-A (5), 2001.

41. D. Naccache and J. Stern, Signing on a postcard, Financial Cryptography – FC
2000, LNCS 1962, 2001, 121-135.

42. National Institute of Standards and Technology, Special Publication 800-56: Rec-
ommendation for pair-wise key establishment schemes using discrete logarithm
cryptography, Draft, 2005.

43. L. Pintsov and S. Vanstone, Postal revenue collection in the digital age, Financial
Cryptography – FC 2000, LNCS 1962, 2001, 105-120.

44. R. Sakai and M. Kasahara, ID based cryptosystems with pairing on elliptic curve,
http://eprint.iacr.org/2003/054/

45. O. Schirokauer, Discrete logarithms and local units, Phil. Trans. Royal Soc. London
A, 345 (1993), 409-423.

46. O. Schirokauer, The special function field sieve, SIAM J. Discrete Math., 16 (2002),
81-98.

47. O. Schirokauer, The number field sieve for integers of low weight, preprint, 2005.
48. M. Scott, Computing the Tate pairing, Topics in Cryptology — CT-RSA 2005,

LNCS 3376, 2005, 300-312.
49. M. Scott and P. Barreto, Compressed pairings, Advances in Cryptology – CRYPTO

2004, LNCS 3152, 2004, 140-156.
50. M. Scott and P. Barreto, Generating more MNT elliptic curves, Designs, Codes

and Cryptography, to appear; http://eprint.iacr.org/2004/058/
51. J. Solinas, Generalized Mersenne numbers, Technical Report CORR 99-39, Uni-

versity of Waterloo, 1999, http://www.cacr.math.uwaterloo.ca/techreports/
1999/corr99-39.pdf

52. J. Solinas, ID-based digital signature algorithms, 2003, http://www.cacr.math.
uwaterloo.ca/conferences/2003/ecc2003/solinas.pdf

53. E. Verheul, Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems, J. Cryptology, 17 (2004), 277-296.

54. B. Waters, Efficient identity-based encryption without random oracles, Advances
in Cryptology – EUROCRYPT 2005, LNCS 3494, 2005, 114-127.

Improved Decoding of Interleaved AG Codes

Andrew Brown, Lorenz Minder, and Amin Shokrollahi

Laboratoire des mathematiques algorithmiques (LMA),
Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne

{andrew.brown, lorenz.minder, amin.shokrollahi}@epfl.ch

Abstract. We analyze a generalization of a recent algorithm of Bleichenbacher
et al. for decoding interleaved codes on the Q-ary symmetric channel for large
Q. We will show that for any m and any ε the new algorithms can decode up to a
fraction of at least βm

βm+1 (1−R−2Q−1/2m)−ε errors, where β = ln(qm−1)
ln(qm) , and

that the error probability of the decoder is upper bounded by O(1/qεn), where
n is the block-length. The codes we construct do not have a-priori any bound on
their length.

1 Introduction

The general Q-ary symmetric channel of communication has not been as prominently
featured in the literature as the binary symmetric channel. While the case of small Q has
been investigated by some authors in connection with belief-propagation algorithms, the
case of large Q has been largely untouched.

Perhaps one reason for this omission is the complexity of belief-propagation type
algorithms which increases with the alphabet size Q, rendering the design of efficient
decoding algorithms impossible for large Q. Another possible reason is the observation
that for large Q the code design problem can be reduced to the code design problem
for the binary erasure channel, albeit at the expense of some loss in the rate of the
transmission. This reduction is for example employed in the Internet: in this case the
symbols are packets; each packet is equipped with a checksum, or more generally, a
hash value. After the transmission, the hash value of each symbol is checked, and a
symbol is declared as erased if the hash value does not match. If h bits are used for the
hash value, and if Q = 2mh = qm, then, each symbol’s effective information rate is
reduced by a factor of (m − 1)/m. If the error rate of the Q-ary symmetric channel is
p, and if the erasure code operates at a rate of 1 − p − ε for some ε, then the effective
rate of the transmission is about 1 − (p + ε + 1/m), and the error probability is upper
bounded by n/2h = n/q, where n is the block-length of the erasure code, when an
erasure correcting code such as a Tornado code [9] is used.

A linear time decoding algorithm for the Q-ary symmetric channel using LDPC
codes was recently proposed by Luby and Mitzenmacher [8]. They did not exhibit codes
that come arbitrarily close to the capacity of the Q-ary symmetric channel, but it is
possible to extend their methods to find such codes [11]. In their construction, the error
probability of the decoder is at most O(n/Q), which can be much smaller than the error
probability obtained using the hashing method.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 37–46, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

38 A. Brown, L. Minder, and A. Shokrollahi

Recently, Bleichenbacher et al. [1] invented a new decoding algorithm for Inter-
leaved Reed-Solomon Codes over the Q-ary symmetric channel. As the name suggests,
the codes are constructed with an interleaving technique from m Reed-Solomon codes
defined over Fq, if Q = qm. These codes are similar to well-known product code
constructions with Reed-Solomon codes as inner codes, but there is an important im-
provement: interleaved codes model the Q-ary channel more closely than a standard
decoder for the product code would. It follows that interleaved codes achieve much
better rates: interleaved Reed-Solomon Codes can asymptotically have rates as large as
1 − p(1 + 1/m), which is much more than the rate 1 − 2p achieved with a standard
product code decoder. Bleichenbacher et al. prove that the error probability of their de-
coder is upper bounded by O(n/q), where n is the block length of the code. Compared
to the hashing method, this decoder has about the same error probability, but the rate of
the code is closer to the capacity of the channel.

A general method for decoding of interleaved codes has been discussed in [3]. The
gist of the algorithm is to find a polynomial in m + 1 variables that passes through
the points given by the interpolation points of the code and the coordinate positions
of the received words. The polynomial can then be used to scan the received word, and
probabilistically identify the incorrect positions. The method can decode up to a fraction
of 1 − R − Rm/(m+1) errors, with an error probability of O(nO(m)/q), where R is the
rate of the code. Note that the error probability of this algorithm increases with n. Note
also that this algorithm is superior to that of Bleichenbacher et al. for small rates. The
interleaved decoding algorithm has also been used in conjunction with concatenated
coding [6].

Another class of algorithms to which the interleaved decoding algorithm can be
compared is that of list-decoding algorithms [13,12,5]. However, this comparison is not
fair, since these decoding algorithms work under adversarial conditions, i.e., recover
a list of closest codewords without any restriction on the noise (except the number of
corrupted positions). The best known codes to-date (in terms of error-correction capa-
bility) with a polynomial time decoding algorithm are given in [10]. For these codes the
authors provide a decoding algorithm which can correct up to a fraction of 1 − ε errors
with a code of length n and rate Ω(ε/ log(1/ε)) over an alphabet of size nO(log(1/ε)).
The codes provided in this paper improve upon this bound considerably, when the rate
is not too small.

We have recently shown in [2] that the error probability of the decoder in [1] is in
fact O(1/q), independent of n. In this paper, we present a slightly different algorithm
than that of Bleichenbacher et al. for the class of algebraic-geometric codes (AG-codes).
We will show that the algorithm can successfully decode e errors with an error proba-
bility that is proportional to

(
1
q

)βm(n−k−2g)−(βm+1)e

where g is the genus of the curve underlying the AG-code, R is the rate, Q = qm, and
β = ln(qm−1)

ln(qm) .
Since the error probability of our algorithm does not increase with n, it is possible to

consider long codes over the alphabet Fq. In particular, using codes from asymptotically

Improved Decoding of Interleaved AG Codes 39

optimal curves over Fq2 [7,4], and assuming that m is large enough, our codes will be
able to reliably decode over a Q-ary symmetric channel with error probability p, and
maintain a rate close to 1 − p − 2√

q−1 .
Despite the proximity to channel capacity we can gain with this algorithm, the

construction of codes on the Q-ary channel with both rate close to the capacity and
polynomial-time decoding complexity (where we measure complexity relative to the
size of the received input, i.e. as a function of n log(Q)), is still an open challenge.

In the next two sections of this paper we will introduce interleaved codes and the
main decoding algorithm, and analyze this algorithm. The last section gives a detailed
comparison of our method with various hashing methods. For the rest of the paper we
will assume familiarity with the basic theory of AG-codes.

2 Interleaved AG-Codes and Their Decoding

Let X be an absolutely irreducible curve over Fq, and let D,P1, . . . , Pn denote n + 1
distinct Fq-rational points of X. Let g denote the genus of X. For a divisor A of X we
denote by L(A) the associated linear space. The theorem of Riemann states that the
dimension of this space, denoted dim(A), is at least deg(A) − g + 1.

Fix a parameter α with 2g − 2 < α < n. A (one-point) AG-code associated to
D,P1, . . . , Pn and α is the image of the evaluation map Ev: L(αD) → F

n
q , Ev(f) =

(f(P1), . . . , f(Pn)).
Suppose that Q = qm, and let β1, . . . , βm denote a basis of FQ over Fq. We define

a code over FQ of length n in the following way: the codewords are

⎛
⎝ m∑

j=1

fj(P1)βj , . . . ,
m∑

j=1

fj(Pn)βj

⎞
⎠ ,

where (f1, . . . , fm) ∈ L(αD)m. (This algebraic interpretation of interleaved coding
was communicated to us by A. Vardy [14].) Note that this code does not necessarily
form an FQ-vector space, but it does form an Fq-vector space.

Suppose that such a codeword is sent over a Q-ary symmetric channel, and that
e errors occur during the transmission. Denote by E the set of these error positions.
Because of the properties of the Q-ary symmetric channel, each of the m codewords of
the constituent code is independently subjected to a q-ary symmetric channel under the
additional assumption that for each of these positions, at least one of the codewords is
corrupted.

Our task is to decode the codeword. We proceed in a way similar to [1]: let t be a
parameter to be determined later, and let W and V be defined by

W :=

⎛
⎜⎜⎜⎝

φ1(P1) φ2(P1) · · · φd(P1)
φ1(P2) φ2(P2) · · · φd(P2)

...
...

. . .
...

φ1(Pn) φ2(Pn) · · · φd(Pn)

⎞
⎟⎟⎟⎠ , V :=

⎛
⎜⎜⎜⎝

ψ1(P1) ψ2(P1) · · · ψs(P1)
ψ1(P2) ψ2(P2) · · · ψs(P2)

...
...

. . .
...

ψ1(Pn) ψ2(Pn) · · · ψs(Pn)

⎞
⎟⎟⎟⎠ ,

40 A. Brown, L. Minder, and A. Shokrollahi

where φ1, . . . , φd form a basis of L
(
(t + g)D

)
, and ψ1, . . . , ψs form a basis of L

(
(t +

g + α)D
)
. Let

(∑m
j=1 y1jβj , . . . ,

∑m
j=1 ynjβj

)
be the received word, and let

A :=

⎛
⎜⎜⎜⎝

V −D1W
V −D2W

. . .
...

V −DmW

⎞
⎟⎟⎟⎠ , (1)

where Dj is the diagonal matrix with diagonal entries y1j , . . . , ynj . The decoding pro-
cess is now as follows:

– Find a non-zero element v = (v1 | · · · | vm | w) in the right kernel of A, where
v1, . . . , vm ∈ F

s
q and w ∈ F

d
q . If v does not exist, output a decoding error.

– Identify v1, . . . , vm with functions in the space L
(
(t + g + α)D

)
, and w with a

function in L
(
(t + g)D

)
. If w divides vj for each j = 1, · · · ,m, then set f1 =

v1/w, · · · , fm = vm/w, and output f1, · · · , fm. Otherwise, output a decoding
error.

The value of t determines the error probability of the decoder, as the following main
theorem suggests.

Theorem 1. Suppose we have t that satisfies

g − 1 ≤ t ≤ βm

βm + 1
(n − α − g − 1) − c

βm + 1
,

for some c > 0, and where β = ln(qm−1)
ln(qm) . Let e denote the number of errors incurred

during transmission, and suppose that e ≤ t. Then we have:

(1) If e + t < n − α − g, then the error probability of the above decoder is zero.
(2) For general e ≤ t the error probability of the above decoder is at most q

q−1 · q−c.

This theorem will be proved in the next section.

3 Analysis of the Decoder

To analyze the decoder of the last section, we make the following simplifying assump-
tions:

(a) The error positions are 1, 2, . . . , e.
(b) The functions f1, . . . , fm sent over the channel are all zero.

It is easily seen that we can assume (a) and (b) without loss of generality. This goes
without saying for (a); as for (b), note that since the code is invariant under addition,
the behavior of the matrix A in (1) with respect to the algorithm is the same no matter
which codeword is sent.

The assumptions imply the following:

Improved Decoding of Interleaved AG Codes 41

(1) For each i = e + 1, . . . , n, and for each j = 1, . . . , m, we have yij = 0. Equiva-
lently, for each j, the last n − e diagonal entries of Dj are zero.

(2) For each i = 1, . . . , e, the vector (yi1, . . . , yim) is chosen uniformly at random
from F

m
q \{(0, . . . , 0)}.

(3) The probability of a decoding error is upper bounded by the probability that there
exists a vector (v1 | · · · | vm | w) in the right kernel of A for which at least one of
the vi is non-zero, plus the probability that the right kernel of A is trivial.

Note that because both the number of errors and the error positions have been fixed,
the only randomness in the matrix A comes from the values yij for i = 1, . . . , e and
j = 1, . . . , m.

We will show that if e ≤ t, then the right kernel of A is nontrivial. Hence, we
only need to bound the probability that there exists a vector (v1 | · · · | vm | w) in
the right kernel of A for which at least one of the vi is non-zero. Let us call such a
vector erroneous. Note that if the right kernel of A is nontrivial and does not contain
any erroneous vectors, then the algorithm is successful with probability one.

We bound the probability of the existence of an erroneous vector in the following
way: for each non-zero w ∈ L

(
(t + g)D

)
, we calculate the expected number of (v1 |

· · · | vm) such that v = (v1 | · · · | vm | w) is in the right kernel of A. An upper bound
on the desired probability can then easily be obtained using Markov’s inequality.

Proof of Theorem 1. Throughout we use the notation vj to denote both a vector in F
s
q

and the corresponding element of L
(
(t+α+g)D

)
(obtained with the basis ψ1, . . . , ψs).

Likewise w can denote both a vector in F
d
q and an element of L

(
(t + g)D

)
(with the

basis φ1, . . . , φd).
First we will show that if e ≤ t, then the right kernel of A is nontrivial. To this end,

note that by the Theorem of Riemann dim
(
(t+g)D−∑e

i=1 Pi

) ≥ t−e+1 > 0, hence
L
(
(t+g)D−∑e

i=1 Pi

)
is nontrivial. Let w be a non-zero function in this space. Setting

vj := wfj (= 0), we see that the vector v = (v1 | · · · | vm | w) is in the right kernel
of A, and is nontrivial, as required. It follows that the error probability of the decoder is
upper bounded by the probability that the right kernel of A contains erroneous vectors.

If v = (v1 | · · · | vm | w) ∈ ker(A) then we have

∀i = 1, . . . , n, ∀ j = 1, . . . , m : vj(Pi) = yij · w(Pi). (2)

Furthermore, since we are assuming that the zero codeword was transmitted, we
have yij = 0 for i > e (since i is not an error position). From this and (2) we can
deduce that

∀i = e + 1, . . . , n, ∀ j = 1, . . . , m, : vj(Pi) = 0. (3)

This implies that

∀ j = 1, . . . , m : vj ∈ L

(
(t + α + g)D −

n∑
i=e+1

Pi

)
=: L

(
T
)
. (4)

In particular, this proves part (1) of the theorem: if t+α+g−n+e < 0, or equivalently,
if t + e < n−α − g, then this linear space is trivial, and hence any element in the right
kernel of A is non-erroneous (since it has the property that vj = 0 for all j = 1, . . . , m).

42 A. Brown, L. Minder, and A. Shokrollahi

For w ∈ L((t + g)D) let Z(w) = {Pi | 1 ≤ i ≤ e, w(Pi) = 0}. Let Z(w) be its
complement in {P1, . . . , Pe}, and let γ(w) = |Z(w)|. If v is erroneous, then there is
some j with vj �= 0. This vj cannot have more than
1 := deg(T) = t + g + α − n + e
zeros. This implies that the number of points in the set {P1, . . . , Pe} at which vj does
not vanish is at least
2 := e −
1 = n − α − g − t. Furthermore from (2) we see that
if vj(Pi) �= 0 then w(Pi) �= 0, and so w must be also be non-zero on at least
2 of the
points P1, . . . , Pe. So if v is erroneous then γ(w) ≥
2.

If v = (v1 | · · · | vm | w) ∈ ker(A) then for all Pi ∈ Z(w) we have vj(Pi) =
yij · w(Pi) = 0. From this and (4) we obtain

∀j = 1, . . . , m : vj ∈ L

⎛
⎝T −

∑
P∈Z(w)

P

⎞
⎠ =: L(S). (5)

Fix w ∈ L
(
(t + g)D

)
, with γ(w) ≥
2. We will count the expected number of

non-zero (v1 | . . . | vm) for which v = (v1 | · · · | vm | w) ∈ ker(A).
If Pi ∈ Z(w) then yij = vj(Pi)

w(Pi)
, and so for a given a non-zero (v1, . . . , vm) ∈

L
(
S)m, we will have v ∈ ker(A) if and only if yij has the appropriate values for all

j = 1, . . . , m and for all i with Pi ∈ Z(w). Since these i are all error positions, for
each one there must be a j with yij �= 0. So for each i, (yi1, . . . , yim) can take qm − 1
different values uniformly (of which exactly one will satisfy yij = vj(Pi)

w(Pi)
for all j). Let

(v1, · · · , vm) ∈ L
(
S)m be a nonzero vector. Using the fact that |Z(w)| = γ(w), we

obtain

Pr
[
(v1 | · · · | vm | w) ∈ ker(A)

] ≤ (1
qm − 1

)γ(w)

. (6)

If v ∈ ker(A) then vj(Pi) = yijw(Pi), so if vj(Pi) = 0 then yij = 0 for all i
with Pi ∈ Z(w). Since yij cannot be 0 for all j, for each Pi ∈ Z(w) there must be
some j with vj(Pi) �= 0. Since t < n − g − α by assumption, we have L

(
(t + g +

α)D −∑n
i=1 Pi

)
= 0, and since vj ∈ L(S), there exists a subset U ⊆ Z(w) of size

dim(S) for which the values of vj on the points in U uniquely determines vj . So picking
(v1, . . . , vm) ∈ L(S)m is the same as picking vj(Pi) for j = 1, . . . , m and for Pi ∈ U .
Furthermore, as stated above if v is in ker(A) then for all Pi there must be some j with
vj(Pi) �= 0. So the number of choices for (vj , . . . , vm) ∈ L(S)m for which there exists
j with vj(Pi) �= 0 for all Pi ∈ U is at most (qm − 1)dim(S) and hence for a fixed w, the
expected number of erroneous vectors v = (v1 | · · · | vm | w) ∈ ker(A) is at most

(
1

qm − 1

)γ(w)

· (qm − 1
)deg(T)−e+γ(w)+1 = qβm(deg(T)−e+1), (7)

using the fact that dim(S) ≤ deg(S)+1 = deg(T)−e+γ(w)+1, where β = ln(qm−1)
ln(qm) .

Since t + g ≥ 2g − 1 by assumption, by the Theorem of Riemann-Roch we have
dimL

(
(t + g)D

)
= t + 1, and so there are at most qt+1 possible choices for w (there

Improved Decoding of Interleaved AG Codes 43

may be considerably less since we consider only those with γ(w) ≥
2). The expected
number of erroneous vectors in ker(A) is therefore at most

qt+1 · qβm(deg(T)−e+1) = qt+1+βm(t+g+α−n+e−e+1)

= q(βm+1)t−βm(n−α−g−1)+1,
(8)

and so if t ≤ βm
βm+1 (n − α − g − 1) − c

βm+1 then the expected number of erroneous
vectors in ker(A) is at most q1−c. If a vector is erroneous, then any non-zero Fq-scalar
multiple of that vector is also erroneous. Thus, the probability that the number of er-
roneous vectors is larger than 0 equals the probability that the number of erroneous
vectors is at least q −1. By Markov’s inequality, this probability is at most the expected
number of erroneous vectors divided by q − 1. This implies that

Pr[exists erroneous vector in ker(A)] ≤ q1−c

q − 1
=

q

q − 1
· q−c. 	

We conclude the section with the following observation: Setting t = βm
βm+1 (n−α−

g − 1) − 2g
βm+1 (so c = 2g in the bound above), and observing that the dimension k of

the code is at least α + 1 − g, we get

t ≥ βm
βm+1 (n − k − 2g) − 2g

βm+1

= βm
βm+1 (n − k) − 2g

= n
(

βm
βm+1 (1 − R) − 2g

n

)
.

Since our algorithm can correct up to t errors, the error probability of the Q-ary
symmetric channel we consider can be at most t

n , which is about 1−R− 2g
n when m is

very large (recall that β = ln(qm−1)
ln(qm)). Therefore if m is very large, if q is a square, and if

a sequence of very good algebraic curves is used to construct the underlying AG-code,
then on a Q-ary symmetric channel with error probability p the maximum achievable
rate for vanishing error probability of the decoder is roughly

1 − p − 2√
q − 1

.

(This follows from the fact that for a very good sequence of AG-codes the ratio g/n
tends to 1/(

√
q − 1).) This shows that these codes and these decoding algorithms can

get very close to the capacity of the Q-ary symmetric channel.

4 Comparison to the Hashing Method

In this final chapter of this paper we give an extensive comparison of our method to
other hashing methods. These methods effectively reduce the number of errors, albeit
at the expense of reducing the rate of transmission.

44 A. Brown, L. Minder, and A. Shokrollahi

The classical method for coding over large alphabets is to dedicate a part of each
symbol as check positions. These positions can be used to store a hash value of the sym-
bol. The advantage is that the hash can be used at the receiver side to detect corrupted
symbols: If it does not match the symbol, the symbol is corrupted and can be discarded.
This way, the decoding problem is effectively reduced to an erasure decoding problem.
There is a downside however: each corrupted symbol has a small probability of having
a matching hash. The decoder will fail if such a symbol is used, and therefore such
decoders have an error term which is linear in the blocklength n.

If we use an [n, k, n − k + 1 − g] AG-code over FQ, and
 bits are used in each
symbol for the hashing value, then only the remaining log(Q) −
 bits can be used per
symbol, so the effective rate of the code is

r =
log(Q) −

log Q
· k

n
.

There are two possible failure modes for this decoder. First, if too many symbols have to
be discarded, then decoding will fail. A Chernoff-bound argument can be used to show
that this happens with exponentially small probability if the symbol error probability
bounded away from

n − k − 1 + g

n
=
(

1 − log Q

log(Q) −

r

)
+

g − 1
n

.

The second failure mode is when an incorrect symbol passes the hashing test and is
therefore used in the decoding process. This happens with probability at most

np

2�
,

where p is the symbol error probability. Note that this error probability is linear in n,
unlike the bounds we get for interleaved codes.

However, it is possible to do better also with the hashing method by adding a second
stage to the decoder. After removing symbols with mismatching hash, a few erroneous
symbols remain; if there are not too many such symbols, those can be corrected in a
second step with the decoder for AG codes. The reasoning is as follows. Let X1 be the
number of received erroneous symbols which have mismatching hash values, and let X2

be the number of received erroneous symbols for which the hash matches. Then after
removing the mismatching X1 symbols, we are left with an [n−X1, k, n−X1−k+1−g]
AG-code. Such a code is correctable for errors up to half the minimum distance, hence
the correctability condition is

n − k + 1 − g > X1 + 2X2.

If p is the symbol error probability, then we have

E[X1 + 2X2] = np · (1 − 2−�) + 2np · 2−�

A Chernoff-bound can then be used to show that if the symbol error probability p is
bounded away from

(1 − R)n + 1 − g

(1 + 2−�)n
,

Improved Decoding of Interleaved AG Codes 45

the resulting failure probability will be exponentially small (R = k/n). To summarize,
such codes are decodable, if the overall rate (including loss via hashing) is chosen such
that

r <
log(Q) −

log(Q)

(
1 − (1 + 2−�)p − g

n
+

1
n

)
.

To compare this to interleaved AG codes, note that the factor

log(Q) −

log(Q)

corresponds to the (βm − 1)/(βm) term we have for interleaved codes. So, hashing is
away by the factor (1 + 2−�). On the other hand, the advantage of hashing is that g/n
can be made much smaller than in the interleaved case, since we are working in a much
larger field.

Unfortunately, this fact has another downside in itself: Working on the larger field
increases the complexity of the decoder considerably. For interleaved code, it is
O(n1+ε log(q)2) where for the hashing method, it is O(n1+ε log(Q)2).

Hashing can also be combined with an interleaved code to produce a much faster
decoder which is also extremely simple. The idea is as follows: We dedicate the first of
the m interleaved words just for error detection. That is, the first codeword will always
be a transmitted zero. On the receiver side, symbols which have a non-zero value in
this first interleaved word are again considered erasures. The other interleaved words
can then all be decoded separately, using the standard decoder. That way, it is possible
to get a decoder which operates on the small field only, and which thus has decoding
complexity similar to the interleaved decoder. The error analysis is the same as for the
hashing code over the large field; the downside is that we are back to the case where
g/n tends to 1/(

√
q − 1). Hence, these codes have slightly worse rates than interleaved

AG codes.

References

1. D. Bleichenbacher, A. Kiyayias, and M. Yung. Decoding of interleaved Reed-Solomon codes
over noisy data. In Proceedings of ICALP 2003, pages 97–108, 2003.

2. A. Brown, L. Minder, and A. Shokrollahi. Probabilistic decoding of interleaved Reed-
Solomon-codes on the Q-ary symmetric channel. In Proceedings of the IEEE International
Symposium on Information Theory, page 327, 2004.

3. D. Coppersmith and M. Sudan. Reconstructing curves in three (and higher dimensional)
space from noisy data. In Proceedings of the 35th Annual ACM Symposium on Theory of
Computing (STOC), 2003.

4. A. Garcia and H. Stichtenoth. A tower of Artin-Schreier extensions of function fields attain-
ing the Drinfeld-Vladut bound. Invent. Math., 121:211–222, 1995.

5. V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-geometric
codes. In Proceedings of the 39th IEEE Symposium on Foundations of Computer Science,
pages 28–37, 1998.

6. J. Justesen, Ch. Thommesen, and T. Høholdt. Decoding of concatenated codes with inter-
leaved outer codes. In Proc. International Symposium on Information Theory, page 328,
2004.

46 A. Brown, L. Minder, and A. Shokrollahi

7. G.L. Katsman, M.A. Tsfasman, and S.G. Vladut. Modular curves and codes with a polyno-
mial construction. IEEE Trans. Inform. Theory, 30:353–355, 1984.

8. M. Luby and M. Mitzenmacher. Verification codes. In Proceedings of the 40th Annual
Allerton Conference on Communication, Control, and Computing, 2002.

9. M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman. Efficient erasure correcting
codes. IEEE Trans. Inform. Theory, 47:569–584, 2001.

10. F. Parvaresh and A. Vardy. Correcting errors beyond the Guruswami-Sudan radius in poly-
nomial time. In Proceedings of the 46th Annual IEEE Symposium on the Foundations of
Computer Science (FOCS), 2005. To appear.

11. A. Shokrollahi and W. Wang. LDPC codes with rates very close to the capacity of the
q-ary symmetric channel for large q. In Proceedings of the International Symposium on
Information Theory, Chicago, 2004.

12. A. Shokrollahi and H. Wasserman. List decoding of algebraic-geometric codes. IEEE
Trans. Inform. Theory, 45:432–437, 1999.

13. M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound. J. Compl.,
13:180–193, 1997.

14. A. Vardy. Private communication. 2005.

Performance Improvement of Turbo Code
Based on the Extrinsic Information

Transition Characteristics

Woo Tae Kim1, Se Hoon Kang2, and Eon Kyeong Joo1

1 School of Electrical Engineering and Computer Science,
Kyungpook National University,

Daegu 702-701, Korea
{state, ekjoo}@ee.knu.ac.kr

http://dcl.knu.ac.kr
2 Application Engineer Organization,

Agilent Technologies Korea Ltd.,
Seoul 150-711, Korea

sehoonkang@agilent.com

Abstract. Good performance of turbo code can be obtained by up-
dating extrinsic information in the iterative decoding process. At first,
transition patterns are categorized by the characteristics of extrinsic in-
formation in this paper. The distribution of these patterns is surveyed
according to signal-to-noise ratio. The dominant error pattern is deter-
mined based on the results. And error performance improvement is ex-
pected by correcting it. Thus, a scheme to correct the bit with the low-
est extrinsic information is proposed and analyzed. The performance is
improved as expected from simulation results as compared to the con-
ventional scheme especially in error floor region.

1 Introduction

It is required to use a powerful error correcting code to provide high-quality as
well as high-speed multimedia services in future communication systems. Turbo
code is known to be one of the most powerful error correcting codes due to
its solid performance by updating extrinsic information [1-3]. But the iterative
decoding induces delay problem. In addition, turbo code shows error floor phe-
nomenon [4], that is, the performance is not improved even if signal-to-noise ratio
(SNR) is increased. The researches on the extrinsic information of the turbo code
have been conducted to reduce the delay in decoding [4-10]. Among them, the
scheme to use the cyclic redundancy check (CRC) code is known to be the most
efficient one [11].

The transition patterns of extrinsic information are investigated and classi-
fied in order to improve error performance especially at error floor region in this
paper. Also, the distribution of transition patterns is found according to vari-
ous SNR values and the dominant pattern in error floor region is analyzed by
observing the distribution of these patterns. Finally, a new scheme to improve

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 47–58, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

48 W.T. Kim, S.H. Kang, and E.K. Joo

error performance especially in error floor region is proposed and analyzed in
this paper.

2 Transition Characteristics of Extrinsic Information

Computer simulation is performed in the additive white Gaussian noise (AWGN)
channel to investigate the transition characteristics of extrinsic information. The
code rate is 1/3 and the frame length is 1024. An eight-state, recursive systematic
convolutional (RSC) code is used for the constituent encoder.

The transition patterns are categorized by the characteristics of extrinsic
information according to the number of iterations. The patterns are classified
into two groups such as oscillation and convergence as shown from Fig. 1 to 6.
The oscillation patterns are again classified into three patterns. The extrinsic
information of the first pattern oscillates in wide range and that of the second
one oscillates in relatively narrow range. The extrinsic information of the last
pattern oscillates in wider range as the number of iterations is increased. The
oscillation patterns have two modes. If the absolute value of average extrinsic
information is large enough, the corresponding bit is definitely either a correct
or an error bit. Therefore, there is no performance improvement even if iteration
is continued. On the other hand, it is fluctuated between the correct and error
region if it is small. So error performance is determined by the stopping instance
of iteration.

The convergence patterns are also classified into three patterns. The extrinsic
information of the first pattern is converged into a large value and that of the
second one is increased almost linearly. The extrinsic information of the last
pattern is changed very little regardless of the number of iterations. These six
transition patterns are observed at error as well as correct bits. So it is difficult
to determine the existence of an error bit by observing these transition patterns
only.

The dominant error pattern is different according to SNR in general. The
oscillation patterns are usually found at low SNR. On the other hand, the con-
vergence patterns are dominant at high SNR. In addition, the first and second
pattern of convergence are observed dominantly in this range where performance
is not improved due to the error floor phenomenon. The distribution of the first
and second pattern of convergence in error is shown in Table 1. It is obvious
that they are the dominant error patterns at high SNR.

These convergence patterns in error are usually different from the others that
correspond to the correct bits in the same frame. The example frames with the
correct and error bits are shown in Fig. 7 and 8. The dotted lines of Fig. 7
show the error bits which are the second pattern of convergence. The solid lines
which correspond to the correct bits show the first pattern of convergence. The
correct bits are converged after about 5 iterations. But the error bits show slowly
increasing extrinsic information as compared to the correct bits. So the difference
between error and correct bits is obvious. The second frame pattern is shown
in Fig. 8. All bits show the first pattern of convergence. The error bits show

Performance Improvement of Turbo Code 49

0 4 8 12 16 20
Number of iterations

-40

-20

0

20

40

E
xt

ri
ns

ic
 in

fo
rm

at
io

n

Fig. 1. The first oscillation pattern

0 4 8 12 16 20
N umber of iterations

-40

-20

0

20

40

E
xt

ri
ns

ic
 in

fo
rm

at
io

n

Fig. 2. The second oscillation pattern

50 W.T. Kim, S.H. Kang, and E.K. Joo

0 4 8 12 16 20
Number of iterations

-40

-20

0

20

40

E
xt

ri
ns

ic
 in

fo
rm

at
io

n

Fig. 3. The third oscillation pattern

0 4 8 12 16 20
Number of iterations

-40

-20

0

20

40

E
xt

ri
ns

ic
 i

nf
or

m
at

io
n

Fig. 4. The first convergence pattern

Performance Improvement of Turbo Code 51

0 4 8 12 16 20
Number of iterations

-40

0

40
E

xt
ri

ns
ic

 i
nf

or
m

at
io

n

Fig. 5. The second convergence pattern

0 4 8 12 16 20
N umber of iterations

-20

-10

0

10

20

E
xt

ri
ns

ic
 in

fo
rm

at
io

n

Fig. 6. The third convergence pattern

52 W.T. Kim, S.H. Kang, and E.K. Joo

Table 1. Distribution of error patterns according to SNR

SNR The number of error bits The number of
(dB) with the first and second other error

pattern of convergence bits

0.8 1186(4.60%) 24635(95.4%)
1.0 579(19.8%) 2348(80.2%)
1.2 165(47.8%) 180(52.2%)
1.4 104(66.7%) 52(33.3%)
1.6 60(77.0%) 18(23.0%)
1.8 29(82.9%) 6(17.1%)
2.0 26(86.7%) 4(13.3%)

0 4 8 12 16 20
Number of iterations

-200

-100

0

100

200

E
xt

ri
n

si
c

in
fo

rm
at

io
n

correct bits
error bits

Fig. 7. The first frame pattern with correct and error bits

slowly increasing and smaller absolute extrinsic information values as compared
to the correct bits even if both bits have similar values after 12 iterations. The
difference is more obvious within the first 10 iterations. Therefore, it is possible
to detect and correct the error bits in these frames by observing the difference
in the transition patterns of extrinsic information between the correct and error
bits.

The number of error bits of the first and second pattern of convergence is
generally less than 10 at the error floor region. These error bits have lower
extrinsic information than the correct bits during the first several iterations. So
almost all bits which have lower extrinsic information than the other bits are

Performance Improvement of Turbo Code 53

0 4 8 12 16 20
Number of iterations

-200

-100

0

100

200

E
xt

ri
ns

ic
 in

fo
rm

at
io

n

correct bits
error bits

Fig. 8. The second frame pattern with correct and error bits

considered to be in error. Thus, the performance is expected to be improved
if inverting the bit with the lowest extrinsic information after checking error
existence at each iteration.

3 The Proposed Scheme and Simulation Results

A turbo decoder which contains the proposed scheme is shown in Fig. 9. Iterative
decoding is performed at first as in the conventional turbo decoder. Then the
existence of errors is checked by the CRC code with the hard decision values of
the extrinsic information. If there is no error, then the whole decoding process
is completed. Otherwise, the existence of errors is checked again after inverting
the bit with the lowest extrinsic information. If no error is found at any step, the
whole decoding process is finished. If there are still errors, then the bit with the
next lowest extrinsic information is inverted until the predetermined maximum
number of bits to be inverted. After the procedure is finished, iterative decoding
is continued after reinverting the inverted bits up to the predetermined maximum
number of iterations.

Computer simulation is performed in the AWGN channel in order to in-
vestigate the error performance of the proposed system. The code rate is 1/3
and the frame length is 1024. The maximum number of iterations is set to 20.
The ethernet-32 CRC code [12] is used to check the existence of errors and the
maximum number of bits to be inverted is set to 4.

54 W.T. Kim, S.H. Kang, and E.K. Joo

MAP
Dec. 1

I-1

Error ?

No

Systematic
Parity1

Parity2

MAP
Dec. 2

I

Yes

No

Yes

No

Error ?

number of bits
to be inverted ?

Inverting the bit
with the (next)
lowest extrinsic

Reinverting
the inverted

The max.

End

number of
iterations ?

The max.

information bits

Yes

Yes

No

Fig. 9. Turbo decoder with the proposed scheme

0.8 1.2 1.6 2
1E-9

1E-8

1E-7

1E-6

1E-5

B
E

R

Conventional Scheme

Proposed Scheme

1E-4

SNR[dB]

Fig. 10. Error performance of the proposed scheme

The results of the error performance of the conventional scheme where the
CRC code is used only to stop the iterative decoding and the proposed system
which inverts the bit with the lowest extrinsic information after checking the
error existence are shown in Fig. 10. It can be easily verified that the perfor-
mance of the proposed scheme has improved as compared to the conventional

Performance Improvement of Turbo Code 55

Table 2. Distribution of error bits (number of frames)

Number of error bits 1.8dB 2.0dB

1 2 1
2 128 76
3 5 4
4 4 1
5 5 3
6 1 1

others 2 1

0.8 1.2 1.6 2
SNR[dB]

B
E

R

1E-4

1E-5

1E-6

1E-7

1E-8

1E-9

Conventional Scheme
Inverting 2 bits
Inverting 4 bits
Inverting 6 bits

Fig. 11. Error performance according to the number of inverting bits

one especially in the error floor region. For example, about 0.1dB and 0.5dB
gain can be obtained at BER of 10−6 and 10−7. Also, it is expected that the
performance difference is increased further if SNR is increased.

It is considered that the number of bits to be inverted may affect the per-
formance of the proposed scheme. In other words, error performance may be
improved if it is increased. On the other hand, the decoding complexity may be
increased also. So the distribution of error bits which is classified as the first and
second pattern of convergence is investigated to get the appropriate number of
bits to be inverted. The distributions at 1.8 and 2.0dB where the error floor phe-
nomenon occurs are shown in Table 2 according to the number of error bits. The
number of frames used in this simulation is 3× 106. The frames which have two

56 W.T. Kim, S.H. Kang, and E.K. Joo

Table 3. Average number of iterations

SNR Without Inverting Inverting Inverting
(dB) inverting 2 bits 4 bits 6 bits

0.8 3.4846 3.4212 3.3808 3.3734
1.0 2.9766 2.9112 2.8709 2.8638
1.2 2.5050 2.5333 2.4919 2.4840
1.4 2.3092 2.2561 2.2207 2.2130
1.6 2.1302 2.0938 2.0731 2.0692
1.8 2.0374 2.0148 2.0035 2.0016
2.0 1.9726 1.9532 1.9401 1.9370

Table 4. Processing time(msec) of the whole decoding procedure and the proposed
inverting algorithm only

SNR Whole decoding Proposed inverting Whole decoding Proposed inverting
(dB) procedure algorithm only procedure algorithm only

(Inverting 2 bits) (Inverting 2 bits) (Inverting 6 bits) (Inverting 6 bits)

0.8 7.80E+07 7.50E+04 7.74E+07 7.84E+04
1.0 3.49E+08 1.02E+05 3.47E+08 1.08E+05
1.2 2.94E+08 6.15E+04 2.93E+08 6.44E+04
1.4 3.53E+08 1.47E+05 3.52E+08 1.56E+05
1.6 3.53E+08 9.82E+03 3.53E+08 1.06E+04
1.8 1.40E+08 2.34E+04 1.15E+08 2.41E+04
2.0 1.03E+08 2.08E+04 9.55E+07 2.09E+04

error bits are observed the most frequently and those are the dominant number
of error bits. In addition, the error bits do not always have the lowest extrinsic
information if there are more than 7 error bits.

The simulation is executed using 2 to 6 bits in order to investigate the er-
ror performance of the system. Better error performance can be obtained if the
number of bits to be inverted is increased in the high SNR region as shown in
Fig. 11. On the other hand, the first and second convergence pattern of the error
bits are relatively sparse in the low SNR region below 1.2dB. So the effect of in-
crease in the number of bits to be inverted cannot be obtained. Accordingly, it is
considered that maximum 6 bits are sufficient to be inverted within considerable
increase in terms of the decoding complexity.

The average number of iterations of the conventional and proposed scheme
is shown in Table 3 according to various SNR values. The average number of
iterations of the proposed scheme is decreased as compared to that of the conven-
tional one. In addition, it is also decreased as the number of bits to be inverted
is increased. This is due to the fact that the frames which are still in error af-
ter finishing the maximum number of iterations are reduced by the proposed
scheme.

Performance Improvement of Turbo Code 57

It is expected that the decoding time is also increased as the number of bits
to be inverted is increased. So the processing time of whole decoding procedure
and that of the proposed algorithm only shown in the dotted box in Fig. 9 are
compared in Table 4 with Intel Pentium IV processor. The processing time of
the proposed inverting scheme only is considerably short as compared to the
total processing time which is measured by msec. The time needed to invert 6
bits is longer than that for 2 bits. But the total processing time for 6 bits is
shorter than 2 bits. This is because the required time for inverting algorithm is
relatively small portion of the whole decoding process and the average number
of iterations is decreased as shown in Table 3. Therefore, the scheme of inverting
maximum 6 bits can reduce the whole decoding time as well as improve error
performance as compared to the other ones.

4 Conclusions

High-speed and high-quality multimedia services are required in future commu-
nication systems. So powerful error correcting code such as turbo code is rec-
ommended. The turbo code shows excellent performance by updating extrinsic
information through iterative decoding. But it shows a drawback of error floor
in which the performance is not improved even if SNR is increased. Thus, the
transition characteristics of extrinsic information in high SNR where the error
floor is occurred are analyzed in this paper.

As a result, the transition patterns are categorized into three convergence and
oscillation patterns. The first and second pattern of convergence are dominant
at error floor region among these patterns. And the error bits show different
extrinsic information transition pattern or shape as compared to the correct
bits in the same frame. That is, they have low extrinsic information values as
compared with the correct bits. Therefore, the error bits in a frame can be
detected by observing this characteristic and then the performance is expected
to be improved by correcting those detected error bits.

So the scheme which inverts the bit with the lowest extrinsic information
is proposed and analyzed. The error performance is improved as compared to
the conventional scheme especially in the error floor region from the simulation
results. In addition, the average number of iterations is also reduced and the
total processing time is decreased although the time needed to detect and correct
error patterns is increased. Accordingly, the proposed scheme is expected to be
applied easily to future high-speed and high-quality multimedia communication
systems.

Acknowledgments

This work was supported by grant no. B1220-0501-0153 from the Basic Research
Program of the Institute of Information Technology Assessment.

58 W.T. Kim, S.H. Kang, and E.K. Joo

References

1. C. Berrou and A. Glavieux, ”Near optimum error correcting coding and decoding:
Turbo-codes,” IEEE Trans. Commun., vol. 44, no. 10, pp. 1261-1271, Oct. 1996.

2. S. Benedetto and G. Montorsi, ”Unveiling turbo codes-Some results on parallel
concatenated coding schemes,” IEEE Trans. Inform. Theory, vol. 42, no. 2, pp.
409-428, Feb. 1996.

3. S. Benedetto and G. Montorsi, ”Average performance of parallel concatenated
block codes,” Electron. Lett., vol. 31, no. 3, pp. 156-158, Feb. 1995.

4. J. D. Andersen, ”The TURBO coding scheme,” Rep. IT-146, Tech. Univ. of Den-
mark, June 1994.

5. A. C. Reid, T. A. Gulliver, and D. P. Taylor, ”Convergence and Errors in Turbo-
Decoding,” IEEE Trans. Commun., vol. 49, no. 12, pp. 2045-2051, Dec. 2001.

6. R. Shao, S. Lin, and M. Fossorier, ”Two simple stopping criteria for turbo decod-
ing,” IEEE Trans. Commun., vol. 47, no. 8, pp. 1117-1120, Aug. 1999.

7. B. Kim and H. Lee, ”Reduction of the number of iterations in turbo decoding
using extrinsic information,” Proc IEEE TENCON ′99, Cheju, Korea, vol. 1, pp.
494-497, Sep. 1999.

8. J. Hagenauer, E. Offer, and L. Papke, ”Iterative decoding of binary block and
convolutional codes,” IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 429-445,
Mar. 1996.

9. P. Robertson, ”Illuminating the structure of parallel concatenated recursive sys-
tematic (TURBO) codes,” Proc. IEEE GLOBECOM ′94, San Fransisco, CA, vol.
3, pp. 1298-1303, Nov. 1994.

10. A. Shibutani, H. Suda, and F. Adachi, ”Reducing average number of turbo decod-
ing iterations,” Electron. Lett., vol. 35, no. 9, pp. 701-702, Apr. 1999.

11. A. Shibutani, H. Suda, and F. Adachi, ”Complexity reduction of turbo decoding,”
Proc. IEEE V TC′99, Houston, TX, vol. 3, pp. 1570-1574, Sep. 1999.

12. G. Castagnoli, S. Brauer, and M. Hemmann, ”Optimization of cyclic redundancy
check codes with 24 and 32 parity bits,” IEEE Trans. Commun., vol. 41, no. 6,
pp. 883-892, June 1993.

A Trellis-Based Bound on (2, 1)-Separating Codes

Hans Georg Schaathun1,� and Gérard D. Cohen2

1 Dept. Informatics, University of Bergen,
Pb. 7800, N-5020 Bergen, Norway

georg@ii.uib.no
2 Dept. Informatique et Reseaux,

Ecole Nationale Supérieure des Télécommunications,
46, rue Barrault, F-75634 Paris Cedex 13, France

cohen@enst.fr

Abstract. We explore some links between higher weights of binary
codes based on entropy/length profiles and the asymptotic rate of (2, 1)-
separating codes. These codes find applications in digital fingerprinting
and broadcast encryption for example. We conjecture some bounds on
the higher weights, whose proof would considerably strengthen the upper
bound on the rate of (2, 1)-separating codes.

Keywords: Trellis, coding bounds, separating codes.

1 The Problem

The concept of (t, u)-separating codes has been studied for about 35 years in the
literature, with applications including fault-tolerant systems, automata synthe-
sis, and construction of hash functions. For a survey one may read [15]. The con-
cept has been revived by the study of digital fingerprinting [3]; a (t, 1)-separating
code is the same as a t-frameproof code, on which we elaborate now.

In broadcast encryption, a company distributes a unique decoder to each
user. Users may collude and combine their decoders to forge a new one. The
company wants to limit this or trace back illegal decoders to the offending users.
Among the forbidden moves: framing an innocent user. This goal can be achieved
with frameproof codes. One can consult e.g. [2,16] for more.

In this paper we study binary (2, 1)-separating codes ((2, 1)-SS). An (n, M)
code is a subset of size M from the set of binary vectors of length n. The code
or a set of codewords will often be regarded as matrices, with the codewords
forming the rows.

Definition 1. Let a,b, c be three vectors. We say that a is separated from (b, c)
if there is at least one postion i such that ai �= bi and ai �= ci.

An (n, M) code is (2, 1)-separating if for every ordered triplet (a,b, c), a is
separated from (b, c).

� Research was supported by the Norwegian Research Council under Grant Number
146874/420 and the AURORA program.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 59–67, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

60 H.G. Schaathun and G.D. Cohen

Table 1. Rate bounds for (2, 1)-SS

Linear Nonlinear
Rate Ref. Rate Ref

Known construction 0.156 [6] 0.1845 [8]
New construction 0.2033 Theorem 2
Existence 0.2075 Well-known e.g. [6] 0.2075 Well-known e.g. [10]
Upper bound 0.28 Well-known e.g. [6] 0.5 [10]

Many interesting mathematical problems are equivalent to that of (2, 1)-SS.
An overview of this is found in [10]. A linear (2, 1)-separating code is equivalent
to an intersecting code [6], and some results have been proved independently for
intersecting and for separating codes. For further details on intersecting codes,
see [5] and references therein.

The rate of the code is
R =

log M

n
.

For an asymptotic family of codes (ni, Mi) codes (C1, C2, . . .) where Mi > Mi−1

for all i, the rate is defined as

R = lim sup
i→∞

log Mi

ni
.

The known bounds on asymptotic families of (2, 1)-SS are shown in Table 1. By
abuse of language, an asymptotic family of codes will also be called an asymptotic
code.

We observe a huge gap between the upper and lower bounds for non-linear
codes. Our goal is to reduce this gap. The references in the table are given
primarily for easy access and are not necessarily the first occurrences of the
results, which are sometimes folklore.

Section 2 gives a minor result, namely a new construction slightly improving
the lower bound. In Section 3, we make some observations about the trellis of
a (2, 1)-SS. In Section 4, we discuss higher weights of arbitrary codes and we
introduce the ‘tistance’ of a code and make some conjecture. Section 5, we prove
bounds for (2, 1)-SS in terms of the ‘tistance’ and show how the conjectures
would give major improvements of the upper bounds if proved.

2 A New Asymptotic Construction

Theorem 2. The codes obtained by concatenating an arbitrary subcode of 121
words from the (15, 27) shortened Kerdock code K ′(4) with codes as described
by Xing [18] (t = 2) over GF(112), is a family of (2, 1)-SS of asymptotic rate
R = 0.2033.

Proof. It is well known that the concatenation of two (2, 1)-SS is a (2, 1)-SS.
The shortened Kerdock code K ′(4) was proved to be a (2, 1)-SS in [11]. The

A Trellis-Based Bound on (2, 1)-Separating Codes 61

Xing codes were proved to be (2, 1)-SS in [18]. Let us recall for convenience their
parameters.

Suppose that q = p2r with p prime, and that t is an integer such that 2 ≤
t ≤ √

q − 1. Then there is an assymptotic family of (t, 1)-separating codes with
rate

R =
1
t
− 1√

q − 1
+

1 − 2 logq t

t(
√

q − 1)
.

We take K ′(4) which is a (15, 27) (2, 1)-SS, wherefrom we pick 112 arbitrary
codewords. This code can be concatenated with a Xing code over GF(112), for
which a rate of approximately 0.4355 and minimum distance more than 0.5 is
obtainable. This gives a concatenated code which is (2, 1)-separating with the
stated rate.

It is a bit unclear how easily we can construct the sequences of curves on
which the Xing codes are based; we have found no explicit construction in the
literature, but it is hinted that the construction should be feasible. The alterna-
tive is to use the random construction of [6,10] for a rate of 0.2075, but that is
certainly computationally intractable even for moderate code sizes.

3 Trellises for (2, 1)-SS

We know that a code can always be described as a trellis, and trellises have been
studied a lot as devices for decoding. We will not rule out the possibility that
someone will want to use trellis decoding of separating codes at some point, but
that is not our concern. We want to derive bounds on the rate of (2, 1)-separating
codes, and it appears that such bounds may be derived by studying the trellis.

A trellis is a graph where the vertices are divided into (n + 1) classes called
times. Every edge goes from a vertex at time i to a vertex at time i + 1, and
is labeled with an element from some alphabet Q. The vertices of a trellis are
called states. A trellis also have the property that time 0 and time n each has
exactly one vertex, called respectively the initial and the final states. There is
at least one path from the initial state to each vertex of the graph, and at least
one path to the final state from each vertex of the graph.

A binary (n, M) code corresponds to a trellis with label alphabet {0, 1}.
Every path from time 0 to time n defines a codeword by the labels of the edges.
Every codeword is defined by at least one such path.

A trellis is most often considered as an undirected graph, but we will never-
theless say that an edge between a state v at time i − 1 to some state w at time
i goes from v to w.

If each codeword corresponds to exactly one trellis path, then we say that
the trellis is one-to-one. A proper trellis is one where two edges from the same
vertex never have the same label. If, in addition, no two edges into the same
vertex have the same label, then we say that the trellis is biproper. It is known
that every block code corresponds to a unique minimal proper trellis, i.e. the
proper trellis with the minimal number of edges.

62 H.G. Schaathun and G.D. Cohen

c1

a1

b1

c2

a2

b2

c3

Fig. 1. The impossible subtrellis in Proposition 3

a2

a1

b2

b1
1

1

0

Fig. 2. The impossible subtrellis in Proposition 5

Proposition 3. In a trellis corresponding to a (2, 1)-separating code, if two dis-
tinct paths join in some vertex v, the joint path cannot rebranch at any later
time.

Proof. If the trellis were to contain two paths which first join and later rebranch,
it would mean a sub-trellis as given in Figure 1. If so, we can consider the three
vectors

v1 = c1||a1||c2||a2||c3

v2 = c1||a1||c2||b2||c3

v3 = c1||b1||c2||a2||c3

Now v1 is not separated from (v2,v3), so the trellis cannot be (2, 1)-separating.

Corrollary 4. The trellis of a (2, 1)-separating code cannot contain a vertex
with both two incoming and two outgoing edges (often called a butterfly vertex).

Proposition 5. Every (2, 1)-separating code has a biproper trellis.

Proof. We consider the minimal proper trellis of a (2, 1)-separating code. Let v
be a vertex with two incoming edges with the same label, say 1. This must mean
that we have a subtrellis like the one drawn in Figure 2, where a1||0||b2 is not
a codeword. Observe the three codewords

v1 = a1||1||b1

v2 = a2||1||b1

v3 = a2||0||b2.

Here, v2 is not separated from (v1,v3).

A Trellis-Based Bound on (2, 1)-Separating Codes 63

4 Entropy/Length Profiles and Higher Weights

This section deals with general codes, not necessarily separating. Higher weights,
or generalised Hamming weights, have been studied for linear codes since 1977
[9] and have received considerable interest with the definition of the weight hier-
archy in 1991 [17]. For non-linear codes, different definitions have been suggested
[4,1,14]. We will primarily use the entropy/length profiles (ELP) from [13]. The
ELP was used to define the weight hierarchy in [14].

Let X be a stochastic variable, representing a codeword drawn uniformly at
random from some code C. Write [n] = {1, 2, . . . , n}. For any subset I ⊆ [n], let
XI be the vector (Xi : i ∈ I), where X = (Xi : i ∈ [n]). Clearly XI is also a
stochastic variable, but not necessarily uniformly distributed.

Definition 6 (Entropy). The (binary) entropy of a discrete stochastic variable
X drawn from a set X is defined as

H(X) = −
∑
x∈X

P (X = x) log P (X = x).

The conditional entropy of X with respect to another discrete stochastic variable
Y from Y is

H(X |Y) = −
∑
y∈Y

P (Y = y)
∑
x∈X

P (X = x|Y = y) log P (X = x|Y = y).

We define the (unordered) conditional ELP to be the sequence (hi : i ∈ [n])
where

hi = max
#I=i

H(XI |X[n]\I),

we also have the ordered conditional ELP (gi : i ∈ [n]) where

gi = H(X[i]|X{i+1,...,n}).

Evidently, gi depends on the coordinate ordering and may thus be different
for two equivalent codes. On the other hand, hi is the maximum of gi for all
equivalent codes, and thus invariant throughout an equivalence class.

The weight hierarchy as defined in [14] is {i|hi > hi−1}. It is an interesting
point that the weight hierarchy of a linear code always has k elements, while
there is no way to predict the number of elements in the weight hierarchy of a
non-linear code, no matter which definition is used.

In this paper we use the parameters

tj := min{i : gi ≥ j}, where j = 0, . . . , �log M .

We have particular interest in the first parameter, t := t1, which we are going to
call the ‘tistance’ of the code. For all codes t ≥ d, and for linear codes we have
t = d. We also define a normalised measure τ := t/n.

64 H.G. Schaathun and G.D. Cohen

Lemma 7 [14, Lemma 2] For any (n, M)q code C, we have hl(C) ≥ r where
r = l + logqM − n.

Proposition 8 (Tistance Singleton bound). For any (n, M)q code with tis-
tance t, we have t < n − logqM + 2.

The proposition follows directly from Lemma 7, by setting l = t and noting
that ht < 2. Note that if M = qk for some integer k, then t ≤ n − k + 1, which
is the more common Singleton form of the bound.

Corrollary 9. For an asymptotic class of codes, we have τ ≤ 1 − R.

Conjecture 10 (Plotkin-type bound). For all asymptotic codes, we have
R ≤ RP (τ) := 1 − 2τ .

The regular asymptotic Plotkin bound states that R ≤ 1 − 2δ. Since τ ≥ δ,
the conjecture is stronger than this.

Conjecture 11. Let RLP (δ) be the MRRW bound [12]. For an asymptotical
non-linear code, it holds that R ≤ RLP (τ).

Obviously, Conjecture 11 implies Conjecture 10, because the MRRW bound
is stronger than the Plotkin bound. We state the conjectures separately to en-
courage work on a Plotkin-type bound in terms of t. The usual Plotkin bound
has a cleaner expression and a simpler proof than the MRRW bound, and thus
Conjecture 11 may well be considerably harder to prove.

5 Trellis Bounds on (2, 1)-SS

At time i, let Σi = {σ1, . . . , σa} be the set of states with more than one incom-
ing path. For any state σ, let P (σ) be the number of distinct incoming paths
respectively. Remember from Proposition 3 that any state σ ∈ Σi has only one
outgoing path. We get that

gi =
∑

σ∈Σi

P (σ)
M

h(P (σ)) = M−1
∑

σ∈Σt

P (σ)log P (σ), (1)

or equivalently that

M = g−1
i

∑
σ∈Σt

P (σ)log P (σ). (2)

Setting i = t, we get that

M ≤
∑

σ∈Σt

P (σ)log P (σ). (3)

.

A Trellis-Based Bound on (2, 1)-Separating Codes 65

Theorem 12. A (2, 1)-separating code has size M ≤ 2t.

Proof. Let Σi be the set of states at time i with multiple incoming paths as
before, and let Σ′

i be the set of states at time i ≤ t with a unique incoming path,
and a path leading to a state in Σt. Obviously, we have #Σi + #Σ′

i ≤ 2i. Also
note that a state in Σi (for i < t) must have a (unique) outgoing path leading
to a state in Σt. Observe that Σ′

t = ∅.
We will prove that for i = 0, . . . , t, we have

M ≤ 2i

⎛
⎝ ∑

σ∈Σt−i

P (σ)log P (σ) + #Σ′
t−i

⎞
⎠ . (4)

This holds for i = 0 by (3), so it is sufficient to show that

∑
σ∈Σi

P (σ)log P (σ) + #Σ′
i ≤ 2

⎛
⎝ ∑

σ∈Σi−1

P (σ)log P (σ) + #Σ′
i−1

⎞
⎠ . (5)

for 0 < i ≤ t. Since Σ0 = ∅ and Σ′
0 is the singleton set containing the initial

state, (4) implies M ≤ 2t by inserting i = t, which will prove the theorem.
Each state σ in Σi must have paths from one or two states Σi−1 ∪ Σ′

i−1. If
there is only one such state σ′, then we have P (σ) = P (σ′) and σ′ ∈ Σi−1.

If there are two such states σ1 and σ2, we get that P (σ1) + P (σ2) = P (σ). If
P (σj) = 1, we have σj ∈ Σ′

i−1, otherwise σj ∈ Σi−1. Observe that

P (σ) log P (σ) ≤ 2(P (σ1) log P (σ1) + P (σ2) log P (σ2)),
if σ1, σ2 ∈ Σi−1,

(6)

P (σ) log P (σ) ≤ 2P (σ1) log P (σ1) + 1,

if σ1 ∈ Σi−1, σ2 ∈ Σ′
i−1,

(7)

P (σ) log P (σ) = 2,

if σ1, σ2 ∈ Σ′
i−1.

(8)

Each of these three equations describes one type of state σ ∈ Σi. Recall that
σj ∈ Σi−1 can have but one outgoing edge. For any state σ ∈ Σ′

i there is one
state σ′ ∈ Σ′

i−1, and each such state σ′ has a path to one or two states in Σi∪Σ′
i.

We note that each σ ∈ Σi in (5) contributes to the right hand side with the
maximum amount from the bounds (6) to (8). The term #Σ′

i−1 is multiplied
by two to reflect the fact that each σ′ ∈ Σ′

i−1 can have an edge to two different
states in Σi ∪ Σ′

i. This proves the bound.

Proposition 13. If Conjecture 10 is true, then any asymptotical (2, 1)-SS has
rate R ≤ 1/3. Similarly, if Conjecture 11 is true, then any asymptotical (2, 1)-SS
has rate R ≤ 0.28.

The proof is is similar to the ones used to prove upper bounds on linear
(2, 1)-SS in past, see e.g. [15,6].

66 H.G. Schaathun and G.D. Cohen

Proof. From the Plotkin-type bound on τ , we get τ ≤ 1
2 (1 − R), and from

Theorem 12 we thus get R ≤ 1
2 (1−R) which proves the result. The proof of the

second sentence is similar, replacing the Plotkin bound by the MRRW bound.

Remark 14. Theorem 12 combined with the tistance Singleton bound, R ≤ 1−τ ,
implies that R ≤ 0.5 for any (2, 1)-SS by the proof above, providing a new proof
for the old bound. Any stronger bound on R in terms of τ for non-linear codes,
will improve the rate bound for (2, 1)-separating codes.

Remark 15. By using (2), we get for any i that

M ≤ h−1
i 2i,

by a proof similar to that of Theorem 12.

6 Balance

From Table 1, we know that an asymptotic upper bound of the rate of a (1, 2)-
separating code is R ≤ 1/2. Starting with an asymptotic family with rate close
to 1/2, we construct a family with the same rate and only codewords with weight
close to n/2. Let C be a (1, 2)-SS of rate R = 1/2−α, where α > 0 is a sufficiently
small constant.

Consider a partition (P1, P2) of the coordinates with |P1| = �(1/2 + 1.1α)n� =:
n1. Let Ui ⊆ C be the set of codewords matching no other codeword on Pi. It is
easy to check that C ⊂ U1∪U2. (Otherwise, some codeword would be matched by
at most two others on P1 and P2, thus not separated). Since |U2| ≤ 2|P2| = o(|C|),
we get |U1| = (1 − o(1))|C|.

Projecting C on P1 gives a code C1(n1, 2(1/2−α)n(1 − o(1))) of rate R1 ≈
(1/2 − α)/(1/2 + 1.1α) ≈ 1 − 4.2α. Thus, the relative dominating weight ω1 in
C1 must be close to 1/2.

Now, we expurgate by keeping only codewords of C which get relative weight
ω1 when projected on P1. Thus we get a code C′ with rate asymptotically equal
to that of C.

We repeat the procedure with a new partition (P ′
1, P

′
2), almost disjoint from

the previous one (i.e., we take |P1 ∩ P ′
1| = �2.2αn�). The code C′′ obtained

after the second expurgation retains both (1, 2)-separation and rate ≈ 1/2. Its
codewords, being balanced on P1 and P ′

1, are ‘almost’ balanced, as the following
theorem states.

Theorem 16. For all c′′ ∈ C′′, we have |w(c′′)/n − 1/2| = o(1).

Remark 17. This result generalises easily to (1, t)-separation. Any such code
with rate close to the optimal rate of 1/t is almost balanced.

We have translated the old combinatorial question of separating codes into
the language of trellises. This has enabled us to shed new light on the matter,
by putting to use concepts like entropy and higher weights.

A Trellis-Based Bound on (2, 1)-Separating Codes 67

References

1. L. A. Bassalygo. Supports of a code. In G. Cohen, M. Giusti, and T. Mora, editors,
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, volume 948 of
Springer Lecture Notes in Computer Science. Springer-Verlag, 1995.

2. Simon R. Blackburn. Frameproof codes. SIAM J. Discrete Math., 16(3):499–510,
2003.

3. Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital data. IEEE
Trans. Inform. Theory, 44(5):1897–1905, 1998. Presented in part at CRYPTO’95.

4. Gérard Cohen, Simon Litsyn, and Gilles Zémor. Upper bounds on generalized
distances. IEEE Trans. Inform. Theory, 40(6):2090–2092, 1994.

5. Gérard Cohen and Gilles Zémor. Intersecting codes and independent families.
IEEE Trans. Inform. Theory, 40:1872–1881, 1994.

6. Gérard D. Cohen, Sylvia B. Encheva, Simon Litsyn, and Hans Georg Schaathun.
Intersecting codes and separating codes. Discrete Applied Mathematics, 128(1):75–
83, 2003.

7. Gérard D. Cohen, Sylvia B. Encheva, and Hans Georg Schaathun. More on (2, 2)-
separating codes. IEEE Trans. Inform. Theory, 48(9):2606–2609, September 2002.

8. Gérard D. Cohen and Hans Georg Schaathun. Asymptotic overview on separating
codes. Technical Report 248, Dept. of Informatics, University of Bergen, May 2003.
Available at http://www.ii.uib.no/publikasjoner/texrap/index.shtml.

9. Tor Helleseth, Torleiv Kløve, and Johannes Mykkeltveit. The weight distribution of
irreducible cyclic codes with block lengths n1((ql − 1)/n). Discrete Math., 18:179–
211, 1977.

10. János Körner. On the extremal combinatorics of the Hamming space. J. Combin.
Theory Ser. A, 71(1):112–126, 1995.

11. A. Krasnopeev and Yu. L. Sagalovich. The Kerdock codes and separating systems.
In Eight International Workshop on Algebraic and Combinatorial Coding Theory,
2002.

12. Robert J. McEliece, Eugene R. Rodemich, Howard Rumsey, Jr., and Lloyd R.
Welch. New upper bounds on the rate of a code via the Delsarte-MacWilliams
inequalities. IEEE Trans. Inform. Theory, IT-23(2):157–166, 1977.

13. Ilan Reuven and Yair Be’ery. Entropy/length profiles, bounds on the minimal
covering of bipartite graphs, and the trellis complexity of nonlinear codes. IEEE
Trans. Inform. Theory, 44(2):580–598, March 1998.

14. Ilan Reuven and Yair Be’ery. Generalized Hamming weights of nonlinear codes
and the relation to the Z4-linear representation. IEEE Trans. Inform. Theory,
45(2):713–720, March 1999.

15. Yu. L. Sagalovich. Separating systems. Problems of Information Transmission,
30(2):105–123, 1994.

16. Jessica N. Staddon, Douglas R. Stinson, and Ruizhong Wei. Combinatorial proper-
ties of frameproof and traceability codes. IEEE Trans. Inform. Theory, 47(3):1042–
1049, 2001.

17. Victor K. Wei. Generalized Hamming weights for linear codes. IEEE Trans. Inform.
Theory, 37(5):1412–1418, 1991.

18. Chaoping Xing. Asymptotic bounds on frameproof codes. IEEE Trans. Inform.
Theory, 40(11):2991–2995, November 2002.

Tessellation Based Multiple Description Coding

Canhui Cai and Jing Chen

Institute of Information Science and Technology, Huaqiao University,
Quanzhou, Fujian, 362011, China

{chcai, jingzi}@hqu.edu.cn

Abstract. A novel multiple description coding framework, Tessellation
Based Multiple Description Coding (TMDC), is proposed in this paper.
In this work, we first decompose each wavelet coefficient into two parts by
bit-wise-down sampling, generating odd and even wavelet transformed
images. Then, we restructure these two images in wavelet blocks and
group the wavelet blocks to form the row and column packets. These
packets are separately dispatched through diverse channels. Since the
row and the column packets have limited intersection, even with the
loss of row and column packets simultaneously, the proposed system
exhibits good error resilient ability. Experimental results have verified
the improved performance of the proposed algorithm.

1 Introduction

The transmission of image and video information over today’s heterogeneous,
and unreliable networks presents new challenges for research in image coding.
Since long burst errors in wireless networks due to the fading effect and network
congestion or occasional link failures in the Internet, robust coding mechanisms
are necessary to deliver acceptable reconstruction quality in such environments.
Conventional approaches for dealing with packet loss and transmission errors
for static data, such as retransmission may not be applicable in such condition
due to real time nature of the video. As a possible solution to minimize the
effect of packet loss and transmission errors, Multiple Description Coding (MDC)
approach has recently received considerable attentions.

The basic idea of the multiple description coding is to encode a single source
into several mutually refining, self-decodable, and equal important bit streams
called descriptions, then deliver them through different channels to the receiver.
The reconstruction quality at the decoder depends on the number of descriptions
received. If all the descriptions are received correctly, the decoder can have a high
fidelity reconstruction quality. If only one description is available, the decoder is
still able to retrieve some information of the lost parts of signals and reconstruct
the source with an acceptable quality. Due to its flexibility, multiple description
coding has emerged as an attractive framework for robust information transmis-
sion over unreliable channels. Many MDC schemes have been proposed under
different application scenarios [1].

The first MDC framework, Multiple Description Scalar Quantizer (MDSQ)
is due to Vaishampayan [2]. In MDSQ, each sample is quantized to two indexes.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 68–77, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Tessellation Based Multiple Description Coding 69

If both indexes are available in the receiver, the sample is reconstructed with a
small quantization error. If only one index is received, the reconstruction error is
larger. Servetto introduced a wavelet based MDC scheme by combining the mul-
tiple description scalar quantizers and a subband codec [3]. Jiang and Ortega
proposed a zero-tree based MDC framework, called the Polyphase Transform
and Selective Quantization (PTSQ), where zero-trees are separated into multi-
ple parts (called phases in the paper), and a description is built from the data
of one phase and the protection information of another [4]. Miguel et al. de-
veloped another zero-tree based multiple protection scheme, MD-SPIHT, with
more protection information in the description, receiving better error resilient
results in 16 descriptions [5]. In our earlier paper, Structure Unanimity Base
Multiple Description Subband Coding (SUMDSC) [6], we split each significant
DWT coefficient into two coefficients by separating the odd number and the even
number location bits of the coefficient, forming two descriptions with similar tree
structures. For notational convenience, we call the coefficient made of odd bits
the odd coefficient and that made of the even bits the even coefficient. Similar to
the PTSQ, a description in SUMDSC includes data from one type of coefficients
and protection from the other. Since two types of coefficients share the same
hierarchical tree structures, no tree structures in the protection part need to be
coded, resulting in an improvement in the coding efficiency.

In this paper, a novel MDC framework, called Tessellation Based Multiple
Description Coding (TMDC), is proposed. Here the wavelet coefficients of an
image are first split into two parts: odd coefficients and even coefficients. The
coefficients in each part are then separately grouped to form the odd image
and the even image. These two images are next decomposed into hierarchical
quad-tree blocks. The blocks from the odd and even images are grouped in the
horizontal and vertical directions, respectively, generating the row packets and
the column packets. Because each row packet and each column packet have
limited intersection, the proposed MDC framework has very good error resilient
ability.

The rest of this paper is organized as follows: Section 2 describes the proposed
MDC framework, including a brief introduction to the SUMDSC, the hierarchical
tree block, generation of the packets, and the error resilient image reconstruction.
Section 3 shows some simulation results to illustrate the improved performances
of the proposed algorithm. Some concluding remarks are presented in Section 4.

2 Tessellation Based Multiple Description Coding
Framework

2.1 Structure Unanimity Base Multiple Description Subband
Coding (SUMDSC)

The block diagram of the SUMDSC framework is shown in the Fig. 1. Here the
wavelet coefficients and their delayed versions are bitwise-down-sampled into
even position bits and odd position bits, creating even and odd coefficients. Let
x be a significant coefficient with n + 1 bits,

70 C. Cai and J. Chen

Fig. 1. Block Diagram of Structure Unanimity Base Multiple Description Subband
Coding

x = bnbn−1 · · · b1b0 =
∑

k=even

bk2k +
∑

k=odd

bk2k = xe + xo (1)

Where xe and xo denote the odd and the even coefficients, respectively. Without
loss of generality, set n to be an odd number, n = 2m + 1. Then,

xo = b2m+1 · · · b1 =
m∑

k=0

b2k+12k (2)

xe = b2m · · · b0 =
m∑

k=0

b2k2k (3)

Where b2m+1 = 1. However, if b2m = 0, the reconstructed image from the even
coefficients will produce serious side distortions. For instance, if x = 100000011,
then xe = 10001 and xo = 0001. If only xo is available, the reconstructed value
will be x̂0 = 1 To avoid such catastrophic situation, the most significant bit
(MSB) of x, b2m+1, should be included in both xe and xo, and the above equa-
tions results in

xo = 1b2m−1 · · · b1 (4)
xe = 1b2m · · · b0 (5)

The odd and the even coefficients are then separately grouped into even and
odd images Xe and Xo respectively. Each image is coded independently by a codec
C, forming the primary part of the description. In case of channel erasure, the
counterpart component is coarsely re-quantized and coded as a redundant part of
the description. Because both Xe and Xo have the same zero mapping, the redun-
dant part need only to code the absolute value of the re-quantized coefficients and
the coding efficiency is improved. To simplify the expression, we will call these two
descriptions later odd description and even description, respectively.

2.2 Tessellation Based Multiple Description Encoding

The SUMDSC works quite well in the simple erasure channel model. However,
as most communication channels used nowadays are mainly packet exchange

Tessellation Based Multiple Description Coding 71

networks, not all packets in a description but only part of them are lost due to
the network congestion. Moreover, the packet loss may occur in both descriptions
even we transport them in different channels. To provide the best quality of
the reconstructed image, all available packets in the receiver should be used in
the image reconstruction. To this end, the descriptions must be well packetized
before dispatched.

A natural idea is to segment the transformed image into N sub-images and
apply SUMDSC to each sub-image to generate sub-odd-description and sub-
even-description, and transport all sub-odd-descriptions from one channel and
all sub-even-descriptions from the other. However, if two sub-descriptions of a
sub-image are totally lost, the reconstructed image will be severely degraded.
To minimize the maximum degradation, we propose a novel packetized multiple
description coding algorithm called the Tessellation Based Multiple Description
Coding (TMDC).

Fig. 2. Rearrangement of a wavelet transformed image into wavelet blocks

Similar to the SUMDSC, the wavelet coefficients of a transformed image are
bitwise-down-sampled, forming two wavelet transformed images, even image Xe

and odd image Xo. Wavelet coefficients in both images are then rearrange into
wavelet blocks as shown in Fig. 2.

Fig. 2 demonstrates how wavelet coefficients are shaped into wavelet blocks
in a three level dyadic wavelet decomposition image with 10 subband, LL3, HLi,
LHi, and HHi, i = (1, 2, 3). Fig. 2(a) illustrates a zerotree [7] rooted in the LL3

band. Fig. 2 (b) shows how coefficients in the zerotree in Fig. 2(a) are rearranged
to form a wavelet block. From this picture, one can see that a wavelet block is
in fact a integrated zero-tree rooted in the lowest frequency band.

Wavelet blocks in Xe are then grouped row by row to form row packets (Fig.
3(a)), and the wavelet blocks in Xo are grouped column by column to form
column packets (Fig. 3(b)). The number of block per packet depends on the bit
rate and the size of MTU (maximum transfer unit).

72 C. Cai and J. Chen

Fig. 3. (a)grouped wavelet blocks in Xe row by row to form row packets; (b)grouped
wavelet blocks in Xo column by column to form column packets; (c)reconstruct lost
coefficients in LL band from its neighborhood packets

Thus, the encoding process is as follows:
1. Form row and column packets:

1.1 Group the wavelet blocks from Xe horizontally and code them to form
the main parts of row packets;
1.2 Group the wavelet blocks from Xo vertically and code them to form the
main parts of column packets;
1.3 Re-quantize coefficients in the wavelet blocks of Xe, group and code them
vertically to produce the redundant parts of the column packets;
1.4 Re-quantize coefficients in the wavelet blocks of Xo, group and code them
horizontally to produce the redundant parts of the row packets;

2. The row packets and the column packets are respectively formed row and
column descriptions, coded by an X-tree codec [9] and dispatch through two
different channels to the receiver. For expression convenience, row description
and column description will be shortened to description in the rest of the paper.

2.3 Tessellation Based Multiple Description Decoding

The decoder makes use of all available packets to reconstruct the source. Since
each row packet and each column packet have only limited intersections, a loss of
row packets along with few column packets will not introduce serious distortions,
and vice versa. Moreover, since the lowest frequency band of an image is quite
smooth, the difference between the lost coefficient and its neighbor is small.
Thus, it is possible to estimate the lost lowest band coefficients from those of
the received signal with small error. In this context, we can reconstruct the lowest
frequency band (LL band for short) of the lost sub-image from its neighborhood
packets.

Let Hi and Vj denote the i-th row packet and the j -th column packet. For
instance, H4 stands for the fourth row packet, and V4, the fourth column packet.
If both H4 and V4 are unavailable, their intersection will be totally lost (Fig.
3(c)). However, the lowest frequency band of the lost section can be estimated
from its neighboring pixels V3, V5, H3, and H5 by linear interpolation.

Tessellation Based Multiple Description Coding 73

In this way, the decoding algorithm in the TMDC is as follows:
1) group all available packets to reconstruct as many as possible coefficients,
2) estimate the missing pixels in the lowest band by their neighbors and set

all other missing pixels to zero, and
3) reconstruct the image from the wavelet coefficients.

3 Simulation Results and Discussions

We test the proposed method on the common used 512×512 gray image ”Lena”.
In all our experiments, the five level pyramid wavelet decomposition with 7/9
bi-orthogonal wavelet filters [8] are used. The transformed image is partitioned
into 16 description packets, and an X-tree codec along with an arithmetic coding
have been used to code these descriptions. The computer simulation results on
the image at total bit rate 0.5 bpp and 0.1 bpp by the proposed algorithm are
shown in Fig. 4 and 5, where TMDC1 denotes the experimental results by the
proposed algorithm if packet loss only happens on either transmission channels
due to network congestion, and TMDC2 indicates the simulation results by the
proposed algorithm if packets loss occurs on both channels.

PSNRs illustrated in these pictures are means of experimental results for all
possible conditions. For instance, in the case of one description lost, there are
16 possibilities, so the PSNR shown in the picture is the average of PSNRs from

0 1 2 3 4
26

28

30

32

34

36

Lena, 16 descriptions, 0.5 bpp total bit rate

Number of descriptions lost

P
S

N
R

(d

B
)

TMDC1
TMDC2
Jiang and Ortega
MD−SPIHT

Fig. 4. Experimental results on ”Lena” (0.5bpp)

74 C. Cai and J. Chen

0 1 2 3 4
25

25.5

26

26.5

27

27.5

28

28.5
Lena, 16 descriptions, 0.1 bpp total bit rate

Number of descriptions lost

P
S

N
R

(d

B
)

TMDC1
TMDC2

Fig. 5. Experimental results on ”Lena” (0.1bpp)

Fig. 6. Reconstruction ”Lena” at 0.5bpp by TMDC1 : (a) with all descriptions; (b)
with 4 column descriptions (3-6) lost; (c) with 4 row descriptions (3-6) lost

related 16 simulation results. As references, we also present the experimental
results from literature [4] and [5] by PTSQ and MD-SPIHT in 16 descriptions
with 0.5 bpp total bit rate in Fig. 4. From this figure, it can be seen that if only
one channel failure during the image transmission, the outcome of the proposed
algorithm, TMDC1 has the superior results. Even if packet loss happens in both
channels, the outcome TMDC2 is still better than that of PTSQ.

Fig. 6 are reconstructed images with all descriptions, lost 4 row descriptions,
and lost 4 column descriptions at total bit rate 0.5 bpp by TMDC1. From this

Tessellation Based Multiple Description Coding 75

Fig. 7. Reconstruction ”Lena” at 0.5bpp by TMDC2 : (a) loss of 4th row description
and 4th column description; (b) loss of 4th column description and 4-5th row descrip-
tions; (c) loss of 4th row description and 4-5th column descriptions; (d) loss of 4th row
description and 3-5th column descriptions; (e) loss of 4-5th column description and 4-
5th column descriptions; (f)loss of 4th column description and 3-5th row descriptions

Fig. 8. Reconstruction ”Lena” at 0.1bpp by TMDC1 : (a) with all descriptions; (b)
with 2 row descriptions (4-5) lost; (c) with 4 row descriptions (3-6) lost

picture, we can see little difference among these three images. The reconstructed
images illustrate their good quality at such bit rate even 4 descriptions have
been lost. Fig. 8 are rebuilt images with all descriptions, lost 2 row descriptions,
and lost 4 row descriptions at total bit rate 0.1 bpp by TMDC1. Since the rate

76 C. Cai and J. Chen

Fig. 9. Reconstruction ”Lena” at 0.51pp by TMDC2 : (a) loss of 4th row description
and 4th column description; (b) loss of 4th column description and 4-5th row descrip-
tions; (c) loss of 4th row description and 4-5th column descriptions; (d) loss of 4th row
description and 3-5th column descriptions; (e) loss of 4-5th column description and 4-
5th column descriptions; (f)loss of 4th column description and 3-5th row descriptions

budget is so limited, any additional information will be helpful to upgrade the
quality of the reconstructed image. The quality promotion as the increment of
the number of available descriptions is clearly showed up in this picture.

Fig. 7 and 9 are reconstructed images with 2 descriptions (4th row and 4th
column) lost, 3 descriptions (4th row, 4th and 5th columns / 4th column, 4th
and 5th rows) lost, and 4 descriptions (4th row, 3-5th columns / 4th column,
3-5th rows / 4-5th columns and 4-5th rows) lost at total bit rate 0.5 bpp and 0.1
bpp by TMDC2. From Fig. 7(a) and 9(a), we can see that if the neighborhood
packets of the lost packet are all available, the reconstruction of lost LL band
coefficients by interpolation is very effective. Fig. 9 also show that even at low
bit rate and 25 percent packet lost, the quality of reconstructed images is still
acceptable.

4 Concluding Remarks

This paper has developed a new MDC framework, called Tessellation Based
Packetized Multiple Description Coding (TMDC) for image transmission in the
packet erasure networks. In this work, we presented the measure to split a wavelet

Tessellation Based Multiple Description Coding 77

coefficient into one odd-bit-coefficient and one even-bit-coefficient, forming two
descriptions of the source, and discussed how to form row packets and column
packets from the two descriptions in detail. Combined with a X-tree based codec,
the proposed MDC framework was developed into a new MDC system. Exper-
imental results have proven the error resilient ability of our proposed MDC
system. If only row packets or column packets are lost, the proposed MDC
framework has very good quality of reconstruction. Since the row packet and
the column packet have limited intersection, even packet loss happens on both
horizontal and vertical directions, the outcomes of the proposed system still
steadily outperform PTSQ and are comparable with MD-SPIHT.

Acknowledgements

This work is partially supported by the National Natural Science Foundation of
China under grant 60472106 and the Fujian Province Natural Science Foundation
under Grant A0410018.

References

1. Goyal, V.K.: Multiple Description Coding: Compression Meets the Network. IEEE
Signal Processing Magazine 18 (2001) 74–93.

2. Vaishampayan, V.A.: Design of Multiple Description Scalar Quantizers. IEEE Trans.
on Information Theory 39 (1993) 821–834.

3. Servetto, S.D.: Multiple Description Wavelet Based Image Coding. IEEE Trans. on
Image Processing 9 (2000) 813-26.

4. Jiang, W., Ortega, A.: Multiple Description Coding via Polyphase Transform and
Selective Quantization. In: Proc. of Visual Communications and Image Processing
(1999) 998–1008.

5. Miguel, A.C., Mohr, A.E., Riskin, E.A.: SPIHT for Generalized Multiple Description
Coding. In: Proc. of ICIP (1999) 842–846.

6. Cai, C., Chen, J.: Structure Unanimity Based Multiple Description Subband Coding.
In: Proc. of ICASSP2004, vol. 3 (2004) 261–264.

7. Shapiro, J.M.: Embedded Image Coding Using Zerotrees of Wavelet Coefficients.
IEEE Trans. on Signal Processing 41 (1993) 3445–3463.

8. Antonini, M., Barlaud, M., Mathieu. P, Daubechies, I.: Image Coding Using Wavelet
Transform. IEEE Trans. on Image Processing 4 (1992) 205–221.

9. Cai, C., Mitra, S.K., Ding, R.: Smart Wavelet Image Coding: X-Tree Approach.
Signal Processing 82 (2002) 239–249

Exploiting Coding Theory for Collision
Attacks on SHA-1�

Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Austria

{Norbert.Pramstaller, Christian.Rechberger,
Vincent.Rijmen}@iaik.tugraz.at

Abstract. In this article we show that coding theory can be exploited
efficiently for the cryptanalysis of hash functions. We will mainly focus
on SHA-1. We present different linear codes that are used to find low-
weight differences that lead to a collision. We extend existing approaches
and include recent results in the cryptanalysis of hash functions. With
our approach we are able to find differences with very low weight. Based
on the weight of these differences we conjecture the complexity for a col-
lision attack on the full SHA-1.

Keywords: Linear code, low-weight vector, hash function, cryptanalysis,
collision, SHA-1.

1 Introduction

Hash functions are important cryptographic primitives. A hash function pro-
duces a hash value or message digest of fixed length for a given input message of
arbitrary length. One of the required properties for a hash function is collision
resistance. That means it should be practically infeasible to find two messages
m and m∗ �= m that produce the same hash value.

A lot of progress has been made during the last 10 years in the cryptanalysis
of dedicated hash functions such as MD4, MD5, SHA-0, SHA-1 [1,5,6,12]. In
2004 and 2005, Wang et al. announced that they have broken the hash functions
MD4, MD5, RIPEMD, HAVAL-128, SHA-0, and SHA-1 [14,16]. SHA-1, a widely
used hash function in practice, has attracted the most attention and also in this
article we will mainly focus on SHA-1.

Some of the attacks on SHA-1 exploit coding theory to find characteristics
(propagation of an input difference through the compression function) that lead
to a collision [10,12]. The basic idea is that the set of collision-producing differ-
ences can be described by a linear code. By applying probabilistic algorithms
the attacker tries to find low-weight differences. The Hamming weight of the
resulting low-weight differences directly maps to the complexity of the collision
� The work in this paper has been supported by the Austrian Science Fund (FWF),

project P18138.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 78–95, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Exploiting Coding Theory for Collision Attacks on SHA-1 79

attack on SHA-1. Based on [10,12] we present several different linear codes that
we use to search for low-weight differences. Our new approach is an extension of
the existing methods and includes some recent developments in the cryptanalysis
of SHA-1. Furthermore, we present an algorithm that reduces the complexity of
finding low-weight vectors for SHA-1 significantly compared to existing proba-
bilistic algorithms. We are able to find very low-weight differences within minutes
on an ordinary computer.

This article is structured as follows. In Section 2, we present the basic at-
tack strategy and review recent results on the analysis of SHA-1. How we can
construct linear codes to find low-weight collision-producing differences is shown
in Section 3. Section 4 discusses probabilistic algorithms that can be used to
search for low-weight differences. We also present an algorithm that leads to
a remarkable decrease of the search complexity. The impact of the found low-
weight differences on the complexity for a collision attack on SHA-1 is discussed
in Section 5. In Section 6 we compare our low-weight difference with the vectors
found by Wang et al. for the (academical) break of SHA-1. Finally, we draw
conclusions in Section 7.

2 Finding Collisions for SHA-1

In this section we shortly describe the hash function SHA-1. We present the
basic attack strategy and review recent results in the analysis of SHA-1. For the
remainder of this article we use the notation given in Table 1. Note that addition
modulo 2 is denoted by ‘+’ throughout the article.

Table 1. Used notation

notation description
A + B addition of A and B modulo 2 (XOR)
A ∨ B logical OR of two bit-strings A and B

Mt input message word t (32-bits), index t starts with 0
Wt expanded input message word t (32-bits), index t starts with 0

A � n bit-rotation of A by n positions to the left
A � n bit-rotation of A by n positions to the right
step the SHA-1 compression function consists of 80 steps

round the SHA-1 compression function consists of 4 rounds = 4 × 20 steps
Aj bit value at position j
At,j bit value at position j in step t
A′

j bit difference at position j
A′

t,j bit difference at position j in step t

2.1 Short Description of SHA-1

The SHA family of hash functions is described in [11]. Briefly, the hash functions
consist of two phases: a message expansion and a state update transformation.

80 N. Pramstaller, C. Rechberger, and V. Rijmen

These phases are explained in more detail in the following. SHA-1 is currently
the most commonly used hash function. The predecessor of SHA-1 has the same
state update but a simpler message expansion. Throughout the article we will
always refer to SHA-1.

Message Expansion. In SHA-1, the message expansion is defined as follows.
The input message is split into 512-bit message blocks (after padding). A single
message block is denoted by a row vector m. The message is also represented by
16 32-bit words, denoted by Mt, with 0 ≤ t ≤ 15.

In the message expansion, this input is expanded linearly into 80 32-bit words
Wt, also denoted as the 2560-bit expanded message row-vector w. The words Wt

are defined as follows:

Wt = Mt, 0 ≤ t ≤ 15 (1)
Wt = (Wt−3 + Wt−8 + Wt−14 + Wt−16) � 1, 16 ≤ t ≤ 79 . (2)

Since the message expansion is linear, it can be described by a 512 × 2560
matrix M such that w = mM. The message expansion starts with a copy of the
message, cf. (1). Hence, there is a 512 × 32(80 − 16) matrix F such that M can
be written as:

M512×2560 = [I512 F512×2048] . (3)

State Update Transformation. The state update transformation starts from
a (fixed) initial value for 5 32-bit registers (referred to as iv) and updates them
in 80 steps (0,. . . ,79) by using the word Wt in step t. Figure 1 illustrates one
step of the state update transformation. The function f depends on the step
number: steps 0 to 19 (round 1) use the IF-function and steps 40 to 59 (round
3) use the MAJ-function:

fIF (B, C, D) = BC + BD (4)
fMAJ (B, C, D) = BC + BD + CD . (5)

The remaining rounds 2 and 4, use a 3-input XOR referred to as fXOR. A step
constant Kt is added in every step. There are four different constants; one for
each round. After the last application of the state update transformation, the
initial register values are added to the final values (feed forward), and the result
is either the input to the next iteration or the final hash value.

We linearize the state update by approximating fIF and fMAJ by a 3-input
XOR. The linear state update can then be described by a 2560 × 160 matrix S,
a 160× 160 matrix T, and a vector k that produce the output vector o from the
input message vector m:

o = mMS + ivT + k . (6)

The (linear) transformation of the initial register value iv is described by the
matrix T. The constant k includes the step constants.

Exploiting Coding Theory for Collision Attacks on SHA-1 81

At Bt Ct Dt Et

Bt+1 Ct+1 Dt+1 Et+1

<< 5

At+1

>> 2

+

+

+

+

f

Wt

Kt

Fig. 1. One step of the linearized state update transformation of SHA-1

2.2 The Basic Attack Strategy

Recent collision attacks on SHA-1 use the following strategy. Firstly, a char-
acteristic, i.e. the propagation of an input difference through the compression
function of the hash function, is constructed. Secondly, messages are constructed,
which follow the characteristic. This strategy is based on the attack on SHA-0
by Chabaud and Joux [5].

They observed that every collision for the linearized compression function of
SHA (SHA-0, SHA-1) can be written as a linear combination of local collisions.
These local collisions consist of a perturbation and several corrections. Rijmen
and Oswald [12] described the first extension of this attack to SHA-1. Their
method extends the Chabaud-Joux method and works with any characteristic
that produces output difference zero.

Since a characteristic propagates in a deterministic way through a linear
function, the characteristic is determined completely by the choice of the input
difference. Hence, there are 2512 different characteristics. A fraction of 2−160 of
these, results in a zero output difference (a collision). A difference corresponding
to a characteristic is called a collision-producing difference.

Two messages m1 and m2 = m1 + δ collide if

(m1 + δ)MS − m1MS = 0 ⇐⇒ δMS = 0, (7)

where δ is the input difference. Therefore, we are interested in solutions of the
following equation:

vS = 0, (8)

whereas v = δM represents a collision-producing difference. Among the set of
2352 solutions we are searching for a small subset where

82 N. Pramstaller, C. Rechberger, and V. Rijmen

– v has a low Hamming weight
– the probability for the characteristic to hold is maximal.

There is a strong correlation between these two requirements, which will be
explained in Section 3. Using a suitable low-weight difference, the attack proceeds
as follows:

– conditions for following the characteristic are derived
– some conditions are pre-fulfilled by setting certain bits in the message
– during the final search, the most naive approach to fulfill all remaining con-

ditions is to preform random trials. The time-complexity of this final search
is determined by the number of conditions which are not pre-fulfilled.

The problem of finding low-weight difference vectors is the main topic of this
article. We present efficient algorithms to cover this search space in Section 4.
Using the found low-weight difference, we describe a general way to derive con-
ditions that need to hold in order to follow this difference in Section 5.

2.3 Overview of Existing Attacks on SHA-1

We now review recent advances in the analysis of SHA-1. The conclusions drawn
in this section will be used in subsequent sections.

Using More Than One Message Block. In multi-block collisions, we can
also use characteristics that do not result in a zero output. For instance, for a
two-block collision, all we require is that the output differences in both blocks
are equal, because then, the final feed-forward will result in cancelation of the
differences (with a certain probability). For an i-block collision, we get 512i −
160 free bits (512i − 320 if we require that the perturbation pattern is a valid
expanded message).

Easy Conditions. For the second step of the attack, constructing a pair of
messages that follows this characteristic, a number of conditions on message
words and intermediate chaining variables need to be fulfilled. As already ob-
served in [5], conditions on the first steps can be pre-fulfilled. Using the idea of
neutral bits, this approach was extended to cover the first 20 steps of the com-
pression function of SHA-0 [1]. Wang et al. and Klima do something similar for
MD4 and MD5 to pre-fulfill conditions, which is there called message modifica-
tion [8,15,17]. For this reason, whenever we refer to a weight of a characteristic
(collision-producing difference), we omit the weight of the first 20 words, unless
stated otherwise.

Exploiting Non-Linearity. The state update is a non-linear transformation,
and this can be exploited during the construction of the characteristic. While for
a linear transformation the characteristic is determined completely by the input
difference, in a non-linear transformation, one input difference can correspond
to several characteristics.

Exploiting Coding Theory for Collision Attacks on SHA-1 83

Using a characteristic different from the one constructed from the linear
approximation results in an overall increase of the number of equations. However,
as explained before, the conditions in the first 15 steps are easy to fulfill. A good
strategy is to look for a characteristic that has low weight and follows the linear
approximation after the first 15 steps. This appears to be the strategy followed in
[16]. A similar observation is made in [2,7]. We will use this strategy in Section 3.3
and Section 3.4.

3 From a Set of Collision-Producing Differences to a
Linear Code

With the message expansion described by the matrix M512×2560 = [I512 ×
F512×2048] and the linearized state update described by the matrix S2560×160,
the output (hash value) of one SHA-1 iteration is o = mMS + ivT + k (cf.
Section 2.1). Two messages m1 and m∗

1 = m1 + m′
1 collide if:

o∗1 − o1 = (m1 + m′
1)MS + k − (m1MS + k) = m′

1MS = 0 . (9)

Hence, the set of collision-producing differences is a linear code with check matrix
H160×512 = (MS)t. The dimension of the code is 512−160 = 352 and the length
of the code is n = 512.
Observation 1. The set of collision-producing differences is a linear code. There-
fore, finding good low-weight characteristics corresponds to finding low-weight
vectors in a linear code.

Based on this observation we can now exploit well known and well studied
methods of coding theory to search for low-weightdifferences. We are mainly inter-
ested in the existing probabilistic algorithms to search for low-weight vectors, since
a low-weight difference corresponds to a low-weight codeword in a linear code. In
the remainder of this section we present several linear codes representing the set
of collision-producing differences for the linearized model of SHA-1 as described
in Section 2. Note that if we talk about SHA-1 in this section, we always refer to
the linearized model. For the different linear codes we also give the weights of the
found differences. How the low-weight vectors are found is discussed in Section 4.

As described in Section 2, we are interested in finding low-weight differences
that are valid expanded messages and collision producing. Later on, we apply
the strategy discussed in Section 2.3, i.e. we do not require the difference to
be collision-producing. With this approach we are able to find differences with
lower weight. The found weights are summarized in Table 4.

3.1 Message Expansion and State Update—Code C1

For our attack it is necessary to look at the expanded message words and there-
fore we define the following check matrix for the linear code C1 with dimension
dim(C1) = 352 and length n = 2560:

H12208×2560 =
[

St
160×2560

Ft
2048×512 I2048

]
. (10)

84 N. Pramstaller, C. Rechberger, and V. Rijmen

This check matrix is derived as following. Firstly, we want to have a valid ex-
panded message. Since mM = w = m1×512[I512F512×2048] and M is a system-
atic generator matrix, we immediately get the check matrix [Ft

2048×512I2048].
If a codeword w fulfills w[Ft

2048×512I2048]t = 0, w is a valid expanded message.
Secondly, we require the codeword to be collision-producing. This condition is de-
termined by the state update matrix S. If wS = 0 then w is collision-producing.
Therefore, we have the check matrix St. Combining these two check matrices
leads to the check matrix H1 in (10).

The resulting codewords of this check matrix are valid expanded messages
and collision-producing differences. When applying a probabilistic algorithm to
search for codewords in the code C1 (see Section 4) we find a lowest weight of
436 for 80 steps. The same weight has also been found by Rijmen and Oswald
in [12]. As already described in Section 2.2, we do not count the weight of the
first 20 steps since we can pre-compute these messages such that the conditions
are satisfied in the first 20 steps. The weights for different number of steps are
listed in Table 2.

Table 2. Lowest weight found for code C1

steps 0, . . . , 79 steps 15, . . . , 79* steps 20, . . . , 79
436 333 293

*weight also given in [12]

A thorough comparison of these results with the weights given by Matusiewicz
and Pieprzyk in [10] is not possible. This is due to the fact that in [10] perturba-
tion and correction patterns have to be valid expanded messages. Furthermore,
Matusiewicz and Pieprzyk give only the weights for the perturbation patterns.

3.2 Message Expansion Only and Multi-block Messages—Code C2

Instead of working with a single message block that leads to a collision, we can
also work with multi-block messages that lead to a collision after i iterations (cf.
Section 2.3). For instance take i = 2. After the first iteration we have an output
difference o′1 �= 0 and after the second iteration we have a collision, i.e. o′2 = 0.
The hash computation of two message blocks is then given by

o1 = m1MS + ivT + k

o2 = m2MS + o1T + k

= m2MS + m1MST + ivT2 + kT + k︸ ︷︷ ︸
constant

.

Based on the same reasoning as for the check matrix H1 in Section 3.1, we can
construct a check matrix for two block messages as follows:

H24256×5120 =

⎡
⎣ STt

160×2560 St
160×2560

Ft
2048×512I2048 02048×2560

02048×2560 Ft
2048×512I2048

⎤
⎦ . (11)

Exploiting Coding Theory for Collision Attacks on SHA-1 85

The same can be done for i message blocks that collide after i iterations. The
output in iteration i is given by

oi =
i−1∑
j=0

mi−jMSTj + ivTi + k

i−1∑
l=0

Tl

︸ ︷︷ ︸
constant

. (12)

Searching for low-weight vectors for a two-block collision in C2 with H2 and
a three-block collision with the check matrix HM2 given in Appendix A, leads
to the weights listed in Table 3.

Table 3. Weight for two and three message blocks

weight of collision-producing differences for steps 20-79

two-block collision three-block collision
exp. message 1 exp. message 2 exp. message 1 exp. message 2 exp. message 3

152 198 107 130 144

As it can be seen in Table 3, using multi-block collisions results in a lower
weight for each message block. The complexity for a collision attack is deter-
mined by the message block with the highest weight. Compared to the weight
for a single-block collision in Table 2 (weight = 293), we achieve a remarkable
improvement. However, as shown in Table 4, the weight of the chaining variables
is very high. Why this weight is important and how we can reduce the weight of
the chaining variables is presented in the following section.

3.3 Message Expansion and State Update—Code C3

For deriving the conditions such that the difference vector propagates for the
real SHA-1 in the same way as for the linearized model, we also have to count
the differences in the chaining variables (see Section 5). That means that for the
previously derived collision-producing differences we still have to compute the
weight in the chaining variables. It is clear that this leads to an increase of the
total weight (see Table 4). Therefore, our new approach is to define a code that
also counts in the chaining variables and to look for low-weight vectors in this
larger code. This leads to lower weights for the total.

Furthermore, we now apply the strategy discussed in Section 2.3. In terms
of our linear code, this means that we only require the codewords to be valid
expanded messages and no longer to be collision-producing, i.e. they correspond
to characteristics that produce zero ouput difference in the fully linearized com-
pression function. This can be explained as follows. Our code considers only 60
out of 80 steps anyway. After 60 steps, we will have a non-zero difference. For a
collision-producing difference, the ‘ordinary’ characteristic over the next 20 steps
would bring this difference to zero. But in fact, for any difference after step 60

86 N. Pramstaller, C. Rechberger, and V. Rijmen

we will later be able to construct a special characteristic that maps the resulting
difference to a zero difference in step 79. Hence, we can drop the requirement
that the difference should be collision-producing. If we place the 20 special steps
at the beginning, then the number of conditions corresponding to the special
steps can be ignored.

Searching for the codeword producing the lowest number of conditions in
the last 60 steps, we will work backwards. Starting from a collision after step
79 (chaining variables A80, . . . , E80), we will apply the inverse linearized state
update transformation to compute the chaining variables for step 78,77,. . . ,20.
We obtain a generator matrix of the following form:

G3512×11520 = [Mj×nAj×nBj×nCj×nDj×nEj×n], (13)

where j = 512 and n = 1920. The matrices Aj×n, . . . ,Ej×n can easily be con-
structed by computing the state update transformation backwards starting from
step 79 with A′

80 = B′
80 = · · · = E′

80 = 0 and ending at step 20. The matrix
Mj×n is defined in Section 2.1.

The matrix defined in (13) is a generator matrix for code C3 with dim(C3) =
512 and length n = 11520. The lowest weight we find for code C3 is 297. Note,
that this low-weight vector now also contains the weight of the chaining variables
A′

t, . . . , E
′
t. The weight for the expanded message is only 127. Compared with the

results of the previous sections (code C1) we achieve a remarkable improvement
by counting in the weight of the chaining variables and by only requiring that
the codewords are valid expanded messages.

3.4 Message Expansion, State Update, and Multi-block
Messages—Code C4

As shown in Section 3.2, we are able to find differences with lower weight if we
use multi-block messages. We will do the same for the code C4. A multi-block
collision with i = 2 is shown in Figure 2.

As it can be seen in Figure 2, if we have the same output difference for each
iteration we have a collision after the second iteration due to the feed forward.

 state update

msg expansion

 state update

msg expansion

m’1 m’2

 = 0

20 2079 79

20 0 20 0o’1 = o’2 =

o’ = 0

Fig. 2. Multi-block collision for SHA-1

Exploiting Coding Theory for Collision Attacks on SHA-1 87

We can construct a generator matrix as in Section 3.3 but we have to extend
it such that we do not require a collision after the first iteration, i.e. we want an
output difference of o′1 = o′2 = δ. Therefore, we add 160 rows to the generator
matrix in (13) that allow an output difference o′1 = o′2 = δ. For the code C4 we
get a generator matrix

G4672×11520 =
[
Mj×n Aj×n Bj×n Cj×n Dj×n Ej×n

0l×n A′
l×n B′

l×n C′
l×n D′

l×n E′
l×n

]
, (14)

where j = 512, l = 160, and n = 1920. The matrix in (14) is a generator matrix
for code C4 with dim(C4) = 672 and n = 11520. Searching for low-weight vectors
in C4 results in a smallest weight of 237. As we will show in Section 4, for this
code it is infeasible to find codewords with weight 237 by using currently known
algorithms (the same holds for code C3). We found this difference vector by using
an efficient way to reduce the search space as will be discussed in Section 4.2.
Again, this weight includes also the weight of the chaining variables. For the
message expansion only we have a weight of 108 (for one block we had 127). The
difference vector is shown in Table 7, Appendix B.

3.5 Summary of Found Weights

To give an overview of the improvements achieved by constructing different codes
we list the weights of the found codewords in Table 4.

Table 4. Summary of found weights

Code C1 Code C2 Code C3 Code C4

single-block two-block single-block two-block
msg 1 msg 2 msg 1 msg 2

weight expanded message 293 152 198 127 108 108
weight state update 563 4730 4817 170 129 129

total weight 856 4882 5015 297 237 237

4 Finding Low-Weight Vectors for Linear Codes
Representing the Linearized SHA-1

In this section we describe different probabilistic algorithms that can be used
to find low-weight vectors in linear codes. We describe the basic idea of these
algorithms and present an algorithm that improves the low-weight vector search
for SHA-1 significantly.

4.1 Probabilistic Algorithms to Find Low-Weight Vectors

We will briefly discuss some probabilistic algorithms presented by Leon [9] and
modified by Chabaud [4], Stern [13], and by Canteaut and Chabaud [3]. The

88 N. Pramstaller, C. Rechberger, and V. Rijmen

basic approach of these algorithms is to take a (randomly permuted) subset of a
code C and to search for low-weight vectors in this punctured code C•. A found
low-weight codeword in the punctured code is a good candidate for a low-weight
codeword in the initial code C.

A modified variant of Leon’s algorithm [9] was presented by Chabaud [4]. It is
applied to the generator matrix Gk×n of a code C and defines the parameters p
and s. The length of the punctured code C• with generator matrix Z = Zk×(s−k)

is defined by s, where s > dim(C•) = k. For computing the codewords in C• all
linear combinations of at most p rows of Z are computed. The parameter p is
usually 2 or 3. Values for the parameter s are k +13, . . . , k +20 (see for instance
[4]).

Stern’s algorithm [13] is applied to the check matrix H(n−k)×n. The param-
eters of the algorithm are l and p. The generator matrix Z = Zl×k for the
punctured code C• is determined by k and l. The columns of Z are further split
into two sets Z1 and Z2. Then the linear combinations of at most p columns are
computed for both Z1 and Z2 and their weight is stored. Then searching for a
collision of both weights allows to search for codewords of weight 2p. Usually,
the parameter p is 2 or 3 and l is at most 20 (see for instance [13]).

To compare these two algorithms we used the work-factor estimations to find
an existing codeword with weight wt given by Chabaud [4]. For the comparison
we used code C4 (cf. Section 3.4) with dim(C4) = 672, length n = 11520,
and the weight wt = 237. The optimal parameters for Stern’s algorithm are
p = 3 and l = 20 for C4. To find a codeword with wt = 237 in C4 requires
approximately 250 elementary operations. Leon’s algorithm, with parameters
p = 3 and s = dim(C4) + 12, requires approximately 243 elementary operations.

Canteaut and Chabaud [3] have presented a modification of these algorithms.
Instead of performing a Gaussian elimination after the random permutation in
each iteration, Canteaut and Chabaud use a more efficient updating algorithm.
More precisely, only two randomly selected columns are interchanged in each
iteration, that is, only one step of a Gaussian elimination has to be performed.
Even if this reduces the probability of finding a ‘good’ subset of the code, this
approach leads to considerable improvements as they have shown for several
codes in [3].

4.2 Improving Low-Weight Search for SHA-1

During our research on the different codes we observed that the found low-
weight vectors all have in common that the ones and zeroes occur in bands.
More precisely, the ones in the expanded message words usually appear in the
same position (see also Tables 6 and 7). This observation has also been reported
by Rijmen and Oswald in [12]. This special property of the low-weight differ-
ences for SHA-1 can be used to improve the low-weight vector search as follows.
By applying Algorithm 1 to the generator matrix we force certain bits in the
codewords to zero. With this approach we are able to reduce the search space
significantly. As already mentioned, the basic idea of the probabilistic algorithms
described in the beginning of this section, is to use a randomly selected set of

Exploiting Coding Theory for Collision Attacks on SHA-1 89

columns of the generator matrix G to construct the punctured code. This cor-
responds to a reduction of the search space. If we apply Algorithm 1 to G, we
actually do the same but we do not have any randomness in constructing the
punctured code. Algorithm 1 shows the pseudo-code.

Algorithm 1 Forcing certain bits of the generator matrix to zero
Input: generator matrix G for code C, integer r defining the minimum rank of Z
Output: generator matrix Z for punctured code C• with rank(Z) = r
1: Z = G
2: while rank(Z) > r do
3: search in row x (0 ≤ x < rank(Z)) for a one in column y (0 ≤ y < length(Z))
4: add row x to all other rows that have a one in the same column
5: remove row x
6: end while
7: return Z

Prior to applying the probabilistic search algorithms we apply Algorithm 1 to
reduce the search space of the code. Since we force columns of the codewords to
zero, we do not only reduce the dimension of the code but also the length. For the
low-weight search we remove the zero-columns of G. Computing the estimations
for the complexities of this ‘restricted code’ shows that the expected number
of operations decreases remarkably. For instance, applying Algorithm 1 to the
generator matrix for code C4 with r = 50 leads to the following values for the
punctured code C•

4 : dim(C•
4) = 50 and length n = 2327 (zero-columns removed).

Stern’s algorithm with optimal parameter p = 2 and l = 4 requires approx. 237

elementary operations. For Leon’s algorithm we get a work factor of approx. 225

with p = 3 and s = dim(C•
4) + 8. With all the above-described algorithms we

find the 237-weight difference within minutes on an ordinary computer by using
Algorithm 1.

5 Low-Weight Vectors and Their Impact on the
Complexity of the Attack

In this section we show how we can derive conditions for the low-weight differ-
ences found in Section 3. Based on the low-weight difference of code C4, we will
show some example conditions. The complexity for a collision attack depends on
the number of conditions that have to be fulfilled. Since the number of conditions
directly depends on the weight of the difference vector we see the correlation be-
tween weight and complexity: the lower the weight of the difference the lower
the complexity for the attack.

The low-weight difference found for code C4 leads to a collision after step 79
of the second compression function for the linearized SHA-1. Now, we want to
define conditions such that the propagation of this difference is the same for the

90 N. Pramstaller, C. Rechberger, and V. Rijmen

real SHA-1. In other words the conditions ensure that for this difference the real
SHA-1 behaves like the linearized model.

As already mentioned in Section 2, the non-linear operations are fIF , fMAJ ,
and the addition modulo 232. Since we pre-compute message pairs such that all
conditions in the first 20 steps are fulfilled, we only have to deal with fMAJ and
with the modular addition. For the addition we have to ensure that no carry
occurs in the difference. For fMAJ , we have to define conditions such that the
differential behavior is the same as for fXOR. Table 5 shows these conditions.
For the sake of completeness also the conditions for fIF are listed. Depending
on the input difference we get conditions for the bit values of the inputs. For
instance, if the input difference is B′

jC
′
jD

′
j = 001 then Bj and Cj have to be

opposite, i.e. Bj + Cj = 1. The differential behavior of fMAJ and fXOR is the
same if this condition is satisfied.

Table 5. Conditions that need to be fulfilled in order to have a differential behavior
identical to that of an XOR

input difference
B′

jC
′
jD

′
j fXOR(B′

j , C
′
j , D

′
j) fIF (B′

j , C
′
j , D

′
j) fMAJ (B′

j , C
′
j , D

′
j)

000 0 always always
001 1 Bj = 0 Bj + Cj = 1
010 1 Bj = 1 Bj + Dj = 1
011 0 never Cj + Dj = 1
100 1 Cj + Dj = 1 Cj + Dj = 1
101 0 Bj + Cj + Dj = 0 Bj + Dj = 1
110 0 Bj + Cj + Dj = 0 Bj + Cj = 1
111 1 Cj + Dj = 0 always

Now, we show an example how to derive conditions for fXOR and fMAJ .
Firstly, we take from Table 7 the difference corresponding to step t = 28 and bit
position j = 30. We obtain the following:

A′
t,j = 0, B′

t,j = 0, C′
t,j = 1, D′

t,j = 0, E′
t,j = 0, A′

t+1,j = 0, W ′
t,j = 1 .

For the following description we denote the output of fXOR and fMAJ by Ft,j .
Since 20 ≤ t < 40, the function f is fXOR. Due to the input difference

C′
t,j = 1 we always have F ′

t,j = 1. Also W ′
t,j = 1, and we have to ensure that

there is no difference in the carry. This can be achieved by requiring that Ft,j

and Wt,j have opposite values, i.e. Ft,j +Wt,j = 1. With Ft,j = Bt,j +Ct,j +Dt,j

we get Bt,j + Ct,j + Dt,j + Wt,j = 1. Since Bt = At−1, Ct = At−2 � 2,
Dt = At−3 � 2, and Et = At−4 � 2, the condition for this example is:

At−1,j + At−2,j+2 + At−3,j+2 + Wt,j = 1 .

Secondly, we consider the difference for t = 46 and j = 31. This is the same
difference as before but now f is fMAJ , and therefore we have to ensure that

Exploiting Coding Theory for Collision Attacks on SHA-1 91

fMAJ behaves like fXOR. For the input difference B′
t,jC

′
t,jD

′
t,j = 010, we first get

the following condition (cf. Table 5): Bt,j +Dt,j = 1. If this condition is satisfied
we have the same situation as for fXOR, namely F ′

t,j = C′
t,j . Different to the

previous example we do not get any further condition because the difference
occurs in bit-position 31. The difference for this example is:

At−1,j + At−3,j+2 = 1 .

If we derive the equations (conditions) for the complete low-weight vector
in Table 7 we get a set of 113 equations. The equations are either in A only
or in A and W . We can rework some of the equations to get (linear) equations
involving bits of the expanded message words W only. This equations can easily
be solved since they can directly be mapped to conditions on the message words.
After reworking the 113 equations, we get 31 in W only and 82 equations in A,
and in A and W . The overall complexity of the attack is determined by the
(nonlinear) equations involving bits of the chaining variables and/or expanded
message words. This is due to the fact that after pre-fulfilling the conditions
for the first 20 steps the remaining conditions are fulfilled using random trials.
Hence, solving this 82 (nonlinear) equations takes at most 282 steps.

6 Comparison with Results of Wang et al.

In this section we compare the results of Wang et al. in [16] with the found low-
weight difference given in Table 7. The difference in Table 7 is the lowest weight
we found. The next higher weight we found (weight = 239) with the probabilistic
search algorithms can also be constructed directly from the vector in Table 7.
This is done by computing another iteration (see (2) and Figure 1) at the end
and omitting the values of the first row such that we have again 60 steps. Since
it is only a shifted version of the vector in Table 7 we can still use this vector for
the comparison. The difference in Table 7, chaining variable A′

t+1, is the same
disturbance vector as the one used by Wang et al. for near-collisions given in [16,
Table 5] (italicized indices 20,. . . ,79). To compare the two tables consider that
Wang et al. index the steps from 1,. . . ,80 (we from 0,. . . ,79) but because Wang
et al. use the shifted version the indices are the same except that the last pattern
(index 80 for Wang et al.) is missing in Table 7. Also the Hamming weight for
round 2-4 given in [16, Table 6] for 80 steps is the same. In [16, Table 7] one can
find the difference vectors and the according number of conditions. The number
of conditions and the conjectured attack complexity we stated in the previous
section is remarkable higher than the values from [16]. However, no details on
the exact way to derive conditions are given in [16].

7 Conclusions

In this article we have shown how coding theory can be exploited efficiently for
collision attacks on the hash function SHA-1. We gave an overview of existing at-
tack strategies and presented a new approach that uses different linear codes for

92 N. Pramstaller, C. Rechberger, and V. Rijmen

finding low-weight differences that lead to a collision. We also presented an algo-
rithm that allows to find the low-weight differences very efficiently. Furthermore,
we gave an outline on how we can derive conditions for the found low-weight dif-
ference. We have shown that the number of conditions and hence the complexity
for a collision attack on SHA-1, directly depends on the Hamming weight of the
low-weight differences found.

Currently we are still working on improving the condition generation phase
to reduce the overall complexity of the collision attack on SHA-1. We will also
extend our approach such that we can perform similar analyses of alternative
hash functions such as the members of the SHA-2 family and RIPEMD-160.

Acknowledgements

We would like to thank Mario Lamberger for fruitful discussions and comments
that improved the quality of this article.

References

1. Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Proccedings of CRYPTO
2004, volume 3152 of LNCS, pages 290–305. Springer, 2004.

2. Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and
William Jalby. Collisions of SHA-0 and Reduced SHA-1. In Proceedings of EU-
ROCRYPT 2005, volume 3494 of LNCS, pages 36–57. Springer, 2005.

3. Anne Canteaut and Florent Chabaud. A New Algorithm for Finding Minimum-
Weight Words in a Linear Code: Application to McEliece’s Cryptosystem and
to Narrow-Sense BCH Codes of Length 511. IEEE Transactions on Information
Theory, 44(1):367–378, 1998.

4. Florent Chabaud. On the Security of Some Cryptosystems Based on Error-
correcting Codes. In Proceedings of EUROCRYPT ’94, volume 950 of LNCS,
pages 131–139. Springer, 1995.

5. Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Proceed-
ings of CRYPTO ’98, volume 1462 of LNCS, pages 56–71. Springer, 1998.

6. Hans Dobbertin. Cryptanalysis of MD4. In Proceedings of Fast Software Encryp-
tion, volume 1039 of LNCS, pages 53–69. Springer, 1996.

7. Antoine Joux, Patrick Carribault, William Jalby, and Christophe Lemuet. Full
iterative differential collisions in SHA-0, 2004. Preprint.

8. Vlastimil Klima. Finding MD5 Collisions on a Notebook PC Using Multi-message
Modifications, 2005. Preprint, available at http://eprint.iacr.org/2005/102.

9. Jeffrey S. Leon. A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Transactions on Information Theory, 34(5):1354–
1359, 1988.

10. Krystian Matusiewicz and Josef Pieprzyk. Finding good differential patterns
for attacks on SHA-1. In Proccedings of WCC 2005. Available online at
http://www.ics.mq.edu.au/~kmatus/FindingGD.pdf.

11. National Institute of Standards and Technology (NIST). FIPS-180-2: Se-
cure Hash Standard, August 2002. Available online at http://www.itl.nist.
gov/fipspubs/.

Exploiting Coding Theory for Collision Attacks on SHA-1 93

12. Vincent Rijmen and Elisabeth Oswald. Update on SHA-1. In Proceedings of CT-
RSA 2005, volume 3376 of LNCS, pages 58–71. Springer, 2005.

13. Jacques Stern. A method for finding codewords of small weight. In Proccedings
of Coding Theory and Applications 1988, volume 388 of LNCS, pages 106–113.
Springer, 1989.

14. Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Xiuyuan Yu. Collisions for Hash
Functions MD4, MD5, HAVAL-128 and RIPEMD, August 2004. Preprint, avail-
able at http://eprint.iacr.org/2004/199, presented at the Crypto 2004 rump
session.

15. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis for Hash Functions MD4 and RIPEMD. In Proceedings of EUROCRYPT
2005, volume 3494 of LNCS, pages 1–18. Springer, 2005.

16. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full
SHA-1. In Proceedings of CRYPTO 2005, volume 3621 of LNCS, pages 17–36.
Springer,2005.

17. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In
Proceedings of EUROCRYPT 2005, volume 3494 of LNCS, pages 19–35. Springer,
2005.

A Check Matrix for 3-Block collision

The hash output for three message blocks, is given by

o3 = m3MS + m2MST + m1MST2 + ivT3 + kT2 + kT + k︸ ︷︷ ︸
constant

.

The set of collision-producing differences is a linear code with check matrix:

HM26304×7680 =

⎡
⎢⎢⎣

(ST2)t
160×2560 STt

160×2560 St
160×2560

Ft
2048×512I2048 02048×2560 02048×2560

02048×2560 Ft
2048×512I2048 02048×2560

02048×2560 02048×2560 Ft
2048×512I2048

⎤
⎥⎥⎦ . (15)

94 N. Pramstaller, C. Rechberger, and V. Rijmen

B Found Low-Weight Differences

Table 6. Lowest weight found for code C2 — weight = 436. Note that the ones and
zeroes appear in bands

step Wt step Wt

t=0 06e00000 t=40 1a780000
t=1 d9000000 t=41 f5000000
t=2 a2e00000 t=42 b7700000
t=3 82e00000 t=43 06800000
t=4 cd580000 t=44 78b00000
t=5 57500000 t=45 00000000
t=6 9b660000 t=46 6a900000
t=7 c0ce0000 t=47 60f00000
t=8 c0b20000 t=48 6c200000
t=9 d1f00000 t=49 e7100000
t=10 7d980000 t=50 8bc00000
t=11 c3bc0000 t=51 85d00000
t=12 3a500000 t=52 08000000
t=13 54c00000 t=53 80100000
t=14 bd840000 t=54 35000000
t=15 47bc0000 t=55 25900000
t=16 60e40000 t=56 82700000
t=17 6f280000 t=57 23200000
t=18 ab380000 t=58 c3200000
t=19 edd00000 t=59 02400000
t=20 068c0000 t=60 b2000000
t=21 d0cc0000 t=61 47800000
t=22 17000000 t=62 63e00000
t=23 501c0000 t=63 20e00000
t=24 1a040000 t=64 44200000
t=25 d4c80000 t=65 84000000
t=26 99d80000 t=66 c0000000
t=27 c1500000 t=67 87400000
t=28 ab200000 t=68 16000000
t=29 b4d00000 t=69 44000000
t=30 16600000 t=70 a7a00000
t=31 47500000 t=71 50a00000
t=32 ca100000 t=72 82e00000
t=33 80a00000 t=73 c5800000
t=34 e6780000 t=74 23000000
t=35 6cb80000 t=75 80c00000
t=36 74180000 t=76 04c00000
t=37 44f00000 t=77 00c00000
t=38 efb80000 t=78 01400000
t=39 8f380000 t=79 01000000

Exploiting Coding Theory for Collision Attacks on SHA-1 95

Table 7. Lowest weight found for code C4 — weight = 237

step W ′
t A′

t+1 B′
t+1 C′

t+1 D′
t+1 E′

t+1
t=20 80000040 00000000 00000002 00000000 a0000000 80000000
t=21 20000001 00000003 00000000 80000000 00000000 a0000000
t=22 20000060 00000000 00000003 00000000 80000000 00000000
t=23 80000001 00000002 00000000 c0000000 00000000 80000000
t=24 40000042 00000002 00000002 00000000 c0000000 00000000
t=25 c0000043 00000001 00000002 80000000 00000000 c0000000
t=26 40000022 00000000 00000001 80000000 80000000 00000000
t=27 00000003 00000002 00000000 40000000 80000000 80000000
t=28 40000042 00000002 00000002 00000000 40000000 80000000
t=29 c0000043 00000001 00000002 80000000 00000000 40000000
t=30 c0000022 00000000 00000001 80000000 80000000 00000000
t=31 00000001 00000000 00000000 40000000 80000000 80000000
t=32 40000002 00000002 00000000 00000000 40000000 80000000
t=33 c0000043 00000003 00000002 00000000 00000000 40000000
t=34 40000062 00000000 00000003 80000000 00000000 00000000
t=35 80000001 00000002 00000000 c0000000 80000000 00000000
t=36 40000042 00000002 00000002 00000000 c0000000 80000000
t=37 40000042 00000000 00000002 80000000 00000000 c0000000
t=38 40000002 00000000 00000000 80000000 80000000 00000000
t=39 00000002 00000002 00000000 00000000 80000000 80000000
t=40 00000040 00000000 00000002 00000000 00000000 80000000
t=41 80000002 00000000 00000000 80000000 00000000 00000000
t=42 80000000 00000000 00000000 00000000 80000000 00000000
t=43 80000002 00000002 00000000 00000000 00000000 80000000
t=44 80000040 00000000 00000002 00000000 00000000 00000000
t=45 00000000 00000002 00000000 80000000 00000000 00000000
t=46 80000040 00000000 00000002 00000000 80000000 00000000
t=47 80000000 00000002 00000000 80000000 00000000 80000000
t=48 00000040 00000000 00000002 00000000 80000000 00000000
t=49 80000000 00000002 00000000 80000000 00000000 80000000
t=50 00000040 00000000 00000002 00000000 80000000 00000000
t=51 80000002 00000000 00000000 80000000 00000000 80000000
t=52 00000000 00000000 00000000 00000000 80000000 00000000
t=53 80000000 00000000 00000000 00000000 00000000 80000000
t=54 80000000 00000000 00000000 00000000 00000000 00000000
t=55 00000000 00000000 00000000 00000000 00000000 00000000
t=56 00000000 00000000 00000000 00000000 00000000 00000000
t=57 00000000 00000000 00000000 00000000 00000000 00000000
t=58 00000000 00000000 00000000 00000000 00000000 00000000
t=59 00000000 00000000 00000000 00000000 00000000 00000000
t=60 00000000 00000000 00000000 00000000 00000000 00000000
t=61 00000000 00000000 00000000 00000000 00000000 00000000
t=62 00000000 00000000 00000000 00000000 00000000 00000000
t=63 00000000 00000000 00000000 00000000 00000000 00000000
t=64 00000000 00000000 00000000 00000000 00000000 00000000
t=65 00000004 00000004 00000000 00000000 00000000 00000000
t=66 00000080 00000000 00000004 00000000 00000000 00000000
t=67 00000004 00000000 00000000 00000001 00000000 00000000
t=68 00000009 00000008 00000000 00000000 00000001 00000000
t=69 00000101 00000000 00000008 00000000 00000000 00000001
t=70 00000009 00000000 00000000 00000002 00000000 00000000
t=71 00000012 00000010 00000000 00000000 00000002 00000000
t=72 00000202 00000000 00000010 00000000 00000000 00000002
t=73 0000001a 00000008 00000000 00000004 00000000 00000000
t=74 00000124 00000020 00000008 00000000 00000004 00000000
t=75 0000040c 00000000 00000020 00000002 00000000 00000004
t=76 00000026 00000000 00000000 00000008 00000002 00000000
t=77 0000004a 00000040 00000000 00000000 00000008 00000002
t=78 0000080a 00000000 00000040 00000000 00000000 00000008
t=79 00000060 00000028 00000000 00000010 00000000 00000000

weight 108 26 25 25 26 27

Hash Based Digital Signature Schemes

C. Dods, N.P. Smart, and M. Stam

Dept. Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road,

Bristol, BS8 1UB, United Kingdom
chris@rydertech.co.uk, {nigel, stam}@cs.bris.ac.uk

Abstract. We discuss various issues associated with signature schemes
based solely upon hash functions. Such schemes are currently attractive
in some limited applications, but their importance may increase if ever a
practical quantum computer was built. We discuss issues related to both
their implementation and their security. As far as we are aware this is
the first complete treatment of practical implementations of hash based
signature schemes in the literature.

1 Introduction

Digital signature schemes based on non-number theoretic assumptions are in-
teresting for a number of reasons. Firstly they extend the number of underlying
problems on which we base our security, secondly all number theoretic assump-
tions currently used in cryptography will be insecure if a quantum computer is
ever built. Of particular interest are those schemes based solely on the security
of cryptographic hash functions; such schemes are not only of historical interest
but are also relatively easy to implement. See [6] for a survey of other possible
signature schemes in a post-quantum computing world.

However, systems based on hash functions have a number of drawbacks. The
main problem is that they usually arise in the context of one-time signatures.
One-time signatures are public key signature schemes which have the property
that they can only be used to sign one single message. On the other hand such
schemes are usually highly efficient and easy to implement in very constrained
devices, since they only require the implementation of hash functions and not
any advanced arithmetic operations.

Usually, however, one requires multi-time signatures. A one-time signature
can be turned into a multi-time signature in one of two ways. The first way allows
one to sign as many messages as one wishes over time, however this comes at
the cost of our signatures growing in size with every signature produced. This
not only gives efficiency problems, but also reveals extra information since a
signature size reveals information about the prior number of signatures produced.

Another way of turning a one-time signature into a multi-time signature is
to fix beforehand the total number of signatures which will ever be produced
and then to use a Merkle tree to authenticate the different one-time signatures.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 96–115, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Hash Based Digital Signature Schemes 97

Despite the drawback of needing to fix the number of signatures beforehand
it is this latter approach which is used when hash based one-time signatures are
implemented.

There are a number of hash based one-time signature schemes available.
Of particular interest is the Winternitz scheme which is easy to understand,
relatively efficient and has been used in practical situations. Also of interest is
the construction of Bleichenbacher and Maurer which is more complicated but
which is theoretically the most efficient construction known.

If one wished to protect digital signatures for a long time, in particular against
the possible advent of quantum computers, one is currently restricted to the use
of hash based one-time signature schemes with Merkle trees. In this paper we
investigate what is the most efficient construction for such schemes, by comparing
the Winternitz based approach with the Bleichenbacher–Maurer approach. These
are combined with a method for constructing authentication paths in Merkle
trees due to Szydlo.

We present our experiments with a combination of Szydlo’s methods and the
Winternitz and Bleichenbacher–Maurer constructions. In addition we present
various security results which generalise on the results in the literature. In par-
ticular our security proofs are built upon the assumption that any practical
scheme will be implemented using only one type of hash function, hence we fo-
cus on what properties this function should have rather than requiring different
properties and hence possibly different hash functions for different parts of the
construction.

2 Efficient One-Time Signature Schemes

In this section we describe two schemes. The first, due to Winternitz, is a gen-
eralisation of the scheme of Merkle [16], which itself is based on the scheme of
Lamport [11] (although this latter scheme is highly inefficient). In the second
scheme we present the scheme of Bleichenbacher and Maurer which attempts
to achieve the best possible efficiency in terms of signature size and number of
hash function evaluations per bit of the message. We present a full explanation
of the Bleichenbacher and Maurer construction since the original papers [4,5]
concentrated on the combinatorial constructions and did not cover the issue of
how this is actually used in practice to construct a one-time signature scheme.

We let f denote a hash function with domain {0, 1}∗ and codomain {0, 1}n.
Repeated application of f is denoted by superscripts, i.e., f2(x) = f(f(x)). We
assume the actual message to be signed, say M , has first been hashed via f to
obtain an n-bit hash value m which will be signed by the one-time signature
scheme.

In all schemes we assume that from a single n-bit key x one can derive a set
of pseudo-random bit strings xi all of length n. This can be done, for example,
by using f in a key derivation function such as ANSI-X9.63-KDF [1].

Following [4] we define the efficiency of a graph based one-time signature
scheme, which signs n bits, to be equal to Γ = n

v+1 where v is number of vertices

98 C. Dods, N.P. Smart, and M. Stam

in the associated graph. This is essentially equal to the number of message bits
which can be signed per hash function evaluation during the key generation
phase. It also assumes a binary tree is used to hash the public key into a single
vertex. Whilst this is a crude measure, in practice it does give some guide as to
the practical efficiency of such schemes, but we shall see that it does not tell the
whole truth in a practical situation.

2.1 Winternitz Scheme

The Winternitz scheme is parametrised by a value w, typically chosen to be a
small power of two. For convenience, the explanation below is tailored for the
case where w = 2t. The generalization to arbitrary w is straightforward.

One defines N = �n/t� + �(�log2 n − log2 t� + t)/t�.
– Key Generation: The private key is given by xi for i = 1, . . . , N . The

public key is then computed by first computing yi = f2t−1(xi) and then
computing Y = f(y1‖y2‖ · · · ‖yN).

– Signing: The hash of the message m is split into �n/t� segments b1, . . . , b	n/t

of t-bits in length (using padding with zero if necessary). Treating the m val-
ues of bi as integers, we form the check symbol

C =
	n/t
∑
i=1

2t − bi.

Note, that C ≤ �n/t�2t and so we can write in base 2t as b	n/t
+1, . . . , bN .
The signature is given by si = f bi(xi), for i = 1, . . . , N .

– Verification: From m generate the bi as in the signing process and com-
pute vi = f2t−bi−1(si). The signature is said to verify if and only if Y =
f(v1‖v2‖ · · · ‖vN)

– Efficiency: The number of vertices in the associated graph is easily seen to
be equal to

v = 2t · N = 2t (�n/t� + �(�log2 n − log2 t� + t)/t�) ≈ 2t (n + log2 n) /t.

Hence, Γ ≈ t/2t as n −→ ∞. So we expect the scheme to be most efficient
when t = 2.

2.2 Bleichenbacher–Maurer Scheme

In this section we describe the best known graph construction of a one-time sig-
nature scheme [5]. We present the construction in full generality and explain how
one obtains from the combinatorial construction a one-time signature scheme,
by using an analogue of the check symbol from above. This contrasts with the
original description [5], where a non-constructive argument is given based on the
pigeon hole principle.

The scheme is parametrised by an integer w (originally chosen to be three)
and an integer B, the value of B is dependent on n and w and will be given

Hash Based Digital Signature Schemes 99

below. We define the scheme via a set of B blocks, each block is an array of
width w and height w +1. There is also an additional 0th block (not included in
the B above) which consists of a single row of w entries. We use the subscripts
zb,r,c to refer to the entry in the bth block and in the rth row and cth column,
where rows and columns are numbered from zero. The entries are assumed to
hold values, and they are inferred from the following computational rule:

zb,r,c =

⎧⎨
⎩

f(zb,r−1,c‖zb−1,w,(c+r) (mod w)) If r > 0 and b > 1,
f(zb,r−1,c‖zb−1,0,(c+r) (mod w)) If r > 0 and b = 1,
xbw+c If r = 0.

(1)

To define a signature we first need to define a signature pattern. This is an
ordered list of w numbers p = (r0, r1, . . . , rw−1), i.e. one height or row per
column. We select the set of patterns p such that⋃

i∈{0,...,w−1}
{i + j (mod w) : ri ≤ j < w} = {0, . . . , w − 1} .

We let p denote the number of such signature patterns, which depends on the
choice of w. For example when w = 2 one has p = 6, when w = 3 one has p = 51
and when w = 4 one has p = 554. To each pattern we assign a weight given by

wt(p) =
w−1∑
i=0

(w + 1 − ri).

Note that ww < p < (w + 1)w and wt(p) ≤ w(w + 1) ≤ p. For asymptotic
purposes we will use log2 p = Θ(w log2 w).

– Key Generation: The secret key is assumed to consist of N = (B + 1)w
values x0, . . . , xN−1 which are placed in the bottom row of each block as
above. The public key is produced by

Y = f(zB,w,0‖zB,w,1‖ · · · ‖zB,w,w−1),

i.e., by hashing together the values in the top row of the final block.
– Signing: The (hash of the) message m is first written in base p, as m =∑l−1

i=0 bip
i where l = �n/ log2 p�. We then compute the check symbol via

C =
l−1∑
i=0

wt(pbi) = bl + bl+1p . . . + bl+l′−1p
l′−1.

If we set l′ = �1+logp l� then the above base p expansion of C is valid. To sign
the n-bit message we will require B blocks where B = l + l′ = �n/ log2 p� +
�logp�n/ log2 p��. The signature is computed by, for each 0 ≤ i ≤ B − 1,
taking the value bi and taking the signature pattern pbi = (ri,0, . . . , ri,w−1).
Then releasing the values of the entries {zi+1,ri,j ,j}, for 0 ≤ i ≤ B − 1 and
0 ≤ j ≤ w − 1, plus the values of z0,0,j, for j = 0, . . . , w − 1.

100 C. Dods, N.P. Smart, and M. Stam

– Verification: Verification proceeds by again writing m in base p. The check
symbol is computed and also written in base p. The released entries are
then taken, and assumed to correspond, to the patterns given by the mes-
sage and the check symbol. Using the computation rule (1) the values of
zB,w,0, zB,w,1, . . . , zB,w,w−1 are computed and the public key Y is checked
to be equal to

Y ′ = f(zB,w,0‖zB,w,1‖ · · · ‖zB,w,w−1).

– Efficiency: We have

Γ =
B log2 p

1 + w(w + 1)B
−→ log2 p

w(w + 1)
≈ log2 w

w
as n −→ ∞.

We expect therefore the scheme to be most efficient when w = 3.

3 One-Time to Many-Time

As mentioned in the introduction there are two mechanisms to convert a one-
time signature into a many-time signature. The first technique, see [15–Section
11.6.3], allows an arbitrary number of signatures to be signed, however as the
number of signatures grows so do the signature size and the verification time. A
second approach is to use Merkle authentication trees. Here one bounds the total
number of signatures which can be issued at key generation time. The benefit is
that signature size and verification time are then constant.

A Merkle tree in the context of a one-time signature scheme is defined as
follows. It is a complete binary tree equipped with a function h, with codomain
the set of bit strings of length k, and an assignment φ which maps the set of
nodes to the set of k-length bit strings. For two interior child nodes, nl and nr,
of any interior node, np, the assignment satisfies

φ(np) = h(φ(nl)‖φ(nr)).

For each leaf li the value of φ(li) is defined to be the public-key of a one-time
signature scheme. From these values the values of the interior nodes can be
computed. The value of φ(n) for the root node n is defined to be the public key
of the many-time signature scheme. The leaf nodes are numbered from left to
right and if the tree has height H , then we can sign at most 2H messages.

For a tree of height H and the ith node li, we define Ah,i to be the value of
the sibling of the height h node on the path from the leaf li to the root. The
values Ah,i are called the authentication path for the leaf li.

To sign a message one signs a message with the next unused one-time signa-
ture, and then one authenticates the public key of this one-time signature using
the Merkle tree. This is done by revealing the authentication path from the used
leaf up-to the public key at the root. To verify the signature one verifies both the
one-time signature and the authentication path. The current best algorithm for
creating authentication paths in Merkle trees is described by Szydlo [23]. This
algorithm creates the paths in a sequential manner, i.e., the path for leaf li+1 is

Hash Based Digital Signature Schemes 101

created after the path for leaf li. Since to verify the authentication path one also
needs to know the value of i, a one-time signature implemented using Szydlo’s
algorithm will reveal the time ordering of different issued signatures. In some
applications this may be an issue.

4 Provable Security of One-Time Signatures

Prior practical constructions of one-time signatures do not come with security
proofs. Hevia and Micciancio [10] prove the security of a different class of graph
based signatures, to those considered above. Unfortunately, most known schemes
as they are implemented in real life, do not seem to be covered by the proof
directly. In particular, Hevia and Micciancio do not include the use of length-
preserving one-way functions, even though these are most commonly used in
proposals for practical one-time signature schemes. In theory, one could simu-
late a length-preserving function by composing hash function and pseudorandom
generators, but this would incur a considerable performance loss. A second prob-
lem is that Hevia and Micciancio use a slightly different definition of graph based
signatures. In particular, Bleichenbacher and Maurer allow the output of a hash
function to be the input to several other hashes, whereas Hevia and Miccian-
cio enforce the use of a pseudorandom generator to perform fanout. Moreover,
Hevia and Micciancio pose a strong restriction on the type of signatures that is
allowed. Consequently, there is a gap between what Hevia and Micciancio prove
secure and what Bleichenbacher and Maurer describe as a graph based one-time
signature scheme.

In this section we generalise Hevia and Micciancio’s result to a broader class
of graphs based on weaker, more natural assumptions, all in the standard model.
However, even this broad class does not include the construction of Bleichen-
bacher and Maurer. To prove a security result for this latter construction we
need to apply to the Random Oracle Model.

4.1 Definitions

Building signature schemes requires composing the functions in non-trivial ways
and the properties of the original function need not hold for the composition.
For a length-preserving one-way function, the most obvious composition is re-
peated application, for instance f2(x) = f(f(x)). Composition for a collection
of functions is done pointwise.

The properties of the functions we require in our proofs are one-wayness,
collision resistance and undetectability. We intuitively describe these properties
here, leaving the technical definitions to Appendix A.

– One wayness: A function is one-way (or preimage resistant) if it is easy to
compute but hard to invert.

– Collision resistance: A function is collision resistant if it is infeasible to
find any pair (x, x′) in the domain that map to the same value.

102 C. Dods, N.P. Smart, and M. Stam

– Second pre-image resistance: A function is second pre-image resistant
if, given some x in the domain, it is hard to find some x′ unequal to x that
maps to the same value.

– Undetectable: A function is called undetectable if an adversary cannot
distinguish the output from f with a uniform distribution over its range. In
practice, this means that, given some n-bit element, an adversary is not able
to tell whether f was applied to it or not.

4.2 Generalities on Graph Based One-Time Signatures

Graph based signatures, such as that of Winternitz or the Bleichenbacher–
Maurer construction, are based on directed acyclic graphs. The use of these
graphs for one-time signature schemes was first described by Bleichenbacher
and Maurer [3]. Later a different model was given by Hevia and Micciancio [10].
There are some subtle but important differences between these two models. We
give a unifying framework, mainly based on Bleichenbacher and Maurer’s termi-
nology, although we will follow Hevia and Micciancio’s suggestion to swap the
meaning of nodes and edges.

Let (V, E) be a directed acyclic graph. The sources and sinks of the graph
correspond to the secret keys and public keys respectively. The graph denotes
how the public key is computed from the secret key in the following way. The
internal nodes correspond to functions, the edges to input and output values
associated to those functions. There are two basic types of internal nodes: those
with indegree one and those with indegree two. A node with indegree two repre-
sents a call to a hash function h. Some convention has to be used to distinguish
between the first and second input for h. A node with indegree one represents a
call to a length-preserving one-way function fi. Here i ∈ {1, . . . , w} needs to be
specified for the node at hand. If a node has several outgoing arcs, these all rep-
resent copies of the same output value. We assume that the graph is optimised in
the sense that there are no two nodes representing the same function that have
the same input (one could make an exception for hash functions, where the two
possible input orderings presumably give different outcomes, but we do not).

As in any directed acyclic graph, the graph defines a partial ordering on the
nodes and allows us to talk of predecessors, successors, parents, children, sinks
and sources. We also fix some total ordering that is consistent with the induced
partial ordering. For instance, the private key is smaller than the public key.

A signature corresponds to the release of the values associated with a cer-
tain set of edges. We will also call this set of edges a signature or sometimes
a signature-set or signature-pattern. Given a set of edges S, the set of directly
computable nodes is defined as the set of nodes all of whose incoming arcs are
in S. The set of computable nodes is defined recursively as the set of nodes com-
putable from the union of S with the outgoing edges of the directly computable
nodes.

We will impose three conditions on a set of edges representing a signature:

Hash Based Digital Signature Schemes 103

1. It is verifiable: the entire public key is in the set of computable nodes.

2. It is consistent: either all arcs originating from a node are in a signature
or none is. (This requirement is needed because all arcs originating from a
single node represent the same output value.)

3. It is minimal: leaving out any edge would destroy verifiability or consistency.

Intuitively, the set of computable nodes from a signature denote the functions
that the signer, or a forger, has to invert given the public key. Two signatures
are called compatible if neither of the sets of computable nodes is a subset of
the other. As a result, given one signature forging a second, compatible one still
requires finding some non-trivial preimage. A signature scheme is a collection
S of mutually compatible sets S ⊆ V together with an efficiently computable
collision-resistant mapping from the message space into S.

The total number of nodes |V | in the graph corresponds to the total number
of operations during the key-generation, taking into account that for the leaves
a call to the pseudorandom function is needed (and handing out a penalty for
too many public keys).

Since all nodes have only one distinct output Bleichenbacher and Maurer
identify (the value of) the output with the function-node itself. Hence, they
describe a signature in terms of nodes and not edges (as a result, consistency is
immediate). Moreover, Bleichenbacher and Maurer’s main focus is on using only
one type of one-way function. We will refer to a scheme with multiple one-way
functions as a generalised BM scheme.

Hevia and Micciancio consider a restricted model by allowing only certain
types of graphs and certain types of signature sets given the graph. Their graphs
consist of two types of internal nodes: nodes with indegree two and outdegree
one (representing a hash function), and nodes with indegree one and outdegree
two (representing a pseudorandom generator). An important difference with our
model is that fanout is only allowed by using pseudorandom generators, with the
result that the arcs leading out of this node represent different values instead of
copies of the same output value (as is the case in our model). An easy consequence
of this model is that consistency is immediate.

One can transform a Hevia-Miccancio graph into a generalised BM-graph. To
do this, simply replace every pseudorandom node in the Hevia-Micciancio graph
with an f1- and an f2-node in the transformed graph, where both nodes have the
same input and f1 takes care of the first output of the generator and f2 of the
second. This transformation increases the number of nodes, which influences the
efficiency measure. We believe it is reasonable to assume that a pseudorandom
generator will take twice the time of a length preserving function or a hash
function (on compatible input/output lengths).

Another restriction of Hevia and Micciancio’s approach is that they only
consider cuts for their signature sets. Given a graph, a cut consists of the arcs
between the two parts of a non-trivial partition (S, S̃) of the set of nodes. It is a
requirement that all arcs point from S to S̃ (or equivalently, that S is predecessor
closed or that S̃ is successor closed). It is easy to see that there is a one-to-one

104 C. Dods, N.P. Smart, and M. Stam

correspondence between the cuts in a Hevia-Micciancio graph and the consistent
cuts in the corresponding generalised BM-graph.

As mentioned before, most proposals for one-time signature schemes do not
actually fit into the Hevia-Micciancio framework. A small number of one-time
signature schemes do not fit into the generalised Bleichenbacher–Maurer frame-
work [17,19,20] either. Although the relation between the public key and the
secret key can still be expressed in terms of a graph and a signature still corre-
sponds to a set of edges, it is no longer a requirement that all possible signatures
are incompatible. Instead of using a mapping from the message space to the
signature space S that is collision resistant, a stronger mapping is used, such
that it is hard to find “incompatible collisions”.

4.3 Security Proofs

We generalise Hevia and Micciancio’s work in three ways. We allow more diverse
graphs, we allow more diverse signature patterns and our requirements on the
functions with which the scheme will be instantiated are more lenient.

Hevia and Micciancio gave a proof of security for the signature schemes that
fit into their model (all fanout is provided by pseudorandom generators and
signatures are based on cuts) under the assumption that the hash function h
is regular and collision-resistant and that an injective pseudorandom generator
is used. Regularity of h is a structural requirement, as is injectivity of g. We
show that these structural requirements can be replaced by more lenient and
to-the-point security properties.

We also generalise Hevia and Micciancio’s work by allowing more one-way
functions fi and several private and public key nodes. The latter has a slight ad-
vantage even if all public key nodes are subsequently hashed together (since then
the final hash only needs to be collision-resistant). Consequently, our results di-
rectly apply to schemes using primarily a single length-preserving function (such
as Winternitz’ scheme), whereas in Hevia and Micciancio’s work one seemingly
needed to replace this with hashing the output of a pseudorandom generator (to
fit in what was proven). We do however still assume that if a node has several
arcs leading out, they all lead to different fi nodes (and not to h-nodes). This
opens the door for compressing the graph into something more akin to a Hevia-
Micciancio graph by replacing all the fi-nodes serviced from the same node by
a single new node of indegree one, but a larger outdegree. Let W ⊆ {1, . . . , w}
be the set of indices for which fi was replaced. We will model the new node as
representing the function fW : {0, 1}n → {0, 1}|W |n. Each outgoing arc corre-
sponds to one of the fi that has been replaced. We will refer to the graph that
arises from this reinterpretation (for all nodes) as the compressed graph (Ṽ , Ẽ).

Finally, we relax the requirement that signatures are based on cuts. Suppose
two different signatures s and s̃ are given (i.e., two sets of arcs). Consider the
set of nodes computable from s but not from s̃ (this set is non-empty by defini-
tion of compatibility). Call a node in this set allowable if the intersection of the
predecessor edges with s̃ is empty. Call s and s̃ strongly compatible if the set of
allowable nodes is non-empty (note that, unlike compatibility, strong compati-

Hash Based Digital Signature Schemes 105

bility is not a symmetric relation). We require from our signature scheme that
all pairs of signatures are strongly compatible. It is clear that if all signatures
are cuts, the set of allowable nodes is exactly the same as the set of nodes com-
putable from s but not from s̃, thus the schemes by Hevia and Micciancio form
a (proper) subset of our schemes.

We show that any compressed graph based one-time signature scheme with
strongly compatible signature sets is secure if h and all the relevant fW are
collision-resistant, one-way and undetectable.

Theorem 1. Let Pr[Forge] be the success probability of any forger of the sig-
nature scheme. Let Pr[Detect] be the success probability for detecting using
algorithms running in polynomial time with oracle access to the signature forger
and let Pr[Invert or Collision] be the maximum of the probabilities of finding
a collision or preimage for some fW or h, using algorithms as above. Let |Ṽ |
be the number of nodes in the compressed graph and let α = |Ṽ |2. Then the
following holds

Pr[Forge] ≤ |Ṽ |(Pr[Invert or Collision] + α Pr[Detect]) .

Proof. The proof is given in Appendix B.

Our result implies Hevia and Micciancio’s result [10–Theorem 1], apart from
the tightness regarding detection. The proofs are similar, but we make the hybrids
more explicit. This gives a shorter proof that is hopefully closer to intuition and
easier to understand. The price we have to pay is that our reduction is less tight.

On the other hand the above theorem does not apply to the types of graphs
used in the Bleichenbacher–Maurer construction, whilst it does apply to the
Winternitz construction. The problem with the Bleichenbacher–Maurer schemes
is that there might be two edges in a single signature that are comparable under
the partial ordering induced by the graph. Hence to prove a result for such graphs
we are required to resort to the random oracle model.

Theorem 2. Let Pr[Forge] be the success probability of any forger of the signa-
ture scheme. Let Pr[Invert] be the maximum success probabilities for inversion
of some fi using algorithms running in polynomial time with oracle access to
the signature forger, let Pr[Collision] be the maximum probability of finding
a collision for fi and let Pr[Detect] be the maximum probability for detecting
a relevant fW , using algorithms as above. Furthermore, let |V | be the number
of nodes in the graph, let α = |V |2, and let δ be a neglible quantity that upper
bounds the probability of inverting a random oracle or finding a collision for it
in polynomial time. Then the following holds

Pr[Forge] ≤ |V |(Pr[Collision] + Pr[Invert] + α Pr[Detect] + δ) .

Proof. The proof is given in Appendix C.

106 C. Dods, N.P. Smart, and M. Stam

5 Practical Considerations

A theoretical analysis shows that the Bleichenbacher–Maurer and the Winternitz
scheme have similar asymptotics. That is, for both schemes key generation, signa-
ture generation and signature verification take time O(nw/ log w) with signature
size O(n/ log w). Hence any theoretical difference is hidden in the constants. Ta-
ble 1 gives a theoretical comparison of the two one-time signature schemes. Here
we adhere to Bleichenbacher and Maurer’s assumption that both hashing two
n-bit values into a single n-bit value and hashing a single n-bit value cost unit
time, whereas hashing a dn-bit value for d > 1 takes d − 1 units.

Table 1. Comparison of Winternitz and Bleichenbacher–Maurer, in the number of
signature bits, respectively number of hash-operations per message bit

Winternitz Bleichenbacher–Maurer
w = 2 w = 3 w = 4 w = 5 w = 2 w = 3 w = 4

Signature Size 1.00 0.69 0.50 0.43 0.77 0.53 0.44
Key Generation 3.00 2.52 2.50 2.58 2.32 2.11 2.19
Signature Generation 1.50 1.26 1.25 1.29 2.32 2.11 2.19
Signature Verification 1.50 1.26 1.25 1.29 1.16 1.05 1.09

Note that the numbers for key generation are the reciprocals of the efficiency
measure as introduced by Bleichenbacher and Maurer. Based on these figures
they concluded that their scheme with w = 3 fixed, is the most efficient. How-
ever, the Bleichenbacher–Maurer scheme requires more complicated code and
bookkeeping, seems to rely on the assumption about the cost of hash functions,
and its benefits are mainly based on key generation and to a lesser extent sig-
nature verification.

To test the relative merits of the different schemes we implemented both, and
the associated Merkle trees. The various timings, in milli-seconds, can be found
in Tables 2 and 3. Surprisingly we found that the Winternitz scheme was more
efficient, regardless of the output size of the hash function used.

Our experiments show that the Winternitz scheme is significantly faster
than the Bleichenbacher–Maurer scheme. Moreover, Winternitz with w = 3 has
slightly cheaper key generation than w = 4; Winternitz signatures and verifica-
tion do no take the same time, contrary to the theoretical expectation; for the
Bleichenbacher–Maurer scheme, signing is slightly more expensive than keygen-
eration.

There are a couple of causes for the differences between the theory put for-
ward by Bleichenbacher and Maurer and practice as we implemented it. In the
theory only calls to the hash functions are counted, however in reality mapping
the message to the signature set is not for free. Thus, in the Bleichenbacher-
Maurer scheme, where key generation and signing take almost the same number
of hash calls, signature creation also requires the additional creation of a radix

Hash Based Digital Signature Schemes 107

p representation of the message and mapping from this to signature sets, so one
would expect signing to be slower than key generation as shown in the table.
Another example is the Winternitz scheme for w = 4, where we implemented
both a radix 4 representation using modular reductions (timings for these are
within parentheses) and a direct bitwise method. The latter gave slightly faster
times as expected.

Our experiments also show that the assumption on the cost of hashing dif-
ferent size messages is inaccurate. For instance, in the Winternitz scheme the
signing and verification equally divide the number of hash calls made within
the rakes. However, when signing the private keys need to be generated whereas
in the verification the public keys need to be hashed together. In the theoreti-
cal model we assume that the costs for these two operations are equal, but in
practice hashing many short values is clearly more expensive than hashing one
long value. In the extreme and unrealistic case—where hashing one long value
takes unit time, so hashing the public key is essentially ignored—the theoretical
advantage of Bleichenbacher–Maurer dissipates and Winternitz is most efficient,
in particular with w = 3.

Finally, one sees that for the Bleichenbacher-Maurer scheme the time for key
generation increases from w = 2 to w = 4 (skipping w = 3), whereas that of
signature verification decreases. This actually does follow from a theoretically
more thorough analysis, where one takes into account the forbidden signature
patterns. The patterns that would have been cheapest to verify are banned,
hence increasing the cost of verification to just over half the cost of key gener-
ation. However, for small w this unbalancing effect weighs in stronger than for
larger w.

To conclude, the theoretical advantage promised by Bleichenbacher and Mau-
rer may not be a real advantage for real-life hash functions and practical values of
n. For larger values of n, it is possible that Bleichenbacher and Maurer’s scheme
starts performing better, but the likely cause of the discrepancy between theory
and practice carries through in the asymptotic case. It is recommended to use
the Winternitz’ scheme with w = 4, since it is very fast, easy to implement and
provides short signatures.

6 Key Sizes

In this section we examine what the security reductions of our proofs and generic
attacks on one-way functions imply for the recommended security parameters.
In Table 4 we summarize the best known black-box attacks against different
functions given different goals. Here f : {0, 1}n → {0, 1}n is length-preserving,
g : {0, 1}n → {0, 1}dn can be a function with any expansion factor d and h :
{0, 1}2n → {0, 1}n is a hash function.

In the security reduction, an inverter, collision finder or sample-distinguisher is
described that basically runs in the same time as a potential signature forger, but
with decreased success probability. By running the simulator multiple times, the
probability of (say) inverting can be boosted. Assuming indepedence, this boost

108 C. Dods, N.P. Smart, and M. Stam

Table 2. Timings (in ms) of Operations for One-Time Signature Schemes

f Params Key Gen Sign Verify
Winternitz SHA-1 w = 2 1.2 0.9 0.5
Winternitz SHA-1 w = 3 1.1 0.7 0.5
Winternitz SHA-1 w = 4 1.1 (1.1) 0.7 (0.7) 0.5 (0.5)
Winternitz SHA-1 w = 5 1.2 0.7 0.6

BM SHA-1 w = 2 1.4 1.5 0.7
BM SHA-1 w = 3 1.3 1.4 0.6
BM SHA-1 w = 4 1.4 1.4 0.7

Winternitz SHA-256 w = 2 2.1 1.4 1.0
Winternitz SHA-256 w = 3 1.8 1.2 0.9
Winternitz SHA-256 w = 4 1.9 (1.9) 1.1 (1.1) 0.9 (1.0)
Winternitz SHA-256 w = 5 2.0 1.2 1.0

BM SHA-256 w = 2 3.3 3.5 1.9
BM SHA-256 w = 3 3.2 3.3 1.7
BM SHA-256 w = 4 3.5 3.6 1.8

Winternitz SHA-512 w = 2 14.7 9.3 6.1
Winternitz SHA-512 w = 3 13.1 7.9 5.9
Winternitz SHA-512 w = 4 13.1 (13.4) 7.6 (7.7) 5.9 (6.3)
Winternitz SHA-512 w = 5 14.1 8.1 7.0

BM SHA-512 w = 2 22.8 23.1 12.4
BM SHA-512 w = 3 21.8 21.9 11.0
BM SHA-512 w = 4 23.9 24.0 11.7

Table 3. Timings (in ms) of Operations for Many-Time Signature Schemes. Note,
maximum number of signatures is 2R.

f Params R Key Gen Sign Verify
Winternitz SHA-1 w = 4 8 300 8 1
Winternitz SHA-1 w = 4 14 18700 8 1

BM SHA-1 w = 3 8 350 9 1
BM SHA-1 w = 3 14 22100 12 1

Winternitz SHA-256 w = 4 8 500 14 2
Winternitz SHA-256 w = 4 14 30800 12 2

BM SHA-256 w = 3 8 800 24 2
BM SHA-256 w = 3 14 56400 24 2

is linear, so to achieve an overwhelming probability of inverting we would have to
invest atmost |V |/ Pr[Forge] time. Our assumption is that inverting using the sig-
nature forger takes at least as much time as a generic attack, so the time taken by
a generic attack should in any case be less than |V |/ Pr[Forge], which implies an
upper bound in the probability of a signature forger expressed in |V | and the run-
time of a generic inverter. Since this runtime is a function of the securityparameter,
i.e., the length of the bitstrings that f works on, it is now possible to determine a
value for the security parameter that is guaranteed to provide security (based on

Hash Based Digital Signature Schemes 109

Table 4. Complexity of generic attacks on one-way functions

Classical Quantum
f g h f g h

one-wayness 2n 2n 2n 2n/2 2n/2 2n/2

collision-resistance 2n 2n 2n/2 2n 2n 2n/3

undetectability 2n 2n 22n 2n/2 2n/2 2n

the assumption that generic attacks are the best available). These are necessarily
conservative estimates: the reduction might not be tight. In concreto, finding colli-
sions for the hash function is going to be the dominating factor in determining the
minimum recommended security parameter.

In the classical world, we have that Pr[Forge] ≤ |V |/2n/2 , where the number
of nodes |V | is still to be determined. It is fair to assume that the messages will be
hashed, so we need to sign 2k-bit hash to achieve a security of at least 2−k. Using
the Winternitz scheme processing two bits at a time, this results in approximately
|V | = 3k (effectively), so we recommend a keysize n ≥ 2k + 2 lg k + 2 lg 3.

In the quantum world it is easier to find collisions [2]. Indeed, we need
Pr[Forge] ≤ |V |/2n/3 , where the number of nodes |V | is approximately 4.5k
using a Winternitz scheme processing two bits at a time (we need to sign a
3k-bit hash to achieve 2−k-security). The recommended keysize then becomes
n ≥ 3k + 3 lg k + 3 lg 4.5.

To conclude, the security parameter should be 1.5 times as long in the quan-
tum setting as in the classical setting. Note that the tightness in the reduction
(for instance of simulator failure) or the fact that we need to sign longer hashes
in the quantum setting hardly influences the recommendations for the security
parameter.

References

1. ANSI X9.63. Public Key Cryptography for the Financial Services Industry: Key
Agreement and Key Transport Using Elliptic Curve Cryptography. October 1999,
Working Draft.

2. G. Brassard, P. Høyer, and A. Tapp. Quantum cryptanalysis of hash and claw-free
functions. In C. L. Lucchesi and A. V. Moura, editors, LATIN’98, volume 1380 of
Lecture Notes in Computer Science, pages 163–169. Springer-Verlag, 1998.

3. D. Bleichenbacher and U. M. Maurer. Directed acyclic graphs, one-way func-
tions and digital signatures. In Y. Desmedt, editor, Advances in Cryptography—
Crypto’94, volume 839 of Lecture Notes in Computer Science, pages 75–82.
Springer-Verlag, 1994.

4. D. Bleichenbacher and U. Maurer. Optimal tree-based one-time digital signature
schemes. Proc. Symp. Theoretical Aspects of Comp. Sci. – STACS ’96, Springer-
Verlag LNCS 1046, 363–374, 1996.

5. D. Bleichenbacher and U. Maurer. On the efficiency of one-time digital signature
schemes. Advances in Cryptology – ASIACRYPT ’96, Springer-Verlag LNCS 1163,
145–158, 1996.

110 C. Dods, N.P. Smart, and M. Stam

6. J. Buchmann, C. Coronado, M. Döring, D. Engelbert, C. Ludwig, R. Overbeck, A.
Schmidt,U.Vollmer andR.-P.Weinmann. Post-quantumsignatures. Preprint, 2004.

7. S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures. Journal
of Cryptology, 9(1):35–67, 1996.

8. J. H̊astad and M. Näslund. Practical construction and analysis of pseudo-
randomness primitives. In C. Boyd, editor, Advances in Cryptography—
Asiacrypt’01, volume 2248 of Lecture Notes in Computer Science, pages 442–459.
Springer-Verlag, 2001.

9. R. Hauser, M. Steiner, and M. Waidner. Micro-payments based on iKP. Technical
report, IBM Research, 1996.

10. A. Hevia and D. Micciancio. The provable security of graph-based one-time signa-
tures and extensions to algebraic signature schemes. In Y. Zheng, editor, Advances
in Cryptography—Asiacrypt’02, volume 2501 of Lecture Notes in Computer Sci-
ence, pages 379–396. Springer-Verlag, 2002.

11. L. Lamport. Constructing digital signatures from a one-way function. SRI Inter-
national, CSL-98, 1979.

12. L. A. Levin. One-way functions and pseudorandom generators. Combinatorica,
7(4):357–363, 1987.

13. R. J. Lipton and R. Ostrovsky. Micro-payments via efficient coin-flipping. In
R. Hirschfeld, editor, FC’98, volume 1465 of Lecture Notes in Computer Science,
pages 1–15. Springer-Verlag, 1998.

14. M. Lomas, editor. Security Protocols, volume 1189 of Lecture Notes in Computer
Science. Springer-Verlag, 1996.

15. A.J. Menezes and P.C. van Oorschot and S.A. Vanstone. CRC-Handbook of Applied
Cryptography, CRC Press, 1996.

16. R. Merkle. A certified digital signature. Advances in Cryptology – CRYPTO ’89,
Springer-Verlag LNCS 435, 218–238, 1990.

17. M. Mitzenmacher and A. Perrig. Bounds and improvements for BiBa singature
schemes. Technical report, Harvard University, Cambridge, Massachusetts, 2002.

18. T. P. Pedersen. Electronic payments of small amount. In Lomas [14], pages 59–68.
19. A. Perrig. The BiBa one-time signature and broadcast authentication protocol. In

M. Reiter and P. Samarati, editors, CCS’01, pages 28–37. ACM Press, 2001.
20. L. Reyzin and N. Reyzin. Better than BiBa: Short one-time signatures with fast

signing and verifying. In L. M. Batten and J. Seberry, editors, ACISP’02, volume
2384 of Lecture Notes in Computer Science, pages 144–153. Springer-Verlag, 2002.

21. R. L. Rivest and A. Shamir. PayWord and MicroMint: Two simple micropayment
schemes. In Lomas [14], pages 69–78.

22. D. R. Simon. Finding collisions on a one-way street: Can secure hash functions be
based on general assumptions? In K. Nyberg, editor, Advances in Cryptography—
Eurocrypt’98, volume 1403 of Lecture Notes in Computer Science, pages 334–345.
Springer-Verlag, 1998.

23. M. Szydlo. Merkle tree traversal in log space and time. Advances in Cryptology –
EUROCRYPT 2004, Springer-Verlag LNCS 3027, 541–554, 2004.

A Properties of One-Way Functions

In this section we will review some well-known properties of one-way functions.
Our starting point will be a collection F of length-regular functions acting on
bitstrings, together with a probabilistic polynomial time (ppt) algorithm I that

Hash Based Digital Signature Schemes 111

samples elements from F . On input a string of ones I returns a description of
some f ∈ F of length polynomially related to the length of I’s input. Let m(f)
denote the input length of the function indexed by f and let n(f) denote the
corresponding output length, so we can write f : {0, 1}m → {0, 1}n (omitting
the dependence of n and m on f). We will assume that an efficient algorithm
is given that, given f and x ∈ {0, 1}m computes f(x). We denote the uniform
distribution over all strings of length n by Un.

Definition 1 (One wayness). Let F and I be given as above. Then (F , I)
is one-way if and only if (iff) for all ppt adversaries A and all polynomials p
eventually (there is an integer N such that for all k > N)

Pr[f(x′) = f(x)∧|x′| = m : x′ ← A(f, y), y ← f(x), x ← Um, f ← I(1k)] <
1

p(k)
.

Unfortunately, a function f can be one-way but f2 not. Vice versa, a func-
tion f2 can be one-way without f being one-way. However, if f is one-way and
undetectable, then so is f2 and similarly, if f is one-way and collision resistant,
then so is f2.

Definition 2 (Collision Resistance). Let F and I be given as above. Then
(F , I) is collision resistant iff for all ppt adversaries A and all polynomials p
eventually (in k)

Pr[f(x′) = f(x) ∧ x �= x′ ∧ |x| = |x′| = m : (x, x′) ← A(f), f ← I(1k)] <
1

p(k)
.

It is clear that collision-resistance implies second pre-image resistance, but
the converse is unlikely to hold. Any injective function is collision-resistant and
second pre-image resistant. It is also well known that collision-resistance implies
one-wayness for compressing functions that are regular or for which the compres-
sion ratio can be asymptotically bounded away from 1. It can be easily shown
that a function f is collision resistant if and only if f2 is collision resistant.

Definition 3 (Undetectability). Let F be a collection of functions with sam-
pling algorithm I. Then we say (F , I) is undetectable iff for all ppt adversaries
A and all polynomials p eventually (in k)

|Pr[b = b′|b′ ← A(f, y), y ← yb, b ← {0, 1}, y0 ← Un, y1 ← f(x),

x ← Um, f ← I(1k)] − 1
2
| <

1
p(k)

.

In the literature the security requirement undetectability is usually associated
with the morphological property of f being an expanding function. In this case
f is known as a pseudorandom generator. We deviate from the literature by
considering the two separately, especially so since undetectability is a useful
property even for non-expanding functions in certain proofs. Note that naming
this property pseudorandomness would have conflicted with the existing notion
of pseudorandom functions.

112 C. Dods, N.P. Smart, and M. Stam

If f is undetectable, then so is f2 by a straightforward hybrid argument.
Suppose we would have a distinguisher A2 for f2. Since A2 distinguishes f2(Un)
and Un by assumption, it must also distinguish between at least one of the pairs
f2(Un), f(Un) and f(Un), Un. In the latter case A2 distinguishes f , in the former
case A2 ◦ f does the trick. It is possible however to construct a function that is
detectable applied only once, but undetectable when applied twice.

For the security of hash-chains in authentication schemes it usually suffices if
the function is one-way on its iterates [8,9,18,12,21,13], but for signature schemes
something potentially stronger is needed. The relevant problem has been defined
by Even, Goldreich and Micali [7] (under the name quasi-inversion). We give a
slightly different definition with different terminology.

Definition 4 (One-deeper preimage resistance). Let l1 ≥ q and l0 ≥ 0. A
collection of length-preserving functions (F , I) is called (l0, l1)-one-deeper preim-
age resistant if for all probabilistic polynomial time adversaries A, all polynomials
p and all sufficiently large k the following holds:

Pr[f l0(y) = f l0+1(x′) : x′ ← A(f, y), y ← f l1(w), w ← Un, f ← I(1k)] <
1

p(k)
.

If l0 = 0 with ranging l1, the definition reduces to that of one-wayness on its
iterates. If the property holds for all (l0, l1) polynomial in k we call the function
chainable. It is well known and easy to verify that one-way permutations are
chainable. We give sufficient conditions for a length-preserving one-way function
to be chainable.

Lemma 1. If a family of length-preserving functions (F , I) is one-way, unde-
tectable and collision resistant, then it is chainable.

If a function f is secure for some l0 and l1, this does imply f to be one-way,
but it does not necessitate f to be either undetectable or second-preimage resis-
tant. These properties are needed in the proof to amplify the onewayness of f .
Our result should not be confused with that of Even et al. [7] who remark that
the existence of one-way functions suffices for the existence of functions that
are one-deeper preimage resistant (for polynomially bounded l0 and l1). This is
interesting, since the existence of one-way functions is not known to be suffi-
cient for the existence of one-way permutations or collision-resistant functions
in general [22].

If our goal is to prove that a function is one-way on its iterates, it suffices
that f is one-way and undetectable (which is hardly surprising). If a function is
one-way, undetectable and second preimage-resistant, then it is (1, l1)-one-deeper
preimage resistant for all (polynomially bounded) l1.

B Proof of Theorem 1

The idea of the proof is simple and will take place in the compressed graph
(Ṽ , Ẽ). The forger asks for a signature and then has to produce another one.

Hash Based Digital Signature Schemes 113

The signature scheme is set up in such a way that there are nodes computable
from the forged signature that were not computable from the queried one. We
will say that the forger inverts on these nodes. If we can guess beforehand which
node the forger is going to invert, we can put the value we wish to invert in that
node. The problem is that this action changes the distribution of the public key
(and the queried signature), so we need to show that an adversary capable of
spotting the difference between the two distribution can be used to detect the
application of some combination of functions. Using hybrids, this is fairly easy
to show. We are helped in this task by the fact that if an adversary inverts a
node, the predecessor edges are completely unknown (this is where we need that
the signatures are partitions), so the simulator does not need to know or have
consistent values for these edges, and by the fact that all fanout is the work of
pseudorandom generators.

Let yh be generated according to h(Un) and yW according to fW (Un), for
W ⊆ {1, . . . , w}. We will describe three games, show that a success in Game 3
leads to either a collision (for h or some fW) or a preimage (for some yW or
yh) and that if the success probability of Game 3 is negligible but an efficient
signature forger exists, some function is detectable.

Game 1. The original game. The simulator creates the public key as in the
original key generation and feeds it to the forger. Because the simulator knows
the entire secret key, he can easily provide any one-time signature the forger
requests. The success probability of this game is by definition Pr[Forge], so

Pr[Success1] = Pr[Forge] . (2)

Game 2. As Game 1, but with the modification that the simulator picks an
internal node (the target) at random and aborts if the forger does not invert
on this node or if the forger’s signature query includes an arc predecessing the
target node. Since the actions of the simulator are independent of the chosen
target, the forger behaves as in Game 1. The success probability is at least
Pr[Success1]/|Ṽ |, which, combined with (2), gives

Pr[Success2] ≥ Pr[Forge]/|Ṽ | . (3)

Game 3. As Game 2, but with the following modification to the key generation.
The simulator replaces the output value of the targeted node with whichever he
wishes to invert (obviously, this value should be from a suitable distribution for
the node at hand). The simulator also replaces all arcs leading out of the prede-
cessor graph of the target node with random values. The simulator recomputes
the public key.

The simulator can produce for all arcs a value, except for those within the
predecessor graph of the target. If the target node is allowable, the adversary’s
query will not contain any arcs within the predecessor graph (by definition).
Thus for allowable targets, the simulator will be able to answer the signature
query correctly.

114 C. Dods, N.P. Smart, and M. Stam

We claim the following, from which the theorem follows:

ε = Pr[Success2] − Pr[Success3] ≤ |Ṽ |Pr[Detect]
Pr[Success3] ≤ Pr[Invert or Collision]

First consider the case in which Game 3 is successful. For the targeted node the
forger has thus supplied a value y′ and its preimage. If y′ = y, we have found a
preimage to the target and are done. On the other hand, if y′ �= y, it is possible
to find a collision somewhere in the path to the root.

Now consider the difference ε in success probability between Game 2 and
Game 3. Remember that a full ordering on the nodes of the graph is fixed con-
sistent with the partial ordering induced by the graph.

Game 3’. Consider Game 3’, parametrised by an internal node t of the graph (we
also allow a node at infinity). The simulator picks a random internal node: if it is
less than t it plays Game 2, otherwise it plays Game 3. If t is the minimal element,
Game 3’ is identical to Game 3, whereas the other extreme, t is the node at infin-
ity, corresponds to Game 2. A standard hybrid argument implies the existence of a
node t∗ such that the difference in success probability between Game 3’ with t = t∗

and with t the next node (in the full ordering) is at least ε/|Ṽ |.

Game 3”. Now define Game 3”, parametrised by an internal node r that is
a predecessor of t∗. The simulator picks an internal node in the full graph at
random. If it is less than t∗ the simulator plays Game 2, if it is larger than t∗ it
plays Game 3. If it equals t∗, the simulator assigns random values to all edges
emanating from a node smaller than r and recomputes the public key.

If r is minimal, then Game 3” equals Game 3’ with t = t∗, but if r = t∗, then
Game 3” equals Game 3’ with t the next node. As a result, there must be some
node r∗ such that the difference in success probability between Game 3” with
r = r∗ and r being the next node is at least ε/|Ṽ |2. The only difference between
these two instantiations of Game 3” can be traced back to node r∗. If r = r∗, it
is computed based on an input computed uniformly at random. If r is the next
node, then the output of r∗ will be made uniformly random by the simulator.
This finally leads to a distinguisher for the function that node r∗ represents.

C Proof of Theorem 2

The idea of the proof is similar to the previous proof. If we can guess which
node the forger is going to invert, we can put the value we wish to invert in that
node, provided it is an fi-node. An adversary that does not invert any f -node,
is forced to invert the random oracle, which can only be done with negligible
probability given only a polynomial number of oracle queries.

Let yi be generated according to fi(Um) for i = 1, . . . , w. We will describe three
games, show that a success in Game 3 leads to either a collision (for some fi or the
random oracle), or an inversion of fi and that the success probability of Game 3
cannot be negligible if an efficient signature forger exists and fW are undetectable.

Hash Based Digital Signature Schemes 115

Game 1. The original game, where calls to the hash function are replaced
by oracle queries. The simulator creates the public key as in the original key
generation and feeds it to the forger. Because the simulator knows the entire
secret key, he can easily provide any one-time signature the forger requests. The
success probability of this game is by definition Pr[Forge].

Game 2. As Game 1, but with the modification that the simulator picks an
internal node at random and aborts if the forger does not invert on this node.
Although the simulator makes up his mind for several oracle queries, he does not
make the calls anymore (the forger can of course query based on the public key
and signature he receives). Since the actions of the simulator are independent of
the node he picked, the forger behaves as in Game 1. The success probability is
at least Pr[Success1]/|V |.

Game 3. As Game 2, but with the modification that if the simulator has picked
an fi-node it replaces its output value with yi. Moreover, it looks at fi’s prede-
cessor nodes until it hits an h-node. The simulator replaces the output of the
fi-children of the fi-predecessors in a direct line with random values and recom-
putes the public key. The only arcs for which the simulator does not know a
value are the arcs directly leading out of the fi-predecessors in a direct line of
the target node. From any of these arcs the target is computable and hence, if
the forger inverts on the target, by minimality of signature patterns these arcs
cannot have been queried.

It is easy to see that an adversary that distinguishes between Game 2 and
Game 3 also distinguishes between a correct evaluation of the tree consisting of
the fi-predecessors in a direct line of the target together with their fi children
(which will include the target itself) and an equal number of independently
chosen uniform random values. ¿From the result in the previous section it already
follows that if all the fW involved are undetectable, this probability is negligible.
In fact, |Pr[Success3] − Pr[Success2]| ≤ α Pr[Detect].

If the forger inverts some f -node, the above leads either to a one-deeper
inversion, a collision on f or a collision on the random oracle. The probability
of finding a collision on the random oracle in polynomial time is negligible.

If the forger does not invert any f -node, he will have to invert an h-node,
corresponding to inverting the random oracle. Since it is an inversion, not both
edges can be known from the signature-query allowed to the forger. So one edge
is still unknown. Presumably, the simulator already knows the value of this edge
and copies of it might be used elsewhere in the signature scheme. However, no
information can be known to the adversary if it is solely used as input to other
h-nodes (by virtue of the random oracle modelling these nodes). Moreover, it
cannot be the input to an f -node, since in that case the adversary would also
invert an f -node, which it does not (by assumption). Hence, the adversary only
has a negligible guessing probability in succeeding.

A General Construction for Simultaneous
Signing and Encrypting

John Malone-Lee

University of Bristol, Department of Computer Science,
Woodland Road, Brsitol, BS8 1UB, UK

malone@cs.bris.ac.uk

Abstract. In this paper we present a very efficient, general construction
for simultaneous signing and encrypting data. Our construction uses the
KEM-DEM methodology of Cramer and Shoup combined with a secure
signature scheme.

We describe an instantiation of our construction that provides all the
functionality of a signature scheme and of an encryption scheme. This
instantiation is more efficient than similar constructions proposed to-
date.1

1 Introduction

Encryption schemes and signature schemes are the basic tools offered by public
key cryptography for providing privacy and authenticity respectively. Originally
they were always viewed as important, but distinct, primitives for use in higher
level protocols; however, there are many settings where the services of both
are needed, perhaps the most obvious being secure e-mailing. In this scenario
messages should be encrypted to ensure confidentiality and signed to provide
authentication. In this case it is of course possible to use an encryption scheme
combined with a digital signature scheme. It has been observed in earlier work
by An et al. [1] that there are often subtleties when using such combinations.
Moreover, it may be possible to use features particular to the case where one
wants both authentication and encryption to gain in efficiency and functional-
ity. Motivated by such considerations there has been much recent research into
schemes and methods for simultaneous signing and encrypting.

The first proposed construction combining the functionality of an encryp-
tion scheme with that of a signature scheme appeared in a paper by Zheng [22].
The motivation behind this work was to obtain some efficiency benefit when
compared to encrypting and signing separately. Zheng called schemes de-
signed to achieve this goal signcryption schemes. Many schemes have subse-
quently been designed with Zheng’s original motivation in mind [2,3,13,14,15,18].
Some of these have been formally analysed using complexity-theoretic reduc-
tions [2,13,14,15]; however, all this analysis relies on the random oracle model [5].

1 Many thanks to Liqun Chen for discussions and suggestions that lead to this work.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 116–135, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A General Construction for Simultaneous Signing and Encrypting 117

The first time that a formal security treatment was applied to signcryption
schemes was the work of An et al. [1]. Unlike the work of Zheng, the purpose here
was not simply to achieve efficiency; the goal was to provide a rigorous framework
to analyse any scheme or composition paradigm used to achieve the combined
functionality of encryption and signature. Several security notions were intro-
duced: insider and outsider security; and two-user and multi-user security. We
will discuss these notions further in Section 7. In addition to providing a security
framework, several composition paradigms are also proposed and analysed in [1].

Here we continue research in this area. We propose a general construction
that can be used whenever one requires a message to be signed and encrypted.
Our construction uses the KEM-DEM methodology of Cramer and Shoup [9,10]
combined with a secure signature scheme. We prove a result that tightly relates
the security of our construction to the security of the atomic components that it
is composed from. Our construction is similar to the sign-then-encrypt method
proposed in [1]; however, we show how, in certain situations, one can produce a
more efficient solution by using a KEM-DEM approach.

We also describe an instantiation of our scheme based on a signature scheme
of Boneh and Boyen [6] and a KEM of Cramer and Shoup [9]. If one takes
Zheng’s original definition of signcryption – to achieve an efficiency gain over
combined encrypting and signing – we argue that our instantiation can be viewed
as the first signcryption scheme that is provably secure without appealing to the
random oracle model [5]. This is particularly significant when one considers the
recent separation results between this model and the standard model [4,8,16].

The paper proceeds as follows. In Section 2 we describe the primitives that
our construction is built from. We present the construction itself in Section 3.
The security notion that we will be using is discussed in Section 4, and we present
our security result in Section 5. In Section 6 we describe how our construction
could be instantiated. The final section of the paper gives a detailed discussion
of what we have done relative to existing research in the area.

2 Preliminaries

In this section we discuss the primitives from which our construction is built.
Before doing this we define some notational conventions that will be used here
and throughout the paper.

2.1 Notation

Let Z denote the ring of integers and let Z≥0 denote the non-negative integers.
For a positive integer a let Za denote the ring of integers modulo a and let Z∗

a

denote the corresponding multiplicative group of units.
If S is a set then we write v ← S to denote the action of sampling from

the uniform distribution on S and assigning the result to the variable v. If S
contains one element s we use v ← s as shorthand for v ← {s}.

We shall be concerned with probabilistic polynomial-time (PPT) algorithms.
If A is such an algorithm we denote the action of running A on input I and

118 J. Malone-Lee

assigning the resulting output to the variable v by v ← A(I). Note that since A
is probabilistic, A(I) is a probability space and not a value. We denote the set
of possible outputs of A(I) by [A(I)].

If E is an event defined in some probability space, we denote the probability
that E occurs by Pr[E] (assuming the probability space is understood from the
context).

2.2 Signature Schemes

A signature scheme SIG consists of the following three algorithms.

– A PPT key generation algorithm SIG.KeyGen that takes as input 1κ for κ ∈
Z≥0. It outputs a public/secret key pair (PKs, SKs). The structure of PKs

and SKs depends on the particular scheme.
– A polynomial-time signing algorithm SIG.Sig that takes as input 1κ for κ ∈

Z≥0, a secret key SKs, and a message m ∈ {0, 1}∗. It outputs a signature σ.
Algorithm SIG.Sig may be probabilistic or deterministic.

– A polynomial-time verification algorithm SIG.Ver that takes as input 1κ for
κ ∈ Z≥0, a public key PKs, a message m, and a purported signature σ on m.
The verification algorithm outputs � if σ is indeed a signature on m under
PKs; it outputs ⊥ otherwise.

Security of Signature Schemes: Strong existential unforgeability The
standard notion of security for a signature scheme is existential unforgeability
under adaptive chosen message attack [11]. In this section we recall the slightly
stronger notion of strong existential unforgeability for signature schemes as de-
fined in [1]. To describe this notion we consider an adversary A that is a prob-
abilistic, polynomial-time oracle query machine that takes as input a security
parameter 1κ for κ ∈ Z≥0. The attack game for this security notion proceeds as
follows.

Stage 1: The adversary queries a key generation oracle with 1κ. The key gener-
ation oracle computes (PKs, SKs) ← SIG.KeyGen(1κ) and responds with PKs.

Stage 2: The adversary makes a series of at most ns queries to a signing
oracle. For each query mi, for i ∈ {1, . . . , ns}, the signing oracle computes
σi ← SIG.Sig(1κ, SKs, m) and responds with σi. The adversary may choose
its queries mi adaptively based on the responses to previous queries.

Stage 3: The adversary attempts to output a pair (m, σ) such that
1. (m, σ) /∈ {(m1, σ1), . . . , (mns , σns)} and
2. x = � where x ← SIG.Ver(1κ, PKs, m, σ).

We say that the adversary wins if it succeeds in doing this.

We define AdvEFSIG,A(κ) to be Pr[A wins] where wins is defined in the above
game. The probability is taken over the random choices of A and those of A’s
oracles.

A General Construction for Simultaneous Signing and Encrypting 119

2.3 Key Encapsulation Mechanisms

A key encapsulation mechanism KEM [9] consists of the following algorithms.

– A PPT key generation algorithm KEM.KeyGen that takes as input 1λ for
λ ∈ Z≥0. It outputs a public/secret key pair (PKr, SKr). The structure of
PKr and SKr depends on the particular scheme.

– A PPT encryption algorithm KEM.Enc that takes as input 1λ for λ ∈ Z≥0,
and a public key PKr. It outputs a pair (K, ψ) where K is a key and ψ is a
ciphertext.
For any (PKr, SKr) output by KEM.KeyGen, we assume that

max
ψ

Pr[ψ∗ = ψ : (K∗, ψ∗) ← KEM.Enc(1λ, PKr)] ≤ 1
2λ−1

where 1/2λ−1 can be replaced with any negligible function of λ and an ap-
propriate adjustment made to our security analysis.
A key K is a bit string of length KEM.KeyLen(λ), where KEM.KeyLen(λ) is
another parameter of KEM.

– A deterministic, polynomial-time decryption algorithm KEM.Dec that takes
as input 1λ for λ ∈ Z≥0, a secret key SKr, and a ciphertext ψ. It outputs
either a key K or the symbol ⊥ to indicate that the ciphertext was invalid.

Soundness. We also require a notion of soundness for KEM. Let us say
that a public/secret key pair (PKr, SKr) is bad if, for some (K, ψ) ∈
[KEM.Enc(1λ, PKr)], we have x �= K where x is the output of
KEM.Dec(1λ, SKr, ψ). Let BadKPKEM(λ) denote the probability that the key gen-
eration algorithm outputs a bad key pair for a given value of λ. Our requirement
on KEM is that BadKPKEM(λ) grows negligibly in λ.

Real or Random Security Against Passive Attack. Here we introduce a
weak notion of security for KEM: real or random security against passive attack.
Note that, although this weak notion is sufficient for our application, we are
categorically not suggesting that it should replace stronger notions proposed for
other applications [9].

An adversary A that mounts a passive attack against KEM is a PPT algorithm
that takes as input 1λ, for security parameter λ ∈ Z≥0. Below we describe the
attack game used to define security against passive attack.

Stage 1: The adversary queries a key generation oracle with 1λ. The key
generation oracle computes (PKr, SKr) ← KEM.KeyGen(1λ) and responds
with PKr.

Stage 2: The adversary makes a query to a challenge encryption oracle. The
challenge encryption oracle does the following.

(K∗, ψ∗) ← KEM.Enc(1λ, PKr); K+ ← {0, 1}lk; b ← {0, 1};
if b = 0, K† ← K∗; else K† ← K+;

where lk = KEM.KeyLen(λ). Finally, it responds with (K†, ψ∗).

120 J. Malone-Lee

Stage 3: The adversary outputs b′ ∈ {0, 1}.
If A is playing the attack game above, we define

AdvRRKEM,A(λ) := |Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0]|. (1)

The probability is taken over the random choices of A and those of A’s oracles.

2.4 One-Time Symmetric-Key Encryption

A one-time symmetric-key encryption scheme [9] SKE consists of the following
two algorithms.

– A deterministic, polynomial-time encryption algorithm SKE.Enc that takes
as input 1λ for λ ∈ Z≥0, a key K, and a message m ∈ {0, 1}∗. It outputs a
ciphertext χ ∈ {0, 1}∗.
The key K is a bit string of length SKE.KeyLen(λ) where SKE.KeyLen(λ) is
a parameter of the encryption scheme.

– A deterministic, polynomial-time decryption algorithm SKE.Dec that takes
as input 1λ for λ ∈ Z≥0, a key K, and a ciphertext χ. It outputs either a
message m ∈ {0, 1}∗ or the symbol ⊥ to indicate that the ciphertext was
invalid.
The key K is a bit string of length SKE.KeyLen(λ).

Soundness. We require our symmetric-key encryption scheme SKE to satisfy
the following soundness condition: For all λ ∈ Z≥0, for all κ ∈ {0, 1}SKE.KeyLen(λ),
and for all m ∈ {0, 1}∗, we have

x = m where x ← SKE.Dec(1λ, K, SKE.Enc(1λ, K, m)).

Indistinguishability of Encryptions Under Passive Attack. Here we in-
troduce a weak notion of security for SKE: indistinguishability of encryptions
under passive attack. An adversary A that mounts a passive attack against SKE
is a PPT algorithm that takes as input 1λ, for security parameter λ ∈ Z≥0.
Below we describe the attack game used to define this security notion.

Stage 1: The adversary chooses two messages, m0 and m1, of equal length. It
gives these to an encryption oracle.

Stage 2: The encryption oracle does the following.

K ← {0, 1}ls; b ← {0, 1}; χ∗ ← SKE.Enc(1λ, K, mb),

where ls = SKE.KeyLen(λ). Finally, it responds with χ∗.

Stage 3: The adversary outputs b′ ∈ {0, 1}.
If A is playing the attack game above, we define

AdvINDSKE,A(λ) := |Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0]|.
The probability is taken over the random choices of A and those of A’s oracles.

A General Construction for Simultaneous Signing and Encrypting 121

3 Simultaneous Signing and Encrypting

A construction SSE for simultaneous signing and encrypting (SSE) consists of
the following four algorithms.

– A PPT sender key generation algorithm SSE.SKeyGen that takes as input 1κ

for κ ∈ Z≥0, and outputs a public/secret key pair (PKs, SKs). The structure
of PKs and SKs depends on the particular scheme.

– A PPT receiver key generation algorithm SSE.RKeyGen that takes as input 1λ

for λ ∈ Z≥0, and outputs a public/secret key pair (PKr, SKr). The structure
of PKr and SKr depends on the particular scheme.

– A PPT sign/encrypt algorithm SSE.SigEnc that takes as input 1κ for κ ∈
Z≥0, 1λ for λ ∈ Z≥0, a sender secret key SKs, a receiver public key PKr and
a message m ∈ {0, 1}∗. It outputs a ciphertext C.

– A deterministic, polynomial-time decrypt/verify algorithm SSE.DecVer that
takes as input 1κ for κ ∈ Z≥0, 1λ for λ ∈ Z≥0, a sender public key PKs, a
receiver secret key SKr and a purported ciphertext C. It outputs either a
message m or a symbol ⊥ to indicate that C is invalid.

SKeyGen: On input 1κ for κ ∈ Z≥0:

1. (PKs, SKs) ← SIG.KeyGen(1κ)
2. Return the public key PKs and the secret key SKs

RKeyGen: On input 1λ for λ ∈ Z≥0:

1. (PKr, SKr) ← KEM.KeyGen(1λ)
2. Return the public key PKr and the secret key SKr

SigEnc: On input 1κ for κ ∈ Z≥0, 1λ for λ ∈ Z≥0, secret key
PKs, public key PKr and message m ∈ {0, 1}∗:

SE1: (K, ψ) ← KEM.Enc(1λ, PKr)
SE2: σ ← SIG.Sig(1κ, SKs, m||ψ)
SE3: χ ← SKE.Enc(1λ, K, m||σ)
SE4: Return the ciphertext (ψ, χ)

DecVer: On input 1κ for κ ∈ Z≥0, 1λ for λ ∈ Z≥0, public key
PKs, secret key SKr and ciphertext (ψ, χ):

DV1: K ← KEM.Dec(1λ, SKr, ψ)
DV2: m||σ ← SKE.Dec(1λ, K, χ)
DV3: x ← SIG.Ver(1κ, PKs, m||ψ, σ)
DV4: If x = �, return m otherwise return ⊥

Fig. 1. A general construction for simultaneous signing and encrypting

122 J. Malone-Lee

In Figure 1 we describe how our general construction works. We use primi-
tives SIG, KEM and SKE as defined in Section 2. We assume for simplicity that
KEM.KeyLen(λ) = SKE.KeyLen(λ).

4 Security Notions for Simultaneous Signing and
Encrypting

4.1 Indistinguishability of Encryptions

In this section we describe the notion of indistinguishability of encryptions under
an adaptive chosen-plaintext and chosen-ciphertext attack (ICPCA) for a SSE
scheme SSE. This is a natural analogue of IND-CCA2 security for standard
public key encryption [19]. To describe this notion we consider an adversary A
that is a PPT oracle query machine that takes as input a security parameters
1κ for κ ∈ Z≥0, and 1λ for λ ∈ Z≥0. The attack game for this security notion
proceeds as follows.

Stage 1: The adversary queries a sender key generation oracle with 1κ. The
sender key generation oracle computes (PKs, SKs) ← SSE.SKeyGen(1κ) and
responds with PKs.

Stage 2: The adversary queries a receiver key generation oracle with 1λ. The
receiver key generation oracle computes (PKr, SKr) ← SSE.RKeyGen(1λ)
and responds with PKr.

Stage 3: The adversary makes a series of queries to two oracles: a sign/encrypt
oracle and a decrypt/verify oracle. (During Stage 3 and Stage 5 the adversary
makes at most ns queries to the sign/encrypt oracle and at most nd queries
to the decrypt/verify oracle.)
For each query m, the sign/encrypt oracle computes

C ← SSE.SigEnc(1κ, 1λ, SKs, PKr, m)

and responds with C.
For each query C, the decrypt/verify oracle computes

x ← SSE.DecVer(1κ, 1λ, PKs, SKr, C)

and responds with x.
The adversary may choose its queries to these oracles adaptively based on
the responses to previous queries.

Stage 4: The adversary chooses two messages m0 and m1 of equal length. It
gives these to a challenge oracle. The challenge oracle does the following.

b ← {0, 1}; C∗ ← SigEnc(1κ, 1λ, SKs, PKr, mb)

Finally, it returns C∗ to the adversary.

A General Construction for Simultaneous Signing and Encrypting 123

Stage 5: The adversary continues to query the oracles of Stage 3 subject to
the condition that it does not query the decrypt/verify oracle with C∗

Stage 6: The adversary outputs b′ ∈ {0, 1}.

If A is playing the above attack game we define

AdvICPCASSE,A(κ, λ) := |Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0]|.

The probability is taken over the random choices of A and those of A’s oracles.

4.2 Unforgeability

As our construction is using a signature scheme that is assumed to be exis-
tentially unforgeable under adaptive chosen message attack, we do not treat
unforgeability explicitly here; our contribution is to demonstrate how to use a
weak encryption scheme and maintain strong security. Suffice to say that, using
the assumed unforgeability of the signature scheme, unforgeability results for
our construction can easily be proved using the techniques of [1].

5 Security Result

Here we state our security result pertaining to the security of our construction
under the definition given in Section 4.1. The proof may be found in Appendix A.

Theorem 1. Let SSE be an instance of our construction that uses SIG, KEM and
SKE. Let A be an adversary of SSE that uses an adaptive chosen-plaintext and
chosen-ciphertext attack to attempt to distinguish encryptions produced using
SSE. Suppose that A makes at most ns sign/encrypt queries and at most nd

decrypt/verify queries. From this adversary it is possible to construct adversaries
A1, A2 and A3, whose running times are essentially the same as that of A, such
that

AdvICPCASSE,A(κ, λ) ≤ 2AdvEFSIG,A1(κ) + 2BadKPKEM(λ)

+ 2AdvRRKEM,A2(λ) + 2AdvINDSKE,A3(λ) +
ns

2λ−2
.

6 An Instantiation

In this section we briefly describe a very efficient instantiation of our construc-
tion. This instantiation could be viewed as the first signcryption scheme in the
literature that is provably secure without appealing to the random oracle model.
We justify this claim in the subsequent discussion section.

The signature scheme that we recommend for our construction is one pro-
posed by Boneh and Boyen [6]. This scheme uses a bilinear group, such as those

124 J. Malone-Lee

frequently used to construct identity-based cryptosystems such as those pro-
posed in [7,12]. It is strongly existentially unforgeable under adaptive chosen
message attack and thus satisfies the security criterion for our construction.
This can be proved without using the random oracle heuristic under an assump-
tion dubbed the strong Diffie-Hellman assumption. The scheme is very efficient:
signing requires one group exponentiation and verifying requires two group ex-
ponentiations and two pairing computations.

To instantiate the key encapsulation mechanism we suggest the Hashed El-
Gamal (HEG) scheme proposed by Cramer and Shoup (see Section 10.1 of [9]).
In [9] this is proved to be secure under an adaptive chosen ciphertext attack
in the random oracle model provided that the gap Diffie Hellman problem [17]
is hard. As you will recall from sections 2.3 and 5, our construction does not
require such a strong notion of security from its KEM; moreover, it follows from
the results of Tsiounis and Yung [21] that such ElGamal based KEMs are se-
cure against passive attack – as we require – under the decisional Diffie-Hellman
assumption. This result holds without using the random oracle model.

The beauty of using such a KEM is that the security of our construction
holds, under the definition that we have used so far, without the random oracle
model. If we require stronger security notions, such as those that we discuss in
the next section, then we can simply apply the result of Cramer and Shoup that
holds in the random oracle model and achieve this security without changing the
KEM (as long as we are content to make do with a random oracle model proof).

To instantiate the symmetric-key encryption scheme we recommend a block-
cipher such as AES used in an appropriate mode. Although it is not possible
to prove anything about the security of AES, it has been subject to thorough
analysis and is widely believed to be sound.

7 Discussion

In this final section we discuss some related work in this area so that we are able
to put our own work in to context and to justify some of the decisions that we
have made.

7.1 Other Security Notions

As we mentioned in the introduction, An et al. defined several notions of security
for schemes providing both signing and encryption [1]. We describe these below.

Outsider Security. The definition that we have given so far is an instance of
outsider security: an adversary is assumed to have access to a sign/encrypt
oracle for SKs/PKr and to a decrypt/verify oracle for PKs/SKr; however, it
is an outsider of the system in that it does not know SKs. (If it knew SKr

it could perform decryption itself and so indistinguishability of encryptions
would be impossible!)

A General Construction for Simultaneous Signing and Encrypting 125

Insider Security. Note that if we surrender SKs to an adversary in our con-
struction we obtain a standard public-key encryption scheme. This is so
because SKs can be used by the adversary to produce ciphertexts. This
resulting scheme is called the induced encryption scheme in [1]. The con-
struction is said to offer insider security if the induced encryption scheme is
IND-CCA2 secure [19].

An et al. state that in many situations outsider security may be sufficient; how-
ever, they do point out that it guarantees that ciphertexts produced by the owner
of SKs for the owner of PKr remain confidential even if SKs is subsequently com-
promised. Many signcryption schemes, such as those proposed in [3,14,22], do
not have this property.

Here we sketch what we need to do to ensure that our construction offers
insider security. The first point to note is that we cannot use the strong existen-
tial unforgeability of the signature scheme in our security result as we did for
Theorem 1. The reason for this is that, under the definition of insider-security,
we are going to provide an adversary with SKs. If an adversary has SKs it can
produce signatures on any messages that it likes without forging anything!

We need a method of simulating the decrypt/verify oracle that does not
not exploit the existential unforgeability of the signature scheme used in the
construction. To do this we require stronger security notions from KEM and
SKE used in our construction.

Consider the real or random security notion for the security of KEM, as in-
troduced in Section 2.3. We require hat KEM is secure in this sense even when an
adversary is given access to a decryption oracle that uses SKr. This is the notion
of adaptive chosen ciphertext attack for KEMs that we mentioned in Section 6.
We again remark that the HEG KEM of Cramer and Shoup recommended for
our instantiation already has a proof of security under this stronger notion, albeit
in the random oracle model [9].

The notion of security that we require of SKE is similar to that presented in
Section 2.4. The difference is that we allow an adversary access to a decryption
oracle that works with the key K. Cramer and Shoup show how an encryption
scheme that is secure against passive attack – as in Section 2.4 – can be made
secure under this stronger notion by using a message authentication code (see
Theorem 4 of [9] for details).

Suppose that we have primitives KEM and SKE that satisfy these stronger
notions that we have just described. A simulation for an insider adversary of
our construction would work as follows. One first runs SIG.KeyGen and gives
the resulting signing key to the adversary. Using the decryption oracles that
would granted to adversaries of KEM and SKE it is possible to simulate the
decrypt/verify oracle as required. The resulting proof is very similar to Theorem
5 of [9].

Having discussed outsider and insider security, the following two notions
remain.

126 J. Malone-Lee

Two-User Setting. The definition that we have used thus far is an instance
of security in a two-user setting: the adversary wishes to distinguish
encryption created using SKs and PKr using access to a sign/encrypt oracle
for SKs/PKr and to a decrypt/verify oracle for PKs/SKr. The point to
observe here is that these oracles are fixed for PKr and PKs respectively.

Multi-User Setting. Unlike in the two-user setting, in a multi-user setting
the adversary is able to choose the public keys to input to its oracles. For
example, it can obtain encryptions produced using SKs and an arbitrary
public key of its choosing.

An et al. argue that considering security in the multi-user setting is crucial
to avoid problems of identity fraud. To motivate this example, consider a con-
struction where a message is encrypted with Bob’s public key and the resulting
ciphertext is signed using Alice’s secret key. This construction may be secure in
the two-user setting if both its components are secure; however, suppose that
there is a user Charlie who can intercept data and alter it. Charlie can remove
Alice’s signature on the ciphertext and replace it with his own. In this scenario
Bob will be convinced that the encrypted message that he receives came from
Charlie when it really came from Alice. This is done without violating the secu-
rity of any of the components.

In the multi-user setting we are unable to use the strong existential unforge-
ability of the signature scheme in our security proof, but for an altogether dif-
ferent reason from the insider security case discussed above. The decrypt/verify
oracle in the proof of Theorem 1 uses the fact that, if it is presented with a valid
ciphertext (ψ, χ), then, within this ciphertext, there must be a signature on ψ.
Since the simulator knows the keys K corresponding to all the ψs that have
been signed, it is able to decrypt and verify. This will only hold if ciphertexts
are decrypted and verified with respect to a specific sender public key PKr - not
the case in the multi-user setting.

It turns out that the very security requirements that we outlined above for
KEM and SKE to give security in the insider-case also suffice to give security in
the multi-user case: simulating the decrypt/verify oracle only requires decryption
oracles for KEM and SKE; moreover, both these are independent of any keys
belonging to the sender. To simulate the sign/encrypt oracle one only requires
a signing oracle valid for PKs; generation of ψ and the final encryption can be
done using by the public key supplied by the adversary.

7.2 The Instantiation

Until now, any construction for simultaneous signing and encrypting offering
provable security without the random oracle model would have to use an en-
cryption scheme that is fully IND-CCA2 secure and a signature scheme that
is existentially unforgeable under adaptive chosen message attack [1]. The re-
sults for the encryption scheme and the signature scheme would clearly have
to hold in the standard model. All other solutions rely on the random oracle
model [2,13,14,15] for their security proofs.

A General Construction for Simultaneous Signing and Encrypting 127

Although our framework still requires a signature scheme that is existentially
unforgeable, we can greatly improve on efficiency when it comes to encryption:
the HEG KEM that fits our security notion for Theorem 1 requires only two
group exponentiations for encrypting and one for decrypting. This compares with
five for encrypting and four for decrypting when using the analogous method to
achieve full IND-CCA2 security [9].

We can therefore claim to have designed the first signcryption scheme offering
provable security without the random oracle model – when one takes Zheng’s
original motivation as discussed in the introduction. At present the random
oracle free version of our result only holds for outsider security in the two-user
setting. It is an interesting open question to extend our results to the other
models proposed in [1].

7.3 The Security Requirement on SIG

We have used the notion of strong existential unforgeability [1] for our scheme
rather than the standard existential unforgeability [11]. Here we provide some
intuition for this.

The challenge ciphertext, (ψ∗, χ∗), is such that χ∗ is the encryption of mb||σ∗,
where σ∗ is a signature on mb||ψ∗. Now, if the signature scheme is not strongly
existentially unforgeable, the possibility that the adversary finds σ′ �= σ∗ such
that σ′ is a valid signature on mb||ψ∗ is not ruled out; moreover, if the adversary
could somehow come up with χ′ �= χ∗ such that χ′ decrypts to give mb||σ′ then
it could break the scheme by submitting (ψ∗, χ′) to the decrypt/verify oracle.

The property of strong existential unforgeability is used in the proof of
Lemma 2 in the appendix.

We note that An et al. state in the full version of their paper that strong
existential unforgeability can also be used in their encrypt-then-sign construction
to weaken the security requirement on the encryption scheme [1]. The method
that one would use to prove this is similar to the methods used in [1] rather than
the method here and, moreover, in the encrypt-then-sign scenario of [1] one ends
up with a signature on a ciphertext rather than on a message. Non-repudiation
of the message is not then necessarily straightforward as it is in our construction.

References

1. J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption.
In Advances in Cryptology - EUROCRYPT 2002, volume 2332 of Lecture Notes in
Computer Science, pages 83–107. Springer-Verlag, 2002. Full version available at
http://eprint.iacr.org/2002/046.

2. J. Baek, R. Steinfeld, and Y. Zheng. Formal proofs for the security of signcryption.
In Public Key Cryptography - PKC 2002, volume 2274 of Lecture Notes in Computer
Science, pages 80–98. Springer-Verlag, 2002.

3. F. Bao and R. H. Deng. A signcryption scheme with signature directly verifiable
by public key. In Public Key Cryptography - PKC ’98, volume 1431 of Lecture
Notes in Computer Science, pages 55–59. Springer-Verlag, 1998.

128 J. Malone-Lee

4. M. Bellare, A. Boldyreva, and A. Palacio. An uninstantiable random-oracle-model
scheme for a hybrid-encryption problem. In Advances in Cryptology - EURO-
CRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 171–188.
Springer-Verlan, 2004.

5. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In 1st ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

6. D. Boneh and X. Boyen. Short signatures without random oracles. In Ad-
vances in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture Notes in
Computer Science, pages 56–73. Springer-Verlan, 2004. Full version available at
http://crypto.stanford.edu/~dabo/abstracts/bbsigs.html.

7. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In Ad-
vances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science, pages 213–229. Springer-Verlag, 2001.

8. R. Canetti, O. Goldreich, and S. Halevi. The random oracle model, revisited. In
30th ACM Symposium on Theory of Computing, pages 209–218. ACM Press, 1998.

9. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2003.

10. A. W. Dent. A designer’s guide to KEMs. In Cryptography and Coding, volume
2898 of Lecture Notes in Computer Science, pages 133–151. Springer-Verlag, 2003.

11. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308,
1988.

12. F. Hess. Efficient identity based signature schemes based on pairings. In Selected
Areas in Cryptography (2002), volume 2595 of Lecture Notes in Computer Science,
pages 310–324. Springer-Verlag, 2003.

13. B. Libert and J. J. Quisquater. New identity-based signcryption schemes from
pairings. In IEEE Information Theory Workshop 2003. Full version available at
http://eprint.iacr.org/2003/023/.

14. J. Malone-Lee. Signcryption with non-interactive non-repudiation. Technical Re-
port CSTR-02-004, Department of Computer Science, University of Bristol, 2004.
Available at http://www.cs.bris.ac.uk/Publications/index.jsp.

15. J. Malone-Lee and W. Mao. Two birds one stone: Signcryption using RSA. In
Topics in Cryptology - CT-RSA 2003, volume 2612 of Lecture Notes in Computer
Science, pages 211–226. Springer-Verlag, 2003.

16. J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In Advances in Cryptology - CRYPTO
2002, volume 2442 of Lecture Notes in Computer Science, pages 111–126. Springer-
Verlag, 2002.

17. T. Okamoto and D. Pointcheval. The gap-problems: A new class of problems for the
security of cryptographic schemes. In Public Key Cryptography - PKC 2001, volume
1992 of Lecture Notes in Computer Science, pages 104–118. Springer-Verlag, 2001.

18. H. Petersen and M. Michels. Cryptanalysis and improvement of signcryption
schemes. IEE Proceedings - Computers and Digital Techniques, 145(2):149–151,
1998.

19. C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In Advances in Cryptology - CRYPTO ’91, volume 576
of Lecture Notes in Computer Science, pages 433–444. Springer-Verlag, 1992.

20. V. Shoup. OAEP reconsidered. In Advances in Cryptology - CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages 239–259. Springer-Verlag, 2001.

A General Construction for Simultaneous Signing and Encrypting 129

21. Y. Tsiounis and M. Yung. On the security of ElGamal based encryption. In Public
Key Cryptography - PKC ’98, volume 1431 of Lecture Notes in Computer Science,
pages 117–134. Springer-Verlag, 1998.

22. Y. Zheng. Digital signcryption or how to achieve cost(signature & encryption)
<< cost(signature) + cost(encryption). In Advances in Cryptology - CRYPTO
’97, volume 1294 of Lecture Notes in Computer Science, pages 165–179. Springer-
Verlag, 1997.

A Proof of Theorem 1

Our proof strategy is as follows. We define a sequence G0, . . . ,G7 of modified
attack games. The only difference between games is how the environment re-
sponds to A’s oracle queries. For any 0 ≤ i ≤ 7, we let Si be the event that
b′ = b in game Gi, where b is the bit chosen by A’s challenge oracle and b′ is
the bit output by A. This probability is taken over the random choices of A and
those of A’s oracles.

We will make frequent of the following useful lemma from [20].

Lemma 1. Let E, F and G be events defined on a probability space such that
Pr[E ∧ ¬G] = Pr[F ∧ ¬G]. We have

|Pr[E] − Pr[F]| ≤ Pr[G].

Game G0. We simulate the view of an adversary in a real attack by running the
appropriate key generation algorithms and using the resulting keys to respond
to A’s queries. The view of A is therefore the same as it would be in a real attack
and so

Pr[S0] =
1
2

(AdvICPCASSE,A(κ, λ) + 1) . (2)

Game G1. In this game we do not modify the responses of the oracles with
which A interacts; the only change is to add some bookkeeping that will be used
in subsequent games. To this end a list Ls is maintained. This list is initially
empty. On each query to the sign/encrypt oracle, the appropriate (K, m||ψ, σ)
is added to Ls. When the challenge oracle is called, the list Ls is also updated
accordingly.

Clearly this change has no impact on the adversary and so

Pr[S1] = Pr[S0]. (3)

Game G2. We now modify how the challenge ciphertext is generated. At the
beginning of the simulation, once A has made its receiver key generation query,
we compute (K, ψ) ← KEM.Enc(1λ, PKr), we set (K∗, ψ∗) ← (K, ψ), and we use
(K∗, ψ∗) in the generation of the challenge ciphertext. Again, this change does
not alter the view of A meaning that

Pr[S2] = Pr[S1]. (4)

130 J. Malone-Lee

Game G3. In this game we slightly modify how the sign/encrypt oracle re-
sponds to queries from A; specifically, we add a rule SE1′ that we apply between
SE1 and SE2.

SE1′: If ψ = ψ∗, abort the simulation.

The chances that the sign/encrypt oracle generates ψ∗ when responding to a
sign/encrypt query are qs/2λ−1; moreover, G2 and G3 proceed in an identical
manner until this happens. Therefore, by Lemma 1

|Pr[S3] − Pr[S2]| ≤ qs

2λ−1
. (5)

Game G4. We now modify how the decrypt/verify oracle responds to queries
from A. We do this by adding a rule DV2′ that we apply between DV2 and
DV3. Let (ψ, χ) be the ciphertext that has been sent to the oracle. The new
rule is as follows.

DV2′: If (K̂, m̂||ψ, σ̂) /∈ Ls for any K̂, m̂, σ̂, return ⊥. Else if ψ = ψ∗, return
⊥. Else proceed to apply rule DV3.

Now, let R4 be the event that, in game G4, some ciphertext is submitted to the
decrypt/verify oracle that is rejected, but is such that it would not have been
rejected in G3. Since the events S4 ∧¬R4 and S3 ∧¬R4 are identical, Lemma 1
tells us that

|Pr[S4] − Pr[S3]| ≤ Pr[R4]. (6)

Therefore we have to bound Pr[R4] which we do in the lemma below.

Lemma 2. There exists a PPT algorithm A1, whose running time is essentially
the same as that of A, such that

Pr[R4] ≤ AdvEFSIG,A1(κ). (7)

We leave the proof of all lemmas to the end of the main proof.

Game G5. In this game we further modify how the decrypt/verify oracle re-
sponds to a query (ψ, χ) from A; we replace DV1 with the following.

DV1: Search Ls until an entry (K̂, m̂||ψ, σ̂) is found for some K̂, m̂, σ̂ or until
the end of the list is reached; if such entry is found , use K̂ in DV2; else,
return ⊥.

Note that if no entry (K̂, m̂||ψ, σ̂) appears in Ls then any ciphertext whose
first component is ψ would be rejected in game G4 in any case; therefore, this
modification introduces no change from the point of view of A unless K̂ ′ �= K̂
where K̂ ′ is the result of running KEM.Dec(1λ, SKr, ψ). Therefore, by Lemma 1

|Pr[S5] − Pr[S4]| ≤ BadKPKEM(λ). (8)

A General Construction for Simultaneous Signing and Encrypting 131

Game G6. In this game we modify how the challenge ciphertext is generated.
For the challenge ciphertext only we replace step SE3 with step SE3* below.

SE3* K∗ ← {0, 1}lk; χ∗ ← SKE.Enc(1λ, K∗, mb||σ∗)

Since rule DV2′ was introduced in G4, we do not need to know K∗ for the
remainder of the simulation and so we add (−, mb||ψ∗, σ∗) to Ls rather than
(K∗, mb||ψ∗, σ∗). (Where − denotes the fact that we leave a blank space.) Also,
since the rule DV1 was re-defined in G5, we no longer require knowledge of SKr

to simulate A.

Lemma 3. There exists a PPT algorithm A2, whose running time is essentially
the same as that of A, such that

|Pr[S6] − Pr[S5]| = AdvRRKEM,A2(λ). (9)

Game G7. In this, the final game, we once more modify how the challenge
ciphertext is generated. We replace the step SE3* introduced in game G6 with
the following.

SE3* K∗ ← {0, 1}lk; str ← {0, 1}lm (where lm is the bit length of mb||σ∗)
χ ← SKE.Enc(1λ, K∗, str)

Now, since the challenge ciphertext, and everything else in the simulation, is
entirely independent of b we have

Pr[S7] =
1
2
. (10)

To complete the proof we require the following lemma.

Lemma 4. There exists a PPT algorithm A3, whose running time is essentially
the same as that of A, such that

|Pr[S7] − Pr[S6]| ≤ AdvINDSKE,A3(λ). (11)

The result now follows from (2), (3), (4), (5), (6), (7), (8), (9), (10) and (11).

Proof of Lemma 2. To prove this we demonstrate how to construct an ad-
versary A1 of SIG to violate the assumed strong existential unforgeability. This
adversary satisfies the bound (7).

Adversary A1 is constructed by running adversary A. We respond to A’s
queries as follows.

– When A makes its signer key generation oracle query, A1 calls its sender key
generation oracle to obtain PKs. It returns PKs to A.

– When A makes its receiver key generation oracle query, A1 runs KEM.KeyGen
to obtain (PKr, SKr). It keeps SKr secret and return PKr to A. At this point
A1 also runs KEM.Enc(1λ, PKr) to obtain (K∗, ψ∗) which it keeps secret.

132 J. Malone-Lee

– To respond to A’s sign/encrypt oracle query for a message m, A1 first obtains
(K, ψ) by running KEM.Enc under PKr. It checks whether ψ = ψ∗ and if so
it aborts the simulation. Assuming it did not abort, it then makes a signing
query to its signing oracle to obtain a signature σ on m||ψ. After that, A1

obtains χ by running SKE.Enc on m||σ under key K. It responds to A with
(ψ, χ) and it adds (K, m||ψ, σ) to a list Ls that is initially empty.

– To respond to A’s decrypt/verify query on a ciphertext (ψ, χ), A1 uses the key
SKr generated earlier in the simulation to obtain m||σ by running KEM.Dec,
SKE.Dec. For each decrypt/verify query that results in a valid message, be-
fore A1 responds to A it does the following.
First it checks to see whether or not (K̂, m̂||ψ, σ̂) appears in Ls for any
K̂, m̂, σ̂; there are two cases to consider.
1. If it does not appear, A1 halts the simulation and outputs (m||ψ, σ).
2. Otherwise, if (K̂, m̂||ψ∗, σ̂) appears in Ls then A1 halts the simulation

and outputs (m̂||ψ∗, σ̂).
– Adversary Adv1 responds to Adv’s challenge query (m0, m1) by first choos-

ing b ← {0, 1}. It then queries its signing oracle to obtain a signature σ∗ on
mb||ψ∗ (recall that (K∗, ψ∗) was generated earlier in the simulation). It ob-
tains χ∗ by encrypting mb||σ∗ using SKE.Enc with key K∗. Finally it returns
(ψ∗, χ∗) to A.

Now, A is run in the above simulation by A1 in exactly the same way that it is
run in both game G3 and G4 until the simulation halts as in one of the cases
that we have described above.

We will now argue that in both cases A1 outputs a valid forgery. The first
case is obvious. Let us now consider the second case. Suppose that such a query
is made before the challenge ciphertext is given to A. In this case no signing
query has been made by A1 involving ψ∗ and so (m̂||ψ∗, σ̂) is clearly a valid
forgery. Suppose now that this query occurs after the challenge ciphertext is
given to A. Then either m̂ �= mb or σ̂ �= σ∗ since otherwise it would be that
challenge ciphertext itself submitted to the decrypt/verify oracle; moreover, only
one signature query is ever made by A1 involving ψ∗. We conclude that (m̂||ψ∗, σ̂)
is a valid forgery.

Putting all this together we have

Pr[R4] ≤ AdvEFSIG,A1(κ)

as required.

Proof of Lemma 3. To prove this lemma we show how A can be used to
construct an adversary A2 of KEM that breaks its real or random indistinguisha-
bility. Algorithm A2 works by defining an environment in which to run A. It
responds to the queries of A as follows.

– The first thing that A2 does is to call its receiver key generation oracle to
obtain PKr. Once it has done this it calls its challenge oracle to obtain
(K†, ψ∗).

A General Construction for Simultaneous Signing and Encrypting 133

– When A makes its sender key generation oracle query, A2 runs SIG.KeyGen
to obtain (PKs, SKs). It returns PKs to A and keeps SKs secret.

– When A makes its receiver key generation oracle query, A2 returns PKr to
A.

– Adversary A2 responds to the sign/encrypt and decrypt/verify queries made
by A in very much the same way that these queries would be responded to
in game G5; the only difference is that signatures are now produced using
SKs rather than using a signing oracle. Note that, as in G5, the secret key
corresponding to PKr is not necessary to run A2.

– When A submits messages (m0, m1) to its challenge oracle, A2 chooses b ←
{0, 1}; it uses SKs to produce a signature σ∗ on mb||ψ∗; it uses SKE.Enc to
obtain the encryption χ∗ of mb||σ∗ under K†; finally it returns the ciphertext
(ψ∗, χ∗) to A.

– At the end of the simulation, A outputs a bit b′. If b′ = b, A2 outputs 1,
otherwise it outputs 0.

Let d be the internal bit of A2’s challenge oracle which A2 seeks to determine
and let d′ be the bit output by A2. By construction we have

Pr[S5] = Pr[b′ = b|d = 1] = Pr[d′ = 1|d = 1],
Pr[S6] = Pr[b′ = b|d = 0] = Pr[d′ = 1|d = 0]

and so by definition we have

|Pr[S6] − Pr[S5]| = AdvRRKEM,A2(λ).

Proof of Lemma 4. The proof of this lemma proceeds in two stages. We
first show that we can construct an adversary A′

3 that breaks the security of
SKE under a new definition that we describe below. We then show how such
an adversary can be used to construct the requisite A3 to break the assumed
indistinguishability of encryptions of SKE.

To begin with we introduce a new notion of security for SKE: real or random
indistinguishability under passive attack. An adversary A′

3 that mounts a passive
attack against SKE is a PPT algorithm that takes as input 1λ, for security
parameter λ ∈ Z≥0. Below we describe the attack game used to define this
security notion.

Stage 1: The adversary queries chooses a messages m of length lm. It gives
this message to an encryption oracle.

Stage 2: The encryption oracle does the following.

K ← {0, 1}SKE.KeyLen(λ); str ← {0, 1}lm; b ← {0, 1};
if b = 1, χ∗ ← SKE.Enc(1λ, K, m);

if b = 0, χ∗ ← SKE.Enc(1λ, K, str).

Finally, it responds with χ∗.

134 J. Malone-Lee

Stage 3: The adversary outputs b′ ∈ {0, 1}.

If A′
3 is playing the attack game above, we define

AdvRRSKE,A′
3
(λ) := |Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0]|.

The probability is taken over the random choices of A′
3 and those of A′

3’s oracles.
We now show how to construct such an adversary A′

3 using A. The simulation
of A′

3 works as follows.

– The first thing that A′
3 does is to run KEM.KeyGen to obtain (PKr, SKr).

It keeps PKr and discards SKr. Once it has done this it runs KEM.Enc to
obtain (K∗, ψ∗). It keeps ψ∗ and discards K∗.

– When A makes its sender key generation oracle query, A′
3 runs SIG.KeyGen

to obtain (PKs, SKs). It returns PKs to A and keeps SKs secret.
– When A makes its receiver key generation oracle query, A′

3 returns PKr to
A.

– Adversary A′
3 responds to the sign/encrypt and decrypt/verify queries made

by A in very much the same way that these queries would be responded to
in game G6; the only difference is that signatures are now produced using
SKs rather than using a signing oracle.

– When A submits messages (m0, m1) to its challenge oracle, A′
3 chooses b ←

{0, 1}; it uses SKs to produce a signature σ∗ on mb||ψ∗; it calls its challenge
encryption oracle on mb||σ∗ to obtain χ∗; finally it returns the ciphertext
(ψ∗, χ∗) to A.

– At the end of the simulation, A outputs a bit b′. If b′ = b, A′
3 outputs 1,

otherwise it outputs 0.

Let d be the internal bit of A′
3’s challenge oracle which A′

3 seeks to determine
and let d′ be the bit output by A′

3. By construction we have

Pr[S6] = Pr[b′ = b|d = 1] = Pr[d′ = 1|d = 1],
Pr[S7] = Pr[b′ = b|d = 0] = Pr[d′ = 1|d = 0]

and so by definition we have

|Pr[S7] − Pr[S6]| = AdvRRSKE,A′
3
(λ).

To complete the proof we demonstrate how a real or random distinguishing
adversary such as A′

3 above can be used to build an adversary A3 in the sense of
indistinguishability of encryptions. To construct A3 proceed as follows.

– Run A′
3 until it outputs a message m of length lm.

– Choose str ← {0, 1}lm.
– Set m0 ← str and m1 ← m.
– Send (m0, m1) to Adv3’s encryption oracle and receive ciphertext χ∗ in re-

sponse.

A General Construction for Simultaneous Signing and Encrypting 135

– Return χ∗ to Adv′3.
– At the end of the simulation Adv′3 outputs a bit b′, return b′.

From the above construction it is clear that any advantage A′
3 has translates

directly into advantage for A3. Therefore

AdvRRSKE,A′
3
(λ) ≤ AdvINDSKE,A3(λ)

as required.

Non-interactive Designated Verifier Proofs and
Undeniable Signatures

Caroline Kudla� and Kenneth G. Paterson

Information Security Group,
Royal Holloway, University of London, UK

{c.j.kudla, kenny.paterson}@rhul.ac.uk

Abstract. Non-interactive designated verifier (NIDV) proofs were first
introduced by Jakobsson et al. and have widely been used as confirmation
and denial proofs for undeniable signature schemes. There appears to
be no formal security modelling for NIDV undeniable signatures or for
NIDV proofs in general. Indeed, recent work by Wang has shown the
original NIDV undeniable signature scheme of Jakobsson et al. to be
flawed. We argue that NIDV proofs may have applications outside of
the context of undeniable signatures and are therefore of independent
interest. We therefore present two security models, one for general NIDV
proof systems, and one specifically for NIDV undeniable signatures.

We go on to repair the NIDV proofs of Jakobsson et al., producing
secure NIDV proofs suited to combination with Chaum’s original unde-
niable signature scheme resulting in a secure and efficient concrete NIDV
undeniable signature scheme.

1 Introduction

Undeniable signatures were first presented in 1989 by Chaum and van Antwer-
pen [7], and were designed to have the property that signatures could be freely
distributed, but were not self-authenticating. In other words, signatures cannot
be verified without the cooperation of the signer. However, any party wrongly
accused of having produced the signature can deny having produced the signa-
ture. The true signer may prove his authorship of an undeniable signature by
running a confirmation protocol with a verifier, and a falsely implicated signer
may deny his involvement by running a denial protocol with a verifier. Obviously,
only the true signer should be able to successfully complete a confirmation proto-
col. Moreover the true signer should be unable to successfully complete a denial
protocol for any of his signatures. Therefore the true signer cannot deny having
produced his signatures.

The confirmation and denial protocols for the undeniable signature scheme of
[7] were made zero-knowledge in [5], and this goes some way to ensuring that the
signer has control over who can verify an undeniable signature. However, as was
pointed out in [10], even though the confirmation protocol is zero-knowledge, the

� This author is funded by Hewlett-Packard Laboratories.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 136–154, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Non-interactive Designated Verifier Proofs and Undeniable Signatures 137

signer may still not always be able to control who is able to verify the validity of
a signature if a group of verifiers cooperate. The undeniable signature scheme in
[7] is also vulnerable to a blackmailing attack [12]. Jakobsson et al. [13] provide
a solution, called designation of verifiers, to ensure that only a specified verifier
can confirm an undeniable signature.

Informally, a designated verifier (DV) proof is a proof of correctness of some
“statement” that either the prover or some designated verifier could have pro-
duced. If the prover created the proof, then the “statement” is correct, however
a designated verifier could simulate a valid proof without a correct “statement”.
A secure DV proof should convince the designated verifier of the correctness of
the “statement” since the designated verifier knows that he did not create the
proof himself. But no other party will be convinced of the validity of the proof
since the designated verifier could have created it. In the context of undeniable
signatures, a DV proof can be used to convince (only) the designated verifier of
the validity of the undeniable signature.

Although the authors of [13] did not give a formal definition of DV proofs,
they provided concrete examples of such proofs. The construction of DV proofs
in [13] used trapdoor commitment schemes [2]. It was also shown there that the
DV proofs could be made non-interactive. Such proofs are called NIDV proofs.
However an attack on the concrete scheme of [13] was recently discovered by
Wang [23], whereby a cheating signer can create a “non-standard” undeniable
signature which the signer can prove valid via the NIDV confirmation proof and
later deny via the denial proof. Wang proposed two ways to repair the scheme
of [13], but did not offer any proofs of security. In fact, prior to this work, no
formal definitions for NIDV proofs or for their security have ever been proposed,
nor has a security model for NIDV undeniable signatures ever been developed.

For normal undeniable signature schemes, unforgeability and invisibility (or
anonymity) are usually considered to be the key notions of security. As for the
security of confirmation and denial proofs, the literature suggests that most
authors have been content to simply prove that they are zero-knowledge and
sound. This may suffice for the case where zero-knowledge confirmation and
denial proofs are used, but it is unclear whether these notions of security are
satisfactory for NIDV proofs. In fact we argue here that they are not.

To summarise, little work has been done on security for NIDV undeniable
signatures, and the earliest scheme [13] is now known to be insecure.

1.1 Our Contribution

We present a formal definition for NIDV proof systems which is compatible with
the concrete schemes of [13]. We then propose a model of security for NIDV
proof systems which we believe are of independent interest.

We then present a formal definition for NIDV undeniable signature schemes
as well as a security model which models the security of both the core signa-
ture scheme and the NIDV confirmation and denial proof systems with which
it is composed. Essentially, two NIDV proof systems are required to construct

138 C. Kudla and K.G. Paterson

an NIDV undeniable signature scheme. The NIDV proof systems are for com-
plementary languages, one providing confirmation proofs and the other denial
proofs for the core signature scheme.

Our work represents the first time that a formal security model for NIDV
undeniable signatures has been developed. The model does not require the sig-
nature scheme to be randomized. It is also a multi-party model, reflecting the
fact that designated verifier proofs naturally involve more than one party, and
that a party may play different roles at different times.

We consider NIDV proofs and NIDV undeniable signatures separately. One
reason for doing so is that, in any application, signatures may exist independently
of proofs. For example, a prover may generate a signature as a commitment to a
message but only later provide an NIDV proof of its correctness, or a prover may
generate many proofs for different designated verifiers on the same signature. A
second reason is that NIDV proofs may also be useful in contexts other than
undeniable signatures. One possible application of NIDV proofs is to deniable
proofs of knowledge, in particular, proofs of knowledge of a private key. For
example, when registering a public key with certification authority C, A could
demonstrate knowledge of the appropriate private key by presenting C with an
NIDV proof of knowledge of the private key of A.

We go on to repair the NIDV proofs of [13], producing secure NIDV proof
systems suited to combination with the full domain hash variant of Chaum’s
undeniable signature scheme [5,7]. The NIDV proofs we obtain are actually a
little shorter than those in [13]. Our work confirms that one of the fixes proposed
by Wang [23] does indeed repair the NIDV proofs of [13]. The result is a concrete
and efficient NIDV undeniable signature scheme. Our paper concludes with some
open problems and ideas for further extensions of our work.

1.2 Related Notions and Work

In parallel work, Lipmaa et al. [15] examine the security properties of what they
refer to as designated verifier signature (DVS) schemes. In common with other
authors [14,19], they ascribe the term DVS to [13] and describe the concrete
NIDV undeniable signature scheme of [13] as a DVS. In fact, this terminology was
never used in [13]. Examination of [15] reveals that a DVS effectively combines
an undeniable signature and an NIDV proof of correctness for that signature into
a single entity. DVS, then, are closely related to (two-party) ring signatures. In
contrast, the authors of [13] did not explicitly define such an object, preferring to
keep undeniable signatures and their proofs separate. Our formal definition of an
NIDV undeniable signature scheme also maintains the separation of signatures
and proofs, and so is closer in spirit to the informal definitions in [13]. We
have given several reasons why this separation is appropriate in the preceding
section. It is unfortunate that this confusion over nomenclature has arisen in the
literature, and we hope our work can help to clarify the situation.

Lipmaa et al. [15] go on to formalize and extend the attack of Wang [23] on
[13] to DVS. They then propose two new security properties which are required
for secure DVS, namely non-delegatability and disavowability. Although these

Non-interactive Designated Verifier Proofs and Undeniable Signatures 139

notions are presented in the context of DVS, they could also be applied in the
context of NIDV undeniable signatures. Our security model for NIDV undeniable
signatures does in fact capture the notion of non-delegatability, but we do not
consider disavowability to be a feature of NIDV proofs, and our concrete exam-
ples do not have this property since they are unconditionally non-transferable.

Another related notion is that of strong designated verifier (SDV) proofs
[13,19,22], which provide stronger security guarantees than NIDV proofs. SDV
proofs provide similar properties to NIDV proofs except that only the designated
verifier is able to verify the proofs produced, since the verification algorithm
requires the private key of the designated verifier. By contrast, NIDV proofs are
universally verifiable, but only convincing to the designated verifier.

Also related to NIDV proofs (or more specifically to NIDV undeniable signa-
tures) are universal designated verifier (UDV) signatures [14,20,21]. Although at
first glance these appear to be similar to NIDV undeniable signatures, they are
quite different. UDV signature schemes produce signatures which are universally
verifiable. However any party in possession of a valid UDV signature on message
M from signer S can provide (to any verifier of their choice) a designated verifier
proof that they possess a valid UDV signature on M by S. On the other hand,
NIDV undeniable signatures are not universally verifiable, and only the signer
is able to produce designated verifier proofs of a signature’s validity. We do not
consider UDV signatures in this paper.

2 Preliminaries

Let G be a finite, multiplicative group of prime order q, and let g be a generator
of G. We denote by DL(g, h) the discrete logarithm of h with respect to base
g in group G. So gDL(g,h) = h in G. We also informally define the following
problems in G:

Discrete Logarithm (DL) Problem: Given g, ga ∈ G, a ∈R Zq, compute a.
Computational Diffie-Hellman (CDH) Problem: Given g, ga, gb ∈ G,

a, b ∈R Zq, compute gab.
Decisional Diffie-Hellman (DDH) Problem: Given g, ga, gb, gc ∈ G,

a, b ∈R Zq, determine whether c = ab mod q.

3 Non-interactive Designated Verifier Proof Systems

We now present a formal definition for NIDV proof systems. This formal defini-
tion was previously lacking in [13] but our definitions are compatible with the
concrete scheme of [13].

A non-interactive designated verifier (NIDV) proof system is defined with
respect to some family of languages L. The goal of an NIDV proof system is
to prove the membership of elements e in a language L ∈ L. An NIDV proof
system consists of the following algorithms:

140 C. Kudla and K.G. Paterson

– A probabilistic Setup algorithm which takes a security parameter l as input
and returns the system parameters params and a description of a family of
languages L. Amongst the public parameters params are descriptions of the
following spaces: a public key space PK, a private key space SK, an element
space E and a proof space P .

– A probabilistic KeyGen algorithm which takes as input the public parameters
params and returns a key pair (x, X) where x ∈ SK is a private key and
X ∈ PK is the corresponding public key.

– A proof generation algorithm PGen which takes as input 〈xP , XV , e〉 where
xP ∈ SK, XV ∈ PK, and e ∈ E with e ∈ L(XP), and produces an NIDV
proof π ∈ P for e.

– A verification algorithm PVerify which takes as input 〈XP , XV , e, π〉 where
XP , XV ∈ PK, e ∈ E and π ∈ P , and outputs Accept or Reject.

Note that we parameterize the languages L ∈ L by public keys, and for any
public key X ∈ PK, L(X) ∈ (E). This parametrization will be needed for the
proof systems required for use with undeniable signatures but is not necessary
in general.

4 Security of NIDV Proof Systems

We say that an NIDV proof system is secure if it satisfies the notions of correct-
ness, non-transferability and soundness. These are defined next.

4.1 Correctness

An NIDV proof system is correct if when PGen is run on any input xP ∈
SK, XV ∈ PK, e ∈ E and outputs some π ∈ P , then PVerify on input
〈XP , XV , e, π〉 outputs Accept.

4.2 Non-transferability

We say that an NIDV proof system is non-transferable if there exists a polynomial
time algorithm A that on input tuples 〈XP , xV , e〉, where XP ∈ PK, xV ∈
SK, e ∈ E , but where e is not necessarily in L(XP), produces proofs π ∈ P
such that 〈XP , XV , e, π〉 is accepted by PVerify and the distribution of proof π
is polynomially indistinguishable from proof π′ produced by PGen when run on
inputs 〈xP , XV , e′〉 where e′ ∈ E and e′ ∈ L(XP).

4.3 Soundness

Soundness of an NIDV proof system is defined via the following game between
a challenger C and an adversary E:

Non-interactive Designated Verifier Proofs and Undeniable Signatures 141

Setup: C runs Setup and KeyGen for a given security parameter l to obtain the
public parameters params, a description of a family of languages L, as well
as a set of public and private key pairs (Xi, xi). C sets up each participant
oracle I with its public and private keys XI , xI . E is given params,L and
the public keys {Xi} of all participants while C retains the private keys {xi}.
We define the set of all participants’ public keys to be X .
E can make the following types of query to the participant oracles:

EGen Queries: E can make an EGen query to an oracle P with public key XP

(possibly with input some seed). The oracle outputs an element e ∈ L(XP).
PGen Queries: E can make a PGen query to oracle P with public key XP on

input 〈XV , e〉 where e ∈ E , XV ∈ X . If e ∈ L(XP), the oracle produces an
NIDV proof π ∈ P from P to V for e. If e /∈ L(XP) then the oracle outputs
“invalid”.

FakePGen Queries: E can make a FakePGen query to oracle V with public
key XV on input 〈XP , e〉 where e ∈ E , XP ∈ X . The oracle runs algorithm
A to produce an NIDV proof π ∈ P for e. The oracle outputs π.

Corrupt Queries: E can request the private key xI of any oracle I.
Output: Finally E outputs 〈X∗

P , X∗
V , e∗, π∗〉, where X∗

P , X∗
V ∈ X and X∗

V is
uncorrupted, e∗ ∈ E and π∗ ∈ P . E wins if 〈X∗

P , X∗
V , e∗, π∗〉 is accepted by

PVerify, π∗ was not the output of some PGen query to P ∗ on 〈X∗
V , e∗〉 or

some FakePGen query to V ∗ on 〈X∗
P , e∗〉, and either:

1. X∗
P is uncorrupted, or

2. e∗ /∈ L(X∗
P).

Definition 1. We say that an NIDV proof system is sound if the probability of
success of any polynomially bounded adversary in the above game is negligible
(as a function of the security parameter l).

4.4 Notes on the Security Definitions for NIDV Proof Systems

Soundness: The soundness definition guarantees that if an uncorrupted verifier
receives a valid NIDV proof, then it was created using the private key xP

and e ∈ L(XP). So a prover cannot cheat. Soundness also guarantees that
no-one other than P can convince an uncorrupted designated verifier that
e ∈ L(XP). In the context of undeniable signatures, this means that no-
one other than the real signer is able to produce an NIDV proof of a valid
undeniable signature that will be accepted by an uncorrupted designated
verifier. This is essential for the security of undeniable signatures. The model
for soundness is multiparty, reflecting the fact that NIDV proofs naturally
involve more than one party, and that a party may play different roles at
different times.

Non-transferability: The existence of algorithm A that can be run by V to
create an NIDV proof for any element e (not necessarily in L) ensures that
no-one besides V will be convinced by an NIDV proof for e.
We note that we do not require the elements e and e′ to be indistinguishable
for non-transferability, rather only the proofs π and π′ are required to be

142 C. Kudla and K.G. Paterson

indistinguishable. If an outside party can already distinguish elements in L
from elements not in L, then they have no need of NIDV proofs for L. How-
ever an NIDV proof for an element e should not give any extra information
regarding e to parties other than the designated verifier.

FakePGen queries: The existence of algorithm A from Section 4.2 also enables
oracles to answer FakePGen queries. We consider it important to model such
queries since an adversary may have access to such “faked” NIDV proofs that
are produced by dishonest verifiers using algorithm A.

5 NIDV Undeniable Signature Schemes

As mentioned earlier, the main application of NIDV proofs has historically been
in undeniable signatures, even though the current security models for undeni-
able signatures do not seem to support NIDV proofs. We now present a formal
definition for NIDV undeniable signature schemes.

Definition 2. An NIDV undeniable signature scheme consists of a core signa-
ture scheme as well as NIDV confirmation and denial proof systems. The core
signature scheme consists of the following algorithms:

– A probabilistic Setup algorithm which takes a security parameter l as input
and returns the system parameters params. Amongst the public parameters
are descriptions of the following spaces: a public key space PK, a private key
space SK, a message space M and a signature space S.

– A probabilistic KeyGen algorithm which takes as input the public parameters
params and returns a key pair (x, X) where x ∈ SK and X ∈ PK.

– A (possibly probabilistic) signature generation algorithm Sign which on in-
put 〈x, m〉 where x ∈ SK, m ∈ M, produces an undeniable signature σ ∈ S.

The core signature scheme defines a language L(X) for each public key X , where
L(X) = {(m, σ) : σ = Sign(x, m)}. In other words, L(X) is the language of
all possible valid message and signature pairs for public key X and L(X) is
the language of all invalid message and signature pairs for public key X . The
family of languages L is defined as L = {L(X) : X ∈ PK} and L is defined as
L = {L(X) : X ∈ PK}.

The families of languages L and L parameterize the confirmation and denial
proofs. The confirmation proof is an NIDV proof system C for L, and the denial
proof is an NIDV proof system D for L. The setup algorithms for C and D use
the public key space PK, the private key space SK, and set the element space E
to be M×S. The proof spaces for C and D are denoted PC and PD respectively.
The following algorithms then make up the confirmation and denial proofs.

– A confirmation proof generation algorithm ConfGen which, on input
〈xP , XV , m, σ〉 where xP ∈ SK, XV ∈ PK, (m, σ) ∈ L(XP) runs PGen
of C on 〈xP , XV , (m, σ)〉.

Non-interactive Designated Verifier Proofs and Undeniable Signatures 143

– A confirmation proof verification algorithm ConfVerify which, on input
〈XP , XV , m, σ, πC〉 where XP , XV ∈ PK, (m, σ) ∈ E and πC ∈ PC runs
PVerify of C on 〈XP , XV , (m, σ), πC〉.

– A denial proof generation algorithm DenyGen which, on input
〈xP , XV , m, σ〉 where xP ∈ SK, XV ∈ PK, (m, σ) ∈ L(XP) runs PGen
of D on 〈xP , XV , (m, σ)〉.

– A denial proof verification algorithm DenyVerify which, on input
〈XP , XV , m, σ, πD〉 where XP , XV ∈ PK, (m, σ) ∈ E and πD ∈ PC runs
PVerify of D on 〈XP , XV , (m, σ), πD〉.

6 Security of NIDV Undeniable Signatures

In analyzing the security of NIDV undeniable signatures, we consider the security
of the confirmation and denial proofs being used, and their composition with the
core signature scheme.

Unless explicitly stated, we will represent the public key of a participant I
by XI , and the private key as xI . P will in general represent a prover, and V a
verifier.

Definition 3. The confirmation (denial) proof of an NIDV undeniable signature
is secure if C (D) is a secure NIDV proof system for L (L). That is, C (D) is
correct, non-transferable and sound.

6.1 The Security of the Core Signature Scheme

The security of the core signature scheme is defined via the following notions:

Unforgeability: Unforgeability of an undeniable signature scheme is defined
via the following game between a challenger C and an adversary E:

Setup: C runs the Setup and KeyGen algorithms for a given security parameter
l to obtain the public parameters params as well as a set of public and
private key pairs (Xi, xi). E is given params and the set of public keys {Xi}
of all participants while C retains the private keys {xi}. C sets up each
participant oracle I with its public and private keys XI , xI . We define the
set of all participants’ public keys to be X .
E can make the following types of query to the participant oracles:

Sign Queries: E can make a Sign query to any participant I with public key
XI on input m where m ∈ M, and the oracle runs Sign on 〈xI , m〉 to produce
a signature σ ∈ S. The oracle outputs σ.

Conf/Deny Queries: E can make a Conf/Deny query to any participant P
with public key XP on input 〈XV , m, σ〉 where XV ∈ X , m ∈ M and
σ ∈ S. If (m, σ) ∈ L(XP) then the oracle runs ConfGen on 〈xP , XV , m, σ〉
to produce an NIDV proof πC ∈ PC which it outputs, otherwise it runs
DenyGen on 〈xP , XV , m, σ〉 to produce an NIDV proof πD ∈ PD which it
outputs.

144 C. Kudla and K.G. Paterson

FakeConf Queries: E can make a FakeConf query to any participant V with
public key XV on input 〈XP , m, σ〉 where XV ∈ X , m ∈ M and σ ∈ S.
The oracle runs the algorithm A of the NIDV proof system C to produce an
NIDV proof πC ∈ PC which it outputs.

FakeDeny Queries: E can make a FakeDeny query to any participant V with
public key XV on input 〈XP , m, σ〉 where XV ∈ X , m ∈ M and σ ∈ S.
The oracle runs the algorithm A of the NIDV proof system D to produce an
NIDV proof πD ∈ PD which it outputs.

Corrupt Queries: E can make a corrupt query to any participant I with public
key XI , and the oracle outputs xI .

Output: Finally E produces X∗
P ∈ X , m∗ ∈ M and σ∗ ∈ S, where X∗

P is
uncorrupted and σ∗ was not the output of some previous Sign query to P ∗

on m∗. E wins the game if (m∗, σ∗) ∈ L(X∗
P).

Definition 4. We say that an undeniable signature scheme is unforgeable if the
probability of success of any polynomially bounded adversary in the above game
is negligible in l.

Invisibility: Invisibility of an undeniable signature scheme is defined via the
following game between a challenger C and an adversary E:

Setup: This is as in the Unforgeability game above.
Phase 1: The adversary can make Sign, Conf/Deny, FakeConf, FakeDeny and

Corrupt queries, and these are all answered as in the Unforgeability game.
Challenge: E produces m∗ ∈ M, X∗

P ∈ X , where X∗
P is uncorrupted. In addi-

tion, if the Sign algorithm is deterministic, then E should not have previously
made a Sign query to P ∗ on m∗ in Phase 1. C chooses a random bit b and
if b = 0, C sets σ∗ = r where r is randomly chosen from S, otherwise C sets
σ∗ = Sign(x∗

P , m∗). C gives σ∗ to E.
Phase 2: Again E can make queries as in Phase 1, except that E cannot make

a Conf/Deny query to P ∗ on 〈XV , m∗, σ∗〉 for any XV . If the signature
algorithm Sign is deterministic, E is also forbidden from making a Sign
query to P ∗ on m∗.

Output: Finally E outputs a bit b′ and wins the game if b′ = b.

Definition 5. We say that an undeniable signature scheme is invisible if the
probability of success of any polynomially bounded adversary in the above game
is negligible in l.

6.2 Notes on the Security Definitions for Undeniable Signatures

Correctness: Although we do not explicitly define correctness for NIDV unde-
niable signatures, correctness is handled by the correctness of proof systems
C and D.

Non-interactive Designated Verifier Proofs and Undeniable Signatures 145

Unforgeability: Our model of unforgeability differs from security models for
normal undeniable signatures in two main ways. Firstly it is multiparty due
to the multiparty nature of the NIDV confirmation and denial proofs. Sec-
ondly, we allow the adversary to make FakeConf and FakeDeny queries. We
consider these to be necessary since an adversary may conceivably have ac-
cess to such “fake” proofs produced by dishonest designated verifiers.

Invisibility: We include the notion of invisibility in our model of security rather
than anonymity. Anonymity, which could be defined in a similar way to [11],
captures the notion that an adversary cannot determine which of two possible
signers created a given signature. Analogous results to those in [11] could be
used to show that invisibility is the stronger notion and implies anonymity.
However we feel that the stronger definition of invisibility is appropriate
for NIDV undeniable signatures since we model the existence of fake NIDV
proofs and their corresponding (possibly fake) signatures, and these should
be indistinguishable from true signatures and NIDV proofs.

Determinism: Our definitions of unforgeability and invisibility encompass
both non-deterministic and deterministic undeniable signatures. We assume
that signers can identify their own valid signatures. For deterministic unde-
niable signatures this is trivial because signers can just re-sign a message,
but in the case of non-deterministic (or randomized) undeniable signatures
this may be non-trivial.
We note that in the deterministic case, invisibility actually implies unforge-
ability, since an adversary who can forge signatures can trivially win the
invisibility game. However for randomized signatures, these properties are
distinct. We keep the properties distinct when proving the security of a de-
terministic undeniable signature scheme later in the paper because it makes
the proofs easier.

7 A Concrete NIDV Undeniable Signature Scheme

We present the full domain hash variant of the undeniable signature scheme of
Chaum [5] with NIDV confirmation and denial proofs.

7.1 The Core Signature

Setup: For some security parameter l, let p and q be large primes, where q|(p−
1). Let G be a multiplicative subgroup of Z

∗
p of order q and let g be a

generator of G. We also assume that H1 : {0, 1}∗ → G is a cryptographic
hash function. For example, such a hash function may be constructed by
using a standard hash function to map the input to a bitstring representing
an integer, reducing that integer modulo p and then exponentiating the result
to the power (p − 1)/q modulo p. We set PK = S = G, M = {0, 1}∗ and
SK = Zq. The public parameters are params = (p, q, g, H1,PK,SK,M,S).

KeyGen: To set up a user I’s public and private keys, the private key xI is
chosen at random from Zq, and the public key is XI = gxI mod p.

146 C. Kudla and K.G. Paterson

Sign: On input 〈xI , m〉 where xI ∈ Zq, m ∈ {0, 1}∗, compute σ = H1(m)xI mod
p. Output σ.

7.2 The Confirmation and Denial Proofs

The Sign algorithm defines a language L(XI) = {(m, σ) : σ = Sign(xI , m)} for
each public key XI . For the above signature scheme, we can write L(XI) =
{(m, σ) : DL(σ, H1(m)) = DL(xI , g)}. In other words, L(XI) is the language of
all possible message and signature pairs (m, σ) where the discrete logarithm of
σ to the base H1(m) equals the discrete logarithm of XI to the base g modulo
p. The family of languages L is defined as L = {L(XI) : XI ∈ G}.

We can now define confirmation and denial proofs with respect to the lan-
guages L(XI).

Confirmation proof: The confirmation proof requires a secure NIDV proof
system C for L. Informally, C must prove the equality of two discrete loga-
rithms (EDL).

Denial proof: The denial proof requires a secure NIDV proof system D for L.
Informally, D must prove the inequality of two discrete logarithms (IDL).

7.3 A Concrete NIDV EDL Proof System

The NIDV proof we present is a slight modification of the scheme of Jakobsson
et al. [13] since the original proof was shown to be insecure by Wang [23].

Since our NIDV EDL proof will be used with the above undeniable signature
scheme, the Setup algorithm will be identical to that in Section 7.1 except that
in addition we require another cryptographic hash function H2 : {0, 1}∗ → Zq,
and we define the spaces E = M × S and P = Z

4
q. KeyGen will be exactly as

in Section 7.1. The family of languages will be defined by the Sign algorithm of
the concrete scheme as described above in Section 7.2. We still need to define
the PGen and PVerify algorithms.

NIDV EDL PGen: On input 〈xP , XV , m, σ〉 where xP ∈ SK, XV ∈ PK,
m ∈ M and σ ∈ S, the algorithm picks random w, r, t ∈ Zq and computes:

c = gwXr
V mod p

G = gt mod p

M = H1(m)t mod p

h = H2(c, G, M, m, σ, XP)
d = t − xP (h + w) mod q

The algorithm outputs π = 〈w, r, h, d〉.
NIDV EDL PVerify: On input 〈XP , XV , m, σ, π〉 where XP , XV ∈ PK, mes-

sage m ∈ M, signature σ ∈ S, and proof π = 〈w, r, h, d〉 ∈ P , the algorithm
computes:

Non-interactive Designated Verifier Proofs and Undeniable Signatures 147

c = gwXr
V mod p

G = gdX
(h+w)
P mod p

M = H1(m)dσ(h+w) mod p

and verifies that h = H2(c, G, M, m, σ, XP). If the last equation holds, then
the algorithm outputs Accept, otherwise it outputs Reject.

Comparison to the scheme of Jakobsson et al. The main difference is that
we include the values σ and XP in the input of H2. Our proof π also has one
less element than in the NIDV EDL proof of [13].

7.4 A Concrete NIDV IDL Proof System

The denial proof is an NIDV version of the proof of inequality of discrete loga-
rithms in [4].

Our Setup and KeyGen algorithms are as above in Section 7.3 for the NIDV
EDL proof scheme except that now P = G × Z

4
q .

NIDV IDL PGen: On input 〈xP , XV , m, σ〉 where xP ∈ SK, XV ∈ PK, m ∈
M, and σ ∈ S, the algorithm picks random r ∈ Zq and computes C =
(H1(m)xP

σ)r mod p.
The algorithm then constructs a designated verifier proof to demonstrate
knowledge of some α and β such that C = H1(m)ασ−β mod p and 1 =
gαXP

−β mod p. The algorithm sets α = xP r mod q and β = r for some
random r ∈ Zq, picks random r1, r2 ∈ Zq and computes:

c = gwXr
V mod p

G = gr1(XP)−r2 mod p

M = H1(m)r1(σ)−r2 mod p

h = H2(C, c, G, M, m, σ, XP)
d1 = r1 − α(h + w) mod q

d2 = r2 − β(h + w) mod q

The algorithm outputs π = 〈C, w, r, h, d1, d2〉 as the NIDV proof to verifier
V that DL(σ, H1(m)) �= DL(XP , g).

NIDV IDL PVerify: On input 〈XP , XV , m, σ, π〉 where XP , XV ∈ PK, m ∈
M, σ ∈ S, and π = 〈C, w, r, h, d1, d2〉 ∈ P , the algorithm first checks that
C �= 1 and then computes:

c = gwXr
V mod p

G = gd1(XP)−d2 mod p

M = Ch+wH1(m)d1(σ)−d2 mod p

and verifies that h = H2(C, c, G, M, m, σ, XP). If the last equation holds,
then the algorithm outputs Accept, otherwise it outputs Reject.

148 C. Kudla and K.G. Paterson

8 Security of the Concrete Scheme

8.1 Security of the NIDV EDL and IDL Proof Systems

Theorem 1. The NIDV EDL proof system of Section 7.3 is correct.

Theorem 2. The NIDV EDL proof system of Section 7.3 is non-
transferable.

Theorem 3. The NIDV EDL proof system of Section 7.3 is sound in the ran-
dom oracle model assuming the hardness of the discrete logarithm problem in
G.

The proof of correctness is trivial and is therefore omitted. The proofs of
the other two theorems appear in the Appendix. The proofs of correctness, non-
transferability and soundness for the NIDV IDL proof system of Section 7.4 are
similar to those for the NIDV EDL proof system, so we omit the details.

8.2 Application to the Core Signature Scheme

Since our NIDV EDL and IDL proof systems are secure, they can be composed
with our concrete scheme to form secure NIDV confirmation and denial proofs for
the NIDV undeniable signature scheme. All that remains for the whole NIDV
undeniable signature scheme to be secure is to show that the core signature
scheme satisfies the unforgeability and invisibility properties.

Theorem 4. The core signature scheme of Section 7.1 is unforgeable in the
random oracle model assuming the hardness of the Computational Diffie-Hellman
problem in G.

Theorem 5. The core signature scheme of Section 7.1 has invisibility in the
random oracle model assuming the hardness of the Decision Diffie-Hellman prob-
lem in G.

The proof of Theorem 4 is similar to the proof in [17] (corrected in [16]),
although we use a slightly different security model. The details are left to the
reader. The proof of Theorem 5 is fairly simple and is therefore also left to the
reader. Both proofs will appear in the full version of the paper.

Alternative constructions for NIDV EDL and IDL proofs may be possible.
For example, it may be the case that the techniques of [8] could yield more
general constructions of such NIDV proofs, although we believe that such gen-
eral constructions are unlikely to be more efficient than the concrete examples
presented here.

Non-interactive Designated Verifier Proofs and Undeniable Signatures 149

9 Conclusions and Open Problems

We have presented models of security for NIDV proof systems and NIDV unde-
niable signatures and argued that NIDV proofs can have applications outside of
the context of undeniable signatures such as in deniable proofs of knowledge or
possession. We then repaired the original NIDV undeniable signature scheme of
[13], producing a concrete scheme that is efficient and proven secure.

In future work, it would be interesting to investigate how to extend our
model to include strong designated verifier proofs [19,22,13] and DVS schemes
[15]. It would also be interesting to provide models of security for NIDV versions
of confirmer signatures [1,6,9,3] and other signature schemes closely related to
undeniable signatures.

Acknowledgements

We would like to thank Steven Galbraith for valuable comments on this work.

References

1. J. Boyar, D. Chaum, I. Damg̊ard, and T. P. Pedersen. Convertible undeniable
signatures. In A. Menezes and S.A. Vanstone, editors, Advances in Cryptology –
CRYPTO ’90, volume 537 of LNCS, pages 189–205. Springer-Verlag, 1991.

2. G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences, 37(2):156–189, 1988.

3. J. Camenisch and M. Michels. Confirmer signature schemes secure against adaptive
adversaries. In B. Preneel, editor, Advances in Cryptology – EUROCRYPT 2000,
volume 1807 of LNCS, pages 243–258. Springer-Verlag, 2000.

4. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In D. Boneh, editor, Advances in Cryptology – CRYPTO 2003,
volume 2729 of LNCS, pages 126–144. Springer-Verlag, 2003.

5. D. Chaum. Zero-knowledge undeniable signatures. In I.B. Damg̊ard, editor, Ad-
vances in Cryptology – EUROCRYPT ’90, volume 473 of LNCS, pages 458–464.
Springer-Verlag, 1990.

6. D. Chaum. Designated confirmer signatures. In A. De Santis, editor, Advances
in Cryptology – EUROCRYPT ’94, volume 950 of LNCS, pages 86–91. Springer-
Verlag, 1994.

7. D. Chaum and H. van Antwerpen. Undeniable signatures. In G. Brassard, editor,
Advances in Cryptology – CRYPTO ’89, volume 435 of LNCS, pages 212–216.
Springer-Verlag, 1990.

8. R. Cramer, I. Damgard, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Y. Desmedt, editor, Advances
in Cryptology - CRYPTO ’94, volume 893 of Lecture Notes in Computer Science,
pages 174–187. Springer-Verlag, 1995.

9. I. Damg̊ard and T. Pedersen. New convertible undeniable signature schemes. In
U.M. Maurer, editor, Advances in Cryptology – EUROCRYPT ’96, volume 1070
of LNCS, pages 372–386. Springer-Verlag, 1996.

150 C. Kudla and K.G. Paterson

10. Y. Desmedt and M. Yung. Weakness of undeniable signature schemes. In D.W.
Davies, editor, Advances in Cryptology – EUROCRYPT ’91, volume 547 of LNCS,
pages 205–220. Springer-Verlag, 1991.

11. S. D. Galbraith and W. Mao. Invisibility and anonymity of undeniable and con-
firmer signatures. In M. Joye, editor, CT-RSA 2003, volume 2612 of LNCS, page
8097. Springer-Verlag, 2003.

12. M. Jakobsson. Blackmailing using undeniable signatures. In A. De Santis, editor,
Advances in Cryptology – EUROCRYPT ’94, volume 950 of LNCS, pages 425–427.
Springer-Verlag, 1994.

13. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their
applications. In U.M. Maurer, editor, Advances in Cryptology – EUROCRYPT ’96,
volume 1070 of LNCS, pages 143–154. Springer-Verlag, 1996.

14. F. Laguillaumie and D. Vergnaud. Designated verifier signatures: Anonymity and
efficient construction from any bilinear map. In C. Blundo and S. Cimato, editors,
SCN 2004, volume 3352 of LNCS, pages 105–119. Springer-Verlag, 2005.

15. H. Lipmaa, G. Wang, and F. Bao. Designated verifier signature schemes: Attacks,
new security notions and a new construction. In L. Caires et al., editor, Automata,
Languages and Programming, ICALP 2005, volume 3580 of LNCS, pages 459–471.
Springer-Verlag, 2005.

16. W. Ogata, K. Kurosawa, and S. Heng. The security of the FDH variant of Chaum’s
undeniable signature scheme. Cryptology ePrint Archive, Report 2004/290, 2004.
Available from http://eprint.iacr.org/2004/290.

17. W. Ogata, K. Kurosawa, and S. Heng. The security of the FDH variant of Chaum’s
undeniable signature scheme. In S. Vaudenay, editor, Public Key Cryptography -
PKC 2005, volume 3386 of LNCS, pages 328–345. Springer-Verlag, 2005.

18. D. Pointcheval and J. Stern. Security proofs for signature schemes. In U.M. Maurer,
editor, Advances in Cryptology – EUROCRYPT ’96, volume 1070 of LNCS, pages
387–398. Springer-Verlag, 1996.

19. S. Saeednia, S. Kremer, and O. Markowitch. An efficient strong designated verifier
signature scheme. In J.I. Lim and D.H. Lee, editors, Information Security and
Cryptology - ICISC 2003, volume 2971 of LNCS, pages 40–54. Springer-Verlag,
2003.

20. R. Steinfeld, L. Bull, H. Wang, and J. Pieprzyk. Universal designated-verifier sig-
natures. In C.S. Laih, editor, Advances in Cryptology - ASIACRYPT 2003, volume
2894 of Lecture Notes in Computer Science, pages 523–542. Springer-Verlag, 2003.

21. R. Steinfeld, H. Wang, and J. Pieprzyk. Efficient extension of standard
Schnorr/RSA signatures into universal designated-verifier signatures. In F. Bao
et al., editor, PKC 2004, volume 2947 of Lecture Notes in Computer Science, pages
86–100. Springer-Verlag, 2004.

22. W. Susilo, F. Zhang, and Y. Mu. Identity-based strong designated verifier signature
schemes. In H. Wang et al., editor, ACISP 2004, volume 3108 of LNCS, pages 313–
324. Springer-Verlag, 2004.

23. G. Wang. An attack on not-interactive designated verifier proofs for undeniable
signatures. Cryptology ePrint Archive, Report 2003/243, 2003. Available from
http://eprint.iacr.org/.

Appendix

Proof of Theorem 2. We define algorithm A as follows. On input 〈XP , xV , m, σ〉,
where XP ∈ PK, xV ∈ SK, (m, σ) ∈ E ,

Non-interactive Designated Verifier Proofs and Undeniable Signatures 151

A chooses random d, α, β ∈ Zq and calculates:

c = gα mod p

G = gdX−β
P mod p

M = H1(m)dσ−β mod p

h = H2(c, G, M, m, σ, XP)
w = β − h mod q

r = (α − w)x−1
V mod q

A outputs π = 〈w, r, h, d〉. It is easy to check that 〈XP , XV , n, σ, π〉 will be
accepted by PVerify and that π is indistinguishable from any π′ = 〈w′, r′, h′, d′〉
produced by running PGen on input 〈xP , XV , m′, σ′〉. �

Proof of Theorem 3. Suppose that H1 and H2 are random oracles and there
exists an algorithm E that makes at most μi queries to the random oracles
Hi, i = {1, 2}, at most μs Sign queries, and wins the soundness game of Section
4.3 in time at most τ with probability at least η = 10(μs + 1)(μs + μ2)/q, where
q is exponential in security parameter l.

We show how to construct an algorithm B that uses E to solve the discrete
logarithm problem in G. B will simulate the random oracles and the challenger
C in a game with E. B’s goal is to solve the discrete logarithm problem on input
〈g, X, p, q〉, that is to find x ∈ Zq such that gx = X mod p, where g is of prime
order q modulo prime p and generates group G.
Simulation:

B uses the parameters 〈g, p, q〉 to run Setup, and gives all the public pa-
rameters to E. B generates a set of participants U , where |U | = ρ(l) and ρ is
a polynomial function of the security parameter l. For some participant J , B
sets XJ = X , and for each I �= J , xI is chosen randomly from Zq, and B sets
XI = gxI mod p. E is given all the public keys Xi. We define the set of all par-
ticipants’ public keys to be X . B now simulates the challenger by simulating all
the oracles which E can query as follows:

H1-Queries: B simulates the random oracle by keeping a list of tuples 〈Mi, ri〉
which is called LH1 . When the oracle is queried with an input M ∈ {0, 1}∗,
B responds as follows:
1. If the query M is already in LH1 in the tuple 〈M, ri〉, then B outputs

gri mod p.
2. Otherwise B selects a random r ∈ Zq, outputs gr mod p and adds 〈M, r〉

to LH1 .
H2-Queries: B simulates the H2 oracle in the same way as H1 by keeping a

list of tuples LH2 , but the tuples are of the form 〈M, s〉, where s is chosen
randomly from Zq, and the output to a query on M is s.

EGen Queries: E can make EGen queries to any oracle I with public key
XI on input 〈m〉 where m ∈ M. If XI �= XJ then B runs Sign(xI , m) to
produce a signature σ ∈ S such that (m, σ) ∈ L(XI). If XI = XJ then B

152 C. Kudla and K.G. Paterson

queries m on the H1 oracle and receives some gri as response. B then sets
σ = Xri

I mod p. B outputs 〈m, σ〉.
PGen Queries: E can make PGen queries to any oracle P with public key XP

on input 〈XV , m, σ〉. If XP �= XJ then B runs PGen on 〈xP , XV , m, σ〉 and
outputs the response. If XP = XJ then B queries m on H1 and receives
some gri . If Xri

P mod p �= σ then B outputs “invalid”. Otherwise, B picks
random w, r, t, h ∈ Zq and computes:

c = gwXr
V mod p

G = gdX
(h+w)
P mod p

M = H1(m)dσ(h+w) mod p

If the H2 oracle has previously been queried on input c, G, M, m, σ, XP , then
B starts again by picking new w, r, t, h. Otherwise B sets
M = “c, G, M, m, σ, XP ”, adds the tuple 〈M, h〉 to LH2 and outputs π =
〈w, r, h, d〉.

FakePGen Queries: E can make FakePGen queries to any oracle V with pub-
lic key XV on input 〈XP , m, σ〉. If XV �= XJ then B runs Algorithm A de-
fined in the proof of Theorem 2 on 〈XP , xV , m, σ〉 and outputs the response.
Otherwise B picks random w, r, t, h ∈ Zq and computes:

c = gwXr
V mod p

G = gdX
(h+w)
P mod p

M = H1(m)dσ(h+w) mod p

If the H2 oracle has previously been queried on input c, G, M, m, σ, XP , then
B starts again by picking new w, r, t, h. Otherwise B sets
M = “c, G, M, m, σ, XP ”, adds the tuple 〈M, h〉 to LH2 and outputs π =
〈w, r, h, d〉.

Corrupt Queries: E can make a Corrupt query to any oracle I with public
key XI . If XI = XJ , then B aborts and terminates E. Otherwise B returns
the appropriate private key xI .

Output: On termination, E outputs 〈X∗
P , X∗

V , m∗, σ∗, π∗〉, where X∗
P , X∗

V

∈ X , X∗
V is uncorrupted, m∗ ∈ M, σ∗ ∈ S and π∗ ∈ P . E wins if

〈X∗
P , X∗

V , m∗, σ∗, π∗〉 is accepted by PVerify, π∗ = 〈w∗, r∗, h∗, d∗〉 was not
the output of some PGen query to P ∗ on 〈X∗

V , m∗, σ∗〉 or some FakePGen
query to V ∗ on 〈X∗

P , m∗, σ∗〉, and either:
1. X∗

P is uncorrupted, or
2. (m∗, σ∗) /∈ L(X∗

P).

Case 1. Suppose that X∗
P is uncorrupted. If h∗ was not output by any previ-

ous PGen or FakePGen query, then by the forking lemma of [18], with a cer-
tain probability B can repeat its simulation so that E outputs another tuple
〈X∗

P , XV , m∗, σ∗, π〉 where proof π = 〈w, r, h, d〉 and h �= h∗. We then get the
equations

Non-interactive Designated Verifier Proofs and Undeniable Signatures 153

gw∗
X∗

V
r∗

= gwXr
V mod p (1)

gd∗
X∗

P
(h∗+w∗) = gdX∗

P
(h+w) mod p (2)

H1(m∗)d∗
σ∗(h∗+w∗) = H1(m∗)dσ∗(h+w) mod p. (3)

Now if X∗
V �= XV and XV �= XJ , or r∗ �= r then B can solve (1) for the

discrete logarithm of X∗
V . The probability that X∗

V = XJ is 1
ρ . If X∗

V �= XV and
XV = XJ then again B can solve (1) for the discrete logarithm of XV = XJ .

If X∗
V = XV and r∗ = r, then w∗ = w, and since h∗ �= h we have that

h∗ + w∗ �= h + w so B can solve (2) for the discrete logarithm of X∗
P . The

probability that X∗
P = XJ is 1

ρ .
If h∗ was output by some previous PGen query to P ∗ on 〈XV , m∗, σ∗〉 which

produced proof π = 〈w, r, h∗, d〉, then since h and h∗ were outputs from H2,
with overwhelming probability the inputs to H2 were identical and we obtain
the equations

gw∗
X∗

V
r∗

= gwXr
V mod p (4)

gd∗
X∗

P
(h∗+w∗) = gdX∗

P
(h∗+w) mod p (5)

H1(m∗)d∗
σ∗(h∗+w∗) = H1(m∗)dσ∗(h∗+w) mod p. (6)

As for equation (1), if X∗
V �= XV or r∗ �= r, then B can solve (4) for the

discrete logarithm of XJ with probability 1
ρ .

If X∗
V = XV and r∗ = r, then w∗ = w, so h∗ + w∗ = h∗ + w and therefore

d∗ = d. But this means that π∗ = 〈w∗, r∗, h∗, d∗〉 was the output of some PGen
query to P ∗ on 〈X∗

V , m∗, σ∗〉, contradicting our assumption.
If h∗ was output by some previous FakePGen query to V ∗ on 〈XP , m∗,

σ∗〉 which produced proof π = 〈w, r, h∗, d〉, then again with overwhelming prob-
ability we obtain the equations

gw∗
X∗

V
r∗

= gwX∗
V

r mod p (7)

gd∗
X∗

P
(h∗+w∗) = gdXP

(h∗+w) mod p (8)

H1(m∗)d∗
σ∗(h∗+w∗) = H1(m∗)dσ∗(h∗+w) mod p. (9)

Now if r∗ �= r then B can solve (7) for the discrete logarithm of X∗
V . The

probability that X∗
V = XJ is 1

ρ . If X∗
P �= XP or w∗ �= w then B can solve (8)

for the discrete logarithm of X∗
P (or XP). The probability that X∗

P = XJ (or
XP = XJ) is 1

ρ .
If r∗ = r, X∗

P = XP and w∗ = w, then d∗ = d. But this means that π∗ =
〈w∗, r∗, h∗, d∗〉 was the output of some FakePGen query to V ∗ on 〈X∗

P , m∗, σ∗〉,
contradicting our assumption.

Case 2. Suppose now that (m∗, σ∗) /∈ L(X∗
P). If h∗ was not output by any

previous PGen or FakePGen query, then by the forking lemma of [18], with a
certain probability B can repeat its simulation so that E outputs another tuple

154 C. Kudla and K.G. Paterson

〈X∗
P , XV , m∗, σ∗, π〉 where proof π = 〈w, r, h, d〉 and h �= h∗. We then get the

equations

gw∗
X∗

V
r∗

= gwXr
V mod p (10)

gd∗
X∗

P
(h∗+w∗) = gdX∗

P
(h+w) mod p (11)

H1(m∗)d∗
σ∗(h∗+w∗) = H1(m∗)dσ∗(h+w) mod p. (12)

As for equation (1), if X∗
V �= XV or r∗ �= r then B can solve (10) for the

discrete logarithm of XJ with probability 1
ρ .

If X∗
V = XV and r∗ = r, then w∗ = w. But since h∗ �= h we can rewrite

equations (11) and (12) as X∗
P = g

d−d∗
h∗−h and σ∗ = H1(m∗)

d−d∗
h∗−h . But we assumed

that (m∗, σ∗) /∈ L(X∗
P), contradicting our assumption.

Now h∗ cannot have been output by some PGen query to P ∗ on 〈XV , m∗, σ∗〉
since (m∗, σ∗) /∈ L(X∗

P) and the PGen query would have output “invalid” in this
case.

If h∗ was output by some previous FakePGen query to V ∗ on 〈XP , m∗,
σ∗〉 which produced proof π = 〈w, r, h∗, d〉, then again with overwhelming prob-
ability we obtain the equations

gw∗
X∗

V
r∗

= gwX∗
V

r mod p (13)

gd∗
X∗

P
(h∗+w∗) = gdXP

(h∗+w) mod p (14)

H1(m∗)d∗
σ∗(h∗+w∗) = H1(m∗)dσ∗(h∗+w) mod p. (15)

Now if r∗ �= r then B can solve (13) for the discrete logarithm of XV .
XV = XJ with probability 1

ρ . As for (8), if X∗
P �= XP or w∗ �= w then B can

solve (14) for the discrete logarithm of XJ with probability 1
ρ .

If r∗ = r, X∗
P = XP and w∗ = w, then d∗ = d. But this means that π∗ =

〈w∗, r∗, h∗, d∗〉 was the output of some FakePGen query to V ∗ on 〈X∗
P , m∗, σ∗〉,

contradicting our assumption.
Since the forking lemma produces a second appropriate signature with ex-

pected time at most τ ′ = 120686μsτ , we find that B can solve the discrete log-
arithm problem in time at most τ ′ and with probability at least η/ρ, which is
non-negligible, contradicting the hardness of the discrete logarithm problem. �

Partial Key Recovery Attacks on XCBC, TMAC
and OMAC

Chris J. Mitchell

Information Security Group, Royal Holloway, University of London
c.mitchell@rhul.ac.uk

http://www.isg.rhul.ac.uk/~cjm

Abstract. The security provided by the XCBC, TMAC and OMAC
schemes is analysed and compared with other MAC schemes. In particu-
lar, ‘partial’ key recovery attacks against all three of these schemes are de-
scribed, yielding upper bounds on the effective security level. The results
imply that there is relatively little to be gained practically through the
introduction of these schemes by comparison with other well-established
MAC functions.

1 Introduction

In this paper the security of three related methods for computing Message Au-
thentication Codes (MACs) is analysed and compared with the level of secu-
rity provided by other, more well-established, MACing techniques. The security
analysis is given in terms of the most efficient (known) forgery and key recovery
attacks that can be launched against the schemes.

The three MAC schemes considered here are known as XCBC [1], OMAC
[2] and TMAC [3] (see also [4]). These three schemes are all examples of CBC-
MACs, i.e. they are all based on the use of a block cipher in Cipher Block
Chaining Mode — see, for example, [5]. Various CBC-MAC schemes have been
in wide use for many years for protecting the integrity and guaranteeing the
origin of data.

Note that all three of these new schemes have been specifically designed for
use with messages of variable length, with the goal of minimising the number of
block cipher operations required to compute a MAC. We compare the efficiency
and security of these MAC schemes with two other schemes also designed for
messages of arbitrary length, namely EMAC [6] and the ANSI retail MAC [7],
also known as MAC algorithms 2 and 3 (respectively) from ISO/IEC 9797-1 [8].

2 Key Recovery and Forgery Attacks

There are two main classes of attack on a MAC scheme, namely key recovery
attacks, in which an attacker is able to discover the secret key used to compute
the MACs, and forgery attacks in which an attacker is able to determine the
correct MAC for a message (without a legitimate key holder having generated

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 155–167, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

156 C.J. Mitchell

it). Key recovery attacks are clearly more powerful than forgery attacks since
once the key is known arbitrary forgeries are possible. We also consider partial
key recovery attacks in which an attacker is able to obtain part of the secret key.

Using a simplified version of the approach of [8], we use a three-tuple [a, b, c]
to quantify the resources needed for an attack, where a denotes the number of
off-line block cipher encipherments (or decipherments), b denotes the number
of known data string/MAC pairs, and c denotes the number of chosen data
string/MAC pairs. In each case, the resources given are those necessary to ensure
that an attack has a probability of successful completion greater than 0.5.

3 XCBC and Some Simple Attacks

The XCBC scheme was originally proposed by Black and Rogaway in 2000 [1],
with the objective of providing a provably secure CBC-MAC scheme which min-
imises the number of block cipher encryptions and decryptions.

3.1 Definition

The XCBC scheme operates as follows. First (as throughout) suppose that the
underlying block cipher transforms an n-bit block of plaintext into an n-bit block
of ciphertext (i.e. it is an n-bit block cipher), and that it uses a key of k bits.
If X is an n-bit block then we write eK(X) (or dK(X)) for the block cipher
encryption (or decryption) of the n-bit block X using key K.

The XCBC MAC scheme uses a triple of keys (K1, K2, K3) where K1 is a
block cipher key, i.e. it contains k bits, and K2, K3 are both n-bit strings. The
XCBC MAC computation is as follows.

The message D on which the MAC is to be computed is padded and split into
a sequence of q n-bit blocks: D1, D2, . . . , Dq. Note that there are two possibilities
for the padding process. If the bit-length of the message is already an integer
multiple of n then no padding is performed. However, if the bit-length of the
message is not a multiple of n then the padded message consists of the message
concatenated with a single one bit followed by the minimal number of zeros
necessary to make the bit-length of the padded message a multiple of n. (Note
that this padding strategy is not a 1-1 mapping of messages to padded messages;
however, problems are avoided by the use of two different MAC computation
strategies, as described immediately below).

The computation of the MAC depends on whether or not padding has been
necessary. In the first case, i.e. where no padding is necessary, the MAC compu-
tation is as follows:

H1 = eK1(D1),
Hi = eK1(Di ⊕ Hi−1), (2 ≤ i ≤ q − 1), and

MAC = eK1(Dq ⊕ Hq−1 ⊕ K2).

Partial Key Recovery Attacks on XCBC, TMAC and OMAC 157

In the second case, i.e. where padding is applied, the MAC computation is
as follows:

H1 = eK1(D1),
Hi = eK1(Di ⊕ Hi−1), (2 ≤ i ≤ q − 1), and

MAC = eK1(Dq ⊕ Hq−1 ⊕ K3).

That is, the keys K2 and K3 are ex-ored with the final plaintext block de-
pending on whether or not padding is necessary.

Note that the MAC used will be truncated to the left-most m bits of the
MAC value given in the above equation, where m ≤ n. In this paper we only
consider the case where m = n, i.e. where no truncation is performed.

Before proceeding we observe that other authors have also considered the
security of XCBC and related schemes. In particular, Furuya and Sakurai [9]
have considered various attacks against 2-key variants of XCBC. However, some
of the previous work (including that in [9]) has focussed on weaknesses arising
from particular choices for the underlying block cipher. This contrasts with the
approach followed in this paper which considers attacks independent of the block
cipher. Note also that the attacks described below do not contradict the proofs
of security for XCBC, TMAC and OMAC — they simply establish the tightness
of the results; nevertheless, the existence of ‘partial key recovery attacks’, as
described herein, is something that is both undesirable and not evident from
theoretical analysis of the schemes.

3.2 Forgery Attacks on XCBC

Suppose a fixed key triple (K1, K2, K3) is in use for computing XCBC-MACs.
Let D1, D2, . . . , Dq be any sequence of n-bit blocks, where q ≥ 0 is arbitrary.
Suppose (by some means) an attacker learns the MACs for 2n/2 different mes-
sages which, after padding and splitting into a sequence of n-bit blocks, all have
q+1 blocks, and whose first q blocks are D1, D2, . . . , Dq; i.e. all the padded mes-
sages have the form D1, D2, . . . , Dq, X , for some n-bit block X . Because padding
has been applied the MACs will all be computed using the key K3. (Note that,
since padding is applied, all of these messages must have unpadded bit-length �
satisfying qn < � < (q + 1)n).

Suppose that the attacker also has the MACs for a further 2n/2 different
messages to which padding is not applied and which, after division into a se-
quence of n-bit blocks, have the form D1, D2, . . . , Dq, Y , for some n-bit block
Y . Because padding has not been applied, the MACs will all be computed using
the key K2. Note that, since no padding is applied, all these messages will have
length precisely (n + 1)q bits.

The total number of message/MAC pairs required is clearly 2n/2+1. In the
discussion below we ‘cheat’ slightly and refer to these as ‘known MACs’ rather
than ‘chosen MACs’. The justification for this is that if q = 0 then we do not
impose any conditions on the messages for which MACs are required (except for
their lengths). Also, there may be applications where the first part of a message

158 C.J. Mitchell

is fixed, and only the last block is variable — again in such a case the required
message/MAC pairs can be obtained without choosing the messages.

By the usual birthday paradox probability arguments (see, for example, Sect.
2.1.5 of [5] or [10]), with a probability of approximately 1−e−1 " 0.63 one of the
MACs from the first set of messages will equal one of the MACs from the second
set. Suppose the pair of messages concerned are respectively D1, D2, . . . , Dq, X

∗

and D1, D2, . . . , Dq, Y
∗ for some n-bit blocks X∗ and Y ∗.

Before proceeding, suppose that Q is the ‘simple’ CBC-MAC for the q-block
message D1, D2, . . . , Dq, i.e. if

H1 = eK1(D1), and
Hi = eK1(Di ⊕ Hi−1), (2 ≤ i ≤ q)

then Q = Hq.
Then, by definition, we immediately have that

eK1(Q ⊕ X∗ ⊕ K3) = eK1(Q ⊕ Y ∗ ⊕ K2).

Hence, since encryption with a fixed key is a permutation of the set of all n-bit
blocks, we have Q⊕X∗⊕K3 = Q⊕Y ∗⊕K2, i.e. X∗⊕Y ∗ = K2⊕K3. That is, the
attacker has learnt the value of K2 ⊕ K3. Knowledge of this value immediately
enables forgeries to be computed.

Specifically, suppose (D1, D2, . . . , Dq) is the padded version of a message (of
unpadded length � satisfying (q−1)n < � < qn) for which the MAC M is known.
Then the unpadded message (D1, D2, . . . , Dq ⊕ K2 ⊕ K3) also has MAC M .
The overall complexity of this forgery attack is [0, 2n/2+1, 0].

Note that the above is, in some sense, also a partial key recovery attack, since
the attacker has reduced the number of unknown key bits from k + 2n to k + n.
However, to simplify the presentation below we do not consider this further here.

3.3 Key Recovery Attacks on XCBC

We describe two main types of key recovery attack. The first attack (essentially
based on the Preneel-van Oorschot attack [11,12]) requires a significant number
of known MACs and ‘only’ 2k block cipher operations. The second attack (a
‘meet-in-the-middle’ attack) requires minimal numbers of known MACs, but
potentially larger numbers of block cipher operations (and more storage).

The first attack is as follows. Suppose an attacker knows the MACs for 2n/2

different messages of length less than n bits. Thus, after padding and division
into n-bit blocks, all these messages will consist of one block. Suppose the at-
tacker also knows the MACs for a further 2n/2 different messages of bit-length �
satisfying n < � < 2n, i.e. messages which, after padding, contain two blocks.

Exactly as above, there is a good chance (probability " 0.63) that a message
from the first set will have the same MAC as a message from the second set.
Suppose that the one-block and two-block messages concerned are X and (Y ,

Partial Key Recovery Attacks on XCBC, TMAC and OMAC 159

Z) respectively. Since both messages involve padding, key K3 is used in both
cases. Then we know that

eK1(K3 ⊕ X) = eK1(K3 ⊕ Z ⊕ eK1(Y)).

Hence, since eK1 is a permutation on the set of all n-bit blocks, we have K3⊕X =
K3 ⊕ Z ⊕ eK1(Y), i.e. X ⊕ Z = eK1(Y). It is now possible (at least in principle)
to perform an exhaustive search through all possible values for K1, and as long
as k < n it is likely that only the correct value will satisfy this equation. If
k ≥ n then a number of ‘false’ matches will be found — however, these can be
eliminated in the next stage with minimal effort.

Given a candidate for K1, any of the known MACs for one-block messages can
be decrypted using this value of K1 to reveal the value of K3. This candidate
key pair can then be tested on a further known MAC, and all false keys can
quickly be eliminated (the complexity of this step does not affect the overall
attack complexity since it is only conducted when a candidate for K1 is found,
which will only happen occasionally). The total expected complexity of this first
key recovery attack is thus [2k, 2n/2+1, 0], since the correct key will certainly be
found by the time an exhaustive search of the key space is complete (given that
a MAC collision has been found).

For the second attack we present just one variant (many other meet-in-the-
middle variants exist). Suppose that the attacker has access to �(k + n)/n�
known single-block message/MAC pairs all of which involve no padding (and
hence K2 is used), together with a single known message/MAC pair for which
padding is applied, i.e. a total of �(k + 2n)/n� known MACs. One interesting
point regarding the attack we now describe is that negligible storage is required,
unlike similar attacks on EMAC (although this would no longer be true if the
messages contained more than one block).

The attacker chooses a single-block message for which padding is not used —
suppose the message is D and the MAC is M . The attacker first goes through
all 2k possible values for the key K1 and computes dK∗

1
(M) ⊕ D = K∗

2 for
each candidate value K∗

1 . The pair (K∗
1 , K∗

2) is then tested as a candidate for
(K1, K2) using a second known message/MAC pair for which padding was not
used. This will require a single block cipher operation, and almost all incorrect
candidate key pairs will be eliminated. By means of further tests against known
message/MAC pairs (from the set of �(k + n)/n�), with high probability all
but the correct key pair can be eliminated. The single remaining known MAC
can be used to derive K3. The total complexity of this attack is thus [2k+1,
�(k + 2n)/n�, 0]. (Note that this attack requires only four times as many block
cipher operations as the previous attack, and requires only a handful of known
MACs compared to a very large number for the previous attack).

4 TMAC and Its Security

The TMAC scheme, a simple variant of XCBC, was proposed by Kurosawa and
Iwata [2] with the goal of reducing the number of required keys from three to
two.

160 C.J. Mitchell

4.1 Definition of TMAC

The TMAC scheme operates in exactly the same way as XCBC except that it
only uses a key pair (K, K ′) instead of a key triple, where K is a k-bit block
cipher key and K ′ contains n bits. A key triple (K1, K2, K3), as used by XCBC,
is then derived from (K, K ′) by setting K1 = K, K2 = u.K ′ and K3 = K ′,
where u is a constant (defined in [2]) and multiplication by u takes place in a
specific representation of the finite field of 2n elements (also specified in [2]).

4.2 Forgery Attacks on TMAC

Clearly the forgery attack on XCBC described in Sect. 3.2 will also apply to
TMAC. There does not appear to be any obvious way in which to take advantage
of the added structure in TMAC to make such an attack more efficient.

4.3 Key Recovery Attacks on TMAC

Again, both the key recovery attacks on XCBC described in Sect. 3.3 will also
apply to TMAC.

There also exists a partial key recovery attack which will yield the key K ′

rather more simply than the entire key can be obtained — most importantly
this attack does not require a search through the entire key space.

Suppose that the attacker performs the forgery attack described in Sect. 3.2.
Then, the attacker will learn the value of K2⊕K3 = S, say. However, in the case
of TMAC, we also know that K2 = u.K3, where multiplication by the public
constant u is defined over the finite field of 2n elements. Thus K3 = S.(u+1)−1,
and hence the attacker can learn the values of both K2 and K3. The total
complexity of this partial key recovery attack is thus the same as that of the
forgery attack, i.e. [0, 2n/2+1, 0]. (Note that this yields another full key recovery
attack with complexity [2k−1, 2n/2+1, 0]).

Before proceeding we consider the implications of knowledge of K2 and K3.
At first glance it is not obvious that this is any worse than knowing the value of
K2⊕K3, which already enables simple forgeries. However, it is more serious since
it enables a far wider range of forgeries to be performed. For example, suppose the
(unpadded) message D1, D2, . . . , Dq has MAC M , i.e. M = eK1(K2⊕Dq⊕Hq−1),
where Hq−1 is defined as above. Then, if message E1, E2, . . . , Er has MAC N ,
it is not hard to see that the message

D1, D2, . . . , Dq−1, Dq ⊕ K2, E1 ⊕ M, E2, E3, . . . , Er

also has MAC N .
Finally note that this partial key recovery attack against TMAC has previ-

ously been described by Sung, Hong and Lee [13].

4.4 Improving TMAC

The main reason that TMAC is significantly weaker than XCBC is the fact that
a simple algebraic relationship exists between K2 and K3. This not only enables

Partial Key Recovery Attacks on XCBC, TMAC and OMAC 161

K2 to be trivially deduced from K3 (and vice versa), it also enables a second
linear equation in K2 and K3 to be used to deduce both K2 and K3.

However, there is no reason for such a simple relationship to exist between K2

and K3. One way of avoiding this would be to cryptographically derive both K2

and K3 from the single key K ′. One way in which this could be done would be to
define two different fixed n-bit strings, S2 and S3 say, and to put K2 = eK′(S2)
and K3 = eK′(S3). With this definition, knowledge of one of K2 (or K3) will not
enable K3 (or K2) to be deduced, as long as the block cipher e resists known
ciphertext attacks. Also, knowledge of K2 ⊕ K3 will also not enable K2 and K3

to be deduced (again assuming that e resists known ciphertext attacks). This
change would, however, mean that K ′ contains k rather than n bits.

Of course, this change invalidates the security proof for TMAC. Moreover,
an analogous change proposed for OMAC (see Sect. 5.4) has been criticised by
Iwata and Kurosawa [14,15].

5 The Security of OMAC

The OMAC scheme, a further simple variant of XCBC, was proposed by Iwata
and Kurosawa [3] with the goal of further reducing the number of required keys
from three to one. This scheme has recently been adopted by NIST under the
title of CMAC [16].

5.1 Definition of OMAC

The OMAC scheme operates in exactly the same way as XCBC except that it
only uses a single key K instead of a key triple, where K is a k-bit block cipher
key. A key triple (K1, K2, K3), as used by XCBC, is then derived from K by
setting L = eK(0n), K1 = K, K2 = u.L and K3 = u2.L, where 0n is the n-bit
block of all zeros, and u is a constant (defined in [3]) and multiplication by u
and u2 takes place in a specific representation of the finite field of 2n elements
(also specified in [3]).

Note that there are, in fact, two different variants of OMAC, known as
OMAC1 and OMAC2. The version defined above is OMAC1, and is the one
analysed here. However the analysis is almost identical for OMAC2, which is
identical to OMAC1 except that K3 = u−1.L.

5.2 Forgery Attacks on OMAC

Just as for TMAC, the forgery attack on XCBC described in Sect. 3.2 will also
apply to OMAC. There does not appear to be any obvious way in which to
take advantage of the added structure in OMAC to make such an attack more
efficient.

162 C.J. Mitchell

5.3 Key Recovery Attacks on OMAC

Both the key recovery attacks on XCBC described in Sect. 3.3 will also apply
to OMAC, as will a simple variant of the partial key recovery attack described
in Sect. 4.3. In this case however, a second partial key recovery attack exists,
which we now describe. This attack is designed to enable L to be determined,
knowledge of which immediately enables both K2 and K3 to be determined. The
attack is similar to that described in Sect. 3.3.

Suppose an attacker knows the MACs for 2n/2 different messages of length
less than n bits. Thus, after padding and division into n-bit blocks, all these
messages will consist of one block. Suppose the attacker also knows the MACs
for a further 2n/2 different messages of bit-length � satisfying n < � < 2n, i.e.
messages which, after padding, contain two blocks, and for which the first n bits
are all zero.

Exactly as above, there is a good chance (probability " 0.63) that a message
from the first set will have the same MAC as a message from the second set.
Suppose that the one-block and two-block messages concerned are X and (0n,
Z) respectively (recall that the second message must begin with n zeros). Since
both messages involve padding, key K3 is used in both cases. Then we know
that

eK1(K3 ⊕ X) = eK1(K3 ⊕ Z ⊕ eK1(0
n)).

Hence, since eK1 is a permutation on the set of all n-bit blocks, we have K3⊕X =
K3 ⊕ Z ⊕ eK1(0n), i.e. X ⊕ Z = eK1(0n). But K1 = K, and thus we know that
L = X ⊕ Z. Thus L, and hence K2 and K3, are immediately available to the
attacker. This latter attack has complexity [0, 2n/2, 2n/2].

5.4 Improving OMAC

Analogously to the proposed improvements to TMAC (given in Sect. 4.4), one
possibility would be to derive K2 and K3 from K using the following process:
put K2 = eK(S2) and K3 = eK(S3), where S2 and S3 are fixed and distinct
n-bit strings. This will avoid the attack described in Sect. 4.3. In addition, in
order to avoid the OMAC-specific attack described in Sect. 5.3, it is suggested
that the key K1 used in MAC computations should not be the same as the key
used to derive K2 and K3, to prevent MAC computations accidentally revealing
K2 and/or K3. This is simple to achieve by setting K1 = K ⊕S1 for a fixed k-bit
string S1.

However, we note that the above simple approach to modifying OMAC has
been criticised by Iwata and Kurosawa [14,15], who show that a proof of security
cannot be obtained for the modified scheme using the ‘standard’ assumptions
about the underlying block cipher. This suggests that it would be interesting
to develop variants of TMAC and OMAC for which proofs of security can be
readily developed, and which nevertheless do not permit ‘partial key recovery
attacks’ of the type described.

Partial Key Recovery Attacks on XCBC, TMAC and OMAC 163

6 Benchmark Results and Comparisons

We next consider the security provided by two well-known and standardised
CBC-MAC schemes, namely EMAC and the ANSI retail MAC. Note that, unlike
XCBC, TMAC and OMAC, these schemes operate independently of whether or
not a message is padded and how padding is performed.

6.1 EMAC

EMAC is standardised as MAC algorithm 2 in ISO/IEC 9797-1 [8], and has been
proven secure by Petrank and Rackoff [17]. EMAC uses a pair of keys (K1, K2)
where K1 and K2 are both block cipher keys, i.e. they contain k bits. A message
D is first padded and split into a sequence of q n-bit blocks: D1, D2, . . . , Dq.

The EMAC computation, which essentially involves double encrypting the
final block, is as follows:

H1 = eK1(D1),
Hi = eK1(Di ⊕ Hi−1), (2 ≤ i ≤ q − 1), and

MAC = eK2(eK1(Dq ⊕ Hq−1)).

As summarised in [8], the most effective (known) forgery attack against
EMAC has complexity [0, 2n/2, 1] and the best key recovery attacks have com-
plexity either [2k+1, 2n/2, 0] or [s.2k, �2k/n�, 0] (for some small value of s),
where the second attack requires O(2k) storage. Note that the second attack is
a meet-in-the-middle attack.

6.2 ANSI Retail MAC

The ANSI retail MAC (abbreviated as ARMAC below) is standardised as MAC
algorithm 3 in ISO/IEC 9797-1 [8]. Note that this scheme is widely used with
the block cipher DES (which has n = 64 and k = 56) in environments where ob-
taining 2n/2 = 232 message/MAC pairs is deemed infeasible. However, it seems
that a security proof for this scheme does not exist. Nevertheless, since it closely
resembles EMAC, heuristically one might expect a similar level of provable se-
curity.

This MAC scheme again uses a pair of keys (K1, K2) where K1 and K2 are
both block cipher keys, i.e. they contain k bits. A message D is first padded and
split into a sequence of q n-bit blocks: D1, D2, . . . , Dq. The MAC computation
is as follows:

H1 = eK1(D1),
Hi = eK1(Di ⊕ Hi−1), (2 ≤ i ≤ q − 1), and

MAC = eK1(dK2(eK1(Dq ⊕ Hq−1))).

As summarised in [8], the best known forgery attack against the ANSI retail
MAC has complexity [0, 2n/2, 1] and the best-known key recovery attack has
complexity [2k+1, 2n/2, 0] — note that one attraction of ARMAC is that it does
not appear to be subject to meet-in-the-middle attacks.

164 C.J. Mitchell

6.3 Comparisons

We compare the three ‘new’ MAC algorithms, i.e. XCBC, OMAC and TMAC,
with the two longer-established schemes with respect to two different criteria:
efficiency and security.

Efficiency can be further sub-divided into two different categories: key length,
and the number of block cipher operations required to compute the MAC for a
message. The key lengths for the five MAC schemes considered here are given in
Table 1.

Table 1. Key lengths

XCBC TMAC OMAC EMAC ARMAC
k + 2n k + n k 2k 2k

The number of block cipher operations (encryptions or decryptions) required
to compute the MAC for a message is specified in Table 2. Note that it is assumed
that EMAC and ARMAC are used with the “always add a ‘1’ and then as many
zeros as necessary” padding method, which is standardised as padding method
2 in ISO/IEC 9797-1 [8].

Table 2. Computational complexity (block cipher operations)

No. of data bits () XCBC TMAC OMAC EMAC ARMAC
(t − 1)n < 	 < tn t t t t + 1 t + 2

	 = tn t t t t + 2 t + 3

From Table 2 it should be clear that XCBC, TMAC and OMAC all offer
workload advantages over EMAC and ARMAC. This workload advantage is
slightly increased by the fact that XCBC, TMAC and OMAC only require one
block cipher key ‘set up’ per MAC computation, whereas EMAC and OMAC
require two — the difference this makes depends on the block cipher in use.
However, these advantages are probably insignificant for messages that are more
than a few blocks long, and even for short messages they are unlikely to be a
major issue; banking networks have been using ARMAC with a relatively slow
block cipher such as DES for many years for very large numbers of messages,
using relatively primitive hardware.

We sub-divide the security comparison into three sub-categories, covering
forgery attacks, key recovery attacks and partial key recovery attacks. The com-
plexities of forgery attacks against the five MAC schemes considered here are
specified in Table 3.

The complexities of key recovery attacks are specified in Table 4. Note that
this table does not take account of the fact that the complexities of the second

Partial Key Recovery Attacks on XCBC, TMAC and OMAC 165

Table 3. Forgery attack complexities

XCBC TMAC OMAC EMAC ARMAC
[0,2n/2+1,0] [0,2n/2+1,0] [0,2n/2+1,0] [0,2n/2,1] [0,2n/2,1]

Table 4. Key recovery attack complexities

XCBC TMAC OMAC EMAC ARMAC

[2k,2n/2+1,0] [2k,2n/2+1,0] [2k,2n/2+1,0] [2k+1,2n/2,0] [2k+1,2n/2,0]

[2k+1,	(k + 2n)/n
,0] [2k+1,	(k + n)/n
,0] [2k+1,	k/n
,0] [s.2k,	2k/n
,0]

attacks for XCBC, TMAC and OMAC require no significant storage, whereas
the second attack against EMAC requires around O(2k) storage.

Finally, the complexities of partial key recovery attacks (where they exist)
are specified in Table 5.

Table 5. Partial key recovery attack complexities

XCBC TMAC OMAC EMAC ARMAC
— [0,2n/2+1,0] [0,2n/2+1,0] — —

[0,2n,2n]

7 Conclusions

It should be clear from the analysis above that, in terms of security, XCBC,
TMAC and OMAC offer no significant advantage by comparison with EMAC and
ARMAC. Moreover, in some cases, they would appear to be weaker, although the
most significant weaknesses of TMAC and OMAC might be avoided by changing
the key derivation procedure1. Unfortunately, such changes invalidate the proofs
of security for these schemes, and a simple proposed change of this type has been
heavily criticised. It would be interesting to investigate other possible changes
to the key derivation process.

Nevertheless, XCBC, TMAC and OMAC do offer a small practical advantage
in terms of a modest reduction in the number of block cipher operations, although
this is unlikely to be significant in most applications. In summary, there does not
appear to be a compelling case for standardising these new CBC-MAC schemes.

1 Note that the reference to weaknesses should not be interpreted as implying that
these schemes are ‘weak’ — the existing security proofs establish their robustness as
long as 2n/2 MACs are not available to an attacker and k is sufficiently large (e.g.
k ≥ 128).

166 C.J. Mitchell

References

1. Black, J., Rogaway, P.: CBC-MACs for arbitrary length messages: The three-
key constructions. In Bellare, M., ed.: Advances in Cryptology — Crypto 2000.
Volume 1880 of Lecture Notes in Computer Science., Springer-Verlag, Berlin (2000)
197–215

2. Kurosawa, K., Iwata, T.: TMAC: Two-key CBC MAC. In Joye, M., ed.: Topics in
Cryptology — CT-RSA 2003. Volume 2612 of Lecture Notes in Computer Science.,
Springer-Verlag, Berlin (2003) 33–49

3. Iwata, T., Kurosawa, K.: OMAC: One-key CBC MAC. In Johansson, T., ed.:
Fast Software Encryption, 10th International Workshop, FSE 2003, Lund, Sweden,
February 24-26, 2003, Revised Papers. Volume 2889 of Lecture Notes in Computer
Science., Springer-Verlag, Berlin (2003) 129–153

4. Iwata, T., Kurosawa, K.: Stronger security bounds for OMAC, TMAC and XCBC.
In Johansson, T., Maitra, S., eds.: Progress in Cryptology — INDOCRYPT 2003,
4th International Conference on Cryptology in India, New Delhi, India, Decem-
ber 8-10, 2003, Proceedings. Volume 2904 of Lecture Notes in Computer Science.,
Springer-Verlag, Berlin (2003) 402–415

5. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1997)

6. Berendschot, A., den Boer, B., Boly, J.P., Bosselaers, A., Brandt, J., Chaum, D.,
Damgard, I., Dichtl, M., Fumy, W., van der Ham, M., Jansen, C.J.A., Landrock,
P., Preneel, B., Roelofsen, G., de Rooij, P., Vandewalle, J.: Integrity primitives for
secure information systems. Volume 1007 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin (1995)

7. American Bankers Association Washington, DC: ANSI X9.19, Financial institution
retail message authentication. (1986)

8. International Organization for Standardization Genève, Switzerland: ISO/IEC
9797–1, Information technology — Security techniques — Message Authentication
Codes (MACs) — Part 1: Mechanisms using a block cipher. (1999)

9. Furuya, S., Sakurai, K.: Risks with raw-key masking — The security evaluation
of 2-key XCBC. In Deng, R.H., Qing, S., Bao, F., Zhou, J., eds.: Information and
Communications Security, 4th International Conference, ICICS 2002. Volume 2513
of Lecture Notes in Computer Science., Springer-Verlag, Berlin (2002) 327–341

10. Girault, M., Cohen, R., Campana, M.: A generalized birthday attack. In Guen-
ther, C., ed.: Advances in Cryptology — EUROCRYPT ’88, Workshop on the The-
ory and Application of Cryptographic Techniques, Davos, Switzerland, May 25-27,
1988, Proceedings. Volume 330 of Lecture Notes in Computer Science., Springer-
Verlag, Berlin (1988) 129–156

11. Preneel, B., van Oorschot, P.C.: A key recovery attack on the ANSI X9.19 retail
MAC. Electronics Letters 32 (1996) 1568–1569

12. Preneel, B., van Oorschot, P.C.: On the security of iterated Message Authentication
Codes. IEEE Transactions on Information Theory 45 (1999) 188–199

13. Sung, J., Hong, D., Lee, S.: Key recovery attacks on the RMAC, TMAC, and
IACBC. In Safavi-Naini, R., Seberry, J., eds.: ACISP 2003. Volume 2727 of Lecture
Notes in Computer Science., Springer-Verlag, Berlin (2003) 265–273

14. Iwata, T., Kurosawa, K.: On the security of a new variant of OMAC. In Lim,
J.I., Lee, D.H., eds.: Information Security and Cryptology — ICISC 2003, 6th
International Conference, Seoul, Korea, November 27-28, 2003, Revised Papers.
Volume 2971 of Lecture Notes in Computer Science., Springer-Verlag, Berlin (2003)
67–78

Partial Key Recovery Attacks on XCBC, TMAC and OMAC 167

15. Iwata, T., Kurosawa, K.: On the security of a MAC by Mitchell. IEICE Trans.
Fundamentals E88-A (2005) 25–32

16. National Institute of Standards and Technology (NIST): NIST Special Publica-
tion 800-38B, Recommendation for Block Cipher Modes of Operation: The CMAC
Mode for Authentication. (2005)

17. Petrank, E., Rackoff, C.: CBC MAC for real-time data sources. Journal of Cryp-
tology 13 (2000) 315–338

Domain Expansion of MACs:
Alternative Uses of the FIL-MAC�

Ueli Maurer and Johan Sjödin

Department of Computer Science,
Swiss Federal Institute of Technology (ETH), Zurich,

CH-8092 Zurich, Switzerland
{maurer, sjoedin}@inf.ethz.ch

Abstract. In this paper, a study of a paradigm for domain expansion
of MACs is generalized. In particular, a tradeoff between the efficiency
of a MAC and the tightness of its security reduction is investigated
in detail. Our new on-line single-key AIL-MAC construction, the PDI-
construction, transforms any FIL-MAC into an AIL-MAC and is superior
to all previous AIL-MAC constructions given in the literature (taking the
tradeoff into account). It appears obvious that this construction is essen-
tially optimal.

Keywords: Message authentication code (MAC), arbitrary-input-length
(AIL), variable-input-length (VIL), fixed-input-length (FIL).

1 Introduction

1.1 Motivation: Data Integrity

A message authentication code (MAC) is a function family

H := {hk : M → T }k∈K,

where M is the message space, T the tag space, and K the key space. It is the
most commonly used method for assuring the integrity of data communicated
between two parties sharing a secret key k. A party authenticates a message m
by computing a tag τ = hk(m) which is sent along with m to the other party. A
party receiving (m′, τ ′) accepts the message m′ if (m′, τ ′) is valid, i.e., satisfies
τ ′ = hk(m′). Of course, it should be infeasible for a party not in possession of k
to be able to generate a valid message-tag pair (which is new), since this would
contradict data integrity. The function hk is referred to as an instantiation of
the MAC H .

� This work was partially supported by the Zurich Information Security Center. It
represents the views of the authors.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 168–185, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Domain Expansion of MACs: Alternative Uses of the FIL-MAC 169

1.2 Domain Expansion of MACs

Cryptographic primitives can be classified according to their domain. We refer
to a primitive with domain:

– {0, 1}L, i.e., the set of all bitstrings of length L, as a fixed-input-length (FIL)
primitive.

– {0, 1}∗, i.e., the set of all bitstrings of finite length, as a arbitrary-input-length
(AIL) primitive.

– {0, 1}≤N , i.e., the set of all bitstrings of length at most N , as a variable-
input-length primitive.

VIL- and AIL-primitives are often constructed by iterating applications of some
FIL-primitive.

In the context of constructing VIL- or AIL-MACs, a natural and weak as-
sumption on the FIL-primitive is that of being a MAC. This was first studied
by An and Bellare in [1], who proposed and proved the security of the NI-
construction, the first VIL-MAC based on a FIL-MAC. Domain expansion of
MACs was further studied in [8], where a general paradigm for constructing
VIL- and AIL-MACs by iterating applications of a FIL-MAC was proposed.
Several improvements on the NI-construction and two single-key AIL-MAC con-
structions, Chain-Shift (CS) and Chain-Rotate (CR), were presented. While the
CS-construction transforms FIL-MACs with input-length/output-length ratio
at least 2, the CR-construction transforms any FIL-MAC (irrespectively of its
input-length/output-length ratio) at the cost of a less tight security reduction
(by a factor of roughly 5). In this paper the paradigm is generalized and analyzed
further.

Domain expansion iswell studied formany cryptographicprimitives suchas col-
lision resistant hash function [6,10], pseudo-random functions (PRFs) [2,3,11,7],
universal one-way hash functions [4,12], and random oracles [5]. Since a PRF is
(trivially) also a MAC, many VIL- and AIL-PRFs based on a FIL-PRF are widely
used as VIL- and AIL-MACs, respectively. However, these MACs are only guar-
anteed to be secure under the (relative strong) assumption that the FIL-primitive
is a PRF. For instance the CBC-MAC [3] is not secure under the assumption that
the FIL-primitive is a secure MAC [1]. In cryptography a central goal is to prove
the security of cryptographic schemes under as weak assumptions as possible. De-
manding that the FIL-primitive is a MAC (rather than a PRF) is a more cautious
cryptographic assumption.

1.3 The Construction Paradigm

Let us briefly recall the construction paradigm of [8] as a reference for our con-
tributions. Throughout this paper, the function family

G := {gk : {0, 1}L → {0, 1}�}k∈{0,1}κ

(with L >
) denotes a FIL-MAC with compression parameter

b := L −
.

170 U. Maurer and J. Sjödin

The paradigm considers a type of construction C·, which uses G to construct an
AIL-MAC1

CG := {Cgk : {0, 1}∗ → {0, 1}�}k∈{0,1}κ .2

More precisely, the computation of the tag τ = Cgk(m) for an n-bit message
m can be described as follows. In a pre-processing step m is encoded into a
bit string m′, for instance by padding m and appending information about its
length. The processing step is best described with a buffer initialized with m′,
where each call to gk fetches (and deletes) some L bits and writes back the
-bit
result to the buffer (for instance by concatenating it at the end of the buffer).
This reduces the number of bits in the buffer by b with each call to gk. The output
of the last (possible) call to gk is returned as the tag (instead of being written
back to the buffer). The length of m′ is appropriately chosen to be t(n) · b+
 for
some t(n) ∈ N, to leave the buffer empty after the computation. We stress that
t(n) is exactly the number of calls to gk before the tag is returned. The function
t(·) is referred to as the application function of C·. A particular construction can
thus be described by the encoding function mapping m to m′ and by the scheme
by which the L-bit blocks are fetched. The computation process is illustrated in
Fig. 1.

Fe
tc

he
r

P
re

-p
ro

c.

m

|m|
zi

m′ gk
Buffer

CgkC·
τ = gk(zt)

[i = t]

[i < t]

Fig. 1. The construction paradigm

The efficiency of a construction is measured in the number of applications
t(n) of the FIL-MAC, or, equivalently, in terms of the waste

w(n) := t(n) · b +
 − n,

i.e., the amount by which pre-processing expands the message.

1 We consider single-key AIL-MAC constructions in this paper, i.e., AIL-MAC con-
structions which use one instantiation of the FIL-MAC.

2 C· denotes the construction, where the dot is the placeholder for G. Actually, C·

transforms any FIL-MAC with any compression parameter b and output length � (if
not stated otherwise). We describe C· for arbitrary but fixed values of b and �, and
let these parameters be implicitly given (if not stated otherwise).

Domain Expansion of MACs: Alternative Uses of the FIL-MAC 171

1.4 Our Contribution

In this paper, we generalize the construction paradigm of [8]. The main idea is to
comprise constructions which first transform the FIL-MAC G into a FIL-MAC

[G]f := {[gk]f}k∈{0,1}κ

defined by
[gk]f (x) := f(gk(x)),

where f : {0, 1}� → {0, 1}�−δ (with δ > 0) is a key-less compression function,
and then the FIL-MAC [G]f (rather than G) into an AIL-MAC C [G]f (by some
AIL-MAC construction C·). The new type of construction C[·]f is more efficient
than C·, since [G]f compresses more than G. However, this improvement is at
the cost of a worse security reduction. For example if the function f cuts away
the δ most significant bits of its input, the security reduction is worsened by a
factor of roughly 2δ.

This tradeoff is investigated in detail. At first sight, a less tight security reduc-
tion by some constant factor (as for the CR-construction [8]) seems irrelevant.
However, by allowing such a factor, the throughput of other constructions can be
improved substantially and result in overall better constructions (see Sect. 4.3).

In this paper, we also propose a new on-line3 AIL-MAC construction, the
PDI-construction, which is superior to all AIL-MAC constructions given in the
literature, taking the security/efficiency tradeoff into account.

2 Preliminaries

2.1 Notation

If M is a set, #M denotes its cardinality. For a sequence S of elements, |S|
denotes its length and Si the sequence of its first i ≤ |S| elements. For any
n ∈ N0, let [n] := {1, . . . , n} (with [0] := ∅).

For x, y ∈ {0, 1}∗, let |x| denote the length of x (in bits), x‖y the concate-
nation of x and y, 〈n〉b a b-bit encoding of a positive integer n ≤ 2b, x[i] the ith

bit of x, and
x[i, j] := x[i]

∥∥x[i + 1]
∥∥ · · ·∥∥x[j]

for 1 ≤ i < j ≤ |x|. Furthermore, let RR(·) denote the operator on bit strings
that rotates the input by one position to the right, i.e.,

RR(x) := x[L]‖x[1, L − 1].

An encoding σ : {0, 1}∗ → {0, 1}∗ is called prefix-free if there are no three
strings x, x′, y ∈ {0, 1}∗ such that x �= x′ and σ(x)‖y = σ(x′). A non-trivial
collision for a function f is a pair x �= x′ of inputs for which f(x) = f(x′).

If E denotes an event, Ē denotes the complementary event.
3 .e., the ability to process a message as the message bits arrive, without knowing the

message length in advance.
i

172 U. Maurer and J. Sjödin

2.2 Security Definition for MACs

A forger F for a MAC H := {hk : M → T }k∈K has oracle access to hk(·) (for
which k is chosen uniformly at random from K and kept secret) and can thus
learn the tag values for some adaptively chosen messages m1, . . . , mq. It then
returns a forgery (m, τ), i.e., a message m together with a tag τ . The forger
F is considered successful if hk(m) = τ . The only constraint on m is that it
must be new, i.e., different from all previous messages m1, . . . , mq. A forger F is
referred to as a (t, q, μ, ε)-forger, if t, q, and μ are upper bounds on the running
time, the number of messages (or oracle queries), and the total length (in bits)
of the oracle queries including the forgery message m, respectively, and ε is a
lower bound on the success probability. Informally, a MAC is considered secure
against existential forgery under an adaptive chosen-message attack, if there is
no (t, q, μ, ε)-forger, even for very high values of t, q, and μ, and a very small
value of ε.

Definition 1. A MAC is (t, q, μ, ε)-secure if there exists no (t, q, μ, ε)-forger.

A forger for a FIL-MAC will be denoted simply as a (t, q, ε)-forger, since the
parameter μ is determined by q and the input-length L, i.e., μ = (q + 1) · L.

To prove the security of a MAC, based on a FIL-MAC, one shows that the
existence of a (t, q, μ, ε)-forger F for the MAC implies the existence of a (t′, q′, ε′)-
forger F ′ for the FIL-MAC, where t′, q′, and ε′ are functions of t, q, μ, and ε.
In all our security proofs F is called only once by F ′. Therefore, the running
time of F ′ is essentially that of F , i.e., t′ ≈ t, with some small overhead that is
obvious from the construction of F ′. We will therefore not bother to explicitly
compute the running time of forgers, as this complicates the analysis unneces-
sarily without providing more insight. Therefore we drop the time parameter t
in the sequel.

2.3 Security Reductions

We make use of the proof technique of [8], which we recall for completeness. Let
F be a (q, μ, ε)-forger for a MAC CG and let

F ◦ Cgk

denote the process in which F ’s queries to (its oracle) Cgk are computed and
returned to F , and where F ’s forgery (m, τ) is verified by computing Cgk(m).
Consider the random variables occurring at the interface to gk (in the process
F ◦Cgk), and let zi denote the ith input to gk and yi := gk(zi) the corresponding
output. The sequences

Z := (z1, z2, . . .) and Y := (y1, y2, . . .)

are thus naturally defined. Note that as soon as the key k and the random coins
of F are fixed, all values in Z and Y are determined, and also whether F is
successful or not. Let E denote the event that F is successful. Without loss of

Domain Expansion of MACs: Alternative Uses of the FIL-MAC 173

generality we assume that F ’s forgery message m is distinct from F ’s oracle
queries. Thus E occurs if and only if Cgk(m) = τ .

A forger F ′ for the FIL-MAC G simulates F ◦ Cgk with the help of F and
its oracle access to gk. At some query zi to gk it stops the simulation and re-
turns a forgery (z′, τ ′) for gk (without making any other oracle queries to gk).
Such a forger is characterized by the time when it stops (i.e., i) and the way it
produces its forgery. This is referred to as a strategy s of F ′ and F ′

s denotes the
corresponding forger.

The most simple strategy is the näıve strategy sna. F ′
sna

stops the simulation
of F ◦ Cgk at the very last query z to gk (i.e., z is the last entry in Z). Then it
returns (z, τ) as a forgery, where τ is the forgery tag of F ’s forgery (m, τ) for
Cgk . F ′

sna
is successful if the following two conditions hold. First, E occurs, i.e.,

Cgk(m) = τ (and thus gk(z) = τ by definition of C·), and second z is new, i.e.,
z is only the last entry in Z. Let Enew denote the event that z is new. Thus F ′

sna

is successful whenever E ∧ Enew occurs.
Assume there is a set S of strategies for a construction with the property

that, whenever Ēnew occurs, there exists at least one strategy s ∈ S for which F ′
s

is successful. Such a set is referred to as complete for the construction. Obviously,
the set S ∪ {sna} has the property that whenever E occurs, there is at least one
strategy s ∈ S∪{sna} for which F ′

s is successful. Thus an overall strategy of F ′ is
to pick its strategy uniformly at random from S ∪ {sna}. Its success probability
is at least the probability that E occurs, divided by #S + 1. As F ′’s number of
oracle queries is |Z|, which is a random variable, it is convenient to introduce
the following function.

Definition 2. [8] The expansion function e : N × N → N of a construction C·

is defined as

e(q̃, μ̃) := max

{
q̃∑

i=1

t(ni) : n1, . . . , nq̃ ∈ N0, n1 + · · · + nq̃ ≤ μ̃

}
,

where t(·) is the application function of C·.

It follows that |Z| ≤ e(q + 1, μ), since there are at most q + 1 queries of total
length at most μ to Cgk in F ◦ Cgk . In general, #S is a function of e(q + 1, μ).

Proposition 1. [8] The existence of a complete set S for a construction C·

and a (q, μ, ε)-forger F for CG implies the existence of a (q′, ε′)-forger F ′ for G,
where q′ = e(q + 1, μ) and ε′ = ε

#S+1 .

An important class of strategies for F ′ are the deterministic strategies. A
deterministic strategy s is characterized by a pair (i, f), where i ∈ [e(q + 1, μ)]
is an index and f a function mapping (Zi,Yi−1) to some value ŷi ∈ {0, 1}�

(which can be seen as a prediction of yi). To be more precise, the corresponding
forger F ′

s stops (the simulation of F ◦ Cgk) at query zi and returns (zi, ŷi) as a
forgery.4 The forger is successful if ŷi = yi and if zi is new, i.e., not contained in
4 If i > |Z| the forger aborts.

174 U. Maurer and J. Sjödin

the sequence Zi−1. In the sequel, we will make use of the following two sets of
deterministic forgers (from [8]):

– Let si,y (for y ∈ {0, 1}�) denote the strategy of stopping at query zi and
returning (zi, y) as a forgery. Note that whenever the event occurs that an
output of gk is equal to y, i.e., y is an entry in Y, then there exists a strategy
s ∈ Sy := {si,y|i ∈ [e(q + 1, μ)]} for which F ′

s is successful. We have

#Sy = e(q + 1, μ). (1)

– Let scoll,i,j (for i > j) denote the strategy of stopping at query zi and
returning (zi, yj) as a forgery. Note that whenever a non-trivial collision for
gk occurs, i.e., α, β ∈ [|Z|] satisfying zα �= zβ and yα = yβ, then there is
a strategy s ∈ Scoll := {scoll,i,j |i, j ∈ [e(q + 1, μ)], i > j)} for which F ′

s is
successful. The cardinality of Scoll is

#Scoll = e(q + 1, μ)2/2 − e(q + 1, μ)/2. (2)

3 Concrete AIL-MAC Constructions

In this section we present new on-line AIL-MAC constructions. First, we in-
troduce the Double-Iterated (DI) construction which has constant waste (i.e.,
w(n) ∈ θ(1)) and therefore is efficient for long messages. Then, we present the
Prefix-Free Iterated (PI) construction which has linear waste (i.e., w(n) ∈ θ(n))
but is more efficient than the DI-construction for short messages.

Finally, we propose the Prefix-Free Double Iterated (PDI) construction, which
depends on some design parameter r ∈ N0 and is a hybrid constructions between
the DI- and the PI-construction. For r = 0 the construction is equivalent to the
DI-construction and for r → ∞ to the PI-construction. For values of r between
this range the advantages of both the DI- and the PI-construction are exploited.
The idea is to simply apply the PI-construction for short messages and the DI-
construction for long messages. What short and long means depends on the value
of r.

3.1 The Iteration (I) Method

Before the AIL-MAC constructions are presented, we analyze the iteration IhIV(·)
of a function h : {0, 1}b+� → {0, 1}�, where IV denotes a fixed
-bit initialization
value. It is defined as follows and illustrated in Fig. 2 (see Sect. 9.3.1 of [9]).

The value τ = Ih
IV(m) for a string m ∈ ({0, 1}b)∗, i.e., m1‖ · · · ‖mt = m for some

t ∈ N0 and |mi| = b for i ∈ [t], is computed as

y0 = IV; yi = h(yi−1‖mi) , 1 ≤ i ≤ t; τ = yt.

Domain Expansion of MACs: Alternative Uses of the FIL-MAC 175

m1 mt−1 mt

hh h
ytIV · · ·

Fig. 2. The iteration (I) method

Lemma 1. A non-trivial collision in IhIV(·) implies a non-trivial collision in h
or that an output of h is equal to IV.

Proof. Let m �= m′ and IhIV(m) = IhIV(m′) denote a non-trivial collision in IhIV(·).
Furthermore, let (z1, . . . , zt) and (z′1, . . . , z

′
t′) denote the sequence of inputs to

h in the computation of IhIV(m) and IhIV(m′), respectively. Note that h(zt) =
IhIV(m) = IhIV(m′) = h(z′t′).

Let i denote the smallest index (if any) for which zt−i �= z′t′−i and h(zt−i) =
h(z′t′−i). The existence of i directly implies a non-trivial collision in h(·). The
non-existence of such an index i implies that one of the sequences (z1, . . . , zt) and
(z′1, . . . , z′t′) is a suffix of the other with t �= t′ since m �= m′. Assume without loss
of generality that t < t′. In this case we have IV‖v = z1 = z′t′−t+1 = h(zt′−t)‖v
for some v ∈ {0, 1}b, which means that an output of h is equal to IV. 	

Lemma 2. IhIV(m) = IhIV′(m′) with m, m′ ∈ ({0, 1}b)∗ and IV �= IV′ imply a
non-trivial collision in h, or that an output of h is equal to IV or IV′.

Proof. Let (z1, . . . , zt) and (z′1, . . . , z
′
t′) denote the sequence of inputs to h in the

computation of IhIV(m) and IhIV′(m′), respectively. Note that h(zt) = IhIV(m) =
IhIV′(m′) = h(z′t′).

Let i denote the smallest index (if any) for which zt−i �= z′t′−i and h(zt−i) =
h(z′t′−i). The existence of i directly implies a non-trivial collision in h(·). The
non-existence of such an index i implies that one of the sequences (z1, . . . , zt)
and (z′1, . . . , z

′
t′) is a suffix of the other with t �= t′ since IV �= IV′. If t < t′ we

have IV‖v = z1 = z′t′−t+1 = h(zt′−t)‖v for some v ∈ {0, 1}b, which means that
an output of h is equal to IV. Analogously, one shows that if t > t′ an output of
h is equal to IV′. 	

Remark 1. The Merkle-Damg̊ard (MD) iteration method [6,10] for collision-
resistant hashing is a result of similar nature. The hash value MDh

IV(m), where
m ∈ {0, 1}≤2b

(and IV ∈ {0, 1}�), is defined by first breaking m into sequence of
b-bit blocks m1, . . . , mt (where mt is padded with zeroes if necessary) and then
returning the value IhIV(m1‖ · · · ‖mt‖〈|m|〉b). A non-trivial collision in MDh

IV(·)
implies a non-trivial collision in h(·).

3.2 The DI-Construction

The DI-construction is a generalization of the CS-construction [8], which trans-
forms any FIL-MAC (irrespectively of its input-length/output-length ratio) to

176 U. Maurer and J. Sjödin

an AIL-MAC.5 To be more precise, DI· uses any FIL-MAC G to construct an
AIL-MAC DIG := {DIgk : {0, 1}∗ → {0, 1}�}k∈{0,1}κ as follows.

Break the message m ∈ {0, 1}∗ (of length n) into a sequence of b-bit blocks
m1, . . . , mt−1 (if t > 1) and a (��/bb − �)-bit block mt, where a 1 followed by
0’s is used as padding, i.e., m1‖ · · · ‖mt = m‖10ν for some ν ∈ {0, . . . , b − 1}. Let

DIgk (m) :=
Igk

1� Igk

0� (m1‖ · · · ‖mt−1) ‖mt if t > 1

Igk

1� (0�‖m1) otherwise
.

The application function is t(n) = n+1+�
b

(resulting in the waste w(n) ∈ Θ(1)).

Theorem 1. A (q, μ, ε)-forger F for DIG implies a (q′, ε′)-forger F ′ for G,
where q′ = μ

b + b+�
b · (q + 1) and ε′ = ε

1
2 q′2+ 3

2 q′+1
.

Proof. We show that S := Scoll ∪ S0� ∪ S1� is complete for DI· by proving that,
whenever the last input z to gk is not new, there is a non-trivial collision in gk

or an output of gk that is equal to 0� or 1�.
Assume that z is not new. Furthermore, assume that there is no non-trivial

collision in gk and no output of gk that is equal to 0� or 1�. We show that this
leads to a contradiction. By Lemma 1, there can not be a non-trivial collision in
Igk

0� (·). Furthermore, no output of Igk

0� (·) is equal to 0�, since this would directly
imply a non-trivial collision in gk. As a consequence, the last input m̃ to Igk

1� (·)
is distinct from the other inputs to Igk

1� (·).6 Since z is not new, z must have been
an earlier query to gk, resulting from some query m′ = m′

1‖ · · · ‖m′
t′ to Igk

IV(·)
with IV ∈ {0�, 1�}. Let z′1, . . . , z

′
t′ denote the sequence of queries to gk in the

computation of Igk

IV(m′) and let s be the index for which z′s = z. Thus, we have
Igk

IV(m′
1‖ · · · ‖m′

s) = Igk

1� (m̃). We distinguish two cases:

– If IV = 0�, we arrive at a contradiction by Lemma 2.
– If IV = 1�, it follows from the construction that |m′| = |m̃|. Thus, we have

m′
1‖ · · · ‖m′

s �= m̃, since m̃ is distinct (from the other queries to Igk

1� (·)). As a
consequence, we arrive at a contradiction by Lemma 1.

By definition of e(q + 1, μ), there exist n1, . . . , nq+1 ∈ N0 such that:

e(q + 1, μ) =
q+1∑
i=1

t(ni) =
q+1∑
i=1

⌈
ni + 1 +

b

⌉
≤ μ + (b +
)(q + 1)

b
=: q′.

Thus #S + 1 ≤ q′2/2 + 3q′/2 + 1 by (1) and (2). Proposition 1 concludes the
proof. 	

5 The constructions coincide for b ≥ �.
6 Recall that, with out loss of generality, we assume that the forgery message m of F

is distinct from its oracle queries.

Domain Expansion of MACs: Alternative Uses of the FIL-MAC 177

Remark 2. The method, used (in [8]) for improving the efficiency of the CS-
construction for short messages, can directly be applied for the DI-construction
as well. This results in a more efficient construction, which is unfortunately not
(completely) on-line.

The DI-construction can also be parallelized in the same way as the CS-
construction (see [8]).

3.3 The PI-Construction

The PI-construction uses a prefix-free encoding σ : {0, 1}∗ → ({0, 1}b)∗, to be
defined later, for transforming G into the AIL-MAC PIG := {PIgk : {0, 1}∗ →
{0, 1}�}k∈{0,1}κ . It is defined as follows.

For a message m ∈ {0, 1}∗, let

PIgk (m) := Igk

0� (σ(m)).

Theorem 2. A (q, μ, ε)-forger for PIG (with a prefix-free encoding σ) implies a
(q′, ε′)-forger for G, where q′ = e(q + 1, μ) and ε′ = ε

1
2 q′2+ 1

2 q′+1
. The expansion

function e depends on the concrete choice of σ.

Proof. We apply Proposition 1 and show that S := Scoll ∪ S0� is complete for
PI· by showing that if z is not new, then there is a non-trivial collision in gk or
a 0�-output of gk. This follows directly from Lemma 1 and the fact that an old
z implies a non-trivial collision in Igk

0� (·) (due to the prefix-free encoding). 	

The on-line property and the efficiency of the construction (hence also the

expansion function e) depend on which prefix-free encoding σ is used. It seems
obvious that there is no prefix-free encoding for which the construction is on-line
and has waste w(n) ∈ O(log(n)).7 However, allowing linear waste, i.e., w(n) ∈
θ(n), there are prefix-free encodings for which the construction has the on-line
property. Throughout this paper, we define σ as follows.

Let
σ(m) := 0‖m1‖0‖m2‖ · · · ‖0‖mt−1‖1‖mt,

where m ∈ {0, 1}∗ and m1, . . . , mt are (b − 1)-bit blocks such that m1‖ · · · ‖mt =
m‖10ν with ν ∈ {0, . . . , b − 2}.

The application function of the PI-construction, with prefix-free encoding σ
(as just defined), is t(n) = �(n + 1)/(b − 1)�. This results in waste w(n) ∈ θ(n).
However, note that the PI-construction is more efficient than the DI-construction
if (and only if) the message length is shorter than
(b − 1).

The following Corollary follows.
7 The prefix-free encoding, described next, has logarithmic waste but is not on-line. Let

σ : {0, 1}∗ → ({0, 1}b)∗ be defined by r = |〈|m|〉| − 1 and ρ(m) := 0r1‖〈|m|〉‖m‖0ν ,
where ν ∈ {0, . . . , b − 1} is chosen such that the length is a multiple of b.

178 U. Maurer and J. Sjödin

Corollary 1. A (q, μ, ε)-forger for PIG (with σ defined as above) implies a
(q′, ε′)-forger for G, where q′ = μ

b−1 + (q + 1) and ε′ = ε
1
2 q′2+ 1

2 q′+1
.

Proof. The proof follows directly from Theorem 2 and the fact that there exist
n1, . . . , nq+1 ∈ N0 such that

e(q + 1, μ) =
q+1∑
i=1

t(ni) =
q+1∑
i=1

⌈
ni + 1
b − 1

⌉
≤

q+1∑
i=1

ni + b − 1
b − 1

≤ μ

b − 1
+ (q + 1) =: q′.

As a consequence #S + 1 ≤ q′2/2 + q′/2 + 1 by (1) and (2). 	

3.4 The PDI-Construction

The PDI-construction is an AIL-MAC construction, which is a hybrid construc-
tion between the PI- and DI-construction. It exploits the advantages of both
constructions as follows.

Let r ∈ N0 be a design parameter. The construction PDI·r transforms any
FIL-MAC G into the AIL-MAC

PDIGr := {PDIgk
r : {0, 1}∗ → {0, 1}�}k∈{0,1}κ ,

where PDIgk
r (·) is defined as follows.

For a message m ∈ {0, 1}∗ (of length n), let

PDIgk
r (m) :=

PIgk (m) if n < r(b − 1)

DIgk (0‖m1‖0‖m2‖ · · · ‖0‖mr‖mr+1) otherwise
,

where m1, . . . , mr is a sequence of (b− 1)-bit blocks and mr+1 a bitstring such that
m1‖ · · · ‖mr‖mr+1 = m.

The application function is t(n) =
n+1
b−1 if n < r(b − 1)

n+1+�+r
b

otherwise
.

Although not directly clear from the definition above, this construction is
on-line (no matter whether |m| < r(b − 1) or not, the processing of m starts out
in the same way).

We stress that the PDI-construction is equivalent to the DI-construction for
r = 0 and to the PI-construction for r → ∞. As is obvious from the definition of
PDI·r, the construction is as efficient as PI· for messages of shorter length than
r(b − 1) and slightly less efficient than DI· for longer messages.

Domain Expansion of MACs: Alternative Uses of the FIL-MAC 179

Theorem 3. A (q, μ, ε)-forger for PDIGr implies a (q′, ε′)-forger for G, where
q′ = μ

b−1 + (q + 1) + �+r
b · Λ − 1

b·(b−1) · Π and ε′ = ε
1
2 ·q′2+(1

2+γ)·q′+1
, where

(Λ, Π) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(q + 1, μ) if r = 0(⌊
μ

r(b−1)

⌋
, 0
)

if μ
q+1 ≤ r(b − 1) − 1(

min
(
q + 1,

⌊
μ

r(b−1)

⌋)
, μ − q(r(b − 1) − 1)

)
otherwise

,

and γ takes the value 1 if μ ≥ r · (b − 1) and 0 otherwise.

Proof (Sketch). Let γ be an indicator variable that takes the value 1 if μ ≥
r·(b−1) and 0 otherwise. We omit the proof that Scoll∪S0� is complete for the con-
struction if γ = 0 and that Scoll ∪S0� ∪S1� is complete for the PDI-construction
otherwise, since it is similar to the proof of the DI- and PI-construction.8 Ap-
plying Proposition 1 and the following fact concludes the proof.

By definition of e(q + 1, μ), there exist n1, . . . , nq+1 ∈ N0 such that e(q +
1, μ) =

∑q+1
i=1 t(ni). Let ζi be an indicator variable that takes value 1 if ni ≥

r(b − 1) and 0 otherwise. We have that

q+1∑
i=1

t(ni) ≤
q+1∑
i=1

ζi ·
⌈

ni + 1 +
 + r

b

⌉
+ (1 − ζi) ·

⌈
ni + 1
b − 1

⌉

≤
q+1∑
i=1

ζi · ni + b +
 + r

b
+ (1 − ζi) · ni + b − 1

b − 1

≤ μ

b − 1
+ (q + 1) +

 + r

b
·

q+1∑
i=1

ζi − 1
b · (b − 1)

q+1∑
i=1

ζi · ni.

Furthermore, it is straightforward to verify that the following two inequalities
hold

q+1∑
i=1

ζi ≤
{

q + 1 if r = 0

min
(
q + 1,

⌊
μ

r(b−1)

⌋)
otherwise

=: Λ

q+1∑
i=1

ζi · ni ≥

⎧⎪⎨
⎪⎩

μ if r = 0
0 if μ

q+1 ≤ r(b − 1) − 1
μ − q(r(b − 1) − 1) otherwise

=: Π.

As a consequence #S + 1 ≤ q′2/2 + (1/2 + γ) · q′ + 1 by (1) and (2). 	

8 Note that if μ < r(b − 1) all queries issued by the forger for PDIgk

r (·) (including the
forgery message) are shorter than r(b − 1) and hence DIgk (·) is never invoked.

180 U. Maurer and J. Sjödin

4 The Generalized Construction Paradigm

In this section, we generalize the construction paradigm to comprise a greater
class of constructions. Furthermore, we investigate a tradeoff between the effi-
ciency (of a construction) and the tightness (of its security reduction) in detail.

4.1 An Efficiency/Security Tradeoff

A general design goal of AIL-MAC constructions is to minimize the number
of applications t(n) of the FIL-MAC (where n denotes the message length). A
natural approach to decrease the number of applications (which is not implied
by the type of construction C·) is to increase the compression parameter of the
FIL-MAC before it is transformed by some construction C·. However, as we will
see, this is at the cost of a less tight security reduction.

To be more precise, let f : {0, 1}� → {0, 1}�−δ be a compression function
with compression parameter δ > 0 and let f−1(y) denote the set of all preim-
ages9 of y ∈ {0, 1}�−δ. Let [·]f denote the construction, which transforms G into
a FIL-MAC

[G]f := {[gk]f : {0, 1}L → {0, 1}�−δ}k∈{0,1}κ ,

defined by

[gk]f (x) := f(gk(x)).

Lemma 3. A (q, ε)-forger F for [G]f implies a (q, ε/s)-forger F ′ for G, where
s = max{#f−1(y) : y ∈ {0, 1}�−δ}.

Proof. The forger F ′ runs F , answering all its oracle queries with the help of its
own oracle. When F returns a forgery (m, τ), F ′ chooses an element τ̂ uniformly
at random from f−1(τ) and outputs (m, τ̂) as its own forgery. If F ′ is successful
it follows that τ = [gk]f (m) = f(gk(m)). Thus, there is an element τ ′ ∈ f−1(τ)
for which τ ′ = gk(m). The probability that τ̂ = τ ′ is

1/#f−1(τ) ≥ 1/s, where s = max{#f−1(y) : y ∈ {0, 1}�−δ}.

Let E ′ denote the event that F ′ is successful and E the event that F is successful.
It follows that

Pr [E ′] ≥ Pr [E ′ | E] · Pr [E] ≥ Pr [τ̂ = τ ′]︸ ︷︷ ︸
≥1/s

· Pr [E]︸ ︷︷ ︸
=ε

.

	

9 We assume that, for all y ∈ {0, 1}�−δ , one can efficiently sample an element uniformly

at random from f−1(y).

Domain Expansion of MACs: Alternative Uses of the FIL-MAC 181

To get as tight a security reduction in Lemma 3 as possible the largest preim-
age set of the key-less compression function must be as small as possible. A
function achieving this is

Δδ : {0, 1}� → {0, 1}�−δ , defined by x #→ x[1,
 − δ],

which simply cuts off the δ least significant bits of the input. As a consequence
Δδ can always be chosen as the compression function without loss of generality.
To simplify the notation, we write [·]δ to denote the construction [·]Δδ

.

Corollary 2. A (q, ε)-forger for [G]δ implies a (q, ε/2δ) forger for G.

Proof. Since each image of Δδ(·) has equally many preimages, namely 2δ, the
largest preimage set is as small as possible. Apply Lemma 3. 	

4.2 The Generalized Paradigm

The AIL-MAC C[G]δ is defined by simply letting the construction C· transform
the FIL-MAC [G]δ, which has compression parameter b′ = b + δ and output-
length
′ =
 − δ. This is illustrated in Fig. 3.

[i = t]

[i < t]

Fe
tc

he
r

P
re

-p
ro

c.

m

|m|
zi

m′ [gk]δ
Buffer

C[gk]δC·
τ = [gk(zt)]δ

Fig. 3. The generalized construction paradigm

Since [G]δ compresses more than G, the number of applications of the FIL-
MAC G is in general smaller for C[·]δ than for C·. However, this is at the cost
of having a less tight security reduction for C[G]δ by a factor of roughly 2δ. The
tradeoff between the efficiency and the tightness should be taken into account
when comparing AIL-MAC constructions with each other (see next section).

Corollary 3. Let b denote the compression parameter and
 the output-length
of a FIL-MAC G.10 If tb,�(n) is the application function of C·, then tb+δ,�−δ(n)
is the application function of C[·]δ . If a (q, μ, ε)-forger for CG implies a (q′, ε′)-
forger for G, where

q′ = q′b,�(q, μ, ε) and ε′ = ε′b,�(q, μ, ε),

10 Here we make the parameters b and � explicit.

182 U. Maurer and J. Sjödin

then a (q, μ, ε)-forger for C [G]δ implies a (q′′, ε′′/2δ)-forger for G, where

q′′ = q′b+δ,�−δ(q, μ, ε) and ε′′ = ε′b+δ,�−δ(q, μ, ε).

Proof. The FIL-MAC [G]δ has compression parameter b′ = b + δ and output-
length
′ =
 − δ. Apply Corollary 2. 	

To prove the security of a construction C [·]δ , one simply applies Corollary 3 (with
the proof technique of Sect. 2.3).

4.3 An Illustrative Example

To illustrate the generalization and the security/efficiency tradeoff, let us first
briefly recall the Chain-Rotate construction of [8] (as a reference). The CR-
construction transforms any FIL-MAC G into the AIL-MAC CRG := {CRgk :
{0, 1}∗ → {0, 1}�}k∈{0,1}κ , as follows.

Parse the message m ∈ {0, 1}∗ into a sequence {mi}t
i=1 of b-bit blocks such that

m1‖ · · · ‖mt = m‖10ν for a ν ∈ {0, . . . , b − 1}, and let

CRgk (m) := gk (RR(y‖mt)) , where y :=
Igk

0� (m1‖ · · · ‖mt−1) if t > 1

0� otherwise
.

The application function is t(n) = n+1
b

(resulting in the waste w(n) ∈ Θ(1)).

Theorem 4. [8] A (q, μ, ε)-forger for CRG implies a (q′, ε′)-forger for G, where
q′ = μ

b + (q + 1) and ε′ = ε
5
2 q′2+ 3

2 q′+1
.

The efficiency of CR· is better than for DI· and PI· (just compare the ap-
plication functions). However, note that the tightness of the security reduction
is roughly a factor 5 worse. At first sight one might be tempted to neglect the
factor 5 and consider the CR-construction as the better construction. However,
as we show next, the construction PI[·]δ+1 is as efficient and more secure than
CR[·]δ for all δ. This illustrates the importance of taking the security/efficiency
tradeoff into account when comparing AIL-MAC constructions.

The following two corollaries follow directly from Corollary 3, using Theorem
4 and Corollary 1, respectively.

Corollary 4. A (q′, ε′)-secure FIL-MAC G implies a (q, μ, ε)-secure AIL-MAC
CR[G]δ , for

ε ≥ 2δ ·
(

5
2

· q′2 +
3
2

· q′ + 1
)

· ε′ and
μ

b + δ
+ (q + 1) ≤ q′.

The application function is t(n) =
⌈

n+1
b+δ

⌉
.

Domain Expansion of MACs: Alternative Uses of the FIL-MAC 183

Corollary 5. A (q′, ε′)-secure FIL-MAC G implies a (q, μ, ε)-secure AIL-MAC
PI[G]δ , for

ε ≥ 2δ ·
(

1
2

· q′2 +
1
2

· q′ + 1
)

· ε′ and
μ

b + δ − 1
+ (q + 1) ≤ q′.

The application function is t(n) =
⌈

n+1
b+δ−1

⌉
.

It is straightforward to verify that the application function is equivalent for
PI[·]δ+1 and CR[·]δ (and hence the efficiency is the same). Furthermore, the bound
for q and μ are also equivalent for the constructions. Since the lower bound for
ε is smaller for PI[·]δ+1 , by a factor of roughly 2.5, it follows that PI[·]δ+1 has a
tighter security reduction.

5 Comparisons of AIL-MACs

It is clear from the above that we do not need to consider CS[·]δ and CR[·]δ

(for any δ) in our comparison of AIL-MAC constructions, since DI[·]δ is a gen-
eralization of the former and PI[·]δ+1 is more efficient and has a tighter security
reduction than the latter. Furthermore, recall that PDI[G]δ

r is equivalent to DI[G]δ

for r = 0 and to PI[G]δ for r → ∞.
As a consequence, for all AIL-MAC constructions in the literature there is a

choice for r and δ for which PDI[·]δr is as efficient and secure. The concrete choice
for δ and the design parameter r is application dependent. Combining Corollary
3 and Theorem 3, we get:

Corollary 6. A (q′, ε′)-secure FIL-MAC G implies a (q, μ, ε)-secure AIL-MAC
PDI[G]δ

r , for

ε ≥ 2δ ·
(

q′2

2
+
(

1
2

+ γ

)
· q′ + 1

)
· ε′, and

μ

b + δ − 1
+ (q + 1) +

 − δ + r

b + δ
· Λ − 1

(b + δ)(b + δ − 1)
· Π ≤ q′,

where

(Λ, Π) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(q + 1, μ) if r = 0(⌊
μ

r·(b+δ−1)

⌋
, 0
)

if μ
q+1 ≤ r · (b + δ − 1) − 1(

min
(
q + 1,

⌊
μ

r·(b+δ−1)

⌋)
, μ − q · (r · (b + δ − 1) − 1)

)
otherwise

and γ equals 1 if μ ≥ r · (b + δ − 1) and 0 otherwise. The application function is

t(n) =

⎧⎪⎨
⎪⎩
⌈

n+1
b+δ−1

⌉
if n < r(b + δ − 1)⌈

n+1+�−δ+r
b+δ

⌉
otherwise

.

184 U. Maurer and J. Sjödin

Note that Corollary 6 is equivalent to Corollary 5 for r → ∞ and to the
following corollary for r = 0.

Corollary 7. A (q′, ε′)-secure FIL-MAC G implies a (q, μ, ε)-secure AIL-MAC
DI[G]δ(≡ PDI[G]δ

0), for

ε ≥ 2δ ·
(

1
2

· q′2 +
3
2

· q′ + 1
)

· ε′ and
μ

b + δ
+

b +

b + δ
· (q + 1) ≤ q′.

The application function is t(n) =
⌈

n+1+�−δ
b+δ

⌉
.

6 Conclusion

In this paper, a study of a paradigm for constructing AIL-MACs by iterating
applications of a FIL-MAC was continued. The paradigm was generalized in a
natural way and an efficiency/security tradeoff was investigated in detail.

Our new on-line single-key AIL-MAC construction, the PDI-construction,
transforms any FIL-MAC into an AIL-MAC with constant waste. It is superior
to all constructions given in the literature (taking the tradeoff into account) and
it appears obvious that it is essentially optimal.

An open question is whether there exists a prefix-free encoding σ′ such that
the PI-construction (with encoding σ′) is on-line and has logarithmic waste. Our
conjecture is that there is no such encoding.

References

1. J. H. An and M. Bellare. Constructing VIL-MACs from FIL-MACs: message au-
thentication under weakened assumptions. In Advances of Cryptology — CRYPTO
1999, volume 1666 of Lecture Notes in Computer Science, pages 252–269. Springer-
Verlag, 1999.

2. M. Bellare, J. Guérin, and P. Rogaway. XOR MACs: new methods for message
authentication using finite pseudorandom functions. In Advances of Cryptology —
CRYPTO 1995, volume 963 of Lecture Notes in Computer Science, pages 15–28.
Springer-Verlag, 1995.

3. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chain-
ing message authentication code. In Journal of Computer and System Sciences,
61(3):362–399, 2000.

4. M. Bellare and P. Rogaway. Collision-resistant hashing: towards making UOWHFs
practical. In Advances in Cryptology — CRYPTO 1997, volume 1294 of Lecture
Notes in Computer Science, pages 470–484. Springer-Verlag 1997.

5. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited:
how to construct a hash function. In Advances of Cryptology — CRYPTO 2005,
volume 3621 of Lecture Notes in Computer Science, pages 430–448. Springer-Verlag
2005.

6. I. Damg̊ard. A design principle for hash functions. In Advances in Cryptology —
CRYPTO 1989, volume 435 of Lecture Notes in Computer Science, pages 416–427.
Springer-Verlag, 1990.

Domain Expansion of MACs: Alternative Uses of the FIL-MAC 185

7. U. Maurer. Indistinguishability of random systems. In Advances of Cryptology —
EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages
110–132. Springer-Verlag, 2002.

8. U. Maurer and J. Sjödin. Single-key AIL-MACs from any FIL-MAC. In Proceedings
of ICALP 2005, volume 3580 of Lecture Notes in Computer Science, pages 472–484.
Springer-Verlag, 2005.

9. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of applied cryptography.
CRC Press, 1997. Available on line at http://www.cacr.math.uwaterloo.ca/hac/.

10. R. Merkle. A certified digital signature. In Advances in Cryptology — CRYPTO
1989, volume 435 of Lecture Notes in Computer Science, pages 218–232. Springer-
Verlag, 1990.

11. E. Petrank and C. Rackoff. CBC MAC for real-time data sources. In Journal of
Cryptology, 13(3):315–338, 2000.

12. V. Shoup. A composition theorem for universal one-way hash functions. In Ad-
vances of Cryptology — EUROCRYPT 2000, volume 1807 of Lecture Notes in
Computer Science, pages 445–452. Springer-Verlag 2000.

Normality of Vectorial Functions

An Braeken, Christopher Wolf, and Bart Preneel

Katholieke Universiteit Leuven,
Dept. Elect. Eng.-ESAT/SCD-COSIC,

Kasteelpark Arenberg 10, 3001 Heverlee, Belgium
{an.braeken, christopher.wolf, bart.preneel}@esat.kuleuven.be

Abstract. The most important building blocks of symmetric crypto-
graphic primitives such as the DES or the AES, are vectorial Boolean
functions, also called S-boxes. In this paper, we extend the definition of
normality for Boolean functions into several new affine invariant prop-
erties for vectorial Boolean functions. We compute the probability of
occurrence of these properties and present practical algorithms for each
of these new properties. We find a new structural property for the AES
S-box, which also holds for a large class of permutation functions when
the dimension n is even. Moreover, we prove a relation with the prop-
agation characteristics of a vectorial function and extend the scope of
non-APN functions for n even.

Keywords: Cryptography, S-box, AES, normality, algorithm, propaga-
tion characteristics, APN.

1 Introduction

The notion of normality was first introduced by Dobbertin in order to construct
balanced Boolean functions with high nonlinearity. Normality of Boolean func-
tions is an interesting property since it is affine invariant and it allows us to
distinguish different classes of bent functions [4]. In [6], the first non-exhaustive
algorithm for computing the normality of Boolean functions was presented. This
algorithm was later improved in [2,13]. To the knowledge of the authors, this
paper is the first which considers normality of vectorial Boolean functions, also
called S-boxes. From a cryptographic point of view, this is far more natural as
an attack is usually not launched against a single output bit of an S-box, but
against the whole S-box.

In cryptography, vectorial functions are mostly used as building blocks in
stream and block ciphers. So the security of the corresponding cipher, e.g., the
AES or the DES, strongly depends on the properties of the underlying vectorial
Boolean function. Therefore, we believe that it is necessary to generalise the
notion of normality for these objects in order to better understand the structure
and also the cryptographic security of the vectorial functions involved. We dis-
cover a new remarkable structural property for the AES S-boxes and all bijective
power functions for n even. This property is also theoretically proven and leads

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 186–200, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Normality of Vectorial Functions 187

to a new class of functions that are not APN for even n. We leave it as an open
question at the moment which degree of normality leads to an efficient attack
on stream ciphers or block ciphers.

In Sect. 2, we give some preliminaries and notations. Sect. 3 deals with the
new definitions of properties for vectorial functions which are related to the
normality of a Boolean function. In Sect. 4, we present counting arguments
on the occurrence of these properties for vectorial functions and present the
new structural property on all bijective power functions. Then a description of
an algorithm for determining these new properties is developed. In Sect. 5, we
outline the relation with the propagation characteristics of the function, which
measure the resistance of a vectorial function against differential cryptanalysis.
This paper concludes with Sect. 6. In particular, this section contains several
open problems which we leave to the cryptographic community as interesting
research questions.

2 Preliminaries and Notations

Let f(x) be a Boolean function on F
n
2 . Any Boolean function can be uniquely

expressed in the algebraic normal form (ANF):

f(x) =
∑

(a1,...,an)∈Fn
2

h(a1, . . . , an)xa1
1 · · ·xan

n ,

with h a function on F
n
2 , defined by h(a) =

∑
x≤a f(x) for any a ∈ F

n
2 , where

x ≤ a means that xi ≤ ai for all i ∈ {1, . . . , n}. The algebraic degree of f , denoted
by deg(f), is defined as the number of variables in the largest term xa1

1 · · ·xan
n

in the ANF of f , for which h(a1, . . . , an) �= 0. An affine Boolean function has
degree at most 1. For any a ∈ F

n
2 , ε ∈ F2, we can define the affine function

φa : F
n
2 → F2 : x → a · x ⊕ ε, where a · x is the dot product of F

n
2 . If ε = 0,

the function φa is called a linear function. The following theorem gives a useful
property to determine if a function is affine.

Theorem 1. [15] A Boolean function f : F
n
2 → F2 is affine if and only if for

all even k with k ≥ 4 holds that ∀x1, . . . , xk in F
n
2 : f(x1) ⊕ · · · ⊕ f(xk) = 0,

whenever x1 ⊕ · · · ⊕ xk = 0.

A vectorial function F (also called (n, m) S-box) from F
n
2 into F

m
2 can be

represented by the vector (f1, f2, . . . , fm), where fi are Boolean functions from
F

n
2 into F2. A function F : F

n
2 → F

m
2 is affine if it can be written as F (x) =

Ax⊕B, where A is an (m×n)-matrix and b is an m-dimensional vector. Thm. 1
can be generalised for vectorial functions [16].

Theorem 2. [16] A vectorial function F : F
n
2 → F

m
2 is affine if and only if for

all even k with k ≥ 4 holds that ∀x1, . . . , xk in F
n
2 : F (x1) ⊕ · · · ⊕ F (xk) = 0,

whenever x1 ⊕ · · · ⊕ xk = 0.

188 An Braeken, C. Wolf, and B. Preneel

To resist differential attacks, vectorial functions F used in block ciphers need
to have good propagation characteristics [14]. The propagation characteristics
of F are measured by the differential Δ(F), defined by

Δ(F) = max
a=0,b

#{x ∈ F
n
2 | F (x ⊕ a) ⊕ F (x) = b}. (1)

It is obvious that Δ(F) ≥ max{2, 2n−m}. If Δ(F) = 2n, then there exists a linear
structure α ∈ F

n
2 . This is an element for which the function F (x) ⊕ F (x ⊕ α) is

constant. If Δ(F) = 2, the function F is called almost perfect nonlinear (APN).
It is conjectured that APN permutations only exist in odd dimensions. This
statement is proven for some particular cases, most notably power functions [5]
and functions of degree 2 [14,9].

3 Normality

3.1 Definitions

A subspace U ⊆ F
n
2 of dimension k can be represented by its basis U = <

a1, . . . , ak >, where a1, . . . , ak are k linearly independent vectors of F
n
2 . Moreover,

define U := {a ∈ F
n
2 : a �∈ U} ∪ {0} as the complement space which contains all

vectors of F
n
2 which are not in U in addition to the zero vector. Now, a coset

of the subspace U is represented by a ⊕ U , where a ∈ U . Apart from the case
a = 0, we have a �∈ U , which in particular implies that a, a1, . . . , ak are linearly
independent if a is not the zero vector of F

n
2 . Instead of speaking about a coset

of a subspace, we will speak in the following about a flat. We first shortly repeat
the definitions of normality and weakly normality for Boolean functions.

Definition 1. A Boolean function f on F
n
2 is called normal if there exists a flat

V ⊂ F
n
2 of dimension �n/2� such that f is constant on V.

A Boolean function f on F
n
2 is said to be weakly normal if there exists a flat

V ⊂ F
n
2 of dimension �n/2� such that f is affine on V.

The property of normality is connected with the problem of determining the
highest dimension of the flats on which f is constant. As a consequence, a natural
generalisation of the previous definitions can be given by:

Definition 2. A Boolean function f on F
n
2 , is said to be k-normal (resp. k-

weakly normal) if there exists a flat V ⊂ F
n
2 of dimension k such that f is

constant (resp. affine) on V for 1 ≤ k ≤ n.

Here, we study a similar notion for vectorial functions.

Definition 3. A vectorial function F from F
n
2 into F

m
2 is called k-normal if

there exists a flat V ⊂ F
n
2 of dimension k such that F is constant on V.

Normality of Vectorial Functions 189

Therefore, F is normal if and only if all linear combinations of its Boolean
components are constant on the same k-dimensional flat, i.e., there exists a flat
V ⊂ F

n
2 of dimension k and a constant c ∈ F

m
2 such that

∀x ∈ V, F (x) = c

⇔ ∀x ∈ V, ∀ a ∈ F
m
2 , a · F (x) = a · c (2)

It is clear that a sufficient condition for this property is that ai ·F is constant on
V for i ∈ {1, . . .m}, where (a1, . . . , am) is any basis of F

m
2 . Thus, in particular

for the standard basis (e1, . . . , em), with ei the vector of all zeros except on the
i-th position, we only have to check the output bit functions fi of F .

Remark 1. A permutation on F
n
2 (or an injection from F

n
2 into F

m
2) can never

be k-normal for any k > 0.

To relax the property, we also introduce a weaker version of the original definition.

Definition 4. A function F : F
n
2 → F

m
2 is called (k, k′)-normal (resp. (k, k′)-

weakly normal) with 1 ≤ k ≤ n and 1 ≤ k′ ≤ m if there exists a flat V ⊂ F
n
2

of dimension k and a flat W ⊂ F
m
2 of dimension k′ such that for all a ∈ W ,

the Boolean functions a · F are constant (resp. affine) on V. For k′ = m, the
definition coincides with the definition of k-normality.

As in the previous case, we can simplify the definition by:

Definition 5. A function F : F
n
2 → F

m
2 , n ≥ m, is called (k, k′)-normal (resp.

(k, k′)-weakly normal) if there exists a flat V ⊂ F
n
2 of dimension k and k′ linearly

independent vectors a1, . . . , ak′ of F
m
2 such that for all i, 1 ≤ i ≤ k′, the Boolean

functions ai · F are constant (resp. affine) on V.

From the definitions above, we can conclude that a constant vectorial function
from F

n
2 into F

m
2 is n-normal. An affine vectorial function from F

n
2 into F

m
2 is

(n, n)-weakly-normal.
The definition of (k, k′)-weakly normality can be rephrased into the following

definition.

Definition 6. A function F : F
n
2 → F

m
2 is said to be (k, k′)-weakly normal if

there exists a flat V ⊂ F
n
2 of dimension k such that for all x ∈ V , it holds that

F (x) = xA ⊕ a, where A is an (m × n)-matrix with rank less or equal than k′

and a ∈ F
m
2 .

It is clear that a (k, k′)-weakly normal function only exists if k′ ≤ 2k. Moreover, if
k′ = 0, then the definition coincides with k-normality. A more general definition,
where the affine or constant requirement is omitted, is then given by:

Definition 7. A function F : F
n
2 → F

m
2 is said to be a (k, k′) flat-carrier if

there exists a flat V ⊂ F
n
2 of dimension k and a flat W ⊂ F

m
2 of dimension k′

such that all x ∈ V are mapped on elements of W .

190 An Braeken, C. Wolf, and B. Preneel

3.2 Counting Arguments

We now compute the density of the subsets which contain all vectorial Boolean
functions from F

n
2 into F

m
2 that are not (k, k′)-normal, not (k, k′)-weakly normal,

and no (k, k′) flat-carrier.
Therefore, we make use of the following lemma, concerning the number of

subspaces and flats of a certain dimension in a vector space.

Lemma 1. [11] The number of subspaces γ(n, k) and flats μ(n, k) of dimension
k in a vector space of dimension n is given by

γ(n, k) =
k−1∏
i=0

2n−i − 1
2k−i − 1

;

μ(n, k) = 2n−k
k−1∏
i=0

2n−i − 1
2k−i − 1

= 2n−kγ(n, k).

Lemma 2. The number of subspaces can be upper bounded as follows:

γ(n, k) ≤ 2nk−k2+k . (3)

Proof. We first write γ(n, k) as

γ(n, k) = 2nk−k2+k
k−1∏
i=0

2k−1

2k−i − 1
2n−i − 1

2n
= 2nk−k2+kp(n, k).

We now prove that the function p(n, k) =
∏k−1

i=0 p1(i)p2(i) is smaller than 1 by
proving that every factor p1(i)p2(i) for i ∈ {0, . . . , k−1} in the product is smaller
than 1. This follows from the fact that for all 0 ≤ i ≤ k − 1 holds that

p1(i) =
2k−1

2k−i − 1
<

2k−1

2k−i−1
= 2i,

p2(i) =
2n−i − 1

2n
<

2n−i

2n
= 2−i.

	

Theorem 3. The density of the set of all vectorial functions from F

n
2 into F

m
2

which are

1. not (k, k′)-normal is greater or equal to

1 − 2n(k+1)+m(k′+2−2k)−k2−k′2
. (4)

2. not (k, k′)-weakly normal is greater or equal to

1 − 2n(k+1)+m(k′+2−2k)+kk′−k2−k′2
. (5)

Normality of Vectorial Functions 191

3. no (k, k′) flat-carrier is greater or equal to

1 − 2n(k+1)+m(k′+2−2k)+k′(2k−1)−k2−k′2
. (6)

These densities tend to zero if n, m tend to infinity for fixed k, k′.

Proof. We start by computing the first density in detail. Therefore, we determine
the number λ(n, m, k, k′) of vectorial Boolean functions from F

n
2 into F

m
2 for

which the component functions restricted to a given flat W of dimension k′ are
constant on a given flat V of dimension k:

λ(n, m, k, k′) = 2m(2n−2k)2m.

There exist μ(n, k) flats of dimension k in F
n
2 and μ(m, k′) flats W of dimension

k′ in F
m
2 . So, the total number τ(n, m, k, k′) of (k, k′)-normal vectorial functions

is less or equal than

τ(n, m, k, k′) ≤ λ(n, m, k, k′)μ(n, k)μ(m, k′)

= 2m(2n−2k+1)2m−k′
k′−1∏
i=0

2m − 2i

2k′ − 2i
2n−k

k−1∏
i=0

2n − 2i

2k − 2i
.

As a consequence, the density of the set of all vectorial functions which are not
k-normal is equal to 1 − τ(n, m, k, k′)2−m2n

and thus greater or equal than

1 − 2m(2n−2k+1)2m−k′
k′−1∏
i=0

2m − 2i

2k′ − 2i
2n−k

k−1∏
i=0

2n − 2i

2k − 2i
2−m2n

. (7)

By substituting the upperbound from Equation (3) in the formula above, we
obtain the first density.

The second and third density can be obtained in a similar way, where only
the number λ(n, m, k, k′) differs. For the second density, this number is equal
to λ(n, m, k, k′) = 2m(2n−2k)μ(m, k′)2m−k′

2k′(k+1) and for the third density we
obtain
λ(n, m, k, k′) = 2m(2n−2k)μ(m, k′)2m−k′

2k′2k

. 	

Remark 2. We conclude that for same dimensions n, m and fixed k, k′ the exis-
tence of (k, k′)-normality is stronger (less likely) than the existence of a (k, k′)-
weakly normal function, which are both stronger than the existence of a (k, k′)
flat-carrier.

We now derive a structural property on the bijective power functions for n even.

Theorem 4. For n even, every bijective power function on F2n , i.e., xr with
gcd(r, 2n − 1) = 1, will be an (k, k) flat-carrier for any divisor k of n. Moreover,
the 2n−1

2k−1 input and output subspaces only have the zero-vector in common and
thus cover exactly the whole input resp. output space.

192 An Braeken, C. Wolf, and B. Preneel

Proof. Recall that F
∗
2n is the cyclic group of order 2n − 1. If k is divisor of n,

then 2k − 1 is divisor of 2n − 1. From elementary group theory, every divisor
d = 2k − 1 of 2n − 1 defines the subgroup Gd of order 2k − 1. Moreover, all 2n−1

2k−1
cosets of Gd are disjoint and thus partition the whole group F

∗
2n .

The group Gd can be represented as Gd =< g
2n−1

d >, where g is a generator
of F

∗
2n . The group Gd is isomorphic with F

∗
2k and Gd ∪ {0} is an additive group.

Consequently Gd ∪ {0} can be seen as a subspace of dimension k. Clearly, if
Gd ∪ {0} is a subspace, then also all its disjoint cosets union {0} are subspaces,
which only have the zero vector in common. The subgroup Gd is mapped on
itself and its cosets are mapped on each other under a bijective power func-
tion F . Note that they define again additive (subspaces) since F−1 is also a
bijection. 	

Corollary 1. For n even, every bijective power function on F2n , i.e., xr with
gcd(r, 2n − 1) = 1, will be an (n

2 , n
2) flat-carrier. Moreover, the 2

n
2 + 1 input and

output subspaces only have the zero-vector in common and thus cover exactly the
whole input resp. output space.

Proof. The proof follows from Theorem 4, together with 2n − 1 = (2n/2 − 1)
(2n/2 + 1). 	

Remark 3. In [3], the normality of highly nonlinear bijective Boolean power func-
tions was studied. It was shown by computer experiments that for high dimen-
sions, n even, the Boolean function was still normal. The previous theorem may
give an explanation of this fact.

Corollary 2. For n even, every bijective power function on F2n will be (2, 2)-
weakly normal. Moreover, the 2n−1

3 input and output subspaces only have the
zero-vector in common and thus cover exactly the whole input resp. output space.

Proof. Since 2n − 1 = (2n/2 − 1)(2n/2 + 1) and 3 is not a divisor of 2n/2,
we conclude that 3 will divide 2n − 1. Therefore, by the proof of the previ-
ous theorem, any bijective power function on F2n will be a (2, 2) flat-carrier
with the disjoint property on the input and output subspaces. The theorem is
proven by the fact that a bijective (2, 2) flat-carrier is equivalent with a (2, 2)-
weakly normal function since the points can only be arranged linearly for flats of
dimension 2. 	

Theorem 4 also hold for any permutation on F2n which maps the subgroup G3

to F
∗
22 , i.e., for all linear combinations over F2 of linear functions, bijective power

functions, and Dickson permutation polynomials. Similar properties do not hold
for power functions in n odd. Therefore, it seems that the power functions for n
even have more structure than power functions if n is odd.

In appendix, the input and output flats of the G3 and G15 cosets of the (8, 8)
function x �→ x−1, the S-box of the AES, is presented. Therefore, the AES S-
box contains 17 disjoint subspaces, i.e., it is a (4, 4) flat-carrier, and 85 disjoint
subspaces for which it is a (2, 2) flat-carrier. We also computed the number of

Normality of Vectorial Functions 193

subspaces for which it is a (3, 3) flat-carrier. This number turns out to be equal
to 0. These numbers were compared with 10 random (8, 8) S-boxes which are on
average a (3, 3) flat-carrier on 5 flats and a (4, 4) flat-carrier on 0 flats. Hence, the
AES S-box shows a far stronger structure than we would expect from a random
S-box and our theoretical studies from Thm. 3 are confirmed by empirical data.

3.3 Algorithms for Determining the Normality

After introducing the necessary mathematical foundations and definitions, we
move on to the presentation of three algorithms which can be used to test for
a given cryptographic vector function if the above definitions are fulfilled for
given (k, k′). Due to space limitations in this paper, we can only sketch these
algorithms and their analysis. In particular we want to remind the reader that
[2] needs a whole paper to give the corresponding presentation and analysis for
one algorithm.

In any case, all algorithms presented here have a rather high computational
complexity and are therefore limited to dimensions n = 8 . . . 10. However, in
the current constructions of block ciphers, the S-boxes used have a rather small
dimension, e.g., n, m = 8 for the AES, and even n = 6, m = 4 for the DES.
Therefore, the algorithms presented in this paper may not be efficient in an
algorithmic sense but are certainly practical from a cryptanalytic point of view.
Still, we have to state as an open problem if faster algorithms exist for checking
these properties.

(k, k′) Flat-Carrier. In order to determine if a given vectorial function F
from F

n
2 into F

m
2 is a (k, k′) flat-carrier we suggest the following algorithm: first,

perform exhaustive search over all flats of dimension k in the vector space F
n
2 .

For every flat a+V of dimension k, we construct an (2k−1)×m matrix M which
corresponds to a potential flat in the output of the function F . In pseudo-code,
we compute

offset ← F (a); i ← 1
for b ∈ (a + V)\{a} do

RowVector(M ,i) ←F (b) ⊕ offset; i ++;

After this, we determine the rank of the matrix M . The minimal value of all
such ranks determines the value k′ for a given function F and a given parameter
k′, i.e., if F is a (k, k′) flat-carrier.

The analysis of the complexity of the above algorithm can easily be deter-
mined using Lem. 1 and is O(m22k(2n−k

∏k−1
n=0

2n−i−1
2k−i−1

)). Note that the constant
hidden in the O-notation is in the range of 5 . . . 20 and hence negligible for our
current purpose. The asymptotic complexities are computed in Table 1 for the
AES and DES S-boxes.

In order to speed up the algorithm, we make use of the ideas from previous
work computing the normality of a Boolean function, in particular [6,2,13]. In a
nutshell, we combine small flats on the input side to derive bigger flats there. This

194 An Braeken, C. Wolf, and B. Preneel

Table 1. Development of the Asymptotic Function for the AES and the DES in log2

k 1 2 3 4 5 6 7
m, n = 8 22.0 27.4 30.6 31.6 30.6 27.4 22.0

n = 6, m = 4 16.0 19.3 20.4 19.3

way, we replace an exhaustive search over all possible input flats of dimension
k by the much faster search over all possible input flats of dimension (k − 1), cf
Lem. 1 for the effect of this change. This idea works as every function F which
is a (k, k′) flat-carrier, is also a (k − 1, k′) flat-carrier. Although the contrary is
not true, i.e., being a (k − 1, k′) flat-carrier for several input flats and unknown
output flats, does not imply that a function is also a (k, k′) flat-carrier, it is
still a strong indication. Hence, we use the parameter k′ as a kind of “filter”
to concentrate only on flats which are suitable candidates for the combination
step. This way, there are only a few flats to check , so it is computationally much
easier to perform the necessary checks. We refer the reader to [6,2,13] for more
details on the combination idea, but sketch the idea more detailed here: For a
(k, k′) flat-carrier, there must exist an input flat V of dimension k and one flat
W of dimension k′ which contains all points of the output of F when restricted
to input from the flat V . Now, all points in all flats V ′ contained in the input
flat V of dimension l with l ≤ k, will also be contained in the same output flat
W . But this also means that if F is a (k, k′) flat-carrier with respect to the input
flats a ⊕ V , b ⊕ V , both of dimension k − 1, and the same output flat W , being
of dimension k′, one can combine the input flats to the flat a⊕ < V, a ⊕ b > in
order to obtain a (k, k′) flat-carrier. Moreover, the idea of random search from
[2] instead of exhaustive search over the input flats can be used to achieve an
even better running time. However, this is outside the scope of this paper.

(k, k′)-Weakly Normality. A (k, k′)-weakly normal function for k′ ≤ k is a
special subcase of a (k, k′) flat-carrier. Consequently, the same algorithm as for
determining the (k, k′) flat-carrier can be applied but with the additional check
that the affine relations between the vectors in the input flat are maintained
in the output (see Thm. 2). At first glance, this looks more difficult to check
at a computational level. However, using the idea of Gray codes, we actually
can do with a single “gray walk” (cf [2]) and hence obtain a computational
complexity of O(m2k(2n−k

∏k−1
n=0

2n−i−1
2k−i−1)). Moreover, the condition for (k, k′)-

weakly normality acts as a much stronger filter, so the running time of the
corresponding algorithm is even lower in practice. Unfortunately, the combining
idea of the previous section may not be used anymore as the affine property does
not propagate to flats of smaller dimension.

(k, k′)-Normality. The complexity for computing the (k, k′)-normality ex-
plodes very fast for higher n and m. We propose to compute the k-normality for
all the 2m components of the functions using the efficient algorithms of [2,13].

Normality of Vectorial Functions 195

Then we check if there are components which are k-normal on the same flats
taking into account the corresponding constant from the normality in order to
obtain the output flat. Note that in most cases, if k is rather high, e.g., k ≈ ⌈n

2

⌉
,

the number of flats on which a Boolean function is k-normal is rather small (cf
[3] for the computation of the normality for some power functions).

Experiments. At the time of writing, we have a (highly unoptimised) prototype
in place for the first and second of our three algorithms. For the third algorithm
we used the ideas from [2]. We compared the number of flats for which the DES
S-boxes are 2-normal, (3, 3)-weakly normal, and (4, 3) flat-carrying with the
average results of 10 random (6, 4) S-boxes. The corresponding running times
for checking 2-normality is equal to 8.52 s, (3, 3)-weakly normality is 83.58 s,
and for checking (4, 3) flat-carrying is 229.71 s for random (6, 4) S-boxes; all
experiments were carried out on an AMD Athlon XP 2000+. The number of
flats for these properties are given in Table 2.

Table 2. Number of 2-normal flats and (4, 3) flat-carrier

DES1 DES2 DES3 DES4 DES5 DES6 DES7 DES8 Random
2-normal 2 1 0 4 2 2 4 0 0.9

(3,3)-weakly normal 0 0 0 3 0 0 1 0 0.1
(4,3) flat-carrier 2 0 0 12 1 0 0 2 0.6

Note that our results confirm that the fourth S-box can be considered as the
weakest one [8]. Moreover, we see that the DES S-boxes have more structure
than random S-boxes.

4 Relation with Propagation Characteristic

Let us first show that the new properties are affine invariant, which means that
they are invariant for affine equivalent S-boxes. Two S-boxes F1, F2 from F

n
2 into

F
m
2 are said to be affine equivalent if F1 = A1 ◦ F2 ◦ A2, where A1, A2 are affine

transformations on F
n
2 and F

m
2 respectively. Since subspaces and flats are trans-

formed in subspaces and flats by affine transformations, we can conclude that
(weakly) normality and (k, k′) flat-carrier are affine invariant properties. Affine
equivalence classes reduce the total size of (n, m) S-boxes enormously, cf [1] for
a practical application of this idea. It is hence interesting to find new properties
which can be used for distinguishing different affine equivalence classes. More-
over, these properties lead to a better understanding of the internal structure of
vectorial functions. We now show a relation between the (k, k)-weakly normality
and the propagation characteristics of a function.

Theorem 5. Let F be a function from F
n
2 into F

m
2 with n ≥ m. Then, F is

(2, 2)-weakly normal if and only if F is not APN (Δ(F) �= 2).

196 An Braeken, C. Wolf, and B. Preneel

Proof. Let us show the direct implication. By definition, F is (2, 2)-weakly nor-
mal if and only if there exists a 2-dimensional flat a⊕ < ai, aj >, (ai and aj are
linearly independent vectors and a in the complement vector space of < ai, aj >)
such that F is affine on this flat. By Theorem 2, this exactly means that

F (a) ⊕ F (a ⊕ ai) ⊕ F (a ⊕ aj) = F (a ⊕ ai ⊕ aj)

So, the equation

F (x ⊕ α) ⊕ F (x) = β (8)

with α = ai, β = F (a) ⊕ F (a ⊕ ai) has at least 4 solutions: a, a ⊕ ai, a ⊕ aj , a ⊕
ai ⊕ aj , and thus Δ(F) �= 2.
We now prove the converse. If there exists α ∈ F

n
2 \ {0} and β ∈ F

m
2 , such that

the equation F (x⊕α)⊕F (x) = β has more than 2 solutions, e.g., a, a⊕α, b, b⊕α
where a �= b. We can write b as b = a ⊕ ai for a unique ai ∈ F

n
2 , where ai �= α

because of our assumptions. Thus the solutions belong to the flat a⊕ < ai, α >
of dimension 2, and F restricted to this flat is affine by Thm. 2. �

Combining Theorem 4 with the previous Theorem, we derive a result on the
existence of APN functions in even dimension. Other proofs of this fact based
on crosscorrelation functions exist in the literature [5].

Corollary 3. Any bijective power functions on n even is not APN. The number
of (x, a, b) ∈ F

n
2 × (Fn

2\{0}) × (Fn
2 \{0}) with a �= b for which F (x) ⊕ F (x ⊕ a) ⊕

F (x ⊕ b) ⊕ F (x ⊕ a ⊕ b) = 0 is equal to 24 × 2n−1
3 .

We can generalise Thm. 5 into one direction.

Theorem 6. Let F be a function from F
n
2 into F

m
2 . If F is (k, k)-weakly normal,

then Δ(F) ≥ 2k.

Proof. By definition, F is (k, k)-weakly normal if and only if there exists a k-
dimensional flat V = a⊕ < a1, . . . , ak >, (a1, . . . , ak are k linearly independent
vectors and a is in the complement vector space of < a1, . . . , ak >) such that F
is affine on V. By Thm. 2, this exactly means that

F (a) ⊕ F (a ⊕ lc1(a1 . . . , ak)) ⊕ F (a ⊕ lc2(a1 . . . , ak)) ⊕
F (a ⊕ lc1(a1 . . . , ak) ⊕ lc2(a1 . . . , ak)) = 0,

where lci(a1 . . . , ak) for i ∈ {1, 2} represents a linear combination of a1, . . . , ak,
i.e., an element of the subspace < a1, . . . , ak >.
Thus, the number of solutions of the equation

F (x ⊕ α) ⊕ F (x) = β, (9)

with α = lc2(a1 . . . , ak), β = F (a)⊕F (a⊕ lc2(a1 . . . , ak)) is equal to the number
of elements of V , namely 2k. �

Normality of Vectorial Functions 197

Remark 4. The opposite of the theorem is not true for k > 2. Consider for
instance the vectorial function F : F

n
2 → F

n
2 whose function values are defined

by
F : {0, 1, . . . , 15} → {1, 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

It can be easily checked that Δ(F) = 16 (the function has a nonzero linear
structure, namely the vector 1) and that F is not (4,4)-weakly normal or affine.

Theorem 7. If a function F from F
n
2 into F

m
2 with n ≥ m possesses k linearly

independent linear structures, then F will be a (k, k)-weakly normal function.

Proof. It is well-know that the set of linear structures of a function F forms
an affine subspace [7,10]. Let us represent the subspace by V =< a1, . . . , ak >,
where a1, . . . , ak are the k linearly independent linear structures of F . To show
that F is affine when restricted to V , we use the condition of Thm. 2, i.e.,
we need to prove that F (a1) ⊕ F (a2) ⊕ F (a3) ⊕ F (a1 ⊕ a2 ⊕ a3) = 0 for all
a1, a2, a3 ∈ V . As a1 ⊕ a2 is a linear structure, this equation is satisfied by the
definition of linear structure. �

5 Conclusion

We have presented several new affine invariant properties for vectorial Boolean
functions which can be seen as generalisations of the notion of normality for
Boolean functions. We also have computed the probability of occurrence for each
of these properties for randomly chosen functions and presented several practical
algorithms for checking them in cryptographically relevant cases. In this context,
a new structural property for the bijective power functions is discovered and its
existence also proven theoretically. This new property implies that any bijective
power function on an even number of variables can be seen as a mapping from
2n/2 + 1 disjoint subspaces into 2n/2 + 1 disjoint subspaces. We applied both
this theorem and our algorithms to the S-box of the AES and computed the
corresponding subspaces (cf Appendix). Moreover, we established relations with
the propagation characteristics of a function.

In addition, we want to point out that our study also has applications in
public key cryptography, namely for the C∗ scheme of Matsumoto and Imai [12].
For finite fields of even dimension n, all our proofs are applicable, and hence we
have established the existence of affine subspaces covering completely both the
input and the output space of the public key polynomials.

It is an open question and future research will decide if these properties can be
exploited in attacks on block ciphers, stream ciphers, or public key schemes. We
will now outline some ideas or observations which should be further investigated
for possible applications in cryptanalysis.

If the S-box is (k, k)-weakly normal with respect to l flats of dimension k
which completely cover the input space of the S-box, then the S-box can be
replaced by a set of l affine transformations. Similar, S-boxes which are (k, k′)-
weakly normal with respect to input flats that cover the input space and output

198 An Braeken, C. Wolf, and B. Preneel

flats which cover the output flats, can be replaced by sets of affine transfor-
mations. This can lead to a type of affine approximation attack and hence, we
expect the corresponding S-boxes to be rather weak.

The property of (k, k)-normality, (k, k′)-normality, and its generalisation of
(k, k′) flat-carrier can be used in order to obtain a compact hardware design. For
instance, it would be interesting to investigate if the AES S-box can be more
efficiently implemented using the observations made in this paper.

Acknowledgement

We would like to thank Anne Canteaut for introducing us to this subject. We
thank Frederik Vercauteren and the anonymous referees for their useful com-
ments and suggestions. This work was supported in part by the Concerted
Research Action (GOA) Ambiorics 2005/11 of the Flemish Government and
by the European Commission through the IST Programme under Contract
IST2002507932 ECRYPT. An Braeken is an F.W.O. Research Assistant, spon-
sored by the Fund for Scientific Research - Flanders (Belgium).

References

1. A. Biryukov, C. De Cannière, A. Braeken, B. Preneel, A Toolbox for Cryptanaly-
sis: Linear and Affine Equivalence Algorithms, Eurocrypt, LNCS 2656, Springer-
Verlag, pp. 33–50, 2003.

2. A. Braeken, C. Wolf, B. Preneel, A Randomised Algorithm for Checking the Nor-
mality of Cryptographic Boolean Functions, 3rd International Conference on The-
oretical Computer Science, pp. 51–66, Kluwer, August 2004.

3. A. Braeken, C. Wolf, B. Preneel, Classification of Highly Nonlinear Boolean Power
Functions with a Randomised Algorithm for Checking Normality, Cryptology
ePrint Archive, Report 2004/214, http://eprint.iacr.org/2004/214/.

4. A. Canteaut, M. Daum, G. Leander, H. Dobbertin. Normal and non normal
bent functions, International Workshop on Coding and Cryptography, pp. 91–100,
March 2003.

5. P. Charpin, A. Tietäväinen, V. Zonoviev, On Binary Cyclic Codes with d = 3,
TUCS Technical Report No. 26, June 1996.

6. M. Daum, H. Dobbertin, G. Leander, An Algorithm for Checking Normality of
Boolean Functions, International Workshop on Coding and Cryptography, pp. 78–
90, March 2003.

7. J.H. Evertse, Linear Structures in Block Ciphers, Eurocrypt, LNCS 304, Springer-
Verlag, pp. 249–266, 1987.

8. M.E. Hellman, R. Merkle, R. Schroeppel, L. Washington, W. Die, S. Pohlig,
P. Schweitzer, Results of an initial attempt to cryptanalyze the NBS Data En-
cryption Standard. Technical report, Stanford University, U.S.A., September 1976.

9. X.-D. Hou, Affinity of Permutations, WCC 2003, pp. 273–280, 2003.
10. X. Lai, Additive and Linear Structures of Cryptographic Functions, Eurocrypt,

LNCS 1008, Springer-Verlag, pp. 75–85, 1994.
11. F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, Elsevier,

ISBN 0-444-85193-3, 1991.

Normality of Vectorial Functions 199

12. T. Matsumoto and H. Imai, Public Quadratic Polynomial-Tuples for Efficient
Signature Verification and Message-Encryption, EuroCrypt, LNCS 434, Springer-
Verlag, pp. 419–545, 1988.

13. K. Nowak, Checking Normality of Boolean functions, 12 pages, Tatra Mountins to
appear, 2004.

14. K. Nyberg, S-boxes and Round Functions with Controllable Linearity and Differ-
ential Cryptanalysis, FSE 1994, LNCS 1008, Springer-Verlag, pp. 11–129, 1995.

15. X.M. Zhang, Y. Zheng, The nonhomomorphicity of Boolean functions, Selected
Areas in Cryptography, LNCS 1556, Springer-Verlag, pp. 280–295.

16. Y. Zheng, X.-M. Zhang, The kth-Order Nonhomomorphicity of S-Boxes, Journal
of Universal Computer Science, Vol. 6, nr. 8, pp. 830–848, 2000.

A AES as (4, 4) Flat-Carrier

We now present the 17 disjoint input subspaces of dimension 4 together with the
corresponding output subspaces of the AES with field polynomial x8 +x4 +x3 +
x+1. Note that the flats are denoted by < [a1, a2, a3, a4], b >, where b represents
the coset and a1, a2, a3, a4 the four basis vectors of the subspace. Here the vectors
are denoted by their radius-2 notation, i.e., x = x1 + 2x2 + · · · + 2n−1xn ∈ Z

corresponds with the vector x = (x1, . . . , xn).

Input Output

< [1, 12, 80, 176], 0 > < [1, 12, 80, 176], 0 >
< [2, 24, 97, 160], 0 > < [6, 40, 88, 139], 0 >
< [3, 20, 44, 200], 0 > < [4, 48, 91, 153], 0 >
< [4, 48, 91, 153], 0 > < [3, 20, 44, 200], 0 >
< [5, 11, 50, 67], 0 > < [16, 37, 66, 130], 0 >
< [6, 40, 88, 139], 0 > < [2, 24, 97, 160], 0 >
< [7, 25, 35, 136], 0 > < [31, 32, 74, 132], 0 >
< [8, 33, 65, 151], 0 > < [10, 22, 100, 134], 0 >
< [9, 34, 71, 131], 0 > < [21, 38, 79, 128], 0 >
< [10, 22, 100, 134], 0 > < [8, 33, 65, 151], 0 >
< [15, 18, 68, 129], 0 > < [19, 45, 64, 135], 0 >
< [16, 37, 66, 130], 0 > < [5, 11, 50, 67], 0 >
< [17, 39, 69, 137], 0 > < [27, 42, 76, 133], 0 >
< [19, 45, 64, 135], 0 > < [15, 18, 68, 129], 0 >
< [21, 38, 79, 128], 0 > < [9, 34, 71, 131], 0 >
< [27, 42, 76, 133], 0 > < [17, 39, 69, 137], 0 >
< [31, 32, 74, 132], 0 > < [7, 25, 35, 136], 0 >

B AES as (2, 2) Flat-Carrier

The 85 disjoint input subspaces of dimension 2 toghether with the corresponding
output subspaces of the AES with field polynomial x8 + x4 + x3 + x + 1.

200 An Braeken, C. Wolf, and B. Preneel

Input Output Input Output
< [1, 188], 0 > < [1, 188], 0 > < [2, 97], 0 > < [94, 141], 0 >
< [3, 220], 0 > < [107, 157], 0 > < [4, 194], 0 > < [47, 203], 0 >
< [5, 122], 0 > < [82, 130], 0 > < [6, 163], 0 > < [123, 184], 0 >
< [7, 25], 0 > < [63, 209], 0 > < [8, 151], 0 > < [114, 154], 0 >
< [9, 34], 0 > < [21, 79], 0 > < [10, 244], 0 > < [41, 65], 0 >
< [11, 67], 0 > < [103, 167], 0 > < [12, 81], 0 > < [92, 176], 0 >
< [13, 224], 0 > < [80, 177], 0 > < [14, 50], 0 > < [119, 146], 0 >
< [15, 129], 0 > < [126, 185], 0 > < [16, 37], 0 > < [57, 77], 0 >
< [17, 137], 0 > < [42, 158], 0 > < [18, 68], 0 > < [45, 135], 0 >
< [19, 234], 0 > < [75, 156], 0 > < [20, 231], 0 > < [52, 153], 0 >
< [21, 79], 0 > < [9, 34], 0 > < [22, 134], 0 > < [96, 190], 0 >
< [23, 44], 0 > < [48, 95], 0 > < [24, 162], 0 > < [46, 88], 0 >
< [26, 193], 0 > < [40, 213], 0 > < [27, 102], 0 > < [54, 204], 0 >
< [28, 100], 0 > < [73, 182], 0 > < [29, 197], 0 > < [64, 148], 0 >
< [31, 164], 0 > < [61, 143], 0 > < [32, 74], 0 > < [58, 145], 0 >
< [33, 214], 0 > < [110, 140], 0 > < [35, 150], 0 > < [117, 132], 0 >
< [36, 136], 0 > < [85, 155], 0 > < [38, 207], 0 > < [78, 168], 0 >
< [39, 84], 0 > < [76, 133], 0 > < [40, 213], 0 > < [26, 193], 0 >
< [41, 65], 0 > < [10, 244], 0 > < [42, 158], 0 > < [17, 137], 0 >
< [45, 135], 0 > < [18, 68], 0 > < [46, 88], 0 > < [24, 162], 0 >
< [47, 203], 0 > < [4, 194], 0 > < [48, 95], 0 > < [23, 44], 0 >
< [49, 210], 0 > < [69, 174], 0 > < [51, 128], 0 > < [108, 131], 0 >
< [52, 153], 0 > < [20, 231], 0 > < [54, 204], 0 > < [27, 102], 0 >
< [55, 70], 0 > < [66, 183], 0 > < [56, 200], 0 > < [91, 169], 0 >
< [57, 77], 0 > < [16, 37], 0 > < [58, 145], 0 > < [32, 74], 0 >
< [61, 143], 0 > < [31, 164], 0 > < [62, 83], 0 > < [89, 147], 0 >
< [63, 209], 0 > < [7, 25], 0 > < [64, 148], 0 > < [29, 197], 0 >
< [66, 183], 0 > < [55, 70], 0 > < [69, 174], 0 > < [49, 210], 0 >
< [71, 138], 0 > < [105, 149], 0 > < [73, 182], 0 > < [28, 100], 0 >
< [75, 156], 0 > < [19, 234], 0 > < [76, 133], 0 > < [39, 84], 0 >
< [78, 168], 0 > < [38, 207], 0 > < [80, 177], 0 > < [13, 224], 0 >
< [82, 130], 0 > < [5, 122], 0 > < [85, 155], 0 > < [36, 136], 0 >
< [87, 175], 0 > < [98, 191], 0 > < [89, 147], 0 > < [62, 83], 0 >
< [91, 169], 0 > < [56, 200], 0 > < [92, 176], 0 > < [12, 81], 0 >
< [94, 141], 0 > < [2, 97], 0 > < [96, 190], 0 > < [22, 134], 0 >
< [98, 191], 0 > < [87, 175], 0 > < [101, 161], 0 > < [124, 166], 0 >
< [103, 167], 0 > < [11, 67], 0 > < [105, 149], 0 > < [71, 138], 0 >
< [107, 157], 0 > < [3, 220], 0 > < [108, 131], 0 > < [51, 128], 0 >
< [110, 140], 0 > < [33, 214], 0 > < [112, 139], 0 > < [121, 160], 0 >
< [114, 154], 0 > < [8, 151], 0 > < [117, 132], 0 > < [35, 150], 0 >
< [119, 146], 0 > < [14, 50], 0 > < [121, 160], 0 > < [112, 139], 0 >
< [123, 184], 0 > < [6, 163], 0 > < [124, 166], 0 > < [101, 161], 0 >
< [126, 185], 0 > < [15, 129], 0 >

Related-Key Differential Attacks on Cobra-H64
and Cobra-H128

Changhoon Lee1, Jongsung Kim2, Jaechul Sung3,
Seokhie Hong1, Sangjin Lee1, and Dukjae Moon4

1 Center for Information Security Technologies(CIST),
Korea University, Anam Dong, Sungbuk Gu, Seoul, Korea

{crypto77, hsh, sangjin}@cist.korea.ac.kr
2 Katholieke Universiteit Leuven, ESAT/SCD-COSIC, Belgium

Kim.Jongsung@esat.kuleuven.be
3 Department of Mathematics, University of Seoul,

90 Cheonnong Dong, Dongdaemun Gu, Seoul, Korea
jcsung@uos.ac.kr

4 National Security Research Institute, 161 Gajeong-dong,
Yuseong-gu, Daejeon, 305-350, Korea

djmoon@etri.re.kr

Abstract. Cobra-H64 and Cobra-H128, which use data-dependent per-
mutations as a main cryptographic primitive, are 64-bit and 128-bit it-
erated block ciphers with 128-bit and 256-bit keys, respectively. Since
these ciphers use very simple key scheduling and controlled permutation
(CP) for fast hardware encryption, they are suitable for wireless com-
munications networks which require high-speed networks. Actually, these
ciphers have better hardware performances than other ciphers used in se-
curity layers of wireless protocols (Wap, OMA, UMTS, IEEE 802.11 and
so on). In this paper, however, we show that Cobra-H64 and Cobra-H128
are vulnerable to related-key differential attacks. We first describe how
to construct full-round related-key differential characteristics of Cobra-
H64 and Cobra-H128 with high probabilities and then we exploit them to
attack full-round Cobra-H64 with a complexity of 215.5 and Cobra-H128
with a complexity of 244.

Keywords: Block Ciphers, Cobra-H64, Cobra-H128, Related-Key At-
tacks, Data-Dependent Permutations.

1 Introduction

Many network applications of encryption require low power devices and fast
computation components which imply that the number and complexity of the
encryption operations should be kept as simply as possible. Recently, data-
dependent permutations (DDP) have been introduced as one of cryptographic
primitives suitable to attain such goal and the various DDP-based ciphers have
been proposed for hardware implementation with low cost, such as CIKS-1 [16],

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 201–219, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

202 C. Lee et al.

SPECTR-H64 [2]. Since all of them use very simple key scheduling in order to
have no time consuming key preprocessing, they are suitable for the applications
of many networks requiring high speed encryption in the case of frequent change
of keys. However, the simply designed key scheduling algorithms make to help
the cryptanalysts apply related-key attacks to such kinds of block ciphers [12,13].

Cobra-H64 and Cobra-H128 [17], use the switchable operations to prevent
weak keys, are 64-bit and 128-bit block ciphers with simple linear key scheduling
algorithms, respectively. These ciphers have better hardware implementations
and performances (FPGA and ASIC) than other ciphers used in security layers
of most of wireless protocols, WAP, OMA, UMTS, IEEE 802.11 and so on.

Table 1. Summary of our attacks on Cobra-H64 and Cobra-H128

Block Number of Complexity
Cipher Rounds Data / Time

Cobra-H64 10 (full) 215.5RK-CP / 215.5

Cobra-H128 12 (full) 244RK-CP / 244

RK-CP: Related-Key Chosen Plaintexts, Time: Encryption units

In this paper, we first present the structural properties of new CP-boxes
used in the round function of Cobra-H64 and Cobra-H128, which allow us to
make full-round related-key differential characteristics with high probabilities.
Finally, we present two related-key differential attacks on full-round Cobra-H64
and Cobra-H128, which require about 215.5 and 244 data and time complexity,
respectively. Table 1 summarizes our results.

This paper is organized as follows; In Section 2, we introduce some notations
and properties of the used controlled permutations. Section 3 briefly describes
two block ciphers, Cobra-H64, Cobra-H128, and their structural properties, and
Sections 4 and 5 present related-key differential attacks of Cobra-H64 and Cobra-
H128. Finally, we conclude in Section 6.

2 Preliminaries

In this section, we introduce notations used in this paper and some proper-
ties of controlled permutations which are the components of Cobra-H64 and
Cobra-H128. The following notations are used throughout the paper. Bits will
be numbered from left to right, starting with bit 1. If P = (p1, p2, · · · , pn) then
p1 is the most significant bit and pn is the least significant bit.

– ei,j : A binary string in which the i-th and j-th bits are one and the others
are zeroes, e.g., e1,2 = (1, 1, 0, · · ·, 0).

– ⊕ : Bitwise-XOR operation
– ≪ (≫) : Left (Right) cyclic rotation
–
⋂

: Logical AND

Related-Key Differential Attacks on Cobra-H64 and Cobra-H128 203

2.1 Controlled-Permutations

In general, controlled permutation (CP) box used in DDP-based ciphers is de-
fined as follows.

Definition 1. Let F (X, V) be a function F : {0, 1}n × {0, 1}m → {0, 1}n. F is
called a CP-box, if F (X, V) is a bijection for any fixed V .

We denote the above CP-box F (X, V) by Pn/m, performing permutations on
n-bit binary vectors X depending on some controlling m-bit vector V . The Pn/m-
box is constructed by using elementary switching elements P2/1 as elementary
building blocks performing controlled transposition of two input bits x1 and x2.
Here, P2/1-box is controlled with one bit v and outputs two bits y1 and y2, where
y1 = x1+v and y2 = x2−v, i.e., if v = 1, it swaps two input bits otherwise (if
v = 0), does not.

In other words, Pn/m-box can be represented as a superposition of the oper-
ations performed on bit sets :

Pn/m = LV1 ◦ π1 ◦ LV2 ◦ π2 ◦ · · · ◦ πs−1 ◦ LVs

where L is an active layer composed of n/2 P2/1 parallel elementary boxes,
V1, V2, · · ·Vs are controlling vectors of the active layers from 1 to s = 2m/n, and
π1, π2, · · ·, πs−1 are fixed permutations (See Fig. 1). Fig. 2 shows structure of the
P32/96 (P−1

32/96) and P64/192 (P−1
64/192) used in Cobra-H64 and Cobra-H128. Due

to the symmetric structure, the mutual inverses, Pn/m and P−1
n/m, differ only with

the distribution of controlling bits over the boxes P2/1, e.g., PV
32/96 and PV ′

32/96

are mutually inverse when V = (V1, V2, · · ·, V6) and V ′ = (V6, V5, · · ·, V1).

(d)

(c)

y
3 y4y

1
y

2

x
3

x
4

x
1

x
2

v4v3

v
2v

1

y3 y4y
1

y
2

x
3

x
4

x
1

x2

v
2

(e)

v
1

v
4

v
3

(f)

P
2/1

P
2/1

P 2/1
P

2/1

P2/1 P 2/1

P
2/1

P
2/1

X=(x
1

, x
2

, ... , x
8
)

P 2/1P2/1 P 2/1P 2/1

P4/4 P4/4

Y=(y
1

, y
2

, ... , y
8
)

X=(x1 , x2 , ... , x 8)

P
4/4

P
4/4

P 2/1
P

2/1 P 2/1
P

2/1

Y=(y1 , y2 , ... , y8)

V1

V
2

V
3

V
3

V
2

V
1

x
1

x
2

y1 y2

P2/1

v

m

V=(v
1

, v
2

, ... , v
m

)

Y= P
n/m(V)

(X) = (y
1

, y
2

, ... , y
n
)

(a)X=(x
1

, x
2

, ... , x
n
)

n

n

P
n/m

(b)

Fig. 1. CP -boxes : (a) Pn/m, (b) P2/1, (c) P4/4, (d) P −1
4/4, (e) P8/12, (f) P −1

8/12

204 C. Lee et al.

P8/12 P8/12 P8/12 P8/12 P8/12 P8/12 P8/12 P8/12

P-1
8/12 P-1

8/12 P-1
8/12 P-1

8/12 P-1
8/12 P-1

8/12 P-1
8/12 P-1

8/12

V
1

V
2

V
3

V
4

V
5

V
6

V
6

V
5

V
4

V
3

V
2

V
1

(c) (d)

V
3

X=(x1 , x2 , ... , x32)

Y=(y
1

, y
2
, ... , y

32
)

V
1

V5

V
4

P8/12

(a)

P8/12 P8/12 P8/12V2

V
6

P8/12
-1 P8/12

-1 P8/12
-1 P8/12

-1

(b)

V5

V
4

V
6

V
3

V
1

V
2

Fig. 2. CP -boxes : (a) P32/96, (b) P −1
32/96, (c) P64/192, (d) P −1

64/192

Now, we present general properties of CP-boxes which can induce properties
of operations used in the round function of Cobra-H64 and Cobra-H128.

Property 1. [12,13] Let an input and controlling vector differences of P2/1-box
be ΔX = X ⊕ X ′ and ΔV = V ⊕ V ′ respectively, where X and X ′ are two-bit
input vectors, and V and V ′ are one-bit controlled vectors. Then we get the
following equations.

a) If ΔX = 10(or 01) and ΔV = 0 then the corresponding output difference of
P2/1-box is ΔY = 10(or 01) with probability 2−1 and ΔY = 01(or 10) with
probability 2−1.

b) If ΔX = 00 and ΔV = 1 then the corresponding output difference of P2/1-
box is ΔY = 00 with probability 2−1 and ΔY = 11 with probability 2−1.

The above properties are also expanded into the following properties.

Property 2. [12,13] Let V and V ′ be m-bit control vectors for Pn/m-box such that
V ⊕ V ′ = ei (1 ≤ i ≤ m). Then Pn/m(V)(X) = Pn/m(V ′)(X) with probability
2−1 where X ∈ {0, 1}n. It also holds in P−1

n/m-box.

Property 3. [12,13] Let X and X ′ be n-bit inputs for Pn/m-box such that X⊕X ′ =
ei (1 ≤ i ≤ n). Then Pn/m(V)(X) ⊕ Pn/m(V)(X ′) = ej for some j (1 ≤ j ≤ n).

Property 4. Let Pn/m(V)(X) ⊕ Pn/m(V)(X ⊕ ei) = ej for some i and j.

Related-Key Differential Attacks on Cobra-H64 and Cobra-H128 205

1

P 4/4

0
P

2/1
P

2/1

P2/1
P 2/1

P2/1P 2/1 P
2/1

P 2/1

0 10 00 0 0 0

0 10 00 0 0 0

0

(a) (b)

1
P4/4

0 0 0 0 0 0 0 1

0

P
2/1

P 2/1P2/1 P
2/1

P 2/1

P4/4

1

P 2/1

P 2/1
P

2/1

0 1 0 0 0 0 0 0

Fig. 3. An example of the difference routes when the input and output differences of
P8/12 and P −1

8/12 are fixed

a) If n = 8, m = 12 then the exact one difference route from i to j via three
P2/1-boxes is fixed. It also holds in P−1

8/12-box.
b) If n = 32, m = 96 then the exact two difference routes from i to j via six

P2/1-boxes are fixed. It also holds in P−1
32/96-box.

c) If n = 64, m = 192 then the exact one difference route from i to j via six
P2/1-boxes is fixed. It also holds in P−1

64/192-box.

For example, consider i = 8 and j = 2 in the Property 4-a). Then, we can
exactly know the 3 bits of control vectors (1,1,0) corresponding to three elements
P2/1-boxes of P8/12-box with probability 1. See Fig. 3. In Fig. 3, the bold line
denotes the possible difference route when the input and output differences of
P8/12 and P−1

8/12 are fixed.

3 Cobra-H64 and Cobra-H128

In this section, we briefly describe two block ciphers, Cobra-H64, Cobra-H128
[17] and introduce their properties used in our attacks. These ciphers use same it-
erative structure and are composed of the initial transformation (IT), e-dependent
round function Crypt(e), and the final transformation (FT) where e = 0 (e = 1)
denotes encryption (decryption) as follow:

1. An input data block is divided into two subblocks L and R.
2. Perform initial transformation :

L0 = L ⊕ O3 and R0 = R ⊕ O4, where O3 and O4 are subkeys;
3. For j = 1 to r − 1 do :

◦ (Lj , Rj) := Crypt(e)(Lj−1, Rj−1, Q
(e)
j), where Q

(e)
j is the j-th round key;

◦ Swap the data subblocks : T = Rj , Rj = Lj , Lj = T ;
4. j = r do :

◦ (Lr, Rr) := Crypt(e)(Lr−1, Rr−1, Q
(e)
r);

206 C. Lee et al.

5. Perform final transformation :
CL = Lr ⊕ O1 and CR = Rr ⊕ O2, where O1 and O2 are subkeys;

6. Return the ciphertext block C = (CL, CR).

3.1 A Description of Cobra-H64

Cobra-H64 encrypts 64-bit data blocks with a 128-bit key by iterating a round
function 10 times. The Crypt(e) used in Cobra-H64 consists of an extension box
E, a switchable fixed permutation π(e), a permutational involution I, a nonlinear
operation G, and two CP-boxes P32/96, P−1

32/96. See Fig. 4. The extension box E

provides the following relation between its input L = (l1, · · · , l32) and output
V = (V1, · · · , V6):

V1 = Ll, V2 = L≪6
l , V3 = L≪12

l , V4 = Lh, V5 = L≪6
h , V6 = L≪12

r

where Ll = (l1, · · · , l16), Lh = (l17, · · · , l32), |li| = 1 (1 ≤ i ≤ 32) and |Vi| =
16 (1 ≤ i ≤ 6).

The switchable fixed permutation π(e) performs permutation π(0) when enci-
phering, and π(1) when deciphering. Both of them contain two cycles. The first
cycle corresponds to identical permutation of the least significant input bit x32.
The second cycle is described by the following equations:

π(0)(x1, x2, · · ·, x31) = (x1, x2, · · ·, x31)≪5, π(1)(x1, x2, · · ·, x31) = (x1, x2, · · ·, x31)≪26

The permutational involution I which is used to strengthen the avalanche
effect is performed as follows:

I = (1, 17)(2, 21)(3, 25)(4, 29)(5, 18)(6, 22)(7, 26)(8, 30)(9, 19)(10, 23)
(11, 27)(12, 31)(13, 20)(14, 24)(15, 28)(16, 32).

e

V

V'

L
i

R
i

A(1)

P (e)
128/1

GA
(1)

A
(2)

P64/192

P-1
64/192

192 64

(b)

Ri-1

A(4)

A(3)

A (2)

GA
(3)

A
(4)

Li

P32/96

P-1
32/96

R
i-1

G
A

(1)
A

(2)

G
A

(3)
A

(4)

E

E

R
i

Li-1

96 32

V

V'

e
I Li-1

I

(a)

(e)

Fig. 4. (a) Crypt(e) of Cobra-H64, (b) Crypt(e) of Cobra-H128

Related-Key Differential Attacks on Cobra-H64 and Cobra-H128 207

Table 2. Key schedule of Cobra-H64

j

A(1)
j

A(2)
j

A(3)
j

A(4)
j

1

O
1

O2

O
3

O
4

2

O
4

O1

O
2

O
3

3

O
3

O4

O
1

O
2

4

O
2

O3

O
4

O
1

5

O
1

O4

O
3

O
2

6

O
1

O4

O
3

O
2

7

O
2

O3

O
4

O
1

8

O
3

O4

O
1

O
2

9

O
4

O1

O
2

O
3

10

O
1

O2

O
3

O
4

The operation GA′A′′ (L), which is only nonlinear part in Cobra-H64, is de-
scribed by the following expression ((A

′
, A

′′
) can be round keys (A(1), A(2)) or

(A(3), A(4))):

W = L0⊕A
′
0⊕(L2∩L3)⊕(L1∩L2)⊕(L1∩L3)⊕(L2∩A

′′
1)⊕(A

′
1∩L3)⊕(A

′′
0∩L1∩L2)

where binary vectors Lj, A
′
j , and A

′′
j are expressed as follows:

L0 = L = (l1, l2, · · ·, l32), L1 = (1, l1, l2, · · ·, l31), L2 = (1, 1, l1, · · ·, l30),
L3 = (1, 1, 1, l1, · · ·, l29), A′

0 = A
′
= (a

′
1, a

′
2, · · ·, a

′
32), A

′
1 = (1, a

′
1, a

′
2, · · ·, a

′
31)

A
′′
0 = A

′′
= (a

′′
1 , a

′′
2 , · · ·, a′′

32), A
′′
1 = (1, a

′′
1 , a

′′
2 , · · ·, a′′

31), A
′′
2 = (1, 1, a

′′
1 , · · ·, a′′

30)

The key schedule of Cobra-H64 is very simple. An 128-bit master key K
is split into four 32-bit blocks, i.e., K = (K1, K2, K3, K4). Then, in order to
generate 10 e-dependent round keys Q

(e)
j = (A(1)

j , A
(2)
j , A

(3)
j , A

(4)
j) (1 ≤ j ≤ 10),

K1,K2,K3 and K4 are rearranged as specified in Table 2 in which Oi = Ki if
e = 0, O1 = K3, O2 = K4, O3 = K1, O4 = K2 if e = 1.

3.2 A Description of Cobra-H128

Cobra-H128 is a 128-bit block cipher with a 256-bit key and the number of
12 rounds. The Crypt(e) of Cobra-H128 uses two fixed permutations π, Π , a
permutational involution I, a nonlinear operation G, and two CP-boxes P

(V)
64/192,

(P−1
64/192)

(V ′) (See Fig. 4). These components are a little bit different from those
of Cobra-H64.

1. The permutation Π contains four cycles of the length 16 represented as
follows;

(1,50,9,42,17,34,25,26,33,18,41,10,49,2,57,58)(3,64,43,24,19,48,59,8,35,32,11,56,51,16,27,40)
(4,7,28,47,52,23,12,63,36,39,60,15,20,55,44,31)(5,14,13,6,21,62,29,54,37,46,45,38,53,30,61,22).

2. π forms the control vectors V and V ′ using three 64-bit input values for
the P64/192 and P−1

64/192-box respectively. For example, let us consider forma-
tion of the vector V =(V1, V2, V3, V4, V5, V6)=π(L,A1,A4) where Vi∈{0, 1}32

208 C. Lee et al.

Table 3. 192 bits control vector V and the corresponding positions for P64/192-box

V1

V2

V3

V4

V5

V6

V P64/192

31

10'

13"

33

55'

45"

32

24'

14"

34

56'

46"

3

25'

15"

35

57'

47"

4

26'

16"

36

58'

48"

5

29'

17"

37

59'

49"

6

13'

18"

38

60'

50"

7

27'

19"

39

61'

51"

8

16'

20"

40

62'

52"

9

1'

21"

41

63'

53"

10

2'

22"

42

64'

54"

11

31'

23"

43

33'

55"

12

32'

24"

44

34'

56"

13

3'

25"

45

35'

57"

14

4'

26"

46

36'

58"

15

19'

27"

47

37'

59"

16

6'

28"

48

38'

60"

17

7'

29"

49

39'

61"

18

8'

30"

50

40'

62"

19

9'

31"

51

41'

63"

20

23'

32"

52

42'

64"

21

11'

1"

53

43'

33"

22

12'

2"

54

44'

34"

23

28'

3"

55

45'

35"

24

15'

4"

56

46'

36"

25

14'

5"

57

47'

37"

26

30'

6"

58

48'

38"

27

17'

7"

59

49'

39"

28

18'

8"

60

50'

40"

29

5'

12"

61

51'

41"

30

20'

10"

62

52'

42"

1

21'

11"

63

53'

43"

2

22'

9"

64

54'

44"

and L,A1,A4∈{0, 1}64 (1≤i≤32). Table 3 depicts the distribution of the 192
controlling bits in P64/192-box.
In Table 3, (V1,V4), (V2,V5) and (V3,V6) are represented as respective rear-
rangement of bits of L=(l1, l2, · · · , l64), L ⊕ A1=(l1⊕a1

1,l2⊕a1
2,· · · ,l64⊕a1

64)
and L ⊕ A4=(l1⊕a4

1,l2⊕a4
2,· · · ,l64⊕a4

64), i.e., i=li, j′=lj⊕a1
j and k′′=lk⊕a4

k

where li,a1
j ,a

4
k∈{0, 1} and 1≤i, j, k≤64.

3. I is a permutational involution. It is described as follows:
Y = (Y1, Y2, · · · , Y8) = I(X1, X2, · · · , X8), where Y1 = X≪4

6 ,Y2 = X≪4
5 ,

Y3 = X≪4
4 , Y4 = X≪4

3 ,Y5 = X≪4
2 ,Y6 = X≪4

1 ,Y7 = X≪4
8 ,Y8 = X≪4

7

(1≤i≤8).

4. G is the only non-linear part of Crypt(e). If L=(l1,. . .,l64) is a 64-bit input
value, and A′=(a′

1,. . .,a
′
64) and A′′=(a′′

1 ,. . .,a′′
64) are 64-bit subkeys of G then

the output value W=G(L, A′, A′′)=G(A′,A′′)(L) of G is computed as follows;

W = L0 ⊕ A′
0 ⊕ (L1 ∩ A′′

0) ⊕ (L2 ∩ L5) ⊕ (L6 ∩ A′
1) ⊕ (A′′

1 ∩ A′
2) ⊕ (L4 ∩

L3) ⊕ (L1 ∩ L6 ∩ L4) ⊕ (L2 ∩ L6 ∩ A′′
1) ⊕ (L1 ∩ A′′

1 ∩ L2 ∩ L4),

where ∀i ∈ {0, 1, 2}, ∀j ∈ {0, 1, ..., 6}, the binary vectors Lj and Ai are de-
fined as : Lj = L≪64−j, A0 = A, A1 = (1, a1, ..., a63), A2 = (1, 1, a1, ..., a62),
(A=A′ or A′′).

The key schedule of Cobra-H128 is also very simple and uses Table 4 as a
rearrangement of the master key sequences (K1, K2, K3 K4) where |Ki|=64.

Table 4. Key schedule of Cobra-H128

j

A(1)
j

A(2)
j

A(3)
j

A(4)
j

1

O
1

O2

O
3

O
4

2

O
4

O3

O
2

O
1

3

O
3

O4

O
1

O
2

4

O
2

O1

O
4

O
3

5

O
1

O2

O
3

O
4

6

O
3

O4

O
1

O
2

7

O
3

O4

O
1

O
2

8

O
1

O2

O
3

O
4

9

O
2

O1

O
4

O
3

10

O
3

O4

O
1

O
2

11

O
4

O3

O
2

O
1

12

O
1

O2

O
3

O
4

Related-Key Differential Attacks on Cobra-H64 and Cobra-H128 209

3.3 Properties of Cobra-H64 and Cobra-H128

In this subsection, we describe some properties for components of Crypt(e) of
Cobra-H64 and Cobra-H128, which allow us to construct strong related key
differential characteristics.

Property 5. This is a property for components of Crypt(e) of Cobra-H64.

a) If L is a random input and A′, A′′ are two random round keys then GA′A′′(L)
⊕ GA′⊕e32A′′⊕e32(L) = 0 with probability 1/4 (i.e., it holds only when
(l30, l31) = (1, 1)) and GA′A′′(L) ⊕ GA′⊕e32A′′⊕e32 (L) = e32 with proba-
bility 3/4 (i.e., it holds only when (l30, l31) = (0, 0), (0, 1) or (1,0)).

b) For any fixed i, j (1 ≤ i, j ≤ 32) ΔP32/96(ΔV =0)(ΔX = ei) = ej with
probability 2−5. (For any fixed i, j there can be two difference routes in
P32/96(V)(X), and each route occurs with probability 2−6.) Similarly, it also
holds in P−1

32/96.

Property 6. This is a property for components of Crypt(e) of Cobra-H128.

a) For the control vector V of P64/192-box, π(L, A′, A′′) ⊕ π(L, A′ ⊕e64, A
′′)=

e138 and π(L, A′, A′′) ⊕ π(L, A′, A′′ ⊕ e64)=e180. For the control vector V ′

of P−1
64/192-box, π(L, A′, A′′) ⊕ π(L, A′ ⊕ e64, A

′′)=e42 and π(L, A′, A′′) ⊕
π(L, A′, A′′ ⊕ e64)=e20. where L, A′, A′′∈{0, 1}64 and V, V ′ ∈ {0, 1}192.

b) If L is a random input and A′, A′′ are two random round keys then GA′A′′(L)
⊕ GA′⊕e64A′′⊕e64(L) = 0 with probability 1/2 (i.e., it holds only when
l63 = 1) and GA′A′′(L) ⊕ GA′⊕e64A′′⊕e64(L) = e64 with probability 1/2
(i.e., it holds only when l63 = 0).

c) For any fixed i, j (1 ≤ i, j ≤ 64) ΔP64/192(ΔV =0)(ΔX = ei) = ej with
probability 2−6. (For any fixed i, j there can be one difference route in
P64/192(V)(X), and this route occurs with probability 2−6.) Similarly, it also
holds in P−1

64/192.

4 Related-Key Differential Characteristics on Cobra-H64
and Cobra-H128

In this section, we construct related-key differential characteristics for Cobra-
H64 and Cobra-H128 using the properties mentioned in the previous subsection.

4.1 Related-Key Differential Characteristic on Cobra-H64

As stated earlier, the key schedule of the Cobra-H64 is very simple, i.e., the round
keys are only 32-bit parts of the 128-bit master key, and there are many useful

210 C. Lee et al.

properties of P32/96 and P−1
32/96 which allow us to construct useful related-key

differential characteristics.
In this subsection, we show how to construct full-round (10 rounds) related-

key differential characteristics with a high probability. We consider the situation
that we encrypt plaintexts P = (PL, PR) and P ′ = (P ′

L, P ′
R) under an unknown

key K=(K1, K2, K3, K4) and an unknown related-key K ′ = (K ′
1, K

′
2, K

′
3, K

′
4)

such that P ⊕P ′ = (e32, e32) and K ⊕K ′ = (e32, e32, e32, e32), respectively. Then
we can obtain 32 desired full-round related-key differential characteristics α → βj

with the same probability of 2−12.5, where α = (e32, e32) and βj = (e32, ej,32)
for each j (1 ≤ j ≤ 32) as depicted in Table 5.

The related-key differential characteristics described in Table 5 exploits one
round iterative differential characteristic whose input and output differences are
(0, 0) and key difference is (e32, e32, e32, e32). This one round iterative differential
characteristic holds with probability 10/16, which can be obtained as follows.
Since the π(e) function does not affect the least significant bit (i.e., 32-th bit), if
the output differences of the first and second G functions are both 0 or e32 then
the one round iterative differential characteristic should be satisfied. According
to Property 5-a), the output differences of the first and second G functions are
both 0 with probability 1/16(= 1/4 · 1/4) and the output differences of the first
and second G functions are both e32 with probability 9/16(= 3/4 ·3/4) and thus
the one round iterative differential characteristic holds with probability 10/16.

In order to make a key recovery attack of Cobra-H64 easily, we use another
differential characteristic in the last round whose input difference is (0, 0), out-
put difference is (0, ej) and key difference is (e32, e32, e32, e32). This one round
differential characteristic holds with probability (3/8) · 2−5, which can be ob-
tained as follows. For getting the desired output difference it should be satisfied
that one of output differences of the first and second G functions is e32 and

Table 5. Related-Key Differential Characteristic of Cobra-H64

Round (i) ΔRIi ΔRKi Prob.
IT (e32, e32) (e32, e32) 1
1 (0, 0) (e32, e32, e32, e32) 10/16
2 (0, 0) (e32, e32, e32, e32) 10/16
3 (0, 0) (e32, e32, e32, e32) 10/16
4 (0, 0) (e32, e32, e32, e32) 10/16
5 (0, 0) (e32, e32, e32, e32) 10/16
6 (0, 0) (e32, e32, e32, e32) 10/16
7 (0, 0) (e32, e32, e32, e32) 10/16
8 (0, 0) (e32, e32, e32, e32) 10/16
9 (0, 0) (e32, e32, e32, e32) 10/16
10 (0, 0) (e32, e32, e32, e32) (3/8) · 2−5

FT (0, ej) (e32, e32) 1
Output (e32, ej,32) · ·
Total · · 2−12.5

1 ≤ j ≤ 32 : fixed value, if j = 32, ej,32 = 0

Related-Key Differential Attacks on Cobra-H64 and Cobra-H128 211

e
P(e)128/1

G

P64/192

P-164/192

(b)

G

P32/96

P-132/96

G

G

E

E

I I

(a)

(e)

010 =ΔL 010 =ΔR

321 eK =Δ
322 eK =Δ

323 eK =Δ
324 eK =Δ

0=Δ

)0(32 ore=Δ

0=Δ

321 eK =Δ 322 eK =Δ

32eCL =Δ
32,jR eC =Δ

012 =ΔR

012 =ΔL

643 eK =Δ

01 =ΔK

644 eK =Δ

02 =ΔK

32e=Δ

0'=ΔV

0=ΔV 180eV =Δ

42' eV =Δ

01 =ΔK 02 =ΔK

643 eK =Δ 644 eK =Δ
64e=Δ

2/1:=p

64e=Δ

2/1:=p

0=Δ LC jR eC =Δ

01 =ΔK 02 =ΔK

)(32eor

32e=Δ

je=Δ 72: −=pje=Δ

)4/1(4/3: orp =

)4/3(4/1: orp =

5
2:
−

=p

Fig. 5. Propagation of the difference in the last round

the other is 0. According to Property 5-a), this event occurs with probability
3/8(= 2 · (1/4) · (3/4)). Since for any fixed j (1 ≤ j ≤ 32) ΔP−1

32/96(ΔV =0)(ΔX =
e32) = ej with probability 2−5 (refer to Property 5-b)), the last round differen-
tial characteristic holds with probability (3/8) · 2−5.

In order to verify these results we performed a series of simulations with
randomly chosen 214 plaintexts and randomly chosen 3000 related key pairs,
respectively. As a result, we checked that there exist more than 3 pairs on average
satisfying each of ciphertext differences in Table 5. Our simulation result is higher
than our expectation 21.5(= 214 × 2−12.5). This difference is due to the fact
that our estimation only considers one differential characteristic rather than a
differential.

4.2 Related-Key Differential Characteristic on Cobra-H128

Using the same method presented in the previous subsection, we construct full-
round related-key differential characteristics for Cobra-H128. We consider the sit-
uation that we encrypt plaintexts P and P ′ under an unknown key K and an un-
known related-key K ′ such that P ⊕P ′ = (e64, e64) and K ⊕K ′ = (0, 0, e64, e64),
respectively. Then we can obtain 64 desired full-round related-key differential
characteristics (e64, e64) → (0, ej) (1 ≤ j ≤ 64) with the same probability of
2−42, as depicted in Table 6.

Since we consider a related-key pair (K, K ′) satisfying K⊕K ′ = (0, 0, e64, e64),
we know the difference form of each round key is satisfied with RK = (0, 0, e64,
e64) or RK = (e64, e64, 0, 0) (See Table. 4). Now, according to the condition of
RK, we describe one round differential characteristic of Crypt(e) used in our
attack.

212 C. Lee et al.

Table 6. Related-Key Differential Characteristic of Cobra-H128

Round (i) ΔRIi ΔRKi P1/P2/P3 Prob. Case
IT (e64, e64) (e64, e64) · 1 ·
1 (0, 0) (0, 0, e64, e64) 2−1/2−1/2−1 2−3 C1

2 (0, 0) (e64, e64, 0, 0) 2−1/2−1/2−1 2−3 C2

3 (0, 0) (e64, e64, 0, 0) 2−1/2−1/2−1 2−3 C2

4 (0, 0) (0, 0, e64, e64) 2−1/2−1/2−1 2−3 C1

5 (0, 0) (0, 0, e64, e64) 2−1/2−1/2−1 2−3 C1

6 (0, 0) (e64, e64, 0, 0) 2−1/2−1/2−1 2−3 C2

7 (0, 0) (e64, e64, 0, 0) 2−1/2−1/2−1 2−3 C2

8 (0, 0) (0, 0, e64, e64) 2−1/2−1/2−1 2−3 C1

9 (0, 0) (0, 0, e64, e64) 2−1/2−1/2−1 2−3 C1

10 (0, 0) (e64, e64, 0, 0) 2−1/2−1/2−1 2−3 C2

11 (0, 0) (e64, e64, 0, 0) 2−1/2−1/2−1 2−3 C2

12 (0, 0) (0, 0, e64, e64) 2−1/2−1/2−7 2−9 C1’

FT (0, ej) (0, 0) · 1 ·
Output (0, ej) · · · ·
Total · · · 2−42 ·

1 ≤ j ≤ 64 : fixed value

C1: RK = (0, 0, e64, e64)
If the input difference of Crypt(e) is zero then, by Property 6-a), the output
difference of the first π is (e180) with probability 1. Thus, by Property 2,
the output difference of P64/192 is zero with probability P1 = 2−1 because
the input and controlled vector differences are 0 and e180, respectively. Since
the input and round key differences of the second G are 0 and (e64, e64),
respectively, the corresponding output difference of the second G is 0 with
probability P2 = 2−1. Similarly, the output difference of the second π is e42

and the output difference of P−1
64/192 is 0 with probability P3 = 2−1. Hence

if the input difference of Crypt(e) is 0 under RK = (0, 0, e64, e64) then the
corresponding output difference of Crypt(e) is 0 with probability 2−3.

C2: RK = (e64, e64, 0, 0)
If the input difference of Crypt(e) is zero then, by Property 6-a), the output
difference of the first π is (e138) with probability 1. Thus, by Property 2, the
output difference of P64/192 is zero with probability P1 = 2−1 because the
input and controlled vector differences are 0 and e138, respectively. Since the
input and round key differences of the first G are 0 and (e64, e64), respectively,
the corresponding output difference of the second G is 0 with probability
P2 = 2−1. Similarly, the output difference of the second π is e20 and the
output difference of P−1

64/192 is 0 with probability P3 = 2−1. Hence if the input
difference of Crypt(e) is 0 under RK = (e64, e64, 0, 0) then the corresponding
output difference of Crypt(e) is 0 with probability 2−3.

Related-Key Differential Attacks on Cobra-H64 and Cobra-H128 213

We alternatively use C1 and C2 to construct the first 11 rounds of our
differential characteristics (See Table 6). In the last round, however, we use a
little bit different characteristic from C1 and C2 for our key recovery attack. In
Table 6, the case of C1’ means that the output difference of the second G in the
last round is not zero but e64 with probability 2−1, and then by Property 2 and
Property 6-c) we have P3 = 2−7 in the last round. See Fig. 5.

5 Key Recovery Attacks on Cobra-H64 and Cobra-H128

We now present key recovery attacks on Cobra-H64 and Cobra-H128 using our
related-key differential characteristics.

5.1 Attack Procedure on Cobra-H64

To begin with, we encrypt 214.5 plaintext pairs P = (PL, PR) and P ′ = (PL ⊕
e32, PR ⊕ e32) under an unknown key K = (K1, K2, K3, K4) and an unknown
related-key K ′ = (K1 ⊕ e32, K2 ⊕ e32, K3 ⊕ e32, K4 ⊕ e32), respectively, and then
get the 214.5 corresponding ciphertext pairs C = (CL, CR) and C′ = (C′

L, C′
R),

i.e., EK(P) = C and EK′(P ′) = C′, where E is the block cipher Cobra-H64.
Since our full-round related-key differential characteristic of Cobra-H64 has a
probability of 2−12.5, we expect about four ciphertext pair (C, C′) such that
C ⊕ C′ = (e32, ej,32) for each j (1 ≤ j ≤ 32). According to our differential trail
described in Table 5, we can deduce that the j-th one-bit difference in such
(C, C′) is derived from the output difference of P

(V6
′16)

2/1 in P−1
32/96 of the last

round (Refer to Fig 6). That is, we can expect that there are two differential

routes: one is from P
(V6

′16)
2/1 and P

(V5
′14)

2/1 , and the other is from P
(V6

′16)
2/1 and

P
(V5

′16)
2/1 (the second one is described in Fig. 6). From each of these two routes,

we can extract 6 bits of control vectors by using Property 3. However, since in
the attack procedure one route is a right route and the other is a wrong route,
one of the two extracted 6 bits may not be correct.

For example, assume that output difference is e27. Then we have the following
two 6 bits of control vectors (Refer to Fig. 6 and Table 7, 8).

– v96 = C28
L ⊕ K28

1 = 0, v80 = C22
L ⊕ K22

1 = 0, v64 = C32
L ⊕ K32

1 = 0,
v48 = C12

L ⊕ K12
1 = 1, v31 = C5

L ⊕ K5
1 = 0, v14 = C14

L ⊕ K14
1 = 1

– v96 = C28
L ⊕ K28

1 = 1, v78 = C20
L ⊕ K20

1 = 0, v62 = C30
L ⊕ K30

1 = 0,
v46 = C10

L ⊕ K10
1 = 1, v29 = C3

L ⊕ K3
1 = 0, v14 = C14

L ⊕ K14
1 = 0

From this procedure we can increase counters of extracted keys. If we use
enough plaintext pairs to follow the above procedure, we can distinguish the
right key from wrong keys by the maximum likelihood method. Based on this
idea we can devise a related-key differential attack on full-round Cobra-H64.

1. Prepare 214.5 plaintext pairs (Pi, P
′
i), i = 1, · · · , 214.5, which have the (e32,

e32) difference. All Pi are encrypted using a master key K and all P ′
i are

214 C. Lee et al.

P8/12

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P
2/1

P
2/1

P
2/1

P
2/1

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P
2/1

P
2/1

P
2/1

P
2/1

P2/1 P2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

16

6
'V

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

P
2/1

32
e

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1

j
e

1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16
5'V

16
4'V

16
3'V

15
2'V

14
1'V

14
5'V

Fig. 6. The possible routes of the non-zero output difference of P
(V ′16

6)
2/1 -box in P −1

32/96

encrypted using a master key K ′ where K and K ′ have the (e32, e32, e32, e32)
difference. Encrypt each plaintext pair (Pi, P

′
i) to get the corresponding ci-

phertext pair (Ci, C
′
i).

2. Check that Ci ⊕ C′
i = (e32, ej,32) for each i and j. We call the bit position

of j whose values are 1 OBP(One Bit Position).
3. For each ciphertext pair (Ci, C

′
i) passing Step 2, extract two 6 bits of control

vectors by chasing two difference routes between the OBP and the position
of the second input bit in P

(V6
′16)

2/1 . Compute candidates of the corresponding
bits of K1 and K ′

1 by using Tables 7, 8. Output each 6-bit subkey pair with
maximal number of hits (here, each of 6-bit subkey pairs corresponds to one
of difference routes).

The data complexity of this attack is 215.5 related-key chosen plaintexts. The
time complexity of Step 1 is 215.5 full-round Cobra-H64 encryptions and the time
complexity of Steps 2 and 3 is much less than that of Step 1. By our related-key
differential characteristic each ciphertext pair can pass Step 2 with probability
at least 2−12.5 and thus the expectation of ciphertext pairs with the (e32, ej,32)
differences for each j that pass this test is at least 4. This means that the expected
number of hits for each 6-bit right key is 4 (Note that the expected number of
hits for each 6-bit right key is not 8, since one of two associated difference routes

Related-Key Differential Attacks on Cobra-H64 and Cobra-H128 215

is wrong). On the other hands, the expected number of hits for each 6-bit wrong
key is 8 · 2−6.

Hence we can retrieve 16 bits of keys in the lower layer of P−1
32/96 and 7 bits

of keys in the upper layer of P−1
32/96 with a data and a time complexity of 215.5.

Moreover, this attack can be simply extended to retrieve the whole of master
key pair (K, K ′) by performing an exhaustive search for the remaining keys.

5.2 Attack Procedure on Cobra-H128

Unlike the above attack procedure, a related-key attack on Cobra-H128 directly
finds some bits of keys by using difference routes.

1. Prepare 243 plaintext pairs (Pi, P
′
i), i = 1, · · · , 243, which have the (e64, e64)

difference. All Pi are encrypted using a master key K and all P ′
i are encrypted

using a master key K ′ where K and K ′ have the (0, 0, e64, e64) difference.
Encrypt each plaintext pair (Pi, P

′
i) to get the corresponding ciphertext pair

(Ci, C
′
i).

2. Check that Ci ⊕ C′
i = (0, ej) for each i and j (1 ≤ j ≤ 64).

3. For each ciphertext pair (Ci, C
′
i) passing Step 2, extract some bits of control

vector by chasing a difference route between this OBP and the position of
the 64-th input bit in P−1

64/192 (See Fig. 7). Then find the corresponding bits
of K1, K1⊕K2, and K1⊕K3. Note that the controlled vector V ′ of P−1

64/192 in
the last round is formatted with CL ⊕K1, CL ⊕K1 ⊕K2, and CL ⊕K1 ⊕K3.

Fig. 7. The possible routes of the 64-th difference of P −1
64/192

216 C. Lee et al.

The data complexity of this attack is 244 related-key chosen plaintexts. The
time complexity of Step 1 is 244 full-round Cobra-H64 encryptions and the time
complexity of Steps 2 and 3 is much less than that of Step 1. By our related-key
differential characteristics each ciphertext pair can pass Step 2 with probabil-
ity at least 2−42 and thus the expectation of ciphertext pairs with the (0, ej)
difference that pass this test is at least 2. So we have at least one ciphertext
pairs with the (0, ej) difference for each 1 ≤ j ≤ 64. Thus we can retrieve 56
bits of information of keys in the lower layer of P−1

64/192 and 7 bits of information
of keys in the upper layer of P−1

64/192 with a data and a time complexity of 244.
Similarly, this attack can be simply extended to retrieve the whole of master key
pair (K, K ′) by performing an exhaustive search for the remaining keys.

6 Conclusion

We presented related-key attacks on Cobra-H64 and Cobra-H128. These ciphers
are designed suitable for wireless communications networks which require high-
speed, but they have a weak diffusion, a weak non-linear operation, and a simple
key schedule. So they are vulnerable to related-key differential attacks. According
to our results full-round Cobra-H64 can be broken by a complexity of 215.5 and
full-round Cobra-H128 by a complexity of 244.

Acknowledgments

We would like to thank the anonymous referees and Jesang Lee for helpful com-
ments about this work. This research was supported by the MIC(Ministry of
Information and Communication), Korea, under the ITRC(Information Tech-
nology Research Center) support program supervised by the IITA(Institute of
Information Technology Assessment). Furthermore, the second author was fi-
nanced by Ph.D. grants of the Katholieke Universiteit Leuven and of CIST,
Korea University and supported by the Concerted Research Action (GOA) Am-
biorics 2005/11 of the Flemish Government and by the European Commission
through the IST Programme under Contract IST2002507932 ECRYPT.

References

1. E. Biham and A. Shamir, “Differential Cryptanalysis of the Data Encryption Stan-
dard”, Springer-Verlag, 1993.

2. N. D. Goots, B. V. Izotov, A. A. Moldovyan, and N. A. Moldovyan, “Modern cryp-
tography: Protect Your Data with Fast Block Ciphers”, Wayne, A-LIST Publish.,
2003.

3. N. D. Goots, B. V. Izotov, A. A. Moldovyan, and N. A. Moldovyan, “Fast Ciphers
for Cheap Hardware : Differential Analysis of SPECTR-H64”, MMM-ACNS’03,
LNCS 2776, Springer-Verlag, 2003, pp. 449-452.

Related-Key Differential Attacks on Cobra-H64 and Cobra-H128 217

4. N. D. Goots, N. A. Moldovyan, P. A. Moldovyanu and D. H. Summerville, “Fast
DDP-Based Ciphers: From Hardware to Software”, 46th IEEE Midwest Interna-
tional Symposium on Circuits and Systems, 2003.

5. N. D. Goots, A. A. Moldovyan, N. A. Moldovyan, “Fast Encryption Algorithm
Spectr-H64”, MMM-ACNS’01, LNCS 2052, Springer-Verlag, 2001, pp. 275-286.

6. S. Kavut and M. D. Yücel, “Slide Attack on Spectr-H64”, INDOCRYPT’02, LNCS
2551, Springer-Verlag, 2002, pp. 34-47.

7. J. Kelsey, B. Schneier, and D. Wagner, “Key Schedule Cryptanalysis of IDEA, G-
DES, GOST, SAFER, and Triple-DES”, Advances in Cryptology - CRYPTO ’96,
LNCS 1109, Springer-Verlag, 1996, pp. 237-251.

8. J. Kelsey, B. Schneier, and D. Wagner, “Related-Key Cryptanalysis of 3-WAY,
Biham-DES, CAST, DES-X, NewDES, RC2, and TEA”, ICICS’97, LNCS 1334,
Springer-Verlag, 1997, pp. 233-246.

9. J. Kim, G. Kim, S. Hong, S. Lee and D. Hong, “The Related-Key Rectangle Attack
- Application to SHACAL-1”, ACISP 2004, LNCS 3108, Springer-Verlag, 2004, pp.
123-136.

10. J. Kim, G. Kim, S. Lee, J. Lim and J. Song, “Related-Key Attacks on Reduced
Rounds of SHACAL-2”, INDOCRYPT 2004, LNCS 3348, Springer-Verlag, 2004,
pp. 175-190.

11. Y. Ko, D. Hong, S. Hong, S. Lee, and J. Lim, “Linear Cryptanalysis on SPECTR-
H64 with Higher Order Differential Property”, MMM-ACNS03, LNCS 2776,
Springer-Verlag, 2003, pp. 298-307.

12. Y. Ko, C. Lee, S. Hong and S. Lee, “Related Key Differential Cryptanalysis of Full-
Round SPECTR-H64 and CIKS-1 ”, ACISP 2004, LNCS 3108, 2004, pp. 137-148.

13. Y. Ko, C. Lee, S. Hong, J. Sung and S. Lee, “Related-Key Attacks on DDP based
Ciphers: CIKS-128 and CIKS-128H ”, Indocrypt 2004, LNCS 3348, Springer-Verlag,
2004, pp. 191-205.

14. C. Lee, D. Hong, S. Lee, S. Lee, H. Yang, and J. Lim, “A Chosen Plaintext Linear
Attack on Block Cipher CIKS-1”, ICICS 2002, LNCS 2513, Springer-Verlag, 2002,
pp. 456-468.

15. C. Lee, J. Kim, S. Hong, J. Sung, and Sangjin Lee, “Related Key Differential
Attacks on Cobra-S128, Cobra-F64a, and Cobra-F64b”, MYCRYPT 2005, LNCS
3715, Springer-Verlag, 2005, pp. 245-263.

16. A. A. Moldovyan and N. A. Moldovyan, “A cipher Based on Data-Dependent
Permutations”, Journal of Cryptology, volume 15, no. 1 (2002), pp. 61-72

17. N. Sklavos, N. A. Moldovyan, and O. Koufopavlou, “High Speed Networking Secu-
rity: Design and Implementation of Two New DDP-Based Ciphers”, Mobile Net-
works and Applications-MONET, Kluwer Academic Publishers, Vol. 25, Issue 1-2,
pp. 219-231, 2005.

18. R. C.-W Phan and H. Handschuh, “On Related-Key and Collision Attacks: The
case for the IBM 4758 Cryptoprocessor”, ISC 2004, LNCS 3225, Springer-Verlag,
2004, pp. 111-122.

A Classes of the Key Bits Corresponding to the Possible
Routes

The following two tables represent classes of the key bits corresponding to the
possible routes when the non-zero input difference of P

(V ′16
6)

2/1 and output differ-
ence ei in P−1

32/96-box are fixed

218 C. Lee et al.

Table 7. Classes of the controlled vectors and key bits corresponding to the possible

routes when the non-zero input difference of P
(V ′16

5)
2/1 and output difference ei in P −1

32/96-
box are fixed

Class ei Controlled vectors Key bits
CL1 e1 v96 = C28

L ⊕ K28
1 = 0(0), v80 = C22

L ⊕ K22
1 = 1(1), v63 = C31

L ⊕ K31
1 = 1(1) K1

1 , K9
1 , K16

1

(e2) v36 = C16
L ⊕ K16

1 = 1(1), v19 = C9
L ⊕ K9

1 = 1(1), v1 = C1
L ⊕ K1

1 = 1(0) K22
1 , K28

1 , K31
1

CL2 e3 v96 = C28
L ⊕ K28

1 = 0(0), v80 = C22
L ⊕ K22

1 = 1(1), v63 = C31
L ⊕ K31

1 = 1(1) K2
1 , K9

1 , K16
1

(e4) v36 = C16
L ⊕ K16

1 = 1(1), v19 = C9
L ⊕ K9

1 = 0(0), v2 = C2
L ⊕ K2

1 = 1(0) K22
1 , K28

1 , K31
1

CL3 e5 v96 = C28
L ⊕ K28

1 = 0(0), v80 = C22
L ⊕ K22

1 = 1(1), v63 = C31
L ⊕ K31

1 = 1(1) K3
1 , K10

1 , K16
1

(e6) v36 = C16
L ⊕ K16

1 = 0(0), v20 = C10
L ⊕ K10

1 = 1(1), v3 = C3
L ⊕ K3

1 = 1(0) K22
1 , K31

1

CL4 e7 v96 = C28
L ⊕ K28

1 = 0(0), v80 = C22
L ⊕ K22

1 = 1(1), v63 = C31
L ⊕ K31

1 = 1(1) K4
1 , K11

1 , K16
1

(e8) v36 = C16
L ⊕ K16

1 = 0(0), v21 = C11
L ⊕ K11

1 = 0(0), v4 = C4
L ⊕ K4

1 = 1(0) K22
1 , K28

1 , K31
1

CL5 e9 v96 = C28
L ⊕ K28

1 = 0(0), v80 = C22
L ⊕ K22

1 = 1(1), v63 = C31
L ⊕ K31

1 = 0(0) K4
1 , K5

1 , K13
1

(e10) v40 = C4
L ⊕ K4

1 = 1(1), v23 = C13
L ⊕ K13

1 = 1(1), v5 = C5
L ⊕ K5

1 = 1(0) K22
1 , K28

1 , K31
1

CL6 e11 v96 = C28
L ⊕ K28

1 = 0(0), v80 = C22
L ⊕ K22

1 = 1(1), v63 = C31
L ⊕ K31

1 = 0(0) K4
1 , K6

1 , K13
1

(e12) v40 = C4
L ⊕ K4

1 = 1(1), v23 = C13
L ⊕ K13

1 = 0(0), v6 = C6
L ⊕ K6

1 = 1(0) K22
1 , K28

1 , K31
1

CL7 e13 v96 = C28
L ⊕ K28

1 = 0(0), v80 = C22
L ⊕ K22

1 = 1(1), v63 = C31
L ⊕ K31

1 = 0(0) K4
1 , K7

1 , K14
1

(e14) v40 = C4
L ⊕ K4

1 = 0(0), v24 = C14
L ⊕ K14

1 = 1(1), v7 = C7
L ⊕ K7

1 = 1(0) K22
1 , K28

1 , K31
1

CL8 e15 v96 = C28
L ⊕ K28

1 = 0(0), v80 = C22
L ⊕ K22

1 = 1(1), v63 = C31
L ⊕ K31

1 = 0(0) K4
1 , K8

1 , K14
1

(e16) v40 = C4
L ⊕ K4

1 = 0(0), v24 = C14
L ⊕ K14

1 = 0(0), v8 = C8
L ⊕ K8

1 = 1(0) K22
1 , K28

1 , K31
1

CL9 e17 v96 = C28
L ⊕ K28

1 = 0(0), v80 = C22
L ⊕ K22

1 = 0(0), v64 = C32
L ⊕ K32

1 = 1(1) K1
1 , K8

1 , K9
1

(e18) v44 = C8
L ⊕ K8

1 = 1(1), v27 = C1
L ⊕ K1

1 = 1(1), v9 = C9
L ⊕ K9

1 = 1(0) K22
1 , K28

1 , K32
1

CL10 e19 v96 = C28
L ⊕ K28

1 = 0(0), v80 = C22
L ⊕ K22

1 = 0(0), v64 = C32
L ⊕ K32

1 = 1(1) K1
1 , K8

1 , K10
1

(e20) v44 = C8
L ⊕ K8

1 = 1(1), v27 = C1
L ⊕ K1

1 = 0(0), v10 = C10
L ⊕ K10

1 = 1(0) K22
1 , K28

1 , K32
1

CL11 e21 v96 = C28
L ⊕ K28

1 = 0(0), v80 = C22
L ⊕ K22

1 = 0(0), v64 = C32
L ⊕ K32

1 = 1(1) K2
1 , K8

1 , K11
1

(e22) v44 = C8
L ⊕ K8

1 = 0(0), v28 = C2
L ⊕ K2

1 = 1(1), v11 = C11
L ⊕ K11

1 = 1(0) K22
1 , K28

1 , K32
1

CL12 e23 v96 = C28
L ⊕ K28

1 = 0(0), v80 = C22
L ⊕ K22

1 = 0(0), v64 = C32
L ⊕ K32

1 = 1(1) K2
1 , K8

1 , K12
1

(e24) v44 = C8
L ⊕ K8

1 = 0(0), v28 = C2
L ⊕ K2

1 = 0(0), v12 = C12
L ⊕ K12

1 = 1(0) K22
1 , K28

1 , K32
1

CL13 e25 v96 = C28
L ⊕ K28

1 = 0(0), v80 = C22
L ⊕ K22

1 = 0(0), v64 = C32
L ⊕ K32

1 = 0(0) K5
1 , K12

1 , K13
1

(e26) v48 = C12
L ⊕ K12

1 = 1(1), v31 = C5
L ⊕ K5

1 = 1(1), v13 = C13
L ⊕ K13

1 = 1(0) K22
1 , K28

1 , K32
1

CL14 e27 v96 = C28
L ⊕ K28

1 = 0(0), v80 = C22
L ⊕ K22

1 = 0(0), v64 = C32
L ⊕ K32

1 = 0(0) K5
1 , K12

1 , K14
1

(e28) v48 = C12
L ⊕ K12

1 = 1(1), v31 = C5
L ⊕ K5

1 = 0(0), v14 = C14
L ⊕ K14

1 = 1(0) K22
1 , K28

1 , K32
1

CL15 e29 v96 = C28
L ⊕ K28

1 = 0(0), v80 = C22
L ⊕ K22

1 = 0(0), v64 = C32
L ⊕ K32

1 = 0(0) K6
1 , K12

1 , K15
1

(e30) v48 = C12
L ⊕ K12

1 = 0(0), v32 = C6
L ⊕ K6

1 = 1(1), v15 = C15
L ⊕ K15

1 = 1(0) K22
1 , K28

1 , K32
1

CL16 e31 v96 = C28
L ⊕ K28

1 = 0(0), v80 = C22
L ⊕ K22

1 = 0(0), v64 = C32
L ⊕ K32

1 = 0(0) K6
1 , K12

1 , K16
1

(e32) v48 = C12
L ⊕ K12

1 = 0(0), v32 = C6
L ⊕ K6

1 = 0(0), v16 = C16
L ⊕ K16

1 = 1(0) K22
1 , K28

1 , K32
1

Related-Key Differential Attacks on Cobra-H64 and Cobra-H128 219

Table 8. Classes of the controlled vectors and key bits corresponding to the possible

routes when the non-zero input difference of P
(V ′14

5)
2/1 and output difference ei in P −1

32/96-
box are fixed

Class ei Controlled vectors Key bits
CL1′ e1 v96 = C28

L ⊕ K28
1 = 1(1), v78 = C20

L ⊕ K20
1 = 1(1), v61 = C29

L ⊕ K29
1 = 1(1) K1

1 , K7
1 , K14

1

(e2) v34 = C14
L ⊕ K14

1 = 1(1), v17 = C7
L ⊕ K7

1 = 1(1), v1 = C1
L ⊕ K1

1 = 0(1) K20
1 , K28

1 , K29
1

CL2′ e3 v96 = C28
L ⊕ K28

1 = 1(1), v78 = C20
L ⊕ K20

1 = 1(1), v61 = C29
L ⊕ K29

1 = 1(1) K2
1 , K7

1 , K14
1

(e4) v34 = C14
L ⊕ K14

1 = 1(1), v17 = C7
L ⊕ K7

1 = 0(0), v2 = C2
L ⊕ K2

1 = 0(1) K20
1 , K28

1 , K29
1

CL3′ e5 v96 = C28
L ⊕ K28

1 = 1(1), v78 = C20
L ⊕ K20

1 = 1(1), v61 = C29
L ⊕ K29

1 = 1(1) K3
1 , K8

1 , K14
1

(e6) v34 = C14
L ⊕ K14

1 = 0(0), v18 = C8
L ⊕ K8

1 = 1(1), v3 = C3
L ⊕ K3

1 = 0(1) K20
1 , K28

1 , K29
1

CL4′ e7 v96 = C28
L ⊕ K28

1 = 1(1), v78 = C20
L ⊕ K20

1 = 1(1), v61 = C29
L ⊕ K29

1 = 1(1) K4
1 , K8

1 , K14
1

(e8) v34 = C14
L ⊕ K14

1 = 0(0), v18 = C8
L ⊕ K8

1 = 0(0), v4 = C4
L ⊕ K4

1 = 0(1) K20
1 , K28

1 , K29
1

CL5′ e9 v96 = C28
L ⊕ K28

1 = 1(1), v78 = C20
L ⊕ K20

1 = 1(1), v61 = C29
L ⊕ K29

1 = 0(0) K1
1 , K5

1 , K11
1

(e10) v38 = C1
L ⊕ K1

1 = 1(1), v21 = C11
L ⊕ K11

1 = 1(1), v5 = C5
L ⊕ K5

1 = 0(1) K20
1 , K28

1 , K29
1

CL6′ e11 v96 = C28
L ⊕ K28

1 = 1(1), v78 = C20
L ⊕ K20

1 = 1(1), v61 = C29
L ⊕ K29

1 = 0(0) K1
1 , K6

1 , K11
1

(e12) v38 = C1
L ⊕ K1

1 = 1(1), v21 = C11
L ⊕ K11

1 = 0(0), v6 = C6
L ⊕ K6

1 = 0(1) K20
1 , K28

1 , K29
1

CL7′ e13 v96 = C28
L ⊕ K28

1 = 1(1), v78 = C20
L ⊕ K20

1 = 1(1), v61 = C29
L ⊕ K29

1 = 0(0) K1
1 , K7

1 , K12
1

(e14) v38 = C1
L ⊕ K1

1 = 0(0), v22 = C12
L ⊕ K12

1 = 1(1), v7 = C7
L ⊕ K7

1 = 0(1) K20
1 , K28

1 , K29
1

CL8′ e15 v96 = C28
L ⊕ K28

1 = 1(1), v78 = C20
L ⊕ K20

1 = 1(1), v61 = C29
L ⊕ K29

1 = 0(0) K1
1 , K8

1 , K12
1

(e16) v38 = C1
L ⊕ K1

1 = 0(0), v22 = C12
L ⊕ K12

1 = 0(0), v8 = C8
L ⊕ K8

1 = 0(1) K20
1 , K28

1 , K29
1

CL9′ e17 v96 = C28
L ⊕ K28

1 = 1(1), v78 = C20
L ⊕ K20

1 = 0(0), v62 = C30
L ⊕ K30

1 = 1(1) K6
1 , K9

1 , K15
1

(e18) v42 = C6
L ⊕ K6

1 = 1(1), v25 = C15
L ⊕ K15

1 = 1(1), v9 = C9
L ⊕ K9

1 = 0(1) K20
1 , K28

1 , K30
1

CL10′ e19 v96 = C28
L ⊕ K28

1 = 1(1), v78 = C20
L ⊕ K20

1 = 0(0), v62 = C30
L ⊕ K30

1 = 1(1) K6
1 , K10

1 , K15
1

(e20) v42 = C6
L ⊕ K6

1 = 1(1), v25 = C15
L ⊕ K15

1 = 0(0), v10 = C10
L ⊕ K10

1 = 0(1) K20
1 , K28

1 , K30
1

CL11′ e21 v96 = C28
L ⊕ K28

1 = 1(1), v78 = C20
L ⊕ K20

1 = 0(0), v62 = C30
L ⊕ K30

1 = 1(1) K6
1 , K11

1 , K16
1

(e22) v42 = C6
L ⊕ K6

1 = 0(0), v26 = C16
L ⊕ K16

1 = 1(1), v11 = C11
L ⊕ K11

1 = 0(1) K20
1 , K28

1 , K30
1

CL12′ e23 v96 = C28
L ⊕ K28

1 = 1(1), v78 = C20
L ⊕ K20

1 = 0(0), v62 = C30
L ⊕ K30

1 = 1(1) K6
1 , K12

1 , K16
1

(e24) v42 = C6
L ⊕ K6

1 = 0(0), v26 = C16
L ⊕ K16

1 = 0(0), v12 = C12
L ⊕ K12

1 = 0(1) K20
1 , K28

1 , K30
1

CL13′ e25 v96 = C28
L ⊕ K28

1 = 1(1), v78 = C20
L ⊕ K20

1 = 0(0), v62 = C30
L ⊕ K30

1 = 0(0) K3
1 , K10

1 , K13
1

(e26) v46 = C10
L ⊕ K10

1 = 1(1), v29 = C3
L ⊕ K3

1 = 1(1), v13 = C13
L ⊕ K13

1 = 0(1) K20
1 , K28

1 , K30
1

CL14′ e27 v96 = C28
L ⊕ K28

1 = 1(1), v78 = C20
L ⊕ K20

1 = 0(0), v62 = C30
L ⊕ K30

1 = 0(0) K3
1 , K10

1 , K14
1

(e28) v46 = C10
L ⊕ K10

1 = 1(1), v29 = C3
L ⊕ K3

1 = 0(0), v14 = C14
L ⊕ K14

1 = 0(1) K20
1 , K28

1 , K30
1

CL15′ e29 v96 = C28
L ⊕ K28

1 = 1(1), v78 = C20
L ⊕ K20

1 = 0(0), v62 = C30
L ⊕ K30

1 = 0(0) K4
1 , K10

1 , K15
1

(e30) v46 = C10
L ⊕ K10

1 = 0(0), v30 = C4
L ⊕ K4

1 = 1(1), v15 = C15
L ⊕ K15

1 = 0(1) K20
1 , K28

1 , K30
1

CL16′ e31 v96 = C28
L ⊕ K28

1 = 1(1), v78 = C20
L ⊕ K20

1 = 0(0), v62 = C30
L ⊕ K30

1 = 0(0) K4
1 , K10

1 , K16
1

(e32) v46 = C10
L ⊕ K10

1 = 0(0), v30 = C4
L ⊕ K4

1 = 0(0), v16 = C16
L ⊕ K16

1 = 0(1) K20
1 , K28

1 , K30
1

The Physically Observable Security of Signature
Schemes

Alexander W. Dent1 and John Malone-Lee2

1 Information Security Group,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, UK
a.dent@rhul.ac.uk

http://www.isg.rhul.ac.uk/~alex
2 Department of Computer Science,

University of Bristol,
Merchant Venturers Building, Woodland Road,

Bristol, BS8 1UB, UK
malone@cs.bris.ac.uk

http://www.cs.bris.ac.uk/~malone

Abstract. In recent years much research has been devoted to producing
formal models of security for cryptographic primitives and to designing
schemes that can be proved secure in such models. This line of research
typically assumes that an adversary is given black-box access to a cryp-
tographic mechanism that uses some secret key. One then proves that
this black-box access does not help the adversary to achieve its task.

An increasingly popular environment for cryptographic implementa-
tion is the smart-card. In such an environment a definition of security
that provides an adversary with only black-box access to the cryptogra-
phy under attack may be unrealistic. This is illustrated by attacks such
as the power-analysis methods proposed by Kocher and others.

In this paper we attempt to formally define a set of necessary con-
ditions on an implementation of a cryptosystem so that security against
an adversary with black-box access is preserved in a more hostile envi-
ronment such as the smart-card. Unlike the previous work in this area
we concentrate on high-level primitives. The particular example that we
take is the digital signature scheme. 1

1 Introduction

The idea of formally modelling cryptographic security originates in Probabilistic
Encryption [11], the seminal work of Goldwasser and Micali. Since the publi-
cation of that paper, a huge body of research has been devoted to designing
1 The work described in this paper has been supported in part by the European Com-

mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 220–232, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Physically Observable Security of Signature Schemes 221

schemes that provably meet some definition of security. The basic tenet of all
this work is as follows. Start with an assumption about some atomic primitive
(for example, the assumption that a particular function is one-way); design a
scheme in such a way that an adversary cannot break the scheme without vio-
lating the assumption about the atomic primitive. This property is demonstrated
using a complexity-theoretic reduction: one shows that, if an adversary of the
scheme exists, then this adversary could be used as a subroutine in an algorithm
to violate the assumption about the atomic primitive. Following this procedure
one concludes that, if the assumption about the atomic primitive is correct, the
scheme satisfies the chosen security definition.

Until recently, the idea of showing that the security of a cryptosystem relies
only on the properties of a set of critical atomic primitives has been applied
in a “black-box” manner. That is to say, an adversary is given black-box access
to an instance of the cryptosystem with a randomly generated secret key. It
may have complete control over all inputs, and see all outputs, but it has no
knowledge of the internal state of the black-box implementing the cryptosystem.
This approach has been used in both the symmetric-key [2] and asymmetric-
key [3] settings.

Such models may be appropriate for applications in which all potential adver-
saries are remote from the legitimate user; however, increasingly cryptography
is used in, for example, smart card applications where this is not the case. An
attack in this setting was discovered by Kocher et al. [14]. They showed how, by
monitoring the power consumption of a smart card running DES [9], the secret
key could be recovered. These attacks have since become known as side-channel
attacks; the side channel is the information leaked by the physical implementa-
tion of an algorithm – the power consumption in the example above.

There is no avoiding the fact that a physical device performing sensitive
operations may leak information. Countermeasures preventing specific attacks
can often be designed but they may be expensive. It is therefore imperative
that security models are developed that are capable of explicitly isolating the
security-critical operations in the implementation of a cryptosystem. This will
allow appropriate countermeasures to be focused exactly where they are neces-
sary.

Recently, the first steps have been taken towards formally defining security
models for environments where an adversary is able to mount side-channel at-
tacks. One such approach, proposed by Micali and Reyzin [15], is known as
physically observable cryptography. In this model, every cryptographic operation
gives off physical observables. For example, these observables could be related to
the power consumption [14] or the electro-magnetic radiation emitted by a de-
vice during computation [1]. The model does not deal with attacks such as those
proposed in [5,6] in which an adversary actively attempts to alter the operation
of a cryptosystem.

The original paper of Micali and Reyzin [15], very properly, concentrates on
physically observable cryptography on a “micro” scale: it examines the impact
that physical observables have on proofs of security for fundamental primitives

222 A.W. Dent and J. Malone-Lee

such as one-way functions and permutations. They left open the question of
how their model could be applied on a more “macro” scale, to primitives such as
encryption and signatures – for which there already exist schemes with black-box
security proofs. In this paper we start to address this question. More specifically,
we will describe how a set of necessary conditions can be established on the
implementations of components of certain cryptosystems so that a black-box
security proof holds in the setting where an adversary is given access to the
implementation of the cryptosystem.

2 Physically Observable Cryptography

In this section we begin by reviewing the model proposed by Micali and
Reyzin [15]. Once we have done so we describe how to extend the model to
deal with higher-level primitives than those considered to-date.

2.1 Informal Axioms

The model of Micali and Reyzin [15] requires several “informal axioms”. These
axioms are assumed to apply to any computational device used to implement
the primitives under consideration. We state these axioms briefly below and
elaborate on them where necessary. Further details may be found in [15].

Axiom 1. Computation, and only computation, leaks information. Hence, un-
accessed memory is totally secure.

Axiom 2. The same computation leaks different information on different de-
vices.

Axiom 3. Information leakage depends upon the chosen measurement.
Axiom 4. Information measurement is local: the information leaked by a com-

ponent function is independent of the computations made by any of the other
component functions.

Axiom 5. All leaked information is efficiently computable from the device’s
internal configuration. In particular, this means that the leakage is efficiently
simulatable if you know all the inputs to a component function.

We note that these axioms cannot be applied indiscriminately to all devices
implementing cryptography. For example the cache-based cryptanalysis proposed
by Page [16] and developed by Tsunoo et al. [18] exploits certain implementations
of DES where Axiom 4 above fails to hold. In particular these attacks exploit
the fact that, when implemented on a piece of hardware with cache memory, the
time taken to access S-box data may vary according to previous S-box access.
This time-based side-channel can be exploited to recover the key.

2.2 Computational Model

In the traditional Turing machine (TM) model the tape of the machine is ac-
cessed sequentially. This is not consistent with Axiom 1 in Section 2.1: to move

The Physically Observable Security of Signature Schemes 223

from one cell to another the machine may need to scan many intermediate cells
thereby leaking information about data that is not involved directly in compu-
tation. To overcome this problem Micali and Reyzin augment the model with
random access memory so that each bit can be addressed and accessed indepen-
dently of all other bits.

As we noted at the end of Section 2.1, Axiom 4 requires us to work in a
model where the leakage of a given device is independent of all the computa-
tion that precedes it. Micali and Reyzin point out that this means we cannot
work in a single TM model [15]. To provide modularity for physically observable
cryptography, the model of computation consists of multiple machines. These
machines may call one another as subroutines. A second requirement of the
model in order to preserve independence of leakage is that each machine has
its own memory space that only it can see. To implement this requirement the
model is augmented with a virtual memory manager.

We now proceed to formalise these concepts following the ideas of Micali and
Reyzin [15]. We comment on the differences between our version and the original
as and when they occur.

Abstract Virtual-Memory Computers. An abstract virtual-memory com-
puter (abstract VMC or simply VMC for short) consists of a collection of special
Turing machines. We call these machines abstract virtual-memory Turing ma-
chines (abstract VTMs or simply VTMs for short). We write A = (T1, . . . , Tn)
to denote the fact that abstract virtual-memory computer A consists of abstract
VTMs T1, . . . , Tn, where T1 is distinguished: it is invoked first and its inputs and
outputs coincide with those of A.

The specialisation of this model that we will use will have the following
features. We will assume that T1 calls each of T2, . . . , Tn in turn; that none of
these is called more than once; and that Ti does not call Tj if i �= 1. We will
demonstrate these properties with a concrete example in Section 3.2.

Virtual-Memory Management. In addition to the standard input, output,
work and random tapes of a probabilistic TM, a VTM has random access to its
own virtual address space (VAS). There is in fact a single physical address space
(PAS) for the entire VMC. A virtual-memory manager takes care of mapping the
PAS to individual VASs. Complete details of how the virtual-memory manager
works may be found in [15]. We only mention here the properties that we require.

Each VTM has a special VAS-access tape. To obtain a value from its VAS
it simply writes the location of the data that it wishes to read on its VAS-
access tape. The required data then appears on the VTMs VAS-access tape.
The mechanics of writing to VAS are equally simple: a VTM simply writes the
data and the location that it wishes it to be stored at on its VAS-access tape.

The only special requirement that we have in this context is that the virtual-
memory manager should only remap memory addresses, but never access the data.

Input and Output. The implementations of the cryptosystems that we will
consider in this paper will have the following form. The only VTM that will take

224 A.W. Dent and J. Malone-Lee

any external input or produce any external output is T1. So, if A = (T1, . . . , Tn),
the external input and external output of A are exactly those of T1.

At the start of the computation the input is on the start of T1’s VAS. At
the end of the computation the output occupies a portion of T1’s VAS. Further
details of this may be found in [15].

Calling VTMs as Subroutines. As we mentioned above, for the implementa-
tions of the cryptosystems that fit our version of the model, the only VTM that
will call any other VTM is T1. This VTM has a special subroutine-call tape. To
call a subroutine Ti, T1 specifies where the input for Ti is located on its – T1s –
VAS. It also specifies where it wants the output. The virtual memory manager
takes care of mapping address locations.

2.3 Physical Security Model

The physical implementation of a cryptosystem, itself modelled as a virtual-
memory computer T = (T1, . . . Tn), will be modelled as a physical virtual-memory
computer (physical VMC). This is a collection of physical virtual Turing machines
(physical VTMs) P = (P1, P2, . . . , Pn). Each physical VTM Pi consists of a pair
Pi = (Li, Ti) where Ti is a VTM and Li is a leakage function associated with
the physical implementation of Ti.

A leakage function is used to model the information leaked to an adversary by
a particular implementation. As defined by Micali and Reyzin [15], it has three
inputs: (1) the current configuration of the physical VTM under consideration;
(2) the setting of the measuring apparatus used by the adversary; and (3) a
random string to model the randomness of the measurement. Further details
may be found in [15].

We say that an adversary observes a physical VTM if it has access to the
output of the leakage function for the VTM and can decide upon the second
input: the measuring apparatus to use. As in [15], we denote the event that an
adversary A outputs yA after being run on input xA and observing a physical
VTM Pi being executed on an input xP and producing an output yP , by

yP ← P(xP) � A(xA) → yA.

3 A Definition of Security for Physical Virtual-Memory
Computers

Recall from Section 2.2 that we are interested in implementations of cryptosys-
tems with the following form. The cryptosystem must be susceptible to being
modelled as a VMC T = (T1, . . . , Tn) such that the input and output of T cor-
respond exactly to the input and output of T1, and T1 calls each Ti once and
once only. We will also require in our model that T1 is not responsible for any
computation itself. It simply maps addresses in its VAS to the VAS-access tapes
of the VTMs T2, . . . , Tn. It therefore follows from Axiom 1 in Section 2.1 that
T1 does not leak any side-channel information to an adversary.

The Physically Observable Security of Signature Schemes 225

The final point that we should make about T1 is that it has the secret key
of the cryptosystem concerned hard-coded into its VAS before any adversary
is given access to the implementation. We will also assume that the secret key
for the cryptosystem is of the form sk = (sk2, . . . , skn) where the sk i is the
secret key material used by Ti. At present our model can only deal with the
case where the sk i are distinct and generated independently of one another by
the key generation algorithm for the scheme (modulo some common parameter
such as a group or the bit-length of an RSA modulus). A good example of a
cryptosystem with such a property is the CS1a scheme of Cramer and Shoup [8].
We will comment on why this property is necessary at the appropriate point in
our proof of security.

At this point we will provide an example to illustrate the concepts that we
are introducing. The example that we will use is a version of the PSS variant [4]
of the RSA signature scheme [17]. We also introduce this example because we
will prove our result specifically for the case of digital signature schemes.

Before going into details of the specific scheme we remind ourselves of the def-
inition of a signature scheme and the definition of security for signature schemes.

3.1 Signature Schemes and Their Security

A signature scheme SIG consists of three algorithms KeyGen ,Sig and Ver . These
have the following properties.

– The key generation algorithm KeyGen is a probabilistic algorithm that takes
as input a security parameter 1k and produces a public/secret key pair
(pk , sk).

– The signing algorithm Sig takes as input the secret key sk and a message
m; it outputs a signature s . The signing algorithm may be probabilistic or
deterministic.

– The verification algorithm Ver takes as input a message m, the public key
pk and a purported signature s ; it outputs 1 if s is a valid signature on m
under pk , otherwise it outputs 0.

Let us also recall the standard definition of (black-box) security for a signa-
ture scheme: existential unforgeability under adaptive chosen message attack [12].
This notion is described using the experiment below involving a signature scheme
SIG = (KeyGen ,Sig,Ver), an adversary A and a security parameter k.

Expeuacma
SIG,A (k)

Stage 1. The key generation algorithm KeyGen for the signature scheme in
question is run on input of a security parameter 1k. The resulting public key
is given to adversary A.

Stage 2. Adversary A makes a polynomial number (in the security parameter)
of queries to a signing oracle. This oracle produces signatures for A on mes-
sages of its choice. The oracle produces these signatures using the secret key
generated in Stage 1 and the algorithm Sig .

226 A.W. Dent and J. Malone-Lee

Stage 3. Adversary A attempts to output a message and a valid signature such
that the message was never a query to the signing oracle in Stage 2. If it
succeeds in doing this we say that A wins and we output 1, otherwise we
output 0.

The adversary A’s advantage is the probability that it wins in the above. We
say

Adveuacma
SIG,A (k) = Pr[Expeuacma

SIG,A (k) = 1]. (1)

If, for all probabilistic polynomial time A, (1) is a negligible function k then SIG
is said to be existentially unforgeable under adaptive chosen message attack.

Having defined the black-box version of the definition of security for a signa-
ture scheme, it is a straightforward manner to define the physically observable
analogue. To do this we simply replace the black-box queries that A has in
Stage 2 of the above definition with physically observable queries as defined in
Section 2.3. In other words, we give A access to an oracle for the leakage func-
tion of the system. The adversary supplies the measurement information that is
input to the leakage function, and the oracle uses the machines current state and
randomness as the other inputs. We denote the experiment where A has access
to a leakage oracle Expeupoacma

T (SIG),A(k) and define the advantage of an adversary A
in this game by

Adveupoacma
T (SIG),A(k) = Pr[Expeupoacma

T (SIG),A(k) = 1]. (2)

In the above T (SIG) denotes the fact that we are concerned with the actual
implementation T of the scheme SIG rather than SIG itself.

3.2 The RSA-PSS Signature Scheme

In order to make the concepts we are discussing more concrete, we give an
example: the RSA-PSS signature scheme [4,17].

The signing algorithm for RSA-PSS involves formatting the message and then
performing modular exponentiation using a secret exponent. Here we describe
how this process can be decomposed into its various subroutines in our model.

Suppose that signing of n-bit messages is performed using a k-bit RSA mod-
ulus N and a secret exponent d. This requires two hash functions

H : {0, 1}n+k0 → {0, 1}k1 and G : {0, 1}k1 → {0, 1}n+k0 (3)

where k = n + k0 + k1 + 1.
The signing procedure will be modelled as a VMC T = (T1, . . . , T5). We

describe the roles of the various VTMs below. The message to be signed is m.

– T2 requires no input. It simply generates a k0 bit random number r and
writes r to the appropriate location in its VAS.

The Physically Observable Security of Signature Schemes 227

– T3 requires m and r as input. The addresses of these are provided by T1 and
the virtual memory manager does the appropriate address mapping. Having
recovered m and r from its VAS, T3 computes u = H(m||r) and writes u to
the appropriate location in its VAS.

– T4 requires m, r and u as input. The addresses of these are provided by
T1 and the virtual memory manager does the appropriate address mapping.
Having recovered m, r and u from its VAS, T4 computes v = G(u) ⊕ (m||r)
and writes v to the appropriate location in its VAS.

– T5 requires u, v, d and N as input. The addresses of these are provided by
T1 and the virtual memory manager does the appropriate address mapping.
Having recovered u, v, d and N from its VAS, T5 converts the bit-string
0||u||v into an integer x and computes s = xd mod N . It then writes s to the
appropriate location in its VAS.

– T1 takes external input m and has d and N hard-coded into its VAS. Its role
is simply to write the appropriate addresses from its VAS to its subroutine-
call tape and invoke T2, . . . , T5 in turn (the appropriate addresses are implicit
in the descriptions of T2, . . . , T5 above). The final job of T1 is to output the
data from the portion of its VAS where s is located after T5 has been called.

Note that in the description of T5 we include the 0 in the string 0||u||v to insure
that, once the string is converted into an integer, that integer is less than N .

3.3 Definition of Security for Implementations

In this paper we are starting with the assumption that a cryptosystem satisfying
the constraints that we outlined above is secure in a black-box setting. For a
signature scheme such as RSA-PSS this means existential unforgeability under
adaptive chosen message attack. Our aim is to provide sufficient conditions on
the various components of the implementation such that security in the black-
box setting translates into security of the physical implementation.

Let us consider an implementation T = (T1, . . . , Tn) of some cryptosystem
with public key pk and secret key sk = (sk2, . . . , skn). For i = 2, . . . , n we let

xi ← T |i(m, pk , sk i)

denote the action of executing T and halting after Ti has been run. We denote
by xi the vector of outputs from Ti, . . . , T2.

Also, for i = 3, . . . , n we let

s ← T |i(m, xi−1, pk , sk i)

denote the action of executing T from the point of Ti onwards where xi−1 denotes
the vector of outputs produced by Ti−1, . . . , T2. Note that in a complete execution
of T , T1 would know the locations of xi−1 VAS. Using these it would be able to
provide the necessary input for Ti, . . . , Tn.

We say that Ti is secure if there exists a polynomial-time simulator Si such
that no adversary A can win the following game (Explor

A,Ti
(k)) with probability

228 A.W. Dent and J. Malone-Lee

significantly greater than 1/2. Note that, since Si produces no output that is
used by any later process, it can be thought of as either a VTM with a leakage
function or a function that simulates the leakage function of the VTM Ti. In
the description below, the symbol q represents an upper bound on the number
of queries that A is able to make to the implementation that it is attacking. In
the description of Explor

A,Ti
(k) below lor is an acronym for left-or-right; either

A ends up being run in the experiment on the left or in the experiment on the
right. This idea has been used extensively in the literature, see [2] for example.

Experiment Explor
A,Ti

(k)
Run the key generation algorithm for the scheme

on input 1k to produce a key-pair (pk , sk)
Prepare implementation of Ti using sk i (where sk = (sk2, . . . , skn))
Choose b at random from {0, 1}
If b = 1 run Expreal

A,Ti
(k)

If b = 0 run Expsim
A,Ti

(k)
If b′ = b return 1, otherwise return 0

Experiment Expreal
A,Ti

(k)
state ← (pk , {sk l}l =i)
for(j = 0, j < q, j = j + 1)

{
mj ← A(state)
xi−1 ← T |i−1(mj , pk , sk i)
xi ← Ti(xi−1, pk , sk i)

� A(state) → state
xi = (xi, xi−1)
sj ← T |i+1(mj , xi, pk , sk i)
state ← A(state, sj)

}
b′ ← A(state)

Experiment Expsim
A,Ti

(k)
state ← (pk , {skl}l =i)
for(j = 0, j < q, j = j + 1)

{
mj ← A(state)
xi ← T |i(mj , pk , sk i)
Null ← Si(mj , pk)

� A(state) → state
sj ← T |i+1(mj , xi, pk , sk i)
state ← A(state, sj)

}
b′ ← A(state)

Note that we assume that A is given all the secret-key material for all the Tl

with l �= i. This is crucial for our security proof.
We define

Advlor
Ti,A(k) = |2 · Pr[Explor

Ti,A(k) = 1] − 1|.
We say that it is possible to implement Ti securely if there exists and Si such
that, for all probabilistic polynomial-time A, Advlor

Ti,A(k) is a negligible function
of k. Henceforth we refer to Si as the physical simulator for Ti.

3.4 Result

In this section we present our result for an implementation T = (T1, . . . , Tn) of
a signature scheme SIG. Our result holds in the model described in Section 2.
We state it formally below.

The Physically Observable Security of Signature Schemes 229

Theorem 1. Suppose that A is an adversary that succeeds in forging a SIG
signature by using a physical adaptive chosen message attack on the implemen-
tation T = (T1, . . . , Tn). We show that there are adversaries A2, . . . ,An,A′ such
that

Adveupoacma
T (SIG),A(k) ≤ Advlor

T2,A2
(k) + . . . + Advlor

Tn,An
(k) + Adveuacma

SIG,A′(k). (4)

The execution times of A2, . . . ,An and A′ are all essentially the same as that of
A and the number of oracle calls made by each one is the same as the number
make by A.

Proof. To prove our result we define a sequence G0, . . . ,Gn−1 of modified attack
games. The only difference between games is how the environment responds to
A’s oracle queries. For any 0 ≤ i ≤ n − 1, we let Wi be the event that A succeeds
in producing a valid forged signature in game Gi. This probability is taken over
the random choices of A and those of A’s oracles.

The first game G0 is the real attack game in which A my physically observe
the execution of T = (T1, . . . , Tn) on chosen input m. It may do this q times and
may choose its inputs adaptively based on information gleaned from previous
queries. From the definition of Adveupoacma

T (SIG),A(k) it follows that

Pr[W0] = Adveupoacma
T (SIG),A(k). (5)

In the second game G1 we replace the implementation of Tn with which A
interacts with Si - the physical simulator for Tn. We claim that there exists a
polynomial time adversary An, whose execution time is essentially the same as
that of A, such that

|Pr[W0] − Pr[W1]| ≤ Advlor
Tn,An

(k). (6)

It is easy to construct such an adversary An. According to the definition of
Explor

Ti,An
(k), An is given as input pk , (sk2, . . . , skn−1). Now, to construct An

we simply prepare implementations of T2, . . . , Tn−1 which we can use to simulate
A’s view in its attack on T . Now, in the case where the bit hidden form An is 1,
A is run by An in exactly the same way that the former would be run in game
G0. Also, in the case where the bit hidden from An is 0, A is run by An in
exactly the same way that the former would be run in game G1. It follows that
any perceptible difference in A’s performance in the transition from game G0 to
game G1 would provide us with an adversary An of the implementation of Ti.

We repeat this procedure, replacing Tn−1 with Sn−1 and so on, until we have
replaced T2 with S2. For j = 1, . . . , n − 2 this gives us

|Pr[Wj] − Pr[Wj+1]| ≤ Advlor
Tn−j ,An−j

(k), (7)

where An−j is an adversary of the implementation of Tn−j whose execution time
is essentially the same as that of A.

Finally, once this process has been completed, A does not have access to any
genuine physically observable components of T . We may therefore consider that

230 A.W. Dent and J. Malone-Lee

in game Gn−1, A is an adversary of the scheme in the black-box setting. We
conclude that there exists some adversary A′ such that

Pr[Wn−1] ≤ Adveuacma
SIG,A′(k). (8)

The result now follows from (5), (6), (7) and (8).

4 Conclusion

We have provided a set of sufficient conditions for the implementation of a cryp-
tosystem to be no less secure than the abstract cryptosystem itself. The sufficient
conditions come in two parts. Firstly we assume that the implementation of the
cryptosystem fits a computational model based on that proposed by Micali and
Reyzin [15]. This is the model that we described in Section 2. Secondly, in Sec-
tion 3.3, we gave an indistinguishability-based definition of security that should
be satisfied by the subroutines used by the implementation of the cryptosys-
tem. In Theorem 1 we proved that, in this model, if the subroutines satisfy our
definition then the implementation is no less secure than the cryptosystem itself.

The model that we have considered here is designed to cope with attacks
that are in some sense passive; the adversary is assumed not to actually tamper
with the internal workings of the implementation. This means that the model
does not say anything about attacks such as the fault attacks of Biham et al. [5].
However, there has been some preliminary research into the possibility of a
theoretical model to treat such cases [10].

Although we believe that a formal security treatment for side-channel environ-
ments may provide valuable insight, we recognise that it may be very difficult to
prove indistinguishability results about implementations in a complexity-theoretic
sense. An orthogonal line of research is to develop concrete tests that can be ap-
plied to implementations in order to assess and compare their security. For exam-
ple, Coron et al. have proposed a set of statistical tests for the detection of leaked
secret information [7]. A second interesting approach is the hidden-markov model
technique proposed by Karlof and Wagner [13]. The aim of this technique is to infer
information about a secret key based on side-channel information.

While our theoretical approach provides us with sufficient conditions for secure
implementations, the statistical techniques above provides us with necessary con-
ditions. By working on the problem from both these ends (so to speak), one hopes
to over time converge on a realistic, well-defined set of conditions that a secure im-
plementation of a cryptosystem should satisfy.

References

1. DakshiAgrawal, Bruce Archambeault, Josyula R.Rao, andPankaj Rohatgi. The EM
side-channel(s). In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors,
Chryptographic Hardware and Embedded Systems – CHES 2002, 4th International
Workshop, volume 2523 of Lecture Notes inComputer Science, pages 29–45, Redwood
Shores, CA, USA, August 13–15 2003. Springer-Verlag, Berlin, Germany.

The Physically Observable Security of Signature Schemes 231

2. Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete security
treatment of symmetric encryption. In 38th Annual Symposium on Foundations of
Computer Science, pages 394–403, Miami Beach, Florida, October 19–22, 1997. IEEE
Computer Society Press.

3. Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations
among notions of security for public-key encryption schemes. In Hugo Krawczyk,
editor, Advances inCryptology – CRYPTO ’98, volume 1462 of Lecture Notes inCom-
puter Science, pages 26–45, Santa Barbara, CA, USA, August 23–27, 1998. Springer-
Verlag, Berlin, Germany.

4. Mihir Bellare and Phillip Rogaway. The exact security of digital signatures: How
to sign with RSA and rabin. In Ueli M. Maurer, editor, Advances in Cryptology –
EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science, Saragossa,
Spain, May 12–16, 1996. Springer-Verlag, Berlin, Germany.

5. Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems.
In Walter Fumy, editor, Advances in Cryptology – EUROCRYPT ’97, volume 1233 of
Lecture Notes in Computer Science, pages 513–525, Konstanz, Germany, May 11–15,
1997. Springer-Verlag, Berlin, Germany.

6. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of check-
ing cryptographic protocols for faults. In Walter Fumy, editor, Advances in Cryptol-
ogy – EUROCRYPT ’97, volume 1233 of Lecture Notes in Computer Science, pages
37–51, Konstanz, Germany, May 11–15, 1997. Springer-Verlag, Berlin, Germany.

7. Jean-Sébastien Coron, David Naccache, and Paul Kocher. Statistics and secret leak-
age. ACM SIGOPS Operating Systems Review, 3(3):492–508, August 2004.

8. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal
on Computing, 33(1):167–226, 2003.

9. Federal Information Processing Standards Publication 46-3 (FIPS PUB 46-3): Data
Encryption Standard, October 1999.

10. Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Al-
gorithmic tamper-proof (ATP) security: Theoretical foundations for security against
hardware tampering. In Moni Naor, editor, TCC 2004: 1st Theory of Cryptography
Conference, volume 2951 of Lecture Notes inComputer Science, pages 258–277, Cam-
bridge, MA, USA, February 19–21, 2004. Springer-Verlag, Berlin, Germany.

11. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28:270–299, 1984.

12. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, April 1988.

13. Chris Karlof and David Wagner. Hidden markov model cryptanalysis. In Colin D.
Walter, Çetin Kaya Koç, and Christof Paar, editors, Chryptographic Hardware and
Embedded Systems – CHES 2003, 5th International Workshop, volume 2779 of Lec-
ture Notes in Computer Science, page 2, Cologne, Germany, September 8–10 2003.
Springer-Verlag, Berlin, Germany.

14. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, Advances in Cryptology – CRYPTO ’99, volume 1666 of
Lecture Notes in Computer Science, pages 388–397, Santa Barbara, CA, USA, 1999.

15. Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended ab-
stract). In Moni Naor, editor, TCC 2004: 1st Theory of Cryptography Conference,
volume 2951 of Lecture Notes in Computer Science, pages 278–296, Cambridge, MA,
USA, February 19–21, 2004. Springer-Verlag, Berlin, Germany. Full version available
at http://eprint.iacr.org2003/120.

232 A.W. Dent and J. Malone-Lee

16. Dan Page. Theoretical use of cache memory as a cryptanalytic side-channel. Tech-
nical Report CSTR-02-003, University of Bristol Department of Computer Science,
June 2002.

17. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signature and public-key cryptosystems. Communications of the Association
for Computing Machinery, 21(2):120–126, 1978.

18. Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi
Miyauchi. Cryptanalysis of DES implemented on computers with cache. In Burton
S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Chryptographic Hardware
and Embedded Systems – CHES 2002, 4th International Workshop, volume 2523 of
Lecture Notes in Computer Science, pages 62–ŋ76, Redwood Shores, CA, USA, Au-
gust 13–15 2003. Springer-Verlag, Berlin, Germany.

On the Automatic Construction of
Indistinguishable Operations

M. Barbosa1,� and D. Page2

1 Departamento de Informática, Universidade do Minho,
Campus de Gualtar, 4710-057 Braga, Portugal

mbb@di.uminho.pt
2 Department of Computer Science, University of Bristol,

Merchant Venturers Building, Woodland Road,
Bristol, BS8 1UB, United Kingdom

page@cs.bris.ac.uk

Abstract. An increasingly important design constraint for software run-
ning on ubiquitous computing devices is security, particularly against
physical methods such as side-channel attack. One well studied method-
ology for defending against such attacks is the concept of indistinguish-
able functions which leak no information about program control flow
since all execution paths are computationally identical. However, con-
structing such functions by hand becomes laborious and error prone as
their complexity increases. We investigate techniques for automating this
process and find that effective solutions can be constructed with only mi-
nor amounts of computational effort.

Keywords: Side-channel Cryptanalysis, Simple Power Analysis, Coun-
termeasures, Indistinguishable Operations.

1 Introduction

As computing devices become increasingly ubiquitous, the task of writing soft-
ware for them has presented programmers with a number of problems. Firstly,
devices like smart-cards are highly constrained in both their computational and
storage capacity; due to their low unit cost and small size, such devices are sig-
nificantly less powerful than PDA or desktop class computers. This demands
selection and implementation of algorithms which are sensitive to the demands
of the platform. Coupled with these issues of efficiency, which are also prevalent
in normal software development, constrained devices present new problems for
the programmer. For example, one typically needs to consider the power charac-
teristics and communication frequency of any operation since both eat into the
valuable battery life of the device.

Perhaps the most challenging aspect of writing software for ubiquitous com-
puters is the issue of security. Performing computation in a hostile, adversarial
� Funded by scholarship SFRH/BPD/20528/2004, awarded by the Fundação para a

Ciência e Tecnologia, Ministério da Ciência e do Ensino Superior, Portugal.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 233–247, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

234 M. Barbosa and D. Page

environment demands that software is robust enough to repel attackers who
hope to retrieve data stored on the device. Although cryptography provides a
number of tools to aid in protecting the data, the advent of physical attacks such
as side-channel analysis and fault injection mean one needs to consider security
of the software implementation as well as the mathematics it implements. By
passive monitoring of execution features such as timing variations [15], power
consumption [16] or electromagnetic emission [1,2] attackers can remotely re-
cover secret information from a device with little fear of detection. Typically
attacks consist of a collection phase which provides the attacker with profiles
of execution, and an analysis phase which recovers the secret information from
the profiles. Considering power consumption as the collection medium from here
on, attack methods can be split into two main classes. Simple power analysis
(SPA) is where the attacker is given only one profile and is required to recover
the secret information by focusing mainly on the operation being executed. In
contrast, differential power analysis (DPA) uses statistical methods to form a
correlation between a number of profiles and the secret information by focusing
mainly on the data items being processed.

As attack methods have become better understood, so have the related de-
fence methods. Although new vulnerabilities are regularly uncovered, one can
now deploy techniques in hardware and software which will vastly reduce the
effectiveness of most side-channel attacks and do so with fairly minor overhead.
Very roughly, defence methods fall into one of two main categories:

Randomisation. One method of reducing the chance of leaking secret informa-
tion is to introduce a confusion or randomisation element into the algorithm
being executed. This is particularly effective in defending against DPA-style
attacks but may also be useful in the SPA-style case. Essentially, randomisa-
tion ensures the execution sequence and intermediate results are different for
every invocation and hence reduces the correlation of a given profile with the
secret information. This method exists in many different forms, for example
the addition of blinding factors to exponents; dynamically randomising the
parameters or control flow in exponentiation algorithms; and using redun-
dant representations.

Indistinguishability. To prevent leakage of secret information to an SPA-style
attack by revealing the algorithm control flow, this approach aims to modify
operations sequences so that every execution path is uniform. Again, there
are several ways in which this can be achieved. One way is to work directly
on the mathematical formulae that define the operations and modify them so
that the resulting implementations have identical structure. Another method
is to work directly on the code, rearranging it and inserting dummy opera-
tions, to obtain the same effect.

A key difference between issues of efficiency and security is that the program-
mer is assisted by a compiler in the former case but not in the later. That is,
the programmer is entirely responsible for constructing defence methods against
side-channel analysis. Although the general technique of creating indistinguish-
able functions to foil SPA style attack is well understood, the general barrier

On the Automatic Construction of Indistinguishable Operations 235

Algorithm 1. The double-and-add method for ECC point multiplication
Input: point P , integer d
Output: point Q = d · P
1: Q ← O
2: for i = |d| − 1 downto 0 do
3: Q ← 2 · Q
4: if di = 1 then
5: Q ← Q + P
6: end if
7: end for
8: return Q

to implementation is how labour intensive and error prone the process is. This
is especially true when operation sequences in the functions are more complex
than in the stock example of elliptic curve cryptography (ECC), for example
systems like XTR or hyperelliptic curve cryptography (HECC). However, the
task is ideally suited to automation; to this end our focus in this paper is the
realisation of such automation to assist the development of secure software. To
conclude this introduction we introduce the concept and use of indistinguish-
able functions in more detail and present an overview of related work. Then,
in Section 2 we describe the construction of such functions as an optimisation
problem and offer an algorithm to produce solutions in Section 3. Finally, we
present some example results in Section 4 and concluding remarks in Section 5.

1.1 Using Indistinguishable Functions

One of the most basic forms of side-channel attack is that of simple power analy-
sis (SPA): the attacker is presented with a single profile from the collection phase
and tasked with recovering the secret information. Such an attack can succeed
if one can reconstruct the program control flow by observing the operations
performed in an algorithm. If decisions in the control flow are based on secret
information, it is leaked to the attacker. We focus here on point multiplication
as used in ECC [4] and described by Algorithm 1.

Restricting ourselves to working over the field K = Fp, where p is a large
prime, our elliptic curve is defined by:

E(K) : y2 = x3 + Ax + B

for some parameters A and B. The set of rational points P = (x, y) on this curve,
together with the identity element O, form an additive group. ECC based public
key cryptography typically derives security by presenting an intractable discrete
logarithm problem over this curve group. That is, one constructs a secret integer
d and performs the operation Q = d ·P for some public point P . Since reversing
this operation is believed to be hard, one can then transmit Q without revealing
the value of d.

236 M. Barbosa and D. Page

Point addition and doubling on an elliptic curve are often distinguishable
from each other in a profile of power consumption because one is composed from
a different sequence of operations than the other. Denoting addition by A and
doubling by D, the collection phase of an SPA attack presents the attacker with
a profile detailing the operations performed during execution of the algorithm.
For example, by monitoring execution of using the multiplier d = 10012 = 910,
one obtains the profile:

DADDDA

Given this single profile, the analysis phase can recover the secret value of d
simply by spotting where the point additions occur. If the sequence DA occurs
during iteration i we have that di = 1 whereas if the sequence D occurs then
di = 0.

One way to avoid this problem is to employ a double-and-add-always method,
due to Coron [8], whereby a dummy addition is executed if the real one is not.
Although the cases where di = 0 and di = 1 are now indistinguishable, this
method significantly reduces the performance of the algorithm since many more
additions are performed.

However, the ECC group law is very flexible in terms of how the point addition
and doubling operations can be implemented through different curve parameteri-
sations, point representations and so on. We can utilise this flexibility to force in-
distinguishability by manipulating the functions for point addition and doubling
so that they are no longer different. This is generally achieved by splitting the more
expensive point addition into two parts, each of which is identical in terms of the
operations it performs to a point doubling. Put more simply, instead of recovering
the profile above from the SPA collection phase, an attacker gets:

DDDDDDDD

from which they can get no useful information. Note that although we present
the use of indistinguishable functions solely for point multiplication or exponen-
tiation, the technique is more generally useful and can be applied in many other
contexts.

1.2 Related Work

Gebotys and Gebotys [12] analyse the SPA resistance of a DSP-based implemen-
tation of ECC point multiplication using projective coordinates on curves over
Fp. They show that by hand-modifying the doubling and adding implementation
code, simply by inserting dummy operations, it is possible to obtain significant
improvements. Likewise, Trichina and Bellezza [21] analyse the overhead associ-
ated with the same approach using mixed coordinates on curves over F2n , and
again find an efficient hand-constructed solution. Brier and Joye [6] present uni-
fied addition and doubling functions by observing that operations for calculating
slope can be shared between the two cases. Joye and Quisquater [14] and Liardet
and Smart [18] take a different approach by finding different curve parameteri-
sations that offer naturally indistinguishable formulae; they utilise Hessian and

On the Automatic Construction of Indistinguishable Operations 237

Jacobi form elliptic curves respectively. In other contexts than ECC, Page and
Stam [20] present hand-constructed indistinguishable operations for XTR.

Chevallier-Mames et al. [7] propose a generalised formulation for construct-
ing indistinguishable functions and apply it to processor-level sequences of in-
structions. SPA attacks typically exploit conditional instructions that depend on
secret information: the solution is to make the sequences of instructions (pro-
cesses) associated with both branches indistinguishable. The authors introduce
the concept of side channel atomicity. All processes are transformed, simply by
padding them with dummy operations, so that they execute as a repetition of a
small instruction sequence (a pattern) called a side-channel atomic block. This
idea is closely related to our work.

2 Indistinguishable Functions

In this section we enunciate the problem of building indistinguishable functions
as an optimisation problem. We begin by defining a problem instance.

Definition 1. Let F be a list of N functions F = F1, F2, ..., FN where each
function Fi is itself a list of instructions from a finite instruction set L:

Fi = Fi[1], Fi[2], ..., Fi[|Fi|]
where |Fi| denotes the length of function Fi, and Fi[j] ∈ L denotes instruction
j of function Fi, with 1 ≤ j ≤ |Fi|. Also, let Fi[k..j] denote instructions k to j
in function Fi, with 1 ≤ k ≤ j ≤ |Fi|.
For concreteness one should think of the simple case of two functions F1 and F2

as performing ECC point addition and doubling. Further, the instruction set L
is formed from three-address style operations [19] on elements in the base field,
for example addition and multiplication, and the functions are straight-line in
that they contain no internal control flow structure.

We aim to manipulate the original functions into new versions F ′
i such that

the execution trace of all of them is some multiple of the execution trace of a
shorter sequence. We term this shorted sequence Π , the fixed pattern of opera-
tions which is repeated to compose the larger functions. Clearly we might need
to add some dummy instructions to the original functions as well as reorder-
ing their instructions so that the pattern is followed. To allow for instruction
reordering, we extend our problem definition to include information about the
data dependencies between instructions within each function. We represent these
dependencies as directed graphs.

Definition 2. Given a set F as in Definition 1, let P be the list of pairs

P = (F1, G1), (F2, G2), ..., (FN , GN)

where Gi = (Vi, Ei) is a directed graph in which Vi and Ei are the associated
sets of nodes and edges, respectively. Let |Vi| = |Fi| and, to each instruction

238 M. Barbosa and D. Page

Fi[j], associate node vj ∈ Vi. Let Ei contain an edge from node vj to node vk

if and only if executing instruction Fi[j] before instruction Fi[k] disrupts the
normal data flow inside the function. We say that instruction Fi[j] depends on
instruction Fi[k].

In general terms, given a straight-line function Fi described using three-address
operations from our instruction set L, the pair of function and graph (Fi,Gi)
can be constructed as follows:

1. Add |Fi| nodes to Vi so that each instruction in the function is represented
by a node in the graph.

2. For every instruction Fi[j] add an edge (vj , vk) to Ei if and only if Fi[j] uses
a result directly modified by some instruction Fi[k]. Note that we assume
that symbols for intermediate results are not reused. That is, the function is
in single-static-assignment (SSA) form [19]. If reuse is permitted, additional
edges must be inserted in the dependency graph to prevent overwriting in-
termediate results.

3. Calculate (Vi, E
′
i), the transitive closure of the graph (Vi, Ei), and take Gi =

(Vi, E
′
i).

We use the dependency graphs from Definition 2 to guarantee that the trans-
formations we perform on the functions Fi are sound. That is, as long as we
respect the dependencies, the program is functionally correct even though the
instructions are reordered. Definition 3 captures this notion.

Definition 3. A function F ′
i is a valid transformation of a function Fi (written

F ′
i � Fi) if given the dependency graph Gi, F ′

i can be generated by modifying Fi

as follows:

1. Reorder the instructions in Fi, respecting the dependency graph Gi i.e. if
there is an edge (vj , vk) ∈ Ei then instruction Fi[j] must occur after instruc-
tion Fi[k] in F ′

i .
2. Insert a finite number of dummy instructions.

The goal is to find Π and matching F ′
i whose processing overhead compared

to the original programs is minimised. Hence, our problem definition must also
include the concept of computational cost. For the sake of generality, we assign
to each basic instruction in set L an integer weight value that provides a relative
measure of it’s computational weight.

Definition 4. Let ω : L → N be a weight function that, for each basic instruc-
tion l ∈ L, provides a relative value ω(l) for the computational load associated
with instruction l.

Given this cost function, we are now in a position to provide a formulation of
the problem of building indistinguishable functions as an optimisation problem.

On the Automatic Construction of Indistinguishable Operations 239

Definition 5. Given a pair (P, ω) as in Definitions 1, 2 and 4, find a pattern
Π and a list of functions F ′ = F ′

1, F
′
2, ..., F

′
N such that⎧⎪⎪⎨

⎪⎪⎩
Π = Π [1], Π [2], ..., Π[|Π |] Π [k] ∈ L, 1 ≤ k ≤ |Π |
F ′

i � Fi 1 ≤ i ≤ N
|F ′

i | = 0 (mod |Π |) 1 ≤ i ≤ N
F ′

i [j] = Π [(j mod |Π |) + 1] 1 ≤ i ≤ N, 1 ≤ j ≤ |F ′
i |

and that

N∑
i=1

|F ′
i |∑

j=1

ω(F ′
i [j])

is minimal.

To reiterate, from this definition we have that each function must be composed
of a number of instances of the pattern which constrains the type of each instruc-
tion. As a consequence, each instruction within each function matches the same
instruction, modulo the pattern size, of every other function. Two functions are
hence indistinguishable since one cannot identify their boundaries within a larger
sequence of such patterns. In context, the only leaked information is potentially
the Hamming weight and length of d: this is undesirable but unavoidable given
the scope of our work.

Intuition on the hardness of satisfying these constraints comes from noticing
similarities with well-known NP-complete optimisation problems such as the
Minimum Bin Packing, Longest Common Subsequence and Nearest Codeword
problems [9].

2.1 A Small Example

Recalling our definition of the elliptic curve E(K) in Section 1.1, Algorithm 2
details two functions for affine point addition and doubling on such a curve.
Denoting the addition and doubling as functions F1 and F2 respectively, we find
|F1| = 10 while |F2| = 13. From these functions, we also find our instruction
set is L = {x + y, x − y, x2, x × y, 1/x} with all operations over the base field
K = Fp. Thus, we setup our costs as ω(x + y) = 1, ω(x − y) = 1, ω(x2) = 10,
ω(x × y) = 20 and ω(1/x) = 100.

Notice the role of dependencies in the functions: operation three in F1 de-
pends on operation two but not on operation one. In fact, we can relocate oper-
ation one after operation three to form a valid function F ′

1 since it respects the
data dependencies that exist.

The graphs in Figure 1 represent the direct dependencies between the in-
structions in the addition method (top) and the doubling method (bottom).
Complete dependency graphs as specified in Definition 2 can be obtained by
calculating the transitive closure over the graphs in Figure 1.

240 M. Barbosa and D. Page

Algorithm 2. Methods for ECC affine point addition (left) and doubling (right)
Input: P = (x1, y1), Q = (x2, y2)
Output: R = (x3, y3) = P + Q
1: λ1 ← y2 − y1

2: λ2 ← x2 − x1

3: λ3 ← λ−1
2

4: λ4 ← λ1 · λ3

5: λ5 ← λ2
4

6: λ6 ← λ5 − x1

7: x3 ← λ6 − x2

8: λ7 ← x1 − x3

9: λ8 ← λ4 · λ7

10: y3 ← λ8 − y1

Input: P = (x1, y1)
Output: R = (x3, y3) = 2 · P
1: λ1 ← x2

1

2: λ2 ← λ1 + λ1

3: λ3 ← λ2 + λ1

4: λ4 ← λ3 + A
5: λ5 ← y1 + y1

6: λ6 ← λ−1
5

7: λ7 ← λ4 · λ6

8: λ8 ← λ2
7

9: λ9 ← x1 + x1

10: x3 ← λ8 − λ9

11: λ10 ← x1 − x3

12: λ11 ← λ10 · λ7

13: y3 ← λ11 − y1

Algorithm 3 shows a solution for this instance of the optimisation problem.
The cost of the solution is 12 since we add an extra square and two extra addi-
tions both denoted by the use of λd as their arguments. It is easy to see that it
is actually an absolute minimal value. To clarify the criteria specified in Defini-
tion 5, let us see how they apply to this case.

The pattern Π is given by the operation sequence of the doubling method,
and we have |Π | = 13. To ensure both |F ′

1| = 0 (mod |Π |) and |F ′
2| = 0

(mod |Π |) we need to add three dummy instructions to F1. The solution presents
no mismatches between the instruction sequences of either function and the pat-
tern Π , so the restriction F ′

i [j] = Π [(j mod |Π |) + 1] holds for all valid i and
j values. Finally, it is easy to see that both F ′

i are valid transformations of the
original Fi. Instruction reordering occurs only once in F ′

1 (instructions 3 and 5),
and these are independent in F1. F ′

2 is identical to F2.

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 1. Dependency graphs for the methods in Algorithm 2

On the Automatic Construction of Indistinguishable Operations 241

Algorithm 3. Indistinguishable versions of the methods in Algorithm 2
Input: P = (x1, y1), Q = (x2, y2)
Output: R = (x3, y3) = P + Q
1: λd ← λ2

d

2: λd ← λd + λd

3: λ2 ← x2 − x1

4: λd ← λd + λd

5: λ1 ← y2 − y1

6: λ3 ← λ−1
2

7: λ4 ← λ1 · λ3

8: λ5 ← λ2
4

9: λ6 ← λ5 − x1

10: x3 ← λ6 − x2

11: λ7 ← x1 − x3

12: λ8 ← λ4 · λ7

13: y3 ← λ8 − y1

Input: P = (x1, y1)
Output: R = (x3, y3) = 2 · P
1: λ1 ← x2

1

2: λ2 ← λ1 + λ1

3: λ3 ← λ2 + λ1

4: λ4 ← λ3 + A
5: λ5 ← y1 + y1

6: λ6 ← λ−1
5

7: λ7 ← λ4 · λ6

8: λ8 ← λ2
7

9: λ9 ← x1 + x1

10: x3 ← λ8 − λ9

11: λ10 ← x1 − x3

12: λ11 ← λ10 · λ7

13: y3 ← λ11 − y1

3 An Optimisation Algorithm

Our approach to solving the problem as described above is detailed in Algo-
rithm 4. The algorithm represents an adaptation of Threshold Accepting [10], a
generic optimisation algorithm. Threshold Accepting is a close relative of sim-
ulated annealing, where candidate solutions are deterministically accepted or
rejected according to a predefined threshold schedule: a proposed solution is
accepted as long as it does not increase the current cost by more than the cur-
rent threshold value. Note that we are not aiming to find the optimal solution,
but to find a good enough approximation of it that can be used in practical
applications.

Algorithm 4 makes S attempts to find an optimal pattern size, which is
selected randomly in each s-iteration (line 2). In each of these attempts, the
original functions are taken as the starting solution, with the minor change that
they are padded with dummy instructions, so as to make their size multiple of
the pattern size (lines 3 to 6).

The inner loop (lines 10 to 18), which runs T times, uses a set of randomised
heuristics to obtain a neighbour solution. This solution is accepted if it does not
represent a relative cost increase greater than the current threshold value. The
threshold varies with t, starting at a larger value for low values of t and gradually
decreasing. The number of iterations S and T must be adjusted according to the
size of the problem.

The quality of a solution is measured using a cost function that operates as
follows:

– The complete set of instructions in a solution x is seen as a matrix with |Π |
columns and (

∑N
i=1 |F ′

i |)/|Π | rows (see Figure 2), in which each function
occupies |F ′

i |/|Π | consecutive rows.

242 M. Barbosa and D. Page

Algorithm 4. An optimisation algorithm for indistinguishable operations.
Input: (P, ω)
Output: (Π, F ′), a quasi-optimal solution to the problem in Definition 5
1: for s = 1 to S do
2: |Π | ← random pattern size
3: x ← {Fi, 1 ≤ i ≤ N}
4: for all F ′

i ∈ x do
5: Append |Π | − (|F ′

i | (mod |Π |)) dummy instructions to F ′
i

6: end for
7: cost ← cost(x)
8: result ← x
9: best ← cost

10: for t = 1 to T do
11: x′ ← neighbour(x)
12: thresh ← threshold(t,T)
13: cost′ ← cost(x′)
14: if (cost′/cost) − 1 < thresh then
15: x ← x′

16: cost ← cost′

17: end if
18: end for
19: if cost < best then
20: result ← x
21: best ← cost
22: end if
23: end for
24: return result

– Throughout the algorithm, the pattern Π is adjusted to each solution by
taking Π [k] as the most common basic instruction in column k of the matrix.

– A dummy instruction is always taken to be of the same type as the pattern
instruction for its particular column, so dummy instructions are ignored
when adjusting Π to a particular solution.

– The overall cost of a solution has two components: c and d. The former
is the cost associated with deviations from the pattern and it is evaluated
as the sum, taken over all non-matching instructions in the matrix, of the
weight difference relative to the corresponding pattern instruction. The latter
is the cost associated with dummy operations and it is evaluated as the
accumulated weight of all the dummy instructions in the matrix.

– The relative importance of these components can be tuned to put more
or less emphasis on indistinguishability. This affects the trade-off between
indistinguishability and processing overhead.

Throughout its execution, the algorithm keeps track of the best solution it has
been able to reach (lines 19 to 22); this is returned when the algorithm terminates
(line 24).

On the Automatic Construction of Indistinguishable Operations 243

Π [1] Π [2] ... Π [|Π | − 1] Π [|Π |]

F ′
1[1] F ′

1[2] ... F ′
1[|Π | − 1] F ′

1[|Π |]
F ′

1[|Π | + 1] F ′
1[2] ... F ′

1[2|Π | − 1] F ′
1[2|Π |]

...
...

...
...

...
F ′

1[|F ′
1| − |Π | + 1] F ′

1[|F ′
1| − |Π | + 2] ... F ′

1[|F ′
1| − 1] F ′

1[|F ′
1|]

F ′
2[1] F ′

2[2] ... F ′
2[|Π | − 1] F ′

2[|Π |]
...

...
...

...
...

F ′
N [|F ′

N | − |Π | + 1] F ′
N [|F ′

N | − |Π | + 2] ... F ′
N [|F ′

N | − 1] F ′
N [|F ′

N |]

Fig. 2. A solution as a matrix of instructions

A neighbour solution is derived from the current solution by randomly se-
lecting one of the following heuristics:

Tilt function left. A function F ′
i is selected randomly, and its instructions are

all moved as far to the left as possible, filling spaces previously occupied by
dummy instructions or just freed by moving other instructions. The order of
the instructions is preserved, and an instruction is only moved if it matches
the pattern instruction for the target column.

Tilt function right. Same as previous, only that instructions are shifted to
the right.

Move instruction left. A function F ′
i is selected randomly, and an instruction

F ′
i [j] is randomly picked within it. This instruction is then moved as far to

the left as possible. An instruction is only moved if this does not violate
inter-instruction dependencies, and it matches the pattern instruction for
the target column.

Move instruction right. Same as previous, only that the instruction is shifted
to the right.

After application of the selection heuristic, the neighbour solution is optimised
by removing rows or columns containing only dummy instructions. If the final
solution produced by Algorithm 4 includes deviations from the chosen pattern,
these can be eliminated in an optional post-processing phase. In this phase we
increase the pattern size to cover the mismatches and introduce extra dummy
operations to retain indestinguishability. If the number of mismatches is large,
this produces a degenerate solution which is discarded due to the high related
cost.

Our experimental results indicate the following rules of thumb that should
be considered when parameterising Algorithm 4:

– S should be at least half of the length of the longest function.
– T should be a small multiple of the total number of instructions.
– An overall cost function calculated as c2 + d leads to a good compromise

between indistinguishability and processing overhead.

244 M. Barbosa and D. Page

– The threshold should decrease quadratically, starting at 70% for t = 1 and
reaching 10% when t = T .

– The neighbour generation heuristics should be selected with equal probabil-
ity, or with a small bias favouring moving over tilting mutations.

4 Results

Using Algorithm 4 we have been able to produce results equivalent to various
hand-made solutions published in the literature for small sized problems, and
to construct indistinguishable versions of the much larger functions for point
addition and doubling in genus 2 hyper-elliptic curves over finite fields. To save
space, we refer to Appendices within the full version of this paper for a complete
set of results [3].

Appendix 1 contains the results produced by Algorithm 4 when fed with the
instruction sequences for vanilla EC affine point addition over Fp using projective
coordinates, as presented by Gebotys and Gebotys in (Figure 1,[12]). This result
has exactly the same overhead as the version presented in the same reference.
Appendix 2 contains the instruction sequences corresponding to formulae for
finite field arithmetic in a specific degree six extension as used in a number
of torus based constructions [13,11], together with the results obtained using
Algorithm 4 for this problem instance.

Table 1 shows the number of dummy field operations added to each of the
functions in Appendix 2. Also shown in Table 1 is the estimated overhead for an
exponentiation. We assume the average case in which the number of squarings
is twice the number of multiplications. This is roughly equivalent to the best
hand-made solution that we were able to produce in reasonable time, even if the
number of dummy multiplications is slightly larger in the automated version.

Appendix 3 includes indistinguishable versions of hyper-elliptic curve point
adding and doubling functions. These implementations correspond to the general
case of the explicit formulae for genus 2 hyperelliptic curves over finite fields using
affine coordinates. provided by Lange in [17]. A pseudo-code implementation of
these formulae is also included in Appendix 3. In our analysis, we made no
assumptions as to the values of curve parameters because our objective was
to work over a relatively large problem instance. Operations involving curve
parameters were treated as generic operations.

In this example, the group operations themselves contain branching instruc-
tions. To accommodate this, we had to first create indistinguishable versions
of the smaller branches inside the addition and doubling functions, separately.

Table 1. Overheads for the indistinguishable functions in Appendix 2

Operations Square Multiply

Add 9 11
Multiply 4 2

Shift 0 12

Overhead
24%
19%
400%

On the Automatic Construction of Indistinguishable Operations 245

The process was then applied globally to the two main branches of the addition
function and to the doubling function as a whole, which meant processing three
functions of considerable size, simultaneously.

Table 2 (left) shows the number of dummy field operations added to each of
the functions in Appendix 3. Note that functions Add2′ and Double′ correspond
to cases that are overwhelmingly more likely to occur. The overhead, in these
cases, is within reasonable limits. Also shown in Table 2 (right) is the estimated
overhead for a point multiplication. We assume the average case in which the
number of doublings is twice the number of additions, and consider only the
most likely execution sequences for these operations (Add2′ and Double′).

Table 2. Overheads for the indistinguishable functions in Appendix 3

Operations Add1 Add2′ Add2′′ Double′ Double′′

Add 35 20 37 4 16
Multiply 28 14 27 5 16
Square 7 5 6 2 4
Invert 1 1 1 1 1

Overhead
19%
25%
60%
100%

5 Conclusion

Defence against side-channel attacks is a vital part of engineering software that
is to be executed on constrained devices. Since such devices are used within an
adversarial environment, sound and efficient techniques are of value even if they
are hard to implement. To this end we have investigated an automated approach
to constructing indistinguishable functions, a general method of defence against
certain classes of side-channel attack which are notoriously difficult to implement
as the functions grow more complex. Our results show that efficient versions of
such functions, which are competitive with hand-constructed versions, can be
generated with only minor computational effort.

This work is pitched in the context of cryptography-aware compilation: the
idea that programmers should be assisted in describing secure software just like
they are offered support to optimise software. We have embedded our algorithm
in such a compiler which can now automatically manipulate a source program so
the result is more secure. As such, interesting further work includes addressing
the relationship between register allocation and construction of indistinguishable
functions. Ideally, the number of registers used is minimised using, for example,
a graph colouring allocator. Manipulation of functions can alter the effective-
ness of this process, a fact that requires some further investigation. Equally,
the relationship between the presented work and side-channel atomicity might
provide an avenue for further work. One would expect a similar method to the
one presented here to be suitable for automatic construction of side-channel
atomic patterns, and that aggressive inlining within our compiler could present
the opportunity to deploy such a method.

246 M. Barbosa and D. Page

Acknowledgements

The authors would like to thank Nigel Smart and Richard Noad for their in-
put during this work, and the anonymous reviewers whose comments helped to
improve it.

References

1. D. Agrawal, B. Archambeault, J.R. Rao and P. Rohatgi. The EM Side-Channel(s).
In Cryptographic Hardware and Embedded Systems (CHES), Springer-Verlag LNCS
2523, 29–45, 2002.

2. D. Agrawal, J.R. Rao and P. Rohatgi. Multi-channel Attacks. In Cryptographic
Hardware and Embedded Systems (CHES), Springer-Verlag LNCS 2779, 2–16, 2003.

3. M. Barbosa and D. Page. On the Automatic Construction of Indistinguishable
Operations. In Cryptology ePrint Archive, Report 2005/174, 2005.

4. I.F. Blake, G. Seroussi and N.P. Smart. Elliptic Curves in Cryptography. Cam-
bridge University Press, 1999.

5. I.F. Blake, G. Seroussi and N.P. Smart. Advances in Elliptic Curve Cryptography.
Cambridge University Press, 2004.

6. É. Brier and M. Joye. Weierstraß Elliptic Curves and Side-channel Attacks. In
Public Key Cryptography (PKC), Springer-Verlag LNCS 2274, 335–345, 2002.

7. B. Chevallier-Mames, M. Ciet and M. Joye. Low-Cost Solutions for Preventing
Simple Side-Channel Analysis: Side-Channel Atomicity. In IEEE Transactions on
Computers, 53(6), 760–768, 2004.

8. J-S. Coron. Resistance against Differential Power Analysis for Elliptic Curve Cryp-
tosystems. In Cryptographic Hardware and Embedded Systems (CHES), Springer-
Verlag LNCS 1717, 292–302, 1999.

9. P. Crescenzi and V. Kann. A Compendium of NP Optimization Problems. Avail-
able at: http://www.nada.kth.se/\simviggo/problemlist/.

10. G. Dueck and T. Scheuer. Threshold Accepting: A General Purpose Optimization
Algorithm Appearing Superior to Simulated Annealing. In Journal of Computa-
tional Physics, 90(1), 161–175, 1990.

11. M. van Dijk, R. Granger, D. Page, K. Rubin, A. Silverberg, M. Stam and D.
Woodruff. Practical Cryptography in High Dimensional Tori. Advances in Cryp-
tology (EUROCRYPT), Springer-Verlag LNCS 3494, 234–250, 2005.

12. C.H. Gebotys and R.J. Gebotys. Secure Elliptic Curve Implementations: An Anal-
ysis of Resistance to Power-Attacks in a DSP Processor. In Cryptographic Hardware
and Embedded Systems (CHES), Springer-Verlag LNCS 2523, 114–128, 2002.

13. R. Granger, D. Page and M. Stam. A Comparison of CEILIDH and XTR. In
Algorithmic Number Theory Symposium (ANTS), Springer-Verlag LNCS 3076,
235–249, 2004.

14. M. Joye and J-J. Quisquater. Hessian Elliptic Curves and Side-Channel Attacks. In
Cryptographic Hardware and Embedded Systems (CHES), Springer-Verlag LNCS
2162, 402–410, 2001.

15. P.C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Advances in Cryptology (CRYPTO), Springer-Verlag LNCS
1109, 104–113, 1996.

16. P.C. Kocher, J. Jaffe and B. Jun. Differential Power Analysis. In Advances in
Cryptology (CRYPTO), Springer-Verlag LNCS 1666, 388–397, 1999.

On the Automatic Construction of Indistinguishable Operations 247

17. T. Lange. Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite Fields
via Explicit Formulae. In Cryptology ePrint Archive, Report 2002/121, 2002.

18. P-Y. Liardet and N.P. Smart. Preventing SPA/DPA in ECC Systems Using the Ja-
cobi Form. In Cryptographic Hardware and Embedded Systems (CHES), Springer-
Verlag LNCS 2162, 391–401, 2001.

19. S.S. Muchnick. Advanced Compiler Design and Implementation, Morgan Kauf-
mann, 1997.

20. D. Page and M. Stam. On XTR and Side-Channel Analysis. In Selected Areas in
Cryptography (SAC), Springer-Verlag LNCS 3357, 54–68, 2004.

21. E. Trichina and A. Bellezza. Implementation of Elliptic Curve Cryptography with
Built-In Counter Measures against Side Channel Attacks. In Cryptographic Hard-
ware and Embedded Systems (CHES), Springer-Verlag LNCS 2523, 98–113, 2002.

Efficient Countermeasures for Thwarting the
SCA Attacks on the Frobenius Based Methods

Mustapha Hedabou

INSA de Toulouse, LESIA,
135, avenue de Rangueil, 31077 Toulouse cedex 4 France

hedabou@insa-toulouse.fr

Abstract. The Frobenius endomorphism τ is known to be useful for effi-
cient scalar multiplication on elliptic curves defined over a field with small
characteristic (E(Fqm)). However, on devices with small resources, scalar
multiplication algorithms using Frobenius are, as the usual double-and-
add algorithms, vulnerable to Side Channel Attacks (SCA). The more suc-
cessful countermeasure for thwarting the SCA attacks on the Frobenius-
based τ−adic method seems to be the multiplier randomization technique
introduced by Joye and Tymen. This technique increases the computa-
tional time by about 25%. In this paper, we propose two efficient counter-
measures against SCA attacks, including the powerful RPA and ZPA at-
tacks. First, we propose to adapt the Randomized Initial Point technique
(RIP) to the τ − adic method for Koblitz curves with trace 1 by using
a small precomputed table (only 3 points stored). We present also an ef-
ficient fixed base τ − adic method SCA-resistant based on the Lim and
Lee technique. For this purpose we modify the τ −NAF representation of
the secret scalar in order to obtain a new sequence of non-zero bit-strings.
This, combined with the use of Randomized Linearly-transformed coor-
dinates (RLC), will prevent the SCA attacks on the fixed base τ − adic
method, including RPA and ZPA. Furthermore, our algorithm optimizes
both the size of the precomputed table and the computation time. In-
deed, we only store 2w−1 points instead of 3w−1

2 for the fixed-base τ −adic
method, with a more advantageous running time.

Keywords: Elliptic curve, scalar multiplication, Frobenius map, τ−adic
method, Side Channel Attacks, precomputed table.

1 Introduction

Since they provide the same level of security as other systems for keys with
shorter length, Elliptic Curve Cryptosystems (ECC) are of great interest for
cryptographic applications on devices with small resources. However, they are
vulnerable to Side Channel Attacks (SCA), introduced first by Kocher et al.
[Koc96, KJJ99], which have become an important threat for cryptosystems on
such devices. Particularly, the improved and sophisticated RPA [Gou03] and
ZPA [AT03] attacks, recently introduced, are effective on ECC, as the random-
ization countermeasures efficient against other SCA [JT01,Cor99] are not suffi-
cient against them.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 248–261, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient Countermeasures for Thwarting the SCA Attacks 249

This communication will focus on the countermeasures thwarting SCA at-
tacks on the scalar multiplication method based on the use of the Frobenius
map, which speeds up the scalar multiplication on certain categories of elliptic
curves (Koblitz curves). It will present two new efficient countermeasures, the
first one adapting the Randomized Initial Point (RIP) technique to the τ − adic
method by using a small precomputed table (3 stored points are needed), and
the second one is based on on a new τ − adic representation of the secret scalar
k that allows to render the fixed base τ − adic method SCA-resistant.

The paper is organized as follows: section 2 briefly reviews the properties
of the Frobenius map in the setting of ECC and describes the Frobenius-based
scalar multiplication. In section 3, we introduce the Side Channel Attacks and
their countermeasures. In section 4, we propose our SCA-resistant schemes: in
subsection 4.1, the one based on the RIP technique to protect the τ − adic
method, and in subsection 4.2 the fixed base τ − adic method SCA-resistant ,
which is based on a new τ − adic representation of the secret scalar.

2 Elliptic Curves Cryptosystems and the Frobenius Map

An elliptic curve is the set of the solutions of a Weierstrass equation over a field
with a formal point O, called the point at infinity . For the finite field F2m , the
standard Weierstrass equation is:

y2 + xy = x3 + ax2 + b with a, b ∈ F2m and b �= 0.

Koblitz curves [Kob91] are defined over F2 by the following equations y2 + xy =
x3 + x2 + 1 and y2 + xy = x3 + 1.

2.1 The Frobenius Map

In this section we introduce briefly the Frobenius map. The reader can refer to
[Men92] for details. Let E(Fq) an elliptic curve defined over a finite field Fq.

We define the q-th power Frobenius map τ on E(Fq) as follows

τ : (x, y) ← (xq, yq).

The Frobenius map satisfies the equation τ2 − tτ + q = 0, where t is the trace
of the curve E(Fq) (#E(Fq) = q + 1 − t). For Koblitz curves the characteristic
equation of the Frobenius map is τ2 − (−1)1−a

τ + 2 = 0
Let E(Fqm) be an elliptic curve defined over an extension Fqm of Fq. By the

Weil theorem on elliptic curves, we know that

#E(Fqm) = qm + 1 − tm

where ti is the sequence satisfying

t0 = 2, t1 = t and ti = t1ti−1 − qti−2 for i ≥ 2.

250 M. Hedabou

Since τm(x, y) = (xqm

, yqm

) = (x, y) for all (x, y) ∈ Fqm x Fqm , it is clear that
the Frobenius map on E(Fq) verifies

τm(R) = R for all points R ∈ E(Fqm).

2.2 The Frobenius-Based Scalar Multiplication

Let τ denote the Frobenius endomorphism of F2. In this section, we will de-
scribe the Frobenius-based τ − adic method. The results about the τ − adic
representation in Z[τ] are presented without proof; more details can be found in
[Kob91, Mül98, MS92].

In [Kob91], Koblitz showed that the use of the Frobenius map τ can speed
up the multiplication of a point P of the curve by a scalar k on certain categories
of elliptic curves defined over fields with a characteristic q = 2 (Koblitz curves),
as k may be written in the form k =

∑l−1
i=0 kiτ

i with ki ∈ {−1, 0, 1}, after
what the computation of kP may be performed by applying the usual left-to-
right point multiplication scheme. The representation (kl−1, · · · , k0) such that
k =

∑l−1
i=0 kiτ

i with ki ∈ {−1, 0, 1} is called the τ − adic representation of k.
For special curves with q = 2 and t = 1, the length of the τ − adic represen-

tation given by [MS92] can be reduced to min{m−1, 2log2(m)+1} by a suitable
reduction modulo #E(F2m) [Mül98], i.e k =

∑m−1
i=0 kiτ

i, ki ∈ {−1, 0, 1}. The
τ − adic method computes the scalar multiplication kP on Koblitz curves with
trace 1 as follows.

Algorithm 1 : τ − adic method
Input : an integer k, and a point P ∈ E(F2m).
Output : kP .
1. Computation of the τ − adic representation: k =

∑m−1
i=0 kiτ

i, with ki ∈
{−1, 0, 1}.
2. Q ← P .
3. for i = m − 2 down to 0 do
3.1 Q ← τ(Q).
3.2 if ki = 1 then Q ← Q + P .
3.3 if ki = −1 then Q ← Q − P .
4. Return Q.

Remark 1: in the same manner as the NAF representation of the secret scalar
k gives improvement over the binary representation in the case of the integers,
we can reduce the number of the non-zero digits in the scalar k by using the
τ − NAF representation of k (algorithm 4 in [Sol97]).

3 The SCA Attacks and Their Countermeasures

Side Channel Attacks exploit some data leaking information such as power con-
sumption and computing time to detect a part or the whole of the bits of the
secret key. We can distinguish two types of SCA attacks:

Efficient Countermeasures for Thwarting the SCA Attacks 251

• The Simple Power Analysis (SPA) attacks which analyzes the information
leaking from a single execution of the algorithm. The τ − adic method com-
putes a Frobenius map and an adding of points if ki �= 0, and only a Frobenius
map if ki = 0. By observing the power consumption, an SPA attacker can detect
whether the secret digits ki are zero or not. To prevent SPA attacks, many coun-
termeasures have been proposed; the standard approach is to use fixed pattern
algorithms [Cor99, Mon87].
• The Differential Power Analysis (DPA) attacks which collect informations from
several executions of the algorithm and interpret them with statistical tools.
To prevent DPA attacks, randomization of parameters seems to be an efficient
technique [Cor99, JT01]. The usual approach is to randomize the base point P .
Coron proposes to transform the affine point P = (x, y) into randomized Ja-
cobian projective coordinates P = (r2x, r3y, r) for a random non-zero integer
r. Joye and Tymen use a random curve belonging to the isomorphism class
of the elliptic curve. A point P = (x, y) of an elliptic curve E is transformed
into P ′ = (r2x, r3y) which is a point of the corresponding isomorphic curve
E′ of E.
• The RPA attack proposed by Goubin [Gou03] belongs to a new generation of
DPA attacks that use special points to deduce the bits of the secret key. The
fundamental remark of Goubin is that randomizing points with a 0-coordinate
((x, 0) or (0, y)) yields points that possess still a 0-coordinate. Supposing that
the bits kl−1, · · · , kj+1 of the secret scalar k are known by the attacker, and
that he wants to guess the value of the next bit kj , he just needs to choose
the point P = (c−1mod#E)(0, y) with c = 2j +

∑l−1
i=j+1 2iki. If, in the pro-

cess of the computation of kP , the scalar multiplication computes the point
cP = (0, y), the power consumption for the next step is significantly distinct.
Thus, the attacker can know whether cP has been computed or not, and hence
if kj was 1 or 0. Iterating this process, all bits of the secret key can be deter-
mined. Akishita-Takagi [AT03] generalize Goubin’s idea to elliptic curves with-
out points with a 0-coordinate. Their attack focuses on the auxiliary registers
which might contain a zero value, when the adding and doubling operations a re
performed by the scalar multiplication. The ZPA attack is in particular efficient
on several standard curves with no 0-coordinate point. To prevent the RPA and
ZPA attacks, the authors in [IIT04, MMM04] have proposed the Randomized
Linearly-transformed coordinates (RLC) technique.
• To prevent the SCA attacks on the τ − adic method, Joye and Tymen [JT01]
have proposed to randomize the secret scalar k. The scalar k is reduced mod-
ulo ρ (τm − 1), where ρ is a random element of Z[τ]. For the same purpose,
Hasan [Has00] proposed previously three countermeasures. In the Key Mask-
ing with Localized Operations (KMLO) technique, the symbols of the τ − adic
representation can be replaced in more than one way on a window of three
and more symbols, since we have 2 = τ − τ2 = −τ3 − τ which is derived
from the equation τ2 − τ + 2 = 0 (assuming that t = 1). The Random Ro-
tation of Key (RRK) technique proposes to compute the scalar multiplication
kP as k′P ′ where P ′ = τrP , and r is a random integer such as r ≤ m − 1.

252 M. Hedabou

Finally, the Random Insertion of Redundant Symbols (RIRS) technique pro-
poses to insert in the τ − adic representation of the secret scalar k a num-
ber of redundant symbols such as they collectively neutralize their own ef-
fects. Another countermeasure was proposed by Smith [Smi02]; it consists in
decomposing the τ − adic representation of k into r groups of g coefficients,
r being a random element such as r ≤ m and g = �m

r �. The point multipli-
cation between each group and the base point P is performed in a random
order. The countermeasure of Joye and Tymen seems to be more efficient in
thwarting the SCA attacks, since it randomizes the entire digits of the secret
scalar k.

In the following section, we propose two new efficient countermeasures for
preventing SCA attacks on the Frobenius-based scalar multiplication algorithms.

4 Proposed Countermeasures

As explained in the previous section, the τ−adic method for scalar multiplication
is vulnerable to SPA attacks. It is also not secure against RPA and ZPA attacks,
even if the countermeasures against SPA and the usual randomization techniques
are used. In this section, we propose two efficient countermeasures that aim to
protect the Frobenius-based algorithms against SCA attacks.

First, we propose to adapt the Randomized Initial Point (RIP) technique
proposed in [IIT04, MMM04] to the τ − adic method in order to protect the
always-add-and-double method against SCA attacks. The initial point is changed
into a random point R. This will randomize all intermediate informations. As a
second countermeasure, we propose to convert the fixed-base τ − adic method,
which is based on the Lim and Lee technique, into a SPA-resistant scheme by
changing the τ − NAF representation of the scalar k; the use of Randomized
Linearly-transformed Coordinates [IIT04] with the obtained scheme achieves the
security against SCA attacks

4.1 The τ − adic Method with a Randomized Initial Point (RIP)

Let E(F2m) be an elliptic curve with t = 1, and let τ the Frobenius map on
E(F2), i.e τ((x, y)) = (x2, y2).

It is clear that τ verifies τm = 1 in EndE . Thus

τm − 1 = (τ − 1)
m−1∑
i=0

τ i = 0.

Then for all points R ∈ E(F2m) \ E(F2) (i.e τ(R) �= R) we have

m−1∑
i=0

τ i(R) = 0. (1)

Efficient Countermeasures for Thwarting the SCA Attacks 253

The basic idea of our countermeasure is to exploit the equation (1) by introducing
a random point R ∈ E(F2m) \ E(F2) in such a way that the τ − adic method
computes kP +

∑m−1
i=0 τ i(R), which is equal to kP , by using the equation (1). For

this purpose, we store the points iP + R for i ∈ {−1, 0, 1}, and run the τ − adic
method as a Window method [BSS99]. The following algorithm implements in
detail the proposed countermeasure.

Algorithm 2 : Secure τ − adic method
Input : an integer k, and a point P ∈ E(F2m).
Output : kP .
1. R ← Randompoint() (R ∈ E(F2m) \ E(F2)).
2. Precomputation. Compute and store Pi = iP + R for i = −1, 0, 1.
2. Computation of the τ − adic representation. k =

∑m−1
i=0 kiτ

i, with ki ∈
{−1, 0, 1}.
3. Q ← Pkm−1 .
4. for i = m − 2 to 0 do
4.1 Q ← τ(Q).
4.2 Q ← Q + Pki .
5. Return Q.

Randompoint() is a function that generates a random point R on E(F2m) \
E(F2). The simplest way to obtain a random point R is to generate a random x-
coordinate belonging to F2m \F2 and to compute the corresponding y-coordinate
if it exists, but this process is probabilistic and may require many computations.
The optimized way is to randomize a fixed stored point Q ∈ E(F2m) \ E(F2) by
using Randomized Projective Coordinates [Cor99].

In our modified τ − adic method, the adding point operation Q + Θ corre-
sponding to a zero digit in the τ − adic representation of k is replaced by the
adding point operation Q + R, which implies that the algorithm performs the
scalar multiplication with a uniform behaviour, computing exactly a Frobenius
map and an adding point at each step. Consequently, the execution of a SPA
attack can not reveal any information on the digits of k. Since R is chosen ran-
domly by some way mentioned above, all intermediate values will be randomized
and thus, the algorithm will also resist to DPA attacks, and to the more powerful
RPA and ZPA attacks.

Now we will estimate the cost of the proposed countermeasure. The cost of
generating the random point R in the optimized way explained above is nearly
free (5M , where M denotes a field multiplication). In the precomputation phase,
we perform two more point additions. Thus the total cost of this countermeasure
is only 2A+ 5M , where A denotes an adding point operation. The major disad-
vantage of the RIP technique is that it imposes the computation of a Frobenius
map and an addition of points at each step of the algorithm 2 even if the digit
ki is zero, which makes the cost of the algorithm 2 much higher than that of
the τ − NAF method Since the average density of the non-zero terms among
τ − NAF representation of the scalar is only about 1/3.

254 M. Hedabou

4.2 Changing the Representation of k Combined with Lim-Lee
Technique

If the the base point P is fixed and some storage is available, the Lim-Lee
technique allows to speed up the scalar multiplication on elliptic curve. In the
following we describe the fixed-base τ − adic method based on the Lim and Lee
[LL94] technique.

Let (kl−1, · · · , k1, k0) be the τ − adic representation of an integer k, i.e k =∑i=l−1
i=0 kiτ

i, with ki ∈ {−1, 0, 1}, and let w be an integer such as w ≥ 2; we
set d = � l

w�. P being an elliptic curve point, for all (bw−1, · · · , b1, b0) ∈ Z2
w, we

define [b0, b1, · · · , bw−1]P = b0P + b1τ
d(P) + b2τ

2d(P) + · · · + bw−1τ
(w−1)d(P).

The comb method considers that k is represented by a matrix of w rows and d
columns, and processes k columnwise.

Algorithm 3 : Fixed-base τ − adic method
Input: a τ − adic representation (kl−1, · · · , k1, k0) of a positive integer k, an
elliptic curve point P and a window width w such as w ≥ 2.
Output: kP .
1. d = � l

w �.
2. Precomputation: compute [bw−1, · · · , b1, b0]P for all (bw−1, · · · , b1, b0) ∈ Z2

w.
3. By padding the τ − adic representation (kl−1, · · · , k1, k0) on the left with 0’s
if necessary, write k = Kw−1 ‖ · · · ‖ K1 ‖ K0 where each Kj is a bit-strings of
length d. Let Kj

i denote the i-th bit of Kj.
4. Q ← [Kw−1

d−1 , · · · , K1
d−1, K

0
d−1]P .

5. For i from d − 2 down to 0 do
5.1 Q ← τ(Q)
5.2 Q ← Q + [Kw−1

i , · · · , K1
i , K0

i]P .
6. Return Q.

The execution of a SPA attack on the fixed-base τ −adic method can allow to
deduce the bits of the secret scalar. This is because the fixed base τ−adic method
performs only a Frobenius map operation if the bit-string [Kw−1

i , · · · , K1
i , K0

i]
is equal to zero, and an adding and Frobenius map operation in the other case;
thus, the analysis of power consumption during the execution of the algorithm
can reveal whether the bit-string [Kw−1

i , · · · , K1
i , K0

i] is zero or not. Since the
probability to have a zero bit-string ([Kw−1

i , · · · , K1
i , K0

i] = (0, · · · , 0)) is less
important than the probability to get a single zero bit (ki = 0), the fixed base
τ − adic method offers a better resistance against SPA attacks than the τ − adic
method, but it is not totally secure against them.

Geiselmann and Steinwandt’s attack will be efficient against the fixed-base
τ − adic method, since it uses a precomputed table, even if the usual random-
ization techniques are used. The fixed base τ − adic method is also not secure
against the more powerful RPA and ZPA attacks.

In this section, our first aim is to generate a new representation of k as
a sequence of bit-strings different from zero, so as to thwart the SPA attack.
For this purpose, we modify the τ − NAF representation of k by eliminating

Efficient Countermeasures for Thwarting the SCA Attacks 255

all its zero digits and using only digits equal to 1 or −1. We then combine
the obtained SPA-resistant algorithm with Randomized Linearly-transformed
Coordinates [IIT04] in order to prevent the DPA, RPA and ZPA attacks.

4.2.1 A New Representation for k
Let E(F2) be a Koblitz curve and τ2 − tτ + 2 = 0 be the equation verified by
the Frobenius map (t = 1 or −1). The curve E(F2m) denote the curve regarded
over the extension F2m of F2.

Let k =
∑l−1

i=0 kiτ
i, where ki ∈ {−1, 0, 1}, be the τ −NAF representation of

k, i.e kjkj+1 = 0 for j = 0, · · · , l − 2, and suppose that the Frobenius equation
is τ2 − τ + 2 = 0 (the trace t of the curve is 1).

Our algorithm proposes to replace every zero digit ki by 1 or −1, depending of
its neighbour bits. Assuming that the first digit k0 of the τ−NAF representation
of k is different from zero, let ki be the first bit equal to 0. We then set ki ←
ki + ki−1, ki+1 ← ki+1 − ki−1 and ki−1 ← ki−1 − 2ki−1 = −ki−1. After this
modification we are sure that ki−1, ki ∈ {−1, 1} and ki+1 ∈ {−2,−1, 0, 1, 2}.
To eliminate all the zero digits ki of the τ −NAF representation of k we propose
to proceed as follows ⎧⎨

⎩
ki ← ki + ki−1

ki+1 ← ki+1 − ki−1

ki−1 ← ki−1 − 2ki−1 = −ki−1

if ki is even and keep the digits ki−1, ki, ki+1 unchanged otherwise.

Remark 2: If we denote k′
i−1, k

′
i, k

′
i+1 the obtained digits, then we have

k′
i−1τ

i−1 + k′
iτ

i + k′
i+1τ

i+1 = ki−1τ
i−1 + kiτ

i + ki+1τ
i+1 − ki−1τ

i+1 + ki−1τ
i −

2ki−1τ
i−1

= ki−1τ
i−1+kiτ

i+ki+1τ
i+1−ki−1τ

i−1(τ2−tτ +2)
= ki−1τ

i−1 + kiτ
i + ki+1τ

i+1 + 0
= ki−1τ

i−1 + kiτ
i + ki+1τ

i+1

Thus we can conclude that this process does not change the value of k.

Example. Let (1, 0,−1, 0, 1) be the τ − NAF representation of an integer k.

(1, 0,−1, 0, 1) k1=0−→ (1, 0,−1 − 1, 0 + 1, 1 − 2) = (1, 0,−2, 1,−1)
(1, 0,−2, 1,−1) k2=−2−→ (1, 0 − 1,−2 + 1, 1 − 2,−1) = (1,−1,−1,−1,−1).

The new τ − adic representation of k is (1,−1,−1,−1,−1)

But we have also to make the generation of our new Frobenius representation
SPA-resistant. In the present state, the digits ki−1, ki, ki+1 are either touched
if ki is a zero digit or kept unchanged otherwise; hence, a SPA attack on this

256 M. Hedabou

algorithm can occur. To deal with this threat, we modify our method to ensure
that each digit is touched, independently of its value.

If the first digit k0 of the Frobenius representation of k is zero, we make
k1 = k + 1, and we compute k1P . The result of the scalar multiplication kP is
then recovered by performing the substraction k1P −P . This too might give way
to a SPA attack, due to the difference in the treatment of scalars k with k0 = 0
and those with k0 = ±1. So we convert as well the scalars k with k0 = ±1 to
k1 = k + 2 if k0 = −1 and k1 = k − 2 if k0 = 1, and recover in this case kP
by performing the substraction k1P − 2P or k1P + 2P . Finally, we arrive at the
following algorithm:

Algorithm 4 : Modified Frobenius representation
Input: a τ − NAF representation k = (kl−1, · · · , k1, k0)2 of an integer k.

(ki ∈ {−1, 0, 1} for i = 0, · · · , l − 1 and ki = 0 for i ≥ l).
Output: modified τ − adic representation (kl−1,, k0) of k, ki ∈ {−1, 1}.
1. If k0 mod 2 = 0 then k ← k + 1 else k ← k − 2k0.
2. For i = 1 to l − 1 do
2.1 b[0] ← ki, b[1] ← ki + ki−1, c[0] ← ki−1, c[1] ← −ki−1, d[0] ← ki+1

d[1] ← ki+1 − ki−1

2.2 ki ← b[1− | ki mod 2 |], ki+1 ← d[1− | ki mod 2 |], ki−1 ← c[1− | ki mod 2 |].
3. If kl = 0 return (kl−1,, k0) else (kl,, k0).

The length of the obtained new representation of k is at most one digit longer.
Indeed it is exactly l if the modified kl−1 is an odd integer and l + 1 otherwise.
Furthermore, it is clear that we can extend the length of the modified τ − adic
representation to l + 2j where j = 1, 2, · · · if the modified kl−1 is an odd integer
or to l + 2j + 1 where j = 1, 2, · · · otherwise by replacing l − 1 in step 2 by
l − 1 + j for j = 1, 2, · · · .

Now we will implement an SPA-resistant fixed-base τ − adic method (algo-
rithm 3). Let w be the window width and suppose the length of the modified
τ − NAF representation of k is l + 1 (when the length is l we proceed in the
same way) .

If the l+1 is divisible by w, it is clear that that all the obtained bit-strings do
not contain any zero digit and thus they are all different from zero. Consequently
the algorithm 3 implemented with the modified τ − NAF representation of the
scalar k is SPA-resistant. On the other hand, if l + 1 is not divisible by w, we
extend the length of the modified τ − NAF of the k to l + (2j0 + 1) for some j0
such as w divide l + (2j0 + 1) − 1.

The length of the new representation of k is l + (2j0 + 1), thus we can write

kP =
∑i=l+2j0

i=0 kiτ
i(P) = k0P +

∑i=l+2j0
i=1 kiτ

i(P)
= k0P + τ(

∑i=l+2j0
i=1 kiτ

i−1(P)) = k0P + τ(
∑i=l+2j0−1

i=0 ki+1τ
i(P))

If we set k2 =
∑i=l+2j0−1

i=0 ki+1τ
i the length of the τ − adic representation of k2

is l + 2j0 which is divisible by w. Thus, to make the algorithm 3 SPA-resistant

Efficient Countermeasures for Thwarting the SCA Attacks 257

we propose to compute the scalar multiplication k2P via the algorithm 3 and
we recover kP by performing τ(k2P) + k0P .

It is clear from this process that the length of the new representation used
by the algorithm 3 is the same as the τ − NAF representation of k. Since the
length of the τ − NAF and τ − adic representations of the scalar k are about
m [Sol97, MS92], we can conclude that the number of the bit-strings required
by the proposed method is the same as that of the fixed base τ − adic method.
Consequently the proposed scheme needs only a more adding and Frobenius map
operation than the fixed base τ − adic method.

In section 1 of appendix we prove the following theorem which ensures that
algorithm 4 outputs a new τ − adic expansion that represents correctly k. The
algorithm that describes how we can obtain the modified τ −adic representation
of k for curves with trace −1 is given in section 2.

Theorem 1: Algorithm 3, when given a positif integer k, outputs a new se-
quence of digits (kl,, k0) such as k =

∑i=l
i=0 kiτ

i, with ki ∈ {−1, 1} for i =
0, · · · , l.

4.2.2 The Size of the Precomputed Table
The fixed-base τ −adic method precomputes the points [bw−1, · · · , b1, b0]P for all
(bw−1, · · · , b1, b0) ∈ {−1, 0, 1}w, which may be represented as {−Q, Q}, where
Q = {[bw−1, · · · , b1, b0]P , with b0 = 1. Thus, the number of points stored in the
precomputed table is 3w−1

2 .
On the other hand, the set of points stored in the precomputed table of the

proposed scheme is {[bw−1, · · · , b1, b0]P , for all bi = ±1}, which is symmetric set.
Thus We need only to store in the precomputed table the points [bw−1, · · · , b1, 1]P
with bi = ±1}. Consequently, the number of the points stored in the precompu-
tation phase of the proposed scheme is 2w−1, which is at most the half of what is
required by the fixed-base τ − adic method.

4.2.3 Security Considerations
This section discusses the security of the proposed scheme against the SPA, DPA
and second-order DPA, Geiselmann and Steinwandt, RPA and ZPA attacks.

• SPA: as explained before, our method builds a new sequence of bit-strings
which form the new scalar’s representation, in which all the bit-strings are dif-
ferent from zero. At each step, the main phase of the multiplication algorithm
performs then exactly an adding and Frobenius map operation, and the elliptic
curve scalar multiplication behaves in a fixed pattern. Consequently, the execu-
tion of a SPA attack can not reveal any information on the bits of the secret
scalar.
• DPA and second-order DPA: the use of projective randomization methods,
such as randomized projective coordinates[Cor99] or random isomorphic curves
[JT01], prevents DPA attacks. Okeya and Sakurai’s second-order DPA attack
[OS02] may be applied against the proposed algorithm, since it uses a precom-
puted table. For each bit-string, we access the table to get a point [Kw−1

i , · · · ,

258 M. Hedabou

K1
i , K0

i]P to be added to Q. An attacker could thus manage to detect whether or
not a bit-string [Kw−1

i , · · · , K1
i , K0

i] is equal to [Kw−1
j , · · · , K1

j , K0
j], by monitor-

ing some information related to the power consumption. To prevent this atack,
we propose to change the randomization of each precomputed point after get-
ting it from the table. Thus, even if we have got the same point for different
bit-strings, the new point randomization implies that we load a different data.
• Geiselmann and Steinwandt, RPA and ZPA attacks: to prevent these attacks,
we propose to use the Randomized Linearly-transformed Coordinates (RLC) in-
troduced by Itoh and al [IIT04]. This technique converts a point (x, y, z) into a
randomized point (x′, y′, z′) such as

x′ = λx(λ)(x − μx) + μx, y′ = λy(λ)(y − μy) + μy, z′ = λz(λ)(z − μz) + μz

where λx, λy, λz are functions of λ and μx, μy, μz.
The RLC technique with μx, μy �= 0 allows to randomize also the points with

a 0-coordinate and all the intermediate values, and thus makes the proposed
algorithm secure against RPA, ZPA and Geiselmann-Steinwandt’s attacks

4.2.4 Computation Cost
The proposed multiplication algorithm performs an adding (A) and Frobenius
map (D) operation at each step and a more adding and Frobenius map operation
for recovering the scalar kP when the length of the modified τ − adic represen-
tation of the scalar is not divisible by w, so the cost of the main computation
phase is d(A + D).

Now, we evaluate the cost of the precomputation phase. In this phase, we
generate the sequence of points [bw−1, · · · , b1, 1]P , for all (bw−1, · · · , b1, 1) ∈
{−1, 1}w−1, such as

[bw−1, · · · , b1, 1]P = bw−12(w−1)dP + · · · + b222dP + b12d + P.

To perform the precomputing phase, we first compute 2dP, 22dP, · · · , 2(w−1)dP ,
which will cost ((w − 1)d) Frobenius map operation. The second step consists in
computing all possible combinations bw−12(w−1)dP + · · · + b222dP + b12d + P .
where bi ∈ {−1, 1}, for i = 2, · · · , w − 1. The cost of this second step is at most
2w −w adding operations for w = 2, 3, 4, 5, which are the optimum choices for
w in elliptic curve cryptosystems. The total cost of the precomputing phase is
then

[(w − 1)d]D + [2w − w]A

Thus the total cost of the proposed method including efforts for preventing SPA
attacks is

[wd]D + [2w − w + d]A.

Efficient Countermeasures for Thwarting the SCA Attacks 259

4.2.5 Efficiency Comparison
In this section, we will compare the efficiency (cost, size of the table) of the pro-
posed algorithm with the fixed-base τ −NAF method. We recall that precompu-
tation phase of the fixed-base τ − adic method computes [bw−1, · · · , b1, b0]P
for all (bw−1, · · · , b1, 1) where bi ∈ {−1, 0, 1} for i = 0, · · · , w − 1, thus the cost
of this phase is [3

w−1
2 − w]A + (w − 1) ∗ dD. Since it’s main phase computes an

adding and Frobenius map of an elliptic curve point at each step, the total cost
of fixed-base τ − NAF method is

[(w − 1) ∗ d + d − 1]D + [
3w − 1

2
− w + d − 1]A

The following table compares the efficiency of the proposed method with that of
the fixed-base τ −adic method, including only efforts for preventing SPA attacks
and using randomized Jacobian coordinates. S will denote the number of points
stored in the precomputation phase, and T the number of field multiplications;
k is a scalar with length 163 (log2(k) = 163).

Method w = 2 w = 3 w = 4 w = 5
S T S T S T S T

Fixed-base τ − adic method 4 1986 13 1608 40 1846 121 3288
Proposed method 2 2208 4 1530 8 1388 16 1530

5 Conclusion

In this paper, we have presented two efficient countermeasures for preventing
SCA attacks on the Frobenius based methods. The first countermeasure is an
adaptation of the Randomized Initial point (RIP) technique for the τ − adic
method on Koblitz curves. This method needs a precomputed table with small
size (only 3 points stored).

The second proposed method converts the fixed base τ − adic method to an
SPA-resistant scheme by changing the τ − NAF representation of the scalar.
The obtained scheme is combined with Randomized Linearly-transformed Coor-
dinates to achieve resistance against SCA attacks, with optimized performances.
Indeed, the proposed scheme requires to store only 2w−1 points in a precom-
puted table instead of 3w−1

2 for the fixed-base τ − adic method, with a more
advantageous running time.

References

[AT03] T. Akishita, T. Takagi. Zero-value point attacks on elliptic curve cry-
tosystems. In: Information Security Conference-ISC’2003, vol. 2851, Lecture
Notes in Computer Science (LNCS), pp. 218-233, Springer-Verlag, 2003.

260 M. Hedabou

[BSS99] I. Blake, G. Seroussi, N. Smart. Elliptic curves in cryptography. Cam-
bridge University Press, 1999.

[Cor99] J.S. Coron. Resistance against differential power analysis for elliptic
curve cryptosystems. In: Cryptography Hardware and Embedded Systems-
CHES’99, C.K. Koç and C.Paar, editors, vol. 1717, LNCS, pp. 292-302,
1999.

[Gou03] L. Goubin. A refined power-analysis attack on elliptic curve cryptosystems.
In: Public Key Cryptography International Workshop-PKC’2003, vol. 2567,
LNCS, pp. 199-210, 2003.

[Has00] M. Anwar Hasan. Power analysis attacks and algorithmic approaches to
their countermeasures for Koblitz curve cryptosystems. In: Cryptography
Hardware and Embedded Systems-CHES’00, vol. 1965, LNCS, pp. 93-108,
2000.

[IIT04] K. Itoh, T. Izu, M. Takenaka. Efficient countermeasures against power
analysis for elliptic curve cryptosystems. In: Proceedings of CARDIS-WCC
2004.

[JT01] M. Joye, C. Tymen. Protections against differential analysis for elliptic
curve cryptography: an algebraic approach. In: Cryptography Hardware and
Embedded Systems-CHES’01, C. Koç, D. Naccache and C. Paar, editors,
vol. 2162, LNCS, pp. 386-400, 2001.

[KJJ99] P. Kocher, J. Jaffe, B. Jun. Differential power analysis. In: Advances in
Cryptology-CRYPTO’99, M. Wiener, editor, vol. 1666, LNCS, pp. 388-397,
1999.

[Kob91] N. Koblitz. CM-curves with good cryptographic properties. In: Advances
in Cryptology-CRYPTO’91, J. Feigenbaum, editor, vol. 576, LNCS, pp.
279-287, 1991.

[Koc96] P. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSA and other systems. In: Advances in Cryptology-CRYPTO’96, N.
Koblitz, editor, vol. 1109, LNCS, pp. 104-113, 1996.

[LL94] C. Lim, P. Lee. More flexible exponentiation with precomputation. In: Ad-
vances in Cryptology-CRYPTO’94, vol 839, LNCS, pp. 95-107, 1994.

[Men92] A. Menezes. Elliptic curve public key cryptosystems. The Kluwer Academic
publishers, vol. 234, 1993. pp. 333-344, 1992.

[MMM04] H. Mamiya, A. Miyaji, H. Morimoto. Efficient Countermeasures against
RPA, DPA, and SPA. In: Cryptography Hardware and Embedded Systems-
CHES’04, M. Joye, J.J. Quisquater, editors, vol. 3156, LNCS, pp. 343-356,
2004.

[Mon87] P.L. Montgomery. Speeding up the Pollard and elliptic curve methods of
factorization. Mathematics of Computation, 48(177), pp. 243-264, January
1987.

[MS92] W. Meier, O. Staffelbach. Efficient multiplication on certain non-
supersingular elliptic curves. In: Advances in Cryptology-CRYPTO’92,
vol.740,LNCS, pp. 333-344, 1992.

[Mül98] V. Müller. Fast multiplication on elliptic curves over small fields of char-
acteristic two. Journal of Cryptology (1998)11, pp. 219-234, January 1998.

[OS02] K. Okeya, K. Sakurai. A Second-Order DPA attacks breaks a window-
method based countermeasure against side channel attacks. In: Information
Security Conference-ISC’2002, LNCS 2433, pp. 389-401, 2002.

[Smi02] E. W. Smith. The implementation and analysis of the ECDSA on the Mo-
torola StarCore SC140 DSP primarily targeting portable devices. Master
thesis, University of Waterloo, Ontario, Canada, 2002.

Efficient Countermeasures for Thwarting the SCA Attacks 261

[Sol97] J. A. Solinas. An improved algorithm for arithmetic on a family of elliptic
curves. In: Advances in Cryptology-CRYPTO’97, vol. 1294, LNCS, pp. 357-
371, 1997.

Appendix

A-1. Proof of the Theorem 1
Proof. It is clear from the remark 1 that k =

∑i=l
i=0 kiτ

i. It remains to prove
that all the digits ki belong to {−1, 1}.

As mentioned above, after the first modification, the digits ki−1, ki may take
only the values 1 or −1, but the digit ki+1 may be equal to −2,−1, 0, 1 or 2.

Suppose that ki+1 = −2 and ki = 1 (or ki+1 = 2 and ki = −1), then we have
after modification ki = ki −2ki = −1, ki+1 = ki+1 +k1 and ki+2 = ki+2 −ki = 1
(or ki = k1 − 2ki = 1, ki+1 = ki+1 − ki and ki+2 = ki+2 − ki = 1). Since the
τ − NAF representation of the scalar k is used (at least one of two consecutive
digits is zero) it is clear that ki+2 = 0 and thus ki+2 = 1 or −1.

On the other hands if ki+1 = 2 and ki = 1 (or ki+1 = −2 and ki = −1)
the new obtained digits are ki = ki − 2ki = −1, ki+1 = ki+1 + ki = 3 and
ki+2 = ki+2−1 (or ki = k1−2ki = 1, ki+1 = ki+1−1 = −3 and ki+2 = ki+2+1).

Thus to achieve the proof of the theorem 1 we have cheek that the two last
cases do not occur. Suppose that after modification, we get kj+1 = kj+1−kj−1 =
2 and kj = kj + kj−1 = 1 for some j ≤ m, this means that before modification
kj−1 = 1, kj = 0 and kj+1 = 3, which is impossible since all the not modified
digits of the τ − NAF representation of k belong to {−1, 0, 1}.

By the same way we prove that the case ki+1 = −2 and ki = −1 do not
occur, which complete the proof.

A-1. Algorithm for Curves with Trace −1.

For curves with trace −1 we proceed as follows⎧⎨
⎩

ki ← ki − ki−1

ki+1 ← ki+1 − ki−1

ki−1 ← ki−1 − 2ki−1 = −ki−1

if ki is even and keep the digits ki−1, ki, ki+1 unchanged otherwise.

Example. Let (1, 0,−1, 0, 1) the τ − NAF representation of an integer k.

(1, 0,−1, 0, 1) k1=0−→ (1, 0,−1 − 1, 0 − 1, 1 − 2) = (1, 0,−2,−1,−1)
(1, 0,−2,−1,−1) k2=−2−→ (1, 0 + 1,−2 + 1,−1 + 2,−1) = (1, 1,−1, 1,−1).

The new τ − adic representation of k is (1, 1,−1, 1,−1).

Complexity Estimates for the F4 Attack on the
Perturbed Matsumoto-Imai Cryptosystem

J. Ding1, J.E. Gower1, D. Schmidt2, C. Wolf 3, and Z. Yin1

1 Department of Mathematical Sciences,
University of Cincinnati, Cincinnati,

OH 45211-0025, USA
{ding, gowerj, yinzhi}@math.uc.edu

2 Department of Electrical & Computer Engineering and Computer Science,
University of Cincinnati, Cincinnati,

OH 45211-0030, USA
dieter.schmidt@uc.edu

3 K.U. Leuven ESAT-COSIC,
Kasteelpark Arenberg 10,

B-3001 Leuven-Heverlee, Belgium
Christopher.Wolf@esat.kuleuven.ac.be or chris@Christopher-Wolf.de

Abstract. Though the Perturbed Matsumoto-Imai (PMI) cryptosys-
tem is considered insecure due to the recent differential attack of Fouque,
Granboulan, and Stern, even more recently Ding and Gower showed that
PMI can be repaired with the Plus (+) method of externally adding as
few as 10 randomly chosen quadratic polynomials. Since relatively few
extra polynomials are added, the attack complexity of a Gröbner basis
attack on PMI+ will be roughly equal to that of PMI. Using Magma’s
implementation of the F4 Gröbner basis algorithm, we attack PMI with
parameters q = 2, 0 ≤ r ≤ 10, and 14 ≤ n ≤ 59. Here, q is the number
of field elements, n the number of equations/variables, and r the pertur-
bation dimension. Based on our experimental results, we give estimates
for the running time for such an attack. We use these estimates to judge
the security of some proposed schemes, and we suggest more efficient
schemes. In particular, we estimate that an attack using F4 against the
parameters q = 2, r = 5, n = 96 (suggested in [7]) has a time complexity
of less than 250 3-DES computations, which would be considered insecure
for practical applications.

Keywords: public-key, multivariate, quadratic polynomials, perturba-
tion, Gröbner basis.

1 Introduction

1.1 Multivariate Quadratic Cryptosystems and Perturbation

Multivariate Quadratic (MQ) public key cryptosystems, first introduced in [6],
have become a serious alternative to number theory based cryptosystems such
as RSA, especially for small devices with limited computing resources. Since

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 262–277, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Complexity Estimates for the F4 Attack on the PMI Cryptosystem 263

solving a set of multivariate polynomial equations over a finite field appears to
be difficult (analogous to integer factorization, though it is unknown precisely
how difficult either problem is), it seems reasonable to expect that we can build
secure multivariate public key cryptosystems and signature schemes. In the last
ten years, there has been significant effort put into realizing practical implemen-
tations of this idea, and many schemes have been proposed: Matsumoto-Imai,
HFE, HFEv, Sflash, Oil & Vinegar, Quartz, TTM, and TTS, to name but a few.

At this stage, we seem to be more successful in building multivariate sig-
nature schemes than encryption schemes. For example, Sflashv2 [1] has been
recommended by the New European Schemes for Signatures, Integrity, and En-
cryption (NESSIE, [17]) as a signature scheme for constrained environments. For
encryption schemes, the best choice is probably HFE [19]. However, for a secure
system, one must choose parameters which lead to a rather inefficient scheme.

Internal perturbation [7] was introduced as a general method to improve the
security of multivariate public key cryptosystems. Roughly speaking, the idea
is to “perturb” the system in a controlled way so that the resulting system is
invertible, efficient, and much more difficult to break. The first application of
this method was to the Matsumoto-Imai (MI) cryptosystem, a system that is
otherwise vulnerable to the linearization attack [18]. The resulting system, called
the perturbed Matsumoto-Imai cryptosystem (PMI), is slower as one needs to go
through a search process on the perturbation space. However, we believe that for
realistic choices of parameters, PMI is still much faster than HFE and provides
superior security against all known attacks, except the recent differential attack
of Fouque, Granboulan, and Stern [13]. Fortunately PMI is easily repaired with
the Plus (+) [20] method of externally adding relatively few random quadratic
polynomials. In fact, in the most general case of PMI, as few as 10 polynomials
will be sufficient to protect PMI from the differential attack. Since so few ex-
tra polynomials are needed to create a secure Perturbed Matsumoto-Imai-Plus
(PMI+) scheme, there is no significant difference between the two schemes re-
garding the Gröbner bases attack complexity [5,26]. Therefore, for simplicity we
will consider Gröbner bases attacks on PMI.

1.2 Attacks Against Perturbed Multivariate Cryptosystems

In [2] it is shown that the XL algorithm will always need more time and space
than either the F4 or F5 version of the Gröbner basis algorithm. Hence, it suffices
to consider only Gröbner basis attacks. Both algorithms are quite similar in that
they use the original Buchberger algorithm to compute a Gröbner basis for a
given ideal of polynomials, and so for practical reasons we use only the F4 version.
Therefore, in this paper we analyse the security of PMI against Gröbner basis
attacks as it depends on the parameter r, the perturbation dimension, and n,
the message length. Specifically we give estimates for the time complexity of
the F4 Gröbner basis attack on PMI. Based on our experimental results, we
give formulæ for these estimates that can be used to evaluate the security of
proposed PMI systems against such attacks, and suggest parameters that may
give better performance while providing sufficient security. These results can

264 J. Ding et al.

then be used to infer similar statements regarding the security of PMI+. Since
[8] shows that differential analysis cannot be effectively used against PMI+, it
is sufficient to consider Gröbner attacks against PMI+ to determine its security.
Hence, the most successful attack against PMI+ can be found in [12] while the
most successful one against PMI is [13].

1.3 Outline

The remainder of this paper is organised as follows. After introducing the MI
and PMI cryptosystems in Section 2, we describe our experimental evaluation of
the security of PMI in Section 3. We then interpret the data and make some sug-
gestions for improvement and give some predictions for the security of proposed
instances of PMI in Section 4. We present our conclusions in Section 5.

2 The Perturbed Matsumoto-Imai Cryptosystem

2.1 The Original Matsumoto-Imai Cryptosystem

Let k be a finite field of size q and characteristic 2, and fix an irreducible
polynomial of g(x) ∈ k[x] of degree n. Then K = k[x]/g(x) is an extension
of degree n over k, and we have an isomorphism φ : K −→ kn defined by
φ(a0 + · · · + an−1x

n−1) = (a0, . . . , an−1).
Fix θ so that gcd (1 + qθ, qn − 1) = 1 and define F : K −→ K by F (X) =

X1+qθ

. Then F is invertible and F−1(X) = Xt, where t(1+ qθ) ≡ 1 mod qn − 1.
Define the map F̃ : kn −→ kn by F̃ (x1, . . . , xn) = φ ◦ F ◦ φ−1(x1, . . . , xn) =
(F̃1, . . . , F̃n). In this case, the F̃i(x1, . . . , xn) are quadratic polynomials in the
variables x1, . . . , xn. Finally, let L1 and L2 be two randomly chosen invert-
ible affine linear maps over kn and define F : kn −→ kn by F (x1, . . . , xn) =
L1 ◦ F̃ ◦ L2 (x1, . . . , xn) = (F 1, . . . , Fn). The public key of the Matsumoto-Imai
cryptosystem (MI or C∗) consists of the polynomials F i(x1, . . . , xn). See [16] for
more details.

2.2 The Perturbed Matsumoto-Imai Cryptosystem

Fix a small integer r and randomly choose r invertible affine linear functions
z1, . . . , zn, written zj(x1, . . . , xn) =

∑n
i=1 αijxi + βj , for j = 1, . . . , r. This de-

fines a map Z : kn −→ kr by Z(x1, . . . , xn) = (z1, . . . , zr). Now randomly choose
n quadratic polynomials f1, . . . , fn in the variables z1, . . . , zr. The fi define a
map f : kr −→ kn by f(z1, . . . , zr) = (f1, . . . , fn). Define f̃ : kn −→ kn by
f̃ = f ◦ Z, and F : kn −→ kn by F = F̃ + f̃ . The map F is called the
perturbation of F̃ by f̃ , and as with MI, its components are quadratic poly-
nomials in the variables x1, . . . , xn. Finally, define the map F̂ : kn −→ kn by
F̂ (x1, . . . , xn) = L1 ◦ F ◦ L2(x1, . . . , xn) = (y1, . . . , yn). The public key of the
perturbed Matsumoto-Imai (PMI) cryptosystem consists of the components yi

of F̂ . See Fig. 1 for an illustration of this idea, and [7] for more details.

Complexity Estimates for the F4 Attack on the PMI Cryptosystem 265

Note that for MI there is a bijective correspondence between plaintext and
ciphertext. However, PMI does not enjoy this property. Indeed, for a given ci-
phertext c ∈ kn, F̂−1(c) may have as many as qr elements, though we may
use the technique suggested for HFE to distinguish the plaintext from the other
preimages. It has been proposed [7] that we can choose the parameters of PMI
(q = 2, r = 6, n = 136) so that the resulting system is faster than HFE, and also
claiming a very high level of security.

x1, . . . , xn

�

L2

�

F̃1, . . . , F̃n

�

�

z1, . . . , zr

f̃1, . . . , f̃n

�+

�
L1

y1, . . . , yn

Fig. 1. Structure of PMI

2.3 Known Attacks Against MI and PMI

The most successful attack against MI is that of Patarin [18]. At present it is
not clear whether this approach can be generalised to attack PMI, the main
difficulty being that PMI mixes the operations in the extension field K from MI
with the operations in the ground field k from the perturbation of MI. Another
approach might involve ideas from the cryptanalysis of Sflash [14,15], though it
is not immediately clear how this might work.

The differential attack [13] has rendered PMI insecure. However, it is easily
repaired [8] using the Plus method of externally adding relatively very few Plus
(+) polynomials [20]. The resulting scheme is call the Perturbed Matsumoto-
Imai-Plus (PMI+) cryptosystem. Since the number of polynomials in PMI+
exceeds the number of unknowns by such a small amount, the attack complex-
ity of a Gröbner basis attack very close to that of the same attack mounted
against PMI. As a result, for simplicity we henceforth consider only PMI. These
extra polynomials are added between the two linear transformations L1, L2. In
particular, this means that we have L1 : kn+a → kn+a now with a ∈ N added
polynomials. These polynomials have the form

266 J. Ding et al.

fn+1(x1, . . . , xn) := γ′
n+1,1,2x1x2 + . . . + γ′

n+1,n−1,nxn−1xn +
β′

n+1,1x1 + . . . β′
n+1,nxn + α′

n+1

...
fn+a(x1, . . . , xn) := γ′

n+a,1,2x1x2 + . . . + γ′
n+a,n−1,nxn−1xn +

β′
n+a,1x1 + . . . β′

n+a,nxn + α′
n+a

for γ′, β′, α′ ∈R k being random coefficients.
In [4] and [12], Gröbner bases have been used to break instances of HFE. By

exploiting the underlying algebraic structure, they are able to break HFE in a far
shorter time than it would take to solve a system of random equations [11,12].
For a fixed number of monomials in HFE, it can be shown that the running time
will be polynomial. This result applies to MI as it uses only one monomial. The
running time of this attack applied to PMI is not known.

3 Experiments with the F4 Gröbner Basis Algorithm

3.1 Methodology

We attempted to experimentally determine the running time and memory re-
quirements for a Gröbner basis attack on PMI. To this end we generated several
instances of PMI. For each resulting set of polynomials y1, . . . , yn we chose sev-
eral (y′

1, . . . , y
′
n) ∈ kn and timed how long it takes to find a Gröbner basis for

the ideal (y1 − y′
1, . . . , yn − y′

n). Such a basis allows us to swiftly determine all
(x′

1, . . . , x
′
n) ∈ kn such that F̂ (x′

1, . . . , x
′
n) = (y′

1, . . . , y
′
n).

More specifically, we randomly generated 101 instances of PMI in Magma
[3] for several values of n and r with q = 2, 14 ≤ n ≤ 59, and 0 ≤ r ≤ 10. In
addition we randomly generated 101 elements in kn and applied the F4 version
of the Gröbner basis implementation in Magma to each instance/element pair.
In both cases, we used a uniform distribution on the private key/element from
kn. For all runs, we measured the memory and time needed until the algorithm
found a solution. It did happen that some elements had no preimage under PMI,
which is the same as with random systems of multivariate quadratic equations,
hence we kept these timings in the sample. This decision was made as we were
mainly interested in understanding the security of a signature scheme. For an
encryption scheme, a more obvious choice would have been to encrypt random
vectors x ∈ kn and then solving the corresponding equations, i.e., F̂ (x) = y for
given F̂ and y and “unknown” x.

We note that in theory it would be best to measure the maximal degree of the
equations generated during a run of the F4 algorithm. Unfortunately, Magma
does not provide this feature, and so we had to use the indirect measurements
of time and memory. It should also be noted that the F5 algorithm [10] is said
to be faster than the previous algorithm F4 [9]. However, recent experiments
by Steel show that the Magma implementation of F4 is superior in the case of

Complexity Estimates for the F4 Attack on the PMI Cryptosystem 267

HFE systems [23]. In particular, Steel was able to solve HFE Challenge 1 in less
operations than Faugère with his own implementation of F5. This is a rather
surprising fact as F5 should be faster than F4 from a theoretical perspective
in all cases. Still, Magma’s implementation of F4 achieves better timings than
Faugère’s implementation of F5 when applied to HFE Challenge 1. For our ex-
periments, we decided to use the F4 implementation of Magma as it is the fastest,
publicly available implementation of Gröbner base algorithms. We benchmarked
its performance by solving random instances of PMI for various parameters n, r
for the finite field k = GF(2). Although other ground fields with characteristic
2 are possible, we avoid them since solving PMI for a given private key takes an
additional workload of O(qr). Also, the running time of Gröbner algorithms is
very sensitive to the ground field k. Hence, it is difficult to obtain enough data
for the cases q = 4, 8, and 16.

To ensure the accuracy and reliability of the data, we conducted the ex-
periments with two independent teams, Team Q and Team Ω. Team Q used a
cluster of identical AMD Athlon XP 2000+ with 900 MB of memory each, and
Team Ω used an UltraSPARC-III+ 1.2 GHz dual processor with 8.0 GB of main
memory. Because of these hardware and software differences, we expected to
see differences in our measurements. However both data sets point to the same
asymptotic behaviour. For brevity, we include only Team Q’s data.

3.2 Empirical Data

It is clear that the case of r = 0 corresponds to MI, while the case of r = n
corresponds to a system of n randomly selected polynomials in n variables. Thus
we expected the Gröbner basis attack on a system with r = 0 to be polynomial
in time [12], while the same attack on a system with r = n is expected to be
exponential in time. Using our data, we wanted to answer two questions. First,
for a fixed n we wanted to find the so-called “optimal perturbation dimension,”
i.e., the minimal value of r for which a PMI system with parameters n and r
is indistinguishable from a set of random polynomials. We also sought to obtain
formulæ which would allow us to predict the running time behaviour of F4

applied to PMI for any n and r.
The number of steps involved in attacking PMI with F4 can be found in

Table 5, while the memory requirements are shown in Table 6. Since no θ ∈ N

exists such that gcd(1 + 2θ, 2n − 1) = 1 for n = 16, 32, there is no corresponding
instance of PMI and we hence have no data for these two cases. Each entry in
these two tables is the median of 101 computations. This relatively small sample
size was justified by additional experiments to determine the variation in larger
(1001 computations) data sets. We found that the ratio of the maximum value to
minimum value was always less than 2 in these larger sets. Data sets with median
time below 0.05 seconds, or with memory requirements greater than 900 MB of
memory were excluded from consideration in the final analysis on the grounds
that they were either too noisy or suffered from the effects of extensive memory
swapping. However, we actually performed many more experiments than are

268 J. Ding et al.

listed in Tables 5 and 6. Moreover, all experiments that terminated prematurely
were due to memory shortage and not time constraints.

4 Interpretation

From the point of view of cryptanalysis, most agree that it is the computational
complexity that essentially determines the security of a cryptosystem. In our
experiments we notice that the time and memory tables are closely correlated.
The explanation for this can easily be seen from the structure of the F4 algorithm.
Therefore we believe it suffices to analyse the timing data, and hence we omit a
detailed analysis of the memory usage. However, from our experiments we notice
that the memory usage is on the same scale as that of the time complexity. Since
memory is a much more critical constraint than time, in the end we believe it
will be memory that will determine how far F4 can go.

4.1 Polynomial and Exponential Models

It is known that the case r = 0 is precisely MI. Hence the attack from Faugère
and Joux [12] using Gröbner bases should be polynomial. Thus we first consider
the hypothesis that the data is well approximated by a polynomial model. Let
t(n, r) be the time to attack PMI with parameters n and r. We assume that
our computer can perform 2 · 109 steps per second, and define the number of
steps, s(n, r) = 2 ·109 t(n, r). We use s(n, r) instead of t(n, r) for all calculations.
The polynomial model predicts the existence of constants α = α(r) and β =
β(r) such that s(n, r) is well approximated by αnβ . Table 1 shows the fitting
obtained from applying the method of least squares for a fixed r on the data
{log2 n, log2 s(n, r)}, where ε is the error sum of squares for this data set. We
note that for r = 0, the exponent β = 7.16 is greater than that predicted in [12],
though we speculate that the difference may be due to the fact that F5 is used
instead of F4.

Table 1. Polynomial fittings

r 0 1 2 3 4 5 6 7 8 9 10

log2 α -4.81 -3.33 -12.64 -7.71 -13.74 -10.87 -29.38 -29.30 -29.84 -31.09 -30.27

β 7.16 7.12 9.50 9.22 10.81 10.18 14.90 15.02 15.17 15.48 15.28

ε 4.20 5.28 6.97 2.17 1.51 3.29 6.51 2.32 0.91 1.10 0.80

It should also be observed that there is some sort of “phase transition” that
occurs in the fitting behaviour as r increase from 5 to 6. This is most obviously
seen by looking at the values of log2 α, which should not be either unusually
small or unusually large, as this quantity represents the expected complexity
for small n. Our data shows that as r increases from 5 to 6, α decreases from

Complexity Estimates for the F4 Attack on the PMI Cryptosystem 269

Table 2. Exponential fittings

r 0 1 2 3 4 5 6 7 8 9 10

log2 α 21.88 22.37 19.83 20.62 18.02 19.10 11.58 11.65 11.05 11.16 10.94

log2 β 0.27 0.30 0.45 0.55 0.72 0.68 1.15 1.18 1.22 1.21 1.23
ε 6.73 11.44 2.57 5.22 2.95 6.34 2.54 1.91 0.82 1.10 0.89

Fig. 2. Graph of log2 s(n, 0)

the reasonable scale of approximately 2−10 to 2−30, which would seem to be
unreasonable. Therefore, we suspect that it is at r = 6 where the transition from
polynomial to exponential behaviour occurs.

To examine this possibility, we also consider the hypothesis that the data
is well approximated by an exponential model. As before, let t(n, r) be the
time to attack PMI with parameters n and r. The exponential model predicts
the existence of constants α = α(r) and β = β(r) such that s(n, r) is well
approximated by αβn. Table 2 shows the fitting obtained from applying the
method of least squares for a fixed r on the data {n, log2 s(n, r)}, where again
ε is the error sum of squares. To illustrate the fittings we present Table 2 and
Fig. 2–5.

Observe that ε does not help to decide which fitting is more appropriate, so
we must study the other parameters of the fitting. In particular, from Table 2
we note that again there is a transition happening with log2 α between r = 5
and r = 6. Once again, the important feature is the transition in log2 α, which
again happens between r = 5 and 6. Our reasoning is as before; i.e., we do not
believe α should either be too large or too small. In the case of the exponential
model, α is too large for r < 6. Hence, we find the exponential model much more
convincing for the case of r ≥ 6, and the polynomial model a better fit for r < 6.

In summary, from this data we observe that the complexity makes a transi-
tion between two distinct regions, where the first region represents polynomial
behaviour such as that of MI, and the second represents the exponential behav-
iour of a system defined by a random set of polynomials. We call the point at

25 30 35 40 45 50 55

30

32

34

36

38

270 J. Ding et al.

Fig. 3. Graph of log2 s(n, 4)

Fig. 4. Graph of log2 s(n, 5)

Fig. 5. Graph of log2 s(n, 6)

20 25 30

27.5

32.5

35

37.5

40

20 25 30

27.5

32.5

35

37.5

40

16 18 20 22 24 26

27.5

32.5

35

37.5

40

Complexity Estimates for the F4 Attack on the PMI Cryptosystem 271

which this transition occurs the phase transition point, which we believe is r = 6.
In our data, we did not find any other transition point. In particular, this behav-
iour fits well with the corresponding theory: as soon as the number of linearly
independent monomials reaches a certain threshold, Gröbner base algorithms
like F4 or F5 cannot make use of the structure of the private key anymore.

4.2 Optimal Perturbation Dimension

The analysis in the previous two sections assumed a fixed r and variable n.
We now consider fixing n and varying r in order to study how the complexity
achieves its maximum as r increases from zero (polynomial) to n (exponential).
Fig. 6 illustrates the typical features of such a transition process.

Fig. 6. Graph of log2 s(21, r)

It is important not to confuse the phase transition point with the minimal
value of r (for a fixed n) for which the maximal complexity is achieved and no
further advantage is gained by increasing r. We call such an r the optimal pertur-
bation dimension for a given n. Based on the experiments above, we empirically
determined this dimension and summarise our findings in Table 3.

Table 3. Optimal perturbation dimension

n 14. . .15 17. . .21 22. . .24
r 4 7 10

This data agrees very well with the theoretical explanation of the behaviour
of Gröbner bases algorithms for solving HFE. There, the maximal degree of the
polynomial equations derived during one computation is also discrete. It seems

2 4 6 8 10

30

32

34

36

272 J. Ding et al.

that we get similar behaviour here. As was already pointed out, we could not
make this observation directly as Magma does not provide the maximal degree.
In order to confirm this behaviour and find formulæ that can be used to predict
the location of the optimal perturbation dimension, we would need more data
for larger values of n. However, this is not possible at present as the memory
requirements for F4 are quite severe, cf Table 6.

4.3 Practical Security

We now evaluate the security of some implementations of PMI. As was already
pointed out, PMI by itself is insecure under the differential attack. Therefore the
following analysis assumes that the Plus method has been applied. We first use
the fittings to evaluate the security of the practical system proposed in [7]. We
then use our fittings to propose some new optimised practical systems.

Evaluation of Practical Examples. In [7] the practical example suggested
is the case of q = 2, r = 6, and n = 136. First we evaluate this example using
the exponential model. The predicted security in this model is greater than 2160.
Assuming the validity of this model, the proposed system is very secure against
Gröbner based attacks. In particular, according to the exponential model, since
log2 β > 1 for r ≥ 6, the running time of F4 increases faster than exhaustive
key search for q = 2. Therefore, these instances of PMI should be secure against
these types of attacks assuming the validity of the exponential model. In fact, a
practical and secure instance of PMI can use the parameters q = 2, r = 6, and
n = 83 to meet the NESSIE requirements of 280 3-DES computations, if our
model is valid. In particular, the security of the exponential model suggests a
strength of 2100 3-DES computations. However, for q = 2, n < 80, a brute-force
search would take less than the required 280 computations in 3-DES. Therefore,
we decided to chose the first prime above 80, to rule out subfield-attacks as
suggested in [22].

To be on the safe side, we also evaluate the system with q = 2, r = 6, and
n = 136 using the polynomial model. The predicted security for this model is
roughly 270 3-DES computations. According to this model, n must be greater
than 227 to achieve the required NESSIE security level. However, if we consider
the memory requirements needed to attack such a system, breaking these systems
will be practically impossible with currently available resources. In particular,
it is not clear at present how such an attack could be distributed over different
machines, e.g., using a distributed network of machines all agreeing to collaborate
or possibly being captured by Trojan horses.

It is speculated in [7] that q = 2, r = 5, and n = 96 may also be secure.
To evaluate this claim it is more appropriate to assume the polynomial model.
According to this fitting, the security level is less than 250 3-DES computations,
which is much less than the security level as requested in NESSIE. Therefore
we conclude that this speculation may be overly optimistic. But again, we point
out the severe memory requirements. Based on our experiments, we expect a
number well above 260 bytes.

Complexity Estimates for the F4 Attack on the PMI Cryptosystem 273

The PMI scheme was originally proposed for use as an encryption scheme.
One can easily modify the system for signature purposes; for example, one can
use the Feistel-Patarin-Network, as in the signature scheme Quartz [21]. The
scheme with the parameters q = 2, r = 6, n = 83 suggested above can be used
in this way to build a secure signature scheme with only 83 bits.

Practical Perturbation Dimension. For PMI cryptosystems, one of the fun-
damental questions one should answer is how to choose r appropriately for a
fixed n. From the behaviour of the complexity, a natural choice would be the
optimal perturbation dimension, where the system becomes indistinguishable
from a system defined by a random set of polynomials. However, we notice that
this number may be too large for practical purposes, so we must choose some
smaller value for r such that the system is practical and secure. Since the phase
transition point is the minimal r that provides exponential behaviour we suggest
this value for the perturbation dimension in practice.

4.4 Further Research

While the security of MI and also the behaviour of Gröbner base algorithm
is well understood, this is not the case for PMI. Hence, it would be nice to
have empirical data about the behaviour of other algorithms, e.g., F5 in the
case of PMI. This proves difficult at present as F5 is not available in a public
implementation.

Using the maximal degree of the polynomials generated during a run on F4

would have been more telling than our time or memory measurements. From
[12], we expect this degree to be far more stable than the time or memory
requirements. However, as Magma is also closed source, we could not modify the
code to obtain this information. Hence, an open source implementation of F4

would be preferable. In any case, we believe that this information would help
us find the optimal perturbation dimension for a fixed n, the determination of
which is important to completely understand PMI.

Apart from this, PMI seems secure against Gröbner attacks, and so we con-
clude that PMI+ is secure against both differential and Gröbner basis attacks.

5 Conclusions

In this paper we presented a security analysis of the PMI cryptosystem against
Gröbner basis attacks. From this analysis we saw that for reasonable choices
of parameters, PMI is secure against such attacks. Since PMI can be protected
from the differential attack by externally adding as few as 10 random Plus poly-
nomials, we conclude that this security analysis extends to that of PMI+.

Running various experiments with random instances of PMI, we established
that PMI with small security parameter r can likely be solved in polynomial
time. However, the rather large memory requirements will prevent such an attack
from being practical with currently available resources. On the other hand, for

274 J. Ding et al.

Table 4. Comparison between Quartz and PMI

Quartz-7m PMI
ground field k GF(2)

variables n 107 83
equations m 100 83

Signature Size [bits] 128 83
Public Key Size [kByte] 71 35

r ≥ 6, we saw that the attacks using Gröbner bases become less efficient than
exhaustive key search. Hence, we conclude that PMI is secure against these type
of attacks. In particular, we suggest q = 2, r = 6, and n = 83 as a secure instance
of PMI.

These results suggest that we can obtain a signature scheme from PMI that
allows shorter signatures than other multivariate schemes, and in particular
Quartz (128 bit, cf Table 4). For our comparison, we use the tweaked version
Quartz-7m from [24–Sect. 4.3]. Moreover, this scheme would be the only known
instance that gives a security level of 280 3-DES computations and still allows
efficient decryption of messages in a multivariate public key scheme.

Acknowledgements

Christopher Wolf was supported in part by the Concerted Research Action
(GOA) Mefisto-2000/06 and GOA Ambiorix 2005/11 of the Flemish Govern-
ment and the European Commission through the IST Programme under Con-
tract IST-2002-507932 ECRYPT.

References

1. M.-L. Akkar, N. T. Courtois, R. Duteuil and L. Goubin. A Fast and Secure Imple-
mentation of Sflash. In PKC 2003, LNCS 2567:267–278.

2. G. Ars, J.-C. Faugère, H. Imai, M. Kawazoe and M. Sugita. Comparison Between
XL and Gröbner Basis Algorithms. In Asiacrypt 2004, LNCS 3329:338–353.

3. University of Sydney Computational Algebra Group. The MAGMA com-
putational algebra system for algebra, number theory and geometry.
http://magma.maths.usyd.edu.au/magma.

4. N. Courtois, M. Daum and P. Felke. On the Security of HFE, HFEv- and Quartz.
In PKC 2003, LNCS 2567:337–350.

5. N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations. In Eurocrypt 2000,
LNCS 1807:392–407.

6. W. Diffie and M. Hellman. New Directions in Cryptography. In IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

7. J. Ding. A New Variant of the Matsumoto-Imai Cryptosystem Through Perturba-
tion. In PKC 2004, LNCS 2947:305–318.

Complexity Estimates for the F4 Attack on the PMI Cryptosystem 275

8. J. Ding and Jason E. Gower. Inoculating Multivariate Schemes Against Differential
Attacks. Pre-print, 12 pages. http://math.uc.edu/∼aac/pub/pmi+.pdf

9. J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Bases (F4). In
Journal of Applied and Pure Algebra, 139:61–88, June 1999.

10. J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Bases Without
Reduction to Zero (F5). In ISSAC 2002, pp. 75-83, ACM Press.

11. J.-C. Faugère. Algebraic Cryptanalysis of (HFE) Using Gröbner Bases. Techni-
cal report, Institut National de Recherche en Informatique et en Automatique,
February 2003. http://www.inria.fr/rrrt/rr-4738.html, 19 pages.

12. J.-C. Faugère and A. Joux. Algebraic Cryptanalysis of Hidden Field Equation
(HFE) Cryptosystems Using Gröbner Bases. In Crypto 2003, LNCS 2729:44-60.

13. P.-A. Fouque, L. Granboulan, and J. Stern. Differential Cryptanalysis for Multi-
variate Schemes. In Eurocrypt 2005, LNCS 3494:341–353.

14. W. Geiselmann, R. Steinwandt and T. Beth. Attacking the Affine Parts of SFlash.
In Cryptography and Coding – 8th IMA International Conference, LNCS 2260:355–
359, 2001.

15. H. Gilbert and M. Minie. Cryptanalysis of SFLASH. In Eurocrypt 2002, LNCS
2332:288–298.

16. T. Matsumoto and H. Imai. Public Quadratic Polynomial-Tuples for Efficient
Signature-Verification and Message-Encryption. In Eurocrypt 1988, LNCS 330:419–
453.

17. NESSIE. European project IST-1999-12324 on New European Schemes for Signa-
ture, Integrity and Encryption. http://www.cryptonessie.org.

18. J. Patarin. Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eu-
rocrypt’88. In Crypto 1995, LNCS 963:248–261.

19. J. Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP):
Two New Families of Asymmetric Algorithms. In Eurocrypt 1996, LNCS 1070:33–
48. Extended version: http://www.minrank.org/hfe.pdf.

20. J. Patarin, L. Goubin and N. Courtois. C∗
−+ and HM: Variations Around Two

Schemes of T. Matsumoto and H. Imai. In Asiacrypt 1998, LNCS 1514:35–50.
21. J. Patarin, L. Goubin and N. Courtois. QUARTZ, 128-Bit Long Digital Signatures.

In CT-RSA 2001, LNCS 2020:298–307.
22. A. V. Sidorenko and E. M. Gabidulin. The Weak Keys for HFE. In Proceedings of

ISCTA 2003, 6 pages.
23. A. Steel. Allan Steel’s Gröbner Basis Timings Page. http://magma.maths.usyd.

edu.au/users/allan/gb.
24. C. Wolf and B. Preneel. Asymmetric Cryptography: Hidden Field Equations. In

European Congress on Computational Methods in Applied Sciences and Engineer-
ing 2004, 20 pages. Extended version: http://eprint.iacr.org/2004/072.

25. Christopher Wolf and Bart Preneel. Taxonomy of public key schemes based on the
problem of multivariate quadratic equations. Cryptology ePrint Archive, Report
2005/077, 12th of May 2005. http://eprint.iacr.org/2005/077/, 64 pages.

26. B.-Y. Yang, J.-M. Chen, and N. Courtois. On Asymptotic Security Estimates in
XL and Gröbner Bases-Related Algebraic Cryptanalysis. In ICICS 2004, LNCS
3269:410–423

276 J. Ding et al.

Appendix

Table 5. Steps s(n, r) in log2 for solving instances of PMI

n \ r 0 1 2 3 4 5 6 7 8 9 10

14 24.10 24.10 25.18 27.56 27.70 27.96 27.96 27.96 27.96 27.96 27.96
15 24.10 25.18 25.84 28.25 28.34 29.21 29.16 29.16 29.17 29.16 29.16
16
17 25.18 25.79 26.84 29.78 30.58 30.81 30.94 32.35 32.35 32.35 32.35
18 25.32 25.84 27.83 31.13 31.33 31.66 31.79 33.37 33.37 33.37 33.37
19 25.84 26.55 28.34 31.71 32.02 32.37 32.50 34.33 34.32 34.31 34.32
20 26.22 27.58 28.83 32.16 32.75 33.35 33.97 35.32 35.35 35.34 35.34
21 26.58 27.44 29.34 32.71 33.51 34.03 36.45 36.25 36.61 36.61 36.61
22 27.04 28.51 30.14 33.12 34.09 34.62 37.38 37.16 37.46 38.28 38.29
23 27.56 28.42 30.16 33.68 34.79 35.30 38.21 37.97 38.98 39.14 38.97
24 28.17 29.57 30.66 33.84 35.88 35.39 39.26 40.16 40.28 39.82 40.02
25 28.34 29.21 31.03 34.84 36.41 36.34 40.19 41.31 41.40 41.28
26 28.84 30.25 31.51 35.20 36.96 36.75 41.34
27 29.30 30.73 31.97 35.84 37.66 37.31
28 29.84 31.27 32.40 36.47 38.22 37.85
29 30.21 31.53 32.69 36.75 38.76 38.27
30 30.46 31.88 33.10 37.28 39.18 38.59
31 30.90 32.30 33.57 38.08 39.63 39.29
32
33 31.79 33.01 35.08 39.28 41.68 41.99
34 32.02 33.18 35.58 39.46
35 32.08 33.30 36.01 39.75
36 32.33 33.85 36.33 40.11
37 32.31 33.80 37.09 40.55
38 32.58 33.99 37.24 40.87
39 32.84 34.18 37.46
40 33.11 35.14 38.00
41 33.34 34.48 38.63
42 33.60 34.84 38.74
43 33.83 34.94 39.06
44 33.88 35.76 39.35
45 34.09 35.41 40.07
46 34.13 35.68 40.23
47 34.36 35.67 40.36
48 34.67 37.50 41.28
49 34.82 36.01
50 35.22 36.59
51 35.61 36.75
52 36.00 37.90
53 36.37
54 36.78
55 36.95
56 37.35
57 37.23
58 37.61
59 38.02

Complexity Estimates for the F4 Attack on the PMI Cryptosystem 277

Table 6. Memory requirements in log2 for solving instances of PMI

n \ r 0 1 2 3 4 5 6 7 8 9 10

14 21.69 21.73 21.82 22.19 22.03 22.33 22.32 22.33 22.32 22.33 22.32
15 21.83 21.90 22.00 22.46 22.67 22.78 22.66 22.67 22.66 22.67 22.66
16
17 22.34 22.33 22.44 23.12 23.52 23.59 23.53 24.74 24.73 24.74 24.73
18 23.01 23.01 22.97 23.55 24.06 24.07 24.47 25.41 25.41 25.41 25.41
19 23.81 23.81 23.47 24.08 24.60 24.63 24.71 26.08 26.09 26.09 26.09
20 24.46 24.46 24.22 24.72 25.17 25.20 25.77 26.71 26.71 26.71 26.71
21 24.46 24.46 24.22 24.72 25.17 25.20 28.00 27.10 27.10 27.10 27.10
22 24.46 24.46 24.22 24.85 25.40 25.64 28.35 27.61 27.61 28.56 28.57
23 24.46 24.46 23.47 25.25 25.75 26.36 28.94 28.12 29.18 29.29 29.05
24 24.46 24.46 24.22 25.50 26.24 26.83 29.61 29.90 29.99 29.72 29.78
25 24.46 24.46 24.22 26.11 26.44 27.35 29.90 30.41 30.55 30.43
26 24.46 24.46 24.22 26.51 26.80 27.91 30.33
27 24.46 23.36 24.22 26.87 27.85 28.30
28 24.46 24.46 24.22 27.24 27.90 28.64
29 24.46 24.46 24.35 27.55 28.37 29.05
30 24.46 24.46 24.73 27.93 29.02 29.45
31 24.46 24.46 24.79 28.16 29.40 29.79
32
33 24.46 24.64 25.70 28.82 30.39 30.69
34 24.46 24.64 26.14 29.11
35 24.46 24.64 26.57 29.40
36 24.46 25.34 26.86 29.68
37 24.46 25.34 27.01 29.89
38 24.85 25.34 27.60 30.16
39 24.85 26.05 27.87
40 25.29 26.00 28.01
41 25.30 26.06 28.21
42 25.30 26.65 28.77
43 25.30 26.77 28.71
44 25.31 26.77 28.96
45 25.51 27.30 29.51
46 25.61 27.30 29.78
47 25.72 27.30 29.68
48 25.92 27.97 30.13
49 25.98 27.93
50 26.09 28.40
51 26.28 28.41
52 26.33 28.41
53 26.43
54 26.65
55 26.67
56 26.77
57 27.03
58 27.03
59 27.11

An Algebraic Framework for Cipher Embeddings

C. Cid1,�, S. Murphy1, and M.J.B. Robshaw2

1 Information Security Group,
Royal Holloway, University of London,
Egham, Surrey, TW20 0EX, U.K.

2 France Télécom Research and Development,
38–40 rue du Général-Leclerc,

92794 Issy les Moulineaux, France

Abstract. In this paper we discuss the idea of block cipher embeddings
and consider a natural algebraic framework for such constructions. In
this approach we regard block cipher state spaces as algebras and study
some properties of cipher extensions on larger algebras. We apply this
framework to some well-known examples of AES embeddings.

1 Introduction

Cryptosystems are designed to hinder the efforts of the cryptanalyst. However it
is good cryptographic practice to ensure that the cryptosystem is presented in a
clear and natural manner to facilitate independent scrutiny. Since there is rarely
one single viewpoint for looking at a cipher, one approach for the cryptanalyst
is to consider alternative presentations. At first sight it may appear that there
is little to be gained by studying the same cryptosystem in a different way.
However, new perspectives may well:

– reveal mathematical structure that was hidden;
– permit calculations that were previously considered intractable;
– encourage the development of ideas about the analysis of the cryptosystem;
– provide implementation insights.

In fact, finding different presentations is fundamentally the only technique
available for the analysis of many asymmetric cryptosystems, as the following
two examples of widely used asymmetric cryptosystems demonstrate.

– RSA. The security of the RSA cryptosystem [16] with modulus n, where
n = pq (two unknown primes), is believed to fundamentally depend on the
inability of an attacker to factor the integer n. This is equivalent to the
inability of an attacker to find a presentation based on the ring “factoring”
isomorphism Zn → Zp × Zq.

� This author was supported by EPSRC Grant GR/S42637.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 278–289, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Algebraic Framework for Cipher Embeddings 279

– Cryptosystems Based on Discrete Logarithms. There are many cryp-
tosystems, such as ElGamal [5], the Digital Signature Standard [15] or Ellip-
tic Curves [10,7], whose security is believed to fundamentally depend on the
inability of an attacker to calculate discrete logarithms in certain finite cyclic
groups. For such a group G of order p, this is equivalent to the inability of
an attacker to find a presentation based on the isomorphism G → Z

+
p , where

Z
+
p is the additive cyclic group of integers modulo p.

For an asymmetric cryptosystem, it is often fairly obvious which presentation
of the cryptosystem might be of greatest use to the analyst. The difficulty for
an alternative presentation of an asymmetric cryptosystem is “merely” one of
calculating this presentation.

For a symmetric cryptosystem it is unlikely to be so obvious. One standard
technique for analysing a mathematical structure is to embed it as a sub-structure
within a larger one. In this way the original mathematical structure is presented
within the context of a larger structure and such an approach has yielded great
insights in many areas of mathematics. In this paper, therefore, we consider a
framework for the embeddings of block ciphers.

While embeddings are usually constructed in the hope that they can provide
a further insight to the cryptanalyst, they can also be useful when considering
some implementation issues: an alternative presentation could provide a more
efficient implementation of the cipher, or might be used to protect against some
forms of side-channel attacks, such as timing or power analysis.

Our discussion is conducted with a view to providing a basic framework
for block cipher embeddings. The question of whether a particular block cipher
embedding yields any new insights might be, to some extent, a subjective judge-
ment. However we observe that there are embeddings that are in some sense
“trivial” and they cannot possibly offer extra insight into the cipher. In this
paper we seek to provide a framework to provide some initial discrimination
between embeddings of different types.

We begin the development of this framework by considering the natural math-
ematical structure for a block cipher state space, namely the algebra. The em-
bedding of one block cipher into a larger one is then discussed in terms of the
embedding function between the two state space algebras. This leads to a natural
mathematical derivation of the extended cryptographic functions of the larger
block cipher. To illustrate our approach, we discuss some well-known examples
of AES embeddings [1,11,12].

2 State Space Algebras

The state space of a block cipher is usually composed of a number of identi-
cal components. For example, the state space of the Data Encryption Standard
(DES) [13] consists of 64 bits, whereas the state space of the Advanced Encryp-
tion Standard (AES) [14,3,4] is usually thought of as consisting of 16 bytes. For
many block ciphers, these components are viewed as elements of some algebraic

280 C. Cid , S. Murphy, and M.J.B. Robshaw

structure, and internal block cipher computations often depend on using opera-
tions based on this structure. Thus, it is natural to regard a component of the
DES state space as an element of the finite field GF (2), and a component of the
AES state space as an element of the field GF (28).

For a block cipher, in which a component of the state space is naturally
regarded as an element of a field K, the entire state space is given by the set
Kn, where n is the number of components (n = 64 for the DES and n = 16 for
the AES). The set Kn has a natural ring structure as the direct sum of n copies
of the field K, as well as a natural vector space structure as a vector space of
dimension n over K. A set with such structure is known as an algebra [8]. More
formally, we have the following definition.

Definition 1. Let K be a field. An associative K-algebra (or simply algebra)
is a vector space A over K equipped with an associative K-bilinear multiplication
operation.

Informally, we can regard an algebra as a vector space which is also a ring.
Algebras can be also generalised to the case when K is a commutative ring (in
which case A is a K-module rather than a vector space). The dimension of the
algebra A is the dimension of A as a vector space. The set A′ ⊂ A is a subalgebra
of A if A′ is an algebra in its own right, and A′ is an ideal subalgebra if it is also
an ideal of the ring A. We can also classify mappings between two algebras in
the obvious way, so an algebra homomorphism is a mapping that is both a ring
homomorphism and a vector space homomorphism (linear transformation).

Considering block ciphers, the algebra of most interest cryptographically is
formed by the set Kn. This is an algebra of dimension n over K, where “scalar”
multiplication by the field element λ ∈ K is identified with multiplication by the
ring element (λ, . . . , λ) ∈ Kn. This algebra is the natural algebraic structure for
most block cipher state spaces and we term the algebra Kn the state space alge-
bra. We note that even in cases where K is not a field (for example, a component
of the state space of the SAFER family of block ciphers [9] is most naturally
thought of as an element of the ring Z28), the K-algebra Kn still remains the
most interesting structure for our analysis, and most of the discussion following
can be suitably modified.

The algebraic transformations of a state space algebra, that is transforma-
tions that preserve most of the structure of the algebra, are necessarily based
either on a linear transformation of the state space or on a ring-based transfor-
mation of the state space. However, a secure design often requires some non-
algebraic block cipher transformations; for example in each round there is often
a transformation using a substitution or look-up table. There are cases however
(most notably the AES) where the round transformations are dominated by al-
gebraic operations and, in such cases, it may be interesting to study the cipher
by means of an embedding of the state space algebra in a larger algebra. An em-
bedding may be defined so that all transformations of the embedded state space
are also algebraic transformations with respect to the larger algebra. The hope
is that this new representation may offer new insights on the essential structure
of the original cipher.

An Algebraic Framework for Cipher Embeddings 281

3 Block Cipher Embeddings

Suppose that A = Kn is the state space algebra of dimension n over K for
some block cipher, and that the encryption process consists of a family of (key-
dependent) functions f : A → A. A block cipher embedding is constructed from
an injective mapping η : A → B from the algebra A into some (possibly larger)
algebra B and suitably extended versions of the functions f defined on B. We
now consider different methods of embedding block ciphers.

3.1 Identity Embeddings

The are clearly many ways of embedding A in an algebra B of higher dimension.
One obviously unproductive way to construct a cipher embedding is to embed
the algebra A and the cryptographic function f into the algebra B by means of
the identity mapping.

Suppose that the algebra B can be written as the direct sum

B = A ⊕ A′,

with the embedding mapping given by η : a �→ (a, 0). The functions f can easily
be extended in a trivial manner, so that (a, 0) �→ (f(a), 0). This provides a direct
mirror of the cipher within B, and the A′-component of the embedding (and the
value of the extended function beyond η(A)) is irrelevant to the definition of the
original cipher in its embedded form. Clearly, this idea can also be extended to
any embedding mapping of the form η : a �→ (a, ?) and any extension of f to a
function (a, ?) �→ (f(a), ?). For example, the cryptographic function f : A → A

could be extended to a cryptographic function f̂ : B → B given by (a, a′) �→
(f(a), g(a′)) for some function g : A′ → A′.

Knudsen essentially gives an example of such an embedding where f is the
Data Encryption Standard (DES) [13] encryption function and g is the RSA [16]
encryption function, with the same key used (in very different ways) for each
of these encryption functions [6]. Based on this embedding function, Knudsen
makes statements about the security of DES in terms of the security of RSA and
vice versa [6]. The readers of [6] are left to draw their own conclusions about a
security statement made about one cipher but which is based on the analysis of
a different arbitrary cipher.

We term such an embedding an identity-reducible embedding. Apart from
possibly providing another presentation of the cipher, identity-reducible embed-
dings are of little interest mathematically or cryptographically.

3.2 Induced Embeddings

The starting point for a cipher embedding is an injective function η : A → B.
We denote by BA = η(A) ⊂ B the image of this mapping. We now discuss the
natural method of extending the cipher functions f to functions on B using η.

282 C. Cid , S. Murphy, and M.J.B. Robshaw

We first consider how to define the induced embedded cryptographic func-
tions fη : BA → BA. These functions need to mirror the action of f on A, but
within BA. They must therefore be given by

fη(b) = η
(
f
(
η−1 (b)

))
for b ∈ BA,

which is illustrated in the diagram below (Figure 1). To illustrate this induced

A
η−1

←− BA

↓ ↓
f fη

↓ ↓
A

η−→ BA

Fig. 1. Induced Function given by the Embedding η

function, consider the usual case where subkeys are introduced into a block cipher
by addition, that is by the function f(a) = a+k. Suppose we choose an additive
embedding transformation η, whose definition can be extended to subkeys. In
this case, the corresponding embedded method of introducing subkeys can be
naturally defined by addition, as

fη (η(a)) = η
(
f
(
η−1 (η(a))

))
= η (f(a)) = η(a + k) = η(a) + η(k).

3.3 Natural Extensions of Embeddings

The reason for considering an embedding is to analyse a cipher within a (possi-
bly) larger cipher in the hope of gaining a better insight into the original cipher.
In general however, BA = η(A) is not a subalgebra of B, but it exists within
the context of the algebra B and operations on BA are defined by the algebra
B. It is thus far more natural to work within the algebra B and define BA

mathematically within B, than it is to consider BA in isolation. For example,
while BA may not be a vector space, the induced encryption functions may be
defined in terms of a matrix multiplication of the elements of BA. It is clearly
mathematically appropriate in such an example to consider the vector space on
which the linear transformation is defined instead of just one subset (e.g. BA).
It is thus desirable in an embedding to naturally extend the function fη to B,
so that the extension retains the main algebraic properties of fη.

The most appropriate structure to consider in this case would be the set BA,
the (algebraic) closure of BA. This is the minimal algebra containing BA, and
is generated (as an algebra) by the elements of BA. The set BA can now be
considered algebraically entirely within the context of the closure BA, and the
operations on BA are defined within the algebra BA.

It is clear how this notion of closure can give the appropriate extension of the
induced functions fη : BA → BA to an extended induced functions fη : BA →

An Algebraic Framework for Cipher Embeddings 283

BA. In particular, such an extension fη preserves algebraic relationships between
the input and output of the functions fη. It should also be clear that BA is the
absolute extent of the cipher within B. No elements outside BA (that is B \BA)
can be generated by the embedded versions of elements of the state space algebra
A. Thus the extension of any function beyond BA is not determined algebraically
by the original cipher function, and can thus be considered arbitrary. There
seems to be no need (or point) in considering anything beyond the closure of the
embedding.

We have thus described a natural three-step process for embedding a cipher
within another cipher with a larger state space algebra:

1. Define an injective embedding function from the original state space algebra
to the larger state space algebra.

2. Based on the embedding function, define the induced cryptographic functions
on the embedded image of the original state space algebra.

3. Extend these induced cryptographic functions in a natural manner to the
larger state space algebra by algebraic closure.

This general approach seems to be an appropriate framework for consider-
ing cipher embeddings, particularly for ciphers with a highly algebraic structure
(note that key schedules can usually be similarly embedded). However it is clear
that each embedding should be considered on its own merits. Furthermore, not
every property of the embedded cipher is of immediate relevance to the original
cipher. Indeed, an example of a weakness of the larger algebraically embedded ci-
pher that does not translate to the original cipher was given in [12]. However our
framework allows us to immediately identify some embeddings that inevitably
have little cryptanalytical value.

4 Embeddings of the AES

The AES [14] is a cipher with a highly algebraic structure, and it is a suitable
cipher on which to apply and analyse different embedding methods. We look at
three different approaches that have been proposed in the literature and consider
their merits in terms of the framework given in Section 3.

The AES encryption process is typically described using operations on an
array of bytes, which we can regard as an element of the field F = GF (28).
Without loss of generality, we consider the version of the AES with 16-byte
message and key spaces, and 10 encryption rounds. The state space algebra of
the AES is thus the algebra F

16, which we denote by A.

4.1 Dual Ciphers of the AES

In [1] Barkan and Biham construct a number of alternative representations of
the AES, which they call dual ciphers of Rijndael. These distinct representations
are derived from the automorphisms of the finite field F = GF (28) (based on the
Fröbenius map a �→ a2) and the different representations of the field itself (via the

284 C. Cid , S. Murphy, and M.J.B. Robshaw

explicit isomorphisms between fields of order 28). Each representation can clearly
be seen as a form of embedding; the embedding functions are isomorphisms
and therefore B ∼= A. The AES cryptographic functions are extended to B
according to these isomorphisms. These embeddings are essentially mirrors of
the AES, although the different representations may permit us to gain a better
insight of algebraic structure of the cipher, such as the importance of some of
the choices made in the design of the AES. For instance, by analysing different
representations, it is concluded that a change of the “Rijndael polynomial” (used
to represent the finite field GF (28) within the cipher) should not affect the
strength of the cipher [1]. Such alternative representations can also be useful in
providing additional insights into efficient and secure implementation practices.

4.2 The BES Extension of the AES

The embedding of the AES in a larger cipher called Big Encryption System
(BES) was introduced in [12]. The main goal of this construction was to represent
the AES within a framework where the cipher could be expressed through simple
operations (inversion and affine transformation) in the field F = GF (28).

The BES operates on 128-byte blocks with 128-byte keys and has a very
simple algebraic structure. The state space algebra of the AES is the algebra
A = F

16, while the state space algebra of the BES is the algebra F
128 (denoted

by B). The embedding function for the BES embedding is based on the vector
conjugate mapping φ : F → F

8 [12], which maps an element of F to a vector of
its eight conjugates. Thus φ is an injective ring homomorphism given by

φ(a) =
(
a20

, a21
, a22

, a23
, a24

, a25
, a26

, a27
)

.

This definition can be extended in the obvious way to an embedding function
φ : A → B given by φ (a) = φ (a0, . . . , a15) = (φ(a0), . . . , φ(a15)), which is an in-
jective ring homomorphism. We note that the image of this ring homomorphism,
BA = Im(φ), is a subring of B, but not a subalgebra. However, it contains a
basis for B as a vector space, and so B is the closure of BA. Thus φ is not a
identity-reducible embedding.

The three-step process of Section 3 shows how this embedding gives an em-
bedded cipher on B. Based on the embedding function φ, an encryption function
f : A → A of the AES induces an embedded encryption function fφ : BA → BA.
This can be naturally extended by closure to a function fφ : B → B. This exten-
sion to B can be expressed by simple operations over GF (28), namely inversion
and affine transformation. These are natural extensions of the algebraic opera-
tions of the AES to the larger algebra B, based on the embedding function.

The AES embedding in the BES is an example of a cipher embedding which
yields insights into the cipher that are not apparent from the original description.
This is demonstrated by the multivariate quadratic equation system for the AES
that is based on the BES embedding [12,2], which is a much simpler multivariate
quadratic equation system than can be obtained directly from the AES. More
generally, it is clear that the AES embedding in the BES offers a more natural
environment in which to study the algebraic properties of the AES.

An Algebraic Framework for Cipher Embeddings 285

4.3 AES Extensions of Monnerat and Vaudenay

Monnerat and Vaudenay recently considered extensions of the AES and the BES,
namely the CES and the Big-BES [11]. The authors showed that these were
weak extensions in which cryptanalytic attacks could be easily mounted. They
observed however that the weaknesses in the larger ciphers did not translate to
weaknesses in the AES and BES, and were therefore of no consequence to the
security of the AES. Within the framework established in Section 3 it is now
very easy to see why the extensions given in [11] are inevitably divorced from
the original cipher.

The extensions of the AES to CES and the Big-BES are similar, so we only
consider the extension of the AES to the CES in this paper. A component of the
state space for the CES can be considered as an element of the set R = F × F.
The set R is given a ring structure (R,⊕,⊗) with binary operations defined by:

Addition (x1, y1) ⊕ (x2, y2) = (x1 + x2 , y1 + y2) ,
Multiplication (x1, y1) ⊗ (x2, y2) = (x1x2 , x1y2 + x2y1) .

The state space algebra for the CES is the algebra C = R16, which is an algebra
of dimension 32 over F, with scalar multiplication by the field element λ ∈ F

being identified with multiplication by the ring element (λ, 0, λ, 0, . . . , λ, 0) ∈ C.
The embedding of the AES in the CES is based on the injective algebra

homomorphism θ : F → R given by θ(a) = (a, 0). This definition can be extended
in the obvious way to the injective algebra homomorphism θ : A → C

θ (a) = θ (a0, . . . , a15) = (θ(a0), . . . , θ(a15)) = ((a0, 0), . . . , (a15, 0)) .

The AES cryptographic functions were then induced based on this embedding
map, and extended to the entire state space C to define the cipher CES.

There are several reasons why the cryptographic and algebraic relevance of
such an embedding would be immediately questionable. Firstly, the definition
of the function on the embedded image does not appear to be appropriate since
some important algebraic properties are not retained within the CES. For in-
stance, the AES “inversion” function satisfies x(−1) = x254, but this algebraic
relationship is not satisfied by the CES “inversion” function. Secondly, the alge-
bra C can be expressed as the direct sum of CA = Im(θ) and some other ideal
subalgebra C′. Thus, in our terminology, θ is a identity-reducible embedding.
As shown earlier, this means that the way the embedded encryption function
fθ : CA → CA is extended beyond CA is irrelevant and has no consequences in
the analysis of the AES. However, the cryptanalysis of the CES given in [11] is
based on the properties of this arbitrary C′-component of the CES. The funda-
mental reason for this separation into two components is clearly seen using the
framework presented in this paper. The other embedding mappings proposed
in [11] (based on a �→ (a, λa)) are also identity-reducible and so at a fundamen-
tal level they are bound to have the same ineffectiveness in tying together the
properties of the underlying cipher and the extension cipher.

286 C. Cid , S. Murphy, and M.J.B. Robshaw

5 Regular Representations of State Space Algebras

A very powerful and widely used technique in the study of algebras is to embed
an algebra in a matrix algebra. Such an embedding of an algebra is known as
a representation of the algebra. Thus a representation of a state space algebra
gives an embedding of a cipher in a matrix algebra. In this section, we consider
how a cipher state space algebra may be represented as matrix algebra, and how
such a matrix representation can highlight properties of the cipher and its state
space.

A representation of an n-dimensional algebra A is formally defined as an
algebra homomorphism from A to a subalgebra of Ml(K) [8], where Ml(K)
denotes the set of l × l matrices over the field K. Thus a representation of the
algebra A identifies A with an n-dimensional subalgebra of the l × l matrices. If
the algebra homomorphism is an isomorphism, then we may identify A with this
n-dimensional subalgebra of the l × l matrices. Clearly, there are many ways in
to define a representation. One standard technique is the regular representation,
which is the algebra homomorphism ν : A → Mn(K) that maps a ∈ A to the
matrix corresponding to the linear transformation z �→ az (z a K-vector of
length n) [8].

An illustration of a regular representation is given by the complex numbers,
which form a 2-dimensional algebra over the real numbers. The complex number
x+iy can be identified with its regular representation as a matrix, which is given
by

ν(x + iy) =
(

x y
−y x

)
.

The set of all such matrices forms a 2-dimensional algebra over the real numbers
and can be identified with the complex numbers.

5.1 Regular Representation of the AES and the BES

The regular representations of the AES and the BES state spaces are algebra
homomorphisms to diagonal matrix algebras. Thus we identify elements of these
state spaces with the obvious diagonal matrix. An element of the AES state space
A has a regular representation as a 16× 16 diagonal matrix over F, so A can be
thought of as the 16 × 16 diagonal matrices. An embedded element of the AES
state space in the BES has a regular representation as a diagonal 128×128 matrix
over F in which the diagonal consists of octets of conjugates. The closure under
matrix (algebra) operations of such embedded elements is clearly the algebra of
all 128 × 128 diagonal matrices, which is the regular representation of the state
space algebra B. The BES, and hence the AES, can thus be defined in terms
of standard matrix operations in the regular representation of B. Suppose B is
the diagonal 128× 128 matrix that is the regular representation of some b ∈ B,
then these BES transformations are given in matrix terms below.

– Inversion. For diagonal matrix B, this is the mapping B �→ B(−1) = B254.
For an invertible diagonal matrix B, this is matrix inversion.

An Algebraic Framework for Cipher Embeddings 287

– Linear Diffusion. For diagonal matrix B, there exist diagonal matrices Di

and permutation matrices Pi (i = 0, . . . , 31) such that this linear transfor-
mation can be defined by

B �→
31∑

i=0

DiPiBPT
i .

– Subkey Addition. For diagonal matrix B and round subkey diagonal ma-
trix K, this is the mapping B �→ B + K.

Thus the BES can be defined in matrix terms through the regular representation
of the algebra B as the subalgebra of diagonal matrices, with the operations of
the BES being represented by algebraic operations on these matrices.

The natural algebraic method of generalising operations on diagonal matrices
is to extend these operations by some method to a larger algebra of matrices that
contain the diagonal matrices. Thus we could define a “Matrix-AES” or “Matrix-
BES” defined on some algebra of matrices that coincides with the AES or the
BES for diagonal matrices. As we discuss below, this is in fact the approach
taken in [11] to give the definition of the CES and the Big-BES. However, the
functional “inversion” operation M �→ M254 is not an invertible mapping on
any subalgebra containing non-diagonal matrices. Thus there is no algebraic
extension of the AES or BES state spaces beyond the diagonal matrices. In any
case, the regular representation of the AES and the BES state spaces as diagonal
matrices illustrates very well the point made in Section 3. From the viewpoint
of the AES or the BES, all extensions beyond diagonal matrices are arbitrary
and algebraically indistinguishable.

5.2 Regular Representations of Monnerat–Vaudenay Embeddings

We now consider the regular representation corresponding to the Monnerat and
Vaudenay embedding. The algebra R has dimension 2 over F, so its regular
representation is given by a 2-dimensional subalgebra of the 2 × 2 matrices over
F. For an element (x, y) ∈ R, the regular representation (with right matrix
multiplication) is given by

ν ((x, y)) =
(

x y
0 x

)
.

Thus the regular representation of R is as the algebra of triangular matrices with
constant diagonals, with the subalgebra corresponding to the embedding of F in
R being the 1-dimensional subalgebra of 2 × 2 diagonal matrices with constant
diagonals. It is clear that in any matrix operation related to the AES, the value
of the diagonal elements never depends on any off-diagonal element. The regular
representation of the CES state space (C) is a subalgebra of the 32×32 matrices
over F given by the 32-dimensional subalgebra of 2 × 2 block diagonal matrices
of the form given above. The regular representation of the AES subalgebra of
the CES is given by the 16-dimensional subalgebra of diagonal matrices with

288 C. Cid , S. Murphy, and M.J.B. Robshaw

pairs of constant terms. As noted above, the off-diagonal elements never have
any effect on the diagonal elements and are entirely arbitrary. However, from
the algebraic viewpoint of the AES, this subalgebra of diagonal matrices is the
only subalgebra with any relevance. We note that this subalgebra of diagonal
matrices is a representation in the 32 × 32 matrices of the algebra A, and is
clearly algebra isomorphic to the subalgebra of diagonal 16×16 matrices, which
is the regular representation of the AES state space A.

All the regular representations of the AES subset of the various state spaces
considered consist of diagonal matrices. Those diagonal matrices given by the
regular representation of Monnerat and Vaudenay embeddings merely use di-
agonal matrices of twice the size with diagonal entries repeated. Every cipher
considered (AES, BES, CES and Big-BES) can all be defined solely in matrix
terms within the subalgebra of diagonal matrices. Any extension of the block
cipher definitions beyond diagonal matrices is arbitrary. The use of other em-
beddings based on similar algebraic structures is also suggested in [11]. However,
it can be seen that the regular representations of the state space algebras of
such embeddings merely correspond to other matrix subalgebras containing the
diagonal matrix subalgebra. Thus such other embeddings also have the same
cryptographic relevance as the original embeddings of Monnerat and Vaude-
nay [11]. Any conclusions drawn about diagonal matrices (AES embeddings) by
considering the effect of these arbitrary block ciphers on non-diagonal matrices
is arbitrary.

6 Conclusions

In this paper, we have presented a natural framework for the analysis of block
cipher embeddings. This has been done in terms of the algebra of their state
spaces, but takes into consideration the construction of the embedding function,
how to “naturally” induce the cryptographic function on the embedded image,
and how to (possibly) extend this image to the algebraic closure.

In this way we have shown that different approaches to embeddings in the
literature are not algebraically equivalent. By way of example we have looked at
three embedding strategies that have been discussed in the context of the AES. It
is clear that while some embeddings might bring benefits such as cryptanalytic
or implementation insights, it is possible to define other embeddings that, by
their very construction, cannot possibly offer additional insights into the cipher.

References

1. E. Barkan and E. Biham. In How Many Ways Can You Write Rijndael?. ASI-
ACRYPT 2002, LNCS vol. 2501, pp 160–175, Springer, 2002.

2. C. Cid, S. Murphy, and M.J.B. Robshaw. Computational and Algebraic Aspects
of the Advanced Encryption Standard. In V. Ganzha et al., editors, Proceedings
of the Seventh International Workshop on Computer Algebra in Scientific Com-
puting - CASC 2004, St. Petersburg, Russia, pages 93–103, Technische Universität
München”. 2004.

An Algebraic Framework for Cipher Embeddings 289

3. J. Daemen and V. Rijmen. AES Proposal: Rijndael (Version 2). NIST AES website
csrc.nist.gov/encryption/aes, 1999.

4. J. Daemen and V. Rijmen. The Design of Rijndael: AES—The Advanced Encryp-
tion Standard. Springer–Verlag, 2002.

5. T. ElGamal. A Public Key Cryptosystem and a Signature Scheme based on Discrete
Logarithms. IEEE Transactions on Information Theory, vol. 31, pp. 469–472, 1985.

6. L.R. Knudsen. New Directions in Cryptography (Volume II). Journal of Craptology,
available at http://www2.mat.dtu.dk/people/Lars.R.Knudsen/crap.html, Vol. 1
No. 0, December 2000.

7. N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation, Vol. 48,
pp 321-348, 1987.

8. A.I. Kostrikin. Introduction to Algebra. Springer-Verlag, 1981.
9. J.L. Massey. SAFER K-64: A byte-oriented block-ciphering algorithm. Fast Soft-

ware Encryption 1993, LNCS vol. 809, pp. 1–17, Springer-Verlag, 1994.
10. V.S. Miller. Uses of Elliptic Curves in Cryptography. CRYPTO ’85, LNCS vol.

218, pp. 417-426, Springer-Verlag, 1986.
11. J. Monnerat and S. Vaudenay. On some Weak Extensions of AES and BES.

Sixth International Conference on Information and Communications Security 2004,
LNCS vol. 3269, pp414–426, Springer, 2004.

12. S. Murphy and M.J.B. Robshaw. Essential Algebraic Structure within the AES.
CRYPTO 2002, LNCS vol. 2442, pp. 1–16, Springer, 2002.

13. National Bureau of Standards. Data Encryption Standard. FIPS 46. 1977.
14. National Institute of Standards and Technology. Advanced Encryption Standard.

FIPS 197. 26 November 2001.
15. National Institute of Standards and Technology. Digital Signature Standard. FIPS

186. 1994.
16. R.L. Rivest, A. Shamir and L.M. Adleman. A Method for Obtaining Digital Sig-

natures and Public-Key Cryptosystems, Communications of the ACM, vol. 21, pp.
120-126, 1978.

Probabilistic Algebraic Attacks

An Braeken and Bart Preneel

Katholieke Universiteit Leuven,
Dept. Elect. Eng.-ESAT/SCD-COSIC,

Kasteelpark Arenberg 10, 3001 Heverlee, Belgium
{an.braeken, bart.preneel}@esat.kuleuven.be

Abstract. This paper investigates a probabilistic algebraic attack on
LFSR-based stream ciphers. We consider two scenarios (S3a and S3b)
proposed by Meier et al. at Eurocrypt 2004. In order to derive the prob-
ability in this new algebraic attack, we quantify the distance between
a Boolean function and a function with annihilator of a certain degree.
We show that in some cases the approximations can improve the alge-
braic attacks. Moreover, this distance leads to other theoretical results
such as the weights of the subfunctions and the distance to normal func-
tions; it also provides information on the Walsh spectrum of the function.

Keywords: Algebraic attack, algebraic immunity, annihilator, Walsh
spectrum, combination and filter generator.

1 Introduction

Filter and combination generators are two well-known models of stream ciphers
based on Linear Feedback Shift Registers (LFSRs); both use a linear state update
function that guarantees a large period and a highly nonlinear Boolean function
that provides nonlinearity and a high linear complexity. Filter generators are key
stream generators that consist of only one LFSR to which a nonlinear filtering
function is applied. Combination generators use a nonlinear function to combine
several linear feedback shift registers. Until 2002, (fast) correlation attacks (see
for instance [21, 16, 13, 3]) were the most important and strongest attacks on
stream ciphers and in particular on the filter and combination generators. Fast
correlation attacks search for the solution of a highly noisy system of linear
equations. Their strength mainly depends on the nonlinearity and correlation-
immunity of the combining or filtering function, which defines the noise of the
system.

Recently, algebraic attacks have received a lot of attention. Algebraic attacks
try to solve a system of nonlinear equations. For stream ciphers this system is
always highly overdetermined. The complexity of the methods for solving sys-
tems of nonlinear equations is mainly determined by the degree of the equations.
The first type of probabilistic attack was considered in [6], where functions were
approximated by low degree functions. For instance, this attack was very suc-
cessful for the stream cipher Toyocrypt [17] since its filter function contains only

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 290–303, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Probabilistic Algebraic Attacks 291

one term of high degree. A further improvement in the area of algebraic attacks
was the method to lower the degree of the equations in such a way that they
still hold with probability one as shown in [5]. Therefore, the existence of low
degree annihilators of the function is exploited, which is related to the concepts
of algebraic immunity and annihilator function. For instance, for functions of
dimension n, annihilators of degree less or equal than �n/2� always exist.

In this paper, we investigate the probabilistic version of the algebraic attack
which uses the low degree annihilators. We call this attack the extended prob-
abilistic algebraic attack. For this purpose, we first derive the distance between
a given function and a function with low algebraic immunity by means of the
Walsh spectrum of the function. From this distance we derive the probability
that the equations used in the probabilistic attack hold. We show an example
where this probabilistic algebraic attack outperforms the algebraic attack.

The paper is organized as follows. We first explain, in Sect. 2, the framework
of the algebraic attack of the second type. In Sect. 3, we briefly describe some
properties of Boolean functions. Section 4 contains the derivation of theoretical
results concerning the lower bound on the distance to functions with low degree
annihilators. In Sect. 5, we show how the formula for the distance can be used
to derive information on the on the Walsh spectrum of the function, the weights
of the subfunctions, and the distance to normal functions. Section 6 concludes
the paper.

2 Extended Probabilistic Algebraic Attack

Consider a filter or combining generator with corresponding filtering or combin-
ing function f on F

n
2 . The secret key K is the initial state of the LFSR(s). The

i-th output of the generator is given by f(Li(K)), where L is the linear trans-
formation describing the LFSR(s). Denote the length of the LFSR by L. In [15],
Meier et al. reduced the three attack scenarios for algebraic attacks proposed by
Courtois and Meier in [5] to only two scenarios.

S3a. There exists a nonzero function h of low degree such that fh = h.
S3b. There exists a nonzero function g of low degree such that fg = 0.

The attack works as follows. If the output bit f(x) = 0, we are in Scenario
S3a and conclude that h(x) = 0. If the output bit f(x) = 1, we use the low
degree annihilator g (Scenario S3b) and thus g(x) = 0. Note that h is a low
degree annihilator of f ⊕ 1. Consequently, we only need to search for low degree
annihilators of f and f ⊕ 1 (see the definition of algebraic immunity in Sect. 3).

This paper investigates the probabilistic versions of these scenarios. They
can be seen as a second type of probabilistic algebraic attack. Consider the sets
Sf

0 = {x ∈ F
n
2 : f(x) = 0} and Sf

1 = {x ∈ F
n
2 : f(x) = 1} with respect to the

Boolean function f on F
n
2 .

S4a. There exists a nonzero function h of low degree such that fh = h on Sf
0

with high probability p.

292 A. Braeken and B. Preneel

S4b. There exists a nonzero function g of low degree such that fg = 0 on Sf
1

with high probability p.

Note that the probabilistic version of criterion S3a is also described in [5] but
not further used.

In order to compute the probability for applying scenarios S4a and S4b, we
will search for the best approximation to a function with low degree annihilator.
We derive in Sect. 4 a formula for measuring this distance X . The corresponding
probability for attack scenario S4a is then equal to p = 1 − X

2n−wt(f) since we

need to restrict to the set Sf
0 , and equal to p = 1 − X

wt(f) for scenario S4b.
Consequently, an overdetermined system of nonlinear equations of degree k

is obtained which hold with probability p. These equations are derived from the
approximation function which has multiple of degree k. We will show in Sect. 4
that p ≥ 1 − 2−k for a balanced function. There are several methods to solve
a system of nonlinear equations of degree k such as linearization, XL-algorithm
[6], and Gröbner bases algorithms such as F4 and F5 [11]. However, note that we
consider a probabilistic nonlinear system of equations. Let w be the exponent of
the Gaussian reduction (w ≈ 2.807 [1]). We can take the following approaches:

– Solve the system with F5 (F4 and XL are proven to be worse than F5 [10]).
We need L equations which are satisfied with probability p−L. However,
solving systems of nonlinear equations is believed to be hard, hence the
complexity is high.

– Use the linearization algorithm which has reasonable complexity
(
L
k

)w
, which

is reasonable. However, in this algorithm we use
(
L
k

)
equations which hold

with a very small probability p−(L
k).

We conclude that both approaches are not very satisfactory. The first approach
leads to a reasonable complexity related to the probability since we need a small
number of equations, but it requires a high complexity for solving the system.
The second approach has a low complexity for solving the system but has a high
complexity corresponding to the probability since we need a large number of
equations.

It is an interesting open problem if there exist more efficient methods for
solving this type of equations. For instance, is it possible to find the solution by
means of a least square solution? Or, can we combine somehow the methods used
in the correlation attack (where the probability is much lower than in the prob-
abilistic algebraic attack) together with the linearization method? As we show
in Sect. 4, the probability for applying the probabilistic algebraic attacks with
respect to a function with affine annihilators corresponds to the probability of a
linear approximation. In some sense, this type of attack can also be considered
as an attack in between a correlation and algebraic attack.

We want to stress that the goal of this paper is to measure the distance X
in order to obtain equations with low degree which hold with high probability.
We do not investigate methods for solving system of nonlinear equations in this
paper.

Probabilistic Algebraic Attacks 293

3 Background

Let f(x) be a Boolean function on F
n
2 . Denote Sf

1 = {x ∈ F
n
2 : f(x) = 1} (also

called the support of f) and Sf
0 = {x ∈ F

n
2 : f(x) = 0}. The weight wt(w)

of a vector w ∈ F
n
2 is defined by the number of nonzero positions in w. The

truth table of a Boolean function f is a vector consisting of the function values
(f(0), . . . , f(2n − 1)). Any Boolean function f can be uniquely expressed in the
algebraic normal form (ANF):

f(x) =
⊕

(a1,...,an)∈Fn
2

h(a1, . . . , an)xa1
1 · · ·xan

n ,

with h a function on F
n
2 , defined by h(a) =

∑
x≤a f(x) for any a ∈ F

n
2 , where

x ≤ a means that xi ≤ ai for all i ∈ {1, . . . , n}. The algebraic degree of f ,
denoted by deg(f), is defined as the number of variables in the highest term
xa1

1 · · ·xan
n in the ANF of f , for which h(a1, . . . , an) �= 0.

With respect to the algebraic attacks, Meier et al. introduced the concepts
of algebraic immunity (AI) and annihilator [15].

Definition 1. Let f be a Boolean function from F
n
2 into F2. The lowest degree

of the function g from F
n
2 into F2 for which f · g = 0 or (f ⊕ 1) · g = 0 is called

the algebraic immunity (AI) of the function f . The function g for which f ·g = 0
is called an annihilator function of f .

As proven in [15–Theorem 1], the set of annihilators of f is an ideal and consists
of the functions g(f ⊕ 1) where g is an arbitrary Boolean function on F

n
2 .

An important tool in the study of Boolean functions is the Walsh transform.
The Walsh transform of f(x) is a real-valued function over F

n
2 that is defined for

all v ∈ F
n
2 as

Wf (v) =
∑
x∈Fn

2

(−1)f(x)+v·x = 2n − 2 wt(f(x) ⊕ v · x) . (1)

The Walsh spectrum can be used to express the nonlinearity Nf of the function
f , which is the minimum distance between f and the set of all affine functions:

Nf = 2n−1 − 1
2

max
w∈Fn

2

|Wf (w)| .

Functions for which |Wf (v)| = 2t or Wf (v) = 0 with
⌈

n
2

⌉
< t ≤ n for all v ∈ F

n
2

are called plateaued functions with amplitude 2t [23]. If n is even and t = n
2 ,

then the function is said to be maximum nonlinear or bent [8].
Another property related to the Walsh spectrum is resiliency [20]. A Boolean

function is said to be t-resilient if and only if Wf (w) = 0 for all w ∈ F
n
2 with

wt(w) ≤ t. A 0-resilient function is also called a balanced function, i.e., a function
for which the output is equally distributed.

294 A. Braeken and B. Preneel

4 Approximation by Functions with Low Degree
Annihilators

4.1 How to See Annihilator Functions

Let k be an integer such that 1 ≤ k ≤ deg(f). Suppose that f : F
n
2 → F2 can be

written as f(x) = ld1(x)g1(x) ⊕ · · · ⊕ ldk
(x)gk(x) where ldi(x) are functions of

degree di for 1 ≤ i ≤ k with d1 +d2 + · · ·+dk = d such that S
ld1
1 ∪· · ·∪S

ldk
1 �= F

n
2

and g1(x), . . . , gk(x) are arbitrary functions. Then, the corresponding annihilator
of degree d is equal to (ld1(x) ⊕ 1) · · · (ldk

(x) ⊕ 1), which is a nonzero function
by the property that S

ld1
1 ∪ · · · ∪ S

ldk
1 �= F

n
2 .

In general, if for an arbitrary function f on F
n
2 , there exist functions ld1 , . . . , ldk

such that S
ld1
1 ∪ · · · ∪ S

ldk
1 �= F

n
2 and Sf

1 ⊆ (Sld1
1 ∪ · · · ∪ S

ldk
1), where deg(ld1) +

· · · + deg(ldk
) = d, then f has an annihilator of degree d. Therefore, we obtain

Theorem 1. [15] If a balanced function has an annihilator of degree equal to
one, then the function is affine.

If X = |Sf
1 |− |Sf

1 ∩(Sld1
1 ∪· · ·∪S

ldk
1)|, then f is at distance X from a function f ′

with annihilator of degree d. The function f ′ is equal to f ′(x) = ld1(x)g1(x)⊕· · ·⊕
ldk

(x)gk(x), where g1, . . . , gk are arbitrary functions that satisfy ld1(x)g1(x) ⊕
· · · ⊕ ldk

(x)gk(x) = 1 for all x such that f(x) = 1. Moreover, the probability
corresponding to scenario S4b is equal to p = 1 − X

wt(f) .
A similar property holds for scenario S4a, because we now need to search for

annihilators of f ⊕ 1. If Sf⊕1
1 = Sf

0 ⊆ (Sld1
1 ∪ · · · ∪ S

ldk
1), where S

ld1
1 ∪ · · · ∪ S

ldk
1

and deg(ld1)+ · · ·+ deg(ldk
) = d, then f ⊕ 1 has a nonzero annihilator of degree

d. If X = |Sf
0 | − |Sf

0 ∩ (Sld1
1 ∪ · · · ∪ S

ldk
1)|, then f ⊕ 1 is at distance X from a

function with annihilator of degree d. The probability corresponding to scenario
S4a is equal to p = 1 − X

2n−wt(f) . It is easy to see that if Sf
1 ⊆ (Sld1

1 ∪ · · · ∪S
ldk
1)

holds then Sf
0 ⊆ (Sld1

0 ∪ · · · ∪ S
ldk
0) if and only if wt((f ⊕ 1)ld1 · · · ldk

) = 0 (i.e.
there does not exist an x ∈ F

n
2 such that f(x) = 0 and ld1(x) = · · · = ldk

(x) = 1).
In the following, we will mainly concentrate on the annihilators of f , corre-

sponding to scenario S4b, since both cases are similar.

4.2 Computing the Distance to Functions with Low Degree
Annihilators

We now derive a formula for determining the distance X between a given function
and a function with low algebraic immunity by means of the Walsh spectrum of
the function. Therefore, we first assume the general case where the annihilator
consists of the product of functions of arbitrary degree. We then explain that for
balanced functions the best approximations in general are obtained by functions
having annihilators that consist of affine factors.

Theorem 2. Let ld1(x), · · · , ldk
(x) be k different functions on F

n
2 , such that

S
ld1
1 ∪ · · · ∪ S

ldk
1 �= F

n
2 . The distance X between a Boolean function f on F

n
2

Probabilistic Algebraic Attacks 295

and a function with annihilator g(x) = (ld1(x) ⊕ 1) · . . . · (ldk
(x) ⊕ 1) is equal to

wt(f · (ld1(x) ⊕ 1) · . . . · (ldk
(x) ⊕ 1)).

Proof. Let f ′ be the function equal to f ′(x) = ld1(x)g1(x) ⊕ · · · ⊕ ldk
(x)gk(x)

where g1 . . . , gk are arbitrary Boolean functions on F
n
2 which satisfy the property

that if li1(x) = · · · = lil
(x) = 1 and f(x) = 1 then gi1(x) ⊕ · · · ⊕ gil

(x) = 1
for i1, . . . , il ∈ {1, . . . , k}. It is clear that f ′ has the function g as annihilator
and is closest to f . More precisely, f ′ differs from f only in the points where
ld1(x) = · · · = ldk

(x) = 0 and f(x) = 1. 	

In order to compute the weight of the product of functions, we make use of the
following lemma.

Lemma 1. Let ld1 , . . . , ldk
, f be Boolean functions on F

n
2 , then

Wld1 (x)·...·ldk
(x)·f(x)(w)

=
1
2k

((2k − 1)2nδ(w) + Wld1
(w) + · · · + Wldk

(w) + Wf (w)

−Wld1⊕ld2
(w) − · · · − Wldk

⊕f(w)
+Wld1⊕ld2⊕ld3

(w) + · · · + Wldk−1⊕ldk
⊕f (w)

+ · · · + (−1)kWld1⊕···⊕ldk
⊕f (w)) , (2)

where δ(w) represents the Kronecker δ function (δ(w) = 1 if and only if w = 0).

Proof. One can easily check by induction that

(−1)ld1(x)·...·ldk
(x)·f(x)

=
1
2k

(2k − 1 + (−1)ld1(x) + · · · (−1)ldk
(x) + (−1)f(x)

−(−1)ld1(x)⊕ld2(x) − · · · − (−1)ldk
(x)⊕f(x)

+(−1)ld1(x)⊕ld2(x)⊕ld3(x) + · · · + (−1)ldk−1(x)⊕ldk
(x)⊕f(x)

+ · · · + (−1)k(−1)ld1(x)⊕···⊕ldk
⊕f(x)) .

Multiplying both sides with
∑

x∈Fn
2
(−1)w·x leads to Eqn. (2). 	

Remark 1. We note that Eqn. (2) was already proven by Daemen for k = 1 [7].
Applying this formula leads to

Wld1 ·f(w) =
1
2
(2nδ(w) + Wld1

(w) + Wf (w) − Wld1⊕f (w)).

Consequently, ld1 is annihilator of f if and only if

Wld1
(w) + Wf (w) = Wld1⊕f (w), for all w �= 0

Wld1
(0) + Wf (0) − 2n = Wld1⊕f (0).

We conclude that only for the product of a function with its annihilating func-
tion, we obtain a kind of linearity property in the Walsh spectrum.

296 A. Braeken and B. Preneel

Equation (1) shows the relation between Walsh spectrum and weight. Con-
sequently, we can immediately derive from (2) a formula for the distance X .

Corollary 1. Let ld1(x), · · · , ldk
(x) be k different functions on F

n
2 , such that

S
ld1
1 ∪ · · · ∪ S

ldk
1 �= F

n
2 and f be a Boolean function on F

n
2 . The distance X

between a Boolean function f on F
n
2 and a function with annihlator g(x) =

(ld1(x) ⊕ 1) · . . . · (ldk
(x) ⊕ 1) is equal to

X = 2n−(k+1) − 1
2k+1

(Wld1⊕1(0) + · · · + Wldk
⊕1(0) + Wf (0)

−Wld1⊕ld2
(0) + · · · + (−1)Wld1⊕···⊕ldk

⊕f (0)) .

In particular, let ldi = wi · x ⊕ w′
i where wi ∈ F

n
2 , w′

i ∈ F2 for all 1 ≤ i ≤ k, then

X = 2n−(k+1) − 1
2k+1

∑
(i1,...,ik)∈Fk

2

(−1)w′
1i1+···+w′

kikWf (wi1
1 ⊕ · · · ⊕ wik

k),

(3)

where w
ij

j is equal to wj if ij = 1 and 0 else for 1 ≤ j ≤ k.

Remark 2. Note that the support of the product of k affine functions ld1(x) · · ·
ldk

(x) corresponds to an affine subspace V of dimension n − k determined by
ld1(x) = 1, . . . , ldk

(x) = 1. Therefore, Equation (3) can also be obtained from
the weight of the restriction of f to a subspace of dimension n − k (see e.g.
[2–Proposition 1]).

For computing the distance between f ⊕ 1 and a function with low degree
annihilator, we obtain more or less the same formula. Only the terms Wf⊕h(w)
for all linear combinations h of ld1 , . . . , ldk

switch sign since Wf⊕1(w) = −Wf (w)
for all w ∈ F

n
2 . In particular, for the affine functions lwi(x) = wi · x ⊕ w′

i for
1 ≤ i ≤ k, we obtain:

Corollary 2. Let f be a function on F
n
2 . The distance between f ⊕ 1 and a

function with annihilator g of degree k, i.e. g(x) = (lw1(x) ⊕ 1) · · · (lwk
(x) ⊕ 1)

is equal to

X = 2n−(k+1) +
1

2k+1

∑
(i1,...,ik)∈Fk

2

(−1)w′
1i1+···+w′

kikWf (wi1
1 ⊕ · · · ⊕ wik

k) . (4)

We expect to obtain in general very good results for the approximation by
using the covering of only affine functions (annihilators which consist of the
product of affine functions), corresponding with equations (3) and (4). To confirm
this, we make use of the following theorem.

Theorem 3. Let lk be a Boolean function of degree k. Then lk has the highest
possible weight equal to 2n − 2n−k in the set of all functions with degree k if and
only if lk = lw1 ∨· · ·∨lwk

where lwi(x) = wi ·x⊕1 for 1 ≤ i ≤ k and {w1, . . . , wk}
linearly independent.

Probabilistic Algebraic Attacks 297

Proof. By induction, we derive that lk(x) = (w1 · x) · · · (wk · x) ⊕ 1. Since the
minimum distance of RM(k, n) is equal to 2n−k, this function has highest pos-
sible weight in the set of functions with degree k. 	

Consequently, the support of the or-sum of k linearly independent affine func-
tions is always greater or equal than the support of all other or-sums of j func-
tions for which the sum of their degrees is equal to k. Moreover, since the func-
tions lwi for 1 ≤ i ≤ k are affine functions, the vectors in S

lw1∨···∨lwk
1 are more

or less random and have more chance to belong to the support of a random
balanced function f than the vectors of Slk

1 where lk is a function obtained by
the or-sum of functions for which the sum of the degrees is equal to k.

For the best approximation with respect to a function with annihilators of de-
gree 1, we obtain that X = 2n−2 − 1

4 maxw∈Fn
2
|Wf (0)+Wf (w)|. If f is balanced,

then X = Nf

2 and the corresponding function can be written as g(x)lw(x), where
g(x) = f(x) if f(x) = 1. However, the probability used in attack criterion S4b is
equal to 1

2 − 1
2n+1 Wf (w), which is exactly the probability that the function f can

be approximated by the linear function lw. Consequently, in the affine case, the
probabilistic algebraic attack of the first and second type coincide. Moreover, we
do not find better approximations for the (fast) correlation attacks.

4.3 How to Find the Approximation Functions

As we explained in the previous section, we expect to find the best approxima-
tions for functions having annihilators consisting of affine factors. Therefore, we
can restrict ourself to equations (3) and (4), which determine the distance with
respect to a function which has low degree annihilators of f resp. f ⊕ 1. From
these equations, we deduce the following.

Theorem 4. If we find a subspace of dimension k in the Walsh spectrum, de-
termined by W =< w1, . . . , wk > and k elements w′

1, . . . , w
′
k ∈ F2, for which the

sum of the Walsh values (−1)w′
1i1+···+w′

kikWf (wi1
1 ⊕· · ·⊕wik

k) for all (i1, . . . , ik) ∈
F

k
2 is high, then the function is close to a function with annihilating function

(lw1 ⊕ 1) · . . . · (lwk
⊕ 1).

As a subcase, consider the situation where w′
i = 0 for all 1 ≤ i ≤ k. Then, if the

sum of the Walsh values Wf (w) for all w ∈ W is high, we obtain a low distance
to a function which has an annihilator of degree k of f . Similar, if the sum of
the Walsh values −Wf (w) for all w ∈ W is small, we obtain a low distance to a
function which has an annihilator of degree k of f ⊕ 1.

Since we can always find a subspace for which the corresponding sum of the
Walsh values belonging to the subspace is greater or equal than zero, we can
conclude that X ≥ 2n−(k+1) for the distance of a balanced function with respect
to a function with AI equal to k. Therefore, the probability for the probabilistic
algebraic attack is greater or equal than 1 − 2−k = 2−1 + 2−2 + · · · + 2−k when
the approximation with respect to a function with AI equal to k is used. For
instance, for k = 2, the probability is greater or equal than 0.75.

298 A. Braeken and B. Preneel

4.4 Example

We present a toy example to illustrate the extended probabilistic algebraic at-
tack. Consider the balanced Boolean function f of degree 4 on F

6
2 with ANF

representation f(x1, x2, x3, x4, x5, x6) = x1x3x4x5 ⊕ x1x4x5 ⊕ x2x4x5 ⊕ x2x3 ⊕
x4x5 ⊕ x1 ⊕ x6. One can check that the function f has AI = 3. Since Wf (35) =
24, Wf(37) = 32 and Wf (0) = Wf (6) = 0, we have that X = 23 − 1

8 (0+0+ 24+
32) = 1 corresponding to Eqn. (3). This also means that f is at distance 1 to
the set of functions g which have (ld1 ⊕ 1)(ld2 ⊕ 1) as annihilator, where ld1 is
the linear function x1 ⊕ x2 ⊕ x6 and ld2 the linear function x1 ⊕ x3 ⊕ x6. These
functions g are equal to ld1(x)g1(x)⊕ld2(x)g2(x), where g1, g2 are arbitrary func-
tions on F

6
2 such that if ld1(x) = ld2(x) = f(x) = 1 then g1(x) ⊕ g2(x) = 1, and

if ldi(x) = f(x) = 1 then gi(x) = 1 for i = {1, 2}. Consequently, the correspond-
ing extended probabilistic algebraic attack can be performed with probability
p = 1 − 1

32 = 0.96875. We now compare the complexity of the extended proba-
bilistic algebraic attack with respect to equations of degree 2 with probability p,
and the algebraic attack with equations of degree 3 and probability 1 when using
linearization for solving the system of equations in both cases. This means that
we need to compare the complexity p−(L

2)
(
L
2

)2.807
for the extended probabilistic

algebraic attack with the complexity of the algebraic attack
(
L
3

)2.807
. One can

check that for lenghts of the LFSR L strictly less than 18 the probabilistic attack
will outperform the deterministic one. In general, the probabilistic attack will of
course be faster when p is close to one.

We note that for the stream cipher LILI-128, the probabilistic attack does
not outperform the usual algebraic attack which has a complexity of 257 CPU
clocks [5] by using annihilators of degree 4, if we use the linearization algorithm.
Nevertheless, we note the relatively small distances between the Boolean filtering
function, a function on F

10
2 which has degree 6 and is 2-resilient, and a function

with annihilator 2 resp. 3. The maximum absolute Walsh value is equal to 64. We
refer to [22] for more details on the description of LILI-128. In order to obtain
the distance with respect to annihilators of degree 2, we use Eqn. (3) for X from
Theorem 1; the result is X = 104. Therefore, we use the linear functions

lw1(x) = x1 ⊕ x2 ⊕ x4 ⊕ x5 (w1 = 27)
lw2(x) = x1 ⊕ x3 ⊕ x4 ⊕ x6 ⊕ x7. (w2 = 109) .

Since Wf (27) = Wf (109) = Wf (118) = 64, this is the best possible value we
can obtain for X with respect to second order functions. The corresponding
probability for the S4b attack is equal to 0.79687.

The distance becomes very small when we look at functions with annihilators
of degree 3. We now consider the supports of three linear functions:

lw1(x) = x1 ⊕ x2 ⊕ x4 ⊕ x5 (w1 = 27)
lw2(x) = x1 ⊕ x3 ⊕ x4 ⊕ x6 ⊕ x7 (w2 = 109)
lw3(x) = x1 ⊕ x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x8 (w3 = 183).

Probabilistic Algebraic Attacks 299

By applying Eqn. (3) for X , we obtain X = 40 since 6 of the 7 vectors (obtained
by the nonzero linear combinations of w1, w2 and w3) have Walsh value 64 and
one has Walsh value 0. The corresponding probability for the S4b attack is equal
to 0.921875. Unfortunately, these probabilities are still far too low for applying
fast probabilistic algebraic attacks.

5 Other Interpretations

We show that the distance X (corresponding with Eqn. (3) from Corollary 1)
is related to the weights of the subfunctions and to the distance to normal
functions. We also deduce general information on the structure of the Walsh
spectrum of the function. Note that here we will only consider the special case
where the functions ldi(x) are the affine functions lwi(x) = wi · x ⊕ w′

i for 1 ≤
i ≤ k.

Weight of Subfunctions

Corollary 3. The weight of a Boolean function f on F
n
2 when restricted to the

(n − k)-dimensional subspace, determined by < lw1(x) = 0, . . . , lwk
(x) = 0 >, is

equal to X.

Remark 3. Note that a general formula for the weight of a function when re-
stricted to a subspace is also derived in [2–Proposition 1].

Let wti denote the minimum possible weight of the subfunction of a Boolean
function f on F

n
2 obtained by restriction to a subspace of dimension n − i for

1 ≤ i ≤ n. Then, we have the following inequalities:

2n−2 − 2�n
2 �−4 ≥ wt1 ≥ · · · ≥ wti ≥ 2 wti+1 ≥ · · · ≥ wtn = 0.

The first inequality follows from the property of bent functions. The last inequal-
ity is satisfied by the all-one function. The inequality in the middle is obtained
by the fact that at each step, we can cover at least half of the nonzero elements,
i.e., wti+1 ≤ wti −wti

2 . We know that any function has AI ≤ ⌈n
2

⌉
. However, this

does not imply that wt�n
2 � = 0 in general. Only for n ≤ 7 or quadratic functions,

we have that wt�n
2 � = 0 [9].

For t-resilient functions, we already know that the subfunctions obtained by
fixing at most n− t coordinates are balanced. This can be generalized by saying
that all subfunctions obtained by restriction to the subspace W =< lw1(x) =
0, . . . , lwk

(x) = 0 > where wt(w) ≤ t for all w ∈ W and k ≤ t are balanced.
Moreover, Eqn. (3) also gives information on the other subfunctions.

We also derive a relation between the ANF coefficients and the weight of the
subfunction.

Theorem 5. The weight of the subfunction with respect to the subspace W of
dimension l given by < xi1 = · · · = xin−l

= 0 >, where 1 ≤ i1 ≤ · · · ≤ in−l ≤ n
is even if and only if the ANF coefficient h(v1 ⊕ 1, · · · , vn ⊕ 1) is equal to zero
where wt(v) = l and vi1 = · · · = vin−l

= 0.

300 A. Braeken and B. Preneel

Proof. Suppose the weight of the subfunction with respect to W is even and is
equal to 2k for k ∈ Z. From Eqn. (3), we obtain that∑

w∈W

Wf (w) = 2n − 2l+2k . (5)

Moreover, [12] describes the following relation between the ANF coefficients and
Walsh values:

h(v1 ⊕ 1, · · · , vn ⊕ 1) = 2n−wt(v)−1 − 2−wt(v)−1
∑
w�v

Wf (w) mod 2

= 2n−l−1 − 2−l−1
∑

w∈W

Wf (w) mod 2 . (6)

Substituting (5) in (6) shows the equivalence. 	

Remark 4. Proposition 2.8 in [14] shows that Sm(f) + Dn−m(f) =

(
n
m

)
, where

Sm(f) denotes the number of subfunctions with even weight obtained by fixing
m variables of f with zero values, and Dn−m(f) is the number of terms of degree
(n − m). It is clear that the previous theorem can be seen as a generalization of
this result.

Remark 5. For t-resilient functions f on F
n
2 , Siegenthaler’s inequality states that

deg(f) ≤ n−t−1. Moreover, the condition on the degree d ≤ n−t−1 for functions
which have Walsh values divisible by 2t is well-known [4]. Both results follow
from the previous theorem.

Distance to Normal Functions
The distance X is also of independent interest in the study of normality of
Boolean functions. By the equivalence relation between k-normality and alge-
braic immunity of degree n−k as shown in [15], we obtain the following theorem.

Corollary 4. The value X determines the distance between a Boolean function
and an (n − k)-normal function. The value

X ′ = 2n−(k+1) − 1
2k+1

∑
(i1,...,ik)∈Fk

2

(−1)w′
1i1+···+w′

kikWf (a ⊕ wi1
1 ⊕ · · · ⊕ wik

k)

determines the distance between the function f ⊕ la(x) and an (n − k)-normal
function. As a consequence, X ′ measures the distance between the function f and
an (n−k)-weakly normal function. The corresponding (n−k)-normal function is
given by f ′(x) = lw1(x)g1(x) ⊕ · · · ⊕ lwk

(x)gk(x), where g1, . . . , gk are arbitrary
functions that satisfy lw1(x)g1(x) ⊕ · · · ⊕ lwk

(x)gk(x) = 1 for all x such that
f(x) = 1.

For instance, a function is (n−1)-normal if and only if |Wf (0)+Wf(w)| = 2n for
a certain w ∈ F

n
2 . If there exist a, w ∈ F

n
2 such that |Wf (a) + Wf (a ⊕ w)| = 2n,

Probabilistic Algebraic Attacks 301

then f is (n−1)-weakly normal. The smallest distance to (n−1)-normal functions
is equal to 2n−2 − 1

4 maxw∈Fn
2
|Wf (0) + Wf (w)|, and to (n − 1)-weakly normal

functions is equal to 2n−2 − 1
4 maxa,w∈Fn

2
|Wf (a) + Wf (a ⊕ w)|. Consequently,

any Boolean function can be approximated by an (n − 1)-normal function with
probability greater or equal than 0.75. More generally, any Boolean function can
be approximated by an (n−k)-normal function with probability greater or equal
than 1 − 2−(k+1) = 2−1 + 2−2 + · · · + 2−(k+1).

Information on Walsh Spectrum
Equation (3) leads to several interesting results on the Walsh spectrum of a
function. Since X represents a real number greater or equal than zero, we can
conclude that the sum of the Walsh values of vectors belonging to a flat of
dimension k is always divisible by 2k+1. This can be seen as a generalization of
Theorem 5 from [18].

Moreover, from the definition of the Walsh spectrum, we can conclude that
the sum ∑

(i1,...,ik)∈Fk
2

(−1)w′
1i1+···+w′

kikWf (wi1
1 ⊕ · · · ⊕ wik

k)

determines the Walsh spectrum of the function obtained by restriction with
respect to the subspace < lw1 = 0, . . . , lwk

= 0 >. For instance, as already proven
in [24], the Walsh spectrum of subfunctions of bent functions with respect to a
subspace of dimension n − 1 is equal to {0,±2n/2+1} (plateaued function with
amplitude 2n/2+1). More general, the Walsh spectrum of subfunctions of bent
functions with respect to a subspace of dimension n− k is equal to {0,±2n/2+l}
where 1 ≤ l ≤ k.

By the property that
∑

w∈Fn
2

Wf (w) = ±2n, we can conclude that if the
support of the Walsh spectrum is contained in a subspace of dimension k then f
admits an annihilator of degree k. Unfortunately, this observation will not lead
to better results, since wt(Wf) ≥ 2deg(f) as proven in [19].

6 Conclusion

In this paper we have discussed probabilistic versions of the algebraic attack
on stream ciphers. By means of the Walsh spectrum, we have derived an exact
formula for computing the distance to a function with annihilators of a certain
degree k. From the distance, we have computed the probability in this new
algebraic attack. In future work, we will concentrate on more efficient algorithms
to solve a system of probabilistic nonlinear equations.

Acknowledgement

We thank Frederik Armknecht, Joseph Lano, Matthew Parker, and the anony-
mous referees for their useful comments and suggestions. This work was sup-
ported in part by the Concerted Research Action (GOA) Ambiorics 2005/11 of

302 A. Braeken and B. Preneel

the Flemish Government and by the European Commission through the IST Pro-
gramme under Contract IST2002507932 ECRYPT. An Braeken is an F.W.O. Re-
search Assistant, sponsored by the Fund for Scientific Research - Flanders (Bel-
gium).

References

1. D.H. Bailey, K. Lee, and H.D. Simon. Using Strassens algorithm to accelerate the
solution of linear systems. Journal of Supercomputing, 4:357371, 1990.

2. A. Canteaut and P. Charpin. Decomposing bent functions. IEEE Transactions on
Information Theory, IT-49(8):20042019, 2003.

3. A. Canteaut and M. Trabbia. Improved fast correlation attacks using parity-check
equations of weight 4 and 5. In Advances in Cryptology EUROCRYPT 2000,
volume 1807 of Lecture Notes in Computer Science, pages 573588. Bart Preneel,
editor, Springer, 2000.

4. A. Canteaut and M. Videau. Degree of composition of highly nonlinear functions
and applications to higher order differential cryptanalysis. In Advances in Cryp-
tology EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science,
pages 518533. Lars R. Knudsen, editor, Springer, 2002.

5. N. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear feed-
back. In Advances in Cryptology EUROCRYPT 2003, volume 2656 of Lecture
Notes in Computer Science, pages 345359. Eli Biham, editor, Springer, 2003.

6. N.T. Courtois. Higher order correlation attacks, XL algorithm, and cryptanalysis
of Toyocrypt. In International Conference on Information Security and Cryptology
ICISC 2002, volume 2587 of Lecture Notes in Computer Science, pages 182199. Pil
Joong Lee and Chae Hoon Lim, editors, Springer, 2002. ISBN 3-540-00716-4.

7. J. Daemen. Cipher and Hash Function Design. PhD thesis, Katholieke Universiteit
Leuven, 1995.

8. J. Dillon. A survey of bent functions. Technical report, NSA Technical Journal,
1972. pp. 191215, unclassified.

9. Sylvie Dubuc. Etude des proprietes de degenerescene et de normalite des fonctions
booleennes et construction des fonctions q-aires parfaitement non-lineaires. PhD
thesis, Universite de Caen, 2001.

10. J.-C. Faug‘ere, M. Sugita, M. Kawazoe, and H. Imai. Comparison between XL and
Grobner basis algorithms. In Advances in Cryptology ASIACRYPT 2004, volume
3329 of Lecture Notes in Computer Science. Pil Jong Lee, editor, Springer, 2004.
ISBN 3-540-00171-9.

11. Jean-Charles Faug‘ere. A new efficient algorithm for computing Grobner bases
without reduction to zero (F5). In International Symposium on Symbolic and Al-
gebraic Computation ISSAC 2002, pages 7583. ACM Press, 2002.

12. X. Guo-Zhen and J. Massey. A spectral characterization of correlation-immune
combining functions. IEEE Transactions on Information Theory, IT-34(3):596 571,
1988. 16

13. T. Johansson and F. Jonsson. Fast correlation attacks based on Turbo Code tech-
niques. In Advances in Cryptology CRYPTO 1999, volume 1666 of Lecture Notes
in Computer Science, pages 181197. Michael Wiener, editor, Springer, 1999.

14. A. Koholosha. Investigation in the Design and Analysis of Key-Stream Generators.
PhD thesis, Technische Universiteit Eindhoven, 2003.

Probabilistic Algebraic Attacks 303

15. W. Meier, E. Pasalic, and C. Carlet. Algebraic attacks and decomposition of
Boolean functions. In Advances in Cryptology EUROCRYPT 2004, volume 3027
of Lecture Notes in Computer Science, pages 474491. Christian Cachin and Jan
Camenisch, editors, Springer, 2004.

16. W. Meier and O. Staffelbach. Fast correlation attacks on certain stream ciphers.
Journal of Cryptology, 1(3):6786, 1992.

17. M.J. Mihaljevic and H. Imai. Cryptanalysis of Toyocrypt-HS1 stream cipher. IEICE
Transactions on Fundamentals, E85-A:6673, 2002.

18. B. Preneel, W. Van Leekwijck, L. Van Linden, R. Govaerts, and J. Vandewalle.
Propagation characteristics of Boolean functions. In Advances in Cryptology EU-
ROCRYPT 1990, volume 473 of Lecture Notes in Computer Science, pages 161173.
I.B. Damgard, editor, Springer, 1990.

19. M. Quisquater. Applications of Character Theory and The Moobius Inversion Prin-
ciple to the Study of Cryptographic Properties of Boolean Functions. PhD thesis,
Katholieke Universiteit Leuven, 2004.

20. T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryp-
tographic applications. IEEE Transactions on Information Theory, IT-30(5):776
780, 1984.

21. T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE
Transactions on Computers, C-34(1):8185, January 1985.

22. L. Simpson, E. Dawson, J. Golic, and W. Millan. LILI keystream generator. In
Selected Areas in Cryptography SAC 2000, volume 2012 of Lecture Notes in
Computer Science, pages 248261. D.R. Stinson and S.E. Tavares, editors, Springer,
2001.

23. Y. Zheng and X.M. Zhang. Plateaud functions. In International Conference on
Information Communication Security ICICS 1999, volume 1726 of Lecture Notes in
Computer Science, pages 284300. Vijay Varadharajan and Yi Mu, editors, Springer,
1999.

24. Y. Zheng and X.M. Zhang. Relationships between bent functions and complemen-
tary plateaud functions. In International Conference on Information Security and
Cryptology ICISC 1999, volume 1787 of Lecture Notes in Computer Science, pages
6075. JooSeok Song, editor, Springer, 1999.

Unconditionally Secure Information
Authentication in Presence of Erasures

Goce Jakimoski�

Computer Science Department, 253 Love Bldg,
Florida State University, Tallahassee, FL 32306-4530, USA

jakimosk@cs.fsu.edu

Abstract. The traditional authentication model assumes that the data
loss on the communication channel between the sender and the receiver
is handled by mechanisms that should be studied separately. In this
paper, we consider a more general setting where both unconditionally
secure information authentication and loss-resilience are achieved at the
same time via erasure-tolerant authentication codes (or η-codes), and we
address some fundamental questions concerning erasure-tolerant authen-
tication codes. Namely, we adapt several lower bounds on the probability
of successful deception derived for the traditional authentication model
to the setting that we consider here. We also analyze the distance proper-
ties of the η-codes and the security properties of the η-codes constructed
by means of concatenation and composition. One interesting class of
η-codes is the class of η-codes with minimal probabilities of successful
impersonation and substitution. We show that all members of this class
can be represented as a composition of an authentication code with mini-
mal impersonation and substitution probabilities and an erasure-resilient
code. Finally, we present some examples of η-code constructions.

Keywords: message authentication, authentication codes, erasure-
resilient codes, erasure-tolerant authentication.

1 Introduction

1.1 Erasure-Tolerant Information Authentication

Authentication codes (or A-codes) are cryptographic primitives that are used to
achieve one of the basic information security goals, information authentication,
and they have been extensively studied in the past. Some of the results relevant
to our discussion include the following. Simmons [18,19] developed the theory of
unconditional authentication and derived some lower bounds on the deception
probability. Stinson [20,21,22] (see also [9]) studied the properties of authenti-
cation codes that have minimum possible deception probabilities and minimum
number of encoding rules. He characterized the existence of authentication codes
� This work has been suported in part by the National Science Foundation under

grants CCR-0209092 and CCR-008588.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 304–321, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Unconditionally Secure Information Authentication in Presence of Erasures 305

that have the aforementioned desirable properties in terms of existence of or-
thogonal arrays and balanced incomplete block designs (BIBD). The problem
of unconditionally secure multicast message authentication has been studied by
Desmedt et al [7]. Carter and Wegman [5,24] introduced the notion of univer-
sal classes of hash function and proposed their use in authentication. The use of
universal hashing to construct unconditionally secure authentication codes with-
out secrecy has also been studied by Stinson [23] and by Bierbrauer et al [4].
Rogaway [17] showed that a complexity-theoretic secure MAC can be obtained
from the unconditionally secure if a pseudo random function is used for key
generation. Afanassiev et al [1] proposed an efficient procedure for polynomial
evaluation that can be used to authenticate messages in about 7-13 instructions
per word.

In the authentication model that is used to derive the aforementioned results,
it is assumed that the messages arrive intact. That is, there is no data loss on the
communication channel between the sender and the receiver. The mechanisms
that provide such communication channel (e.g., retransmission, erasure-resilient
codes [10,11,15], etc.). are considered an issue that should be studied separately.
We consider a more general setting where the problems of authentication and
data loss are studied together. Particularly, we allow parts of the message to be
erased. In that case, the receiver should be able to verify the authenticity of a
part (possibly the whole) of the plaintext. We refer to the codes that allow such
verification as erasure-tolerant authentication codes (or η-codes).

1.2 Motivating Application

While most of the network applications are based on the client-server paradigm
and make use of point-to-point packet delivery, many emerging applications are
based on the group communications model. In particular, a packet delivery from
one or more authorized sender(s) to a possibly large number of authorized re-
ceivers is required. One such class of application is the class of multicast stream
applications like digital audio and video, data feeds (e.g., news feeds, stock mar-
ket quotes), etc.

Gennaro and Rohatgi [8] have proposed a stream signing scheme based on a
chain of one-time signatures. Several schemes have been proposed subsequently
[2,6,14,3]. Most of the aforementioned schemes are founded on the following
paradigm. The sender first commits to some key Ki by sending a commitment
H(Ki), then he sends the chunk of the stream Mi authenticated using the key
Ki, and finally, after all recipients have received the authenticated chunk, he
sends the key Ki.

When incorporated in the existing multicast stream authentication schemes,
erasure-resilient authentication codes can be used both to achieve loss-resilient
stream authentication and to improve the security and/or performance of the
schemes that already handle packet loss due to the following:

– The main advantage of using computationally secure message authentication
schemes over unconditionally secure message authentication is that a single

306 G. Jakimoski

key can be used to authenticate many messages. Since the keys in the mul-
ticast stream authentication paradigm described above are used only once,
the use of η-codes will not reduce the efficiency of the schemes. On the other
hand, η-codes provide unconditional security.

– If the commitment H(Ki) is lost or the key Ki is lost, then the receiver
cannot verify the authenticity of the chunk Mi. Since η-codes provide erasure
tolerance, the schemes will work even in the case of lossy channels.

1.3 Our Contribution

We address several fundamental issues concerning the erasure-tolerant informa-
tion authentication setting: lower bounds on the deception probability, distance
properties, the structure of the η-codes that have the desirable properties of min-
imum impersonation and substitution probabilities, relations to authentication
codes and erasure-resilient codes, and construction of η-codes.

2 The Setting

The authentication model that we are going to analyze is based on the model de-
scribed in [18,19,12]. As it is case in the usual model, there are three participants:
a transmitter, a receiver and an adversary. The transmitter wants to communi-
cate the source state (or plaintext 1) to the receiver using a public communication
channel. We assume that all plaintexts are strings of length k whose letters are
from some q-set Q. First, the plaintext is encrypted using some encoding rule
(or key) into a q-ary string of length n. The derived message (or ciphertext) is
sent through the public channel. The transmitter has a key source from which he
obtains a key. Prior to any message being sent, the key is communicated to the
receiver through a secure channel. The receiver uses the key to verify the validity
of the received message. If at most t (t < n) letters are missing from the original
intact valid message and the position of the missing letters within the message
is known, then the received message is still considered valid. In this case, the
receiver accepts a plaintext that is derived from the original plaintext by erasing
at most r (r < k) letters. When r is zero (i.e., we can recover and verify the
authenticity of the complete plaintext), we say that the code is full-recovery. If
the received message is not derived from some intact valid message by erasing
at most t letters, then the receiver does not accept a plaintext.

We denote by S the set of plaintexts (source states). Let M0 be the set
of all possible messages derived by applying each encoding rule (key) to the
source states and let Mi (0 < i ≤ t) be the set of all possible messages derived
1 In general, η-codes can provide secrecy (privacy). Hence, we adhere to the terminol-

ogy used by Simmons and use the terms plaintext (or source state), ciphertext (or
message) and encryption. This can be slightly confusing, since most of the current
works on MAC schemes use the term message for the source state, the term mes-
sage authentication code only for codes without secrecy, and the term authenticated
encryption for schemes that provide both authenticity and privacy.

Unconditionally Secure Information Authentication in Presence of Erasures 307

by erasing i letters from the messages in M0. The set of all possible messages
is M =

⋃t
i=0 Mi. Finally, we will use E to denote the set of encoding rules,

and X, Y0, . . . , Yt, Y and Z to denote random variables that take values from
S,M0, . . .Mt,M and E correspondingly. Note that the probability distribution
of Y0 is uniquely determined by the probability distributions of X , Z and the
randomness used by the code. However, there are infinitely many possible prob-
ability distributions for each of the random variables Y1, . . . , Yt depending on
how we erase the letters of the messages.

An η-code can be represented by an |E| × |M| encoding matrix A. The rows
of the matrix are indexed by the encoding rules ez ∈ E and the columns of
the matrix are indexed by the messages y ∈ M. The entries of the matrix are
either empty or contain a string derived from a source state by erasing at most
r (possibly 0) letters. We use the characteristic functions χ(y, z) to indicate
whether an entry is empty or not. In particular, the function χ(y, z) is one if
A[ez, y] is not empty (i.e., y ∈ M is a valid message when the key in use is
z), and χ(y, z) is zero if A[ez, y] is empty (i.e., y ∈ M is not a valid message
when the key in use is z). We will also use the characteristic function φ(y1, y2, z),
which is one if both y1 and y2 are valid when encoding rule ez is used, and zero
otherwise.

The following restrictions are imposed on the encoding matrix in order to
capture the important aspects of the setting that we have discussed above. Let
the message y ∈ M0 be valid under the encoding rule ez. Then, there is a plain-
text x ∈ S such that y = ez(x). In that case, the entry A[ez, y] in the encoding
matrix should be x. Furthermore, the transmitter should be able to send any
plaintext to the receiver regardless of the encoding rule in use. Therefore, for
each encoding rule ez and each source state x, there is at least one message
y ∈ M0 such that y = ez(x). If there is exactly one such message regardless of
the plaintext and the encoding rule, then the code is deterministic. Otherwise,
the code is randomized. If the message y ∈ M0 is valid under the encoding
rule ez, then any message y′ derived from y by erasing at most t letters is also
valid. The entry A[ez , y

′] should be derivable from the entry A[ez, y] by erasing
at most r letters. Note that if we discard from the encoding matrix each column
that does not correspond to an element in M0, then the resulting encoding ma-
trix defines an authentication code. We will refer to this code as the underlying
authentication code.

We assume that the secret key will be used only once (although this can be
relaxed as in [1,24]) and we are considering only two types of threats: imperson-
ation and substitution. In an impersonation attack, the adversary, based only on
his knowledge of the authentication scheme, can send a fraudulent message to
the receiver when in fact no message has yet been sent by the transmitter. In a
substitution attack, the adversary can intercept one valid message and replace
it with his fraudulent message. The probability of successful impersonation, PI ,
is defined as the probability of success when the adversary employs optimum
impersonation strategy. The probability of successful substitution, PS , is defined
as the probability of success when the adversary employs optimal substitution

308 G. Jakimoski

strategy. Finally, the adversary may be able to select whether to employ an
impersonation or a substitution attack (a deception attack). The probability of
successful deception, Pd, is the probability of success when an optimum deception
strategy is employed.

Simmons [18] used a game-theoretic approach in which the transmitter can
choose the encoding strategy (key statistics) to foil the type of attack that the
adversary may apply. In this case, one can only assert that Pd ≥ max(PI , PS).
Later, due to the Kerckhoff’s assumption, authors (e.g., [12,22]) assume that the
encoding strategy is fixed and known to all participants. In this case, which is
assumed hereafter, it holds that Pd = max(PI , PS).

A simple example of an encoding matrix for a binary η-code is given in
Table 1. We use * to denote the missing letters. Assuming that the keys are
equiprobable, the code has the following parameters: k = 1, n = 3, t = 1, r =
0,S = {0, 1},M0 = {000, 011, 101}, E = {e1, e2, e3}, PS = 1/2, Pd = PI = 2/3.
Note that the code is full recovery (r = 0), and that it is with secrecy since
the adversary cannot determine the plaintext given a ciphertext. For example,
assume that the adversary has intercepted the message 000. Since he doesn’t
know the key that is in use, he can not tell whether the plaintext is 0 or 1.

Table 1. An example of a binary η-code with secrecy

000 00* 0*0 *00 011 01* 0*1 *11 101 10* 1*1 *01
e1 0 0 0 0 1 1 1 1
e2 1 1 1 1 0 0 0 0
e3 0 0 0 0 1 1 1 1

3 Lower Bounds on the Deception Probability

In this section, we are going to address the question of how much security we can
achieve given some parameters of the η-code. The following theorem gives some
lower bounds on the probability of successful deception for the model described
in Section2.

Theorem 1 (Lower Bounds). The following inequalities hold for the proba-
bility of successful deception:

1. Pd ≥
min
E

|M(ez)|
|M|

2. Pd ≥ |S|
|M0|

3. Pd ≥ 2− infYt I(Yt,Z) ≥ . . . ≥ 2− infY1 I(Y1,Z) ≥ 2−I(Y0,Z)

4. Pd ≥ 2
1
2 (I(Y0 ,Z)−infYt

I(Yt,Z))√
|E| ≥ 1√

|E|

where |M(ez)| is the number of messages in M that are valid when the key z is
used, and infYi I(Yi, Z) denotes the infimum of the mutual information I(Yi, Z)
over all possible probability distributions of Yi.

Unconditionally Secure Information Authentication in Presence of Erasures 309

Assume that the sender and the receiver have already agreed that they are
going to use the encoding rule ez. One possible impersonation strategy is to
select uniformly at random a message from M. The attack will succeed if the
selected message is one of the messages that are valid under that key z. Since
there are |M(ez)| messages that are valid under the key z and the fraudulent
message was selected uniformly at random, the probability of success given a key
z is |M(ez)|/|M|. Clearly, the probability of successful deception will be greater
or equal than minE |M(ez)|

|M| , which is our first lower bound.
In Section 2, we mentioned that if we discard from the encoding matrix

all columns that are not indexed by the messages in M0, then we will get an
authentication code. It is obvious that an attack on the underlying authentication
code is also an attack on the η-code. Hence, any lower bound on the probability
of successful deception for authentication codes can be translated into a lower
bound on the probability of success in a deception attack for η-codes. One such
bound is given in Theorem 1(2) and it follows from Corollary 1 [18]. Corollary 1
[18] trivially follows from Theorem 1 [18] since the number of valid messages
for a given key is at least |S| in the case of authentication codes. However, that
is not the case for their counterparts. Namely, the bound of Theorem 1(2) is
not a consequence of Theorem 1(1), that is minE |M(ez)|

|M| is not always greater or

equal than |S|
|M0| . A counterexample is given in Table 2. The set of source states

is S = {00, 01, 11}, the set of encoding rules is E = {e1, e2}, and the set of all
possible intact messages is M0 = {000, 001, 011, 110}. It is not hard to verify
that minE |M(ez)|

|M| = 10
14 < |S|

|M0| = 3
4 .

Table 2. Counterexample for minE |M(ez)|
|M| ≥ |S|

|M0|

000 00* 0*0 *00 001 0*1 *01 011 01* *11 110 11* 1*0 *10
e1 00 0* 00 00 01 *1 01 11 11 11
e2 00 00 00 00 01 01 01 01 11 11 11 11

The third bound (Theorem 1(3)) is an erasure-tolerant analogue to the au-
thentication channel capacity bound [18], and the final lower bound (Theo-
rem 1(4)) is a bound on the security that we can achieve for a given key length
(see Appendix A for proofs).

4 Some Properties and Constructions

In this section, we investigate some additional properties of η-codes.

4.1 Distance Properties

The Hamming distance2 between the messages is not important in the traditional
authentication model because it is assumed that the messages arrive intact. How-
2 The number of letters that need to be changed in one message to obtain the other.

310 G. Jakimoski

ever, the distances3 between the messages of an η-code play a crucial role since
they determine the erasure-tolerant aspects of the code. The following theorem
describes several distance properties of the erasure-tolerant authentication codes.

Theorem 2 (Distance properties).

1. If the distance d(x1, x2) between two plaintexts x1 and x2 is greater than r,
then the distance d(y1, y2) between the corresponding ciphertexts y1 = ez(x1)
and y2 = ez(x2) is greater than t.

2. If there is a code (set of codewords) ζ ⊆ S whose distance d(ζ) is greater
than r, then, for any encoding rule ez, there is a code ς ⊆ M0(ez) such that
|ς| ≥ |ζ| and d(ς) > t, where M0(ez) is the set of valid messages in M0

when the encoding rule ez is in use.
3. For each encoding rule ez of a full-recovery η-code, there is a code ς ⊆

M0(ez) such that |ς| ≥ |S| and d(ς) > t.
4. For each encoding rule ez of a deterministic full-recovery η-code, the distance

of the code M0(ez) is greater than t.
5. Let ps = miny1,y2∈M0 P (y2 valid |y1 valid) be greater than zero and let the

erasure-tolerant code be deterministic and full-recovery. Then, the distance
between any two elements of M0 is greater than t.

The proof is given in Appendix B.

4.2 Concatenation and Composition of η-Codes

In this subsection, we are going to consider two common construction techniques:
concatenation and composition.

In the case of concatenation, the set of source states S of the new erasure-
tolerant authentication code consists of all possible concatenations x1||x2, where
x1 ∈ S′

0 is a source state of the first code and x2 ∈ S′′
0 is a source state of the

second code. To encode a source state x = x1||x2, we select two encoding rules
ez1 ∈ E ′ and ez2 ∈ E ′′, and compute the message y as y = ez1(x1)||ez2(x2). It is
not hard to verify that if we erase t = t1+t2+1 letters from a message y, then we
can “lose” at most r = max(r1 + k2, r2 + k1) letters of the corresponding source
state x. Note that we allow more than t1 (resp., t2) letters to be erased from
ez1(x1) (resp., ez2(x2)). In that case, we check the validity of the second (resp.,
first) part of the message and discard the letters of the first (resp., second) part
of the source state. For the composition construction, the set of source states
S′′ of the second code is equal to the set M′

0 of all possible intact messages of
the first code. The set of source states of the new code S is equal to the set of
source states S′ of the first code, and the set M0 of all possible intact messages
is equal to the set M′′

0 of all intact messages of the second code. The message y
corresponding to a given source state x is computed as y = ez2(ez1(x)), where
the encoding rules ez1 ∈ E ′ and ez2 ∈ E ′′ are chosen independently according
to the corresponding probability distributions. We require r2 to be less or equal
3 Hereafter, when we say distance we mean Hamming distance.

Unconditionally Secure Information Authentication in Presence of Erasures 311

than t1, and if we erase at most t = t2 letters from a message y, then we can
“lose” at most r = r1 letters of the corresponding source state x. Some relations
between the impersonation and substitution probabilities of the new code and
the impersonation and substitution probabilities of the component codes are
provided below.

Theorem 3. The following relations hold for the probability of successful decep-
tion of a concatenation and composition of η-codes:

1. Concatenation: Pd = max(P ′
d, P ′′

d)
2. Composition: PI ≤ P ′

IP
′′
I , PS ≤ P̃ ′

SP ′′
S , where

P̃ ′
S =

maxy′,y′′∈M′ P ((y′, y′′) valid)
miny∈M′ P (y valid)

.

The proof is given in Appendix C.
Note that authentication codes and erasure-resilient codes can also be used as

component codes. Namely, authentication codes form a class of η-codes whose
members provide authenticity, but no erasure-resilience (t = 0). The erasure-
resilient codes on the other hand form a class of η-codes whose members provide
erasure-resilience, but no authentication (Pd = 1).

Finally, we will consider the case when the probabilities P ((y′, y′′) valid) and
P (y valid) are uniformly distributed. In this case, the deception probability is
characterized by the following corollary (see Appendix C for proof).

Corollary 1. If the probabilities P ((y′, y′′) valid) and P (y valid) (y, y′, y′′ ∈
M′), are uniformly distributed, then the approximation P̃ ′

S is equal to P ′
S, and

we have
Pd ≤ P ′

dP
′′
d .

4.3 Erasure-Tolerant Authentication Codes with Minimal
Impersonation and Substitution Probabilities

Not all η-codes can be represented as a composition of an authentication code
and an erasure-resilient code. However, the members of one interesting class of
erasure-tolerant authentication codes can always be represented as a composition
of an authentication code and an erasure-resilient code since the messages in M0

form a code whose distance is greater than t. This is the class of η-codes whose
probabilities of successful impersonation and substitution are minimal.

Theorem 4. An η-code without secrecy (resp., with secrecy) has probability of
successful impersonation PI = |S|

|M0| < 1 and probability of successful substitution

PS = |S|
|M0| (resp., PS = |S|−1

|M0|−1) if and only if

1. d(M0) > t and
2. the underlying authentication code is an authentication code without secrecy

(resp., with secrecy) such that PuI = |S|
|M0| and PuS = |S|

|M0| (resp., PuS =
|S|−1

|M0|−1).

312 G. Jakimoski

The proof is given in Appendix D. As we mentioned in the introduction,
Stinson [20,21,22] has characterized the existence of authentication codes that
have minimal impersonation and substitution probabilities in terms of existence
of orthogonal arrays and balanced incomplete block designs (BIBD). Using these
characterizations and Theorem 4, one can easily derive a relation between the
existence of orthogonal arrays and BIBDs and the existence of η-codes with
minimal PI and PS .

5 Examples

In this section, we give some examples of erasure-tolerant authentication codes.

5.1 η-Codes from Set Systems

A set system is a pair (X,B) of a set X = {a1, a2, . . . , ak} and a multiset B
whose elements are subsets (or blocks) of X .

We can construct an η-code from a set system as follows. The set X will
consist of the letters of the source state x. Then, we use an authentication code
to compute an authentication tag for each block Bi ∈ B. The message y is
constructed by appending the authentication tags of the blocks to the source
state x. Now, if some letter of the message is erased, and the erased letter does
not belong to a block Bi or to the authentication tag of the block Bi, then we
can still check the authenticity of the letters of the plaintext that belong to Bi.

One possible construction is from a complementary design of a covering.
The set system (X,B) is a (k, m, t)-covering design if all blocks are m-subsets
of X , and any t-subset of X is contained in at least one block. Some efficient
constructions of coverings can be found in [13,16]. The complementary set system
of a set system (X,B) is the set system (X,Bc), where Bc = {X\Bi|Bi ∈ B}.
It is not hard to prove the following property of the complementary design of a
covering.

Lemma 1. Let (X,B) be a (k, m, t)-covering design. Then, for the complemen-
tary design, we have

1. |Bi| = k − m for all Bi ∈ Bc

2. For any subset F ⊂ X such that |F | ≤ t, there is a block Bi ∈ Bc such that
F
⋂

Bi = ∅.
The following proposition trivially follows from the previous lemma.

Proposition 1. If at most t letters are erased from a message of an η-code
derived from a complementary design of a (k, m, t)-covering, then we can verify
the authenticity of at least k − m letters of the plaintext (r ≤ m).

Now, we are going to consider a specific example. Assume that the source
state is a sequence of v2 packets arranged in a square matrix

P0,0, . . . , P0,v−1, . . . , Pv−1,0, . . . , Pv−1,v−1,

Unconditionally Secure Information Authentication in Presence of Erasures 313

where each packet Pi,j is a sequence of l letters. We divide the set of blocks B
into two disjoint subsets R and D. The blocks in R are constructed from the
rows of the matrix

R = {Ri|Ri = {Pi,0, . . . , Pi,v−1}, 0 ≤ i < v}.
The blocks in D are “parallel” to the main diagonal

D = {Di|Di = {P0,i, P1,(i+1) mod v},...,Pv−1,(i+v−1) mod v
, 0 ≤ i < v}.

The set system consisting of the set of all packets Pi,j and the set of all blocks
Ri and Di is a complementary design of a (v2, v(v − 1), v − 1)-covering. That is,
if at most v − 1 packets are lost, then, we can still verify the authenticity of at
least one block (i.e., v packets). The set system also has the following convenient
properties:

– If one packet is lost, then we can still verify the authenticity of all v2 − 1
packets that are not lost.

– If two packets are lost, then we can still verify the authenticity of at least
v2 − 4 packets.

We will use the following multiple message authentication code (see [1]) for
our example. Let a1,a2, . . . ,av be a sequence of v messages. The authentication
tag for a message ai is computed as

hx,y,zi(ai) = y(ai,0 + ai,1x + . . . + ai,l−1x
l−1) + zi = yfai(x) + zi,

where x, y, zi, ai,0, . . . , ai,l−1 ∈ Fq (q a prime power). The key parts x and y
remain unchanged for all messages in the sequence. Only the part zi is refreshed
for each message.

In our case, the messages in the sequence are derived from the blocks by
concatenating the packets in each block. We denote by fPi,j (x) the sum p0 +
p1x+ . . .+pl−1x

l−1, where p0, . . . , pl are the letters of the packet Pi,j . Similarly,
fRi(x) is defined as

fRi(x) = fPi,0(x) + xlfPi,1(x) + . . . + xl(v−1)fPi,v−1(x).

The definition of fDi(x) is straightforward. The authentication tag for the block
Ri (resp., Di) is computed as yfRi(x) + zRi (resp., yfDi(x) + zDi). The tag for
a given block is sent along with the last packet of the block.

Note that although each packet is contained in two blocks, we don’t have
to process the packets twice. We evaluate the polynomials fPi,j (x) only for one
value of x, and then, we combine the computed values to derive the authen-
tication tags. Table 3 compares the example presented here to the case when
each packet is authenticated separately. The complexities are expressed in num-
ber of multiplications over the finite field when the Horner’s procedure is used
for polynomial evaluation. We can see that in the example presented here, the
number of keys (the part that changes) is significantly smaller when the number
of packets increases. The price we pay is slightly increased time complexity and
smaller erasure-tolerance.

314 G. Jakimoski

Table 3. Comparison of the code from a complementary design of a (v2, v(v − 1), v −
1)-covering with the case when an authentication tag is computed for each packet
separately

code multiplicative number of erasures
complexity keys tolerated

from (v2, v(v − 1), v − 1)-covering v2l + 2v + log l − 1 2v up to v − 1
each packet separately v2l v2 up to v2 − 1

5.2 η-Codes from Reed-Solomon Codes

Reed-Solomon codes have already been used to construct authentication codes
[4]. Here, we present a construction of η-codes based on Reed-Solomon codes.

Let a1, a2, . . . , ak be the sequence of plaintext letters, where each ai is an
element of the Galois field Fq. The message is constructed by appending n − k
authentication tags τ1, τ2, . . . , τn−k (τi ∈ Fq, 1 ≤ i ≤ n−k) to the plaintext. The
authentication tags are computed as

τi = yi +
k∑

j=1

ajx
j
i

where xi, yi are randomly selected and secret (i.e., part of the key). In addition,
we require that xi1 �= xi2 for i1 �= i2.

Now, assume that ta letters of the plaintext and tτ authentication tags are
lost during the transmission. Note that ta + tτ cannot be greater than t. The
receiver can use ta of the received authentication tags and the k − ta received
letters of the plaintext to construct a system of linear equations that can be
always solved for the unknown letters of the plaintext. Once the missing letters
of the plaintext are recovered, the receiver can check the authenticity using the
remaining n − k − ta − tτ authentication tags. Assuming that each letter of the
message can be erased with same probability p, the probability that in a sequence
of v messages, there is no forged message accepted as valid, is lower bounded by
the product

t∏
i=0

(1 − kn−k−i

qn−k−i
)v×(n

i)pi(1−p)n−i

.

The authentication tags in the example have dual role. They can be used
to verify the authenticity of the plaintext or to recover some lost letters of the
plaintext. Therefore, the η-codes described above, offer more security than the
codes constructed by composing an authentication code and an erasure-resilient
code on one hand, and they are more resilient to erasures than authentication
codes on the other hand. This is illustrated in Table 4. The first row corresponds
to a code that is derived by composing an authentication code and an erasure-
resilient code that can recover one erasure. The second row corresponds to a code
of length n = k + 2 constructed as above. Since only one erasure is tolerated,
the condition xi1 �= xi2 for i1 �= i2 is not necessary, and the complexity can be

Unconditionally Secure Information Authentication in Presence of Erasures 315

reduced from 2k to k multiplications by using a multiple message authentication
code as in the previous example. The final code is an ordinary authentication
code. The letters of the message in the last case are considered to be elements
of a Galois field Fq2 .

Table 4. Comparison of an η-code from RS code with the current practices

code multiplicative non-deception erasure
complexity probability tolerance

composition k multipl. in Fq (1 − k
q
)v 1 erasure

our η-code k multipl. in Fq (1 − k
q
)pv(1 − k2

q2)(1−p)v 1 erasure
A-code k/2 multipl. in Fq2 (1 − k

2q2)v 0 erasures

6 Conclusion and Future Work

We studied a more general authentication model where both unconditionally
secure information authentication and loss-resilience are achieved at the same
time by means of erasure-tolerant authentication codes (or η-codes). We de-
rived results concerning some fundamental problems in the generalized model,
and presented examples of η-codes. Our future research will concentrate on pro-
viding new constructions of η-codes and applying η-codes in multicast stream
authentication over lossy channels.

Acknowledgments

We thank Yvo Desmedt for the helpful discussions on this work.

References

1. V. Afanassiev, C. Gehrmann and B. Smeets, “Fast Message Authentication Using
Efficient Polynomial Evaluation,” Proceedings of Fast Software Encryption Work-
shop 1997, pp. 190-204.

2. R. Anderson, F. Bergadano, B. Crispo, J. Lee, C. Manifavas, and R. Needham,“A
New Family of Authentication Protocols,” ACM Operating Systems Review 32(4),
pp. 9-20, 1998.

3. F. Bergadano, D. Cavagnino, B. Crispo, “Chained Stream Authentication,” Pro-
ceeding of Selected Areas in Cryptography 2000, pp. 142-155.

4. J. Bierbrauer, T. Johansson, G. Kabatianskii and B. Smeets, “On Families of Hash
Functions Via Geometric Codes and Concatenation,” Proceedings of Crypto ’93,
pp. 331-342.

5. J.L. Carter and M.N. Wegman, “Universal Classes of Hash Functions,” Journal of
Computer and System Sciences, Vol. 18, pp. 143-154, 1979.

316 G. Jakimoski

6. S. Cheung,“An Efficient Message Authentication Scheme for Link State Routing,”
Proceedings of the 13th Annual Computer Security Application Conference, 1997.

7. Y. Desmedt, Y. Frankel and M. Yung, “Multi-Receiver/Multi-Sender Network Se-
curity: Efficient Authenticated Multicast/Feedback,” Proceeding of INFOCOM
1992, pp.2045-2054.

8. R. Gennaro and P. Rohatgi,“How to Sign Digital Streams,” Proceedings of Crypto
’97, pp. 180-197.

9. T. Johansson, G. Kabatianskii and B. Smeets, “On the Relation Between A-codes
and Codes Correcting Independent Errors,” Proceedings of Eurocrypt 1993, pp.
1-11.

10. M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, and V. Stemann,
”Practical Loss-Resilient Codes,” Proceedings of the 29th Symp. on Theory of
Computing, 1997, pp. 150-159.

11. M.Luby, “LT codes,” The 43rd IEEE Symposium on Foundations of Computer
Science, 2002.

12. J.L. Massey, “Contemporary Cryptology: An Introduction,” in Contemporary
Cryptology, The Science of Information Integrity, ed. G.J. Simmons, IEEE Press,
New York, 1992.

13. W.H.Mills,“Covering design I: coverings by a small number of subsets,” Ars Com-
bin. 8, pp. 199-315, 1979.

14. A. Perrig, R. Canneti, J. D. Tygar and D. Song, “Efficient Authentication and
Signing of Multicast Streams Over Lossy Channels,” Proceedings of the IEEE
Security and Privacy Symposium, 2000.

15. M. Rabin,“Efficient Dispersal of Information for Security, Load Balancing, and
Fault Tolerance,” J. ACM 36(2), pp.335-348.

16. R.Rees, D.R.Stinson, R.Wei and G.H.J. van Rees, “An application of covering
designs: Determining the maximum consistent set of shares in a threshold scheme,”
Ars Combin. 531, pp. 225-237, 1999.

17. P.Rogaway, “Bucket hashing and its application to fast message authentication,”
Proceedings of Crypto ’95, pp. 29-42.

18. G.J. Simmons,“Authentication Theory / Coding Theory,” Proceedings of Crypto
’84, pp. 411-432.

19. G.J. Simmons, “A Survey of Information Authentication,” in Contemporary Cryp-
tology, The Science of Information Integrity, ed. G.J. Simmons, IEEE Press, New
York, 1992.

20. D.R. Stinson, “Some Constructions and Bounds for Authentication Codes,” Jour-
nal of Cryptology 1 (1988), pp. 37-51.

21. D.R. Stinson, “The Combinatorics of Authentication and Secrecy Codes,” Journal
of Cryptology 2 (1990), pp. 23-49.

22. D.R. Stinson, “Combinatorial Characterizations of Authentication Codes,” Pro-
ceedings of Crypto ’91, pp.62-73.

23. D.R. Stinson, “Universal Hashing and Authentication Codes,” Proceedings of
Crypto ’91, pp. 74-85.

24. M.N. Wegman and J.L. Carter, “New Hash Functions and Their Use in Authenti-
cation and Set Equality,” Journal of Computer and System Sciences, Vol. 22, pp.
265-279, 1981.

Unconditionally Secure Information Authentication in Presence of Erasures 317

A Proof of Theorem 1

We will prove only the lower bounds 3 and 4. The lower bounds 1 and 2 trivially
follow from the discussion in Section 3 and the lower bounds for authentication
codes given in [18].

3. The proof that we are going to present is an adaptation of the Massey’s
short proof [12] of the authentication channel capacity bound [18]. The proba-
bility that a particular message y ∈ M will be a valid message is given by the
following expression:

P (y valid) =
∑

z

χ(y, z)PZ(z).

The probability of successful impersonation is

PI = max
y

P (y valid),

that is the best impersonation attack is when the adversary selects the fraudulent
message to be the message that will be valid with maximum probability. Assume
that y is a message from M that is valid with maximum probability (P (y valid) =
PI) and assume that y /∈ Mt. Let ŷ ∈ Mt be a message derived from y by erasing
some of its letters. Note that ŷ is valid whenever y is valid, or equivalently,
χ(y, z) = 1 implies χ(ŷ, z) = 1. In that case, we have

PI ≥ P (ŷ valid) =
∑

z

χ(ŷ, z)PZ(z) ≥
∑

z

χ(y, z)PZ(z) = P (y valid) = PI .

Obviously, the probability that message ŷ will be a valid message is PI , and
one best impersonation strategy is to choose always ŷ as a possible fraudulent
message.

Let Yt be a random variable that takes values from Mt in a following manner:
we randomly discard t letters from a message that is computed by the receiver
from a randomly selected plaintext (according to the plaintext probability dis-
tribution) by applying a randomly selected encoding rule (according to the key
probability distribution). It is clear that

PI = P (ŷ valid) = P (ŷ valid) ×
∑

y

PYt(y) =
∑

y

PYt(y)P (ŷ valid)

≥
∑

y

PYt(y)P (y valid).

Note that equality holds only when the probabilities of validity are equal for all
messages in Mt. By substituting P (y valid), we get

PI ≥
∑
y,z

PYt(y)PZ(z)χ(y, z).

318 G. Jakimoski

The joint probability PYtZ(y, z) is greater than zero if and only if PZ(z) > 0 and
χ(y, z) = 1. Therefore, the relation above can be rewritten as

PI ≥ E

[
PYt(y)PZ(z)
PYtZ(y, z)

]
.

Using Jensen’s inequality4, we get

log PI ≥ log E

[
PYt(y)PZ(z)
PYtZ(y, z)

]
≥ E

[
log

PYt(y)PZ(z)
PYtZ(y, z)

]
= H(YtZ) − H(Yt) − H(Z) = −I(Yt, Z).

The lower bound Pd ≥ 2− infYt I(Yt,Z) trivially follows since the previous in-
equality holds for any probability distribution of Yt. Now, we only need to show
that infYi I(Yi, Z) ≤ infYi−1 I(Yi−1, Z). Given a random variable Yi−1 that takes
values from Mi−1, let us construct a random variable Yi that takes values from
Mi as follows. If yi−1 ∈ Mi−1 is the message that the receiver is supposed
to get, we erase the first non-erased letter in yi−1 to get yi. It is obvious that
I(Yi, Z) ≤ I(Yi−1) since anything that we can learn about the key given yi

we can also learn given yi−1 (e.g., we can erase one letter from yi−1 and guess
the value of the key). Hence, for every probability distribution of Yi−1, there is
probability distribution of Yi such that I(Yi, Z) ≤ I(Yi−1, Z), and therefore, the
inequality infYi I(Yi, Z) ≤ infYi−1 I(Yi−1, Z) will always hold.

4. For the probability of successful substitution, it holds that log PS ≥
−H(Z|Y0) (see Theorem 5 [18]). Now, we have

P 2
d ≥ PIPS ≥ 2− infYt I(Yt,Z)2−H(Z|Y0)

= 2I(Y0,Z)−infYt I(Yt,Z)−H(Z)

Pd ≥ 2
1
2 (I(Y0,Z)−infYt I(Yt,Z))

2
1
2 H(Z)

≥ 2
1
2 (I(Y0,Z)−infYt I(Yt,Z))√|E|

≥ 1√|E| (1)

B Proof of Theorem 2

1. Assume that d(y1, y2) ≤ t. Let y be the message derived from y1 (resp.,
y2) by erasing the letters where y1 and y2 differ and let x = e−1

z (y) be the
4 If f(x) is a convex function on an interval (a, b), x1, x2, . . . , xn are real numbers

a < xi < b, and w1, w2, . . . , wn are positive numbers with wi = 1, then

f

n

i=1

wixi ≤
n

i=1

wif(xi).

Unconditionally Secure Information Authentication in Presence of Erasures 319

damaged plaintext corresponding to y. The plaintext x should be derivable
from both x1 and x2 by erasing at most r letters. Therefore, the distance
d(x1, x2) is not greater than r, which is in contradiction with our assumption
that d(x1, x2) > r.

2. Let us consider the code ς constructed as follows. For each codeword x in
ζ, we put a codeword y = ez(x) in ς. Distance property of Theorem 2.1
implies that the distance of the code ς is greater than t. Clearly, the number
of codewords in ς is equal to the number of codewords in ζ, and the theorem
follows.

3. The third property follows from the previous property and the following
observation. In the case of a full-recovery code, we have r = 0 and the set of
all possible source states S forms a code with distance greater than r.

4. If the η-code is deterministic, then there is exactly one valid message given
a source state and an encoding rule. If in addition the code is full-recovery,
then the distance between any two intact valid messages should be greater
than t.

5. The fact that ps is greater than zero implies that for any two distinct mes-
sages y1 and y2 in M0, there is an encoding rule ez such that y1 and y2

are both valid when the encoding rule ez is used. According to the previous
property, the distance between y1 and y2 must be greater than t.

C Proofs for Section 4.2

C.1 Proof of Theorem 3

1. Let us consider the message y = y1||y2, where y1 ∈ M′ and y2 ∈ M′′. Since
the encoding rules are chosen independently, we have

P (y valid) = P (y1 valid)P (y2 valid).

In that case, the probability P (y valid) is less or equal than both P ′
I and P ′′

I .
Assume now that y2 is not in M′′. The verifier will check only the validity
of y1. In this case, the probability that y is valid is P (y valid) = P (y1 valid).
Clearly, the probability P (y valid) is again less or equal than P ′

I , but we can
select y1 so that P (y valid) = P ′

I . Similarly, if we select y1 so that there are
more than t1 erasures in it, the verifier will check the validity of y2 only. The
probability P (y valid) will be less or equal than P ′′

I , and we can select y2 so
that P (y valid) = P ′′

I . Therefore, the probability of successful impersonation of
the new code is maximum of the probabilities of successful impersonation of the
component codes (i.e., PI = max(P ′

I , P
′′
I)).

An analogous argument holds for the probability of successful substitution.
Let y = y1||y2 be the message intercepted by the adversary and let ŷ = ŷ1||ŷ2

be its substitution. Let us consider the case when P ′
S ≥ P ′′

S . It is not hard to
show that the best substitution strategy is to substitute only the first part of
the message (i.e., ŷ2 = y2 or ŷ2 is derived by erasing more than t2 letters).
The probability that ŷ is valid is equal to the probability that ŷ1 is valid, and

320 G. Jakimoski

the probability of successful substitution PS is equal to P ′
S . Similarly, in the

case when P ′
S ≤ P ′′

S , we get that PS = P ′′
S . Therefore, PS = max(P ′

S , P ′′
S) and

Pd = max(P ′
d, P

′′
d).

2. First, we will show that PI ≤ P ′
IP

′′
I . Let y ∈ M be an arbitrary message.

For the probability that y is valid, we have

P (y valid) =
∑
z1z2

χ′′(y, z2)χ′(e−1
z2

(y), z1)P (z2)P (z1)

=
∑
z2

χ′′(y, z2)P (z2)
∑
z1

χ′(e−1
z2

(y), z1)P (z1)

≤ P ′
I

∑
z2

χ′′(y, z2)P (z2)

≤ P ′
IP

′′
I .

From the last inequality, it follows that PI = maxy∈M P (y valid) ≤ P ′
IP

′′
I .

Now, let us consider the conditional probability P (y′′ valid | y′ valid), where
y′ and y′′ are two distinct messages from M. We have

P (y′′ valid | y′ valid) =
P ((y′, y′′) valid)

P (y′ valid)

=

∑
z1z2

φ′′(y′, y′′, z2)φ′(e−1
z2

(y′), e−1
z2

(y′′), z1)P (z2)P (z1)∑
z1z2

χ′′(y′, z2)χ′(e−1
z2 (y′), z1)P (z2)P (z1)

≤ maxy′
1,y′′

1 ∈M′ P ((y′
1, y

′′
1) valid) ×∑z2

φ′′(y′, y′′, z2)P (z2)∑
z2

χ′′(y′, z2)P (z2)
∑

z1
χ′(e−1

z2 (y′), z1)P (z1)

≤ maxy′
1,y′′

1 ∈M′ P ((y′
1, y

′′
1) valid) ×∑z2

φ′′(y′, y′′, z2)P (z2)
miny′

1∈M′ P (y′
1 valid) ×∑z2

χ′′(y′, z2)P (z2)

≤ P̃ ′
SP ′′

S .

From the previous inequality, it is obvious that PS ≤ P̃ ′
SP ′′

S .

C.2 Proof of Corollary 1

If the probabilities P ((y′, y′′) valid) and P (y valid) are uniformly distributed,
then

P̃ ′
S =

maxy′,y′′∈M′ P ((y′, y′′) valid)
miny∈M′ P (y valid)

=
P ((y1, y2) valid)

P (y1 valid)
= P (y2 valid | y1 valid)

where y1, y2 ∈ M′ are two arbitrary messages. On the other hand, for the prob-
ability of successful substitution we have

P ′
S = max

y1,y2∈M′

P ((y1, y2) valid)
P (y1 valid)

= P (y2 valid | y1 valid).

Hence, P̃ ′
S is equal to P ′

S , and PS ≤ P ′
SP ′′

S . From the last inequality and Theo-
rem 3(2), it follows that Pd ≤ P ′

dP
′′
d .

Unconditionally Secure Information Authentication in Presence of Erasures 321

D Proof of Theorem 4

It is not difficult to show that if d(M0) > t, then PI = PuI and PS = PuS .
Clearly, if the underlying authentication code is without secrecy (resp., with
secrecy), then the erasure-resilient code is without secrecy (resp., with secrecy)
also.

Now, suppose that we have an erasure-resilient code without secrecy (resp.,
with secrecy) such that PI = |S|

|M0| < 1 and PS = |S|
|M0| (resp., PS = |S|−1

|M0|−1).

Since PI ≥ PuI ≥ |S|
|M0| and PS ≥ PuS ≥ |S|

|M0| (resp., PS ≥ PuS ≥ |S|−1
|M0|−1), we

have PuI = |S|
|M0| and PuS = |S|

|M0| (resp., PuS = |S|−1
|M0|−1). Therefore, the under-

lying authentication code has same impersonation and substitution probabilities
as the erasure-tolerant authentication code. Obviously, if the erasure-tolerant
authentication code is without secrecy (resp., with secrecy), then the underlying
authentication code is without secrecy (resp., with secrecy) also.

We need to show now that d(M0) is greater than t. For the underlying
authentication code it holds that the probability P (y valid) is |S|

|M0| for all y ∈
M0, and the probability P (y2 valid | y1 valid) is |S|

|M0| (resp., |S|−1
|M0|−1) for any

two distinct y1 and y2 in M0. Now, assume that there are two messages y1

and y2 in M0 such that d(y1, y2) ≤ t. Let y be the message in M derived by
erasing all the letters in y2 that differ from the corresponding letters in y1. Since
P (y2 valid | y1 valid) is less than 1, there is an encoding rule ez such that y1 is a
valid message under the encoding rule eZ , but y2 is not a valid message under
the encoding rule ez. Therefore, we have P (y valid) > P (y2 valid) = |S|

|M0| , which

is in contradiction with our assumption that PI = |S|
|M0| .

Generalized Strong Extractors
and Deterministic Privacy Amplification�

Robert König and Ueli Maurer

Department of Computer Science,
Swiss Federal Institute of Technology (ETH), Zurich,

CH-8092 Zurich, Switzerland
{rkoenig, maurer}@inf.ethz.ch

Abstract. Extracting essentially uniform randomness from a somewhat
random source X is a crucial operation in various applications, in partic-
ular in cryptography where an adversary usually possesses some partial
information about X. In this paper we formalize and study the most
general form of extracting randomness in such a cryptographic setting.
Our notion of strong extractors captures in particular the case where the
catalyst randomness is neither uniform nor independent of the actual
extractor input. This is for example important for privacy amplification,
where a uniform cryptographic key is generated by Alice and Bob sharing
some partially secret information X by exchanging a catalyst R over an
insecure channel accessible to an adversary Eve. Here the authentication
information for R creates, from Eve’s viewpoint, a dependence between
X and R. We provide explicit constructions for this setting based on
strong blenders. In addition, we give strong deterministic randomness
extractors for lists of random variables, where only an unknown subset
of the variables is required to have some amount of min-entropy.

1 Introduction

1.1 Extracting Uniform Randomness

Extracting essentially uniform randomness from somewhat random information
is an important operation arising in different settings, ranging from the deran-
domization of probabilistic algorithms, the design of pseudo-random generators,
to the generation of information-theoretically secure cryptographic keys.

One can distinguish different variations of this problem, depending on whether
the randomness extraction is deterministic or makes use of some catalyst ran-
domness, and whether or not the generated random string must be protected
from an adversary with side information, including the catalyst (cryptographic
vs. non-cryptographic case).

Non-cryptographic randomness extraction has been studied extensively. A
deterministic randomness extraction function f : Ω → Ω′ is characterized by
� This work was partially supported by the Swiss National Science Foundation, project

No. 200020-103847/1.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 322–339, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Generalized Strong Extractors and Deterministic Privacy Amplification 323

the set S of random variables (often called a source) X for which it generates
an essentially uniform output (e.g., has distance at most ε from the uniform dis-
tribution). Such a function is called an (S, ε)-extractor1 [Dod00]. The question
of the existence of such extractors and the problem of finding explicit construc-
tions has been considered for a large number of sources and remains an im-
portant research topic [TV00]. Examples include various kinds of “streaming”
sources (e.g., [vN51, Eli72, Blu84, SV86, Vaz87b, Vaz87c]), which produce a se-
quence of symbols (as for example Markov sources), families consisting of pairs
or tuples of independent weak random variables (e.g., [CG88, DO03, DEOR04]),
families generated by samplers (e.g., [TV00]), and various kinds of bit-fixing and
symbol-fixing sources (e.g., [CGH+85, CW89, KZ03, GRS04]).

The term “extractor” is generally used for the probabilistic non-cryptographic
case. In this case, the extractor takes as a second input an independent uniform
random string R, which can be seen as a catalyst. The source X from which
randomness is extracted is usually characterized by a lower bound on the min-
entropy. A (k, ε)-extractor [NZ96] extracts ε-close to uniform randomness under
the sole condition that the min-entropy of X is at least k.

Such a (k, ε)-extractor is called strong if the output is ε-close to uniform
even when R is taken as part of the output. This is useful in a setting where
R is communicated over an (authenticated) channel accessible to an adversary
who should still be completely ignorant about the generated string. This setting,
usually referred to as privacy amplification, is discussed in the following section.

Note that the concept of an (S, ε)-extractor is a strict generalization of the
concept of a (k, ε)-extractor if one views the catalyst as part of the input to the
(then deterministic) extractor. In the same sense, the (S, ε)-strong extractors
defined in this paper are a strict generalization of (k, ε)-strong extractors. The
output of an (S, ε)-extractor is required to be close to uniform even given some
additional piece of information, which does not necessarily have to be part of
the input, but is characterized by the family S.

1.2 Privacy Amplification

Classical privacy amplification, introduced by Bennett, Brassard, and Robert
[BBR88] (and further analysed in [BBCM95]), refers to the following setting.
Two parties Alice and Bob are connected by an authenticated but otherwise
insecure communication channel, and they share a random variable X about
which Eve has partial information, modeled by a random variable Y known to
her.2 The random variable X could for instance be the result of a quantum
cryptography protocol or some other protocol.

Alice and Bob’s goal is to generate an almost uniform random string S about
which Eve has essentially no information, i.e., which is essentially uniform from
1 Note that the term extractor usually refers to the probabilistic case, which is gener-

ally attributed to Nisan and Zuckerman [NZ96], see below.
2 The setting is described by the joint probability distribution PXY or, more precisely,

by a set of such distributions. Actually, in the literature X is usually assumed to be
a uniformly distributed bitstring, but this restriction is not necessary.

324 R. König and U. Maurer

her point of view and can thus be used as a cryptographic key. This is achieved
by Alice choosing a random string R, sending it to Bob (and hence also to Eve),
and Alice and Bob applying a strong extractor (with catalyst randomness R) to
obtain S. This works if the min-entropy of X , when given Y = y, is sufficiently
high, with overwhelming probability over the values y that Y can take on. As
mentioned above, the extractor must be strong since S must be uniform even
when conditioned on R.

1.3 Contributions of This Paper

This privacy amplification setting can be unsatisfactory for two different reasons.
First, in a practical setting, where the goal is to make as conservative and realistic
assumptions as possible, one might worry that the catalyst randomness generated
by one of the parties is neither uniform nor fully independent of X . Therefore,
a natural question to ask is whether privacy amplification is possible without
catalyst randomness, i.e., by a deterministic function. This problem is formalized
in Section 3, where our new notion of strong extractors is introduced. We also
provide a definition of strong condensers, which only guarantee some amount
of min-entropy in the output and show how these concepts are related to each
other.

A non-uniform and dependent catalyst can be seen as a special case of the
above when viewed as part of the input to the (then deterministic) privacy ampli-
fication with two input random variables. In Section 4 we show that the amount
of extractable uniform randomness is determined essentially by the difference of
the amount of min-entropy and the degree of dependence. These results give rise
to new sources allowing for conventional deterministic randomness extraction,
in particular for dependent pairs of weak random variables, thus relaxing the
independence condition needed in the constructions of [CG88, DO03, DEOR04].
As an important example, the type of dependence considered includes the case
of outputs generated by a (hidden) Markov model, thus generalizing for exam-
ple [Blu84].

In Section 5 we present strong extractors (or, equivalently, deterministic pri-
vacy amplification) for a setting where Alice and Bob share a list of random
variables, some unknown subset of which contains sufficient min-entropy, and
where the adversary also knows some unknown subset of them. Note that the
problem of constructing such extractors was recently considered by Lee, Lu, Tsai
and Tzeng [LLTT05] along with a different cryptographic application in the con-
text of key agreement for group communication. One of our constructions is very
similar to theirs, though our analysis is different. We stress that the problem con-
sidered here is different from the problem of constructing extractors for several
independent sources (each having a specific amount of min-entropy). Concerning
the latter problem, there has recently been a significant breakthrough by Barak
et al. [BIW04].

Generalized Strong Extractors and Deterministic Privacy Amplification 325

A second generalization of standard privacy amplification is to get rid of
the need for an authenticated communication channel between Alice and Bob.3

In this case, the shared random variable X must also be used to authenticate
the catalyst R, in addition to being the input to the extraction procedure. This
creates a dependence, from the adversary’s viewpoint, between X and R, thus
requiring the use of our generalized strong extractors. This setting has been
considered before [MW97, DO03, RW03]. Our results lead to a more general
and modular treatment with simpler proofs, but this application is not discussed
here.

1.4 Outline

Section 2 introduces some basic concepts used throughout the paper. We then
present our general definition of strong extractors and strong condensers in Sec-
tion 3.1, and show how these primitives and some of their basic properties are
related to privacy amplification. In Section 3.2, we discuss how our definition of
a strong extractor generalizes various known definitions of randomness extrac-
tors. In Section 3.3 we establish a relation between strong extractors and strong
condensers. In Section 4, we show how to construct (S, ε)-strong extractors for
a non-trivial family S which consists of dependent pairs of random variables.
Finally, in Section 5, we show how to construct strong extractors for tuples of
independent weak random variables with certain properties.

2 Preliminaries

For n ∈ N we denote by [n] the set {1, . . . , n}. If x = (x1 · · ·xn) ∈ {0, 1}n is a
bitstring and S ⊂ [n] a set of indices, we write x|S for the concatenation of the
bits xi with i ∈ S.

We will denote by P(Ω) the set of probability distributions4 on an alphabet
Ω. Moreover, P(Ω1) × P(Ω2) ⊂ P(Ω1 × Ω2) will be the set of independent
distributions on Ω1 × Ω2. If X1, X2 ∈ P(Ω), we write PX1 ≡ PX2 if PX1(x) =
PX2(x) for all x ∈ Ω. For (X1, X2) ∈ P(Ω1 × Ω2), the distribution X1 × X2 ∈
P(Ω1)×P(Ω2) is defined by PX1×X2(x1, x2) := PX1(x1)PX2 (x2) for all (x1, x2) ∈
Ω1 × Ω2.

The statistical distance between two distributions P and P ′ over the same
alphabet Ω is defined as d(P, P ′) := 1

2

∑
z∈Ω |P (z) − P ′(z)|. Note that the sta-

tistical distance satisfies

d(P1 × Q, P2 × Q) = d(P1, P2) (1)

and is strongly convex, i.e.,

d
(∑

i

λiPi,
∑

i

λiQi

) ≤
∑

i

λid(Pi, Qi) if λi ≥ 0 and
∑

i

λi = 1. (2)

3 Actually, in most realistic settings the channel is completely insecure and authentic-
ity must be guaranteed by use of a pre-distributed short secret key.

4 The terms random variable and probability distribution will be used interchangeably.

326 R. König and U. Maurer

Let UΩ ∈ P(Ω) denote a random variable with uniform distribution on Ω.
A random variable Z ∈ P(Ω) is ε-close to uniform if d(Z, UΩ) ≤ ε.

For a set S ⊂ P(Ω) of probability distributions, let

Bε(S) := {X ∈ P(Ω) | ∃Y ∈ S : d(X, Y) ≤ ε}
denote the distributions which are ε-close to some distribution in S. We write S
for the convex hull of S, i.e., the set of distributions which can be written as a
convex combination of distributions in S.

For (X, Y) ∈ P(Ω1×Ω2), we define the min-entropy of X and the conditional
min-entropy of X given Y as follows5:

H∞(X) := − log2(max
x

PX(x)) H∞(X |Y) := min
y

H∞(X |Y = y).

We call a random variable X for which only a lower bound on its min-entropy
is known (i.e., H∞(X) ≥ k for some k) a weak random variable. Finally, we use6

H0(X) := log2(| supp(X)|)
to measure the size of the support supp(X) := {x ∈ Ω1 | PX(x) > 0} of X .

We will use the following property of the statistical distance, which we state
as a lemma.

Lemma 1. Let (S, Y) ∈ P(Ω1 × Ω2) be an arbitrary pair of random variables.
Then there exists7 a random variable S′ which is uniformly distributed on Ω1,
independent of Y , and satisfies P[S = S′] ≥ 1 − d

(
(S, Y), UΩ1 × Y

)
.

Proof. Let Sy be a random variable with distribution PSy ≡ PS|Y =y and let
dy := d(Sy, UΩ1). We use the following well-known fact.

For an arbitrary random variable T ∈ P(Ω), there exists a random variable
T ′ defined by a channel8 PT ′|T with the property that T ′ is uniformly distributed
on Ω and P[T = T ′] = 1−d(T, UΩ). Applying this to Sy, we conclude that there
exists a random variable S′

y defined by a channel PS′
y|Sy

such that

P[S′
y = Sy] = 1 − dy and PS′

y
= PUΩ1

.

Let us define S′ by the conditional distributions PS′|Y =y,S=s := PS′
y|Sy=s for all

(s, y) ∈ Ω1 × Ω2. Then we obtain for all (s′, y) ∈ Ω1 × Ω2

PS′|Y =y(s′) =
∑

s∈Ω1

PS|Y =y(s)PS′|Y =y,S=s(s′) =
∑

s∈Ω1

PSy(s)PS′
y|Sy=s(s′) = PS′

y
(s′)

5 H∞(X|Y = y) is to be understood as the min-entropy of the conditional distribution
PX|Y =y.

6 For 0 < α < ∞, α �= 1, the Rényi entropy of order α is defined as Hα(X) :=
1

1−α
log2 x PX(x)α . The quantities H0(X) and H∞(X) are obtained by taking

the limits α → 0 and α → ∞, respectively.
7 “exists” is to be interpreted as follows: One can define a new random experiment

with random variables S, S′, and Y such that PSY is equal in both experiments and
such that S′ satisfies the stated conditions.

8 This means that T and T ′ are jointly distributed according to PTT ′ (t, t′) :=
PT (t)PT ′|T=t(t′).

Generalized Strong Extractors and Deterministic Privacy Amplification 327

which implies that S′ is indeed uniform and independent of Y . Moreover, we have
P[S = S′|Y = y] =

∑
s∈Ω1

PS|Y =y(s)PS′|Y =y,S=s(s) =
∑

s∈Ω1
PSy(s)PS′

y|Sy=s(s),
hence P[S = S′|Y = y] = P[Sy = S′

y] and P[S = S′|Y = y] = 1 − dy . But
E

y←Y
[dy] = d

(
(S, Y), UΩ1 × Y

)
. The statement now follows from

E
y←Y

[
P[S = S′|Y = y]

]
= P[S = S′].

3 Strong Extraction for General Families of Random
Variables

3.1 Basic Definitions and the Relation to Privacy Amplification

In the general setting of privacy amplification described in the introduction, the
two parties (possibly after communicating first) have a shared random string X ,
whereas the adversary holds some information about X which is summarized by
a random variable Y . It is important to note that Y does not necessarily have
to be a part of X , but may depend in some other more intricate way on X . As
an example, if Alice and Bob used X to authenticate some message M using a
MAC, then Eve might learn Y = (M, MACX(M)). As a consequence, we may
usually only assume that the pair (X, Y) has some specific structure (depending
on the particular setting), i.e., it is contained in some family S of distributions.
The question is then what Alice and Bob have to do in order to deterministically
extract a key S from X which is uniform from the point of view of the adversary.

According to Lemma 1, if for the extracted key S, the quantity d
(
(S, Y), UΩ′×

Y
)

is small, then S is with high probability identical to a perfectly uniformly dis-
tributed “ideal” key which is independent of the part Y known to the adversary.
This motivates the following general definition.

Definition 1. Let S ⊂ P(Ω1 ×Ω2) be a set of probability distributions on Ω1 ×
Ω2. A function Ext : Ω1 → Ω′ is an (S, ε)-strong extractor if for every pair
(X, Y) ∈ S,

d
(
(Ext(X), Y), UΩ′ × Y

) ≤ ε.

Using this new terminology, Alice and Bob simply have to apply an appro-
priate (S, ε)-strong extractor in order to obtain the desired result. The following
lemma describes some intuitive properties of strong extractors which follow di-
rectly from the definition and properties of the statistical distance.

Lemma 2. An (S, ε)-strong extractor is

(i). an (S, ε)-strong extractor.
(ii). a (Bδ(S), ε + δ)-strong extractor for every δ ≥ 0.
(iii). an (S′, ε)-strong extractor for the family of distributions

S′ :=
{
(X, (Y, Z))

∣∣ P(X,Y)|Z=z ∈ S for all z ∈ supp(Z)
}

.

328 R. König and U. Maurer

(iv). an (S′, ε)-strong extractor for the family of distributions

S′ :=
{
(X, Z)

∣∣ (X, Y) ∈ S, X ↔ Y ↔ Z
}

,

where the notation X ↔ Y ↔ Z means that X, Y and Z form a Markov
chain.

Property (i) expresses the obvious fact that an (S, ε)-strong extractor also works
on any convex combination of distributions in S. Property (ii) implies that in
the context of privacy amplification, Alice and Bob can obtain an almost perfect
secret key even if the initial situation is only close to a situation for which
the extractor is appropriate. Property (iii) states that any additional piece of
information Z does not help the adversary if conditioned on every value that
Z can take on, the extracted key is close to uniform from the adversary’s view.
Finally, Property (iv) asserts that the extracted key still looks uniform to the
adversary even if he processes his piece of information Y to obtain some different
random variable Z.

As a weakening of the concept of extractors, it is natural to consider also the
concept of condensers (see e.g., [RSW00]). In the privacy amplification setting,
this corresponds to a situation where Alice and Bob would like to obtain a key
which has a large amount of min-entropy from the point of view of the adversary.
This may be used for example in an authentication protocol. We are thus led to
the following analogous definition.

Definition 2. Let S ⊂ P(Ω1 ×Ω2) be a set of probability distributions on Ω1 ×
Ω2. A function Cond : Ω1 → Ω′ is an (S, k, ε)-strong condenser if for every
(X, Y) ∈ S, there exists a random variable S such that

d
(
(Cond(X), Y), (S, Y)

) ≤ ε and H∞(S|Y) ≥ k.

3.2 Relation to Known Definitions

In this section, we show that known definitions of extractors are in fact special
instances of (S, ε)-strong extractors. Let us begin with the following general
notion of deterministic9 extractors, first introduced by Dodis.

Definition 3 ([Dod00]). Let S ⊂ P(Ω) be a set of probability distributions
on Ω. A function Ext : Ω → Ω′ is an (S, ε)-extractor if for every X ∈ S,
d(Ext(X), UΩ′) ≤ ε.

Obviously, such an extractor corresponds to an (S′, ε)-extractor for the family
S′ := {(X,⊥) | X ∈ S} where ⊥ denotes a constant random variable. Note that
an (S, ε)-strong extractor is an (S, ε)-extractor according to Definition 3, a fact
which follows from Property (iv) of Lemma 2.

Our definition also generalizes the concept of strong (k, ε)-extractors, which
are defined as follows.
9 In this paper, we generally use the term deterministic to refer to procedures which

(contrary to probabilistic ones) do not require a seed consisting of truly random bits.
Note, however, that a probabilistic extractor can be seen as a deterministic one in
the sense of Definition 3.

Generalized Strong Extractors and Deterministic Privacy Amplification 329

Definition 4 ([NZ96]). A strong (k, ε)-extractor is a function Ext : {0, 1}n ×
{0, 1}d → {0, 1}m such that for every X ∈ P({0, 1}n) with H∞(X) ≥ k,

d
(
(Ext(X, R), R), U{0,1}m × R

) ≤ ε.

A strong (k, ε)-extractor is an (S′, ε)-extractor for the family of distributions
S′ ⊂ P(({0, 1}n × {0, 1}d) × {0, 1}d

)
given by

S′ :=
{(

(X, R), R
) ∣∣ H∞(X) ≥ k, R independent of X and PR ≡ PU{0,1}d

}
.

Similarly, our concept generalizes the so-called strong blenders introduced by
Dodis and Oliveira in [DO03]. To describe this type of strong extractors, it is
convenient to introduce the following families of distributions, which we also use
in Sections 4 and 5.

Definition 5 ([CG88]).The setCG(Ω1,)[k1, Ω2]k2 of so-called Chor-Goldreich-
sources is the set of all pairs (X1, X2) ∈ P(Ω1)×P(Ω2) of independent random
variables such that H∞(X1) ≥ k1 and H∞(X2) ≥ k2.

The set CG(Ω1, Ω2)[k] is the set of all pairs of independent random variables
(X1, X2) ∈ P(Ω1) × P(Ω2) satisfying H∞(X1X2) ≥ k. Furthermore, we define
CG(Ω)[k] := CG(Ω, Ω)[k].

To simplify the notation, we will sometimes refer to the set {0, 1}n simply by n
in these two definitions. For example, we will write CG(n1, n2)[k1, k2] instead
of CG({0, 1}n1, {0, 1}n2)[k1, k2].

Definition 6 ([DO03]). A (k1,k2, ε)-strong blender is a function Ble :{0, 1}n1×
{0, 1}n2 → {0, 1}m such that

d
(
(Ble(X, Y), Y), U{0,1}m × Y

) ≤ ε

for all pairs (X, Y) ∈ CG(n1, n2)[k1, k2].

With our new notion of strong extraction, a (k1, k2, ε)-strong blender is an (S, ε)-
strong extractor for the special family of distributions

S :=
{(

(X, Y), Y
) ∣∣ (X, Y) ∈ CG(n1, n2)[k1, k2]

}
. (3)

We will reconsider strong blenders in Section 4.1. Note that in the definition of
the family S, the random variables X and Y are independent. In Section 4.2,
we show how to construct strong extractors even in the case where X and Y
depend on each other.

As already mentioned, our definition of strong extractors also applies to the
more general situation where the “public” information Y given to the adversary
is not simply a part of X . In particular, this is the case when it is unavoidable
to leak certain additional information about X , for instance if we would like
to provide some error tolerance with respect to X . A general solution to this
problem is accurately modeled by the concept of fuzzy extractors introduced by
Dodis, Reyzin and Smith (see [DRS04] for details). It is easy to see that our
definition of strong extractors also generalizes these fuzzy extractors.

330 R. König and U. Maurer

3.3 Strong Condensers from Strong Extractors

Intuitively, in the setting of privacy amplification, if Alice and Bob derive a secret
key S by applying a strong extractor, this key will still have a high amount of
min-entropy from the point of view of the adversary even if the adversary is
given a (short) additional piece of information. This means that an (S, ε)-strong
extractor is in fact a strong condenser for a different family S′, which models
the situation where the adversary gets additional information. This is formally
expressed by Lemma 4.

The proof relies on the following technical result, which appears in a more
general form in [MW97] and is implicitly used in [NZ96]. For an arbitrary pair
(X, Z) ∈ P(Ω1 × Ω2) of random variables and δ > 0,

P
z←Z

[
H∞(X |Z = z) ≥ H∞(X) − H0(Z) − log2

1
δ

] ≥ 1 − δ . (4)

We reformulate this statement in a way which is more useful for our purpose.

Lemma 3. Let (S, Y, Z) ∈ P(Ω1 × Ω2 × Ω3) be arbitrary random variables and
let δ > 0. Then there exists a random variable S′ defined by a channel PS′|Y Z

such that

H∞(S′|(Y, Z)) ≥ H∞(S|Y) − H0(Z) − log2
1
δ and (5)

d
(
(S, Y, Z), (S′, Y, Z)

) ≤ δ. (6)

Proof. Let us define the set

Γδ := {(y, z) ∈ Ω2 × Ω3 | H∞(S|Y = y, Z = z) ≥ H∞(S|Y) − H0(Z) − log2
1
δ }.

Then by identity (4),

P
z←Z|Y =y

[
(y, z) ∈ Γδ

] ≥ 1 − δ . (7)

We define S′ by

PS′|Y =y,Z=z :=

{
PS|Y =y,Z=z if (y, z) ∈ Γδ

PUΩ1
otherwise.

Statement (5) is now a consequence of the definition of Γδ.
As the quantity d(PS|Y =y,Z=z, PS′|Y =y,Z=z) is at most 1 if (y, z) /∈ Γδ and 0

otherwise, we conclude, using (7), that∑
z∈Ω3

PZ|Y =y(z)d(PS|Y =y,Z=z, PS′|Y =y,Z=z) ≤ P
z←Z|Y =y

[(y, z) /∈ Γδ] ≤ δ .

Statement (6) then follows from

d
(
(S, Y, Z), (S′, Y, Z)

)
= E

y←Y

[∑
z∈Ω3

PZ|Y =y(z)d(PS|Y =y,Z=z, PS′|Y =y,Z=z)
]

.

Generalized Strong Extractors and Deterministic Privacy Amplification 331

Lemma 3 allows us to derive the main result of this section.

Lemma 4. Let Ext : Ω1 → {0, 1}n0 be an (S, ε)-strong extractor and let δ > 0.
Then Ext is an (S′, k, ε + δ)-strong condenser for the family

S′ :=
{(

X, (Y, Z)
) ∣∣ (X, Y) ∈ S and H0(Z) ≤ n0 − k − log2

1
δ

}
.

Proof. Let S := Ext(X). Then by Lemma 1 there is a random variable S′ which
is uniformly distributed and independent of Y such that P[S = S′] ≥ 1 − ε. In
particular, we have H∞(S′|Y) = n0. Therefore, by Lemma 3, there is a random
variable S′′ such that

H∞(S′′|(Y, Z)) ≥ n0 − H0(Z) − log2
1
δ ≥ k

and
d
(
(S′, (Y, Z)), (S′′, (Y, Z))

) ≤ δ .

The statement now follows from the triangle inequality of the statistical distance
and the fact that

d
(
(S, (Y, Z)), (S′, (Y, Z))

) ≤ ε

which holds because P[S = S′] ≥ 1 − ε.

This result is implicitly used for example in a protocol by Renner and Wolf
[RW03] for privacy amplification over a non-authenticated channel. Without
elaborating this any further, we point out that our generalized concepts of con-
densers and extractors allow to simplify existing security proofs such as the one
given in [RW03].

4 Strong Extraction with a Weak and Dependent Catalyst

An important special case of our generalized notion of (deterministic) strong
extractors is when the input can be seen as consisting of two parts, an actual
input X1 and a non-uniform and dependent catalyst X2 which is also part of
the output. In this section we introduce a dependence measure for such pairs
(X1, X2) of random variables and show that the amount of uniform randomness
extractable from (X1, X2) is determined essentially by the difference of the min-
entropies of X1 and X2 and the level of dependence. In Section 4.1 we reformulate
the definition of strong blenders and in Section 4.2 we state our main result
concerning strong extraction from dependent variables. The dependence measure
we consider is defined as follows.

Definition 7. The set of m-independent distributions Im(Ω1, Ω2) ⊂ P(Ω1 ×
Ω2) is the set of all pairs (X1, X2) of random variables on Ω1 × Ω2 which can
be written as a convex combination of m independent distributions, i.e.,

Im(Ω1, Ω2) :=
{∑

i∈[m]

λiPi × Qi

∣∣∣ ∀i ∈ [m] : λi ≥ 0, Pi ∈ P(Ω1), Qi ∈ P(Ω2)
}

332 R. König and U. Maurer

The dependence index of a pair of random variables (X1, X2) ∈ P(Ω1 × Ω2) is
defined as the quantity

dep(X1, X2) := log2

(
min
{
m ∈ N

∣∣ (X1, X2) ∈ Im(Ω1, Ω2)
})

.

Obviously, Im(Ω1, Ω2) ⊂ Im′(Ω1, Ω2) for m < m′ and dep(X1, X2) = 0 if and
only if X1 and X2 are independent. Note that an m-independent distribution is
for example obtained by observing the output of a (hidden) Markov source with
at most m states at subsequent time steps.

4.1 Strong Blenders

Strong blenders can be used to perform privacy amplification when Alice and Bob
have a pair (X, Y) of independent weak random variables and the adversary is
given Y (compare e.g., [DO03]). To model this situation using strong extractors,
it is convenient to use a “copying” operator10 cc which transforms a pair of
random variables (X, Y) into a pair ((X, Y), Y). This models the fact that the
adversary is given Y .

Note that this operator has the following simple property which can be veri-
fied by direct calculation. If

∑
i μi = 1 with μi ≥ 0 and Pi ∈ P(Ω1 × Ω2) for all

i, then
cc
(∑

i

μiPi

)
=
∑

i

μi cc(Pi) (8)

With this definition, the family of distributions cc(CG(n1, n2)[k1, k2]) is ex-
actly the family given in equation (3). In other words, a (k1, k2, ε)-strong blender
according to Definition 6 is a (cc(CG(n1, n2)[k1, k2]), ε)-strong extractor. In the
sequel, we will use the terms strong blender and (cc(CG(n1, n2)[k1, k2]), ε)-
strong extractor interchangeably, depending on whether or not we would like to
refer to the parameters explicitly.

Recently, new results concerning extraction from independent weak sources
were obtained by Barak et al. ([BIW04, BKS+05]) and Raz11 [Raz05]. We use
these extractors in Section 4.2.

4.2 m-Independence and Strong Extraction

The following lemma states that every pair (X1, X2) of random variables is close
to a convex combination of independent random variables having some specific
amount of min-entropy which depends on dep(X1, X2). An analogous statement
holds for the pair ((X1, X2), X2).

10 Formally, the copying operator cc : P(Ω1 × Ω2) → P((Ω1 × Ω2) × Ω2) is defined
as follows. If PX1X2 ∈ P(Ω1 × Ω2) and P := cc(PX1X2), then P ((x1, x2), x3) :=
PX1X2(x1, x2)·δx2,x3 for all xi ∈ Ωi, i = 1, . . . , 3, where δx2,x3 denotes the Kronecker-
delta, which equals 1 if x2 = x3 and 0 otherwise.

11 In particular, Raz [Raz05] presents (CG(n, n)[k1, k2], ε)-extractors for parameters
k1 = (1

2 + δ)n and k2 = Θ(log n) where δ > 0 is an arbitrarily small constant.

Generalized Strong Extractors and Deterministic Privacy Amplification 333

Lemma 5. Let (X1, X2) ∈ P(Ω1 × Ω2) and δ1, δ2 > 0 be arbitrary and define

ki = H∞(Xi) − dep(X1, X2) − log2
1
δi

for i = 1, 2.

Then we have

(X1, X2) ∈ Bδ1+δ2(CG(Ω1, Ω2)[k1, k2]) and

cc(X1, X2) ∈ Bδ1+δ2(cc(CG(Ω1, Ω2)[k1, k2])) .

Proof. Let m := 2dep(X1,X2). Then there is a distribution (X ′
1, X

′
2, Z) ∈ P(Ω1 ×

Ω2 × [m]) such that PX1X2 ≡ PX′
1X′

2
≡ ∑z∈[m] PZ(z)PX′

1|Z=zPX′
2|Z=z. For i =

1, 2, applying identity (4) to the pair (X ′
i, Z) shows that there are two subsets

A1,A2 ⊆ [m] and distributions {P i
j}j∈[m] ⊂ P(Ωi) for i = 1, 2 such that PX1X2

has the form PX1X2 ≡∑j∈[m] λjP
1
j × P 2

j , where for every i = 1, 2,
∑

j∈Ai
λj ≥

1 − δi as well as H∞(P i
j) ≥ ki for all j ∈ Ai. In particular, we may write

PX1X2 ≡
∑

j∈A1∩A2

λjQj +
(
1 −

∑
j∈A1∩A2

λj

)
Q (9)

for some distributions {Qj}j∈A1∩A2 ∈ CG(Ω1, Ω2)[k1, k2] and a distribution
Q ∈ P(Ω1 × Ω2), where (1 −∑j∈A1∩A2

λj) ≤ δ1 + δ2. By the strong convexity
(2) of the statistical distance, the first statement follows. The second statement
follows similarly by application of cc to both sides of (9), using (8) and (2).

Using Lemma 5, Lemma 2 and an explicit construction by Raz [Raz05], we
immediately obtain12 a strong extractor with a weak and dependent catalyst.
Theorem 1 gives the exact parameters. Intuitively, it expresses the fact that the
amount of required min-entropy rises with the amount of dependence there is. In
the setting of privacy amplification, this result states that there is an (explicit)
deterministic function which Alice and Bob can use to extract a secret key S in
a situation where they initially share a pair of weak random variables (X1, X2),
and where X2 is known to the adversary. We emphasize that contrary to the
setting analysed in [DO03], X2 need not be completely independent of X1.

Theorem 1. For any parameters n, m, κ1, κ2 and 0 < δ < 1
2 satisfying

κ1 ≥ (1
2

+ δ
) · n + 4 log2 n

κ2 ≥ 5 log2(n − κ1)

m ≤ δ · min
{n

8
,
κ1

40
}− 1,

where n is sufficiently large, there exists an (explicit) (Sm
κ1,κ2

, ε)-strong extractor
Ext : {0, 1}n × {0, 1}n → {0, 1}m for the family of distributions

Sm
κ1,κ2

:=
{(

(X1, X2), X2

) | H∞(Xi) − dep(X1, X2) ≥ κi +
3
2
m for i = 1, 2}.

12 Note that our techniques also apply, e.g., to the constructions provided by Barak et
al. ([BIW04, BKS+05]).

334 R. König and U. Maurer

with error ε := 3 ·2− 3
2 m. Moreover, this extractor is also strong in the first input,

i.e., it is an (Ŝm
κ1,κ2

, ε)-strong extractor for the family of distributions

Ŝm
κ1,κ2

:=
{(

(X1, X2), X1

) | ((X1, X2), X2

) ∈ Sm
κ1,κ2

}
.

5 Strong Extractors for the Family T N
Ω (k)

In this section, we consider the following family of random variables, which is
somewhat related to symbol-fixing sources (see [CGH+85, CW89, KZ03, GRS04])
since the “positions” having “good” randomness are unknown.

Definition 8. For an N -tuple of random variables (X1, . . . , XN) ∈ P(ΩN) and
a subset A ⊂ [N], let X |A denote the concatenation of those random vari-
ables Xi with i ∈ A. The family T N

Ω (k) is the set of all pairs of the form(
(X1, . . . , XN), X |A

)
where (X1, . . . , XN) ∈ P(Ω)n are independent random

variables and A ⊂ [N] is such that there exists two distinct indices i, j ∈ [N]
with j �∈ A and H∞(XiXj) ≥ k.

In the privacy amplification setting, this corresponds to a situation where Al-
ice and Bob have a sequence of independent random variables and the adversary
obtains a subsequence. The only thing guaranteed is that two of these random
variables (say Xi and Xj) have joint min-entropy at least13 k and at least one of
the two (say Xj) is unknown to the adversary. Note that extractors for this family
have been used for other applications than privacy amplification [LLTT05].

We give two new constructions for strong extractors for the family T n
Ω (k).

The first construction is based on special group-theoretic strong blenders. It is
presented in Section 5.1. The second construction is very similar to a recent
construction due to Lee, Lu, Tsai and Tzeng [LLTT05] and related to the con-
struction of strong blenders presented in [DEOR04]. Our proof proceeds along
the lines of similar derivations in [DO03] and [DEOR04].

5.1 Group-Theoretic Extractors for the Family T N
Ω (k)

Theorem 2 below shows how a (T N
Ω (k), ε)-strong extractor can be constructed in

a generic way, using the following simple observation. We omit the trivial proof.

Lemma 6. Let (G, +) be a group and let X1, X2 ∈ P(G) be two independent
random variables defined on G. Then H∞(X1 +X2) ≥ max{H∞(X1), H∞(X2)}.
Intuitively, this lemma says that taking a random step according to X2 on the
Cayley graph defined by the group G, starting from a random position defined
13 Note that usually, we have k > log2 |Ω|, implying that both Xi and Xj must

have some amount of min-entropy individually. As pointed out in the introduction,
this problem is different than the extraction problem considered, e.g., by Barak et
al. [BIW04, BKS+05].

Generalized Strong Extractors and Deterministic Privacy Amplification 335

by X1, we end up with an element that is at least as random as the variable
which contains more randomness. This observation allows us to give a generic
construction of a (T N

Ω (k), ε)-strong extractor, solving this problem in a (at least
conceptually) similar manner as the way Kamp and Zuckerman [KZ03] treat the
problem of randomness extraction from symbol-fixing sources.

Theorem 2. Let (G, +) be an abelian group and let Ext : G × G → Ω be a
(cc(CG(G)[k]), ε)-strong extractor of the form Ext(x1, x2) := f(x1 + x2). Then
the function F (x1, . . . , xN) := f(

∑
i∈[N] xi) is a (T N

G (k), ε)-strong extractor.

Proof. Let
(
(X1, . . . , XN), X |A

) ∈ T N
G (k). Suppose i, j ∈ [N] are such that

i ∈ A, j /∈ A and H∞(XiXj) ≥ k. Then F (X1, . . . , XN) = Ext (X ′, Y ′) where
X ′ :=

∑
�∈[N]\A X� is independent of Y ′ :=

∑
�∈A X� and H∞(X ′)+H∞(Y ′) ≥ k

by assumption and Lemma 6. Because (X1, . . . , XN) ↔ X |A ↔ Y ′ is a Markov
chain, the statement follows from Lemma (iv). The case where i /∈ A is treated
similarly.

Using the following function Ext : Zp ×Zp → Zn0 (originally proposed in [CG88]
and later shown to be a strong blender in [DO03])

Ext(x1, x2) :=

{
logg(x1 + x2 mod p) mod n0 if x1 + x2 �= 0 mod p

0 otherwise,

where p > 2 is a prime, g a generator of Z
∗
p and n0 a divisor of p− 1, Theorem 2

immediately gives a
(T n

Zp
(log2 p + 2 log2(

1
ε) + 2 log2 n0), ε

)
-strong extractor for

every ε ≥ 2
p . Note that for appropriately chosen parameters p, g and n0, the

resulting extractor is efficiently computable (see [CG88] for details).

5.2 More Extractors for the Family T N
Ω (k)

It is easy to see that any (cc(CG(n)[k]), ε)-strong extractor which is symmetric
in its arguments is a (T 2

{0,1}n(k), ε)-strong extractor. This, combined with the
result by [DO03] that the inner product is a strong blender gives a very simple
(T 2

{0,1}n(k), ε)-strong extractor.

Lemma 7 ([DO03]). The inner product modulo 2, denoted 〈·, ·〉 : {0, 1}n ×
{0, 1}n → {0, 1}, is a (T 2

{0,1}n(k), ε)-strong extractor, where log 1
ε = k−n

2 + 1 .

A slight extension of this statement allows us to construct a (T 2
{0,1}n(k), ε)-strong

extractor which extracts just a single bit. The construction given here is more
general than necessary (the parameters a, b, c could be omitted), but allows to
prove Lemma 9 more easily.

Lemma 8. Let M be an invertible n×n matrix over GF (2) and let a, b ∈ {0, 1}n

and c ∈ {0, 1} be arbitrary. Define the function Exta,b,c
M (x1, x2) := 〈x1, Mx2〉 +

〈a, x1〉 + 〈b, x2〉 + c where addition is modulo 2. Then the function Exta,b,c
M is a

(T 2
{0,1}n(k), ε)-extractor, where log(1

ε) = k−n
2 + 1.

336 R. König and U. Maurer

In the following proofs, we use the non-uniformity δ(Z) := d(Z, UΩ) to denote
the distance of a distribution Z ∈ P(Ω) from the uniform distribution on Ω.

Proof. We have to prove that

E
x2←X2

[δ(Exta,b,c
M (X1, x2))] ≤ ε and E

x1←X1
[δ(Exta,b,c

M (x1, X2))] ≤ ε

(10)
for all pairs (X1, X2) ∈ CG(k)[n] with k as specified. Since the operation of
adding a constant is a bijection, we have for every fixed x2 ∈ {0, 1}n

δ(Exta,b,c
M (X1, x2)) = δ(Exta,b,0

M (X1, x2)) = δ(Exta,0,0
M (X1, x2)) .

Hence, as Exta,0,0
M (x1, x2) = 〈x1, Mx2〉 + 〈a, x1〉 = 〈x1, Mx2 + a〉, we obtain

E
x2←X2

[δ(Exta,b,c
M (X1, x2))] = E

x2←X2
[δ(〈X1, Mx2 + a〉)] .

Define the random variable X ′
2 by X ′

2 := MX2 + a. Since the mapping x2 �→
Mx2 + a is a bijection, we have

E
x2←X2

[δ(〈X1, Mx2 + a〉)] = E
x′
2←X′

2

[δ(〈X1, x
′
2〉)] .

This combined with the fact that H∞(X ′
2) = H∞(X2) and Lemma 7 proves the

first inequality in (10). The second inequality then follows from the first with
the identity Exta,b,c

M (x1, x2) = Extb,a,c
MT (x2, x1) and the fact that the transpose

MT is invertible if M is invertible.

Lemma 8 allows us to obtain a (T N
{0,1}n(k), ε)-strong extractor for N > 2 which

again extracts only a single bit.

Lemma 9. Let M be an invertible n × n-matrix over GF (2) and let ExtM :
({0, 1}n)N → {0, 1} be the function ExtM (x1, . . . , xN) :=

∑
s<t〈xs, Mxt〉, where

Mxt is the matrix-vector multiplication over GF (2) and addition is modulo 2.
Then ExtM is a (T N

{0,1}n(k), ε)-strong extractor, where log(1
ε) = k−n

2 + 1.

Proof. Suppose that
(
(X1, . . . , XN), X |A

) ∈ T N
{0,1}n(k) and let i, j ∈ [N] be

such that i ∈ A, j /∈ A and H∞(XiXj) ≥ k. Without loss of generality, we
may assume that i < j, since

(
(Xπ(1), . . . , Xπ(N)), X |A

) ∈ T N
{0,1}n(k) for every

permutation π ∈ SN . A straightforward calculation shows (compare [LLTT05])
that we can write ExtM (x1, . . . , xN) = Exta,b,c

M (xi, xj) with a, b, c depending
only on the variables x� with � /∈ {i, j}. 14 Hence we have

d((ExtM (X1, . . . , XN), X |A), (U{0,1}, X |A)) =

E
x̃←XA\{i}

E
xi←Xi

[δ(Exta(x̃),b(x̃),c(x̃)
M (xi, Xj))]

14 More precisely, a, b and c are given by the expressions

a := M t>i,t �=j xt + MT
s<i xs,

b := M t>j xt + MT
s<j,s�=i xs

c := s<t∈[m]\{i,j}〈xs, Mxt〉

Generalized Strong Extractors and Deterministic Privacy Amplification 337

for appropriately defined functions a, b, c from ({0, 1}n)|A|−1 to {0, 1}n and
{0, 1}, respectively. The claim then follows from Lemma 8.

To get an extractor which produces several bits, we use the following refor-
mulation of Vaziranis parity lemma [Vaz87a].

Lemma 10. Let S ⊂ P(Ω1 × Ω2) and let Ext : Ω1 → {0, 1}m be such that the
function x �→ 〈v, Ext(x)〉 is an (S, ε)-strong extractor for every v ∈ {0, 1}m\{0m}.
Then Ext is an (S, 2m · ε)-strong extractor.

Proof. We use the following so-called parity lemma by Vazirani [Vaz87a]. For
every A ∈ P({0, 1}m), the non-uniformity δ(A) of A is bounded as follows:
δ(A) ≤∑v∈{0,1}m\{0m} δ(〈v, A〉). It implies that for any pair of random variables
(A, B) ∈ P({0, 1}m × Ω2),

d((A, B), (U{0,1}m , B)) = E
b←B

[δ(A|B=b)]

≤
∑

v∈{0,1}m\{0m}
E

b←B
[δ(〈v, A|B=b)]〉

=
∑

v∈{0,1}m\{0m}
d((〈v, A〉, B), (U{0,1}, B)),

where the linearity of the expectation was used. Applying this to (A, B) =
(Ext(X), Y) with (X, Y) ∈ S immediately yields the claim.

Finally, this implies the main result of this section. Note that the efficient
construction of suitable matrices M1, . . . , Mm in the following theorem is dis-
cussed in [DEOR04].

Theorem 3. Let M1, . . . , Mm be n×n-matrices over GF (2) such that for every
non-empty subset I ⊂ [m] the matrix

∑
i∈I Mi is invertible. Then the function

Ext : ({0, 1}n)N → {0, 1}m defined by

Ext(x1, . . . , xn) =
(∑

s<t

〈xs, M1xt〉, . . . ,
∑
s<t

〈xs, Mmxt〉
)

is a (T N
{0,1}n(k), ε)-strong extractor, where log(1

ε) = k−n
2 − m + 1.

Proof. Let v ∈ {0, 1}m\{0m} and I(v) := {i ∈ [m] | vi = 1}. Then

〈v, Ext(x1, . . . , xn)〉 =
∑
s<t

〈xs, (
∑

i∈I(v)

Mi)xt〉 = ExtM(v)(x1, . . . , xn) ,

where M(v) :=
∑

i∈I(v) Mi is invertible by assumption and ExtM(v) is defined as
in Lemma 9. Hence, by Lemma 9, the function (x1, . . . , xn) �→ 〈v, Ext(x1, . . . , xn)〉
is a (T N

{0,1}n(k), ε)-strong extractor for every v ∈ {0, 1}m\{0m}, where log(1
ε) =

k−n
2 + 1. Lemma 10 then implies the desired result.

338 R. König and U. Maurer

References

[ABH+86] M. Ajtai, L Babai, P. Hajnal, J. Komlos, P. Pudlak, V. Rodl, E. Sze-
meredi, and G. Turan. Two lower bounds for branching programs. In
ACM Symposium on Theory of Computing, pages 30–38, 1986.

[BBCM95] C. Bennett, G. Brassard, C. Crépeau, and U. Maurer. Generalized privacy
amplification. IEEE Transaction on Information Theory, 41(6):1915–1923,
November 1995.

[BBR88] C. Bennett, G. Brassard, and J. Robert. Privacy amplification by public
discussion. SIAM Journal on Computing, 17(2):210–229, 1988.

[BIW04] B. Barak, R. Impagliazzo, and A. Wigderson. Extracting randomness
from few independent sources. In IEEE Symposium on Foundations of
Computer Science (FOCS), 2004.

[BKS+05] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Sim-
ulating independence: New constructions of condensers, ramsey graphs,
dispersers, and extractors. In STOC ’05: Proceedings of the thirty-seventh
annual ACM symposium on Theory of computing, pages 1–10, 2005.

[Blu84] M. Blum. Independent unbiased coin flips from a correlated biased source:
a finite state markov chain. IEEE Symposium on the Foundations of Com-
puter Science, 1984.

[CG88] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM Journal On Comput-
ing, 17(2):230–261, April 1988.

[CGH+85] B. Chor, O. Goldreich, J. H̊astad, J. Freidmann, S. Rudich, and R. Smolen-
sky. The bit extraction problem or t-resilient functions. In IEEE Sympo-
sium on Foundations of Computer Science (FOCS), 1985.

[CW89] A. Cohen and A. Wigderson. Dispersers, deterministic amplification, and
weak random sources (extended abstract). In IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 14–19, 1989.

[DEOR04] Y. Dodis, A. Elbaz, R. Oliveira, and R. Raz. Improved randomness extrac-
tion from two independent sources. International Workshop on Random-
ization and Approximation Techniques in Computer Science (RANDOM),
August 2004.

[DO03] Y. Dodis and R. Oliveira. On extracting private randomness over a pub-
lic channel. International Workshop on Randomization and Approxima-
tion Techniques in Computer Science (RANDOM), pages 143–154, August
2003.

[Dod00] Y. Dodis. Exposure-Resilient Cryptography. PhD thesis, Massachussetts
Institute of Technology, August 2000.

[DRS04] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. In Advances in Cryp-
tology — EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer
Science, pages 523–539, May 2004.

[DSS01] Y. Dodis, A. Sahai, and A. Smith. On perfect and adaptive security
in exposure-resilient cryptography. Lecture Notes in Computer Science,
EUROCRYPT ’01, 2045:301–324, 2001.

[Eli72] P. Elias. The efficient construction of an unbiased random sequence. An-
nals of Mathematics Statistics, 43(3):865–870, 1972.

[GRS04] A. Gabizon, R. Raz, and R. Shaltiel. Deterministic extractors for bit-
fixing sources by obtaining an independent seed. In IEEE Symposium on
Foundations of Computer Science (FOCS), 2004.

Generalized Strong Extractors and Deterministic Privacy Amplification 339

[KZ03] J. Kamp and D. Zuckerman. Deterministic extractors for bit-fixing sources
and exposure-resilient cryptography. In IEEE Symposium on Foundations
of Computer Science, 2003.

[LLTT05] C.J. Lee, C.J. Lu, S.C. Tsai, and W.G. Tzeng. Extracting randomness
from multiple independent sources. IEEE Transaction on Information
Theory, 51(6):2224–2227, June 2005.

[MW97] U. Maurer and S. Wolf. Privacy amplification secure against active ad-
versaries. In Advances in Cryptology — CRYPTO ’97, volume 1294 of
Lecture Notes in Computer Science, pages 307–321, August 1997.

[NZ96] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of
Computer and System Sciences, 52(1):43–52, 1996.

[Raz05] R. Raz. Extractors with weak random seeds. In STOC ’05: Proceedings of
the thirty-seventh annual ACM symposium on Theory of computing, pages
11–20, 2005.

[RSW00] O. Reingold, R. Shaltiel, and A. Wigderson. Extracting randomness via
repeated condensing. In IEEE Symposium on Foundations of Computer
Science (FOCS), pages 22–31, 2000.

[RW03] R. Renner and S. Wolf. Unconditional authenticity and privacy from an
arbitrarily weak secret. In Advances in Cryptology — CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages 78–95, August
2003.

[Sak96] M. Saks. Randomization and derandomization in space-bounded compu-
tation. In SCT: Annual Conference on Structure in Complexity Theory,
1996.

[Sha02] R. Shaltiel. Recent developments in explicit constructions of extractors.
Bulletin of the European Association for Theoretical Computer Science,
77:67–95, June 2002.

[SV86] M. Santha and U.V. Vazirani. Generating quasi-random sequences from
slightly random sources. Journal of Computer and System Sciences, 33:75–
87, 1986.

[TV00] L. Trevisan and S. P. Vadhan. Extracting randomness from samplable
distributions. In IEEE Symposium on Foundations of Computer Science
(FOCS), pages 32–42, 2000.

[Vaz87a] U. Vazirani. Strong communcation complexity or generating quasi-random
sequences from two communicating semi-random sources. Combinatorica,
7(4):375–392, 1987.

[Vaz87b] U. V. Vazirani. Efficiency considerations in using semi-random sources.
In Proceedings of the nineteenth annual ACM conference on Theory of
computing, pages 160–168, 1987.

[Vaz87c] U. V. Vazirani. Strong communication complexity or generating quasiran-
dom sequences from two communicating semirandom sources. Combina-
torica, 7(4):375–392, 1987.

[vN51] J. von Neumann. Various techniques used in connection with random
digits. Applied Math Series, 12:36–38, 1951.

[Zuc90] D. Zuckerman. General weak random sources. In IEEE Symposium on
Foundations of Computer Science (FOCS), pages 534–543, 1990.

[Zuc91] D. Zuckerman. Simulating BPP using a general weak random source. In
IEEE Symposium on Foundations of Computer Science (FOCS), pages
79–89, 1991.

On Threshold Self-healing Key
Distribution Schemes�

Germán Sáez

Dept. Matemàtica Aplicada IV, Universitat Politècnica de Catalunya,
C. Jordi Girona, 1-3, Mòdul C3, Campus Nord, 08034-Barcelona, Spain

german@ma4.upc.edu

Abstract. Self-healing key distribution schemes enables a large and dy-
namic group of users to establish a group key over an unreliable network.
A group manager broadcasts in every session some packet of information
in order to provide a common key to members in the session group. The
goal of self-healing key distribution schemes is that even if in a certain
session the broadcast is lost, the group member can recover the key from
the broadcast packet received before and after the session. This approach
to key distribution is quite suitable for wireless networks, mobile wire-
less ad-hoc networks and in several Internet-related settings, where high
security requirements need to be satisfied.

In this work we provide a generalization of previous definitions in two
aspects. The first one is to consider general monotone decreasing struc-
tures for the family of subsets of users that can be revoked instead of
a threshold one. The objective of this generalization is to reach more
flexible performances of the scheme. In the second one, the distance be-
tween the broadcasts used to supply the lost one is limited in order to
shorten the length of the broadcast information by the group manager.
After giving the formal definition of threshold self-healing key distribu-
tion schemes, we find some lower bounds on the amount of information
used for the system. We also give a general construction that gives us a
family of threshold self-healing key distribution schemes by means of a
linear secret sharing scheme. We prove the security of the schemes con-
structed in this way and we analyze the efficiency.

Keywords: Group key, self-healing, dynamic groups, linear secret shar-
ing schemes, broadcast.

1 Introduction

Self-healing key distribution schemes enable large and dynamic groups of users
of an unreliable network to establish group keys for secure communications.
� This work was done while the author was in the Dipartimento di Informatica ed

Applicazioni at the Università di Salerno, Italy. The author would like to thank
people in the Crypto Research Group for their kind hospitality and useful comments.
Research supported in part by Spanish Ministerio de Ciencia y Tecnoloǵıa under
project CICYT TIC 2003–00866.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 340–354, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Threshold Self-healing Key Distribution Schemes 341

In a self healing key distribution scheme, a group manager provide a key to
each member of the group by using packets that he sends over a broadcast
channel at the beginning of each session. Every user on the group computes the
group key by means of this packet and some private information supplied by
the group manager. Multiple groups can be started by the group manager for
different sessions by joining or removing users from the initial group. The main
goal of these schemes is the self-healing property: if during a certain session
some broadcasted packet gets lost, then users are still capable of recovering
the group key for that session simply by using the packets they have received
during a previous session and the packets they will receive at the beginning of
a subsequent one, without requesting additional transmission from the group
manager.

This new approach to key distribution is very useful due to the self-healing
property, supporting secure communications in wireless networks, mobile wireless
ad-hoc networks, broadcast communications over low-cost channels (live-events
transmissions, etc.) and in several Internet-related settings.

Self-healing key distribution schemes were introduced by Staddon et al. in [10]
providing formal definitions, lower bounds on the resources required on the
scheme as well as some constructions. In [6], Liu et al. generalised the above
definition and gave some constructions. Blundo et al. in [1] modified the pro-
posed definitions, gave some lower bounds on the resources required on the
scheme, proposed some efficient constructions and showed some problems in
previous constructions. Finally, Blundo et al. in [2] analysed previous defini-
tions and showed that no protocol could exist for some of them, proposed a
new definition, gave some lower bounds on the resources of such schemes and
proposed some schemes. All of these papers mainly focused in unconditionally
secure schemes.

The contributions of our paper are the following. First of all we present some
background on Information Theory and secret sharing schemes in Section 2 in
order to make easy the reading of the paper. We formally define threshold self-
healing key distribution schemes in Section 3. This definition contains two main
differences comparing with the one presented in [1]. The first one is to consider
a monotone decreasing family of rejected subset of users instead of a monotone
decreasing threshold structure and the second one is the modification of the self-
healing condition allowing the recuperation of keys from broadcasts at t (the
threshold) units of distance. The first modification allows us to consider more
flexible self-healing key distribution schemes that can reach better properties.
The reason of the second modification is to allow short broadcasts. As far as we
know this is the first time to consider this kind of self-healing key distribution
schemes. In Section 4 some lower bounds on the resources required on the scheme
are presented. Comparing with previous proposals, these lower bounds give us
the same result for the amount of information that users must hold and shorter
information that the group manager must broadcast in every session. After that,
in Section 5 a family of threshold self-healing key distribution schemes is pre-
sented. This construction follows in part the ideas of [1] but considering any

342 G. Sáez

possible linear secret sharing scheme instead of a threshold one and a shorter
broadcast to perform the threshold self-healing capability. At the end of the pa-
per we present a particular case of our general construction in which we have
a short broadcast for small revocations of users. This particular construction
of a threshold self-healing key distribution scheme together with an example of
broadcast for t = 3 is presented in Section 6.

2 Background on Information Theory and Secret Sharing
Schemes

In this section we briefly introduce some basic notions of Information Theory and
secret sharing schemes. We give an introduction to the entropy function as a tool
to formally define self-healing key distribution scheme (see [4] for more details
on Information Theory). We also give some basics on secret sharing schemes in
order to use them in the paper (see [11] for a complete introduction to secret
sharing schemes).

Let us suppose that X is a random variable taking values in a set X , and
characterized by its probability distribution {PX(x)}x∈X that assigns to every
x ∈ X the probability PX(x) = Pr(X = x) of the event that X takes on the
value x. The entropy of X, denoted by H(X), is a real number that measures
the uncertainty about the value of X when the underlying random experiment
is carried out. It is defined by

H(X) = −Σx∈XPX(x) log PX(x),

assuming that the terms of the form 0 log 0 are excluded from the summation,
and where the logarithm is relative to the base 2. The entropy satisfies 0 ≤
H(X) ≤ log |X |, where H(X) = 0 if and only if there exists x0 ∈ X such that
Pr(X = x0) = 1; meanwhile H(X) = log |X | if and only if Pr(X = x) = 1/|X|,
for all x ∈ X.

Given two random variables X and Y, taking values on sets X and Y, respec-
tively, according to a joint probability distribution {PXY(x, y)}x∈X,y∈Y on their
Cartesian product, the conditional uncertainty of X, given the random variable
Y, called conditional entropy and denoted by H(X|Y), is defined as

H(X|Y) = −Σy∈Y Σx∈XPY(y)PX|Y(x|y) log PX|Y(x|y)

It can be showed that
0 ≤ H(X|Y) ≤ H(X) (1)

where H(X|Y) = 0 if and only if X is a function of Y and H(X|Y) = H(X) if
and only if X and Y are independent.

The conditional mutual information between X and Y given Z (where X,
Y and Z are random variables), is a measure of the amount of information by
which the uncertainty about X is reduced by learning Y, given Z. It is defined
by

I(X;Y|Z) = H(X|Z) − H(X|Z,Y)

On Threshold Self-healing Key Distribution Schemes 343

verifying I(X;Y|Z) = I(Y;X|Z) that is

I(X;Y|Z) = H(X|Z) − H(X|Z,Y) = H(Y|Z) − H(Y|Z,X). (2)

A useful equality, widely applied in information-theoretic proofs, is given by the
so-called chain rule. It is stated as follows: given n random variables, X1, . . . ,Xn,
the entropy of X1, . . . ,Xn, can be written as

H(X1, . . . ,Xn) = H(X1) + H(X2|X1) + · · · + H(Xn|X1, . . . ,Xn−1).

A variant of the chain rule is the following

H(X1, . . . ,Xn|Y) = H(X1|Y) + H(X2|Y,X1) + · · · + H(Xn|Y,X1, . . . ,Xn−1)
(3)

for a random variable Y.
In this work we will use Lemma 5.1 and Lemma 5.3 presented in [1]:

Lemma 1. (Lemma 5.1 in [1]) Let X,Y and W be three random variables. If
H(X|Y,W) = 0 and H(X|W) = H(X), then

H(Y) ≥ H(X).

Lemma 2. (Lemma 5.3 in [1]) Let X,Y and W be three random variables. If
H(Y|W) = 0 then

H(X|Y,W) = H(X|W).

Another result needed in our work is the following Lemma:

Lemma 3. Let X,Y and W be three random variables. If H(X|W) = 0 then

H(X,Y|W) = H(Y|W).

Proof. We use the chain rule (3) to compute H(X,Y|W) = H(X|W) +
H(Y|W,X). Using the hypothesis and Lemma 2 we obtain: H(X,Y|W) =
0 + H(Y|W) = H(Y|W). �

Secret sharing schemes play an important role in distributed cryptography.
In these schemes, a secret value is shared among a set U = {1, . . . , n} of n players
in such a way that only qualified subsets of players can reconstruct the secret
from their shares. The family of qualified subsets is the access structure, denoted
by Γ . This family Γ ⊂ 2U must be monotone increasing, that is, if A1 ∈ Γ and
A1 ⊂ A2 ⊂ U , then A2 ∈ Γ . The family of authorized subsets Γ is determined by
the collection of minimal authorized subsets Γ0 called the basis of the structure.
The family of non-authorized subsets Γ = 2U − Γ is monotone decreasing. An
structure R is monotone decreasing when A1 ∈ R and A2 ⊂ A1 imply A2 ∈ R.
A monotone decreasing structure R is determined by the collection of maximal
subsets R0.

Probably, the most used monotone access structures are (T, n)−threshold
access structures, defined by Γ = {A ⊂ U : |A| ≥ T }, for some thresh-
old T in a set U of n participants. Shamir’s secret sharing scheme [8] real-
izes (T, n)−threshold access structures by means of polynomial interpolation.

344 G. Sáez

To share a secret k in a finite field GF (q) with q > n a prime power, a
special participant D outside U called dealer chooses a random polynomial
f(x) = k + a1x + · · · + aT−1x

T−1 ∈ GF (q)[x] of degree T − 1 and sends to the
participant i his secret share si = f(xi), where x1, . . . , xn ∈ GF (q) are distinct
non-zero elements. Let A be a qualified subset of T participants who want to re-
cover the secret k. They have T different values of the polynomial f(z), of degree
T−1, so they can obtain the value k = f(0). We have k = f(0) =

∑
i∈A λ0,if(xi),

where λ0,i are the Lagrange interpolation coefficients. It can also be proved that
any subset of less than T participants cannot obtain any information about the
secret from the shares they hold.

The vector space secret sharing scheme was introduced by Brickell [3]. Let
us suppose that the dealer is D and that there is a public map

ψ : U ∪ {D} −→ GF (q)�

where q is a prime power and � is a positive integer. This map induces the
monotone increasing access structure Γ defined as follows: A ∈ Γ if and only if
the vector ψ(D) can be expressed as a linear combination of the vectors in the
set ψ(A) = {ψ(i) | i ∈ A}. An access structure Γ is said to be a vector space
access structure if it can be defined in the above way. If Γ is a vector space
access structure, we can construct a secret sharing scheme for Γ with set of
secrets GF (q) (see [3] for a proof). To distribute a secret value k ∈ GF (q), the
dealer takes at random an element v ∈ GF (q)�, such that k = v · ψ(D). The
share of a participant i ∈ U is si = v · ψ(i). Let A be an authorized subset,
A ∈ Γ ; then, ψ(D) =

∑
i∈A λiψ(i), for some λi ∈ GF (q). In order to recover the

secret, players in A compute∑
i∈A

λisi =
∑
i∈A

λiv · ψ(i) = v ·
∑
i∈A

λiψ(i) = v · ψ(D) = k.

A scheme constructed in this way is called a vector space secret sharing scheme.
Shamir’s (T, n)−threshold scheme [8] can be seen as a vector space secret sharing
scheme by choosing ψ(D) = (1, 0, . . . , 0) ∈ GF (q)T as the vector of the dealer
and ψ(i) = (1, xi, . . . , x

T−1
i) ∈ GF (q)T for i ∈ U (with q > n).

Vector space secret sharing schemes are a particular case of linear secret
sharing schemes, which are essentially equal to vector space ones we have just
explained, but where every participant can be associated with more than one
vector. Simmons, Jackson and Martin [9] proved that any access structure Γ can
be realized by a linear secret sharing scheme.

3 Threshold Self-healing Key Distribution Schemes

The model presented in [1] and the one given in [10] implement a self-healing
key distribution scheme with good properties. The main drawback of these pro-
posals of self-healing key distribution schemes, when a high number of sessions is
considered, is that the amount of broadcast information is to large. A possibility

On Threshold Self-healing Key Distribution Schemes 345

to solve this fault is to use a different broadcast in order to decrease the number
of broadcast bits, but with less features.

Let U = {1, . . . , n} be the finite universe of users of a network. A broadcast
unreliable channel is available, and time is defined by a global clock. Suppose
that there is a group manager who sets up and manages, by means of join
and revoke operations, a communication group, which is a dynamic subset of
users of U . Let Gj ⊂ U be the communication group established by the group
manager in session j. Each user i ∈ Gj holds a personal key Si, received from
the group manager before or when joining Gj . The personal key Si can be seen
as a sequence of elements from a finite set.

We denote the number of sessions supported by the scheme, by m, the set of
users revoked by the group manager in session j by Rj , and the set of users who
join the group in session j by Jj . Hence, Gj = (Gj−1 ∪Jj)−Rj for j ≥ 2 and by
definition R1 = ∅. Moreover, for j = 1, . . . , m, let Kj be the session key chosen
by the group manager for session j. For each i ∈ Gj , the key Kj is determined
by Bj and the personal key Si.

Let Si,Bj ,Kj be random variables representing the personal key for user i,
the broadcast message Bj and the session key Kj for session j, respectively. The
probability distributions according to whom the above random variables take
values are determined by the key distribution scheme and the random bits used
by the group manager. In particular, we assume that session keys Kj are chosen
independently and according to the uniform distribution.

Given a subset of users G = {i1, . . . , ig} ⊂ U , with i1 < · · · < ig, we denote
as XG the random variables Xi1 , . . . ,Xig . For instance SR denotes the personal
keys of all users in R ⊂ U .

We define (t,R)-threshold self-healing scheme as follows:

Definition 1. Let U be the universe of users of a network, let m be the maximum
number of sessions, and let R ⊂ 2U be a monotone decreasing access structure of
subsets of users that can be revoked by the group manager. Let t be a threshold t <
m. A (t,R)-threshold self-healing key distribution scheme is a protocol satisfying
the following conditions:

1. The scheme is a session key distribution scheme, meaning that:
(a) For each member i ∈ Gj, the key Kj is determined by Bj and Si. For-

mally, it holds that:
H(Kj |Bj ,Si) = 0.

(b) What users learn from the broadcast Bj and their own personal key can-
not be determined from the broadcast or personal keys alone. That is:

H(K1, . . . ,Km|B1, . . . ,Bm) = H(K1, . . . ,Km|SG1∪···∪Gm) =

= H(K1, . . . ,Km).

2. The scheme has R-revocation capability. That is, for each session j, if R =
Rj ∪Rj−1∪· · ·∪R2 is such that R ∈ R, then the group manager can generate

346 G. Sáez

a broadcast message Bj such that all revoked users in R cannot recover Kj

(even knowing all the information broadcast in sessions 1, . . . , j). In other
words:

H(Kj |Bj ,Bj−1, . . . ,B1,SR) = H(Kj).

3. The scheme is (t,R)-self-healing. This means that the two following proper-
ties are satisfied:
(a) Every i ∈ Gr, who has not been revoked after session r and before session

s can recover all keys K� for � = r, . . . , s, from broadcasts Br and Bs,
where 1 ≤ r < s ≤ m with s − r ≤ t. Formally, it holds that:

H(Kr, . . . ,Ks|Si,Br,Bs) = 0 if s − r ≤ t.

(b) Let B ⊂ Rr ∪ Rr−1 ∪ · · · ∪ R2 be a coalition of users removed from the
group before session r and let C ⊂ Js ∪ Js+1 ∪ · · · ∪ Jm be a coalition of
users who join the group from session s with r < s. Suppose B ∪C ∈ R.
Then, such a coalition does not get any information about keys Kj, for
any r ≤ j < s. That is:

H(Kr, . . . ,Ks−1|B1, . . . ,Bm,SB,SC) = H(Kr, . . . ,Ks−1).

This definition has two differences with respect to the one presented in [1].
First the family of rejected subsets in [1] is R = {R ⊂ U : |R| ≤ T } while in
our definition we consider the general case of any possible monotone decreasing
structure R, not only threshold ones. This allows us to consider more general
self-healing key distribution schemes, where, for instance, some users or subsets
of users can be more revocable than others. And the second one is that self-
healing condition is only guaranteed for broadcasts at t units of distance.

4 Lower Bounds

In this section we present some bounds for a (t,R)-threshold self-healing key
distribution scheme. The first one is a lower bound on the size of personal keys
and the second one is a lower bound on the size of the broadcast, both compared
to q, the size of the key space.

Theorem 1. In any (t,R)-threshold self-healing key distribution scheme with
key space of size q, for any user i belonging to the group since session j, it holds
that

H(Si) ≥ (m − j + 1) log q.

Proof. Using condition 3.(a) and some basic properties of the entropy we have
that H(Kj , . . . ,Km|Bj ,Bj+t,Bj+2t, . . . ,Bm,Si) = 0. From condition 1.(b) we
can derive H(Kj , . . . ,Km|Bj ,Bj+t,Bj+2t, . . . ,Bm) = H(Kj , . . . ,Km). Then
Lemma 1 gives us the inequality H(Si) ≥ H(Kj , . . . ,Km). So:

H(Si) ≥ H(Kj , . . . ,Km) = H(Kj) + · · · + H(Km) = (m − j + 1) log q,

On Threshold Self-healing Key Distribution Schemes 347

taking into account that keys Kj, . . . , Km are chosen independently and uni-
formly at random. �

Recalling that H(Si) ≤ log |Si|, we derive log |Si| ≥ (m − j + 1) log q for
j = 1, . . . , m. Therefore, every user added in session j must store a personal key
of at least (m − j + 1) log q bits.

Secondly we present a lower bound on the size of the broadcast.

Theorem 2. In any (t,R)-threshold self-healing key distribution scheme with
key space of size q and m ≥ 2t, the following inequality holds

H(Bj) ≥ t log q.

For any (t,R)-threshold self-healing key distribution scheme with t < m < 2t the
inequality H(Bj) ≥ min(t, max(j − 1, m − j)) log q holds.

Proof. In order to prove the result we are going to consider two preliminary
cases. First let us suppose that there exists a session r such that 1 ≤ r < j with
j − r ≤ t and let i ∈ Gr be a user. Using properties (1) and (2) of the entropy
function (see Section 2) we have

H(Bj) ≥ H(Bj |Si,Br) ≥ H(Bj |Si,Br) − H(Bj |Si,Br,Kr, . . . ,Kj) =

= H(Kr, . . . ,Kj |Si,Br) − H(Kr, . . . ,Kj |Si,Br,Bj) = H(Kr, . . . ,Kj |Si,Br).

We have used that H(Kr, . . . ,Kj |Si,Br,Bj) = 0 which derives from 3.(a)
condition. On the other hand, we can apply condition 1.(a), Lemma 3 and con-
dition 1.(b) to obtain:

H(Bj) ≥ H(Kr, . . . ,Kj |Si,Br) = H(Kr+1, . . . ,Kj|Si,Br) =

= H(Kr+1, . . . ,Kj) = H(Kr+1) + · · · + H(Kj) = (j − r) log q,

taking into account the way in which keys Kr+1, . . . , Kj have been chosen.
Now, we consider the following second case: suppose that there is a session

s such that j < s ≤ m with s − j ≤ t and let i ∈ Gj be a user. Using properties
(1) and (2) of the entropy function (see Section 2) we have

H(Bj) ≥ H(Bj |Si,Bs) ≥ H(Bj |Si,Bs) − H(Bj |Si,Bs,Kj , . . . ,Ks) =

= H(Kj, . . . ,Ks|Si,Bs) − H(Kj , . . . ,Ks|Si,Bj,Bs) = H(Kj, . . . ,Ks|Si,Bs).

We have used that H(Kj , . . . ,Ks|Si,Bj,Bs) = 0 which derives from 3.(a) con-
dition. Using condition 1.(a) we can apply Lemma 3 and condition 1.(b):

H(Bj) ≥ H(Kj , . . . ,Ks|Si,Bs) = H(Kj , . . . ,Ks−1|Si,Bs) =

= H(Kj , . . . ,Ks−1) = H(Kj) + · · · + H(Ks−1) = (s − j) log q

for the same reason as above.

348 G. Sáez

In order to prove the result for m ≥ 2t we distinguish between j ≥ t + 1 and
j ≤ t. If j ≥ t+1 we apply the first case with r = j− t obtaining H(Si) ≥ t log q.
If j ≤ t we apply the second case with s = j + t obtaining H(Si) ≥ t log q. The
result for the case t < m < 2t is obtained by applying the first case with r = 1
when j ≤ t or with r = j − t when j ≥ t + 1 and the second case with s = m
when j ≥ m − t + 1 or with s = j + t when j ≤ m − t. �

So, every broadcast message is at least t log q bits long (when m ≥ 2t).

5 A Family of Threshold Self-healing Key Distribution
Schemes

Following the idea of Scheme 2 in [1] we can find a family of proposals using
linear secret sharing schemes instead of Shamir secret sharing scheme and using
shorter broadcast than the one in [1]. In this Section we present this construction,
prove the security and analyze the efficiency.

We suppose that the set of users is U = {1, . . . , n}. The life of the scheme
is divided in sessions j = 1, . . . , m. The communication group in session j is
denoted by Gj ⊂ U . The subset of users revoked in session j ≥ 2 is Rj ⊂ Gj−1

and the set of users who join the group is Jj ⊂ U − Gj−1 with Rj ∩ Jj = ∅. In
this way Gj = (Gj−1 ∪ Jj) − Rj for j ≥ 2 and by definition R1 = ∅. Let q be a
prime power and denote by Kj ∈ GF (q) the session key for group Gj .

Let R ⊂ 2U be a monotone decreasing access structure of subsets of users
that can be revoked by the group manager and let Γ = 2U − R be a monotone
increasing access structure. Let us consider a linear secret sharing scheme re-
alizing Γ over the set U . For simplicity, we suppose that there exists a public
map

ψ : U ∪ {D} −→ GF (q)�

which defines Γ as a vector space access structure. But the construction that
we present here can be extended in a natural way to work with a linear secret
sharing scheme in which a participant is associated with more than one vector.
The use of a specific ψ fixes the properties of the scheme.

Now we describe the different phases of the (t,R)-threshold self-healing key
distribution scheme.

Set-up. Let G1 ⊂ U . The group manager chooses random vectors
u1, . . . , um ∈ GF (q)� and session keys K1, . . . , Km ∈ GF (q). For each j =
1, . . . , m the group manager computes the scalar zj = Kj + ψ(D)�uj ∈ GF (q).
The group manager sends privately to user i ∈ G1 the personal key Si =
(ψ(i)�u1, . . . , ψ(i)�um) ∈ GF (q)m. Note that if we use a linear secret shar-
ing scheme in which a user i is associated with mi ≥ 1 vectors, then his secret
information Si consists of mmi elements in GF (q).

Full addition. In order to add users Jj ⊂ U in session j, the group manager
sends privately Si = (ψ(i)�uj, ψ(i)�uj+1, . . . , ψ(i)�um) ∈ GF (q)m−j+1 to every
user i ∈ Jj as his personal key.

On Threshold Self-healing Key Distribution Schemes 349

Broadcast. Suppose Rj ⊂ Gj−1 with R1 ∪ R2 ∪ · · · ∪ Rj ∈ R if j ≥ 2. By def-
inition we have R1 = ∅. The group manager chooses a maximal non-authorized
subset of users Wj ∈ R0 = Γ 0 such that R1∪R2∪· · ·∪Rj ⊂ Wj and Wj ∩Gj = ∅
with minimum cardinality. The broadcast Bj in session j = 1, . . . , m is given by
Bj = B1

j ∪B2
j . The first part of the broadcast is defined as follows: let us suppose

that binary representation of zj has an even number of bits, say 2ω, in such a
way that zj = (xj , yj) where xj , yj ∈ GF (2ω) are ω = � 1

2 log q� bits long. Then
B1

j = (Xj , Yj), where:

Xj =

⎧⎨
⎩

xj if j = 1, 2
x1 + x2, x1 + x3, . . . , x1 + xj−1, xj if j = 3, . . . , t + 2
x1 + xj−t, x1 + xj−t+1, . . . , x1 + xj−1, xj if j = t + 3, . . . , m

,

Yj =

⎧⎨
⎩

yj , ym + yj+1, ym + yj+2, . . . , ym + yj+t if j = 1, . . . , m − t − 2
yj , ym + yj+1, ym + yj+2, . . . , ym + ym−1 if j = m − t − 1, . . . , m − 2
yj if j = m − 1, m

.

The addition considered to compute Xj, Yj is the usual in GF (2ω). If binary
representation of zj has an odd number of bits, say 2ω +1, we can consider that
zj = (xj , yj) where xj ∈ GF (2ω) and yj ∈ GF (2ω+1).

The second part of the broadcast is defined as follows: for j = 1, 2

B2
j = {(k, ψ(k)�uj)}k∈Wj ,

and for j ≥ 3
B2

j = B2
j−1 ∪ {(k, ψ(k)�uj)}k∈Wj .

Theorem 3. The proposed scheme is a (t,R)-threshold self-healing key distri-
bution scheme.

Proof. Condition 1.(a) is satisfied because he can perform session key com-
putation in the following way. Since user i ∈ Gj has {(k, ψ(k)�uj)}k∈Wj and
his personal key, he computes ψ(D)�uj using {(k, ψ(k)�uj)}k∈Wj∪{i} because
Wj ∪{i} ∈ Γ . In effect: as far as Wj ∪{i} ∈ Γ , then ψ(D) =

∑
k∈Wj∪{i} λkψ(k),

for some λk ∈ GF (q). So ψ(D)�uj =
∑

k∈Wj∪{i} λkψ(k)�uj . From the broad-
cast information Bj , the user can compute zj = (xj , yj) and the session key as
Kj = zj − ψ(D)�uj.

For condition 1.(b) we should note that session keys K1, . . . , Km and vectors
u1, . . . , um have been chosen independently at random, then session keys and
personal keys are independent. Furthermore broadcasts B1, . . . , Bm determine
z1, . . . , zm but these scalars perfectly hide K1, . . . , Km by means of ψ(D)�uj ,
because zj = Kj + ψ(D)�uj .

Condition 2 follows noticing that, a user i ∈ Rj knows, from the broadcast
Bj , vectors {(k, ψ(k)�uj)}k∈Wj and from his personal keys ψ(i)�uj ∈ GF (q)
where i ∈ Wj �∈ Γ , and this does not get any information on ψ(D)�uj . This is
true because for any scalar s ∈ GF (q) there exists at least one vector u ∈ GF (q)�

such that:
ψ(D)�u = s

ψ(k)�u = ψ(k)�uj for any k ∈ Wj

}

350 G. Sáez

because Wj �∈ Γ . Observe that the number of vectors u satisfying this system of
equations is independent of the value s.

The self-healing condition 3.(a) holds because from any two broadcasts Br

and Bs with r < s and s − r ≤ t, user i can compute all keys Kj where i ∈ Gj

with r ≤ j ≤ s. The computations are performed in the same way as in session
key computation, calculating zr, . . . , zs from the first part of the broadcasts Br

and Bs and using ψ(i)�ur, . . . , ψ(i)�us from his personal key. The computation
of zr, . . . , zs from broadcasts Br and Bs with r < s and s − r ≤ t is as follows.
Consider, for instance, the case in which t + 3 ≤ r < s ≤ m − t − 2 (the other
cases are similar). Broadcasts in this case are:

B1
r = (x1+xr−t, x1+xr−t+1, . . . , x1+xr−1, xr, yr, ym +yr+1, ym+yr+2, . . . , ym+yr+t),

B1
s = (x1+xs−t, x1+xs−t+1, . . . , x1 +xs−1, xs, ys, ym +ys+1, ym +ys+2, . . . , ym +ys+t).

From B1
r we extract xr, yr. Taking into account that s− t ≤ r < s, broadcast B1

s

give us x1+xr and then we can compute x1. From the two broadcasts we calculate
xr−t, xr−t+1, . . . , xs. Now, from B1

s we extract xs, ys. Taking into account that
r < s ≤ t + r, broadcast B1

r give us ym + ys and then we can compute ym. From
the two broadcasts we calculate yr, yr+1, . . . , ys+t. At the end we can determine
completely zr, . . . , zs and we also know partial information of the other scalars,
because we have xr−t, . . . , xr−1 and ys+1, . . . , ys+t. With the second part of the
broadcast a non-revoked user belonging to the group is allowed to compute secret
keys corresponding to sessions r, r + 1, . . . , s, but no information on secret keys
of the other sessions can compute. Observe that in the proposal presented in [1]
from broadcast Br and Bs it can be completely computed z1, . . . , zs.

To check condition 3.(b) let us consider a coalition of rejected users B ⊂ Rr−1

and a coalition of new users C ⊂ Js ∪ · · · ∪ Jm such that B ∪ C �∈ Γ . Secret
information held by users in B ∪C and information broadcast in all the sessions
do not get any information about keys Kj for j = r, . . . , s − 1. This is true
because they know, in the worst case, Si = (ψ(i)�us, ψ(i)�us+1, . . . , ψ(i)�um) ∈
GF (q)m−s+1 for i ∈ C and B1, . . . , Bm. Since B ⊂ Wj for any j = r, . . . , s − 1
and personal keys of users in B are known for sessions j ≥ s, it is easy to see that
all the possible values for Kj with j = r, . . . , s − 1 have the same probability. �

Observe that our family of schemes verifies that every user i added in one
of the sessions j = r + 1, . . . , s − 1, cannot obtain from broadcasts Br and Bs,
where 1 ≤ r < s ≤ m with s − r > t, any information about the value of the
keys K� for � = r, . . . , s. That is, H(Kr, . . . ,Ks|Si,Br,Bs) = H(Kr, . . . ,Ks).

We analyze the efficiency of the family of the proposed threshold self-healing
key distribution schemes in terms of memory storage and communication com-
plexity. In our construction every user i has to store a personal key of size
|Si| = (m − j + 1) log q, which is optimal with respect to Theorem 1 when the
structure Γ = 2U −R is a vector space access structure. In our construction, the
broadcast length depends on the particular function ψ used. The second part
of the broadcast has the same form as the proposed in [1] and its purpose is

On Threshold Self-healing Key Distribution Schemes 351

to perform the rejection capability as well as the computation of the key. Its
length depends on the history of rejected subsets R2, R3, etc. The first part of
the broadcast is shorter than the one proposed in [1]. The total number of bits
broadcast on the Xj part is

1
2
(1+1+2+3+· · ·+(t+1)+(m−t−2)(t+1)) logq =

1
2
(1+(t+1)(m−1−t/2)) logq

for a maximum length of 1
2 (t+1) log q bits. As usual in this kind of computations

we consider that xj and yj are 1
2 log q bits long. The total number of bits and

the maximum length of the Yj part is the same. Then the total number of
broadcast bits is (1 + (t + 1)(m − 1 − t/2)) log q, for a maximum length less or
equal to (t + 1) log q. These lengths are shorter than the lengths of the first part
of broadcasts in [1] with total number of broadcast bits 1

2 (m2 −m+ 2) log q and
maximum length (m− 1) log q. A particular example of this construction can be
found in Section 6.

6 A Particular Example of the Construction

In the particular self-healing key distribution scheme obtained with our con-
struction from Shamir secret sharing scheme, it can be revoked a subset of at
most T − 1 users, that is |R| = |R2 ∪ · · · ∪ Rj | ≤ T − 1. And the length of the
second part of the broadcast is proportional to T − 1, the cardinality of subset
Wj . This two characteristics are common with the scheme proposed in [1].

But some other schemes can be proposed using our construction. A particular
construction in which we have a short broadcast for small revocations of users can
be proposed. The example is based in a bipartite access structure [7] proposed
in [5] for group key distribution schemes.

Suppose that we want to implement a self-healing key distribution scheme in
a context in which most of the revocations consists of revoking a small number
of users (less than J , for some positive integer J ≤ T − 1), although we want to
have the possibility to revoke up to T − 1 users in some special circumstances.
This situation would correspond a self-healing key distribution schemes in which
communication groups are very similar, but with the capability revoking a big
number of users. If we implement the self-healing scheme with Shamir secret
sharing scheme in such a situation, then the second part of the broadcast B2

j of
every session must have a proportional amount of information to T − 1, despite
only two or three users must be revoked.

However, if we consider a secret sharing scheme realizing a specific bipartite
access structure defined in the set of users, this allows to improve the efficiency
of these revocations of few users. Bipartite access structures were first presented
in [7]. In such a structure Γ , there is a partition of the set of participants,
U = X ∪ Y , such that all participants in the same class play an equivalent role
in the structure. We associate any subset A ⊂ U with the point of non-negative
integers π(A) = (x(A), y(A)) ∈ Z

+×Z
+, where x(A) = |A∩X |, y(A) = |A∩Y |

and the structure to a region:

352 G. Sáez

π(Γ) = {π(A) : A ∈ Γ} ⊂ Z
+ × Z

+.

Let us come back to our previous situation. Let n′ be the total number of
possible real users. We consider a set U = X ∪ Y , where X = {1, . . . , n′, n′ +
1, . . . , n′ + T − J − 1} contains the n′ possible real users and T − J − 1 dummy
users, and Y = {n′ +T −J, . . . , n′ +T − 1} contains J dummy users. So, the set
U contains n = n′ + T − 1 users. Let us consider the following bipartite access
structure Γ defined in U = X ∪ Y :

Γ = {A ⊂ X∪Y : |A| ≥ J+1 and |A∩Y | ≥ 1} ∪ {A ⊂ X∪Y : |A∩X | ≥ T } ,

which corresponds to the following region:

π(Γ) = {(x, y) ∈ Z
+ × Z

+ : (x ≥ T) or (x + y ≥ J + 1 and y ≥ 1)} .

The maximal non-authorized subsets in this structure are defined by the points
(T − 1, 0), (J − 1, 1), (J − 2, 2), . . . , (1, J − 1), (0, J). Note that non-authorized
subsets of a (T, n)−threshold structure are defined by T − 1 users. If a subset of
ω ≤ J −1 users has to be revoked, then the second part of the broadcast B2

j has
only J values, ω values related to the revoked users, and J − ω values related
to dummy users in Y . Otherwise, if a subset of ω ≥ J users is revoked, with
ω ≤ T − 1, then the second part of the broadcast B2

j has T − 1 values: ω values
related to the revoked users, in addition to T − 1 − ω values related to dummy
users in X . Note that if we put J = T − 1, we obtain the threshold case. With
lower values of J , the revocation can be performed in a more efficient way.

�
�

�
�

�
��

�

�

�

�

�

�

π(Γ)

Y

X(15, 0)

(0, 6)

This bipartite access structure Γ can not be realized by a vector space secret
sharing scheme (except in the threshold case J = T − 1, see [7] for the details),
but by a linear one in which each participant is associated with two vectors
instead of one. Therefore, each operation will have twice the cost of the same
operation in the threshold case. In particular, the length of the personal keys
are twice the length in the threshold case. If efficiency in the revocation of small
subsets has priority, this scheme makes perfect sense.

On Threshold Self-healing Key Distribution Schemes 353

The following picture shows an example of this situation, with T = 16 and
J = 6. The region π(Γ), delimited by thick lines, contains the points correspond-
ing to the authorized subsets of the structure. The points corresponding to those
subsets in R0 = Γ 0, for example the one formed by 6 dummy users in Y , are
marked with a circle.

In this example, if a subset of three users has to be revoked, it must be
broadcast three values related to the three revoked users and three values related
to three dummy users in Y . In this way, the broadcast information corresponds
to a subset in R0 = Γ 0 (symbolized by the point (3, 3) in the picture), and
each non-revoked user can use the broadcast information and his personal key
to compute the new group key.

The second novelty of our work is to consider that the distance between the
broadcasts used to supply the lost one is limited in order to shorten the length
of the broadcast information by the group manager. As an example, we can see
the effect in the first part of the broadcast for self-healing key distribution for
zj = (xj , yj) with m = 10 sessions and a threshold t = 3:

B1
1 = (x1, y10 + y4, y10 + y3, y10 + y2, y1)

B1
2 = (x2, y10 + y5, y10 + y4, y10 + y3, y2)

B1
3 = (x1 + x2, x3, y10 + y6, y10 + y5, y10 + y4, y3)

B1
4 = (x1 + x2, x1 + x3, x4, y10 + y7, y10 + y6, y10 + y5, y4)

B1
5 = (x1 + x2, x1 + x3, x1 + x4, x5, y10 + y8, y10 + y7, y10 + y6, y5)

B1
6 = (x1 + x3, x1 + x4, x1 + x5, x6, y10 + y9, y10 + y8, y10 + y7, y6)

B1
7 = (x1 + x4, x1 + x5, x1 + x6, x7, y10 + y9, y10 + y8, y7)

B1
8 = (x1 + x5, x1 + x6, x1 + x7, x8, y10 + y9, y8)

B1
9 = (x1 + x6, x1 + x7, x1 + x8, x9, y9)

B1
10 = (x1 + x7, x1 + x8, x1 + x9, x10, y10)

References

1. C. Blundo, P. D’Arco, A. De Santis and M. Listo. Design of Self-Healing Key
Distribution Schemes. Designs, Codes and Cryptography , Vol. 32, pp. 15–44
(2004).

2. C. Blundo, P. D’Arco, A. De Santis and M. Listo. Definitions and Bounds for Self-
Healing Key Distribution. In 31st International Colloquium on Automata, Lan-
guages and Programming (ICALP 04). Lecture Notes in Computer Science, 3142
(2004) 234–245.

3. E.F. Brickell. Some ideal secret sharing schemes. Journal of Combinatorial Math-
ematics and Combinatorial Computing, 9, pp. 105–113 (1989).

4. T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley & Sons
(1991).

5. V. Daza, J. Herranz and G. Sáez. Constructing General Dynamic Group Key Dis-
tribution Schemes with Decentralized User Join. In 8th Australasian Conference
on Information Security and Privacy (ACISP 03). Lecture Notes in Computer
Science, 2727 (2003) 464–475.

6. D. Liu, P. Ning and K. Sun. Efficient Self-Healing Key Distribution with Revocation
Capability. In 10th ACM Conference on Computer and Communications Security
(2003).

354 G. Sáez

7. C. Padró and G. Sáez. Secret sharing schemes with bipartite access structure. IEEE
Transactions on Information Theory , 46 (7), pp. 2596–2604 (2000).

8. A. Shamir. How to share a secret. Communications of the ACM , 22, pp. 612–613
(1979).

9. G.J. Simmons, W. Jackson and K. Martin. The geometry of secret sharing schemes.
Bulletin of the ICA 1, pp. 71–88 (1991).

10. J. Staddon, S. Miner, M. Franklin, D. Balfanz, M. Malkin and D. Dean. Self-
Healing Key Distribution with Revocation. IEEE Symposium on Security and Pri-
vacy (2002).

11. D.R. Stinson. An explication of secret sharing schemes. Designs, Codes and Cryp-
tography, Vol. 2, pp. 357–390 (1992).

Concrete Security of the Blum-Blum-Shub
Pseudorandom Generator

Andrey Sidorenko and Berry Schoenmakers

Eindhoven University of Technology,
P.O. Box 513, 5600MB Eindhoven, The Netherlands

{a.sidorenko, l.a.m.schoenmakers}@tue.nl

Abstract. The asymptotic security of the Blum-Blum-Shub (BBS) pseu-
dorandom generator has been studied by Alexi et al. and Vazirani and
Vazirani, who proved independently that O(log log N) bits can be ex-
tracted on each iteration, where N is the modulus (a Blum integer).
The concrete security of this generator has been analyzed previously by
Fischlin and Schnorr and by Knuth.

In this paper we continue to analyse the concrete security the BBS
generator. We show how to select both the size of the modulus and the
number of bits extracted on each iteration such that a desired level of se-
curity is reached, while minimizing the computational effort per output
bit. We will assume a concrete lower bound on the hardness of inte-
ger factoring, which is obtained by extrapolating the best factorization
results to date.

While for asymptotic security it suffices to give a polynomial time
reduction a successful attack to factoring, we need for concrete security
a reduction that is as efficient as possible. Our reduction algorithm relies
on the techniques of Fischlin and Schnorr, as well as ideas of Vazirani
and Vazirani, but combining these in a novel way for the case that more
than one bit is output on each iteration.

1 Introduction

Generally speaking, a pseudorandom generator is a deterministic algorithm that,
given a truly random binary sequence of length n, outputs a binary sequence
of length M > n that ”looks random”. The input to the generator is called
the seed and the output is called the pseudorandom bit sequence. Security of a
pseudorandom generator is a characteristic that shows how hard it is to tell the
difference between the pseudorandom sequences and truly random sequences. For
the Blum-Blum-Shub (BBS) pseudorandom generator [2] distinguishing these
two distributions is as hard as factoring a large composite integer.

Although asymptotic security of the BBS generator is thoroughly analyzed
[1,15] it has been uncertain how to select the size of the modulus and the num-
ber of bits extracted on each iteration such that a desired level of security is
reached, while minimizing the computational effort per output bit. In this paper
we answer this question. We construct an efficient reduction of a successful at-
tack on the BBS generator to factoring. Then we assume a concrete lower bound

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 355–375, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

356 A. Sidorenko and B. Schoenmakers

on the hardness of integer factoring, which is obtained by extrapolating the best
factorization results to date. It gives a lower bound for the running time of the
successful attack on the BBS generator (Theorem 3). This lower bound is used
for selecting the optimal values for the size of the modulus and the number of
bits extracted on each iteration.

1.1 Notation

Throughout we use the following notation.

– s ∈R S indicates that s is chosen uniformly at random from set S.
– N is a Blum integer, that is N = pq, where p, q are prime, p ≡ q ≡ 3 mod 4.
– n is the size (in bits) of N .
– ZN (+1) is the set of integers of Jacobi symbol +1 modulo N .
– ΛN = ZN (+1) ∩ (0, N

2).
– [y]N = y mod N ∈ [0, N) for y ∈ Z.
– y mod N ∈ (−N

2 , N
2

)
denotes the smallest absolute residue of y modulo N .

–
i(y) denotes the i-th least significant bit of y, i = 1, 2,
– EN (y) = |y2 mod N |, which is referred to as the absolute Rabin function.

Note that the absolute Rabin function EN permutes ΛN [5].

1.2 Security of Pseudorandom Generators

Let G be a pseudorandom generator that produces binary sequences of length
M . Let S ⊂ {0, 1}M be the set of these sequences.

Consider a probabilistic algorithm A that, given a binary sequence s =
s1 . . . sM , outputs a bit A(s) ∈ {0, 1}. We may think of A as a statistical test of
randomness.

Definition 1. A pseudorandom generator G passes statistical test A with toler-
ance ε > 0 if

|Pr(A(s) = 1 | s ∈R S) − Pr(A(s) = 1 | s ∈R {0, 1}M)| < ε.

Otherwise the pseudorandom generator G fails statistical test A with tolerance
ε. The probability is taken over all choices of s, and internal coin flips of A.

We refer to a sequence s ∈R {0, 1}M as a truly random binary sequence.
Throughout this paper we often call A an adversary that tries to distinguish
pseudorandom sequences from truly random sequences.

Note that the maximum possible value of ε is ε = 1 − 2n−M . It corresponds
to the statistical test that with probability 1 outputs 1 if s ∈ S and outputs 0 if
s ∈ {0, 1}M\S.

Definition 2. A pseudorandom generator is asymptotically secure if it passes
all polynomial time statistical tests with tolerance negligible in n.

Concrete Security of the BBS Pseudorandom Generator 357

The above definition originates from [16]. Asymptotic security guarantees
that, as the seed length increases, no polynomial time statistical test can dis-
tinguish the pseudorandom sequences from truly random sequences with non-
negligible probability. However, this definition says little about the security of
the pseudorandom generator in practice for a particular choice of seed length
and against adversaries investing a specific amount of computational effort. For
practical considerations it is important to focus on concrete security reductions
which give explicit bounds on running time and success probability of statistical
tests. The following definition is due to [9,3,14].

Definition 3. A pseudorandom generator is (TA, ε)-secure if it passes all sta-
tistical tests with running time at most TA with tolerance ε.

We determine the values for TA and ε such that the BBS pseudorandom
generator defined below is (TA, ε)-secure.

1.3 The BBS Generator

The following definition is due to [5].

Definition 4 (The BBS pseudorandom generator). Let k, j be positive
integers. Let x1 ∈R ΛN be the seed. Consider a deterministic algorithm that
transforms the seed into a binary sequence of length M = jk by repeating the
following steps for i = 1, . . . , k.

1. For r = 1, . . . , j output b(i−1)j+r =
j−r+1(xi).
2. xi+1 = EN (xi).

We call this algorithm the BBS pseudorandom generator with j output bits per
iteration.

In order to output a pseudorandom sequence (a BBS sequence) of length M the
generator iterates the absolute Rabin function k times generating j bits on each
iteration.

Remark 1. Strictly speaking, the above definition of the BBS differs from the
original one presented in [2]. The original generator iterates the Rabin function
E∗

N (x) = x2 mod N and outputs only one bit on each iteration (j = 1). We do
not introduce a new name for the sake of simplicity.

1.4 Known Results and Our Contributions

Intuitively, the performance of the BBS generator can be improved in two ways.
We can either use a modulus of a smaller size or extract more bits per iteration.
However, in both cases the security of the algorithm is weakened. What are the
optimal values for the parameters given that a certain level of security has to be
reached? For instance, what is the optimal value for j?

358 A. Sidorenko and B. Schoenmakers

The security of the BBS generator is proved by reduction. It is shown that if
the generator is insecure then there exists an algorithm that factors the modulus.
When analyzing asymptotic security the only requirement is that the reduction
has to be polynomial time. In case of concrete security the reduction has to be
as tight as possible. A tight reduction gives rise to a small modulus, which in
turn ensures that the pseudorandom generator is efficient.

The following reductions are known for the BBS generator. The case j = 1 has
been studied extensively. The tightest reduction is due to Fischlin and Schnorr
[5], which gives rise to a rather efficient generator. For the case j > 1, the
asymptotic security has been analyzed fully by Alexi et al. [1], and independently,
by Vazirani and Vazirani [15], who proved that the BBS generator is secure if
j = O(log log N). However, using their reductions as a basis for the concrete
security of the BBS generator would imply that in practical case it does not pay
off to extract more than 1 bit on each iteration. Fischlin and Schnorr [5] already
suggested ways to tighten the reductions for the case j > 1. However, as they
point out, the first approach is completely impractical. The second one, though,
is similar to our analysis, but they provide no sufficient detail.

Inspired by the ideas of [5] and [15] we construct a new security proof for the
BBS generator with j output bits per iteration for j > 1. The new reduction is
more efficient than all previously known reductions for j > 1.

We show how to select both the size of the modulus and the number of bits
extracted on each iteration such that a desired level of security is reached, while
minimizing the computational effort per output bit. Although the complexity of
the reduction grows exponentially in j it does not mean that one should always
choose j = 1. In Example 7.3 the optimal value is j = 5 rather than j = 1. We
emphasize that the optimal parameter j depends on the length of the output
sequence M and on the security parameters TA, ε.

The rest of the paper is organized as follows. In Section 2 we describe a general
idea of the security proof for the BBS generator. The result of [9,16] implies that
if the generator is insecure then there exists an algorithm B that, given EN (x) for
some x ∈ ΛN , and j−1 least significant bits of x, guesses the j-th least significant
bit
j(x). In Section 4 the algorithm B is used for inversion of the absolute Rabin
function. Before that, in Section 3, we discuss a simplified inversion algorithm as
a stepping stone to the general case. The simplified algorithm is of independent
interest since it is almost optimal in terms of the running time. In Section 5
we analyze the success probability of the inversion algorithm of Section 4. We
determine the complexity of this algorithm in Section 6. In Section 7 we state
our main result about the concrete security of the BBS generator.

2 Security of the BBS Generator

In this section we describe a general idea of the security proof for the BBS
generator.

Lemma 1. Suppose the BBS generator is not (TA, ε)-secure. Then there exists
an algorithm B that, given EN (x) for some x ∈R ΛN , j − 1 least significant bits

Concrete Security of the BBS Pseudorandom Generator 359

of x, guesses the j-th least significant bit
j(x) with advantage M−1ε. Here the
probability is taken over all choices of x ∈R ΛN , and internal coin flips of B.
The running time TB ≤ TA + O(kn2).

The proof of the above lemma can be found, for instance, in [9].
In Section 4 we show that the algorithm B can be used for the inversion of

the absolute Rabin function. Before that, in Section 3, we show how to invert the
absolute Rabin function using a ”simpler” oracle. Section 3 serves as a stepping
stone to the general case.

According to the following lemma inversion of the absolute Rabin function
is as hard as factoring Blum integers.

Lemma 2 (Rabin). Suppose there exists a probabilistic algorithm R that re-
covers x ∈ ΛN from EN (x) in expected time TR. Then there exists an algorithm
F that factors the modulus N in expected time TF = 2(TR + 2 log2 N).

Since factoring Blum integers is assumed to be a hard problem (in Section 7.1
we will assume a concrete lower bound on the hardness of factoring) ”attacking”
BBS sequences is also a hard problem.

In practice the terms kn2 and log2 N are small in comparison with TA and
TR respectively. We omit these terms in the further analysis.

3 The Simplified Inversion Algorithm

To complete our concrete security analysis of the BBS generator, we need to show
how to invert the absolute Rabin function EN , given an oracle of a particular
type. However, in this section we will consider the related problem of inverting
EN given a more powerful oracle O1, see below, and assuming that 2 ∈ ZN (+1)
(which holds if N ≡ 1 mod 8, see e.g. [12]). The treatment of this case serves as
a stepping stone to the general case, and, additionally, we will point out that in
this case the reduction can be shown optimal up to a factor of lnn.

The oracle O1 is defined as a probabilistic algorithm that for all x ∈ ΛN ,
given EN (x), guesses bit
1(x) with advantage δ > 0, where the probability is
taken over internal coin flips of O1.

3.1 Binary Division

The main tool of the inversion algorithm is the binary division technique [5],
which is a means to solve the following problem. The problem is to recover a
value α, 0 ≤ α < N , given
1(α),
1([2−1α]N), . . . ,
1([2−(n−1)α]N), where n is
the bit length of N .

The solution to this problem is given in terms of rational approximations.
For a rational number β, 0 ≤ β < 1, we call βN a rational approximation of
integer α, 0 ≤ α < N , with error |α − βN |. Given a rational approximation
βN for α we can get a rational approximation β1N for α1 = [2−1α]N for which
the error is reduced by a factor of 2 as follows. If α is even, then α1 = α/2

360 A. Sidorenko and B. Schoenmakers

so put β1 = β/2; otherwise, α1 = (α + N)/2 so put β1 = (β + 1)/2. Then we
have |α1 − β1N | = 1

2 |α − βN |. Note that to determine β1, the only required
information on α is its parity.

Given
1(α),
1([2−1α]N), . . . ,
1([2−(n−1)α]N), the value of α can be recov-
ered as follows. Put β0 = 1/2, then β0N is a rational approximation of α with
error at most N/2. Next, we apply the above technique n times to obtain ratio-
nal approximations β1N, . . . , βnN for [2−1α]N , . . . , [2−nα]N respectively, at each
step reducing the error by a factor of 2. We thus get a rational approximation
βnN to [2−nα]N , for which the error is less than N/2n+1 < 1/2. The closest
integer to βnN is therefore equal to [2−nα]N , and from this value we find α.

3.2 Majority Decision

The bits
1(α),
1([2−1α]N), . . . ,
1([2−(n−1)α]N) used to recover α by means
of the binary division technique will be obtained from the oracle O1, which
essentially outputs
1(α) on input EN (α) for α ∈ ΛN . However, since the output
bit of O1 is not always correct, we have to run O1 several times and use some
form of majority decision.

Suppose we know EN (α) and our goal is to determine
1(α) for some α ∈ ΛN .
We run O1 on input EN (α) m times and assign the majority bit to
1(α). We will
show that for m = 1

2 (ln n + ln p−1)δ−2, where 0 < p < 1, the majority decision
errs with probability at most p/n.

Let τ1, . . . , τm be the outputs of O1. Without loss of generality, assume that

1(α) = 0. Then the majority decision errs if

1
m

m∑
i=1

τi >
1
2
. (1)

Since for each α ∈ ΛN the probability that O1 successfully guesses
1(α) equals
1
2 + δ the expected value E[τi] = 1

2 − δ, i = 1, . . . , m. (1) implies that

1
m

m∑
i=1

τi − E[τi] > δ.

Since τ1, . . . , τm are mutually independent Hoeffding’s bound [8] gives

Pr

[
1
m

m∑
i=1

τi − E[τi] > δ

]
≤ exp

(−2mδ2
)
.

It implies that for m = 1
2 (lnn + ln p−1)δ−2 the majority decision errs with

probability p/n.

3.3 The Simplified Algorithm

Remark 2. Before describing the simplified inversion algorithm we point out an
important fact about oracle O1. For every y ∈ ΛN there always exist two different
values x1 and x2 such that EN (xi) = y and xi ∈ ZN (+1), i = 1, 2. Without loss

Concrete Security of the BBS Pseudorandom Generator 361

of generality, let x1 < N/2. Then x1 ∈ ΛN , x2 = N − x1. On input y oracle O1

predicts
1(x1) rather than
1(x2). This property will be used on step 3 of the
algorithm.

The inversion algorithm, given EN (x) for some x ∈ ΛN and parameter p,
0 < p < 1/2, runs as follows.

1. Pick a random multiplier a ∈R ZN (+1). Let m = 1
2 (lnn + ln p−1)δ−2.

2. Set u0 = 1/2. u0N is a rational approximation of [ax]N with error at most
N/2. Set l−1 = 0.

3. For t = 0, . . . , n − 1 do the following. Compute EN ([atx]N) = EN (at)EN (x)
mod N . Run O1 on input EN ([atx]N) m times. Let rt be the majority output
bit. Assign lt = rt + lt−1 mod 2. Let at+1 = [2−(t+1)a]N . To determine a
rational approximation ut+1N for [at+1x]N , set ut+1 = (ut + lt)/2.

4. Compute x′ = a−1
n �unN + 1/2 mod N . If EN (x′) = EN (x) output x′, oth-

erwise repeat the above procedure starting from step 1.

If no error occurs in the above algorithm we have lt =
1([atx]N) for t =
0, . . . , n − 1. Setting l−1 = 0 at step 2 means that the algorithm works only if

1([2ax]N) = 0. Since a is chosen at random,
1([2ax]N) = 0 with probability
1/2.

The goal of step 3 is to determine
1([atx]N). The bit is obtained via the
majority decision. Note that on input EN ([atx]N) O1 predicts either
1([atx]N)
(if
1([at−1x]N) = 0) or
1(N − [atx]N) (if
1([at−1x]N) = 1). Since
1(N) = 1,
we have
1([atx]N) =
1(N − [atx]N) + 1 mod 2. Therefore the majority bit rt

has to be added by lt−1 modulo 2 (see also Remark 2).
Since a single majority decision errs with probability at most p/n the proba-

bility that EN (x′) = EN (x) at step 4 is at least 1/2− p. Thus the expected run-
ning time of the inversion algorithm is at most (1−2p)−1n(ln n+ln p−1)δ−2TO1 ,
where TO1 is the running time of O1. For instance, for p = 1/4 the running time
is essentially 2n(lnn)δ−2TO1 .

Remark 3. The information-theoretic approach of Fischlin and Schnorr [5] im-
plies that inversion of the absolute Rabin function needs to run O1 at least
(ln 2/4)nδ−2 times. Therefore the running time of the above algorithm is opti-
mal up to a factor of lnn.

4 The Inversion Algorithm

In this section we show how to invert the absolute Rabin function EN , having
access to oracle B that, given EN (x) for some x ∈R ΛN , j − 1 least significant
bits of x, guesses j-th least significant bit
j(x) with advantage M−1ε.

We build the inversion algorithm for j ≥ 1 combining the inversion algorithm
of [5] for j = 1 with the result of [15]. Basic idea of our inversion algorithm is
the following. First B is converted into an algorithm Oxor that, given EN (x) for
some x ∈ ΛN , guesses the exclusive OR of some subset of first j least significant
bits of x with advantage δ, where δ = (2j − 1)−1M−1ε. Then EN (x) is inverted
using Oxor as an oracle.

362 A. Sidorenko and B. Schoenmakers

4.1 Oracle for Exclusive OR

Let π be a subset of the set of positive integers. For an integer y, y ≥ 0, let

π(y) =
∑
i∈π

i(y) mod 2.

Note that the subset and the corresponding exclusive OR function are denoted
by the same character π.

Let y ∈ ΛN . On input (π, EN (y)), where π ⊂ {1, . . . , j} is a nonempty subset,
algorithm Oxor guesses π(y) as follows

1. Select r1, . . . , rj ∈R {0, 1}. Let r, 0 ≤ r < 2j, be an integer such that

k(r) = rk, k = 1, . . . , j.

2. Output π(r) if B(EN (y), r1, . . . , rj−1) = rj , otherwise output π(r)+1 mod 2.

The below statement follows explicitly from the Computational XOR Propo-
sition proposed by Goldreich [7].

Lemma 3. For the above algorithm Oxor we have Pr[Oxor(π, EN (y)) = π(y)] =
1/2 + δ, δ = (2j − 1)−1M−1ε, where the probability is taken over all choices of
y ∈R ΛN , nonempty subsets π ⊆ {1, . . . , j} with uniform probability distribution,
and internal coin flips of Oxor.

4.2 Inversion of the Absolute Rabin Function Using Oxor

The inversion algorithm described below is based on the same ideas as the sim-
plified inversion algorithm of Section 3. The main difference between these two
algorithms is due to the fact that, in comparison with O1, the advantage of
Oxor does not have to be the same for all input values. In order to use Oxor for
the majority decision we have to randomize the input values. For this purpose
we use two multipliers a, b ∈R ZN and we call Oxor on inputs proportional to
EN (ct,ix), where ct,i is a function of a and b such that ct,i’s for a fixed t are
pairwise independent random variables.

Tightening the Rational Approximations. Suppose EN (x) is given for
x ∈ ΛN . The goal is to recover x.

Let a, b ∈R ZN . Let u0N and vN be rational approximations of [ax]N and
[bx]N . In below algorithm we search through a certain number of quadruples
(u0N, vN, la,0, lb), where la,0, lb ∈ {0, 1}, so that for at least one of them

la,0 =
1([ax]N), lb =
1([bx]N),
|[ax]N − u0N | ≤ ηaN, |[bx]N − vN | ≤ ηbN,

(2)

where ηa = 2−j−6δ3, ηb = 2−j−4δ (these values result from the analysis of the
inversion algorithm, which appears in the extended version of this paper). (2)
implies that we have to try at most η−1

a η−1
b quadruples.

Concrete Security of the BBS Pseudorandom Generator 363

Let at = [2−ta]N , t = 1, . . . , n. By means of the binary division technique we
construct rational approximations utN for [atx]N so that if (2) holds then

|[atx]N − utN | ≤ ηaN

2t
, t = 1, . . . , n.

For t = n we have |[anx]N − unN | < 1/2, i.e. the closest integer to unN is
[anx]N . Therefore x = [a−1

n �unN + 1
2]N .

The binary division technique works only if for all t = 0, . . . , n − 1 the bits

1([atx]N) are determined. Note that if (2) holds then
1([ax]N) = la,0. For
t = 1, . . . , n − 1 we determine the bits
1([atx]N) using oracle Oxor.

Finding �1([atx]N) Via Majority Decision. Consider step t of the inversion
algorithm for 1 ≤ t < n. At this step we know the rational approximation utN
for [atx]N . The goal is to determine
1([atx]N).

Let i be an integer from a multiset σt (we will define the multisets in the end
of this section). Using Oxor we will determine
1([atx]N) for a fraction of indices
i ∈ σt with probability slightly higher than 1/2. Then the majority decision will
provide us with a reliable value
1([atx]N). The details follow.

Let ct,i = at(1 + 2i) + b. Then

[ct,ix]N = [atx]N (1 + 2i) + [bx]N mod N.

Let wt,i = ut(1 + 2i) + v, w̃t,i = wt,i mod 1. Here w̃t,iN is an approximation of
[ct,ix]N , whereas wt,iN is an approximation of [atx]N (1 +2i)+ [bx]N . Note that
if the error of the rational approximation wt,iN is small enough we have

[2jct,ix]N = 2j ([atx]N (1 + 2i) + [bx]N) − �2jwt,iN. (3)

We will see that if (3) holds for a certain value of i then the i-th vote in the
majority decision is correct with probability 1/2 + δ (this probability cannot be
higher since Oxor guesses correctly with probability 1/2 + δ). In Section 5 we
analyze the probability that (3) holds. In the rest of this section we assume that
(3) does hold.

It can be shown that if (3) holds then

[ct,ix]N = [atx]N (1 + 2i) + [bx]N − �wt,iN.

Since
1(N) = 1, we get

1([ct,ix]N) =
1([atx]N) +
1([bx]N) + �wt,i mod 2. (4)

If (2) holds then
1([bx]N) = lb and the only unknown components in (4) are

1([ct,ix]N) and
1([atx]N). We will determine
1([ct,ix]N) through Oxor and then
we will use (4) for the majority decision on
1([atx]N).

Let πt,i be a random nonempty subset of {1, 2, . . . , j}. Denote r = max{k | k ∈
πt,i}, r ≤ j. Each time (for each values of t and i) a new random subset πt,i is

364 A. Sidorenko and B. Schoenmakers

selected. The value of r also depends on t and i. We write r instead of rt,i for
the sake of simplicity. Denote

Lk(y) = y mod 2k

for y ∈ Z, k = 1, 2, If y ≥ 0 Lk(y) gives an integer that equals k least
significant bits of y.

Lemma 4. If (3) holds then

1([ct,ix]N) = πt,i([2r−1ct,ix]N) + πt,i(Lr(−�2r−1w̃t,iN)) mod 2.

We prove this lemma in Appendix A. Lemma 4 combined with (4) gives

1([atx]N) = πt,i([2r−1ct,ix]N) + πt,i(Lr(−�2r−1w̃t,iN))+

1([bx]N) + �wt,i mod 2.

If [2r−1ct,ix]N ∈ ΛN in the above formula then we can replace πt,i([2r−1ct,ix]N)
by Oxor(πt,i, EN ([2r−1ct,ix]N)). However, since the output bit of Oxor is not
always correct we have to use some form of majority decision to determine

1([atx]N).

The majority decision on bit
1([atx]N) works as follows. If for majority of
indices i ∈ σt such that [2r−1ct,ix]N ∈ ΛN

Oxor(πt,i, EN ([2r−1ct,ix]N)) + πt,i(Lr(−�2r−1w̃t,iN))+

1([bx]N) + �wt,i = 0 mod 2,

(5)

the inversion algorithm decides that
1([atx]N) = 0, otherwise it decides that

1([atx]N) = 1.

Note that we can check if [2r−1ct,ix]N ∈ ΛN as follows. By definition,
[2r−1ct,ix]N ∈ ΛN if 2r−1ct,i ∈ ZN (+1) and [2r−1ct,ix]N < N

2 . The first con-
dition can be checked by computing Jacobi symbol of 2r−1ct,i modulo N . We
check the second condition via the rational approximation of [2r−1ct,ix]N . It can
be shown that if (3) holds then for all r, 0 ≤ r < j, [2r−1ct,ix]N < N

2 if and
only if �2rwt,i is even. If [2r−1ct,ix]N /∈ ΛN we discard the index i. Since ct,i

is uniformly distributed in ZN , [2r−1ct,ix]N ∈ ΛN with probability 1/4 (each of
the above conditions is satisfied with probability 1/2).

Multisets σt. In this section we define the multisets σt, t = 1, . . . , n − 1. For
t < log2 n + 4 denote mt = 4 · 2tδ−2. Let

σt = {i | |1 + 2i| < mt}, t = 1, . . . , log2 n + 3.

As t grows we choose a larger value for mt. Therefore the majority decisions
become more reliable as t grows. We cannot choose large mt for small t for the
following reason. For small t the error |utN − [atx]N | is large. If mt is also large

Concrete Security of the BBS Pseudorandom Generator 365

then [atx]N (1 + 2i) + [bx]N can differ much from wt,i = ut(1 + 2i) + v so that
(3) does not hold and (5) cannot be used for the majority decision.

Define ρ = {i | |1 + 2i| < 26nδ−2}. We randomly select m = 8δ−2 log2 n
elements σ = {i1, . . . , im} with repetition from ρ and let

σt = σ, mt = m, t = log2 n + 4, . . . , n − 1.

For t = 1, . . . , n − 1 |σt| = mt. For t ≥ log2 n + 4 all the σt are the same, the
number of elements (not necessarily different) in this multiset is m.

Note that there exist two basic bounds for error probabilities of major-
ity decisions: Hoeffding’s bound and Chebyshev’s inequality. Hoeffding’s bound
(see also Section 3.2) is asymptotically stronger than Chebyshev’s inequality.
However, Hoeffding’s bound requires mutual independence of the votes. For
t = log2 n + 4, . . . , n − 1 the multisets σt are chosen in such a way that Ho-
effding’s bound can be used. For t < log2 n + 4 the votes are just pairwise
independent so only Chebyshev’s inequality can be used. However, as mentioned
above, the number of votes cannot be large for small t so in this case we can-
not gain from using Hoeffding’s bound rather than Chebyshev’s inequality. This
issue is addressed in more details in Section 5.

4.3 The Algorithm

In this section we formally describe the inversion algorithm. Suppose we know
EN (x) for some x ∈ ΛN . Let Oxor be an algorithm that, given EN (x) for some
x ∈ ΛN and a subset π ⊂ {1, . . . , j}, guesses π(x) with advantage δ. The inversion
algorithm that uses Oxor as an oracle and outputs x runs as follows.

Input EN (x), N, j and oracle Oxor

---- First part: oracle calls ----
Select random integers a, b ∈ ZN

For t = 1, . . . , n do
at = [2−ta]N
For i ∈ σt do

ct,i = at(1 + 2i) + b

If (2r−1ct,i

N) = +1 then
Select a random nonempty subset πt,i ⊂ {1, . . . j}
Set r = max{k | k ∈ πt,i}
gt,i = Oxor(πt,i, EN ([2r−1ct,ix]N)), validity bit dt,i = 1

Else
dt,i = 0

End if
End do

End do
---- Second part: tightening the rational approximations ----
For ũ = 0, . . . , �η−1

a /2; ṽ = 0, . . . , �η−1
b /2; la,0 = 0, 1; lb = 0, 1 do

Reset dt,i with the values calculated in the first part

366 A. Sidorenko and B. Schoenmakers

Rational u = 2ηaũ, v = 2ηbṽ, set u0 = u
For t = 1, . . . , n − 1 do

Rational ut = 1
2 (la,t−1 + ut−1)

For i ∈ σt such that dt,i = 1 do
Rational wt,i = ut(1 + 2i) + v
If �2rwt,i = 0 mod 2 then

Set r = max{k | k ∈ πt,i}, assign w̃t,i = wt,i mod 1
ei = lb + πt,i(Lr(−�2r−1w̃t,iN)) + �wt,i mod 2

Else
dt,i = 0

End if
End do
la,t = MajorityDecision(gt,∗ + e∗ mod 2, dt,∗)

End do
x′ = [a−1

n �unN + 1
2]N

If (x′
N) = +1 and EN (x′) = EN (x) then output x′

End do

On step t the goal of the algorithm is to determine
1([atx]N). This bit is
determined via majority decision. Note that ei = lb + πt,i(Lr(−�2r−1w̃t,iN) +
�wt,i mod 2 and gt,i = Oxor(πt,i, EN ([2r−1ct,ix]N)) (see also (5)). If for a ma-
jority of indices i ∈ σt such that dt,i = 1 we have gt,i = ei then the majority
decision outputs 0, otherwise it outputs 1 (in terms of the above algorithm
dt,i = 1 if and only if [2r−1ct,ix]N ∈ ΛN). If the majority decision is correct then
la,t =
1([atx]N).

5 Analysis of the Inversion Algorithm

In this section we determine the success probability of the above inversion algo-
rithm. More formally, we prove the following lemma.

Lemma 5. The above algorithm, given EN (x) for x ∈ ΛN , j, and N , outputs
x with probability 2/9, where the probability is taken over internal coin flips of
the algorithm (which includes the coin flips of Oxor.

Recall that the inversion algorithm works as follows. For a, b ∈R ZN , we
search through a certain number of quadruples (u0N, vN, la,0, lb) such that for at
least one of them (2) holds, i.e. la,0 =
1([ax]N), lb =
1([bx]N); |[ax]N −u0N | ≤
ηaN, |[bx]N −vN | ≤ ηbN . Throughout this section we only consider a quadruple
for which (2) holds (for the other quadruples we assume that the algorithm
outputs x with probability 0).

At each step t, 1 ≤ t < n, the goal of the inversion algorithm is to determine

1([atx]N). Using Oxor this bit is determined via the majority decision, which
depends on a certain number of votes. For i ∈ σt such that [2r−1ct,ix]N ∈ ΛN ,
the i-th vote is set to 0 if (5) holds, otherwise it is set to 1. The decision on

Concrete Security of the BBS Pseudorandom Generator 367

1([atx]N) is set to the majority vote. The decision is correct if the majority of
the votes is correct.

Consider step t, 1 ≤ t < n. Assume that for all s < t we have determined
correctly the bits
1([asx]N). There exist two reasons why for some i ∈ σt the
i-th vote could be incorrect.

– The error of the rational approximation wt,iN is too large so that (3) does
not hold.

– Oracle Oxor outputs a wrong bit (recall that it outputs the correct bit only
with probability 1/2 + δ).

5.1 The Probability That (3) Does Not Hold

Lemma 6. Assume that (2) holds and for all s < t the bits
1([asx]N) are
determined correctly. Then the probability that (3) does not hold for some i ∈ σt

is at most δ/4. Here the probability is taken over all choices of random multipliers
a, b ∈R ZN .

Proof. Let us rewrite (3) again:

[2jct,ix]N = 2j ([atx]N (1 + 2i) + [bx]N) − �2jwt,iN.

Intuitively, (3) does not hold if there exists a multiple of N between 2j([atx]N (1+
2i) + [bx]N) and 2jwt,iN . Denote Δt,i = 2jwt,iN − 2j([atx]N (1 + 2i) + [bx]N).
Then (3) does not hold if and only if

|Δt,i| ≥
∣∣2j([atx]N (1 + 2i) + [bx]N)

∣∣
N

=
∣∣2jct,ix

∣∣
N

,

where for z ∈ Z |z|N = min([z]N , N − [z]N) denotes the distance from z to the
closest multiple of N .

If (2) holds and for all s < t we have determined correctly the bits
1([asx]N)
then

|[atx]N − utN | = 2−t ([ax]N − u0N) ≤ 2−t−j−6δ3N,

|[bx]N − v| = 2−j−4δN.

Since 2−tδ2|1+2i| ≤ 4 for i ∈ σt (see Section 4.2) the triangular inequality gives

|Δt,i| = 2j |utN(1 + 2i) − [atx]N (1 + 2i) + vN − [bx]N | ≤
δ

64
(2−tδ2|1 + 2i| + 4)N ≤ δ

8
N.

Thus (3) does not hold only if
∣∣2jct,ix

∣∣
N

≤ δN/8. Since ct,i is uniformly dis-
tributed in ZN , the probability that (3) does not hold is at most δ/4. It completes
the proof of Lemma 6.

368 A. Sidorenko and B. Schoenmakers

5.2 Error Probability of the Majority Decisions

Throughout this section we will refer to indices i such that [2r−1ct,ix]N ∈ ΛN

as valid indices. The i-th vote in the majority decision on
1([atx]N) is correct if
(3) holds and the reply of Oxor is correct. Following the notation of [5] we define
boolean variables τi such that τi = 1 only if the i-th vote is incorrect:

τi = 1 if and only if (3) does not hold or Oxor([ct,ix]N , πt,i) �= πt,i([ct,ix]N).

It is shown [5] that for any fixed t, 1 ≤ t < n, the multipliers ct,i are pairwise
independent. Thus boolean variables τi, i ∈ σt, are also pairwise independent.

Let μt be the number of valid indices i ∈ σt. The majority decision errs only
if

1
μt

∑
valid i∈σt

τi >
1
2
.

Due to the different choice of σt for t < log2 n + 4 and for t ≥ log2 n + 4 (see
Section 4.2) we divide our analysis into two parts.

Case t < log2 n + 4. Consider a step t < log2 n + 4. Since Oxor guesses
correctly with probability 1

2 +δ, Lemma 6 implies that the expected value E[τi] ≤
1/2 − 3δ/4. The majority decision errs only if

1
μt

∑
valid i∈σt

τi − E[τi] ≥ 3
4
δ.

Since the variance of any boolean variable is at most 1/4, Var[τi] ≤ 1/4. Cheby-
shev’s inequality for μt pairwise independent random variables τi gives

Pr

[
1
μt

∑
valid i∈σt

τi − E[τi] ≥ 3
4
δ

]
≤
(

3
4
δ

)−2

Var

[
1
μt

∑
valid i∈σt

τi

]
≤ 4

9μtδ2
.

Here the probability is taken over all choices of random multipliers a, b ∈R ZN ,
and internal coin flips of Oxor.

Since on average μt = mt/4 = 2tδ−2, the majority decision for
1([atx]N)
errs with probability 4

92−t. Thus the probability that at least one of the majority
decisions for t < log2 n + 4 errs is at most 4/9.

Case t ≥ log2 n+4. The technique we use for t ≥ log2 n+4 is called subsample
majority decision. It is proposed by Fischlin and Schnorr [5].

Consider a step t ≥ log2 n+4. Instead of using indices from a large sample ρ =
{i | |1 + 2i| < 26nδ−2} we use only indices from a small random subsample σ =
{i1, . . . , im} ⊂ ρ, where m = 8δ−2 log2 n (see also Section 4.2). Although original
τi, i ∈ ρ, are just pairwise independent τi1 , . . . , τim are mutually independent.
Therefore for these random variables we can use a stronger bound instead of
Chebyshev’s inequality, namely Hoeffding’s bound [8].

Concrete Security of the BBS Pseudorandom Generator 369

Let μt be the number of valid indices i ∈ σ (the number of i ∈ σ such that
[2r−1ct,ix]N ∈ ΛN). The majority decision errs only if

1
μt

∑
valid is∈σ

τis − E[τi] ≥ 3
4
δ,

Let νt denote the number of valid indices in ρ. Denote

τ =
1
νt

∑
valid i∈ρ

τi,

where |ρ| = 26nδ−2. The majority decision errs if either τ − E[τ] ≥ δ/4 or

1
μt

∑
valid is∈σ

τis − τ ≥ 1
2
δ.

Chebyshev’s inequality for pairwise independent τi, i ∈ ρ, gives Pr[τ − E(τ) ≥
δ/4] ≤ 4/(νtδ

2). Hoeffding’s bound [8] implies that for fixed τi, i ∈ ρ, and a
random subsample σ ⊂ ρ

Pr

[
1
μt

∑
valid is∈σ

τis − τ ≥ 1
2
δ

]
≤ exp

(
−2μt

(
δ

2

)2
)

= exp
(
−1

2
μtδ

2

)
. (6)

Since on average μt = m/4 and νt = |ρ|/4 (on average only 1/4 of the indices
are valid) the majority decision at each step t ≥ log2 n + 4 errs with probability
at most 16/(|ρ|δ2) + exp(mδ2/8) = 1/(4n) + n−1/ ln 2 < 1/(3n) for n > 29.
Thus the probability that at least one of the subsample majority decisions for
t ≥ log2 n + 4 errs is at most 1/3.

Therefore the inversion algorithm of Section 4, given EN (x), j, and N , out-
puts x with probability at least 1 − (4/9 + 1/3) = 2/9. It completes the proof of
Lemma 5.

6 Complexity of the Inversion Algorithm

In this section we determine the running time of the inversion algorithm. The
unit of time we use throughout this paper is a clock cycle.

The first part of the algorithm (oracle calls) consist of n steps t = 1, . . . , n.
On average we run the algorithm Oxor mt/2 = 2 · 2tδ−2 times for t < log2 n + 4
and m/2 = 4δ−2 log2 n for t ≥ log2 n+4, therefore in total we run Oxor 32nδ−2+
4n(log2 n)δ−2 ≈ 4n(log2 n)δ−2 times. Note that the number of oracle calls does
not depend on the number of quadruples (u, v,
1([ax]N),
1([bx]N)).

In the second part (tightening the rational approximations) we do not use
Oxor but we run a large exhaustive search cycle. The bottleneck of the second
part is multiplication �2r−1w̃t,i · N . The size (in bits) of w̃t,i is log2(η

−1
b) =

log2(δ−1)+ j+4 and the size of N is n. For instance, for ε = 1/2, M = 220, j = 5
we have δ = 2−26 and hence log2(η

−1
b) = 35. Therefore we may assume that a

single multiplication takes n clock cycles. Hence the complexity of the second
part is at most the product of the following factors:

370 A. Sidorenko and B. Schoenmakers

1. Number of quadruples (u, v,
1([ax]N),
1([bx]N)), that is η−1
a η−1

b ;
2. Number of steps t, that is n;
3. Number of votes for the majority decision, that is m/4 = 2δ−2 log2 n;
4. Complexity of the multiplication �2r−1w̃t,i · N , that is n;

Since ηa = 2−j−6δ3, ηb = 2−j−4δ, the complexity of the second part is
211δ−6n2 log2 n clock cycles. Recall that the running time of Oxor is essentially
the same as the one of B. Thus the running time of the inversion algorithm is
4n(log2 n)δ−2(TB + 22j+9nδ−4). Lemma 5 implies that there exists algorithm R
that inverts the absolute Rabin function in expected time

TR ≤ 18n(log2 n)δ−2(TB + 22j+9nδ−4). (7)

Remark 4. The argument of [5] implies that inversion of the absolute Rabin
function needs at least (ln 2/4)nδ−2 runs of B (see also Remark 3). Therefore
the number of oracle runs in the above inversion algorithm is optimal up to a
factor of log2 n. However, in (7) we also have a second component that cannot
be neglected in practice.

7 Concrete Security of the BBS

In this section we state our main result about the concrete security of the BBS
pseudorandom generator. We give a bound for running time TA and advantage
ε such that the BBS generator is (TA, ε)-secure (Theorem 3).

Theorem 1. Suppose the BBS pseudorandom generator is not (TA, ε)-secure.
Then there exist an algorithm F that factors the modulus N in expected time

TF ≤ 36n(log2 n)δ−2(TA + 22j+9nδ−4),

where δ = (2j − 1)−1M−1ε.

Proof. The statement follows from (7), Lemma 1, and Lemma 2.

Therefore a statistical test that distinguishes the BBS sequences from random
sequences can be used to factor the modulus N . However, we observe that the
reduction is not tight in the sense that for a practical choice of parameters TF ,
TA. Furthermore, Remark 4 implies that the reduction for the BBS generator
cannot be significantly tighter. There is a large gap between security of this
pseudorandom generator and the factoring problem.

In order to complete the concrete security analysis of the BBS generator we
will assume a concrete lower bound on the hardness of integer factoring, which
is obtained by extrapolating the best factorization results to date.

Concrete Security of the BBS Pseudorandom Generator 371

7.1 Hardness of Factoring

The fastest general-purpose factoring algorithm today is the general number field
sieve. According to [4,11] on heuristic grounds the number field sieve is expected
to require time proportional to γ exp((1.9229 + o(1))(ln N)1/3(ln lnN)2/3) for
a constant γ. Following [4] we make an assumption that the o(1)-term can be
treated as zero. From this we can calculate γ.

Let L(n) be the number of clock cycles needed to factor an n-bit integer.
We assume that L(n) ≈ γ exp(1.9229(n ln 2)1/3(ln(n ln 2))2/3). Experience from
available data points suggests that L(512) ≈ 3 · 1017 clock cycles, therefore
γ ≈ 2.8 · 10−3 and

L(n) ≈ 2.8 · 10−3 · exp(1.9229(n ln 2)1/3(ln(n ln 2))2/3). (8)

Assumption 2. No algorithm can factor a randomly chosen n-bit Blum-integer
in expected time T < L(n), where L(n) is given by (8).

All the results below hold under the above assumption.

Theorem 3 (Concrete security of the BBS). Under Assumption 2, the
BBS pseudorandom generator is (TA, ε)-secure if

TA ≤ L(n)
36n(log2 n)δ−2

− 22j+9nδ−4, (9)

where δ = (2j − 1)−1M−1ε.

7.2 Comparison with Known Results

Thus we have shown that there exist a reduction a successful attack on the
BBS generator to factoring. While for asymptotic security it suffices to give a
polynomial time reduction, we need for concrete security a reduction that is
as efficient as possible. In this subsection we compare the complexity of our
reduction, given by Theorem 3, with the results of [1,15,5].

A close look at the security proof of Alexi et al. [1] gives the following lemma.

Lemma 7 (Alexi et al.). Under Assumption 2, the BBS pseudorandom gen-
erator is (TA, ε)-secure if

TA ≤ L(n)
22724jn3ε−8M8

. (10)

Recall that M denotes the length of the output of the BBS generator (e.g.,
M = 220). Formula (10) has M8 in the denominator whereas (9) has M2. Thus
our security proof is stronger than the one of [1].

A disadvantage of [15] is that this paper deals only with deterministic sta-
tistical tests, thus the result can not be expressed in terms of Definition 3.
Furthermore [15] uses [1] as a building block so the complexity of the reduction
proposed is of the same order.

The lemma below is due to Fischlin and Schnorr [5]. It establishes the con-
crete security of the BBS generator with 1 output bit per iteration.

372 A. Sidorenko and B. Schoenmakers

Lemma 8 (Fischlin and Schnorr). Under Assumption 2, the BBS pseudo-
random generator with 1 output bit per iteration is (TA, ε)-secure if

TA ≤ L(n)
6n(log2 n)ε−2M2

− 27nε−2M2 log2(8nε−1M). (11)

Here the denominator of the first component in the righthand side is essen-
tially the same as the one in (9) for j = 1. The second component in (11) is
smaller in the absolute value than the second component in (9) by a factor of
ε−2M−2. The reason is that there is a trick in the reduction [5] (namely, process-
ing all approximate locations simultaneously) that allows to decrease the second
component. We do not know if it is possible to apply this trick for j > 1 and
we leave this question as an open problem. In the below example the factor of
ε−2M−2 in the second component does not affect the final conclusion about the
optimal value of j.

7.3 Example

An important application of Theorem 3 is that it can be used to determine the
optimal values for the parameters of the BBS generator.

Suppose our goal is to generate a sequence of M = 220 bits such that no
adversary can distinguish this sequence from truly random binary sequence in
time TA = 2100 clock cycles with advantage ε = 1/2. The question is what length
of the modulus n and parameter j should be used to minimize the computational
effort per output bit.

Inequalities (9) and (11) connect the security parameters (TA, ε) with pa-
rameters of the BBS (M, n, j) for j ≥ 1 and j = 1 respectively. In order to find
the optimal n and j we fix TA, ε, M and consider n as a function of j.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
j

5�106

1�107

1.5�107

2�107

nj
2

�����������
j Computationalwork of the BBS

Fig. 1. The computational work of the BBS is minimal for j = 5

Concrete Security of the BBS Pseudorandom Generator 373

The computational work of the BBS (the running time needed to output
a pseudorandom sequence) is proportional to n2/j (each modular multiplica-
tion costs O(n2) binary operations so the generation of a BBS sequence takes
O(Mn2/j) operations). Figure 1 displays the computational work of the BBS
for j ∈ [1, 15]. There are two values of the computational work for j = 1 on the
figure. The smaller value results from (11) and the larger one results from (9).
For j = 1 the reduction [5] is more efficient. Nevertheless, the difference turns
out to be not significant and we observe that extraction of 5 bits per iteration
makes the BBS about 2 times faster in comparison with 1 bit case. However, even
for j = 5 the BBS is quite slow since the corresponding length of the modulus
n = 6800.

It is not true that it always pays off to extract more that 1 bit on each
iteration. The optimal number of bits to be extracted on each iteration depends
on the length of the output sequence M and on the security parameters TA, ε.
For instance, for M = 230 it turns out that the best choice is j = 1.

8 Concluding Remarks and Open Problems

Security of the BBS genarator has been thoroughly analyzed [1,2,5,6]. Never-
theless, it has been uncertain how to select the size of the modulus and the
number of bits extracted on each iteration such that a desired level of security is
reached, while minimizing the computational effort per output bit. In this paper
we answer this question.

Generalizing the ideas of [5,15] we propose a new security proof for the BBS
generator with several output bits per iteration. The new reduction is more
efficient than all previously known reductions.

With minor changes our argument can be applied for the analysis of the RSA
pseudorandom generator.

However, the new reduction is still not tight. There is a large gap between
the security of BBS generator and the factoring problem. Moreover, using the
information-theoretic approach, Fischlin and Schnorr [5] show that the security
reduction for BBS cannot be significantly tighter. Searching for the construc-
tions based on the factoring problem with tight security reduction is one of the
challenging problems in the theory of provably secure pseudorandom generators.

Acknowledgements

We thank Natalia Chernova for very helpful discussions.

References

1. W. Alexi, B. Chor, O. Goldeich and C. P. Schnorr. RSA and Rabin functions:
certain parts are as hard as the whole. SIAM Journal on Computing 17, 1988, pp.
194–209.

2. L. Blum, M. Blum and M. Shub. A Simple Unpredictable Pseudo-Random Number
Generator. SIAM Journal on Computing 15, 1986, pp. 364–383.

374 A. Sidorenko and B. Schoenmakers

3. M. Bellare and P. Rogaway. The exact security of digital signatures how to sign
with RSA and Rabin. In Advances in Cryptology – Eurocrypt 1996, volume 1070
of Lecture Notes in Computer Science, pp. 399 – 416. Berlin: Springer-Verlag, 1996.

4. ECRYPT Yearly Report on Algorithms and Keysizes (2004). Available at
http://www.ecrypt.eu.org/documents/D.SPA.10-1.1.pdf.

5. R. Fischlin and C. P. Schnorr. Stronger Security Proofs for RSA and Rabin Bits.
Journal of Cryptology (2000) 13, pp. 221–244.

6. R. Gennaro. An improved pseudo-random generator based on discrete log. In Mihir
Bellare, editor, Advances in Cryptology – Crypto 2000, volume 1880 of Lecture
Notes in Computer Science, pp. 469 – 481. Springer-Verlag, 20–24 August 2000.

7. O. Goldreich. Three XOR-Lemmas – An Exposition. Technical re-
port, ECCC TR95-056, 1995. Available at ftp://ftp.eccc.uni-trier.de/pub/
eccc/reports/1995/TR95-056/Paper.pdf.

8. W. Hoeffding. Probability in Equations for Sums of Bounded Random Variables.
Journal of the American Statistical Association 56 (1963), pp. 13–30.

9. D. E. Knuth. Seminumerical Algorithms, 3rd edition. Addison-Wesley, Reading,
MA, 1997.

10. J. Katz, N. Wang. Efficiency Improvements for Signature Schemes with Tight
Security Reductions. CCS’03, October 27-30, 2003, Washington, DC, USA.

11. A. K. Lenstra, E. R. Verheul. Selecting Cryptographic Key Sizes. Journal of
Cryptology (2001) 14: 255–293.

12. A. J. Menezes, P. C. van Oorschot, S. A. Vanstone. Handbook of Appied Cryp-
tography. CRC Press series on discrete mathematics and its applications, 2000.

13. M. O. Rabin. Digitalized signatures and public-key functions as intractible as
factorization. Technical report, TR-212, MIT Laboratory for Computer Science,
1979.

14. V. Shoup. On the security of a practical identification scheme. In Advances in
Cryptology – Eurocrypt 1996, volume 1070 of Lecture Notes in Computer Science,
pp. 344 – 353. Berlin: Springer-Verlag, 1996.

15. U. V. Vazirani, V. V. Vazirani. Efficient and Secure Pseudo-Random Number
Generation. Proceedings 25th Symposium on Foundations of Computing Science
IEEE, pp. 458–463, 1984.

16. A. C. Yao. Theory and Application of Trapdoor Functions. Proceedings of IEEE
Symposium on Foundations of Computer Science, pp. 80–91, 1982.

A Proof of Lemma 4

Lemma 4 states that if (3) holds then

πt,i([2r−1ct,ix]N) =
1([ct,ix]N) + +πt,i(Lr(−�2r−1w̃t,iN)) mod 2.

To prove this lemma we will show that

πt,i([2r−1ct,ix]N) = πt,i(2r−1[ct,ix]N − �2r−1w̃t,iN) (12)

and

1([ct,ix]N) + πt,i(Lr(−�2r−1w̃t,iN)) =

πt,i(2r−1[ct,ix]N − �2r−1w̃t,iN) mod 2.
(13)

Concrete Security of the BBS Pseudorandom Generator 375

It can be shown that if (3) holds then for all r, 0 ≤ r ≤ j,

[2r−1ct,ix]N = 2r−1[ct,ix]N − �2r−1w̃t,iN. (14)

Applying function πt,i to both sides of (14) gives (12). To prove (13) we first
note that

Lr(2r−1[ct,ix]N − �2r−1w̃t,iN) =

(2r−1
1([ct,ix]N) + Lr(−�2r−1w̃t,iN)) mod 2r.
(15)

From (14) follows that 2r−1[ct,ix]N − �2r−1w̃t,iN ≥ 0. Hence in this case Lr

corresponds to r least-significant bits. Thus applying function πt,i to the left-
hand side of (15) gives

πt,i(Lr(2r−1[ct,ix]N − �2r−1w̃t,iN)) = πt,i(2r−1[ct,ix]N − �2r−1w̃t,iN). (16)

Then we apply πt,i to the right-hand side of (15):

πt,i((2r−1
1([ct,ix]N) + Lr(−�2r−1w̃t,iN)) mod 2r) =

πt,i(2r−1
1([ct,ix]N) + Lr(−�2r−1w̃t,iN)) =

1([ct,ix]N) + πt,i(Lr(−�2r−1w̃t,iN)) mod 2,

(17)

since πt,i ⊂ {1, . . . , r}, r ∈ πt,i. (15), (16), and (17) result in (13). It completes
the proof of Lemma 4.

The Equivalence Between the DHP and DLP
for Elliptic Curves Used in Practical

Applications, Revisited

K. Bentahar

Dept. Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road,

Bristol, BS8 1UB, United Kingdom
bentahar@cs.bris.ac.uk

Abstract. The theoretical equivalence between the DLP and DHP prob-
lems was shown by Maurer in 1994. His work was then reexamined by
Muzereau et al. [12] for the special case of elliptic curves used in practical
cryptographic applications. This paper improves on the latter and tries
to get the tightest possible reduction in terms of computational equiva-
lence, using Maurer’s method.

Keywords: DHP-DLP equivalence, Elliptic Curve Cryptosystems.

1 Introduction

Maurer and Wolf [7,9,8,11] proved that, for every cyclic group G with prime
order p, the DLP and DHP over G are equivalent if there exists an elliptic curve,
called auxiliary elliptic curve, over Fp with smooth order.

Muzereau et al. [12] showed that such auxiliary elliptic curves are highly
likely to exist for almost all elliptic curve groups. It is however remarked that
it gets extremely hard to construct them as the order of G increases. Auxiliary
elliptic curves with smooth orders were built and explicitly presented for most
of the curves in the SECG standard, hence making Maurer’s proof applicable to
most of the groups used in practical elliptic curve cryptography.

The idea behind the method introduced by Maurer [7] rests on the concept of
implicit representation: The implicit representation of an integer a (modulo p)
is defined to be ga ∈ G. The algorithm proceeds by doing computations in the
implicit representation instead of the usual explicit representation. For example,
to compute a + b in implicit form, ga · gb is computed instead which costs one
multiplication. For a − b, we compute ga · (gb)−1 costing one inversion and one
multiplication. To compute a · b in implicit form, one call to an DH-oracle, that
computes gab given ga and gb, is needed. For the implicit form of a−1, one uses
the fact that ap−1 = 1, so ap−2 = a−1, which would cost O(lg p) calls to the
DH-oracle. Hence, granted access to a DH-oracle for the group G, all algebraic
algorithms can be converted to work in the implicit representation.

This paper builds on [12] by tightening the reduction and trying to extend
the result to the remaining curves. Our goal is to show that, for the elliptic

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 376–391, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Equivalence Between the DHP and DLP for Elliptic Curves 377

curve cryptosystems described in the various standards, the number of group
operations and DH-oracle calls required to reduce the DLP to the DHP is rea-
sonably “small.” Say for example that this number is less than 2r then, if we
believe that the much more extensively studied DLP over the same group takes
at least 2� operations to solve then an algorithm for solving the DHP, and thus
breaking the DHP protocol, would require a minimum of 2�−r group operations.
Our target is therefore to minimise the value of r, in order to get the tightest
possible security reduction.

Affine coordinates were used in [12] which requires division and hence a DH-
inversion oracle was needed. This was implemented at the cost of O(lg p) calls to
a DH-oracle which is clearly an expensive choice as it leads to a large increase in
the number of DH-oracle calls. We use projective coordinates instead to avoid this
problem. As a further optimisation we use an optimised square root extraction
algorithm.

One would also think that using addition chains may reduce the cost of
exponentiation but it turns out that this saves very little and only adds com-
plications. So it was decided to use traditional methods of exponentiation and
concentrate on the more critical areas of the algorithm. Section 6 expands on
this and justifies this decision.

The full version of this paper [2] providess a list of auxiliary elliptic curves
giving almost the tightest possible reduction, using the Maurer method.

2 Notation and Definitions

Throughout the paper, we let G be a cyclic group with generator g and prime
order p > 3. We begin by defining the problems DLP and DHP.

Definition 1 (DLP and DHP)

– Given h ∈ G, the problem of computing an integer α ∈ [0, |G|) such that
gα = h is called the Discrete Logarithm Problem (DLP) with respect to g.

– Given two elements ga, gb ∈ G, we call the problem of computing gab the
Diffie-Hellman Problem (DHP) with respect to g. (a, b are unknown)

We also need to formalise the notion of a DH and DL oracles.

Definition 2 (DL and DH oracles)

– A DH-oracle takes as input two elements ga, gb ∈ G and returns gab. We
write DH(ga, gb) = gab.

– A DL-oracle takes as input an element h = ga ∈ G and returns a mod |G|.
We write DL(h) = DL(ga) = a.

Both oracles return answers in unit time. (By definition of Oracles)

The equivalence between the two problems was theoretically established by
Maurer and Wolf in the nineties [7,9,8,11], but it relies on the existence of some

378 K. Bentahar

auxiliary elliptic curves whose orders must be smooth. These auxiliary elliptic
curves are not necessarily easy to build and it seems they are exceptionally hard
to find in general. Hence, a more concrete treatment for the elliptic curve groups
used in practice proved necessary and this was done in [12]. The paper discussed
the computational equivalence between the DLP and DHP, and it also presented
an explicit list auxiliary elliptic curves needed for the reduction.

Note that, since solving any instance of the DHP given access to a DL-oracle
is trivial1, we only concentrate on the reverse implication for the equivalence to
hold: If we suppose the DHP turns out to be easy, we wish to know if this implies
that the DLP is easy as well.

The base 2 logarithm will be denoted by lg x (instead of log2). We will also
use M and I to denote multiplications and inversions in G, respectively, and DH
for DH-oracle calls. Formulae of the form

xDH + yI + zM

mean: Cost is x DH-oracle calls, y inversions and z multiplications in G.

3 The Algorithm

Given h ∈ G, we want to find the unique α modulo p such that h = gα. We
assume an elliptic curve E over Fp is given by the Weierstrass equation y2 =
x3 − 3x + b, with smooth order given as a product of coprime integers

|E| =
s∏

j=1

qj , (1)

with qj < B of roughly the same size, where B is some smoothness bound. This
choice of the defining equation of E saves 1DH while adding points on it. The
point at infinity on E is denoted by O.

To solve a DLP in G, Maurer’s approach is to use a DH-oracle and solve
the problem in the implicit representation over E, which is supposed to have a
smooth order. So, given h = gα ∈ G and the elliptic curve E, as above, we check
whether gy2

= gα3−3α+b can be solved for y. If so then we have found a point
Q on E in its implicit form, otherwise we replace α by α + d for some random,
small, integer d and do the checking again until we get a point Q on E.

Note that, at this stage, we know Q in its implicit representation only. The
idea now is to solve Q = kP over E, where P is a generator of E. Upon finding
the value of k, we then compute kP in the explicit representation and hence
recover the value of α, from the explicit first coordinate of Q. Given that E has a
smooth order, we simply use the naive Pohlig-Hellman method of first solving the
problem in the subgroups of E of prime power order, and then recovering k using
the Chinese Remainder Theorem (CRT). The reader is referred to Algorithm 1
for the detailed description of the algorithm.
1 Given ga, gb ∈ G, we compute a = DL(ga) and then compute gab = (gb)a.

The Equivalence Between the DHP and DLP for Elliptic Curves 379

The crucial point to note is that we have a wide choice of curves over Fp

that have sizes distributed in the Hasse interval [p + 1 − √
p, p + 1 +

√
p]. So,

with a bit of luck, one hopes that one of these sizes is smooth enough and hence
the corresponding auxiliary elliptic curve would make solving our DLP easy. We
draw the reader’s attention to the fact that this is the same reason that makes
the ECM factoring method so successful.

In the description of Algorithm 1, note that for the comparison step (12) to
test whether a point (X : Y : Z), in projective coordinates, is equal to a point
(x, y), in affine coordinates, we simply check whether xZ2 = X and yZ3 = Y .
In implicit representation this becomes

(gZ2
)x = gX and (gZ3

)y = gY .

This use of projective coordinates gives our greatest improvement over [12].
We also make some savings by storing precomputed values and using them
throughtout the algorithm. The next two subsections will describe the improve-
ments made.

Algorithm 1 Solve a DLP in a group G given access to a DH-oracle for G.
Input: A cyclic group G = 〈g〉 of prime order p, an elliptic curve E/Fp : y2 =
x3 − 3x + b, generated by P , |E| =

∏s
j=1 qj and h = gα ∈ G

Output: α = DL(h)
Step 1. Compute a valid implicit x-coordinate related to the DL α

1: repeat
2: Choose d randomly, and set gx ← hgd 〈gx ← gα+d〉
3: gz ← gx3−3x+b.
4: until gz(p−1)/2

= g 〈Test quadratic-residuosity of z (mod p)〉
Step 2. Compute gy from gz = gy2

:
5: Extract the square root of z in implicit representation, to obtain gy.

Now, Q = (x, y) is a point on E known in the implicit representation only (gx, gy).
Step 3. Compute k : Q = kP in E(Fp): 〈Use the Pohlig-Hellman simplification〉

6: for j = 1, . . . , s do
7: Compute Qj = (guj , gvj , gwj), where (uj , vj , wj) = |E|

qj
Q 〈Projective coordinates〉

8: Set i ← 0, (u, v) ← O, Pj ← |E|
qj

P 〈Affine coordinates〉
9: repeat 〈Solve Qj = kjPj in the subgroup of E(Fp) of order qj〉

10: i ← i + 1.
11: (u, v) ← (u, v) + Pj . 〈(u, v) ← iPj = i |E|

qj
P 〉

12: until (gw2
j)u = guj and (gw3

j)v = gvj 〈Test if (gu, gv) equals (guj , gvj , gwj)〉
13: kj ← i.
14: end for

Step 4. Construct α
15: Compute k (mod |E|) such that ∀j ∈ {1, . . . , s} : k ≡ kj (mod qj). 〈Use CRT 〉
16: Compute kP = Q in affine coordinates.
17: Then x (mod p) is the abscissa of Q, and α = x − d.

380 K. Bentahar

3.1 Square Root Extraction

We describe the special cases in the explicit notation. This algorithm is used
by Algorithm 1, in the implicit representation, to compute gy from gz = gy2

=
gx3−3x+b, see Algorithm 2.

Suppose a is known to be a quadratic residue modulo p and we want to
compute x ∈ Fp such that x2 ≡ a (mod p). Then, besides the general Tonelli
and Shanks algorithm used in [12], we also treat two special cases:

1. If p ≡ 3 (mod 4) then x ≡ a(p+1)/4 (mod p),
2. If p ≡ 5 (mod 8) then do the following: Compute s = a(p−5)/8, u = a · s,

t = s · u. If t = 1 then x = u otherwise x = 2(p−1)/4 · u.

Treating these special cases is worthwhile since half the primes are congruent
to 3 modulo 4, and half of the remaining primes are congruent to 5 modulo 8. The
only remaining primes are all congruent to 1 modulo 8. We gain no advantage
by using similar methods for this case, so we simply use the Tonelli-Shanks
algorithm for the remaining primes, see [4, p. 32].

Algorithm 2 Implicit square roots in a group G using a DH-oracle for G.
Input: A cyclic group G = 〈g〉 of odd prime order p, and gz = gy2 ∈ G.
Output: gy.

1: if p ≡ 3 (mod 4) then

2: gy ← gz(p+1)/4
. 〈First case: p ≡ 3 (mod 4)〉

3: else if p ≡ 5 (mod 8) then

4: gs ← gz(p−5)/8
, gu ← gzs, gt ← gsu. 〈Second case: p ≡ 5 (mod 8)〉

5: if gt = g then
6: gy ← gu.
7: else
8: gy ← gu·2(p−1)/4

.
9: end if

10: else
11: Write p − 1 = 2e · w, w odd. 〈Tonelli and Shanks algorithm for p ≡ 1 (mod 8)〉
12: Set gs ← g, r ← e, gy ← gz(w−1)/2

, gb ← gzy2
, gy ← gzy. 〈Initialise〉

13: while gb �≡ 1 mod p. do
14: Find the smallest m ≥ 1 such that g(b2

m
) ≡ 1 mod p. 〈Find exponent〉

15: Set gt ← g(s2r−m−1
), gs ← gt2 , r ← m, gy ← gyt, gb ← gbs. 〈Reduction〉

16: end while
17: end if

3.2 Explicit and Implicit Point Multiplication

As already remarked, we use the projective coordinate system in step 3 of Algo-
rithm 1 instead of the affine coordinate system. The formulae for addition and

The Equivalence Between the DHP and DLP for Elliptic Curves 381

doubling2 in the implicit representation easily follow from their standard explicit
counterparts. The cost of each operation is given in the following table.

Doubling Addition
Explicit Implicit Explicit Implicit

DH 8 16
I 4 5
M 8 14 16 3

2 lg p + 13
2

For the affine coordinates, note that we only need the explicit case (In the
j-loop). The costs are:

1I + 4M for doubling and 1I + 3M for addition.

Since we will need to compute kP for different values of k but a fixed P ,
pre-computing the values 21P, 22P, . . . , 2�lg k�P will save us some computation.
Then, using the right-to-left binary method, we expect only 1

2 lg k elliptic curve
additions. We now summarise the costs of exponentiation.

Implicit Exponentiation in Projective Coordinates: The cost of the pre-
computation is about

(8DH + 4I + 14M) lg k (2)

and then each exponentiation would cost about(
8DH +

5
2
I +

1
4
(3 lg p + 13)M

)
lg k. (3)

Explicit Exponentiation in Affine Coordinates: The precomputation cost
is

(1I + 4M) lg k (4)

and then each exponentiation would cost

1
2
(1I + 3M) lg k. (5)

3.3 Complexity of the Algorithm

The complexity analysis of Algorithm 1, presented in Appendix A, yields the
following theorem

Theorem 1. Let G be a cyclic finite group of prime order p. Assume an elliptic
curve E over Fp has been found, whose B-smooth order is

|E| =
s∏

j=1

qj ,

2 Doubling is the operation of adding a point to itself: 2P = P + P .

382 K. Bentahar

where qj are not necessarily prime but are coprime of roughly the same size.
Then, solving a given instance of the DLP in G requires on average about

O
(

log2 p

log B

)
DH + O

(
B log2 p

log B

)
M.

For comparison, we quote below the asymptotic costs obtained by [12]

O
(

log3 p

log B

)
DH + O

(
B log2 p

log B

)
M.

While the number of multiplications has remained the same, the number of
DH-oracle calls has now become quadratic in the size of the group G instead of
cubic.

Note that, in order to get a lower bound on the cost of solving a DHP instance,
we no longer require the auxiliary elliptic curves’ orders to be smooth. This is
because as long as we assume that the DLP is an exponentially hard problem
then we do not mind if the reduction from the DHP to the DLP is exponential
too. This remark will allow us to choose s = 3 later, and then the task will be to
find smooth elliptic curves whose orders are product of three coprime numbers.
This is a significant relaxation of the smoothness condition.

4 Implications on the Security of the DHP

The implications of this reduction on the security of the DLP was treated in
[12]. We only comment on its implications on the security of the DHP, as it is
here where the work done in this paper matters most.

Let CDLP , CDHP denote the costs of solving the DLP and DHP on an elliptic
curve of size p, respectively. By Maurer’s reduction, we have CDLP = NDH ·
CDHP + NM, where NDH, NM are respectively the number of calls to the DH-
oracle and number of multiplications in G. Hence, for NM � CDLP we get

CDHP =
CDLP − NM

NDH
∼ CDLP

NDH
.

Since solving the DLP on an elliptic curve E is believed to take at least
√|E|

steps [3], in general, then setting

TDH =

√|E|
NDH

,

we see that TDH gives us a lower bound on the number of operations required
to break the DHP, assuming NM � CDLP . Hence, it is the value of TDH that
gives the exact security result, given the best auxiliary elliptic curves we found.

The tightness of the security reduction is controlled by two values. The first
being the number of field multiplications NM, and second and most important
is the value TDH for the reason put forth earlier.

The Equivalence Between the DHP and DLP for Elliptic Curves 383

Tables 1 and 2 give the logarithms of these key values, lg NM and lg NDH,
for the curves in the SECG standard [17]. They also give lg

√|E|, the logarithm
of the (believed) minimum cost of solving an instance of the DLP. The column
headed adv gives the number of security bits gained on the previous results from
[12]. The last rows of the tables are detached to indicate that the values are
theoretical and that no auxiliary elliptic curves could be generated for them,
mainly due to the sheer size of the numbers that needed to be factored.

Table 1. Summary of results for curves of large prime characteristic

secp curve lg |E| lg NM lg NDH lg TDH adv

secp112r1 55.9 46.3 11.4 44.4 6.4
secp112r2 54.9 45.6 11.4 43.5 5.5
secp128r1 64.0 51.9 11.6 52.4 6.4
secp128r2 63.0 51.2 11.6 51.4 5.4
secp160k1 80.0 62.9 12.0 68.0 8.0
secp160r1 80.0 62.9 12.0 68.0 6.0
secp160r2 80.0 62.9 12.0 68.0 7.0
secp192k1 96.0 73.8 12.2 83.8 7.8
secp192r1 96.0 73.8 12.2 83.8 6.8
secp224k1 112.0 84.7 12.4 99.6 6.6
secp224r1 112.0 84.7 12.4 99.6 7.6
secp256k1 128.0 95.5 12.6 115.4 7.4
secp256r1 128.0 95.5 12.6 115.4 7.4
secp384r1 192.0 138.8 13.2 178.8 8.8
secp521r1 260.5 184.9 13.7 246.8 -

Now, given our estimates for the number of group operations and DH-oracle
calls, we see that the smallest s for which NM �√|E| is s = 3. The reduction
cost is then (see Appendix A for general s)

(
149
6

lg p +
55
8

)
DH +

(
(
3
2

lg p +
13
2

)(3p1/3) + (
3
2

lg p +
511
4

) lg p

)
M.

As an illustration of the advantage gained over the previous results presented
in [12], we consider the security of DHP for secp256r1: The DLP on this curve
requires about 2128 computational steps, employing the currently known meth-
ods. Using our auxiliary elliptic curve, we deduce that the DHP cannot be solved
in less than 2115.4 computational steps, as opposed to 2108 from the previous pa-
per. That is a gain factor of about 27.4 over the previously reported value in [12],
see Table 1.

Since an amount of computation of about 2115.3 ≈ 5 ·1034 group operations is
infeasible with today’s computational power, one can draw the conclusion that a

384 K. Bentahar

Table 2. Summary of results for curves of even characteristic

sect curve lg |E| lg NM lg NDH lg TDH adv

sect113r1 56.0 46.4 11.4 44.6 6.6
sect113r2 56.0 46.4 11.4 44.6 6.6
sect131r1 65.0 52.6 11.7 53.3 6.3
sect131r2 65.0 52.6 11.7 53.3 6.3
sect163k1 81.0 63.5 12.0 69.0 7.0
sect163r1 81.0 63.5 12.0 69.0 7.0
sect163r2 81.0 63.5 12.0 69.0 7.0
sect193r1 96.0 73.8 12.2 83.8 6.8
sect193r2 96.0 73.8 12.2 83.8 6.8
sect233k1 115.5 87.0 12.5 103.0 7.0
sect233r1 116.0 87.4 12.5 103.5 7.5
sect239k1 118.5 89.1 12.5 106.0 8.0
sect283k1 140.5 104.0 12.8 127.7 8.7
sect283r1 141.0 104.3 12.8 128.2 7.2
sect409k1 203.5 146.5 13.3 190.2 8.2
sect409r1 204.0 146.9 13.3 190.7 -
sect571k1 284.5 201.0 13.8 270.7 -
sect571r1 285.0 201.3 13.8 271.2 -

secure implementation of a protocol whose security depends on the intractability
of the DHP on the curve secp256r1 can safely be used, provided the DLP is
really of the conjectured complexity.

Note that the SECG standard [17] includes all the curves in the NIST [13]
and the most used ones in the ANSI [1] standards, covering the most commonly
used elliptic curves in practice.

5 Building the Auxiliary Elliptic Curves

By the argument presented in the previous section, we need to construct elliptic
curves whose order is a product of three coprime numbers of roughly the same size.
That is qi ≈ p1/3. Muzereau et el. [12] used the Complex Multiplication (CM) tech-
nique tobuild auxiliary elliptic curveswith smooth orders but thisdoesnot perform
very well as p gets larger, due to the prohibitive precision then needed for the cal-
culations. In our case, it proved to be computationally more efficient to generate
random elliptic curves and then test if their sizes are of the required form.

Let us estimate the probability that a number in a large interval centred
around p is a product of three co-primes of roughly the same size.

Given three randomly chosen (positive) integers, we first want to compute
the probability that they are pairwise coprime. Let p be prime. The probabil-
ity that p divides two of these integers but not the third is 3/p2 ·(1−1/p) and the

The Equivalence Between the DHP and DLP for Elliptic Curves 385

probability that p divides all of them at once is 1/p3. So, the probability that p
is not a common divisor of any two of these integers is

1 − 3
p2

(
1 − 1

p

)
− 1

p3
= 1 − 3

p2
+

2
p3

.

Hence, the probability that three randomly chosen integers are pairwise coprime
is

∏
p prime

(
1 − 3

p2
+

2
p3

)
=

∏
p prime

(
1 − 1

p

)2(
1 +

2
p

)
≈ 0.2867474.

The infinite product is clearly convergent but a closed form of its value could
not be obtained by the author. The numerical approximation 0.2867474 was
obtained using PARI, [14].

For a large interval (m, n), the product should be taken only for p ≤ m − n.
Now, since 1−3/p2 +2/p3 is positive, strictly increasing approaching 1 from be-
low, we deduce that the above estimate is a lower bound to the actual probability
we want.

In practice, for large p and corresponding Hasse intervals, the above value
proved to be a good estimate and it matched nicely with a Monte Carlo simula-
tion to estimate this probability over large Hasse intervals.

For most cryptographic groups G from the SECG standard, auxiliary elliptic
curve E of the form y2 = x3 − 3x + b were successfully generated by finding
a suitable value of b. The full version of this paper [2] specifies these values
together with the (prime) size of the group G, which is the characteristic of the
prime finite-field over which E is defined. The size of the elliptic curve group |E|
is given as a product of three coprime numbers of roughly equal size.

When trying to generate the auxiliary elliptic curves, the main difficulty
was to actually factor |E|. For large |G|, factorisation fails most of the time
and another random value of b is tried without any success. This is the main
reason for failing to produce the necessary data for the three curves secp521r1,
sect571r1 and sect571k1. However, two missing auxiliary elliptic curves from
[12], viz. secp224k1 and sect409r1 were successfully found. While first appears
to have been just forgotten, the second was due to the difficulty of generating
the auxiliary elliptic curves using the CM method.

6 Can We Do Better Using Maurer’s Approach

Here, it is argued that not much improvement can be made using Maurer’s
reduction, as described in Algorithm 1.

Just computing gx3
and (twice) checking the quadratic residuosity of gx3−3x+b

will cost at least
(2 + 2 × lg(p/2))DH.

386 K. Bentahar

For s = 3 we find that the ratio of the estimated cost of this paper to this bound
is

149
6 lg p + 55

8

2 lg p
∼ 149

12
≈ 23.6.

Step 2 is not independent from the first so its cost can be reduced even
further, but the third step does not seem to have any corelation with the previous
steps. If we say that step 3 costs at least one exponentiation, to compute one of
the (|E|/qj)Q, then the ratio drops to

149
6 lg p + 55

8

(2 + 2/3) lg p
∼ 149

16
≈ 23.2.

Hence, it turns out that about 3 bits of security is all that can be hoped for
above the current work.

7 Conclusion

Assuming the DLP is an exponentially hard problem, we have shown that the
Maurer-Wolf reduction with naive search yields a concrete security assurance for
the elliptic curves recommended by the current standards, for which we could
generate the auxiliary elliptic curves.

We have found two new auxiliary elliptic curves, missing from [12], viz.
secp224k1 and sect409r1. It remains open to find auxiliary elliptic curves for
the curves secp521r1, sect571r1 and sect571k1. These will have sizes larger
than 500 bits, which presents the current factoring algorithms with a big chal-
lenge.

Acknowledgement

I wish to thank Nigel Smart and all the members of the Security Group at Bristol
University for their great help and insightful discussions. Special thanks go to
Dan Page for helping me run my code on a cluster.

References

1. ANSI. X9.62 – Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA). 1999.

2. K. Bentahar. The Equivalence Between the DHP and DLP for Elliptic Curves Used
in Practical Applications, Revisited. Cryptology ePrint Archive, Report 2005/307,
2005. http://eprint.iacr.org/.

3. I.F. Blake, G. Seroussi and N.P. Smart. Elliptic curves in cryptography. Cambridge
University Press, 1999.

4. H. Cohen. A Course In Computational Algebraic Number Theory. Springer-Verlag,
GTM 138, 1993.

The Equivalence Between the DHP and DLP for Elliptic Curves 387

5. D. Hankerson, A. Menezes, S. Vanstone. Guide to elliptic curve cryptography.
Springer-Verlag, 2003.

6. D. E. Knuth. The art of computer programming, vol. 2. Addison Wesley Longman,
1998.

7. U. M. Maurer. Towards the equivalence of breaking the Diffie-Hellman protocol
and computing discrete logarithms. In Advances in Cryptology — CRYPTO 1994,
Springer LNCS 839, 271-281, 1994.

8. U. M. Maurer and S. Wolf. On the difficulty of breaking the DH protocol. Technical
Report #24, Department of Computer Science, ETH Zurich, 1996.

9. U. M. Maurer and S. Wolf. Diffie-Hellman Oracles. In Advances in Cryptology —
CRYPTO 1996, Springer LNCS 1109, 268-282, 1996.

10. U. M. Maurer and S. Wolf. The relationship between breaking the Diffie-Hellman
protocol and computing discrete logarithms. SIAM Journal on Computing, 28,
1689–1721, 1999.

11. U. M. Maurer and S. Wolf. The Diffie-Hellman protocol. Designs, Codes, and
Cryptography, 19, 147–171, 2000.

12. A. Muzereau, N.P. Smart and F. Vrecauteren The equivalence between the DHP
and DLP for elliptic curves used in practical applications. LMS J. Comput. Math.
7(2004) 50-72, 2004.

13. NIST. FIPS 186.2 Digital Signature Standard (DSS). 2000.
14. PARI/GP, version 2.1.3, Bordeaux, 2000. http://pari.math.u-bordeaux.fr/.
15. H.-G. Rück. A note on elliptic curves over finite fields. Math. Comp., 49, 301–304,

1987.
16. R. Schoof. Elliptic curves over finite fields and the computation of square roots

mod p. Math. Comp., 44, 483–494, 1985.
17. SECG. SEC2 : Recommended Elliptic Curve Domain Parameters. See

http://www.secg.org/, 2000.
18. W.C. Waterhouse. Abelian varieties over finite fields. Ann. Sci. École Norm. Sup.,

2, 521–560, 1969.

A Complexity Analysis of Algorithm 1

To simplify this task, each step of Algorithm 1 will be studied separately and
then the results will be added up to obtain the total average cost.

Step 1: We first precompute g2i

for i = 1, . . . , �lg p. This will allow us to
compute any power gk with an average cost of 1

2 lg kM, using the double-and-
add algorithm of exponentiation. The precomputation requires �lg p squarings,
which costs

lg pM.

Without loss of generality, we set d = 0 at the start of this step. Then,
evaluating gz ← gx3−3x+b = gx3 · ((gx)3)−1 · gb requires

2DH + +1I + (4 +
1
2

lg b)M.

Note that

g(x+d)3−3(x+d)+b = gx3−3x+b · (gx2
)3d · (gx)3d2 · gd3−3d.

388 K. Bentahar

So for a second evaluation, we only need an extra

(
3 +

3
2

lg(3d) +
3
2

lg(3d2) +
1
2

lg(d3 − 3d)
)
M ∼ (3 + 3 lg 3 + 6 lg d)M.

For the quadratic residuosity check we need to compute gz(p−1)/2
. First pre-

compute gz2i

for i = 1, . . . , �lg p
2, then the total cost is

(
lg

p

2
+

1
2

lg
p − 1

2
)
DH ∼ (3

2
lg p − 3

2
)
DH.

Now, let ν be the number of iterations for step 1. Since Fp has (p − 1)/2
quadratic non-residues, the probability for having ν = k iterations is

Pr[ν = k] =
(

p − 1
2p

)k−1

· p + 1
2p

.

Hence, the expected number ν̄ of iterations for step 1 is

ν̄ =
∞∑

k=1

k · Pr[ν = k] =
p + 1
2p

∞∑
k=1

k

(
p − 1
2p

)k−1

=
2p

p + 1
≈ 2.

Thus the total average cost of this first step is lg pM + [2DH + 1I + (4 +
1
2 lg b)M] + [(3 + 3 lg 3 + 6 lg d)M] + 2 × (3

2 lg p − 3
2)DH. That is

(3 lg p − 1)DH + 1I + (lg p +
1
2

lg b + 6 lg d + 7 + 3 lg 3)M. (6)

Step 2: Following Algorithm 2, we treat three cases:

1. If p ≡ 3 (mod 4) then, using the precomputations from the previous step,
we can compute gz(p+1)/4

in an average of

1
2

lg
p + 1

4
DH ∼ (

1
2

lg p − 1)DH.

2. If p ≡ 5 (mod 8) then the computation of gz(p−5)/8
, gzs and gsu costs (2 +

1
2 lg p−5

8)DH ∼ (1
2 lg p + 1

2)DH on average.
If t = 1 then no further computation is needed and the total cost is (1

2 lg p+
1
2)DH. Otherwise, t �= 1 and then computing

gu·2(p−1)/4
= DH(gu, g(2(p−1)/4) mod p)

will cost an extra 1DH + (3
2 lg p−1

4 + 1
2 lg p)M.

Since t behaves like a random variable, the average cost for this case is then

(1
2

lg p +
1
2
)
DH +

1
2
(
1DH + (2 lg p − 3)M

)
.

The Equivalence Between the DHP and DLP for Elliptic Curves 389

3. Otherwise, we use the general (implicit) Tonelli and Shanks algorithm. We
first write p − 1 = 2e · w, where w is odd.
The initialisation step requires roughly (1

2 lg w−1
2 +2)DH. Finding the expo-

nent and reducing it requires (r+2)DH per iteration, and at most e iterations
are expected. Since r ≤ e, we will need e · (r + 2) ≤ e · (e + 2) calls to the
DH-oracle. Hence, the total number of the DH-oracle calls is about(

1
2

lg
w − 1

2
+ 2 + (e + 2)e

)
DH.

Since p is odd, we can easily see that the expected value of e is
∞∑

k=1

k · Pr[e = k] =
∞∑

k=1

k · (1/2)k = 2.

Bearing this in mind, we get w = p/2e = p/4 and the total cost is then
estimated to be (1

2
lg p +

17
2
)
DH.

Note: When concluding, we will use the weighted average of the costs above,
which is (1

2
lg p +

15
8
)
DH +

1
8
(2 lg p − 3)M. (7)

Step 3: Before entering the j-loop, we first pre-compute 2iQ for i = 1, . . . ,

�lg |E|1−1/s. This is enough since qj are of roughly the same size, so qj ≈ |E|1/s

and then |E|
qj

≈ |E|1−1/s.
Using equation (2), the cost of precomputation is found to be about

(8DH + 4I + 14M)
(

1 − 1
s

)
lg |E|.

We also pre-compute 2iP for i = 1, . . . , �lg |E| in affine coordinates3. Ac-
cording to equation (4), this costs about

(1I + 4M) lg |E|.
Now, let j be fixed (We want to analyse the cost of one j-loop). The cost

for computing Qj = (guj , gvj , gwj) such that (uj , vj , wj) = |E|
qj

Q, given by equa-
tion (3), is about (

8DH +
5
2
I +

1
4
(3 lg p + 13)M

)
γj ,

where we have set γj = lg(|E|/qj). For the evaluation of Pj = |E|
qj

P , in affine
coordinates, equation (5) gives (

1
2
I +

3
2
M

)
γj .

3 We need i up to lg |E| as we will use these precomputed values in step 4 too.

390 K. Bentahar

For the i-loop, we note that gw2
j and gw3

j need to be computed only once for
each j-loop, which costs 2DH.

Now fix i. Computing iR = (i − 1)R + R, in affine coordinates, can be
achieved with one elliptic curve addition costing 1I + 3M, since (i − 1)R has
been computed and 1R = R is trivial.

The cost of comparison is about 2 × 3
2 lg pM = 3 lg pM.

On average there will be qj/2 i-loops for each j-loop, and therefore the av-
erage cost of the i-loop is

qj

2
(
1I + 3(lg p + 1)M

)
.

Hence, the cost per one j-loop is

(8γj + 2)DH + (
1
2
qj + 3γj)I +

(
3
2
(lg p + 1)qj +

1
4
(3 lg p + 19)γj

)
M.

Noting that
s∑

j=1

γj =
s∑

j=1

lg
|E|
qj

= (s − 1) lg |E|,

we find that the total cost for step 3, without the precomputation costs, is on
average

(8(s − 1) lg |E| + 2s)DH +

(
1
2

s∑
i=1

qj + 3(s − 1) lg |E|
)

I+

+

(
3
2
(lg p + 1)

s∑
i=1

qj +
1
4
(3 lg p + 19)(s − 1) lg |E|

)
M.

Adding the precomputation costs, we finally get the total cost of step 3

(8(s − 1/s) lg |E| + 2s)DH +

(
1
2

s∑
i=1

qj + (3s + 2 − 4
s
) lg |E|

)
I+(

3
2
(lg p + 1)

s∑
i=1

qj +
(1
4
(3 lg p + 19)(s − 1) + 18 − 14

s

)
lg |E|

)
M.

(8)

Step 4: We use the Chinese Remainder Theorem to reconstruct k mod |E| from

k ≡ kj (mod qj), j = 1, . . . , s. We compute

k =
s∑

j=1

kj · |E|
qj

· q̂j (mod |E|),

where q̂j =
(

|E|
qj

)−1

mod qj . This requires sI + 2sM operations. Note that in-
versions are computed in Fq1 , . . . , Fqs .

The Equivalence Between the DHP and DLP for Elliptic Curves 391

For computing kP , in affine coordinates, we use the previously precomputed
values of 2iP . So this exponentiation would cost only (1I + 3M)1

2 lg k. Taking
k mod |E| to be |E|

2 on average, we find the average cost of step 4 to be

1
2
(lg |E| − 1)I +

3
2
(lg |E| − 1)M. (9)

Conclusion: We conclude that the total cost for Algorithm 1 is(
8
(
s − 1

s

)
lg |E| + 7

2
lg p + 2s +

7
8

)
DH

+

(
1
2

s∑
i=1

qj + (3s +
5
2

− 4
s
) lg |E| + 1

2

)
I

+

⎛
⎝ 3

2 (lg p + 1)
∑s

i=1 qj +
(

1
4 (3 lg p + 19)(s − 1) + 39

2 − 14
s

)
lg |E|+

+ 5
4 lg p + 1

2 lg b + 6 lg d + 3 lg 3 + 41
8

⎞
⎠M.

Neglecting small terms and making the approximation4 |E| ≈ p and b ≈ p/2,
the average cost of Algorithm 1 is then found to be

{(
8s − 8

s
+

7
2

)
lg p + 2s +

7
8

}
DH +

(
1
2

s∑
i=1

qj + (3s +
5
2

− 4
s
) lg p

)
I+

+

{
3
2
(lg p + 1)

s∑
i=1

qj +
(

1
4
(3 lg p + 19)(s − 1) +

85
4

− 14
s

)
lg p

}
M.

Note that if we take qj to be of roughly the same size and fix B to be of this
size then

s ≈ log |E|
log B

≈ log p

log B

and then
s∑

j=1

qj ≈
s∑

j=1

B = sB ≈ B log p

log B
=

B lg p

lg B
.

In practice, the cost of an inversion is at most 10M, see [3, p. 37]. Using this
fact we have now established Theorem 1, stated on page 381.

4 |E| = p+1−t where t ∈ [−√
p,

√
p] is the Frobenius trace, so E = p(1+(1−t)/p) ≈ p,

b ≈ p/2 is the average value of b, and d is small.

Pairings on Elliptic Curves over Finite
Commutative Rings

Steven D. Galbraith and James F. McKee�

Department of Mathematics,
Royal Holloway, University of London,

Egham, Surrey TW20 0EX, UK
{Steven.Galbraith, James.McKee}@rhul.ac.uk

Abstract. The Weil and Tate pairings are defined for elliptic curves
over fields, including finite fields. These definitions extend naturally to
elliptic curves over Z/NZ , for any positive integer N , or more generally
to elliptic curves over any finite commutative ring, and even the reduced
Tate pairing makes sense in this more general setting.

This paper discusses a number of issues which arise if one tries to de-
velop pairing-based cryptosystems on elliptic curves over such rings. We
argue that, although it may be possible to develop some cryptosystems
in this setting, there are obstacles in adapting many of the main ideas
in pairing-based cryptography to elliptic curves over rings.

Our main results are: (i) an oracle that computes reduced Tate pair-
ings over such rings (or even just over Z/NZ) can be used to factorise
integers; and (ii) an oracle that determines whether or not the reduced
Tate pairing of two points is trivial can be used to solve the quadratic
residuosity problem.

Keywords: Elliptic curves modulo N , pairings, integer factorisation,
quadratic residuosity.

1 Introduction

Pairings are a major topic in elliptic curve public key cryptography, following
the success of cryptosystems such as Joux’s three-party key exchange protocol
[10] and the Boneh-Franklin identity-based encryption scheme [1]. Recall that if
E is an elliptic curve over a field K and if r is coprime to the characteristic of
K then the Weil pairing maps E[r] × E[r] to μr, where μr is the group of r-th
roots of unity in the field K. The Tate pairing [5, 6] is usually used in practical
implementations for efficiency reasons, though it is necessary to consider the
so-called reduced Tate pairing which takes values in μr.

Elliptic curves modulo composite integers N have also been proposed for cryp-
tography. The motivation is that security can also rely on the integer factorisation
problem and that new functionalities might be possible due to the extra trapdoor.
It is therefore a natural problem to try to develop pairing-based cryptosystems on
� This research was funded by EPSRC grant GR/R84375.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 392–409, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Pairings on Elliptic Curves over Finite Commutative Rings 393

elliptic curves modulo composite integers N . The fundamental question is whether
pairings can be computed on elliptic curves over rings, and whether other aspects
of pairing-based cryptography can be generalised to this situation. Indeed, the
first author has been asked by several researchers whether this is possible.

We might imagine a system in which the factorisation of N is secret, but N
is public, and a user is required to compute a pairing on some elliptic curve over
Z/NZ (or some extension ring). The security of the cryptosystem is presumed
to rely on the hardness of factoring and possibly some other computational
problems.

We will explain that the Weil pairing can be computed successfully in this
setting (as long as certain data is provided). On the other hand, we show in
Theorem 3 that the reduced Tate pairing cannot be computed without knowing
the factorisation of N . As a companion to this result we show in Theorem 4 that
even just being able to detect whether or not the reduced Tate pairing of two
points is trivial would allow one to solve the quadratic residuosity problem. We
will also argue that certain operations which are essential to many pairing-based
cryptosystems (such as hashing to a point) cannot be performed with elliptic
curves over rings if the factorisation is unknown.

Our opinion is that the use of pairings on elliptic curves over rings will not be
as successful as the case of elliptic curves over finite fields. We believe that the
potential secure and practical applications are, at best, limited to a few special
situations. One might imagine, for example, a scheme where only the holder of
secret information is supposed to be able to compute pairings.

The structure of the paper is as follows. We recall some results for elliptic
curves over Z/NZ , making some observations concerning quadratic residuosity
and the natural generalisations to finite extensions of Z/NZ . There follows an
example which introduces some of the issues which arise when considering pair-
ings on elliptic curves over rings. In particular, there are issues concerning the
splitting of N = pq where p − 1 and q − 1 (or p + 1 and q + 1) share some
common factor: we recall some techniques for integer factorisation of numbers of
this form. Then we gather some well-known results concerning the equivalence of
factoring and extracting roots, put in the setting of surjective homomorphisms
from (Z/NZ)∗ to roots of unity. We then define what we mean by pairings for
elliptic curves over Z/NZ and over more general finite commutative rings, and
prove the results stated above (Theorems 3 and 4).

When giving complexity estimates for algorithms over Z/NZ, the computa-
tion of the greatest common divisor of two numbers between 1 and N is counted
as a single ‘ring operation’.

2 Elliptic Curves Modulo N

Let N be an integer greater than 1 with gcd(N, 6) = 1 (this restriction on N is
not essential, but it simplifies the exposition in places). An elliptic curve E over
the ring Z/NZ is the set of solutions (x : y : z) in projective space over Z/NZ

(insisting that gcd(x, y, z, N) = 1) to a Weierstrass equation

394 S.D. Galbraith and J.F. McKee

y2z = x3 + a4xz2 + a6z
3 , (1)

where the discriminant of the cubic on the right, namely 4a3
4 + 27a2

6, has no
prime factor in common with N . There is a group law on E(Z/NZ) given by
explicit formulae which can be computed without knowledge of the factorisation
of N . The identity element is 0 = (0 : 1 : 0). We refer to Lenstra [13, 14] for
details about elliptic curves over rings.

If the prime factorisation of N is N =
∏m

i=1 pai

i , then E(Z/NZ) is isomorphic
as a group to the direct product of elliptic curve groups

∏m
i=1 E(Z/pai

i Z). If we
let Ei be the reduction of E modulo pi, then Ei is an elliptic curve over the field
Fpi . One finds that

#E(Z/pai

i Z) = pai−1
i #Ei(Fpi)

(see, for example, [7]).
The first proposal to base cryptosystems on elliptic curves over the ring

Z/NZ was by Koyama, Maurer, Okamoto and Vanstone [12]. Other proposals
have been given by Demytko [4], Meyer and Mueller [21], and Vanstone and
Zuccherato [31]. The security of such cryptosystems is related to the difficulty
of factorising N .

The following theorem was established in [11].

Theorem 1. Let N be a composite integer satisfying gcd(N, 6) = 1. Given an
oracle that takes as its input an elliptic curve over Z/NZ, and outputs the number
of points on the curve, one can factorise N in random polynomial time.

We remark that an oracle that merely tells us whether or not two elliptic
curves over Z/NZ have the same number of points can be used to solve the
quadratic residuosity problem.

Theorem 2. Suppose that O is an oracle that determines whether or not two
elliptic curves over Z/NZ have the same number of points. Let a ∈ (Z/NZ)∗

be such that
(

a
N

)
= 1. Then there is a randomised polynomial time algorithm

that makes one call to the oracle and returns a guess as to whether or not a is
actually a square in (Z/NZ)∗, with the following probabilities of success:

– if a is a square in (Z/NZ)∗, then the algorithm will return the guess ‘square’;
– if a is not a square in (Z/NZ)∗, then the algorithm will return the guess ‘not

a square’ with probability 1 − ε, where

ε = O(log p log log p/
√

p) ,

with p being any prime dividing N such that
(

a
p

)
= −1.

Proof. Suppose that we are given a ∈ (Z/NZ)∗ with
(

a
N

)
= 1. We choose random

a4, a6 in Z/NZ such that equation (1) defines an elliptic curve E over Z/NZ. If
a is a square in (Z/NZ)∗, then the twisted curve E(a) with equation

y2z = x3 + a4a
2xz2 + a6a

3z3

Pairings on Elliptic Curves over Finite Commutative Rings 395

has the same number of points as E. Otherwise, let p be any prime dividing N

such that
(

a
p

)
= −1. Suppose that N = prn, with gcd(p, n) = 1. We can write

the number of points on E over Z/NZ as

#E(Z/NZ) = (p + 1 − t)m1 ,

where p + 1 − t = #E(Z/pZ) and m1 = pr−1#E(Z/nZ). Then the number of
points on E(a) is

#E(a)(Z/NZ) = (p + 1 + t)m2 ,

where m2 = pr−1#E(a)(Z/nZ). The numbers of points on E and E(a) are dif-
ferent unless

t = (p + 1)(m1 − m2)/(m1 + m2) .

Conditioning on the value of the pair (m1, m2) this value of t occurs with prob-
ability

O(log p log log p/
√

p)

(Theorem 2 in [18]). The implied constant here is absolute, not depending on
(m1, m2), or on a. The result follows immediately. �

More generally, one might not have access to an oracle as in Theorems 1 and
2, but might simply be given a single elliptic curve over Z/NZ with a known
number of points, M . Two complementary approaches for attempting to factorise
N from this limited information have appeared in the literature:

1. One method is to multiply a point on a random quadratic twist by M . In
general, it is hard to find points in E(Z/NZ) (for example, choosing an x-
coordinate, putting z = 1, and solving for y requires taking a square root).
However, there are formulae for performing point multiplications which use
x-coordinates only (on the affine piece z = 1: see the Formulary of Cassels,
and the exercises at the end of chapter 26, in [3]).
A random x ∈ Z/NZ is the x-coordinate of a point (x : y : 1) on Ei with
probability roughly 1/2. If this is the case then M(x : y : 1) = 0 on Ei. On
the other hand, if x is not a valid x-coordinate then there is a corresponding
point (x : y : 1) on a quadratic twist E(d) over Fpi and for most curves we
would not expect M(x : y : 1) = 0 on E(d)(Fpi).
The algorithm to factorise N is to take random x-coordinates (with z =
1) and to multiply by M , using x-coordinates only. With high probability
the resulting point will be the identity modulo some, but not all, primes p
dividing N . So taking the gcd of the resulting z-coordinate with N will split
N . Details of this method are given in Okamoto and Uchiyama [24].

2. Another way to obtain this result is to mimic the standard randomised re-
duction from knowing #(Z/NZ)∗ to factoring (similar to the Miller-Rabin
primality test). We write

M = #E(Z/NZ) = 2mM ′

396 S.D. Galbraith and J.F. McKee

where M ′ is odd. We then choose random x-coordinates (with z = 1) and
multiply by M ′ and then compute the sequence of doublings of this point.
The details are given in [17]. In [11] it is noted that the prime 2 can be
replaced by a larger prime.

3 Extension Rings

In practice, especially when considering pairings, we may be interested in ex-
tending our ring Z/NZ. For example, we may wish to force the full r-torsion
onto our curve for some r. To this end we consider elliptic curves over rings of
the form

RN,f = (Z/NZ)[x]/(f(x)) ,

where f(x) is some polynomial in (Z/NZ)[x]. The splitting of f(x) may be
different modulo different prime divisors of N . The above results readily extend
to this setting, twisting by random elements of R. If N is squarefree, and f(x) is
squarefree modulo every prime dividing N , then R = RN,f is a product of finite
fields.

4 An Example

To clarify the discussion above, and to introduce some of the issues which arise
when considering pairings, we give an example.

Let p1, p2 be primes congruent to 2 modulo 3 and let r be a prime such that
r | (pi + 1), r2

� (pi + 1) for i = 1, 2. Let E be the elliptic curve y2 = x3 + 1. For
each i = 1, 2 let Ei be the reduction of E modulo pi. It is well known that Ei is
supersingular, that #E(Fpi) = pi +1, and that E[r] ⊂ E(Fp2

i
). Let P , Q ∈ Ei[r].

Then the Weil (or reduced Tate) pairing gives an r-th root of unity

er(P, Q) ∈ F
∗
p2

i
.

The field Fp2
i

can be defined as Fpi(θ) where θ2 + θ + 1 = 0. If P and Q are
points of order r such that P �= 0 lies in Ei(Fpi) and Q does not lie in E(Fpi)
then it is easy to show that er(P, Q) �= 1.

Define N = p1p2 and define the ring

R = (Z/NZ)[θ]/(θ2 + θ + 1) .

Then
R ∼= Fp2

1
× Fp2

2
.

Let E be the elliptic curve above. Then

#E(R) = (p1 + 1)2(p2 + 1)2 .

Note that there seems to be no reason to use large embedding degrees for
elliptic curves over rings since the ground ring is already large due to the factoring

Pairings on Elliptic Curves over Finite Commutative Rings 397

problem. Indeed, one might prefer embedding degree 1, but then r | (pi − 1),
and in the case of the Weil pairing also r2 | #E(Fpi), for each prime pi dividing
N , and so the attacks of Section 5 must be borne in mind.

Let P and Q be points of order r in E(R) such that P �= 0 lies in E(Z/NZ)
and Q �∈ E(Z/NZ). Then, as before, er(P, Q) is a non-trivial r-th root of unity
in R∗. The distortion map

ψ(x, y) = (θx, y)

can be used to map points P ∈ E(Z/NZ) into points in E(R) and so we can
obtain a non-trivial pairing between points of order r in E(Z/NZ).

We will argue in Section 8 that the reduced Tate pairing cannot be computed
without knowing the factorisation of N . But, if E, R, P , Q and r are given, then
one can compute the Weil pairing using Miller’s algorithm [22, 23] as

er(P, Q) = (−1)rFr,P (Q)/Fr,Q(P)

without knowing the factorisation of N , where Fr,P is a function on E with
divisor

(Fr,P) = r(P) − r(0)

(see [23]).
Hence, one can solve decision Diffie-Hellman problems in E[r] and one can

implement Joux’s three-party key exchange protocol [10] in this setting. It is
therefore plausible that cryptosystems can be developed based on elliptic curves
over rings which exploit both the hardness of the integer factorisation problem as
well as aspects of pairing-based cryptography. Such systems might have potential
functionalities which cannot be realised using elliptic curves over finite fields.

However, there are a number of issues which differ from the case of elliptic
curves over finite fields which should be considered before one can develop such
cryptosystems:

– The value r must play a symmetric role for all primes pi | N .
For example, if ζ ∈ R∗ is such that ζ (mod p1) has order r but ζ ≡ 1
(mod p2) then one can split N by computing gcd(ζ − 1, N). Similarly, if P
is a point which has order r on E1 but order coprime to r on E2 then one
can split N by multiplying E by r and computing gcds.

– The point order r must be provided to compute pairings.
This is because Miller’s algorithm essentially involves the operation of point
multiplication by r. We know of no way to compute pairings if r is not
provided. Since we are obliged to use the Weil pairing, both points must
have order r. The information on r can be used to improve certain factoring
algorithms (see Section 5 below). Hence, r should be chosen to be much
smaller than the primes pi (for the above example we would recommend
choosing r to have 160 bits and the pi to have at least 512 bits).

– Generating points on elliptic curves over rings is a hard problem.
This is not an obstacle to a cryptosystem such as Joux’s three-party key
exchange if a base-point P is included in the system parameters. However, for

398 S.D. Galbraith and J.F. McKee

some protocols it may be necessary for users to find random points Q ∈ E(R)
without simply multiplying an existing point by some integer.
There are two traditional solutions to this problem. The first, used in the
KMOV cryptosystem [12], is to choose P = (xP , yP) and to modify the curve
equation so that P lies on E. This solution could be used in pairing applica-
tions, though note that it does not preserve existing points. The second solu-
tion, due to Demytko [4], is to work with x-coordinates only. It is not possible
to compute pairings exactly using x-coordinates only, but it may be possible
to compute traces of pairings, as done by Scott and Barreto [28]. A different
solution is to choose xP and extend the ring as R′ = R(

√
x3

P + a4xP + a6).
It is unclear whether any of these solutions would be practical for pairing-
based cryptosystems.

– Hashing to a point of order r is hard.
In many pairing-based cryptosystems it is necessary to hash to a point of
order r. The hashing process first involves finding a random point in E(R),
which as mentioned above is already a potential difficulty. Further, to obtain
a point of exact order r it is necessary to multiply the point by a cofactor
m. Since r is public then, once m is also given, the exponent of the group
E(R) or E(Z/NZ) is known, and we can therefore hope to factorise N using
the methods discussed at the end of Section 2.
Due to this issue, it seems unlikely that cryptosystems such as the Boneh-
Franklin identity-based encryption scheme [1] or the Boneh-Lynn-Shacham
signature scheme [2] can be developed for elliptic curves over extensions of
Z/NZ without revealing the factorisation of N .

5 Factoring If r Is Known

From time to time (e.g., [9], [15]) authors propose variants of RSA, with or
without elliptic curves, in which N = pq and there is some r greater than 1 such
that both r | (p − 1) and r | (q − 1). If r is small, then it cannot be kept secret,
as observed in [20]: it will be a factor of N − 1, and Lenstra’s Elliptic Curve
Method [13] or Pollard’s ρ method [25] can be used to recover r. Even if r is
secret, it cannot be too large: applying Pollard’s ρ method with the ‘random’
map

x #→ xN−1 + 1 (mod N)

will produce a sequence that repeats modulo p after O(
√

p/r) terms, on aver-
age (this observation also appeared in [20]), so that if r is too large then the
factorisation of N will be found.

If r is known, then more powerful factorisation attacks are possible. Let us
assume that N = pq with p and q of similar size. Following [20], we can now
employ a variant of Lehmer’s method (described in [19]). Write

p = xr + 1 , q = yr + 1 .

Then
(N − 1)/r = xyr + (x + y) = ur + v

Pairings on Elliptic Curves over Finite Commutative Rings 399

where u and v (0 ≤ v < r) are known and x, y are unknown. We have

x + y = v + cr , xy = u − c ,

where c is the (unknown) carry in expressing (N −1)/r in base r as above. Since
cr ≤ x + y and both x and y are of size about

√
N/r, there are of order

√
N/r2

values of c to test. A candidate for c can be tested quickly, since

r2c2 + (2rv + 4)c + v2 − 4u = (x − y)2

must be a square.
Again following [20] (see also [16] for the same idea in a different setting),

we can improve this O(
√

N/r2) attack to one that takes only O(N1/4/r) ring
operations (still assuming that N = pq with p and q roughly equal). Note that
the price for this improvement in speed is either to have increased storage or a
heuristic algorithm. We observe that the exponent of (Z/NZ)∗ is given by

lcm(p − 1, q − 1) = lcm(xr, yr) ,

and so divides xyr. Take random a ∈ (Z/NZ)∗. Then

aur = axyr+cr = acr .

Putting b = ar, we have
bu = bc

in (Z/NZ)∗. Since c has magnitude
√

N/r2, we can recover c (modulo the order
of b, which with high probability will have order nearly as large as xy ≈ N/r2)
in O(N1/4/r) ring operations, either using the baby-step giant-step method of
Shanks [29] or Pollard’s λ method [26].

Similar remarks hold if both r | (p + 1) and r | (q + 1), as in Section 4. Small
r can be spotted as a factor of N − 1. Large r make N vulnerable to Pollard’s
ρ method with the map

x #→ xN−1 + 1 (mod N) .

If r is known, we can determine q + p modulo r2, and hence perform a similar
attack to the above that will split N in O(N1/4/r) ring operations if p and q are
of similar size.

Finally in this context we should consider the implications of knowing a
divisor d of the group order of E(Z/NZ). From Section 2, we must imagine that
the group order M is secret. We might hope to split N using Lenstra’s Elliptic
Curve Method [13] or Pollard’s λ method [26], with the curve E and the base
point d(x : y : 1) for random x. The worst case complexity of these attacks is

O

(
min
p|n

√
#E(Fp)/ gcd(d, #E(Fp))

)

ring operations.

400 S.D. Galbraith and J.F. McKee

6 Computing a Surjective Homomorphism from (Z/NZ)∗

to Certain Roots of Unity Is as Hard as Factoring

It is well-known that computing square-roots modulo a composite is as hard as
factoring [27], and indeed the same applies to rth roots if r is not too large and

gcd(r, p − 1) > 1

for some prime p dividing N . The ability to extract rth roots modulo N implies
the ability to generate random rth roots of unity, and it is of course the latter
that allows us to split N . We record these remarks here in a few Lemmas.

Let N > 1 be an odd integer that is not a prime power, and let r > 1 be any
integer. Let GN,r be the unique maximal subgroup of (Z/NZ)∗ having exponent
dividing r, i.e.,

GN,r = {a ∈ (Z/NZ)∗ | ar = 1} .

Another way of saying this is that GN,r contains all the rth roots of unity in
(Z/NZ)∗.

Any oracle which computes a surjective group homomorphism from (Z/NZ)∗

to GN,r can be used to factor N if r is not too large and GN,r is non-trivial: this
statement is made precise in the Lemmas below. The homomorphic property
simply ensures that the preimage of each element of GN,r is the same size: any
map with this property, or something close to it, would suffice.

Let O(N, r, a) be an oracle which takes as input integers N and r and an
element a ∈ (Z/NZ)∗ and returns the image of a under a surjective group
homomorphism from (Z/NZ)∗ to GN,r, where the homomorphism depends on
N and r, but not a.

For example, if N is squarefree and r | (pi −1) for all i then O(N, r, a) might
return the Chinese remainder of the values

a(pi−1)/r (mod pi)

for 1 ≤ i ≤ m (but any surjective homomorphism would do). In the case r = 2
and N odd and squarefree, this particular choice of oracle returns the Chinese
remainder of the Legendre symbols for all p dividing N . We stress that this is
not the same thing as the Jacobi symbol (which is the product of the Legendre
symbols, and does not give a surjective homomorphism to GN,2).

In the following Lemmas, we fix the notation

N =
m∏

i=1

pai

i , (2)

where p1, . . . pm are distinct odd primes, and m ≥ 2. Then

GN,r
∼=

m∏
i=1

Gi , (3)

where each Gi is cyclic of order dividing r.

Pairings on Elliptic Curves over Finite Commutative Rings 401

Lemma 1. Let N be as in (2) and let r be a positive integer greater than 1 such
that

r | pai−1(pi − 1)

for 1 ≤ i ≤ m. Let O be an oracle computing a surjective homomorphism from
(Z/NZ)∗ to GN,r.

There is a randomised algorithm with negligible storage that will find a non-
trivial factorisation of N in expected time O(r) ring operations, using O(r) oracle
calls, on average.

Proof. The algorithm is simply to choose random a ∈ (Z/NZ)∗ and to obtain

b = O(N, r, a) .

One can then compute gcd(b − 1, N). This will split N as long as there are two
primes p and q dividing N such that

b ≡ 1 (mod p) but b �≡ 1 (mod q) .

In (3), each Gi now has order r. Of the r2 possibilities for the image of a in
G1 × G2, 2(r − 1) of them will split N , regardless of the image of a in the other
Gi (3 ≤ i ≤ m). For random a, the probability that we split N is therefore at
least 2(r − 1)/r2, so that the expected number of oracle calls is O(r). �

The running time of the above algorithm can be reduced at the expense of
some storage.

Lemma 2. Let N be as in (2) and let r be a positive integer greater than 1 such
that

r | pai−1
i (pi − 1)

for 1 ≤ i ≤ m. Let O be an oracle computing a surjective homomorphism from
(Z/NZ)∗ to GN,r.

There is a randomised algorithm requiring O(
√

r log N) storage that will find
a non-trivial factorisation of N in expected time O(

√
r log r log log r) ring oper-

ations, using O(
√

r) oracle calls, on average.

Proof. The algorithm chooses random a ∈ (Z/NZ)∗ and forms a list of values
O(N, r, a). When the list has length O(

√
r), one checks for repeats in the list

modulo some but not all prime factors of N by standard fast polynomial eval-
uation techniques [30]. It is likely that there is a repeat modulo some prime
dividing N whilst being very unlikely that there is a repeat modulo N . If r is
not known, or if no repeat has been found, one can repeatedly double the length
of the list until success. �

With the extra hypothesis that O(N, r, a) (mod p) depends only on
a (mod p), there is a low-storage variant using Pollard’s ρ method [25]. Not
all homomorphic oracles have this property. For example, with N = pq and
r = 2, we could perversely map a to the Chinese remainder of(

a

p

)
(mod q) and

(
a

q

)
(mod p) .

402 S.D. Galbraith and J.F. McKee

Lemma 3. Let N be as in (2) and let r be a positive integer greater than 1 such
that

r | pai−1
i (pi − 1)

for 1 ≤ i ≤ m. Let O be an oracle computing a surjective homomorphism from
(Z/NZ)∗ to GN,r satisfying the additional property that O(N, r, a) (mod p) de-
pends only on a (mod p) (for each prime p dividing N).

There is a heuristic algorithm requiring negligible storage that will find a non-
trivial factorisation of N in heuristic expected time O(

√
r) ring operations, using

O(
√

r) oracle calls, on average.

Proof. Apply Pollard’s ρ method [25] with the ‘random’ map

x #→ O(N, r, x) + 1 .

(We add 1 to improve the pseudorandom behaviour of the map, by mixing ad-
dition with the multiplicative nature of our homomorphic oracle.) Described
simply (but not optimally), we compute (but do not store) sequences xn and
yn = x2n, starting with (say) x0 = y0 = 1, and using the rule

xn+1 = O(N, r, xn) + 1 .

At each step we compute
gcd(xn − yn, N)

until we find a non-trivial factor of N .
The complexity is as standard for Pollard’s ρ method. �

The situation is of course much more trivial if r is a prime such that

r | pai−1
i (pi − 1)

for some but not all primes pi dividing N .

Lemma 4. Let N be as in (2) and let r be a prime such that

r | pai−1
i (pi − 1)

for at least one but not all of the pi. Let O be an oracle computing a surjective
homomorphism from (Z/NZ)∗ to GN,r.

Then there is a randomised algorithm to find a non-trivial factorisation of
N which runs in expected time O(1) ring operations, using O(1) oracle calls, on
average.

Proof. The algorithm is simply to choose random a ∈ (Z/NZ)∗ and to obtain

b = O(N, r, a) .

One can then compute
gcd(b − 1, N) .

Pairings on Elliptic Curves over Finite Commutative Rings 403

Since there is at least one prime pi dividing N such that

r � pai−1
i (pi − 1)

we know that
b ≡ 1 (mod pai

i) .

Hence, all that is required is that

b �≡ 1 (mod pj)

for some other prime pj dividing N . The probability of this event is at least
(r − 1)/r, so that the expected number of oracle calls is at most 2. �

Similar results hold for the rings RN,f , but the performance of the analogous
algorithms has worse dependence on r. If the r-torsion of the p-component of
RN,f has order rnp (for p a prime dividing N), then the expected running time
for the analogue of Lemmas 1, 2 and 3 has r replaced by rmin(np). The analogue
of Lemma 4 remains just as trivial.

The case r = 2 in Lemma 1 is particularly attractive, since if N is odd then
we know that r | (p − 1) for all p dividing N .

7 The Tate Pairing on Curves over Finite Commutative
Rings

One of the main results of this paper is to argue that there is no way to compute
reduced Tate pairings on general E(Z/NZ) without knowing the factorisation
of N . We achieve this by showing that if O is an oracle for computing reduced
Tate pairings on such curves then one can use O to factorise N .

We first recall the Tate pairing for elliptic curves over finite fields (see Frey
and Rück [5, 6] for details). Let E be an elliptic curve over Fq (q being a power of
a prime) and let r be coprime to q. Let k ∈ N be minimal such that r | (qk − 1).
The integer k depends on both q and r (indeed, it is the order of q modulo
r) and is often called the ‘embedding degree’. Define by E[r] the set of points
P ∈ E(Fqk) such that rP = 0 (we assume that #E[r] > 1). The Tate pairing is
a non-degenerate pairing

〈·, ·〉r : E[r] × E(Fqk)/rE(Fqk) −→ F
∗
qk/(F∗

qk)r .

In practice the Tate pairing is computed using an algorithm due to Miller [22,
23]. If P ∈ E[r] and Q ∈ E(Fqk) then there is a function Fr,P having divisor

(Fr,P) = r(P) − r(0) .

Miller’s algorithm builds up this function Fr,P in stages in a way analogous to
the double and add algorithm for point exponentiation. Then

〈P, Q〉r = Fr,P (Q + S)/Fr,P (S)

404 S.D. Galbraith and J.F. McKee

for a suitable auxiliary point S ∈ E(Fqk). Different choices of auxiliary point S
will give different values in F

∗
qk , but they are all equivalent in the quotient group

F
∗
qk/(F∗

qk)r.
Henceforth we shall not insist that the values of r and k satisfy r | (qk − 1).

Provided that P ∈ E[r], and that we can find a suitable auxiliary point S, we can
still perform Miller’s algorithm. The pairing may no longer be non-degenerate,
and of course

(F∗
qk)r = (F∗

qk)gcd(r,qk−1) .

Let N =
∏m

i=1 pi be a squarefree positive integer. As with other applications
of elliptic curves, the natural way to generalise the Tate or Weil pairings to points
on elliptic curves over Z/NZ is to use the Chinese remainder theorem to piece
together the values of the pairing over Fp for the various p dividing N . If the
factorisation of N is known, then of course this computation can be done. One
can readily generalise this to curves over the rings RN,f , considered in section 3,
provided that RN,f is a product of fields. Further generalisations are considered
below.

If the factorisation of N is not known, then one can still compute the Weil
pairing (of points P and Q of known order), or the ‘raw’ Tate pairing (where
only the order of P is needed) over Z/NZ simply by following Miller’s algorithm,
working modulo N throughout.

For cryptographic applications the fact that the Tate pairing assumes values
defined modulo rth powers is intolerable. Hence, returning first to the case of
finite fields, one uses the ‘reduced’ Tate pairing

e(P, Q) = 〈P, Q〉(qk−1)/ gcd(r,qk−1)
r .

There is some choice in how to generalise this reduced Tate pairing to elliptic
curves over rings. We give two definitions below. We will show in Theorem 3
that (with either definition) computing the reduced Tate pairing is as hard as
factoring.

For clarity, we give both definitions for the simplest case where N is square-
free and we do not extend the ring Z/NZ. Generalisations will be discussed
immediately afterwards.

Definition 1. Suppose that N =
∏m

i=1 pi is a squarefree positive integer, and
that r is a positive integer. Let E be an elliptic curve over Z/NZ defined by
(1). Suppose that P and Q are points on E, with the order of P dividing r. Let
〈P, Q〉r,i be the raw Tate pairing of P and Q + rE over Z/piZ. Define

ei(P, Q) = 〈P, Q〉(pi−1)/ gcd(r,pi−1)
r,i .

Then the reduced Tate pairing e(P, Q) is defined to be the unique element of
(Z/NZ)∗ satisfying

e(P, Q) ≡ ei(P, Q) (mod pi)

for each i (1 ≤ i ≤ m).

Pairings on Elliptic Curves over Finite Commutative Rings 405

Definition 2. Suppose that N =
∏m

i=1 pi is a squarefree positive integer, and
that r is a positive integer. Let E be an elliptic curve over Z/NZ defined by
(1). Suppose that P and Q are points on E, with the order of P dividing r. Let
〈P, Q〉r be the raw Tate pairing of P and Q + rE over Z/NZ. Then the reduced
Tate pairing e(P, Q) is defined by

e(P, Q) = 〈P, Q〉g/ gcd(r,g)
r ,

where g is the exponent of (Z/NZ)∗.

The first definition seems more natural because it behaves well under reduc-
tion, but we recognise that there is a choice here.

If N is not squarefree, then Z/NZ is not a product of fields. How can we
interpret any of our pairings in this setting? To clarify this issue consider the case
of an elliptic curve E over Z/p2

Z, not anomalous over Z/pZ. Then #E(Z/p2
Z) =

p#E(Fp) and E[p] is cyclic of order p. Define μp = {1 + xp : 0 ≤ x < p} ⊂
(Z/p2

Z)∗. One can certainly define a bilinear pairing on E[p] taking values in
μp, but both the geometric theory and Miller’s algorithm break down for curves
over such rings: the entire p-torsion lies on a straight line.

As a result, we propose to map each Z/pa
Z to its residue field Z/pZ, and

hence to map E(Z/NZ) to a product of curves over finite prime fields (the Ei in
Section 3). Our pairings are defined for such curves, and we can define the pairing
over Z/NZ to be any preimage of the gluing together of these pairings. (In the
context of oracles, we insist that the choice of preimage is made in a deterministic
way.) As in the squarefree case, this can be further generalised to curves over
the rings RN,f considered in Section 3. This generalisation is essential if we wish
to consider embedding degrees greater than 1. For the reduced Tate pairing, the
second definition extends in the obvious way: g is replaced by the exponent of
(RN,f)∗. For the first definition, a little care is required: in each local factor we
power up by the exponent of the local multiplicative group divided by its gcd with
r, then we glue together the local values by the Chinese Remainder Theorem.
Again we comment that this generalisation of the first definition behaves well
under reduction.

We can even abstract this further, and consider an elliptic curve over any
finite commutative ring R. (This includes rings such as RN,f .) Such a ring is a
product of local rings, each having prime power order. Each local factor has a
residue field (of prime power order), and we can map our curve over R to a curve
over the product of these residue fields. Then, as above, we can define a pairing
value in each residue field, glue these together, and finally take a preimage in R.
Again both definitions of the reduced Tate pairing extend equally naturally.

8 Reduced Tate Pairing Oracles

What is the minimum amount of information that we must feed to an oracle for
computing reduced Tate pairings over rings of the form R = RN,f? Certainly
we must supply the oracle with N and f , and an elliptic curve E defined over

406 S.D. Galbraith and J.F. McKee

the ring R, and two points P and Q on E(R) whose pairing is to be returned.
We might also supply the value of r (with P , but not necessarily Q, supposed to
have order dividing r: something that the oracle can easily check), or we might
leave it to the oracle to compute suitable r. (One pleasing feature of the reduced
Tate pairing is that the pairing value coming from the minimal possible r is the
same as that computed using a multiple of it: see Section 6 of [8].) If the curve
has no points of order r over R, or if R does not contain an element of order r,
then the pairing value is still defined, but may well be trivial.

We have therefore two flavours of oracle, depending on whether or not we
know the value of r.

Oracle 1. This oracle takes as its input N ∈ N, f ∈ Z[X], E defined by equation
(1) for some a4, a6 in R = RN,f , points P and Q in E(R), and r ∈ N.

The oracle performs the following checks, and returns ‘fail’ if any of them
fail:

– gcd(N, 6) = 1;
– gcd(N, 4a3

4 + 27a2
6) = 1;

– P and Q are in E(R);
– rP = 0.

If all of these consistency checks are passed, then the oracle returns the re-
duced Tate pairing of P and Q, with value in R.

Oracle 2. This oracle takes as its input N ∈ N, f ∈ Z[X], E defined by equation
(1) for some a4, a6 in R = RN,f , and points P and Q in E(R).

The oracle performs the following checks, and returns ‘fail’ if any of them
fail:

– gcd(N, 6) = 1;
– gcd(N, 4a3

4 + 27a2
6) = 1;

– P and Q are in E(R).

If all of these consistency checks are passed, then the oracle chooses (but does
not reveal) r such that rP = 0, and returns the reduced Tate pairing of P and
Q, with value in R.

If one can factor N then, by Miller’s algorithm, one can implement either of
these oracles in polynomial time (to find suitable r for the second, we can use
fast point-counting techniques).

We now claim that such oracles can be used to build an integer factorisation
algorithm.

Theorem 3. Let O be a reduced-Tate-pairing oracle, either of the form Oracle 1
or of the form Oracle 2.

Given a composite integer N , not a prime power, with gcd(N, 6) = 1, we can
use the oracle O to find a non-trivial factorisation of N in expected time O(1)
ring operations, using O(1) oracle calls, on average.

Pairings on Elliptic Curves over Finite Commutative Rings 407

Proof. We work with Definition 1 of the reduced Tate pairing in the proof, and
remark afterwards how the proof adapts trivially if one prefers Definition 2.

Choose a random integer a in the range 1 < a < N , and define

Ea : y2z = x(x − z)(x − az) = x3 − (a + 1)x2z + axz2

which has discriminant 16a2(a − 1)2. (We could transform this equation into
Weierstrass form, as in (1), if desired.) This is an elliptic curve over Z/NZ

as long as gcd(N, 2a(a − 1)) = 1. We take r = 2 and note that the points
P = (0 : 0 : 1), Q = (1 : 0 : 1) and R = (a : 0 : 1) all have order 2.

One can compute the Tate pairing over Q of P with itself. The function
F = x satisfies (F) = 2(P) − 2(0). If Q is taken to be the auxiliary point then
the Tate pairing of P and P + 2E is

〈P, P 〉2 = F (P + Q)/F (Q) = x(R)/x(Q) = a/1 = a.

If another auxiliary point (u : v : 1) is used then

P + (u : v : 1) = (a/u : −av/u2 : 1)

and so the pairing value is a/u2.
Calling the oracle O (with arguments N , f = 1, P = Q = (0 : 0 : 1), and

r = 2 (if needed)) performs exactly the operation of the oracle O(N, 2, a) in Sec-
tion 6. Hence we can use the reduced Tate pairing oracle O to find a non-trivial
factorisation of N in O(1) ring operations, as in Lemma 1 (with r = 2). �

We remark that if instead the reduced Tate pairing were defined by Definition
2, then the reduction to integer factorisation is just as simple. If the power of
2 dividing pi − 1 is the same for each prime pi dividing N , then the identical
argument works. If not, then the reduced pairing is guaranteed to be trivial
modulo at least one but not all of the pi, and a similar argument goes through,
analogous to Lemma 4.

The idea of the proof can be generalised to other small values of r, starting
from a curve over Q (or a low-degree number field) with an r-torsion point.

Inspired by the quadratic residuosity observations in section 2, we note that
the situation is still more favourable here, at least if we work with our preferred
definition of the reduced Tate pairing.

Theorem 4. Let N be an odd, composite integer, and let O be an oracle that
tells us whether or not the reduced Tate pairing (as in Definition 1) of two points
on an elliptic curve over Z/NZ is trivial.

Given a ∈ (Z/NZ)∗ satisfying
(

a
N

)
= 1, we can use the oracle O to determine

whether or not a is a square in (Z/NZ)∗ with a single call to the oracle O.

Proof. As above, we take the curve

Ea : y2z = x(x − z)(x − az) = x3 − (a + 1)x2z + axz2 ,

and ask the oracle O whether or not the reduced Tate pairing of P = (0 :
0 : 1) with itself is trivial. The answer is ‘yes’ precisely when a is a square in
(Z/NZ)∗. �

408 S.D. Galbraith and J.F. McKee

Acknowledgments

The authors gratefully acknowledge the insight of Jorge Villar, who pointed out
some inadequacies in an early version of this paper, and the comments of the
referees.

References

1. D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, in
J. Kilian (ed.), CRYPTO 2001, Springer LNCS 2139 (2001) 213–229.

2. D. Boneh, B. Lynn and H. Shacham, Short signatures from the Weil pairing, J.
Crypt, 17, No. 4 (2004) 297–319.

3. J.W.S. Cassels, Lectures on Elliptic Curves, LMS Student Texts 24, Cambridge
(1991).

4. N. Demytko, A new elliptic curve based analogue of RSA, in T. Helleseth (ed.),
EUROCRYPT 1993, Springer LNCS 765 (1994) 40–49.

5. G. Frey and H.-G. Rück, A remark concerning m-divisibility and the discrete log-
arithm problem in the divisor class group of curves, Math. Comp., 52 (1994) 865–
874.

6. G. Frey, M. Müller and H.-G. Rück, The Tate pairing and the discrete logarithm
applied to elliptic curve cryptosystems, IEEE Trans. Inf. Th., 45 (1999) 1717–1719.

7. S.D. Galbraith, Elliptic curve Paillier schemes, J. Crypt., 15, No. 2 (2002) 129–138.
8. S.D. Galbraith, K. Harrison and D. Soldera, Implementing the Tate pairing, in

C. Fieker and D.R. Kohel (eds.), ANTS V, Springer LNCS 2369 (2002) 324–337.
9. M. Girault, An Identity-Based Identification Scheme Based on Discrete Logarithms

Modulo a Composite Number, in I.B. Damgard (ed.), EUROCRYPT 1990, Springer
LNCS 473 (1991) 481–486.

10. A. Joux, A One Round Protocol for Tripartite Diffie-Hellman, in W. Bosma (ed.),
ANTS IV, Springer LNCS 1838 (2000) 385–394.

11. N. Kunihiro and K. Koyama, Equivalence of counting the number of points on
elliptic curve over the ring Zn and factoring n, in K. Nyberg (ed.), EUROCRYPT
1998, Springer LNCS 1403 (1998) 47–58.

12. K. Koyama, U.M. Maurer, T. Okamoto and S.A. Vanstone, New public-key schemes
based on elliptic curves over the ring Zn, in J. Feigenbaum (ed.), CRYPTO 1991,
Springer LNCS 576 (1992) 252–266.

13. H.W. Lenstra Jr., Factoring integers with elliptic curves, Annals of Mathematics,
126 (1987) 649–673.

14. H.W. Lenstra Jr., Elliptic curves and number theoretic algorithms, Proc. Interna-
tional Congr. Math., Berkeley 1986, AMS (1988) 99–120.

15. C.H. Lim and P.J. Lee, Security and performance of server-aided RSA computation
protocols, in D. Coppersmith (ed.), CRYPTO 1995, Springer LNCS 963 (1995) 70–
83.

16. W. Mao, Verifiable partial sharing of integer factors, in S. Tavares and H. Meijer
(eds.), SAC 1998, Springer LNCS 1556 (1998) 94–105.

17. S. Martin, P. Morillo and J.L. Villar, Computing the order of points on an elliptic
curve modulo N is as difficult as factoring N , Applied Math. Letters, 14 (2001)
341–346.

18. J.F. McKee, Subtleties in the distribution of the numbers of points on elliptic
curves over a finite prime field, J. London Math. Soc. (2), 59 (1999) 448–460.

Pairings on Elliptic Curves over Finite Commutative Rings 409

19. J.F. McKee and R.G.E. Pinch, Old and new deterministic factoring algorithms, in
H. Cohen (ed.), ANTS II, Springer LNCS 1122 (1996) 217–224.

20. J.F. McKee and R.G.E. Pinch, Further attacks on server-aided RSA cryptosystems,
unpublished manuscript (1998).

21. B. Meyer and V. Mueller, A public key cryptosystem based on elliptic curves over
Z/nZ equivalent to factoring, in U.M. Maurer (ed.), EUROCRYPT 1996, Springer
LNCS 1070 (1996) 49–59.

22. V.S. Miller, Short programs for functions on curves, unpublished manuscript
(1986).

23. V.S. Miller, The Weil pairing, and its efficient calculation, J. Crypt., 17, No. 4
(2004) 235–261.

24. T. Okamoto and S. Uchiyama, Security of an identity-based cryptosystem and the
related reductions, in K. Nyberg (ed.), EUROCRYPT 1998, Springer LNCS 1403
(1998) 546–560.

25. J.M. Pollard, A Monte Carlo method for factorisation, BIT, 15 (1975) 331–334.
26. J.M. Pollard, Monte Carlo methods for index computations (mod p), Math. Comp.,

32 (1978) 918–924.
27. M.O. Rabin, Digitalized signatures and public-key functions as intractable as fac-

torization, Technical report TR-212, MIT Laboratory for Computer Science (1979).
28. M. Scott and P.S.L.M. Barreto, Compressed pairings, in M. K. Franklin (ed.),

CRYPTO 2004, Springer LNCS 3152 (2004) 140–156.
29. D. Shanks, Class number, a theory of factorisation and genera, in D.J. Lewis (ed.),

Number theory institute 1969, Proceedings of symposia in pure mathematics, vol.
20, Providence RI, AMS (1971) 415–440.

30. J.W.M. Turk, Fast arithmetic operations on numbers and polynomials, in
H.W. Lenstra Jr. and R. Tijdeman (eds.), Computational methods in number
theory, Part 1, Mathematical Centre Tracts 154, Amsterdam (1984).

31. S.A. Vanstone and R.J. Zuccherato, Elliptic curve cryptosystems using curves of
smooth order over the ring Zn, IEEE Trans. Inform. Theory, 43, No.4 (1997)
1231–1237.

A Key Encapsulation Mechanism for NTRU

Martijn Stam

Dept. Computer Science, University of Bristol, Merchant Venturers Building,
Woodland Road, Bristol, BS8 1UB, United Kingdom

stam@cs.bris.ac.uk

Abstract. In this article we present a key encapsulation mechanism
(KEM) for NTRU. The KEM is more efficient than a naive approach
based on NAEP and resistant against the decryption failures that may
occur when using NTRU. We also introduce plaintext awareness for
KEMs and use it to tighten a security result by Dent.

Keywords: NTRU, Key Encapsulation, Random Oracle Model, Plain-
text Awareness.

1 Introduction

Although the invention of public key encryption systems such as RSA and ElGa-
mal was a major breakthrough, it was quickly realized that the straightforward
use of these primitives was neither secure nor very efficient. The security issue
was tackled with the introduction of a proper security model, such as IND-CCA2,
and modes of operations that would reduce the by now well-defined security of
the scheme to some mathematically hard problem. The efficiency issue is dealt
with by using hybrid encryption. The data itself is encrypted under a symmetric
cipher with a one-time key. This one-time key is freshly generated by the sender
and encrypted under the public key scheme. Curiously it took rather long for
the security model to catch up with this practice.

In 1998 Cramer and Shoup [5] published a breakthrough article containing
the first efficient IND-CCA2 public key encryption scheme under only standard
assumptions (DDH). En passant they formalized hybrid encryption schemes.
Such a scheme consists of two parts, a data encryption mechanism (DEM) and
a key encapsulation mechanism (KEM). The DEM is a symmetric primitive
that encrypts (and decrypts) the data under a fresh session key. The KEM
is a public key mechanism to generate the one-time session key for the DEM
and encapsulate (and decapsulate) it. Cramer and Shoup demonstrate that the
security properties of KEMs and DEMs can be considered independently of each
other (as long as the session keys output by the KEM are suitable for the DEM).
In this article we will only discuss KEMs.

The NTRU cryptosystem [9] was introduced as a compact and efficient alter-
native to systems based on RSA or discrete logarithms. Apart from its speed, it
has the important advantage that as yet no efficient quantum algorithm is known
to break it, contrary to factoring and computing discrete logarithms, both easy
tasks for a quantum computer.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 410–427, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Key Encapsulation Mechanism for NTRU 411

NTRU has the rather unusual property that its underlying one-way trap-
door function does not always have a correct inverse: in particular the function
is not guaranteed to be injective, inevitably resulting in decryption errors. This
necessitates the use of specialized protocols to prevent weaknesses based on de-
cryption errors that can occur when plugging NTRU in a standard construction
based on a one-way trapdoor permutation.

Indeed, in the standard definition of secure encryption, an adversary can-
not gain anything from asking for the decryption of a message it has properly
encrypted (this notion is intuitively so strong that it led to the formalization
of plaintext-awareness— valid encryptions imply knowledge of the plaintext).
However, in the case of NTRU valid encryptions do not always decrypt to the
encrypted message. Thus an adversary can learn something new even by query-
ing the decryption oracle on messages it has just encrypted itself.

For functionality purposes one could allow a negligible number of decryption
failures. However, in the case of an attack even a small number of decryption
errors can be harmful if these are somehow related to the secret key and if the
corresponding ciphertexts can be found efficiently (given the public key). Indeed,
for NTRU this is the case, as was demonstrated by Proos, who presented an
attack on an early version of NTRU encryption [13].

In the security proofs, the presence of decryption failures changes the be-
haviour of the decryption oracle. One needs to simulate this oracle for the ad-
versary without knowledge of the secret key. Typically this simulation is based
on calling the random oracle for valid encryptions, so the list of all inputs to the
random oracle will also reveal the correct decryption of a valid ciphertext. If the
adversary has not called the random oracle for a certain ciphertext, this cipher-
text will be incorrect with overwhelming probability (over the ‘future’ choices of
the random oracle), so declaring it so in the simulation only introduces a negli-
gible error. As a result, the adversary cannot detect that it is interacting with
a simulated world and hence its behaviour in the real world and the simulated
world will be identical. In specific, its success probability will be identical.

In case of decryption failures, this gives a simulation that is too good—the
simulation manages to correctly decrypt ciphertexts that would cause failures
in the real world. This difference might be easily noticeable, thus the adversary
might behave completely differently in the real world and in this simulated world.

As a reaction to the exposed vulnerabilities due to decryption failures [13,10],
the people behind NTRU designed NAEP [11]. A disadvantage of NAEP is that
it is not completely clean cut: instead of determining the full input to the one-
way function and then applying it, a two tier method is used, where part of the
one-way function is applied to part of the input and this intermediate result is
hashed to derive the remainder of the input.

However, little is known about KEMs for NTRU, although they have been
considered in the past. In this work we examine the restrictions decryption fail-
ures put on KEM-designs and show that under reasonable assumptions one of
Dent’s constructions [6] can serve as a KEM. This yields a more efficient and
natural KEM than the one based on NAEP as presented by Whyte [17,18].

412 M. Stam

2 Preliminaries

2.1 Trapdoor One-Way Functions

Before we formally introduce NTRU, we revisit some other related notions and
notations. We let λ denote the security parameter and λ1 the number of random
bits used by the key generation. A trapdoor one-way function consists of a triple
of algorithms:

Key Generation. A probabilistic algorithm Gen : {0, 1}λ1 → Kp × Ks that
produces the public and private key of the one-way function. We will also
write (pk, sk) ← Gen(1λ) or just (pk, sk), which is still understood to be
probabilistic based on a uniform sampling of {0, 1}λ1.

The one-way function. A deterministic algorithm E : Kp ×M×R → C, also
e ← Epk(m, r), that on input a public key pk, maps (m, r) to an image e.

The trapdoor. A deterministic algorithm D : Ks × C → (M × R) ∪ {⊥} that
on input a secret key and some image e produces a preimage. The ⊥-symbol
is used to denote failure, for instance if e is not in the range of E. We will
write (m, r) ← Dsk(e), so possibly (m, r) =⊥ abusing notation.

A proper trapdoor satisfies Dsk(Epk(m, r)) = (m, r) for all (m, r) ∈ M × R
and (pk, sk) ∈ [Gen(1λ)], where [·] denotes the support of a probability distribu-
tion. Some functions do not have a full trapdoor but only a partial one. That is
a function DM : Ks × C → M ∪ {⊥} satisfying DM

sk (E(m, r)) = m.
An inversion failure occurs when the relevant equality above does not hold.

For a given key we let S(pk,sk) denote the set of all originals that cause a de-
cryption failure, i.e., S(pk,sk) = {(m, r)|Dsk(Epk(m, r)) �= (m, r)}. We also define
S(pk,sk)(m) = {r|Dsk(Epk(m, r)) �= (m, r)} and for use with partial trapdoors
SM

(pk,sk) = {(m, r)|DM
sk (Epk(m, r)) �= m}. The latter definition implies that for

a function with only a partial trapdoor, one can have pairs (m, r) and (m, r′)
yielding the same ciphertext but with neither being categorized as an inversion
failure (whereas for a full trapdoor it is clear that the decryption cannot possibly
return both originals so at least one will be qualified as causing a failure).

Given these sets we can also determine the probability that decryption fail-
ures occur. The relevant quantities are defined as ε⊥(pk,sk) = |S(pk,sk)|/|M × R|,
ε⊥(pk,sk)(m) = |S(pk,sk)(m)|/|R|, and ε⊥,M

(pk,sk) = |SM
(pk,sk)|/|M×R|. All these prob-

abilities are per key; we let ε̄⊥ etc. denote the probabilities averaged over key
generation as well. For a proper functioning of the trapdoor one-way primitive
the very least we require is that ε̄⊥ is sufficiently small.

The trapdoor one-wayassumption relates to theproblemof invertingEwithout
the secret key (trapdoor). An adversary A is given a randomly selected key and
a randomly selected image and has to find a preimage. More precisely, define A’s
advantage as

AdvOW
A (λ) = Pr[Epk(A(pk, e)) = e|e ← Epk(m, r), (m, r) ← M × R, (pk, sk)] .

We call A a (t, ε) adversary if it has runtime t and advantage ε. The one-way as-
sumption states that for all PPT adversaries A the advantage is negligible.

A Key Encapsulation Mechanism for NTRU 413

Of relevance, especially when only using the partial inverse, is the k-partial
one-wayness assumption. Here the adversary is given the public key pk and an
image e, and is allowed to output a list of k elements in M. If for one of the
elements mi in its list there exists an r ∈ R such that Epk(mi, r) = e the
adversary is deemed successful. The k-partial one-way assumption states that
all efficient adversaries have negligible success probability.

2.2 The NTRU Primitive

Central to NTRU [9] is the almost one-way trapdoor function

E(m, r) = m + rh

which is defined over the ring Rq = Zq[X]/(XN −1) where the integers q and N
are part of the system parameters and h ∈ Rq is the public key. We will assume
that all elements in Rq are represented by a polynomial of degree at most N − 1
and with coefficients in {0, . . . , q − 1}. This representation gives us a canonical
map of Rq into R = Z[X]/(XN − 1) and allows us to identify these polynomials
with N -tuples of integers in {0, . . . , q − 1}.

NTRU makes ample use of sparse polynomials, especially those with exactly
d coefficients set to 1 and the rest to 0. These sets will be denoted Rq(d). Let R̃q

be the union of Rq(d) for fairly balanced d’s, i.e., |N/2 − d| ≤ q/2. The obvious
map from the bitstrings {0, 1}N to the binary polynomials of degree < N is also
used to map into Rq(d), allowing for embedding failures. This map is injective,
easy to invert and gives a uniform distribution over its range.

Given q and N , let p be a small element in Rq coprime to q (as a polyno-
mial over the integers). Typically p will equal 2 or 2 + X and in both cases
Z[X]-polynomials reduced modulo both XN − 1 and p will be represented with
polynomials of degree smaller than N and whose coefficients lie in {0, 1}.

In the literature several NTRU key generation algorithms have appeared,
sometimes tailored for a specific set of parameters. Only recently an algorithm
has been presented that actually generates both parameters and keys [12]. We
will assume that the relevant parameters (including df and dg used to denote
sparsity of some secret polynomials used during key generation) have been prop-
erly generated and concentrate on key generation.

Algorithm 1: NTRU Key Generation.

Let the parameters p, q, N and 0 < df , dg < N be given. This algorithm generates
a public key h ∈ Rq and a private key f ∈ Rq, a small factor of h.

1. [Picking a candidate trapdoor] Pick at random f ′ ∈ Rq(df).
2. [Checking the candidate] Set f ← 1 + pf ′ and compute f−1 over Rq. If

this inverse does not exist, return to the previous step.
3. [Pick the blinding factor] Pick an invertible g ∈ Rq(dg) at random.
4. [Compute the public key] Set h ← pf−1g (again over Rq). The public key

is h and the corresponding private key is f .

414 M. Stam

For the trapdoor function let a further parameter 0 < dr < N be given.
Define the function

E : R̃q × Rq(dr) → Rq

by E(m, r) = m + rh. The one-way assumption on this function is that for
properly chosen parameters, keys generated according to the above and e =
E(m, r) for uniformly chosen m and r, finding a preimage (m′, r′) such that
e = E(m′, r′) is hard.

Recovery of m given e = E(m, r) and the trapdoor f works as follows.
Compute ef = mf + rhf = mf + prg. Note that this is done in Rq. However,
because all polynomials in this expression are small, with high probability we
will be able to derive a = mf +prg as polynomials in R, so without the reduction
modulo q (this is where the decryption failures are introduced) But then a ≡
m mod p since prg = 0 mod p and f−1

p = 1 by choice of parameters. Since m mod
p is the same as m in R̃q, this results in recovery of the message. Obviously one
can, given m, also reconstruct rh if so desired. Since h has an inverse in Rq, this
will also lead to r itself. Thus we can recover both m and r, where recovering
just m takes essentially one product computation plus some modular arithmetic,
but recovery of r as well takes an additional product computation.

Only recently an algorithm was proposed to generate N, p, q, df , dg, and dr

as a function of the security parameter λ. Before that one usually worked with
a fixed parameter set. For security comparable to 1024-bit RSA, the set N =
251, q = 239, df = 145, and dg = dr = 72 was recommended. For this parameter
set the probability of decryption failures has been estimated [16]. It can be
shown that with the right centering algorithm, decryption failures can only be
due to something called a gap failure, where one computes a = fm + prg over
Z[X]/(XN −1) and finds that there are at least two coefficients of a that differ by
at least q. It has been estimated that the probability (over the choice of the keys,
m and r) is approximately 2−156, hence ε̄⊥ ≈ 2−156. If we assume that the failure
probability is more or less independent of the choice of the key, so ε̄⊥ ≈ ε⊥(pk,sk)

for all keys, we can estimate the size of S(pk,sk) ≈ 2−15622122250 = 2206. For
other parameter sets (for instance when q is much smaller, say q = 128) much
higher failure probabilities have been reported, as high as 2−25. Note that these
probabilities are taken over uniformly random choices of m and r. If an adversary
can somehow deviate from these uniform distributions, he might be able to
induce higher failure probabilities.

3 Padding Schemes for Encryption

In this section we introduce RAEP, robust asymmetric encryption padding,
which turns a trapdoor one-way primitive suffering from decryption failures into
a fully fledged IND-CCA2 secure encryption scheme. Basically it is a slight mod-
ification of NAEP.

The overall framework we will use is a keyed trapdoor one-way function E
with a full inverse D, as described in Section 2.1. We allow for a small failure

A Key Encapsulation Mechanism for NTRU 415

probability, that is ε̄⊥ is small. The encryption scheme also uses a padding scheme
pad : {0, 1}λ3 × {0, 1}λ2 → M × R such that pad is easily invertible (without
errors or trapdoors) on its first element and the range of pad is a subset of
M×R of negligible size that is easily verifiable. All these ingredients are mixed
into an encryption scheme in a straightforward manner: for encryption, given
a message M ∈ {0, 1}λ3, pick uniform randomness w ∈ {0, 1}λ2, compute the
padding (m, r) ← pad(M, w) and apply the one-way function Epk to (m, r) to
obtain the ciphertext c.

Decryption more or less follows the same pattern in reverse and with inverses.
Given a ciphertext c, compute a tentative (m, r) ← Dsk(c). If (m, r) =⊥ or if
(m, r) does not lie in the range of pad output failure (⊥), otherwise retrieve M
from (m, r) and return M .

The IND-CCA2 security of such a scheme not only depends on the one-way
function but also on the padding and their interaction. Typically the padding
scheme is based on a one or two-round Feistel-network using hash functions that
are modelled as random oracles in the proof.

The scheme is IND-CPA by arguing that for all M and over the randomness
of w (and implicitly that of the random oracle), pad(M, w) is computationally
indistinguishable from the uniform distribution over M × R, unless the oracle
is called on w. But in that case distinguishing between E ◦ pad applied to two
different messages implies knowledge of a (partial) preimage of E, contradicting
the (partial) one-way assumption.

In the absence of decryption failures, the padding scheme is plaintext aware
by arguing that the only way for an adversary to create some (m, r) in the range
of pad is by calling the random oracle on the embedded message M . All other
pairs (m, r) not created thusly by the adversary can be deemed invalid.

In the presence of decryption failures, additional work is needed to obtain a
plaintext aware scheme. Ideally the probability of a decryption failure is given
over a uniform input distribution and indeed the padding is such that for honest
participants this is the relevant probability. However, an adversary might deviate
from the protocol resulting in a different probability distribution.

It should be difficult for the adversary to find an element that is both in
the range of the padding scheme and in this set S(pk,sk). Assuming a non-empty
intersection, this can be achieved by forcing the adversary to use a call to the
random oracle to obtain any information about an element in pad’s range. If the
fraction of pad’s range that intersects S is sufficiently small, the adversary needs
to make too many calls to the random oracle to be effective (and efficient).

The first padding scheme presented to be secure in the ROM was OAEP [2],
although it was later famously shown by Shoup [14,15] to have a flawed proof
of security. For the RSA and Rabin primitives an alternative proof was con-
structed [8] and for arbitrary functions E a patch called OAEP+ was pre-
sented [14]. Both OAEP and OEAP+ can be regarded as two round Feistel net-
works. Boneh [4] presented SAEP+, a more efficient one-round padding scheme.

Boneh proved that SAEP+ is secure in the ROM under a partial one-way
assumption. The introduction of decryption failures—in the real world— has its

416 M. Stam

m

M w

r

0λ2

G

H

Lm Lr

,c = Epk

Fig. 1. RAEP

ramifications for the security of SAEP+. Recall that, given the public key, the set
of ciphertexts causing failures is fixed. Note that, without further assumptions,
we cannot exclude an adversary capable of testing membership of this set and
constructing elements in this set, solely based on a public key. For instance, the
padding is such that it gives an adversary complete control over the second input
to E. Now suppose that (m, r) ∈ S(pk,sk). Then the simulator used in the proof
of plaintext awareness fails if the adversary asks for decryption of Epk(m, r): in
the real world a failure will occur, whereas in the simulated world decryption to
M will miraculously succeed.

This problem is countered in NAEP by changing the order of randomness and
padding. We use a variation, called RAEP (for robust asymmetric encryption
padding) as shown in Figure 1. Both RAEP and NAEP can be considered as a
two-round Feistel network with all-zero initial vector.

Let λ2, λ3, λ4 be security parameters and assume we are given a (keyed)
function E acting on M × R (the range of E is less relevant). We assume that
there are efficient invertible mappings LM : {0, 1}λ3+λ4 → M ∪ {⊥} and LR :
{0, 1}λ2 → R ∪ {⊥} such that the uniform distribution on the input yields
a uniform distribution on the output, conditioned on LM not outputting ⊥.
If λ3 + λ4 = �log2 |M|� and λ2 = �log2 |R|� these embeddings will typically
exist with small embedding error (≤ 1/2, so on average two tries suffice to find
an element that embeds properly). Let G : {0, 1}λ3 × {0, 1}λ4 → {0, 1}λ2 and
H : {0, 1}λ2 → {0, 1}λ3+λ4 be hash-functions. Key generation for the encryption
scheme is identical to that of the one-way function.

Algorithm 2: RAEP Encryption.

This is the RAEP encryption which takes as input a message M ∈ {0, 1}λ3 and
a public key pk and outputs a ciphertext c.

A Key Encapsulation Mechanism for NTRU 417

1. [Pick randomness] Pick w ∈ {0, 1}λ4 at random.
2. [Determine r] Set r̂ ← G(M, w) and r ← LR(r̂).
3. [Determine m] Set a ← (M ||w) ⊕ H(r̂) and m = LM(a).
4. [Check embeddings] If m =⊥ or r =⊥ return to Step 1.
5. [Invoke one-way function] Set c ← Epk(m, r).

Algorithm 3: RAEP Decryption.

This is the RAEP decryption that on input a ciphertext c ∈ C and a private key
sk outputs either a message M ∈ {0, 1}λ3 or a failure symbol ⊥.

1. [Invert one-way function] Set (m, r) ← Dsk(c). If this results in failure,
output ⊥.

2. [Undo embeddings] Set r̂ ← L−1
R (r) and a ← L−1

M (m).
3. [Undo one-time pad] Set (M ||w) = a ⊕ H(r̂).
4. [Verify r̂] Compute r̂′ = G(M, w). If r̂ = r̂′ output M , else return ⊥.

The security proof of RAEP follows the same lines as that of NAEP and
SAEP. However we will briefly discuss its resilience against decryption failures.
From a high level perspective, pad maps the set {0, 1}λ3+λ4 into a subset of
M × R ∪ {⊥}, where we use ⊥ to allow for embedding failures that would
require rerandomization. If pad were a completely random map, the probability
ε⊥(pk,sk) of a decryption failure would carry over from M × R to pad’s range.
For the parameter set introduced at the end of Section 2.2 this means there are
approximately 294 elements in pad’s range that cause a failure. Now this also
means there are at most 294 dangerous elements in G’s range. Since G’s range
has cardinality 2212, it takes an adversary an expected 2116 oracle queries to find
an input that will cause a decryption failure (indeed, the adversary has to be
lucky that if the r-part corresponds to a failure, the m-part fits with it). Note
that RAEP’s padding is not completely random, but we feel it is sufficiently
close to random. Howgrave-Graham et al. [11] use a slightly different argument
that also shows that finding a point in the intersection would take the adversary
too many oracle queries.

4 Key Encapsulation Mechanism

4.1 Introduction

Often a public key encryption scheme is used only to encrypt a session key
for a symmetric cipher. In this case one actually requires a key encapsulation
mechanism, a primitive that is weaker than encryption.

Definition 4. A Key Encapsulation Mechanism (KEM) is a triple of algorithms

Key generation. A probabilistic algorithm Gen : {0, 1}λ1 → Kp × Ks that pro-
duces the public and private key of the cryptosystem. We will also write
(pk, sk) ← Gen(1λ) or just (pk, sk), which is still understood to be proba-
bilistic based on a uniform sampling of {0, 1}λ1.

418 M. Stam

Encapsulation. A deterministic algorithm Enc : Kp × {0, 1}λ2 → C × {0, 1}λ3

that on input a public key and a seed generates a key for the symmetric
cipher and an encapsulation of that ephemeral key under pk. We will also
write (c, k) ← Encpk(Uλ2).

Decapsulation. A deterministic algorithm Dec : Ks × C → {0, 1}λ3 ∪ {⊥} that
on input a secret key and an encapsulation of an ephemeral key, produces
that ephemeral key. The ⊥-symbol is used to denote failure, for instance if
c �∈ [Encpk]. We will write k ← Decsk(c).

Note the use of the word encapsulation rather than encryption. Indeed, c
need not be an encryption of k in the traditional sense: it might not be possible
to exert any control over the key k whatsoever.

The use of bitstrings for the randomness and the session key is perhaps
slightly restrictive, but not really so: typically one assumes a source of uniform
randomness of bitstrings is available and then transforms this into whatever
distribution one needs. As long as the distribution native to the one-way problem
and that arising from transforming a uniform distribution over bitstrings are
statistically close, this only introduces small deviations in the security reductions.

We require that the KEM works, i.e., that decapsulation and encapsulation
yield identical session keys. For all (pk, sk) ∈ [Gen(1λ)] we define

ε⊥,KEM
(pk,sk) = Pr[k �= k′|k′ ← Decsk(c), (c, k) ← Encpk(Uλ2)]

as the probability of a decapsulation failure for the key (pk, sk). We require that
for all occurring keys ε⊥,KEM

(pk,sk) is negligible in λ. For most primitives there are no
failures at all but for the case we are interested in, NTRU, failures can occur.

There are two known security notions for a KEM. The first, IND-CPA, covers
security against a passive adversary and the second, IND-CCA2, covers security
against an active adversary.

A KEM is called IND-CPA if one cannot efficiently distinguish between valid
tuples (c, k0) as output by Enc and dummy tuples (c, k1) where k0 is a replaced
by an unrelated k1 uniformly chosen at random. On input the public key and a
tuple (c, kb) the adversary outputs a guess b′ for b. Let

AdvIND−CPA
A (λ) = |Pr[b′ = b|b′ ← A(pk, c, kb), b ← {0, 1}] − 1/2|

be the advantage of adversary A. Then we require that for all PPT adversaries
A this advantage is negligible in λ.

For a KEM to be IND-CCA2 the indistinguishability should hold even against
an adversary that has a decapsulation oracle at its command, as described in
the following game.

Game 1: IND-CCA2 Security.

This game describes the type of attack an adversary may mount.

A Key Encapsulation Mechanism for NTRU 419

1. [Provide key] Set (pk, sk) ← Gen(1λ) and give pk to the adversary.
2. [First oracle phase] The adversary is alllowed to ask queries to a decapsu-

lation oracle. When the adversary has had enough queries it signifies it is
ready to receive a challenge.

3. [Receive challenge] A challenge is created by setting (c, k0) ← Encpk(Uλ2)
and picking k1 ← {0, 1}λ3 at random. A bit b is chosen at random and the
challenge (c, kb) is presented to the adversary.

4. [Second oracle phase] The adversary is alllowed to ask queries to a decap-
sulation oracle. However, the oracle refuses to answer query c.

5. [Output guess] The adversary outputs b′, its best guess for b.

Let AdvIND−CCA2
A (λ) = |Pr[b = b′|b, b′ from the game above] − 1/2| be the

advantage of the adversary in the game above. For IND-CCA2 security we re-
quire that this advantage is negligible for all PPT adversaries A. Note that the
adversary has no influence over the challenge it gets.

4.2 Adaptive Plaintext Awareness

In this section we introduce plaintext awareness1 for KEMs by adapting the
framework for public key encryption as laid out by Bellare and Palacio [1]. PA2
captures the property that all ways (for an adversary) to make valid encapsula-
tions require knowledge of what is encapsulated in the first place. This property
should also hold if the adversary has an external encapsulator at hand (where
output of the oracle obviously does not count as a valid encapsulation). The
underlying idea is that whatever use an adversary makes of the decapsulation
oracle, it could have computed herself. This is modelled by an efficient simulator
of the oracle’s output. The simulator is (obviously) not given the private key
sk, however it is given the random coins of the adversary, corresponding to its
subconscious.

Game R: Ideal Adaptive Plaintext Awareness.

This game describes the real game, where the adversary talks with a true de-
capsulation oracle.

1. [Generate key] Set (pk, sk) ← Gen(1λ).
2. [Initialize] Set CList ← [], pick random coins R(C) and run the adversary

on input pk and R(C).
3. [Query Phase] In this phase the adversary can consult its oracles: on a

decapsulation query for c �∈ CList, return Decsk(c) to the adversary; on
an encapsulation query set c ← Encpk(Uλ2), append c to CList and return
c to the adversary.

4. [Adversary’s Output] The adversary terminates with output x.

1 We opt for the term plaintext awareness in keeping with the terminology for encryp-
tion schemes, although one could argue that key awareness would be more to the
point.

420 M. Stam

5. [Distinguishing] Run the distinguisher on input x and let D(x) be the
outcome of the game.

In the ideal world we replace the decapsulation oracle with a simulation based
on the random coins of the adversary. This gives rise to the following game:

Game S: Simulated Adaptive Plaintext Awareness.

This game describes the ideal game, where the adversary talks with a simulator
instead of with a true decapsulation oracle.

1. [Generate key] Set (pk, sk) ← Gen(1λ).
2. [Initialize] Set CList ← [], pick random coins R(C) and R(S). Set St ←

(pk, R(C), R(S)) and run the adversary on input pk and R(C).
3. [Query Phase] In this phase the adversary can consult its oracles: on a

decapsulation query for c �∈ CList, run (St, k) ← S(St, c, Clist) and return
k to the adversary; on an encapsulation query set c ← Encpk(Uλ2), append
c to CList and return c to the adversary.

4. [Adversary’s Output] The adversary terminates with output x.
5. [Distinguishing] Run the distinguisher on input x and let D(x) be the

outcome of the game.

If we denote the outcome of the real game as Dreal and of the ideal game as
Dideal, we can define A’s advantage relative to S and D as

AdvPA2
S,D (A) = Pr[Dideal = 1|using S, D] − Pr[Dreal = 1|using Dec, D] .

We call a KEM adaptive plaintext aware (PA2) if for all PPT A there exists
an efficient simulator S such that for all PPT distinguishers D the advantage
AdvPA2

S,D (A) is negligible. We call an adversary A a (t, ε)-PA2 adversary if it runs
in time t and there exists a PPT simulator S such that for all distinguishers
running in time t the advantage of A relative to S and D is at most ε.

Note that, due to the nature of KEMs, we no longer need a plaintext cre-
ator as featured in Bellare and Palacio’s definition. At first glance it might look
overly complicated to have a stateful simulator, to provide the simulator with
Clist and to use a distinguisher. However, if Clist were not given to the simula-
tor, the adversary A could use the encapsulation oracle as a source of randomness
unavailable to S. We have kept the distinguisher in this definition. Bellare and
Palacio remark that this makes the definition stronger, as the simulator does not
get to see the random coins of the distinguisher. However, a stronger notion of
PA2 makes the theorem that IND-CPA + PA2 security implies IND-CCA2 secu-
rity weaker. Luckily, Bellare and Palacio only use a deterministic distinguisher
and weakening the definition (to strengthen the theorem) in this respect would
not cause any problems.

We stress that correct simulation of the decryptor includes correct simulation
of decryption failures. It turns out that correct simulation of a deterministic
decapsulator is greatly aided by allowing a state to be passed on. Imagine a
KEM with the property that sk and sk′ are both secret keys to the same public

A Key Encapsulation Mechanism for NTRU 421

key and that both (c, m) and (c, m′) can be output by the encapsulator. If
Dec(c, sk) = m and Dec(c, sk′) = m′, the simulator has to guess which secret key
was used (requiring randomness) and he has to stick with this guess (requiring
a state). Also note that the guess has to be probabilistic from C’s point of view,
or else the distinguisher at the end would notice. Finally, correct simulation of
decryption failures is crucial in the proof that IND-CPA + PA2 implies IND-
CCA2. If plaintext awareness was defined along the lines that, for all challenges
put forward by the adversary, one can simulate a preimage, decryption failures
would invalidate this implication.

In analogy to Bellare and Palacio, we would like to show that IND-CPA +
PA2 security implies IND-CCA2 security in the standard model, as formalized
in the conjecture below.

Conjecture 5. Let A be a (t, ε)-IND-CCA2 adversary, then there exist a
(t1, ε1)-IND-CPA adversary A1 and a (t2, ε2)-PA2 adversary A2 with ε1 + 2ε2 ≥
ε, t1 = poly(t) and t2 ≈ t.

Unfortunately, adapting Bellare and Palacio’s proof to the setting of KEMs
fails due to a technical detail pointed out below. What we can show is that
the conjecture holds in the non-programmable random oracle model for a suit-
ably strong simulator. This result suffices for our needs later on, since the KEM
constructions we use have security proofs in the non-programmable random or-
acle model to begin with. Dent [7] recently gave a stronger notion of plaintext
awareness for KEMs that does allow a proof in the standard model.

We call a scheme PA2’ secure (in the non-programmable random oracle
model) if there is an efficient universal simulator S such that for all PPT adver-
saries the advantage

AdvPA2′
A (λ) = |Pr[ADecsk(·),Encpk,O = 1|(pk, sk)] − Pr[AS,Encpk,O = 1|(pk, sk)]|

is negligible, where O is the random oracle, Dec, Enc, and S have also access to
the oracle O and S gets to see all queries made by the adversary to O (at the
time they are made). However, S does not get the randomness of the adversary
A (this would be of no use anyway, since the simulator is chosen before the
adversary). Given some universal simulator, we say that an adversary is a (t, ε)-
PA2’ adversary if it runs in time t with advantage ε.

Theorem 6. Let A be a (t, ε)-IND-CCA2 adversary (in the random oracle
model), then there exist a (t1, ε1)-IND-CPA adversary A1 and (t2, ε2)-PA2’ and
(t3, ε3)-PA2’ adversaries A2 and A3 with ε1 + ε2 + ε3 ≥ ε, t1 = poly(t) and
t3 ≈ t2 = t.

Proof: For the proof we use a slightly different, but equivalent notion of IND-
CCA2 security. Namely, we let E0 be a proper encapsulation oracle and E1 be a
fake encapsulation oracle returning a pair (C, K) where C is a properly generated
encapsulation, but K is a randomly and independently generated bitstring (of
the correct length). Then the advantage of A can be reformulated as

422 M. Stam

AdvIND−CCA2
A (λ)

= |Pr[ADecsk(·),E0(pk) = 1|(pk, sk)] − Pr[ADecsk(·),E1(pk) = 1|(pk, sk)]| ,

where the oracle Eb is called only once and with the usual restriction that Decsk

is not called on Eb’s output. We can now relate these two probabilities with those
that arise from replacing the decapsulation oracle with a simulator, as depicted
in the following commutative diagram:

ADecsk(·),E0
AdvP A2′

A2−−−−−→ AS(·),E0⏐⏐BAdvIND−CCA2
A

⏐⏐BAdvIND−CPA
A1

ADecsk(·),E1
AdvP A2′

A3←−−−−− AS(·),E1

The diagram shows that the IND-CCA advantage can be upper bounded by
the sum of the three other advantages. A more detailed proof can be found in
the full version of this paper. Q.E.D.

In the standard model the proof fails, since we are no longer guaranteed
that there is a universal simulator that works for both A2 and for A3, although
it seems highly unlikely that a simulator that works for one would fail for the
other for a scheme that is IND-CPA secure. Note that for encryption schemes
the problem is resolved by the quantification over all plaintext creators, i.e., a
simulator is universal for all plaintext creators, in particular to a plaintext creator
that given two messages always picks the first, respectively the second. Dent [7]
has shown a similar approach works for KEMs, yet proving our conjecture based
on our definition of plaintext awareness remains a tantalizing open problem.

5 Padding Schemes for Key Encapsulation

Dent [6] has provided several constructions to build an IND-CCA2 secure KEM
out of an arbitrary trapdoor one-way function. Some of his constructions rely
on additional assumptions, such as efficient plaintext-ciphertext checkers for the
underlying one-way function. However, his fourth construction is fairly generally
applicable2 and the one we describe below. Key generation for the KEM is
identical to that of the one-way function.

Let G : {0, 1}λ2 → {0, 1}λ4 and KDF : {0, 1}λ2 → {0, 1}λ3 be a hash-
function, respectively a key derivation function. Let LM : {0, 1}λ2 → M
and LR : {0, 1}λ4 → R be embeddings as before, so λ2 = �log2 |M|� and
λ4 = �log2 |R|�.

2 Dent claims his construction only works for probabilistic functions, but for most
deterministic functions the domain can be split in two, a message part and a random
part, thus turning it into a probabilistic function.

A Key Encapsulation Mechanism for NTRU 423

Algorithm 7: Dent’s Encapsulation.

This encapsulation is based on Dent’s KEM construction. It basically leaves out
the randomization of the message.

1. [Pick seed] Choose w ∈ {0, 1}λ2 at random and set m ← LM(w). Repeat
until m �=⊥.

2. [Determine randomness] Set r ← LR(G(w)). If r =⊥ return to the previ-
ous step.

3. [Invoke one-way primitive] Compute e ← E(m, r).
4. [Derive key] Compute k ← KDF(w).
5. [Output] Return k as session key and e as encapsulation thereof.

This is decapsulation given by Dent. It is based on a partial trapdoor only.

Algorithm 8: Dent’s Original Decapsulation.

Inputs are a secret key sk and an encapsulation e. It outputs a session key k.

1. [Invert] Set m ← Dm
sk(e) and w ← L−1

M (m).
2. [Reconstruct randomness] Set r ← LR(G(w)).
3. [Recompute the encapsulation] Set e′ ← E(m, r).
4. [Verify encapsulation] If e �= e′ terminate with output ⊥.
5. [Output session key] Compute k ← KDF(w). Return k as session key.

Below is an alternative decapsulation that works if E permits a full inverse.
It is easy to see that these two decapsulators are functionally equivalent when
both apply (and the inverses D and Dm behave as expected). One might be
more efficient than the other depending on the application.

Algorithm 9: Alternative Decapsulation.

Inputs are a secret key sk and an encapsulation e. It outputs a session key k.

1. [Invert] Set (m, r) ← Dsk(e) and w ← L−1
M (m).

2. [Recompute randomness] Set r′ ← LR(G(w)).
3. [Verify encapsulation] If r �= r′ terminate with output ⊥.
4. [Output session key] Compute k ← KDF(w). Return k as session key.

The question is whether for NTRU existing techniques to construct a KEM
out of a trapdoor one-way function remain secure or not. For this we use a
mathematically more elegant description of the scheme (closer to what Dent
described, but further removed from the gritty bit-oriented reality), where G :
M → R and KDF : M → {0, 1}λ2 and encryption starts with picking m ∈ M
uniformly at random.

We will now prove that Dent’s scheme is IND-CPA and PA2 and thus IND-
CCA2 secure. The two indistinguishability claims are nothing new, but we be-
lieve our proof separating IND-CPA and PA2 sheds some new light on the pro-
tocol, in particular on its reliance on the random oracle model in the proof and
on possible avenues to reduce this reliance [?]. For IND-CPA decryption failures
are hardly an issue and for IND-CCA2 they are taken into account separately.

424 M. Stam

Theorem 10. Let A be a (t, ε)-IND-CPA adversary in the non-programmable
random oracle model making qG and qKDF oracle calls to G respectively to KDF.
Then there exists a (t′, ε′)-k-partial inverter for the underlying one-way function,
where t ≈ t′, ε′ ≥ ε and k ≤ qG + qKDF.

Proof: Let A be said IND-CPA adversary. Now construct an inverter as follows.

Algorithm 11: Inverter.

This algorithm gets as input a public key pk and an image y and computes a
list containing a partial preimage of y.

1. [Initialize A] Generate k ← U and feed (pk, (y, k)) to the adversary.
2. [Run A] Run A; upon oracle queries from A to either G or KDF, forward

the query to an independent non-programmable random oracle and relay
the answer back to the adversary. Keep a single list of all queries made (G
and KDF have the same domain).

3. [Output inverse] After A terminates (disregarding its output), output the
list of all oracle queries.

It is clear that the algorithm runs in time ≈ t and that its output contains
at most qG + qKDF elements. We now argue that with probability at least ε,
the algorithm above outputs a partial inversion. Recall that the advantage of A
relates to distinguishing true encapsulations (b = 0) from false ones (b = 1). In
the latter case, the adversary is however presented with a valid encapsulation of
something, just not of the key accompanying it. Let E−1(y) = {(m, r)|E(m, r) =
y} and suppose the random oracle for G satisfies, for all relevant m that G(m) =
r. For b = 0 we define KDF(m) = k whereas for b = 1 we let KDF(m) be random.
With these oracles the input to the adversary corresponds to the distribution it
expects, however the oracles are no longer fully random. The only way for an
adversary to find out that either the oracles are improper or with which set it is
dealing, is by querying it on some m ∈ E−1(y). Q.E.D.

For the plaintext awareness, we begin by describing a simulator S. Let A be
a PA2’ adversary. If A makes a random oracle query to G, forward, relay and
store. If the adversary makes a decapsulation query on e, check whether there
is a pair (m, G(m)) such that E(m, G(m)) = e. If so, return KDF(m) (just by
computing the function), otherwise return ⊥.

Theorem 12. Let A be a PA2’ adversary in the ROM making qD decapsulation
queries. Then its advantage against simulator S is at most qD/|R| + ε̃⊥, where
ε̃⊥ is defined below and only G is modelled as a (non-programmable) random
oracle.

Proof: Clearly the probability of an adversary and a distinguisher’s advantage
is upper bounded by the probability that S(e) �= Dsk(e) for some queried e.
Note that if S(e) = w, and in the absence of decryption failures, we also have
Dsk(e) = w, so of relevance is the probability that there exists a e with S(e) =⊥
but with Dsk(e) �=⊥. Assuming uniqueness of inverse (w, r) = Dsk(e), this means

A Key Encapsulation Mechanism for NTRU 425

m

w

r

0λ2

G

H

Lm Lr

,e = Epk

k = KDF

Fig. 2. RAEP-based KEM

that G(w) = r. This probability (over the choices made by the oracle) equals
1/|R|. Since there are qD queries that can go wrong, the total error is upper
bounded by qD/|R|.

We now deal with the issue of decryption failures. For Dent’s construction to
work, the probability that an adversary can find (w, G(w)) ∈ S should be small,
where the adversary has full control over w. This is implied by a small value of
ε̃⊥ = E(pk,sk) maxw S(pk,sk)(w)/|R|. Q.E.D.

We can combine all of the above in the following theorem.

Theorem 13. Let A be a (t, ε)-IND-CCA2 adversary in the non-programmable
random oracle model. Then there exists a (t′, ε′)-inverter for the first part of E
with t′ ≈ t and with ε′ ≥ (ε − qD/|R| − ε̃⊥)/(qKDF + qG).

If we compare the version without decryption failures, i.e., with ε̃⊥ = 0 with the
result of Dent, we see that we have tightened the reduction.

Unfortunately for NTRU the value ε̃⊥ can be quite large (indeed, one cannot
possibly maintain that the padding scheme results in a random subset of M ×
R). The situation is not quite satisfactory, similar to the case of using SAEP+
directly for NTRU. There are several possible solutions to this problem. A trivial
solution is to use RAEP (or NAEP) without adaptations, where the message that
is encrypted serves as the session key (so no need for a key derivation function).
The downside of this approach is that potentially some bandwidth is lost. An
alternative solution based on NAEP is given by Whyte [17,18].

In Figure 2 the corresponding RAEP version is given. Here what used to
be message M and randomness w in the encryption scheme are joint together
to form the seed (again w) for a key derivation function (it is easy to see that
a KDF is necessary here, because if k = w then given k it is easy to compute
the unique encapsulation e, breaching IND-CPA security). For completeness we

426 M. Stam

state the encapsulation and decapsulation algorithms. Note that this differs in
several places with the NTRU-KEM appearing on slide 19 [18].

Algorithm 14: Encapsulation.

This is encapsulation based on RAEP.

1. [Pick seed] Choose w at random.
2. [Determine randomness] Compute r̂ ← G(w) and r ← LR(r̂).
3. [Randomize message] Compute m ← LM(w ⊕ H(r̂)).
4. [Invoke NTRU primitive] Compute e ← E(m, r).
5. [Derive key] Set k ← KDF(w).
6. [Output] Return k as session key and e as encapsulation thereof.

Algorithm 15: Decapsulation.

This is decapsulation based on RAEP.

1. [Invert one-way function] Compute (m, r) ← Dsk(e). It this results in
failure, output ⊥.

2. [Undo embeddings] Compute m̂ ← L−1
M (m) and r̂ ← LR(r).

3. [Retrieve seed] Compute w ← m̂ ⊕ H(r̂).
4. [Recompute randomness] Set r̂′ ← G(w).
5. [Verify encapsulation] If r̂ �= r̂′ output ⊥.
6. [Derive key] Set k ← KDF(w).
7. [Output] Return k as session key.

We present a third, different solution that is more efficient: there is no need
for an extra hash-function. The downside is that our solution expands the key
size and sofar is only heuristic (but well motivated). Recall the way RAEP dealt
with decryption failures. Because pad was sufficiently random, ε̄⊥ applied to
its range as well, giving only a small number of failures with respect to the
range of G. To be more precise, the probability of G mapping an element into
a potential decryption failure is at most ε⊥(pk,sk)|M|/|R|, so the relevant term
ε̃⊥ ≤ qGε̄⊥|M|/|R|.

Our observation is that the same argument could be applied if the set S(pk,sk)

would be sufficiently random. But randomization of S(pk,sk) can effectively be
achieved by applying a keyed smoothing function straight after the padding
(and before the embedding into M × R). We conjecture that for NTRU a com-
bination of standard diffusion and confusion does the trick, i.e., XOR’ing with
a key followed by a random key-driven permutation of the bits (coordinates).
This would add (λ2 + λ4)(1 + log2(λ2 + λ4)) bits to the key, but the transfor-
mation is considerably faster to perform than the hash function H used in the
NAEP/RAEP-based solutions.

6 Conclusion

In this work we have expanded the theory of KEMs to include plaintext aware-
ness and resilience against decryption errors. The use of plaintext awareness

A Key Encapsulation Mechanism for NTRU 427

allowed us to tighten the security reduction for an existing KEM given by Dent.
Resilience against decryption errors is relevant when used in conjunction with
(certain variants of) NTRU. We have described a novel approach to deal with
decryption failures that outperforms existing art.

The author would like to thank Nigel Smart, Joe Silverman, Alex Dent and
the anonymous referees for valuable comments and discussions.

References

1. M. Bellare and A. Palacio. Towards plaintext-aware public-key encryption without
random oracles. Asiacrypt’04, LNCS 3329, pages 48–62.

2. M. Bellare and P. Rogaway. Optimal asymmetric encryption. Crypto’94, LNCS
839, pages 92–111.

3. A. Boldyreva and M. Fischlin. Analysis of Random Oracle Instantiation Scenarios
for OAEP and Other Practical Schemes Crypto’05, LNCS 3621, pages 412–429.

4. D. Boneh. Simplified OAEP for the RSA and Rabin functions. Crypto’01, LNCS
2139, pages 275–291.

5. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. Crypto’98, LNCS 1462, pages 13–25.

6. A. W. Dent. A designer’s guide to KEMs. CCC’03, LNCS 2898, pages 133–151.
7. A. W. Dent. Cramer-Shoup is plaintext-aware in the standard model. Technical

Report 261, IACR’s ePrint Archive, 2005.
8. E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure under

the RSA assumption. Crypto’01, LNCS 2139, pages 260–274.
9. J. Hoffstein, J. Pipher, and J. Silverman. NTRU: A new high speed public key

cryptosystem. ANTS-III, LNCS 1423, pages 267–288.
10. N. Howgrave-Graham, P. Nguyen, D. Pointcheval, J. Proos, J. Silverman, A. Singer,

and W. Whyte. The impact of decryption failures on the security of NTRU en-
cryption. Crypto’03, LNCS 2729, pages 226–246.

11. N. Howgrave-Graham, J. Silverman, A. Singer, and W. Whyte. NAEP: Provable
security in the presence of decryption failures. Technical Report 172, IACR’s ePrint
Archive, 2003.

12. N. Howgrave-Graham, J. H. Silverman, and W. Whyte. Choosing parameter sets
for NTRUEncrypt with NAEP and SVES-3. CT-RSA’05, LNCS 3376, pages 118–
135.

13. J. Proos. Imperfect decryption and an attack on the NTRU encryption scheme.
Technical Report 2, IACR’s ePrint Archive, 2003.

14. V. Shoup. OAEP reconsidered. Crypto’01, LNCS 2139, pages 239–259.
15. V. Shoup. OAEP reconsidered. Journal of Cryptology, 15:223–249, 2002.
16. J. Silverman and W. Whyte. Estimating decryption failure probabilities for NTRU-

Encrypt. Technical Report 18, NTRU Cryptosystems, 2003.
17. W. Whyte. X9.98 top N issues, 2003. Slides available online.
18. W. Whyte. Choosing NTRUEncrypt parameters, 2004. Slides available online.

Efficient Identity-Based Key
Encapsulation to Multiple Parties

M. Barbosa1,� and P. Farshim2

1 Departamento de Informática, Universidade do Minho,
Campus de Gualtar, 4710-057 Braga, Portugal

mbb@di.uminho.pt
2 Department of Computer Science, University of Bristol,

Merchant Venturers Building, Woodland Road,
Bristol BS8 1UB, United Kingdom

farshim@cs.bris.ac.uk

Abstract. We introduce the concept of identity based key encapsulation
to multiple parties (mID-KEM), and define a security model for it. This
concept is the identity based analogue of public key KEM to multiple
parties. We also analyse possible mID-KEM constructions, and propose
an efficient scheme based on bilinear pairings. We prove our scheme se-
cure in the random oracle model under the Gap Bilinear Diffie-Hellman
assumption.

Keywords: Key Encapsulation Mechanism (KEM), Hybrid Encryption,
Identity Based Cryptography, Provable Security.

1 Introduction

A traditional public key encryption scenario involves communication between
two users. One party, Alice, wishes to communicate securely with another party,
Bob. Alice uses Bob’s public key, which she (somehow) knows to be authentic,
to create a message that only Bob can decrypt using his private key.

Due to the large computational cost associated with public key encryption
algorithms, most practical applications use hybrid encryption to handle large
plaintext messages. Rather than using the public key encryption algorithm di-
rectly over the plaintext, one generates a random session key and uses it to
encrypt the message under a more efficient symmetric algorithm. The (small)
session key is then encrypted using the public key encryption algorithm, and the
message is transferred as the combination of both ciphertexts.

The hybrid public key encryption paradigm has gained strength in recent
years with the definition and formal security analysis of the generic KEM-DEM
construction [7,8,17]. In this approach to hybrid encryption one defines a sym-
metric data encapsulation mechanism (DEM) which takes a key k and a message
� Funded by scholarship SFRH/BPD/20528/2004, awarded by the Fundação para a

Ciência e Tecnologia, Ministério da Ciência e do Ensino Superior, Portugal.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 428–441, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient Identity-Based Key Encapsulation to Multiple Parties 429

M and computes C ← DEMk(M). Given knowledge of k one can also recover M
via M ← DEM−1

k (C).
The key k is transferred to the recipient of the ciphertext in the form of an

encapsulation. To create this encapsulation, the sender uses a key encapsulation
mechanism (KEM). This is an algorithm which takes as input a public key pk
and outputs a session key k plus an encapsulation E of this session key under
the public key. We write this as

(k, E) ← KEM(pk).
Notice that the session key is not used as input to the KEM. The recipient

recovers the key k using his private key sk via the decapsulation mechanism. We
denote this by

k ← KEM−1(E, sk).

The full ciphertext of the message M is then given by E||C.
The use of the KEM-DEM philosophy allows the different components of

a hybrid encryption scheme to be designed in isolation, leading to a simpler
analysis and hopefully more efficient schemes. In fact, Cramer and Shoup [7]
established that an hybrid encryption scheme is IND-CCA2 secure, if both the
KEM and DEM modules are semantically secure [9] against adaptive chosen
ciphertext attacks [14] (see Theorems 4 and 5 in [7]).

Smart [16] extends this notion to a setting in which Alice wants to send the
same message to multiple parties. He considers the question: is it possible, in
this situation, to avoid carrying out n instances of the KEM-DEM construction?
Smart [16] proposes a multiple KEM (or mKEM) primitive whereby the sender
can create an encapsulation of the session key k under n public keys. The purpose
of this type of construction is to save n − 1 data encapsulations overall: a single
DEM invocation using k suffices to obtain valid ciphertexts for all recipients.
The entire message encryption process becomes

(k, E) ← mKEM(pk1, . . . , pkn)
C ← DEMk(M)

and each recipient i will get the pair (E, C). For decryption, user i simply per-
forms the following two operations:

k ← mKEM−1(E, ski)
M ← DEM−1

K (C).

Identity-based encryption is a form of public key encryption in which users’
public keys can take arbitrary values such as e-mail addresses. A central trusted
authority manages the public keys in the system, providing legitimate users with
private keys that allow recovering messages encrypted under their identities.

Boneh and Franklin [5] introduced a secure and efficient identity-based en-
cryption scheme based on pairings on elliptic curves. Lynn [11] mentions that
the encryption algorithm proposed by Boneh and Franklin is unlikely to be
used, since in practice one will use a form of identity based key encapsulation

430 M. Barbosa and P. Farshim

mechanism. Bentahar et al. [4] call such an encapsulation mechanism ID-KEM.
Lynn [11] describes a possible ID-KEM construction, but he gives no security
model or proof. Bentahar et al. [4] formalise the notion of key encapsulation for
the identity-based setting, define a security model and propose several provably
secure ID-KEM constructions.

In this work we bring together the concepts of ID-KEM and mKEM and
propose mID-KEM: identity-based key encapsulation to multiple users.

This paper is organised as follows. In Sections 2 and 3 we briefly discuss
background on pairings, ID-KEMs and mKEMs. The concept and security of an
mID-KEM primitive is defined in Section 4. In Section 5 we present an efficient
mID-KEM construction, and prove it is secure in Section 6. We conclude the
paper by analysing the efficiency of our scheme in Section 7.

2 Background on Pairings

Our constructions will use bilinear maps and bilinear groups. We briefly review
the necessary facts about these here. Further details may be found in [5,6].

Let G1, G2 and GT be groups with the following properties:

– G1 and G2 are additive groups of prime order q.
– G1 has generator P1 and G2 has generator P2.
– There is an isomorphism ρ from G2 to G1, with ρ(P2) = P1.
– There is a bilinear map t̂ : G1 × G2 → GT .

In many cases one can set G1 = G2 as is done in [5]. When this is so, we can
take ρ to be the identity map; however, to take advantage of certain families of
groups [12], we do not restrict ourselves to this case.

The map t̂, which is usually derived from the Weil or Tate pairings on an
elliptic curve, is required to satisfy the following conditions:

1. Bilinear: t̂(aQ, bR) = t̂(Q, R)ab, for all Q ∈ G1, R ∈ G2 and a, b ∈ Zq.
2. Non-degenerate: t̂(P1, P2) �= 1.
3. Efficiently computable.

Definition 1 (Bilinear groups). We say that G1 and G2 are bilinear groups
if there exists a group GT with |GT | = |G1| = |G2| = q, an isomorphism ρ and
a bilinear map t̂ satisfying the conditions above; moreover, the group operations
in G1, G2 and GT and the isomorphism ρ must be efficiently computable.

A group description Γ = [G1, G2, GT , t̂, ρ, q, P1, P2] describes a given set of
bilinear groups as above. There are several hard problems associated with a
group description Γ which can be used for building cryptosystems. These have
their origins in the work of Boneh and Franklin [5].

Notation. If S is a set then we write v ← S to denote the action of sampling
from the uniform distribution on S and assigning the result to the variable v.
If A is a probabilistic polynomial time (PPT) algorithm we denote the action
of running A on input I and assigning the resulting output to the variable v by
v ← A(I). Note that since A is probabilistic, A(I) is a probability space and not
a value.

Efficient Identity-Based Key Encapsulation to Multiple Parties 431

Bilinear Diffie-Hellman Problem (BDH). Consider the following game for
a group description Γ and an adversary A.

1. a, b, c ← Z
∗
q

2. t ← A(Γ, aP1, bP1, cP2)

The advantage of the adversary is defined to be

AdvBDH(A) = Pr[t = t̂(P1, P2)abc]. (1)

Notice there are various equivalent formulations of this: given xP2 one can com-
pute xP1 via the isomorphism ρ. This particular formulation allows for a clearer
exposition of the security proof in Section 6.

Decisional Bilinear Diffie-Hellman Problem (DBDH). Consider Γ and
the following two sets

DΓ = {(aP1, bP1, cP2, t̂(P1, P2)abc) : a, b, c ∈ [1, . . . , q]},
RΓ = G1 × G1 × G2 × GT .

The goal of an adversary is to be able to distinguish between the two sets. This
idea is captured by the following game.

1. a, b, c ← Z
∗
q

2. d ← {0, 1}
3. If d = 0 then α ← GT

4. Else t ← t̂(P1, P2)abc

5. d′ ← A(Γ, aP1, bP1, cP2, t)

We define the advantage of such an adversary by

AdvDBDH(A) = |2 Pr[d = d′] − 1|.

The Gap Bilinear Diffie-Hellman Problem (GBDH). Informally, the gap
bilinear Diffie-Hellman problem is the problem of solving BDH with the help of
an oracle which solves DBDH. The use of such relative or “gap” problems was
first proposed by Okamoto and Pointcheval [13].

Let O be an oracle that, on input β ∈ RΓ , returns 1 if β ∈ DΓ and 0
otherwise. For an algorithm A, the advantage in solving GBDH, which we denote
by AdvGBDH(A, qG), is defined as in (1) except that A is granted oracle access to
O and can make at most qG queries.

3 Review of ID-KEMs and mKEMs

An identity based KEM (ID-KEM) scheme is specified by four polynomial time
algorithms:

– GID−KEM(1t). A PPT algorithm which takes as input 1t and returns the master
public key Mpk and the master secret key Msk. We assume that Mpk contains
all system parameters, including the security parameter t.

432 M. Barbosa and P. Farshim

– XID−KEM(ID, Msk). A deterministic algorithm which takes as input Msk and
an identifier string ID ∈ {0, 1}∗, and returns the associated private key SID.

– EID−KEM(ID, Mpk). This is the PPT encapsulation algorithm. On input of ID
and Mpk this outputs a pair (k, C) where k ∈ K ID−KEM(Mpk) is a key in the
space of possible session keys at a given security level, and C ∈ C ID−KEM(Mpk)
is the encapsulation of that key.

– DID−KEM(SID, C). This is the deterministic decapsulation algorithm. On input
of C and SID this outputs k or a failure symbol ⊥.

The soundness of an ID-KEM scheme is defined as:

Pr

⎛
⎜⎜⎝

(Mpk, Msk) ← GmID−KEM(1t)
k=DID−KEM(SID, C) ID ← {0, 1}∗

(k, C)←EID−KEM(ID, Mpk)
SID ← XID−KEM(ID, Msk)

⎞
⎟⎟⎠=1

Consider the following two-stage game between an adversary A of the ID-
KEM and a challenger.

IND-CCA2 Adversarial Game
1. (Mpk, Msk) ← GID−KEM(1t)
2. (s, ID∗) ← AO

1 (Mpk)
3. (k0, C

∗) ← EID−KEM(ID∗, Mpk)
4. k1 ← K ID−KEM(Mpk)
5. b ← {0, 1}
6. b′ ← AO

2 (Mpk, C
∗, s, ID∗, kb)

In the above s is some state information and O denotes oracles to which the
adversary has access. In this model the adversary has access to two oracles: a
private key extraction oracle which, on input of ID �= ID∗, will output the cor-
responding value of SID; and a decapsulation oracle with respect to any identity
ID of the adversary’s choosing. The adversary has access to this decapsulation
oracle, subject to the restriction that in the second phase A is not allowed to
call it with the pair (C∗, ID∗).

The adversary’s advantage in the game is defined to be

AdvIND−CCA2
ID−KEM (A) = |2 Pr[b′ = b] − 1|.

An ID-KEM is considered to be IND-CCA2 secure if for all PPT adversaries A,
the advantage in this game is a negligible function of the security parameter t.

The notion of KEM is extended in [16] to multiple parties. An mKEM is
defined by the following three polynomial time algorithms:

– GmKEM(1t) which is a probabilistic key generation algorithm. On input of 1t

and the domain parameters, this algorithm outputs a public/private key pair
(pk, sk).

Efficient Identity-Based Key Encapsulation to Multiple Parties 433

– EmKEM(P) which is a probabilistic encapsulation algorithm. On input of a set of
public keys P = {pk1, . . . , pkn} this algorithm outputs an encapsulated key-
pair (k, C), where k ∈ K mKEM(t) is the session key and C is an encapsulation
of the key k under the public keys {pk1, . . . , pkn}.

– DmKEM(sk, C) which is a decapsulation algorithm. This takes as input an en-
capsulation C and a private key sk, and outputs a key k or a special symbol
⊥ representing the case where C is an invalid encapsulation with respect to
the private key sk.

The soundness of an mKEM scheme is defined as:

Pr

⎛
⎝ (pki, ski)←GmKEM(1t), 1 ≤ i ≤ n

k=DmKEM(skj , C) (k, C)←EmKEM(pk1, . . . , pkn)
j ← {1, . . . , n}

⎞
⎠=1

Security of an mKEM is defined in a similar manner to a KEM via the
following game.

(m, n)-IND-CCA2 Adversarial Game
1. (pki, ski) ← GmKEM(1t) for 1 ≤ i ≤ n
2. P ← {pk1, . . . , pkn}
3. (s,P∗) ← AO

1 (P) where P∗ ⊆ P and m = |P∗| ≤ n
4. (k0, C

∗) ← EmKEM(P∗)
5. k1 ← K mKEM(t)
6. b ← {0, 1}
7. b′ ← AO

2 (pk, C∗, s,P∗, kb)

In the above s is some state information and O denotes the decapsulation
oracle to which the adversary has access in rounds 1 and 2. As it is noted in
[16], restricting access to this oracle by simply disallowing the query (C∗, pk∗)
for some pk∗ ∈ P∗ would be too lenient. Consider an mKEM in which an encap-
sulation is of the form C = c1|| . . . ||cn where each ci is intended for the recipient
with public key pki. On reception of a challenge encapsulation of this form, the
adversary could query the decapsulation oracle with a pair (c∗i , pk

∗
i), which is

not disallowed, and win the game.
To avoid this type of problem, Smart [16] defines more restrictive, but still

reasonable, oracle access. The restriction imposed in the model is that in the
second stage the adversary is only allowed to query the decapsulation oracle
with those C which decapsulate to a different key from that encapsulated by
C∗. We will come back to this in the next section.

The advantage of the adversary A is defined as

Adv(m,n)−IND−CCA2
mKEM (A) = |2 Pr[d = d′] − 1|.

An mKEM is considered to be (m, n)-IND-CCA2 secure if for all PPT adversaries
A, the above advantage is a negligible function of the security parameter t.

434 M. Barbosa and P. Farshim

4 ID-KEM to Multiple Parties

In this section we propose a new cryptographic primitive: identity based key
encapsulation to multiple parties (mID-KEM). This primitive is a direct adap-
tation of the mKEM primitive in [16] to the identity-based setting.

An mID-KEM scheme is a four-tuple of polynomial time algorithms:

– GmID−KEM(1t). A PPT algorithm which takes as input a security parameter
1t and returns the master public key Mpk and the master secret key Msk.
We assume that Mpk contains all system parameters, including the security
parameter t.

– XmID−KEM(ID, Msk). A deterministic algorithm which takes as input Msk and
an identifier string ID ∈ {0, 1}∗, and returns the associated private key SID.

– EmID−KEM(I, Mpk). This is the PPT encapsulation algorithm. On input of a
tuple I = (ID1, . . . , IDn) of n identities and Mpk, this outputs a pair (k, C),
where k ∈ K mID−KEM(Mpk) is a session key and C = (c1, . . . , cn), with each
ci ∈ C mID−KEM(Mpk) an encapsulation of k for IDi ∈ I.

– DmID−KEM(SIDi , ci). This is the deterministic decapsulation algorithm. On in-
put of the private key SIDi

for identity IDi and ci, this outputs k or a failure
symbol ⊥.

The soundness of an mID-KEM scheme is defined as:

Pr

⎛
⎜⎜⎜⎜⎝

(Mpk, Msk) ← GmID−KEM(1t)
IDi ← {0, 1}∗, 1 ≤ i ≤ n

k=DmID−KEM(SIDj
, cj , Mpk) (k, c1, . . . , cn)←EmID−KEM(ID1, . . . , IDn, Mpk)

SIDi
← XmID−KEM(IDi, Msk), 1 ≤ i ≤ n

j ← {1, . . . , n}

⎞
⎟⎟⎟⎟⎠=1

There is a subtle difference between this and the mKEM definition presented
in the previous section. Recall that Smart [16] views encapsulation for multiple
users as an algorithm taking a set P of public keys and producing a single
token C. Decapsulation must then recover the encapsulated key whenever C is
provided together with the secret key for one of the users in the set. This is the
most natural extension of KEM to the multi-user setting.

In our approach, however, C is seen as an n-tuple, where the i-th component
is an encapsulation specific to IDi, and the decapsulation algorithm does not
accept the whole of C as input, but only ci. We take this approach because it
simplifies the security model (note the definition and access restrictions of the
decapsulation oracle below) and allows for a clearer explanation of the security
proof in Section 6.

Conceptually, these two approaches are equivalent. Any C in the mKEM
model can be recast as an n-tuple by setting ci = C for all i. Conversely an
n-tuple in the mID-KEM model is just a special case of the first approach that
provides more information, as it implies a semantic interpretation of the encap-
sulation.

Efficient Identity-Based Key Encapsulation to Multiple Parties 435

We define the semantic security of an mID-KEM scheme according to the
following two-stage game between an adversary A and a challenger. 1

n-IND-CCA2 Adversarial Game
1. (Mpk, Msk) ← GmID−KEM(1t)
2. (s, I∗) ← AO

1 (Mpk)
3. (k0, C

∗) ← EmID−KEM(I∗, Mpk)
4. k1 ← K mID−KEM(Mpk)
5. b ← {0, 1}
6. b′ ← AO

2 (Mpk, C
∗, s, I∗, kb)

In the above, I∗ = (ID∗1, . . . , ID
∗
n) denotes the identities chosen by the adver-

sary to be challenged on, C∗ = (c∗1, . . . , c∗n) denotes the challenge encapsulations,
s is some state information and O denotes oracles to which the adversary has
access.

In this model the adversary has access to a private key extraction oracle
which, on input of ID /∈ I∗, will output the corresponding value of SID. The
adversary can also query a decapsulation oracle with respect to any identity ID
of its choice. It has access to this decapsulation oracle, subject to the restriction
that in the second phase A is not allowed to call O with any pair (c∗i , ID

∗
i).

2

The adversary’s advantage in the game is defined to be

Advn−IND−CCA2
mID−KEM (A) = |2 Pr[b′ = b] − 1|.

An mID-KEM is considered to be n-IND-CCA2 secure, if for all PPT adversaries
A, the advantage in the game above is a negligible function of the security
parameter t.

5 mID-KEM Schemes

In this section we present two mID-KEM schemes, one of which is a simple
construction that uses identity based encryption. The second scheme is non-
trivial in the sense that it provides a significant improvement in efficiency.

5.1 A Simple mID-KEM Scheme

One might think that an obvious way to construct an mID-KEM scheme would
be to use n instances of an ID-KEM scheme. However this is not valid since
it would not guarantee that the same key k is encapsulated to all users. In
fact, this would imply using n parallel instances of the associated DEM, thereby
subverting the principle of efficient hybrid encryption to multiple users.

1 Similarly to what is done in [16], one could define an (m, n)-IND-CCA2 notion of
security for mID-KEMs. Our definition is equivalent to (n, n)-IND-CCA2, which is
the worst case scenario.

2 Note that this accounts for cases where the adversary includes repetitions in I∗.

436 M. Barbosa and P. Farshim

An mID-KEM scheme can be easily built using a generic construction sim-
ilar to that used in [16], whereby an IND-CCA2 secure public key encryption
algorithm is used to build a secure mKEM.

In the identity based setting, one would take a secure identity based encryp-
tion algorithm, for instance Boneh and Franklin’s Full-Ident scheme [5], as the
starting point. The resulting mID-KEM construction would operate as follows.

EmID−KEM(ID1, . . . , IDn, Mpk)
– m ← MIBE(Mpk)
– k ← KDF(m)
– ci ← EIBE(m, IDi, Mpk), for 1 ≤ i ≤ n
– Return (k, c1, . . . , cn)

DmID−KEM(SIDi
, ci, Mpk)

– m ← DIBE(SIDi
, ci, Mpk)

– k ← KDF(m)
– Return k

where KDF is a key derivation function that maps the message space of the
identity based encryption algorithm to the key space of the DEM.

The security proof in [16] for the generic mKEM construction builds on the
work by Bellare et al. [3], who established that a public key encryption algorithm
which is secure in the single user setting, is also secure when multiple users are
involved. Given that the authors have no knowledge of such a result for identity
based encryption algorithms, proving the security of the previous construction
will require extending Bellare et al.’s results. Since the main result of this paper
is a more efficient scheme proposed in the next section, we do not further debate
the security of this simpler construction.

5.2 An Efficient mID-KEM from Bilinear Pairings

The scheme we propose in this section is inspired by Smart’s OR constructions in
[15]. Our construction uses a parameter generator GmID−KEM(1t) similar to that
of most identity based schemes. On input of a security parameter 1t, it outputs
the master public key Mpk and the master secret key Msk, where Msk ← Z

∗
q and

Mpk ← Msk · P1.
Private key extraction is also performed in the usual way. On input of an

identity ID and the master secret key Msk, the extraction algorithm XmID−KEM

returns SID ← Msk · H1(ID), where H1 : {0, 1}∗ → G2 is a cryptographic hash
function.

The key encapsulation and decapsulation algorithms work as follows.
EmID−KEM(ID1, . . . , IDn, Mpk)
– r ← Z

∗
q

– s ← Z
∗
q

– Ur ← rP1

– Us ← sP1

– QIDi ← H1(IDi)
– For i = 1 to n

Ui ← r(QIDi
− sP2)

ci ← (Ur, Us, Ui)
– T ← t̂(Mpk, rsP2)
– k ← H2(T ||Ur||Us)
– Return (k, c1, . . . , cn)

DmID−KEM(SIDi
, ci, Mpk)

– t ← t̂(Ur, SIDi
)

– t′ ← t̂(Mpk,−Ui)
– T ← t · t′
– k ← H2(T ||Ur||Us)
– Return k

Efficient Identity-Based Key Encapsulation to Multiple Parties 437

In the above, H2 is a cryptographic hash function that takes elements in
GT ||G1||G1 to the DEM key space.

6 Proof of Security

Theorem 1 describes our result on the security of the mID-KEM scheme in Sec-
tion 5.2 with respect to the security model defined in Section 4. The technique
we use in the proof might allow one to establish the security of a suitable mod-
ification of the scheme in [15], for which no proof is provided.

Theorem 1. The mID-KEM construction described in Section 5.2 is n-IND-
CCA2 secure under the hardness of GBDH in the random oracle model. Specifi-
cally, for any PPT algorithm A that breaks this mID-KEM scheme, there exists
a PPT algorithm B with

Advn−IND−CCA2
mID−KEM (A) ≤ 2qn

T · AdvGBDH(B, q2
D + 2qDq2 + q2)

where q1, q2, qX and qD denote the maximum number of queries the adversary
places to the H1, H2, private key extraction and decapsulation oracles respec-
tively, and qT = q1 + qX + qD is the total number of queries placed to H1.

Proof. Let S be the event that A wins the n-IND-CCA2 adversarial game in
Section 4. Let also T ∗||U∗

r ||U∗
s denote the value that must be passed to H2 to

obtain the correct key encapsulated in the challenge ciphertext. Then, we have

Pr[S] = Pr[S ∧ Ask] + Pr[S ∧ ¬Ask] ≤ Pr[S ∧ Ask] +
1
2

(2)

where Ask denotes the event that A queries H2 with T ∗||U∗
r ||U∗

s during the
simulation. This follows from the fact that if A does not place this query, then
it can have no advantage.

We argue that in the event S ∧ Ask, there is an adversary B that uses A
to solve the GBDH problem with probability q−n

T while making at most q2
D +

2qDq2 + q2 DBDH oracle queries. We implement algorithm B as follows.
For a given GBDH problem instance (Γ, aP2, bP2, cP2) the strategy is to

embed the problem into the mID-KEM challenge presented to the adversary.
Namely we construct the simulation so that the value of the pairing associated
with the challenge encapsulation is T ∗ = t̂(P1, P2)abc. Hence, when A places a
query with the correct value of T ∗ to H2, it provides us with the solution to the
GBDH problem instance.

We pass Γ and Mpk = cP1 = ρ(cP2) on to A as the global public parameters.
We also maintain three lists that allow us to provide consistent answers to A’s
oracle calls: L1 ⊂ {0, 1}∗ × G2 × Fq; L2 ⊂ GT × G1 × G1 × K mID−KEM(Mpk); and
LD ⊂ {0, 1}∗ × G1 × G1 × K mID−KEM(Mpk).

Initially, we generate a list of n random indices i∗1, . . . , i∗n, with 1 ≤ i∗k ≤ qT .
These indices will determine the set of n identities which B is guessing the
adversary will include in its challenge query I∗. Namely, these indices determine
the way in which the hash function H1 is simulated.

438 M. Barbosa and P. Farshim

H1 queries: H1(IDi). On the i-th query to H1, we check whether i matches
one of the indices i∗k. If this is the case, we generate random ri∗

k
∈ Z

∗
q , return

QIDi∗
k

= ri∗k P2 + bP2 and add (IDi∗k , QIDi∗
k
, ri∗k) to L1. Otherwise, we generate

random ri ∈ Z
∗
q , return QIDi

= riP2 and add (IDi, QIDi
, ri) to L1.

Algorithm B requires that at the end of phase one, the adversary outputs a
list of identities I∗ = (ID∗1, . . . , ID

∗
n) such that ID∗k = IDi∗k . This happens with

probability at least q−n
T . If this is not the case, the simulation fails. Otherwise,

the mID-KEM challenge encapsulation is created as

Ur ← ρ(aP2)
Us ← ρ(bP2)
Uk ← ri∗

k
aP2

c∗k ← (Ur, Us, Uk)

for each ID∗k ∈ I∗. Notice that this is a well-formed encapsulation:

Uk = a(QID∗k − bP2) = a(ri∗kP2 + bP2 − bP2) = ri∗kaP2.

When A outputs I∗, algorithm B responds with C∗ = (c∗1, . . . , c
∗
n) constructed

as above plus a random challenge key k∗.
Given that A is not allowed to obtain the private keys associated with the

identities in the challenge, the extraction oracle is easily simulated as follows.

Extraction queries: OX(IDj). On input IDj , we obtain QIDj
by calling H1

first. If QIDj
is of the form riP2, we look in L1 for the corresponding ri and

return SIDi
= ri(cP2). If during the first stage of the game, A should query for

the extraction of a private key corresponding to a QID of the form ri∗kP2 + bP2,
the simulation would fail.

Finally, the decapsulation and H2 oracles are simulated as follows.

Decapsulation queries: OD(IDm, Urm , Usm , Um). On queries in which we can
calculate a value Tm, we do so, and call H2 with parameters (Tm, Urm , Usm)
to obtain the return value. This will happen when IDm /∈ I∗, in which case
we query the private key extraction oracle, and compute Tm as in a standard
decapsulation:

Tm = t̂(Urm , SIDm
)t̂(ρ(cP2),−Um).

When IDm ∈ I∗ we first search L2 for an entry such that Urm = Urn , Usm = Usn

and the DBDH oracle returns 1 when queried with (Urm , Usm , cP2, Tn). If this
entry exists, we return the corresponding kn. If not, we search LD for a tuple
matching the parameters (IDm, Urm , Usm). If it exists, we return the associated
key km. Otherwise, we generate a random km, return it and update LD by adding
the entry (IDm, Urm , Usm , km).

H2 queries: H2(Tn, Urn , Usn). We first check if Tn is the solution we are look-
ing for by calling the DBDH oracle with (aP1, bP1, cP2, Tn). If it returns 1,

Efficient Identity-Based Key Encapsulation to Multiple Parties 439

the solution is found, we output Tn and terminate. Otherwise, we proceed to
search L2 for a tuple matching the parameters (Tn, Urn , Usn). If it exists, we
return the corresponding key kn. If not, we search LD for an entry such that
Urm = Urn , Usm = Usn and the DBDH oracle returns 1 when queried with
(Urm , Usm , cP2, Tn). If this entry exists, we return the corresponding km. Other-
wise, we generate a random kn, return it and update L2 by appending the entry
(Tn, Urn , Usn , kn).

To complete the proof, it suffices to notice that B will only fail when the
identities I∗ chosen by A at the end of the first round do not match the random
indices chosen at the beginning. Since this happens with probability at least q−n

T ,
we conclude

Pr[S ∧ Ask] ≤ qn
T · AdvGBDH(B, q2

D + 2qDq2 + q2). (3)

The total number of DBDH oracle calls (q2
D + 2qDq2 + q2) follows from the way

we simulate the decapsulation and H2 oracles. Theorem 1 now follows from (2)
and (3).

We note that the tightness of the security reduction in Theorem 1 decreases
exponentially with the number of recipients. For practical purposes, and in line
with the discussions on practice-oriented provable security in [2,10], it is impor-
tant to emphasise that our result provides theoretical security guarantees only
in scenarios where messages are encrypted to a small number of recipients. A
slightly better result, although still exponential in n, can be obtained by opti-
mising the simulation in the proof above. We leave it as an open problem to find
a sub-exponential security reduction for this type of scheme.

7 Efficiency Considerations

Execution time and bandwidth usage are two important factors affecting the
efficiency of a KEM. In this section we present a comparison, with respect to
these factors, between the simple scheme described in Section 5.1 and the scheme
proposed in Section 5.2.

The former scheme requires n identity based encryption computations for
encapsulation, and one identity based decryption computation for decapsulation.
Assuming that we use the Full-Ident scheme of Boneh and Franklin [5], this
means n pairing computations for encapsulation and another for decapsulation.
On the other hand, as it can be seen from the description of the latter scheme, it
takes only one pairing computation to encapsulate and two more to decapsulate.
Note that one could essentially eliminate the pairing computation needed in
encapsulation by pre-computing the value t̂(Mpk, P2).

The bandwidth usage of the scheme in Section 5.2 is 2
1 +
2 bits for each
recipient, where
1 and
2 are the bit lengths of the representations of elements
of G1 and G2. Using the Full-Ident encryption scheme in [5], the simpler scheme
uses
1 +2
k bits per user where
k is the length of the session key. For example,

440 M. Barbosa and P. Farshim

using supersingular elliptic curves over characteristic three we could take
k =
128 and
1 =
2 ≈ 190 bits. This means a bandwidth usage of 570 bits for the
second scheme versus 446 bits for the first one.

To conclude this discussion we note the n-fold gain in computational weight
obtained in Section 5.2 is achieved at the cost of a small increase in bandwidth
usage, and also by reducing the security of the scheme to the hardness of GBDH,
which is a stronger assumption than the hardness of BDH used in [5].

Acknowledgements

The authors would like to thank Nigel Smart and John Malone-Lee for their
input during this work, and the anonymous reviewers whose comments helped
to improve it.

References

1. M. Abdalla, M. Bellare and P. Rogaway. DHAES : An encryption scheme based on
the Diffie-Hellman problem. Cryptology ePrint Archive, Report 1999/007. 1999.

2. M. Bellare. Practice-priented provable-security. Proceedings of First International
Workshop on Information Security, LNCS 1396. Springer-Verlag, 1998.

3. M. Bellare, A. Boldyreva and S. Micali. Public-key encryption in the multi-user set-
ting: security proofs and improvements. Advances in Cryptology – EUROCRYPT
2000, LNCS 1807:259-274. Springer-Verlag, 2000.

4. K. Bentahar, P. Farshim, J. Malone-Lee and N. P. Smart. Generic constructions
of identity-based and certificateless KEMs. Cryptology ePrint Archive, Report
2005/058. 2005.

5. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. SIAM
Journal on Computing, 32:586–615. 2003.

6. D. Boneh, B. Lynn and H. Shacham. Short signatures from the Weil pairing. Ad-
vances in Cryptology – ASIACRYPT 2001, LNCS 2248:514–532. Springer-Verlag,
2001.

7. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen-ciphertext attack. SIAM Journal on
Computing, 33:167–226. 2003.

8. A. W. Dent. A designer’s guide to KEMs. Coding and Cryptography, LNCS
2898:133-151. Springer-Verlag, 2003.

9. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
Systems Sciences, 28:270–299. 1984.

10. N. Koblitz and A. Menezes. Another look at provable security. Cryptology ePrint
Archive, Report 2004/152. 2004.

11. B. Lynn. Authenticated identity-based encryption. Cryptology ePrint Archive,
Report 2002/072. 2002.

12. A. Miyaji, M. Nakabayashi and S. Takano. New explicit conditions of elliptic curve
traces for FR-reduction. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E84-A:1234–1243. 2001.

13. T. Okamoto and D. Pointcheval. The gap-problems: A new class of problems for
the security of cryptographic schemes. Public Key Cryptography – PKC 2001,
LNCS 1992:104–118. Springer-Verlag, 2001.

Efficient Identity-Based Key Encapsulation to Multiple Parties 441

14. C. Rackoff and D. R. Simon Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. Advances in Cryptology – CRYPTO 1991, LNCS
576:433-444. Springer-Verlag, 1991

15. N. P. Smart. Access control using pairing based cryptography. Topics in Cryptol-
ogy – CT-RSA 2003, LNCS 2612:111–121. Springer-Verlag, 2003.

16. N. P. Smart. Efficient key encapsulation to multiple parties. Security in Commu-
nication Networks, LNCS 3352:208–219. Springer-Verlag, 2005.

17. V. Shoup. A proposal for an ISO standard for public key encryption (version 2.1).
Preprint. 2001.

Security Proof of Sakai-Kasahara’s
Identity-Based Encryption Scheme

Liqun Chen1 and Zhaohui Cheng2

1 Hewlett-Packard Laboratories, Bristol, UK
liqun.chen@hp.com

2 School of Computing Science, Middlesex University,
The Burroughs Hendon, London NW4 4BT, UK

m.z.cheng@mdx.ac.uk

Abstract. Identity-based encryption (IBE) is a special asymmetric en-
cryption method where a public encryption key can be an arbitrary iden-
tifier and the corresponding private decryption key is created by binding
the identifier with a system’s master secret. In 2003 Sakai and Kasahara
proposed a new IBE scheme, which has the potential to improve per-
formance. However, to our best knowledge, the security of their scheme
has not been properly investigated. This work is intended to build con-
fidence in the security of the Sakai-Kasahara IBE scheme. In this paper,
we first present an efficient IBE scheme that employs a simple version
of the Sakai-Kasahara scheme and the Fujisaki-Okamoto transformation,
which we refer to as SK-IBE. We then prove that SK-IBE has chosen
ciphertext security in the random oracle model based on a reasonably
well-explored hardness assumption.

1 Introduction

Shamir in 1984 [34] first formulated the concept of Identity-Based Cryptography
(IBC) in which a public and private key pair is set up in a special way, i.e., the
public key is the identifier (an arbitrary string) of an entity, and the correspond-
ing private key is created by using an identity-based key extraction algorithm,
which binds the identifier with a master secret of a trusted authority. In the same
paper, Shamir provided the first key extraction algorithm that was based on the
RSA problem, and presented an identity-based signature scheme. By using va-
rieties of the Shamir key extraction algorithm, more identity-based signature
schemes and key agreement schemes were proposed (e.g., [23,24]). However, con-
structing a practical Identity-Based Encryption (IBE) scheme remained an open
problem for many years.

After nearly twenty years, Boneh and Franklin [4], Cocks [16] and Sakai et
al. [31] presented three IBE solutions in 2001. The Cocks solution is based on the
quadratic residuosity. Both the Boneh and Franklin solution and the Sakai et al.
solution are based on bilinear pairings on elliptic curves [35], and the security of
their schemes is based on the Bilinear Diffie-Hellman (BDH) problem [4]. Their
schemes are efficient in practice. Boneh and Franklin defined a well-formulated
security model for IBE in [4]. The Boneh-Franklin scheme (BF-IBE for short)

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 442–459, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Security Proof of Sakai-Kasahara’s Identity-Based Encryption Scheme 443

has received much attention owing to the fact that it was the first IBE scheme
to have a proof of security in an appropriate model.

Both BF-IBE and the Sakai et al. IBE solution have a very similar private
key extraction algorithm, in which an identity string is mapped to a point on
an elliptic curve and then the corresponding private key is computed by mul-
tiplying the mapped point with the master private key. This key extraction
algorithm was first shown in Sakai et al.’s work [30] in 2000 as the prepara-
tion step of an identity-based key establishment protocol. Apart from BF-IBE
and the Sakai et al. IBE scheme [31], many other identity-based cryptographic
primitives have made use of this key extraction idea, such as the signature
schemes [10,22], the authenticated key agreement schemes [12,36], and the sign-
cryption schemes [7,13]. The security of these schemes were scrutinized (although
some errors in a few reductions were pointed out recently but fixed as well,
e.g., [15,19]).

Based on the same tool, the bilinear pairing, Sakai and Kasahara in 2003 [29]
presented a new IBE scheme using another identity-based key extraction algo-
rithm. The idea of this algorithm can be tracked back to the work in 2002 [28].
This algorithm requires much simpler hashing and therefore improves perfor-
mance. More specifically, it maps an identity to an element h ∈ Z

∗
q instead of a

point on an elliptic curve. The corresponding private key is generated as follow:
first, compute the inverse of the sum of the master key (a random integer from
Z
∗
q) and the mapped h; secondly, multiply a point of the elliptic curve (which is

the generator of an order q subgroup of the group of points on the curve) with
the inverse (obtained in the first step). After the initial paper was published, a
number of other identity-based schemes based on this key extraction idea have
been published, for examples [26,27].

However, these schemes are either unproven or their security proof is prob-
lematic (e.g., [14]). In modern cryptography, a carefully scrutinized security re-
duction in a formal security model to a hardness assumption is desirable for any
cryptographic scheme. Towards this end, this work is intended to build confi-
dence in the security of the Sakai and Kasahara IBE scheme.

The remaining part of the paper is organized as follows. In next section,
we recall the existing primitive, some related assumptions and the IBE security
model. In Section 3, we first employ a simple version of the Sakai and Kasahara
IBE scheme from [29] and the Fujisaki-Okamoto transformation [17] to present
an efficient IBE scheme (we refer to it as SK-IBE). We then prove that SK-
IBE has chosen ciphertext security in the random oracle model. Our proof is
based on a reasonably well-explored hardness assumption. In Section 4, we show
some possible improvements of SK-IBE, both on security and performance. In
Section 5, we compare between SK-IBE and BF-IBE. We conclude the paper in
Section 6.

2 Preliminaries

In this section, we recall the existing primitives, including bilinear pairings, some
related assumptions and the security model of IBE.

444 L. Chen and Z. Cheng

2.1 Bilinear Groups and Some Assumptions

Here we review the necessary facts about bilinear maps and the associated groups
using a similar notation of [5].

– G1, G2 and GT are cyclic groups of prime order q.
– P1 is a generator of G1 and P2 is a generator of G2.
– ψ is an isomorphism from G2 to G1 with ψ(P2) = P1.
– ê is a map ê : G1 × G2 → GT .

The map ê must have the following properties.

Bilinear: For all P ∈ G1, all Q ∈ G2 and all a, b ∈ Z we have ê(aP, bQ) =
ê(P, Q)ab.

Non-degenerate: ê(P1, P2) �= 1.
Computable: There is an efficient algorithm to compute ê(P, Q) for all P ∈ G1

and Q ∈ G2.

Note that following [37], we can either assume that ψ is efficiently computable
or make our security proof relative to some oracle which computes ψ.

There are a batch of assumptions related to the bilinear groups. Some of
them have already been used in the literature and some are new variants. We
list them below and show how they are related to each other. We also correct a
minor inaccuracy in stating an assumption in the literature. Recently it has come
to our attention that some other related assumptions were discussed in [40].

We use a unified naming method; in particular, provided that X stands for
an assumption, sX stands for a stronger assumption of X , which implies that the
problem corresponding to sX would be easier than the problem corresponding
to X . In the following description, α ∈R β denotes that α is an element chosen
at random from a set β.

Assumption 1 (Diffie-Hellman (DH)). For x, y ∈R Z
∗
q, P ∈ G

∗
1, given (P ,

xP , yP), computing xyP is hard.

Assumption 2 (Bilinear DH (BDH) [4]). For x, y, z ∈R Z
∗
q, P2 ∈ G

∗
2,

P1 = ψ(P2), ê : G1 × G2 → GT , given (P1, P2, xP2, yP2, zP2), computing
ê(P1, P2)xyz is hard.

Assumption 3 (Decisional Bilinear DH (DBDH)). For x, y, z, r ∈R Z
∗
q,

P2 ∈ G
∗
2, P1 = ψ(P2), ê : G1×G2 → GT , distinguishing between the distributions

(P1, P2, xP2, yP2, zP2, ê(P1, P2)xyz) and (P1, P2, xP2, yP2, zP2, ê(P1, P2)r)
is hard.

Assumption 4 (DH Inversion (k-DHI) [28]). For an integer k, and x ∈R

Z
∗
q, P ∈ G

∗
1, given (P , xP , x2P , . . ., xkP), computing 1

xP is hard.

Theorem 1. (Mitsunari et al. [28]). DH and 1-DHI are polynomial time
equivalent, i.e., if there exists a polynomial time algorithm to solve DH, then there
exists a polynomial time algorithm for 1-DHI, and if there exists a polynomial
time algorithm to solve 1-DHI, then there exists a polynomial time algorithm for
DH.

Security Proof of Sakai-Kasahara’s Identity-Based Encryption Scheme 445

Assumption 5 (Collision Attack Assumption 1 (k-CAA1)). For an inte-
ger k, and x ∈R Z

∗
q, P ∈ G

∗
1, given (P , xP , h0, (h1, 1

h1+xP), . . ., (hk, 1
hk+xP))

where hi ∈R Z
∗
q and distinct for 0 ≤ i ≤ k, computing 1

h0+xP is hard.

Theorem 2. If there exists a polynomial time algorithm to solve (k-1)-DHI,
then there exists a polynomial time algorithm for k-CAA1. If there exists a poly-
nomial time algorithm to solve (k-1)-CAA1, then there exists a polynomial time
algorithm for k-DHI.

The proof is presented in a full version of this paper, which is available at [11].

Assumption 6 (Collision Attack Assumption 2 (k-CAA2) [28]). For an
integer k, and x ∈R Z

∗
q, P ∈ G

∗
1, given (P, h0, (h1,

1
h1+xP), . . . , (hk, 1

hk+xP))
where hi ∈R Z

∗
q and distinct for 0 ≤ i ≤ k, computing 1

h0+xP is hard.

Mitsunari et al. established the relation between k-CAA2 and k-DHI (also called
k-wDHA) in [28], while in the definition of k-CAA2 the value h0 was not given
as input. However, when consulting their proof of Theorem 3.5 [28], we note that
h0 has to be given as part of the problem.

Theorem 3. (Mitsunari et al. [28]). There exists a polynomial time algo-
rithm to solve (k-1)-DHI if and only there exists a polynomial time algorithm for
k-CAA2.

Assumption 7 (Strong CAA (k-sCAA1) [41]). For an integer k, and x ∈R

Z
∗
q, P ∈ G

∗
1, given (P , xP , (h1,

1
h1+xP), . . ., (hk, 1

hk+xP)) where hi ∈R Z
∗
q

and distinct for 1 ≤ i ≤ k, computing (h, 1
h+xP) for some h ∈ Z

∗
q but h /∈

{h1, . . . , hk} is hard.

Zhang et al.’s short signature proof [41] and Mitsunari et al.’s traitor tracing
scheme [28] used this assumption. However, the traitor tracing scheme was bro-
ken by Tô et al. in [38] because it was found to be in fact based on a “slightly”
different assumption, which does not require to output the value of h. Obviously,
if one does not have to demonstrate that he knows the value of h, the problem
is not hard. He can simply choose a random element from G1 that is not shown
in the problem as the answer, because G1 is of prime order q and any r ∈ Z

∗
q

satisfies r = 1
h+x mod q for some h.

Assumption 8 (Strong DH (k-sDH) [2]). For an integer k, and x ∈R Z
∗
q,

P ∈ G
∗
1, given (P, xP, x2P, . . . , xkP), computing (h, 1

h+xP) where h ∈ Z
∗
q is

hard.

Theorem 4. If there exists a polynomial time algorithm to solve (k-1)-sCAA1,
then there exists a polynomial time algorithm for k-sDH. If there exists a poly-
nomial time algorithm to solve (k-1)-sDH, then there exists a polynomial time
algorithm for k-sCAA1.

446 L. Chen and Z. Cheng

The proof is presented in [11].

Assumption 9 (Exponent Problem ((k+1)-EP) [41]). For an integer k,
and x ∈R Z

∗
q , P ∈ G

∗
1, given (P , xP , x2P , . . ., xkP), computing xk+1P is hard.

Theorem 5. (Zhang et al. [41]). There exists a polynomial time algorithm to
solve k-DHI if and only if there exists a polynomial time algorithm for (k+1)-EP.

Assumption 10 (Bilinear DH Inversion (k-BDHI) [1]). For an integer k,
and x ∈R Z

∗
q, P2 ∈ G

∗
2, P1 = ψ(P2), ê : G1 × G2 → GT , given (P1, P2, xP2,

x2P2, . . ., xkP2), computing ê(P1, P2)1/x is hard.

Assumption 11 (Decisional Bilinear DH Inversion (k-DBDHI)). For
an integer k, and x, r ∈R Z

∗
q, P2 ∈ G

∗
2, P1 = ψ(P2), ê : G1 × G2 → GT , dis-

tinguishing between the distributions (P1,P2, xP2, x2P2, . . ., xkP2, ê(P1, P2)1/x)
and (P1, P2, xP2, x2P2, . . ., xkP2, ê(P1, P2)r) is hard.

Theorem 6. BDH and 1-BDHI are polynomial time equivalent, i.e., if there
exists a polynomial time algorithm to solve BDH, then there exists a polynomial
time algorithm for 1-BDHI, and if there exists a polynomial time algorithm to
solve 1-BDHI, then there exists a polynomial time algorithm for BDH.

Proof: If there is a polynomial time algorithm A to solve the BDH problem, we
construct a polynomial time algorithm B to solve the 1-BDHI problem. Given
an instance of 1-BDHI problem (Q1, Q2, yQ2), B works as follow to compute
ê(Q1, Q2)1/y .

1. Set x = 1/y, which B does not know.
2. Set P1 = Q1, P2 = yQ2 and xP2 = Q2.
3. Pass A the BDH challenge, (P1, P2, xP2, xP2, P2), and get T = ê(P1, P2)x2

= ê(Q1, yQ2)(1/y)2 = ê(Q1, Q2)1/y.

If there is a polynomial time algorithm A to solve the 1-BDHI problem, we
construct a polynomial time algorithm B to solve the BDH problem. Given an
instance of BDH problem (P1, P2, aP2, bP2, cP2), B works as follow to compute
ê(P1, P2)abc.

1. (a) Set d = 1/(a + b + c), which B does not know.
(b) Set Q1 = (a + b + c)P1 = ψ((a + b + c)P2), Q2 = (a + b + c)P2 and

dQ2 = P2.
(c) Pass A the 1-BDHI challenge, (Q1, Q2, dQ2), and get T1 = ê(Q1, Q2)1/d

= ê(P1, P2)(a+b+c)3 .
2. Follow Item 1 (a) - (c) to get T2 = ê(P1, P2)a3

, T3 = ê(P1, P2)b3 , T4 =
ê(P1, P2)c3

, T5 = ê(P1, P2)(a+b)3 , T6 = ê(P1, P2)(a+c)3 , T7 = ê(P1, P2)(b+c)3 .
3. Compute ê(P1, P2)abc = (T1·T2·T3·T4

T5·T6·T7
)1/6. �

Security Proof of Sakai-Kasahara’s Identity-Based Encryption Scheme 447

Assumption 12 (Bilinear CAA 1 (k-BCAA1)). For an integer k, and
x ∈R Z

∗
q , P2 ∈ G

∗
2, P1 = ψ(P2), ê : G1 × G2 → GT , given (P1, P2, xP2,

h0, (h1, 1
h1+xP2), . . ., (hk, 1

hk+xP2)) where hi ∈R Z
∗
q and distinct for 0 ≤ i ≤ k,

computing ê(P1, P2)1/(x+h0) is hard.

Theorem 7. If there exists a polynomial time algorithm to solve (k-1)-BDHI,
then there exists a polynomial time algorithm for k-BCAA1. If there exists a
polynomial time algorithm to solve (k-1)-BCAA1, then there exists a polynomial
time algorithm for k-BDHI.

The proof is presented in [11].

k-sCAA1 �� �� k-sDH (k+1)-EP

�������������

��
k-CAA1

��

��

�� �� k-DHI

��

��

��

�������������
(k+1)-CAA2��

��

k-BCAA1 �� �� k-BDHI �� k-DBDHI

k-A −→ k-B: if k-A is polynomial-time solvable, so is k-B;
k-A ��� k-B: if (k-1)-A is polynomial-time solvable, so is k-B.

Fig. 1. Relation among the assumptions

The relation among these assumptions can be described by Fig. 1. In the
literature, the k-DBDHI assumption was used in [1] to construct a selective-
identity secure IBE scheme (see next section for definition) without random
oracles [6] and k-sDH is used to construct a short signature [2] without random
oracles, while k-sCAA1 is used by [41] to construct a short signature with random
oracles and to build a traitor tracing scheme [28].

2.2 IBE Schemes and Their Security Model

Let k be a security parameter, and M and C denote the message and cipher-
text spaces respectively. An IBE scheme is specified by four polynomial time
algorithms:

– Setup takes as input 1k, and returns a master public key Mpk and a master
secret key Msk;

– Extract takes as input Mpk, Msk and IDA ∈ {0, 1}∗, an identifier string for
entity A, and returns the associated private key dA;

– Encrypt takes as input Mpk, IDA and a message m ∈ M, and returns a
ciphertext C ∈ C; and

448 L. Chen and Z. Cheng

– Decrypt takes as input Mpk, IDA, dA and C, and returns the corresponding
value of the plaintext m or a failure symbol ⊥.

The security of an IBE scheme is defined by the following game between a
challenger C and an adversary A formalized in [4].

– Setup. C takes a security parameter k and runs the Setup algorithm. It gives
A Mpk and keeps Msk to itself.

– Phase 1. A issues queries as one of follows:
• Extraction query on IDi. C runs the Extract algorithm to generate dIDi

and passes it to A.
• Decryption query on (IDi, Ci). C decrypts the ciphertext by finding dIDi

first (through running Extract if necessary), and then running the De-
crypt algorithm. It responds with the resulting plaintext.

– Challenge. Once A decides that Phase 1 is over, it outputs two equal length
plaintexts m0, m1 ∈ M, and an identity IDch on which it wishes to be
challenged. The only constraint is that A must not have queried the extrac-
tion oracle on IDch in Phase 1. C picks a random bit b ∈ {0, 1} and sets
Cch=Encrypt(Mpk, IDch, mb) ∈ C. It sends Cch as the challenge to A .

– Phase 2. A issues more queries as in Phase 1 but with two restrictions: (1)
Extraction queries cannot be issued on IDch; (2) Decryption queries cannot
be issued on (IDch, Cch).

– Guess. Finally, A outputs a guess b′ ∈ {0, 1} and wins the game if b′ = b.

We refer to this type of adversary as an IND-ID-CCA adversary. If A cannot ask
decryption queries, we call it an IND-ID-CPA adversary. The advantage of an
IND-ID-CCA adversary A against an IBE scheme EID is the function of security
parameter k defined as: AdvEID,A(k) = |Pr[b′ = b] − 1/2|.

Definition 1. An identity-based encryption scheme EID is IND-ID-CCA secure
if for any IND-ID-CCA adversary, AdvEID,A(k) is negligible.

Canetti et al. formulated a weaker IBE notion, selective-identity adaptive
chosen ciphertext attacks secure scheme (IND-sID-CCA for short), in which, an
adversary has to commit the identity on which it wants to be challenged before
it sees the public system parameters (the master public key) [8]. The latest
work [20] provides some formal security analysis of this formulation.

3 SK-IBE

In this section, we investigate the security strength of SK-IBE. We choose the
simplest variant of the Sakai and Kasahara IBE scheme [29] as the basic version
of SK-IBE. This basic version was also described by Scott in [32]. To achieve
security against adaptive chosen ciphertext attacks, we make use of the Fujisaki-
Okamoto transformation [17] as it was used in BF-IBE [4].

Security Proof of Sakai-Kasahara’s Identity-Based Encryption Scheme 449

3.1 Scheme

SK-IBE is specified by four polynomial time algorithms:

Setup. Given a security parameter k, the parameter generator follows the steps.

1. Generate three cyclic groups G1, G2 and GT of prime order q, an isomor-
phism ψ from G2 to G1, and a bilinear pairing map ê : G1 × G2 → GT . Pick
a random generator P2 ∈ G

∗
2 and set P1 = ψ(P2).

2. Pick a random s ∈ Z
∗
q and compute Ppub = sP1.

3. Pick four cryptographic hash functions H1 : {0, 1}∗ → Z
∗
q , H2 : GT →

{0, 1}n, H3 : {0, 1}n × {0, 1}n → Z
∗
q and H4 : {0, 1}n → {0, 1}n for some

integer n > 0.

The message space is M = {0, 1}n. The ciphertext space is C = G
∗
1×{0, 1}n×

{0, 1}n. The master public key is Mpk = (q, G1, G2, GT , ψ, ê, n, P1, P2, Ppub,
H1, H2, H3, H4), and the master secret key is Msk = s.

Extract. Given an identifer string IDA ∈ {0, 1}∗ of entity A, Mpk and Msk, the
algorithm returns dA = 1

s+H1(IDA)P2.

Remark 1. The result of the Extract algorithm is a short signature dA on the
message IDA signed under the private signing key s. As proved in Theorem 3
of [41], this signature scheme is existentially unforgeable under chosen-message
attack [21] in the random oracle model [6], provided that the k-sCAA1 assump-
tion is sound in G2.

Encrypt. Given a plaintext m ∈ M, IDA and Mpk, the following steps are
performed.

1. Pick a random σ ∈ {0, 1}n and compute r = H3(σ, m).
2. Compute QA = H1(IDA)P1 + Ppub, gr = ê(P1, P2)r.
3. Set the ciphertext to C = (rQA, σ ⊕ H2(gr), m ⊕ H4(σ)).

Remark 2. In the Encrypt algorithm, the pairing g = ê(P1, P2) is fixed and
can be pre-computed. It can further be treated as a system public parameter.
Therefore, no pairing computation is required in Encrypt.

Decrypt. Given a ciphertext C = (U, V, W) ∈ C, IDA, dA and Mpk, follow the
steps:

1. Compute g′ = ê(U, dA) and σ′ = V ⊕ H2(g′)
2. Compute m′ = W ⊕ H4(σ′) and r′ = H3(σ′, m′).
3. If U �= r′(H1(IDA)P1 + Ppub), output ⊥, else return m′ as the plaintext.

450 L. Chen and Z. Cheng

3.2 Security of SK-IBE

Now we evaluate the security of SK-IBE. We prove that the security of SK-IBE
can reduce to the hardness of the k-BDHI problem. The reduction is similar to
the proof of BF-IBE [4]. However, we will take into account the error in Lemma
4.6 of [4] corrected by Galindo [19].

Theorem 8. SK-IBE is secure against IND-ID-CCA adversaries provided that
Hi(1 ≤ i ≤ 4) are random oracles and the k-BDHI assumption is sound. Specifi-
cally, suppose there exists an IND-ID-CCA adversary A against SK-IBE that
has advantage ε(k) and running time t(k). Suppose also that during the at-
tack A makes at most qD decryption queries and at most qi queries on Hi for
1 ≤ i ≤ 4 respectively (note that Hi can be queried directly by A or indirectly by
an extraction query, a decryption query or the challenge operation). Then there
exists an algorithm B to solve the q1-BDHI problem with advantage AdvB(k) and
running time tB(k) where

AdvB(k) ≥ 1
q2(q3+q4) [(

ε(k)
q1

+ 1)(1 − 2
q)qD − 1]

tB(k) ≤ t(k) + O((q3 + q4) · (n + log q) + qD · T1 + q2
1 · T2 + qD · χ)

where χ is the time of computing pairing, Ti is the time of a multiplication
operation in Gi, and q is the order of G1 and n is the length of σ. We assume
the computation complexity of ψ is trivial.

Proof: The theorem follows immediately by combining Lemma 1, 2 and 3. The
reduction with three steps can be sketched as follow. First we prove that if there
exists an IND-ID-CCA adversary, who is able to break SK-IBE by launching the
adaptive chosen ciphertext attacks as defined in the security model of Section 2.2,
then there exists an IND-CCA adversary to break the BasicPubhy scheme
defined in Lemma 1 with the adaptive chosen ciphertext attacks. Second, if such
IND-CCA adversary exists, then we show (in Lemma 2) that there must be
an IND-CPA adversary that breaks the corresponding BasicPub scheme by
merely launching the chosen plaintext attacks. Finally, in Lemma 3 we prove
that if the BasicPub scheme is not secure against an IND-CPA adversary, then
the corresponding k-BDHI assumption is flawed. �

Lemma 1. Suppose that H1 is a random oracle and that there exists an IND-ID-
CCA adversary A against SK-IBE with advantage ε(k) which makes at most q1

distinct queries to H1 (note that H1 can be queried directly by A or indirectly by
an extraction query, a decryption query or the challenge operation). Then there
exists an IND-CCA adversary B which runs in time O(time(A) + qD · (χ + T1))
against the following BasicPubhy scheme with advantage at least ε(k)/q1 where
χ is the time of computing pairing and T1 is the time of a multiplication operation
in G1.
BasicPubhy is specified by three algorithms: keygen, encrypt and decrypt.
keygen: Given a security parameter k, the parameter generator follows the steps.

Security Proof of Sakai-Kasahara’s Identity-Based Encryption Scheme 451

1. Identical with step 1 in Setup algorithm of SK-IBE.
2. Pick a random s ∈ Z

∗
q and compute Ppub = sP1. Randomly choose different

elements hi ∈ Z
∗
q and compute 1

hi+sP2 for 0 ≤ i < q1.
3. Pick three cryptographic hash functions: H2 : GT → {0, 1}n, H3 : {0, 1}n ×

{0, 1}n → Z
∗
q and H4 : {0, 1}n → {0, 1}n for some integer n > 0.

The message space is M = {0, 1}n. The ciphertext space is C = G
∗
1×{0, 1}n×

{0, 1}n. The public key is Kpub = (q, G1, G2, GT , ψ, ê, n, P1, P2, Ppub, h0,
(h1, 1

h1+sP2), . . ., (hi, 1
hi+sP2), . . ., (hq1−1, 1

hq1−1+sP2), H2, H3, H4) and the

private key is dA = 1
h0+sP2. Note that ê(h0P1 + Ppub, dA) = ê(P1, P2).

encrypt: Given a plaintext m ∈ M and the public key Kpub,

1. Pick a random σ ∈ {0, 1}n and compute r = H3(σ, m), and gr = ê(P1, P2)r.
2. Set the ciphertext to C = (r(h0P1 + Ppub), σ ⊕ H2(gr), m ⊕ H4(σ)).

decrypt: Given a ciphertext C = (U, V, W), Kpub, and the private key dA, follow
the steps.

1. Compute g′ = ê(U, dA) and σ′ = V ⊕ H2(g′),
2. Compute m′ = W ⊕ H4(σ′) and r′ = H3(σ′, m′),
3. If U �= r′(h0P1 + Ppub), reject the ciphertext, else return m′ as the plaintext.

Proof: We construct an IND-CCA adversary B that uses A to gain advan-
tage against BasicPubhy. The game between a challenger C and the adver-
sary B starts with the challenger first generating a random public key Kpub

by running algorithm keygen of BasicPubhy (log q1 is part of the security
parameter of BasicPubhy). The result is Kpub = (q, G1, G2, GT , ψ, ê, n, P1,
P2, Ppub, h0,(h1,

1
h1+sP2), . . . , (hi,

1
hi+sP2), . . . , (hq1−1,

1
hq1−1+sP2), H2, H3, H4),

where Ppub = sP1 with s ∈ Z
∗
q , and the private key dA = 1

h0+sP2. The challenger
passes Kpub to adversary B . Adversary B mounts an IND-CCA attack on the
BasicPubhy scheme with the public key Kpub using the help of A as follows.

B chooses an index I with 1 ≤ I ≤ q1 and simulates the algorithm Setup
of SK-IBE for A by supplying A with the SK-IBE master public key Mpk =
(q, G1, G2, GT , ψ, ê, n, P1, P2, Ppub, H1, H2, H3, H4) where H1 is a random oracle
controlled by B . The master secret key Msk for this cryptosystem is s, although
B does not know this value. Adversary A can make queries on H1 at any time.
These queries are handled by the following algorithm H1-query.
H1-query (IDi): B maintains a list of tuples (IDi, hi, di) indexed by IDi as
explained below. We refer to this list as H list

1 . The list is initially empty. When
A queries the oracle H1 at a point IDi, B responds as follows:

1. If IDi already appears on the H list
1 in a tuple (IDi, hi, di), then B responds

with H1(IDi) = hi.
2. Otherwise, if the query is on the I-th distinct ID and ⊥ is not used as di

(this could be inserted by the challenge operation specified later) by any
existing tuple, then B stores (IDI , h0,⊥) into the tuple list and responds
with H1(IDI) = h0.

452 L. Chen and Z. Cheng

3. Otherwise, B selects a random integer hi(i > 0) from Kpub which has not
been chosen by B and stores (IDi, hi,

1
hi+sP2) into the tuple list. B responds

with H1(IDi) = hi.

Phase 1: A launches Phase 1 of its attack, by making a series of requests, each
of which is either an extraction or a decryption query. B replies to these requests
as follows.
Extraction query (IDi): B first looks through list H list

1 . If IDi is not on the
list, then B queries H1(IDi). B then checks the value di: if di �= ⊥, B responds
with di; otherwise, B aborts the game (Event 1).
Decryption query (IDi, Ci): B first looks through list H list

1 . If IDi is not on
the list, then B queries H1(IDi). If di = ⊥, then B sends the decryption query
Ci = (U, V, W) to C and simply relays the plaintext got from C to A directly.
Otherwise, B decrypts the ciphertext by first computing g′ = ê(U, di), then
querying ζ = H2(g′) (H2 is controlled by C), and computing σ′ = V ⊕ ζ, m′ =
W ⊕H4(σ′) and r′ = H3(σ′, m′). Finally B checks the validity of Ci as step 3 of
algorithm decrypt and returns m′, if Ci is valid, otherwise the failure symbol ⊥.
Challenge: At some point, A decides to end Phase 1 and picks IDch and two
messages (m0, m1) of equal length on which it wants to be challenged. Based on
the queries on H1 so far, B responds differently.

1. If the I-th query on H1 has been issued,
– if IDI = IDch (and so dch = ⊥), B continues;
– otherwise, B aborts the game (Event 2).

2. Otherwise,
– if the tuple corresponding to IDch is on list H list

1 (and so dch �= ⊥), then
B aborts the game (Event 3);

– otherwise, B inserts the tuple (IDch, h0,⊥) into the list and continues
(this operation is treated as an H1 query in the simulation).

Note that after this point, it must have H1(IDch) = h0 and dch = ⊥.
B passes C the pair (m0, m1) as the messages on which it wishes to be challenged.
C randomly chooses b ∈ {0, 1}, encrypts mb and responds with the ciphertext
Cch = (U ′, V ′, W ′). Then B forwards Cch to A.
Phase 2: B continues to respond to requests in the same way as it did in Phase
1. Note that following the rules, the adversary will not issue the extraction query
on IDch (for which dch = ⊥) and the decryption query on (IDch, Cch). And so,
B always can answer other queries without aborting the game.
Guess: A makes a guess b′ for b. B outputs b′ as its own guess.

Claim: If the algorithm B does not abort during the simulation then algorithm
A ’s view is identical to its view in the real attack.

Proof: B ’s responses to H1 queries are uniformly and independently distributed
in Z

∗
q as in the real attack because of the behavior of algorithm keygen of the

BasicPubhy scheme. All responses to A’s requests are valid, if B does not abort.
Furthermore, the challenge ciphertext Cch = (U ′, V ′, W ′) is a valid encryption
in SK-IBE for mb where b ∈ {0, 1} is random.

Security Proof of Sakai-Kasahara’s Identity-Based Encryption Scheme 453

The remaining problem is to calculate the probability that B does not abort
during simulation. Algorithm B could abort when one of the following events
happens: (1) Event 1, denoted as H1: A queried a private key which is rep-
resented by ⊥ at some point. Recall that only one private key is represented
by ⊥ in the whole simulation which could be inserted in an H1 query (as the
private key of IDI) in Phase 1 or in the challenge phase (as the private key of
IDch). Because of the rules of the game, the adversary will not query the private
key of IDch. Hence, this event only happens when the adversary extracted the
private key of IDI �= IDch, meanwhile dI = ⊥, i.e., IDI �= IDch and H1(IDI)
was queried in Phase 1; (2) Event 2, denoted as H2: the adversary wants to be
challenged on an identity IDch �= IDI and H1(IDI) was queried in Phase 1; (3)
Event 3, denoted as H3: the adversary wants to be challenged on an identity
IDch �= IDI and H1(IDI) was queried in Phase 2.

Notice that all the three events imply Event 4, denoted by H4, that the
adversary did not choose IDI as the challenge identity. Hence we have

Pr[B does not abort] = Pr[¬H1 ∧ ¬H2 ∧ ¬H3] ≥ Pr[¬H4] ≥ 1/q1.

So, the lemma follows. �

Remark 3. If an adversary only engages in the selective-identity adaptive cho-
sen ciphertext attack game, the reduction could be tighter (B has the advantage
ε(k) as A), because B now knows exactly which identity should be hashed to
h0, so the game will never abort. Note that, in such game, B can pass the SK-
IBE system parameters (the master public key) to A first, then A commits an
identity IDch before issuing any oracle query. Hence the reduction could still
be tightened to a stronger formulation than the one in [8] (see the separation
in [20]).

Lemma 2. Let H3, H4 be random oracles. Let A be an IND-CCA adversary
against BasicPubhy defined in Lemma 1 with advantage ε(k). Suppose A has
running time t(k), makes at most qD decryption queries, and makes q3 and
q4 queries to H3 and H4 respectively. Then there exists an IND-CPA adversary
B against the following BasicPub scheme, which is specified by three algorithms:
keygen, encrypt and decrypt.
keygen: Given a security parameter k, the parameter generator follows the steps.

1. Identical with step 1 in algorithm keygen of BasicPubhy.
2. Identical with step 2 in algorithm keygen of BasicPubhy.
3. Pick a cryptographic hash function H2 : GT → {0, 1}n for some integer

n > 0.

The message space is M = {0, 1}n. The ciphertext space is C = G
∗
1 ×{0, 1}n.

The public key is Kpub = (q, G1, G2, GT , ψ, ê, n, P1, P2, Ppub, h0, (h1,
1

h1+sP2),
. . ., (hi, 1

hi+sP2), . . ., (hq1−1, 1
hq1−1+sP2), H2) and the private key is dA =

1
h0+sP2. Again it has ê(h0P1 + Ppub, dA) = ê(P1, P2).

454 L. Chen and Z. Cheng

encrypt: Given a plaintext m ∈ M and the public key Kpub, choose a random
r ∈ Z

∗
q and compute ciphertext C = (r(h0P1 + Ppub), m ⊕ H2(gr)) where gr =

ê(P1, P2)r.
decrypt: Given a ciphertext C = (U, V), Kpub, and the private key dA, compute
g′ = ê(U, dA) and plaintext m = V ⊕ H2(g′).

with advantage ε1(k) and running time t1(k) where

ε1(k) ≥ 1
2(q3+q4) [(ε(k) + 1)(1 − 2

q)qD − 1]
t1(k) ≤ t(k) + O((q3 + q4) · (n + log q)).

Proof: This lemma follows from the result of the Fujisaki-Okamoto transforma-
tion [17] and BF-IBE has a similar result (Theorem 4.5 [4]). We note that it is
assumed that n and log q are of similar size in [4]. �

Lemma 3. Let H2 be a random oracle. Suppose there exists an IND-CPA ad-
versary A against the BasicPub defined in Lemma 2 which has advantage
ε(k) and queries H2 at most q2 times. Then there exists an algorithm B to
solve the q1-BDHI problem with advantage at least 2ε(k)/q2 and running time
O(time(A) + q2

1 · T2) where T2 is the time of a multiplication operation in G2.

Proof: Algorithm B is given as input a random q1-BDHI instance (q, G1, G2,
GT , ψ, ê, P1, P2, xP2, x

2P2, . . . x
q1P2) where x is a random element from Z

∗
q . Al-

gorithm B finds ê(P1, P2)1/x by interacting with A as follows:
Algorithm B first simulates algorithm keygen of BasicPub, which was de-

fined in Lemma 2, to create the public key as below. A similar approach is used
in [1,2].

1. Randomly choose different h0, . . . , hq1−1 ∈ Z
∗
q and let f(z) be the polynomial

f(z) =
∏q1−1

i=1 (z+hi). Reformulate f to get f(z) =
∑q1−1

i=0 ciz
i. The constant

term c0 is non-zero because hi �= 0 and ci are computable from hi.
2. Compute Q2 =

∑q1−1
i=0 cix

iP2 = f(x)P2 and xQ2 =
∑q1−1

i=0 cix
i+1P2 =

xf(x)P2.
3. Check that Q2 ∈ G

∗
2. If Q2 = 1G2 , then there must exist an hi = −x

which can be easily identified, and so, B solves the q1-BDHI problem directly.
Otherwise, B computes Q1 = ψ(Q2) and continues.

4. Compute fi(z) = f(z)/(z + hi) =
∑q1−2

j=0 djz
j and 1

x+hi
Q2 = fi(x)P2 =∑q1−2

j=0 djx
jP2 for 1 ≤ i < q1.

5. Set T ′ =
∑q1−1

i=1 cix
i−1P2 and compute T0 = ê(ψ(T ′), Q2 + c0P2).

6. Now, B passes A the public key Kpub = (q, G1, G2, GT , ψ, ê, n, Q1, Q2, xQ1−
h0Q1, h0, (h1 + h0,

1
h1+xQ2), . . . , (hi + h0,

1
hi+xQ2), . . . , (hq1−1 +

h0,
1

hq1−1+xQ2), H2) (i.e., setting Ppub = xQ1 − h0Q1), and the pri-

vate key is dA = 1
xQ2 which B does not know. H2 is a random oracle

controlled by B . Note that ê((hi + h0)Q1 + Ppub,
1

hi+xQ2) = ê(Q1, Q2) for
i = 1, . . . , q1 − 1 and ê(h0Q1 + Ppub, dA) = ê(Q1, Q2). Hence Kpub is a valid
public key of BasicPub.

Security Proof of Sakai-Kasahara’s Identity-Based Encryption Scheme 455

Now B starts to respond to queries as follows.
H2-query (Xi): At any time algorithm A can issue queries to the random oracle
H2. To respond to these queries B maintains a list of tuples called H list

2 . Each
entry in the list is a tuple of the form (Xi, ζi) indexed by Xi. To respond to a
query on Xi, B does the following operations:

1. If on the list there is a tuple indexed by Xi, then B responds with ζi.
2. Otherwise, B randomly chooses a string ζi ∈ {0, 1}n and inserts a new tuple

(Xi, ζi) to the list. It responds to A with ζi.

Challenge: Algorithm A outputs two messages (m0, m1) of equal length on
which it wants to be challenged. B chooses a random string R ∈ {0, 1}n and a
random element r ∈ Z

∗
q , and defines Cch = (U, V) = (rQ1, R). B gives Cch as

the challenge to A . Observe that the decryption of Cch is

V ⊕ H2(ê(U, dA)) = R ⊕ H2(ê(rQ1,
1
x

Q2)).

Guess: After algorithm A outputs its guess, B picks a random tuple (Xi, ζi)
from H list

2 . B first computes T = X
1/r
i , and then returns (T/T0)1/c2

0 . Note that
ê(P1, P2)1/x = (T/T0)1/c2

0 if T = ê(Q1, Q2)1/x.
Let H be the event that algorithm A issues a query for H2(ê(rQ1,

1
xQ2)) at

some point during the simulation above. Using the same methods in [4], we can
prove the following two claims:
Claim 1: Pr[H] in the simulation above is equal to Pr[H] in the real attack.
Claim 2: In the real attack we have Pr[H] ≥ 2ε(k).

Following from the above two claims, we have that B produces the correct
answer with probability at least 2ε(k)/q2. �

Remark 4. In the proof, B’s simulation of algorithm keygen of BasicPub is
similar to the preparation step in Theorem 5.1 [1] (both follow the method
in [28]. Note that in [1] ψ is an identity map, so Q = Q1 = Q2). However,
the calculation of T0 in [1] is incorrect, and should be computed as T0 =∏q−1

i=0

∏q−2
j=0 ê(g(αi), g(αj

)cicj+1 ·∏q−2
j=0 ê(g, g(αj))c0cj+1 .

This completes the proof of Theorem 8.

4 Possible Improvements of SK-IBE

SK-IBE can be improved both on computation performance and security reduc-
tion. The only two known bilinear pairing instances so far are the Weil pairing
and Tate pairing on elliptic curves (and hyperelliptic curves) [35]. When imple-
menting these pairings, some special structures of these pairings can be exploited
to improve the performance. As noticed by Scott and Barreto [33], the Tate pair-
ing can be compressed when the curve has the characteristic 3 or greater than 3.
The compressing technique not only can reduce the size of pairing, but also can
speed up the computation of pairing and the exponentiation in GT . Pointed by

456 L. Chen and Z. Cheng

Galindo [19], an improved Fujisaki-Okamoto’s transformation [18] has a tighter
security reduction. Using the trick played in [25], the reduction can be further
tightened by including the point rQA in H2 (this also removes the potential
ambiguity introduced by the compressed pairing). So, combined with these two
improvements, a faster scheme (SK-IBE2) with better security reduction can be
specified as follow.

Setup. Identical with SK-IBE, except that H4 is not required and H2 : G1×F →
{0, 1}2n, where F depends on the used compressed pairing (see [33] for details).

Extract. Identical with SK-IBE.

Encrypt. Given a plaintext m ∈ M({0, 1}n), the identity IDA of entity A and
the master public key Mpk, the following steps are performed.

1. Pick a random σ ∈ {0, 1}n and compute r = H3(σ, m).
2. Compute QA = H1(IDA)P1 + Ppub, ϕ(gr) = ϕ(ê(P1, P2)r), where ϕ is the

pairing compressing algorithm as specified in [33]. Note that ϕ and ê can
be computed by a single algorithm, so to improve the computation perfor-
mance [33].

3. Set the ciphertext to C = (rQA, (m‖σ) ⊕ H2(rQA, ϕ(gr))).

Decrypt. Given a ciphertext (U, V) ∈ C, the identity IDA, the private key dA

and Mpk, follow the steps:

1. Compute ϕ(g′) = ϕ(ê(U, dA)) and m′‖σ′ = V ⊕ H2(U, ϕ(g′)).
2. Compute r′ = H3(σ′, m′). If U �= r′(H1(IDA)P1 + Ppub), output ⊥, else

return m′ as the plaintext.

Using the similar approach employed in the proof of Theorem 8 and the result
of Theorem 5.4 in [18], we can reduce the security of SK-IBE2 to the k-BDHI
assumption. We leave the details to the readers.

5 Comparison Between SK-IBE and BF-IBE

From the reduction described in Section 3.2, we have proved that SK-IBE is a
secure IBE scheme based on the k-BDHI problem. The complexity analysis of
k-DHI, k-sDH and k-BDHI in [1,2,41] has built confidence on these assumptions.

The security of BF-IBE is based on the BDH problem [4]. As shown in
Theorem 6, BDH and 1-BDHI are polynomial time equivalent. It is obvious
that the k-BDHI problem (when k > 1) is easier that the 1-BDHI problem,
and therefore, is easier than the BDH problem as well. This certainly shows the
disadvantage of current reduction for SK-IBE as compared with one for BF-
IBE [4,19]. We leave it an open problem to find a tight reduction for SK-IBE
based on a harder problem than k-BDHI.

However, the advantage of SK-IBE is that it has better performance than
BF-IBE, particularly in encryption. We show a comparison of their performances
in Table 1.

Security Proof of Sakai-Kasahara’s Identity-Based Encryption Scheme 457

Table 1. Performance comparison between SK-IBE and BF-IBE

pairings multiplications exponentiations hashes
Scheme Encrypt Decrypt Encrypt Decrypt Encrypt Decrypt Encrypt Decrypt
SK-IBE 0 1 2∗1 1 1 0 4 3
BF-IBE 1 1 1 1 1 0 4∗2 3

∗1 An extra multiplication required than BF-IBE is used to map an identifier to an
element in G1.

∗2 BF-IBE requires the maptopoint operation to map an identifier to an element in
G1 (or G2) which is slower than the hash function used in SK-IBE which maps an
identifier to an element in Z

∗
q .

If taking a closer look between SK-IBE and BF-IBE, SK-IBE is faster than
BF-IBE in two aspects. First, in the Encrypt algorithm of SK-IBE, no pair-
ing computation is required because ê(P1, P2) can be pre-computed. Second, in
operation of mapping an identity to an element in G1 or G2, the maptopoint
algorithm used by BF-IBE is not required. Instead of that, SK-IBE makes use
of an ordinary hash-function.

6 Conclusion

In this paper, an identity-based encryption scheme, SK-IBE, is investigated.
SK-IBE provides an attractive performance. We prove that SK-IBE is secure
against adaptive chosen ciphertext attacks in the random oracle model based on
the k-BDHI assumption.

Acknowledgements

We thank Keith Harrison, John Malone-Lee and Nigel Smart for helpful discus-
sions and comments on this work, David Galindo for his valuable comments on
the manuscript and for sharing with us the latest work on the security notions of
IBE [20], Alex Dent for his detailed and valuable comments on the manuscript,
and anonymous referees for useful feedback.

References

1. D. Boneh and X. Boyen. Efficient selective-ID secure identity-based encryption
without random oracles. In Proceedings of Advances in Cryptology - Eurocrypt
2004, LNCS 3027, pp. 223–238, Springer-Verlag, 2004.

2. D. Boneh and X. Boyen. Short signatures without random oracles. In Proceedings of
Advances in Cryptology - Eurocrypt 2004, LNCS 3027, pp. 56–73, Springer-Verlag,
2004.

3. D. Boneh and X. Boyen. Secure identity-based encryption without random oracles.
In Proceedings of Advances in Cryptology - Crypto 2004, Springer-Verlag, 2004.

458 L. Chen and Z. Cheng

4. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. In
Proceedings of Advances in Cryptology - Crypto 2001, LNCS 2139, pp.213–229,
Springer-Verlag, 2001.

5. D. Boneh, B. Lynn and H. Shacham. Short signatures from the Weil pairing.
Advances in Cryptology – Asiacrypt 2001, Springer-Verlag LNCS 2248, 514–532,
2001.

6. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing
efficient protocols. In Proceedings of the First Annual Conference on Computer and
Communications Security, ACM, 1993.

7. X. Boyen. Multipurpose identity-based signcryption: a swiss army knife for
identity-based cryptography. In Proceedings of Advances in Cryptology - CRYPTO
2003, LNCS 2729, pp. 382–398, Springer-Verlag, 2003.

8. R. Canetti, S. Halevi and J. Katz. A forward-secure public-key encryption scheme.
In Proceedings of Advances in Cryptology - Eurocrypt 2003, LNCS 2656, pp. 255-
271, Springer-Verlag, 2003.

9. R. Canetti, S. Halevi and J. Katz. Chosen-ciphertext security from identity-based
encryption. In Proceedings of Advances in Cryptology - Eurocrypt 2004. Springer-
Verlag, 2004. See also Cryptology ePrint Archive, Report 2003/182.

10. J. C. Cha and J. H. Cheon. An identity-based signature from gap Diffie-Hellman
groups. In Proceedings of Practice and Theory in Public Key Cryptography - PKC
2003, LNCS 2567, pp. 18–30, Springer-Verlag, 2003. See also Cryptology ePrint
Archive, Report 2002/018.

11. L. Chen and Z. Cheng. Security proof of Sakai-Kasahara’s identity-based encryp-
tion scheme. Cryptology ePrint Archive, Report 2005/226.

12. L. Chen and C. Kudla. Identity-based authenticated key agreement from pairings.
In Proceedings of the 16th IEEE Computer Security Foundations Workshop, pp.
219-233, IEEE, 2003. See also Cryptology ePrint Archive, Report 2002/184.

13. L. Chen and J. Malone-Lee. Improved identity-based signcryption. In Proceedings
of Public Key Cryptography - PKC 2005, LNCS 3386, pages 362–379, Springer-
Verlag, 2005. See also Cryptology ePrint Archive, Report 2004/114.

14. Z. Cheng and L. Chen. On security proof of McCullagh-Barreto’s key agreement
protocol and its variants. Cryptology ePrint Archive, Report 2005/201.

15. Z. Cheng, M. Nistazakis, R. Comley and L. Vasiu. On the indistinguishability-based
security model of key agreement protocols-simple cases. In Proceedings of ACNS
2004. Full version available on Cryptology ePrint Archive, Report 2005/129.

16. C. Cocks. An identity-based encryption scheme based on quadratic residues. In
Proceedings of Cryptography and Coding, LNCS 2260, pp. 360–363, Springer-Verlag,
2001.

17. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Proceedings of Advances in Cryptology - CRYPTO ’99,
LNCS 1666, pp. 535-554, Springer-Verlag, 1999.

18. E. Fujisaki and T. Okamoto. How to enhance the security of public-key encryption
at minimum cost. IEICE Trans. Fundamentals, E83-9(1):24-32, 2000.

19. D. Galindo. Boneh-Franklin identity based encryption revisited. In Proceedings of
the 32nd International Colloquium on Automata, Languages and Programming,
ICALP 2005. Also available on Cryptology ePrint Archive, Report 2005/117.

20. D. Galindo and I. Hasuo. Security Notions for Identity Based Encryption.
Manuscript, 2005.

21. S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308,
1988.

Security Proof of Sakai-Kasahara’s Identity-Based Encryption Scheme 459

22. F. Hess. Efficient identity based signature schemes based on pairings. In Proceedings
of Selected Areas in Cryptography – SAC 2002, LNCS 2595, pp. 310–324, Springer-
Verlag, 2002.

23. ISO/IEC 11770-3:1999. Information technology - Security techniques - Key man-
agement - Part 3: Mechanisms using asymmetric techniques.

24. ISO/IEC 14888-2:1998. Information technology - Security techniques - Digital sig-
natures with appendix - Part 2: Identity-based mechanisms.

25. ISO/IEC 2nd FCD 18033-2:2004-12-06. Information technology - Security tech-
niques - Encryption algorithms - Part 2: Asymmetric ciphers.

26. N. McCullagh and P. S. L. M. Barreto. Efficient and forward-secure identity-based
signcryption. Available on Cryptology ePrint Archive, Report 2004/117.

27. N. McCullagh and P. S. L. M. Barreto. A new two-party identity-based authenti-
cated key agreement. In Proceedings of CT-RSA 2005. See also Cryptology ePrint
Archive, Report 2004/122.

28. S. Mitsunari, R. Sakai and M. Kasahara. A new traitor tracing. IEICE Trans.
Fundamentals, E85-A(2):481–484, 2002.

29. R. Sakai and M. Kasahara. ID based cryptosystems with pairing on elliptic curve.
Cryptology ePrint Archive, Report 2003/054.

30. R. Sakai, K. Ohgishi and M. Kasahara. Cryptosystems based on pairing. The 2000
Symposium on Cryptography and Information Security, Okinawa, Japan, January
2000.

31. R. Sakai, K. Ohgishi and M. Kasahara. Cryptosystems based on pairing over el-
liptic curve (in Japanese). The 2001 Symposium on Cryptography and Information
Security, Oiso, Japan, January 2001.

32. M.Scott. Computing the Tate pairing. In Proceedings of CT-RSA 2005, LNCS
3376, pp. 293–304, Springer-Verlag, 2005.

33. M. Scott and P. S. L. M. Barreto. Compressed pairings. In Proceedings of Advances
in Cryptology - Crypto 2004, LNCS 3152, 2004, Springer-Verlag, 2004. See also
Cryptology ePrint Archive, Report 2004/032.

34. A. Shamir. Identity-based cryptosystems and signature schemes. In Proceedings of
Advances in Cryptology - Crypto ’84, LNCS 196, pp.47–53, Springer-Verlag, 1985.

35. J. Silverman. The arithmetic of elliptic curve. Springer-Verlag, 1986.
36. N. P. Smart. An identity based authenticated key agreement protocol based on the

Weil pairing. Electronics Letters, 38(13):630–632, 2002. See also Cryptology ePrint
Archive, Report 2001/111.

37. N. Smart and F. Vercauteren. On computable isomorphisms in efficient pairing
based systems. Cryptology ePrint Archive, Report 2005/116.

38. V.D. Tô, R. Safavi-Naini and F. Zhang. New traitor tracing schemes using bilinear
map. In Proceedings of 2003 DRM Workshop, 2003.

39. B. R. Waters. Efficient identity-based encryption without random oracles. In Pro-
ceedings of Advances in Cryptology - Eurocrypt 2005, Springer-Verlag, 2005. See
also Cryptology ePrint Archive, Report 2004/180.

40. V. Wei. Tight Reductions among Strong Diffie-Hellman Assumptions. Cryptology
ePrint Archive, Report 2005/057.

41. F. Zhang, R. Safavi-Naini and W. Susilo. An efficient signature scheme from bi-
linear pairings and its applications. In Proceedings of International Workshop on
Practice and Theory in Public Key Cryptography - PKC 2004, 2004.

Author Index

Barbosa, M. 233, 428
Bentahar, K. 376
Braeken, A. 186, 290
Brown, A. 37

Cai, C. 68
Chen, J. 68
Chen, L. 442
Cheng, Z. 442
Cid, C. 278
Cohen, G.D. 59

Dent, A.W. 220
Ding, J. 262
Dods, C. 96

Farshim, P. 428

Galbraith, S.D. 392
Gower, J.E. 262

Hedabou, M. 248
Hong, S. 201

Jakimoski, G. 304
Joo, E.K. 47

Kang, S.H. 47
Kim, J. 201
Kim, W.T. 47
Koblitz, N. 13
König, R. 322
Kudla, C. 136

Lee, C. 201
Lee, S. 201

Malone-Lee, J. 116, 220
Maurer, U. 1, 168, 322
McKee, J.F. 392
Menezes, A. 13
Minder, L. 37
Mitchell, C. J. 155
Moon, D. 201
Murphy, S. 278

Page, D. 233
Paterson, K.G. 136
Pramstaller, N. 78
Preneel, B. 186, 290

Rechberger, C. 78
Rijmen, V. 78
Robshaw, M.J.B. 278

Sáez, G. 340
Schaathun, H.G. 59
Schmidt, D. 262
Schoenmakers, B. 355
Shokrollahi, A. 37
Sidorenko, A. 355
Sjödin, J. 168
Smart, N.P. 96
Stam, M. 96, 410
Sung, J. 201

Wolf, C. 186, 262

Yin, Z. 262

	Frontmatter
	Invited Papers
	Abstract Models of Computation in Cryptography
	Pairing-Based Cryptography at High Security Levels
	Improved Decoding of Interleaved AG Codes

	Coding Theory
	Performance Improvement of Turbo Code Based on the Extrinsic Information Transition Characteristics
	A Trellis-Based Bound on (2,1)-Separating Codes
	Tessellation Based Multiple Description Coding
	Exploiting Coding Theory for Collision Attacks on SHA-1

	Signatures and Signcryption
	Hash Based Digital Signature Schemes
	A General Construction for Simultaneous Signing and Encrypting
	Non-interactive Designated Verifier Proofs and Undeniable Signatures

	Symmetric Cryptography
	Partial Key Recovery Attacks on XCBC, TMAC and OMAC
	Domain Expansion of MACs: Alternative Uses of the FIL-MAC
	Normality of Vectorial Functions
	Related-Key Differential Attacks on Cobra-H64 and Cobra-H128

	Side Channels
	The Physically Observable Security of Signature Schemes
	On the Automatic Construction of Indistinguishable Operations
	Efficient Countermeasures for Thwarting the SCA Attacks on the Frobenius Based Methods

	Algebraic Cryptanalysis
	Complexity Estimates for the {\itshape F}<Subscript>4</Subscript> Attack on the Perturbed Matsumoto-Imai Cryptosystem
	An Algebraic Framework for Cipher Embeddings
	Probabilistic Algebraic Attacks

	Information Theoretic Applications
	Unconditionally Secure Information Authentication in Presence of Erasures
	Generalized Strong Extractors and Deterministic Privacy Amplification
	On Threshold Self-healing Key Distribution Schemes

	Number Theoretic Foundations
	Concrete Security of the Blum-Blum-Shub Pseudorandom Generator
	The Equivalence Between the DHP and DLP for Elliptic Curves Used in Practical Applications, Revisited
	Pairings on Elliptic Curves over Finite Commutative Rings

	Public Key and ID-Based Encryption Schemes
	A Key Encapsulation Mechanism for NTRU
	Efficient Identity-Based Key Encapsulation to Multiple Parties
	Security Proof of Sakai-Kasahara's Identity-Based Encryption Scheme

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

