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Abstract. A software product line comprises a set of products imple-
menting different configurations of features. The set of valid feature con-
figurations within a product line can be described by a feature model.
In some practical situations, a feature configuration needs to be derived
in stages by creating a series of successive specializations of the initial
feature model. In this paper, we consider the scenario where changes
to the feature model due to, for example, the evolution of the product
line, need to be propagated to its existing specializations and configu-
rations. After discussing general dimensions of model synchronization,
a solution to synchronizing cardinality-based feature models and their
specializations and configurations is presented.

1 Introduction

Feature modeling is a systematic way of describing variabilities and commonal-
ities of systems in a software product line [1,2]. A feature model describes a set
of possible configurations or combinations of features. In this paper, we focus
on a particular style of feature models referred to as cardinality-based feature
models [3].

A configuration can be arrived at in stages, where at each stage some choices
are made [3]. The outcome of each stage is a feature model which is a special-
ization of the input feature model for that stage. A specialization of a feature
model describes a subset of the configurations represented by that model. The
need for staged configuration arises in several practical situations, such as in

– software supply chains, e.g., a platform vendor may need to make some con-
figuration choices to a platform before releasing it to a specific customer,
and the customer may need to provide further settings for individual appli-
cations;

– optimization, e.g., certain configuration choices could be made at compile
time, while remaining ones are decided at runtime; the application code
could be optimized based on the compile-time choices;

– multi-level policies, e.g., security policies may be specialized at different levels
of an organization.

In any realistic setting, the variabilities and commonalities in a product-
line will evolve. Inevitably, a feature model will also have to change, and the
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existing specializations of multiple stages will have to be synchronized in order
to reflect the change in the feature model. The interesting challenge is to perform
synchronization with the intent of preserving the choices made in the stages of
specializations. For simplicity, we refer to the synchronization of cardinality-
based feature models and their specializations and configurations as feature-
model synchronization.

In this paper, we first characterize feature-model synchronization according
to dimensions that are applicable to other model synchronization problems. Then
we give a solution to the feature-model synchronization problem. The solution
and the significant issues surrounding the problem are explained in natural lan-
guage. The main characteristic of the solution is that it treats feature models,
specializations, and configurations in a uniform way. Additionally, we describe
how the solution can be specified using the Relations language from the latest
submission for the Object Management Group’s MOF 2.0 Query/View/ Trans-
formation standard [4]. To our knowledge, feature model synchronization in a
multi-staged configuration setting is a problem unexplored until now. We believe
that the results we present are novel contributions with relevance to both the
software product-line community and the model-based development community.

In Section 2, the synchronization problem is motivated through an example.
In Section 3, general dimensions of model synchronization are discussed. In Sec-
tion 4, feature model synchronization is characterized and a technique to achieve
it is described. Section 5 discusses related work. Section 6 concludes the paper.

2 Background and Motivating Example

A feature model is a hierarchy of features plus constraints describing valid con-
figurations of features. Features are used to model functional and non-functional
characteristics of systems, but for the purpose of our discussion, they are just
symbols with no further semantics. A feature model always has a root feature.
The remaining features are either grouped or solitary, i.e., they are either part
of a feature group or not. Each solitary feature is annotated with a feature car-
dinality, which is an interval constraining how many times the feature has to be
included in a configuration if its parent is also included.1 Each feature group is
annotated with a group cardinality, which is an interval constraining how many
features from that group have to be included in a configuration if the parent
feature of the group is also included. Additional constraints on possible configu-
rations may also need to be expressed, such as requires and excludes constraints.
Constraints may be specified using XPath, as explained elsewhere [5]. A feature
may be associated with an attribute type, in which case an attribute value can
be specified during configuration.
1 As explained later in Section 4.2, we also associate feature cardinalities with grouped

features. However, the only possible values are [0..0], [0..1], and [1..1]. Normally, a
grouped feature has [0..1] as its default cardinality. The cardinalities [1..1] and [0..1]
are used for features that were selected or eliminated, respectively, from a group
during specialization.



Synchronizing Cardinality-Based Feature Models and Their Specializations 333

(a) Initial feature model (b) Modified feature model

Fig. 1. Security profile feature model before and after changes

Table 1. Symbols used in cardinality-based feature modeling

Symbol Explanation

Root feature

Solitary feature with cardinality [1..1], i.e., mandatory feature

Solitary feature with cardinality [0..1], i.e., optional feature

[0..m] Solitary feature with cardinality [0..m], m > 1, i.e., optional clonable feature

[n..m] Solitary feature with cardinality [n..m], n > 0 ∧ m > 1, i.e., mandatory
clonable feature

Grouped feature

f(‘value′ : T ) Feature f with attribute of type T and value of ‘value′

Feature group with cardinality 〈1– 1〉, i.e. xor-group

Feature group with cardinality 〈1– k〉, where k is the group size, i.e. or-group

〈i– k〉 Feature group with cardinality 〈i– k〉

Figure 1(a) shows a sample feature model describing the configuration choices
available in a security profile of an operating system. The notation is explained in
Table 1. The profile contains a policy for password expiration, which can be never
or after a specific number of days, and for the kind of characters required in a
password. The permission set specifies allowable operations on various resources
such as files, file dialogs, and environment variables. A configuration can have
multiple permission sets, e.g., a permission set defined for code downloaded from
the Internet and another for code coming from the intranet of an organization.

A specialization of a feature model is another feature model which describes a
subset of the configurations represented by the original feature model.
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(a) Specialization of 1(a) in
check-box view

(b) Specialization of 1(a) in
feature model view

(c) Configuration of 2(b) in
check-box view

Fig. 2. Specializations of the initial feature model from Figure 1(a)

A specialization can be created by first copying the original model and then
applying specialization steps to the copy [6]: select or eliminate an optional soli-
tary feature, select or eliminate a grouped feature from a group, refine feature
cardinality, refine group cardinality, clone a clonable solitary feature, and assign
value to a feature attribute.2 Figure 2(a) shows a specialization of the feature
model from Figure 1(a) in the check-box view, which supports the application of
the specializations steps. Check boxes are shown for optional solitary features
and grouped features. Placing a check on a check box corresponds to selecting
a feature. A cross corresponds to eliminating the feature. An empty check box
means no change. Cardinalities can be refined by editing them. The clone oper-
ation can be invoked on clonable features through the context menu. Values can
be assigned to feature attributes. The resulting specialization rendered in the
feature model view is shown in Figure 2(b). Note that we use a filled square to
indicate a selected grouped feature, e.g., inDays and restricted. Compared to the
original model, in the specializations shown in the check-box view in 2(a) and in
the feature model view in 2(b), never is eliminated, inDays is assigned an at-
tribute value of 30, the cardinality of the group under chars is refined to 〈2– 4〉,
permissionSet has a clone with the attribute value Internet assigned to it.
Furthermore, restricted is selected in the clone, and unrestricted and save

2 The original description of specialization steps [6] includes unfolding feature model
references. We do not consider the latter in this paper for simplicity. Furthermore,
selecting or eliminating an optional solitary feature is equivalent to refining its car-
dinality to [1..1] or [0..0], respectively.
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are eliminated. The prototype feature for the clone, i.e., permissionSet with
cardinality [0..∗], is shown in collapsed form for brevity.3 An alternative ren-
dering could suppress the display of the groups under expiration and fileIO
and show inDays and restricted as mandatory subfeatures of expiration and
fileIO, respectively.

The specialization in Figure 2(b) could have been created by an organization to
take their special security requirements into account. Further specializations could
be created based on the presented one, for example, in order to satisfy the security
constraintsof individualdepartments.Finally, thedepartment-level specializations
could be used as a basis for creating configurations for individual computers.

The relationship between a feature model and its configuration corresponds
to the one between a type and its instance. A feature model in which there is no
variability represents exactly one configuration. Such a feature model, which is
comparable to the notion of a singleton type, can also be used in place of the con-
figuration it describes. This observation allows us to treat configurations as fea-
ture models, too. As a consequence, a tool can use the same interface for creating
specializations and configurations, e.g., the check-box view, and configurations
and specializations can be also rendered in the feature-model view. Figure 2(c)
shows a sample configuration, which was created based on the specialized feature
model from Figure 2(b). Note some of the choices made, including the elimina-
tion of specialChar and the selection of open. Figure 2(c) shows a configuration
even though it still contains filepath with cardinality [0..∗]. This is because we
assume that features with cardinality [0..n], where n > 1, are by default not part
of the configuration. Similarly, undecided optional features, i.e., those with empty
check boxes, could also be considered as by default not part of the configuration.
We keep features such as filepathwith cardinality [0..∗] in the check-box view as
prototypes, should the user decide to create more clones. If desired, the prototype
filepath can be eliminated explicitly by refining its cardinality to [0..0].

Any changes made to a feature model need to be propagated to all its special-
izations and configurations, which is an example of model synchronization. For
example, the available security settings described by the feature model in Figure
1(a) could change in the next release of the operating system to those described
by the feature model in Figure 1(b) (the changes are highlighted). Comparing
the models reveals that blank character type has been added, the cardinality of
the group containing blank has been changed to 〈3– 5〉, append has been added
to the group under filepath, and that group’s cardinality has changed to 〈0– 3〉.
All these changes need to be propagated to the specialization and configuration
in Figure 2, whose updated versions are shown in Figure 3. Please note that
the configuration from 2(c) became a specialization in Figure 3(b) due to the
newly added features blank and append, which are undecided. Furthermore,
the organization could decide to change the specialization in Figure 2(a) by ap-
plying further specialization steps or undoing some of the previously applied
ones. These changes would also need to be propagated to the configuration in
Figure 2(c).

3 The feature from which a clone is created is referred to as the prototype of the clone.
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(a) Specialization shown in 2(a) and
2(b) updated

(b) The resulting specialization after
updating the configuration in 2(c)

Fig. 3. Specializations updated according to the changed feature model from Figure
1(b)

3 General Dimensions of Model Synchronization

In this section, we analyze dimensions of model synchronization in general and
classify feature model synchronization in terms of these dimensions. This exercise
will help us to better understand the characteristics of feature model synchro-
nization and devise a solution in Section 4.

Model synchronization is concerned with maintaining consistency among two
or more models in the presence of changes to one or more of them. Synchro-
nization includes both the detection of inconsistencies among the models and
modification of one or more models in order to re-establish consistency. The
modification is referred to as reconciliation.4

Structural characteristics. Synchronization problems can be character-
ized through their structural properties:

– Number of models and synchronization direction. Synchronization
can be thought of as a procedure with two or more input parameters, some
or all of which are also output parameters. Even more generally, different
subsets of the input parameters could be additionally marked as output
parameters for different individual invocations of synchronization. A com-
mon case is unidirectional synchronization between two models, where a

4 There is no fundamental difference between synchronizing a set of models and syn-
chronizing different parts of one model because the set of models could be viewed
as parts of one large model. However, in order to keep our discussion more clear, we
take the former rather than the latter view.
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change to a source model needs to be propagated to a target model. Unidi-
rectional synchronization corresponds to making the source immutable and
target mutable for the synchronization procedure. In contrast, bidirectional
synchronization between two models treats both models as mutable.

– Types of models. Each model involved in synchronization conforms to a
metamodel. Each model could conform to a different metamodel, or some or
all of the models could conform to the same metamodel.

– Multiplicity of relationships among elements. The consistency among
the involved models can be expressed as relationships among their elements.
The instances of these relationships are traceability links. An important
characteristic of the relationships is their multiplicities, such as one-to-one,
one-to-many, and many-to-many. Models involving one-to-one or one-to-
many relationships are usually easier to synchronize than those involving
many-to-many relationships.

User-facing characteristics. Several characteristics are related to how syn-
chronization is triggered and performed from the user viewpoint:

– Point in time and frequency of triggering. Synchronization could be
performed continuously, where every change to a model is immediately prop-
agated to the other models, or could be triggered on demand. The continuous
mode is inappropriate in most practical cases. The continuous mode would
slow down editing because every editing operation would trigger change prop-
agation. Also, we usually do not want to keep models synchronized at all
times; in particular, we do not want to synchronize with all intermediate
states of a model while the model is edited. A more practical choice is to
allow the user to invoke synchronization when he deems it appropriate.

– Scope of synchronization. Synchronization can be performed in a push or
pull mode. In the push mode, a change to a model is pushed to all dependent
models. In the pull mode, each dependent model can be synchronized indi-
vidually on demand. An important consideration is whether all the models
to be synchronized are available within a single development environment,
or whether they are distributed among different physical locations. In the
latter case, the push mode would usually involve pushing change notifica-
tions only, while the user at the receiving side would decide whether and
when to perform synchronization.

– Reconciliation strategy. In general, different reconciliation strategies may
involve different degrees of automation versus interaction with the user,
preservation of the existing model structure, and completeness. During rec-
onciliation, some model changes may be determined as necessary. They can
be performed automatically. However, different alternative changes may be
available in order to achieve further progress with reconciliation. The se-
lection of alternative changes could be automated by making some default
choices, or the alternatives could be presented to the user so that choices can
be made interactively. Furthermore, the different choices may involve differ-
ent degrees of modification to the existing elements of the models being
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reconciled. If the model to be changed by reconciliation has been automati-
cally generated, overriding existing structures may not be an issue; however,
if the model contains manual modifications, they should be preserved as
much as possible. Finally, the reconciliation process could be partial. The
remaining inconsistencies would be marked as such and left to the user to
be resolved manually.

Implementation Choices. Two main issues need to be considered when
implementing model synchronization:

– Representation of the synchronization logic. The synchronization logic
could be expressed in action- or state-oriented style. In the action-oriented
style, edit operations on one model are mapped to edit operations on the
dependent models. Such a mapping could be used to implement the contin-
uous mode of synchronization. On-demand mode could be achieved by map-
ping whole histories of operations. The history of the source model could
be recorded during editing, or it could be created by comparing the version
of the model before the edits with the version after the edits. In the state-
oriented style, the models to be synchronized are analyzed, and one or more
of them are transformed to re-establish consistency. The state-oriented ap-
proach may sometimes require access to the source model versions before and
after editing in order to properly propagate changes. The necessary model
transformation can be expressed algorithmically or as a set of transformation
rules. The transformation rules can address synchronization explicitly. Al-
ternatively, synchronization can be defined implicitly by model consistency
rules. In the former case, the transformation rules will read source and tar-
get models and modify the target models to establish consistency. In the
latter case, the consistency between the models is specified as rules, and a
rule engine will attempt to fix any violations of these rules by modifying
the target models. The engine may need to interact with the user, apply
some heuristics, and use additional problem-specific strategies to perform
the reconciliation.

– Representation of traceability links. Traceability links can be explicit
or implicit in the synchronization rules. Implicit links are established as
instances of pattern matching. They are created and maintained by the rule
engine. Explicit links need to be taken care of explicitly by the user. They are
not automatically created and maintained by the rule engine. Traceability
links can be implemented using in-memory pointers and/or globally unique
identifiers of model elements.

4 Feature Model Synchronization

In the following three subsections, we first characterize feature model synchro-
nization using the dimensions introduced in Section 3, then specify the meta-
model for representing feature models, and, finally, describe how feature model
synchronization can be performed.
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4.1 Classification of Feature Model Synchronization

Feature model synchronization can be characterized in terms of the general
dimensions for model synchronization as follows:

Structural characteristics. Assuming that specializations and configura-
tions are feature models (as explained in Section 2), feature model synchroniza-
tion is a unidirectional synchronization between two feature models. In other
words, both models conform to the same metamodel. Furthermore, because of
cloning, the relationship between elements in a feature model and the elements
in one of the feature model’s specializations or configurations, is in general, one
to many rather than one to one.

User-facing characteristics. Feature model synchronization requires ac-
tivation on demand. Both pull and push modes are of interest. We also need
to consider both synchronization among feature models loaded within one de-
velopment environment and those distributed to different users. Preservation
of existing user choices in specializations and configurations is absolutely im-
portant. Therefore, the synchronization process will usually be only partially
automatic. Remaining inconsistencies, such as violated cardinality or additional
constraints, will be marked. The user can resolve them by using the constraint-
solving facilities normally available in feature model specialization and configu-
ration [7]. In other words, an automatic synchronization phase is followed by a
tool-supported, interactive phase, in which alternative conflict resolution choices
and completions based on defaults are presented to the user.

Implementation Choices. Feature model synchronization can be imple-
mented using the variety of implementation choices listed in Section 3. In the
further discussion, we only consider the state-oriented approach. Since continu-
ous update is inappropriate for feature model synchronization, the action-based
approach would need to operate on histories. We find the state-oriented ap-
proach simpler and more robust since it does not need to consider histories.
In Section 4.3 and Appendix A, we will discuss an algorithmic solution and a
rule-based one using consistency rules, respectively. Only the latest versions of
the source and target models are needed for feature model synchronization. The
presented solutions use explicit links, which are established automatically when
a copy of a feature model to be specialized is first created. In the case of feature
model synchronization, the additional complexity of maintaining the links by
the synchronization algorithm explicitly is minimal.

4.2 Metamodel and Renderings for Cardinality-Based Feature
Models and Their Specializations

Before getting into the specifics of synchronization, the underlying represen-
tation of cardinality-based feature models and their specializations needs to
be understood. Figure 4 shows the metamodel for representing feature mod-
els and their specializations and configurations. A feature model is a hierarchy
of Nodes modeled by the parent-child composition. A RootFeature is the
only Node without a parent. A Feature or a RootFeature may have Features
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Feature

-valueType : ValueType
-state : FeatureState

-name : String

-max : Integer
-min : Integer

...

<<enumeration>>

FeatureState

-UNDECIDED
-ELIMINATED
-SELECTED

<<enumeration>>

ValueType

-STRING_VALUE
-INT_VALUE
-NO_VALUE

RootFeature

FeatureGroup

-max : Integer
-min : Integer

TypedValue

Node

IntValue

-value

StringValue

-value

-prototype

1

-clone

0..*

0..1

-specRootFeature

0..*

-parent

0..1

-child

0..*

-origin
0..1

-spec

0..*

1-value

0..1

Fig. 4. Metamodel for cardinality-based feature models and their specializations

and/or FeatureGroups as children. Each child of a FeatureGroup must be a
Feature. Features and FeatureGroups use min and max to represent cardinal-
ities. The cardinality of root and grouped features is always 〈1– 1〉. A Feature
may have an attribute, in which case its type is indicated by valueType. A
Feature with an attribute may contain a TypedValue. The specRootFeature
composition on RootFeature is used to represent a hierarchy of specializations.
The RootFeature of a feature model contains the RootFeatures of its direct
specializations and configurations, which are feature models too. Traceability
links between Nodes of a feature model and its specialization are modeled by
the origin-spec association. Group and feature cardinalities in the nodes of a
specialization are used to override cardinalities of their origin nodes. A spe-
cialization cannot add an attribute, but only an attribute value. Adding an
attribute value is only possible if a value has not been yet assigned in the previ-
ous stage. Feature has the field state, which is used to represent specialization
choices on optional solitary features and grouped features, which are made in
the check-box view, as shown in Figure 2(a). The allowed values for state are
SELECTED, UNDECIDED, or ELIMINATED. The meaning of these values will be ex-
plained shortly. The relationship clone-prototype is used to relate clones to its
prototype feature, i.e., the feature from which they were cloned.

When a feature model is first created in the feature model editor as in Figure
1(a), none of the nodes in the model have a corresponding origin node. A spe-
cialization of the feature model is created by first creating a copy of it and then
setting the origin of each node in the specialization to the corresponding node
in the original feature model. The feature model editor showing the original fea-
ture model renders the model according to Table 1, where the group and feature
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Table 2. Interpretation and rendering of min, max, and state

Stored
cardinality
[min..max]

Value of
state

Effective
cardinality

Rendering in
check-box view

Rendering in
feature-model view

min−c ≤ 0∧
max−c ≤ 0 — [0..0] or feature not shown

min−c ≤ 0∧
max−c = 1

ELIMINATED [0..0] or feature not shown

UNDECIDED [0..1] for solitary and for
grouped feature

SELECTED [1..1] for solitary and for
grouped feature

min−c = 1∧
max−c = 1 — [1..1] for solitary and for grouped feature

min−c ≤ 0∧
max−c > 1 — [0..max−c] [0..max−c]

min−c ≥ 1∧
max−c > 1 — [min−c..max−c] [min−c..max−c]

cardinalities shown in this rendering are those stored in the model instance, i.e.,
[min..max] and 〈min– max〉, respectively. Rendering of specializations is different.
First, specializations are not to be shown using the feature model editor, as free
editing is not allowed for a specialization. Instead, a specialization can be shown
in (1) the check-box view (e.g., Figure 2(a)), which allows the application of spe-
cialization steps, or (2) the feature model view (e.g., Figure 2(b)), which renders
the result of the specialization as a feature model and does not allow any editing.
Second, the views do not display the cardinalities stored in the specialization in-
stance, i.e., [min..max] and 〈min– max〉, directly. Instead, both views render the
model nodes according to their effective cardinality. The effective cardinality for
a feature and its corresponding rendering in the check-box and feature model
views are given in Table 2. In that table, c refers to the number of clones of
that feature. An entry of “—” in the second column means that the value of
state is insignificant for the case represented by the corresponding row. Feature
groups are rendered according to Table 1 and their effective cardinality. The
effective cardinality of a feature group with the group cardinality 〈min– max〉
and k features is defined as 〈min–min(max, k − e)〉, where e is the number of
features with the effective feature cardinality of [0..0] that are contained in the
group. The specialization step of feature or group cardinality refinement can be
achieved in the check-box view by directly editing the cardinality stored in a
node, with the only constraint that the refined stored cardinality is a subinterval
of the effective cardinality of the node’s origin.

4.3 Feature Model Synchronization Steps

Synchronization between a feature model and a specialization starts with an
automatic phase, possibly followed by an interactive phase. During the the au-
tomatic phase, synchronization steps are applied to the specialization, such as
adding, deleting, and relocating nodes, adding and removing attributes, and
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adjusting attribute values and cardinalities. The interactive phase may be nec-
essary in order to enforce new cardinality values by deleting or creating clones
and changing feature selections within groups and in order to re-establish global
constraints (such as implies and requires constraints) by further reconfiguration.
The changes in the interactive phase cannot be fully automated because there
may be many different ways to enforce cardinalities and global constraints and
the user may need to be consulted.

In the case of multiple specializations in a multi-stage scenario, the synchro-
nization steps need to be repeated for each stage. The direct specializations
of the feature model that was modified are synchronized first. Then the direct
specializations of the newly synchronized specializations are synchronized. This
process continues recursively until all models are synchronized.

The automatic synchronization steps are described in the remainder of this
section in an algorithmic style. In Appendix A, we indicate how these steps can
be represented as consistency rules between a model and its specializations in
the OMG QVT Relations language [4].

Addition. Node instances that are missing in the specialization are added.
For every node m in the original model and for every node s in m.spec, if m has a
child mChild for which there is no child sChild of s such that sChild.origin =
mChild, such an sChild is created. Note that since all the cloned features in the
specialization have a traceability link back to the original-model feature, adding
nodes underneath that feature means that the specializations of the nodes will
be added to each clone.

Removal. Node instances in the specialization whose origin attribute is
null are removed.

Changing attribute. If a feature f in the original model has an attribute
type, i.e., valueType �= NO VALUE, every feature in f.spec must have the same
attribute type. Furthermore, if f has an attribute value, every feature in f.spec
must also have the same attribute value.

Relocation. A model node and everything below may be moved from one
parent to another parent. As a result, the specializations of the changed model
are out of sync with the model. In particular, the parent of the model node and
the parent of a corresponding specialization node will not be connected by the
origin-spec traceability link. Due to the possible presence of clones, relocating
out-of-place specialization nodes is a challenge for synchronizing cardinality-
based feature models. Consider a simple feature model in Figure 5(a) and its
specialization in 5(b). Imagine that d is moved under c, as shown in Figure
5(c). There are different ways to synchronize. One way is simply to take all
the specialization nodes of d and copy them for each specialization node of c.
There are six d specialization nodes in 5(b). That means there would be six d
specialization nodes in each of the two c specialization nodes. In general, because
clones are collected throughout the hierarchy, this solution tends to produce an
excessive number of clones. Also, the high number of clones will often lead to
cardinality violations. The model allows a maximum of two clones of d, but the
relocation, as described, yields six clones.
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Another way is to perform relocation under a well-defined scope, as shown
in Figure 5(d). We could take the source container node, or b, in this case, and
the target container node, or c, and find the common ancestor node between
the two in the model, which is a. We could perform the relocation under the
scope of the common ancestor, by taking all the nodes of d under the ancestor
and copying them under each target node of c under the ancestor. In this case,
four d nodes would end up under the first c node and two d nodes would end up
under the second c node. Still, there is a cardinality violation, as four d clones
are not allowed according to the feature model. However, the move performed
against the second c clone is fine. This relocation method attempts to reduce
the probability and extent of cardinality violation. Nodes violating cardinality
are marked as such to allow the user to fix them manually.

(a) Model (b) Specialization (c) Modified model (d) Updated spe-
cialization

Fig. 5. Feature relocation example

The synchronization mechanism described can also be used for moving a
solitary feature into a feature group in the model. Moving the solitary feature into
the feature group this way would mean that both the corresponding prototypes
and their clones in the specialization would all end up in the corresponding
feature group. Alternatively, only the prototypes can be moved into the feature
group, discarding the clones. In any case, the prototypes and clones will be
marked for the user to be inspected manually. The user will have to choose
exactly one prototype or clone to keep among the prototypes and clones with
the same origin and delete the remaining ones.

Cardinality changes. The stored cardinality of every feature group and
feature prototype in a specialization has to be a subinterval of the effective
cardinality of the corresponding origin group or feature. If this is not the case,
min and/or max of the feature group or feature prototype need to be adjusted to
enforce this constraint. Finally, the number of clones in the specialization may
violate the stored cardinality of their corresponding prototype feature. Also, the
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number of selected features in a group may violate the stored group cardinality
Both kinds of violations have to be resolved by the user, as they may involve
deciding which nodes to delete and which nodes to create.

5 Related Work

We are not aware of any previous work on feature model synchronization. The
closest bodies of work are that on model synchronization and schema evolution.

There has been a considerable amount of effort in the model-driven develop-
ment community to provide generic frameworks for model transformation that
support synchronization. An OMG standard for model transformations called
“MOF 2.0 Query/View/ Transformation (QVT)” [4] is under development. In
Appendix A, QVT Relations language is demonstrated through the specification
of synchronization rules. Although there does not yet exist a publicly available
implementation of QVT, a prototype implementing some of its ideas was de-
veloped by IBM under the name Model Transformation Framework (MTF) [8].
MTF provides a concise language for specifying equivalence relations for models
represented using the Eclipse Modeling Framework (EMF) and a transforma-
tion engine. We have experimented with MTF as an infrastructure to implement
feature model synchronization for FeaturePlugin [5], a feature modeling tool for
Eclipse. The prototype implementation was able to synchronize node additions
and removal. Unfortunately, in its current state, MTF simply lacks support for
defining the custom constraints that are required to fully achieve synchroniza-
tion. A comparable approach to MTF is ModelWeaver, as proposed by Bezivin
et al. [9]. However, in contrast to MTF, which is EMF-centric, the ModelWeaver
approach focuses on relationships between different technical spaces, such as
MOF, XML, EMF, GrammarWare, etc.

Other works in the model transformation area include the efforts of Ivkovic
and Kontogiannis on synchronizing software artifacts across levels of abstrac-
tion [10]. In their approach, model dependencies are implicitly encoded using
transformation rules and an equivalence relation is used to evaluate when two
models become synchronized. Furthermore, Mens et al. use description logics to
synchronize between UML models [11].

The synchronization problem has also been explored in the context of schema
evolution, for example, in object-oriented databases [12,13,14]. Bernstein et al.
describe a general model management framework for schema evolution in which
mappings between models are treated as first class objects and operators are
defined for common operations on models, such as merging, matching, and dif-
ferencing [15]. They provide a concrete implementation of the framework called
Rondo that implements some model operators [16]. Also, Sprinkle et al. describe
the use of a graphical model transformation language to migrate models form
one version of a metamodel to another version [17]. The relationship between
a feature model and its configurations is comparable to that of a schema and
the data conforming to that schema. However, in contrast to schema evolution,
feature model evolution considers multiple stages of specialization.
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Mens et al. [18] propose a taxonomy for software evolution, in which they
also discuss dimensions relevant to model transformation such as the time and
frequency of updates. However, they are much less detailed and at a much higher
abstraction level with respect to model synchronization, compared to the dimen-
sions in Section 3.

6 Conclusion and Future Work

In this paper, we characterize the feature model synchronization problem accord-
ing to dimensions that are applicable to other model synchronization problems
and devise a solution to this problem. Important characteristics of our solution
are (1) the use of a uniform metamodel for representing feature models, special-
izations, and configurations; (2) a two-phase approach automatically synchro-
nizing node hierarchy, attributes, and cardinalities, and leaving the violations
of cardinalities and additional constraints (such as requires and excludes con-
straints) to be resolved using the constraint-solving facilities normally available
in feature model specialization and configuration. As a bonus, the unification
of the metamodel for feature models, specializations, and configurations lead to
the development of the check-box view as a uniform interface for editing both
specializations and configurations. This is in contrast to our prior work [5], in
which the specialization interface was different from the configuration interface.

We have explored two styles of expressing the synchronization logic. A rule-
based solution using the Relations language of QVT is presented in Appendix
A. As experience with this emerging standard and technology is still very scarce,
preparing these rules has been an interesting and useful exercise. Unfortunately,
we could not test them because no implementation of the language is publicly
available as of writing. However, we currently have a Java implementation of
our approach to feature model synchronization in an algorithmic style. The im-
plementation is a part of FeaturePlugin [5]. The synchronization facility in Fea-
turePlugin is used to synchronize feature models with their specializations and
configuration that are loaded into the tool. It is also used to synchronize feature
models with their metamodels after the metamodels have been modified The use
of our synchronization technique is possible in the latter case since metamodels
in FeaturePlugin are feature models, too.

In future work, we plan to explore different practical application scenarios
for feature model synchronization, including the case where the feature models
to be synchronized are distributed. Furthermore, we would like to better under-
stand the kind of changes needing synchronization that are common in practice.
On this basis, we would like to explore practical evolution and synchronization
strategies. For example, synchronizing feature additions is usually easier than
synchronizing removals and relocations. Thus, a conservative evolution strategy
could be to avoid changes other than extensions. Alternatively, modifications
could be achieved by including both the old and new parts in the new version of
a feature model, with the old part marked as obsolete. The feature model could
contain constraints and scripts to configure the new parts of a configuration
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based on the old parts of the configuration. Furthermore, we would like to un-
derstand what factors should be looked at to determine when and how often to
synchronize. Finally, we plan to explore the application of the constraint based
configuration facilities in FeaturePlugin to increase the automation level and
support the user in resolving cardinality and other constraint violations during
the interactive phase.

Acknowledgements

We would like to thank Ulrich Eisenecker and the anonymous reviewers for their
valuable comments on earlier drafts of this paper.

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston, MA (2001)

2. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented domain
analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (1990)

3. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration through spe-
cialization and multi-level configuration of feature models. Software Pro-
cess Improvement and Practice 10 (2005) 143–169 Available from http://
swen.uwaterloo.ca/∼kczarnec/spip05b.pdf.

4. Object Management Group, Inc.: Revised submission for MOF 2.0
Query/View/Transformation RFP (ad/2002-04-10). (2005) QVT-Merge Group,
version 2.0, ad/2005-03-02.

5. Antkiewicz, M., Czarnecki, K.: FeaturePlugin: Feature modeling plug-in for
Eclipse. In: OOPSLA’04 Eclipse Technology eXchange (ETX) Workshop. (2004)
Paper available from http://www.swen.uwaterloo.ca/∼kczarnec/etx04.pdf.
Software available from gp.uwaterloo.ca/fmp.

6. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature
models and their specialization. Software Process Improvement and Practice 10
(2005) 7–29

7. Batory, D.: Feature Models, Grammars, and Propositional Formulas. Technical
Report TR-05-14, University of Texas at Austin, Texas (2005)

8. Griffin, C.: Model Transformation Framework (2000-2004) Tool available at
http://www.alphaworks.ibm.com/tech/mtf.
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A Synchronization Rules in the QVT Relations Language

The following text shows how the synchronization rules can be specified in the
Relations language that is described in the latest approved version of the MOF
2.0 QVT proposed standard [4].

The synchronization is expressed as a transformation between a model and its
specialization (line 1). When the transformation is called with a specialization as
its target, the contained relations (lines 3 and 11) will be enforced (as indicated
on lines 6 and 14). The relation ModelRootFeatureToSpecializationRoot-
Feature requires that if a model root m (line 5) and a specialization root s (line
6) are connected by a origin-spec link (line 8), both roots will also satisfy the
ModelNodeToSpecializationNode relation (line 9). The latter relation states
that for every three matching nodes m, mChild, and s, such that m.child =
mChild and s is in m.spec (line 13), another node sChild must exist (line 14–
15). That node sChild must be a child of s, have mChild as its origin, and
satisfy ModelNodeToSpecializationNode together with mChild (lines 17–19).
If such a node does not exist, it will be created automatically. The rule also
states implicitly that any node in specialization that does not participate in the
relationship will be deleted.

1 transformation synchronization(model:FeatureMetamodel, specialization:FeatureMetamodel)
2 {
3 relation ModelRootFeatureToSpecializationRootFeature
4 {
5 checkonly domain model m:RootFeature{spec=aSpec:RootFeature{}}
6 enforce domain specialization s:RootFeature{}
7

8 when { s=aSpec; }
9 where{ ModelNodeToSpecializationNode(m, s); } }

10

11 relation ModelNodeToSpecializationNode
12 {
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13 checkonly domain model m:Node{child=mChild:Node{}, spec=s:Node{}};
14 enforce domain specialization sChild:Node{parent=sChildParent:Node{},
15 origin=sChildOrigin:Node{}};
16

17 where { sChildParent = s;
18 sChildOrigin = mChild;
19 ModelNodeToSpecializationNode(mChild, sChild); } }
20 }

It is relatively easy to extend the above code to handle the synchronization
of node names, attribute types, and attribute values. However, handling node
relocation and cardinality changes requires calls to imperative functions, which
can be provided as part of the metamodel.
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