
Model-Driven Architecture for Hard Real-Time
Systems: From Platform Independent Models to Code�

Sven Burmester��, Holger Giese, and Wilhelm Schäfer

Software Engineering Group, University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany

{burmi, hg, wilhelm}@uni-paderborn.de

Abstract. The model-driven software development for hard real-time systems
promotes the usage of the platform independent model as major design artifact.
It is used to develop the software logic at a high level of abstraction and enables
analysis like for example model checking of critical model properties. Ideally,
starting with the platform independent model, the platform specific model serves
only as an intermediate artifact which is derived automatically, and will finally
result in a set of threads whose implementations guarantee the behavior, speci-
fied in the platform independent model. However, the current MDA approaches
and tools for hard real-time software do not provide this ideal: While some of the
MDA approaches could in principle support this vision, most approaches simply
do not support an appropriate specification of time constraints in the platform in-
dependent model which have to be respected in the platform specific model or in
the code. This is also true for UML models and UML State Machines in particu-
lar. Our approach overcomes those UML specific limitations by firstly proposing
a syntactic extension and semantic definition of UML State Machines which pro-
vides enough details to synthesize an appropriate platform specific model that
can be mapped to code for hard real-time systems automatically. Secondly, a new
partitioning algorithm is outlined, which calculates an appropriate mapping onto
a platform specific model by means of real-time threads with their scheduling pa-
rameters which can be straight forward transformed to code for the hard real-time
system.

1 Introduction

The current practice when building software components with hard real-time constraints
is characterized by the following step-wise partially manual process: (1) Specification:
The software is specified on a high abstraction level (if at all), then (2) Partitioning:
The software is partitioned into concurrent threads with appropriate periods to make
it run on a real-time operating system (usually without adequate analysis), (3) Imple-
mentation: The software is implemented (often manually, which makes implementation

� This work was developed in the course of the Special Research Initiative 614 - Self-optimizing
Concepts and Structures in Mechanical Engineering - University of Paderborn, and was pub-
lished on its behalf and founded by the Deutsche Forschungsgemeinschaft.

�� Supported by the International Graduate School of Dynamic Intelligent Systems. University
of Paderborn.

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 25–40, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

26 S. Burmester, H. Giese, and W. Schäfer

faults very likely), (4) Analysis: It is verified that the software fulfills all real-time con-
straints in its environment (testing as employed in practice is usually not sufficient for
complex software to guarantee the absence of timing errors). If the real-time constraints
do not hold, partitioning, implementation and analysis have to be repeated. Repeating
this cycle a number of times is usually very costly but often unavoidable.

Consequently, there is an increasing demand to extend model-driven architecture
(MDA) [1,2] to design software for embedded hard real-time systems. When using
MDA for such systems, the developer would have to specify the so called Platform In-
dependent Model (PIM) which describes the system behavior including the real-time
constraints which must be met. Ideally, a tool would then automatically partition the
specification and map it to the Platform Specific Model (PSM), based on a Platform
Model (PM) that provides details about the target platform. The PSM describes the
active objects and their scheduling parameters which are required to implement the sys-
tem behavior, specified by the PIM. In the next step, the PSM would be compiled auto-
matically into the platform specific implementation which guarantees a correct imple-
mentation of the PIM’s semantics. The implementation would guarantee the real-time
constraints by construction and thus, no verification of the real-time constraints is re-
quired. This would make the above mentioned manual steps (3) Implementation and (4)
Analysis unnecessary. Such guarantees for the derived implementation further permit to
analyze other required properties or to reveal faults or inconsistent real-time constraints
using the platform independent model rather than considering the much more complex
code (e.g. by model checking [3,4,5]).

One reason, why the indicated iterative manual process is followed in practice in-
stead of the MDA approach, is that currently, there exists no support to automatically
map a PIM to a PSM that is appropriate for real-time systems. The UML [6] can be
considered as the standard to model complex software systems even in the real-time
domain [7,8,9,10]. Consequently, we propose in the paper an approach to realize the
above outlined vision with UML, even though UML has not been originally designed
to support real-time systems and a semantically correct implementation for standard
UML State Machines is due to the underlying zero execution time semantics not possi-
ble. Although ROOM [11] has finally found its way into UML 2.0, the required support
for real-time behavior modeling is still not available, as the ROOM concepts focus on
architectural design and do not address the real-time behavior of the operational model
at all.

Another thread of development is the UML Profile for Schedulability, Performance,
and Time [8]. The profile defines general resource and time models which are used to
describe the real-time specific attributes of the modeling elements such as scheduling
parameters or quality of service (QoS) characteristics. However, it remains an open
question in the UML profile how all required details are determined. In a scenario where
the developer derives these details from a high-level (platform independent) model and
maps them on technical concepts such as threads and periods manually, we still have the
problem that this mapping results in an iterative manual process of testing and adjusting
the model until the real-time constraints are met. Nevertheless, the profile defines an
appropriate level of abstraction to be used as PSM. This PSM can be later used for
further model analysis (e.g. scheduling analysis) and code generation.

Model-Driven Architecture for Hard Real-Time Systems 27

To provide an appropriate PIM, we first propose a syntactic extension of UML State
Machines and a related semantic definition. By enriching the model with deadline infor-
mation (besides others), our extension provides enough details in the PIM to synthesize
a PSM and finally code for hard real-time systems. We provide the PM by a description
of worst case execution times (WCETs) of local side-effects and of the code fragments
that will be used in the automatically generated implementation of the state machine.

For the automatic derivation of the PSM from our extended notion of State Ma-
chines, we developed an algorithm for automatic partitioning and for automatic deriva-
tion of scheduling parameters. The algorithm takes CPU time sharing on a single micro
processor into account. An automatic implementation usually leads to less faults than
a manual implementation. The automatic partitioning respects the deadlines from the
PIM and the WCETs from the PM.

Therefore, the algorithm for automatic Partitioning and Implementation guaran-
tees that all real-time requirements are met, which makes the Analysis unnecessary and
avoids the costly iterative process of Partitioning, Implementation and Analysis. If the
algorithm fails to provide a partitioning, the model is not realizable.

The next section presents our approach for platform independent modeling of hard
real-time systems and relates it to standard UML models. Section 3 describes the plat-
form model and the component’s deployment. Section 4 shows in detail how to derive
a platform specific model and finally code. Section 5 discusses current approaches of
specification techniques for embedded systems with hard real-time constraints and their
limitations. Finally, Section 6 draws a conclusion and sketches current and future work.

2 Platform Independent Models

In this section, we first describe how to specify the system’s structure. Then, we discuss
in detail how to specify the behavior of components of embedded real-time systems
with UML and with our approach. Finally, we present our analysis methods.

2.1 Structure Modeling

Embedded real-time systems consist of a complex architecture of components (cf. Fig-
ure 5). In [3], we have presented an approach how to specify the architecture and com-
plex real-time communication between the components by UML component diagrams
and patterns respectively. Our approach further permits to verify the component’s in-
terconnection by means of compositional model checking assuming that each single
component behaves as specified. How the single component’s real-time behavior is spe-
cified and how it is correct implemented automatically is described in the remainder of
this paper.

2.2 Behavior Modeling

We use an example from the RailCab research project1 as our running example. The
vision of the RailCab project is a rail system where autonomous operating shuttles apply

1 http://www-nbp.upb.de/en/index.html

28 S. Burmester, H. Giese, and W. Schäfer

Fig. 1. UML approach to model the shuttle coordination

the linear drive technology used in the Transrapid, but travel on the existing passive
track system of the standard railway. One particular problem, which has been previously
described in [3], is to reduce the energy consumption due to air resistance by forming
convoys whenever possible. Such convoys are created on-demand and require small
distances between the shuttles in order to achieve significant economies.

Building convoys changes the shuttles’ behavior (e.g. the way of accelerating and
braking). Thus, It must be guaranteed that all involved shuttles of a convoy switch
to convoy mode in an appropriate and predictable amount of time which results in a
number of hard real-time constraints.

After receiving a convoyProposal message, that denotes a request to build a convoy,
we demand for the communication that the shuttle answers within the time tans with
rejection (message convoyProposalRejected) or with acceptance (startConvoy).

In a first attempt to describe this coordination with a UML State Machine, the state
machine would switch to an intermediate state when receiving convoyProposal. This
intermediate state would be left via a transition labeled with after(tans) to switch to a
Failure state if no answer was sent during this time.

The semantics of such a model assumes the transitions to be fired within zero-time,
but this is not realizable in an implementation in real life systems due to three reasons:
(i) Consuming or raising events or executing side-effects consumes time. (ii) An im-
plementation of a state machine requires a task which periodically checks if transitions
are triggered. As only positive, non-zero periods are realizable, this leads to a further
delay. (iii) If other processes are executed on the processor, further delays occur due to
scheduling.

One possibility to model time consumption of raising events or executing side-
effects is the use of the after-construct as shown in Figure 1. In order to respect the
worst case execution time we for consuming or raising events the help-states are in-
troduced. They are entered when an event is consumed or fired and left after we (to
simplify the example we assume that consuming and raising of events consumes the
same amount of time).2

Such a description models correctly that the actions consume time (cf. (i) above), but
still consist of transitions that react infinitely fast (cf. (ii)) and do not respect scheduling

2 Note when regarding Figure 1 that we denote the sending of a message msg to target tgt by
tgt.msg. Receiving from receiver rcv is denoted by rcv.msg.

Model-Driven Architecture for Hard Real-Time Systems 29

Fig. 2. Real-Time Statechart

delays (cf. (iii)). Further, the after-construct is used in 2 different ways: after(tans −we)
specifies the point in time when the according transition has to fire (as proposed by the
UML). Contrary to this, after(we) is used to model the progress of time while raising an
event.

The example illustrates, that UML State Machines are not practical for our demands
and that there is need for a realistic model that supports the specification of hard real-
time constraints like WCETs and upper bounds for reaction times.

The abstraction of zero execution time, employed in UML State Machines, is of-
ten interpreted to mean fast enough. Thus, to specify how fast they have to react, we
propose to specify deadlines for each required side-effect. Thus, in our Real-Time State-
chart model [12,13], which is an extension of the UML State Machine model, transi-
tions are not assumed to fire infinitely fast, which is unrealistic on real physical devices
(especially when considering the execution of the actions attached to the transitions),
but it is possible to specify deadlines for each transition which in turn determine what
fast enough really is.

These time constants specify a relative point in time defining the minimum time
(always 0 in this example, see Figure 2) and the maximum time (d0, tans) until the firing
of the transition has to be finished. These points in time are either absolute in relation
to the point in time when the transition has been triggered (e.g. the transition from
noConvoy to answer) or relative to a clock. In the example, the deadline t5 ∈ [0; tans] of
the transition from answer to convoy is relative to the clock t5. t5 is reset to zero when
switching to state answer (indicated by {t5} similar to the notion in timed automata
[14,15]). The clock is reset at the point in time when the transition is triggered. The
deadlines avoid to use extra or help states (as in Figure 1) and thus enable to construct
a less complex model in terms of the number of states.

Further, we enhance the model –similar to timed automata– by time invariants defin-
ing the point in time when the state has to be left via a transition. The state answer is
only valid as long t5 ≤ tans − we holds. To trigger transitions dependent on a specific
point in time, time guards are specified (e.g. 0 ≤ t5 ≤ tans − we).

Transitions are triggered when the time guard becomes true, the associated event
is available and a guard, consisting of a boolean expression over different variables or
methods, is also true. We distinguish between urgent transitions (visualized by solid ar-

30 S. Burmester, H. Giese, and W. Schäfer

rows) firing immediately when they are triggered and non-urgent transitions (visualized
by dashed arrows). The latter ones may be delayed when the time specifications of the
model still allow a later firing [14]. Urgent transitions are similar to eager transitions
in [16] and non-urgent transitions are similar to delayable or lazy transitions in [16].
They are used to model different possible alternatives in the communication protocol.
This introduced non-determinism is resolved in Figure 3 showing the whole shuttle
behavior.

The after-construct is mapped to a time guard and a time invariant and thus gets
a semantic definition which makes it possible to generate code from this definition.
Although the use of multiple clocks requires more effort than using the after-construct,
it has the advantage that the points in time, when transitions are triggered, cannot only
be defined relative to the point of entrance of the current state, but also relative to the
point of triggering of any previously fired transition or the point of entrance or exit of
any previously entered state, because clock-resets can be associated even to the exit()-
and entry()- methods of the states.

The form of the time guards is limited to ∧ti∈C(ai ≤ ti ≤ bi), ai ∈ IN, bi ∈ IN ∪
{∞}, where C is the set of clocks. The form of time invariants is limited to ∧ti∈C(ti ≤
Ti), Ti ∈ IN ∪ {∞}. In our experience, this limitation, i.e. the exclusions of arbitrary
logic expressions and arithmetic operations on different clock times, does not hamper
the modeling of realistic systems and makes it easier for the model developer to build
intuitive models rather than very complicated ones.

The semantic definition of Real-Time Statecharts does not have the usual macrostep
and run-to-completion semantics of UML State Machines, because the zero execution
time for intermediate steps is not realistic in our application domain. Many actions have
significant WCETs. Run-To-Completion semantics would not allow an immediate re-
action to any newly raised external event. We define our semantics formally, as given
in [13] by a mapping of Real-Time Statecharts to a subset of an extended version of
hierarchical timed automata as defined in [17]. Such a semantics has already been em-
ployed successfully in a similar domain [18] for the un-timed case. In order to still be
able to describe the required local synchronization between multiple orthogonal states
of a single Real-Time Statechart within a single step, synchronous communication via
synchronization-events and -channels, similar to the mechanism described in [14], is
also supported.

Apart from the above mentioned extensions, which are partly adapted from timed
automata, features from UML State Machines like hierarchy, parallelism and history as
well as entry()-, exit()- and do()-operations for states are, of course, provided further on.
While a specific state is active, its do()-operation is executed periodically. The user may
specify a time interval for this period. Actions are not limited to integer assignments
(like in timed automata), but can be complex method calls in the object-oriented model.
The WCETs are respected in the PM (see Section 3).

Figure 3 shows the whole shuttle behavior, consisting of three orthogonal states.3

The upper orthogonal state realizes the described part of the communication protocol.
The lower orthogonal state realizes the opposite part. The orthogonal state in the middle

3 Note that in our CASE tool Fujaba (www.fujaba.de) the dashed lines between orthogonal
states are not visualized.

Model-Driven Architecture for Hard Real-Time Systems 31

Fig. 3. Behavior of a shuttle component

synchronizes both roles. It initiates the building and the breaking of the convoy. In this
simplified example, convoys consisting of maximal two shuttles are build.

Real-Time Statecharts combine the advantages of UML State Machines and of
timed automata and extend them by additional annotations. These annotations enable
to generate the PSM and finally code for real-time platforms on the one hand and offer
constructs to model complex temporal behavior on the other hand. The main differ-
ences to UML State Machines are, that they (1) support to model the time consumption
of transition execution and (2) have a realistic semantic definition based on timed au-
tomata mirroring appropriately the application domain.

2.3 Model Analysis

Generating a PSM, consisting of active objects and deadlines, that guarantee the real-
time constraints as specified in the model is of course only possible, when the model
does not contain any conflicts between the declarative elements such as time guards
and time invariants. A possible conflict is for example when multiple real-time con-
straints are contradicting and thus no behavior exists which fulfills them (time-stopping
deadlock).

To exclude such conflicts, the full state space of a Real-Time Statechart model has to
be checked in the general case. Due to the well-defined semantics of Real-Time State-
charts [13], which map their behavior to hierarchical timed automata as employed in
the model checker UPPAAL [19,14], we first map them to hierarchical timed automata
and then feed them into the vanilla extension of UPPAAL [19] which flattens them

32 S. Burmester, H. Giese, and W. Schäfer

in an additional preprocessing step. Then, this flat timed automata model is checked
with UPPAAL for the absence of time-stopping deadlocks or other required properties
expressed with a restricted temporal logic.

When a time-stopping deadlock has been found, we have to conclude that the final
state of the delivered error trace contains a conflict. Pinpointing the root source of the
problem is a complex problem which remains to be done manually.

While model checking the PIM provides a high cost solution in the general case,
we can do much better for specific failure classes where the complex dependencies
which result from the synchronization between orthogonal states are ignored when the
deployment and thus the platform model is known.

Imagine, as one example for such a static analysis, a state with (a part of) an invari-
ant ti ≤ Ti, which is the source of a set of leaving transitions which all have a time
guard of the form Ti + x ≤ ti, x > 0. It is obvious, that once entered, this state will
never be left again and a time-stopping deadlocks occurs.

Our additional static analysis algorithms employed upfront detect such temporal in-
consistencies at low costs. Due to the incompleteness of the analysis, it is a supplement
to model checking but cannot, of course, replace it to detect all inconsistencies in the
general case. The pessimistic analysis further indicates whether model checking is re-
quired at all or whether the much simpler static checking for temporal inconsistencies
has been sufficient.

3 Platform Models and Deployment

In order to generate the PSM, WCETs are required for all actions (side-effects, entry(),
exit(), and do()- operations) and for the elementary instructions that build the code frag-
ments realizing the Real-Time Statechart behavior (e.g. checking guards, raising events,
etc.).

3.1 Deployment

As the WCETs are platform-dependent, we first deploy our components (whose behav-
ior is each specified by a Real-Time Statechart) by a UML deployment diagram. In such
a deployment diagram, we assign the component instances of our systems to dedicated
nodes and the cross node links to available network connections in form of busses or
direct communication links. Given such an assignment, we can further look into the
specific characteristics of the different nodes as described in the platform model.

3.2 Platform Models

In the platform model, the relevant characteristics such as CPU type, operating system,
etc. are described. Therefore, available techniques to determine these single WCET
values as described in [20] can be employed. They allow to annotate these values to
the platform specific view of the behavioral elements such as methods and elementary
instructions. The WCETs of the code fragments of a Real-Time Statechart can then be
determined by summing up the execution times of the elementary instructions and more
complex methods.

Model-Driven Architecture for Hard Real-Time Systems 33

3.3 Model Analysis

To analyze the resulting model with platform specific annotations, we extend our timed
automata model for model checking as well as our static analysis technique such that it
also reflects the WCET behavior of the side effects of the transitions.

A temporal inconsistency can, for example, occur, if a time guard, a time invariant,
and a WCET are in contradiction. One case is given by a time guard which can trigger
a transition at a point in time, when the execution of the action will not be possible,
because the time invariant of the target state may have been exceeded after execution
of the action. Consider, for example, a transition with a time guard t0 ≤ 10 and an
action with a WCET of 4 leading to a state with the invariant t0 ≤ 12. If this transition
is triggered, for example at t0 = 10, the target state is entered in the worst case at
t0 = 14, which violates the time invariant.

Such problems can be detected using model checking. In addition our static analysis
algorithms can be upfront detect some of these temporal inconsistencies at low costs as
in the case of the PIM analysis.

4 Synthesizing Platform Specific Models and Code

After modeling and analyzing the PIM with components and Real-Time Statecharts and
specifying the platform specific WCET information in the PM and the deployment, we
have to map the components and links to active objects and to network and communi-
cation links to come up with the final platform specific model. In our case the PSM can
be described by the UML Profile for Schedulability, Performance, and Time [8], as it
allows the specification of priorities, periods, and deadlines for active objects. We use
it as platform specific model, as these values, which we derive automatically from the
platform independent model, are different for different platforms.

When building real-time systems, cost saving requires to minimize hardware costs.
Consequently, the number of processors and their power is restricted. Thus our map-
ping algorithm is designed for single processor systems, whereby all branches of the
orthogonal states are mapped to one single processor. In case the system consists of
multiple components, deployed on different processors, every component executes on
exactly one processor. Thus, the mapping algorithm can then be applied, too.

One periodic thread ensures that the Real-Time Statechart reacts fast enough to
meet all time restrictions. The thread’s period defines how fast the Real-Time Statechart
reacts. Its determination, that considers the specified attributes (deadlines, etc.) as well
as the externally determined WCETs, builds the main part of Section 4.1.

As every Real-Time Statechart is implemented as exactly one active object which
will be implemented as periodic thread (and possibly multiple aperiodic threads), the
number of concurrently running threads can become large when plenty of Real-Time
Statecharts are executed on the same processor. If this is the case (e.g., for UML models
with a large number of active objects or components), we propose to combine multiple
Real-Time Statecharts into a single one using orthogonal states to optimize the result of
the partitioning. Using such a grouping, an unacceptable overhead due to a large number
of threads is avoided and we still resolve the partitioning and scheduling problem by
employing the proposed code generation algorithm.

34 S. Burmester, H. Giese, and W. Schäfer

4.1 Partitioning

As mentioned above, a Real-Time Statechart is mapped to at least one periodic thread,
checking for triggered transitions in every period – the so called main thread. This
thread checks all transitions which can be triggered from the beginning of its last period
until and during the duration of the current period. The checking has to be started that
early, because the check in the last period may have just missed a transition which
could have been triggered. It was missed because the check happened just before the
event occurred or its time guard was evaluated to true.

A transition is triggered, if the following four conditions hold: (1) The transition is
defined for the current state, (2) the event has occurred in the time interval between the
beginning of the last period (of the main thread) and the current point in time (Note
that an event, that cannot be consumed immediately, is queued), (3) the time guard is
evaluated to true during or after the event happens, (4) the guard is evaluated to true
during or after the event happens. The worst case time needed for the whole check
(depending on the current state) is denoted by wtrig(s), where s is the current state.

After determining all triggered transitions and the points in time when they became
activated, the first triggered transition is fired. Then clocks are reset and actions are
executed.

If the action has such a short WCET, such that there is still enough execution time
left within the period, it will be executed by the main thread. As it is possible to specify
complex actions, their WCETs often do not fit into the main thread. If they are ex-
ecuted within the main thread nevertheless, its execution time would become greater
than its period and deadline. Apart from this problem, the main thread would not be
able to check and – if needed – fire other transitions for the time the action is executed,
although this is required in the case of orthogonal states. Due to these problems, the
firing of such transitions is rolled out into a new started aperiodic thread, running con-
currently to the main thread. Thus, orthogonal states are not implemented by multiple
concurrent running periodic threads, but by exactly one periodic thread and multiple
concurrent running aperiodic threads. Among other things, this facilitates the efficient
implementation of synchronization.

The still remaining problem is to determine the main thread’s period. On the one
hand, it needs to be short enough, such that the recognition of triggered transitions
happens early enough to guarantee that the actions are executed before their deadlines
expire. On the other hand, it should be as long as possible to execute as many tran-
sitions as possible within the main thread and thus to minimize resource utilization,
because an additional aperiodic thread consumes time and memory. Respecting these
conditions, the annotations and restrictions in the Statechart specification as well as the
times wtrig(s), wstart and wend give limits for the duration time of one period. wstart

and wend denote the duration for starting and terminating an aperiodic thread. We de-
termine the period for a target system, scheduled by a priority scheduler [21]. When
deriving equations to determine the period from the specification, several cases need to
be distinguished.

Figure 4a shows the first case when wtrig(s) and the action to be executed (WCET
is denoted with wa) fits into the periodic thread. The execution has to guarantee that the
action is executed before its deadline expires, i.e. the period is short enough to execute

Model-Driven Architecture for Hard Real-Time Systems 35

ee

a) case 1: b) case 2:

t

t

t + p t + 2p

d

...wtrig

t + 2p − νp

wtrig wstart

t

t

t + p t + 2p

wa

d

...wtrig wtrig

Fig. 4. Determining the period

the action before the deadline d. The worst case in terms of a delay between triggering
a transition and executing its corresponding action is the following: The main thread
begins execution at time t – the beginning of a first period and just misses a transition
which is triggered. As we apply priority scheduling, that transition is only checked again
and fired at the end of the execution of the next period (t+p until t+2p) such that it just
fits into this period (p denotes the duration time of one period). Then d ≥ 2p must hold
in order to be sure that the action is executed before the deadline expires. Respecting
the so called utilization factor ν ∈ (0; 1], defining that a Real-Time Statechart shall not
gain more than ν percentage of the processor load, obviously wtrig(s) + wa ≤ pν must
hold for cases where the processor load is shared.

This results in the inequality p1
min := (wtrig(s) + wa)/ν ≤ p ≤ d

2 =: p1
max

determining minimum and maximum values for p in case of executing an action within
the main thread (case 1).

A more complex situation occurs when wtrig(s) + wa ≤ pν does not hold and the
action needs to be rolled out to an aperiodic thread, like shown in Figure 4b. Although
the start of the aperiodic thread shortens the necessary execution time of the periodic
main thread to wtrig(s) + wstart, we still compute an upper bound which minimizes
rollouts. In any case, the computation time within every period, the main thread gets,
is pν. Even, when this time is not enough to execute the action, the periodic thread is
started at least pν time units before the end of it’s period, cf. Figure 4b. In this case, the
computation time is not used completely by the periodic thread. The remaining time is
already used by the started aperiodic thread. Consider the (trivial) case ν = 1: The delay
between triggering the transition and executing the action is given by p+wtrig +wstart.
Then, the action is executed and the aperiodic thread terminates. Thus the delay, the
execution and the termination have to fit into the deadline: d ≥ p + wtrig + wstart +
wa + wend ⇔ p ≤ d − wtrig − wstart − wa − wend.

While the aperiodic thread is executing, the periodic one still runs (with a shorter
execution time w′

g) and preempts the aperiodic one once within a period. A detailed
analysis (which is given in [22]), respecting these preemptions and ν ∈ (0, 1] leads to
the inequality 1, that uses the substitutions α = (νwa+νwend+wtrig+wstart)/ν2, β =
w′

trig/ν, ϕ = wa − wtrig − wstart/ν.

p ≤ d − α − β

⌈
νp − ϕ

p + β

⌉
(1)

Applying a numerical algorithm leads to the solutions in the form p ≤ p2
max. Con-

sidering the necessary execution time wtrig(s)+wstart ≤ νp leads to another inequality

36 S. Burmester, H. Giese, and W. Schäfer

p2
min := (wtrig(s) + wstart)/ν ≤ p ≤ p2

max determining minimum and maximum val-
ues for p in case of executing an action, that is rolled out (case 2).

The period has to fit either the first or the second inequality. As a Statechart usually
consists of multiple transitions, a period is chosen, that fits at least one equation for
every transition. For the case that a state is entered and a leaving transition becomes
triggered immediately, two more inequalities arise, because besides the action the do-
operation needs to be executed, too. Further, the period has to fit either the third or
the forth equation, too. Analyzing the specified Real-Time Statechart leads to a system
of inequalities consisting of four times as much inequalities as transitions occur in the
Statechart. Thus, choosing the period is a combinatorial problem, that is solved auto-
matically by a numerical method. If multiple solutions exist, the period for the main
thread will be the longest one possible. After determining the period, it is fixed which
actions need to be rolled out to aperiodic threads.

4.2 Platform Specific Model

Figure 5 depicts the structural view of the PIM and the according generated PSM. The
Shuttle component is transformed to the active class MainThread, realizing the peri-
odic main thread and to the class Shuttle, realizing the logic of the component. The
determined period, which is equal to its deadline, is annotated as proposed by the Pro-
file for Performance, Schedulability, and Time. The priority is determined according to
the deadline monotonic approach [21]: The thread with the shortest deadline, achieves
the highest priority. Note that the deadlines of the aperiodic threads, that execute long
side-effects are specified in the PIM.

Fig. 5. PIM and PSM of the shuttle system

4.3 Model Analysis

When implementing applications for embedded real-time systems, resource restrictions
need to be taken into account. Memory and computation time are usually the restricted
resources in embedded systems. As the structure of our models is static and thus there is
no need for dynamic instantiation, the required memory can be derived straight forward
and is fixed after partitioning. To check if sufficient computational power is available,
especially when multiple Real-Time Statecharts or other processes have to be executed
on one microprocessor, scheduling analysis is performed. Note that even when the sum
of all processes’ utilization factors is less or equal 100%, schedulability cannot be guar-
anteed without adequate analysis [21].

Model-Driven Architecture for Hard Real-Time Systems 37

In order to speed up scheduling analysis, we first use Liu and Layland test [23]
to make a rough estimate and apply Lehoczky’s, Sha’s, and Ding’s analysis algorithm
[24] only if needed. If the set of all threads is not schedulable, we exploit the knowl-
edge about the possible concurrently executed threads which can be derived from the
structure of the Real-Time Statechart. For example, aperiodic threads, initiated by fir-
ing transitions, that are executed sequentially, will never be executed concurrently. All
combinations of threads, that can possibly run concurrently are determined and it is
sufficient to check the schedulability for all these combinations.

4.4 Code Generation

Using the automatically generated PSM, the mapping to a real-time target platform,
supporting priority scheduling, is straight-forward. Currently, we support the genera-
tion of Real-Time Java [25] and C++ for an appropriate real-time operating system. In
this generation step, active objects are mapped to real-time threads. The result of this
mapping can be imported into our CASE Tool Fujaba by its reengineering capabilities.

5 Related Work

Currently available approaches for the specification and implementation of hard real-
time systems have the following disadvantages: Either, they offer the required higher
level modeling concepts, but provide no partitioning and code generation concepts
which ensure the specified hard real-time behavior of the model, or they support code
generation which guarantees timing behavior, but are already platform specific models.

In [9], Rational Rose models are extended with information needed for schedul-
ing and partitioning in form of periods and action WCETs. This information is then
used to distribute the components automatically to multiple processors and to guaran-
tee schedulability. This approach is, however, rather limited as synchronization within
the components (usually described by Statecharts) is not supported.

Hierarchical timed automata [17], which are a hierarchial extensions of timed au-
tomata [14,15], provide most of the powerful modeling concepts of Statecharts. A map-
ping to multiple parallel running flat timed automata permits to verify the model by
using the model checker UPPAAL [14]. In [26], locations of a flat UPPAAL automa-
ton are associated with tasks inclusive WCETs and deadlines. This extension enriches
the model with the information required for code generation and a prototype synthe-
sizing C-Code has been implemented. As the code generation approach is restricted to
flat automata, it does not take the additional syntactical constructs of hierarchical timed
automata into account. The code generation scheme is not really sufficient for hard real-
time systems, as it does not take into account the delays that occur when transitions are
fired, arguing that these delays are small compared with the WCETs.

Modecharts [27] are another high-level form of state transition systems for the spe-
cification of real-time systems. Actions are executed only while residing in states and
not when firing transitions. The model respects that actions require time and thus they
are associated with deadlines or –if needed– with periods. Timing constraints like dead-
lines and trigger conditions are specified just relative to the current state’s (mode’s)

38 S. Burmester, H. Giese, and W. Schäfer

point of entry and not relative to preceding states. [28] describes code generation for
the target language ESTEREL, but the generated implementation regards only the tim-
ing intervals, triggering the transitions and not the deadlines or periods.

SAE AADL (Society for Automotive Engineers Architecture Analysis & Design
Language) [29], successor of MetaH,4 specifies a system on the PSM level. A SAE
AADL model consists of multiple Threads, annotated by a priority and a frequency and
can therefore be mapped to code automatically. Tool support for modeling is currently
restricted to text based editors.

The application framework VERTAF [30] and the automata model presented in [31]
specify the required real-time constraints and thus enable an automatic implementation.
These approaches are not applicable for complex systems, as their models are rather
restricted: [31] applies just a flat automata model, [30] specifies active object on the
implementation level.

Currently available CASE tools Rhapsody, Rational Rose/RT, Statemate, Telelog-
icTau, and Artisan Real-time Studio Professional for UML State Machines can only
generate code from the logical behavior, while an appropriate mapping onto threads
and scheduling parameters in form of the synthesis of a platform specific model re-
mains to be determined in a manual process. To the best of our knowledge all existing
UML CASE tools also fail to close the gap between high level models and the auto-
matic implementation of hard real-time systems.5 In contrast, the presented approach
supports the automatic synthesis of the PSM from a given PIM and PM.

6 Conclusion and Future Work

Our approach, consisting of components and Real-Time Statecharts, permits to spec-
ify complex real-time systems following UML notations and the MDA approach at the
PIM level. This platform independent description can then be mapped automatically to
a platform specific model, provided that a target platform description in form of an-
notations describing real physical behavior (WCETs) are given. The PSM describes
real-time threads, which are of general nature and not bound to a specific program-
ming language or RTOS environment. Thus, an implementation can be realized in any
programming language that provides real-time priority scheduling. Different analysis
methods are applied on the different levels to achieve correct models.

Right now, the open-source UML CASE tool Fujaba supports modeling with UML
components and Real-Time Statecharts including model checking and code generation
for Real-Time Java and C++ from UML components and Real-Time Statecharts. We
are currently extending Fujaba to explicit visualize the generated PSMs and to per-
mit manual adjustments like adding other threads to the system’s nodes. In this con-
text, we prove if the standard UML Profile for Schedulability, Performance, and Time

4 www.htc.honeywell.com/metah
5 We refer to [7] for a judgment that Rhapsody (www.ilogix.com) and Rose/RT (http://www-

306.ibm.com/software/rational/) only support soft real-time system development. We fur-
ther evaluated Artisan Real-time Studio Professional (www.artisansw.com), Statemate
(www.ilogix.com), Rational Rose/RT, and Telelogic Tau G2 Developer (www.telelogic.com)
on our own.

Model-Driven Architecture for Hard Real-Time Systems 39

is sufficient or if extensions like for example the HIDOORS Profile [32,33] are re-
quired. Automatic grouping of Real-Time Statecharts and modular code generation for
deployment-time grouping is planned future work.

References

1. Allen, P., ed.: The OMG’s Model Driven Architecture. Volume XII of Component Devel-
opment Strategies, The Monthly Newsletter from the Cutter Information Corp. on Managing
and Developing Component-Based Systems. (2002)

2. Object Management Group: MDA Guide Version 1.0. (2003) Document omg/2003-05-01.
3. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the Compositional

Verification of Real-Time UML Designs. In: Proc. of the European Software Engineering
Conference (ESEC), Helsinki, Finland, ACM Press (2003)

4. Burmester, S., Giese, H., Hirsch, M., Schilling, D.: Incremental Design and Formal Veri-
fication with UML/RT in the FUJABA Real-Time Tool Suite. In: Proceedings of the In-
ternational Workshop on Specification and vaildation of UML models for Real Time and
embedded Systems, SVERTS2004, Satellite Event of the 7th International Conference on
the Unified Modeling Language, UML2004. (2004)

5. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)
6. Object Management Group: UML 2.0 Superstructure Specification. (2004) Document:

ptc/04-10-02 (convenience document).
7. Bichler, L., Radermacher, A., Schrr, A.: Evaluation uml extensions for modeling realtime

systems. In: Proc. on the 2002 IEEE Workshop on Object-oriented Realtime-dependable
Systems WORDS’02, San Diego, USA, IEEE Computer Society Press (2002) 271–278

8. Object Management Group: UML Profile for Schedulability, Performance, and Time Speci-
fication. OMG Document ptc/02-03-02 (2002)

9. Gu, Z., Kodase, S., Wang, S., Shin, K.G.: A Model-Based Approach to System-Level De-
pendency and Real-Time Analysis of Embedded Software. In: The 9th IEEE Real-Time and
Embedded Technology and Applications Symposium, Toronto, Canada. (2003)

10. Masse, J., Kim, S., Hong, S.: Tool Set Implementation for Scenario-based Multithreading of
UML-RT Models and Experimental Validation. In: The 9th IEEE Real-Time and Embedded
Technology and Applications Symposium, Toronto, Canada. (2003)

11. Selic, B., Gullekson, G., Ward, P.: Real-Time Object-Oriented Modeling. John Wiley &
Sons, Inc. (1994)

12. Burmester, S., Giese, H., Tichy, M.: Model-Driven Development of Reconfigurable Mecha-
tronic Systems with Mechatronic UML. In Assmann, U., Rensink, A., Aksit, M., eds.: Model
Driven Architecture: Foundations and Applications. Volume 3599 of Lecture Notes in Com-
puter Science (LNCS)., Springer Verlag (2005) 47–61

13. Giese, H., Burmester, S.: Real-Time Statechart Semantics. TechReport tr-ri-03-239, Univer-
sity of Paderborn (2003)

14. Larsen, K., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. Springer International Journal of
Software Tools for Technology 1 (1997)

15. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking for Real-
Time Systems. In: Proc. of IEEE Symposium on Logic in Computer Science. (1992)

16. Bornot, S., Sifakis, J., Tripakis, S.: Modeling Urgency in Timed Systems. In Roever, W.P.d.,
Langmaack, H., Pnueli, A., eds.: Compositionality: The Significant Difference; COMPOS
’97, Bad Malente, Germany, September 8 - 12, 1997. Volume 1536 of Lecture Notes in
Computer Science., Springer Verlag (1998) 103–129

40 S. Burmester, H. Giese, and W. Schäfer

17. David, A., Möller, M., Yi, W.: Formal Verification of UML Statecharts with Real-Time
Extensions. In Kutsche, R.D., Weber, H., eds.: 5th International Conference on Fundamental
Approaches to Software Engineering (FASE 2002), April 2002, Grenoble, France. Volume
2306 of LNCS., Springer (2002) 218–232

18. Köhler, H., Nickel, U., Niere, J., Zündorf, A.: Integrating UML Diagrams for Production
Control Systems. In: Proc. of the 22nd International Conference on Software Engineering
(ICSE), Limerick, Irland, ACM Press (2000) 241–251

19. David, A., Moeller, M.: From HUPPAAL to UPPAAL: A translation from hierarchical timed
automata to flat timed automata. In: TechReport BRICS RS-01-11, Department of Computer
Science, University of Aarhus. (2001)

20. Erpenbach, E.: Compilation, Worst-Case Execution Times and Scheduability Analysis of
Statechart Models. Ph.D.-thesis, University of Paderborn, Department of Mathematics and
Computer Science (2000)

21. Buttazzo, G.C.: Hard Real Time Computing Systems: Predictable Scheduling Algorithms
and Applications. Kluwer international series in engineering and computer science : Real-
time systems. Kluwer Academic Publishers (1997)

22. Burmester, S.: Generierung von Java Real-Time Code fr zeitbehaftete UML Modelle. Mas-
ter’s thesis, University of Paderborn, Paderborn, Germany (2002)

23. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in a Hard-Real-
Time Environment. Journal of the ACM 20 (1973)

24. Lehoczky, J., Sha, L., Ding, Y.: The Rate Monotonic Scheduling Algorithm: Exact Char-
acterization and Average Case Behavior. In: Proceedings of the 10th Real-Time Systems
Symposium. (1989)

25. Bollella, G., Brosgol, B., Furr, S., Hardin, S., Dibble, P., Gosling, J., Turnbull, M.: The
Real-Time Specification for JavaTM . Addison-Wesley (2000)

26. Amnell, T., David, A., Fersman, E., Pettersson, M.O.M.P., Yi, W.: Tools for Real-Time
UML: Formal Verification and Code Synthesis. In: Workshop on Specification, Implemen-
tation and Validation of Object-oriented Embedded Systems (SIVOES’2001). (2001)

27. Jahanian, F., Mok, A.: Modechart: A Specification Language for Real-Time Systems. In:
IEEE Transactions on Software Engineering, Vol. 20. (1994)

28. Puchol, C., Mok, A., Stuart, D.: Compiling Modechart Specifications. In: 16th IEEE Real-
Time Systems Symposium (RTSS ’95), Pisa, Italy. (1995)

29. Feiler, P.H., Gluch, D.P., Hudak, J.J., Lewis, B.A.: Embedded Systems Architecture Analysis
Using SAE AADL. Technical Report CMU/SEI-2004-TN-005, Carnegie Mellon University
(2004)

30. Hsiung, P.A., Su, F.S., Gao, C.H., Cheng, S.Y., Chang, Y.M.: Verifiable Embedded Real-
Time Application Framework. In: Seventh Real-Time Technology and Applications Sympo-
sium (RTAS ’01), Taipei, Taiwan. (2001)

31. Saksena, M., Karvelas, P., Wang, Y.: Automatic Synthesis of Multi-Tasking Implementations
from Real-Time Object-Oriented Models. In: The Third IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing, Newport Beach, California (2000)

32. Richard-Foy, M., Hunt, J.J.: The HIDOORS Profile: Applying the Scheduling, Performance
and Time Profile to Realtime Java Development. In Amann, U., ed.: Proc. of Model Driven
Architecture: Foundations and Applications (MDAFA 2004), Linköping, Sweden. (2004)

33. Meunier, J.N., Lippert, F., Jadhav, R., Harding, N.: MDA and Real-Time Java: The HI-
DOORS project. In Akehurst, D., ed.: Proc. of Second European Workshop on Model Driven
Architecture (MDA) with an emphasis on Methodologies and Transformations (EWMDA-2
2004), Canterbury, England. (2004) 89–95

	Introduction
	Platform Independent Models
	Structure Modeling
	Behavior Modeling
	Model Analysis

	Platform Models and Deployment
	Deployment
	Platform Models
	Model Analysis

	Synthesizing Platform Specific Models and Code
	Partitioning
	Platform Specific Model
	Model Analysis
	Code Generation

	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

