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Abstract. Designing Information Systems (IS) is a complex task that
involves numerous aspects, being functional or not. A way to achieve
this is to consider models as generic pieces of design in order to build a
complete IS. Model composition provides a way to combine models and
model parameterization allows the reuse of models in multiple contexts.
In this paper, we focus on the use of parameterized models in model
driven engineering processes. We outline the needs to compose param-
eterized models and apply them to a system according to alternative
and coherent ordering rules. Such building processes raise open issues:
Is the result influenced by the order of applications ? Can we compose
independent parameterized models ? Is it possible to define composition
chains and find equivalent ones that express the same resulting model ?
These requirements are formalized through an apply operator. This op-
erator guarantees properties which can help in the formulation of model
driven system construction methodologies. Finally, we briefly describe a
modelling tool that supports processes based on this operator.

1 Introduction

Illustrated by new approaches of software development [13,1,12], models are
gaining more and more importance in the software development lifecycle. There
is a growing need to use them as concrete artefacts [11] through operations like
projections, translations or constructions. Projection techniques mainly aim to
transpose a model from a technological space (UML for example) to another
one (like EJB or CORBA). Translation techniques allow to express the same
model in another language (UML to XMI for example). Finally, construction
techniques ambition is to produce new models from existing ones.

Among these construction techniques, composition techniques, which permit
the building a model from a set of smaller ones, are widely used. Indeed, in
spite of new development approaches, systems and thus their models become
more complex and bigger. It is thus necessary to deal with this complexity by
providing the decomposition of such systems and their models.
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Building new systems by composing prefabricated and validated models pro-
mises a quicker design of more reliable systems. It is possible to identify in
any information system some concerns that should be applied to other systems
[8,10,14]. Nevertheless, their models are made according to a particular system
so that they are hard to reuse in order to build new systems. The design of
reusable models calls for the usage of some sort of parameterized models or model
templates [10,9,18,19]. As far as standardization is concerned, UML2 defines
the notion of template [2] which allows representing such generic models as
packages parameterized by model elements. In [5], we have formalized the UML2
template binding relationship and introduced OCL rules for checking the correct
matching between the required model (specified in the template signature) and
a model constructed using this template. This relationship is independent from
any construction process.

In this paper, we focus on how to define model driven engineering construc-
tion processes with such parameterized models. This needs to express complex
compositions of parameterized models which must be applied in a coherent way.
Such building processes raise open issues: Is the result influenced by the appli-
cation order? Can we compose independent parameterized models? Is it possible
to define composition chains and find equivalent ones that express the same
resulting model?

To support such processes, we introduce an operator (apply) to express the
application of a template to an existing model. This operator allows to specify
how to obtain a model from an existing one by the application and composition
of generic ones. It is interesting to note that generic models are models so that
template applications can be combined to design richer ones. The next section
shows the needs for such an operator and specify its expected properties. Then
the third section presents a formalization of its semantics and proves these prop-
erties. Section 4 discusses related works about composition and parameterization
of models. Finally, we briefly describe a modelling tool that supports processes
based on this operator and provides strategies to transform composition of pa-
rameterized models into platform specific models before concluding.

2 Applying Parameterized Models

It is possible to use UML 2 template packages to represent parameterized models.
For example, let us consider a set of parameterized models designed for resource
management systems (inspired from [8] and [21]) where each model provides a
useful function such as searching, stock management and resource allocation.

Figure 1 shows a model offering resource management functionalities related
to a stock (add, delete, and transfer operations). This model is specified by a tem-
plate package owning a class diagram providing these functionalities. Elements
required for its usage are exposed in the template signature. In our example, the
required elements are the classes Stock and Resource, some of their correspond-
ing properties identifier and ref, and the association in. This element set forms
a unique parameter corresponding to the model structure required by the tem-
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Stock

Resource

0..*

identifier
capacity

StockManager

ref
add(Resource r)
delete(Resource r)

in

Stock, Resource : Class,
identifier, ref : Property
in : Association

transfer(Stock l)

Fig. 1. Resource Management Template

Location

findAll(): Resource[]

Resource

0..*

Search

name
address

key
date

location(): Location
findByKey(key): Resource
findByDate(date): Resource[]

Location, Resource : Class,
name, address, key, date : Property
at : Association

at

Fig. 2. Search Template

plate to be applied. The other elements correspond to the specific elements of
the functionality defined by the template. Those specific elements will be added
to which the template will be applied.

Figures 2, 3, and 4 respectively illustrate generic models for searching, re-
source allocation, and counting. These template examples show that elements of
a required model can be either properties, operations, associations or classes.

To illustrate the use of these templates, let us take the example of a car hiring
system. Figure 5 shows the primary model of this system. This base describes the
structure of the different domain classes used by the system (here Car, Agency,
and Client).

The desired system must be able to search a specific car or a specific client,
and also to manage the different car allocations. To achieve this, we will use the
generic models described before.

Product Allocation

Client

nbAssignment(): int
0..* 0..*

to

Allocation

code

idnbAssignment(): int
free(date begin,
      date end): bool

assign_date
due_date
return_date

Product,
Client : Class,
code,
id : Property

cost () : float

Fig. 3. Resource Allocation Template
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Element Counter

0..*

Counting

value () : float total() : float

Element, Counter : Class,
value : Operation,
at    : Association

at

Fig. 4. Counting Template

Agency
Client

0..*

name
address

Base

name
birthday
phone
address

Car

number
date
constructor
model

0..*
ac

cli

Fig. 5. The Base System

Thus, we need to specify an assembly of these models. For that, we intro-
duce a parameterized model application operator called apply. Figure 6 shows
how the Stock Manager template is applied to the base system. The apply oper-
ator is specified via an UML stereotyped dependency <<apply>> between the
template source model and the system target model which establishes correspon-
dence relationships between their respective model elements. This dependency
includes the substitution of formal parameters (source model elements) by effec-
tive parameters (target model elements). The effective parameters must form a
model that matches the required model of the template.

A formulation of a resulting system where corresponding elements are linked
by <<trace>> dependencies1 is shown in Figure 7. Our formulation does not
impose any mapping for these <<trace>> dependencies. It is possible, for ex-
ample, to merge linked elements or to use split representation mechanisms. We
already have studied some of these targeting strategies [16,6].

These sketches show how to obtain an extended model from an existing one by
the application of some parameterized models. To gain more reuse, composition
of parameterized models should be supported too, in order to design complex
generic models from simpler ones. This facility is illustrated in Figure 8(a) where

1 The <<trace>> dependency is a standard UML2 relationship. It is used to link
elements that represent the same concept.
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<<apply>>
< Stock -> Agency,
Resource -> Car,
identifier -> name,
ref -> number
in -> ac >

Stock

Resource

0..*

identifier
capacity

StockManager

ref

add(Resource r)
delete(Resource r)

in

Stock, Resource : Class,
identifier, ref : Property
in : Association

transfer(Stock l)

Agency
Client

0..*

name
address

Base

name
birthday
phone
address

Car

number
date
constructor
model

0..*
ac

cli

Fig. 6. Applying Stock Manager to Car Hiring System

the Search template applied to the StockManager template allows to build a
new generic model (see Figure 8(b)). The set of parameters of this new model is
determined by the union of the target model parameters (from StockManager)
and the source model unsubstituted parameters (address and date from Search).
Figure 8 also emphasizes the ability to apply parameter elements of the source
model to parameter elements of the target model. In this case, the first ones (for
example Location) are substituted by the second ones (Stock) in the resulting
template.

The apply operator must support different construction processes. For the
construction of complex systems from a set of parameterized models, it should
be possible to elaborate sequences of applications and guarantees consistency
properties of the resulting system. We want to exhibit how far it is possible to
build the same system model using alternative composition sequences of param-
eterized models.

For example, Figure 9 shows the design of a complex car hiring system by
composing many generic models to the base model shown in Figure 5. This
example will serve to illustrate some needs for such sequences. A first need

Stock

Resource

0..*

identifier
capacity

ref

add(Resource r)
delete(Resource r)

in

transfer(Stock l)

Agency
Client

0..*

name
address

name
birthday
phone
address

Car

number
date
constructor
model

0..*

ac

cli

<<trace>>

<<trace>>

<<trace>>

<<trace>>

<<trace>>

BaseManager

Fig. 7. Base System with Car Management Functionality
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StockManagerSearch
Location,
Resource : Class,
name, address,
key, date : Property
at : Association

Stock : Class
Resource : Class
identifier : Property
ref : Property
in : Association

<<apply>>
< Location -> Stock,
Resource -> Resource,
name -> identifier,
key -> ref,
at -> in >

Stock

Resource

0..*

identifier
address
capacity

SearchStockManager

ref
date

add(Resource r)
delete(Resource r)
findAll() : Resource[]

in

Stock, Resource : Class
identifier, ref,
address, date : Property
in : Association

transfer(Stock l)
location() : Stock
findByKey(key) : Resource
findByDate(date) : Resource[]

(a)

(b)

Fig. 8. Template to Template Application

is the ability to apply multiple parameterized model to the same base. When
such applications are independent, their evaluation order must not influence the
result. It is the case of Search and Allocation applied to the base.

Another requirement is to express chains of application. Such a chain can be
used to apply complex parameterized model resulting from simpler ones. This is
illustrated by the application of the Search template to the StockManager tem-
plate, explained previously (Figure 8) which produces the SearchStockManager
model. This new model is then used to add stock management and search func-
tionalities on cars to our system. Note that an alternative construction chain
would be to apply the StockManager template to the base first, and then the
Search template to the resulting model. Both chains would produce the same
result. We will show this property in the following section. Another example
is the application chain Counting to Allocation to Base. Alternative evaluation
order of this chain, first Counting to Allocation then the resulting parameterized
model to base or first Allocation to Base then Counting to the enriched Base,
produce exactly the same result.

In order to provide consistency rules on such building processes, we need a
better formalization of parameterized model application. It is the goal of the
following section.
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StockManagerSearch
Location,
Resource : Class,
name, address,
key, date : Property
at : Association

Stock, Resource : Class,
identifier : Property
ref : Property
in : Association

<<apply>>
< Location -> Stock,
Resource -> Resource,
name -> identifier,
key -> ref,
at -> in >

<<apply>>
< Stock -> Agency,
Resource -> Car,
identifier -> name,
ref -> number
in -> ac,
address -> address,
date -> date >

<<apply>>
< Product -> Car,
Client -> Client,
code -> number,
id -> name >

Base

Search
Location,
Resource : Class,
name, address,
key, date : Property
at : Association

<<apply>>
< Location -> Agency,
Resource -> Client,
name -> name,
key -> name,
date -> birthday,
at -> cli >

Allocation

Product,
Client : Class,
code,
id : Property

Counting

Element,
Counter : Class,
value : Operation
at : Association

<<apply>>
< Element -> Allocation,
  Counter -> Client,
  value -> cost,
  at -> reference >

Stock, Resource : Class
identifier : Property
ref : Property
in : Association
address, date : Property

SearchStockManager

Fig. 9. Car Hiring System

3 Formalization of Parameterized Model Application

The apply operator allows to compute a model from the application of a param-
eterized source one to a target one.

The formalization precises the computation of the resulting model as a set
of elements and a set of correspondence relationships between the source model
and the target model. These correspondence relationships link elements that
represent the same entity2. After some definitions, we will state properties of
this operator which guarantee the correctness of the previous practices.

3.1 Definitions

Models are considered as sets of model elements that can be classes, attributes,
operations or associations. We assume E to be the set of all these model elements.
In case of parameterized models, a model holds a set of parameter elements. As
mentioned above, apply will construct models that establish correspondence rela-

2 As the UML2 <<trace>> dependency does.
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tionships which are pairs of model elements. The following definition generalizes
all these kinds of models.

Definition 1. A model A is defined by a 3-tuple (EA, PA, VA). EA is a set of
model elements. PA ⊂ EA is a set of parameters. VA is a set of correspondence
relationships defined on (EA × EA) .

Note that in case of models which are not parameterized PA is empty, and
in case of base models VA is empty.

Definition 2. Two models are equal if and only if they contain the same set of
elements, they own the same set of parameters and they have the same set of
correspondence relationships.

Let two models Z and R, Z = R ⇔
⎧
⎨

⎩

VZ = VR

EZ = ER

PZ = PR

Based on these definitions we specify the apply operator as follows.

Definition 3. We write R = B −→
s

A the application of a parameterized model
B to a model A according to a substitution set s.

We note FPs the set of formal parameters and EPs the set of effective pa-
rameters of s. The resulting model R is constructed according to the following

definition rules: R = B −→
s

A ⇒ R =

⎧
⎨

⎩

VR = VB ∪ s ∪ VA

ER = EB ∪ EA

PR = (PB \ FPs) ∪ PA

Source and target models of a parameterized application cannot share ele-
ments: EA ∩ EB = ∅.
Formal parameters are elements of the source model: FPs ⊆ PB.
Effective parameters are elements of the target model: EPs ⊆ EA.

Note that according to these definitions, parameterized models can be applied
to any kind of models, parameterized (see Figure 8) or not (see Figure 6). In the
case of parameterized target models, the resulting model is itself parameterized.
Recall that resulting parameters are those of the target model plus unsubstituted
source model ones. The computation formula of the resulting parameter set (PR)
formalizes this.

3.2 Properties

Assuming these definitions, it is possible to demonstrate a set of properties that
guarantees the correctness of application chains and their alternative ordering
capacities.

Property 1. When applying two models to a third one, the order of both appli-
cations does not influence the result.

Let two substitutions set s, s′ such as EPs ⊆ EA and EPs′ ⊆ EA. Then we
have
B −→

s
(C −→

s′
A) = C −→

s′
(B −→

s
A).
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Thanks to this property, it is not necessary to express in which order param-
eterized models must be applied. This is shown Figure 9. Anyhow Search and
Allocation are applied to the base, the resulting model is the same.

Proof. Let Z = B −→
s

(C −→
s′

A),

Z = B −→
s

Z ′ with Z ′ = (C −→
s′

A) ⇒ Z ′ =

⎧
⎨

⎩

VZ′ = VC ∪ s′ ∪ VA

EZ′ = EC ∪ EA

PZ′ = (PC \ FPs′) ∪ PA

⇒ Z =

⎧
⎨

⎩

VZ = VB ∪ s ∪ VZ′

EZ = EB ∪ EZ′

PZ = (PB \ FPs) ∪ PZ′

⇒ Z =

⎧
⎨

⎩

VZ = VB ∪ s ∪ VC ∪ s′ ∪ VA

EZ = EB ∪ EC ∪ EA

PZ = (PB \ FPs) ∪ (PC \ FPs′) ∪ PA

Let Y = C −→
s′ (B −→

s
A),

Y = C −→
s′

Y ′ with Y ′ = (B −→
s

A) ⇒ Y ′ =

⎧
⎨

⎩

VY ′ = VB ∪ s ∪ VA

EY ′ = EB ∪ EA

PY ′ = (PB \ FPs) ∪ PA

⇒ Y =

⎧
⎨

⎩

VY = VC ∪ s′ ∪ VY ′

EY = EC ∪ EY ′

PY = (PC \ FPs′) ∪ PY ′

⇒ Y =

⎧
⎨

⎩

VY = VC ∪ s′ ∪ VB ∪ s ∪ VA

EY = EC ∪ EB ∪ EA

PY = (PC \ FPs′) ∪ (PB \ FPs) ∪ PA

As a result, we have Z = Y ⇒ B −→
s

(C −→
s′

A) = C −→
s′

(B −→
s

A)

Property 2. For any sequence B −→
s1

(C −→
s′
1

A), there exists a sequence

(B −→
s2

C) −→
s′
2

A, that produces the same result, such as s2 = s1 \ ((EA×E )∩s1)

and s′2 = s′1 ∪ ((EA × E ) ∩ s1).

Figure 10 shows the application of the StockManager template to the Base
then the application of Search to the result. This is an alternative construction
chain of the application of Search to StockManager then to the Base. This latter
construction is equivalent to applying the complex template SearchStockMan-
ager to the Base. We can verify that its parameter sets are conformant to this
property.

Parameter elements of Search applied to elements of the Base in Figure 10
(address and date) are not concerned by the direct application (Figure 8) of
Search to StockManager. As result, they are transfered to the application of
SearchStockManager to the Base in Figure 9.

In order to prove this property we need the following intermediate property
on parameter substitutions:
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StockManager

Search
<<apply>>
< Location -> Stock,
Resource -> Resource,
name -> identifier,
key -> ref,
at -> in,
address -> address,
date -> date >

<<apply>>
< Stock -> Agency,
Resource -> Car,
identifier -> name,
ref -> number
in -> ac >

Base

Fig. 10. An alternative to the application of SearchStockManager

Property 3. A parameter can not be substituted more than one time. Once a
parameter is substituted, it is no more a parameter in the resulting model.
(B −→

s1
C) −→

s2
A ⇒ FPs1 ∩ FPs2 = ∅.

Proof. Let (B −→
s1

C) −→
s2

A = R −→
s2

A with R = B −→
s1

C.

By definition, PR = (PB \ FPs1) ∪ PC or FPs1 ⊆ PB and PB ∩ PC = ∅

(EB ∩ EA = ∅, PB ⊂ EB and PA ⊂ EA) then FPs1 ∩ PC = ∅.

⇒ PR = (PB \ FPs1 ) ∪ (PC \ FPs1)
= (PB ∪ PC) \ FPs1

⇒ PR ∩ FPs1 = ∅ and by definition FPs2 ⊆ PR so FPs1 ∩ FPs2 = ∅.

We can now prove the property 2.

Proof. Let R = B −→
s1

(C −→
s′
1

A),

R =

⎧
⎨

⎩

VR = VB ∪ s1 ∪ VC ∪ s′1 ∪ VA

ER = EB ∪ EC ∪ EA

PR = (PB \ FPs1) ∪ (PC \ FPs′
1
) ∪ PA

According to property 3:
PB ∩ PC = ∅ and FPs1 ∩ FPs′

1
= ∅ ⇒ PR = (PB ∪ PC ∪ PA) \ (FPs1 ∪ FPs′

1
)

Let R′ = (B −→
s2

C) −→
s′
2

A, R′ =

⎧
⎨

⎩

VR′ = VB ∪ s2 ∪ VC ∪ s′2 ∪ VA

ER′ = EB ∪ EC ∪ EA

PR′ = ((PB \ FPs2) ∪ PC) \ FPs′
2
∪ PA

According to property 3:
PB ∩ PC = ∅ and FPs2 ∩ FPs′

2
= ∅ ⇒ PR = (PB ∪ PC ∪ PA) \ (FPs2 ∪ FPs′

2
).
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Then we get R = R′ if s1 ∪ s′1 = s2 ∪ s′2
Since s2 = s1 \ ((EA × E ) ∩ s1) and s′2 = s′1 ∪ ((EA × E ) ∩ s1),

s2 ∪ s′2 = s1 \ ((EA × E ) ∩ s1) ∪ s′1 ∪ ((EA × E ) ∩ s1)
= s1 ∪ s′1 ∪ ((EA × E ) ∩ s1) \ ((EA × E ) ∩ s1)
= s1 ∪ s′1

A particular case of property 2 stands when, for each application in the chain,
all parameters of the source model are substituted with elements of its target
model. In this case, any parameterized model can be directly applied to the next
model within the application chain. For such application chains, the evaluation
order does not influence the result. This is formalized by the next property.

Property 4. Let B −→
s

C −→
s′

A an application chain such as EPs ⊆ EC , it can

be evaluated either as B −→
s

(C −→
s′

A), or as (B −→
s

C) −→
s′

A.

Proof. According to property 2:

let B −→
s

(C −→
s′

A) = (B −→
s2

C) −→
s′
2

A with
{

s2 = s \ ((EA × E ) ∩ s)
s′2 = s′ ∪ ((EA × E ) ∩ s)

Since EPs ⊆ EC , EPs∩EA = ∅ (by definition EC ∩EA = ∅). From this, we
deduce that (EA × E )∩ s = ∅ (it can not exist x such as x ⊆ EPs and x ⊆ EA)

⇒
{

s2 = s
s′2 = s′

Which proves the property.

This last property allows, in Figure 9, to apply Counting to Allocation to
Base, without specifying any evaluation order.

4 Related Work

Approaches allowing the decomposition of a system following its functional or
technical dimensions aim to simplify the design of information systems. How-
ever to form the global system all the dimensions must be assembled. Various
approaches exist to express this assembly.

Examples of such decomposition techniques are the Subject-Oriented Design
(SOD) approach [8] or the Catalysis approach [10]. The SOD approach proposes
the design of an independent model for each concern of the system. These models
are called Subjects and take the form of a standard UML package. A new type of
relation (CompositionRelationship) is proposed to compose subjects and express
the composition of their elements. A criterion of correspondence can be attached
with this relation to indicate whether elements of the same name constituting
the composite represents the same entity (default) or not.

The Catalysis approach proposes to decompose the design of systems in hori-
zontal and vertical slices. Vertical slices correspond to a functional decomposition
of the system from the points of view of various categories of users. Horizontal
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slices give a decomposition according to the technical concerns of the system.
In this approach, packages are also used to represent the various slices of the
system.

These structuring techniques only support the assembly of models designed
by analysis of a particular system. They are not suitable for the building of
new systems from reusable models [15]. In the following, some approaches have
addressed this issue by introducing parameterization techniques.

In [14] we have proposed to consider views as a decomposition technique of
systems and their models. A view captures some coherent functional aspect that
can be added to a system. Each view is represented as a UML package which
contains a model of the functional aspect. The application of such an aspect
model to a base model is done by a connection mechanism, which allows to
target view model elements to the base ones. The work presented in this paper
generalizes this mechanism through a parameterized application process.

The Catalysis approach proposes specific constructions in order to design
reusable packages: model frameworks. Those are represented using template
packages that are abstract packages containing some elements that must be
substituted for being concretized and used. This set of substitutions is defined
by a set of element pairs (required element/system element). The Theme ap-
proach [9,18] proposes an analysis method of the system (Theme/Doc) which
helps in the identification of relations among various functionalities, and a nota-
tion (Theme/UML) which allows the formulation of these various functionalities
as template packages called Themes. A relation (named bind) is used to express
the parameterized composition of two Themes. In this paper, we focus on pa-
rameterized composition chains and their ordering properties. We have focused
on structure diagrams. It will be useful to evaluate this formalization on dy-
namic model elements such as sequence diagrams of Theme or parameterized
collaboration diagrams [20].

France et al. describe an Aspect Oriented Modelling technique in which as-
pect and primary models are expressed using UML [17,19]. Aspects are specified
by parameterized models. Like SOD, elements of same type and same name are
merged to form a single one in the composed model. In order to allow compo-
sition of generic aspects (in which elements are named differently as primary
model elements) they defined a set of composition directives that can be used
to modify the default composition procedure. They also provide directives to
state the order of composition between aspects and the primary model. In this
paper, we study how far composition orderings are equivalent. These properties
are particularly useful in the case of complex composition processes where pa-
rameterized models could be composed through alternative composition chains.

Though, our definitions do not impose any targeting strategies, particularly
for the structuring of the resulting modelling packages and the realisation of
the parameters substitution process. It would be possible, for example, to apply
fusion or integration strategies. In this way, the semantic of our apply operator
differs from the UML2 merge relationship that defines new elements. It also
differs from the MOF combine relationship and the package extension techniques



142 A. Muller et al.

[7] that impose fusion semantic. Moreover, these relationships are not defined to
compose parameterized models.

5 Tool

In the context of MDA approach, we have developed a modelling tool based on
the Eclipse Modelling Framework and the UML2 Eclipse plug-in. The Eclipse
Modelling Framework is a Java meta-modelling framework that allow to create
models in a programmatic way or by a basic (non-graphical) editor. The UML2
Eclipse plug-in is defined by EMF and provides a set of Java classes to handle
UML2 models.

Our tool3 adds a graphical representation and allows defining generic models
as UML2 template packages at the PIM level. It provides the functionality of
composing these generic models and applying them in order to build a com-
plete system. Strategies to transform composition of parameterized models into
platform specific models are offered (see Figure 11).

SIAspect1 Aspect2

SI +Aspect1
+Aspect2

PatternX AOP

CORBA EJB JBoss/
AOP

Java

P
I
M

TARGETING
STRATEGIES

P
S
M

(1)

(2) (3)

UML to
Java

Fig. 11

The simple strategy (1) is to merge all generic models into a single one. Note
that this strategy can produce name clashes in the merged model which must be
resolved by the user. The resulting model is a standard object-oriented model
that can be translated in any object-oriented language (Java in our case). In order
to preserve genericity and traceability of our templates down to platform specific
models, we have explored two targeting strategies. For the first one (2), we have
defined some design patterns allowing to implement generic splited entities and
3 Available at http://www.lifl.fr/˜mullera/cocoamodeler
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experiment them on different platforms [16,6,3]. Our tool can generate IDL and
Java code for the CORBA platform according to these patterns. We also explored
an AOP targeting strategy (3). We have extended the JBoss/AOP framework
to support aspect entities and generate an XML descriptor for their weaving. It
is possible to select a targeting strategy specific to each application. The MDA
process described in [4] based on marked intermediate PIM is being integrated.

6 Conclusion

Several model driven approaches recognize templates, particularly in the UML
sphere, as a powerful technique to specify parameterized models and their usage
in the construction of whole system models. We have focused here on param-
eterized model application which allows to obtain an extended model from an
existing one. We have justified concretely and formally some properties which
guarantee the correctness of application chains and their alternative ordering
capacities.

The formalization is deliberately independent from any specific usage or ex-
isting methodologies. It would help in supporting model driven processes and
tools dedicated to systems construction by the application and composition of
prefabricated generic models. It also allows to combine generic models in order
to obtain richer ones.

All this work is integrated into a design tool based on the Eclipse Modeling
Framework and the Eclipse UML2 plug-in, from modeling to implementation-
level languages. It will give the ability to manage libraries (design, composition,
import,...) of parameterized models as standard UML2 templates. This will help
in building systems by applying parameterized models.
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oeuvre d’aspects fonctionnels réutilisables par adaptation. In Première journée
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