
Incorporating Update Semantics Within

Geographical Ontologies

Xuan Gu and Richard T. Pascoe

Department of Computer Science and Software Engineering (CSSE),
University of Canterbury, Canterbury, NZ

mark.guxuan@gmail.com,

richard.pascoe@canterbury.ac.nz

http://www.cosc.canterbury.ac.nz/richard.pascoe

Abstract. In this paper is described a systematic technique by which
geographical ontologies, descriptions of concepts and relationships that
exist for geographical domains of interest, may incorporate update poli-
cies, knowledge that governs the updating of data described by these
ontologies. Of particular interest are those ontologies describing distrib-
uted geographical data where different components are maintained by
separate organizations. As provider organizations change their individ-
ual contributions to the distributed data set, the efficacy of a local copy
of this distributed data will decline. The incorporated update policy of
the associated ontology for this local copy will be used to determine when
an accumulation of changes, described by update notifications, justifies
updating the local copy. Update policies and update notifications are
assumed to have a common ontological basis. Ontologies are described
using the Unified Modelling Language (UML) [4] with the semantics of
an update policy being expressed using a UML profile described in this
paper. The intent is to implement software agents that will execute the
update policy and when justified will generate a plan by which the local
copy can be updated to reflect the distributed data currently available.

1 Introduction

Geographic Information Systems (GISs) are used by many organizations, gov-
ernments, research institutes and other bodies for tasks such as gathering, trans-
forming, manipulating, analyzing, and producing information related to spatial
data. For example, police and fire departments may use GISs to locate land-
marks and hazards, plot destinations, and design emergency routes. The tasks
are often further complicated by organizations using shared or distributed data
sets in their analysis to reduce costs and improve consistency across related data
sets.

The environment being considered in this research is analogous to the notion
of a Geospatial Information Community (GIC) initially described by McKee
and Buehler [1] and refined by Bishr [2] where organizations share data sets
within the context of a common ontology. In such an environment. individual

M.A. Rodŕıguez et al. (Eds.): GeoS 2005, LNCS 3799, pp. 211–226, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

212 X. Gu and R.T. Pascoe

organizations using this data may also be responsible for maintaining elements
of this common data to reflect changes in the real world phenomena represented.
Thus, an organization may fulfill either or both of the following roles:

a data provider Pn where this organization provides others with access to at
least one data set λ. For a given system, there is a collection of data sets
Θ = {λg}, 1 ≤ g ≤ G provided by N providers (G ≥ N). In the particular
environment being considered, Θ will typically be large and transmitting
large parts of this data will be resource intensive and potentially slow.

a data consumer Cm where this organization at some point in time t creates
a local copy Λp,m,t of a distributed data set Λp ⊆ Θt. The local copy Λp,m,t

is needed to satisfy accessibility and performance requirements.

The focal point of this research is the ease with which changes to Θ over time can
be selectively propagated to Λp,m,t. That is, over a period of time t . . . t′, t < t′,
any provider Pn may apply changes ∆λg,t′ to their data set λg,t to form an
updated data set λg,t′ = λg,t + ∆λg,t′ . In doing so, any consumer Cm of the
distributed data set Λp : λg ∈ Λp may update Λp,m,t to form Λp,m,t′ . The condi-
tions under which Cm updates Λp,m,t is determined by comparing a description
of ∆λg,t′ , provided by Pn, with the update policy for Λp,m. The notation being
used throughout this paper is summarized in Table 1.

Table 1. Summary of notation used to refer to elements of the proposed system

SymbolDescription

Pn Provider n 1 ≤ n ≤ N
Cm Consumer m 1 ≤ m ≤ M
λg,t Data set g provided by Pn at time t
Θt All data provided within the system at time

t.
Θt = {λg,t} 1 ≤ g ≤ G, G ≥ N

∆λg,t′ Changes to λg,t occurring between t and t′ t < t′

Λp Distributed data set p Λp ⊆ Θ
Λp,m,t The local copy of a distributed data set Λp ⊆

Θ created at some point in time t by Cm

∆Λp,t′ Changes to Λp,t occurring between t and t′

Notes:

1. For any given point in time t:
(a) Any data set λ contributed by Pn is uniquely identified by g;
(b) Any distributed data set Λ is uniquely identified by p.

2. For any given two points in time t, t′ : t < t′:
(a) λg,t′ = λg,t + ∆λg,t′

(b) Λp,t′ = Λp,t + ∆Λp,t′ where ∆Λp,t′ = {∆λi,t′ : λi ∈ Λp}
Although the problem of synchronizing a local copy of a distributed data

set could be solved by having consumers access the distributed data set directly

Incorporating Update Semantics Within Geographical Ontologies 213

rather than indirectly through a local copy Λp,m,t, such an ideal situation is
unlikely, because of the typically large quantities of data being shared, security
and reliability concerns, cost and flexibility, and the different performance and
business requirements of individual consumers.

The proposed approach uses software agents to synchronize Λp,m,t accord-
ing to the associated update policy embedded in the associated ontology. While
these agents may act independently of each other, the expectation is that they
will collaborate where the agents have common goals within their update poli-
cies thereby optimizing the process by which Λp,m,t can be synchronized. The
remainder of this paper contains descriptions of our progress towards achieving
the following research objectives:

1. To determine what characteristics of a change in data value or structure
need to be described in an update notification ∆λg to facilitate research
objective 3, described below.
To be effective, these update notifications must contain detailed descriptions
of the changes so that each software agent can better evaluate the significance
of ∆λg in the context of the update policy for Λp,m.

2. To provide a means by which an organization’s update policy can be easily
incorporated into the ontology for Λp,m. The approach adopted here involves
expressing the ontology using UML that has been extended by a UML Profile
for clearly expressing the semantics of an update policy.

3. To implement
(a) agents that can individually or collectively

i. determine the importance of a particular update notification in the
context of each agent’s update policy. In essence, addressing issues
such as:
A. computing ∆Λp,m,t′ by accumulating and merging update noti-

fications ∆λg from the providers of λg ∈ Λp.
B. evaluating ∆Λp,m,t′ within the context of the associated update

policy to determine whether the difference is significant thereby
justifying the update of Λp,m,t.

ii. create an update execution plan that details the steps by which to
synchronize Λp,m,t with Λp,m,t′ .

(b) a system that will execute the update execution plan

Objectives 1 and 2 are discussed in Sections 3 and 4 respectively while some
preliminary ideas for objective 3 are briefly discussed in Section ??. The general
approach adopted for this research is described next.

2 Overall Approach

Geographical ontologies are expressed as UML models [6] encoded as XML Meta-
data Interchange (XMI) documents [13] in a manner compatible with the notion
of application schemas that conform to ISO 19109 [7]. This standard is one of

214 X. Gu and R.T. Pascoe

many being defined by Technical Committee 211 (TC211) of the International
Organization for Standardization to facilitate the interoperability of GISs.

The intent is to draw upon the many ISO TC211 standards and the associated
harmonized UML model underlying these standards as the basis for geographical
ontologies that are analogous to the notion of a Platform Independent Model
(PIM) within the Model Driven Architecture (MDA) defined by the Object
Management Group (OMG) [8].

At least one such PIM or ontology is expected to be defined for the entire
distributed data set Θ available to organizations participating by either providing
components of the distributed data set λg, consuming components of this data
set as a local copy Λp,m,t, or both. Each organization will elaborate upon the
distributed PIM or ontology to form another that is also platform independent,
but which is restricted to only those components of the PIM that are of interest
to the organization. This restricted ontology, for the local copy of the relevant
components of the distributed data set, is further elaborated to form a Platform
Specific Model (PSM) that introduces platform specific semantics reflecting the
particular storage techniques being employed. While there is likely to be only
one PIM describing the entire distributed data set, there will be at least one pair
of restricted PIM and corresponding PSM for each organization.

Use of the MDA in this way clearly distinguishes between heterogeneity aris-
ing from conceptual differences in the way each organization views the shared
geographical data and heterogeneity arising from the each organization using
different implementation specific technologies for managing and processing this
data. This distinction facilitates the development of flexible, scalable, loosely
coupled systems. Furthermore, use of the MDA and the UML for expressing on-
tology partially addresses the problem that F. Fonseca mentioned in his paper
about the gap between ontologies and the software components [5].

Seth and Larson’s notion of a five-level schema framework for distributed
systems [9] is combined with the OMG’s notion of PIMs and PSMs elements of
the MDA to form the four-level ontology framework shown in Figure 1. Within
this framework, an ontology may fulfill one of five roles:

local PSM In this role, an ontology describes an organization’s geographic do-
main of interest and reflects the specific platform managing the data. Each
organization is likely to have quite different ontologies at this level of ab-
straction.

local PIM In this role, an ontology also reflects an organization’s geographic
domain of interest but in a platform neutral manner ideally using appropriate
elements of the ISO 19100 harmonized model. In this role, an ontology is
analogous to what Sheth and Larson [9] refer to as a component schema.

export PIM In this role, an ontology defines those parts of the local PIM for
which each organization m is contributing data (λg) to form the distributed
data set Θ. Such an ontology will be a subset of the local PIM ontology.

import PIM In this role, an ontology will define the local copy of the
distributed data set Λp,m that is of interest to organization m. Such an

Incorporating Update Semantics Within Geographical Ontologies 215

ontology may be a (part of a) of an ontology generically referred to as dis-
tributed PIM.

distributed PIM In this role, an ontology will define data being shared by
participating organizations.

When fulfilling any of the export, import, and distributed, PIM roles, the ontol-
ogy is expressed using a vocabulary common to all organizations and consistently
uses elements of the ISO TC211 harmonized model. An ontology fulfilling one
of these three roles corresponds to Sheth and Larson’s notion of an export, ex-
ternal, and federated schemas respectively. The export and import PIMs roles
are regarded as being at the same level of abstraction and will be defined by an
organization acting as a provider or a consumer respectively, while each the three
remaining roles are regarded as being defined at a distinct levels of abstraction:
therefore, there are four levels of abstraction in the proposed framework.

<<distributed PIM>>
Shared Data Ontology

<<consumer>>
Organization C

<<provider>>
Organization D

<<provider,consumer>>
Organization A

<<local PSM>>
geoOntology_1

<<local PIM>>
geoOntology_1

<<import PIM>>
commonOntology_1

<<export PIM>>
geoOntology_1

<<restrict>>

<<restrict>>

<<provider,consumer>>
Organization B

<<local PSM>>
geoOntology_i

<<local PIM>>
geoOntology_i

<<import PIM>>
commonOntology_i

<<export PIM>>
geoOntology_i

<<restrict>>

<<UMLProfile>>
Update Semantics<<uses>>

<<uses>>

<<restrict>>

ISO 19100 Harmonised Model

Fig. 1. Proposed four-level ontology framework where UML component symbols in the

diagram represent organizations acting in the role of provider, consumer or both as

indicated by the assigned stereotypes; UML package symbols are used in the diagram

to depict ontologies with each being stereotyped to indicate the role the ontology fulfills

in the framework

Of particular interest to this research is the import PIM ontology describing
Λp,m since this ontology is to incorporate the semantics of the organization’s de-
sired update policy. These semantics are to be incorporated by applying a UML
Profile containing extensions (stereotypes, tagged values and constraints) [4–
page 711] to the UML that will allow the individual characteristics of the orga-
nization’s update policy to be specified consistently across all organizations.

An organization’s local copy, Λp, of Θ conform to an ontology in the role of
an import PIM. This ontology is expressed using UML that has been extended

216 X. Gu and R.T. Pascoe

Pipe
+id:int
+dateLaid:Date
+upgradeDate:Date
+material:String
+length:double
+diameter:double
+centerLine

Road
+roadId:int
+name:String
+serviceDate:Date
+centerLine

ISO 19107:
Spatial Schema

<<uses>><<uses>>

The spatial
schema supplies an

appropriate type for the
centerLine attribute

Fig. 2. The ontology for Λ1,3,t. This ontology fulfills the role of an import PIM.

by the UML Profile for update semantics described in Section 4.1 thereby in-
corporating an update policy reflecting the organization’s business priorities for
data synchronization.

Once an update policy has been defined by organization m, execution of this
policy involves analyzing the update notifications, ∆λg , either broadcast by, or
requested from, the various organizations contributing components of Λp,m to
determine when, within the context of the update policy, a significant difference
exists between the local copy Λp,m,t and Λp, m, t′. When such a significant differ-
ence exists, an update execution plan is formulated to govern the steps by which
Λp,m,t is updated. The proposed system is viewed as an Ontology Driven Infor-
mation System [3] since an ontology with the embedded update policy “plays a
central role in the system’s lifecycle”[op cite, page 16].

To illustrate the system in practice, a use case is now described to demon-
strate update notifications and policies in the envisaged distributed environment.

Two local government authorities, P1 and P2, each provide a data set: P1 pro-
vides λ1 containing information about roads; and P2 provides λ2, containing in-
formation about underground water pipes. At time t a consumer organization, C3,
consumes both P1 and P2 to form a local data set Λ1,3,t which provides mappings
between roads and water pipes based on their geospatial locations.

The concepts of update notifications and update policies are examined in
more detail in Sections 3 and 4 respectively. In each, scenarios associated with
the above use case are given to further illustrate these concepts.

3 Update Notifications

An update notification ∆λg,t′ is a message from a data provider Pn to any con-
sumer Ci that describes changes to data set λg,t′ . In simple terms the following
tasks are of interest:

– when the data is changed, create a description of this change (Sections 3.1);
and

– provide consumers with access to this description (Section 3.2).

To illustrate the concept of an update notification consider the following scenar-
ios within the context of the use case described earlier.

Incorporating Update Semantics Within Geographical Ontologies 217

Scenario 1

Organization P1 modifies λ1 to:
– introduce two new road centre lines as a consequence of a new sub-

division. This introduction also requires an existing road centre line
to be altered;

– modify an existing centre line for a segment of road that has been
realigned to remove a bend that was causing serious traffic accidents.

By prior arrangement, P1 immediately sends ∆λ1, a description of these
changes, to C3.

Scenario 2

Organization P2 modifies λ2 to:
– alter the export PIM ontology defining λ2 by deleting the attribute

called ‘diameter’ and introducing a new attribute called ‘comment’;
– modifying the name of an existing attribute called ‘id’ to become

‘pipeId’.
C3 retrieves ∆λ2,t′ and ∆λ1,t′ from each provider’s ‘Blackboard’ (see
Section 3.2) as part of the periodic review process in place for updating
Λ1,3,t.

In each scenario, the description of the changes form the content of an update
notification and only document characteristics that will be needed to determine
whether the changes are significant in terms of the various update policies de-
fined for the relevant distributed data sets. Inaccurate or incomplete update
notifications will lead to poor decisions about when to synchronize the relevant
Λp. Furthermore, subsequent planning and execution of the updates to Λp,t may
be inhibited because consumers lack sufficient information to determine what
they need to update and how to retrieve and possibly transform the changed
data to form Λp,t′ .

In the case of Scenario 1, content of the update notification would include,
for example: the spatial bounding box for each of the new roads; and the iden-
tifiers of existing roads that have modified values. The specific details (such as
the spatial location of the changed road centre lines) are supplied when the up-
date execution plan is being implemented. Further explanation of the content of
update notifications is provided in Section 3.1.

As illustrated by the two Scenarios, update notifications are available either
directly by sending the description to one or more consumers (Scenario 1), or
indirectly by posting the description in a storage location that all consumers can
access when they are interested (Scenario 2). Further explanation of the content
of update notifications is provided in Section 3.2.

3.1 Content of Update Notifications

Update notifications describe changes to a particular data set. As shown in
Figure 3, information contained within the notification are grouped into those

218 X. Gu and R.T. Pascoe

UpdateNotification
+updateId:int
+providerId:int
+dateChanged:TimeStamp

1 1
exportOntology

1

*

description

OntologyChange ValueChange

Ontology

ChangeDescription
+effectedEntity:String

ChangeSummary

1

*

changeDetail

ChangeSummary.effectedEntity =
ChangeSummary.changeDetail.effectedEntity

Fig. 3. UML Class diagram of Update Notifications

elements concerned with administrating the notifications themselves and those
concerned with describing the changes. Administrative elements of a notification
are:

Provider ID which is a unique identifier for each provider within the system
so that the consumer knows the source of the notification.

Update ID is specified in sequence by data provider, and is unique to each
update generated by this provider. This ID can also be treated as data set
version number.

Export PIM Ontology describes provider data set in order to aid the con-
sumer to further identify the provider and subscribed data sets.

Date Changed specifies the date and time when these changes were applied
to the data.

Each change description describes one modification to an entity. This description
is focussed on either

a value change, described by a statistic that summarizes the changes to values
of this class of entity within ∆λg,t′ . A value change may involve the insertion,
deletion, or modification of a value as illustrated by Scenario 1; or

an ontological change involving the insertion, deletion, or modification of el-
ements (classes, attributes, associations) of the ontology as illustrated by
Scenario 2.

More than one kind of change affecting the same entity is aggregated by a
ChangeSummary description.

Incorporating Update Semantics Within Geographical Ontologies 219

Describing Value Updates. A value update notification describes the content
of ∆λg,t′ , the changed values since the last update notification at time t. This
description is a list of statistics that are calculated for ∆λg,t′ and only these
statistics are included in the update notification. Examples of statistics that
may be included are the number of insertions, deletions, or modifications, for
different classes of entity, and such like. By transmitting only the statistics of
the changed values, the transmission of a large amount of data across the network
may be avoided if consumers decide to ignore such changes.

Describing Ontology Updates. Insertions, deletions and modifications to an
existing ontology are expressed as an XMI document [13– page 1-31]. All differ-
ences described by XMI document must be applied in order so that the model
integrity can be maintained. Thus, when a consumer receives an ontology up-
date notification, the consumer can either ignore and discard that notification or
address all differences described by the notification and any earlier notifications
that were ignored.

Ontology updates may have serious consequences and need to be consid-
ered with care. Changes to the ontology correspond to changes to the database,
which in turn may impact upon existing database processing software developed
by each organization. One strategy being considered involves providers intending
to make an ontological change sending consumers an ontological update proposal.
This proposal is analyzed by each data consumer in order to assess the desir-
ability of the proposed ontological update. For example, adapting an software
application to the attribute name change would be much easier than adapting the
same application to the changes that involve attribute deletion. After analysing
the update proposal, each consumer sends feedback to the provider indicating
whether such a change is desirable. The provider evaluates this feedback while
deciding whether to make the ontological change.

3.2 Notifying Consumers of Updates

A local copy is updated when the consumer becomes aware that this data differs
significantly from that which is available from the provider(s) as they change
the available data to reflect modifications to the relevant real world phenomena.
Consumer awareness typically occurs in one of two ways: either a consumer
periodically checks with the provider(s) for updates, or provider(s) broadcasts
update notifications to all relevant consumers whenever the available data has
been updated. These two methods are referred to as Pull and Push respectively
with both methods having advantages and disadvantages.

The Push method allows consumer to receive update notifications as soon
as they are published by the providers. As the number of consumers increases,
however, this method is likely to become impractical. Software such as Microsoft
Windows and Norton Antivirus are used by a great many people around the
world and having the providers of this software broadcast update notifications
to every consumer may be impractical. The situation is exacerbated by providers

220 X. Gu and R.T. Pascoe

Pipe
+id:int
+dateLaid:Date
+upgradeDate:Date
+material:String
+length:double
+diameter:double

<xmi:XMI version=” 2 .0 ”>
. . .

<UML:Class xmi . id=”S . 11 ” name=”Pipe”>
<UML:Attribute xmi . id=”S . 19 ” name=” id ”>

. . .
</UML:Attribute>
<UML:Attribute xmi . id=”S . 22 ” name=”diameter”>

. . .
</UML:Attribute>

</UML:Class>
. . .

</xmi:XMI>

(a) oldPipe.xmi

Pipe
+pipeId:int
+dateLaid:Date
+upgradeDate:Date
+material:String
+length:double
+comment:String

<xmi:XMI version=” 2 .0 ” . . .>
. . .

<UML:Class xmi . id=”S . 11 ” name=”Pipe” . . .>
<UML:Attribute xmi . id=”S . 19 ” name=”pipeID”>

. . .
</UML:Attribute>
<UML:Attribute xmi . id=”S . 25 ” name=”comment”>

. . .
</UML:Attribute>

</UML:Class>
. . .

</xmi:XMI>

(b) newPipe.xmi

<xmi:XMI version=” 2 . 0 ” xmlns:UML=”org . omg/UML”
xmlns:xmi=” ht tp : //www.omg . org /XMI”>

< !−− de l e t ion of ”diameter” a t t r i b u t e −−>
<d i f f e r e n c e xmi:type=” xmi :De l e te”>

<t a rg e t h r e f=” oldPipe . xmi#S .22 ”/>
</ d i f f e r e n c e>

< !−− addit ion of ”comment” a t t r i b u t e −−>
<d i f f e r e n c e xmi:type=”xmi:Add” add i t i on=”S . 25 ”>

<t a rg e t h r e f=” oldPipe . xmi#S .11 ”/>
</ d i f f e r e n c e>
<UML:Attribute xmi . id=”S . 25 ” name=”comment” . . .>

. . .
</UML:Attribute>

< !−− change of ” id ” a t t r i b u t e −−>
<d i f f e r e n c e xmi:type=”xmi:Replace” replacement=”S . 19 ”>

<t a rg e t h r e f=” oldPipe . xmi#S .11 ”/>
</ d i f f e r e n c e>
<UML:Attribute xmi . id=”S . 19 ” name=”pipeID” . . .>

. . .
</UML:Attribute>

</xmi:XMI>

(c) diffPipe.xmi

Fig. 4. An example of an ontological update. The initial ontology for a pipe feature

(a) is modified to become (b) by the following operations listed in (c): 1. the attribute

‘diameter’ is removed; 2. the attribute ‘comment’ is added; 3. the name of the attribute

‘id’ has been updated to ‘pipeID’. Note that for illustrative purposes only the relevant

XMI is shown.

Incorporating Update Semantics Within Geographical Ontologies 221

who frequently publish update notifications. The Pull method solves these prob-
lems, since this method allows each consumer to configure a strategy of checking
for update notifications which reflects the organization’s unique business rules
for data synchronization. However, the drawback to the Pull method is that
consumers may not get critical updates in a timely fashion.

In this paper, both Pull and Push methods are considered, and the proposed
system architecture allows both to work cooperatively to achieve the best result.
Those consumers with low to moderate demands for up to date data may use
a Pull method while organizations with high demands will be prepared to pay
providers to be included in a Push method of receiving notifications.

Even though update notifications may be broadcasted to all subscribers,
these updates might not be executed or might even be discarded because of the
update policies (see Section 4) defined at the consumer end. In order for these
consumers to retrieve for non-updated updates in a later stage, all update notifi-
cations need to be stored and maintained by both data providers and consumers
for a configurable period of time. The storage space is analogue to Blackboard,
which allows interaction and information can be exchanged indirectly and asyn-
chronously between different organizations. Figure 5 shows the whole process
described above.

Fig. 5. Propagation of update notification

However, if more and more update notifications are displayed on the Black-
board, the storage space will eventually run out. In order to avoid this problem,
a Version control mechanism is used to control the version of all subscribers’
data sets by using the “Update ID” field in the notification message to main-
tain the information about which update has been successfully extracted and
applied by which subscriber. Once an update has been extracted by all sub-
scribed consumers, or has been displayed for a certain period of time, both the

222 X. Gu and R.T. Pascoe

update notification and ∆λg,t′ , the changed data values, will be removed from
the Blackboard.

If a notification has been removed and not all consumers have executed that
update, then those consumers need to either compute the changes by themselves
by comparing their local copies Λp,m,t with Θt′ or simply update Λp,m,t regardless
of the quantity and nature of the changes made in the period of time between t
and t′.

4 Update Policy

Consumer defined update policies consist of a series of rules that determine the
circumstances under which a data consumer Cm will update its local data set
Λp,m,t. These rules primarily reflect the higher level business requirements and
constraints unique to each consumer.

Once update policies are defined by consumers, they are incorporated into
primarily import PIM ontologies using UML extensions defined by a profile for
update semantics described in Section 4.1. Providers may wish to indicate im-
mutable elements (for example identifiers) of an export PIM ontology: therefore,
such a stereotype is also provided within the profile for Update Semantics.

An update policy is used to evaluate the significance of a collection of update
notifications to a particular consumer. When deemed significant, notification
of these updates will initiate the updating of Λp,m,t. Informally this may be
described by the following expression:

updatePolicyFunction(Λp,m,t, ∆Λp,m,t′) �→ {true, false}
where the updatePolicyFunction() comprises an OCL Expression involving
tagged values defined by the UML profile for update semantics.

To illustrate the concept of an update policy, consider Scenario 3 within the
context of the use case described earlier in Section 2.

Scenario 3

Based on the associated cost for update and the importance for each
data set, C3 only updates Λ1,3,t when either at least 30% of the data
values in λ1,t have been changed or λ2,t is changed in any way. The
import PIM ontology shown in Figure 2 is enhanced to incorporate this
update policy as shown in Figure 6.

Sometimes, C3 can neglect some minor updates in order to save network
bandwidth and time or reduce the associated cost while the degree of inconsis-
tency between Λ1,3,t and λ1,t or λ2,t is acceptable. However, under this situation,
it needs extra care due to the accumulation effect of minor updates. For example,
in this case, if 25% of data has been updated in λ1,t+∆t at t + ∆t and another
10% of data has been updated at t′, then C3 should update Λ1,3,t when the
second update notification generated by P1 has been received, since 35% of data
in total has been updated.

Incorporating Update Semantics Within Geographical Ontologies 223

sufficientUpdateNotifications =
 roadsAndPipes.Road.percentageChange > 0.3
or roadsAndPipes.Pipe.changeExists

<<importPIM, UpdatePolicy>>
roadAndPipes

(a) The package enclosing the
ontology with the UpdatePolicy
stereotype applied.

<< ChangeCriteria >>
Road

<< ChangeCriteria >>
Pipe

percentageChange:
 UpdateNotification.allInstances.changeDescriptions
 ->select(effectedEntity.oclIsTypeOf(Road))->size / Road.allinstances->size

changeExists:
 UpdateNotification.allInstances.changeDescriptions
 ->select(effectedEntity.oclIsTypeOf(Pipe))->size > 0

sufficientUpdateNotifications =
 Road.percentageChange > 0.3 or Pipe.changeExists

(b) The content of the package with stereotypes and tagged values

Fig. 6. The import PIM ontology shown earlier in Figure 2 enhanced to incorporate

the update policy described in Scenario 3

4.1 UML Profile for Update Semantics

A complete description of the UML profile for Update Semantics is beyond the
scope of this paper: therefore, selected stereotypes and tagged values defined by
this profile are described to illustrate the intent.

��UpatePolicy��

This stereotype is applied once to a UML package symbol within which is
defined an ontology (typically either an export or an import, PIM ontology).
Associated with this stereotype are the following tagged values:
sufficientUpdateNotifications is an OCL expression which when true in-

dicates that the available Update Notifications ∆Λp,m,t′ justifies the up-
dating of Λp,m,t.

updateSchedule which is assigned a value indicating the frequency with
which Λp,m,t is to be updated regardless of what has changed. Values
that may be assigned to this tag are: none, daily, weekly, monthly,
and yearly.

224 X. Gu and R.T. Pascoe

significantUpdate which is assigned the value of the following OCL ex-
pression: sufficientUpdateNotifications or (updateSchedule <> ‘none’).
When true, Λp,m,t is to be updated.

Use of the updateSchedule tag indicates the consumer adopts a pull method
while use of the sufficientUpdateNotification indicates the adoption of a push
method for update notification.

��ChangeCriteria��

This stereotype is applied to classes for which any change may initiate the
updating of the data set. This stereotype has the following tagged values to
characterize the changes:
numberOfChanges an integer value indicating the number of change de-

scriptions applicable to instances of this class or to this class itself.
percentageChange a real value between 0 and 1 indicating what percent-

age of the instances of this class in Λp,m,t have been changed in Λp,m,t′ .
changeExists a boolean value indicating that this class or instances of this

class have been changed.
priority an integer value between 1 and 9 indicating the importance of

the instance of this class. The lower the priority value, the higher the
importance.

��SpatialExtentCriteria��

Like ��ChangeCriteria��, this stereotype is also applied to classes for which any
change may initiate the updating of the data set: however, these changes are
characterized by occurring to values within some specified spatial extent as
defined by one of the following tagged values:
boundingBox the minimum bounding rectangular extent within which any

change notifications or part thereof are regarded as potentially signifi-
cant.

spatialBuffer For example all changes to pipes within 10 kilometers of a
specified road centerLine.

��Immutable��

This stereotype will be applied to classes and or attributes of a class within
an export PIM ontology to convey that instances of this class or values of
this attribute will never be changed by the provider of λg .

The tagged values are to be used within OCL constraints to convey update
policies unique to each consumer.

5 Conclusions and Future Research

In this paper is described ongoing research into facilitating the synchronization of
a consumer’s local copy of a distributed data set. The proposed solution involves
each consumer incorporating into their platform independent import ontology
of the local data set, defined using UML, a policy that governs when the data
set is to be updated. The semantics of the update policy are documented within
the ontology as OCL constraints expressed in terms of the stereotypes and tags
defined by the proposed UML Profile. The platform independent import ontology

Incorporating Update Semantics Within Geographical Ontologies 225

is one of four in the proposed four level framework which results from merging
the OMG’s MDA [8] with Seth and Larson’s [9] notion of a five-level schema
framework for distributed systems.

The platform independent import ontology with an embedded update policy
is represented within an XMI document which is processed by software, an up-
date agent, that implements the embedded update policy. Over time, this update
agent listens for relevant update notifications from providers of the distributed
data and evaluates the changes described either in isolation of, or in collabora-
tion with, other update agents to determine when the local copy of a distributed
data set is to be synchronized.

As the research continues, the UML profile for documenting the update pol-
icy will be refined to address issues that arise from implementation of this system
as briefly described in the next section. Preliminary results suggest that the ap-
proach is feasible: however, much more experimentation is necessary to evaluate
the efficacy of the solution proposed.

The system described in the paper is currently being implemented using
Agent technologies such as OPAL [10], which incorporates an implementation of
the Java Agent Services (JAS) specification [11], and two implementations of the
Open GIS Consortium Web Feature Service (WFS) Specification [12] (Intergraph
and geoserver, an Open Source project). Different versions of various data sets
have been kindly made available by the Christchurch City Council to be used
to create meaningful and realistic sequences of update notifications from two
implementations of the WFS specification. Using this evolving implementation
as a testbed for the research described here is the next phase.

An issue yet to be fully explored is the use of spatial operators in the definition
of update policies. Consider, for example, the following scenario.

C3 would like to update Λ1,3,t when there are at least 5 changes to pipes
within 10 kilometers of a specified road center line.

Creating an update policy with such a constraint expressed using OCL is difficult
because, by default, OCL does not support spatial operations, such as ‘Contains’
and ‘Overlaps’. Expressing such operators within OCL remains an open problem.

Acknowledgments

The research described here has been funded by the Foundation for Research,
Science, and Technology subcontract number UOOX0208.

References

1. L. McKee, K. Buehler. The Open GIS Guide, Open GIS Consortium, Inc, Wayland,
MA, 1996.

2. Y.A. Bishr, H. Pundt, W. Kuhn, M. Rdwan. Probing the concepts of informa-
tion communities - A first step toward semantic interoperability. Interoperating
Geographic Information Systems, pp. 55-70, Kluwer, Norwell, MA, 1999.

226 X. Gu and R.T. Pascoe

3. Frederico T. Fonseca and Max J. Egenhofer. Ontology-driven geographic informa-
tion systems. In Proceedings of GIS ’99: Proceedings of the 7th ACM international
symposium on Advances in geographic information systems, ACM Press, New York,
NY, 1999.

4. Object Management Group (OMG). UML 2.0 Superstructure Specification. Oc-
tober 8, 2004 http://www.omg.org/technology/documents/modeling spec catalog.
htmi, 2004.

5. F.T. Fonseca. Users, Ontologies and Information Sharing in Urban GIS. ASPRS
Anual Conference, Washington D.C., 2000.

6. S. Cranefield, M. Purvis. UML as an ontology modelling language. In Proceedings
of the Workshop on Intelligent Information Integration, 16th International Joint
Conference on Artificial Intelligence (IJCAI-99), 1999.

7. International Standards Organisation / Technical Committee 211 Geographic In-
formation - Rules for application schema, ISO, 2005

8. Object Management Group (OMG) MDA Specifications. Available from:
http://www.omg.org/mda/specs.htm.

9. A. Sheth, J.A. Larson. Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM Computer Surveys, 22(3), 1990.

10. M. Purvis, S. Cranefield, G. Bush, D. Carter, B. McKinlay, M. Nowostawski and
R. Ward. The NZDIS Project: an Agent-based Distributed Information Systems
Architecture, In R.H. Sprague, Jr. (ed.) CDROM Proceedings of the Hawaii In-
ternational Conference on System Sciences (HICSS-33), IEEE Computer Society
Press, 2000.

11. Francis G. McCabe. Java Specification Request 87: Java Agent Services Available
from: http://www.jcp.org/en/jsr/detail?id=087.

12. Panagiotis A. Vretanos Web Feature Service Implementation Specification
OpenGIS project document number OGC 04-094, version 1.1.0 3 May 2005. Avail-
able from: https://portal.opengeospatial.org/files/?artifact id=8339.

13. Object Management Group. XML Metadata Interchange (XMI) Specification,
Version 2.0. Available from: http://www.omg.org/mda/specs.htm, Document:
formal/05-05-01.

	Introduction
	Overall Approach
	Update Notifications
	Content of Update Notifications
	Notifying Consumers of Updates

	Update Policy
	UML Profile for Update Semantics

	Conclusions and Future Research

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

