

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 205 – 219, 2005.
© Springer-Verlag Berlin Heidelberg 2005

XRound: Bidirectional Transformations and Unifications
Via a Reversible Template Language

Howard Chivers and Richard F. Paige

Department of Computer Science, University of York, York, YO10 5DD, UK
Fax: +44 1904 432767

hrchivers@iee.org, paige@cs.york.ac.uk

Abstract. Efficient tool support for transformations is a key requirement for the
industrialisation of MDA. While there is substantial and growing support for
unidirectional transformations (e.g., from PIM-to-PSM), for bidirectional
transformations there is little. This paper presents tool support for bidirectional
transformations, in the form of a language, called XRound, for specifying
reversible templates. The language supports round-trip transformations between
UML models and predicate logic. Its supporting tool also implements model
unification, so that new information encoded in logic can be seamlessly
integrated with information encoded in the model.

1 Introduction

Transformations are a critical component of Model-Driven Development, particularly
in the MDA [2]. To this end, the Queries-Views-Transformations (QVT) [1] standard
has been developed, in order to provide a precise, flexible mechanism for modelling
transformations between models. Even though QVT is still in the process of
standardisation, several tools and QVT-compatible (or QVT-like) languages have
been developed for supporting the transformation process. Of note amongst these are
QVTMerge [3] and the Atlas Transformation Language (ATL) [4], the latter of which
provides substantial tool support for model transformation; similarly, XMF [5]
provides modelling support for transformations based on an executable dialect of
OCL. There are also transformation tools outside of arena of OMG standards; for
example, the TXL [7] framework has some similarities to QVT, though it has been
predominantly targeted at programming language transformation. The generative
programming community has made use of templates to accomplish similar tasks [6],
and the meta-programming language Converge [9] has been successfully used to
implement a transformation language as an instance of a domain-specific language.

QVT transformations can be unidirectional (i.e., from one metamodel to a second,
not necessarily new, metamodel) or bidirectional (i.e., reversible between two
metamodels). The former is of critical use in MDA, e.g., for transforming platform
independent models (PIMs) into platform specific models (PSMs). The latter is vital
for supporting rigorous analysis of models: the results of analysis may need to be
reflected in the source of a transformation. For example, a static analysis may be
applied to a PSM, resulting in changes being made to that PSM. These changes may
need to be reflected in the original PIM.

206 H. Chivers and R.F. Paige

Limited tool support currently exists for bidirectional transformations; it can be
partly supported using sequential application of unidirectional transformations, but
this is not entirely satisfactory because information – e.g., diagram layout, detailed
representations of platforms – is likely to be lost after each unidirectional
transformation is applied.

Related to model transformation technology is model composition technology; this
is sometimes also referred to as model merging, weaving, or unification. With model
composition, two or more models (usually of parts of the same system) are combined
into one, in the process resolving inconsistencies, overlaps, and nondeterminism. As
of yet, there is minimal language and tool support for model composition; the Atlas
Model Weaver [8] is one of the first generic prototypes. Model composition
techniques could alleviate some of the problems with using unidirectional
transformations for supporting round-trip engineering.

This paper presents a new, template language, called XRound, for supporting
bidirectional transformations. This language is not QVT-compatible, as of yet, but it
uses standard underpinning technology and mechanisms that suggests it could easily
be made so. Moreover, the paper presents powerful tool support for this language that
allows bidirectional transformations, as well as a form of model unification.

1.1 Context and Contribution

The template language described in this paper arose from the need to support round
trip engineering from a specialized analytic tool. The tool, the Security Analyst
Workbench (SAW), carries out risk-based security analysis of UML system models,
and provides an environment in which the user can interactively set and test security
policies. The resulting policies (e.g., access controls) are part of the system design, so
they must be re-integrated into the engineering documentation, i.e., the UML models.

SAW does not need the whole of a UML system model on which to perform risk-
based analysis; it needs a view that describes certain features of the system (such as
classes, operations, and stereotypes), and these are expressed as predicates. For
example, (class,foo) would identify a class object named foo. Predicate representation
is the basis of the model unification that we describe in the sequel.

Originally, SAW used xsl templates to generate a predicate view from an XMI
representation of a UML model. Template processing provided a bridge between tool-
specific XMI and the analysis application, which remained UML-tool independent.
This allows designers to use their preferred UML environment, and is preferable from
the tool software perspective; for example, type checking of security properties is
implemented once within the analytic tool, rather than in each UML environment.

Template processing provides an important bridge between different tools, but the
available solutions are unable to support the reverse path of unifying the output data
back into its original source. Round-trip engineering of analysis results back into the
UML is therefore not straightforward with a conventional template processor, but is a
significant requirement for specialist analytic tools.

XRound is designed to overcome this problem. Its objective is to maintain the
advantages of template processing, including simple scripting of data transformations

 XRound: Bidirectional Transformations and Unifications 207

and independence between input and output applications, while supporting bi-
directional transfers, and unification, of data. This language and its supporting
processor allows the SAW application to import UML designs in tool-specific XMI,
and re-generates the XMI when the analytic model is changed.

The contribution of this paper is that it describes a new template language with the
unique ability to support transformations in both directions, the general principles that
underline its design, and a template processor for the new language.

This paper continues by describing XMISource, which is a Java-based processor
for XRound. The processor is presented first to clarify how the language will be used,
including its straightforward client application interface. The principles behind
reversible templates are then introduced, and the structure of the template processing
is described. The template language is then presented in detail; the core syntax is first
described, followed by two worked examples. Further sections describe language
features that support performance management and debugging, and summarise
limitations in the current implementation.

2 The Template Processor

The purpose of this section is to clarify the system in which the template language
will be used. The first implementation of an XRound processor is a Java class that
encapsulates an XML file and allows its client application to important and export
predicates from and to the XML source. The design of the processor is given in Fig. 1.
Although this is named XMISource after its main application, there is nothing XMI-
specific in XRound or in this processor.

XMISource

+ XMISource(File, File, XMIMessage)

+ transform(PublishHandler) : void

+ saveAs(ExportInterface, File) : void

+ getWorkingFile() : File

+ isValid() : boolean

«interface»

ExportInterface

+ getPredicateIterator(String[]) : Iterator

«interface»

PublishHandler

+ publishPredicate(String[]) : void

«interface»

XMIMessage

+ writeXMIMessage(String) : void

Fig. 1. The XRound Template Processor

The XRound processor has a single class, XMISource, which encapsulates an
XML file whose name is provided in the constructor. Three interfaces are defined in
the package, and these call-backs are provided by the application client to allow the
processor to import and export predicates.

208 H. Chivers and R.F. Paige

Predicates are represented as arrays of Strings, such as {class,foo}, which describe
features in the XML input that are required by the application. The processor supports
three transform operations: validation, import and export. (see Template Processing
for further detail).

Validation. The XMISource constructor takes three parameters, the reference XML
File, the Template File, and a message interface. (The Java File class encapsulates a
file name.) The message interface is used to pass certain error messages back to the
application, particularly those that report inconsistencies between the template and the
XML input. A message interface is used in preference to a thrown exception, since it
allows a sequence of messages to be reported during processing, which is valuable
during template debugging.

The initialization process parses both the Template and XML input file, and
executes a section of the template which is intended to validated the input. Methods
are provided to allow the client application to check that the validation was successful
(isValid) and to retrieve the name of the XML input file (getWorkingFile).

Import. A single method, transform, runs the import process, which extracts
predicates from the XML input, as specified by the template, and publishes them to
the client application. As each predicate is constructed the PublishHandler interface
provided by the application client is called to transfer the predicate to the client.

Export. A single output method (saveAs) is provided to export predicates from the
client application to a named XML file. The output filename is provided by the client,
together with an interface (ExportInterface) which allows XMISource to obtain
predicates from the application. This is slightly more functional than the other
interfaces, but is still straightforward: the client is provided with an incomplete
predicate, which is an array of Strings, some elements of which may be null. The
client responds with an iterator, which encapsulates predicates matching this template.

The export function updates the reference XML input with predicates obtained
from the application, and then writes the result to the named File. File naming
strategies and backup files, etc, are implemented by the client application.

Because the input XML is retained, there is no need for the complete XML tree to
be exported to the application; the transformation therefore includes only the features
required by the application.

The important feature of the template processor is its straightforward client
interface; this is a direct result of the reversible template model, since:

• The application only needs to obtain the predicates that it needs for its function, the
rest of the input XML remains hidden.

• The application interface is independent of the tool used to generate the XML: any
tool differences are accounted for in the template.

• The template includes an explicit validation section that is run at initialisation.

The internal design of the processor is beyond the scope of this paper, but an
outline of how the three main operations relate to the template specification is
discussed in the next section, before the language itself is given.

 XRound: Bidirectional Transformations and Unifications 209

3 Template Processing Overview

This section introduces the key concepts behind a reversible template, then describes
how the need for the processing operations described above motivate the coarse
structure of the template language.

3.1 Bidirectional Transformations and Model Unification

Template processing is usually a one-way operation as shown in figure 2: the template
processor locates elements in the input tree and publishes them, suitably formatted.

Value 2

Value 1

Value 3

Input Tree

A.1 A.2

A.1.1

A.1.2

A

Template Output

navigate A.1.1

print text

…

navigate A.2

print text

…

navigate A.1.2

print text

Value 1

Value 2

Value 3

Fig. 2. Conventional Template Processing

In the case of XML data, such as XMI, the input to the template processor is a tree;
the output may be XML, or it may be published in another format such as text or
HTML. Conventional templates are capable of encapsulating comprehensive
programming behaviour, but their fundamental structure is still to navigate to selected
nodes in the input tree, extract information, and produce suitably formatted output.
The benefit of a template over a standard programming language is usually that it is
tailored to the particular type of input and output required.

Reversible templates defined in XRound are similar in structure to existing
templates, but encapsulate a fundamentally different type of operation: unification.
The operation of a reversible template is shown in Fig. 3.

A reversible template navigates to elements in the input tree, in a similar way to a
conventional template, but it also references values in the application predicate. The
fundamental operation is to match, or unify, values in the source tree with values in
the predicate. Unification allows values to be determined from either the source tree,
or the application predicate, or if values are set in both, to ensure that they are
consistent. For example, in Fig. 3 the first value is not known in the source, but is
available in a predicate; the opposite is true for the second value; and the third is the
same in both source and predicate, so this unification succeeds.

210 H. Chivers and R.F. Paige

This underlying unification process determines the design of the template
language; as well as carrying navigation information to identify information in the
source tree, each part of the template identifies a unification slot, and the fundamental
operation is ‘match’, which is to unify the slot with either the XML input tree, or the
application predicate.

Value 2

???

Value 3

Input Tree

A.1 A.2

A.1.1

A.1.2

A
Unifying
Template

Application
Predicate

navigate A.1.1
match p.1
()
...
navigate A.2
match p.2
()
…
navigate A.1.2
match p.3
()

Value 1

Value 2

Value 3

p.1 = Value 1

p.3 = Value 3

p.2 = ???

Fig. 3. The Template Unification Process

Unification is conceptually straightforward, but designing a template language that
exploits this process does present some problems, including:

• The source navigation for a reversible processor is not quite the same as a
conventional template processor, because is has to unify input nodes that do not
exist. For example, in Fig. 3 it is not simply the case that the input node does not
have the first value set, but that the whole node (A.1.1) is missing. The template
language must allow the programmer to specify which nodes are allowed to be
missing, and which areas in the source tree are fixed. In XRound, nodes that may
be missing are marked as mutable and can also be created by the template
processor during the process of reverse engineering.

• Because some nodes in the input tree may be missing, it is not straightforward to
select nodes based on an attribute value, as is possible in an Xpath expression. In
XRound this problem is solved by a general constraint mechanism, which
constrains unification slots to specified values. Constraints are also unified as part
of the matching process and can therefore be used to specify the types of predicate
that can be generated, constrain XML node selection, and determine application
predicates to be unified.

The underlying unification process determines some features that are needed in a
reversible template language: the definition of unification slots and slot constraints.
The next section describes how the main operations of the template processor are
supported.

 XRound: Bidirectional Transformations and Unifications 211

3.2 Template Processing

This section describes the operation of template processing in sufficient detail to
introduce the clause structure of the template language.

The previous section described the process of unification, and this places some
requirements on the sections, or clauses, of the template language. Essentially a clause
must:

• Specify a number of unification slots.
• Allow the specification of constraining values for each slot.
• Unify values in the XML input and/or in application predicates with slot values

and constraints.

In order to allow for a separate verification section, and also to allow the user to
distinguish parts of the XML input that should be fixed, as opposed to those that may
be rewritten, three types of clause are defined in XRound:

• validate
• structure
• roundtrip

A validate clause specifies validation checks, a structure clause references
elements of the XML input that should not be modified, and a roundtrip clause
includes input nodes that may be modified when the XML is regenerated from
application predicates. The value of the structure clause is that it allows a wider range
of navigation types and some performance optimisations compared to roundtrip
clauses, because it does not have to account for missing nodes. However, it is not the
case that all nodes visited by roundtrip clauses can or should be re-written; nodes that
can be updated are specifically identified in XRound by a mutable attribute.

The three main processing operations can now be described:

Validation. Validation can be used to make any checks that the programmer requires,
but its primary aim is to ensure that the template and XML input are compatible.
Because XMI is tool specific, a particular template will apply to a limited range of
tools and versions; validation clauses in the template are used to check that the input
data (e.g., tool type and version number) are compatible with the current template.

After the XMI input and the template have been successfully opened and parsed,
each validate clause is executed, and each must succeed for the validation to succeed.
No other clauses are executed during validation, and the validation clauses are not
executed as part of any other processing.

Import. The import operation is similar to normal template processing, it is used to
assemble predicates from the XML input and provide them to the client application.

Any structure clauses are first executed, followed by roundtrip clauses. Each
clause is unified with constraints specified within the clause, but not with any
application predicates. The clauses have one or more publish attributes that mark
completion; when these are reached the unification slots within the clause are checked
and, if complete, a predicate is exported to the client.

212 H. Chivers and R.F. Paige

Export (saveAs in XMISource, see Fig. 1). The export operation merges predicates
from the client application back into the XML input, then saves the result. The
purpose of the operation is to update the XML representation with any changes that
have been made by the application, without the need for the application to manage the
specific XML format, and without the need to write different templates for input and
output processing.

The first processing stage executes all the structure clauses in the template;
although this will not result in any updates to the XML output, it is necessary because
it may build reference information that is used later (see Performance Management,
below). There are two further processing stages, the second removes mutable nodes,
assuming that nodes no longer present in the application have been deleted
intentionally, and the third re-builds nodes from the application predicates. In both
cases, the operation (remove, build) takes place only for mutable nodes that have been
encountered during a successful unification of a roundtrip template clause. The values
written to the rebuilt nodes are obtained from the unification slots in the template, and
so may contain values from the application predicates, from the XML input, or
directly from clause constraints. The relevant application predicate is obtained when
the clause is encountered; essentially, the template processor builds a predicate mask
that matches any fixed values specified in the constraint clauses, and requests the
application for an iterator over all predicates that match the mask. The clause is then
executed once for each predicate in the iterator.

In summary, the process that allows a template to be interpreted in both directions
is unification; this has implications for the types of navigation that can be carried out
within a template and determines the need for other structure in each clause:
unification slots and constraints. The three key operations of validation, import and
export are supported by the clause structure in XRound, allowing the programmer to
specify validation checks (validate), elements of the XML that should not change
(structure), and parts of the XML tree that can be modified (roundtrip).

4 The XRound Language

This section describes the XRound language. It begins by describing how an XRound
template is organised in terms of clauses and how they support unification slots,
constraints, and transformations. This is followed by a detailed description of
transformations, and two examples of template clauses. This section concludes by
describing language features that support performance management and debugging.

4.1 Basic Template Structure

The top-level structure is most easily described with an abbreviated DTD:

<!ELEMENT tpl.template
((tpl.validate|tpl.structure|tpl.roundtrip)*)>

<!ELEMENT tpl.validate (tpl.constraint*,tpl.specification+)>

 XRound: Bidirectional Transformations and Unifications 213

<!ATTLIST tpl.validate length CDATA #IMPLIED
 auxLength CDATA #IMPLIED>

<!ELEMENT tpl.stucture (tpl.constraint*,tpl.specification+)>
…

<!ELEMENT tpl.roundtrip (tpl.constraint*,tpl.specification+)>
…

<!ELEMENT tpl.constraint (tpl.value+)>
<!ATTLIST tpl.constraint position CDATA #REQUIRED>
<!ELEMENT tpl.value (#PCDATA)>

A template is a well-formed XML document containing three node types that may
occur in any number and any order: tpl.validate, tpl.structure and tpl.roundtrip. These
are the clauses introduced in the previous section. Attributes in each clause node
specify the number of unification slots (length + auxLength) and these are simply
indexed as an array in the subsequent template (e.g. position = “0”). The slots are
divided into two, and the first section (specified by length) is mapped directly to an
application predicate.

Each clause may have any number of constraints; each constraint has a position
attribute that specifies the associated unification slot, and a number of values.

A clause therefore specifies the unification space, or number of slots, and gives
constrained values to those slots. One or more specification nodes in each clause
determine the correspondence between the XML input and unification slots in the
template, and hence the application predicates.

4.2 Template Specifications

A template specification is well-formed XML, but unlike some template languages it
follows a tree structure, rather than a sequence. Depth in the tree indicates subsequent
operations and breadth allows the specification of alternatives. A publish attribute can
appear anywhere in the tree, and its effect is to test that unification is complete, and if
so mark that result as successful. For example:

<first>
<second tpl.publish=”TRUE”/>
<third>
<fourth tpl.publish=”TRUE”/>
</third></first>

This would find all instances of first…second and first…third…fourth that unified.
(first, etc, are not of course valid node names)

There are three types of node in a template specification: Source Nodes,
Navigation Nodes, and Matching Nodes. Source and Navigation Nodes may carry the
attribute tpl.mutable=”TRUE” in a roundtrip clause. This specifies that the node that
can be removed or re-written when predicates from the client application are exported
back into XML.

Source nodes simply name a node in the XML input tree. They cause the template
to evaluate all nodes of that name from the current position in the XML input.

214 H. Chivers and R.F. Paige

At present the language supports five types of navigation statement, two of which
are concerned with performance management. Examples of the three core types are:

<tpl.select node="UML:ClassifierRole">

<tpl.selectFromChildren
 node="UML:AssociationEnd" position="0">

<tpl.moveUp steps="2”>

The tpl.select node evaluates all nodes in the input tree with the specified node
name, the example selects all UML:ClassifierRole nodes in an XMI tree.

The tpl.selectFromChildren node is intended to select child nodes from the present
position in a specified order. Each occurrence of tpl.selectFromChildren specifies the
position (i.e. index) and name of the child node to be selected. In this example the
first occurrence of a UML:AssocationEnd node is selected.

The tpl.moveUp node simply moves the present position in the XML input tree up
by a number of steps. This command has been included because it provides a very
compact way of navigating certain tree structures, but there is a restriction on its use:
it must never follow a mutable node. Nodes marked as mutable can unify with nodes
that are not present in the XML input; allowing a step up from such a node may be
non-deterministic, depending on how the mutable node has been reached, so this
navigation is not permited from a mutable node.

There are three matching node types within the template language, and they each
instruct the template processor to unify an element in the XML input tree with one of
the unification slots, any previously specified constraints and, depending upon the
process mode, a predicate retrieved from the client application. Examples of these are:

<tpl.match nodeType="ATTRIBUTE_NODE"
 attribute="name" position="1">

<tpl.match nodeType="TEXT_NODE" position="0">

<tpl.match nodeType="MULTIPLE_ATTRIBUTE"
 attribute="myLunch“ tagIndex="1“
 length="2“ position="3" >

Each tpl.match node specifies the index of the unification slot that must be
matched (position). The relationship between the unification slots and the client
predicates is fixed, so this does not need to be specified. The node to be matched from
the XML input is always the current node, reached by the last navigation. The first
two match types unify the value of an attribute by name, or node text data,
respectively. The third is more specialized and provides the ability to pack several
parts of a predicate into a single XML attribute.

A multiple attribute match node unifies one value in an attribute list of separated
values. For example, given the attribute mylunch=”fish,chips” , the example above
would correctly match the number of values in the attribute (length=”2 “) and attempt
to unify the value ‘chips’ (tagIndex=”1”) with the template slot 3.

This is the core of the reversible template language. A small number of specialized
language statements are omitted from this paper for reasons of space, they include the
creation of xmi.ids and additional forms of constraint. Language features to support

 XRound: Bidirectional Transformations and Unifications 215

performance management and debugging are described below, but first the essentials
of the language will be illustrated by some worked examples.

4.3 Examples

This section provides two examples of template clauses, which demonstrate how well
the template language is able to hide the round-trip complexity. The first example is a
complete structure clause:

<tpl.structure length="2">
 <tpl.constraint position="0">
 <tpl.value>data</tpl.value>
 <tpl.value>service</tpl.value>
 </tpl.constraint>
<tpl.specification>
 <tpl.select node="UML:Class">
 <tpl.match nodeType="ATTRIBUTE_NODE"

 attribute="name" position="1">
 <UML:ModelElement.stereotype><UML:Stereotype>
 <tpl.match nodeType="ATTRIBUTE_NODE"
 attribute="name" position="0" publish="TRUE"/>
 </UML:Stereotype></UML:ModelElement.stereotype>
 </tpl.match></tpl.select>
</tpl.specification>
</tpl.structure>

There are two unification slots in the template, and these correspond directly to a
client predicate with two values. The constraint section of this clause limits the first
slot position to the values ‘data’ or ‘service’.

The specification searches all the nodes in the XML input for UML:Class nodes.
For each node of this type it extracts the name attribute, which is unified with the
second unification slot position. The template then searches child nodes for the
stereotype (UML:ModelElelement.stereotype/UML:Stereotype) and it unifies the
attribute name of the stereotype with first unification slot. Of course, this slot is
constrained, so the only values that succeed are ‘data’ or ‘service’. The effect of this
clause, therefore, is to search the XML input for UML:Class nodes with stereotype of
‘data’ or ‘service’ and, depending on mode, publish predicates of the form
(data|service,name). The form of this template is very similar to other template
languages, demonstrating that although reversible templates are theoretically quite
different to conventional templates, their programming form can be made familiar.

The specification of mutable XMI nodes is essentially the same. The following is
part of template clause for the Security Analyst Workbench:

<!—Slots:
 (tagname 1st_value className 2nd_value)(xmi.id) -->
<!—Client use:
 (PermitAccess fromClass inClass toOperation) -->

<tpl.roundtrip length="4" auxLength="1">
 <tpl.constraint position="0">
 <tpl.value>PermitAccess</tpl.value>
 </tpl.constraint>
 …

216 H. Chivers and R.F. Paige

<tpl.specification>
 <XMI><XMI.content><UML:TaggedValue
 tpl.mutable="TRUE">
 <tpl.match nodeType="ATTRIBUTE_NODE"
 attribute="tag" position="0">
 <tpl.match nodeType="MULTIPLE_ATTRIBUTE"
 attribute="value"
 tagIndex="0" length="2" position="1">

 <tpl.match nodeType="MULTIPLE_ATTRIBUTE"
 attribute="value"
 tagIndex="1" length="2" position="3" >

 <tpl.match nodeType="ATTRIBUTE_NODE"
 attribute="modelElement" position="4" >

 <tpl.selectNode node="UML:Class">
 <tpl.match nodeType="ATTRIBUTE_NODE"
 attribute="xmi.id" position="4">
 <tpl.match nodeType="ATTRIBUTE_NODE"
 attribute="name" position="2"
 publish="TRUE">
 …

The comments at the start of this extract describe the use of the unification slots
and the resulting application predicate. This template matches an XMI tag, which is
attached to a UML class. The name of the tag is ‘PermitAccess’ and the tag has two
separated values (e.g. PermitAccess=”subject,object”). The application predicate
contains the same information as the tag, but also includes the name of the class in
which the tag was declared (inClass). The first four template slots correspond to the
values in the application predicate, and the fifth is used for the xmi.id of the class. The
header to this clause specifies the number of unification slots, and constrains the first
to the single value ‘PermitAccess’.

The specification navigates directly from the document root (XMI) to a tagged
value, which is marked as mutable. This specifies that any tagged values that match
this clause will be re-written on export. This navigation identifies all possible tagged
values, but only those that unify as far as the ‘publish’ tag at the end of this fragment
will be rewritten.

The next three match statements unify the three elements of the tag (name plus two
values) with their respective template slots. An important feature of this language is
that the programmer is not concerned with the underlying operations. These
statements are able to both extract data from the XMI tree and publish them to the
client application, and also obtain predicates from the client and re-write it into an
XMI tag, depending upon the operational mode of the template processor.

The fourth match operation unifies the modelElement attribute value with an
auxiliary slot in the unification template (i.e. one that is not part of the application
client’s predicate). This value is the xmi.id of the class in which the tag is placed, and
the next section of the template navigates to the corresponding class by selecting all
the class nodes in the XML input, and matching the one with the correct xmi.id. The
final match statement unifies the class name associated with this xmi.id with the third
template slot. At this point the publish attribute tests if the unification process is
complete, causing publication to the client, or the addition of a node to the XMI tree.

 XRound: Bidirectional Transformations and Unifications 217

This fragment illustrates the extent that the underlying semantics of unification and
reversible working are hidden from the template programmer, who is still able to
think of the template as little more than a ‘select and publish’ script.

One notable feature of this fragment is the relative lack of constraint checking. In
the Security Analyst Workbench, the two values in the tag are known types, the first
corresponding to a class with a specific association to the class in which the tag
appears, and the second to an operation within that class. It would be quite
straightforward to navigate the XMI input tree and use the unification process to
check that these values correspond to correct types. However, there are good reasons
for avoiding these checks at this stage. Firstly, the template is specific to the tool that
generated the XML input, but given that the template processor delivers tool-
independent predicates, the type checking could be coded once, in the application,
rather than separately for each supported tool. There is also a second consideration,
which is that in its normal operation the template processor will often fail to unify,
since it will attempt to match nodes and predicates that are not compatible. If
constraint checking is included in the template, then badly constructed types will not
unify, and will not be passed to the application. However, the result of a constraint
failure in a template processor is silence, whereas constraint failures in the application
can generate warnings to the user. The programming philosophy adopted has
therefore been to specify the minimum in the template language, consistent with
establishing an accurate relationship between the XML input and application
predicates, and to carry out more extensive type checking in the application.

 These examples illustrate the core language, two further issues, performance and
debugging, add extra features, which are discussed in the next sections.

4.4 Performance Management

The main performance problem in template processing is the need to repeatedly scan
all the nodes in a document. This problem occurs in the roundtrip example above. It is
necessary to scan the entire document for UML:Class nodes, in order to match the
xmi.id in the tag with the correct class name. Since Classes are in user-defined
packages they can occur at any level of the XMI hierarchy, so it is not feasible to limit
the search size by navigating from the tree root.

However, in UML templates, the types of node that are revisited often in this way
are a relatively limited number of fixed design points, primarily the classes and
objects. If it were possible to simply remember the location of these nodes then these
auxiliary searches could be made much more efficient. This, quite simply, is what the
performance management statements in XRound implement. There are two
statements, one that records fixed points, and one that navigates to previously
recorded nodes. For example, in the two examples above, the first, which identifies
specific Classes, could include the statement:

<tpl.registerNode>

This registers the current node (in this case UML:Class), allowing it to be
efficiently revisited later. The second example could then replace the selectNode
navigation to a UML:Class with:

<tpl.selectRegisteredNode node="UML:Class">

218 H. Chivers and R.F. Paige

The result is the same, but considerably faster. The only restriction on the use of
these statements is that mutable nodes cannot be registered, and that nodes must be
registered before they can be selected. Normal practice is to register nodes in early
structure clauses, they can then be referenced anywhere in the template.

4.5 Debugging

Finally there are two important features in the language that are an aid to debugging –
message and debug attributes – which can be added to any node.

The message attribute (tpl.message=”…”) can be included in any node, and sets a
message for the template tree below that node. If any errors are issued from the
processing of that section of the template, then the message will be included in the
error report. It is good programming practice to include messages in every clause
header; they provide useful comments and invaluable narrowing of the problem space
when an error is reported.

The debug attribute (tpl.debug=”TRUE”),is not intended to be a permanent feature
of a template. Whenever a node is encountered with the debug attribute, the status of
the unification slots is printed, together with the current template and XML nodes.
Although this provides sufficient information to debug a template, usually the
existence of debug output is sufficient: when a template fails the most common
problem is detecting the node that caused the failure, so the most common use of this
feature is as a probe to detect where a template succeeds or fails.

5 Limitations

There are few inherent limitations in the XRound language; the practical limits arise
from two sources: variability in XMI between different UML tools, and limits to the
scope of the current template processor.

Differences in XMI between UML tools was one of the main motivating factors in
the design of XRound, and has been discussed at several points in the paper; different
templates are required for different UML tools, but the use of a reversible template
isolates the application logic from this variability. The XMI import behaviour of tools
can also vary in detail; for example, some tools regenerate missing xmi.id fields,
where others fail. The design of a template may therefore go beyond the need to
understand the XMI tool dialect. Although this is an inconvenience, it has not yet
proved a major problem, or required tool-specific language features.

At present the XMIsource processor is more limited than the language.
Although it supports all the language features it does not support unification of
nodes that are interdependent: for example it would not be able to unify both
missing classes and associations between those classes. This is not an inherent
limitation in the XRound language, but reflects the initial applications for
XMISource, in which the class structure is stable but other elements of a model
can be varied by analysis tools.

 XRound: Bidirectional Transformations and Unifications 219

6 Conclusion

XRound adds a new dimension to template processing of models: the ability to
transform data in both directions with a single descriptive template. Reversible
template processing solves the problem of maintaining independence between UML
and analytic tools, while retaining the benefit of easily scripted transformations.
Reversible templates could provide a clean implementation mechanism for bi-directional
transformations specified in QVT, and could help in the definition of model
unification languages as well.

This paper has outlined the theory behind reversible templates, and presented a
mature template language, XRound, that has been used in practice and is supported by
a Java template processor. As well as including transformations the language includes
performance management and debugging facilities.

The examples presented here illustrate the extent that the underlying semantics of
unification and reversible transformation are hidden from the template programmer,
who is still able to think of the template as a ‘select and publish’ script.

The successful implementation and use of a template processor demonstrates that it
is feasible to implement a reversible processor that interprets the XRound template
language, and the specification of the processor shows how straightforward the
reversible interface is from the perspective of the client application.

References

1. Object Management Group. Queries-Views-Transformations Specification, available at
http://www.omg.org, last accessed June 2005.

2. Object Management Group. Model-Driven Architecture Specification, available at
http://www.omg.org, last accessed June 2005.

3. QVT-Merge Group, Revised submission for MOF 2.0 Query/Views/Transformations RFP
(ad/2002-04-10), 2004, www.omg.org.

4. ATLAS Transformation Language web page. http://www.sciences.univ-nantes.fr/lina/atl/,
last accessed June 2005.

5. Xactium Inc. XMF Reference Guide 0.1, available at http://www.xactium.com, last
accessed June 2005.

6. J. Herrington. Code Generation in Action, Manning, 2004.
7. TXL Web Page, available at http://www.txl.ca, last accessed June 2005.
8. M. Del Fabro, J. Bezevin, F. Jouault, E. Bertan, G. Guillaume. AMW: a Generic Model

Weaver. In Proc. IDM 2005, July 2005.
9. L. Tratt. The Converge Programming Language, King's College Technical Report TR-05-

01, 2005.

	Introduction
	Context and Contribution

	The Template Processor
	Template Processing Overview
	Bidirectional Transformations and Model Unification
	Template Processing

	The XRound Language
	Basic Template Structure
	Template Specifications
	Examples
	Performance Management
	Debugging

	Limitations
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

