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Summary. This chapter is devoted to the stability problem of time-delay systems
using time-domain approach. Some basic concepts of time-delay systems are in-
troduced. Then, some simple Lyapunov-Krasovskii funtionals, complete Quadratic
Lyapunov-Krasovskii functional and discretization scheme are introduced, with con-
nections and extent of conservatism compared. The issue of time-varying delays are
also discussed. The concept of Razumikhin Theorem is introduced. An alternative
model of coupled difference-differential equations and its stability problem are also
introduced.

4.1 Introduction

It is a common pratice to use ordinary differential equations to describe the
evolution of physical, engineering or biological system. However, it is also
known that such a mathematical description is inadequate for many systems.
Indeed, delay-differential equations (or more generally, functional differential
equations) are often needed to reflect the fact that the future evolution of
system variables not only depends on their current values, but also depends
on their past history. Such systems are often known as time-delay systems
(also known as hereditary systems, systems with time lag, or systems with
aftereffects). This chapter is intended to serve as a tutorial to cover some of
the basic ideas of time-delay systems, especially, the stability analysis using
Lyapunov approach.

Time-delay systems are distributed parameter systems, or infinite-dimensional
systems. To bring out the idea, compare the ordinary differential equation

ẋ(t) = ax(t), (4.1)
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with a simple time-delay system

ẋ(t) = ax(t− r). (4.2)

In these two systems, a and r are constant scalars, and x, a scalar function of
time t, is the state variable. It is well known that for the system represented
by (4.1), given any time t0, then the future value of the state x(t), t > t0
is completely determined by x(t0), a scalar, which indicates that the system
(4.1) is a 1-dimensional system. On the other hand, for the system (4.2),
to completely determine x(t), t > t0, it is necessary to know x(t) for all
t0 − r ≤ t ≤ t0. Therefore, the state at time t0 is an element of the infinite-
dimensional functional space {x(t) | t0 − r ≤ t ≤ t0}, and the system (4.2) is
an infinite-dimensional system.

Examples of time-delay systems abound in various disciplines of science,
engineering and mathematics. Kolmanovskii and Myshkis gave many exam-
ples [18]. Other books also contain many practical examples, see, for example,
[11] [13] [23]. Here, we will mention only two examples.

Example 4.1. Network control. The popularity of internet has brought to
the network control problem to prominence. One of the model studied in the
literature is the simplified fluid approximation proposed by Kelly [17]

ẋ(t) = k[w − x(t− τ)p(x(t− τ))],

where p is a continuously differentiable and strictly increasing function
bounded by 1, and k and w are positive constant. The delay τ represents the
round-trip time. The function p can be interpreted as the fraction of packets
the presence of (potential) congestion. For more details of network model, see
[5] [17] [28].

Example 4.2. Transport delay in chemical reactions. This example was
discussed in [20] and [21]. Consider a first order, exothermic and irreversible
chemical reaction from A to B. In practice, the conversion from A to B is
not complete. To increase the conversion rate and reduce the costs, a recycle
stream is used. The time it takes to transport from the output to the input
introduces time delay. The resulting process can be described by the following
equations

dA(t)
dt

=
q

V
[λA0 + (1− λ)A(t− τ) + A(t)]−K0e

−Q/T A(t)

dT (t)
dt

=
1
V

[λT0 + (1− λ)T (t− τ)− T (t)]
ΔH

Cρ
−K0e

−Q/T A(t)

− 1
V Cρ

U(T (t)− Tw, )

where A(t) is the concentration of the component A, T (t) is the temperature,
and λ ∈ [0, 1] is the recycle coefficient (λ = 1 represents no recycle), and τ is
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the transport delay. The case without time delay τ has been discussed in [2]
and [26].

The rest of the chapter is organized as follows. Section 4.2 introduces some
basic concepts of time-delay systems. Section 4.3 introduces the concept of
stability and Lyapunov-Krasovskii stability Theorem. Section 4.4 introduces
some simple Lyapunov-Krasovskii functionals Section 4.5 covers the complete
quadratic Lyapunov-Krasovskii functional and its discratization. Section 4.6
compares different Lyapunov functionals, with numerical examples. Section
4.7 discusses time-varying delays. Section 4.8 discusses Razumikhin Theorem.
Section 4.9 discusses coupled difference-differential equations and stability.
Section 4.10 contains conclusions and discussions.

4.2 Basic Concepts of Time-delay Systems

4.2.1 Systems of Retarded Type

We will concentrate on time-delay systems of retarded type in this article. A
retarded time-delay system can be represented as

ẋ(t) = f(t, xt) (4.3)

where x(t) ∈ Rn, xt is a function defined in the interval [−r, 0] as

xt(θ) = x(t + θ), −r ≤ θ ≤ 0,

r is the maximum delay, and f is a functional, or a function of functions.
In other words, the value of f can be determined if the value of t and the
function xt are given. It is common practice to restrict xt to be a continuous
function. Let C be the set of all continuous functions defined in the interval
[−r, 0], then the initial condition of (4.3) can be expressed as

xt0 = φ, for some φ ∈ C (4.4)

which means that
x(t0 + θ) = φ(θ), for θ ∈ [−r, 0].

With this notation, the domain of definition of f is R×C. The solution of
(4.3) with initial condition (4.4) is often denoted as x(t, t0, φ), or x(t, φ) if t0
is understood.

In some context, it is beneficial to consider the initial condition as consist-
ing of two parts, x(t0) and x(t) for t0 − r ≤ t < t0. This may be convenient
to accommodate the case of a discontinuous φ in the initial condition.

Other types of time-delay systems are discussed in, for example, [13] and
[18]. For example, if ẋ(t) also depends on derivative of x at a time τ < t, then
the system is of neutral type.
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4.2.2 Pointwise Delays

An important special case in pratice can be expressed as

ẋ(t) = f(t, x(t), x(t− r)). (4.5)

In other words, ẋ(t) only depends on x at current time and at the time of
maximum delay, and is independent of x(t + θ), −r < θ < 0. Let’s consider
the case of t0 = 0, so that the initial condition becomes

x0 = φ, or x(t) = φ(t), − r ≤ t ≤ 0.

Such a system admits a simple method of steps to generate the future trajec-
tories: Since x(t − r) is already known as the initial condition for t ∈ [0, r],
the equation (4.5) can be considered as an ordinary differential equation in
this interval, and x(t), t ∈ [0, r] can be generated by solving this ordinary dif-
ferential equation. Once x(t), t ∈ [0, r] is available, x(t− r), t ∈ [r, 2r] is also
available, and therefore, one can further generate x(t), t ∈ [r, 2r] by solving
ordinary differential equation. Continue this process will allow us to generate
x(t) for t ∈ [0,∞).

Similarly, we say the system

ẋ(t) = f(t, x(t), x(t− r1), x(t− r2), ..., x(t− rk)) (4.6)

is of multiple delays. Furthermore, if there is a common factor τ which divides
all delays rj , j = 1, 2, ..., k, then we say the system is of commensurate delays.
Without loss of generality, we may assume rj = jτ in this case. If there does
not exist such a factor, in other words, we can find two delays ri and rj

such that ri/rj is irrational, then we say that the delays are incommensurate.
Obviously, the method of steps can also be used in systems of multiple delays.

Systems with either single delay or multiple delays are known as of point-
wise delays, concentrated delays, or discrete delay.

4.2.3 Linear Systems

If the functional f is linear with respect to xt in (4.3), then we say that the
system is linear. If it is independent of t, then we say it is time-invariant. For
a linear time-invariant system, we may define fundamental solution X(t) as
the solution with initial condition

x(0) = I;
x(t) = 0, − r ≤ t < 0.

where I is the identity matrix of appropriate dimension. If the system is
n-dimensional, then X(t) is an n × n-dimensional matrix function of time.
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Fundamental solution plays an important role in the study of linear time-
delay systems.

Consider, for example, the linear system with single delay

ẋ(t) = A0x(t) + A1x(t− r) (4.7)

It can be shown, using linearity, that the solution of (4.7) under initial con-
dition x0 = φ can be expressed as

x(t, φ) = X(t)φ(0) +
� 0

−r

X(t− r − θ)A1φ(θ)dθ (4.8)

4.2.4 Characteristic Quasipolynomials

A linear time-invariant time-delay system is associated with a corresponding
characteristic quasipolynomial through Laplace Transform. For the system
(4.7), the characteristic quasipolynomial is

p(s) = det(sI −A0 − e−rsA1).

It can be shown that the characteristic quasipolynomial is directly related to
the Laplace Transform of the fundamental solution,

p(s) = det(L[X(t)]).

Similar to systems of finite dimension, a time-delay system of retarded type is
stable if and only if all the poles, or the roots of the characteristic quasipoly-
nomial, are on the left half of the complex plane. However, unlike finite-
dimensional systems, a time-delay system has an infinite number of poles,
and charaterizing and finding these poles are much more challenging due to
the fact that a quasipolynomial involves transcendental functions.

For a linear time-invariant system with multiple delays, the characteristic
quasipolynomial can be considered as a polynomial of s, e−r1s, e−r2s, ..., e−rks.
For commensurate delays, since e−rjs = (e−τs)lj , we can further consider the
characteristic quasipolynomial as a polynomial of two variables s and e−τs.
This fact made the stability problem of systems with commensurate delays a
much easier problem.

Since the focus in this chapter is on Lyapunov approach, we will not pursue
further the stability analysis based on poles.

4.3 Stability

We will start with a formal definition of stability.
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Definition 4.1. For a time-delay system described by (4.3), the trivial solu-
tion x(t) = 0 is said to be stable if for any given τ ∈ R and ε > 0, there exists
a δ > 0 such that ||xτ ||c < δ implies ||x(t)|| < ε for all t ≥ τ . It is said to be
asymptotically stable if it is stable, and for any given τ ∈ R and ε > 0, there
exists, in addition, a δa > 0, such that ||xτ ||c < δa implies lim

t→∞x(t) = 0. It
is said to be uniformly stable if it is stable, and δ can be made independent
of τ . It is uniformly asymptotically stable if it is uniformly stable and there
exists a δa > 0 such that for any η > 0, there exists a T such that ||xτ ||c < δa

implies ||x(t)|| < η for t > τ + T . It is globally (uniformly) asymptotically
stable if it is (uniformly) asymptotically stable and δa can be made arbitrarily
large.

In the above, || · || represents the vector 2-norm, and || · || is defined as

||φ||c = max
−r≤θ≤0

||φ(θ)||.

The above definition is obviously analogous to finite-dimensional systems. The
stability relative to any given solution other than the trivial solution can be
transformed to one relative to the trivial solution through a change of variable.

Corresponding to Lyapunov function V (t, x) for finite-dimensional sys-
tems, here we need a Lyapunov-Krasovskii functional V (t, xt) due to the fact
that the state is xt. We have the following Lyapunov-Krasovskii Stability
Theorem.

Theorem 4.1. Suppose f : R×C →Rn in (4.3) maps R×(bounded sets in
C) into bounded sets in Rn, and that u, v, w : R̄+ → R̄+ are continuous
nondecreasing functions. In addition, u(s) and v(s) are positive for positive
s, and u(0) = v(0) = 0. If there exists a continuous differentiable functional
V : R×C →R such that

u(||φ(0)||) ≤ V (t, φ) ≤ v(||φ||c), (4.9)

and
V̇ (t, φ) ≤ −w(||φ(0)||), (4.10)

then the trivial solution of (4.3) is uniformly stable. If w(s) > 0 for s > 0,
then it is uniformly asymptotically stable. If, in addition, lim

s→∞u(s) = ∞, then
it is globally uniformly asymptotically stable.

In the above, R̄+ is the set of nonnegative real scalars. The notation V̇ (t, φ)
is defined as

V̇ (t, φ) Δ=
d

dt
V (t, xt)|xt=φ

In other words, we can think of V̇ (τ, φ) as the derivative of V (t, xt) with
respect to time t, evaluated at the time t = τ , where xt is the solution of (4.3)
with initial condition xτ = φ. Indeed, (4.9) and (4.10) are often written as
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u(||x(t)||) ≤ V (t, xt) ≤ v(||xt||c),
V̇ (t, xt) ≤ −w(||x(t)||),

Notice, although the “state” in this case is xt, the lower bound of V (t, xt)
and the upper bound of V̇ (t, xt) only need to be functions of ||x(t)||, and not
necessarily be function of ||xt||c. For a proof, the readers are referred to [11],
[13] or [18].

4.4 Some Simple Lyapunov-Krasovskii Functionals

This section discusses some simple Lyapunov-Krasovskii functionals for the
stability analysis of time-delay systems. The materials of this section may be
found from [11] [23] [3].

4.4.1 Delay-independent Stability

Consider the time-delay system (4.7). We may consider the Lyapunov-Krasovskii
functional

V (xt) = xT (t)Px(t) +
� 0

−r

xT (t + θ)Sx(t + θ)dθ.

Where, P and R are symmetric matrices. Obviously,

P > 0, (4.11)
S ≥ 0, (4.12)

are sufficient to ensure the satisfaction of (4.9). In the above (4.11) means P
is positive definite, and (4.12) means S is positive semi-definite. Similarly, we
also use “< 0” and “≤ 0” to indicate a matrix is negative definite or semi-
definite. Calculating the derivative of V along the system trajectory yields,

V̇ (xt) =
#
xT (t) xT (t− r)

* $
PA0 + AT

0 P + S PA1

AT
1 P −S

+ $
x(t)

x(t− r)

+
.

To satisfy (4.10), it is sufficient that$
PA0 + AT

0 P + S PA1

AT
1 P −S

+
< 0. (4.13)

Therefore, we can conclude the following.

Proposition 4.1. The system (4.7) is asymptotically stable if there exists
symmetric matrices P and S of appropriate dimension such that (4.11) and
(4.13) are satisfied.
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Notice that (4.12) is already implied by (4.13). Inequalities (4.11) and
(4.13) are examples of linear metrix inequalities (LMI), where parameters (in
this case symmetric matrices P and S). An important development in recent
years is that effective numerical methods have been developed to solve LMIs,
see [4] for details, and Appendix B of [11] for some facts of LMI most useful
for time-delay systems. A number of software packages are available to solve
LMIs, see, for example, [8] for LMI Toolbox for MATLAB .

It should be observed that the stability conditions (4.11) and (4.13) is
independent of the delay r. Such conditions are known as delay-independent
stability conditions. Such conditions are obviously have very limited appli-
cation, because it cannot account for a very common practical situation: a
system often tolerate a small delay without losing stability, while a large de-
lay destabilizes the system.

Such simple stability conditions can be extended to more general systems.
For example, for systems with multiple delays,

ẋ(t) = A0x(t) +
k4

j=1

Ajx(t− rj), (4.14)

we can choose the Lyapunov-Krasovskii functional

V (xt) = xT (t)Px(t) +
k4

j=1

� 0

−rj

xT (t + θ)Sjx(t + θ)dθ. (4.15)

Since its derivative along the system trajectory is

V̇ (xt) = ψT (t)Πψ(t),

where

ψT (t) =
#
xT (t) xT (t− r1) . . . xT (t− rk)

*
,

Π =

&&&&&&&
PA0 + AT

0 P +
k5

j=1

Sj PA1 PA2 . . . PAk

AT
1 P −S1 0 . . . 0

AT
2 P 0 −S2 . . . 0
...

...
...

. . .
...

AT
k P 0 0 . . . −Sk

-------
, (4.16)

we arrive at the following stability conditions.

Proposition 4.2. The system (4.14) is asymptotically stable is there exist
symmetric matrices P , Sj, j = 1, 2, ..., k, such that

P > 0,

Π < 0

are satisfied, where Π is defined in (4.16).



4 Stability Analysis of Time-delay Systems: A Lyapunov Approach 147

A further extension is to systems with distributed delays

ẋ(t) = A0x(t) +
� 0

−r

A(θ)x(t + θ)dθ. (4.17)

Analogous to (4.15) for multiple delay case, we can choose

V (xt) = xT (t)Px(t) +
� 0

−r

[
� 0

θ

xT (t + τ)S(θ)x(t + τ)dτ ]dθ.

This gives

V̇ (xt) = xT (t)[PA0 + AT
0 P +

� 0

−r

S(θ)dθ]x(t)

+ 2xT (t)P
� 0

−r

A(θ)x(t + θ)dθ

−
� 0

−r

xT (t + θ)S(θ)x(t + θ)dθ.

Add and subtract xT (t)
� 0

−r
R(θ)dθx(t), where R(θ) is a symmetric matrix

function, we obtain

V̇ (xt) = xT (t)[PA0 + AT
0 P +

� 0

−r

R(θ)dθ]x(t)

+
� 0

−r

#
xT (t) xT (t + θ)

* $
S(θ)−R(θ) PA(θ)

AT (θ)P −S(θ)

+ $
x(t)

x(t + θ)

+
dθ.

From this, we arrive at the following stability conditions.

Proposition 4.3. The system (4.17) is asymptotically stable if there exist
symmetric matrix P , and symmetric matrix functions S and R : [−r, 0] →
Rn×n, such that

P > 0,

PA0 + AT
0 P +

� 0

−r

R(θ)dθ < 0,

and $
S(θ)−R(θ) PA(θ)

AT (θ)P −S(θ)

+
≤ 0 for all θ ∈ [−r, 0]

are satisfied.
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4.4.2 Delay-dependent Stability Using Model Transformation

A simple way of bringing delay r into stability conditions of (4.7) is to trans-
form it to a distributed time-delay system. This is done using the Newton-
Raphson formula

x(t− r) = x(t)−
� 0

−r

ẋ(t + θ)dθ

for the term x(t− r) in (4.7), and using (4.7) for ẋ(t+ θ) in the integral. This
result in a new system

ẋ(t) = (A0 + A1)x(t)−A1A0

� 0

−r

x(t + θ)dθ −A2
1

� −r

−2r

x(t + θ)dθ. (4.18)

The process of obtaining (4.18) from (4.7) is sometimes known as model
transformation. Before we go on to analyze (4.18), we should point out that
the stability of the two systems expressed by (4.7) and (4.18) are not equiva-
lent. Althought the stability of (4.18) implies that of (4.7), the reverse is not
necessarily true. It can be seen that the maximum delay of (4.18) is 2r rather
than r. Indeed, the characteristic equation of (4.7) is

Δo(s) = det(sI −A0 − e−rsA1) = 0,

and that of (4.18) is
Δt(s) = Δa(s)Δo(s) = 0,

where

Δa(s) = det
$

I − 1− e−rs

s
A1

+
.

The factor Δa(s) represents additional dynamics. It is possible that all the
zeros of Δo(s) are on the left half plane while some zeros of Δa(s) are on
the right half plane. See [12] for detailed analysis, and [11] and the references
therein for additional dynamics in more general setting.

To study the stability of (4.18), we notice that it is in the form of (4.17),
and therefore, can use Proposition 4.3, which in this case becomes

P > 0,

P (A0 + A1) + (A0 + A1)T P +
� 0

−2r

R(θ)dθ < 0,

and $
S(θ)−R(θ) −PA1A0

−(A1A0)T P −S(θ)

+
≤ 0 for all θ ∈ [−r, 0],$

S(θ)−R(θ) −PA2
1

(A2
1)

T P −S(θ)

+
≤ 0 for all θ ∈ [−2r,−r).
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We may choose

R(θ) =

R0, −r ≤ θ ≤ 0,

R1, −2r ≤ θ < −r,

S(θ) =

S0, −r ≤ θ ≤ 0,

S1, −2r ≤ θ < −r,

to obtain the following stability conditions.

Proposition 4.4. The system (4.18) is asymptotically stable (which implies
that the system (4.17) is asymptotically stable) if there exists symmetric ma-
trices P , S0, S1, R0, and R1 such that

P > 0,

P (A0 + A1) + (A0 + A1)T P + r(R0 + R1) < 0,$
S0 −R0 −PA1A0

−(A1A0)T P −S0

+
≤ 0,$

S1 −R1 −PA2
1

(A2
1)

T P −S1

+
≤ 0.

We may write the above in a different form by eliminating R0 and R1.

Corollary 4.1. The system (4.18) (and (4.17)) is asymptotically stable if
there exist symmetric matrices P , S0 and S1 such that

P > 0, M −PA1A0 −PA2
1

−S0 0
Symmetric −S1

 < 0,

where
M =

1
r
[P (A0 + A1) + (A0 + A1)T P ] + S0 + S1.

Proof . We make the conditions in Corollary 4.4 slightly more stringent by re-
placing “≤” by “<”, and eliminating R0 and R1 using the technique discussed
in [9] or Appendix B of [11] to obtain the resulting LMIs. �

4.4.3 Implicit Model Transformation

It is also possible to obtain relatively simple delay-dependent stability con-
ditions without explicit model transformation and with less conservatism,
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although it still uses maximum delay of 2r. We call such a process as implicit
model transformation. Here, we will discuss a method very similar to the one
proposed by Park [25]. Consider again the system described by (4.7). Choose
Lyapunov-Krasovskii functional

V (xt) = xT (t)Px(t)+
� 0

−r

� 0

θ

fT (xt+ξ)Zf(xt+ξ)dξdθ+
� 0

−r

xT (t+θ)Sx(t+θ)dθ

where f(xt) represents the right hand side of (4.7), and by a change of time
variable,

f(xt+ξ) = A0x(t + ξ) + A1x(t + ξ − r).

Using the fact that for any defferentiable function ψ and θ < 0,

d

dt

� 0

θ

ψ(f(xt+ξ))dξ = ψ(f(xt))− ψ(f(xt+θ)),

we obtain

V̇ (xt) = φT
0r

$
M PA1 + rAT

0 ZA1

[PA1 + rAT
0 ZA1]T rA

+
φ0r

−
� 0

−r

fT (xt+θ)Zf(xt+θ)dθ, (4.19)

where

M = PA0 + AT
0 P + rAT

0 ZA0 + S,

φT
0r =

#
xT (t) xT (t− r)

*
.

For $
X Y
Y T Z

+
> 0, (4.20)

we have

0 <

� 0

−r

#
xT (t) ẋT (t + θ)

* $
X Y
Y T Z

+ $
x(t)

ẋ(t + θ)

+
dθ

= rxT (t)Xx(t) + 2xT (t)Y (x(t)− x(t− r)) +
� 0

−r

ẋT (t + θ)Zẋ(t + θ)dθ.

(4.21)

Adding (4.21) to (4.19) and using

ẋ(t + θ) = f(xt+θ), (4.22)

we obtain
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V̇ (xt) ≤ φT
0r

$
N PA1 + rAT

0 ZA1 − Y
Symmetric −S + rAT

1 ZA1

+
φ0r,

where
N = PA0 + AT

0 P + rAT
0 ZA0 + S + rX + Y + Y T . (4.23)

Therefore, we conclude the following.

Proposition 4.5. The system (4.7) is asymptotically stable if there exist ma-
trix Y and symmetric matrices P , X and Z such that

P > 0,$
N PA1 + rAT

0 ZA1 − Y
Symmetric −S + rAT

1 ZA1

+
< 0,

and (4.20) are satisfied. In the above, N is expressed in (4.23).

Notice, due to the usage of (4.22) for θ ∈ [−r, 0), this process involves
x(t+ξ) for −2r ≤ ξ ≤ 0, and implicitly involves model transformation in some
sense. It can shown that this stability condition is indeed less conservative than
both Propositions 4.1 and 4.4. It can also be written in a number of different
forms, see [11] for details.

4.5 Complete Quadratic Lyapunov-Krasovskii Functional

It will be shown by numerical examples later on in this section that all the
methods discussed in the previous section involves substantial conservatism.
Further more, all of them requires the system to be stable if the delay is
set to zero. However, there are many practical cases where delay may be
used to stabilize the system. See [1] for a simple example. Indeed, a finite
difference approximation of derative in control implementation will introduce
time delays, which are often used to stabilize the system.

To obtain necessary and sufficient condiiton for stability, it is necessary
to use complete quadratic Lyapunov-Krasovskii functional as pointed out by
Repin [27], Infante and Castelan [15].

4.5.1 Analytical Expression

Recall that the finite dimensional system

ẋ(t) = Ax(t) (4.24)

is asymptotically stable if and only if for any given positive definite W , the
Lyapunov equation
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PA + AT P = −W

has a positive definite solution. Indeed, a quadratic Lyapunov function can
be constructed from the solution P,

V (x) = xT Px,

which achieves
V̇ (x) = −xT Wx.

Furthermore, the solution P can be explicitly expressed as

P =
� ∞

0

XT (t)WX(t)dt,

where X(t) is the fundamental solution of (4.24), which satisfy

Ẋ(t) = AX(t),
X(0) = I.

Let x(t, φ) be the solution of (4.24) with initial condition x(0) = φ, then
x(t, φ) = X(t)φ, and therefore, we may further write

V (φ) =
� ∞

0

xT (τ, φ)Wx(τ, φ)dτ.

For a stable time-delay system (4.7), it is also possible to construct a
Lyapunov-Krasovskii functional V (xt) such that

V̇ (xt) = −xT (t)Wx(t).

Indeed, let x(t, φ) be the solution of (4.7) with initial condition x0(θ) = φ(θ),
θ ∈ [−r, 0], then we can still write

V (φ) =
� ∞

0

xT (τ, φ)Wx(τ, φ)dτ .

Through some algebra, we can expression V (φ) explicitly as a quadratic func-
tional of φ,

V (φ) = φT (0)U(0)φ(0)

+ 2φT (0)
� 0

−r

U(−r − θ)A1φ(θ)dθ

+
� 0

−r

� 0

−r

φT (θ1)AT
1 U(θ1 − θ2)A1φ(θ2)dθ1dθ2 (4.25)

where U : R → Rn×n is defined as
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U(τ) =
� ∞

0

XT (t)WX(t + τ)dt.

In order to have U(τ) well defined, we agree that X(t) = 0 for t < 0. It can
be shown that

UT (τ) = U(−τ).

The readers are referred to [11] for more details.

4.5.2 Discretization

The analytical expression (4.25) indicates that for any asymptotically stable
system, we can always find a complete quadratic Lyapunov-Krasovskii func-
tional. In other words, the existence of such a functional is necessary and
sufficient for stability. In order for numerical calculation, we enlarge the class
of quadratic Lyapunov-Krasovskii functionals to the form

V (xt) = xT (t)Px(t)

+ 2xT (t)
� 0

−r

Q(θ)x(t + θ)dθ

+
� 0

−r

� 0

−r

xT (t + ξ)R(ξ, η)x(t + η)dξdη

+
� 0

−r

xT (t + ξ)S(ξ)x(t + ξ)dξ, (4.26)

where
P = PT ,

and for all ξ ∈ [−r, 0], η ∈ [−r, 0],

Q(ξ) ∈ Rn×n,

R(ξ, η) = RT (η, ξ) ∈ Rn×n,

S(ξ) = ST (ξ) ∈ Rn×n.

Since V (xt) is clearly upper-bounded, sufficient conditions for asymptotic sta-
bility (we can show they are also necessary) are

V (xt) ≥ ε||x(t)||2, (4.27)

V̇ (xt) ≤ −ε||x(t)||2, (4.28)

for some ε > 0.

The search for the existence of functions Q, R and S (in addition to matrix
P ) is clearly an infinite-dimensional problem. It can be viewed as an infinite-
dimensional LMI. To make numerical computation feasible, we will constrain
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these matrix functions to be piecewise linear. Specifically, divide the interval
[−r, 0] into N intervals of equal length (nonuniform mesh is also possible, but
we will not discuss it here)

h =
r

N
,

and let the dividing points be denoted as

θp = −ph = −pr

N
, p = 0, 1, 2, ..., N.

Let

Qp = Q(θp),
Sp = S(θp),

Rpq = R(θp, θq).

Then, for 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, we restrict, for p = 1, 2, ..., N,

Q(θp + αh) = (1− α)Qp + αQp−1,

S(θp + αh) = (1− α)Sp + αSp−1,

and

R(θp + αh, θq + βh)

=

 (1− α)Rpq + βRp−1,q−1 + (α− β)Rp−1,q, α ≥ β,

(1− β)Rpq + αRp−1,q−1 + (β − α)Rp,q−1, α < β.

Through a rather tedious process, we can reduce (4.27) and (4.28) to LMIs.
This approach is known as the discretized Lyapunov functional method. Here,
we will only give the resulting LMI for the case of N = 1 in the following.
The readers are referred to [11] for the general case.

Proposition 4.6. The system is asymptotically stable if there exist n×n real
matrices P = PT , Qp, Sp = ST

p , Rpq = RT
qp, p = 0, 1; q = 0, 1, such that P Q0 Q1

R00 + S0 R01

Symmetric R11 + S1

 > 0,

and &&
Δ00 Q1 − PA1 Ds

0 Da
0

S1 Ds
1 Da

1

h(R00 −R11) + S0 − S1 0
Symmetric 3(S0 − S1)

-- > 0,
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where

Δ00 = −PA0 −AT
0 P −Q0 −QT

0 − S0,

Ds
0 =

r

2
AT

0 (Q0 + Q1) +
r

2
(R00 + R01)− (Q0 −Q1),

Ds
1 =

r

2
AT

1 (Q0 + Q1)− r

2
(R10 + R11),

Da
0 = −r

2
AT

0 (Q0 −Q1)− r

2
(R00 −R01),

Da
1 = −r

2
AT

1 (Q0 −Q1) +
r

2
(R10 −R11).

4.6 A Comparison of Lyapunov-Krasovskii Functionals

Obviously, the delay-independent stability condition in Proposition 4.1 is very
conservative if the delay is known. Although the simple delay-dependent con-
dition in Proposition 4.4 is intended to improve the situation, it is not neces-
sarily less conservative in all the situations. There are indeed systems which
satisfy the conditions in Proposition 4.1 but do not satisfy those in Proposition
4.4. See [12] for an example.

As mentioned earlier, it can be shown that the method with implicit model
transformation discussed in Proposition 4.5 is indeed less conservative than
both Proposition 4.1 and Proposition 4.4.

The discretized Lyapunov functional method can approach analytical re-
sults very quickly, and is the least conservative among these methods. The
following example is often used in the literature.

Example 4.3. Consider the system

ẋ(t) =
$−2 0

0 −0.9

+
x(t) +

$−1 0
−1 −1

+
x(t− r)

Various methods are used to estimate the maximum delay rmax without losing
stability, and the results are listed in the following table. In the first line, “An-
alytical” indicates the true maximum delay obtained by the first time a pair of
roots of the characteristic quasipolynomial crosses the imaginary axis as the
delay increases; “Explicit” means the delay-dependent stability conditions in
Propostion 4.4 which uses explicit model transformation; “Implicit” denotes
the delay-dependent stability conditions in Proposition 4.5 which uses implicit
model transformation, the remaining three columns are the results using dis-
cretized Lyapunov functional method with different N , with N = 1 covered
in Proposition 4.6.
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Methods Analytical Explicit Implicit N = 1 N = 2 N = 3
rmax 6.17258 1.00 4.359 6.059 6.165 6.171

The next example shows that there are indeed systems that are unstable
without delay, but may becomes stable for some nonzero delays.

Example 4.4. Consider the system

ẍ(t)− 0.1ẋ(t) + x(t) = −r
x(t)− x(t− r)

r

The left hand side may be considered as a second order system with negative
damping, and the right hand side can be considered as a control to stabilize the
system by providing sufficient positive damping and using finite difference to
approximate the derivative. If the derivative is used instead of finite difference,
then obviously the system would be stable for r > 0.1. For such systems, the
stability conditions covered in Propositions 4.4 and 4.5 are not applicable
since they requires the system to be stable for zero delay. We now write the
system in a state space form

d

dt

$
x(t)
ẋ(t)

+
=

$
0 1
−2 0.1

+ $
x(t)
ẋ(t)

+
+

$
0 0
1 0

+ $
x(t− r)
ẋ(t− r)

+
.

The system is stable for r ∈ (rmin, rmax). The following table lists the esti-
mated values using discretized Lyapunov functional method with different N ,
as well as the analytical values. It can be seen, again, that discretized Lya-
punov functional method can approach the analytical results with a rather
modest N .

N 1 2 3 Analytical
rmin 0.1006 0.1003 0.1003 0.1002
rmax 1.4272 1.6921 1.7161 1.7178

4.7 Dealing with Time-varying Delays

Consider a system
ẋ(t) = A0x(t) + A1x(t− r(t)), (4.29)

where the time-varying delay r(t) satisfies

rm ≤ r(t) ≤ rM , (4.30)
ṙ(t) ≤ ρ, (4.31)

where ρ is a known constant, 0 ≤ ρ < 1.
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m

V (t, xt) = V1(xt) + V2(t, xt),

where,

V1(xt) = xT (t)Px(t)

+ 2xT (t)
� 0

−rm

Q(θ)x(t + θ)dθ

+
� 0

−rm

� 0

−rm

xT (t + ξ)R(ξ, η)x(t + η)dξdη

+
� 0

−rm

xT (t + ξ)S(ξ)x(t + ξ)dξ. (4.32)

Let V ∗
1 (xt) indicates the derivative of (4.32) along the comparison system

ẋ(t) = A0x(t) + A1x(t− rm), (4.33)

which is in an identical form discussed in the last section. Then,

V̇1(xt) = V ∗
1 (xt) + 2xT (t)PA1[x(t− r(t))− x(t− rm)]

+ 2[x(t− r(t))− x(t− rm)]T AT
1

� 0

−r

Q(θ)x(t + θ)dθ.

Let

V2(t, xt) =
� −rm

−rM

[
� 0

θ

xT (t + ζ)K1x(t + ζ)dζ]dθ

+
� −rm

−rM

[
� 0

θ−r(t+θ)

xT (t + ζ)K2x(t + ζ)dζ]dθ.

Then

V̇2(t, xt) = (rM − rm)xT (t)(K1 + K2)x(t)

−
� −rm

−rM

xT (t + θ)K1x(t + θ)dθ

−
� −rm

−rM

(1− ṙ(t + θ))xT (t + θ − r(t + θ))K2x(t + θ − r(t + θ))dθ.

In view of the fact that

x(t− r(t))− x(t− rm)

=
� −rm

−r(t)

ẋ(t + θ)dθ

=
� −rm

−r(t)

[A0x(t + θ) + A1x(t + θ + r(t + θ))]dθ,

We choose a complete quadratic Lyapunov-Krasovskii functional
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we have

V̇ (t, xt) = V ∗
1 (xt)− 2xT (t)PA1

� −rm

−r(t)

[A0x(t + θ) + A1x(t + θ + r(t + θ))]dθ

− 2
� −rm

−r(t)

[A0x(t + θ)+A1x(t+θ + r(t + θ))]TdθAT
1

� 0

−rm

Q(θ)x(t+θ)dθ

+ (rM − rm)xT (t)(K1 + K2)x(t)−
� −rm

−rM

xT (t + θ)K1x(t + θ)dθ

−
� −rm

−rM

(1− ṙ(t + θ))xT (t + θ − r(t + θ))K2x(t + θ − r(t + θ))dθ.

Using (4.30) and (4.31), we can arrive at

V̇ (t, xt) ≤ −
� −rm

−r(t)

#
xT (t) xT (t + θ)

* $
K̂1a PA1A0

AT
0 AT

1 P K1a

+ $
x(t)

x(t + θ)

+
dθ

−
� −rm

−r(t)

#
µT (t) xT (t + θ)

* $
K̂1b A1A0

AT
0 AT

1 K1b

+ $
µ(t)

x(t + θ)

+
dθ

−
� −rm

−r(t)

#
xT (t) νT (t, θ)

* $
K̂2a PA1A1

AT
1 AT

1 P (1− ρ)K2a

+ $
x(t)

ν(t, θ)

+
dθ

−
� −rm

−r(t)

#
µT (t) νT (t, θ)

* $
K̂2b A1A1

AT
1 AT

1 (1− ρ)K2b

+ $
µ(t)

ν(t, θ)

+
dθ

+ V ∗
1 (xt) + (rM − rm)xT (t)(K1 + K2)x(t)

+ (r(t)− rm)xT (t)(K̂1a + K̂2a)x(t)

+ (r(t)− rm)µT (t)(K̂1b + K̂2b)µ(t),

where

µ(t) =
� 0

−rm

Q(θ)x(t + θ)dθ,

ν(t, θ) = x(t + θ − r(t + θ)),

and

K1a + K1b = K1,

K2a + K2b = K2.

If we choose K1a, K2a (so that K1b, K2b are also determined), and K̂1a, K̂1b,
K̂2a, K̂2b such that
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$
K̂1a PA1A0

AT
0 AT

1 P K1a

+
≥ 0,$

K̂1b A1A0

AT
0 AT

1 K1b

+
≥ 0,$

K̂2a PA1A1

AT
1 AT

1 P (1− ρ)K2a

+
≥ 0,$

K̂2b A1A1

AT
1 AT

1 (1− ρ)K2b

+
≥ 0,

then the four integrals are all less or equal to zero. Therefore, we conclude
that the system is asymptotically stable if we can make

V ∗
1 (xt) + (rM − rm)xT (t)(K1 + K2)x(t)

+ (r(t)− rm)xT (t)(K̂1a + K̂2a)x(t)

+ (r(t)− rm)µT (t)(K̂1b + K̂2b)µ(t)

≤ −ε||x(t)||2.
A discretized Lyapunov functional approach can be used to achieve this. The
above development is similar to [14].

An alternative is to formulate the time-varying delay as a perturbation
to a time-invariant delay, and formulate it as an uncertain feedback problem.
See, for example, [11] and [23].

It is also possible to lift the restriction of derivative bound (4.31). One
simple approach is to use the Razumikhin Theorem based methods. Other
approaches include an alternative formulation of Lyapunov-Krasovskii func-
tional method proposed in [7], and the input-output approach along the sim-
ilar idea as [16].

4.8 Razumikhin Theorem

Razumikhin showed that it is still possible to use function rather than func-
tionals in stability analysis of time-delay system. This is based on the following
Razumikhin Theorem.

Theorem 4.2. Suppose f : R×C → Rn in (4.3) takes R× (bounded sets of C)
into bounded sets of Rn, and u, v, w : R̄+ → R̄+ are continuous nondecreasing
functions, u(s) and v(s) are positive for s > 0, and u(0) = v(0) = 0, v strictly
increasing. If there exists a continuously differentiable function V : R× Rn →
R such that

u(||x||) ≤ V (t, x) ≤ v(||x||), for t ∈ R and x ∈ Rn, (4.34)
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and the derivative of V along the solution x(t) of (4.3) satisfies

V̇ (t, x(t)) ≤ −w(||x(t)||) whenever V (t + θ, x(t + θ)) ≤ V (t, x(t)), (4.35)

for θ ∈ [−r, 0], then the system (4.3) is uniformly stable. If, in addition,
w(s) > 0 for s > 0, and there exists a continuous nondecreasing function
p(s) > s for s > 0 such that condition (4.35) is strengthened to

V̇ (t, x(t)) ≤ −w(||x(t)||) whenever V (t + θ, x(t + θ)) ≤ p(V (t, x(t)), (4.36)

for θ ∈ [−r, 0], then the system (4.3) is uniformly asymptotically stable. If, in
addition, lim

s→∞u(s) = ∞, then the system (4.3) is globally uniformly asymp-
totically stable.

The basic idea of the above Theorem is to consider the Lyapunov-
Krasovskii functional

V̄ (xt) = max
θ∈[−r,0]

V (x + θ),

and realize that if V (x(t)) < V̄ (xt), then V̄ (xt) does not grow at the instant
t even if V̇ (x(t)) > 0. Therefore, in order for V̄ (xt) to grow, one only needs
to make sure that V̇ (x(t)) is not positive whenever V (x(t)) = V̄ (xt). For a
proof, the readers are referred to [11], [13] or [18].

A direct application of Razumikhin Theorem to time-invariant time-delay
systems typically results in a more conservative stability conditions than the
counterpart obtained by using the Lyapunov-Krasovskii functional method.
However, there are a number of situations where Razumikhin Theorem has
advantage. For example, time-varying delay can be easily handled. Consider
the following system

ẋ(t) = A0x(t) + A1x(t− r(t)). (4.37)

This is the same as (4.7) except the delay is time-varying. Typically, the delay
is known within certain range,

rm ≤ r(t) ≤ rM .

However, there is no restriction on the rate of change of r(t). Let

V (x) = xT Px, P > 0.

Then, we can calculate

V̇ (x(t)) = xT (t)(PA0 + AT
0 P )x(t) + 2xT PA1x(t− r(t)).

The system is asymptotically stable if
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V̇ (x(t)) ≤ −ε||x(t)||2 for some small ε > 0,

whenever
V (x(t− r(t)) ≤ βV (x(t)) for some β > 1.

In other words, it is sufficient that

V̇ (x(t))− α[βV (x(t− r(t))− V (x(t))] ≤ −ε||x(t)||2,

for some ε > 0, α ≥ 0 and β > 1. Using the expression for V and V̇ , the above
becomes#

xT (t) xT (t− r(t))
* $

PA0 + AT
0 P + αP PA1

AT
1 P −αβP

+ $
x(t)

x(t− r(t))

+
≤ −εxT (t)x(t)

from which we can conclude the following.

Proposition 4.7. The system (4.37) is asymptotically stable if there exist a
real scalar α > 0 and symmetric matrix P > 0 such that$

PA0 + AT
0 P + αP PA1

AT
1 P −αP

+
< 0. (4.38)

Compared to Proposition 4.1, the above can be obtained from (4.13) by
constraining S = αP . Therefore, this is obviously more conservative if used for
systems with a time-invariant delay. Computationally although (4.38) involves
fewer parameters than (4.13), it is actually computationally more difficult
because it is no longer an LMI due to the multiplicative term αP . See [11] for
handling such computational issue.

Parallel to the Lypunov-Krasovskii functional methods, we can also derive
delay-dependent results using explicit and implicit model transformation. See
[11] for details.

4.9 Coupled Difference-Differential Equations

4.9.1 Introducation

In this section, we will discuss the system described by coupled difference-
differential equations,

ẋ(t) = Ax(t) + By(t− r), (4.39)
y(t) = Cx(t) + Dy(t− r), (4.40)
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where x(t) ∈ Rm, y(t) ∈ Rn. This model is also known as the lossless prop-
agation model due to the fact that it comes out naturally from simplifying
some lossless propagation systems [24]. Most of the materials in this section
are based on [10].

The equations (4.39) and (4.40) represent both neutral and retarded time-
delay systems with commensurate multiple delays as special cases. For exam-
ple, for the system described by

p4
k=0

Fkẋ(t− kr) =
p4

k=0

Akx(t− kr), F0 = I,

we may define

yk(t) = x(t− kr + r),

z(t) =
p4

k=0

Fkx(t− kr).

This allows us to write the system as

ż(t) = A0z(t) +
p4

k=1

(Ak −A0Fk)yk(t− r),

y1(t) = z(t)−
p4

k=1

Fkyk(t− r),

yk(t) = yk−1(t− r), k = 2, 3, ..., p,

which is in the standard form of (4.39) and (4.40).

Obviously, the future evolution of the system described by (4.39) and
(4.40) is completely decided by x(t) and y(t + θ), −r ≤ θ < 0. Naturally, the
initial condition to be specified should be described by

x(0) = ψ, (4.41)
y0 = φ. (4.42)

In (4.42), we have used the notation that yt represents a time-shift and re-
striction of y in the interval [t− r, t) defined as

yt(θ) = y(t + θ), − r ≤ θ < 0,

and φ : [−r, 0) → Rn.

For the pair (ψ, φ), we also define the norm as

||(ψ, φ)|| = max{||ψ||, sup
−r≤θ<0

||φ(θ)||}.
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We can describe the general Lyapunov-Krasovskii stability condition for the
system described by (4.39) and (4.40) as follows, which is also similar to a
neutral time-delay system.

Theorem 4.3. Consider the system described by (4.39) and (4.40) with
ρ(D) < 1. Let u, v, w : R̄ →R̄ be continuous and nondecreasing functions.
In addition, u(s) and v(s) are positive for positive s, and u(0) = v(0) = 0. If
there exists a continuous differentiable functional V : (ψ, φ) such that

u(||ψ||) ≤ V (ψ, φ) ≤ v(||(ψ, φ)||),
V̇ (ψ, φ) ≤ −w(ψ),

then the trivial solution of the system is stable. If, in addition, w(s) > 0 for
s > 0, then it is asymptotically stable.

We can prove the above in a very similar way to the standard neutral
time-delay system (for example, Theorem 1.1 in Chapter 8 of [18]) using the
fact that ρ(D) < 1.

4.9.2 Fundamental Solutions

As in the case of the sytem (4.7), a complete quadratic Lyapunov-Krasovakii
functional is essential to give nonconservative stability conditions, and the
analytical construction of such a Lyapunov-Krasovskii functional is based on
the fundamental solutions.

We will write the solution of the equation

ẋ(t) = Ax(t) + By(t− r) + δ(t)I, (4.43)
y(t) = Cx(t) + Dy(t− r), (4.44)

with zero initial conditions

x(0) = 0, y0 = 0, (4.45)

as

x(t) = Xx(t),
y(t) = Yx(t).

Similarly, the solution of

ẋ(t) = Ax(t) + By(t− r), (4.46)
y(t) = Cx(t) + Dy(t− r) + δ(t)I, (4.47)
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with zero initial conditions (4.45) are denoted as

x(t) = Xy(t),
y(t) = Yy(t).

We also agree that Xx(t) = 0, Yx(t) = 0, Xy(t) = 0, Yy(t) = 0 for t < 0.
The solutions (Xx(t), Yx(t), Xy(t), Yy(t)) are known as the fundamental so-
lutions of the system described by (4.39) and (4.40). (Xx(t), Yx(t)) can also
be regarded as the solution of (4.39) and (4.40) with initial condition

x(0) = I, y0 = 0.

Similary, (Xy(t), Yy(t)) may be regarded as the solution of (4.39) and (4.40)
with initial condition

x(0) = 0,

y(θ) = δ(θ)I, − r < θ ≤ 0.

With this interpretation in mind, we may write Xy(t) and Yy(t) in terms
of Xx(t) and Yx(t). Indeed, it is easy to see that the solution of (4.46) and
(4.47) in the interval [0, r) is x(t) = 0, y(t) = δ(t). Now consider the interval
[r, 2r), y(t− r) is zero except the impulse at t = r, producing a step of B at
time t = r. Therefore, solution is x(t) = Xx(t − r)B and y(t) = Yx(t − r)B.
Continuing this process yields

Xy(t) =
∞4

k=0

DkXx(t− kr − r)B (4.48)

=
[t/r]−14

k=0

DkXx(t− kr − r)B, (4.49)

Yy(t) =
∞4

k=0

δ(t− kr)Dk +
∞4

k=0

DkYx(t− kr − r)B (4.50)

=
[t/r]4
k=0

δ(t− kr)Dk +
[t/r]−14

k=0

DkYx(t− kr − r)B, (4.51)

where [t/r] represents the largest integer not to exceed t/r.

With the fundamental solutions, it is easy to write the general solutions of
(4.39) and (4.40). Let the solution of (4.39) and (4.40) with initial conditions
(4.41) and (4.42) be denoted as

x(t) = x(t, ψ, φ),
y(t) = y(t, ψ, φ).

Then, using linearity, it is not difficult to see that
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x(t, ψ, φ) = Xx(t)ψ +
� 0

−r

Xy(t + θ)φ(θ)dθ, (4.52)

y(t, ψ, φ) = Yx(t)ψ +
� 0

−r

Yy(t + θ)φ(θ)dθ. (4.53)

Using Expressions (4.48) and (4.50), they can also be expressed as

x(t, ψ, φ) = Xx(t)ψ +
� 0

−r

[(t+θ)/r]−14
k=0

DkXx(t + θ − kr − r)Bφ(θ)dθ, (4.54)

y(t, ψ, φ) = Yx(t)ψ + D[t/r]+1φ(t− [t/r]r − r)

+
� 0

−r

[(t+θ)/r]−14
k=0

DkYx(t + θ − kr − r)Bφ(θ)dθ. (4.55)

It can be observed from the above discussions that, for continuous φ(θ), x(t) is
continuous. However y(t) is in general discontinuous. This is typical of neutral
time-delay systems. Also, for the system to be stable, a necessary condition
is that the spectrum radius of matrix D is less than 1, ρ(D) < 1, another well
known fact for neutral time-delay systems.

On the other hand, if ρ(D) < 1, then the system would be exponentially
stable if and only if Xx(t) and Yx(t) are exponentially bounded. Indeed, in
this case, for any given ρ(D) < γ < 1, there exists a K > 0 such that

||Dk|| ≤ Kγk.

Also,

Xx(t) ≤ Me−αt, M > 0, α > 0,

Yx(t) ≤ Ne−βt, N > 0, β > 0.

Then for any bounded initial condition

||ψ|| ≤ L,

||φ(θ)|| ≤ L, − r ≤ θ < 0,

we have
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||x(t, ψ, φ)|| ≤ MLe−αt +
[t/r]−14

k=0

Kγk

� 0

−r

Me−α(t−(k−2)r)||B||Ldθ

= MLe−αt +
[t/r]−14

k=0

KMLr||B||γke−α(t−(k−2)r)

= MLe−αt + KMLr||B||e−α(t+2r)

[t/r]−14
k=0

(γeαr)k

= MLe−αt + KMLr||B||e−α(t+2r) (γeαr)[t/r] − 1
γeαr − 1

= MLe−αt + KMLr||B||γ
[t/r]eα(r[t/r]−t−2r) − e−α(t+2r)

γeαr − 1

≤ MLe−αt + KMLr||B||γ
[t/r]eα(r[t/r]−t−2r) + e−α(t+2r)

|γeαr − 1| .

In the above, we have assumed γeαr ,= 1, which can be satisfied by properly
choosing γ. Since eα(r[t/r]−t−2r) < 1, and e−αt, γ[t/r] and e−α(t+2r) all ap-
proach zero exponentially, ||x(t, ψ, φ)|| → 0 exponentially. Similarly, we can
show that ||y(t, ψ, φ)|| → 0 exponentially.

4.9.3 Lyapunov-Krasovskii functional

We will assume the system described by (4.39) and (4.40) is exponentially
stable. We will construct a Lyapunov-Krasovskii functional V (x(t), yt) such
that

V̇ (x(t), yt) = −xT (t)Wx(t), (4.56)

for any given positive definite matrix W . For this purpose, one may choose

V (ψ, φ) =
� ∞

0

xT (t, ψ, φ)Wx(t, ψ, φ)dt. (4.57)

In other words,

V (x(t), yt) =
� ∞

0

xT (ξ, x(t), yt)Wx(ξ, x(t), yt)dξ.

Then, it is easily shown that
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V̇ (x(t), yt) =
� ∞

0

∂

∂t
[xT (ξ, x(t), yt)Wx(ξ, x(t), yt)]dξ

=
� ∞

0

∂

∂t
[xT (ξ + t, ψ, φ)Wx(ξ + t, ψ, φ)]dξ

=
� ∞

0

∂

∂ξ
[xT (ξ + t, ψ, φ)Wx(ξ + t, ψ, φ)]dξ

=
� ∞

0

∂

∂ξ
[xT (ξ, x(t), yt)Wx(ξ, x(t), yt)]dξ

= xT (ξ, x(t), yt)Wx(ξ, x(t), yt)|ξ=∞
ξ=0 ,

or
V̇ (x(t), yt) = −xT (t)Wx(t). (4.58)

Using the general solution (4.52) and (4.53), V (ψ, φ) can be expressed in
an explicit quadratic form of (ψ, φ). Indeed, using (4.52) and (4.53) in (4.57),
it is easily obtained that

V (ψ, φ) = ψT Uxxψ + 2ψT

� 0

−r

Uxy(η)φ(η)dη

+
� 0

−r

� 0

−r

φT (ξ)Uyy(ξ, η)φ(η)dξdη, (4.59)

where

Uxx =
� ∞

0

XT
x (θ)WXx(θ)dθ, (4.60)

Uxy(η) =
� ∞

0

XT
x (θ)WXy(θ − η)dθ, (4.61)

Uyy(ξ, η) =
� ∞

0

XT
y (θ − ξ)WXy(θ − η)dθ. (4.62)

These are clearly well defined and finite since both Xx and Xy are exponen-
tially decaying matrix functions. Also, it is easy to see that Uxx is positive
definite.

4.9.4 Further Comments

The discussions so far established the following fact.

Proposition 4.8. If the system described by (4.39) and (4.40) is exponen-
tially stable, and ρ(D) < 1. Then, there exists a quadratic Lyapunov-Krasovskii
functional in the form of
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V (x(t), yt) = xT (t)Px(t) + xT

� 0

−r

Q(η)y(t + η)dη

+
� 0

−r

� 0

−r

yT (t + ξ)R(ξ, η)y(t + η)dξdη

+
� 0

−r

yT (t + η)S(η)y(t + η)dη,

such that
ε||x(t)||2 ≤ V (x(t), yt) ≤ M ||(x(t), yt)||2,

and
V̇ (x(t), yt) ≤ −ε||x(t)||2,

for some ε > 0 and M > 0.

The quadratic form of V and its derivative makes it possible for discretiza-
tion in a similar scheme as described in [9]. It should be pointed out that even
for retarded time-delay systems, the above description has its advantages.
First, for systems with multiple commensurate delays, while it is possible to
use the scheme described in Chapter 7 of [11] to handle this case, the for-
mulation here is much simpler and the computation would be substantially
reduced. Second, in many practical cases, the delay occurs only in a limited
part of the system. For a system with single delay (4.7), this means that A1

has significantly lower rank than the number of states. In this case, we may
write A1 = FG, where F has full column rank and G has full row rank. Then,
we can write the system as

ẋ(t) = A0x(t) + Fy(t− r),
y(t) = Gx(t).

In this way, since the dimension of y is significantly lower than x, the dimen-
sion of LMI resulted from discretization is significantly reduced.

4.10 Conclusions

A number of basic ideas regarding Lyapunov approach of time-delay systems
are discussed. The main emphasis is on the presentation of main ideas and
motivations. The readers who wish to explore further are referred to references
for technical details.

Another interesting topic is dealing with uncertainties. The readers are
referred to [11] and [23].
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1. C. T. Abdallah, P. Dorato, J. Beńıtez-Read, and R. Byrne. Delayed positive
feedback can stabilize oscillatory systems. Proceedings of 1993 American Control
Conference, San Francisco, CA, 3106–3107, 1993.

2. O. Bilous and N. Admundson. Chemical reactor stability and sensitivity. AI
ChE Journal, 1:513-521, 1955.

3. E.-K. Boukas and Z. K. Liu. Deterministic and Stochastic Time-Delayed Sys-
tems. Birkhauser, Boston, 2001.

4. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities
in System and Control Theory. SIAM, Philadelphia, 1994.

5. S. Deb and R. Srikant. Global stability of congestion controllers for the Internet.
IEEE Transactions on Automatic Control, 48(6):1055–1060, 2003.

6. L. E. El’sgol’ts and S. B. Norkin. Introduction to the theory and applications
of differential equations with deviating arguments, Mathematics in Science and
Eng., 105, Academic Press, New York, 1973.

7. E. Fridman and U. Shaked. Delay-dependent stability and H∞ control: constant
and time-varying delays. Int. J. Control, 76(1):48-60, 2003.

8. P. Gahinet, A. Nemirovski, A. Laub, and M. Chilali. LMI Control Toolbox for
Use with MATLAB, Mathworks, Natick, MA, 1995.

9. K. Gu. A further refinement of discretized Lyapunov functional method for the
stability of time-delay systems. Int. J. Control, 74(10):967–976, 2001.

10. K. Gu. Stability analysis of DAE: a Lyapunov approach. 6th SIAM Conference
on Control and its Applications, MS27(4), New Orleans, LA, July 11-14.

11. K. Gu, V. L. Kharitonov, and J. Chen. Stability of time-delay systems,
Birkhauser, Boston, 2003.

12. K. Gu and S.-I. Niculescu. Additional dynamics in transformed time-delay sys-
tems. IEEE Trans. Auto. Control, 45(3):572–575, 2000.

13. J. K. Hale and S. M. Verduyn Lunel. Introduction to Functional Differential
Equations, Springer-Verlag, New York, 1993.

14. Q.-L. Han and K. Gu. Stability of linear systems with time-varying delay: a
generalized discretized Lyapunov functional approach. Asian Journal of Control,
3(3):170–180, 2001.

15. E. F. Infante and W. V. Castelan. A Lyapunov functional for a matrix difference-
differential equation. J. Diff. Equations, 29:439–451, 1978.

16. C.-Y. Kao and B. Lincoln. Simple stability criteria for systems with time-varying
delays. Automatica, 40(8):1429-1434, 2004.

17. F. P. Kelly. Mathematical modelling of the internet, in Mathematics unlimited
- 2001 and beyond (Eds. B. Engquist, W. Schmid), Springer-Verlag: Berlin,
685-702, 2001.

18. V. Kolmanovskii and A. Myshkis. Introduction to the Theory and Applications
of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht,
The Netherlands, 1999.

19. N. N. Krasovskii. Stability of Motion [Russian], Moscow, 1959; [English trans-
lation] Stanford University Press, Stanford, CA, 1963.

20. B. Lehman. Stability of chemical reactions in a CSTR with delayed recycle
stream. Proc. 1994 Amer. Contr. Conf., Baltimore, Maryland, U.S.A., 3521-
3522, 1994.



170 Kequin Gu and Silviu-Iulian Niculescu

21. B. Lehman and E. I. Verriest. Stability of a continuous stirred reactor with delay
in the recycle streams. Proc. 30th IEEE Conf. Dec. Contr., Brighton, England,
1875-1876, 1991.

22. F. Mazenc and S.-I. Niculescu. Remarks on the stability of a class of TCP-like
congestion control models. Proc 42nd IEEE Conf. Dec. Contr., Maui, Hawaii,
2003.

23. S.-I. Niculescu. Delay effects on stability: A robust control approach, Springer-
Verlag: Heidelberg, Germany, LNCIS, vol. 269, 2001.

24. S.-I. Niculescu and Vl. Rasvan. Delay-independent stability in lossless propa-
gation models with applications, part I and II. Proc. MTNS 2000, Perpignan,
France, 2000.

25. P. Park. A delay-dependent stability for systems with uncertain time-invariant
delays. IEEE Trans. Auto. Control, 44(4):876–877, 1999.

26. D. Perlmutter. Stability of chemical reactors, Prentice Hall, New Jersey, 1972.
27. Y. M. Repin. Quadratic Lyapunov functionals for systems with delay. [Russian]

Prikl. Mat. Meh., 29:564–566, 1965.
28. S. Shakkottai and R. Srikant. How good are deterministic fluid models of inter-

net congestion control. Proc. IEEE INFOCOM, New York, NY, USA, 2002.


	4.1 Introduction
	4.2 Basic Concepts of Time-delay Systems
	4.2.1 Systems of Retarded Type
	4.2.2 Pointwise Delays
	4.2.3 Linear Systems
	4.2.4 Characteristic Quasipolynomials

	4.3 Stability
	4.4 Some Simple Lyapunov-Krasovskii Functionals
	4.4.1 Delay-independent Stability
	4.4.2 Delay-dependent Stability Using Model Transformation
	4.4.3 Implicit Model Transformation

	4.5 Complete Quadratic Lyapunov-Krasovskii Functional
	4.5.1 Analytical Expression
	4.5.2 Discretization

	4.6 A Comparison of Lyapunov-Krasovskii Functionals
	4.7 Dealing with Time-varying Delays
	4.8 Razumikhin Theorem
	4.9 Coupled Di.erence-Di.erential Equations
	4.9.1 Introducation
	4.9.2 Fundamental Solutions
	4.9.3 Lyapunov-Krasovskii functional
	4.9.4 Further Comments

	4.10 Conclusions
	References



