

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 220 – 238, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Towards General Purpose, High Level,
Software Languages

Anneke Kleppe

Klasse Objecten, Netherlands
a.kleppe@klasse.nl

Abstract. A highly significant benefit of MDA is that it raises the level of
abstraction at which the soft-ware developer is able to work. However, the
languages available to the developer have not seen much change in the last
decade. Modeling languages offer high level concepts, but the pre-dominant
modeling language (UML) offers too little expressive power to be able to
specify a system completely. Meanwhile, the level of abstraction of most
programming language con-cepts is the same as 10 to 15 years ago. Although
transformation tools may to some extent bridge the gap between modeling and
programming languages, in practice the developer still needs to do both
modeling and programming. This means switching between the two levels of
abstractions, which is difficult for most people. We argue that a general
purpose, high level, software language is necessary to get MDA adopted. This
language will enable any developer to focus on the problem at hand while the
supporting tools - transformation tools or generators- take care of the nitty
gritty details. This paper introduces an early version of such a language, which
brings together a number of powerful concepts from various sources: UML,
OCL, design patterns, existing programming languages, and eventually aspect-
oriented languages.

Keywords: Modeling language, programming language, UML, OCL, design
patterns, domain specific languages, MDA, model transformations.

1 Introduction

MDA claims amongst others the following benefits: portability, interoperability, and
productivity. These benefits are all very difficult to realise. In fact, almost every hype
in the last two decades promised similar benefits, most of which were not or only to
small extent realised. In our opinion the only real — but highly significant — benefit
of MDA is that it raises the level of abstraction at which the software developer is
able to work.

In the last decade, the expressive power of programming languages has developed
slowly. The latest truly innovative concept that was incorporated in a programming
language, is the interface, which dates from around 1994. On the other hand, there
were some very interesting new developments, like the emerge of UML, design
patterns, aspect-oriented languages, and last, but not least, OCL. Each of these
developments offers new high level concepts: associations, patterns, aspects,
collection iterators, etc. Few of these concepts have been incorporated into pro-

 Towards General Purpose, High Level, Software Languages 221

gramming languages, which means that few of these concepts are easily available for
the average software developer. If these concepts could be incorporated into a single
language, this language would be very powerful, and would greatly add to the
developer’s ability to create the complex systems that customers demand.

This paper introduces an early version of Alan (short for A LANguage), which is a
new software language that brings together a number of powerful concepts from
various sources. Its aim is to bring more power to the software developer, and thereby
realising one of the claimed benefits of MDA: increased productivity.

In [1] we defined 6 levels at which software development can take place. These
levels are called Model Maturity Levels. Alan is a language that can be used to
develop software at Modeling Maturity Level 4 or 5. At level 4 a model/program is a
consistent and coherent set of texts and/or diagrams with a very specific and well-
defined meaning. At level 5 the model/program contains enough information that the
system can be generated completely. No adjustments need to be made to the resulting
code.

Large parts of this paper, in particular sections 2 and 3, deal with the question why
Alan was created. After we have explained the rationale behind Alan, we sketch the
outlines of the language in section 4. Our plans for future work are presented in
section 5. Section 6 contains some remarks on related work and some conclusions.

2 Rationale

We call Alan a high level, general purpose, software language. There are a large
number of arguments for creating a this new type of language. We will encounter
most of them as we explore the various parts of the term high level, general purpose,
software language.

2.1 Software Language

Traditionally modeling and programming are viewed to be different. Differences like
the ones in table 1 are commonly mentioned. Furthermore, traditionally there has
been a gap between the analysis and design phase, and the implementation phase (the
gap that two decades ago was supposed to be bridged by object orientation).
Apparently, the expressive power of modeling languages stops somewhere along the
line of the development process, and at that point the existing artefacts need to be
transformed into one or more programming language artefacts, after which the
development process can proceed.

Although we are living in a different era, many of the misconceptions of the
previous age remain. It is for this reason that the question “what is the difference
between a model and a program” pops up time and again. On the positive side, we see
that the interest in MDA has brought us (at least some) agreement that both models
and programs are descriptions of software systems. On the other hand MDA opens a
wide chasm between platform specific and platform independent models, which at
first glance appears to be just a different terminology for what used to be called
models and programs. The problem here is the definition of the notion of platform.

222 A. Kleppe

Table 1. Perceived differences between modeling and programming languages

Modeling Language Programming Language
imprecise precise
not executable executable
overview detailed view
high level low level
visual textual
informal semantics execution semantics
analysis by-product end product

Fortunately, Atkinson and Kühne [2] have provided a definition of platform that
crosses the divide. In their view a platform consists of the combination of a language,
predefined types, predefined instances, and patterns, which are the additional
concepts and rules that are needed to use the capabilities of the other three elements.
Using this definition each model (or program) is bound to a certain platform. It is
100% platform specific to the language it is written in, and to the types, instances, and
patterns associated with that language. In the same manner it is more or less
independent of any other platform.

Anything written in this new type of language that we propose, is therefore 100%
dependent upon the platform defined by such a language, and by its types and
instances. If the language offers high level constructs, we may call it a modeling
language. If the language is textual and/ or executable we might call it a programming
language. Because this new type of language aims to combine the good aspects of
both, we simply call it a software development language, or software language.

The question remains how to name the product written in a software language,
should it be called model or program? The answer can be found in the fact that
software languages build a bridge between programming and modeling. If a model is
precise and executable, why not call it a program? Because the end result of software
development has long been called program and because in the eyes of the developer
the product written in a software language will be the end product, we choose to call
it program as well.

2.2 General Purpose Language

Recently there has been much attention to the subject of domain specific languages
[e.g. 3, 4]. In fact, some people argue that all MDA transformations transform domain
specific languages to programming languages. In contrast, we think that there are
sufficient grounds to introduce a general purpose language.

First, tool development for domain specific languages is at least as complex as for
general purpose languages, whereas the potential number of users of these tools is
much larger for general purpose languages. Thus, for economical reasons it is a good
thing to have general purpose languages.

Second, domain specific languages are positioned as languages that can be
developed by the domain experts themselves. If the supporting tools allow each

 Towards General Purpose, High Level, Software Languages 223

expert to define his own domain specific language, the world would see a new version
of the story of the Tower of Babel [5]. None of the experts, even in the same domain,
would be able to understand the language built by one of his colleagues.

Third, the line between domain specific and general purpose, or as one might say
domain independent, is as blurred as the line between platform specific and platform
independent. For instance, there are arguments to say that graphical user interface
design is a separate domain; only user interfaces contain buttons and windows. On the
other hand, a graphical user interface is part of almost every software system, either in
the form of traditional windows and subwindows, or in the form of webpages and
frames or tables.

An excellent example of what can be called a domain specific language is the
Enterprise Integration Patterns language by Hophe and Woolf [6]. This language is
dedicated to the domain of asynchronous messaging architectures. Again, one might
argue that with the current advent of web-based systems, asynchronous messaging is
part of a large number of software systems. Should such a system be built using two
domain specific languages, one for the user interface and one for the messaging,
combined with an ordinary programming language for the rest of the system? We
think not.

2.3 High Level Language

Frederick Brooks argues in his book the Mythical Man Month [7] that the productivity
of a software developer is constant in terms of the number of statements he/she
produces per time unit. He states: "Programming productivity may be increased by a
much as five times when a suitable high-level language is used" (page 94 of the 1995
edition). In other words, the use of a high level language could bring us one of the
claimed benefits of MDA: increased productivity.

Currently there are a large number of programming languages, all more or less on
the same level of abstraction. When we compare them with the level of OCL
expressions, it becomes clear that it is possible to increase productivity largely. Take
for example the following OCL expression:

partners.deliveredServices->forAll(pointsEarned = 0)

This expression translates to the following Java code, which means that to implement
one line of OCL seventeen lines of Java are needed, as well as an extra method.

Iterator it = collect5().iterator();
while (it.hasNext()) {

Service i_Service = (Service) it.next();
if (!(i_Service.getPointsEarned() == 0)) {

return false;
}

}
...
private List collect5() {

List /*(Service)*/ result = new ArrayList(*Service*/);
Iterator it = this.getPartners().iterator();
while (it.hasNext()) {

ProgramPartner i_ProgramPartner =

224 A. Kleppe

(ProgramPartner) it.next();
result.addAll(
i_ProgramPartner.getDeliveredServices());

}
return result;

}

Contrary to programming languages, modeling languages offer constructs at a high
level of abstraction. The problem with today’s modeling languages is that they do not
have enough expressive power. For example, how can you create a system based on a
UML model without a concrete syntax (called surface language in latest UML 2
specification [8]) for actions? You can not even indicate the creation of an object.

A combination of the high level constructs of modeling languages with the
completeness of programming languages seems the obvious direction for future
language developments. In this we feel supported by the words of Richard Soley,
managing directory of the OMG, in his foreword to MDA Distilled [9]:

“Somehow the high level abstraction allowed by programming
languages does not always have significant run-time costs, so long
as the precision of the abstraction allows complete definition of the
algorithm.”

High level abstraction is what we should aim for.

2.4 Additional Reasons

Next to the arguments that are packaged in the term high level, general purpose,
software language, there are two additional reasons for the development of this new
type of language.

First, an important aspect of MDA is that models should be transformed
automatically. The artefacts of an earlier phase in the development process should no
longer be transformed by hand into the format needed in the next phase, instead this
part of the software development process is to be automated. There is a debate going
on whether the developer should be able to manually alter the output model after the
transformation. In our view manual manipulation is currently necessary for a number
of reasons. However, when MDA technology has reached maturity, manual
manipulation should be an exception, just as manual manipulation of compiler
generated byte code or assembler code is an exception. Transformation tools are the
compilers of the next decade.

A consequence of this is that either the language of the source model must be at
least as powerful as the language of the target model, or the transformation engine
combined with the transformation definition must add any lacking information. If the
source language has insufficient expressive power, then the output model still needs
to be manually developed further. In other words, either the languages used to
develop software, or the tools, need to be brought to a higher level. Because it is
always wise to investigate all options, it is best to do both.

A second observation is that a key development of the last decades: the emergence
of design patterns, is not truly incorporated in either modeling or programming
languages. Almost ten years ago (in 1996) Budinsky and others [10] wrote:

 Towards General Purpose, High Level, Software Languages 225

“Some developers have found it difficult to make the leap from the
pattern description to a particular implementation, ... Others have no
trouble translating the pattern into code, but they still find it a chore,
especially when they have to do it repeatedly.”

Since then not much has changed. At best the programming IDE offers some support,
but the languages themselves have not changed. The support for patterns in the UML
is not conveniently integrated. One has to draw a separate collaboration diagram to
express that some classes play a part in a pattern. In practice, this is rarely done.

Hence, there are a large number of reasons to invest some effort in the
development of this new type of software language. In the next section we will have a
closer look at the requirements on such a language.

3 Requirements on General Purpose, High Level, Software
Languages

Our new type of language should combine the positive aspects of both modeling and
programming languages. So, what are the positive aspects that should be incorporated
in software languages? To answer this question we take a second look at the
characteristics in table 1. As shown in table 2, there are three negative aspects of
modeling languages that should be avoided: non-executability of the model, the
informal semantics of the modeling languages, and the model being a by-product. In
the table these items have been crossed out. The other characteristics should be
present in the new type of language.

Table 2. Characteristics of General Purpose, High Level, Software Languages

Modeling Language Programming Language Software Language
imprecise precise imprecise in early stages,

precise in later stages
not executable executable executable
overview detailed view various levels of detail
high level low level high level
visual textual both visual and textual
informal semantics execution semantics execution semantics
analysis by-product end product end product

It is often considered convenient that a model/program may be imprecise in the
early stages of development, but in later stages it should be precise. Furthermore, a
model/program should be the end product and therefore, when it has reached the stage
of precision, it should be executable. Thus a software language should have at least
execution semantics. Different transformations may add different non-functional
requirements to the end product. For instance, how the storage is arranged, whether
logging is required, etc.

The visual syntax of modeling languages is often considered to be a positive
aspect, but not all details can be shown visually in a convenient manner. Therefore it

226 A. Kleppe

would be best to have a visual syntax and a textual alternative. The visual syntax will
provide overviews, whereas the textual alternative may include many of the details of
the program. In the same manner it is wise to provide two textual alternative syntaxes,
one that is human readable, and one that is meant to be machine readable. Languages
with multiple syntaxes have been created before, one example being the Mjølner
BETA language [11] developed in the early nineties of last century.

Likewise, we want to keep several views, more and less detailed. This means not
necessarily that the language should provide only two different views. A hierarchy of
views, each level a bit more or less detailed than the following, is to be preferred.
Traditional data flow modeling as described by Tom DeMarco and Edward Yourdon
[12], has an excellent levelling mechanism that has been sadly missed in the UML,
although in version 2 some leveling is possible. (Data flow models had a good way of
zooming in.)

When listing these aspects it is sometimes difficult to determine whether a certain
aspect should lead to the creation of language concepts, or whether it should lead to
specific support in the development environment, the IDE. The following list is
ordered by the influence the re-quirement has on on the language itself.

1. The modeling language should have a several concrete syntaxes that are all
mapped onto the same abstract syntax.

2. The modeling language should have a clear semantics for precise programs. As
long as the program is imprecise, the semantics may be unclear.

3. The program will be a complete functional description of the the system.
4. The developer should be allowed to be imprecise at certain stages of the

development proces.
5. The program should be precise at most stages of development, specially during

the last stages, when it is prepared to be used as input to a transformation.
6. If the program is imprecise it will very likely not be executable, but when all

details are present, it should be executable (model simulator, model virtual
machine)

7. The modeller should be able to have different views on the same program:
overview and more detailed.

And surely, we should not forget the ultimate requirement, because otherwise the
new language will be nothing more than a programming language in pictures: the
language should provide constructs that are more abstract than current day
programming languages.

4 ALAN: A Software Language

The goal of the Alan project is to gather and combine the concepts that are already
well-known and have shown their use, into a format that is usable for a developer, not
to create new software development concepts. Therefore, we use a number of
different sources. The first source is UML [8, 13], for instance, the two-directional
association is a powerful concept that is not present in current day programming
languages. The second source is OCL [1, 14]. The possibilities OCL offers on
collections are far more powerful than any programming language offers. The third

 Towards General Purpose, High Level, Software Languages 227

source is design patterns [15], which beyond a doubt have been a landmark in
software development. Currently, support for patterns can be found in some IDEs, but
little support can be found in languages. The fourth source is found in current day
programming languages, like Java, C#, and Python.

In the future we hope to include constructs from aspect-oriented languages as well.
In our opinion a user of Alan should be able to define a number of cross-cutting
aspects and weave them into a single output. Whether this effects the design of the
language, or merely the design of the Alan IDE, is a question that remains to be
answered.

What we present in this paper is an early version of Alan. Our ideas need to be
developed further, but we feel it is already worthwhile to share them with the
community and get some feedback. In the following sections we will present
examples of language constructs from the above mentioned sources and explain how
they are incorporated. The length of this paper does not allow us to be complete. Alan
comprises more than just the examples given below. The language has been fully
implemented and the Alan IDE and compiler are available as an Eclipse plug-in. This
paper does not merely describe ideas, everything presented here was tested in our
implementation, and shown to be feasible.

Alan’s textual syntax is based on the Java syntax. One notable difference is that the
equal sign is reserved for comparisons; assignments are denoted using the Pascal
notation (“:=”). Alan’s visual syntax is basically the same as the UML class diagram
syntax. However, the semantics of Alan are much more strict than those defined for
UML. The semantics of Alan are defined by a mapping to Java. This mapping is
implemented as an MDA transformation.

4.1 UML Constructs in Alan

Apart from having used the syntax of the UML class diagram for the Alan visual
syntax, we have borrowed a number of UML constructs. Some of which are explained
in the following sections.

4.1.1 Associations
The UML association is a powerfull construct that needs to be implemented carefully.
Specially, the two-directional association leads to complicated code, because setting
the field that implements the association in the class at one end, must also ensure that
the field that implements the other association end has the correct value.

In Alan, associations are always two-directional. A uni-directional association, as
is present in the UML, is in Alan simply an attribute, or in ordinary programming
terminology: a pointer. In our view, mixing the concepts of a reciprocal relationship
and a reference, as is the case with the UML association, is confusing and, to some
extent, overkill. As we explained elaboratedly in [16], if Eve is in the bag of Adam’s
girlfriends, then Adam must be in the of Eve’s boyfriends, otherwise one could not
speak of a relationship called friendship. If Eve insists in calling Adam her boyfriend,
even though Adam does not regard Eve to be his girlfriend, then this fact can only be
represented as a reference from Eve to Adam (or to a bag of not-interested boyfriends
including Adam).

228 A. Kleppe

In Alan associations may have no more than two ends, and each association abides
to the following characteristics, which we call the ABACUS rules.

• Awareness: Both objects are aware of the fact that the link exists.
• Boolean existence: If the objects agree to end the link, it is dissolved at both ends.
• Agreement: Both objects have to agree with the link.
• Cascaded deletion: If one of the objects is deleted, the link is dissolved as well.
• USe of rolenames: An object may refer to its partner using the role name provided

with the association.

A simple example of associations depicted using the visual syntax can be found in
figure 1. The Alan textual syntax that maps to the same abstract syntax is the
following.

class Man {
public Woman wife otherside husband;
public Bag[Woman] girlfriends[1..10] otherside boyfriends;
...

}
class Woman

public Man husband otherside wife;
public Bag[Man] boyfriends otherside girlfriends;
...

}

The multiplicities in the figure need not always be part of the textual syntax for
associations. In Alan the exact lower and upper bounds need only be present when
they differ from 1..* or 1. The exact lower and upper bounds of multiplicities are
considered to be invariants, which will be explained in section 4.2.3. Currently Alan
does not support association classes. We are investigating if and how this could be
done.

Man Woman
girlfriendsboyfriends

1..* 1..10<bag><bag>

husband wife1 1

Fig. 1. An Alan association example

4.1.2 Enumeration Types
Typesafe enumeration types may not look like a powerful language construct, but in
practice they come in very handy. However, implementing a typesafe enumeration
type is not a simple matter. Joshua Bloch spends as much as 10 pages on this subject
in his book Effective Java [17]. Still, when you have learned the trick, you see that
every enumeration type can be handled in the same fashion. This is where the MDA
transformation techniques can provide much assistance: a single line in a higher level

 Towards General Purpose, High Level, Software Languages 229

language can be automatically transformed into a much more verbose text in a lower
level language.

In Alan, typesafe enumeration types can again be written in the same simple way
that they were written in C, while the translation of Alan into Java takes care of all the
details of implementing the type safeness. An example of a declaration of a typesafe
enumeration type:

enum myColor { red; white; blue }

This declaration may be part of a package, and thus have package scope, or it may be
part of a class declaration, and thus have class scope.

4.1.3 Composite or Aggregate Objects
Another example of a higher level construct that is part of UML, but not part of any
programming language, is the composite object. Much has been said on the semantics
of the UML aggregate and composite, e.g. in [18]. The Alan composite object has
deletion semantics; when the container is deleted, so are all its parts. Furthermore,
although other objects may refer to the object by means of an attribute or association,
this object may be part of no more than one composite object. Figure 2 contains a
simple example of an Alan composite object. The code below is the textual
alternative.

class Bike {
public part Set[Wheel] wheels[2];
public part Frame frame;
...

}
class Wheel {

public part Tire tire;
...

}

As for associations, each part in a composite object is aware of the link to its owner.
In fact, the role name owner may be used in the part object to indicate the containing
object. If instances of the same class may be part of multiple composite objects, as for
instance the class Wheel may be used as part in a class Car as well as the class Bike,
the owner always refers to the one composite object that contains the specific
instance.

Bike Wheel
wheels

2

TireFrame

1 1

Fig. 2. An Alan composite object example

230 A. Kleppe

Although on the surface the notion of the composite object may appear to be
nothing more than a more specialized version of the association, it serves a larger
purpose. It enables us to easily specify the Visitor pattern, as explained in section
4.3.1. Furthermore, we are experimenting with a specific form of delegation, in which
operations offered by the part objects become available in the composite object. A
call to such an operation on the composite object will delegate the call to the part
object or objects that implement it. For instance, when the operation turn is specified
in the class Wheel, a call to a Bike object, as in myBike.turn(), will delegate this call
automatically to both wheels.

4.2 OCL Constructs in Alan

The constructs that were defined in OCL, are incorporated in Alan completely, but
Alan takes things one step further. For instance, OCL expressions may be used in
statements, like assignments, and concepts like invariants are integrated in the textual
syntax for the definition of a class. Again, this is not a new idea, it has been done in,
for instance, Eiffel. What makes Alan different is the combination of existing ideas.

4.2.1 Primitive Types
The primitive types that are available in Alan are the same as the UML/OCL
primitive types: Integer, Real, String, and Boolean. We believe that the abstraction
level that Alan targets, has no need for low level details, like the differences between
char[] and String, between float and double, and between int and long.

4.2.2 Collection Types and Iterators
OCL defines four collection types: Set, OrderedSet, Sequence, and Bag. These types
are also available in Alan. Furthermore, the iterators defined on OCL collections, like
select, collect, exists, and isUnique, are all part of Alan as well. In the future, we hope
to augment Alan with a syntax for defining new iterators, to enable users to specify
their own iterators in terms of existing ones. The example in section 2.3 shows clearly
the power that OCL collection types and iterators bring to Alan. Because the available
collection types reside at a much higher level of abstraction, Alan does not support
arrays.

Furthermore, we are investigating two additional collection types: the SortedSet
and the SortedBag. Both should sort their elements based on the “natural” order of the
element’s type, defined by the equals, greater-than, and smaller-than operations.

4.2.3 Invariants and Pre- and Postconditions
As can be expected, Alan supports OCL invariants and pre- and postconditions
completely. In the textual syntax they are integrated in the class definition, as in the
following example.

class Man {
public Woman wife = oclUndefined otherside husband;
public Bag[Woman] girlfriends[1..10] otherside boyfriends;
public Integer age = 0;
private Real moneyEarned = 0;
inv ofAge: age < 16 implies wife = oclUndefined;

 Towards General Purpose, High Level, Software Languages 231

public void work()
pre: age >= 14
post: moneyEarned =

moneyEarned@pre + 100 and notassert(girlfriends-
mult)

 {
 ...
 }

 }

All invariants are checked at postcondition time of all operations of the class, as
well as after the setting of the value of an attribute. If the developer needs to speed up
processing, he can choose to check only some invariants or none at all by using the
keyword notassert. The notassert takes as parameters the names of the invariants that
should not be checked. If no parameters are given, then none of the invariants will be
checked.

In section 4.1.1 we mentioned that the upper and lower bound of the multiplicities
for an association are considered to be invariants. This means that the bounds will
also be checked at postcondition time of any operation execution. When this check is
not necessary, this too can be indicated in the notassert clause. As name of the
invariant the role name of the association end concatenated with “-mult” may be used,
as in girlfriends-mult.

4.2.4 Derivation rules
OCL derivation rules can be expressed in Alan as well. Before the execution of an
operation of the class, the value of the derived attributes is determined, during
execution this value remains the same. The next example contains two examples of
derived attributes: frontwheel, and speed.

 class Bike {
public part Sequence[Wheel] wheels;
public derived Wheel frontwheel := wheels->first();
public derived Real speed :=
 frontwheelsize * frontwheel.revolutionsPerSec;

 ...
 }

4.3 Design Patterns in Alan

Currently, only the most popular patterns are incorporated in Alan. We expect to add
to this list in the future.

4.3.1 Visitor
The visitor pattern in Alan is linked to the composite object concept. Only composite
objects can be visited. In general composite objects have the form of a directed graph;
only some of the graphs will have the form of a tree. The graph is not necessarily
acyclic, therefore the implementation algorithm ensures that the execution will
terminate. Figure 3 shows an example, where node 3 is about to be visited twice, once

232 A. Kleppe

caused by the link with node 1 and once caused by the link with node 5. Here the
algorithm ensures that node 3 will not be visited because of its link with node 5.

The textual syntax for the visitor pattern is shown in the next example. The visual
syntax shows only the fact that the class BikeVisitor is a visitor to Bike objects, the
details are not shown visually.

class BikeVisitor visits Bike <breadthfirst> {
String visit(Bike bike) {
 String brand;
 before {

brand := bike.getDefaultBrand();
 }
 after {

brand := resultOf(bike.frame);
brand + resultOf(bike.frontwheel);
brand + resultOf(bike.wheels->last());
return beautify(brand);

 }
}
String visit(Wheel wheel) {
 after {
 return wheel.brand + resultOf(wheel.tire);
 }
}
String visit(Frame frame) {
 return 'frame';
}
String visit(Tire tire) {
 return 'dunlop';
}
String beautify(String brand) {
 ...
}

}

The keyword visits indicates that instances of this class are visitors of composite
objects of type Bike. Directed graphs can be transversed in several ways. The most

1

3

2

4 5

Fig. 3. An Alan composite object as directed graph

 Towards General Purpose, High Level, Software Languages 233

important traversal methods are breadthfirst and depthfirst. The visitor in the example
visits Bike objects breadth-first, that is it visits all direct parts of the Bike instance
before visiting the parts of the Wheel instances. Alan also supports visitors that use
the depthfirst method.

Any visit operation is divided into two parts. Before visiting parts of an composite
instance the statements in the before clause are executed. After visiting parts of the
instance the statements in the after clause are executed. Classes that are part of the
composite, but are not composite objects themselves, are the leaves of the tree or
directed graph. For them the distinction between the before and after clause cannot be
made.

Visit operations may have a result. In the example all visit operations have a String
result. This result can be used in the after clause of the visit operation that visits the
containing object, using the keyword resultOf. The type of the value that is returned
by resultOf, is the type of the corresponding visit operation. If, in the example, the
visit of a Tire instance would have re-turned an Integer value, then the expression
resultOf(wheel.tire) in the visit operation for Wheels would have returned an
Integer as well (which would have resulted in a type error).

The visitor class need not define a visit operation for all nodes in the composite
graph. When a visit operation for a certain type of node is not present, the traversal
algorithm simply proceeds. Next to the visit operations, visitors may have ‘normal’
operations as well. The operation beautify is an example.

Visiting may start at any node within the directed graph. You simply create a
visitor instance and tell it to start visiting a certain object. If the object is not within
the composite object that the visitor was defined for, a type error occurs. The next
example shows how the BikeVisitor can be used.

myBike := ...;
visitor := new BikeVisitor();
if (visitor.visit(myBike).equals(“someString ”)) { ... }
System.out.println(visitor.visit(myBike.frontwheel));
visitor.visit(myBike);

4.3.2 Singleton
Another popular design pattern is the singleton pattern. This pattern is easy to use in
Alan, one extra keyword suffices, as shown in the next example. The output of this
example is, of course, twice the String ‘this is the unique instance of
MyFirstSingleton’, followed by two occurrences of 'changed name of unique
singleton'. Note that the singleton user is unaware of the fact that it is using a
singleton instance, which is different from the use of a singleton in e.g. Java, where
you cannot use "new", but you have to use a specific class method to get the instance.

singleton class MyFirstSingleton {
 public String name :=
 'this is the unique instance of MyFirstSingleton';
 ...
}

234 A. Kleppe

class SingletonUser {
 public useSingleton() {

 MyFirstSingleton a := new MyFirstSingleton();
 System.out.println(a.name);
 MyFirstSingleton b := new MyFirstSingleton();
 System.out.println(b.name);
 a.name := 'changed name of unique singleton';
 System.out.println(a.name);
 System.out.println(b.name);
 }
}

4.3.3 Observer
The third pattern that is incorporated in Alan, is the Observer pattern. The key to this
pattern are two predefined operations that are available on every class: observe and
disobserve1. The observe operation takes as parameters the object to be observed, and
the name of the operation that should be called whenever a change occurs in the
subject. This operation must be defined in the class of the observer, and it must have
one parameter, which type is the type of the object to be observed. The disobserve
operation takes as parameter the object that should no longer be observed. The next
example defines a simple observer that observes two other instances, one of type
Subject, and one of type OtherSubject.

class MyFirstObserver {

public start() { Subject mySubject1 :=
new Subject(); OtherSubject
mySubject2 := new OtherSubject();

System.out.println('>>>observing
mySubject1');self.observe(mySubje
ct1, 'uponChange1');
mySubject1.attr := 'blue';
mySubject1.attr := 'red';

System.out.println('>>>observing
mySubject2');self.observe(mySubje
ct2,
'uponChange2');mySubject2.attr :=
"black';mySubject1.attr :=
'green';

System.out.println('>>>DISobserving
mySubject1');self.disobserve(mySubje

1 The name disobserve is still under debate. Other options considered are unlink, and

unsubscribe. The term disobserve is closely related to the term observe, which seems
preferable.

 Towards General Purpose, High Level, Software Languages 235

ct1);mySubject1.attr :=
'white';mySubject2.attr := 'yellow';

}
public uponChange1(
Subject mySubject) {System.out.println("The value of
Subject.attr is "
 + mySubject.attr);
}
public uponChange2(OtherSubject mySubject)

{System.out.println("The value of
OtherSubject.attr is " + mySubject.attr);
}

...

}
The output of operation start is:

>>>observing mySubject1
The value of Subject.attr is blue
The value of Subject.attr is red
>>>observing mySubject2
The value of OtherSubject.attr is black
The value of Subject.attr is green
>>>DISobserving mySubject1
The value of OtherSubject.attr is yellow

4.4 Programming Language Constructs in Alan

Most of the constructs known in programming languages are also present in Alan,
although some have been discarded because their level of abstraction was considered
too low. A few programming language constructs in Alan deserve more attention.
They are explained in the following sections.

4.4.1 Generic Types
Only few programming languages support generic types. Alan offers full support, in
fact, the collection types are considered to be predefined generic types. Generic types
may be defined independently of any other types, but, as the next example shows, one
may also define a new generic type by inheriting from one of the collection types.

class MySetType [TYPEVAR] extends Set [TYPEVAR] {

public attr : TYPEVAR;
public setAttr : Set[TYPEVAR];

...

public oper1(newV : TYPEVAR) : TYPEVAR {
 attr := newV;
 return res;
}

}

236 A. Kleppe

4.4.2 Visibility and Set and Get Operations
In Alan, explicit definition of get and set operations for attributes is not necessary.
When these operations are not defined for a certain attribute, they will be generated
according to the visibility of that attribute. If the developer wants to execute some
extra statements and/or checks in the get or set operation, he may define the
operations himself. This is similar to properties in C#.

4.4.3 Loops
In Alan, the OCL iterators are available for many of the cases where you would
normally use a loop construct in a program.Therefore, the need for loop constructs in
Alan will be much less than in one of today’s programming languages. However, we
still need a loop construct for some special cases, like simply doing the same thing for
a fixed number of times.

Alan provides two primitive loop constructs: the for-loop and the while-loop. The
for-loop must be used with two Integer values separated by two dots, that indicate the
lower and upper bound of the number of times the body of the loop must be executed.
The while-loop takes a boolean expression as guard, as in the next examples.

for(1 .. someInt) { ... }
while(someBoolean) { ... }

5 Future Work

As explained earlier, this paper describes an early version of Alan. Many aspects of
the language still need to be fleshed out. We have already mentioned the inclusion of
constructs from aspect-oriented languages, the support for association classes, and
support for other patterns. Another issue are the libraries that should accompany this
language, which should include extra predefined types like the SortedSet and
SortedBag. Key to the success of Java has been the enormous number of predefined
types available. We are convinced that languages like Alan will need a similar set of
libraries, which should also be full of higher level constructs ready to use.

The Alan IDE is currently being implemented as an Eclipse plug-in. Because of the
ongoing work the Alan IDE is not yet available for a large audience, but if you want

Table 3. The realisation of the requirements by Alan

Software Language Alan
imprecise in early stages,
precise in later stages

yes, visual syntax allows imprecision, textual
syntax does not

executable yes, by translation to Java code
various levels of detail not yet established
high level yes!
both visual and textual yes!
execution semantics yes!
end product not yet, but going strong

 Towards General Purpose, High Level, Software Languages 237

to have some idea of the Java code being generated, you can take a look at the Java
code generated by the OCL tool Octopus [19]. The code for the associations and for
the OCL expressions is the same.

What remains is a check to see whether the requirements we defined in section 3
are met by Alan. Alan meets almost all of the requirements, as shown by table 3. We
strongly believe that it is only a matter of time (and hard work) to realise the
remaining requirements, and that in the near future Alan will be the general purpose,
high level software language that we envisioned.

6 Conclusion and Related Work

On the topic of related work we can be short. A lot of work is being done in the area
of domain specific languages, e.g. [3, 4], including work in the area of Executable
UML [20], as well as in the area of formal specifications [21, 22], but virtually none
is done in the area of general purpose, high level software languages. One might
argue that we too have created a DSL, one dedicated to programming, but in our view
this argument stretches the concept of domain far too much. If programming itself can
be identified as a domain, then COBOL, Ada, and all other programming languages
should also be called DSLs.

Currently, it is possible to create a complete visual representation of Java, or any
other programming language in UML. This fact does not in any way diminish the
need for a general purpose, high level software language. The essence of Alan is not
that it combines a visual and a textual representation, as stated in section 3, this has
been done successfully before. Instead Alan’s merits lie in the fact that it incorporates
higher level concepts, and makes them available to the programmer in a way he or she
is likely to understand.

Please note that the creation of general purpose, high level, software languages
will not make informal models obsolete, it will just raise the level of abstraction. This
is a normal phenomenon in the history of any technology (or culture). Old ways
become the stepping stone for future developments. In the same way current day
middleware will, in time, take its place on one of the lower levels of our technology
stack.

Raising the level of abstraction does not mean that the old ways are crooked or
misformed. One has to build a wall by putting in the first stone, which will support all
the other stones. Therefore, the first few stones need to be solid and well fitted. By
creating Alan we do not criticize any other technologies, for instance, Java 5 has done
some good work on enumeration types. We simply argue that it is time to start
building the next layer of stones, and that the next layer should include general
purpose, high level software languages.

We hope that Alan will not be the only software language at this level. Software
development needs the boost that this new type of language can give. Therefore, in
the future we hope to see a large family of general purpose, high level, software
languages.

238 A. Kleppe

References

[1] Anneke Kleppe, Jos Warmer, The Object Constraint Language Second Edition, Getting
Your Models Ready for MDA, 2003, Addison-Wesley

[2] C. Atkinson and T. Kühne, "A Generalized Notion of Platforms for Model Driven
Development", in Model-driven Software Development - Volume II of Research and
Practice in Software Engineering, ed. S. Beydeda and V. Gruhn, Springer Verlag. 2005.

[3] Jack Greenfield and Keith Short with Steve Cook and Stuart Kent, Software Factories,
Assembling Applica-tions with Patterns, Models, Frameworks, and Tools, Wiley, 2004

[4] Alexander Felfernig e.a., UML as Domain Specific Language for the Construction of
Knowledge-Based Con-figuration Systems, InInternational Journal of Software
Engineering and Knowledge Engineering, Vol.10 No. 4 (2000) pp. 449 - 469, World
Scientific Publishing Company

[5] The Bible, Genesis 11: 1-8
[6] G. Hophe and B. Woolf, Enterprise Integration Patterns, Addison-Wesley, 2003.
[7] Frederick P. Brooks, The Mythical Man-Month, Addison-Wesley, 1995
[8] UML 2.0 Superstructure Specification, OMG document ptc/04-10-02, October 2004
[9] Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk Weise, MDA Distilled, Principles of

Model_Driven Ar-chitecture, Addison-Wesley, 2004
[10] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu, Automatic code generation

from design patterns, IBM Systems Journal, 35(2), 1996.
[11] Object-oriented environments: The Mjolner approach, Editors: Jorgen Lindskov Knudsen

(Aarhus University, Denmark), Mats Lofgren (Telia Research AB, Sweden) , Ole
Lehrmann Madsen (Aarhus University, Denmark), Boris Magnusson (Lund University,
Sweden) , Prentice Hall, 1994

[12] T. DeMarco, P.J. Plauger, Structured Analysis and System Specification, Prentice Hall,
1985

[13] Unified Modeling Language (UML) Specification: Infrastructure, OMG document
ptc/04-10-14, October 2004

[14] UML 2.0 OCL Specification, OMG document ptc/03-10-14, October 2003
[15] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns,

Elements of Reusable Ob-ject-Oriented Software, Addison-Wesley, 1995
[16] Anneke Kleppe and Jos Warmer, Wed Yourself to UML with the Power of Associations,

part 1 and 2, online publication at http://www.devx.com/enterprise/Article/28528 and
http://www.devx.com/enterprise/Article/ 28576

[17] Joshua Bloch, Effective Java, Programming Language Guide, Addison-Wesley, 2001
[18] Brian Henderson-Sellers and Franck Barbier, Black and White Diamonds, in "UML" '99

- The Unified Modeling Language: Beyond the Standard, Second International
Conference, Fort Collins, CO, USA, October 1999. Proceedings, Editors: R. France and
B. Rumpe, LNCS 1723, pp. 550 - 565, Springer-Verlag, 1999

[19] Octopus: OCL Tool for Precise Uml Specifications, available from http://www.klasse.nl/
english/research/octopus-intro.html

[20] Stephen J. Mellor and Marc J. Balcer, Executable UML, A foundation for Model-Driven
Architecture, Addison-Wesley, 2002

[21] A. Nymeyer and J-P. Katoen, Code generation based on formal bottom-up rewrite
systems theory and heuris-tic search, Acta Informatica, Vol. 8, pages: 597 - 635, 1997

[22] V.M. Jones. Realization of CCR in C. in Bolognesi T, Van de Lagemaat J and Vissers
C.A. (eds.), LOTO-Sphere: Software Development with LOTOS, pp. 348-368, Kluwer
Academic Publishers, 1995.

	Introduction
	Rationale
	Software Language
	General Purpose Language
	High Level Language
	Additional Reasons

	Requirements on General Purpose, High Level, Software Languages
	ALAN: A Software Language
	UML Constructs in Alan
	OCL Constructs in Alan
	Design Patterns in Alan
	Programming Language Constructs in Alan

	Future Work
	Conclusion and Related Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

