

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 239 – 253, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Toward Standardised Model to Text Transformations

Jon Oldevik, Tor Neple, Roy Grønmo, Jan Aagedal, and Arne-J. Berre

SINTEF Information and Communication Technology,
Forskningsveien 1, 0373 OSLO, Norway

{jon.oldevik, tor.neple, roy.gronmo, jan.aagedal,
arne.berre}@sintef.no
http://www.sintef.no

Abstract. The objective of this work is to assess the qualities of the MOFScript
language, which has recently been submitted to the OMG as a proposed model
to text transformation language. This is done by identifying requirements for
this type of language and evaluating the MOFScript language with regard to
these. The language is presented along with a tool implementation and com-
pared with the alternative languages submitted to the OMG Model to Text RFP.

1 Introduction

Ever since dawn of software modelling, technologies have been around to provide
mappings from software models to useful technology platforms, such as databases,
implementation languages etc. Along with the maturity of the modelling domain, the
standardisation of modelling languages and technologies such as UML and the Meta
Object Facility (MOF)[1], and the adoption of these technologies in practical use, the
need for standardising transformation and mappings of these models has become
apparent.

This need is currently being addressed through the ongoing standardisation activi-
ties in OMG concerning model to model transformations (MOF Query, View and
Transformations – QVT)[2] and model to text transformations[4]).

The MOFScript language has been submitted as a proposal for a model to text
transformation language to the OMG. This paper identifies different requirements for
model to text transformation languages and evaluates the MOFScript language and
tool against those requirements. There are three competing languages to MOFScript
which are also discussed with regard to the requirements. The rest of this paper is
structured as follows: Chapter 0 gives some background in the area of model to text
transformation. Chapter 0 describes a set of requirements for model to text transfor-
mation languages. Chapter 0 describes the details of the MOFScript language and tool
and gives a brief evaluation. Chapter 0 describes related work and chapter 0 con-
cludes.

2 Background

Traditionally models have been used in software development to define and under-
stand the problem domain or the different aspects of a system’s architecture. After the

240 J. Oldevik et al.

modelling, one dove into implementation of the system without updating the models
based on the actual implementation that was made. This issue is remedied within the
MDA paradigm where the models are the prime artefact. From these artefacts large
portions of the source code for the system can be generated.

The issue of generating code from models can be abstracted to the term model to
text transformations as opposed to model to model transformations. The goal is to be
able to create textual artefacts based on model information. Textual artefacts include
other things than source code, such as various types of documentation.

Typically a code generator will not be able to generate all of the code that is
needed to implement a system. Certain facets of a system, e.g. the static parts, are
well suited for code generation, while there are challenges in modelling the more
dynamic parts, for instance method bodies of classes. This means that parts of the
source code for a system will be generated from the models while other parts will be
hand crafted. The ability to protect the hand crafted parts of the code from subsequent
code generation passes is important. In some cases one even may want to update the
model based on changes made in the source code. One may say that the same issue is
relevant for document generation, where one typically may want to add writings that
are not part of the model to the resulting document.

The task of writing model to text transformation definitions will probably not be
carried out by all software developers. However, it is important that the language used
for such definitions is as easy to use as possible, e.g. by sharing properties with com-
mon programming or scripting languages. The usability of the language can made
better through good tool support including features such as code completion, a feature
present in most integrated development environments (IDEs) for normal program-
ming languages today.

3 Requirements for Model to Text Transformation Languages

In the Request for Proposal (RFP) for MOF Model to Text Transformation[4], a set of
requirements to such languages is identified. These are high-level requirements that
provide a framework for defining a language that will fit the OMG way of thinking
and align well with already adopted OMG specifications. The essential requirements
that must be met include the basic ability of generating text from models, specifying
transformations based on metamodels, the ability to specify complex transformations,
the ability to allow multiple input models/metamodels for transformations, support for
text manipulation functions, and reuse of existing standards, such as QVT, Object
Constraint Language (OCL)[12], and MOF.

In addition, there are other obvious requirements, such as the ability to generate
text to files, and the ability to query model element properties, which need to be sup-
ported by a model to text transformation language.

We acknowledge the OMG requirements as essential basic properties, and extend
with a set of additional requirements that we deem desirable for a model to text trans-
formation language. Some of these were previously identified in [6].

 Toward Standardised Model to Text Transformations 241

1. Structuring: The language should support structuring and control of text genera-
tion. This means that it should be possible to specify structures that orchestrate a
set of finer grained text generations.

2. Control mechanisms: It should provide basic control flow mechanisms. This im-
plies that it must be possible to provide the semantic equivalent of loops and condi-
tional statements.

3. Mix code and clear text: It should provide a simple way of combining transforma-
tion code (logic), model data, and clear text. It shall also provide a way of convert-
ing model data to strings and use this in produced text

4. System services: It should provide support for string manipulation functions. It
should also provide the ability to interact with system services or library functions,
e.g. inquiring about the current date and time.

5. Ease-of-use: The concrete language should show similarity with existing well
known approaches in order to be easy to use (such as programming or scripting
languages). Adhering to aspects of the forthcoming QVT standard concrete syntax
may also be beneficial.

6. Expressiveness: Finally, it should provide expressiveness to support expected do-
main needs; sufficient expressiveness may be a trade off with respect to ease of
use.

The above described requirements are related to qualities of the transformation lan-
guage. Some pertinent aspects for model to text transformation need to be addressed
outside the scope of the language itself, and rather in the architecture of the tools
implementing the language. Specifically, this is valid for change management scenar-
ios such as incremental generation, reverse engineering, and round-trip engineering.
Support for traceability between model elements and generated text can facilitate
these aspects. Traceability links are also independent of the transformation language
itself, although the language may open for defining configuration properties that con-
trol the nature of traceability links. The language itself may also define mechanisms
to control the processing of such links.

The following chapter will look at the MOFScript language in detail and discuss
how it meets the identified requirements.

4 The MOFScript Language

The MOFScript language has been defined to answer the needs of a standardized
model to text transformation language, as called for by the OMG in the MOF Model
to Text Transformation RFP[4]. MOFScript is based on the QVT-Merge[3] specifica-
tion in terms of metamodel extensions and lexical syntax.

A MOFScript rule is a specialisation of QVT-Merge operational mappings, and
MOFScript constructions are specialisations of QVT-Merge constructions. The main
goals with the language are to provide ease-of-use, minimize additions to QVT, as
well as providing flexible mechanisms for generating text output. It is presumed that a
source metamodel is defined on which one can perform queries. This is analogous to
QVT, while the explicit definition of a target metamodel is not required in MOF-

242 J. Oldevik et al.

Script. MOFScript can be classified as an imperatively oriented language with tradi-
tional scope rules and with optionally typed variables.

The following sections look at the details of the MOFScript language, a tool that
implements it, and an evaluation considering the requirements identified.

4.1 The Lexical Language

Module: MOFScript transformations are packages within modules, which defines the
properties and rules of a transformation. A module is denoted with the keyword
“textmodule” followed by a name for the module. The initial part of the module is
identical to a QVT mapping rule module except for the keyword which is called
textmodule as opposed to the QVT module.

textmodule UML2WSDL (in uml:uml2)

A module can import and reuse rules defined in other modules. This is achieved
with the ‘access library’ statement.

access library Uml2wsdl ("uml2wsdl-lib.m2t")

Rules: The transformation rules are defined with a name and a potential context type.
A rule may have a return type. It may also have a guard. The syntax is similar to that
of QVT mappings. There is no specific keyword associated with the declaration of
rules.

uml.Class::classToJava () {
 // statements }

The guard for a rule is defined in the same manner as guards in QVT, using a
‘when’ clause.

uml.Class::classToJava ()
 when {self.getStereotype() = ‘Entity’}
{ // statements }

Files and Output Printing: Files are the most important kind of output device for
text. A file is declared with a set of properties: name, extension, directory, and type.
The File name property must always be present. File name and directory can be speci-
fied as separate properties. The directory portion may also be embedded in the file
name property.

A file can be used implicitly or explicitly in output statements. For example, if a
file device is declared, subsequent output statements will use that device as the target.
If several file devices are declared, the latest one is used by default. If a specific de-
vice is the target, it can be referenced by its name. Output printing is done by using
standard print functions or escaped output. The standard print functions are either
‘print’ or ‘println’, which output an expression (the latter adds a new line character
(for the appropriate platform / encoding).

A couple of other utility print functions are defined, to provide easier whitespace
management: newline (or nl), tab, or space, followed by an optional count integer.
Standard String escape characters (\n\t) are also legal within String literals.

file (“an-output-file.txt”)
<%
 This text is generated to the output file.
%>

 Toward Standardised Model to Text Transformations 243

file f2 (“AnotherFile.txt”)
file (“Yet-another.txt”)
println (“ Now, I am writing to the file ‘yet-another.txt’”)
f2.println (“ Now, I am writing to the file ‘AnotherFile.txt’”);

Escaped Output: Escaped output provides a different and in some cases simpler way
of providing output to a device. Escaped output works similar to many scripting lan-
guages, e.g. Java script.

Escaped output is signalled by escape characters, beginning and ending of an es-
cape. Basically, it is a print statement that can subsume multiple lines and be com-
bined with all expressions that evaluate to a string. Escaped text is signalled by the
characters ‘<%’ to start an escape and ‘%>’ to end an escape. Note that whitespace is
copied to the output device.

uml.Operation::bindingOperation () {
 <%
 <operation name="%> self.name <%">
 <soap:operation soapAction="%> nameSpaceBase + self.name <%"
style="document"/>
 <input>
 <soap:body%>
 if (self.ownedParameter.size() > 0) {
 <% parts="%> self.getParameterOrder() <%"%>
 }
 <% use="literal"/>
 </input>
 <output>
 <soap:body%>
 if (self.returnResult.size() > 0){
 <% parts="response"%>
 }
 <% use="literal"/>
 </output>
 </operation>
 %>
}

Properties: Properties are used in the same manner as in QVT. They can be defined
at the module level or within a rule. There are two types of properties; local properties
which are constants within a module or a rule, and configuration properties which are
global properties that may be used in many transformations.

property javaPackageName = “org.sintef”

A property cannot be modified after its declaration. It is typically used in output
statements.

<% The Java package name is: %> javaPackageName <% Nothing more,
nothing less %>

Variables: Variables are defined and used as in QVT. They can be defined globally
for a module, or locally within a rule. A variable can have an assigned value when
declared, which can be modified during its lifetime.

var exportCounter = 0
var modifiableName:String = “temporary name”;
var storedNames:Hashtable;

244 J. Oldevik et al.

A variable can be typed. The standard OCL types are used (String, Boolean, Inte-
ger, Real). In addition, the Collection types List and Hashtable are introduced in
MOFScript, which are similar to List and Hashtable classes in Java. These are used
for holding sets of values during transformation execution, e.g. to temporarily store
pre processed information that is needed several times during generation.

var packageNames:List
var packageIdList:Hashtable
self.ownedMember->forEach(p:uml.Package) {
 packageNames.add (p.name)
 packageIdList.put (p.id, p.name)

 }
if (packageIdList.size () > 0) {
 <% Listing the package names that does not start with ‘S’ %>
 packageIdList->forEach (s:String | not(s.startsWith(“S”)) {
 <% Package: %> s
 }
}

Iterators: Iterators in MOFScript are used primarily for iterating collections of model
elements from a source model. A for-each block expression defines an iterator expres-
sion which also has a block of executable expressions.

It works similarly to forAll in OCL or the shorthand iterator expressions from
QVT.

-- applies to all objects in the collection
-- of type DBTable that has a name that starts with ‘a’
c.elements->forEach(e:DBTable | e.name.startsWith(“a”)) {
 -- statements
}

If-Then-Else: If-expressions provide basic functionality for controlling execution
based on logical expressions. An if-expression has a condition and a block of state-
ments that are executed if the condition is met. It might have a set of else conditional
branches and an empty else branch. It basically has the same semantics as any con-
ventional programming language if statement.

uml.Package::interfacePackage () {
 if (self.name = "Interface Model") {
 self.ownedMember->forEach(p:uml.Package) {
 p.interfacePackages()
 }
 } else {
 stdout.println (“Error in model.”)
 }
}

Invoking Rules: Text transformation rules are invoked either directly or as part of
expressions.

uml.Package::interfacePackages () {
 if (self.getStereotype() = “Service”){
 file (rootdir + self.name.toLower() + ".wsdl")
 self.wsdlHeader()
 self.ownedMember->forEach(i:uml.Interface) {

 Toward Standardised Model to Text Transformations 245

 i.wsdlPortType()
 }
 self.wsdlFooter()
 }
}

Return Results: Text transformation rules may have return results. This is most use-
ful for defining helper functions.

uml.TypedElement::getType () : String {
 if (self.type.name.equalsIgnoreCase("string"))
 result = "xsd:string"
 else
 result = self.type.name
}

Library Functions: MOFScript defines a set of functions to support manipulation of
strings and collections. The string manipulation functionality is similar to that pro-
vided in Java. In addition it defines utility functions to manage white space, and func-
tions to retrieve system date and time. It currently does not provide additional func-
tions to interact with the system environment.

4.2 The MOFScript Tool

This section gives an overview of the MOFScript tool, a tool supporting the definition
and execution of model to text transformations using the MOFScript language, im-
plemented as an Eclipse plug-in, which is available for download[8].

The architecture: The MOFScript tool is developed as two main logical architectural
parts: tool components and service components (see Fig. 1). The tool components are
end user tools that provide the editing capabilities and interaction with the services.
The services provide capabilities for parsing, checking, and executing the transforma-
tion language. The language is represented by a model (the MOFScript model), an
Eclipse Modeling Framework (EMF) model populated by the parser. This model is
the basis for semantic checking and execution. The MOFScript tool is implemented as
an Eclipse plug-in using the EMF plug-in for handling of models and metamodels.

The Service Components consist of these component parts: The Model Manager is an
EMF-based component which handles management of MOFScript models. The Parser
and Lexer are responsible for parsing textual definitions of MOFScript transformations,
and populating a MOFScript model using the Model Manager. The parser is based on
antlr[7]. The Semantic Checker provides functionality for checking a transformation’s
correctness with respect to validity of the rules called, references to metamodel elements,
etc. The Execution Engine handles the execution of a transformation. It interprets a model
and produces an output text, typically to a set of output files. The Text Synchroniser han-
dles the traceability between generated text and the original model, aiming to be able to
synchronize the text in response to model changes and vice versa.

The Tool Components consist of these component parts: The Lexical Editor provides the
means of editing transformations, invoking the parser, checker, and the execution engine.
The Result Manager is responsible for managing the result of a transformation in a sensible
way, such as integrating result code files in an Eclipse project.

246 J. Oldevik et al.

Fig. 1. MOFScript component and tool architecture

The Outline Viewer, Preference Manager, and Problem Viewer provide simple
graphical components to guide the user in writing and executing transformations.

The Model: This section shows the model design used in MOFScript. It is used to generate
the EMF model representation of MOFScript, which in turn is utilized by the parser (which
produces instances of it) and the Execution Engine. Fig. 2 shows the main MOFScript model
structure.

- The MTTTransformation class represents a MOFScript transformation module. It
has a name, it imports a set of other transformations, it may have parameters, and
variable/constant declarations. Finally, it has a set of transformation rules.

- A TransformationRule represents a rule (or a function) within a MOFScript trans-
formation. A rule owns a set of statements (it is a MTTStatementOwner), and may
have parameters and a return type. Rules define the behaviour of a transformation.

- The MTTImport class represents the import of external transformations for a trans-
formation module (MTTTransformation). It is represented by a name and a URI.

- The VariableDeclaration class represents variable or constants (properties) for a
module (or for statement owners. It has a name, a type, a constant flag and a cal-
culatedValue property (to store the value of simple variables). Basic OCL variable
types are supported (String, Boolean, Real, Integer), as well as List and Hashtable
types.

A transformation rule consists of different kinds of statements that define the opera-
tional logic of the rule:

- The PrintStatement class represents printing to a file or to standard output. Print
statements produce output towards either the current output device or an explicit
prefixed output device. A special syntactic kind of print statement is escape state-
ments, which provide direct output without a print/println command. A print /
println statement without prefix will produce output to the current output device.
The same will an escaped output statement do.

- The ResultAssignment represents the assignment of a value to the result of a rule.

 Toward Standardised Model to Text Transformations 247

- The IteratorStatement represents a loop that iterates on a collection of elements
(typically a collection of model elements in a source model). For each element in
the collection, a set (a block) of statements is executed.

- The IfStatement represents a normal if statement with a condition. It may have an
else branch.

- The GeneralAssignment represents an assignment of a value to a variable
- The FunctionCallStatement represents an explicit call to a rule.
- The FileStatement represents the declaration of an output file context, which can

be used to print output with print statements.

MTTImport

VariableDeclaration MTTStatementOwner

0..*

+variables

0..*

MTTStatement

0..*0..*+statements

MTTTransformation

name : String

0..*

+variables

0..*

0..*
+constants
0..*

0..*

+imports

0..*

TransformationRule

isEntryPoint : boolean
name : String
return : String

0..1

+extends

0..1

MTTParameter

0..*

+parameters

0..*

0..1+context 0..1

0..*0..*

+parameters

Fig. 2. MOFScript model structure

The User Interface: The MOFScript tool UI is provided through Eclipse editor func-
tionality. It encompasses, as depicted in Fig. 1, a lexical editor, an outline viewer, a
configuration manager, and a problem viewer. The lexical editor provides syntax
high-lighting and useful code completion associated with the currently active meta-
models.

4.3 Change Management

Change management is a highly pertinent issue for model to text generation and in-
volves several aspects, such as management of manual changes to generated code,
management of changes to source models, handling reverse engineering and model
synchronization, tracing mode information to generated code, and round-trip engi-
neering.

MOFScript does not specify any language-specific mechanisms to support trace-
ability, but a metamodel has been defined to potentially manage the traces from a
source model to target files.

248 J. Oldevik et al.

TraceabilityModel

id : String
name : String
description : String
creationDate : String
sourceModelURI : String

ModelE lement
(from EMOF)1

+sourceModel

1

ModelProperty

propertyName : String
propertyValue : String

Trace

tracingDescription : String
sourceReference : String

0..*

+t races

0..*

1+originatingElement 1

1

+propertyReference

1

File

fileUri : String
fileGenDate : String

0..*+targetFi les 0..*

FileLocation

offset : Integer
length : Integer1

+location

1

Fig. 3. Model to Text Traceability Model

Traces in this model are managed per model element of the source model. For each
(relevant) model element, links are managed to files and file locations within those
files that reference the model element.

Source model changes: Changes to source models are only an issue if the already
generated text/code has been manually modified, and not yet synchronized with the
model. In this case, traceability information can be used to synchronize modified text
with newly generated.

Traceability of model information in generated code: In order to support manual
changes in generated files, a kind of traceability mechanism that associates generated
text with model elements must be in place.

A commonly used solution for handling this is to provide tags in the generated
code, which establishes the relationship with a part of the text (such as a property or a
method) with a model element. This kind of scheme will define a set of relationships
between the generated text and the model. These kinds of tags are however dependant
of the target language, so they cannot be standardized. The MOFScript language must
offer a flexible, user-defined tag mechanism, which can be used as delimiters in the
generation (typically, these are embedded as part of comments, Javadoc or similar).

Another solution is to manage traceability information in a separate model, refer-
encing the source model and the generated text files.

4.4 Evaluation of MOFScript

MOFScript supports the basic requirements described in the OMG RFP, i.e. it is ca-
pable of generating text based on MOF M2 metamodel specifications, it supports
manipulation of strings, it can generate files, etc.

This section looks at the additional requirements and assesses how MOFScript
meets those requirements.

1. Structuring: Structuring is supported through definition, composition, and invoca-
tion of transformation rules. A transformation can import other transformations,
and a rule can invoke other rules in a structured manner.

 Toward Standardised Model to Text Transformations 249

2. Control mechanisms: Control mechanisms are provided by supporting iteration
over model collections as well as for conditional processing (if-statements).

3. Mix code and clear text: Code, clear text output, model references and other ex-
pressions can easily be combined in print and escaped print statements.

4. System services: MOFScript provides the ability to interact with a limited set of
system services, based on what is considered most useful. This is open for future
extensions.

5. Ease-of-use: The MOFScript language was originally designed to have a look and
feel similar to existing programming languages. It then migrated toward the look
and feel of the QVT textual concrete syntax in order to establish the compatibility
at that level.

6. Expressiveness: The expressiveness of MOFScript is kept on an as-simple-as-
possible level and defined on a need-to-have basis. Its resulting concrete syntax is
therefore quite simple, yet expressive enough to handle complex model to text
transformation tasks.

The current MOFScript tool[8] realisation implements all aspects of the language
described here, except for guards on transformation rules and change management
functionality.

5 Related Work

The most relevant work in this context is the alternative languages submitted to the
OMG MOF Model to Text RFP process in three other proposals.

Basically, all the proposals meet the general requirements of the RFP. This chapter
will describe the proposals and discuss their positions concerning the additional re-
quirements identified in this paper.

5.1 MOF2Text Partners and the Template Language Specification (TPL)

The MOF2Text partners consist of Mentor Graphics, Pathfinder Solutions, and Com-
puware Corporation. Their submission [9] presents an imperative approach which also
focuses on aspect-oriented concepts. The concrete language is called Template Lan-
guage Specification (TPL). TPL defines Patterns, which are basic structuring mecha-
nisms, similar to modules. They can extend and import other patterns or block librar-
ies. It defines Methods as invokable units, which are evaluated in the context of an
active output buffer. Methods have parameters, and seem to be defined without any
particular metamodel context. A special kind of parameter is a Literal Parameter,
which allows for sending complex literal expressions as parameters (these may have
parameters themselves). File statements declare active output buffers. The language
provides basic control statements in terms of ‘if’-statements and ‘for’-statements, and
variable assignment in terms of ‘let’-statements.

This submission focuses heavily on the use of aspects as a central mechanism.
These are defined within the metamodel, but are not so visible in the concrete syntax.

250 J. Oldevik et al.

The listing below gives a brief overview of how this submission meets the identified
additional requirements.

1. Structuring: Structuring is supported in terms of Patterns and Methods. In addition,

the concept flexible literal parameter, allows for complex parameters to be passed
to methods.

2. Control mechanisms: Control mechanisms are provided in terms of for-statements
and if-statements.

3. Mix code and clear text: Clear text can be combined with model expressions to
produce output.

4. System services: The MOF2Text submission defines a set of operations for string
and buffer manipulation. It also defines the notation of context operations, which
support the notion of functions on well-known objects (e.g. introspection). Addi-
tional environment operations are not mentioned.

5. Ease-of-use: TPL uses a tagged-based syntax, with square brackets that defines
keyword tags in an XML-like manner: CREATE SCHEMA [SCHEMANAME(schema)/];
The MOF2Text metamodel is aligned with MOF and OCL, but does not seem to
consider the QVT metamodel. The concrete syntax (TPL) is not aligned with QVT.
It appears to be less than easy-to-use.

6. Expressiveness: The TPL concrete language provides a tag-based syntax, providing
advanced template-like substitution mechanism with the literal parameters. There
is however discrepancies between the concrete syntax and the metamodel de-
scribed, e.g. in lack of aspect support. The language seems to provide a high degree
of expressive power.

5.2 Interactive Objects (IO)

The IO submission [10] presents a declarative approach with a two-phase transforma-
tion strategy. The first phase is the calculation of a target text model based on trans-
formation rules. The second phase is the serialization of text from this model. The
submission defines a range of special structuring concepts: Artifact, Section, and Slot
define the things to generate. In practice, artefacts represent files. Sections represent
(method-like) parts of those artifacts. Slots are properties of an artifact, which are
assigned at runtime. An artifact defines parameters (typically with types from the
source metamodel) similar to an operation. A Section defines a kind of method which
is used by an artifact. It always returns a sequence of its respective type. Pool parame-
ters represent references to collections of objects (typically from the source model),
assigned using an OCL expression. The concept Record is used to define functions
that cannot produce output text. These are used to group construction of multiple
artifacts. The concept Transformation defines an entry point for a transformation,
relates to the source metamodels, and invokes artifact sections. The actual text pro-
duction is performed by templates linked with artifacts and sections. These are de-
fined externally (in separate template files) and provide output text combined with
usage of section and artifact slots (properties).

The listing below gives a brief overview of how this submission meets the identi-
fied requirements.

 Toward Standardised Model to Text Transformations 251

1. Structuring: The IO language defines a particular kind of language to structure text
transformations, controlled by artifacts, sections and slots. These effectively repre-
sent model elements of a text/file model, which in turn is used to generate text us-
ing text templates.

2. Control mechanisms: Control mechanisms are implicit in matching mechanisms of
templates. No explicit mechanisms seem to be defined.

3. Mix code and clear text: Code and text output are combined within template files.
4. System services: The IO language does not specify any ability to interact with sys-

tem services.
5. Ease-of-use: The IO language seems designed to match the artifact metaphor used

in IO‘s tool (ArcStyler). This gives it a distinct structure and style to match the IO
graphical transformation structure. It does not seem to reuse any part of the QVT
metamodel or syntax. It does, however, reuse OCL for expressions. The language
architecture may cater for a high learning curve, but may also be easy to use when
first learned.

6. Expressiveness: The IO language proposes a declaratively tuned language, where
artifact structure is defined independently of template files. Although defining a lot
of specialised concepts, it the approach seems flexible and providing for sufficient
capabilities.

5.3 Tata Consultancy Services (TCS)

The TCS submission [11] defines an imperative approach based on templates rules.
Template rules can be structured into modules. A template rule consists of output text
(clear text) in combination with control logic (such as for loops) and metamodel ref-
erences. Other template rules are invoked explicitly. Template rules may have guards
and may override other template rules. A module can extend other modules. Concep-
tually, the TCS submission seems similar to MOFScript, although different in look
and feel.

The listing below gives a brief overview of how this submission meets the identi-
fied requirements.

1. Structuring: Structuring is provided in terms of modules that can import other

modules, and rules that can invoke other rules.
2. Control mechanism: Control mechanisms are provided in terms of for-loops and

guards on rules.
3. Mix code and clear text: Output combines clear text with model reference expres-

sions.
4. System services: The TCS language specifies a library for string manipulation and

setting current output file. It does not provide other means of system library inter-
action.

5. Ease-of-use: The TCS language defines a quite simple syntax that combines tem-
plate code with clear text output, similar to a scripting language. The TCS lan-
guage reuses MOF and OCL concepts, but does not seem to relate to QVT. It ap-
pears to be as an easy-to-use language.

6. Expressiveness: The TCS language is based on simple principles of templates
providing output and calling other templates. It seems to have necessary expres-
siveness to support complex text transformations.

252 J. Oldevik et al.

5.4 Summary

Based on this comparison we can learn that it is not that easy to differentiate the con-
cepts in the different submissions. Although different in the flavour of concrete lan-
guage, the conceptual differences are not that big. Clearly, concepts such as the as-
pect-oriented focus of the MOF2Text proposal are clearly distinct. The two-phase
transformation focus of the IO proposal appears conceptually distinct in its more
declarative approach, as well as the separation between structure and output tem-
plates. The TCS proposal is conceptually very close to what is proposed in MOF-
Script with most distinctions at the concrete syntactical level.

6 Summary and Conclusion

This paper has described the MOFScript language and tool with evaluation against a
set of criteria that we see as important for a model to text transformation language
standard. These criteria are used also to evaluate the other proposals for the MOF
OMG Model to Text transformation RFP.

The MOFScript language and tool allow a user to define model to text transforma-
tions from instances of arbitrary metamodels. The language has party based on the
definitions from the current QVTMerge specifications, thus keeping the family of
transformation languages as similar as possible.

The implementation of the MOFScript tool as an Eclipse plug-in allows for its us-
age as part of a MDD workbench that can include modelling tools, model to model
transformations and model to text transformations in addition to the standard pro-
gramming environment. We believe that it is necessary to have the model to text
transformation tool (at least the execution part) as a tightly integrated part of the
MDD tool chain or workbench. Otherwise the number of tool changes needed to
complete a full MDD iteration will become too large, causing developers to loose
focus through the context changes. This need should of course be balanced with the
important issue of choosing the best tool for the task.

Currently the MOFScript tool and language are being used in pilot projects within
the MODELWARE* project in order to assess the ideas and to provide feedback and
input to the further development. Early feedback indicates that some of the QVT like
syntax is somewhat unfamiliar to the developers.

From the current status of OMG submissions, it is not easy to see exactly which di-
rection the standard for model to text transformation is headed. A standard needs to
accommodate several requirements, but most importantly, it needs to be usable and
used. Time will show if the involved parties are capable of arriving of a best-of-breed
integration that will be able to meet this requirement.

Acknowledgment. The work presented here has been carried out within the
MODELWARE project (IST Project 511731)*.

* MODELWARE is a project co-funded by the European Commission under the "Information

Society Technologies" Sixth Framework Programme (2002-2006). Information included in this
document reflects only the author’s views. The European Community is not liable for any use
that may be made of the information contained herein.

 Toward Standardised Model to Text Transformations 253

References

1. Meta Object Facility 2.0, MOF 2.0 Core Final Adopted Specification, OMG document
ptc/03-10-04

2. MOF 2.0 Query / Views / Transformations RFP, OMG document ad/2002-04-10
3. QVT-Merge Group, Revised submission for MOF 2.0 Query/Views/Transformations RFP

version 2.0, OMG document id ad/2005-03-02, http://www.omg.org/cgi-
bin/apps/doc?ad/05-03-02.pdf

4. MOF Model to Text Transformation Language RFP, OMG document ad/04-04-07,
http://www.omg.org/cgi-bin/apps/doc?ad/04-04-07.pdf

5. MOFScript Revised Submission to the MOF Model to Text Transformation RFP , OMG
document ad/05-05-04, http://www.omg.org/cgi-bin/apps/doc?ad/05-05-04.pdf

6. J. Oldevik, T. Neple, “Model Abstraction versus Model to Text Transformation”, position
paper at European Workshop on MDA (EWMDA)

7. ANTLR, ANother Tool for Language Recognition, http://www.antlr.org/
8. MOFScript Eclipse plug-in, http://www.modelbased.net/mofscript
9. MOF2Text Partners Revised Submission for MOF Model to Text Transformation Lan-

guage RFP, OMG document ad/2005-05-14, http://www.omg.org/cgi-bin/apps/doc?ad/05-
05-14.pdf

10. Interactive Objects MOF Model-To-Text Transformation Language RFP – First Revised
Submission, OMG document

11. Tata Consultancy Services, Submission for MOF Model to Text Transformation Lan-
guage, OMG document ad/2005-05-15, http://www.omg.org/cgi-bin/apps/doc?ad/05-05-
15.pdf

12. UML 2.0 OCL Specification (OCL 2.0), OMG Document ptc/03-10-14

	Introduction
	Background
	Requirements for Model to Text Transformation Languages
	The MOFScript Language
	The Lexical Language
	The MOFScript Tool
	Change Management
	Evaluation of MOFScript

	Related Work
	MOF2Text Partners and the Template Language Specification (TPL)
	Interactive Objects (IO)
	Tata Consultancy Services (TCS)
	Summary

	Summary and Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

