

Lecture Notes in Computer Science 3748
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Alan Hartman David Kreische (Eds.)

Model Driven
Architecture –
Foundations
and Applications

First European Conference, ECMDA-FA 2005
Nuremberg, Germany, November 7-10, 2005
Proceedings

13

Volume Editors

Alan Hartman
IBM Haifa Research Laboratory
Model Driven Engineering Technologies
Haifa University Campus
Mt. Carmel, 31905, Haifa, Israel
E-mail: hartman@il.ibm.com

David Kreische
imbus AG
Kleinseebacher Str. 9, 91096 Moehrendorf, Germany
E-mail: david.kreische@imbus.de

Library of Congress Control Number: 2005935882

CR Subject Classification (1998): C.2, D.2, D.3, F.3, C.3, H.4

ISSN 0302-9743
ISBN-10 3-540-30026-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30026-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11581741 06/3142 5 4 3 2 1 0

Preface

The European Conference on Model Driven Architecture - Foundations and Ap-
plications (ECMDA-FA) is a new conference dedicated to the study and in-
dustrial adoption of the model-driven approach to software engineering. It has
grown out of a number of workshops and smaller conferences in the area of model
driven development and model driven architecture (MDATM). The conference is
dedicated to providing a forum for cross fertilization between the European soft-
ware industry and the academic community. We aim to present the industrial
experience and highlight the pain points of industry in order to promote fo-
cused academic research that will bring real value to society. At the same time,
we hope to challenge industry leaders to conduct a realistic appraisal of the
emerging technologies presented by academics, consultants, and tool vendors,
and eventually to adopt the model driven approach.

The conference provides both a forum for the papers judged as being of the
highest quality and a venue for workshops, tutorials and tool exhibitions on
model driven software engineering. This year, we are host to five workshops and
four tutorials in subject matter ranging from the highly theoretical to the prac-
tical industrial aspects of MDA and a tool exhibition featuring nine commercial
and seven open source or academic tools. This volume contains nine papers from
the applications track and fifteen from the foundations track, chosen from 82 sub-
mitted papers. These works provide the latest and most relevant information on
model driven software engineering in the industrial and academic spheres.

I would like to express my thanks to all the members of the steering commit-
tee, the program committee, and the referees, who gave freely of their time and
wisdom to make this conference a success. The ECMDA-FA is supported by the
European Commission’s Information Society Technologies (IST) initiative, and
by the Object Management Group (OMG).

November 2005 Alan Hartman
Program Chair

ECMDA-FA’2005

Organization

Steering Committee

Program Chair: Alan Hartman (IBM)
Local Arrangements Chair: David Kreische (imbus AG)
Workshop Chair: Arend Rensink (Twente U)
Tools and Tutorials Chair: Jos Warmer (Ordina)

Uwe Assman (Dresden TU)
Asier Azaceta (ESI)
David Akehurst (Kent U)

Programm Committee

Jan Aagedal
Mehmet Aksit
Sergio Bandinelli
Mariano Belaunde
Jean Bezivin
Xavier Blanc
Manfred Broy
Krzysztof Czarnecki

Miguel A. de Miguel
Philippe Desfray
Reiko Heckel
James J. Hunt
Jean-Marc Jezequel
Anneke Kleppe
Richard Paige
Bernhard Rumpe

Bran Selic
Marten van Sinderen
Gerd Wagner
James Willans
Jim Woodcock

Additional Reviewers

Andreas Bauer
Machiel van der Bijl
Peter Braun
Phil Brooke
Maria Victoria Cengarle
Anthony Elder
Eitan Farchi
Boris Gajanovic
Adrian Giurca
Roy Grønmo
Hans Grönniger
Wilke Havinga

Jan Jürjens
Dave Kelsey
Mila Keren
Andrei Kirshin
Holger Krahn
Sergey Lukichev
Keith Mantell
Frank Marschall
Tor Neple
Dimitrios Kolovos
Shiri Kremer-Davidson
Jon Oldevik

Sergey Olvovsky
Jonathan Ostroff
Fiona Polack
Gerhard Popp
Martin Rappl
Julia Rubin
Thomas Roßner
Martin Schindler
Yael Shaham-Gafni
Zoe Stephenson
Alexander Wißpeintner

Table of Contents

MDA Development Processes

Applying MDA to Voice Applications: An Experience in Building
an MDA Tool Chain

Maria José Presso, Mariano Belaunde . 1

MDA, Meta-Modelling and Model Transformation: Introducing New
Technology into the Defence Industry

Tony Bloomfield . 9

Using Domain Driven Development for Monitoring Distributed Systems
Rainer Burgstaller, Egon Wuchner, Ludger Fiege, Michael Becker,
Thomas Fritz . 19

MDA for Embedded and Real-Time Systems

Model-Driven Architecture for Hard Real-Time Systems: From
Platform Independent Models to Code

Sven Burmester, Holger Giese, Wilhelm Schäfer 25

Model-Driven Performance Analysis of UML Design Models Based
on Stochastic Process Algebra

Naoshi Tabuchi, Naoto Sato, Hiroaki Nakamura 41

MDA Components: A Flexible Way for Implementing the MDA
Approach

Reda Bendraou, Philippe Desfray, Marie-Pierre Gervais 59

MDA and Component-Based Software Engineering

An MDA Approach for Adaptable Components
Steffen Göbel . 74

Layered Ontological Modelling for Web Service-Oriented Model-Driven
Architecture

Claus Pahl . 88

Model-Driven Development – Hot Spots in Business Information
Systems

Bernhard Humm, Ulf Schreier, Johannes Siedersleben 103

VIII Table of Contents

Metamodelling

Semantic Anchoring with Model Transformations
Kai Chen, Janos Sztipanovits, Sherif Abdelwalhed, Ethan Jackson 115

On Some Properties of Parameterized Model Application
Alexis Muller, Olivier Caron, Bernard Carré, Gilles Vanwormhoudt . . 130

A Comparative Study of Metamodel Integration and Interoperability
in UML and Web Services

Athanasios Staikopoulos, Behzad Bordbar . 145

Control Flow Analysis of UML 2.0 Sequence Diagrams
Vahid Garousi, Lionel C. Briand, Yvan Labiche 160

Designing a Domain-Specific Contract Language: A Metamodelling
Approach

Zhan En Chan, Richard F. Paige . 175

Making Metamodels Aware of Concrete Syntax
Frédéric Fondement, Thomas Baar . 190

Model Transformation

XRound: Bidirectional Transformations and Unifications Via a
Reversible Template Language

Howard Chivers, Richard F. Paige . 205

Towards General Purpose, High Level, Software Languages
Anneke Kleppe . 220

Toward Standardised Model to Text Transformations
Jon Oldevik, Tor Neple, Roy Grønmo, Jan Aagedal, Arne-J. Berre . . . 239

On Relationships Between Query Models
Dominik Stein, Stefan Hanenberg, Rainer Unland 254

Transformations Between UML and OWL-S
Roy Grønmo, Michael C. Jaeger, Hjørdis Hoff . 269

A Graphical Specification of Model Transformations with Triple Graph
Grammars

Lars Grunske, Leif Geiger, Michael Lawley . 284

Table of Contents IX

Model Synchronization and Consistency

Horizontal Transformation of PSMs
Jamal Abd-Ali, Karim El Guemhioui . 299

Automatic Support for Traceability in a Generic Model Management
Framework

Artur Boronat, José Á. Carśı, Isidro Ramos . 316

Synchronizing Cardinality-Based Feature Models and Their
Specializations

Chang Hwan, Peter Kim, Krzysztof Czarnecki . 331

Author Index . 349

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 1 – 8, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Applying MDA to Voice Applications:
An Experience in Building an MDA Tool Chain

Maria José Presso and Mariano Belaunde

France Telecom, Div. R&D,
2, Av Pierre Marzin, 22307 Lannion, France

{mariajose.presso, mariano.belaunde}@francetelecom.com

Abstract. Before a development project based on MDA can start, an important
effort has to be done in order to select and adapt existing MDA technology to
the considered application domain. This article presents our experience in
applying MDA technology to the voice application domain. It describes the
iterative approach followed and discusses issues and needs raised by the
experience in the area of building MDA tool chains.1

1 Introduction

Interactive voice-based applications are specific telephony applications that are
designed to allow end-users to interact with a machine using speech and telephone
keys in order to request a service. The interaction – called a dialog –typically consists
of a state machine that executes the logic of the conversation and that is capable of
invoking business code which stands independently of the user interface mechanism
– could be web, batch or speech-based. Because state-machines can be specified and
modelled formally, it is possible to design a tool chain that automates large amounts
of the dialog implementation. The application of model-driven techniques to this
domain is without any doubt very promising. However, the question that arises is
about the methods and the cost of building a complete environment capable of taking
full advantage of models: not only ensuring automated code production but also
offering user-friendly interfaces to designers, model simulation and test generation.

A general methodology for MDA-based development has been defined in [1]. The
authors define the main phases, and make a distinction between preparation and
execution activities: execution activities refer to actual project execution, during
which software artefacts and final products are produced, while preparation activities
typically start before project execution, and setup the context that allows the reuse of
knowledge during the project. The preparation activities can be seen as selecting and
adapting existing generic MDA technology in order to define an MDA approach for
the considered application domain and provide an appropriate tool chain.

1 The work presented here has been partially carried out within the MODELWARE project.

MODELWARE is a project co-funded by the European Commission under the "Information
Society Technologies" Sixth Framework Programme (2002-2006). Information included in
this document reflects only the author's views. The European Community is not liable for
any use that may be made of the information contained herein.

2 M.J. Presso and M. Belaunde

Whereas [1] gives a general description of preparation activities and their chaining,
there is currently little or no guidance available for them. In the current state of MDA
technologies, these preparation activities demand an important effort which is not paid
of by the first project and should be shared among a set of projects within the same
domain. In particular, preparation has an impact on the first application project that
follows it, as this first project necessarily requires iterations in the preparation activities.

This work presents our experience in building an MDA approach for the voice
application domain and finishes by a discussion on the encountered issues and expectations.

2 MDD Preparation for the Voice Application Domain

According to [1], the preparation activities are divided into the preliminary
preparation phase, the detailed preparation phase, and the infrastructure set-up
phase. The preliminary preparation comprises the identification of the platform, the
modelling language identification, the transformation identification and the
traceability strategy definition. Detailed preparation comprises specification of
modelling languages and specification of transformations. Infrastructure setup
includes tool selection and metadata management.

In our project, these activities where performed in an iterative and incremental
way, in order to better suit the needs of the users of the MDD environment involved
in the execution phases, like voice dialog design, business application coding and
functional testing. These users apply the tool facilities constructed by the preparation
activities to produce the voice applications (the tool facilities are described later).

The preparation took place in three main stages. In each phase, some preparation
activities were executed, together with some validation activities involving future
users of the tool-chain, mainly service designers. The rest of this section presents the
stages we followed.

2.1 Stage 1: Definition

In the first part of this stage, the current process of voice application creation was
analysed and the integration of MDD techniques to this process was studied in order
to identify the requirements for the voice development environment (VDE).

From this study, the following roles and their corresponding scenarios of use of the
VDE were identified:

− the service designer uses the VDE model editor and simulator to model and
simulate iteratively the dialogs of the application,

− the usability practitioner uses the VDE simulator to perform usability
expertise on the dialogs of the service and he uses the VDE model editor to
correct the dialog model,

− the internal customer (project owner) uses the VDE simulator a prototype of
the service, to validate dialog design,

− the service implementer implements the service in the target platform, ideally
by completing the skeletons generated by the modelling tool,

− the service validator produces the conformance test cases using the VDE test
generation tool.

 Applying MDA to Voice Applications 3

In order to serve as a conceptual basis for the VDE, a meta-model for platform
independent modelling of voice applications was defined and UML 2 was chosen as a
concrete syntax. Thus, a UML 2 profile for voice application models was defined2.

Although the choice of UML for the concrete syntax may seem obvious, UML 2
being "the" modelling language standard, we will see later that this choice induces a
significant cost in the infrastructure setup phase. For this reason, it is important to
recall the rationale behind his choice:

• Voice application logic can easily be assimilated to a reactive state machine: the
application reacts to user input such as voice and telephone keys, and produces
output for the user: the vocal messages. The concepts of states and transitions
are used in the voice application meta-model and supported by UML.

• Voice applications usually interact with the enterprise's information system. As
UML is used as a modelling language in the information system domain, using
the same language for voice applications allows to seamlessly integrate
information system models with voice application models.

• Communication services are becoming integrated and multimodal. The use of a
standard, largely used notation is expected to favour future integration with
other services and modalities.

• Existing modelling tools and skills can be reused.

Also at this stage, the architecture of the VDE was defined (see Figure 1) and some of
the tools involved were selected. A UML tool was chosen to play the role of model
editor and model repository and the criteria for its selection were defined. Among the
criteria defined, the ones that differentiated the tools were : i) the support for UML 2
transition oriented syntax for state machines (this notation had been found easier to
read by users than the state oriented syntax), ii) the support for rigorous syntax
checking (in particular for actions) and iii) model simulation/execution capabilities.
TAU G2 from Telelogic was chosen as modelling tool.

Following this first round of preparation activities, we conducted some
experiments in order to determine the ability of the profile to capture the intended
service logic, verify that service designers could feel comfortable with the tool and to
identify the necessary adaptations to the modelling tool (i.e. specific functionalities
necessary to better support the voice application profile). These experiments consisted
in modelling some existing services with the proposed profile and tool. Modelling
was initiated by a modelling expert and a service designer working in pairs and
finished by the service designer.

As a result of this phase, we could see that the proposed profile captured most of
the necessary elements to describe a voice application, but it should be enhanced to
support executable modelling of messages and the definition of grammars for voice
recognition. Designers (who are not modelling experts) could get familiar with the
modelling tool with a fair amount of effort. The main need for tool adaptation that
came up was that a high level of support for the specification of messages allowing to
reuse message parts, as well as facilities to read them during the dialog specification
task. Also, high level commands for the creation of the other domain elements should

2 This profile was later used as a basis for a submission to the OMG's RFP for a Metamodel

and UML Profile for voice applications [3].

4 M.J. Presso and M. Belaunde

be available (such as creating a dialog). The restitution of the specification in the
form of a document should be optimized in order to limit its volume and improve
readability, hyperlink navigation should be available in the documents.

Fig. 1. Architecture of the MDD Voice Development Environment (VDE)

2.2 Stage 2: VDE Development – Iteration 1

The second stage consisted mainly in the development of a first version of the tool
chain, offering assistance for the creation of dialog modelling elements (dialogs,
messages, recognition interpretation concepts, etc.), documentation generation and a
limited form of dialog simulation. This version was developed using scripting and
code generation capabilities provided by the modelling tool. Concretely, it appears as
a plug-in to the modelling tool and a separate telephone-like GUI connected to a text
to speech engine, that allows the designer to execute the dialog logic of the modelled
service and evaluate its appropriateness, its ergonomics, etc.

After the development of this first version, a second row of experiments took
place, which consisted in using the tool chain to enhance the service models produced
in the first stage, and use the document generation and simulation functionalities for
this models.

Although this first version of the tool chain was very promising and showed that useful
functionality for service creation could be offered, it presented some limitations: the GUI
for modelling assistance that could be developed through scripting was limited and not
satisfying from the point of view of ergonomics; the service simulation was not able to
propose the possible inputs in a given situation, neither to go arbitrarily back and forth into
the execution tree. The scripting technique used for development posed maintainability
issues and was not appropriate to support a growing software.

At the same time, studies where carried out about simulation and test generation
for voice services. This studies showed that existing simulation technologies based

 Applying MDA to Voice Applications 5

on the IF language[2] provided the necessary level of support to build a simulator for
voice services that overcomes the limitation of the method employed in the first
version.

At the end of this stage the decision was taken to build a more industrial version of
the tool chain based on a programming language (rather than scripting), to offer richer
GUI capability in particular for message creation, and to provide the service
simulation functionality through model simulation techniques, rather than code
generation.

2.3 Stage 3: VDE Development – Iteration 2

This stage started by the definition of the architecture for the modelling tool plug-in,
and the choice of the implementation technology. The main characteristic of this
architecture was the definition of a layer that provides a view of the underlying UML
model in the terms of the voice application metamodel. This layer implements an on-
the-fly bi-directional transformation between UML and the voice application
metamodel. This layer provides an adapted API and is used as a basis to develop the
GUI and a set of generators that implemented various model transformations. Also,
the architecture proposed a way for simple integration of the different generators in
the plug-in. The generators provided at this stage were:

• document generators, which produce documents according to different
templates and in html and MS Word formats. These generators use an
intermediate XML generation phase, followed by XSLT transformations,

• an XMI generator, which exports the model in the terms of the voice application
metamodel. This generator uses the adaptation layer API, and was
automatically generated (and re-generated as needed) from the voice application
metamodel,

• a generator that produces an IF model for service simulation and test generation,
• a code generator having as target an n-tier architecture using VoiceXML. The

generated code executes in the application server tier and produces on-the-fly
the presentation pages in VoiceXML. The generated code integrates in a
framework (which was also developed in this phase), that provides the basis for
the execution of a dialog state machine and VoiceXML generation.

The first three generators above were directly integrated into the plug-in, in order to
facilitate the installation of the toolkit in the user's workstation and its use by the
service designers, while the last on is external and uses the results of the XMI export.
Something important to note about this stage is that the metamodel was called to
change often, as the implementation of transformations asked for corrections or
improvements. As different transformations were developed in parallel, the changes
asked by one of them had an impact on the others.

2.4 Stage 4: Pilots

The last stage is that of pilot projects. These are the first projects using the MDD
chain (in the terms of [1], the first runs of the "execution" phase). The stage is still in
progress at the time of writing. During this phase, iteration with preparation activities

6 M.J. Presso and M. Belaunde

goes on, mainly to adapt the code generator to the project's target platform and to add
extra functions asked by the pilot projects. An important effort in this stage is spent
on user training and support.

3 Discussion

The result of the preparation activities described in the previous section is a process
and a tool chain providing a high degree of automation. Starting from the PIM model,
the tool chain produces automatically a simulation of the dialog, functional test cases,
and the executable code for the dialog logic, and a is good representative of the MDA
vision. However, these activities consumed an important effort, that should be shared
by several projects. In this section we briefly discuss some of the issues and
expectations that come from our experience in building this MDA tool chain.

In our experiment, we encountered a strong user's demand to have a rich GUI for
modelling in terms of the domain vocabulary. This appeared as a critical issue for the
adoption of the tool chain. As UML had been chosen as a concrete syntax, this request
lead to important extensions to the modelling tool in the form of a plug-in. The ability
to extend the modelling tool using a full-fledged programming language was
necessary to develop the required GUI and to apply good engineering practices (such
as the MVC pattern) to this development.

The above issue comes to the famous problem of whether a general-purpose
modelling tool should be specialized or whether the tool should be built from scratch.
Beyond tool usage is the question whether the specific language for the considered
domain – in our case voice dialog definition – has to be built on top of an existing
language – like UML, or a new language should be defined – typically using MOF or
an XML schema. It is easy to adhere to the principle of maintaining the distinction
between the abstract syntax (the domain metamodel) and the concrete syntax (given
by a UML profile or a textual notation) since it provides potentially much more
freedom – ability to use various concrete syntaxes - and is more comfortable for
domain designers – since the vocabulary used is directly the one of the domain.
However, as our experiment has demonstrated, maintaining this distinction potentially
induces a high cost to the development of the tool chain. In our experiment, we used
an "API adaptation" technique which allows to program a specific GUI and model
transformations within the UML tool by using an API dedicated to the domain
metamodel – instead of using the general-purpose UML-based API. This technique
presents interesting advantages from the engineering point of view : i) the knowledge
about the mapping between UML and the domain metamodel is localized, ii)the
coding of the GUI is simplified, since the complexity of UML is hidden iii) the model
transformations can be implemented in domain terms and are thus facilitated, and iv)
the XMI generator exporting the model in the voice metamodel terms can be
produced and updated automatically from the metamodel itself. However, one of the
important problems encountered at this level was the instability of the metamodel,
which in general changed more often than the graphical and the textual notation.
Ideally, to solve the instability problem, the mapping between the metamodel and the

 Applying MDA to Voice Applications 7

concrete syntax should be defined in one single place and then the "API adaptation"
generated automatically. This is indeed easy to say but not necessarily easy to put to
work, especially when the evolving API is already used in various places.

To conclude with the "API adaptation" technique, our experiences showed us that
this technique has good properties, but is costly when the metamodel is not stable and
there is no specific advanced support for maintaining mapping coherence. At the
moment we don't know what the cost would be without this technique, may be it
would be higher. In other words there is a need for tools that will offer an explicit
support of API adaptation. The current notion of UML profile is not sufficient as a
specialization mechanism since it only addresses notation customization but not API
customization.

Concerning metamodel stability, the implementation of code generation and
simulation model generation asked for much more changes to the metamodel than
documentation generation and GUI development. In our experiment this meant that
the metamodel changed more during stage 3 than stage 2. A possible conclusion from
this observation is that transformation development should happen earlier in the
preparation phase, in order to rapidly stabilize the metamodel, before heavy
development such as tool adaptation take place. In order to put this scheduling in
place, we need a way to easily produce metamodel compliant models to serve as an
input to test model transformations. Tools able to rapidly produce a friendly GUI or
text notation from the metamodel definition could be very useful in this situation.

Another interesting issue is about reuse of metamodel patterns. The PIM Voice
metamodel reuses various common constructs that are already found in UML, such as
the differentiation between operation definition and operation call – which has a
variant in dialog definition versus sub-dialog invocation concepts. The UML2
infrastructure metamodel is currently defined using an extensive package
decomposition and the merge mechanism is intended to pick the packages that are
needed. In theory, the semantics of the imported merged concepts is preserved. UML
Profiles is a restricted way to perform metamodel extension with semantics
preservation of the reference metamodel. Ideally, we would like to see a tool that will
allow plain metamodel extension that will ensure – when applicable – semantic
preservation of the reused patterns. This would be an option to the "API adaptation"
technique described above that could avoid maintaining the distinction between the
concrete and the abstract syntax.

A last issue concerns the need of providing an environment that integrates the
different parts of the tool chain in a single workspace to improve easiness of use and
installation. This is still a difficult matter with existing MDA technology. In our
experiment this need led us to integrate some of the transformations directly into the
modelling tool plug-in, where a model transformation engine would be more
appropriate from an MDA point of view. In spite of this integration effort, we still
needed to deploy additional tools and technology in the users’ site and decided to host
code generation in a web server, to simplify the installation on the developers' site.
Better integration of MDA tools is necessary to easily build and deploy an integrated
MDD environment for a given domain.

8 M.J. Presso and M. Belaunde

4 Conclusions

Preparation activities are an important and unavoidable phase in an "MDA
development trajectory". We have presented an experience which applied an iterative
approach to preparation activities and led to an MDA tool chain with a high level of
automation. These preparation activities need an important effort and thus impact on
MDA ROI. Better specific tool support and integration are necessary to lower the
cost of this phase and improve the integration level of the resulting tool chain.

Acknowledgments

Several people contributed to the design and implementation of the presented tool
chain : Miguel Alabau, Fabrice Dubois, Gregoire Dupé, Mikaël Marche, Sébastien
Poivre (France Telecom Div R&D) , Charles-Henri Jurd (Telelogic), Eric Bousquet
and Cedric Le Maitre (Capgemini).

Special thanks come to Gregoire Dupé and Sébastien Poivre for interesting
discussion on issues and possible improvements on the development process of an
MDD tool chain.

References

1. A.Gavras, M.Belaunde, L. Ferreira Pires, J. P.A Almeida. Towards an MDA-based
development methodology for distributed application, in EWSA 2004 : 230-240.

2. M. Bozga, S. Graf, I. Ober, I. Ober and J. Sifakis. Tools and Applications II: The IF
Toolset. In Flavio Corradinni and Marco Bernanrdo, editors, Proceedings of SFM'04
(Bertinoro, Italy), September, 2004 LNCS vol. 3185, Springer-Verlag

3. Joint Initial Submission to the UML Profile and metamodel for voice-based applications
RFP. August 2004.

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 9 – 18, 2005.

MDA, Meta-Modelling and Model Transformation:
Introducing New Technology

into the Defence Industry

Tony Bloomfield

SELEX Sensors and Airborne Systems Ltd. (formerly BAE Systems Avionics Ltd),
Crewe Toll, Ferry Road, Edinburgh EH5 2XS, UK
tony.bloomfield@selex-sas.com

Abstract. The paper discusses some practical examples of how Model Driven
Architecture (MDA) technology is being applied to some vital issues in the
development of avionics systems. A study primarily aimed at addressing the
issue of Software Method and Tool obsolescence was conducted by a number
of BAE Systems’ sites and York University. It investigated model transformat-
ion from legacy Teamwork1 models to UML models. It then went on to
investigate the re-modelling of a component of a legacy avionics system in
executable UML, the development of an Ada code generator, and the
integration of the resulting auto-generated code into the embedded system
without any degradation of functionality and performance. Another Anglo-
French study was conducted to investigate software development methods and
tools for the challenging Integrated Modular Avionics architecture. Both of
these studies contained themes regarding the application of meta-modelling and
model transformation.

1 Introduction

MDA exploits the emergence of a class of tools, which support model translation and
allow meta-model manipulation.

Meta-models are models of the formalism used to build models. They define the various
kinds of contained model elements and the way they are arranged, related and constrained.
The process of developing a model results in the creation of instances of the model elements
defined in the meta-model – the meta-model is “populated” with instance data.

Model transformation is the process of converting a model expressed in one
formalism to another model of the same system expressed using a different
formalism. This can be achieved by building a meta-model of each of the source and
target model representations and then defining a mapping between them. The meta-
model of the source model is populated with instance data of the specific source
model to be transformed. The mapping rules are applied as a set of operations invoked
on the source meta-model, which results in a meta-model of the target model
populated with instance data. This populated target meta-model is then used to
generate the target model (or possibly the target text in the case of code generation).

1 Teamwork is a graphical software-modelling tool originally marketed by Cadre.

10 T. Bloomfield

This paper illustrates some practical examples of the use of meta-modelling. The meta-
models described in this paper were all developed using the Kennedy Carter modelling
tool known as iUML, and expressed in executable UML (xUML), which is a UML subset.
If the UML is to evolve into a programming language that will eventually displace the use
of 3rd Generation Programming languages2 (3GL’s), then it must become stable, precise
and executable. The original UML specification was not sufficient for executable
modelling. To cater for this, it had to be extended by the addition of action semantics,
which were added at UML 1.5. The Action Specification Language (ASL) used in xUML
is proprietary to Kennedy Carter Ltd. but it is compliant with the UML Action Semantics.
The study demonstrated the effectiveness of xUML and ASL in building some fairly
complex meta-models. This relied to a great extent on the fact that ASL is a language
specifically designed to manipulate UML models.

2 Transforming Teamwork Models to iUML Models

The work in transforming Teamwork Models to iUML Models arose from concerns over
software method and tool obsolescence, and the fact that many products were developed
using the Structured Analysis (SA) Methodology adopted and fashionable in the late
1980’s and early 1990’s. These products and their associated software and models may
have to remain in service and be subject to maintenance and significant upgrade for
anything up to 50 years of service life and yet the Teamwork modelling tool is no longer
supported. The intention therefore was to demonstrate that models developed in
Teamwork could be automatically transformed in their entirety to profiled UML models,
which could be maintained, checked and further developed using the iUML tool.

Each Teamwork element was mapped to an equivalent profiled UML element. For
example a “Data Process” in SA was mapped to a “Passive Class” in UML (a class
with no state machine), a “Control Process” was mapped to an “Active Class” (a class
with a state machine), a “Data Flow” was mapped to an “Association” as was a
“Control Flow” etc. A naming convention identified the different types of elements.

It was possible in this way to represent Data Flow Diagrams as UML Class
Diagrams. The automated process that was developed enabled the layout of the UML
diagram to appear the same as in the source Teamwork diagram, by carrying across
the topology information stored in the Teamwork model. There were obvious
cosmetic issues; e.g. a circular Teamwork process bubble now appears as a
rectangular iUML class symbol. Further work would be needed to address symbol
shapes and whether the association lines used to represent data flow did in fact flow
through the centre of the bubble symbol.

The Teamwork to iUML tool migration process is illustrated in Fig. 1 above and
consists of the following steps:

1. Build a meta-model of the old tool export format (in the case the textual notation
used to store Teamwork models known as CDIF3).

2. Build a meta-model of the old formalism, in this case Real Time Structured
Analysis (RTSA). A fragment of this meta-model is shown in Fig. 2.

2 3GL refers to Ada, C, C++, Java etc.
3 CDIF (CASE data interchange format) is a proposed standard, which addresses model and

method independent transfer between CASE tools.

 MDA, Meta-Modelling and Model Transformation 11

xUML Tool
Database

populate
<<RTSA>>xUML
from xUML MM

build, maintain
 and check

RTSA Model

Developer

xUML
Metamodel

map
RTSA MM to
xUML MM

RTSA
Metamodel

map CDIF
to RTSA

MM

CDIF
Metamodel

map CDIF
to CDIF

MM

RTSA Model
(in

Teamwork)

RTSA Model
(in iUML)

Teamwork
Model

xUML
Model

Fig. 1. Teamwork to iUML tool migration process

Fig. 2. Fragment of Structured Analysis Meta-Model

3. Specify the mappings from the CDIF meta-model to the RTSA meta-model, which
maps a CDIF process component to a RTSA process.

4. Build a mapping from the RTSA meta-model to the UML meta-model.
5. Build a mapping from the UML meta-model to the new tool database (i.e. the

iUML database).

The resulting iUML models are meta-model oriented and not diagram oriented as
in Teamwork. This means that one fact is now stored in only one place in the new
iUML representation of the SA model, e.g. if a store name is changed in one place, it
changes it everywhere, both in the graphical representation and in the corresponding
data dictionary entry. In principle these new iUML based SA models can be made

12 T. Bloomfield

executable by the addition of action specifications and executable statecharts. Full
automatic code generation from these models also becomes a possibility.

The example here was one of migrating models built using the Real-Time
Structured Analysis method on the Teamwork tool, originally developed by Cadre.
However, the approach could potentially be used for any method and tool
combination. It should be noted that in this case the modelling tool that was used to
model and generate the translation tools for the transformation is also the one that is
used for modelling the software applications.

3 Migration of Legacy Software Methodology to MDA
Methodology

This work continued on the theme of the management of software method
obsolescence with regard to legacy systems. The previous study dealt with the issue
of Teamwork obsolescence, but continued to support the established SA methodology
using a UML tool. A further study investigated the incremental migration of existing
components of a legacy avionics system to a new methodology. The rationale was
that there would be a cost-reduction benefit in the maintainability and adaptability of
costly legacy software investments. The need is to avoid the systems definition
ultimately residing in reams of code, maintained by engineers who have difficulty
understanding the intentions of the original developers. The intention is that such
systems can be migrated to assets expressed as much more easily comprehensible
models, which are technology independent and from which code can be automatically
generated. The models and not the code become the controlled source, and these
models should be designed for reuse.

The Captor radar is fitted to the Typhoon aircraft. The radar software was
developed using SA and Teamwork. Some of the existing functionality associated
with the air to surface tracking was remodelled in xUML using the iUML tool. The
objective set for the exercise was to determine whether Ada 83 code could be
generated from the xUML tool. This code was to be integrated into the radar in place
of the code that it displaced, and must match the displaced code in functionality and
performance. This was successfully demonstrated.

An important theme for all the participants in the study was to understand the
technology involved in building an MDA style Ada 83 Code Generator, and to
establish whether safety arguments could be applied to it.

The Ada 83 code generator, developed using Kennedy Carter’s Configurable Code
Generator (iCCG), is realised as a set of meta-models, where each meta-model covers
a different aspect of the xUML formalism. iCCG is a product that provides a
framework for developing code generators (or model compilers as they are often
called) that translate xUML models into 3GL code.

The MDA specification defines a process based on model transformations, which
are from the Platform Independent Model (PIM) to Platform Specific Model (PSM) to
Platform Specific Implementation (PSI) as shown in Fig. 3.

The Ada code generator that was actually built for this demonstration is known as a
formalism-centric code generator. It is driven at the highest level by elements of the

 MDA, Meta-Modelling and Model Transformation 13

PSM
Metamodel

map PIM
to PSM

MM

PIM
Metamodel

PSI
Metamodel

map PSM
to PSI
MM

Populate
PIM MM

PIM PSIPSM

Populate
PSM

Populate
PSI

Fig. 3. The MDA Code Generation Process

createMission
create a newmissionwith a unique id
newMission = create unique Mission

name
rank

Pilot

createMission

missionID
dateflown

Target type
Map location

Mission
R1

Squadron

Class

Attribute

Operation

xUML Metamodel

Fig. 4. Simplified Platform Independent Model and Meta-model

xUML formalism, i.e. domain, class, etc. Fig. 4 gives a simplistic indication of the
subject matters in the xUML model and the xUML meta-model that constitutes the
PIM. The code generator was developed therefore in two phases:

1. A set of rules was defined that described how to map every element of an xUML
model to code.

2. The rules were implemented using iCCG by adding operations to the xUML and
ASL meta-models, which generated the code text.

Although the Captor processor architecture is a multi-process, multi-thread
architecture, only a small amount of support for multi-threading was incorporated into
the code generator to meet the needs of the level of integration that was required for
the demonstration. In this code generator the xUML and ASL representations were
translated directly into the Ada language (in other words the PSI, which is simply
represented in Fig. 5). In such a code generator, there was little modelling of the
platform software architecture, i.e. the PSM in the MDA sense. However such a code
generator can be extended by capturing the subject matter of the platform in
additional architectural domains (or meta-models) that supplement the assembly of

14 T. Bloomfield

(part of) Ada Metamodel

Subprogram

Return Parameter

Input Parameter

Ada Metamodel

Fig. 5. Simplified Platform Specific Implementation and Meta-model

domains that make up a formalism-centric code generator. Such a code generator is
known as a platform-centric code generator. These additional domains constitute the
PSM meta-model, and when populated, constitute the PSM.

For example, a code generator could be built to cater for a multi-process, multi-
thread architecture by the addition of meta-models that model the architectural
features of process, thread and inter-process and inter-thread communication. The
analyst accomplishes the distribution of xUML models across multiple processes by
using tags, which indicate to the code generator how the model is to be distributed
and thus how the PIM meta-models are to be populated. For example a data tag is
attached to domains and classes to locate object data and a code tag is attached to non
object-scoped operations to locate code. A simplistic representation of a PSM is
shown in Fig. 7, which has been referred to as a “blueprint” model and meta-model,
for reasons that will become clearer in the next section.

4 Developing Integrated Modular Avionics’ (IMA) Systems

The previous section described how meta-modelling was applied to building a
simplistic formalism-centric code generator and indicated how this could be extended
to model the platform. In the following study, the modelling of a complex computer
platform architecture was a very much more pressing issue.

Traditional avionics architectures have consisted of a federation of loosely coupled
embedded computers, which are supplied by a variety of manufacturers. This results
in a multi-spare maintenance policy and a poor failure recovery strategy. The
adoption of a modular avionics computer architecture compatible with the adoption of
an open integrated modular software architecture is regarded as a major cost saving
strategy. The goals of such an architecture are:

1. Technology Transparency - The underlying hardware should not have any impact
on an application either during development or execution.

2. Scheduled Maintenance - The system should have inbuilt capability to operate in
the presence of failures so that extended Maintenance Free Operating Periods
(MFOPS) can be achieved.

 MDA, Meta-Modelling and Model Transformation 15

3. Incremental Update - The system should be designed such that applications can be
inserted/altered with minimum impact on other applications and on the supporting
safety case.

The requirement is to develop and then to map all the avionics applications to a rack
of Processing Modules. The applications that are active at any time during the mission
can be selected as a function of the current operational mode (e.g. take-off,
reconnaissance, attack etc.). In order to cater for failure conditions, it must be possible
to re-map active applications to different non-failed modules (a certain amount of
redundancy is catered for). These mappings are referred to as system configurations.

This requires a sophisticated operating system that can manage the dynamic
reconfiguration of the system at run-time in response to operational modes and fault
conditions. Such an operating system requires instructions on how it is to behave for each
system state in response to reconfiguration or error handling events, and these are stored in a
“runtime blueprint”. The runtime blueprint includes information about the applications, the
target hardware and all the possible configurations and the mapping solutions between these.

During development it is highly desirable to develop the applications inde-
pendently of the hardware and then to devise a mechanism for specifying the complex
mapping combinations to the target hardware. The solution that has been devised is to
create three design-time blueprints that each captures respectively the necessary
information about the applications, the hardware resources and the system
configurations. The mapping solutions are derived from these blueprints and captured
and synthesised in a fourth design-time blueprint known as the system blueprint. The
run-time blueprint is a translation of information stored in the system blueprint, and
its components are distributed around the various processing elements of the system.

The four development environments and how they fit with the generation of blueprints is
shown in Fig. 6. The System Modelling Environment (SME) is where the overall system is
modelled and results in the Configuration blueprint. The Application Development
Environment (APPDE) is where the Application is developed resulting in the Application
blueprint and models. The Architecture Description Environment (ARCDE) is where the

SMESME

conf Bp

Clients requirements

SPIESPIE Sys execSys Bp

Run-time Bp Binary exec

APPDEAPPDE

App Bp

requirements

ARCDEARCDE

Res Bp

requirements

SMESME

conf Bp

Clients requirements

SMESME

conf Bp

Clients requirements

SPIESPIE Sys execSys Bp

Run-time Bp Binary exec

SPIESPIE Sys execSys Bp

Run-time Bp Binary exec

APPDEAPPDE

App Bp

requirements

APPDEAPPDEAPPDEAPPDE

App Bp

requirements

ARCDEARCDE

Res Bp

requirements

ARCDEARCDE

Res Bp

requirements

Fig. 6. Environments of the development process

16 T. Bloomfield

hardware architecture is defined, and captured in the Resource blueprint. The System
Prototyping and Integration Environment (SPIE) is where the system is prototyped and
integrated resulting in the generated system software and the System blueprint.

The IMA Development Process fits closely with the concepts of MDA. The
intention of the Application Domain is “to develop the applications independently of
the hardware”, in other words in MDA-speak, to develop a PIM.

The intention, subject matter and content of the blueprints is similar to those PSM’s
discussed in the previous section which are used for the construction of a platform-
centric code generator. The blueprints correspond to the PSM meta-models and models
illustrated in Fig. 3, their purpose is to define the software architecture and are used to
map the platform independent applications to the target platform (see Fig. 7). The
implication therefore is that the Blueprints have a dual role to play in the IMA software
development process, not only are they used to synthesise the Run-Time Blueprint, but
they can also be used in the auto-generation of the code, i.e. the PSI.

Blueprint

Processes
Process ID, Process Name, Semaphore & Event
Info,..Integration Constraints,.. Etc.

Threads
Thread ID, Thread Name, Semaphore & Event
Info,..Integration Constraints,.. Etc.

Virtual Channels
VC ID, VC Name,...Source Thread ID, Sink Thread ID…
Etc.

Process

Thread

Virtual Channel

Blueprint Metamodel

Fig. 7. Simplified Platform Specific Model and Meta-model

Fig. 8. A Fragment of an Application Blueprint Model

 MDA, Meta-Modelling and Model Transformation 17

During the study, aspects of the Design Time Blueprints were modelled using a
number of tools, Fig. 8 shows some of the work that was done with the iUML tool
(this diagram should be regarded as purely experimental, it does not correspond to
any realised blueprint definition).

5 Conclusions

This paper examined only one example of a number of tools that are now becoming
available to address the OMG standard for Model Driven Architecture (MDA). This
paper illustrated some practical examples that have demonstrated that xUML (which
is a UML subset), made executable by an Action Specification Language (ASL) can
be used to develop sophisticated meta-models, which can in turn be used for model
transformation. Some tools use a 3GL as the UML action language, but this does
present some problems with regard to building meta-models. One example is chained
navigation i.e. given an instance or set of instances of a class, find by navigating a
chain of associations an associated instance or set of instances. This can be expressed
quite succinctly in a shorthand notation constituting a single line of ASL. This single
line in turn can translate into 50 or more lines of C++ or Ada code4 in order to
execute. Such navigation chains occur all the time when gathering data from
instantiated meta-models in order to perform model transformation. Clearly it is too
clumsy to have to write this amount of 3GL code explicitly, for every navigation.

On the other hand the Kennedy Carter ASL lacks features of a standard 3GL that
are rather desirable when designing software applications. For example, it does not
have access to a maths library, which makes it necessary to revert to the native 3GL
code of the target platform in order to invoke maths functions such as trig functions or
matrix manipulations etc. Standards are required, and the OMG have issued requests
for proposals (RFP’s – the requirements document that initiates the standard setting
process) for executable UML and concrete action language syntax.

The study demonstrated the potential for preserving investment in existing models
built using tools that are no longer supported through model transformation. Model
transformation also offers the potential for automatic data transfer between disparate
specialist modelling tools used in the development tool chain.

The study also demonstrated that a common approach and formalism can be
applied to the development of both models of software applications and to the meta-
models used to transform them. The ability to generate not only the components of the
target system, but components of the development tool chain, provides scope for
model translation and offers “executable specifications” that can be tested early and
mapped reliably onto the target, leading to greater levels of dependability.

The traditional software approach makes a rather fuzzy distinction between
analysis, which is the definition of what the system is to do, and design, which is how
the software is to be implemented. The boundary where one finishes and the other
starts, is equally difficult to define. No such distinction is made in this approach. The
modelling method and formalism to develop the application as a PIM, is exactly the

4 The reason that this happens is because of the need to iterate and find matches over sets of

data.

18 T. Bloomfield

same as that for modelling the target platform as the PSM. The difference is a clean
subject-matter separation between application behaviour and platform specific
implementation technologies.

The software architecture devised for Integrated Modular Avionics is probably the
ultimate PIM in terms of sophistication and complexity. Meta-modelling presents a
solution to modelling the Blueprints as the PIM’s that define the software
architecture. These in turn offer the dual role of (a) the repositories for capturing the
mapping solutions used to build the run-time blueprint, and (b) the mechanisms to
build the mappings required to auto-generate the implementation code as the PSI.

Acknowledgements

The help of Chris Raistrick of Kennedy Carter Ltd. in the preparation of this paper
and the participation of the industry, academic and tool vendor partners in the joint
research work referred to in this paper is hereby acknowledged.

References

1. Object Management Group - Model Driven Architecture - www.omg.org/mda
2. S. Shlaer, S. J. Mellor. Object Oriented System Analysis: Modelling the World in Data.

Yourdon Press Computing Series. (March 1988).
3. S. Shlaer, S. J. Mellor. Object Lifecycles: Modelling the World in States. Yourdon Press

Computing Series. (April 1991).
4. S. J. Mellor, M. Balcer. Executable UML. A Foundation for UML. Addison-Wesley Pub

Co; 1st edition. (May 2002)
5. UML Distilled Applying the Standard Object Modeling Language. Martin Folwer, Kendall

Scott ISBN 0-201-32563-2
6. Model Driven Architecture with Executable UML. Chris Raistrick et al. ISBN 0-521-53771
7. Model Driven Architecture – An Industry Perspective. Chris Raistrick, Tony Bloomfield

Architecting Dependable Systems II. ISBN 3-540-23168-4

Using Domain Driven Development

for Monitoring Distributed Systems

Rainer Burgstaller2, Egon Wuchner1, Ludger Fiege1,
Michael Becker1, and Thomas Fritz3

1 Siemens AG, Corporate Technology,
D-81730 Munich, Germany

2 TU Darmstadt, Darmstadt, Germany
3 LMU Munich, Munich, Germany

Abstract. Domain Driven Development (DDD) is one key to conquer-
ing the complexity of large-scale software systems. The use of domain-
specific models raises the level of abstraction in programming, and helps
modularizing and automating the development process. However, in pi-
lot projects using MDx approaches we have experienced the need for
more tool support on model level, in particular for monitoring, debug-
ging, and testing. In this paper, we investigate monitoring and feedback
mechanisms that make models reflecting the current state of the running
system. Additionally, we describe a prototypical implementation, which
is a starting point for further work on enabling debugging and testing
on model level.

1 Introduction

Large software systems imply a number of severe problems that make their
development and maintenance very complex: huge code bases mixing application
logic with infrastructure code, missing or not up-to-date documentation, and
the need to create new and customized versions in short time intervals. New
technologies provide easy, often ad hoc, solutions for engineering distributed
systems, but they hardly raise the level of abstraction. Engineers have to deal
with lots of source code to incorporate changes on the business level.

Model driven software development (MDSD) promises to mitigate these prob-
lems by raising the level of abstraction and automating some development steps.
Domain Driven Development (DDD) approaches work with descriptions, i.e.,
models, expressed in terms of the respective application domains. The domain-
oriented view eases communication with domain experts, limits the involved
amount of details, and modularizes the development process. To some extent,
DDD is an extension of OMG’s take on MDSD with its Model Driven Architec-
ture (MDA) [4].

DDD automatically transforms one or more input models and finally gen-
erates code in the last step of the process. Application programmers can then
extend the code base to refine the application-specific logic. The generated code
is not changed so that the generation step can be reiterated when models change.

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 19–24, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

20 R. Burgstaller et al.

However, so far this approach does not cover the whole software engineering
lifecycle. The transformation process is currently one-way, focusing on transform-
ing models into code, while support for debugging and testing is rarely available
on the model level. Domain experts participating in the development process
want to monitor, debug, and test running instances. But unlike traditional soft-
ware engineers, they should stay on the model level, not being forced to work
on code level.

In this paper, we investigate mechanisms that feed runtime status infor-
mation back into the model to synchronize it with the running instance. Such
mechanisms are the basis for monitoring, debugging, and testing on model level.
We focus on how monitoring can be achieved in domain driven development
of distributed systems. We present a prototype application that helped us to
investigate the main problems.

The remainder of this paper is organized as follows. In Section 2, we present
the example application and the monitoring functionality we wanted to achieve.
This is followed by our prototype implementation in Section 3. Finally, Section 4
summarizes the paper and gives an outlook on future work.

2 Domain Driven Development

2.1 Example Application

Our example application is an inventory tracking system (ITS) [5]. The system is
used to monitor and control the flow of goods and assets in warehouses. Typically,
an ITS consists of three types of systems, operating on three different levels.
At the top level—the operation level—operate systems that are responsible for
planning, scheduling and supervising the progress of all business-level operations.
Next, at the intermediate level—the process control level—resides the warehouse
management system (WMS) responsible for the accurate and timely execution of
all activities planned and scheduled at the operation level. Finally, at the bottom
level—the entity level—operate physical devices like forklifts, conveyer belts,
storage racks and others, performing the operations requested by the WMS.
Goods delivered at a warehouse gate must be moved to appropriate storage
locations, and requested goods must be looked up and conveyed to the delivery
gate. System operations are monitored by the warehouse management system.
It visualizes ongoing work, offers a management console for manual interactions,
checks for alarm conditions, and alerts the operator if necessary.

2.2 Applying DDD

The main objectives when developing the warehouse management system were
to involve domain experts in all stages of design and operation, to exploit exist-
ing components for material flow and the control subsystem, and in particular
to automate the software process as far as possible. Therefore, we have ap-
plied a domain driven development approach. Domain experts create a model of

Using Domain Driven Development for Monitoring Distributed Systems 21

Runtime Environment

monitoring/debugging

code level
debugging

Meta−Model

DSL Specification

DSL Entity Generator

DSL Document

Model

Wiring Generator

Deployed System

model level

Fig. 1. Domain and code level development

the warehouse that defines its specific layout and additional rules of operation.
Domain specific languages (DSLs) keep domain experts away from code level
representations and often provide graphical models of the system that are well
understood by these experts.

The main benefit of the DDD approach is that domain experts participate
in the definition of the DSL itself, i.e., of the warehouse meta-model, and they
also use the DSL to describe individual warehouse instances. They work on a
domain-oriented view of the warehouse and do not need to care about code level
artifacts, or component or deployment diagrams. In DDD, domain level and code
level engineering should go in parallel throughout the whole software lifecycle
(see also Figure 1).

The definition of the warehouse DSL includes generators to create code (skele-
tons) for the DSL entities. Models defined with the DSL are complemented with
generators that wire the code for a specific warehouse instance. As for all model
driven approaches, the generation step should be repeatable so that domain ex-
perts may update the model without destroying code level contributions. How-
ever the backward direction is hardly supported, so far.

2.3 Need for Monitoring

The goal of DDD is to involve domain experts also in optimizing layout and
operation, and in adapting the system to changing requirements. This requires
involving them in defining QoS, alerting states, checking and correcting con-
straints, and in debugging. Obviously, the next step in the DDD process would
be to allow for model level monitoring of the deployed system. We need such
a monitoring as part of our application anyway, and in general it is the basis
for further steps in the engineering process, namely for debugging and testing
purposes.

A generic approach for monitoring arbitrary models of a given DSL requires
at least:

22 R. Burgstaller et al.

• Tool support: Assuming we use a graphical DSL, it would be useful to have
information about the deployed system fed back into the same tool used for
creating the model.

• The possibility to specify monitored artifacts: Typically, not all deployed ar-
tifacts and not all details are of interest. We need a mechanism to specify
which details should be monitored, or under which conditions the informa-
tion should be fed back into the tool.

• The ability to select, filter, and transmit information: We need communica-
tion mechanisms that are able to filter and convey the detected data from
the deployed system into (one or more) monitoring tools. To support large
distributed systems, we probably need event notification mechanisms as un-
derlying means of communication [1].

3 Realization

After having motivated our approach, we will now explain its realization. On the
one hand, we will give an overview of the transformation process in which the
different code-related files are generated from the model. On the other hand, we
will shortly describe the employed event-notification mechanism.

To realize the feedback component, we used Ice [3] and some of its services,
e.g., IceStorm (a publish-subscribe service that decouples clients and servers). Ice
is an object-oriented middleware platform that allows you to build distributed
applications with minimal effort. Like Corba’s Interface Description Language
(IDL), Ice uses an abstract description language (called Slice — Specification
Language for Ice) to define the client-server contract independent of a specific
programming language. For a good overview of Ice and a comparison to Corba
see [2].

Model-Code Transformation. We used Visio as our Modeling Tool, as it offers
meta-modeling and domain-modeling capabilities, is easy to extend for our gen-
eration purpose and has a lot of other user-friendly features [5]. Our generator
transforming meta- and domain-models is implemented as a plug-in for Visio
written in C#.

First, one has to specify a meta-model by defining the master shapes in Visio,
including the definition of properties, constraints and connection points. Starting
from this meta-model, the generator iterates over all defined master shapes and
generates Slice files (see step one in Figure 2). Each Slice file represents one
master shape and contains its interface definition. These slice files are then used
in a second step to generate the corresponding proxy and skeleton code in C# by
the Slice-To-C#-Compiler of Ice (relevant for the client-server communication)—
see step two.

In step three, the generator again iterates over all master shapes of the meta-
model. Thereby, it creates a C# class for each master shape that inherits from
the according skeleton class. These newly generated classes act as servants and,
as the relevant methods are overridden and feedback functionality is added to

Using Domain Driven Development for Monitoring Distributed Systems 23

Modeling Tool

Feedback
Component

Operator Console

informs

changes
attributes

Generator Slice files

generates

starts

Database

stored in

Slice-To-C#-
Compiler

takes

generates

C#

Initial system configuration

generates

C#

generates

extend

1

4

3

2

Model-Code-Transformation

Runtime Feedback

Fig. 2. Monitoring approach. The arrows show the communication between the com-

ponents.

them, they already contain the notification calls in every method that changes
attribute values.

Once the meta-modeling and transformation is done, one can use Visio to
draw domain models containing a certain number of different shapes and to
specify attribute values of the model elements. Out of this domain model, the
generator now creates an initial system configuration that is used later on at
start-up of the system in order to initialize the systems’ objects. Only the first
time the system is initialized using this generated configuration, later on, the
relevant information on the object states is retrieved from the database.

Runtime Feedback. Now that the system is running, one can monitor dynamic
changes of the domain model with our feedback mechanism. Therefore, the mod-
eling tool (Visio) is connected with the running system using the Feedback Com-
ponent. Now, each time an object changes its state (triggered by an algorithm
or via the operator console), the feedback component notifies the modeling tool
about the change by firing an event (including the changed data). This notifica-
tion handling has been generated into the servant classes as described above.

In the Visio plug-in developed for our prototype the user can choose whether
he wants to have monitoring support or not. If requirements change (so that,
for instance, monitoring support is not needed any more), a simple regeneration

24 R. Burgstaller et al.

and recompilation is necessary. Another possibility would be to unconnect the
modeling tool but then a certain overhead for the signaling mechanism remains.

4 Concluding Remarks

Currently, model driven software development does not cover all stages of soft-
ware engineering. Current approaches support only one-way transformations
from the model into the code and miss feedback mechanisms enabling debug-
ging and testing on the model level. Our approach is a first step towards a
complete modeling approach that comprises model-code transformation as well
as dynamic feedback. We have demonstrated an example showing the useful-
ness of monitoring facilities on the model level. Furthermore, we presented our
feedback approach, an event-based mechanism that tracks dynamic changes in
the system. Feeding runtime information back into the model is the basis for
monitoring, debugging, and testing.

Future work could comprise a more fine-grained feedback mechanism. Cur-
rently, all runtime changes of model elements are tracked. However, it might be
preferable to specify the elements of interest on the model level, maybe even in
a new layer of abstraction.

References

1. Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermar-
rec. The many faces of publish/subscribe. ACM Computing Surveys, 35(2):114–131,
2003.

2. Michi Henning. A new approach to object-oriented middleware. IEEE Internet
Computing, 8(1):66–75, 2004.

3. Michi Henning and Mark Spruiell. Distributed programming with Ice, 2005.
4. Jishnu Mukerji and Joaquin Miller. MDA Guide, v1.0.1. omg/03-06-01, June 2003.
5. Andrey Nechypurenko, Tao Lu, Gan Deng, Douglas C. Schmidt, and Aniruddha

Gokhale. Applying MDA and component middleware to large-scale distributed
systems: A case study. In First European Workshop on Model Driven Architecture
with Emphasis on Industrial Application, Enschede, The Netherlands, March 2004.

Model-Driven Architecture for Hard Real-Time
Systems: From Platform Independent Models to Code�

Sven Burmester��, Holger Giese, and Wilhelm Schäfer

Software Engineering Group, University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany

{burmi, hg, wilhelm}@uni-paderborn.de

Abstract. The model-driven software development for hard real-time systems
promotes the usage of the platform independent model as major design artifact.
It is used to develop the software logic at a high level of abstraction and enables
analysis like for example model checking of critical model properties. Ideally,
starting with the platform independent model, the platform specific model serves
only as an intermediate artifact which is derived automatically, and will finally
result in a set of threads whose implementations guarantee the behavior, speci-
fied in the platform independent model. However, the current MDA approaches
and tools for hard real-time software do not provide this ideal: While some of the
MDA approaches could in principle support this vision, most approaches simply
do not support an appropriate specification of time constraints in the platform in-
dependent model which have to be respected in the platform specific model or in
the code. This is also true for UML models and UML State Machines in particu-
lar. Our approach overcomes those UML specific limitations by firstly proposing
a syntactic extension and semantic definition of UML State Machines which pro-
vides enough details to synthesize an appropriate platform specific model that
can be mapped to code for hard real-time systems automatically. Secondly, a new
partitioning algorithm is outlined, which calculates an appropriate mapping onto
a platform specific model by means of real-time threads with their scheduling pa-
rameters which can be straight forward transformed to code for the hard real-time
system.

1 Introduction

The current practice when building software components with hard real-time constraints
is characterized by the following step-wise partially manual process: (1) Specification:
The software is specified on a high abstraction level (if at all), then (2) Partitioning:
The software is partitioned into concurrent threads with appropriate periods to make
it run on a real-time operating system (usually without adequate analysis), (3) Imple-
mentation: The software is implemented (often manually, which makes implementation

� This work was developed in the course of the Special Research Initiative 614 - Self-optimizing
Concepts and Structures in Mechanical Engineering - University of Paderborn, and was pub-
lished on its behalf and founded by the Deutsche Forschungsgemeinschaft.

�� Supported by the International Graduate School of Dynamic Intelligent Systems. University
of Paderborn.

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 25–40, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

26 S. Burmester, H. Giese, and W. Schäfer

faults very likely), (4) Analysis: It is verified that the software fulfills all real-time con-
straints in its environment (testing as employed in practice is usually not sufficient for
complex software to guarantee the absence of timing errors). If the real-time constraints
do not hold, partitioning, implementation and analysis have to be repeated. Repeating
this cycle a number of times is usually very costly but often unavoidable.

Consequently, there is an increasing demand to extend model-driven architecture
(MDA) [1,2] to design software for embedded hard real-time systems. When using
MDA for such systems, the developer would have to specify the so called Platform In-
dependent Model (PIM) which describes the system behavior including the real-time
constraints which must be met. Ideally, a tool would then automatically partition the
specification and map it to the Platform Specific Model (PSM), based on a Platform
Model (PM) that provides details about the target platform. The PSM describes the
active objects and their scheduling parameters which are required to implement the sys-
tem behavior, specified by the PIM. In the next step, the PSM would be compiled auto-
matically into the platform specific implementation which guarantees a correct imple-
mentation of the PIM’s semantics. The implementation would guarantee the real-time
constraints by construction and thus, no verification of the real-time constraints is re-
quired. This would make the above mentioned manual steps (3) Implementation and (4)
Analysis unnecessary. Such guarantees for the derived implementation further permit to
analyze other required properties or to reveal faults or inconsistent real-time constraints
using the platform independent model rather than considering the much more complex
code (e.g. by model checking [3,4,5]).

One reason, why the indicated iterative manual process is followed in practice in-
stead of the MDA approach, is that currently, there exists no support to automatically
map a PIM to a PSM that is appropriate for real-time systems. The UML [6] can be
considered as the standard to model complex software systems even in the real-time
domain [7,8,9,10]. Consequently, we propose in the paper an approach to realize the
above outlined vision with UML, even though UML has not been originally designed
to support real-time systems and a semantically correct implementation for standard
UML State Machines is due to the underlying zero execution time semantics not possi-
ble. Although ROOM [11] has finally found its way into UML 2.0, the required support
for real-time behavior modeling is still not available, as the ROOM concepts focus on
architectural design and do not address the real-time behavior of the operational model
at all.

Another thread of development is the UML Profile for Schedulability, Performance,
and Time [8]. The profile defines general resource and time models which are used to
describe the real-time specific attributes of the modeling elements such as scheduling
parameters or quality of service (QoS) characteristics. However, it remains an open
question in the UML profile how all required details are determined. In a scenario where
the developer derives these details from a high-level (platform independent) model and
maps them on technical concepts such as threads and periods manually, we still have the
problem that this mapping results in an iterative manual process of testing and adjusting
the model until the real-time constraints are met. Nevertheless, the profile defines an
appropriate level of abstraction to be used as PSM. This PSM can be later used for
further model analysis (e.g. scheduling analysis) and code generation.

Model-Driven Architecture for Hard Real-Time Systems 27

To provide an appropriate PIM, we first propose a syntactic extension of UML State
Machines and a related semantic definition. By enriching the model with deadline infor-
mation (besides others), our extension provides enough details in the PIM to synthesize
a PSM and finally code for hard real-time systems. We provide the PM by a description
of worst case execution times (WCETs) of local side-effects and of the code fragments
that will be used in the automatically generated implementation of the state machine.

For the automatic derivation of the PSM from our extended notion of State Ma-
chines, we developed an algorithm for automatic partitioning and for automatic deriva-
tion of scheduling parameters. The algorithm takes CPU time sharing on a single micro
processor into account. An automatic implementation usually leads to less faults than
a manual implementation. The automatic partitioning respects the deadlines from the
PIM and the WCETs from the PM.

Therefore, the algorithm for automatic Partitioning and Implementation guaran-
tees that all real-time requirements are met, which makes the Analysis unnecessary and
avoids the costly iterative process of Partitioning, Implementation and Analysis. If the
algorithm fails to provide a partitioning, the model is not realizable.

The next section presents our approach for platform independent modeling of hard
real-time systems and relates it to standard UML models. Section 3 describes the plat-
form model and the component’s deployment. Section 4 shows in detail how to derive
a platform specific model and finally code. Section 5 discusses current approaches of
specification techniques for embedded systems with hard real-time constraints and their
limitations. Finally, Section 6 draws a conclusion and sketches current and future work.

2 Platform Independent Models

In this section, we first describe how to specify the system’s structure. Then, we discuss
in detail how to specify the behavior of components of embedded real-time systems
with UML and with our approach. Finally, we present our analysis methods.

2.1 Structure Modeling

Embedded real-time systems consist of a complex architecture of components (cf. Fig-
ure 5). In [3], we have presented an approach how to specify the architecture and com-
plex real-time communication between the components by UML component diagrams
and patterns respectively. Our approach further permits to verify the component’s in-
terconnection by means of compositional model checking assuming that each single
component behaves as specified. How the single component’s real-time behavior is spe-
cified and how it is correct implemented automatically is described in the remainder of
this paper.

2.2 Behavior Modeling

We use an example from the RailCab research project1 as our running example. The
vision of the RailCab project is a rail system where autonomous operating shuttles apply

1 http://www-nbp.upb.de/en/index.html

28 S. Burmester, H. Giese, and W. Schäfer

Fig. 1. UML approach to model the shuttle coordination

the linear drive technology used in the Transrapid, but travel on the existing passive
track system of the standard railway. One particular problem, which has been previously
described in [3], is to reduce the energy consumption due to air resistance by forming
convoys whenever possible. Such convoys are created on-demand and require small
distances between the shuttles in order to achieve significant economies.

Building convoys changes the shuttles’ behavior (e.g. the way of accelerating and
braking). Thus, It must be guaranteed that all involved shuttles of a convoy switch
to convoy mode in an appropriate and predictable amount of time which results in a
number of hard real-time constraints.

After receiving a convoyProposal message, that denotes a request to build a convoy,
we demand for the communication that the shuttle answers within the time tans with
rejection (message convoyProposalRejected) or with acceptance (startConvoy).

In a first attempt to describe this coordination with a UML State Machine, the state
machine would switch to an intermediate state when receiving convoyProposal. This
intermediate state would be left via a transition labeled with after(tans) to switch to a
Failure state if no answer was sent during this time.

The semantics of such a model assumes the transitions to be fired within zero-time,
but this is not realizable in an implementation in real life systems due to three reasons:
(i) Consuming or raising events or executing side-effects consumes time. (ii) An im-
plementation of a state machine requires a task which periodically checks if transitions
are triggered. As only positive, non-zero periods are realizable, this leads to a further
delay. (iii) If other processes are executed on the processor, further delays occur due to
scheduling.

One possibility to model time consumption of raising events or executing side-
effects is the use of the after-construct as shown in Figure 1. In order to respect the
worst case execution time we for consuming or raising events the help-states are in-
troduced. They are entered when an event is consumed or fired and left after we (to
simplify the example we assume that consuming and raising of events consumes the
same amount of time).2

Such a description models correctly that the actions consume time (cf. (i) above), but
still consist of transitions that react infinitely fast (cf. (ii)) and do not respect scheduling

2 Note when regarding Figure 1 that we denote the sending of a message msg to target tgt by
tgt.msg. Receiving from receiver rcv is denoted by rcv.msg.

Model-Driven Architecture for Hard Real-Time Systems 29

Fig. 2. Real-Time Statechart

delays (cf. (iii)). Further, the after-construct is used in 2 different ways: after(tans −we)
specifies the point in time when the according transition has to fire (as proposed by the
UML). Contrary to this, after(we) is used to model the progress of time while raising an
event.

The example illustrates, that UML State Machines are not practical for our demands
and that there is need for a realistic model that supports the specification of hard real-
time constraints like WCETs and upper bounds for reaction times.

The abstraction of zero execution time, employed in UML State Machines, is of-
ten interpreted to mean fast enough. Thus, to specify how fast they have to react, we
propose to specify deadlines for each required side-effect. Thus, in our Real-Time State-
chart model [12,13], which is an extension of the UML State Machine model, transi-
tions are not assumed to fire infinitely fast, which is unrealistic on real physical devices
(especially when considering the execution of the actions attached to the transitions),
but it is possible to specify deadlines for each transition which in turn determine what
fast enough really is.

These time constants specify a relative point in time defining the minimum time
(always 0 in this example, see Figure 2) and the maximum time (d0, tans) until the firing
of the transition has to be finished. These points in time are either absolute in relation
to the point in time when the transition has been triggered (e.g. the transition from
noConvoy to answer) or relative to a clock. In the example, the deadline t5 ∈ [0; tans] of
the transition from answer to convoy is relative to the clock t5. t5 is reset to zero when
switching to state answer (indicated by {t5} similar to the notion in timed automata
[14,15]). The clock is reset at the point in time when the transition is triggered. The
deadlines avoid to use extra or help states (as in Figure 1) and thus enable to construct
a less complex model in terms of the number of states.

Further, we enhance the model –similar to timed automata– by time invariants defin-
ing the point in time when the state has to be left via a transition. The state answer is
only valid as long t5 ≤ tans − we holds. To trigger transitions dependent on a specific
point in time, time guards are specified (e.g. 0 ≤ t5 ≤ tans − we).

Transitions are triggered when the time guard becomes true, the associated event
is available and a guard, consisting of a boolean expression over different variables or
methods, is also true. We distinguish between urgent transitions (visualized by solid ar-

30 S. Burmester, H. Giese, and W. Schäfer

rows) firing immediately when they are triggered and non-urgent transitions (visualized
by dashed arrows). The latter ones may be delayed when the time specifications of the
model still allow a later firing [14]. Urgent transitions are similar to eager transitions
in [16] and non-urgent transitions are similar to delayable or lazy transitions in [16].
They are used to model different possible alternatives in the communication protocol.
This introduced non-determinism is resolved in Figure 3 showing the whole shuttle
behavior.

The after-construct is mapped to a time guard and a time invariant and thus gets
a semantic definition which makes it possible to generate code from this definition.
Although the use of multiple clocks requires more effort than using the after-construct,
it has the advantage that the points in time, when transitions are triggered, cannot only
be defined relative to the point of entrance of the current state, but also relative to the
point of triggering of any previously fired transition or the point of entrance or exit of
any previously entered state, because clock-resets can be associated even to the exit()-
and entry()- methods of the states.

The form of the time guards is limited to ∧ti∈C(ai ≤ ti ≤ bi), ai ∈ IN, bi ∈ IN ∪
{∞}, where C is the set of clocks. The form of time invariants is limited to ∧ti∈C(ti ≤
Ti), Ti ∈ IN ∪ {∞}. In our experience, this limitation, i.e. the exclusions of arbitrary
logic expressions and arithmetic operations on different clock times, does not hamper
the modeling of realistic systems and makes it easier for the model developer to build
intuitive models rather than very complicated ones.

The semantic definition of Real-Time Statecharts does not have the usual macrostep
and run-to-completion semantics of UML State Machines, because the zero execution
time for intermediate steps is not realistic in our application domain. Many actions have
significant WCETs. Run-To-Completion semantics would not allow an immediate re-
action to any newly raised external event. We define our semantics formally, as given
in [13] by a mapping of Real-Time Statecharts to a subset of an extended version of
hierarchical timed automata as defined in [17]. Such a semantics has already been em-
ployed successfully in a similar domain [18] for the un-timed case. In order to still be
able to describe the required local synchronization between multiple orthogonal states
of a single Real-Time Statechart within a single step, synchronous communication via
synchronization-events and -channels, similar to the mechanism described in [14], is
also supported.

Apart from the above mentioned extensions, which are partly adapted from timed
automata, features from UML State Machines like hierarchy, parallelism and history as
well as entry()-, exit()- and do()-operations for states are, of course, provided further on.
While a specific state is active, its do()-operation is executed periodically. The user may
specify a time interval for this period. Actions are not limited to integer assignments
(like in timed automata), but can be complex method calls in the object-oriented model.
The WCETs are respected in the PM (see Section 3).

Figure 3 shows the whole shuttle behavior, consisting of three orthogonal states.3

The upper orthogonal state realizes the described part of the communication protocol.
The lower orthogonal state realizes the opposite part. The orthogonal state in the middle

3 Note that in our CASE tool Fujaba (www.fujaba.de) the dashed lines between orthogonal
states are not visualized.

Model-Driven Architecture for Hard Real-Time Systems 31

Fig. 3. Behavior of a shuttle component

synchronizes both roles. It initiates the building and the breaking of the convoy. In this
simplified example, convoys consisting of maximal two shuttles are build.

Real-Time Statecharts combine the advantages of UML State Machines and of
timed automata and extend them by additional annotations. These annotations enable
to generate the PSM and finally code for real-time platforms on the one hand and offer
constructs to model complex temporal behavior on the other hand. The main differ-
ences to UML State Machines are, that they (1) support to model the time consumption
of transition execution and (2) have a realistic semantic definition based on timed au-
tomata mirroring appropriately the application domain.

2.3 Model Analysis

Generating a PSM, consisting of active objects and deadlines, that guarantee the real-
time constraints as specified in the model is of course only possible, when the model
does not contain any conflicts between the declarative elements such as time guards
and time invariants. A possible conflict is for example when multiple real-time con-
straints are contradicting and thus no behavior exists which fulfills them (time-stopping
deadlock).

To exclude such conflicts, the full state space of a Real-Time Statechart model has to
be checked in the general case. Due to the well-defined semantics of Real-Time State-
charts [13], which map their behavior to hierarchical timed automata as employed in
the model checker UPPAAL [19,14], we first map them to hierarchical timed automata
and then feed them into the vanilla extension of UPPAAL [19] which flattens them

32 S. Burmester, H. Giese, and W. Schäfer

in an additional preprocessing step. Then, this flat timed automata model is checked
with UPPAAL for the absence of time-stopping deadlocks or other required properties
expressed with a restricted temporal logic.

When a time-stopping deadlock has been found, we have to conclude that the final
state of the delivered error trace contains a conflict. Pinpointing the root source of the
problem is a complex problem which remains to be done manually.

While model checking the PIM provides a high cost solution in the general case,
we can do much better for specific failure classes where the complex dependencies
which result from the synchronization between orthogonal states are ignored when the
deployment and thus the platform model is known.

Imagine, as one example for such a static analysis, a state with (a part of) an invari-
ant ti ≤ Ti, which is the source of a set of leaving transitions which all have a time
guard of the form Ti + x ≤ ti, x > 0. It is obvious, that once entered, this state will
never be left again and a time-stopping deadlocks occurs.

Our additional static analysis algorithms employed upfront detect such temporal in-
consistencies at low costs. Due to the incompleteness of the analysis, it is a supplement
to model checking but cannot, of course, replace it to detect all inconsistencies in the
general case. The pessimistic analysis further indicates whether model checking is re-
quired at all or whether the much simpler static checking for temporal inconsistencies
has been sufficient.

3 Platform Models and Deployment

In order to generate the PSM, WCETs are required for all actions (side-effects, entry(),
exit(), and do()- operations) and for the elementary instructions that build the code frag-
ments realizing the Real-Time Statechart behavior (e.g. checking guards, raising events,
etc.).

3.1 Deployment

As the WCETs are platform-dependent, we first deploy our components (whose behav-
ior is each specified by a Real-Time Statechart) by a UML deployment diagram. In such
a deployment diagram, we assign the component instances of our systems to dedicated
nodes and the cross node links to available network connections in form of busses or
direct communication links. Given such an assignment, we can further look into the
specific characteristics of the different nodes as described in the platform model.

3.2 Platform Models

In the platform model, the relevant characteristics such as CPU type, operating system,
etc. are described. Therefore, available techniques to determine these single WCET
values as described in [20] can be employed. They allow to annotate these values to
the platform specific view of the behavioral elements such as methods and elementary
instructions. The WCETs of the code fragments of a Real-Time Statechart can then be
determined by summing up the execution times of the elementary instructions and more
complex methods.

Model-Driven Architecture for Hard Real-Time Systems 33

3.3 Model Analysis

To analyze the resulting model with platform specific annotations, we extend our timed
automata model for model checking as well as our static analysis technique such that it
also reflects the WCET behavior of the side effects of the transitions.

A temporal inconsistency can, for example, occur, if a time guard, a time invariant,
and a WCET are in contradiction. One case is given by a time guard which can trigger
a transition at a point in time, when the execution of the action will not be possible,
because the time invariant of the target state may have been exceeded after execution
of the action. Consider, for example, a transition with a time guard t0 ≤ 10 and an
action with a WCET of 4 leading to a state with the invariant t0 ≤ 12. If this transition
is triggered, for example at t0 = 10, the target state is entered in the worst case at
t0 = 14, which violates the time invariant.

Such problems can be detected using model checking. In addition our static analysis
algorithms can be upfront detect some of these temporal inconsistencies at low costs as
in the case of the PIM analysis.

4 Synthesizing Platform Specific Models and Code

After modeling and analyzing the PIM with components and Real-Time Statecharts and
specifying the platform specific WCET information in the PM and the deployment, we
have to map the components and links to active objects and to network and communi-
cation links to come up with the final platform specific model. In our case the PSM can
be described by the UML Profile for Schedulability, Performance, and Time [8], as it
allows the specification of priorities, periods, and deadlines for active objects. We use
it as platform specific model, as these values, which we derive automatically from the
platform independent model, are different for different platforms.

When building real-time systems, cost saving requires to minimize hardware costs.
Consequently, the number of processors and their power is restricted. Thus our map-
ping algorithm is designed for single processor systems, whereby all branches of the
orthogonal states are mapped to one single processor. In case the system consists of
multiple components, deployed on different processors, every component executes on
exactly one processor. Thus, the mapping algorithm can then be applied, too.

One periodic thread ensures that the Real-Time Statechart reacts fast enough to
meet all time restrictions. The thread’s period defines how fast the Real-Time Statechart
reacts. Its determination, that considers the specified attributes (deadlines, etc.) as well
as the externally determined WCETs, builds the main part of Section 4.1.

As every Real-Time Statechart is implemented as exactly one active object which
will be implemented as periodic thread (and possibly multiple aperiodic threads), the
number of concurrently running threads can become large when plenty of Real-Time
Statecharts are executed on the same processor. If this is the case (e.g., for UML models
with a large number of active objects or components), we propose to combine multiple
Real-Time Statecharts into a single one using orthogonal states to optimize the result of
the partitioning. Using such a grouping, an unacceptable overhead due to a large number
of threads is avoided and we still resolve the partitioning and scheduling problem by
employing the proposed code generation algorithm.

34 S. Burmester, H. Giese, and W. Schäfer

4.1 Partitioning

As mentioned above, a Real-Time Statechart is mapped to at least one periodic thread,
checking for triggered transitions in every period – the so called main thread. This
thread checks all transitions which can be triggered from the beginning of its last period
until and during the duration of the current period. The checking has to be started that
early, because the check in the last period may have just missed a transition which
could have been triggered. It was missed because the check happened just before the
event occurred or its time guard was evaluated to true.

A transition is triggered, if the following four conditions hold: (1) The transition is
defined for the current state, (2) the event has occurred in the time interval between the
beginning of the last period (of the main thread) and the current point in time (Note
that an event, that cannot be consumed immediately, is queued), (3) the time guard is
evaluated to true during or after the event happens, (4) the guard is evaluated to true
during or after the event happens. The worst case time needed for the whole check
(depending on the current state) is denoted by wtrig(s), where s is the current state.

After determining all triggered transitions and the points in time when they became
activated, the first triggered transition is fired. Then clocks are reset and actions are
executed.

If the action has such a short WCET, such that there is still enough execution time
left within the period, it will be executed by the main thread. As it is possible to specify
complex actions, their WCETs often do not fit into the main thread. If they are ex-
ecuted within the main thread nevertheless, its execution time would become greater
than its period and deadline. Apart from this problem, the main thread would not be
able to check and – if needed – fire other transitions for the time the action is executed,
although this is required in the case of orthogonal states. Due to these problems, the
firing of such transitions is rolled out into a new started aperiodic thread, running con-
currently to the main thread. Thus, orthogonal states are not implemented by multiple
concurrent running periodic threads, but by exactly one periodic thread and multiple
concurrent running aperiodic threads. Among other things, this facilitates the efficient
implementation of synchronization.

The still remaining problem is to determine the main thread’s period. On the one
hand, it needs to be short enough, such that the recognition of triggered transitions
happens early enough to guarantee that the actions are executed before their deadlines
expire. On the other hand, it should be as long as possible to execute as many tran-
sitions as possible within the main thread and thus to minimize resource utilization,
because an additional aperiodic thread consumes time and memory. Respecting these
conditions, the annotations and restrictions in the Statechart specification as well as the
times wtrig(s), wstart and wend give limits for the duration time of one period. wstart

and wend denote the duration for starting and terminating an aperiodic thread. We de-
termine the period for a target system, scheduled by a priority scheduler [21]. When
deriving equations to determine the period from the specification, several cases need to
be distinguished.

Figure 4a shows the first case when wtrig(s) and the action to be executed (WCET
is denoted with wa) fits into the periodic thread. The execution has to guarantee that the
action is executed before its deadline expires, i.e. the period is short enough to execute

Model-Driven Architecture for Hard Real-Time Systems 35

ee

a) case 1: b) case 2:

t

t

t + p t + 2p

d

...wtrig

t + 2p − νp

wtrig wstart

t

t

t + p t + 2p

wa

d

...wtrig wtrig

Fig. 4. Determining the period

the action before the deadline d. The worst case in terms of a delay between triggering
a transition and executing its corresponding action is the following: The main thread
begins execution at time t – the beginning of a first period and just misses a transition
which is triggered. As we apply priority scheduling, that transition is only checked again
and fired at the end of the execution of the next period (t+p until t+2p) such that it just
fits into this period (p denotes the duration time of one period). Then d ≥ 2p must hold
in order to be sure that the action is executed before the deadline expires. Respecting
the so called utilization factor ν ∈ (0; 1], defining that a Real-Time Statechart shall not
gain more than ν percentage of the processor load, obviously wtrig(s) + wa ≤ pν must
hold for cases where the processor load is shared.

This results in the inequality p1
min := (wtrig(s) + wa)/ν ≤ p ≤ d

2 =: p1
max

determining minimum and maximum values for p in case of executing an action within
the main thread (case 1).

A more complex situation occurs when wtrig(s) + wa ≤ pν does not hold and the
action needs to be rolled out to an aperiodic thread, like shown in Figure 4b. Although
the start of the aperiodic thread shortens the necessary execution time of the periodic
main thread to wtrig(s) + wstart, we still compute an upper bound which minimizes
rollouts. In any case, the computation time within every period, the main thread gets,
is pν. Even, when this time is not enough to execute the action, the periodic thread is
started at least pν time units before the end of it’s period, cf. Figure 4b. In this case, the
computation time is not used completely by the periodic thread. The remaining time is
already used by the started aperiodic thread. Consider the (trivial) case ν = 1: The delay
between triggering the transition and executing the action is given by p+wtrig +wstart.
Then, the action is executed and the aperiodic thread terminates. Thus the delay, the
execution and the termination have to fit into the deadline: d ≥ p + wtrig + wstart +
wa + wend ⇔ p ≤ d − wtrig − wstart − wa − wend.

While the aperiodic thread is executing, the periodic one still runs (with a shorter
execution time w′

g) and preempts the aperiodic one once within a period. A detailed
analysis (which is given in [22]), respecting these preemptions and ν ∈ (0, 1] leads to
the inequality 1, that uses the substitutions α = (νwa+νwend+wtrig+wstart)/ν2, β =
w′

trig/ν, ϕ = wa − wtrig − wstart/ν.

p ≤ d − α − β

⌈
νp − ϕ

p + β

⌉
(1)

Applying a numerical algorithm leads to the solutions in the form p ≤ p2
max. Con-

sidering the necessary execution time wtrig(s)+wstart ≤ νp leads to another inequality

36 S. Burmester, H. Giese, and W. Schäfer

p2
min := (wtrig(s) + wstart)/ν ≤ p ≤ p2

max determining minimum and maximum val-
ues for p in case of executing an action, that is rolled out (case 2).

The period has to fit either the first or the second inequality. As a Statechart usually
consists of multiple transitions, a period is chosen, that fits at least one equation for
every transition. For the case that a state is entered and a leaving transition becomes
triggered immediately, two more inequalities arise, because besides the action the do-
operation needs to be executed, too. Further, the period has to fit either the third or
the forth equation, too. Analyzing the specified Real-Time Statechart leads to a system
of inequalities consisting of four times as much inequalities as transitions occur in the
Statechart. Thus, choosing the period is a combinatorial problem, that is solved auto-
matically by a numerical method. If multiple solutions exist, the period for the main
thread will be the longest one possible. After determining the period, it is fixed which
actions need to be rolled out to aperiodic threads.

4.2 Platform Specific Model

Figure 5 depicts the structural view of the PIM and the according generated PSM. The
Shuttle component is transformed to the active class MainThread, realizing the peri-
odic main thread and to the class Shuttle, realizing the logic of the component. The
determined period, which is equal to its deadline, is annotated as proposed by the Pro-
file for Performance, Schedulability, and Time. The priority is determined according to
the deadline monotonic approach [21]: The thread with the shortest deadline, achieves
the highest priority. Note that the deadlines of the aperiodic threads, that execute long
side-effects are specified in the PIM.

Fig. 5. PIM and PSM of the shuttle system

4.3 Model Analysis

When implementing applications for embedded real-time systems, resource restrictions
need to be taken into account. Memory and computation time are usually the restricted
resources in embedded systems. As the structure of our models is static and thus there is
no need for dynamic instantiation, the required memory can be derived straight forward
and is fixed after partitioning. To check if sufficient computational power is available,
especially when multiple Real-Time Statecharts or other processes have to be executed
on one microprocessor, scheduling analysis is performed. Note that even when the sum
of all processes’ utilization factors is less or equal 100%, schedulability cannot be guar-
anteed without adequate analysis [21].

Model-Driven Architecture for Hard Real-Time Systems 37

In order to speed up scheduling analysis, we first use Liu and Layland test [23]
to make a rough estimate and apply Lehoczky’s, Sha’s, and Ding’s analysis algorithm
[24] only if needed. If the set of all threads is not schedulable, we exploit the knowl-
edge about the possible concurrently executed threads which can be derived from the
structure of the Real-Time Statechart. For example, aperiodic threads, initiated by fir-
ing transitions, that are executed sequentially, will never be executed concurrently. All
combinations of threads, that can possibly run concurrently are determined and it is
sufficient to check the schedulability for all these combinations.

4.4 Code Generation

Using the automatically generated PSM, the mapping to a real-time target platform,
supporting priority scheduling, is straight-forward. Currently, we support the genera-
tion of Real-Time Java [25] and C++ for an appropriate real-time operating system. In
this generation step, active objects are mapped to real-time threads. The result of this
mapping can be imported into our CASE Tool Fujaba by its reengineering capabilities.

5 Related Work

Currently available approaches for the specification and implementation of hard real-
time systems have the following disadvantages: Either, they offer the required higher
level modeling concepts, but provide no partitioning and code generation concepts
which ensure the specified hard real-time behavior of the model, or they support code
generation which guarantees timing behavior, but are already platform specific models.

In [9], Rational Rose models are extended with information needed for schedul-
ing and partitioning in form of periods and action WCETs. This information is then
used to distribute the components automatically to multiple processors and to guaran-
tee schedulability. This approach is, however, rather limited as synchronization within
the components (usually described by Statecharts) is not supported.

Hierarchical timed automata [17], which are a hierarchial extensions of timed au-
tomata [14,15], provide most of the powerful modeling concepts of Statecharts. A map-
ping to multiple parallel running flat timed automata permits to verify the model by
using the model checker UPPAAL [14]. In [26], locations of a flat UPPAAL automa-
ton are associated with tasks inclusive WCETs and deadlines. This extension enriches
the model with the information required for code generation and a prototype synthe-
sizing C-Code has been implemented. As the code generation approach is restricted to
flat automata, it does not take the additional syntactical constructs of hierarchical timed
automata into account. The code generation scheme is not really sufficient for hard real-
time systems, as it does not take into account the delays that occur when transitions are
fired, arguing that these delays are small compared with the WCETs.

Modecharts [27] are another high-level form of state transition systems for the spe-
cification of real-time systems. Actions are executed only while residing in states and
not when firing transitions. The model respects that actions require time and thus they
are associated with deadlines or –if needed– with periods. Timing constraints like dead-
lines and trigger conditions are specified just relative to the current state’s (mode’s)

38 S. Burmester, H. Giese, and W. Schäfer

point of entry and not relative to preceding states. [28] describes code generation for
the target language ESTEREL, but the generated implementation regards only the tim-
ing intervals, triggering the transitions and not the deadlines or periods.

SAE AADL (Society for Automotive Engineers Architecture Analysis & Design
Language) [29], successor of MetaH,4 specifies a system on the PSM level. A SAE
AADL model consists of multiple Threads, annotated by a priority and a frequency and
can therefore be mapped to code automatically. Tool support for modeling is currently
restricted to text based editors.

The application framework VERTAF [30] and the automata model presented in [31]
specify the required real-time constraints and thus enable an automatic implementation.
These approaches are not applicable for complex systems, as their models are rather
restricted: [31] applies just a flat automata model, [30] specifies active object on the
implementation level.

Currently available CASE tools Rhapsody, Rational Rose/RT, Statemate, Telelog-
icTau, and Artisan Real-time Studio Professional for UML State Machines can only
generate code from the logical behavior, while an appropriate mapping onto threads
and scheduling parameters in form of the synthesis of a platform specific model re-
mains to be determined in a manual process. To the best of our knowledge all existing
UML CASE tools also fail to close the gap between high level models and the auto-
matic implementation of hard real-time systems.5 In contrast, the presented approach
supports the automatic synthesis of the PSM from a given PIM and PM.

6 Conclusion and Future Work

Our approach, consisting of components and Real-Time Statecharts, permits to spec-
ify complex real-time systems following UML notations and the MDA approach at the
PIM level. This platform independent description can then be mapped automatically to
a platform specific model, provided that a target platform description in form of an-
notations describing real physical behavior (WCETs) are given. The PSM describes
real-time threads, which are of general nature and not bound to a specific program-
ming language or RTOS environment. Thus, an implementation can be realized in any
programming language that provides real-time priority scheduling. Different analysis
methods are applied on the different levels to achieve correct models.

Right now, the open-source UML CASE tool Fujaba supports modeling with UML
components and Real-Time Statecharts including model checking and code generation
for Real-Time Java and C++ from UML components and Real-Time Statecharts. We
are currently extending Fujaba to explicit visualize the generated PSMs and to per-
mit manual adjustments like adding other threads to the system’s nodes. In this con-
text, we prove if the standard UML Profile for Schedulability, Performance, and Time

4 www.htc.honeywell.com/metah
5 We refer to [7] for a judgment that Rhapsody (www.ilogix.com) and Rose/RT (http://www-

306.ibm.com/software/rational/) only support soft real-time system development. We fur-
ther evaluated Artisan Real-time Studio Professional (www.artisansw.com), Statemate
(www.ilogix.com), Rational Rose/RT, and Telelogic Tau G2 Developer (www.telelogic.com)
on our own.

Model-Driven Architecture for Hard Real-Time Systems 39

is sufficient or if extensions like for example the HIDOORS Profile [32,33] are re-
quired. Automatic grouping of Real-Time Statecharts and modular code generation for
deployment-time grouping is planned future work.

References

1. Allen, P., ed.: The OMG’s Model Driven Architecture. Volume XII of Component Devel-
opment Strategies, The Monthly Newsletter from the Cutter Information Corp. on Managing
and Developing Component-Based Systems. (2002)

2. Object Management Group: MDA Guide Version 1.0. (2003) Document omg/2003-05-01.
3. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the Compositional

Verification of Real-Time UML Designs. In: Proc. of the European Software Engineering
Conference (ESEC), Helsinki, Finland, ACM Press (2003)

4. Burmester, S., Giese, H., Hirsch, M., Schilling, D.: Incremental Design and Formal Veri-
fication with UML/RT in the FUJABA Real-Time Tool Suite. In: Proceedings of the In-
ternational Workshop on Specification and vaildation of UML models for Real Time and
embedded Systems, SVERTS2004, Satellite Event of the 7th International Conference on
the Unified Modeling Language, UML2004. (2004)

5. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)
6. Object Management Group: UML 2.0 Superstructure Specification. (2004) Document:

ptc/04-10-02 (convenience document).
7. Bichler, L., Radermacher, A., Schrr, A.: Evaluation uml extensions for modeling realtime

systems. In: Proc. on the 2002 IEEE Workshop on Object-oriented Realtime-dependable
Systems WORDS’02, San Diego, USA, IEEE Computer Society Press (2002) 271–278

8. Object Management Group: UML Profile for Schedulability, Performance, and Time Speci-
fication. OMG Document ptc/02-03-02 (2002)

9. Gu, Z., Kodase, S., Wang, S., Shin, K.G.: A Model-Based Approach to System-Level De-
pendency and Real-Time Analysis of Embedded Software. In: The 9th IEEE Real-Time and
Embedded Technology and Applications Symposium, Toronto, Canada. (2003)

10. Masse, J., Kim, S., Hong, S.: Tool Set Implementation for Scenario-based Multithreading of
UML-RT Models and Experimental Validation. In: The 9th IEEE Real-Time and Embedded
Technology and Applications Symposium, Toronto, Canada. (2003)

11. Selic, B., Gullekson, G., Ward, P.: Real-Time Object-Oriented Modeling. John Wiley &
Sons, Inc. (1994)

12. Burmester, S., Giese, H., Tichy, M.: Model-Driven Development of Reconfigurable Mecha-
tronic Systems with Mechatronic UML. In Assmann, U., Rensink, A., Aksit, M., eds.: Model
Driven Architecture: Foundations and Applications. Volume 3599 of Lecture Notes in Com-
puter Science (LNCS)., Springer Verlag (2005) 47–61

13. Giese, H., Burmester, S.: Real-Time Statechart Semantics. TechReport tr-ri-03-239, Univer-
sity of Paderborn (2003)

14. Larsen, K., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. Springer International Journal of
Software Tools for Technology 1 (1997)

15. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking for Real-
Time Systems. In: Proc. of IEEE Symposium on Logic in Computer Science. (1992)

16. Bornot, S., Sifakis, J., Tripakis, S.: Modeling Urgency in Timed Systems. In Roever, W.P.d.,
Langmaack, H., Pnueli, A., eds.: Compositionality: The Significant Difference; COMPOS
’97, Bad Malente, Germany, September 8 - 12, 1997. Volume 1536 of Lecture Notes in
Computer Science., Springer Verlag (1998) 103–129

40 S. Burmester, H. Giese, and W. Schäfer

17. David, A., Möller, M., Yi, W.: Formal Verification of UML Statecharts with Real-Time
Extensions. In Kutsche, R.D., Weber, H., eds.: 5th International Conference on Fundamental
Approaches to Software Engineering (FASE 2002), April 2002, Grenoble, France. Volume
2306 of LNCS., Springer (2002) 218–232

18. Köhler, H., Nickel, U., Niere, J., Zündorf, A.: Integrating UML Diagrams for Production
Control Systems. In: Proc. of the 22nd International Conference on Software Engineering
(ICSE), Limerick, Irland, ACM Press (2000) 241–251

19. David, A., Moeller, M.: From HUPPAAL to UPPAAL: A translation from hierarchical timed
automata to flat timed automata. In: TechReport BRICS RS-01-11, Department of Computer
Science, University of Aarhus. (2001)

20. Erpenbach, E.: Compilation, Worst-Case Execution Times and Scheduability Analysis of
Statechart Models. Ph.D.-thesis, University of Paderborn, Department of Mathematics and
Computer Science (2000)

21. Buttazzo, G.C.: Hard Real Time Computing Systems: Predictable Scheduling Algorithms
and Applications. Kluwer international series in engineering and computer science : Real-
time systems. Kluwer Academic Publishers (1997)

22. Burmester, S.: Generierung von Java Real-Time Code fr zeitbehaftete UML Modelle. Mas-
ter’s thesis, University of Paderborn, Paderborn, Germany (2002)

23. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in a Hard-Real-
Time Environment. Journal of the ACM 20 (1973)

24. Lehoczky, J., Sha, L., Ding, Y.: The Rate Monotonic Scheduling Algorithm: Exact Char-
acterization and Average Case Behavior. In: Proceedings of the 10th Real-Time Systems
Symposium. (1989)

25. Bollella, G., Brosgol, B., Furr, S., Hardin, S., Dibble, P., Gosling, J., Turnbull, M.: The
Real-Time Specification for JavaTM . Addison-Wesley (2000)

26. Amnell, T., David, A., Fersman, E., Pettersson, M.O.M.P., Yi, W.: Tools for Real-Time
UML: Formal Verification and Code Synthesis. In: Workshop on Specification, Implemen-
tation and Validation of Object-oriented Embedded Systems (SIVOES’2001). (2001)

27. Jahanian, F., Mok, A.: Modechart: A Specification Language for Real-Time Systems. In:
IEEE Transactions on Software Engineering, Vol. 20. (1994)

28. Puchol, C., Mok, A., Stuart, D.: Compiling Modechart Specifications. In: 16th IEEE Real-
Time Systems Symposium (RTSS ’95), Pisa, Italy. (1995)

29. Feiler, P.H., Gluch, D.P., Hudak, J.J., Lewis, B.A.: Embedded Systems Architecture Analysis
Using SAE AADL. Technical Report CMU/SEI-2004-TN-005, Carnegie Mellon University
(2004)

30. Hsiung, P.A., Su, F.S., Gao, C.H., Cheng, S.Y., Chang, Y.M.: Verifiable Embedded Real-
Time Application Framework. In: Seventh Real-Time Technology and Applications Sympo-
sium (RTAS ’01), Taipei, Taiwan. (2001)

31. Saksena, M., Karvelas, P., Wang, Y.: Automatic Synthesis of Multi-Tasking Implementations
from Real-Time Object-Oriented Models. In: The Third IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing, Newport Beach, California (2000)

32. Richard-Foy, M., Hunt, J.J.: The HIDOORS Profile: Applying the Scheduling, Performance
and Time Profile to Realtime Java Development. In Amann, U., ed.: Proc. of Model Driven
Architecture: Foundations and Applications (MDAFA 2004), Linköping, Sweden. (2004)

33. Meunier, J.N., Lippert, F., Jadhav, R., Harding, N.: MDA and Real-Time Java: The HI-
DOORS project. In Akehurst, D., ed.: Proc. of Second European Workshop on Model Driven
Architecture (MDA) with an emphasis on Methodologies and Transformations (EWMDA-2
2004), Canterbury, England. (2004) 89–95

Model-Driven Performance Analysis of UML Design
Models Based on Stochastic Process Algebra

Naoshi Tabuchi, Naoto Sato, and Hiroaki Nakamura

IBM Research

Abstract. The popular model-driven development (MDD) methodology
strongly promotes a model-based approach to modular system development,
which often implies as an integral part automatic transformation of UML design
components into executable forms. When using MDD for verifying performance-
related system specifications, UML designs annotated with these specifications in
some profile language need to be transformed to stochastic (Markovian) models
or timed simulation models. However, most of the previous efforts have focused
on transformations of (variants of) UML state machine models and/or transforma-
tions to stochastic Petri net models, which lead to two problems: Relying (solely)
on state machine models often restricts design flexibility (designers instead prefer
choosing diagrams on a case-by-case basis), and graph-oriented Petri net models
complicate the modular transformations of UML models.

To resolve these problems, we propose stochastic performance analysis of a
UML design defined in different sorts of diagrams, including not only state ma-
chines but also activity diagrams with temporal annotation in UML-SPT, which
are transformed into stochastic process algebraic forms. To our knowledge, this
is the first attempt to define stochastic process algebraic semantics for the UML
AD with UML-SPT annotations. Unlike the related efforts, ours will facilitate
verification in early development stages, in which consultants and architects can
benefit from modeling in a natural manner and modular component-based devel-
opment, thanks to the inherent compositionality of process algebra. Further, to
guarantee the validity of the transformation, we have proved the equivalence of
our semantics with the stochastic Petri net semantics of UML AD.

We have developed a prototype implementation of this performance analysis
mechanism, and shown that realistic design examples, defined in different sorts of
UML diagrams, can successfully be transformed into those that provide various
performance metrics.

1 Introduction

The popular model-driven development (MDD) methodology strongly promotes a
model-based approach to modular system development [16], which often implies as an
integral part automatic code generation from design components in Unified Modeling
Language (UML) [14] to analyze system properties. Since the analysis of performance-
related aspects of systems often becomes particularly crucial, it turns out that UML
models need to reflect those performance-related features. To this end, OMG has stan-
dardized a profile language, called UML-SPT [13], which provides a rich set of vo-
cabulary to describe performance-related aspects of systems. Relying on this or similar

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 41–58, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

42 N. Tabuchi, N. Sato, and H. Nakamura

(but non-standard) notations, several efforts have been devoted to transforming UML
models with performance annotations to stochastic models or timed simulation models
for their performance analysis [12,20,5].

However, most of these efforts have focused on transformations of (variants of)
UML state machine models and/or transformations to stochastic Petri net models, which
lead to the following problems: (1) The behavioral aspects of a system would be mod-
eled as a set of different types of diagrams, including not only state machine diagrams
but activity diagrams as well, though the latter has not so far been taken into consider-
ation. (2) According to the UML standard, invocations of component operations need
to be defined as CallOperation actions in activities. This implies that it is virtually im-
possible to define component compsitions without relying on activity diagrams (unless
resorting to some non-standard notations). (3) Graph-oriented Petri net models compli-
cate modular transformations of UML models. The Petri net formalism, in its original
form, defines a system of components as a single flat graph of places and transitions,
and does not provide any systematic support for combining those that are transformed
from different components.

To resolve these problems, we propose a model transformation of UML 2.0 de-
sign models, which may include activity and state machine diagrams annotated with
performance-related values in UML-SPT, into stochastic process algebraic forms. By
employing this approach, system architects are liberated from state-machine-centric be-
havioral modeling and granted freedom to choose diagram types. Once UML models
with performance annotations are defined, they are transformed in a unified manner into
stochastic algebraic forms for performance analysis. Thanks to the inherent composi-
tionality of the process algebra, the transformations can be applied to the components
of a system separatedly, so that external references in a component are left unresolved
through the component transformation and are taken care of by using the process com-
position mechanism of the process algebra. In short, our approach extends the flexibility
of UML-based performance analysis by allowing behavioral modeling in both activity
and state machine diagrams, and enables modular model transformations by mapping
components of a UML model to processes in the process algebra.

Specifically, our technical contributions are two fold: First, we have defined the
formal semantics of a core part of the UML 2.0 Activity Diagram metamodel. To our
knowledge, this is the first attempt to define stochastic process algebraic semantics for
UML AD. Further, to guarantee the validity of the transformation, we have proved the
equivalence of our semantics with an existing stochastic Petri net semantics of UML
AD. Through preliminary evaluation, we have applied our transformation mechanism
to a large embedded system example and have shown its feasibility and strong potential.

The rest of the paper is organized as follows. The following section briefly summa-
rizes key concepts for model-driven performance analysis, including UML/UML-SPT,
stochastic process algebras, and stochastic Petri nets. Succeedingly, Section 3 intro-
duces a set of rules to transform UML AD, with annotation in UML-SPT, to a stochas-
tic process algebraic language called IMC [3], and Section 4 shows the validity of the
transformation by proving the equivalence between our process algebraic semantics and
the existing Petri net semantics of UML AD. The last sections report results of prelim-

Model-Driven Performance Analysis of UML Design Models 43

inary evaluation, provide a comparison with related work, and discuss possible future
directions.

2 Stochastic Performance Analysis

2.1 Modeling in UML 2.0 with UML-SPT Annotations

Elements of a UML model are divided into two categories, static structures and dynamic
behaviors. Static structures define the components in the target system, their function-
alities and composition. Dynamic behaviors describe how these functionalities act and
interact. In UML 2.0, behaviors are defined in terms of the Behavior metaclass, which
is further divided into three sub-metaclasses: Activity, StateMachine, and Interaction.
Components with dynamic behaviors are represented as instances of BehavioredClassi-
fier, which has a classifierBehavior and a set of Operations. Figure 1 shows a simplified
view of the metamodel of Behavior and BehavioredClassifier. (The gray-colored meta-
classes are not explicitly mentioned in this paper.) The behavior of each component is
determined by its classifierBehavior and methods of operations, therefore it is in gen-
eral a mixture of Activity, StateMachine and Interaction. To derive executable code from
such models, we must transform different sorts of behavioral models in an integrated
manner.

As our running example, let us consider the following SimpleCopier system, con-
sisting of three components, namely Scanner, Printer, and Buffer (FIFO with a capac-
ity of 3 pages). As a system, SimpleCopier scans incoming data, subsequently stores
the data for each page temporarily in the buffer, and eventually prints out the pages.
Notice that Scanner and Printer run in parallel, so the total performance of the system
depends on the throughputs of both Scanner and Printer. Figure 3 shows the static
structure of SimpleCopier and the behavioral description of its components. The clas-
sifierBehavior of Scanner is defined as an activity diagram, which infinitely repeats the

BehavioredClassifier Behavior

Operation Activity StateMachine Interaction

classifierBehavior

1

operation

method

Class

UseCase

*

BehavioredClassifier Behavior

Operation Activity StateMachine Interaction

classifierBehavior

1

operation

method

Class

UseCase

*

Fig. 1. Metamodel of BehavioredClassifier and Behavior

scanPage

putPage

Scanner Buffer Printer

getPage

printPage

Page
Data

Fig. 2. SimpleCopier that consists of Scanner, Printer, and Buffer

44 N. Tabuchi, N. Sato, and H. Nakamura

scanPage

putPage()

PAstep
PAdemand=
(‘assm’,’mean’,
(exponential,1/λ,’s’))

getPage()

printPage

PAstep
PAdemand=
(‘assm’,’mean’,
(exponential,1/λ’,’s’))

s0

s1

s2

s3

putPage/

putPage/

putPage/

getPage/

getPage/

getPage/

enqueue

PAstep
PAdemand=
(‘assm’,’mean’,
(exponential,1/θ,’s’))

Scanner Buffer Printer

classifierBehavior (as StateMachine)classifierBehavior (as Activity) classifierBehavior (as Activity)

Scanner Printer
Buffer

+putPage()
+getPage()

Definition of putPage() (as Activity)

scanPage

putPage()

PAstep
PAdemand=
(‘assm’,’mean’,
(exponential,1/λ,’s’))

PAstep
PAdemand=
(‘assm’,’mean’,
(exponential,1/λ,’s’))

getPage()

printPage

PAstep
PAdemand=
(‘assm’,’mean’,
(exponential,1/λ’,’s’))

PAstep
PAdemand=
(‘assm’,’mean’,
(exponential,1/λ’,’s’))

s0

s1

s2

s3

putPage/

putPage/

putPage/

getPage/

getPage/

getPage/

enqueue

PAstep
PAdemand=
(‘assm’,’mean’,
(exponential,1/θ,’s’))

PAstep
PAdemand=
(‘assm’,’mean’,
(exponential,1/θ,’s’))

Scanner Buffer Printer

classifierBehavior (as StateMachine)classifierBehavior (as Activity) classifierBehavior (as Activity)

Scanner Printer
Buffer

+putPage()
+getPage()

Scanner Printer
Buffer

+putPage()
+getPage()

ScannerScanner Printer
Buffer

+putPage()
+getPage()

Definition of putPage() (as Activity)

Fig. 3. UML Design Model for the SimpleCopier Components

scanPage action and the putPage() call to the Buffer. Printer is defined in a similar
manner. Meanwhile, the classifierBehavior of Buffer is a state machine with 5 states
(the initial state and s0 . . . s3 in Figure3.) Labels of transitions represent CallTriggers
which wait for the specified operation to be called from outside putPage(). Hence, it
turns out the definition of Buffer includes both state machines and activities.

For stochastic performance analysis of a concurrent system like SimpleCopier,
we need to define the stochastic behavior of the system in addition to its UML
model. More specifically, the timed actions in each UML activity diagram should
carry stochastic information. In our case, we employ notations of another UML
standard, called the UML Profile for Schedulability, Performance, and Time [13]
or UML-SPT for short, to specify temporal delays for actions. For example, scan-
Page of Scanner is annotated with an UML-SPT definition, 〈〈PAstep〉〉 PAdemand =
(’assm’,’mean’,(’exponential’,1/λ,’ms’)), which states that the execution of scanPage
takes 1/λ milliseconds on average and the probability that execution completes within
t milliseconds is equal to 1 − exp(−λt) (i.e. the exponential distribution). As for those
actions without annotations, we suppose they complete instantaneously without delays.

2.2 Stochastic Process Algebra

Stochastic process algebras are stochastic extensions of process algebras, of which the
semantics are defined on a basis of the mathematical foundation of the Markov-chain
theory. Along the principle of the process algebra, they model each concurrent system as
communicating state-transition processes that are composed using built-in algebraic op-
erators. In addition, these languages allow defining processes with stochastic behavior,

Model-Driven Performance Analysis of UML Design Models 45

that is, each transition of a process may associate its own random delay that determines
how long to stay in the current state before the transition. Although the mathematical
characterization of the random delays may vary, most of the stochastic process alge-
bras, such as PEPA [10], TIPP [9], and IMC [3], concentrate on those with negative-
exponential distributions due to their simplicity. For our discussion, we choose IMC as
a representative one of these languages, of which the syntax is defined as follows.

P ::= ∅ | (r).P | α.P | P + Q | P |LQ | X | µX.P

The constant symbol ∅ denotes a nil process that does nothing but terminates. (r).P
and α.P behave like P after a (negative-exponentially distributed) duration specified
with r ∈ R or executing the immediate action α, respectively. Note that α ranges over
Act = Σ ∪ Σ̂ ∪ {τ}, where Σ is the set of alphabets, Σ̂ = {α̂ | α ∈ Σ} is the set of
the communication counterparts of the actions in Σ, and τ denotes an internal action
that is not observable from the outside. P + Q offers a non-deterministic or a timed
probabilistic choice between P and Q, depending on their prefix actions. When they
are prefixed respectively with α1 and α2 (α1, α2 ∈ A), one of the actions is chosen
non-deterministically, otherwise the processes prefixed with r1 and r2 (r1, r2 ∈ R)
have the likehood of being chosen with probabilities of r1/(r1 + r2) and r2/(r1 + r2),
respectively. P |LQ performs P and Q in parallel, under the interleaving semantics,
with synchronizations upon encountering actions in L ⊂ Act \ {τ}. µX.P defines a
recursive process such that P = P [µX.P/X], which can be referenced as X in the
following process definition. As examples of IMC process definitions, we attach below
those for the SimpleCopier components, PScanner, PPrinter, and PBuffer.

PScanner � µX. ((λ).putPage.X)

PPrinter � µX.
(

getPage.(λ′).X
)

PBuffer � µX.(p̂utPage.(θ).µY.(ĝetPage.(θ).X+p̂utPage.(θ).µZ.(ĝetPage.(θ).Y +p̂utPage.(θ).ĝetPage.(θ).Z)))

2.3 Generalized Stochastic Petri Net (GSPN)

The Generalized Stochastic Petri Net (GSPN) formalism [11] provides another basis
for modeling concurrent systems with stochastic behavior.

As a GSPN, each concurrent system is defined as (P, T, F, R, M0), in which a set of
places P and a set of transitions T , along with a set of flow relations F ⊆ (P×T)∪(T×
P), determine the graph structure of the net, while a rate function R : T → R ∪ {∞}
associates with each transition a rate value, and a marking M0 ⊆ P specifies the places
where the tokens initially reside. The semantics of a GSPN is almost identical with
that of regular Petri nets, except that each transition of a GSPN may have a negative-
exponential duration for its delay, or alternatively may occur immediately (with zero
delay), depending on its rate value.

To define the semantics of UML 1.5 Activity Diagram based on the GSPN formal-
ism, Pablo et al. [12] extended the semantic domain to Labeled GSPN (LGSPN) [6],
an extension of GSPN, and defined a transformation of UML AD to LGSPN. Formally,
LGSPN is defined as follows.

Definition 1 (Labeled Generalized Stochastic Petri Net [12]). A labeled generalized
stochastic Petri net is a 6-tuple of the form (P, T, F, R, M0, L), where P , T , F , R, and
M0 respectively denote places, transitions, flow relations, a rate function and an initial

46 N. Tabuchi, N. Sato, and H. Nakamura

p1|init

p2

t1|scan

t2|put_page

p3|putPageev

p1|init

p2

t1|get_page

t1|print

p3|getPageev

p2|putPageev

p1|init

p4|putPageev

p3

p5|getPageev

p6 p9

p7|putPageev

p8|getPageev p10|getPageev

GScanner GBuffer GPrinter

Fig. 4. LGSPN Representations of the SimpleCopier Components

marking in the same way with GSPN, and L : T ∪ P → Lab is a labeling function that
associates with each place/transition a symbolic label in Lab.

As a direct consequence of this extension, we can easily define composition (referred to
as superposition in the literature) for LGSPNs. Specifically, given two LGSPNs G1 and
G2, we let G1 ||

LT ,LP

G2 denote the composition of G1 and G2 where the two Petri nets

share those transitions in LT and places in LP . Refer to [1] for further details. For exam-
ples, we attach below those LGSPNs that correspond to the SimpleCopier components
in Figure 3, where the white boxes represent timed transitions, and the black boxes
are for immediate transitions. Notice that the LGSPNs in Figure 4 share some of their
labels, specifically putPageev and getPageev, with which the SimpleCopier LGSPN is
defined as (GScanner ||

∅,∅
GPrinter) ||

∅,LP

GPrinter where LP = {putPageev, getPageev}.

3 Transformation of UML Design Models to Process Algebra

We define a transformation of UML to the stochastic process algebra IMC. The meta-
model of the subset covers core parts of the StateMachine and the Activity metamodels.
Since stochastic performance analysis based on UML StateMachine has already been
discussed elsewhere [4], we focus the discussion on transformation of UML AD for
performance analysis.

3.1 Transformation of Components to IMC

Each class in a UML model is defined by its behavior and operations, as depicted in
Figure 1. For the convenience of our discussion, we introduce the following syntax that
is equivalent with its graphical counterpart.

Class ::= (Behavior, Operation, Operation, . . .) classifierBehavior and operations
Operation ::= OperationName = Behavior Operation without parameters
Behavior ::= Activity | StateMachine

Based on this, we then define a new transformation �·� from UML to the stochastic
process algebra IMC.

�(B, f1 = B1, . . . , fk = Bk)� = �B� |{f1,...,fk} (P1 |∅ · · · |∅ Pk)

Model-Driven Performance Analysis of UML Design Models 47

Caller wrapper [|B|]

Callee
method body

trailer

1. fbegin

5. fend

2. f

4. f

3. end PfCaller wrapper [|B|]

Callee
method body

trailer

1. fbegin

5. fend

2. f

4. f

3. end Pf

Fig. 5. IMC encoding of an operation invocation (f)

StateMachine

State Transition
* *

Activity
effect

0..1

CallTrigger

trigger0..1

OperationStateMachine

State Transition
* *

Activity
effect

0..1

CallTrigger

trigger0..1

OperationStateMachine

State Transition
* *

Activity
effect

0..1

CallTrigger

trigger0..1

Operation

SM ::= T, T, . . . A StateMachine is a set of transitions

T ::= S
Tr/E→ S Transition with trigger and effect

S ::= initial | final | s State
Tr ::= ∅ | trigger(f) (possibly empty) CallTrigger
E ::= ∅ | A (possibly empty) Effect as an Activity

where A is defined in Figure 7.

Fig. 6. Our UML StateMachine Metamodel (left) and Syntactic Notion (partial, right)

where Pi � µXi.(f̂i.�Bi� |{end} (ênd.fi.Xi))

�Bi� � · · · .end.∅ // the i-th operation

�B� � · · · .f̂1begin .f1.f̂1.f1end . · · · + · · · .f̂ibegin .fi.f̂i.fiend . · · · // wrapper of the operations

The IMC representation of each operation �Bi� is prefixed with f̂i and synchronizes
with the process ênd.fi.Xi by using the end action. This whole composition is further
enclosed by a recursive operator µXi. Therefore, on reaching the end of the execution
of �Bi�, fi is issued to send notice of the completion to �B�. Then, the composite pro-
cess f̂k.�Bk� |{end} (ênd.fk.Xk) is replicated so that it can accept the next invocation.
When another component invokes fi, the caller transmits fibegin , which is received by
�B�. Then, �B� dispatches the invocation to Pi. Conversely, �B� transmits fiend to the
caller after the reception of the completion notice from Pi (see Figure 5.) For example,
Buffer is transformed as follows (transformations of activities and state machines will
be defined in the following sections):

Buffer = (SMBuffer, putPage = AputPage, getPage = AgetPage)
where SMBuffer, AputPage and AgetPage are defined as activity or state diagrams in Figure 3

�Buffer� = PSMBuffer
|{putPage, getPage} (PputPage |∅ PgetPage) where

PSMBuffer
� µXs0 . ̂putPagebegin.putPage.p̂utPage.putPageend.(µXs1 .(̂getPagebegin.getPage.ĝetPage.getPageend.Xs0+

̂putPagebegin.putPage.p̂utPage.putPageend.(µXs2 .(̂getPagebegin.getPage.ĝetPage.getPageend.Xs1+

̂putPagebegin.putPage.p̂utPage.putPageend. ̂getPagebegin.getPage.ĝetPage.getPageend.Xs2))))

PputPage � µXputPage.(p̂utPage.(θ).end.∅ |{end} putPage.XputPage)

PgetPage � µXgetPage.(ĝetPage.(θ).end.∅ |{end} getPage.XgetPage)

3.2 Transformation of StateMachine to IMC: A Brief Overview

We consider a subset of StateMachine metamodel that consists of States and Transi-
tions, where States include initial and final states, and a Transition may have at most
one Trigger and/or Effect. For brevity, we consider only CallTrigger as a trigger. The
semi-formal definition of StateMachine is shown below: Since existing work (e.g. [4])

48 N. Tabuchi, N. Sato, and H. Nakamura

already covers transformation from state machines to process algebra, we focus on the
transformations of triggers and effects that are most relevant to our discussion. A call
trigger trigger(f) waits for the operation f to be called, invoke f , waits for f to com-
plete execution, and notifies the caller of its completion. Thus, the semantics of the
trigger is defined as �trigger(f)� = f̂begin.f.f̂ .fend.∅. If a transition has an effect, it is
executed after the completion of the triggered operation. Thus the transformation be-
comes �trigger(f)/Ae� = f̂begin.f.f̂ .fend.�Ae�. Refer to [19] for the detail.

3.3 A Subset of the UML Activity Diagrams

To highlight the key concept of the transformation, we chose a subset of the UML
2.0 Activity metamodel for our input language, which is shown in Figure 7. The con-
structs in the subset include Action, ControlNode, and ControlFlow. For ControlNode,
InitialNode and ActivityFinalNode respectively indicate the initial and the final points
of activities. DecisionNode (MergeNode) split (merge) control flows respectively, and
ForkNode / JoinNode are employed for concurrency controls. We believe these provide
sufficient support for designing components of concurrent systems in the early devel-
opment phases.

For brevity, we further introduce the following constraints into activity diagrams:
(i) each diagram must have exactly one InitialNode and at most one ActivityFinalN-
ode, (ii) only DecisionNode and ForkNode can have multiple outgoing edges, (iii) only
MergeNode and JoinNode can have multiple incoming edges, (iv) all the other nodes
must have exactly one incoming edge and one outgoing edge, and (v) no edge can be
associated with conditional information (a guard.) Notice that these constraints are not
restrictive in terms of expressiveness. For example, the UML 2.0 specification defines
that multiple outgoing flows from an action must be treated in the same way as those
from a ForkNode. Therefore, such flows can be eliminated by introducing an additional
ForkNode in a pre-processing step. In the rest of the discussion, we assume (a) each
node of a diagram has a unique label and (b) each action node is annotated with an
UML-SPT stereotype.

Activity ActivityNode1 *

ControlNode

DecisionNode MergeNode

ForkNode JoinNode

Action

CallOperationAction ReplyAction

AcceptCallAction

ActivityEdge 1*

* 1

targetincomings

sourceoutgoings

1*

Operation

*

1

operation

1

InitialNode ActivityFinalNode

ControlFlow

Activity ActivityNode1 *

ControlNode

DecisionNode MergeNode

ForkNode JoinNode

Action

CallOperationAction ReplyAction

AcceptCallAction

ActivityEdge 1*

* 1

targetincomings

sourceoutgoings

1*

Operation

*

1

operation

1

InitialNode ActivityFinalNode

ControlFlow

N ::= labeled node
initl InitialNode

| action(a, r)l Action with name a and rate r
| call(f)l CallOperationAction calling f
| accept(f)l AcceptCallAction starting f
| reply(f)l ReplyAction returning from f
| mergel MergeNode
| joinl JoinNode

A, B ::= labeled activity
Finall ActivityFinalNode

| FwdMergel MergeNode (forward)
| BwdMergel MergeNode (backward)
| Joinl JoinNode
| N → A ControlFlow
| Decision(A, B)l DecisionNode with no guard
| Fork(A, B)l ForkNode

Fig. 7. Our UML AD metamodel (left) and the Syntax of Activity Terms (right)

Model-Driven Performance Analysis of UML Design Models 49

3.4 Activity Terms

We introduce an intermediate representation of our subset of UML AD, which we call
activity terms. The formal syntax of activity terms is defined in Figure 7.

Most noticeably, the building blocks of activity terms are divided into two syntactic
categories, namely labeled nodes and labeled activities. Schematically, Actions in activ-
ity diagrams are translated to nodes, whereas ControlNodes or ControlFlows are trans-
lated into activities. As exceptions to this, however, MergeNodes and JoinNodes have
their counterparts both in the node and the activity categories. This duality comes from
the fact that we derive activity terms from activity diagrams by means of depth-first
graph traversals. Each time a new MergeNode (or a JoinNode) in an activity diagram
that has never been visited is encountered during traversal, we derive from that node a
mergel (joinl) where l is a new label. Upon encountering a MergeNode (JoinNode) that
has already been visited and marked with l, we then derive a FwdMergel or BwdMergel

(Joinl) and terminates the current traversal path. The difference between FwdMerges
and BwdMerges is that we derive a BwdMergel if the encountered node was already
included in the current traversal path, or otherwise derive a FwdMergel.

For example, let us consider the activity terms for SimpleCopier in Figure 3; The
activity terms for Scanner and Printer are derived in the same way. Actually, the initial
node in either diagram directly connects to a MergeNode. When visiting it from the
initial node, we derive a merge with a fresh new label and travers to the following node.
Later in the traversal, when the MergeNode is visited again, a BwdMerge is derived and
the entire derivation terminates. Refer to the following equations for the detail.

Scanner � inits1 → merges2 → (scan, λ)s3 → call(put)s4 → BwdMerges2

Printer � initp1 → mergep2 → call(get)p3 → (print, λ′)p4 → BwdMergep2

3.5 Transformation of Activity Term to IMC

We here define a transformation of activity terms to IMC processes. The transformation,
�·� : Activity → IMC, is semi-formally defined in Table 1.

Each activity term with a rate-annotated action prefix, action(a, r)l → A, is mapped
to a IMC process (r).�A� after discarding the action name. For each call node, call(f)l,
two distinct IMC actions, fbegin and fend, are generated for synchronous communica-
tions between the caller and the callee processes at the beginning and the end of the
call operation, respectively. Note that for clarity we distinguish between the sender side
(fbegin) and the receiver side (f̂begin) of the communication, although the IMC semantics
does not depend on such distinctions.

As discussed earlier, each activity term may simultaneously include a single mergel
node and an arbitrary number of FwdMergel or BwdMergel activities, all of which de-
rive from the same MergeNode. When mapping mergel → A, a new process variable
Xl is created to point to the resulting process (Xl = �mergel → A�). In addition, the
associations between l and Xl/�mergel → A� are memorized, which are referred when
FwdMergel or BwdMergel are encountered later in the transformation. For example, by
applying �·� to the activity terms of Scanner and Printer, the following IMC processes
for Scanner and Printer are obtained, which are slightly different from the previous

50 N. Tabuchi, N. Sato, and H. Nakamura

Table 1. Transformation of Activity Terms to IMC

�initl → A� = �A�
�Finall� = end.∅

�action(a, r)l → A� = (r).�A�

�call(f)l → A� = fbegin.f̂end.�A�

�accept(f)l → A� = f̂begin.�A�
�reply(f)l → A� = fend.�A�

�mergel → A� = µXl.�A� where Xl is a fresh variable labeled l

(memorizing Π(l) � µXl.�A� and χ(l) � Xl)
�FwdMergel� = Π(l)
�BwdMergel� = χ(l)

�joinl → A� =

τ.�A� (indegree(l) = 1)

ĵoinl. · · · .ĵoinl︸ ︷︷ ︸
indegree(l)−1

.�A� (indegree(l) > 1)

�Joinl� = joinl.∅
�Decision(A1, A2)l� = �A1� + �A2�

�Fork(A1, A2)l� = τ.(�A1� |L �A2�) where L = {α | α ∈ act(�A1�) ∧ α̂ ∈ act(�A2�)}

definitions in Section 2.2.

�Scanner� = µXS2.
(
(λ).putPagebegin. ̂putPageend.XS2

)
�Printer� = µXP2.

(
getPagebegin. ̂getPageend.(λ

′).XP2

)
For join-synchronization between n concurrent threads launched by preceding Fork

activities, each of the (n − 1) terminating threads transmits joinl when it reaches the
synchronization point, and the only remaining thread waits for them before resuming
the rest of its computation. Note that auxiliary functions, indegree and act, are employed
without definitions: indegree(l) returns, for each node labeled l, the number of incoming
edges for the node, and act(P) accumulates the action names that appear in P .

3.6 Composition of Components

When an activity includes a call(f) node, it is supposed to communicate with
another component, whose behavior is defined either in an activity that includes
accept(f) / reply(f) nodes, or a state machine that includes call triggers for f . Thus,
in reality we need to transform a system of communicating components to a composite
IMC process. In order to extend �·� to transform a system of composed components,
we first let C1 �L C2 denote a system consisting of C1 and C2, where L is a set of call
operation names. Formally, we introduce a new syntactic entity, S as follows:

S ::= C | S �
L

S

For example, the SimpleCopier system is defined as a composite of classes as follows:

SimpleCopier � Buffer �
{putPage,getPage}

(
Scanner �

∅
Printer

)

Model-Driven Performance Analysis of UML Design Models 51

Such a composition can be derived in several ways, for example by using communica-
tion diagrams [4]. Alternatively, the target attribute of a CallOperationAction can be
used to resolve caller-callee relationships, if the values of attributes can be statically de-
termined. Once a system of components is defined using �, its transformation is defined
in a straightforward manner as follows:

�S1 �
{f1,...,fk}

S2� = �S1� |L �S2� where L = {fbegin, fend | f = f1, . . . , fk}

4 Equivalence Between the LGSPN Semantics and Our Semantics

In this section, we show the validity of our process algebraic semantics for UML AD
in the following steps. First, we define the LGSPN semantics of IMC (Section 4.1),
along with the LGSPN semantics of the activity terms (Section 4.2). Then we show the
equivalence between our IMC transformation �·� and the LGSPN transformation �·� in
the sense that the following diagram commutes. That is to say, given an activity term A,
ψ(�A�) = �A� holds without any conditions.

Activity Term: A
� � � IMC: �A�

�� � (§4.2)
�

LGSPN: �A� = ψ(�A�) (§4.3)

ψ (§4.1)�

Since this section discusses only UML AD, we restrict our language of composed com-
ponents to the following form:

S ::= A | S � S

4.1 LGSPN Semantics of IMC

The stochastic process algebras have strong relationships with the stochastic Petri net
formalism. They indeed share the same underlying mathematical foundation of Marko-
vian theories. Based on this commonality, Ribaudo [15] has defined a mapping from
PEPA to LGSPN. Owing much to this, we define a mapping ψ from each IMC process
P to an LGSPN ψ(P) = (P, T, F, R, M0, L), which is summarized in Table 2.

In the definition of ψ, we have introduced two special labels, initl and final, which
implicitly designate the initial and the final nodes of the Petri-net graphs. Each process
with a prefix action, (r).P or α.P , is encoded to a composition (superposition) of two
LGSPNs which correspond to the prefix part and the remaining part of the process,
respectively. Note that the initial marking M0 of ψ(P) is redefined so that the all places
in M0 are regarded as identical with p2, the terminating place of G, and thus folded
to a single place. For composite processes, ψ(P1 + P2) is defined as a composition
of ψ(P1) and ψ(P2), of which the initial nodes are folded into a single place that is
labeled l. ψ(P1 |L P2) is also defined as a composition of ψ(P1) and ψ(P2), though
in this case the transitions specified by L are superposed while the places are simply
merged together without superposition. See [15] for the details.

52 N. Tabuchi, N. Sato, and H. Nakamura

Table 2. LGSPN Semantics of IMC (almost identical with those in [15])

ψ(∅) = ({p}, ∅, ∅, ∅, {p}, {p �→ final}) where p is a fresh place
ψ((r).P) = G ||

∅,{l}
ψ(P)[{M0 �→ l}]

where G = ({p1, p2}, {t}, {(p1, t), (t, p2)}, {t �→ r}, {p1}, {t �→ τ, p2 �→ l})
M0 is the initial marking of ψ(P), l is a fresh label

ψ(α.P) = G ||
∅,{l}

ψ(P)[{M0 �→ l}]
where G = ({p1, p2}, {t}, {(p1, t), (t, p2)}, {t �→ ∞}, {p1}, {p1 �→ initl, t �→ α̃, p2 �→ l})

M0 is the initial marking of ψ(P), l is a fresh label
ψ(P1 + P2) = ψ(P1)[{M01 �→ l}] ||

Lab(ψ(P1))∪Lab(ψ(P2)),{l}
ψ(P2)[{M02 �→ l}]

where M01, M02 are the initial markings of ψ(P1)andψ(P2), l is a fresh label
ψ(Xl) = ({pXl

}, ∅, ∅, ∅, {pXl
}, {pXl

�→ initl}) where pXl
is a fresh place

ψ(µXl.P) = (P \ Pl, T, F \ {(t, p)|p ∈ Pl} ∪ {(t, M0)|p ∈ Pl ∧ (t, p) ∈ F}, R, M0, L)
where ψ(P) = (P, T, F, R, M0, L), Pl = {p|p ∈ P ∧ L(p) = initl}

ψ(P |LQ) = (P1 ∪ P2, (T1 \ T L
1) ∪ (T2 \ T L

2) ∪ T L
1×2,

(F1 \ F L
1) ∪ (F2 \ F L

2) ∪ F L
1×2, R1 ∪ R2, M01 ∪ M02, L)

where ψ(P) = (P1, T1, F1, R1, M01, L1), ψ(Q) = (P2, T2, F2, R2, M02, L2)

T L
1 = {t ∈ T1|L1(t) ∈ L}, T L

2 = {t ∈ T2|L2(t) ∈ L}
T L
1×2 = {ti × tj |ti ∈ T L

1 , tj ∈ tL
2 , L1(ti) = L2(tj)}

F L
1 = {(p, t), (t, p) ∈ F1|L1(t) ∈ L}, F L

2 = {(p, t), (t, p) ∈ F2|L2(t) ∈ L}
F L

1×2 = {(p, ti × tj)|ti × tj ∈ T L
1×2 ∧ ((p, ti) ∈ F1 ∨ (p, tj) ∈ F2)}

∪ {(ti × tj , p)|ti × tj ∈ T L
1×2 ∧ ((ti, p) ∈ F1 ∨ (tj , p) ∈ F2)}

L(t) = L1(t) (if t ∈ T1 \ T L
1), L2(t) (if t ∈ T2 \ T L

2), τ (if t ∈ T L
1×2)

4.2 LGSPN Semantics of Activity Terms

As mentioned earlier, many attempts have been made to establish stochastic Petri net
semantics for UML diagrams with performance-related annotations. Among those at-
tempts, [12] introduced a set of rules to transform a UML AD to an LGSPN. Thanks
to the labeling functionality of LGSPN, this successfully maps each set of activities,
connected with each other according to their caller-callee relations, to a single (su-
perposed) Petri net. With slight modifications, we define transformation rules for our
activity terms, as shown in Figure 8 and Table 3.

The rules in Figure 8 define mapping of the nodes of activity terms, defined in Sec-
tion 3.2, to an LGSPN, most of which are identical with those that appear in [12]. Note
that, since UML 1.5 (used in [12]) does not support AcceptCallAction nor ReplyAction,
we instead adopted the rules for Signal Receipt and Signal Sending in [12] for these two
actions. Exploiting these, the rules in Table 3 define a mapping of activity terms to an
LGSPN.

4.3 Equivalence Between �·� and �·�
We are now ready to show the equivalence between our stochastic process algebraic
semantics �·� and the stochastic Petri net semantics �·� by proving ψ ◦ �·� = �·�. To this
end, we first define the equality between LGSPNs in terms of the underlying mathemat-
ical foundation:

Definition 2 (Equality and Equivalence between LGSPNs). Two LGSPNs G1 and
G2 are equal (G1 = G2) when their underlying continuous-time Markov chains

Model-Driven Performance Analysis of UML Design Models 53

(CTMCs) are identical with each other. Meanwhile, G1 and G2 are equivalent (G1 ≡
G2) when their graph structures and rate assignments are identical.

Action: �action(a, r)l� CallOperationAction: �call(f)l�

p1|inil

t1|outr

p2|execute

t2|condev

p3|inihead(A)

p1|inil

t1|outr

p2|execute

t2|condev

p3|waiting

t3|joinl′

p1|initl

t1|condev
p2|evf

p3|waiting

t2|out
p4|ackf

p5|inithead(A)

p1|initl

t1|condev
p2|evf

p3|waiting

t2|out
p4|ackf

p5|waiting

t3|joinl′

(1-a.) next node is not a join (1-b.) next node is joinl′ (2-a.) next node is not a join (2-b.) next node is joinl′
MergeNode: �mergel� JoinNode: �joinl� ActivityFinalNode: �Finall�

p1|initl

t1|do merge

p2|inithead(A)

p1|initl

t1|joinl′

t1|joinl

p1|inithead(A)

p1|initl

t1|ending

p2|endA

(3-a.) next node is not a join (3-b.) next node is joinl′ (4.) JoinNode (5.) final node
AcceptCallAction: �accept(f)l� ReplyAction: �reply(f)l�

p1|initlp2|evf

t1|accf

p3|inithead(A)

p1|initlp2|evf

t1|accf

p3|waiting

t3|joinl′

p1|initl

t1|retfp2|ackf
p3|inithead(A)

p1|initl

t1|accfp2|retf
p3|waiting

t3|joinl′

(6-a.) next node is not a join (6-b.) next node is joinl′ (7-a.) next node is not a join (7-b.) next node is joinl′

Fig. 8. Transformation �·� of Activity Term Nodes N to an LGSPN [12]

Table 3. Transformation �·� of Activity Term A to LGSPN [12]

�initl → A� = �A�
�Finall� = as in Figure 8 (5.)

�action(a, r)l → A� = �action(a, r)l� ||
{joinhead(A)},{inithead(A)}

�A�

�call(f)l → A� = �call(f)l� ||
{joinhead(A)},{inithead(A)}

�A�

�accept(f)l → A� = �accept(f)l� ||
{joinhead(A)},{inithead(A)}

�A�

�reply(f)l → A� = �reply(f)l� ||
{joinhead(A)},{inithead(A)}

�A�

�mergel → A� = �mergel� ||
{joinhead(A)},{initl,inithead(A)}

�A�

(memorizing pn(l) � �mergel → A�)
�FwdMergel� = pn(l)
�BwdMergel� = ({p}, ∅, ∅, ∅, ∅, {p �→ initl})
�joinl → A� = �joinl� ||

∅,{inithead(A)}
�A�

�Joinl� = (∅, {t}, ∅, {t �→ ∞}, ∅, {t �→ joinl})
�Decision(A1, A2)l� = (�A1�[{M01 �→ initl}] ||

LT,{initl}
�A2�)[{M02 �→ initl}]

where LT ={joinl′ |l′∈Lab(Decision(A1, A2)l)}, M01, M02 are initial markings of �A1�, �A2�
�Fork(A1, A2)l� = G ||

∅,{inithead(Ai)
}
(�A1� ||

LT,LP

�A2�)

where G = ({p, p1, p2}, {t}, {(p, t), (t, p1), (t, p2)}, {t �→ ∞}, {p},
{p �→ initl, p1 �→ inithead(A1), p2 �→ inithead(A2)})

LT = {joinl′ |l′ ∈ Lab(Fork(A1, A2)l)}, LP = {initl′ |l′ ∈ Lab(Fork(A1, A2)l)}
�S1 �

f1,...,fk

S2� = �S1� ||
∅,{evf ,ackf |f=f1,...,fk}

�S2�

54 N. Tabuchi, N. Sato, and H. Nakamura

subnet
A

subnet
A

subnet
A

subnet
A

subnet A
(Immediate

transitions only)

… …R1 R3R2…

…

…

…

Fig. 9. Rules (R1), (R2), and (R3) [17]

Notice that G1 ≡ G2 obviously implies G1 = G2. Unfortunately, we cannot expect
ψ ◦ �·� ≡ �·�, since ψ ◦ �·� and �·� often generate structurally different LGSPNs. This
leads us to graph-rewriting techniques, which help reduce each LGSPN G to a simpler
form G′ while guaranteeing their equality (G = G′). For the discussion in this section,
we need the three rules depicted in Figure 9, which have been proven in [17] to meet
the equality criteria: Given a LGSPN G, (R1) removes a place that does not affect the
stochastic behavior of G, (R2) removes an immediate transition for which the succeed-
ing transition is timed, and (R3) aggregates immediate transitions and replaces them
with a single immediate transition. Refer to [17] for the details.

In Section 3.4, we have defined the composition of activities, which establishes
caller-callee relationships among them. As a consequence, we can safely restrict UML
AD, without sacrificing expressiveness, to those composite activities in which each
CallOperationAction always has its corresponding AcceptCallAction and ReplyAction.
According to [10], composite activities are called complete when they meet this restric-
tion. In terms of activity terms, we formally define this as follows.

Definition 3. A composite activity term S is complete iff LTS(�S�) has no action from
Σ̂, where LTS(P) denotes a flat labeled transition system obtained by expansion of P .

With the above definitions, we finally state the following proposition and its corol-
lary. Since we are concerned only with complete composite activity terms, the corollary
will directly support our claim that ψ ◦ �·� = �·�.
Proposition. Given a composite activity term S that is complete, ψ(�S�) and �S� can
be rewritten by rules in Figure 9 to LGSPNs that are equivalent to each other. In
other words, there exist two sequences of rules Ri1 , . . . , Rik

and Rj1 , . . . , Rjm(1 ≤
i1, . . . , ik, j1, . . . , jm ≤ 3) s.t. ψ(�S�)

Ri1→ · · · Rik→ G, �S�
Rj1→ · · · Rjm→ G′, and

G ≡ G′.

Proof. The proof proceeds by induction on the structure of S. [Final] If S ≡ Final,
then ψ(�S�) ≡ �S� holds without any rewriting. [action(a, r) → A] The (t2|condev)
transition, generated by �action(a, r)�, has no corresponding transition in ψ(�S�). We
consider the following two cases for this situation: If A is of the form action(a′, r′) →
A′, then (R2) eliminates (t2|condev) so ψ(�S�) ≡ �S�. Otherwise, (R4) does the elim-
ination. [call(f)/accept(f)/reply(f)] These contradict the assumption that S is com-
plete (hence the claim holds). See also the � case. [merge → A] The (t|do merge)
transition, generated by �merge → A�, has no corresponding transition in ψ(�S�). We
can exploit the same techniques as with [action(a, r) → A]. [FwdMerge] same as with

Model-Driven Performance Analysis of UML Design Models 55

merge → A. [BwdMerge] No rewriting is needed. [joinl → A] In case indegree(l) = 1,
ψ(�S�) ≡ �S� holds without any rewriting. Otherwise (indegree(l) > 1), �S� turns out
to be incomplete, which contradicts the assumption. See also the Fork case. [Joinl]
No rewriting is needed. [Decision(A1, A2)] By the induction hypothesis, there exist

G1iandG2i (i = 1, 2) s.t. ψ(�Ai�)
R1,R2,R3−→ G1i, �Ai�

R1,R2,R3−→ G2i, and G1i ≡ G2i.
Since ψ(�S�) superposes G11 and G12 exactly in the same way as �S� does G21

and G22, we only need to show G11 ||
∅,LP

G12 ≡ G21 ||
∅,LP

G22, which is the case.

[Fork(A1, A2)] We only need to consider the join nodes in S. For each joinl that
appears in S, indegree(l) becomes equal with ‖{Joinl | Joinl appears in S}‖ + 1 and
superpositions in ψ(�S�) and �S� occur between the transitions deriving from joinl and
those from Joinl. When indegree(l) = 2, the claim holds since S includes only one
Joinl activity. Otherwise (indegree(l) > 2), so it turns out �S� derives a single immedi-
ate transition from joinl whereas ψ(�S�) derives a set of immediate transitions, which
can be folded into one by (R3). [S1 �

{f1,...,fk}
S2] The differences between ψ(�S�)

and �S� lie in the superpositions of those places/transitions that derive from f1, . . . , fk.
For each superposition, �S� generates 3 extra places and 2 extra immediate transitions
that do not correspond to any in ψ(�S�). Fortunately, the differences can be resolved by
successive applications of (R1) and (R3). For further details, please refer to [19]. �

Corollary. Given a composite activity term S, ψ(�S�) = �S� if S is complete.

5 Preliminary Evaluation

We implemented a prototype version of the proposed model transformation mechanism
on top of the Eclipse platform [7], which provides a Java component of the UML 2.0
metamodel. Our implementation consists of five main components: A subset of the
UML-SPT profile, a model transformer, a discrete event simulator (DES), a Markov-
chain solver, and a simple graphical user interface. All of them are seamlessly integrated
into the Eclipse platform. For each UML model, performance analysis starts with anno-
tation of actions in the activity diagrams with performance-related properties in UML-
SPT. These annotations may include symbolic variables, the values of which are defined
separatedly in parameter DB files. Procedures for performance analysis can be defined
as a program in scripting languages, including Perl and VBA, which specifies a UML
model and a set of parameter DB files, and invokes transformation and execution of the
model. Each script program also specifies how to present execution results. They can
be shown within the Eclipse environment, or can be transferred to external tools like
Excel.

We designed a hypothetical on-line shopping system, whose static structure is de-
fined on the left of Figure 10 as a class diagram. The system includes one server (CPU)
and three databases. OrderingSystem is an external sub-system for stock checking and
shipping. Each function of these components was modeled as an activity diagram with
a single timed action. In contrast, ServerSession is a software component that commu-
nicates directly with users. The operations of ServerSession are modeled as sequential

56 N. Tabuchi, N. Sato, and H. Nakamura

+ getAccountInfo () + update () + getProductList ()

+ createLoginPage ()
+ createSelectionPage ()
+ createConfirmPage ()
+ checkAccount ()
+ invalidateSession ()

Server

AccountDB OrderDB ProductsDB

OrderingSystem
+ placeOrder ()+ login ()

+ selectProducts ()
+ confirmOrder ()
+ fixOrder ()
+ logout ()

ServerSession

login()

selectProducts()
PAstep
browse

PAstep
picklogout

PAstep
pickorder

PAstep
pickreselect

logout()

PAstep
think_time

confirmOrder()
PAstep
check

fixOrder()

User Model (as Activity)

+ getAccountInfo () + update () + getProductList ()

+ createLoginPage ()
+ createSelectionPage ()
+ createConfirmPage ()
+ checkAccount ()
+ invalidateSession ()

Server
+ createLoginPage ()
+ createSelectionPage ()
+ createConfirmPage ()
+ checkAccount ()
+ invalidateSession ()

Server

AccountDB OrderDB ProductsDB

OrderingSystem
+ placeOrder ()

OrderingSystem
+ placeOrder ()+ login ()

+ selectProducts ()
+ confirmOrder ()
+ fixOrder ()
+ logout ()

ServerSession
+ login ()
+ selectProducts ()
+ confirmOrder ()
+ fixOrder ()
+ logout ()

ServerSession

login()

selectProducts()
PAstep
browse

PAstep
picklogout

PAstep
pickorder

PAstep
pickreselect

logout()

PAstep
think_time

confirmOrder()
PAstep
check

fixOrder()

User Model (as Activity)

Fig. 10. Class Diagram of On-line Shopping System and a Usage Scenario

Fig. 11. Evaluation Results

accesses to the server and/or databases. A user begins shopping by sending a login re-
quest to the system. After logging in, the user asks for a list of available products and
browses it for a while. Then the user chooses one of (i) cancel the purchase by logging-
out with probability plogout, (ii) request another product list and continue shopping with
probability preselect, or (iii) check and confirm the order with 1− (plogout +preselect). This
probabilistic choice is modeled as timed actions with small and ignorable delays. The
user initiates another session dthinktime time units after the end of one session.

We evaluated utilization of the server and average waiting time for login requests
of users with respect to the probability preselect. The target model contained 20 instances
of user and ServerSession. The results are shown in Figure 11. As the value of preselect

increases, i.e. a user consumes more and more server resources, utilization of the server
gets saturated and users are kept waiting longer and longer before they can log in.

6 Concluding Remarks

In this paper we have defined a stochastic process algebraic semantics for a subset
of the UML metamodel, which primarily focuses on UML AD and the composition of
components. The primary objective is to apply the MDD methodology for model-driven
performance analysis, targeting in particular design verification in early development
stages. The semantic function �·� that relates UML models with UML-SPT annotations
and stochastic process algebra IMC has successfully established a model transformation
of UML for performance analysis. Further, we have proven that our semantics for UML
AD is indeed equivalent to an existing Petri net semantics, which guarantees the validity
of our approach.

Model-Driven Performance Analysis of UML Design Models 57

There have been a large number of efforts to define formal semantics of UML:
Störrle [18] formalized the Petri net semantics of a subset of UML 2.0 AD. He uses
what he calls the “procedural Petri net semantics” as his semantic basis, which is not
suitable for representing shared resources that we wanted to address. In [5], Canevet et
al. demonstrated a performance analysis of UML 2.0 AD. by means of PEPA Nets [8].
The mapping to PEPA Nets was, however, defined in an intuitive fashion. Canevet et
al. [4] analyzed UML 2.0 StateMachine by transforming them to PEPA. Their annota-
tion language is, however, not compatible with UML-SPT or other related standards.
Bolton et al. [2] proposed CSP semantics for UML 1.5 AD that primarily focused on
functional aspects of tha models.

As possible future research directions, we are currently considering the following
possibilities: One of the most important problems is how to handle other sorts of be-
havioral descriptions, in particular Interactions. They have already been considered by
Bernardi et al. [1] in the UML 1.5 context. We are not yet quite sure to what degree
these results can be applied to the UML 2.0 specification. Alternately, it would be both
theoretically and practically interesting to extend the notion of duration from negative-
exponential distributions to generic pdfs. Non-Markovian process algebras would be
applicable for this purpose. Finally, feasibility studies with more realistic and compli-
cated system models are necessary.

References

1. Simona Bernardi et al. From UML sequence diagrams and statecharts to analysable petri net
models. In Proc. 3rd Intl. Workshop on Software and Performance, pages 35–45, 2002.

2. Christie Bolton and Jim Davies. Activity graphs and processes. In Proc. IFM2000, 2000.
3. Ed Brinksma and Holger Hermanns. Process algebra and markov chains. 2002.
4. C. Canevet et al. Performance modelling with UML and stochastic process algebras. In Proc.

UK Performance Engineering Workshop, July 2002.
5. C. Canevet et al. Analysing UML 2.0 activity diagrams in the software performance engi-

neering process. In Proc. 4th Intl. Workshop on Soft. and Perf., pages 74–78, 2004.
6. Susanna Donatelli and Giuliana Franceschinis. The PSR methodology: Integrating hardware

and software models. In ICATPN’96, pages 133–152. Springer-Verlag, June 1996.
7. Eclipse.org. Eclipse.org homepage. http://www.eclipse.org, 2005.
8. Stephen Gilmore et al. PEPA nets: A structured performance modelling formalism. In Proc.

TOOLS 2002, April 2002.
9. Norbert Götz, Ulrich Herzog, and Michael Rettelbach. TIPP-a language for timed processes

and performance evaluation. Technical report, University of Frlangen-Nurnherg, 1992.
10. Jane Hillston. A compositional approach to performance modelling. CUP, 1996.
11. D. Kartson, G. Balbo, S. Donatelli, G. Franceschinis, and Giuseppe Conte. Modelling with

Generalized Stochastic Petri Nets. John Wiley & Sons, Inc., 1994.
12. Juan Pablo López-Grao et al. From UML activity diagrams to stochastic petri nets: applica-

tion to software performance engineering. SIGSOFT Softw. Eng. Notes, 29(1), 2004.
13. OMG. UML Profile for Schedulability, Performance, and Time, v1.0, September 2003.
14. OMG. UML 2.0 Superstructure specification, October 2004.
15. M. Ribaudo. Stochastic Petri net semantics for stochastic process algebras. In Proc.

PNPM95, 1995.
16. Bran Selic. The Pragmatics of Model-Driven Development. Software, pages 19–25, 2003.

58 N. Tabuchi, N. Sato, and H. Nakamura

17. Carla Simone and Marco Ajmone Marsan. The application of EB-equivalence rules to the
structural reduction of GSPN models. J. Parallel Distrib. Comput., 15(3):296–302, 1992.

18. Harald Störrle. Semantics of control-flow in UML 2.0 activities. In Proc. VL/HCC’04,
September 2004.

19. Naoshi Tabuchi, Naoto Sato, and Hiroaki Nakamura. Model-driven performance analysis of
uml design models based on stochastic process algebra. Technical Report RT0604, 2005.

20. Jan Trowitzsch, Armin Zimmermann, and Günter Hommel. Towards quantitative analysis of
real-time uml using stochastic petri nets. In IPDPS. IEEE Computer Society, 2005.

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 59 – 73, 2005.
© Springer-Verlag Berlin Heidelberg 2005

MDA Components: A Flexible Way
for Implementing the MDA Approach*

Reda Bendraou1, Philippe Desfray2, and Marie-Pierre Gervais1, 3

1 Laboratoire d'Informatique de Paris 6, 8 rue du Capitaine Scott - F75015 Paris
2 Softeam

144 Av. des champs Elysées F75008 PARIS
Philippe.Desfray@softeam.fr

3 Université Paris X
{Reda.Bendraou, Marie-Pierre.Gervais}@lip6.fr

Abstract. As the Model Driven Development (MDD) and Product Line
Engineering (PLE) appear as major trends for reducing software development
complexity and costs, an important missing stone becomes more visible: there
is no standard and reusable assets for packaging the know-how and artifacts
required when applied these approaches. To overcome this limit, we introduce
in this paper the notion of MDA Component, i.e., a packaging unit for
encapsulating business know-how and required resources in order to support
specific operations on a certain kind of model. The aim of this work is to
provide a standard way for representing this know-how packaging units. This is
done by introducing a two-layer MOF-compliant metamodel. Whilst the first
layer focuses on the definition of the structure and contents of the MDA
Component, the second layer introduces a language independent way for
describing its behavior. For a full specification, both layers can be merged using
the UML2.0 package merge facility.

Keywords: MDA, MDD, PLE, Packaging of know-how, MDA Component,
reusability.

1 Introduction

In software industry, growing expectations1 for reliable software in a short time to
market makes development processes increasingly complex. The continuing evolution
of technologies and the need for sophisticated information systems will not improve
this situation. Then, it becomes more and more difficult for companies to respect
deadlines and to provide software with the expected functionalities. According to the
Standish Group CHAOS study report, in 2004, when 29% of projects succeeded
(time, budget and required functions), among 53% are challenged (late, over budget
and/or with less than the required features and functions); and 18% have failed
(cancelled prior to completion or delivered and never used) [21]. Besides, if we look
closer at the development processes, we can notice that it exists a convergence in the

∗ This work is supported in part by the IST European project "ModelWare" (contract no

511731).

60 R. Bendraou, P. Desfray, and M.-P. Gervais

practice of software production. Most of the time, developers and designers apply the
same steps, handle similar tools and apply the identical tests. Unfortunately, this
know-how is generally scattered and not capitalized. In order to face these lacks, two
major approaches appear as a mean of reducing the software development
complexity: on one hand, the MDD (Model Driven Development) approach by
promoting the use of models as main actors of the software development cycle. On
the other hand, Product Line Engineering (PLE) that promotes reusability through the
specification of models covering a family of software products.

1.1 Model Driven Development

The MDD (Model Driven Development) is an approach to software development
where extensive models are created before source code is written. By considering
models as first class entities, MDD aims at reducing software production complexity.
A primary example of MDD is the Object Management Group (OMG)’s Model
Driven Architecture (MDA) initiative [13]. The MDA advocates the distinction
between models designed independently of any technical considerations of the
underlying platform i.e. PIM (Platform Independent Model) and models that include
such considerations i.e. PSM (Platform Specific Model). In order to ensure a model
driven approach for software development, a growing family of standards for
representing variety of domain specific models emerges. Examples of such standards
are UML (Unified Modeling language) [22][23], MOF (Meta Object Facility) [15],
SPEM (Software Process Engineering Metamodel) [20], EDOC (Enterprise
Distributed Object Computing) [7], etc. Besides, panoply of MDA-compliant tools
providing developers with operation on models appears [12]. Nevertheless, the
expert's know-how, domain specific features i.e. helpers, configuration parameters,
libraries etc, and customized actions and knowledge applied on these models are
provided neither by MDA standards nor by existing MDA-compliant tools. One can
advocates that a solution would be to customize a tool in order to support all features
needed for a specific context. Then, tool-vendors would have to adapt their tools
every time a new profile, a new standard, operation on models or a new platform
appears. This cannot be a long term solution.

1.2 Production Lines

The goal of Product Line Engineering (PLE) is to support the systematic development
of a set of similar software systems. Main assets in PLE are the architecture model of
the Product Line (PL) and the steps required i.e. the process model for defining it.
Defining the PL architecture roughly consists in consolidating all the common
features of a family of software products within a reusable core and packaging simple
parts for customization [16]. Two of the fundamental needs in defining architecture
for a PL are: 1) to be able to generalize or abstract from the individual products to
capture the important aspects of the PL and 2) to be able to instantiate an individual
product architecture from the PL architecture [19]. When MDA offers a set of
standards for representing a reusable PL architecture model, it is far away of
providing in a reusable format, the know-how, artifacts and resources needed for
building and for instantiating this model.

 MDA Components: A Flexible Way for Implementing the MDA Approach 61

In summary, both MDD and PLE lack of reusable and standard entities that can
capitalize and encapsulate the knowledge and required resources when promoting
these approaches, a key condition for a more cost-effective software production. To
overcome this limit, we introduce in this paper the notion of MDA Component
(MDAC), i.e., a packaging unit which encapsulates business know-how and required
resources in order to support specific operations on a certain kind of models. One
objective of MDACs is to provide industrialists with a standard and powerful way of
representing their know-how. MDACs are autonomous, platform-independent and
promote MDA standards. Design methodologies and modelling activities can be
represented and exchanged in a standard format thanks to MDACs. Another objective
of MDACs is that tools can be customized to a specific domain. They will be able to
support new functionalities simply by integrating MDACs to their environment. Thus,
tool-vendors will have to integrate one MDAC related to every new context rather
than redesigning their tools in order to take this context into account.

MDA standards used conjunctly with MDACs can ensure PLE needs. Indeed,
MDA offers a set of standards aiming at abstracting the domains that have to be
modeled. The UML standard and in particular UML Profiles have already proven
their effectiveness for capturing domain specific characteristics in form of models e.g.
requirement models, variation models, decision models, etc. [2] [26]. MDACs can be
used as a mean of capturing knowledge to be applied on these PL models as well as
all required artifacts, tools and guidelines. Being platform independent, autonomous
and executable, MDACs can be instantiated and sequenced in an assembly line in
order to implement a PL. Thus, they can be used as a packaging unit of know-how,
support for PL architecture design methodologies such as FAST [25], COPA [1] or
FORM [11].

Our contribution comes in form of a two-layer MOF-compliant metamodel. The
first layer, called MDAC Infrastructure, extends main UML2.0 Infrastructure classes
in order to define the structure and contents of MDAC. The second layer is based on
the UML2.0 Superstructure. It extends key constructs of the UML2.0 Superstructure
required for the definition of the MDAC behavior independently of any language. We
also discuss primary requirements for the deployment and execution of such know-
how packaging unit. Let us precise that the intent of this paper is not to propose an
off-the-shelf solution. We aim at introducing the basis and challenges of MDA
Components. Previous efforts were done in an ITEA (Information Technology
European Advancement) research project called Families [8], from which several
publications where made: Bézivin et at [3] and [6] in introducing the notion of
MDAC.

The paper is organized as follows; in order to avoid any confusion with Software
Components, Section 2 presents how MDACs relate to them. Section 3 gives an
overview of the MDAC architecture and sets some of the requirements that should be
satisfied in order to support the deployment and execution of MDACs. In Section 4,
we present our MOF-compliant metamodel for MDAC. It is composed of two parts,
one describing its structure and its contents and the other one specifying its behavior
independently of any platform. To this end, the latter makes use of UML2.0 Activity
and Action constructs. Section 5 presents related works and Section 6 gives some
perspectives of this work.

62 R. Bendraou, P. Desfray, and M.-P. Gervais

2 MDA Components vs. Software Component

Because the term of Component is widely used with different meanings in the
software area, we find it necessary to start by clarifying how MDA Components relate
to it. Grady Booch et al, define a component as "a physical and replaceable part of a
system that conforms to and provides the realization of a set of interfaces. Typically,
it represents the physical packaging of otherwise logical elements, such as classes,
interfaces, and collaborations" [5]. One property that MDA Components share with
software components is the ability of packaging the logical units necessary for the
achievement of an activity. However, unlike software components, first class citizens
of MDAC are models. We mean here by model any instance -direct or indirect- of the
MOF metamodel e.g. the UML metamodel and its model instances, Profiles, SPEM
instance models, etc. Likewise, an MDAC packages all required artifacts for its
deployment and its execution. A non exhaustive list of such artifacts could be libraries
(e.g. Java, C++, etc.); guidelines; model transformation rules; configuration
parameters; consistency rules in form of OCL code attached to models; icons, etc.
While the principal goal of the software component discipline is to enable practical
reuse of software parts and investments deprecation over multiple applications, the
MDAC vision aims at enabling reuse of a certain kind of know-how applied on
models. For example, in the context of the MDA, we can imagine an MDAC - one or
a collaboration of MDACs - for specifying the PIM of an application domain, one for
transforming that PIM to a PSM and another one for generating code from the latter.
Sequencing these three MDACs then constitutes an MDAC-based production line. Of
course, this would be one possible way of sequencing MDACs in order to realize an
application with respect to the MDA recommendations. Considering that a company
could prefer to integrate platform features at an earlier stage of the production line, an
MDAC for Platform Description Model specification (PDM) would take place in
earlier phases of the production line. Then, another MDAC will ensure the activity of
weaving PDM outcome of the PDM MDAC and the PIM outcome of the PIM
MDAC. The result of the weaving activity, i.e., a model integrating business assets as
well as some platform's specific features will be one of the inputs of the model
transformation MDAC and so forth.

To complete the comparison with software components, we address the notion of
services required or provided by MDACs. During its execution, an MDAC provides
services and may require some. Services offered by MDACs represent operations to
be applied on models e.g. PIM specification, model consistency checking, model
transformation, model comparisons and so on. The catalogue of services provided or
required by MDAC is equivalent to software component interfaces. They represent
the behavior offered by the MDAC. The interface of a software component is realized
i.e. implemented by a set of operations in a specific programming language. As for
MDAC, services provided might be defined either independently of any technological
considerations or by using a specific language e.g. C++, Java, etc. One advantage of
doing this is to keep service specifications platform independent and less vulnerable
to the continuing evolution of technologies. Then, service specifications can evolve,
are easily maintainable and analyzable.

 MDA Components: A Flexible Way for Implementing the MDA Approach 63

3 MDA Component: An Overview

We give here an overview of the notion of MDA Component, by providing the
motivation of introducing such a notion, defining in an informal way this notion and
describing some features that must be supported to deploy and execute MDACs.

3.1 Rationale

In order to implement an MDA approach for a particular domain or context, one has
to:

1. Define the appropriate modeling abstractions. Using the MDA related
technologies, this means that specific metamodels or UML profiles are
established, and that consistency checks for the models are specified.

2. Implement production automation rules that will translate a given level of
abstraction into another level of abstraction, or produce some development
artifact.

3. Identify reusable model artifacts that represent software concepts applicable in
different projects in the same domain or technology.

Indeed, there are more activities to conduct. The MDA approach should be
supported by all sorts of services in order to be easily adopted by the software
developers who will need to apply it. Services such as wizards, on line help,
consistency checks and connection to the platform development tools, are necessary
for the good usage and acceptance of an MDA approach. Each abstraction layer,
represented by a model type, must be defined with a metamodel or profile and
benefits from a complete modeling environment (GUI, checks, Help, process,
generators…). The MDAC is the means to reach this objective. Methodological or
process related rules can also be attached to the MDAC through specific additional
functionalities: Guidelines, rules, descriptions of work products to be delivered, roles
participating in the usage of the MDAC are examples of such process related aspects.
The result is that many kinds of elements need to be packaged together, in order to
provide a complete solution for implementing an MDA approach. That single unit of
packaging is called "MDA Component" (MDAC). An MDAC contains all necessary
material to customize an existing modeling environment in order to apply MDA to a
specific domain or context.

3.2 Definition

An MDA component is a deployable unit of packaging for the definition of types of
model with dedicated tools, services and resources. The types of model can for
example be a PIM or a PSM, defined in the form of a metamodel or a UML profile.
The MDAC concept, in essence, is aimed at customizing an existing modeling tool, or
group of tools.

It needs to be connected to the customized toolset, and to be executed accordingly
in order to extend the behavior and services provided by the host toolset. When

64 R. Bendraou, P. Desfray, and M.-P. Gervais

MDA Component
<<P>><<P>>

<<P>><<P>>

<<P>><<P>>

cmd1

cmd2

cmd3

FileA
FileBFileC

Metamodels or UML
profiles, constraints,
model transformations,

behavior

Resources (help, icons,
executables libraries, …)

Invocation points
(commands, notifications
…)

Fig. 1. An MDA component packages model definitions, attached services and resources

deployed, the MDAC has to be executed in an MDA Container, which is a dedicated
execution environment that can load the attached artifacts and descriptions, and that
can execute the attached behaviors according to a predefined lifecycle. The MDA
Container is frequently embedded in a hosting tool (such as a UML Case tool): it
binds the hosting tool functionality to the loaded MDAC. MDACs include the
definition of "invocation points", which abstract the different mechanisms by which
the MDAC can be solicited by the environment, such as provided services, Events on
which the MDAC reacts or menu entries provided to the end user. These interaction
points define the connection between the MDAC's external environment (end users,
other tools or MDACs) and the MDAC's implementation.

3.3 Steps from the Definition to the Usage of MDACs

The following steps and tools are necessary to support the definition, deployment and
usage of MDACs:

1. Modeling and definition of an MDAC: In this stage, a dedicated modeling tool

called MDAC Modeler is used to define the profiles or metamodels supported by
the MDAC. The modeling support includes the modeling of profiles or metamodel
or the capacity to import these definitions using XMI, the modeling or definition
of the invocation points of the MDAC, the modeling or definition of the behavior,
and the modeling or definition of the packaging of the MDAC.

2. Producing and packaging an MDAC: The definition of the MDAC needs to be
checked, compiled and produced into a packaged form. The MDAC Modeler tool
also supports this step. The result is a file in a specific format, storing the
implementation of the MDAC.

3. Deploying an MDAC: Using the MDAC packaging unit, the MDAC is made
accessible to a modeling tool, and can be selected by users. The targeted tools
must embed an MDA Container to be capable of loading and executing MDACs.

4. Applying an MDAC: Once deployed, the users can select the MDAC in their
modeling environment, and it will be executed. At this stage, the MDA Container
loads and executes the MDAC that will customize the modeling environment and
adds a new functionality. The profiles packaged by the MDAC will be applied to

 MDA Components: A Flexible Way for Implementing the MDA Approach 65

the model in the user's current work context, or the metamodels packaged by the
MDAC will be interpreted to type the models created under the hosting tool.

5. Maintaining existing MDACs: to make the MDACs reusable, an organization
should maintain libraries of MDACs that can be applied in projects of this
organization. These MDACs can evolve to support new assets, consistency checks
and modeling extensions.

3.4 Runtime Support of MDACs

The MDAC execution has to be supported by a layer independent of the tool that
executes it. The objective is to provide an infrastructure that is capable to be
embedded within model-based tools (such as Case Tools, Meta Case Tools, or any
other tool providing model oriented services) and which provides in a uniform - and
hopefully standardized - way the services provided by the hosting tool. This kind of
architecture is well supported by the "container pattern" vastly used by component
based architectures such as CCM or EJB. Figure 2 below shows an MDAC embedded
within an MDA container which isolates the MDAC from the hosting tool, allowing
thus to run the same MDAC on several kinds of hosting tools.

Hosting Tool

MDA Container

MDA
runtime

MDA Components

Modeling MDA
Components

Package

Load

MDA Component

Fig. 2. Running MDACs into MDA Containers

Invocation points defined by the MDACs are the mechanisms by which the MDA
Container will run the MDAC, and let the MDAC cooperate with the hosting tool.
User interactions, events, required services can be transmitted from the hosting tool to
the MDAC based on the MDA Container intermediation. Provided and required
services can also be used to establish a dialog between several loaded MDACs. There
are predefined services requested by Containers, that every MDAC shall implement,
in order to let containers manage the lifecycle of the loaded MDACs. It is not
expected that any hosting tool is capable of providing every requested environment
and services to any MDAC. MDACs can therefore express requirements on the
capacities of the hosting tools. For example, some tools are capable to interpret
metamodel definitions, other support profiles for a certain version of UML, some
have a strong GUI capacity, etc. It is up to the MDA Container to check that the
hosting tool fits to the requirements expressed by the MDAC to be loaded. In the next
Section, we provide a more formal definition of MDAC in the form of a metamodel.

66 R. Bendraou, P. Desfray, and M.-P. Gervais

4 The MDAC Metamodel

The definition of the MDAC we propose comes in form of a two-layers Metamodel,
namely the MDAC Infrastructure layer and the MDAC Behavior layer. The MDAC
Infrastructure layer is a MOF-compliant metamodel. It extends the UML2.0
Infrastructure concepts in order to specify the structure of the MDAC. Whilst the
Behavior layer takes advantage of the recently adopted UML2.0 Superstructure
constructs in order to provide a platform and language independent way for
specifying the behavior of MDACs. Below we introduce both layers in more details.

4.1 The MDAC Infrastructure Layer

Figure 3 shows the part of the MDAC metamodel corresponding to the Infrastructure
layer. A specific effort has been conducted to align this metamodel to the UML2.0
infrastructure standard. At this level, it has been deliberately decided not to use the
UML2.0 superstructure metamodel, in order to stay at a model independent level.
This metamodel contains the definition of an MDAC and its related classes.

MDACs are defined in terms of related model definitions, expressed as packages,
dependencies on other MDACs, packaged physical units, and provided services.
MDACs are a kind of NameSpace. They act as a namespace for each aggregation
where the opposite role subsets “ownedmember”. The model definition is a kind of
package, corresponding to the OMG metamodel definitions. These packages can be
profiles, or packages representing metamodels. When the MDAC refers to standards,
the model definition packages are referenced through an uri, using the OMG
identification mechanism as defined in the MOF standard. MDACs are represented as
an aggregation of the elements to be packaged. A Service is the formal declaration of
an exposed functionality that a tool or a MDAC can provide, and that a tool or an
MDAC can require. MCServices can be called internally through commands, internal
calls, or event reception. Artifacts represent in general the resources or artifacts
related to the MDAC. They can for example be libraries, documents, test models, user
guides, icons, etc. Their exact kinds shall be defined by creating subclasses of Artifact
in more concrete subPackages. These configurations are very specific to the
methodology recommended for building MDAC and can vary widely. The intent
behind MDAC Artifact is close to the semantics of UML2.0::SuperStructure::Artifact.
Therefore, in order to match both semantics (using package merge), the name has
been deliberately chosen similar.

InvocationPoint describes how an MDAC can be activated and which MDAC
service is activated. It is then up to the execution container to provide the adequate
mechanism to support the specified extension point and activate the service when
required. An MDAC can assemble other MDACs. The assembly can be specified as a
reference to another MDAC. In that case, the assembled MDAC is requested for the
execution of the assembly. The assembly can be specified as “Embedded”. In that
case, the assembled MDAC is packaged within the assembly one, and deployed
before the assembly in the local execution space. It is expected that each language
used for expressing the behavior of an MDAC has an OO structure: It can be
structured by packages that own classes having operations in which the language

 MDA Components: A Flexible Way for Implementing the MDA Approach 67

Fig. 3. A global overview of the MDAC Infrastructure layer

instructions are expressed as implementation. This is the case for QVT [17], Java, and
“J”[10], but also for a vast majority of languages. As we will see below, we propose a
language independent way to specify the behavior of an MDAC, but still we leave the
possibility open to use a specific language, at the cost of reducing the hosting tool
independence level.

4.2 The MDAC Behavior Layer

As introduced above, MDACs have a behavior that might be specified independently
of any specific language. Developers will have the possibility to define the MDAC
behavior either in a specific language or in an independent way. By choosing the
latter solution, they will overcome the problem of the continuing technology changes
and business evolutions. Indeed, when having a platform-independent behavior
description, then it becomes easier to maintain, to evolve and to generate the behavior
into a specific platform or language. To this end, we propose the MDAC Behavior
layer that is a UML2.0 Superstructure-based metamodel which extends UML2.0
Activity and Action constructs by adding the properties and semantics required for the
description of MDAC behaviors. Then, the "packageMerge" facility offered by the
UML 2.0 standard can be used in order to merge the two layers, i.e., MDAC
Infrastructure and MDAC Behavior (see figure 4). As a result, we obtain a full
specification that allows the definition of both structural and behavioral aspects of
MDACs. By adopting UML2.0 as a basis of the part of our metamodel devoted to the
MDAC behavior description, we take advantage of:

68 R. Bendraou, P. Desfray, and M.-P. Gervais

MDAC_Infrastructure

<<merge>>

MDAC_Behavior

Fig. 4. The MDAC metamodel: Package Merge of MDAC layers

o The expressiveness of the new UML2.0 for modelling executable action
semantics within activities and in orchestrating them;

o The fact that UML is currently the most widely used modeling language in the
industry;

o Tool supports and facilities;
o Notations and diagrams offered by the standard ;
o Easier adoption by UML modelers;

The metamodel representing the MDAC Behavior layer comes in form of package

hierarchies. The outermost level contains two packages: the Behavior_Foundation
package and the Behavior_Extensions package (see figure 5). The
Behavior_Foundation package contains all UML2.0 packages required as a basis for
MDAC behavior descriptions. Main ones are those related to Activities, Actions, and
the Kernel package, the core of UML2.0. The Behavior_Extensions package holds
classes that extend UML2.0 constructs introduced in the Behavior_Foundation
package. Figure 6 points out how concepts of both packages are interconnected. It
represents a global overview of the MDAC Behavior layer. Lighted boxes of the
figure represent UML2.0 classes. Shaded boxes represent those we specified and that
inherit UML2.0 classes. The main class of the Behavior_Extensions package is the
MDAComponent class. An MDAComponent inherits the UML2.0::Behaviored
Classifier class. A BehavioredClassifier is a Classifier that has behavior specifications
defined in its namespace. One of these may specify the classifier's behavior itself
which will be invoked when an instance of the BehavioredClassifier is created. One
advantage is that the MDAC's behavior can be represented by state machines; this
adds more control on the MDAC lifecycle. Another advantage is, being a Classifier,
an MDAC can encapsulate, i.e., own other classifiers such as Artifacts as well as
ActivityPerformer on these artifacts.

An Artifact is the specification of a physical piece of information that is produced,
consumed, or modified by an MDAC. An MDAC provide Services and may require
some. The services offered by the MDAC are realized by Operations. Operations are
described in term of Activities which contain a set of Actions with an executable
semantics. An Action takes a set of inputs and converts them into a set of outputs,
though either or both sets may be empty. Input to, respectively, output from, an action

 MDA Components: A Flexible Way for Implementing the MDA Approach 69

Behavior_Foundation

Behavior Extensions

MDAC Behavior

BasicActivi ties
<<metamodel>>

Communications
<<metamodel>>

CompleteActions
<<metamodel>>

IntermediateActions
<<metamodel>>

Kernel
<<metamodel>>

BasicBehaviors
<<metamodel>>

<<merge>>

<<merge>>

<<merge>> <<merge>>

<<merge>>

CompleteActivi ties
<<metamodel>>CompleteStructuredActivities

<<metamodel>>

ExtraStructuredA
ctivities

<<metamodel>>

IntermediateActivi ties
<<metamodel>>

StructuredActivi ties
<<metamodel>>

FundamentalActivities
<<metamodel>>

<<import>>

<<merge>>

<<merge>>

<<merge>>

<<import>>

<<merge>>

<<merge>>

BasicActions

<<import>>

<<import>>

<<import>>

<<merge>>

<<merge>>

Dependencies

Artifacts

<<merge>>

<<merge>>

<<Import>>

Fig. 5. MDAC Behavior layer: package hierarchies

is a typed element. It represents the Pin of the action. A Pin is typed by a Classifier.
Actions consume and produce artifacts. The relation between an action and artifacts it
handles is made through the fact that artifacts are Classifiers and Inputs and Outputs
of an action have a type which is specified by a Classifier too. This would allow
actions to manipulate artifacts as easily as calling a method while passing it
parameters in usual OO programming languages. Activities have one or more
ActivityPerformer who are in charge of the activity and more particularly of actions
owned by it. An ActivityPerformer can be a ResponsibleRole or a SoftwareTool (e.g.
compilers, model transformation engines…). A ResponsibleRole describes the rights

70 R. Bendraou, P. Desfray, and M.-P. Gervais

and responsibilities of the Human who will interact with the MDAC during its
execution. Indeed, due to the complexity of software development, the behavior of an
MDAC can’t be fully specified in terms of executable actions. Then, developer
involvements may be necessary during MDAC execution. Considering this need of
human interactions, we add the concepts of Interaction and Human. An Interaction is
an Action and involves a Human. A Human may be an agent or a team; it has a name,
a skill(s) and an authority. Finally, having in mind that an MDAC may need some tool
facilities during execution-time, we decide to extend the Actions model. The
CallToolServiceAction is a CallAction (see figure 7). It has InputPins which represent
the arguments of the call and OutputPins as call results.

Pin
(from BasicActions)

Classifier
(f rom Kernel)

BehavioredClassifier
(f rom BasicBehaviors)

SoftwareTool

name : String
isBatch : Boolean = true

Human

name : String
authority : String
skill : String

Interaction

ResponsibleRole

responsability : String
Rights : String

0..*

1..*

+agent 0..*

+Role 1..*1
+involves

1

TypedElement
(from Kernel)

Classifier
(from Kernel)

1

+type

1

ActivityPerformerActivity
(f rom IntermediateAct iv it ies) 0..*0..*

+performer

0..*

+activity

0..*

InputPin
(f rom BasicAct ions)

OutputPin
(f rom BasicAct ions)

ActivityNode
(from IntermediateActivities)

0..1

*

+activity
0..1{filters owner}

+node
*

{filters ownedElement}

Action
effect : String

*

1

+inputPin*

{filters input}

+action

1

{filters owner}

*

1

+output
*

{ordered, union
subsets ownedElement}

+action

1

{filters owner}

0..1

0..*

0..1

+action 0..*

{ordered filters node}

Artifact

isDeliverable : Boolean

0..*

0..1

+artifacts
0..*

+ActivityPerformer

0..1

0..*

+impacts

0..*

MDAComponent

CallMDACBehavior()

MCService

name : String
1..*

+providedServices
1..**

+requiredServices

*

Operation
(f rom BasicBehav iors)

**

+/feature

*

+/featuringClassifier

* /behavioralFeature

1..*

+realizedBy

1..*

Behavior
(f rom BasicBehav iors)

*
0..1

+ownedBehavior
*

{subsets ownedMember}
+context

0..1

0..1

0..1

0..1

+classifierBehavior0..1

{subsets ownedBehavior}

*

0..1

+method

*

+specification

0..1

Fig. 6. A global overview of the MDAC Behavior layer

OutputPin
(from BasicActivi ties)

CallAction*

+result

*

{ordered,
subsets output}

InvocationAction
ValueSpecification

(from Kernel)
*

+argument

*

{ordered,
subsets input}

ToolService

name : String

CallToolServiceAction

isSynchronous : Boolean = false

Fig. 7. The CallToolServiceAction

 MDA Components: A Flexible Way for Implementing the MDA Approach 71

We make the assumption that a ToolService has a name and a set of typed
parameters. One constrain on the CallToolServiceAction, would be that
CallToolServiceAction arguments fit to ToolService parameters (in number and type).
The model of the tool (list of services, parameters of services, binding mode…) is
outside the scope of this work [4].

5 Related Works

One of the main contributions in the literature that relates to the MDA Component is
the Microsoft's Software Factories vision. A Software factory (SF) is a product line
that configures extensible development tools e.g. Microsoft Visual Studio Team
System (VSTS) with packaged content and guidance, carefully designed for building
specific kinds of applications [9]. Main concepts in SF are the software factory
schema and the software factory template. A SF schema lists artifacts like source
code, SQL files, etc. and how they should be combined to create a product. It
specifies which Domain Specific Languages (DSLs) should be used and defines the
product line architecture. As for SF template, it packages all the artifacts described in
the SF schema. It provides patterns, guidance, templates, DSL editing tools, etc. used
to build the product. Then, an extensible development environment will be configured
by the SF template in order to become a SF for a product family.

Looking at these definitions of SF, one can deduce that Microsoft's Software
Factories and MDA Components are competitors. Indeed, SF and MDAC promote the
same vision of reusing software skills for the sake of a more cost-effective software
production and short time-to-market. However, when MDAC first class entities are
MOF instance models, SF promotes the use of DSLs. This is, in our opinion, a
delicate issue. In [9], authors argued that in some cases, UML profiles or MOF are not
well suited for modelling some business concepts which are more naturally expressed
in a specialized syntax. They also support that DSLs are easy to create, to evolve and
can be used to implement solutions based on these DSL. We don’t agree with this
vision. In our case, the primary reason why we chose a standard way (i.e. MOF
instances such like UML) for representing models is to be independent of any
platform or language. Using a DSL for making models more expressive is not a
problem in itself. The problem is that it requires that the DSL semantics be
understandable by tools and project stakeholders. Then, even if tools are compatible
within the same SF template (package), how do we deal when these tools need to
exchange models with other tools using different DSLs? Moreover, if the behavior of
a software factory is defined through thousands of code source lines, how the SF
customer could maintain or customize the SF? We believe that mechanisms like
stereotypes and tagged values offered by UML profiles as well as OCL (Object
Constraint Language) [24] are expressive enough to capture the characteristics of a
specific domain context. The OMG already provides Profiles for Software Process
Engineering (SPEM), System engineering, test modeling, QOS modeling, and the
already long existing list of profiles will proliferate within the coming years [18]. For
those who may find limitations of using UML profile, MOF can be used as formalism
for defining domain specific language metamodels. This allows leveraging UML
standard tools and training. Thus even if SF and MDACs share the same vision of

72 R. Bendraou, P. Desfray, and M.-P. Gervais

promoting software production lines (see Section 1.1), they do not follow the same
approach. However, MDA Components can be used by Software Factories as a
standard mean for representing certain knowledge and for packaging required artifacts
and tools for applying it.

6 Conclusion

In this paper, we introduced the notion of MDA Component, i.e., a packaging unit for
encapsulating business know-how and required resources in order to support specific
operations on a certain kind of model. A standard formalism for representing MDA
Components was proposed in form of MOF-compliant metamodel and requirements
for their deployment and execution was established Most of the work which has
contributed to this paper has been done within the Modelware IST project [14].
Tooling and Use Cases are currently underway, a first implementation being already
done. In parallel, there is an OMG effort to standardize the notion of MDA
component. Currently the writing of an RFP is underway. We believe that the MDA
component notion, once standardized and tooled will provide its full power to the
MDA technique, in order to capitalize, share, reuse, improve and automatically apply
software development know-how. Still there is work to do in MDAC definition. For
example, the MDA Container "universal" architecture is under study, the mechanisms
for combining MDACs have to be finalized, and the level of tool independence of
MDACs has to be formalized into predefined compliance levels. The highest
challenge is to meet a standard definition that ensures a complete tool independence.

References

[1] America P., Obbink H., Muller J., and van Ommering R. "COPA: A Component-Oriented
Platform Architecting Method for Families of Software Intensive Electronic Products", in
Proc. of the 1st. Conf. on Software Product Line Engineering, Denver, Col, USA, 2000.

[2] Anastasopoulos M., Atkinson C. and Muthig D. "A Concrete Method for Developing and
Applying Product Line Architectures" in Proc. of the Net.Object Days, Erfurt,
Germany,2002, LNCS, Springer, Vol. 2591 / 2003

[3] Bézivin J., Gérard S., Muller P-A. and Rioux L. "MDA components: Challenges and
Opportunities", in: Metamodelling for MDA, York, England, 2003.

[4] Blanc X., Gervais M.P., and Sriplakich P. "Model Bus: Towards the Interoperability of
Modelling Tools", in Proc. of the MDAFA'04, Linköping University, Sweden, 2004.

[5] Booch G., Rumbaugh J. and Jacobson I. "The Unified Modeling Language User Guide",
Addison-Wesley Professional; 2 edition, July 19, 2004.

[6] Desfray P. “Techniques for the early definition of MDA artifacts in a UML based
development” Enterprise UML & MDA, London May 12 and 13 at:
http://www.enterpriseconferences.co.uk/programme.pdf

[7] EDOC, "UML Profile for Enterprise Distributed Object Computing", OMG Document
ptc/02-02-05, 2002 http://www.omg.org.

[8] Families ITEA Project at: http://www.esi.es/en/Projects/Families/

 MDA Components: A Flexible Way for Implementing the MDA Approach 73

[9] Greenfield J., Short K. "Software factories: assembling applications with patterns,
models, frameworks and tools", in Proc. of the 18th Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA), Anheim, CA, USA,
2003, ACM press.

[10] J language, at: http://www.objecteering.com/pdf/whitepapers/us/uml_profiles.pdf
[11] Kang K. C., Kim S., Lee J., Kim, Shin E., and Huh, K M. "FORM: A Feature-Oriented

Reuse Method with Domain-Specific Reference Architectures", Annals of Software
Engineering, Vol. 5, 1998.

[12] MDA Development tools, at: http://www.omg.org/mda/committed-products.htm
[13] MDA Guide. "Model Driven Architecture (MDA)", OMG TC document ormsc/2001-07-

01, July 2001, at http://www.omg.org.

[14] MODELWARE Project, at http://www.modelware-ist.org

[15] MOF 1.4. "Meta-Object Facility", OMG document formal/2002-04-03, April 2002, at
http://www.omg.org.

[16] Muthig D., Atkinson C. "Model-Driven Product Line Architectures" in Proc. of the 2nd
International Software Product Line Conference, San Diego, CA, USA, 2002, LNCS,.
Springer, Vol. 2379/2002

[17] OMG, Request for Proposal MOF2.0 Query /Views/Transformations, OMG document:
ad/2002-04-10, April, 2002, at http://www.omg.org.

[18] OMG specifications at:
http://www.omg.org/technology/documents/modeling_spec_catalog.htm

[19] Perry, D.E., "Generic Architecture Descriptions for Product Lines", ARESII: Software
Architectures for Product Families, Los Palmos, Gran Canaria, Spain, 1998, LNCS,.
Springer, Vol. 1429/1998.

[20] SPEM1.1, “Software Process Engineering Metamodel”, OMG document formal/02-
11/14, November 2002, at http://www.omg.org.

[21] Standish Group: "2004 Third Quarter Research Report" at:
http://www.standishgroup.com. Page last visit: June 13, 2005.

[22] UML2.0 Infrastructure, "Unified Modelling Language", Final Adopted Specification,
OMG document ptc/03-09-15, December 2003, at http://www.omg.org.

[23] UML2.0 Superstructure, "Unified Modelling Language", Available Specification, OMG
document ptc/04-10-02, October 2004, at http://www.omg.org.

[24] UML2.0 OCL Specification, "Unified Modelling Language 2.0 Object Constraint
Language", Adopted Specification, OMG document formal/03-10-14, October 2003, at
http://www.omg.org.

[25] Weiss D., Lai C., and Tau R., "Software product-line engineering: a family-based
software development process", Addison-Wesley, Reading, MA, 1999.

[26] Ziadi T., Hélouët L., Jézéquel J-M. "Towards a UML Profile for Software Product
Lines", in Proc. of International Workshop on Product Family Engineering (PFE-5),
Seana, Italy, 2003, Springer LNCS 3014/2003, P. 129-139.

An MDA Approach for Adaptable Components

Steffen Göbel

Institute for System Architecture,
Dresden University of Technology, Germany

goebel@rn.inf.tu-dresden.de

Abstract. Components should provide maximum flexibility to increase
their reusability in different applications and to work under changing
environment conditions as part of a single application. Thus, adapta-
tion and reconfiguration mechanisms of single components and compo-
nent assemblies play a crucial role in achieving this goal. In this paper
we present a model of Adaptable Components that allows modelling of
adaptation and reconfiguration operations taking place at development,
deployment or runtime. The concept of composite components is uti-
lized to encapsulate adaptation operators and to map component para-
meters to different predefined internal configurations of subcomponents.
The component model is not tied to a particular component platform.
Instead, it can be mapped to existing component platforms like EJB us-
ing an MDA approach. Different Platform-Specific Models for the same
target component platform enable tailored flexibility for particular com-
ponent deployments. For example, a model can support or not support
runtime reconfiguration. Extensions to UML diagrams are introduced to
graphically model reconfiguration operations.

1 Introduction

Two of the key success factors of component-based software engineering are reuse
of components in different applications and composition of complex applications
out of well-defined and loosely coupled parts. Component platform standards like
JavaBeans, Enterprise JavaBeans (EJB), Microsoft COM, and Microsoft .NET
have crucially contributed to this success. To increase reusability and flexibility,
components should support mechanisms to adapt them to different environments
and to add new functionality.

This adaptation process can be carried out at different times in the compo-
nent life cycle: at development time, at deployment time, or at runtime. However,
components look quite differently and consist of different artefacts at these three
times. For example, at development time a component might comprise a set of
Java source files and an XML descriptor. At runtime the same component might
consist of binary program code structured in classes and several data structures.
As a result, the conceivable adaptation mechanisms also differ at the three times.
Some mechanisms might change the source code of components and others might
employ interceptors at runtime.

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 74–87, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An MDA Approach for Adaptable Components 75

A variety of adaptation mechanisms has been developed by the research com-
munity and software industry, but most of them are only applicable at one time,
either development, deployment, or runtime. A unified model describing adapt-
able components at all three times is missing. In this paper we introduce such
a model for the development of Adaptable Components (ACs). It employs the
concept of composite components to encapsulate adaptation mechanisms. Adap-
tation is considered as a superset of the concepts reconfiguration, customization,
and parameterization in this paper.

The model of ACs combines the following ideas: (i) The adaptivity is ex-
pressed by component parameters. The notion of component parameters com-
prises component properties used, for example, in JavaBeans and type para-
meter used in C++ templates or Java generics. In a previous work [7] we also
showed that QoS properties are also a kind of parameters. (ii) An AC as a
composite component encapsulates a set of predefined internal configurations
of subcomponents. Component parameters are mapped to these configurations.
That means that the internal configuration of an AC changes if component pa-
rameters are changed. (iii) The model of ACs is platform and programming
language independent. An MDA approach enables transforming of the model
to different target component platforms. Currently, only Java is supported as
programming language. (iv) Existing adaptation mechanisms can be integrated
by special modelling operators.

The paper is structured as follows: In the next section we introduce our model
of ACs, explain model constituents, and modelling techniques. In the third sec-
tion the model is illustrated based on a simple example—a crypto component.
The fourth section deals with the implementation of the model and, in partic-
ular, with the MDA approach to transform the model to different component
platforms. The paper closes with an examination of related work, a conclusion,
and an outlook to future work.

2 Model of Adaptable Components

This section first describes the constituents and concepts of our model of ACs.
The concept of composite components is employed to encapsulate model con-
stituents, especially subcomponents. The advantage of this approach is that ACs
do not look and behave differently than other components from outside. Many
constituents (e. g., adaptation operators and glue code) in the model are op-
tional, which increases flexibility and enables several application scenarios.

The remaining part of this section deals with mapping of component pa-
rameters and modelling of configurations and reconfigurations by using UML
diagrams. New UML stereotypes are introduced to describe structural reconfig-
uration operations.

2.1 Component Constituents

The model of ACs is schematically depicted in Fig. 1. ACs define explicit depen-
dencies to other components by fixed sets of typed provided and required ports

76 S. Göbel

each implementing a certain interface. Any communication with other compo-
nents requires explicitly defined connections to these components via ports. The
ports of an AC stay the same, even if the internal configuration is changed in
the course of a reconfiguration. This means that the adaptation process stays
transparent to other components of an application. A management interface
(similar to the equivalent interface in CORBA Components) is used to navigate
to required and provided interfaces and access the component parameter inter-
face. The parameter interface provides read and write access to component value
parameters (properties) by get and set methods.

We define the configuration of an AC as a set of subcomponents, a set of
adaptation and aspect operators applied to subcomponents, a set of connections
between ports of these subcomponents, and a binding between the external ports
of the AC and ports of subcomponents. Thus, the active configuration determines
the current runtime properties of a component, a kind of operating range. The
set of valid configurations is defined by the adaptation specification containing
the initial configuration and transitions to other valid configurations (see Sec. 2.2
for details).

The component repository contains all available subcomponents of an AC.
A subset or all of these subcomponents, which are designated as active subcom-
ponents, form an active internal configuration at runtime. Only active subcom-
ponents process incoming method calls and the active configuration determines
communication links. The management interface enables adding of new subcom-
ponents and accordantly configurations at runtime. The interface binding as the
central hub forwards requests of external ports to ports of active subcomponents
and also connects internal subcomponents. The adaptation manager controls
the interface binding and the reconfigurations using the adaptation specifica-

Repository

Glue Code

In
te

rfa
ce

 B
in

di
ng

Adaptation
Manager

Adaptation
operators

Adaptation
Specification

Context
Model

<<controls>>

Active
configuration

Management interface Parameter interface

Aspect
operators

Fig. 1. Model of a adaptable component

An MDA Approach for Adaptable Components 77

tion. It thereby enforces consistency constraints and synchronizes reconfiguration
operations.

Glue code is a special kind of subcomponent. The difference is that subcom-
ponents are usually reused or at least intended to be reused by other applications
whereas glue code is tailored to a particular AC. Glue code enables adding miss-
ing functionality to an AC (e. g., a new interaction protocol) that otherwise
prevents subcomponents from working together.

Adaptation operators take a single subcomponent as input and transform it
to a new subcomponent with a possibly different set of ports. They are typically
applied to adapt incompatible port interfaces. Incompatibilities occur because
component originally developed by different developers and for different applica-
tions are reused in a new application. For example, incompatibilities are caused
by slightly different method names, different method signatures, and missing
methods. Potential implementation approaches for adaptation operators include,
but are not limited to:
– adapters deployed at runtime that extend or change some functionality of a

subcomponent with or without providing a new interface;
– byte code transformers [9] that adapt subcomponents at deployment or load-

ing time and before the application is started;
– source code transformers [2] that modify the source code of subcomponents

before or during the compilation.

The actual implementation strategy is left open by our model.
Aspect operators are applied to a set of subcomponents and influence the

behaviour at defined joinpoints like in aspect-oriented programming [10]. As
with adaptation operators, different types of aspect operators can be employed
at development, deployment, and runtime. Joinpoints include, but are not lim-
ited to, places before and after methods, component instantiations, component
destructions, and reconfiguration operations.

So far we explained that the management interface of AC is used to change
parameters and therewith the active internal configuration. However, these pa-
rameter changes need not necessarily be triggered by an external entity but can
also be triggered by the AC itself, for example, if environment conditions change.
The adaptation manager can utilize a context model of the environment to check
conditions defined by the adaptation specification and change component para-
meters if specified. This way self-adaptable components can be modelled utilizing
the mechanism of parameter mapping.

2.2 Modelling of Configurations and Configuration Variations

The modelling process of ACs defines the adaptation specification as described
in the last subsection and thus all valid configurations of an AC. Two different
approaches support the graphical specification of valid configurations: complete
configurations and configuration variations.

Complete configuration—as the name suggests—graphically describe all sub-
components, connections, interface bindings, and parameter settings of a particu-
lar configuration by an UML component diagram. UML 2.0 supports all required

78 S. Göbel

concepts including the description of interface bindings using the delegate con-
struct from the composite structure package. The description of complete con-
figurations for ACs is useful if only a small set of different configurations exists
and if these configurations differ in many aspects (e. g. different subcomponents
and connections).

However, modelling of complete configurations is not very flexible if several
configurations of an AC have only a few structural differences. For example, it
should be possible to model an AC where an integer parameter specifies the
number of instances of a particular subcomponent. Instead of modelling many
complete configurations with different numbers of this subcomponent, it is suffi-
cient to model the initial configuration with one subcomponent and the reconfig-
uration operations that add one subcomponent. Applying these reconfiguration
operations multiple times to the initial configuration can create all desired con-
figurations.

Thus, configuration variations as the second model approach describe changes
applied to a particular initial configuration to indirectly define a new configura-
tion. Six different atomic reconfiguration operations can be identified to describe
a transformation from one configuration to another one:

– changing component parameter
– adding a connection between subcomponents or between an external inter-

face and a subcomponent’s interface
– removing a connection between subcomponents or between an external in-

terface and a subcomponent’s interface
– adding a subcomponent
– removing a subcomponent
– replacing a subcomponent by another subcomponent

It can easily be proven that these reconfiguration operations are sufficient to
transfer any configuration to any other configuration1.

UML has no built-in mechanisms to model reconfigurations of component
nets, but the UML meta-model can be extended using stereotypes or new meta-
classes for new concepts. Thus, we defined extensions for each of the above
mentioned reconfiguration operations. New connections and subcomponents are
highlighted and mark with a plus symbol as stereotype. Removed connections
and components are drawn with a dashed line and a minus symbol as stereotype.
Fig. 2 depicts the graphical notation of the extensions. These extensions can now
be utilized to graphically model configuration variation consisting of several re-
configuration operations with UML diagrams. The developer takes a component
diagram of a particular configuration as starting point and then graphically
models the reconfiguration operations to get to the new configuration.

1 A trivial transition first removes all connections and subcomponents of the old con-
figuration and adds all new subcomponents and connections later on.

An MDA Approach for Adaptable Components 79

<<replace>>

+

-

- +

+

Add subcomponent and connection

Remove subcomponent and connection

-

Replace subcomponent

<<delegate>>
-

<<delegate>>
+

Fig. 2. UML extensions for reconfiguration modelling

2.3 Mapping of Component Parameters

In general, the parameter mapping is defined by a function with component pa-
rameters as arguments that selects a predefined configuration and an ordered
set of configuration variations applied to this configuration. Additionally, a pa-
rameter can influence parameters of subcomponents using the change parameter
reconfiguration operation.

The setting of component parameters, which then selects the active configu-
ration, is considered at four different times (see also Sec. 4.3):

Development time. The developer can optionally define a default value for a
parameter. It can be overridden at deployment time or runtime.

Deployment time. The parameter value is set during the deployment of the
application.

Creation time. The parameter value is set during creation of a new component
instance.

Runtime. The parameter value is changed at an already existing component
instance during the runtime of the application. This process is generally
called reconfiguration.

Development, deployment, and creation time parameter settings can be sup-
ported quite easily. The components just need to be initialized and wired ac-
cording to the resulting configuration. However, changing parameters at runtime,
which possibly leads to a reconfiguration of components, requires considerably
more effort. Particularly, the runtime environment of components has to address
the following issues that can also be found in database transactions: atomicity
– a reconfiguration must be executed completely or not at all; consistency – an
AC must be in a valid state before and after a reconfiguration transition; and
isolation – a reconfiguration must be executed without the interference of other
reconfigurations or application activities.

80 S. Göbel

Two kinds of parameters are considered: parameters with a finite set of possi-
ble values (enumeration) and parameters with integer or real values in a certain
interval. In the following, we describe a few special forms of parameter mapping.

– The simplest form of parameter mapping assigns a particular configuration
to each enumeration parameter value. For example, a component parameter
“compressionAlgorithm” with the possible values “bzip2” and “gzip” could
be mapped to two different configurations, respectively.

– A configuration is assigned to an interval of integer or real parameters. For
example, a component parameter “compressionLevel” with a allowed range
from 0 to 10 could be mapped to two different configurations in the intervals
0–5 and 5–10.

– Parameters are directly or indirectly mapped to parameters of subcompo-
nents.

– An integer parameter specifies how often a configuration variation should be
applied to a configuration.

3 Example: Crypto Component

In this section a crypto component is taken as a simple example to illustrate the
use of ACs. The crypto component shall support a set of symmetric encryption
algorithms (AES, Twofish, Blowfish). The interface contains only two methods:
encrypt and decrypt. They enable encrypting and decrypting of given byte
arrays with a given encryption key. Different loss-less compression algorithms
(deflate, bzip2) are also part of the crypto component to optionally compress
data before encryption and decompress it after decryption, respectively. Data
compression is useful to reduce data size and to maximize the entropy of data,
which complicates possible attacks on encryption algorithm.

Several parameters are exposed to adapt the crypto component:

cryptoAlgorithm is an enumeration parameter to select the active encryp-
tion/decryption algorithm (values: AES, TWOFISH, BLOWFISH).

key is an byte array parameter to set the active encryption key. This parameter
does not influence the configuration of the crypto component.

compressionAlgorithm is an enumeration parameter to select the active data
compression algorithm (values: DEFLATE, BZIP2, NONE).

If a user of the crypto component changes these parameters, a different internal
configuration of the crypto component as depicted in Fig. 3 is selected.

The crypto component consists of three subcomponents for encryption al-
gorithms and two subcomponents for compression algorithms. We assume that
these subcomponents are available as libraries (e. g., open source projects) and
need not to be implemented. Glue code implements the coupling of encryp-
tion/decryption and compression/decompression because this functionality was
not supported by the crypto algorithms. All it does is calling the compression
method of a compression subcomponent before calling the encryption method

An MDA Approach for Adaptable Components 81

of a encryption subcomponent and accordingly for decompression and decryp-
tion. An adaptation operator is required for the Twofish subcomponent because
it has a slightly different and therefore incompatible interface than the other
encryption components. The methods for encrypting and decrypting are named
encryptBytes and decryptBytes. The adaptation operator internally maps the
different methods pairs to change the interface to be compatible with the other
subcomponents.

The crypto component is intended to be reused in different applications. For
example, the following use cases are conceivable:

– The crypto component is used in a application with a fixed configuration,
for example, always with AES and Inflate. This means that all parameters
except the encryption key are set at development or deployment time.

– The parameters of the crypto component are set when creating new in-
stances. However, once the instances have been created, parameters are im-
mutable.

– The parameters of the crypto component are changeable at any time to give
maximum flexibility.

Each of these scenarios enables different optimizations (see Sec. 4.3) but this
should be completely transparent to the application developer. For example, in
the first scenario unused subcomponents can be omitted whereas the last scenario
requires additional program code to handle runtime reconfiguration.

Adaptation OperatorAdaptation Operator

AESAES

GluecodeGluecode

InflateInflate

BlowfishBlowfish

GluecodeGluecode

Bzip2Bzip2

TwofishTwofish

(a) comp.encryption = TWOFISH; comp.compression = NONE;

(c) comp.encryption = AES; comp.compression = INFLATE;

(b) comp.encryption = BLOWFISH; comp.compression = BZIP2;

Fig. 3. Example: Crypto component with different internal configurations

82 S. Göbel

4 Implementation and Mapping to Component Platforms

Our model of ACs presented in Sec. 2 is independent of any component platform
and does not define any implementation details deliberately. However, the model
is useless without an actual implementation. There are at least two implementa-
tion strategies: (i) all model constituents and concepts are directly supported by
the component platform and associated framework or (ii) all model constituents
are mapped to an existing component platform (e. g., EJB or JavaBeans) and
missing functionality is either generated or implemented as auxiliary services.
In this paper we only describe the latter approach but in a previous work [8]
we also showed the feasibility of the first approach. The main advantage of the
mapping approach is that existing application servers and component platforms
can be reused. It is also feasible to integrate a single new AC in an existing
component-based application with reasonable overhead. In this way expensive
developments from scratch can be avoided.

In this section we first describe the implementation of the metamodel of ACs
and a generic framework to support the life-cycle of ACs, especially creating
of instances, parameter mapping, and runtime reconfiguration. Next, we show
how the model can be mapped to a component platform in general, and to EJB
in particular. We explain how the different model concepts can be emulated
by the target component platform and which constraints are necessary for the
development of components. Other component platforms might be supported in
a similar way.

4.1 Metamodel of ACs

The metamodel of an AC contains all the information necessary to control AC’s
life cycle—from creation, over reconfiguration until destruction. It describes all
subcomponents, adaptation operators, interfaces, configurations, variations, etc.
We chose the Eclipse Modeling Framework (EMF, [6]) as tool for implementing
the metamodel. EMF provides a lot of useful features that simplified our imple-
mentation. It employs a subset of MOF 2.0 called Ecore to store metamodels, it
generates code to access instances of the metamodel (in our case AC models), it
generates a simple Eclipse Plugin as editor for the metamodel, and it includes
default support for persistence of model instances using XMI.

Fig. 4 depicts a simplified class diagram of AC’s metamodel. Adaptable-
Component is the entry point to this diagram. An AC has a set of Configu-
rations that are mapped to certain parameter values or value ranges via Para-
meterMappings. A Configuration defines the set of ComponentInstances that
are wired using several Connections between component Ports. A Reconfigu-
ration defines necessary ReconfigurationOperations to switch from one con-
figuration to another one.

The metamodel is not only used by runtime support of ACs (see next section)
but also by the modelling tool to design and develop ACs. This modelling tool
is currently under development and will be realized as an Eclipse Plugin.

An MDA Approach for Adaptable Components 83

Fig. 4. UML class diagram of AC’s metamodel

4.2 Generic Life-Cycle Support for ACs

Although the mapping to different component platforms differs in many de-
tails, we have developed a generic framework that can be used and extended by
platform-specific implementations. It contains a set of Java classes implementing
common functionality for managing AC’s life cycle and relies on the implemen-
tation of the metamodel. It is employed to develop platform-specific adaptation
managers, component repositories, and interface bindings (see Fig. 1). The of-
fered functionality can be divided into three categories: creation of instances,
runtime reconfiguration, and helper functions.

Creation of Instances. Several steps are necessary to create an AC instance.
First, the current values of component parameters are used to determine the
active configuration of the AC. Next, all subcomponents including glue code and
adaptation operators are instantiated according to the configuration. In the last
step, ports of subcomponents are connected among each other and with external
ports of the AC. These steps are not necessarily all performed at runtime of the
AC. For example, the first step might also be performed during deployment of an
AC and could generate appropriate code. The actual implementation strategy is
defined by the platform-specific model (see Sec. 4.3).

Runtime Reconfiguration. Parameter changes at runtime can trigger reconfigu-
rations of ACs. A reconfiguration must adhere to the characteristics described

84 S. Göbel

in Sec. 2.2 and is performed in several steps. First, the new configuration is
determined by the parameter mapping. Next, all component instances that are
influenced by reconfiguration operations (e. g., an instance might be removed)
must be stopped putting the component in an inactive state. Inactive means
that no method call is currently in progress in this instance and new calls are
blocked. Special caution is required to prevent deadlocks in this step. Next, all
necessary reconfiguration operations are executed. In the last step, all blocks are
removed and method calls can be continued.

Helper Function. Several functions (e. g., creating and removing connections
and subcomponents) are provided to solve small tasks both during the creation
of instances and the runtime reconfiguration. Many of them are intended to be
implemented or extended by platform-specific code. Thus, they are hooks for
platform-specific behaviour.

4.3 Model Mapping

The mapping of our model of ACs to a particular component platform requires
that all model constituents and concepts described in Sec. 2 are supported or
emulated by means of the target platform. The most important concepts to be
mapped are composite components, explicit dependencies by ports, and compo-
nent parameters. This leads to a Platform-Specific Model (PSM) and a platform-
specific implementation, later on.

The emulation of unsupported features by the target component platform
often requires defining constraints. That means that certain feature of the com-
ponent platform must not be employed for developing ACs. For example, many
component platform use name servers to acquire references to collaborating com-
ponents and the accordant program code is tangled in the business logic. Using
this feature could violate explicitly defined dependencies between components.

We consider at least three different PSMs for each component platform. The
different features are illustrated in Fig. 5. The right level of flexibility for a
certain AC can be chosen depending on application needs. This choice requires
no changes to the AC by the developer. It is all transparently managed by the
runtime framework and development tools.

4.4 Example: Model Mapping to EJB

We chose EJB as target component platform to demonstrate how a model map-
ping can be achieved. As described in the previous section, each model con-
stituent and concept must be emulated by features of EJB. Due to limited space
we only focus on the ”PSM Runtime“ according to Fig. 5. Since runtime recon-
figuration is the most complicated part, the other two PSMs are even simpler to
realize.

EJB does not directly support composite components, which are a key con-
cept in our component model to encapsulate all other constituents. However, it

An MDA Approach for Adaptable Components 85

yesnonoSynchronization required

-++Method call performance

yesyesnoAdaptation Manger required

-±+Instance creation and
initialization

+--Runtime reconfiguration

++-Start time configuration

+++Deploy-time configuration

PSM
Runtime

PSM
Start time

PSM
Deploy timeFeatures

yesnonoSynchronization required

-++Method call performance

yesyesnoAdaptation Manger required

-±+Instance creation and
initialization

+--Runtime reconfiguration

++-Start time configuration

+++Deploy-time configuration

PSM
Runtime

PSM
Start time

PSM
Deploy timeFeatures

PIM of Adaptable Components

D
iff

er
en

t c
om

po
ne

nt
pl

at
fo

rm

Code generation / Tools

Runtime support / Libraries

Fig. 5. Overview and comparison of the model mapping

is feasible to flatten ACs and emulate this concept with functionality available
in EJB. We defined the following mapping rules and constraints:

– A single stateful session bean is generated for every AC and its home interface
is bound to JNDI (Java Naming and Directory Interface). This session bean
also implements the management and parameter interface. Method calls are
forwarded to the adaptation manager.

– Every subcomponent is bound to JNDI with unique names only known to
the AC session bean.

– A getPortName method is generated for every subcomponent. It hides the
process of getting references by JNDI from the component logic. The Adap-
tation Manager initializes all references during start-up or after a reconfigu-
ration.

– Business methods of subcomponents must not directly use JNDI but the
generated helper methods to access other components. This constraint is
necessary to enable explicitly defined connection between components and
reconfiguration at runtime.

– Glue code is encapsulated in a session bean and otherwise handled like any
other subcomponent.

Other components outside the AC only work with the generated session bean
like with any other session bean and need not to be aware of implementation
details.

The support of runtime reconfiguration of ACs with EJB is relatively easy
to implement. The EJB specification enforces non-reentrant instances. The EJB
container must ensure that only one thread can be executing an instance at any

86 S. Göbel

time. That means that a method call and a parameter change possibly triggering
a reconfiguration can never happen at the same time. Thus, no additional code
needs to be injected to block method calls during a reconfiguration.

5 Related Work

Many Architecture Description Languages (ADL, [12]) use composite compo-
nent concepts to provide a uniform view of applications at different abstraction
levels. However, ADLs focus on highly distributed systems and many view con-
figurations statically. Exceptions are Darwin [5] and Rapide [11] supporting con-
strained changes of configurations as well as C2 [14] and Wright [1] supporting
almost arbitrary configuration changes at runtime. As opposite to our approach,
reconfigurations are specified by program code or scripts, a model transformation
to different component platforms is not considered, and a mapping of component
parameters to different configurations is not supported.

OpenORB and OpenCOM [4,3] aim at developing a configurable and re-
configurable component-based middleware platform. They support composite
components based on enhancements of Microsoft COM and, especially, offers ex-
tensive meta-programming interfaces to adapt components and the middleware
itself at runtime. ObjectWeb Fractal [13] completely focuses on the development
of an adaptable composite component model with reflection and introspection
capabilities to monitor a running system. Components need not to adhere to a
fixed specification, but can rather choose from an extensible set of concepts and
corresponding APIs depending on what they can or want to offer to other compo-
nents. However, both approaches focus on the definition of appropriate interfaces
and not on the design of adaptable components. Reconfigurations must be de-
veloped by program code using meta-programming APIs. The reconfiguration
mechanisms are integrated in a special-purpose component platform.

6 Conclusions and Outlook

In this paper we presented a model of adaptable components that is indepen-
dent of a particular component platform. It enables mapping of component pa-
rameters to different internal configurations and, therewith, encapsulating of
structural adaptation. Adaptation operators and glue code as optional model
constituents help to integrate and reuse existing components in new ACs. Dif-
ferent PSMs for a single target component platform enable tailored flexibility
according to application needs.

We showed how this model can be mapped to the EJB platform as an ex-
ample. Additionally, we have already implemented support for JavaBeans. Map-
pings to WebServices and JMX are currently under development. We also work
on sophisticated tool support for designing and developing ACs.

Some detail problems will be addressed by further research: In some cases,
the state of components must be transferred to replacement components in the
course of a reconfiguration. This will be supported by special state transform

An MDA Approach for Adaptable Components 87

operators. We will also investigate how the generated code, especially to syn-
chronize reconfigurations, can be optimized.

References

1. R. Allen, R. Douence, and D. Garlan. Specifying and Analyzing Dynamic Software
Architectures. In Conference on Fundamental Approaches to Software Engineering
(FASE’98), Lisbon, 1998.

2. U. Aßmann. Invasive Software Composition. Springer-Verlag, 2003.
3. G. S. Blair, G. Coulson, L. Blair, H. A. Duran-Limon, P. Grace, R. Moreira, and

N. Parlavantzas. Reflection, Self-Awareness and Self-Healing in OpenORB. In
Workshop on Self-Healing Systems (WOSS ’02), pages 9–14, Charleston, SC, USA,
2002.

4. G. Coulson, G. S. Blair, M. Clarke, and N. Parlavantzas. The design of a config-
urable and reconfigurable middleware platform. Distributed Computing, 15(2):109–
126, 2002.

5. S. Crane, N. Dulay, J. Kramer, J. Magee, M. Sloman, and K. Twidle. Configu-
ration management for distributed software services. In IFIP/IEEE International
Symposium on Integrated Network Management (ISINM’95), Santa Babara, USA,
1995.

6. Eclipse Modeling Framework (EMF). http://eclipse.org/emf/.
7. S. Göbel. Encapsulation of Structural Adaptation by Composite Components. In

ACM SIGSOFT Workshop on Self-Managed Systems (WOSS’04), Newport Beach,
CA, USA, 2004.

8. S. Göbel and M. Nestler. Composite Component Support for EJB. In Win-
ter International Symposium on Information and Communication Technologies
(WISICT’04), Cancun, Mexico, 2004.

9. R. Keller and U. Hölzle. Binary Component Adaptation. In ECOOP 09, Brussel,
1998. Springer.

10. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In M. Akşit and S. Matsuoka, edi-
tors, 11th European Conf. on Object-Oriented Programming, volume 1241 of LNCS,
pages 220–242. Springer, 1997.

11. D. C. Luckham and J. Vera. An event-based architecture definition language. IEEE
Transactions on Software Engineering, 21(9):717–734, 1995.

12. N. Medvidovic and R. N. Taylor. A classification and comparison framework for
software architecture description languages. Transactions on Software Engineering,
26(1):70–93, 2000.

13. ObjectWeb. Fractal. http://fractal.objectweb.org/.
14. P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic,

A. Quilici, D. S. Rosenblum, and A. L. Wolf. An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems, 14(3):54–62, 1999.

Layered Ontological Modelling for Web

Service-Oriented Model-Driven Architecture

Claus Pahl

Dublin City University, School of Computing, Dublin 9, Ireland
cpahl@computing.dcu.ie

Abstract. Modelling is recognised as an essential activity in the
architectural design of software systems. Model-driven architecture
(MDA) is a framework implementing this idea. Ontologies are knowledge
representation frameworks that are ideally suited to support modelling
in this endeavour. We propose here a layered ontological framework
that addresses domain modelling, architectural modelling, and interop-
erability aspects in the development of service-based software systems.
We illustrate the benefits of ontological modelling and reasoning for
service-oriented software architectures within the context of the Web
Services.

Keywords: Model-Driven Architecture, Service-Oriented Architecture,
Web Services, Modelling, Ontologies.

1 Introduction

Modelling has been recognised as an important aspect in the development of
software architectures. Model-driven architecture (MDA) – a development frame-
work proposed by the Object Management Group (OMG) – reflects this view
[1]. MDA supports the development of component- and service-based software
systems through modelling techniques based on notations such as UML. In par-
ticular service-oriented architecture (SOA) with its focus on the distributed de-
velopment and deployment based on Internet and Web technologies requires an
explicit representation of models [2,3]. Global software development (GSD) is
another approach gaining importance recently that requires explicit, sharable
models and descriptions in order to facilitate collaboration between developers
on an abstract level as well as services on an implementation platform. Service-
based platforms combined with the wide acceptance of Web technologies provide
here suitable support. These contexts also necessitate a higher degree of reliabil-
ity and dependability, which requires more rigour in the development activities.
Formal reasoning is often required to automate development processes.

We will look here at the Web Services Framework (WSF) in particular as
our platform [4,5]. The WSF is a service-based platform based on Internet- and
Web-specific description languages, protocols, and core services. Modelling and
describing services is essential for both providers and clients of services due to
the distributed, inter-organisational nature of service-based development and

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 88–102, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Layered Ontological Modelling 89

deployment [6,7,8]. Sharing and reuse of models is a prerequisite for globally
distributed software development.

Ontologies and ontology-based modelling have been proposed to enhance
classical UML-based modelling. The essential benefits of ontologies are, firstly,
interoperability and sharing and, secondly, advanced reasoning. Ontologies are
sharable, extensible knowledge representation frameworks. They can also provide
a further improvement on reasoning capabilities available in UML-extensions
such as the Object Constraint Language (OCL) [9]. They can capture a wider
range of functional and non-functional properties. Ontologies are consequently
an ideal technology to support modelling for SOA and GSD. The potential of
ontologies has already been recognised in MDA. The OMG has started the devel-
opment of an Ontology Definition Metamodel (ODM) that can support ontolog-
ical modelling for the MDA model layers [10]. The combination of ontologies and
MDA has also been investigated in academic research, where the Web Ontology
Language (OWL) has been integrated into MDA [11,12].

We propose an extension to these approaches. A layered, ontology-based mod-
elling framework for software services can address the requirements of service-
based and globally distributed software development. Similar to UML, which
consists of different diagrammatic notations that address different modelling as-
pects, our framework will combine diferent ontology-based modelling techniques.
The three different layers of the MDA framework – computation-independent,
platform-independent, and platform-specific – shall be supported by three spe-
cific ontology techniques addressing the central concerns of these layers. These
concerns are computation-independent domain modelling, platform-independent
architectural configuration, and platform-specific service modelling. Architec-
tural configuration is a central activity in software architecture. Service config-
urations and processes shall play a central role in our architecture framework.

We start with a short introduction to MDA, Web services, and ontologies
in Section 2. In Section 3, we outline our ontology-based MDA framework for
Web services. In the subsequent sections we address each layer separately –
domain modelling in Section 4, architectural configuration in Section 5, and
service implementation in Section 6. We end with a discussion of related work
and some conclusions. We will use a Web-based e-learning system that we have
developed and used over a couple of years as our case study. This system is
currently being re-engineered based on a Web service-based architecture.

2 Services and Ontologies

Our objective is to open MDA to the Web Services Framework as the platform.
Ontologies and Semantic Web technologies shall serve as the modelling approach.

2.1 Model-Driven Architecture

Model-driven architecture (MDA) is a software architecture framework that em-
phasises modelling as a central task in the development process of software
systems [1]. MDA distinguishes three model layers:

90 C. Pahl

– The computation-independent model layer (CIM) focusses on computation-
independent aspects, i.e. modelling the domain-specific context of a system.

– The platform-independent model layer (PIM) aims to define a system in
terms of computational abstractions. Typically, a computational paradigm
or an abstract machine can form the basis of this modelling approach.

– The platform-specific model layer (PSM) consists of a platform model
addressing the concepts and core services of the platform and an
implementation-specific model addressing the concrete service architecture
implementation.

MDA is typically applied useing UML for platform-independent modelling and
considers CORBA as the platform with IDL for the platform-specific description.

2.2 Web Services

The Web Services Architecture WSA defines a Web service as a software system
identified by a URI, whose public interfaces are defined and described using
XML. Other systems can interact with the Web service in a manner prescribed
by its definition, using XML based messages conveyed by Internet protocols.
MDA is targeted towards service-based software systems, but the Web services
platform was originally not considered. We will make the Web services platform
our focus here, with service-oriented architecture (SOA) as the generic platform,
the Web Services Framework as the technology-specific platform, and vendor-
specific technologies such as service engines for SOAP-based service invocation
forming the concrete platform infrastructure [5].

While first-generation Web service technology focussed on the use of services
‘as-is’ in single request-response interactions, the next generation of the Web
services platform is more development-oriented [13]. The composition of services
to processes is a major concern in current Web service research [14,15,16,17].
Service description and service discovery in repositories are essential elements
of service development. These recent developments in the context of Web ser-
vices have strengthened the importance of architectural questions. Behaviour
and interaction processes are central modelling concerns for service-based soft-
ware architectures. Ontology-based MDA can, as we will see, provide an ideal
framework for this type of development support.

2.3 Ontologies

The Semantic Web is an initiative that aims to bring meaning to the Web [18,19].
Ontologies plays the central role in this endeavour. Ontologies are knowledge rep-
resentation frameworks that allow knowledge to be shared. They combine termi-
nological aspects with a formal logic. Ontologies usually consist of hierarchical
definitions of important concepts of a domain and the description of properties
of these concepts in terms of other concepts. An ontology is a model of a domain
made available through the vocabulary of concepts and relationships.

Layered Ontological Modelling 91

Ontologies have already been used to support software engineering activities
[20]. They have been exploited to support the annotation of Web services within
the context of semantic Web services [21]. Ontologies are used to capture a
variety of functional and non-functional properties of services (the terminological
aspect of ontologies) and to retrieve matching provided services from repositories
based on a client’s requirements specification (the logical aspect of ontologies).

Ontology languages such as OWL are defined based on description logic,
which allows the integration of formal reasoning with ontology-based modelling
[22]. Description logics are particularly interesting for the software development
context due to a correspondence between description logic and modal logics.
Modal logics such as dynamic and temporal logics have been used extensively
in the behavioural specification of software systems [23]. Dynamic logic forms a
framework that captures the pre- and postcondition technique used in design-
by-contract approaches [24] and specification languages such as OCL [9].

3 A Layered Ontological Modelling Framework

3.1 Modelling

MDA supports the architectural design of software systems. It integrates domain
engineering with software architecture. MDA proposes a three-layered mod-
elling framework addressing computation-independent, platform-independent,
and platform-specific aspects. In our Web Services context, we have identified
three central concerns that we can map to the MDA layers:

CIM - Computation-Independent Model

PIM - Platform-Independent Model

PSM – Platform-Specific Model

OWL-DL
domain model

WSPO
architectural configuration

service composition

WSMO/OWL-S
service discovery

WS-BPEL
service interoperability

and coordination

Web Service MDA with Ontologies MDA Models

Fig. 1. Overview of the Ontology-based MDA Framework for Web Services

92 C. Pahl

– Domain modelling is a concern that is independent of a concrete computa-
tional paradigm. Capturing the domain context of a service is essential for
SOA as providers need to document the features of a service.

– Architectural configuration on a platform-independent level is important
since service integration and composition are the central SOA activities.

– Modelling services within the given platform technology is important since
service models have to be provided for discovery and service deployment in
architectures and processes.

Our modelling framework – see Fig. 1 – consists of ontologies for all three layers.
We will demonstrate that ontologies can address the concerns that have led to
the definition of different model layers. For the Web services platform, an explicit
sharable representation of these models for all layers is a requirement.

3.2 Logic and Semantics

Ontologies can address a variety of problems ranging from domain modelling to
architectural configuration and semantic service description. The richness of an
ontology language such as OWL-DL allows these different ontologies for different
purposes to be developed [18].

In addition to providing notational modelling solutions for each of the con-
cerns through different ontologies, ontology technology provides also the added
benefit of enabling a uniform semantic framework for all three layers. Descrip-
tion logic is the formal foundation of many ontology languages, including the
Web Ontology Language OWL.

The current work towards an Ontology Definition Metamodel (ODM), that
has already been started by the OMG, will, once finished, provide an MOF-based
semantic framework. We will discuss this aspect later on.

4 Computation-Independent Domain Modelling

4.1 Modelling Concern

The focus of the computation-independent modelling layer is the capture of do-
main properties. Here, often two viewpoints are distinguished. The information
viewpoint captures structural aspects of information in form of concept hierar-
chies. The enterprise viewpoint looks at the behaviour and processes in a system.
We add a third viewpoint addressing the structural aspects through composi-
tional relationships.

4.2 Ontological Modelling

Ontologies consist of two basic entities – concepts of a domain and relationships
between these concepts that express properties of one concept in terms of an-
other concept. Classical ontologies relate concepts in a subclass hierarchy, which
creates a taxonomy for a particular domain.

Layered Ontological Modelling 93

Information Viewpoint
(using is_a relationships)

learning
asset

static learning
object

dynamic learning
object

assessment
object

learning
object

learner
profile

Enterprise (Process) Viewpoint
(using dependency relationships)

assessment
object

learner
profile

learner
details

feedbacklearning
activity

registration

learner
evaluation

learner
input

Structure Viewpoint
(using composition relationships)

learner
profile

mastered
activities

personal
information

learning
activity

lab activitylecture
participation

Fig. 2. CIM-level Excerpts from an E-Learning Domain Ontology

A single ontological notation, for example based on the Web Ontology Lan-
guage OWL, can support the three viewpoints of the CIM layer.

– Two kinds of concepts – objects representing static information and processes
presenting dynamic behaviour – can be distinguished in an ontology.

– The set of relationships shall comprise a subclass relationship for concept
hierarchies (information viewpoint), a dependency relationship (enterprise
viewpoint), and a component relationship (the structure viewpoint for both
objects and processes).

The choice of relationship types here is critical to address the needs of process-
centric domain modelling. Although, the concern here is domain modelling, do-
main activities and processes are central as they often form the starting point
for further detailled models. Dependency relationships express how information
objects are processed by process entities. Composition is important for both
objects and processes.

We have illustrated computation-independent modelling in Fig. 2. In addition
to the classical information viewpoint based on classification hierarchies and the
enterprise viewpoint focusing on processes, we have also included a structural
viewpoint addressing the compositional structure of objects and processes. Ob-
jects are elliptic entities such as learning object or assessment object. Processes

94 C. Pahl

are rectangular entities such as learning activity or evaluation. These entities –
concepts in an ontology – are represented from the three viewpoints.

Other properties, such as sequencing constraints on processes can also be ex-
pressed in addition to concepts and relationships. Iteration, choice, concurrency,
or sequence are process combinators that are often better expressed in a separate
sublanguage. For instance, individual activity steps of a learning activity could
be sequenced using additional constraints.

4.3 Ontological Reasoning

The reasoning capabilities of an ontological framework can be utilised in different
ways for this form of domain modelling:

– The internal consistency of a model can be checked. For instance, cyclical
definitions in concept taxonomies can be recognised.

– Inference rules can also be used to query an ontology. For instance, rules
about transitional process behaviour (based on dependency relationships)
can be used to determine the input/output behaviour of composite processes.

The description logic on which an ontology language like OWL-DL is based
provides the formal framework here [22].

In the context of the e-learning example, an inference engine can be used
to compile all prerequisites of a sequence of learning activities. It could also be
used to check whether the learning outcomes of the first activity in a sequence
satisfy the prerequisites of the next activity.

5 Platform-Independent Architecture Modelling

5.1 Modelling Concern

Platform-independent modelling introduces a computational paradigm into the
modelling process. Service-oriented architecture is this paradigm for the Web
Services Framework. In the context of service-based software, the architectural
design of a software system is of central importance. Behaviour and service pro-
cesses are part of the architectural configuration of a system [15]. Architectural
configuration addresses the interaction processes (remote invocation and service
activation) between different services in a software system.

5.2 Ontological Modelling

Various service ontologies exist [25]. WSPO – the Web Service Process Ontology
– can be distinguished from other service ontologies such as OWL-S [21] and
WSMO [26] through its process-orientation [27,28,29]. In WSPO, the focus is on
the behaviour of software systems. Relationships of the ontology are interpreted
as accessibility relations between system states. This is in fact an encoding of a
(modal) dynamic logic in a description logic format [30]. WSPO ontologies are
based on a common template, see Fig. 3:

Layered Ontological Modelling 95

learner
input

postpre

postcondition
semantics

precondition
semantics

in-object
syntax

learning
activity

learner
profile

masters(
learningObjective)

satisfies(
prerequisities)

feedback

out-object
syntax

learner
profile

Fig. 3. Ontological Service Process Template (WSPO) – applied to E-Learning

– The central concepts are the system states – pre- and poststates of state
transition-based services. Other concepts capture service parameters (in- and
out parameters) and conditions (such as pre- and postconditions).

– Two forms of relationships characterise this ontology. The central relation-
ship type is the service or service process itself. These so-called transitional
relationships are enhanced by a process combinator sublanguage comprising
the operators sequence, choice, iteration, and parallel composition. This rela-
tionship sublanguage allows process expressions to be formulated. Auxiliary
relationship types are so-called descriptional relationships, which associate
the auxiliary concepts to the states.

The architecture- and process-oriented PIM model of the e-learning example
focuses on the activities and how they are combined to processes, see Fig. 3. The
process combinators that we used to model the e-learning activity service are ’;’
(sequential composition), ’ !’ (iteration), ’+’ (choice), and ’||’ (parallel composi-
tion). The operators are interpreted by their usual set-theoretic semantics, e.g.
iteration is defined as the transitive closure of the relation that interprets the
argument and the non-deterministic choice is interpreted by the union of both
argument interpretations. The symbol ◦ is used to denote the application of a
process to a given list of parameters. The process

lecture; !(labExercise1 + labExercise2); selfAssessment

describes a sequence of lecture participation, an iteration of a choice of two lab
exercises, and a final self-assessment. This can be represented in WSPO as a
composed relationship expression:

lecture ◦ profile;
! (labExercise1 ◦ (profile, input1); labExercise2 ◦ (profile, input2));
selfAssessment ◦ profile

While architecture is the focus of this model layer, the approach we discussed
does not qualify as an architecture description language (ADL) [31], although the
aim is also the separation of computation (within services) and communication
(interaction processes between services). ADLs usually provide notational means

96 C. Pahl

to describe components (here services), connectors (channels between services),
and configurations (the assembly of instantiations of components and connec-
tors). Our approach comes close to this aim by allowing services as components
and process expressions as configurations to be represented.

5.3 Ontological Reasoning

The close link to modal logic allows modal reasoning about reactive systems to
be incorporated.

– Dynamic logic, for instance, incorporates pre- and postcondition-based rea-
soning. Matching between client requirements and service properties in terms
of abstract functional behaviour can be decided using this technique. This
link also allows the integration of a refinement technique.

– The process expression language in WSPO is enhanced by supporting be-
havioural theory from temporal logics and process calculi. A notion of simu-
lation allows process expressions to be compared. This can be used in match-
ing.

Matching is a common problem that needs to be addressed if a new compo-
nent, such as a service or process here, has to be embedded into a given context.
For any given state, the process developer might require

∀preCond . (profile.masteredActivities ∈ activity.prerequisite)
∀learning activity . ∀postCond .

(activity.objective ∈ profile.masteredActvities)

which would be satisfied by a provided service

∀preCond . true
∀learning activity . ∀postCond .

(activity.objective ∈ profile.masteredActvities) ∧
(typeof(lastActivity) = ’labExercise’)

based on a refinement condition (weakening the precondition and strengthening
the postcondition). The dot-notation used in the conditions refers to a com-
ponent of the object. Quantified expressions are used to express these safety
conditions. The postcondition in this example states that by carrying out the
activity, the intended activity objective is accomplished and can therefore be
added to the mastered activities of the learner in her/his profile.

5.4 Transformation

Transformations between the layers are crucial. A high degree of tool support and
automation is necessary for an MDA framework in general. Although a detailed
discussion of transformations in our framework is beyond the scope of this paper,
we will outline the principles here. We have investigated transformations for this
framework in more detail in [29].

The CIM-to-PIM transformation involves the mapping of a domain ontology
into a process-centric service ontology. The following steps need to be considered:

Layered Ontological Modelling 97

– Service identification. In our case, the domain model is already service-
oriented and services are clearly marked.

– Model mapping. We have defined a WSPO ontology template applicable to a
single or a composed service. For the composed service processes, the actual
process description comes from a separate constraint. The instantiation of
this template leads to a service-specific ontology.

6 Platform-Specific Service Modelling

6.1 Modelling Concern

Platform-specific modelling (PSM) relates the previous layers to the concrete
constraints of the chosen platform. It usually consists of two models – the plat-
form model that describes the specifics of the platform and the implementation
specific model that captures the essentials of the implementation languages.

6.2 Ontological Modelling

The platform here is the Web Services platform, on which a number of different
languages are used. We will look at two of these languages here:

– Development support: We have chosen WSMO as one of the widely discussed
and used service ontologies that aims at describing a service on an abstract
level. WSMO incorporates some of the functional behaviour specification of
WSPO, but also provides support for a wide range of non-functional proper-
ties, see Fig. 4. The aim of WSMO is to provide an interoperable form for the
semantic description of services to support their discovery in repositories.

– Deployment support: Another aspect of service-oriented architecture is ser-
vice composition – often the term service collaboration is used to indicate the
distributed nature of service architectures. WS-BPEL is a business process
description language that supports Web service orchestration (collaboration
described from a local services’ point of view). WSPO already captures the
essentials of service and process interaction. This can easily be translated
into WS-BPEL specifications.

Both are service-centric implementation languages. Interoperability is a central
issue in both cases.

The learning activity service that we have focussed on in our case study
could both be published (using WSMO) and integrated in a service process
orchestration (using WS-BPEL):

– WSMO descriptions capture syntactical and semantic service descriptions.
In this way it is similar to WSPO. It adds, however, various non-functional
aspects that can be included into the discovery and matching task. We have
added two non-functional properties to the learning activity descriptions –
the location as an interface-related aspect and the security infrastructure as
a capability issue, see Fig. 4.

98 C. Pahl

learning activity
service

nonFctProp

preCond

effect

assumption

postCond

message-
Exchange

nonFctProp

security:
SSL-encrypt

Interface Capabilities

profile.masteredActivities
activity.prerequisites

activity.objective
profile.masteredActivities

satisfies(prerequisites)

achieved(objectives)

in: input x profile
out: feedback x profile

location “address”

Fig. 4. Ontological Service Template (WSMO) – applied to an E-Learning Context

Standardised description and invocation formats enable interoperability. A
key objective is the provision of services. For instance, the learning activity
could be advertised as a reusable content service in a learning technology
repository. Required functionality can be retrieved from other locations. An
example are registration and authentication features.

– WS-BPEL is an XML-based notation, based on an operator calculus similar
to ours. Based on simple actions <action>, which describe simple request
or response interactions, combinators such as <sequence> or <flow> can
be used to define orchestrated service processes. Orchestration is an internal
perspective on process assembly and interaction.

6.3 Ontological Reasoning

Again, a formal ontology basis enables further forms of reasoning. For the WSMO
context, the matching notion can be extended to comprise a variety of functional
and non-functional properties. The main aim of OWL-S and WSMO is the im-
proved support of semantic Web service description and discovery compared to
syntactical formats such as the Web Services Description Language (WSDL).

For WS-BPEL, classical process calculus-based analyses, e.g. a deadlock anal-
ysis, can be addressed. Although not part of WS-BPEL itself, a formulation of
WS-BPEL using a process calculus would enable these analyses.

6.4 Transformation

The PIM-to-PSM transformation encompasses two mappings for the two differ-
ent platform languages we support:

Layered Ontological Modelling 99

– The WSPO-to-WSMO mapping extracts information specific to individual
services from a WSPO model. This comprises the syntactical elements (in-
and out-objects) and the semantic information (pre- and postconditions).

– The WSPO-to-WS-BPEL extracts the process definitions and converts them
into BPEL process expressions. It also uses the syntactical information to
define the individual services.

Both mappings can create skeletons with partial information that would need to
be completed by a software developer. While transformations are essential, we
will not discuss them here – see [29] for a more detailed investigation.

7 Related Work

WSMO [26] and OWL-S [21] are the two predominant examples of service ontolo-
gies. Service ontologies are ontologies to describe Web services, aiming to support
their semantics-based discovery in Web service registries. WSMO is not an on-
tology, as OWL-S is, but rather a framework in which ontologies can be created.
We have used WSMO here to illustrate issues for a Web service platform-specific
modelling approach. The Web Service Process Ontology WSPO [27,28], which
we have used for platform-independent modelling, is also a service ontology, but
its focus is the support of description and reasoning about service composition
and service-based architectural configuration. Both OWL-S and WSPO are or
can be written in OWL-DL. WSMO is similar to our endeavour here, since it
is a framework of what can be seen as layered ontology descriptions. We have
introduced technical aspects of WSMO descriptions in Section 6. WSMO sup-
ports the description of services in terms more abstract assumptions and goals
and more concrete pre- and postconditions.

Some developments have started exploiting the connection between OWL
and MDA. In [32], OWL and MDA are integrated, i.e. an MDA-based ontology
architecture is defined. This architecture includes aspects of an ontology meta-
model and a UML profile for ontologies. A transformation of the UML ontology
to OWL is implemented. The work by [11,32] and the OMG [1,10], however,
needs to be carried further to address the ontology-based modelling and reason-
ing of service-based architectures. In particular, the Web Services Framework
needs to be addressed in the context of Web-based ontology technology.

Our framework has to be looked at in the context of the MDA initiatives
by the OMG. The OMG supports selected modelling notations and platforms
through an adoption process. Examples of OMG-adopted techniques are UML
as the modelling notation and CORBA as the platform [1]. While Web tech-
nologies have not adopted so far, the need for a specific MDA solution for the
Web context is a primary concern. The ubiquity of the Web and the existence
of standardised and accepted platform and modelling technology justify this re-
quirement. The current OMG initiative to define and standardise an ontology
metamodel (ODM) will allow the integration of our framework with OMG stan-
dards [10]. ODM will provide mappings to OWL-DL and also a UML2 profile

100 C. Pahl

for ontologies to make the graphical UML notation available. This might lead
to a ’Unified Ontology Language’ in the future, i.e. OWL in a UML-style nota-
tion [12]. A UML2 profile is about the use of the UML notation, which would
allow ontologies to be transformed into UML notation. MOF2 compliancy for
ODM is requested to facilitate tool support. XMI, i.e. production rules using
XSLT, can be used to export model representations to XML, e.g. to generate
XML Schemas from models using the production rules. The ontology definition
metamodel (ODM) would allow an integration with UML-style modelling due
to its support of OWL. ODM, however, is a standard addressing ontology de-
scription, but not reasoning. The reasoning component, which is important in
our framework, would need to be addressed in addition to the standard.

8 Conclusions

Ontology technology offers a range of benefits for modelling activities in the
MDA context.

– The formal definition based on description logics allows extensive reasoning
to be used.

– Ontologies are sharable knowledge representation formats. Ontologies can
easily be modified and extended.

Ontologies combine a terminological framework with a logical framework. It is
this combination that we have used to enhance classical modelling techniques.

The benefits match in particular the requirements of a platform such as
the Web Services Framework, where often globally distributed software develop-
ment is the main style of development that relies on interoperable data formats
and dependable service architectures. In heterogeneous environments and cross-
organisational development, information about a variety of service aspects – as
it can be represented in ontologies – is vital.

MDA defines a development process, addressing different concerns at each
stage. We have identified process-oriented domain modelling, architectural con-
figuration, and service implementation modelling as the three central concerns
for the development with the Web Service Framework as the platform. We have
demonstrated that ontology technology can provide an integrated, coherent so-
lution for these concerns at all three modelling layers.

CORBA and UML are OMG-adopted technologies. The adoption process
provides OMG support for a particular technology, either a platform or language.
Web technologies have not been adopted so far. However, the ubiquity of the
Web will require a solution in the future. The current OMG attempt to define
an ontology definition metamodel ODM that includes mappings to OWL-DL
and also a UML profile for ontologies is a first step integrating OMG with Web
technologies.

We have neglected one central problem of a Web ontology-based MDA ap-
proach. Transformations between the individual layers need to be defined and,
to a high degree, automated in order to make MDA feasible. The definition of

Layered Ontological Modelling 101

a transformation framework is beyond the scope of this paper. Two transfor-
mation steps have to be addressed. Both are transformations between different
ontologies. We have devised a graph-based transformation centred around the
service and process elements; see [29] for more details.

References

1. Object Management Group. MDA Guide V1.0.1. OMG, 2003.
2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services – Concepts,

Architectures and Applications. Springer-Verlag, 2004.
3. E. Newcomer and G. Lomow. Understanding SOA with Web Services. Addison-

Wesley, 2005.

4. World Wide Web Consortium. Web Services Framework. http://www.w3.org/

2002/ws, 2004. (visited 08/04/2005).

5. World Wide Web Consortium. Web Services Architecture Definition Document.
http://www.w3.org/2002/ws/arch, 2003.

6. The WS-BPEL Coalition. WS-BPEL Business Process Execution Language
for Web Services – Specification Version 1.1. http://www-106.ibm.com/

developerworks/webservices/library/ws-bpel, 2004. (visited 08/04/2005).
7. C. Peltz. Web Service orchestration and choreography: a look at WSCI and

BPEL4WS. Web Services Journal, 3(7), 2003.

8. D.J. Mandell and S.A. McIllraith. Adapting BPEL4WS for the Semantic Web:
The Bottom-Up Approach to Web Service Interoperation. In D. Fensel, K.P.
Sycara, and J. Mylopoulos, editors, Proc. International Semantic Web Conference
ISWC’2003, pages 227–226. Springer-Verlag, LNCS 2870, 2003.

9. J.B. Warmer and A.G. Kleppe. The Object Constraint Language – Precise Modeling
With UML. Addison-Wesley, 1998.

10. Object Management Group. Ontology Definition Metamodel - Request For Proposal
(OMG Document: as/2003-03-40). OMG, 2003.

11. D. Gašević, V. Devedžić, and D. Djurić. MDA Standards for Ontology Development
– Tutorial. In International Conference on Web Engineering ICWE2004, 2004.

12. D. Gašević, V. Devedžić, and V. Damjanović. Analysis of MDA Support for On-
tological Engineering. In Proceedings of the 4th International Workshop on Com-
putational Intelligence and Information Technologies, pages 55–58, 2003.

13. J. Williams and J. Baty. Building a Loosely Coupled Infrastructure for Web Ser-
vices. In Proc. International Conference on Web Services ICWS’2003. 2003.

14. R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM
Transacions on Software Engineering and Methodology, 6(3):213–249, 1997.

15. F. Plasil and S. Visnovsky. Behavior Protocols for Software Components. ACM
Transactions on Software Engineering, 28(11):1056–1075, 2002.

16. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice (2nd
Edition). SEI Series in Software Engineering. Addison-Wesley, 2003.

17. N. Desai and M. Singh. Protocol-Based Business Process Modeling and Enactment.
In International Conference on Web Services ICWS 2004, pages 124–133. IEEE
Press, 2004.

18. W3C Semantic Web Activity. Semantic Web Activity Statement, 2004.
http://www.w3.org/2001/sw. (visited 06/12/2004).

19. M.C. Daconta, L.J. Obrst, and K.T. Klein. The Semantic Web. Wiley, 2003.

102 C. Pahl

20. M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycara. Semantic Matching of
Web Services Capabilities. In I. Horrocks and J. Hendler, editors, Proc. First
International Semantic Web Conference ISWC 2002, LNCS 2342, pages 279–291.
Springer-Verlag, 2002.

21. DAML-S Coalition. DAML-S: Web Services Description for the Semantic Web.
In I. Horrocks and J. Hendler, editors, Proc. First International Semantic Web
Conference ISWC 2002, LNCS 2342, pages 279–291. Springer-Verlag, 2002.

22. F. Baader, D. McGuiness, D. Nardi, and P.P. Schneider, editors. The Description
Logic Handbook. Cambridge University Press, 2003.

23. D. Kozen and J. Tiuryn. Logics of programs. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, Vol. B, pages 789–840. Elsevier, 1990.

24. Bertrand Meyer. Applying Design by Contract. Computer, pages 40–51, October
1992.

25. T. Payne and O. Lassila. Semantic Web Services. IEEE Intelligent Systems, 19(4),
2004.

26. R. Lara, D. Roman, A. Polleres, and D. Fensel. A Conceptual Comparison of
WSMO and OWL-S. In L.-J. Zhang and M. Jeckle, editors, European Conference
on Web Services ECOWS 2004, pages 254–269. Springer-Verlag. LNCS 3250, 2004.

27. C. Pahl. An Ontology for Software Component Matching. In M. Pezzè, editor,
Proc. Fundamental Approaches to Software Engineering FASE’2003, pages 6–21.
Springer-Verlag, LNCS 2621, 2003.

28. C. Pahl and M. Casey. Ontology Support for Web Service Processes. In Proc. Eu-
ropean Software Engineering Conference and Foundations of Software Engineering
ESEC/FSE’03. ACM Press, 2003.

29. C. Pahl. Ontology Transformation and Reasoning for Model-Driven Architecture.
In International Conference on Ontologies, Databases and Applications of Seman-
tics ODBASE’05. Springer LNCS Series, 2005. (submitted).

30. K. Schild. A Correspondence Theory for Terminological Logics: Preliminary Re-
port. In Proc. 12th Int. Joint Conference on Artificial Intelligence, Sydney, Aus-
tralia. 1991.

31. N. Medvidovic and R.N. Taylor. A Classification and Comparison framework for
Software Architecture Description Languages. In Proceedings European Conference
on Software Engineering / International Symposium on Foundations of Software
Engineering ESEC/FSE’97, pages 60–76. Springer-Verlag, 1997.

32. D. Djurić. MDA-based Ontology Infrastructure. Computer Science and Informa-
tion Systems (ComSIS), 1(1):91–116, 2004.

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 103 – 114, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Model-Driven Development – Hot Spots
in Business Information Systems

Bernhard Humm1, Ulf Schreier2, and Johannes Siedersleben1

1 sd&m Research, Munich, Germany
{Bernhard.Humm, Johannes.Siedersleben}@sdm.de

2 University of Applied Sciences Furtwangen, Furtwangen, Germany
Ulf.Schreier@fh-furtwangen.de

Abstract. Model-driven development (MDD) is an important technology since
it helps to reduce the cost of software development and maintenance. Further-
more, it may increase the quality of resulting systems. However, it is naive to
try to generate complete complex systems out of a single model. This paper
presents hot spot domains of business information systems where MDD is par-
ticularly applicable. For those domains, proven techniques for combining MDD
with software architecture principles are presented. This distils the experience
with MDD at sd&m for more than fifteen years.

1 Introduction

Model-driven architecture (MDA) is currently a hype topic. There are tool vendors
that promise the generation of complete systems by the press of a button and an in-
crease of productivity by a factor up to 47 [CARE].

In his famous article “No silver bullet” [Bro86] nearly twenty years ago, Fred
Brooks pinpointed automatic programming as one of the chimeras of software engi-
neering. MDA, wrongly understood, is automatic programming in Brooks’ sense. But
is there a right understanding and does it really work in practice?

Before going on, we introduce the term model-driven development (MDD) which
we prefer to the term MDA. The term MDA may be misleading in the sense that it is
not the architecture of the resulting system but the architecture of the software devel-
opment environment which is addressed. MDD is more than the MDA initiative of the
Object Management Group [OMG].

MDD is not new and has proven its value, even though productivity increases of a
factor of 47 [CARE] have never been reached. At sd&m – a German software com-
pany with more than 900 employees – MDD has been successfully applied to the
domain of business information systems for more than fifteen years1, initially with
text-based models [Den93, Sch93, Kel94]. This paper condenses the essence of our
learning in MDD from more than a hundred projects with a total volume of more than
thousand person years.
———————
1 Numerous colleagues have been involved in research on MDA at sd&m, currently including

Thomas George, Oliver Juwig, Martin Kempa, Vera Kießling, Jürgen Krey, Friedemann
Ludwig, Marcello Mariucci, Zoltan Mann, Klaus Nünninghoff, Frank Salger, Thomas Tensi,
Ludger Unland, and Angelika Wittek.

104 B. Humm, U. Schreier, and J. Siedersleben

2 What is MDA?

MDA is a standardization initiative of the OMG in the area of MDD, started in 2001.
The central standardization items are:

• (Meta) Modelling languages: The Unified Modelling Language [UML] and its
various extensions (UML profile, Executable UML, OCL) as the preferred model-
ling language, Meta Object Facility [MOF] as the basis for meta modelling, and
XML Metadata Interchange [XMI] as the standard for the interchange of models

• Model transformation: Query, View, Transformation [QVT] as the emerging stan-
dard for the transformation between object-oriented models.

The main principle of MDA is illustrated in Fig. 1.

PIM PSMPSMPSMPSMPSM
PSMPSMPSMPSMPSM

PSMPSMPSMCode
PSMPSMPSMCode

Platform
Specific
Model

Platform
Independent
Model

Fig. 1. Main generation steps of MDA

The code of a system is created by successive transformation and generation steps.
The starting point is the platform-independent model (PIM). MDA does not specify
precisely what a platform is. Hence, the independence from a platform is not specified
either. A common understanding is that a PIM for business information systems speci-
fies business application logic only. The platform-specific model (PSM) enhances the
PIM with details of a technical execution platform, e.g., J2EE or .NET. PIM and PSM
use UML diagrams and profiles as concrete syntax. Out of the PSM, code is generated
in a particular programming language with text-oriented concrete syntax, e.g., in Java or
C#. Conceptually, code in a programming language is a model, too, since all – PIM,
PSM and code – are based on abstract syntax (see for instance [GS04]).

The transformation and generation steps successively expand the models by
particular behaviour. The expansion logic lies in the transformers and generators
themselves and may get additional input by marks specified in the input models. The
transformation and generation steps are strictly unidirectional from PIM to code.
Round-trip engineering is not part of the concept.

Naively understood, MDA may be tempting to be applied in the following way: the
business application logic of a complete business information system or even a whole
family of systems is specified completely in the PIM. I.e., the complete object model
as well as all algorithmic logic is specified in an UML variant that is executable. All
the rest is added automatically via transformers and generators and the resulting code
is generated without the need of manual programming.

This is the naïve view that Brooks pinpointed as the chimera of automatic pro-
gramming. It is obvious that if you try to express all business application logic in the

 Model-Driven Development – Hot Spots in Business Information Systems 105

model the modelling language must be as powerful as the programming language and
the model is as voluminous as the application program. You abuse the model as a
programming language which is not the appropriate level of abstraction for this do-
main. The 4GL tools of the 1990s have gone exactly this naïve way and have failed.

However, MDD is general enough to be useable and successful if applied in an
intelligent way.

3 Separating Business Application Logic from Technology

What are the main goals of MDD? To reduce development and maintenance costs and
to increase the quality of the resulting software systems. What are the means by which
MDD aspires to reach the goals? Separating concerns, particularly separating business
application logic from technology in different models.

There are alternatives and proven approaches that support the separation of business
application logic from technology like, e.g., frameworks and component architectures.
Quasar [Sie04, HS04, [Hum04], Sie03, DS00] stands for quality software architecture.
It consists of a set of design principles, a reference architecture for business information
systems and a set of technical components. One core principle of Quasar is the separa-
tion of business application logic from technology. We briefly introduce Quasar to
explain the synergies between MDD and Quasar in the rest of the paper.

Fig. 2 gives an overview of the reference architecture for business information sys-
tems as a UML component diagram.

The reference architecture illustrates the separation of business application logic
from technology on the component level. Business application logic is concentrated in
application components (stereotype <<A component>> – “A” stands for “applica-
tion”) in the application kernel and for dialogs. An application kernel facade separates
the application components from platform-specifics. E.g., application logic may be
implemented in pure Java; specifics of a J2EE application server are hidden in the
application kernel facade. The application kernel facade also supports location trans-
parency by providing means for client / server communications.

Technical services are encapsulated in abstract technical components (stereotype
<<Abstract T Component>>). Abstract technical components are specified by
their interfaces. In a real system, abstract components are implemented by concrete
products like, e.g., TopLink [TopLink], Hibernate [Hibernate], or QuasarPersistence
[Ern04, OpenQuasar] for object / relational mapping (Persistence). In contrast to
a persistence layer as the artefact of a generator, such a persistence component is
developed, tested, optimized, and deployed separately from the application. For fur-
ther details of the reference architecture, see [HHS04].

It is relatively easy to draw a diagram that postulates the separation of business ap-
plication logic and technology on the component level. However, it requires a lot of
expertise to maintain the separation in the internals of all components. We have
proven the feasibility of such a separation in numerous large-scale projects. Appar-
ently, MDD concepts are extremely helpful in effectively implementing such a sepa-
ration of concerns. In the following sections, we present details.

106 B. Humm, U. Schreier, and J. Siedersleben

cd Quasar Architecture

«Abstract T Component»

Client Management

«A Component»

Dialog

«A Component»

Application
Component

«Abstract T Component»

Application Kernel
Facade

«Abstract T Component»

Authorization

«Abstract T Component»

Transaction

«Abstract T Component»

Persistence

«Abstract T Component»

Workflow
Management

«A Component»

Workflow

«A Component»

Batch

«Abstract T Component»

Batch Management

Fig. 2. Quasar reference architecture for business information systems

4 Model-Driven Components

One of the most important concepts for the architecture of large-scale systems like
business information systems is component-orientation.(e.g., [Szy02, Sie04]) Com-
ponents exhibit operative interfaces they export and import. Components use the
services of other components via their operative interfaces. From the point of view of
a using component, it is irrelevant whether a used component has been programmed
manually, generated in parts or generated completely using MDD. At their operative
interfaces, manually programmed components behave identically to generated ones.
The dependence on models is the secret of a component, reflected by additional
administrative interfaces. Components that depend on models at development-time or
at run-time we call model-driven components (see also [Teu04]).

We have identified a number of hotspot domains in the context of business infor-
mation systems that have proven particularly suitable for model driven components.
In line with common terminology, we use the term domains, not to be confused with
business application domains like, e.g., financial services.

We refer to custom software projects. For specific business application domains like, e.g.,
financial services, MDD can also be used for the development of software product families.

 Model-Driven Development – Hot Spots in Business Information Systems 107

id Quasar and MDD

object / relational mapping
DDLs

File import / export

Transport objects

«Abstract T Component»

Client Management

«A Component»

Dialog

«A Component»

Application
Component

«Abstract T Component»

Application Kernel
Facade

«Abstract T Component»

Authorization

«Abstract T Component»

Transaction

«Abstract T Component»

Persistence

«Abstract T Component»

Workflow
Management

«A Component»

Workflow

«A Component»

Batch

«Abstract T Component»

Batch Management

Application entities

Appliation use case
signatures

Dialog data

Dialog layout

Authorization logic

Workflows Batch controlDialog control

less relevant

relevant
most relevant

Fig. 3. MDD domains for business information systems

The selection of hot spot domains best suited for MDD is based on extensive pro-
ject experience at sd&m over the last fifteen years. Fig. 3 gives an overview in the
context of the Quasar reference architecture for business information systems.

We have ranked these domains with respect to their relevance in those projects.
The ranking is illustrated in Fig. 3 in form of bullets. Most relevant (black bullet)
means that MDD has been used in nearly every project. Less relevant means that
MDD has been used in practice, but only rarely. Relevant means that depending on
the complexity of the problem, MDD or manual programming has been chosen:
whereas MDD is more suitable for simple domains, the full power of programming
languages is needed in complex domains.

The following data domains (light note symbols in Fig. 3) are particularly suitable
for MDD.

108 B. Humm, U. Schreier, and J. Siedersleben

• Application entities: Application entity classes are often generated out of data
models and possibly manually extended by application logic. Meta data re-
garding application entities, e.g., descriptors for the application kernel facade
or application servers can be generated, too.

• Object / relational mapping and DDLs: table definitions (DDL statements)
may be generated out of the data model and possibly optimised, e.g., by de-
normalization. Then, also the object / relational mapping data for persistence
components may be generated.

• Transport objects: Transport objects are simple data structures that are used to
decouple clients and application components as well as application compo-
nents from each other. They are used as parameter types of the exported inter-
faces instead of complex entity objects. Transport object classes as well as the
conversion routines between entity objects and transport objects are often be
generated from data models.

• File import / export: Often, application data are imported and exported from
and to files in batch programs. From data models, conversion routines from
files to entity objects and vice versa may be generated. For complex transfor-
mation, script languages are commonly used.

• Dialog data: Dialog data are architecturally decoupled from application com-
ponent data, often also physically in a client / server architecture. However,
their structure is often similar to the one of application entities. Then, dialog
data may be generated from data models. If the structure is different manual
programming is more appropriate.

• Dialog layout: Stereotype user interfaces may be modelled in a specific layout
modelling language. The code for the dialog layout may then be generated
from these models. For dynamic user interface layouts, manual programming
is more suitable.

• Application use case signatures: Use case classes form the interfaces of appli-
cation components. From service specifications, the signatures of use case
classes may be generated. Meta data regarding application use cases, e.g., de-
scriptors for the application kernel facade or application servers can be gener-
ated, too.

The following behavioural domains (dark note symbols in Fig. 3) are particularly
suited for MDD.

• Workflows: model data for workflow or use case management systems may be
generated from process models. Highly complex workflows need manual pro-
gramming.

• Batch control: Job control may be generated from process models. In other
cases, script languages are used.

• Authorization logic: Authorization control is usually based on the combination
of role and user group models on the one side and access right models on the
other side. Those models are typically interpreted by authorization compo-
nents.

• Dialog control: Dialog control logic may be specified with state machines.
Respective code for a dialog controller may be generated. However, dialog
control is often more conveniently expressed by a few lines of code.

 Model-Driven Development – Hot Spots in Business Information Systems 109

The selection shows that the domain of complex business application logic is not
suited for MDD. Such logic is best programmed manually: a modern programming
language is the most appropriate language for this domain.

This leads us to a key learning: identify domains where MDD is appropriate and use
domain-specific modelling languages. Use programming languages where appropriate.
Do not try to generate a complete system from a single model. However, there are a
number of domains where MDD can substantially reduce tedious programming work.

The idea of domain-specific modelling languages is also central to Microsoft’s ap-
proach to MDD, called software factory [GS04]. OMG’s MDA also supports domain-
specific modelling languages with the help of UML profiles.

5 Generation Versus Interpretation

Apart from generating code from models, models may be interpreted at run-time. Gen-
eration and interpretation are conceptually similar and both variants of MDD. Theoreti-
cally, generation can always be replaced by interpretation and vice versa. In practice,
some domains are more suited for generation and others for interpretation. Generated
code is more convenient to debug, is more robust due to compile-time checks and usu-
ally exhibits better performance. Interpretation allows modifications without recompila-
tion and is more responsive to run-time information, e.g., current user information.

Interpretation is usually preferable in the behavioural domains whereas generation
is usually preferable in the data domains. This is the case since behavioural domains
are often responsive to run-time information. Since in data domains, this is rarely the
case, the more robust generator approach is usually chosen. It is the decision of the
chief designer to decide between generative and interpretative approaches based on
project specifics.

According to the MDA Guide [MM03], the OMG also encompasses generation as
well as interpretation in MDA.

6 Integrating MDD Code with Manually Programmed Code

6.1 Separating Business Application Code from Technical Code

Accepting the fact that MDD is appropriate for specific domains only, one has to live
with a coexistence of generated (respectively interpreted) and manually programmed
code. MDA tools usually offer the mechanism of protected areas to separate gener-
ated code from manually programmed one. Naively, one could use protected areas to
separate platform-specific, generated code from platform-independent, manually
programmed code. This naive use leads to code in which business application code is
mixed with technical code.

We propose an alternative to the naive approach that allows real separation of con-
cerns on the code level without losing the advantages of MDD. See Fig. 4.

On the code level, we separate clearly between business application code (A soft-
ware) and technical code (T software) [Sie04]. The PIM may be used to generate
frames for the implementation of the business application logic, e.g., entity classes.
The application logic proper is implemented manually. Technical components like,

110 B. Humm, U. Schreier, and J. Siedersleben

PIM PSMPSMPSMPSMPSM
PSMPSMPSMPSMPSM

PSMPSMPSM
Glue
CodePSMPSMPSM
Glue
Code

Platform
Specific
Model

Platform
Independent
Model

PSMPSMPSM
Appl
CodePSMPSMPSM
Appl
Code

Techn
Code

Manual programming of

business application logic

(A software)

Platform-specific

technical component

(T software)

Generation of stereotype

technical code

(R software)

Generation of signatures
and data structures

only

Fig. 4. Separating business application code from technical code using MDD

e.g., TopLink, Hibernate, or QuasarPersistence for object / relational mapping (persis-
tence), are installed and integrated. The glue code (R software) is stereotype technical
code which translates between A software and T software. It is generated out of the
PSM. Alternatively, a PIM enhanced by marks may substitute an explicit PSM.

6.2 Example

We explain the principle by the example of application entity classes. See Fig. 5.
The example shows an entity Customer of a business information system with

simple attributes name, address and a complex business application method
checkCreditRating().

In the naive solution, a Class Customer is generated which mixes specifics of the
persistence product used and manually programmed business application logic. We
present four exemplary alternatives:

1. Separation via controllers
2. Separation via inheritance
3. Separation via delegation
4. Separation via annotation

6.3 Alternative 1: Separation Via Controllers

In Alternative 1, entity objects (CustomerGen) consist of R software only. They are
generated, contain the attributes of the customer entity and specifics of the technical
persistence component (e.g., inheritance from a Persistent base class). However,
they contain no application logic whatsoever. For each entity of the PIM, a controller
class (CustomerController) is generated as a singleton [GHJ+95]. All business
application logic is implemented there.

 Model-Driven Development – Hot Spots in Business Information Systems 111

cd PIM

«entity»
Customer

- name: string
- address: string

+ checkCreditRating() : void

Fig. 5. Entity example

cd Entities and controllers

CustomerController

+ checkCreditRating(CustomerGen) : boolean

«generated class»
CustomerGen

- address: String
- name: String

Fig. 6. Separation via controllers

Alternative 1 is the simplest approach. However, it is the least object-oriented one
since it separates data from behaviour in different classes.

6.4 Alternative 2: Separation Via Inheritance

In the second alternative, a class CustomerGen is generated which contains the
attributes and specifics of the persistence component (R code). A subclass Cus-
tomer is generated once but is free from code specific to the technical persistence
component. In this class, application-specific functionality like, e.g., check-
CreditRating() can be implemented manually. Code dependent from technical
APIs and business application code are separated. Class Customer contains attrib-
utes (due to inheritance) and functionality which is closer to the idea of object-
orientation. However, the use of implementation inheritance may be seen as problem-
atic (see also the fragile base class problem [Szy02]).

6.5 Alternative 3: Separation Via Delegation

In the third alternative, A software (Customer) and R software (CustomerGen)
are separated via delegation. From a design point of view, this is the cleanest solution.

112 B. Humm, U. Schreier, and J. Siedersleben

However, in practical handling, this solution is most inconvenient. Since it adds a lot
of workload to the application programmer, this solution is rarely used in practice.

6.6 Alternative 4: Separation Via Annotation

Modern programming languages like C# or Java 5 offer annotations as a built-in
programming construct. Annotations are very similar to UML stereotypes. Hence,
they can be depicted in diagrams, too. The fourth alternative mixes declarative and
procedural programming. Annotations mark fields and methods that need generation
of technical code. The application programmer can add application-specific function-
ality. However, generated code and manually programmed code is mixed. The next
version of EJB, Version 3.0 [Sun1], is a good example for this approach. See, e.g., the
column notation in [Sun2], Section 5.1.5.

cd Inheritance

«generated class»
CustomerGen

- address: String
- name: String

Customer

+ checkCreditRating() : boolean

Fig. 7. Separation via inheritance

cd Delegation

Customer

+ checkCreditRating() : boolean

«generated class»
CustomerGen

- address: String
- name: String

Fig. 8. Separation via delegation

6.7 Discussion

Which alternative to chose is a design decision which is to be taken by the chief de-
signer according to project circumstances. In practice, Alternative 1 is usually chosen in
projects with little application logic and Alternative 2 in more complex situations. With
the advent of annotation features in modern programming languages like C# and Java 5,
Alternative 4 will become most attractive since the application programmer has to un-
derstand only one level of model. The other three alternatives (1, 2, and 3) require that

 Model-Driven Development – Hot Spots in Business Information Systems 113

the programmer study the semantics of the PIM model, potentially the PSM model,
code, and the relationships between the three models. The generated code usually builds
a framework (indicated by the use of inheritance or delegation in our example). This
induces another level of complexity with many known dangers [Ga97]. This is only
acceptable for simple domains, like the data domains introduced above.

7 Conclusion

In conclusion, we postulate the following key statements:

1. MDD is an important technology since it helps to reduce the cost of software
development and maintenance. Furthermore, it may increase the quality of the
resulting systems. The cost reduction is due to avoiding tedious programming
work. The increase in quality is due to unifying the coding styles of a potentially
large number of programmers.

2. MDD is a proven technology with experience for over fifteen years.
3. The MDA initiative of the OMG is an important step. Standardization eases the

integration of MDD tools and, thus, reduces the costs of setting up MDD envi-
ronments. The standardization effort documents and advances the maturity of
MDD.

4. MDD encompasses the generation as well as the interpretation of models.
5. It is naive to try to generate complete complex systems out of a single model.
6. One can and should identify domains for which MDD is appropriate. For those,

domain-specific modelling languages should be used. In this paper, we have
identified the MDD hot spot domains for business information systems. These
domains are simple structures which are easy to understand.

7. Complex business application logic is best programmed manually in modern
programming languages.

8. Business application code and technical code should be separated, particularly
when using MDD. In this paper, we have presented principles and examples for
such a separation of concerns.

MDD really works in practice, but it requires a lot of expertise and naive use may
lead to disasters.

References

[Bro86] Frederick P. Brooks: No Silver Bullet - Essence and Accidents of Software
Engineering: Information Processing 1986, ISBN No. 0444-7077-3, H. J.
Kugler, Ed., Elsevia Science Publishers B.V. (North-Holland) IFIP 1986.

[CARE] CARE Technologies. Press Release Programmiermaschine: http://www.
programmiermaschine.de/programmiermaschine.html

[Den93] Ernst Denert: “Dokumentenorientierte Software-Entwicklung”. Informatik
Spektrum (1993) 16: S. 159 – 164.

[DS00] Denert, Ernst: Siedersleben, Johannes: Wie baut man Informationssysteme?
Überlegungen zur Standardarchitektur. Informatik Spektrum 4/2000, pp 247-
257.

[Ern04] Ernst, Andreas: Quasi-stellares Objekt; Objektbasierte Datenbankzugriffsschicht
Quasar Persistence, Javamagazin 3/04, pp 85-88.

114 B. Humm, U. Schreier, and J. Siedersleben

[Ga97] Erich Gamma: 100 OO Frameworks, Pitfalls and Lessons Learned, 1997.
[GHJ+95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns

– Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional Computing Series. Reading, Massachusetts, USA 1995.

[GS04] Greenfield, J., Short, K.: Software Factories – Assembling Applications with
Patterns, Models, Frameworks and Tools, Wiley 2004.

[HHS04] Haft, Martin, Humm, Bernhard, Siedersleben, Johannes: Quasar Reference
Interfaces for Business Information Systems. Technical Report sd&m Re-
search. December, 2004.

[Hibernate] Relational Persistence For Idiomatic Java: www.Hibernate.org
[Hum04] Humm, Bernhard: Technische Open Source Komponenten implementieren die

Referenzarchitektur Quasar. In: Helmut Eirund, Heinrich Jasper, Olaf Zukunft:
ISOS 2004 - Informationsysteme mit Open Source, Proceedings GI-Workshop
pp. 77-87. Gesellschaft für Informatik 2004.

[Kel94] Wolfgang Keller: “Dokumentenorientierte Spezifikation objektorientierter
Benutzeroberflächen”. ONLINE ´94 - Congress VI – Innovative Softwaretech-
nologien: Neue Wege mit objektorientierten Methoden und Client/Server Ar-
chitekturen.

[MOF] Object Management Group: Meta-Object Facility V1.4. www.omg.org/mof/
[MM03] Joaquin Miller, Jishnu Mukerji (Eds.), Object Management Group: “MDA

Guide” Version 1.0.1. http://www.omg.org/docs/omg/03-06-01.pdf
[OMG] Object Management Group. http://www.omg.org/
[OpenQuasar] sd&m AG: Quasar components. http://www.openquasar.de
[Sch93] Gero Scholz: „Maßgeschneiderte Software-Generatoren“. Proceedings

ONLINE 1993 Congress VI - C636.
[Sied04] Siedersleben, Johannes: Moderne Software-Architektur – umsichtig planen,

robust bauen mit Quasar. dpunkt Verlag. 2004.
[Sied03] Siedersleben, Johannes (Hrsg.): Quasar: Die sd&m Standardarchitektur. Teile

1 und 2, 2. Auflage. sd&m Research, 2003.
[Sun1] Sun Microsystems: EJB 3.0, Simplified API, Early Draft 2, http:// java.sun.

com/ejb
[Sun2] Sun Microsystems: EJB 3.0, Persistence API, Early Draft 2, http:// java.sun.

com/ ejb
[Szy02] Szyperski, C.: Component Software. Addison Wesley, 2002.
[Teu04] Sören Teurich-Wagner: “MDA – Weg oder Irrweg?” In: B Rumpe, W Hesse

(Hrsg) Tagungsband zur Modellierung 2004 (GI, 2004).
[TopLink] Oracle Corp.: object relational mapper. http://www.oracle.com/technology/

products/ias/TopLink
[UML] Object Management Group: Unified Modeling Language V2.0. http://

www.uml.org
[XMI] Object Management Group: XML Metadata Interchange http://www.omg.org/

technology/documents/formal/xmi.htm

Semantic Anchoring with Model

Transformations�

Kai Chen, Janos Sztipanovits, Sherif Abdelwalhed, and Ethan Jackson

Institute for Software Integrated Systems, Vanderbilt University,
P.O. Box 1829 Sta. B., Nashville, TN 37235, USA

{kai.chen, janos.sztipanovits, sherif.abdelwalhed, ethan.jackson}
@vanderbilt.edu

Abstract. Model-Integrated Computing (MIC) is an approach to
Model-Driven Architecture (MDA), which has been developed primar-
ily for embedded systems. MIC places strong emphasis on the use of
domain-specific modeling languages (DSML-s) and model transforma-
tions. A metamodeling process facilitated by the Generic Modeling En-
vironment (GME) tool suite enables the rapid and inexpensive develop-
ment of DSML-s. However, the specification of semantics for DSML-s is
still a hard problem. In order to simplify the DSML semantics, this pa-
per discusses semantic anchoring, which is based on the transformational
specification of semantics. Using a mathematical model, Abstract State
Machine (ASM), as a common semantic framework, we have developed
formal operational semantics for a set of basic models of computations,
called semantic units. Semantic anchoring of DSML-s means the specifi-
cation of model transformations between DSML-s (or aspects of complex
DSML-s) and selected semantic units. The paper describes the semantic
anchoring process using the meta-programmable MIC tool suite.

1 Introduction

The Model-Driven Architecture (MDA) advocates a model-based approach for
software development. Model-Integrated Computing (MIC) [27,24] is a domain-
specific approach to MDA, which has been developed primarily for embedded
systems. The MIC approach eases the complicated task of embedded system
design by equipping developers with domain-specific modeling languages [25]
tailored to the particular constraints and assumptions of their various applica-
tion domains. A well-made DSML captures the concepts, relationships, integrity
constraints, and semantics of the application domain and allows users to program
imperatively and declaratively through model construction.

While a metamodeling process enables the rapid and inexpensive develop-
ment of DSML syntax, the semantics specification for DSML-s remains a chal-
lenge problem. Transformational specification of semantics [9], gives us a chance

� This research was supported by the NSF Grant CCR-0225610 “Foundations of
Hybrid and Embedded Software System”.

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 115–129, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

116 K. Chen et al.

to simplify the DSML semantics design. This paper exploits the transforma-
tional semantics specification approach for creating a semantic anchoring infras-
tructure [22]. This infrastructure incorporates a set of metaprogrammable MIC
tools, including: the Generic Model Environment (GME) [4] for metamodeling,
the Graph Rewriting and Transformation (GReAT) [2] tool for model trans-
formation, the Abstract State Machines (ASM) [18,12], as a common semantic
framework to define the semantic domain of DSML-s, and AsmL [1] – a high-level
executable specification language based on the concepts of ASM for semantics
specification.

The organization of this paper proceeds as follows: Section 2 describes the
background for DSML specifications. Semantic anchoring is summarized in Sec-
tion 3. In Section 4, we use a simple DSML that captures the finite state machine
domain from Ptolemy II [5] as a case study to demonstrate the key steps in the
semantic anchoring process. Conclusions and future work appear in Section 5.

2 Background: DSML Specification

A DSML can be formally defined as a 5-tuple L = 〈A, C, S, MS , MC〉 consisting
of abstract syntax (A), concrete syntax (C), syntactic mapping (MC), semantic
domain (S) and semantic mapping (MS) [28]. The syntax of a DSML consists
of three parts: an abstract syntax, a concrete syntax, and a syntactic mapping.
The abstract syntax A defines the language concepts, their relationships, and
well-formedness rules available in the language. The concrete syntax C defines
the specific notations used to express models, which may be graphical, textual,
or mixed. The syntactic mapping, MC : C → A, assigns syntactic constructs to
elements in the abstract syntax.

DSML syntax provides the modeling constructs that conceptually form an in-
terface to the semantic domain. The semantics of a DSML provides the meaning
behind each well-formed domain model composed from the syntactic modeling
constructs of the language. For example, in MIC applications, the semantics of a
domain model often prescribes the behavior that simulates an embedded system.

DSML semantics are defined in two parts: a semantic domain S and a se-
mantic mapping MS : A → S [21]. The semantic domain S is usually defined
in some formal, mathematical framework, in terms of which the meaning of the
models is explained. The semantic mapping relates syntactic concepts to those of
the semantic domain. In DSML applications, semantics may be either structural
or behavioral. The structural semantics describes the meaning of the models in
terms of the structure of model instances: all of the possible sets of components
and their relationships, which are consistent with the well-formedness rules, are
defined by the abstract syntax. Accordingly, the semantic domain for structural
semantics is defined by a set-valued semantics. The behavioral semantics may de-
scribe the evolution of the state of the modeled artifact along some time model.
Hence, the behavioral semantics is formally captured by a mathematical frame-
work representing the appropriate form of dynamics. In this paper, we focus on
the behavioral semantics of a DSML.

Semantic Anchoring with Model Transformations 117

3 Semantic Anchoring

Although DSML-s use many different notations, modeling concepts and model
structuring principles for accommodating needs of domains and user communi-
ties, semantic domains for expressing basic behavior categories are more limited.
A broad category of component behaviors can be represented by basic behavioral
abstractions, such as Finite State Machine, Timed Automaton, Continuous Dy-
namics and Hybrid Automaton. This observation led us to the following strategy
in defining behavioral semantics for DSML-s:

1. Define a set of minimal modeling languages {Li} for the basic behavioral
abstractions and develop the precise specifications for all components of
Li = 〈Ci, Ai, Si, MSi, MCi〉. We use the term ”semantic unit” to describe
these basic modeling languages.

2. Define the behavioral semantics of an arbitrary L = 〈C, A, S, MS , MC〉 mod-
eling language transformationally by specifying the MA : A → Ai mapping.
The MS : A → S semantic mapping of L is defined by the MS = MSi ◦ MA

composition, which indicates that the semantics of L is anchored to the Si

semantic domain of the Li modeling language.

The tool architecture supporting the semantic anchoring process above is
shown in Figure 1. The GME tool suite [4] is used for defining the abstract
syntax, A, for an L = 〈C, A, S, MS , MC〉 DSML using UML Class Diagrams
[7] and OCL as metalanguage [8]. The Li = 〈Ci, Ai, Si, MSi, MCi〉 semantic
unit is defined as an AsmL specification [1] in terms of (a) an AsmL Abstract
Data Model (which corresponds to the Ai, abstract syntax specification of the
modeling language defining the semantic unit in the AsmL framework), (b) the
Si, semantic domain (which is implicitly defined by the ASM mathematical
framework), and (c) the MSi, semantic mapping (which is defined as a model
interpreter written in AsmL).

The MA : A → Ai semantic anchoring of L to Li is defined as a model
transformation using the GReAT tool suite [2]. The abstract syntax A and Ai

Fig. 1. Tool Architecture for DSML Design throughs Semantic Anchoring

118 K. Chen et al.

are expressed as metamodels. Connection between the GME-based metamod-
eling environment and the AsmL environment is provided by a simple syntax
conversion. Since the GReAT tool suite generates a model translation engine
from the meta-level specification of the model transformation [23], any legal do-
main model defined in the DSML can be directly translated into a corresponding
AsmL data model and can be simulated by using the AsmL native simulator. In
the following, we give explanation of our methodology and the involved tools.

3.1 Formal Framework for Specifying Semantic Units

Semantic anchoring requires the specification of semantic units in a formal frame-
work using a formal language, which is not only precise but also manipulable.
The formal framework must be general enough to represent all three compo-
nents of the MS : A → S specification; the abstract syntax, A, with set-valued
semantics, the S semantic domain to represent the dynamic behavior and the
mapping between them. We select Abstract State Machine (ASM) as a formal
framework for the specification of semantic units.

Abstract State Machine (ASM), formerly called Evolving Algebras [18], is a
general, flexible and executable modeling structure with well-defined semantics.
General forms of behavioral semantics can be encoded as (and simulated by) an
abstract state machine [12]. ASM is able to cover a wide variety of domains: se-
quential, parallel, and distributed systems, abstract-time and real-time systems,
and finite- and infinite-state domains. ASM has been successfully used to specify
the semantics of numerous languages, such as C [19], Java [14], SDL [17] and
VHDL [13]. In particular, the International Telecommunication Union adopted
an ASM-based formal semantics definition of SDL as part of SDL language def-
inition [6].

The Abstract State Machine Language, AsmL [1], developed by Microsoft
Research, makes writing ASM specifications easy within the .NET environment.
AsmL specifications look like pseudo-code operating on abstract data structures.
As such, they are easy for programmers to read and understand. A set of tools
is also provided to support the compilation, simulation, test case generation
and model checking for AsmL specifications. The fact that there exists plentiful
supporting tools for AsmL specifications was a important reason for us to select
AsmL over other formal specification languages, such as Z [16], tagged signal
model [26] and Reactive Modules [11]. A detailed introduction to ASM and
AsmL is beyond the scope of this paper, but readers can refer to other papers
[1,12,18].

3.2 Formal Framework for Model Transformation

We use model transformation techniques as a formal approach to specify the
MA : A → Ai mapping between the abstract syntax of a DSML and the abstract
syntax of the semantic unit. Based on our discussion above, the abstract syntax
A of the DSML is defined as a metamodel using UML class diagrams and OCL,
and the Ai abstract syntax of the semantic unit is an Abstract Data Model

Semantic Anchoring with Model Transformations 119

expressed using the AsmL data structure. However, the specification of the MA

transformation requires that the domain and codomain of the transformation is
expressed in the same language. In our tool architecture, this common language
is the abstract syntax metamodeling language (UML class diagrams and OCL),
since the GReAT tool suite is based on this formalism.

This choice requires building a UML/OCL-based metamodeling interface for
the Abstract Data Model used in the AsmL specification of the semantic unit.
One possible solution is to define a UML/OCL metamodel that captures the
abstract syntax of the generic AsmL data structures. The other solution is to
construct a metamodel that captures only the exact syntax of the AsmL Ab-
stract Data Model of a particular semantic unit. Each solution has its own ad-
vantages and disadvantages. In the first solution, different semantic units can
share the same metamodel and the same AsmL generator can be used to gen-
erate the data model in the native AsmL syntax. The disadvantage is that the
model transformation rules and the AsmL specification generator are more com-
plicated. Figure 2 shows a simplified version of the metamodel of generic AsmL
data structures as it appears in the GME metamodeling environment. In the
second solution, a new metamodel needs to be constructed for different semantic
units, but the transformation rules are simpler and more understandable. Since
the metamodel construction is easier compared with the specification of model
transformation rules, we selected the second solution in our current work. We
will present a metamodel example using this approach in section 4.4.

The MA : A → Ai semantic anchoring is specified by using the Unified Model
Transformation (UMT) language of the GReAT tool suite [23]. UMT itself is a

Fig. 2. Metamodel for a Set of AsmL Data Structures

120 K. Chen et al.

DSML and the transformation MA can be specified graphically using the GME
tool. The GReAT tool uses GME and allows users to specify model-to-model
transformation algorithms as graph transformation rules between metamodels.
The transformation rules between the source and the target metamodels form
the semantic anchoring specifications of a DSML. The GReAT engine can ex-
ecute these transformation rules and transform any allowed domain model to
an AsmL model stored in an XML format. Then the AsmL specification gen-
erator parses the XML file, performs specification rewriting and generates data
model in the native AsmL syntax. Note that UMT provides designers with cer-
tain modeling constructs (e.g. ”any match”) to specify non-deterministic graph
transformation algorithms. However, we can always achieve a unique semantic
anchoring result by using only the UMT modeling constructs that do not cause
the non-determinism.

4 Semantic Anchoring Case Study: FSM Domain in
Ptolemy II

We have applied the semantic anchoring method and tool suite to design several
DSML-s, including one patterned after the finite state machine (FSM) domain
in Ptolemy II [5], the MATLAB Stateflow [20], and the IF timed automata based
modeling language [15]. The detailed implementation can be downloaded from
[3]. We use the FSM domain from Ptolemy II as a case study to illustrate the
process described above.

4.1 The FSM Domain in Ptolemy

The Ptolemy FSM domain was proposed by Edward Lee with the name *charts
[10] in 1999. It allows the composition of hierarchical FSMs with a variety of
concurrency models. For simplicity, we define a DSML called the FSM Modeling
Language (FML) which only supports Ptolemy-style hierarchical FSMs. For a
detailed description of *charts and the hierarchical FSMs in Ptolemy II, readers
may refer to [5,10].

4.2 The Abstract Syntax Definition for FML

Figure 3 shows a UML class diagram for the FML metamodel as represented
in GME. The classes in the UML class diagram define the domain modeling
concepts. For example, the State class denotes the FSM domain concept of state.
Instances of the State class can be created in a domain model to represent the
states of a specific FSM. Note that the State class is hierarchical: each State
object can contain another state machine as a child in the hierarchy.

A set of OCL constraints is added to the UML class diagram to specify well-
formedness rules. For example, the constraint,
self.parts(State)→size>0 implies
self.parts(State)→select(s:State|s.initial)→size=1,

Semantic Anchoring with Model Transformations 121

Fig. 3. A UML Class Diagram for the FML Metamodel

is attached to the FSM class. It specifies that if a FSM object has child states,
exactly one child state must be the initial state. This is a constraint in Ptolemy
II FSM domain.

Visualizations for instances of classes also need to be specified in the meta-
model, so that an icon in a domain model will denote an instance of the cor-
responding class in the metamodel. In GME, this is usually done by setting a
metamodel class’s ”Icon” attribute to the name of the desired bitmap.

4.3 Semantic Unit Specifications for FML

An appropriate semantic unit for FML should be generic enough to express
the behavior of all syntactically correct FSMs. Since our purpose in this paper
is restricted to demonstrate the key steps in semantic anchoring, we do not
investigate the problem of identifying a generic semantic unit for hierarchical
state machines. We simply define a semantic unit, which is rich enough for FML.

The semantic unit specification includes two parts: an Abstract Data Model
and a Model Interpreter defined as operational rules on the data structures.
Whenever we have a domain model in AsmL (which is a specific instance of the
Abstract Data Model), this domain model and the operational rules compose
an abstract state machine, which gives the model semantics. The AsmL tools
can simulate its behavior, perform the test case generation or perform model
checking. Since the size of the full semantic unit specification is substantial, we
can only show a part of the specifications together with some short explanations.
Interested readers can download the full specifications from [3].

Constructing Abstract Data Model for FML. In this step, we specify an
Abstract Data Model using AsmL data structures, which will correspond to the
semantically meaningful modeling constructs in FML. The Abstract Data Model

122 K. Chen et al.

does not need to capture every details of the FML modeling constructs, since
some of them are only semantically-redundant. The semantic anchoring (i.e.
the mapping between the FML metamodel and the Abstract Data Model) will
map the FML abstract syntax onto the AsmL data structures that we specify
below.

Event is defined as an AsmL abstract data type structure. It may consist
of one or more fields via the AsmL case construct. The keyword structure in
AsmL declares a new type of compound value. In AsmL, classes contain instance
variables and are the only way to share memory. Structures contain fields and do
not share memory. Note that each AsmL language construct has its mathematical
meaning in ASM. Readers can refer to [29] for their relationships. These fields
are model-dependent specializations of the semantic unit, which give meaning
to different types of events. The AsmL class FSM captures the top-level of
the hierarchical state machine. The field outputEvents is an AsmL sequence
recording the chronologically-ordered model events generated by the FSM. The
field initialState records the start state of a machine. The children field is an
AsmL set that records all state objects which are the top-level children of the
state machine.

State and Transition are defined as first-class types. Note that the variable
field initalState of the State class records the start state of any child machine
contained within a given State object. The initalState will be undefined whenever
a state has no child states. This possibility forces us to add the ? modifier to
express that the value of the field may be either a State instance or the AsmL
undef value. For a similar reason, we add the ? modifier after several other types
of variable fields.

Behavioral Semantics for FML. We are now ready to specify the behav-
ioral semantics for FML as operational rules, which can interpret the AsmL
data structures defined above. Due to the space limitation, we show only two
operational rules here.

Semantic Anchoring with Model Transformations 123

Top-Level FSM Operations. A FSM instance waits for input events. Whenever
an allowed input event arrives, the FSM instance reacts in a well-defined manner
by updating its data fields and activating enabled transitions. To avoid non-
determinism, the Ptolemy II FSM domain defined its own priority policy for
transitions, which supports both the hierarchical priority concept and preemptive
interrupt. The operational rule fsmReact specifies this reaction step-by-step.
Note that the AsmL keyword step introduces the next atomic step of the abstract
state machine in sequence. The operations specified within a given step all occur
simultaneously.

First, the rule determines the current state, which might be an initial state.
Next, it checks for enabled preemptive transitions from the current state. If one
exists, then the machine will take this transition and end the reaction. Otherwise,
the rule will first determine if the current state has any child states. If it does,
then the rule will invoke the child states of the current state. Next, it checks for
enabled non-preemptive transitions from the current state. If one exists, the rule
will take this transition and end this reaction. Otherwise, it will do nothing and
end this reaction.

Invoke Slaves. The operational rule invokeSlaves describes the operations re-
quired to invoke the child machine in a hierarchical state. The AsmL construct
require is used here to assert that this state should be a hierarchical state, and
it should have a start state in its child machine. The rule first determines the
active state in the child machine. The rest of this operational rule is the same
as the fsmReact rule. The similarity between the reactions of the top-level state
machine and any child machine facilitates the Ptolemy II style composition of
different models of computations.

124 K. Chen et al.

4.4 Semantic Anchoring Specifications for FML to the Semantic
Unit

Having the abstract syntax of FML and an appropriate semantic unit specified,
we are now ready to describe the semantic anchoring specifications for FML. We
use UMT, a language supported by the GReAT tool, to specify the model trans-
formation rules between the metamodel of FML (Figure 3) and the metamodel
for the semantic unit shown in Figure 4.

The semantic anchoring specifications in UMT consist of a sequence of model
transformation rules. Each rule is finally expressed using pattern graphs. A pat-
tern graph is defined using associated instances of the modeling constructs de-
fined in the source and destination metamodels. Objects in a pattern graph can
play three different roles as follows:

1. bind : Match object(s) in the graph.
2. delete: Match objects(s) in the graph, then, remove the matched object(s)

from the graph.
3. new : Create new objects(s) provided all of the objects marked Bind or Delete

in the pattern graph match successfully.

The execution of a model transformation rule involves matching each of its
constituent pattern objects having the roles bind or delete with objects in the
input and output domain model. If the pattern matching is successful, each
combination of matching objects from the domain models that correspond to
the pattern objects marked delete are deleted and each new domain objects that
correspond to the pattern objects marked new are created.

We give an overview of the model transformation algorithm with a short
explanation for selected role-blocks below. The transformation rule-set consists
of the following steps:

1. Start by locating the top-level state machine in the input FML model; create
an AsmL FSM object and set its attribute values appropriately.

Fig. 4. Metamodel Capturing AsmL Abstract Data Structures for FML

Semantic Anchoring with Model Transformations 125

2. Handle Events : Match the event definitions in the input model and create
the corresponding variants through the Case construct in Event.

3. Handle States : Navigate through the FML FSM object; map its child State
objects into instances of AsmL State class, and set their attribute values ap-
propriately. Since the State in FML has a hierarchical structure, the trans-
formation algorithm needs to include a loop to navigate the hierarchy of
State objects.

4. Handle Transition: Navigate the hierarchy of the input model; create an
AsmL Transition object for each matched FML Transition object and set
its attribute values appropriately.

Figure 5 shows the top-level transformation rule that consists of a sequence
of sub-rules. These sub-rules are linked together through ports within the rule
boxes. The connections represent the sequential flow of domain objects to and
from rules. The ports FSMIn, and AsmLIn are input ports, while ports FSMOut
and AsmLOut are output ports. In the top-level rule, FSMIn and AsmLIn are
bound to the top-level state machine in the FSM model that is to be trans-
formed, and the root object (a singleton instance of AsmLADS) in the semantic
data model that is to be generated, respectively. The four key steps in the trans-
formation algorithm, as described above, are corresponding to the four sub-rules
contained in the top level rule.

The figure also shows a hierarchy, i.e., a sub-rule may be further decomposed
into a sequence of sub-rules. The CreateStateObjects rule outlines a graphical
algorithm which navigates the hierarchical structure of a state machine. It starts
from the root state, does the bread-first navigation to visit all child state objects
and creates corresponding AsmL State objects.

Figure 6 shows the SetAttributes rule. This rule sets the attribute values for
the newly created AsmL State object. First, the sub-rule SetInitialState checks
whether the current FML State object is a hierarchical state and has a start
state. If it has a start state, set the value of the attribute initialState to this start
state. Otherwise set the value to null. Then, the sub-rule SetSlaves searches for
all hierarchically-contained child states in the current state and adds them as
members into the attribute Slave whose type is a set. Finally, the transitions out

Fig. 5. Top-level model transformation rule

126 K. Chen et al.

Fig. 6. Model Transformation Rule: SetAttributes

Fig. 7. Model Transition Rule: SetInitialState

Fig. 8. Model Transition Rule: CreateChildStateObject

from the current state are added as members to the attribute OutTransitions by
the sub-rule SetOutTransitions.

The final contents of model transformation rules are pattern graphs that
are specified in UML class diagrams. Figure 7 shows a part of the SetInitial-
State rule, which is a pattern graph. This rule features a GReAT Guard code
block and a GReAT AttributeMapping code block. This rule is executed only

Semantic Anchoring with Model Transformations 127

if the graph elements match and the Guard condition evaluates to true. The
AttributeMapping block includes code for reading and writing object attributes.

The CreateChildStateObejct rule, shown in Figure 8, creates a new AsmL
State object when a FML child State object is matched. It also enables the
hierarchy navigation. Through a loop specified in the CreateStateObjects rule
(Figure 5), the child State object output by the Child port will come back as an
input object to the Parent port.

In the semantic anchoring process, the GReAT engine takes a legal FML
domain model, executes the model transformation rules and generates an AsmL

Fig. 9. A Hierarchical FSM model: ComputerStatus

Fig. 10. Part of the AsmL Data Model Generated from the ComputerStatus Model

128 K. Chen et al.

data model. As an example, we design a simple hierarchical FSM model in the
GME modeling environment (Figure 9), which simulates the status of a com-
puter. An XML file storing the AsmL data model is generated through the se-
mantic anchoring process. We developed an AsmL specification generator, which
can parse this XML file and generate the data model in native AsmL syntax as
shown in Figure 10. The newly created AsmL data model plus the previously-
defined AsmL semantic domain specifications compose an abstract state machine
that gives the semantics for the FSM model ComputerStatus. With these speci-
fications, the AsmL tools can simulate the behavior, do the test case generation
and model checks. For more information about the AsmL supported analysis,
see [1].

5 Conclusion and Future Work

This paper proposes a rapid and formal DSML design methodology, which in-
tegrates the semantic anchoring method and the metamodeling process. As the
example showed, combining operational specification of semantic units with the
transformational specification of DSML-s has the potential for improving signif-
icantly the precision of DSML specifications. We expect that substantial further
effort is required to identify the appropriate set of semantic units and the best
formal framework, which is general enough to cover a broad range of models
of computations and can integrate both operational and denotational semantic
specifications. We are now working on specifying a semantic unit that can cap-
ture the common semantics for varied real-time system modeling languages. An
interesting area for further research is use cases for semantic units. This may in-
clude the automatic generation of model translators that confirm the operational
semantic captured in the semantic unit and offer semantically well founded tool
integration and tool verification technology.

References

1. The Abstract State Machine Language. www.research.microsoft.com/fse/asml.
2. Graph Rewriting and Transformation. www.isis.vanderbilt.edu/Projects/

mobies.
3. Link for semantic anchoring tool suite. www.isis.vanderbilt.edu/SAT.
4. The Generic Modeling Environment: GME. www.isis.vanderbilt.edu/Projects/

gme.
5. The Ptolemy II. www.ptolemy.eecs.berkeley.edu/ptolemyII.
6. ITU-T recommendation Z.100 annex F: SDL formal semantics definition. Interna-

tional Telecommunication Union, Geneva, 2000.
7. OMG unified modeling language specification version 1.5. Object Management

Group document, 2003. formal/03-03-01.
8. UML 2.0 OCL final adopted specification. Object Management Group document,

2003. ptc/03-10-14.
9. A. Maggiolo-Schettini and A. Peron. Semantics of full statecharts based on graph

rewriting. In LNCS, pages 265–279. Springer-Verlag, 1994.

Semantic Anchoring with Model Transformations 129

10. Alain GiraltB, Bilung Lee and E. Lee. Hierarchical finite state machines with
multiple concurrency models. IEEE Transactions On Computer-aided Design Of
Integrated Circuits And Systems, 18(6), 1999.

11. R. Alur and T. A. Henzinger. Reactive modules. Form. Methods Syst. Des.,
15(1):7–48, 1999.

12. E. Boerger and R. Staerk. Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer, 2003.

13. E. Borger, U. Glasser, and W. Muller. Formal Semantics for VHDL, chapter Formal
Definition of an Abstract VHDL’93 Simulator by EA-Machines, pages 107–139.
Kluwer Academic Publishers, 1995.

14. E. Borger and W. Schulte. A programmer friendly modular definition of the se-
mantics of java. In Formal Syntax and Semantics of Java, LNCS, volume 1523,
pages 353–404. Springer-Verlag, 1999.

15. M. Bozga, S. Graf, I. Ober, and J. Sifakis. Tools and applications II: The IF toolset.
In Proceedings of SFM’04, LNCS, volume 3185. Springer-Verlag, 2004.

16. A. Diller. Z: an Introduction to Formal Methods. John Wiley & Sons Ltd., second
edition, 1994.

17. U. Glasser and R. Karges. Abstract state machines semantics of SDL. Journal of
University Computer Science, 3(12):1382–1414, 1997.

18. Y. Gurevich. Specification and Validation Methods, chapter Evolving Algebras
1993: Lipari Guide, pages 9–36. Oxford University Press.

19. Y. Gurevich and J. Huggins. The semantics of the C programming languages. In
Computer Science Logic’92, pages 274–308. Springer-Verlag, 1993.

20. G. Hamon and J. Rushby. An operational semantics for stateflow. In Fundamental
Approaches to Software Engineering: 7th International Conference, pages 229–243.
Springer-Verlag, 2004.

21. D. Harel and B. Rumpe. Meaningful modeling: What’s the semantics of ”seman-
tics”? IEEE Computer, 37(10), 2004.

22. Kai Chen, J. Sztipanovits, S. Neema, M. Emerson and S. Abdelwahed. Toward a
semantic anchoring infrastructure for domain-specific modeling languages. In 5th
ACM International Conference on Embedded Software (EMSOFT’05), 2005.

23. G. Karsai, A. Agrawal, and F. Shi. On the use of graph transformations for the
formal specification of model interpreters. Journal of Universal Computer Science,
9(11):1296–1321, 2003.

24. G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-integrated develop-
ment of embedded software. In Proceedings of the IEEE, volume 91, pages 145–164,
2003.

25. A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J. Sprinkle, and
G. Karsai. Composing domain-specific design environments. IEEE Computer,
34(11):44–51, 2001.

26. E. Lee and A. Sangiovanni-Vincentelli. A denotational framework for comparing
models of computation. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 17(12), 1998.

27. J. Sztipanovits and G. Karsai. Model-integrated computing. IEEE Computer,
30(4):110–111, 1997.

28. T. Clark, A. Evans, S. Kent and P. Sammut. The MMF approach to engineering
object-oriented design languages. In Workshop on Language Descriptions, Tools
and Applications, 2001.

29. Yuri Gurevich, Benjamin Rossman and W. Schulte. Semantics essence of AsmL,
March 2004. MSR-TR-2004-27.

On Some Properties of Parameterized

Model Application

Alexis Muller1, Olivier Caron1, Bernard Carré1, and Gilles Vanwormhoudt1,2

1 Laboratoire d’Informatique Fondamentale de Lille,
UMR CNRS 8022 - INRIA Jacquard Project,

Université des Sciences et Technologies de Lille,
59655 Villeneuve d’Ascq cedex, France

2 GET/ENIC Telecom Lille I
{mullera, carono, carre, vanwormh}@lifl.fr

Abstract. Designing Information Systems (IS) is a complex task that
involves numerous aspects, being functional or not. A way to achieve
this is to consider models as generic pieces of design in order to build a
complete IS. Model composition provides a way to combine models and
model parameterization allows the reuse of models in multiple contexts.
In this paper, we focus on the use of parameterized models in model
driven engineering processes. We outline the needs to compose param-
eterized models and apply them to a system according to alternative
and coherent ordering rules. Such building processes raise open issues:
Is the result influenced by the order of applications ? Can we compose
independent parameterized models ? Is it possible to define composition
chains and find equivalent ones that express the same resulting model ?
These requirements are formalized through an apply operator. This op-
erator guarantees properties which can help in the formulation of model
driven system construction methodologies. Finally, we briefly describe a
modelling tool that supports processes based on this operator.

1 Introduction

Illustrated by new approaches of software development [13,1,12], models are
gaining more and more importance in the software development lifecycle. There
is a growing need to use them as concrete artefacts [11] through operations like
projections, translations or constructions. Projection techniques mainly aim to
transpose a model from a technological space (UML for example) to another
one (like EJB or CORBA). Translation techniques allow to express the same
model in another language (UML to XMI for example). Finally, construction
techniques ambition is to produce new models from existing ones.

Among these construction techniques, composition techniques, which permit
the building a model from a set of smaller ones, are widely used. Indeed, in
spite of new development approaches, systems and thus their models become
more complex and bigger. It is thus necessary to deal with this complexity by
providing the decomposition of such systems and their models.

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 130–144, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Some Properties of Parameterized Model Application 131

Building new systems by composing prefabricated and validated models pro-
mises a quicker design of more reliable systems. It is possible to identify in
any information system some concerns that should be applied to other systems
[8,10,14]. Nevertheless, their models are made according to a particular system
so that they are hard to reuse in order to build new systems. The design of
reusable models calls for the usage of some sort of parameterized models or model
templates [10,9,18,19]. As far as standardization is concerned, UML2 defines
the notion of template [2] which allows representing such generic models as
packages parameterized by model elements. In [5], we have formalized the UML2
template binding relationship and introduced OCL rules for checking the correct
matching between the required model (specified in the template signature) and
a model constructed using this template. This relationship is independent from
any construction process.

In this paper, we focus on how to define model driven engineering construc-
tion processes with such parameterized models. This needs to express complex
compositions of parameterized models which must be applied in a coherent way.
Such building processes raise open issues: Is the result influenced by the appli-
cation order? Can we compose independent parameterized models? Is it possible
to define composition chains and find equivalent ones that express the same
resulting model?

To support such processes, we introduce an operator (apply) to express the
application of a template to an existing model. This operator allows to specify
how to obtain a model from an existing one by the application and composition
of generic ones. It is interesting to note that generic models are models so that
template applications can be combined to design richer ones. The next section
shows the needs for such an operator and specify its expected properties. Then
the third section presents a formalization of its semantics and proves these prop-
erties. Section 4 discusses related works about composition and parameterization
of models. Finally, we briefly describe a modelling tool that supports processes
based on this operator and provides strategies to transform composition of pa-
rameterized models into platform specific models before concluding.

2 Applying Parameterized Models

It is possible to use UML 2 template packages to represent parameterized models.
For example, let us consider a set of parameterized models designed for resource
management systems (inspired from [8] and [21]) where each model provides a
useful function such as searching, stock management and resource allocation.

Figure 1 shows a model offering resource management functionalities related
to a stock (add, delete, and transfer operations). This model is specified by a tem-
plate package owning a class diagram providing these functionalities. Elements
required for its usage are exposed in the template signature. In our example, the
required elements are the classes Stock and Resource, some of their correspond-
ing properties identifier and ref, and the association in. This element set forms
a unique parameter corresponding to the model structure required by the tem-

132 A. Muller et al.

Stock

Resource

0..*

identifier
capacity

StockManager

ref
add(Resource r)
delete(Resource r)

in

Stock, Resource : Class,
identifier, ref : Property
in : Association

transfer(Stock l)

Fig. 1. Resource Management Template

Location

findAll(): Resource[]

Resource

0..*

Search

name
address

key
date

location(): Location
findByKey(key): Resource
findByDate(date): Resource[]

Location, Resource : Class,
name, address, key, date : Property
at : Association

at

Fig. 2. Search Template

plate to be applied. The other elements correspond to the specific elements of
the functionality defined by the template. Those specific elements will be added
to which the template will be applied.

Figures 2, 3, and 4 respectively illustrate generic models for searching, re-
source allocation, and counting. These template examples show that elements of
a required model can be either properties, operations, associations or classes.

To illustrate the use of these templates, let us take the example of a car hiring
system. Figure 5 shows the primary model of this system. This base describes the
structure of the different domain classes used by the system (here Car, Agency,
and Client).

The desired system must be able to search a specific car or a specific client,
and also to manage the different car allocations. To achieve this, we will use the
generic models described before.

Product Allocation

Client

nbAssignment(): int
0..* 0..*

to

Allocation

code

idnbAssignment(): int
free(date begin,
 date end): bool

assign_date
due_date
return_date

Product,
Client : Class,
code,
id : Property

cost () : float

Fig. 3. Resource Allocation Template

On Some Properties of Parameterized Model Application 133

Element Counter

0..*

Counting

value () : float total() : float

Element, Counter : Class,
value : Operation,
at : Association

at

Fig. 4. Counting Template

Agency
Client

0..*

name
address

Base

name
birthday
phone
address

Car

number
date
constructor
model

0..*
ac

cli

Fig. 5. The Base System

Thus, we need to specify an assembly of these models. For that, we intro-
duce a parameterized model application operator called apply. Figure 6 shows
how the Stock Manager template is applied to the base system. The apply oper-
ator is specified via an UML stereotyped dependency <<apply>> between the
template source model and the system target model which establishes correspon-
dence relationships between their respective model elements. This dependency
includes the substitution of formal parameters (source model elements) by effec-
tive parameters (target model elements). The effective parameters must form a
model that matches the required model of the template.

A formulation of a resulting system where corresponding elements are linked
by <<trace>> dependencies1 is shown in Figure 7. Our formulation does not
impose any mapping for these <<trace>> dependencies. It is possible, for ex-
ample, to merge linked elements or to use split representation mechanisms. We
already have studied some of these targeting strategies [16,6].

These sketches show how to obtain an extended model from an existing one by
the application of some parameterized models. To gain more reuse, composition
of parameterized models should be supported too, in order to design complex
generic models from simpler ones. This facility is illustrated in Figure 8(a) where

1 The <<trace>> dependency is a standard UML2 relationship. It is used to link
elements that represent the same concept.

134 A. Muller et al.

<<apply>>
< Stock -> Agency,
Resource -> Car,
identifier -> name,
ref -> number
in -> ac >

Stock

Resource

0..*

identifier
capacity

StockManager

ref

add(Resource r)
delete(Resource r)

in

Stock, Resource : Class,
identifier, ref : Property
in : Association

transfer(Stock l)

Agency
Client

0..*

name
address

Base

name
birthday
phone
address

Car

number
date
constructor
model

0..*
ac

cli

Fig. 6. Applying Stock Manager to Car Hiring System

the Search template applied to the StockManager template allows to build a
new generic model (see Figure 8(b)). The set of parameters of this new model is
determined by the union of the target model parameters (from StockManager)
and the source model unsubstituted parameters (address and date from Search).
Figure 8 also emphasizes the ability to apply parameter elements of the source
model to parameter elements of the target model. In this case, the first ones (for
example Location) are substituted by the second ones (Stock) in the resulting
template.

The apply operator must support different construction processes. For the
construction of complex systems from a set of parameterized models, it should
be possible to elaborate sequences of applications and guarantees consistency
properties of the resulting system. We want to exhibit how far it is possible to
build the same system model using alternative composition sequences of param-
eterized models.

For example, Figure 9 shows the design of a complex car hiring system by
composing many generic models to the base model shown in Figure 5. This
example will serve to illustrate some needs for such sequences. A first need

Stock

Resource

0..*

identifier
capacity

ref

add(Resource r)
delete(Resource r)

in

transfer(Stock l)

Agency
Client

0..*

name
address

name
birthday
phone
address

Car

number
date
constructor
model

0..*

ac

cli

<<trace>>

<<trace>>

<<trace>>

<<trace>>

<<trace>>

BaseManager

Fig. 7. Base System with Car Management Functionality

On Some Properties of Parameterized Model Application 135

StockManagerSearch
Location,
Resource : Class,
name, address,
key, date : Property
at : Association

Stock : Class
Resource : Class
identifier : Property
ref : Property
in : Association

<<apply>>
< Location -> Stock,
Resource -> Resource,
name -> identifier,
key -> ref,
at -> in >

Stock

Resource

0..*

identifier
address
capacity

SearchStockManager

ref
date

add(Resource r)
delete(Resource r)
findAll() : Resource[]

in

Stock, Resource : Class
identifier, ref,
address, date : Property
in : Association

transfer(Stock l)
location() : Stock
findByKey(key) : Resource
findByDate(date) : Resource[]

(a)

(b)

Fig. 8. Template to Template Application

is the ability to apply multiple parameterized model to the same base. When
such applications are independent, their evaluation order must not influence the
result. It is the case of Search and Allocation applied to the base.

Another requirement is to express chains of application. Such a chain can be
used to apply complex parameterized model resulting from simpler ones. This is
illustrated by the application of the Search template to the StockManager tem-
plate, explained previously (Figure 8) which produces the SearchStockManager
model. This new model is then used to add stock management and search func-
tionalities on cars to our system. Note that an alternative construction chain
would be to apply the StockManager template to the base first, and then the
Search template to the resulting model. Both chains would produce the same
result. We will show this property in the following section. Another example
is the application chain Counting to Allocation to Base. Alternative evaluation
order of this chain, first Counting to Allocation then the resulting parameterized
model to base or first Allocation to Base then Counting to the enriched Base,
produce exactly the same result.

In order to provide consistency rules on such building processes, we need a
better formalization of parameterized model application. It is the goal of the
following section.

136 A. Muller et al.

StockManagerSearch
Location,
Resource : Class,
name, address,
key, date : Property
at : Association

Stock, Resource : Class,
identifier : Property
ref : Property
in : Association

<<apply>>
< Location -> Stock,
Resource -> Resource,
name -> identifier,
key -> ref,
at -> in >

<<apply>>
< Stock -> Agency,
Resource -> Car,
identifier -> name,
ref -> number
in -> ac,
address -> address,
date -> date >

<<apply>>
< Product -> Car,
Client -> Client,
code -> number,
id -> name >

Base

Search
Location,
Resource : Class,
name, address,
key, date : Property
at : Association

<<apply>>
< Location -> Agency,
Resource -> Client,
name -> name,
key -> name,
date -> birthday,
at -> cli >

Allocation

Product,
Client : Class,
code,
id : Property

Counting

Element,
Counter : Class,
value : Operation
at : Association

<<apply>>
< Element -> Allocation,
 Counter -> Client,
 value -> cost,
 at -> reference >

Stock, Resource : Class
identifier : Property
ref : Property
in : Association
address, date : Property

SearchStockManager

Fig. 9. Car Hiring System

3 Formalization of Parameterized Model Application

The apply operator allows to compute a model from the application of a param-
eterized source one to a target one.

The formalization precises the computation of the resulting model as a set
of elements and a set of correspondence relationships between the source model
and the target model. These correspondence relationships link elements that
represent the same entity2. After some definitions, we will state properties of
this operator which guarantee the correctness of the previous practices.

3.1 Definitions

Models are considered as sets of model elements that can be classes, attributes,
operations or associations. We assume E to be the set of all these model elements.
In case of parameterized models, a model holds a set of parameter elements. As
mentioned above, apply will construct models that establish correspondence rela-

2 As the UML2 <<trace>> dependency does.

On Some Properties of Parameterized Model Application 137

tionships which are pairs of model elements. The following definition generalizes
all these kinds of models.

Definition 1. A model A is defined by a 3-tuple (EA, PA, VA). EA is a set of
model elements. PA ⊂ EA is a set of parameters. VA is a set of correspondence
relationships defined on (EA × EA) .

Note that in case of models which are not parameterized PA is empty, and
in case of base models VA is empty.

Definition 2. Two models are equal if and only if they contain the same set of
elements, they own the same set of parameters and they have the same set of
correspondence relationships.

Let two models Z and R, Z = R ⇔

VZ = VR

EZ = ER

PZ = PR

Based on these definitions we specify the apply operator as follows.

Definition 3. We write R = B −→
s

A the application of a parameterized model
B to a model A according to a substitution set s.

We note FPs the set of formal parameters and EPs the set of effective pa-
rameters of s. The resulting model R is constructed according to the following

definition rules: R = B −→
s

A ⇒ R =

VR = VB ∪ s ∪ VA

ER = EB ∪ EA

PR = (PB \ FPs) ∪ PA

Source and target models of a parameterized application cannot share ele-
ments: EA ∩ EB = ∅.
Formal parameters are elements of the source model: FPs ⊆ PB.
Effective parameters are elements of the target model: EPs ⊆ EA.

Note that according to these definitions, parameterized models can be applied
to any kind of models, parameterized (see Figure 8) or not (see Figure 6). In the
case of parameterized target models, the resulting model is itself parameterized.
Recall that resulting parameters are those of the target model plus unsubstituted
source model ones. The computation formula of the resulting parameter set (PR)
formalizes this.

3.2 Properties

Assuming these definitions, it is possible to demonstrate a set of properties that
guarantees the correctness of application chains and their alternative ordering
capacities.

Property 1. When applying two models to a third one, the order of both appli-
cations does not influence the result.

Let two substitutions set s, s′ such as EPs ⊆ EA and EPs′ ⊆ EA. Then we
have
B −→

s
(C −→

s′
A) = C −→

s′
(B −→

s
A).

138 A. Muller et al.

Thanks to this property, it is not necessary to express in which order param-
eterized models must be applied. This is shown Figure 9. Anyhow Search and
Allocation are applied to the base, the resulting model is the same.

Proof. Let Z = B −→
s

(C −→
s′

A),

Z = B −→
s

Z ′ with Z ′ = (C −→
s′

A) ⇒ Z ′ =

VZ′ = VC ∪ s′ ∪ VA

EZ′ = EC ∪ EA

PZ′ = (PC \ FPs′) ∪ PA

⇒ Z =

VZ = VB ∪ s ∪ VZ′

EZ = EB ∪ EZ′

PZ = (PB \ FPs) ∪ PZ′

⇒ Z =

VZ = VB ∪ s ∪ VC ∪ s′ ∪ VA

EZ = EB ∪ EC ∪ EA

PZ = (PB \ FPs) ∪ (PC \ FPs′) ∪ PA

Let Y = C −→
s′ (B −→

s
A),

Y = C −→
s′

Y ′ with Y ′ = (B −→
s

A) ⇒ Y ′ =

VY ′ = VB ∪ s ∪ VA

EY ′ = EB ∪ EA

PY ′ = (PB \ FPs) ∪ PA

⇒ Y =

VY = VC ∪ s′ ∪ VY ′

EY = EC ∪ EY ′

PY = (PC \ FPs′) ∪ PY ′

⇒ Y =

VY = VC ∪ s′ ∪ VB ∪ s ∪ VA

EY = EC ∪ EB ∪ EA

PY = (PC \ FPs′) ∪ (PB \ FPs) ∪ PA

As a result, we have Z = Y ⇒ B −→
s

(C −→
s′

A) = C −→
s′

(B −→
s

A)

Property 2. For any sequence B −→
s1

(C −→
s′
1

A), there exists a sequence

(B −→
s2

C) −→
s′
2

A, that produces the same result, such as s2 = s1 \ ((EA×E)∩s1)

and s′2 = s′1 ∪ ((EA × E) ∩ s1).

Figure 10 shows the application of the StockManager template to the Base
then the application of Search to the result. This is an alternative construction
chain of the application of Search to StockManager then to the Base. This latter
construction is equivalent to applying the complex template SearchStockMan-
ager to the Base. We can verify that its parameter sets are conformant to this
property.

Parameter elements of Search applied to elements of the Base in Figure 10
(address and date) are not concerned by the direct application (Figure 8) of
Search to StockManager. As result, they are transfered to the application of
SearchStockManager to the Base in Figure 9.

In order to prove this property we need the following intermediate property
on parameter substitutions:

On Some Properties of Parameterized Model Application 139

StockManager

Search
<<apply>>
< Location -> Stock,
Resource -> Resource,
name -> identifier,
key -> ref,
at -> in,
address -> address,
date -> date >

<<apply>>
< Stock -> Agency,
Resource -> Car,
identifier -> name,
ref -> number
in -> ac >

Base

Fig. 10. An alternative to the application of SearchStockManager

Property 3. A parameter can not be substituted more than one time. Once a
parameter is substituted, it is no more a parameter in the resulting model.
(B −→

s1
C) −→

s2
A ⇒ FPs1 ∩ FPs2 = ∅.

Proof. Let (B −→
s1

C) −→
s2

A = R −→
s2

A with R = B −→
s1

C.

By definition, PR = (PB \ FPs1) ∪ PC or FPs1 ⊆ PB and PB ∩ PC = ∅

(EB ∩ EA = ∅, PB ⊂ EB and PA ⊂ EA) then FPs1 ∩ PC = ∅.

⇒ PR = (PB \ FPs1) ∪ (PC \ FPs1)
= (PB ∪ PC) \ FPs1

⇒ PR ∩ FPs1 = ∅ and by definition FPs2 ⊆ PR so FPs1 ∩ FPs2 = ∅.

We can now prove the property 2.

Proof. Let R = B −→
s1

(C −→
s′
1

A),

R =

VR = VB ∪ s1 ∪ VC ∪ s′1 ∪ VA

ER = EB ∪ EC ∪ EA

PR = (PB \ FPs1) ∪ (PC \ FPs′
1
) ∪ PA

According to property 3:
PB ∩ PC = ∅ and FPs1 ∩ FPs′

1
= ∅ ⇒ PR = (PB ∪ PC ∪ PA) \ (FPs1 ∪ FPs′

1
)

Let R′ = (B −→
s2

C) −→
s′
2

A, R′ =

VR′ = VB ∪ s2 ∪ VC ∪ s′2 ∪ VA

ER′ = EB ∪ EC ∪ EA

PR′ = ((PB \ FPs2) ∪ PC) \ FPs′
2
∪ PA

According to property 3:
PB ∩ PC = ∅ and FPs2 ∩ FPs′

2
= ∅ ⇒ PR = (PB ∪ PC ∪ PA) \ (FPs2 ∪ FPs′

2
).

140 A. Muller et al.

Then we get R = R′ if s1 ∪ s′1 = s2 ∪ s′2
Since s2 = s1 \ ((EA × E) ∩ s1) and s′2 = s′1 ∪ ((EA × E) ∩ s1),

s2 ∪ s′2 = s1 \ ((EA × E) ∩ s1) ∪ s′1 ∪ ((EA × E) ∩ s1)
= s1 ∪ s′1 ∪ ((EA × E) ∩ s1) \ ((EA × E) ∩ s1)
= s1 ∪ s′1

A particular case of property 2 stands when, for each application in the chain,
all parameters of the source model are substituted with elements of its target
model. In this case, any parameterized model can be directly applied to the next
model within the application chain. For such application chains, the evaluation
order does not influence the result. This is formalized by the next property.

Property 4. Let B −→
s

C −→
s′

A an application chain such as EPs ⊆ EC , it can

be evaluated either as B −→
s

(C −→
s′

A), or as (B −→
s

C) −→
s′

A.

Proof. According to property 2:

let B −→
s

(C −→
s′

A) = (B −→
s2

C) −→
s′
2

A with
{

s2 = s \ ((EA × E) ∩ s)
s′2 = s′ ∪ ((EA × E) ∩ s)

Since EPs ⊆ EC , EPs∩EA = ∅ (by definition EC ∩EA = ∅). From this, we
deduce that (EA × E)∩ s = ∅ (it can not exist x such as x ⊆ EPs and x ⊆ EA)

⇒
{

s2 = s
s′2 = s′

Which proves the property.

This last property allows, in Figure 9, to apply Counting to Allocation to
Base, without specifying any evaluation order.

4 Related Work

Approaches allowing the decomposition of a system following its functional or
technical dimensions aim to simplify the design of information systems. How-
ever to form the global system all the dimensions must be assembled. Various
approaches exist to express this assembly.

Examples of such decomposition techniques are the Subject-Oriented Design
(SOD) approach [8] or the Catalysis approach [10]. The SOD approach proposes
the design of an independent model for each concern of the system. These models
are called Subjects and take the form of a standard UML package. A new type of
relation (CompositionRelationship) is proposed to compose subjects and express
the composition of their elements. A criterion of correspondence can be attached
with this relation to indicate whether elements of the same name constituting
the composite represents the same entity (default) or not.

The Catalysis approach proposes to decompose the design of systems in hori-
zontal and vertical slices. Vertical slices correspond to a functional decomposition
of the system from the points of view of various categories of users. Horizontal

On Some Properties of Parameterized Model Application 141

slices give a decomposition according to the technical concerns of the system.
In this approach, packages are also used to represent the various slices of the
system.

These structuring techniques only support the assembly of models designed
by analysis of a particular system. They are not suitable for the building of
new systems from reusable models [15]. In the following, some approaches have
addressed this issue by introducing parameterization techniques.

In [14] we have proposed to consider views as a decomposition technique of
systems and their models. A view captures some coherent functional aspect that
can be added to a system. Each view is represented as a UML package which
contains a model of the functional aspect. The application of such an aspect
model to a base model is done by a connection mechanism, which allows to
target view model elements to the base ones. The work presented in this paper
generalizes this mechanism through a parameterized application process.

The Catalysis approach proposes specific constructions in order to design
reusable packages: model frameworks. Those are represented using template
packages that are abstract packages containing some elements that must be
substituted for being concretized and used. This set of substitutions is defined
by a set of element pairs (required element/system element). The Theme ap-
proach [9,18] proposes an analysis method of the system (Theme/Doc) which
helps in the identification of relations among various functionalities, and a nota-
tion (Theme/UML) which allows the formulation of these various functionalities
as template packages called Themes. A relation (named bind) is used to express
the parameterized composition of two Themes. In this paper, we focus on pa-
rameterized composition chains and their ordering properties. We have focused
on structure diagrams. It will be useful to evaluate this formalization on dy-
namic model elements such as sequence diagrams of Theme or parameterized
collaboration diagrams [20].

France et al. describe an Aspect Oriented Modelling technique in which as-
pect and primary models are expressed using UML [17,19]. Aspects are specified
by parameterized models. Like SOD, elements of same type and same name are
merged to form a single one in the composed model. In order to allow compo-
sition of generic aspects (in which elements are named differently as primary
model elements) they defined a set of composition directives that can be used
to modify the default composition procedure. They also provide directives to
state the order of composition between aspects and the primary model. In this
paper, we study how far composition orderings are equivalent. These properties
are particularly useful in the case of complex composition processes where pa-
rameterized models could be composed through alternative composition chains.

Though, our definitions do not impose any targeting strategies, particularly
for the structuring of the resulting modelling packages and the realisation of
the parameters substitution process. It would be possible, for example, to apply
fusion or integration strategies. In this way, the semantic of our apply operator
differs from the UML2 merge relationship that defines new elements. It also
differs from the MOF combine relationship and the package extension techniques

142 A. Muller et al.

[7] that impose fusion semantic. Moreover, these relationships are not defined to
compose parameterized models.

5 Tool

In the context of MDA approach, we have developed a modelling tool based on
the Eclipse Modelling Framework and the UML2 Eclipse plug-in. The Eclipse
Modelling Framework is a Java meta-modelling framework that allow to create
models in a programmatic way or by a basic (non-graphical) editor. The UML2
Eclipse plug-in is defined by EMF and provides a set of Java classes to handle
UML2 models.

Our tool3 adds a graphical representation and allows defining generic models
as UML2 template packages at the PIM level. It provides the functionality of
composing these generic models and applying them in order to build a com-
plete system. Strategies to transform composition of parameterized models into
platform specific models are offered (see Figure 11).

SIAspect1 Aspect2

SI +Aspect1
+Aspect2

PatternX AOP

CORBA EJB JBoss/
AOP

Java

P
I
M

TARGETING
STRATEGIES

P
S
M

(1)

(2) (3)

UML to
Java

Fig. 11

The simple strategy (1) is to merge all generic models into a single one. Note
that this strategy can produce name clashes in the merged model which must be
resolved by the user. The resulting model is a standard object-oriented model
that can be translated in any object-oriented language (Java in our case). In order
to preserve genericity and traceability of our templates down to platform specific
models, we have explored two targeting strategies. For the first one (2), we have
defined some design patterns allowing to implement generic splited entities and
3 Available at http://www.lifl.fr/˜mullera/cocoamodeler

On Some Properties of Parameterized Model Application 143

experiment them on different platforms [16,6,3]. Our tool can generate IDL and
Java code for the CORBA platform according to these patterns. We also explored
an AOP targeting strategy (3). We have extended the JBoss/AOP framework
to support aspect entities and generate an XML descriptor for their weaving. It
is possible to select a targeting strategy specific to each application. The MDA
process described in [4] based on marked intermediate PIM is being integrated.

6 Conclusion

Several model driven approaches recognize templates, particularly in the UML
sphere, as a powerful technique to specify parameterized models and their usage
in the construction of whole system models. We have focused here on param-
eterized model application which allows to obtain an extended model from an
existing one. We have justified concretely and formally some properties which
guarantee the correctness of application chains and their alternative ordering
capacities.

The formalization is deliberately independent from any specific usage or ex-
isting methodologies. It would help in supporting model driven processes and
tools dedicated to systems construction by the application and composition of
prefabricated generic models. It also allows to combine generic models in order
to obtain richer ones.

All this work is integrated into a design tool based on the Eclipse Modeling
Framework and the Eclipse UML2 plug-in, from modeling to implementation-
level languages. It will give the ability to manage libraries (design, composition,
import,...) of parameterized models as standard UML2 templates. This will help
in building systems by applying parameterized models.

References

1. OMG Model-Driven Architecture Home Page,
http://www.omg.org/mda.

2. Auxiliary Constructs Templates, http://www.omg.org/docs/ptc/03-08-02.pdf,
pages 541-568. UML 2.0 Superstructure Specification, 2003.

3. O. Barais, A. Muller, and N. Pessemier. Extension de Fractal pour le sup-
port des vues au sein d’une architecture logicielle. In Objets Composants
et Modèles dans l’ingénierie des SI (OCM-SI 04), Biarritz, France, jun 2004.
http://inforsid2004.univ-pau.fr/AtelierOCMv1.htm.

4. X Blanc, O Caron, A Georgin, and A Muller. Transformation de modèles : d’un
modèle abstrait aux modèles ccm et ejb. In Langages, Modèles, Objets (LMO’04),
Lille, France, Mars 2004. Hermès Sciences.

5. O. Caron, B. Carré, A. Muller, and G. Vanwormhoudt. Formulation of UML 2
Template Binding in OCL. In Thomas Baar, Alfred Strohmeier, Ana Moreira, and
Stephen J. Mellor, editors, UML 2004 - The Unified Modeling Language. Model
Languages and Applications. 7th International Conference, Lisbon, Portugal, Oc-
tober 11-15, 2004, Proceedings, volume 3273 of LNCS, pages 27–40. Springer, Oc-
tober 2004.

144 A. Muller et al.

6. Olivier Caron, Bernard Carré, Alexis Muller, and Gilles Vanwormhoudt. Mise en
oeuvre d’aspects fonctionnels réutilisables par adaptation. In Première journée
Francophone sur le Développement de Logiciels par Aspects, JFDLPA 2004, Paris,
France, September 2004.

7. A Clark, A Evans, and S Kent. A Metamodel for Package Extension with Re-
naming. In H Hussmann J-M Jezequel and S Cook, editors, The Unified Modeling
Language 5th International Conference, Proceedings LNCS 2460, pages 305–320,
Dresden, Germany, September 2002.

8. S. Clarke. Extending standard UML with model composition semantics. In Science
of Computer Programming, Elsevier Science, volume 44, pages 71–100, 2002.

9. Siobhán Clarke and Robert J. Walker. Generic aspect-oriented design with
Theme/UML. In Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet
Akşit, editors, Aspect-Oriented Software Development, pages 425–458. Addison-
Wesley, Boston, 2005.

10. Desmond D’Souza and Alan Wills. Objects, Components and Frameworks With
UML: The Catalysis Approach. Addison-Wesley, 1999.

11. David S. Frankel. Model Driven Architecture: Applying MDA to Enterprise Com-
puting. Wiley, 2003.

12. Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools. Wiley,
2004.

13. S Kent. Model Driven Engineering. In Proceedings of IFM 2002, LNCS 2335, pages
286–298. Springer-Verlag, 2002.

14. A. Muller, O. Caron, B. Carré, and G. Vanwormhoudt. Réutilisation d’aspects
fonctionnels : des vues aux composants. In Langages et Modèles à Objets (LMO’03),
pages 241–255, Vannes, France, January 2003. Hermès Sciences.

15. Alexis Muller. Reusing Functional Aspects : From Composition to Parameter-
ization. In Aspect-Oriented Modeling Workshop, AOM 2004, Lisbon, Portugal,
October 2004.

16. Olivier Caron, Bernard Carré, Alexis Muller, and Gilles Vanwormhoudt. A Frame-
work for Supporting Views in Component Oriented Information Systems. In
Proceedings of International Conference on Object Oriented Information Systems
(OOIS’03), volume 2817 of LNCS, pages 164–178. Springer, September 2003.

17. Robert France and Geri Georg and Indrakshi Ray. Supporting Multi-Dimensional
Separation of Design Concerns. In AOSD Workshop on AOM: Aspect-Oriented
Modeling with UML, march 2003.

18. Siobhán Clarke and Robert J. Walker. Composition Patterns: An Approach to
Designing Reusable Aspects. In 23rd International Conference on Software Engi-
neering (ICSE), May 2001.

19. Greg Straw, Geri Georg, Eunjee Song, Sudipto Ghosh, Robert France, and
James M. Bieman. Model composition directives. In Thomas Baar, Alfred
Strohmeier, Ana Moreira, and Stephen J. Mellor, editors, UML 2004 - The Unified
Modeling Language. Model Languages and Applications. 7th International Confer-
ence, Lisbon, Portugal, October 11-15, 2004, Proceedings, volume 3273 of LNCS,
pages 84–97. Springer, 2004.

20. Gerson Sunyé, Alain Le Guennec, and Jean-Marc Jézéquel. Design patterns appli-
cation in UML. In E. Bertino, editor, Proceedings of ECOOP 2000, volume 1850
of LNCS, pages 44–62. Springer, 2000.

21. Alan Wills. Frameworks and component-based development. In Proceedings of In-
ternational Conference on Object Oriented Information Systems (OOIS’96), pages
413–431, 1996.

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 145 – 159, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Comparative Study of Metamodel Integration
and Interoperability in UML and Web Services

Athanasios Staikopoulos and Behzad Bordbar

School of Computer Science, University of Birmingham,
Birmingham, B15 2TT, UK

{B.Bordbar, A.Staikopoulos}@cs.bham.ac.uk

Abstract. The application of MDA to Web services has recently received con-
siderable attention. Similar to UML diagrams, Web services are specialised
languages each one targeting a specific aspect and functionality of the system.
By using multiple languages, it is possible to specify complete integrated mod-
els of the system, having structure, behaviour, communication and coordination
mechanisms. To benefit from MDA, Web service languages have to be repre-
sented as UML metamodels. In order to provide an overall view of the design
and inter-operations of the system with models, it is crucial to integrate their
UML metamodels. In this paper, we shall conduct a comparative study of the
metamodel integration in Web services and UML. Drawing on the lesson learnt
from the integration of Web services, a method of integration of UML meta-
models will be presented, which facilitates model transformations and supports
interoperability, inter-navigability and consistency across the integrated
domains.

1 Introduction

The Model Driven Architecture (MDA) [9] is an emergent technology for software
development promoting the automatic creation of models and code, by model trans-
formations. The MDA aims to promote the role of models [7, 15], which are abstrac-
tions of the physical system emphasizing particular qualities for a certain purpose and
are designed in a UML language or dialect. The model driven approach is based on
the metamodel foundation to: a) specify the syntax and semantics of models and b)
define the MDA mappings between source and target metamodels [12, 13].

Web services are self-contained, modular software applications that have open,
standard based, Internet-oriented interfaces [1]. In a bigger scale, they can be consid-
ered as a set of interoperable technologies and standards, designed to support the
integration of several autonomous and heterogeneous systems. Web services are par-
ticularly geared towards the Service Oriented Architecture (SOA) and paradigm [1,
16], which can be considered as a collection of services, coordinating and communi-
cating with each other to support a specific functionality or concept of a system. A
minimalist Web service architecture will contain the SOAP as the communication
protocol, the WSDL to describe service interfaces, the UDDI as a service registry and

146 A. Staikopoulos and B. Bordbar

the BPEL to specify executable processes for composite services [5]. If we consider
them within an overall architecture, for example SOA, they can specify service-
integrated systems, having structure, behaviour, communication and coordination
mechanisms.

The application of MDA to Web services is of major importance facilitating their
design and development via automation. Recently, designing and developing Web
services by MDA have received considerable attention [2, 3, 4, 11]. Despite the fact
that Web service models are inherently integrated and created from multiple standards
(languages represented as metamodels), their transformations are still considered in
isolation and not as part of a whole mechanism. To explain, a business process ex-
pressed as a BPEL model has certain dependencies upon service interfaces modelled
as WSDL models. This issue should be taken into consideration in the design and
transformation of the process. Similar or even more complicated is the case when two
processes communicate and exchange data, based on different formalisms such as
BPEL and WSCI [1, 5]. Currently, such Web service languages when represented by
metamodels appear to be unrelated from each other. In order to obtain a thorough
view of the design and the inter-operations of our Web service models, we need to
integrate their metamodels.

In this paper, we are examining modelling interoperable Web service systems and
architectures, based on different but integrated metamodels. Specifying and formalis-
ing their model inter-relations and communication mechanisms is a very important
issue for Web services, as they need to collaborate with each other to achieve their
common targets. Thus, their capabilities are the result of integration and inter-
operability. As a result, the integrated metamodelling reflects their real accumulating
characteristics and capabilities.

In order, to aid understanding, we need to clarify the terms of metamodel integra-
tion and interoperability, used throughout the paper. The descriptions given below are
based upon well-established concepts in the field of computing.

• Integration: The creation of links between previously separated computer systems,

applications, services or processes.
• Interoperability: The ability to exchange. We need both to a) establish the mecha-

nism to exchange (such as flow of information) and b) define how to extract or un-
derstand the information in order to process them.

Finally, the study is broken down into the following sections: Section 2 elucidates

the shortcomings of creating isolated metamodels and highlights the advantages of
providing integration and interoperability among the UML metamodels. Section 3
investigates the UML and Web service mechanisms, supporting integration, composi-
tion and interoperability for their models and schemas respectively. Section 4 com-
pares and analyses them in order to assess their capabilities. Drawing on the lessons
learnt, Section 5 presents a method of integrating Web service metamodels, with
examples inspired from the Web service domain and their binding mechanism.
Section 6 provides an overview of other approaches and various discussion points.
Finally, Section 7 presents the conclusions made and summarises the benefits of the
approach adopted by the authors.

 A Comparative Study of Metamodel Integration and Interoperability 147

2 Importance and Benefits

There are cases, where a domain (a subject area, having peculiar set of problems and
concepts) [6] such as the Web service domain, may be composed from a number of
other sub-domains for example BPEL (process-A), WSCI (process-B), WSDL (de-
scription) and SOAP (messaging) sub-domains. As a result, the Web service domain
provides the composite or integrated metamodel, describing the overall domain and
architecture of a potential system. Obtaining a thorough view of a system, by relating
its inter-components is one reason for integrating the metamodels.

Moreover, the (sub) domains have to be interoperable, both horizontally such as
processes with processes and vertically such as processes with descriptions and mes-
saging, in order to function and interoperate correctly. Thus, in the first case we have
to ensure the definition of meaningful sequence of actions and in the latter to use
comprehensive communicative, messaging and transport mechanisms. This is the
second reason to equip our metamodels with interoperability mechanisms.

In terms of development, integration and interoperability allows MDA to perform
upon a combination of models, with well-established inter-relations and defined inter-
actions. As a result the transformations are equipped with more detailed rules and
mappings and generate better-linked artefacts both in terms of specific models and
code.

In general, integration allows obtaining a thorough view of the system and its inter-
operations (assist design) and relating its internal components with established links
(provide consistency and formalisation), while interoperability makes our integrated
models more operational.

3 Integration and Interoperability Mechanisms in UML and Web
Services

Web services have specific mechanisms for supporting the integration and interopera-
bility of their XML artefacts. Similarly, UML has its own specified mechanisms for
UML models. As our aim is to apply integration and interoperability among Web
service metamodels as precisely as possible and closer to their physical implementa-
tion, we have to investigate and compare their mechanisms. In that way, we can apply
their original XML integration mechanism to UML Web service metamodels. That
will allow us to generate models semantically close to their original characteristics, as
the domain metamodels will be equipped with their equivalent XML concepts.

The Object Management Group (OMG) and the World Wide Web Consortium
(W3C) are two distinct organisations operating in two different domains, the model-
ling and specification of software systems and the Web standardisation and inter-
operability respectively. The OMG uses the UML family of languages and standards
for software design and development, which are based on graphical models. UML
languages are specified and defined upon a common core language, the Meta Object
Facility (MOF) [12] providing the fundamental building blocks to construct and store
metamodels. From the other side, the W3C uses the XML family of languages that are

148 A. Staikopoulos and B. Bordbar

textual specifications to specify Web services and standards. The XML languages are
defined upon the XML Schema Definition (XSD) [19] to describe and constraint the
structure and content of XML documents.

Both specification mechanisms (MOF in UML and XSD in XML) are comparable
and can been seen as meta-languages, languages to define and create other languages.
Thus, XSD is used to define WSDL and BPEL, and MOF to define UML and CWM
[12]. As they are created from a common metamodel (XSD), the service languages
conform to and share common semantics, so it is much easier to be integrated and be
interoperable. Meta-languages play a very important role, as they define core domain
characteristics that can be reused to define and create a variety of other metamodels,
belonging to the same family of languages [13].

The UML specification is defined using the metamodelling approach and mecha-
nism. The typical role of metamodelling is to define the semantics of how the model
elements in a model get defined and instantiated. Web services on the other hand are
defined by using a very flexible mechanism, the XML Schema, providing a way to
specify the structure of XML documents.

Finally, the UML specification is organised into Infrastructure and Superstructure
architectures. As a result, the various constructs defined are highly reused and cou-
pled within the overall UML architecture. On the other hand, Web services can be
seen as more independent entities that are part of more flexible or less coupled archi-
tectures. They can be integrated and combined in various ways with the flexibility of
a component. An example of such architecture is the SOA [16], which is organised in
separate layers regarding the functionality and concepts provided. In that sense the
architecture can be seen as an accumulation of aspects.

Following, we identify, describe and compare the mechanisms defined within the
UML and Web Service specifications supporting the fundamental ideas of composi-
tion, inter-relation, communication and extensibility of meta- elements.

3.1 Mechanisms for the Integration of UML Metamodels

The UML specification is defined in a number of metamodels and organised within
hierarchical packages. The metamodels are gradually built upon more abstract model-
ling concepts, defined within fundamental reusable packages, such as the Infrastruc-
ture Library [13] and the Superstructure Kernel [14]. The UML language is organised
in a four-layer metamodel architecture, separating the instantiation concerns across
different layers, for example MOF from UML. According to that principle, the instan-
tiation of meta-classes is carried out through MOF. The UML architecture has been
designed to satisfy the following criteria [13].

1. Modularity: Group constructs into packages by providing strong cohesion and

loose coupling.
2. Layering: Support a package structure to separate meta-language constructs and

separate concerns (regarding instantiation).
3. Partitioning: Organise conceptual areas within the same layer.
4. Extensibility: Can be extended in various ways.
5. Reuse: UML metamodel elements are based upon a flexible metamodel library

that is been reused.

 A Comparative Study of Metamodel Integration and Interoperability 149

To realise the above qualities, the UML specification is organised into two parts:
Firstly, the UML Infrastructure defining the foundation language constructs where
both M2 (UML) and M3 (MOF) meta-levels of the four-layer metamodel architecture
are being reused. Secondly, the UML Superstructure extends and customises the In-
frastructure to define additional and more specialised elements making up the model-
ling notions of UML.

The entire UML specification can provide an example of how metamodels repre-
senting different concepts, such as structure by a class or a component diagram and
behaviour by an activity or an interaction diagram are integrated and connected to-
gether. In that case, even if they are defined within different packages they are interre-
lated and share common basic elements with other metamodels.

3.1.1 The UML Infrastructure
The Infrastructure Library [13] provides the basic concepts for organising and reusing
metamodel elements. In the case of metamodel relation and composition, these are as
follows:

Model elements to group elements together such as a) Visibilities, provide basic
constructs for visibility semantics b) Namespace, provides concepts for defining and
identifying a model element within a namespace c) Package, groups elements and
provides a namespace for the grouped elements.

Model elements to specify some kind of relationship between elements such as
a) Generalisation, specifies a taxonomic relationship between a more general and a
more specific classifier b) Redefinition, specifies a general capability of redefining a
model element c) Association, both a relationship and a classifier. Specifies a seman-
tic relationship between typed instances d) Element Import, a relationship that identi-
fies an element in another package, allowing the element to be referenced using its
name without a qualifier.

Model elements defining basic mechanisms for merging their content such as
a) Package Merge, specifies how one package extends another package, by merging
their contents through specialisation and redefinition and b) PackageImport, a rela-
tionship that allows the use of unqualified names to refer to package members from
other namespaces.

3.1.2 The UML Superstructure
The UML Superstructure [14] relies on the essential concepts defined in the Infra-
structure to build the UML 2.0 diagrams. It provides a clear example of metamodel
integration, as it brings together different packages from the Infrastructure library, by
using package imports and merges. It redefines some of the concepts and further ex-
tends their capabilities [13].

The Superstructure in order to support the concepts of integration and interopera-
bility among metamodels provides additional relationships [14] and links among
elements. Examples of such links and relationships are a) Dependency, a relationship
that signifies that a model element requires other model elements for their specifica-
tion or implementation b) Abstraction, a relationship that relates two elements or sets
of elements, representing the same concept at different levels of abstraction c) Usage,
when one element requires another element (or a set) for its full implementation or

150 A. Staikopoulos and B. Bordbar

operation d) Permission, signifies granting of access rights from the supplier to a
client model element e) Realisation, a specialised relationship between two sets of
model elements, one specifies the source (supplier) and the other implements the
target (client) f) Substitution, a relationship between two classifiers, implying that
instances can be at runtime substitutable, where instances of the contract classifier are
expected g) Implementation, a relationship between a classifier and an interface signi-
fying that the realising classifier conforms to the contract specified by the interface.

In addition, it defines a number of composite structures [14], providing more com-
plicated elements with advanced capabilities. Examples of such elements are a) Com-
ponents, representing a modular part of a system, which is replaceable within its envi-
ronment b) Connector, a link enabling communication between instances. It can be
something as simple as a pointer or something as complex as a network connection c)
Composite Structures, a composition of interconnected elements, representing run-
time instances collaborating over communications links to achieve some common
objectives d) Ports, a structural feature of a classifier specifying a distinct interaction
point between that classifier and its environment e) InvocationAction, invoke behav-
ioural features on ports from where the invocation requests are routed onwards on
links, deriving from attached connectors f) Collaborations, a kind of classifier defin-
ing a set of cooperating entities to be played by instances (its roles) and a set of con-
nectors defining communication paths between the participating instances g) Commu-
nicationPath, an association between two nodes, enabling them to exchange signals
and messages.

3.1.3 Extensibility – Provide User Defined Elements
The UML specification is flexible supporting two types of extensions [7, 9, 12]. The
first one is based on profiles and is referred to as a lightweight built-in mechanism. It
does not allow the modification of existing metamodels but rather their adaptation
with constructs that are specific to a particular domain, platform, or method. The
second approach uses metamodelling techniques by explicitly defining new meta-
model elements from pre-existing metamodels like the ones defined in MOF or the
UML Infrastructure. This approach allows ultimate extensibility as it enables the
definition of new concepts with new capabilities that can be tailored to represent pre-
cisely a particular domain of interest. There are various examples of extending UML,
either with metamodels or profiles such as EDOC and the EJB Profile respectively.

3.2 Mechanisms for the Integration of Web Service Standards

The Web service standards are built-upon the XML and XML Schema. As a result
many of their characteristics and capabilities, such as extensibility and referencing,
are based upon their defined concepts. By design, almost all Web service standards
(as loosely coupled) [1] are designed to accommodate their integration and interop-
erability aspects flexibly. So, they define various points of extensibility, allowing
them to interoperate with other standards and usually are separated into abstract and
concrete parts.

 A Comparative Study of Metamodel Integration and Interoperability 151

The Web service implementations rely on the collaboration of various specifica-
tions to make them really functional and interoperable. For example, the SOA [16] is
based on a collaboration of various Web service specifications, such as service de-
scription, discovery and messaging. Each one can represent either a particular layer
(regarding the SOA architecture) or a particular functionality or concept. In this sense,
they can be compared with UML modelling that is based on a combination of various
metamodels, belonging to different packages, to make up a complete system specifi-
cation.

An example of how Web service specifications can be combined and interoperated
to fulfil an objective is a business process request defined as a BPEL Invoke operation
[5]. The process defines the implementation logic of a service, accessed from specific
interaction points via a set of Web interfaces defined in WSDL and sending a SOAP
message representing a particular request to a business participant [1]. The participant
replies back by triggering an equivalent mechanism, with an appropriate formatted
XML message.

In this paper, we are interested in investigating these inter-relationships and de-
pendencies among fundamental Web service standards such as BPEL, WSDL and
SOAP and examine how they are combined to support service interoperability at
different levels of abstraction and implementation, by realistic examples and cases.
The following are defined elements and technologies used for the integration, exten-
sibility, collaboration and communication of schemas and Web service specifications.

3.2.1 Common – Core Characteristics
The XSD mechanism [19] provides the core/fundamental characteristics of Web ser-
vices, utilised by almost all Web service standards, allowing mechanisms for group-
ing, extensions and referencing. The XSD also provides the foundation mechanism
for constructing messages and datatypes that are the means of interoperability and
communication for services.

The elements supporting such mechanism are a) Schema, is associated with a
namespace and provides a grouping for defined XML elements b) Namespace, pro-
vides identification and access rights for its elements c) Import, allows to use schema
components across different namespaces with references d) Include, assembles
schema components to a single target namespace from multiple schema definitions
e) Redefine, allows the redefinition of one or more components f) Redefinable, speci-
fies an element so that it can be redefined g) SubstitutionGroup, supports the substitu-
tion of one named element for another h) Extension, provides the mechanism to ex-
tend the element content i) Restriction, provides the mechanism to restrict the element
content j) References, provides pointers to already defined elements such as Grou-
pRef, AttributeGroupRef and ElementRef. Finally, k) AnyURI, AnyType and AnyAt-
tribute can point to any location, any type and extend an element with attributes not
specified by the schema respectively.

3.2.2 Specialised Characteristics
More specialised characteristics and concepts are usually defined within each service
specification. For example, the WSDL defines how Web service interfaces can be

152 A. Staikopoulos and B. Bordbar

defined in terms of protocol bindings, port-types, operations and messages. Analo-
gously, other specific application constructs have been defined for BPEL and SOAP
[1, 11]. Those standards can be combined and integrated together by specifying a
binding mechanism that actually provides the links among the involved service speci-
fications. So, tools and engines can realise those implementations and execute the
actual Web service collaborations across different standards and protocols.

Almost all Web service standards are designed to accommodate interoperability
and be extensible. As a result, their specifications at certain points, particularly their
concrete parts are defined in a way that leaves space for different implementations. It
is very similar to UML or Java when a Classifier or an Object can be of any type,
therefore the model or application can support different implementations or
behaviours.

3.2.3 Auxiliary Characteristics
There are also various auxiliary technologies and standards that are used to provide
more sophisticated mechanisms, such as for relating elements across multi-
documents. Those can be easily used and embedded within specifications to create
more elaborate structures and complicated functionalities. Such a mechanism is the
XPath [18] language for addressing various parts of an XML document. It provides
the means of linking elements together; therefore it can be represented by a relation-
ship in UML modelling.

4 Analysis and Classification of Mechanisms

At this point, we should analyse and classify the integration and interoperability
mechanisms supported by UML and Web services, upon the following fundamental
criteria:

Structures: Provide the ability to implement a) Containers, group and identify model
elements within collections and b) Composite Structures, provide the means and con-
cepts to integrate/combine together different model elements into new or coupled
entities.

Dynamics: Messaging, establish the concepts and mechanisms to specify dynamics
for example perform invocations, interactions, messaging upon established connec-
tions.

Links: Provide Relationships/Addressing mechanisms to establish semantic relation-
ships among model elements that may belong to different groups.

Mechanisms: Define Mechanisms upon containers, operate upon elements or collec-
tions of elements. New groups of elements may be generated as a result of intersec-
tion and union operations.

According to these criteria, the UML and Web service capabilities are compared,
assessed and described as in the following tables:

 A Comparative Study of Metamodel Integration and Interoperability 153

Table 1. The UML mechanism supports criteria by specifying the following UML modelling
elements

 UML support
Containers Initially provided by the Infrastructure library and special-

ised from the Superstructure kernel. Examples are Name-
space, Visibility and Package model elements

Comp. Structures Various metamodel elements are defined such as compo-
nents, composite structures, collaborations

Messaging A number of actions are specified for messaging, invoca-
tions and their supporting concepts like input and output
pins

Links There are various types of semantic relationships such as
permissions, substitution, generalisation, usage etc

Mechanisms Package mechanisms, like package import and merge

Table 2. The Web service mechanism supports criteria by specifying the following XML
elements

 Web service support
Containers Schema, Namespace

Comp. Structures ComplexType, Group, Sequence etc
Messaging XML Datatypes, SOAP messages

Links Element, Attribute and Group references, Ids
Mechanisms Import, Include, Redefine

4.1 Compare and Contrast Mechanisms

It is clear that both XSD and MOF or the UML Infrastructure are meta-languages for
the modelling and Web service domain respectively. As such, they provide the fun-
damental concepts and building blocks to define and create other languages such as
the WSDL, the BPEL or the UML and the CWM. Regarding the four-layered meta-
model architecture they both belong to M3 level [12]. In addition, they are both self
describing and reflective as they have been specified by their own means and con-
cepts.

The UML and Web service specifications, as seen in section 4, both define integra-
tion mechanisms, however they are designed in such a way to support and reflect the
characteristics of their domains. Therefore, UML is designed to create more compact
models through meta-models. UML also seems more integrated as it is designed from
one organisation all-over. Metamodels via diagrams can provide different views of
the same system. In that case, their integration points are well defined and bound, as
effectively they belong to the same specification. On the other hand, Web service
standards are more loosely coupled and are developed rather independently from each
other. They are integrated and combined later on into functional units, using previ-
ously defined, abstract integration points. In addition, their specifications are defined
in textual XML Schemas.

154 A. Staikopoulos and B. Bordbar

To conclude, we can say that the UML specification is focused on separating the
different views of a system by providing different diagrams that are somehow related
together by their metamodels, while Web service specifications are concerned with
logically separating the abstract from the concrete parts [1, 19].

The result of the comparison will justify and influence the approach adapted, of
how to implement the integration and interoperability mechanism with its domain
metamodel, in a way to reflect as accurately as possible their actual characteristics.

5 A Method to Support Metamodel Integration and
Interoperability

Currently, the Web service domain is scattered into several different metamodels such
as BPEL, WSDL and SOAP [1]. Our approach on supporting the integration and
interoperability of metamodels is based on the concept of relating all these uncon-
nected metamodels in a cooperating fashion, through specified and formalised links.
As a result, we introduce the binding mechanism (please refer to Fig. 1) as a meta-
model. The method is influenced from the Web service domain. However, we believe
that the approach is similarly applicable to other domains, as it can be considered
neutral and generic enough. The binding metamodel integrates the metamodels to-
gether in a formalised way, by specifying both their static aspects (by defining inter-
relationships) in order to provide integration and dynamic aspects such as communi-
cation, interactions and conformance to provide interoperability among the
metamodels.

The steps to apply our approach can be described as follows:

Firstly, we need to identify the metamodels composing our system or domain of inter-
est. One can either create these metamodels or reuse predefined ones. Secondly, the
relationships, dependencies or interaction points among these metamodels have to be
identified. Thirdly, the mechanisms supporting integration and interoperability be-
tween the actual “real” domain (in the case of Web services, by XML and XSD) and
modelling domain (by metamodels) are compared and checked whether they are har-
monised. This should allow to design their actual supported mechanisms (originally
expressed in XSD) in another formalism (metamodel) as precisely as possible, provid-
ing clear domain models and encapsulating their original domain capabilities accu-
rately. Having identified the supported mechanisms (for example how to relate to
elements), the binding metamodel is introduced, where the relationships, properties
and rules are applied accordingly. At this stage the integration points among the
metamodels are being defined. Following, upon the integration points (providing
relationships and links) and within the binding metamodel, we further specify the
communication mechanism in terms of interactions, messages and data-types ex-
changed, making our models functional and interoperable. Lastly, we may have to
model the binding mechanism with equivalent UML models as precisely as possible
in order to respect its internal semantics for example establish object roles within
collaboration diagrams.

 A Comparative Study of Metamodel Integration and Interoperability 155

5.1 Applying the Binding Mechanism – Web Service Examples

Following, a number of examples from the domain of Web services are provided to
illustrate how the binding metamodel can be applied among Web service metamodels.
As already mentioned, the Web service domain can be represented by various meta-
models. In these examples, we are going to consider two metamodels: the BPEL and
WSDL, representing a partial view of the Web service domain. The metamodels can
either be created from their original XSD specifications or reuse pre-existing ones
[2, 3, 4].

Fig. 1 illustrates how the Web service domain is represented by the BPEL and
WSDL metamodels and how these are mapped to equivalent UML modelling con-
cepts, providing their platform independent representations, as UML activity and
component diagrams respectively. Regarding these mappings, there are already some
research activities defining their MDA transformations [2, 4]. On the right side, one
can see how a metamodel binding between the BPEL and the WSDL metamodels is
applied and how this is reflected as a UML representation (in this case a collaboration
element). The UML model that would be selected needs to encapsulate the binding
mechanism as semantically precise as possible and provide all the necessary concepts
and capabilities for representing integrations and collaborations of its participating
parts.

Fig. 1. The UML & Web service domains with equivalent mappings (on the left) and required
bindings (on the right)

The binding metamodel in Fig. 2, represents the BPEL and WSDL integration. It
defines two additional model elements, the PartnerLinkType and Role together with
their inter-relationships with the other model elements from BPEL and WSDL. In this
case, the binding metamodel is attached to the actual WSDL metamodel as an exten-
sion, meaning that both WSDL and binding model elements share the same name-
space.

The services with which a business process interacts are modelled as PartnerLinks
and are performed upon Web service interfaces. Each PartnerLink is characterised by
a PartnerLinkType maintaining the conversational relationship between two services
by defining Roles played by each of the services in the conversation 19. Each Role
specifies exactly one WSDL port type. The relationship among partners is typically
peer-to-peer (such as BPEL to BPEL) and can be modelled by a two-way depend-

156 A. Staikopoulos and B. Bordbar

ency. The PartnerLink declaration specifies the static shape of the relationship that
the process will employ in its behaviour.

Afterwards, the interaction mechanism of the binding metamodel is being speci-
fied, by identifying its dynamics in terms of establishing interactions, message ex-
changes in various patterns and use comprehensive data-types as illustrated in Fig. 3.
That will permit our models to be interoperable across their integrated points, mean-
ing that their instances can be really executable [17]. The integrated points defined as
relationships among model elements specify the links where messages or signals can
travel. Such formalisation provides consistence, as interactions can be performed only
through these established points following a specific interaction pattern.

Fig. 2. A metamodel binding example between BPEL & WSDL supporting integration

Fig. 3. How the metamodel binding supports interoperability

In particular, Web services by design support interoperability, as they are based on
XSD for specifying datatypes, SOAP for messaging and communications and WSDL
for describing interactions as exposed operations. Thus, a Web service example as in
this case would not encounter severe inconsistency problems of that kind, as the inter-
actions would be performed upon common standards. For example, in order to per-
form a simple invocation call across collaboration processes, the following sequence
will occur among involved metamodel elements to transmit a message across the
integrated points and according to a specific interaction pattern (in this case without a
reply):

BPEL1 binding1 WSDL1 SOAP WSDL2 binding2 BPEL2 (1)

 A Comparative Study of Metamodel Integration and Interoperability 157

Fig. 4. Instance Examples upon binding

Following, Fig. 4 illustrates how the metamodel mechanism can be realised by a
set of instances, participating in an invocation operation Invoke from a shippingSer-
viceCustomer to another shippingService participant in order to handle the shipment
of orders. The actual example is derived from the BPEL specification [5].

Finally, we examine how to represent the binding mechanism in a platform inde-
pendent manner with an equivalent UML model. For that reason, one needs to utilise
the UML 2.0 composite structures, such as Collaboration and StructuredClasses that
can support the composition of interconnected elements, representing run time in-
stances, collaborating over communication links to achieve common objectives [14].
In particular, Collaborations provide the means to define common interactions be-
tween objects and other classifiers and assign responsibilities in terms of roles. The
interaction is similar to providing a pattern of communication between parts and is
specified as a set of messages passed between objects playing predefined roles.

In this case, the UML 2.0 Collaboration modelling element is used to encapsulate
the PartnerLinks playing various Roles by each of the services participating in the
conversation and providing a semantically mapping to our domain binding meta-
model.

Following, Fig. 5 depicts the binding mechanism as an independent model, ex-
plaining how the binding mechanism works, by describing the structure of collaborat-
ing elements (roles), performing specialised functions upon defined communication
paths of participating instances. In that case the binding metamodel and mechanism
are rather simple and can be represented by a UML AssociationClass [13]. That is to
say a class that defines specific properties upon an established semantic relationship
between classifiers, in this case the metamodel elements from BPEL and WSDL.

optseq
shippingServiceCustomer shippingService

1: shippingNotice (shippingNoticeMsg)

2: shippingRequest (shippingRequestMsg)

ShippingLT

shippingServicePT : WSDL :: PortType

shippingServiceCustomerPT : WSDL :: PortType

sh
ip

pi
ng

Se
rv

ic
e

sh
ip

pi
ng

S
er

vi
ce

C
us

to
m

er

<< collaboration >>
customer

Fig. 5. UML collaboration, modelling bindings in UML

158 A. Staikopoulos and B. Bordbar

6 Related Work and Discussion

There are several approaches on metamodel composition and interaction [8, 10, 15].
More specifically, in [10] the key feature of this approach is the combination of new
metamodels from existing metamodels, through the use of newly defined operators
such as equivalence, implementation and interface inheritance. The approach empha-
sises the compositional operations for creating new concrete metamodels and not
actually relating them as cooperating entities, as in our case. Next, the approach in
[15] suggests the integration of metamodels by a joint action model. The approach is
based on message interactions, thus supporting more dynamically and interoperable
models. In that respect, the approach is comparable to our method on establishing
interaction points across the metamodels. Finally, the approach in [8] is based on
extending the UML language for the composition of domain metamodels by propos-
ing a UML profile.

In our study our effort is to establish both connections upon the metamodel ele-
ments to support integrations in a cooperating way and communication mechanisms
to support their interaction characteristics. In that way we can provide consistency and
formalisation upon the interconnected metamodels, properties that are necessary for
performing model transformations.

7 Conclusion

Integration and interoperability are very important issues for composite domains as in
the case of Web services, as they need to collaborate with each other to achieve their
common targets. Their emerged capabilities can be seen as the product of integration
and interoperability. In modelling, Web service languages need to be represented by
equivalent metamodels. By defining their metamodel relationships and interaction
mechanisms, we support the integration and interoperability of their models. In that
way we can design complete system models having formalised interaction points and
perform model transformations across multiple connected metamodels.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V., Web Services Concepts, Architectures
and Applications, Data-Centric Systems and Applications, ISBN: 3-540-44008-9, (2004)

2. Bézivin, J., Hammoudi, S., Lopes, D., Jouault, F.: An Experiment in Mapping Web Ser-
vices to Implementation Platforms. Technical report: 04.01, LINA, University of Nantes,
Nantes, France (2004).

3. Bordbad, B., Staikopoulos, A.: Modeling and Transforming the Behavioural Aspects of
Web Services. In: Proc. 3rd Workshop in Software Model Engineering - WiSME2004,
UML (2004)

4. Bordbar, B., Staikopoulos, A.: On Behavioural Model Transformation in Web Services.
In: Proc. Conceptual Modelling for Advanced Application Domain (eCOMO), Shanghai,
China (2004), p. 667-678

5. BPEL: BEA, Microsoft, IBM, SAP, Siebel, Business Process Execution Language for
Web Services, Version 1.1. (2003)

 A Comparative Study of Metamodel Integration and Interoperability 159

6. Greenfield, J, Keith Short: Software Factories, Wiley, ISBN: 0471202843, 2004
7. J. Siegel, Developing in OMG’s Model Driven Architecture, Object Management Group,

November (2002)
8. Jacky Estublier, A.D.I. Extending UML for Model Composition. in Australian Software

Engineering Conference (ASWEC). 29 March, 1 April (2005). Brisbane, Australia.
9. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture-

Practice and Promise. (2003)
10. Ledeczi A., G.N., G. Karsai, P. Volgyesi, M. Maroti. On Metamodel Composition. in

IEEE CCA 2001. September 5, (2001). Mexico City, Mexico.
11. Lopes, D., Hammoudi, S.: Web Services in the Context of MDA. In: Proc. 2003 Interna-

tional Conference on Web Services (ICWS'03) (2003)
12. OMG: Meta Object Facility 2.0 Core Specification. (2003). Document id: ptc/03-10-04
13. OMG: UML 2.0 Infrastructure Specification. Document id: ptc/03-09-15 (2003)
14. OMG: UML 2.0 Superstructure Specification. Document id: ptc/03-08-02 (2003)
15. P. Denno, M.P.S., D. Libes, E.J. Barkmeyer, Model-Driven Integration Using Existing

Models. IEEE Software, Sept./Oct. (2003): p. 59-63.
16. Rakesh Radhakrishnan, Mike Wookey, Model Driven Architecture Enabling Service Ori-

ented Architectures, Sun Micro Systems, March (2004)
17. Stephen J. Mellor and Marc J. Balcer: Executable UML a Foundation for Model Driven

Architecture. Addison Wesley. ISBN 0-201-74804-5, 2002
18. W3C, XML Path Language (XPath) 2.0, W3C Working Draft. July (2004)
19. XML Schema W3C, XML Schema Part 0: Primer, W3C Recommendation, May (2001)

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 160 – 174, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Control Flow Analysis of UML 2.0 Sequence Diagrams

Vahid Garousi, Lionel C. Briand, and Yvan Labiche

Software Quality Engineering Laboratory (SQUALL),
Department of Systems and Computer Engineering, Carleton University,

1125 Colonel By Drive, Ottawa, ON K1S5B6, Canada
{vahid, briand, labiche}@sce.carleton.ca

Abstract. This article presents a control flow analysis methodology based on
UML 2.0 sequence diagrams (SD). In contrast to the conventional code-based
control flow analysis techniques, this technique can be used earlier in software
development life cycle, when the UML design model of a system becomes
available. Among many applications, this technique can be used in SD-based
test techniques, model comprehension and model execution in the context of
MDA. Based on the well-defined UML 2.0 activity diagrams, we propose an
extended activity diagram metamodel, referred to as Concurrent Control Flow
Graph (CCFG), to support control flow analysis of UML 2.0 sequence dia-
grams. Our strategy in this article is to define an OCL-based mapping in a for-
mal and verifiable form as consistency rules between a SD and a CCFG, so as
to ensure the completeness of the rules and the CCFG metamodel with respect
to our control flow analysis purpose and enable their verification. Completeness
here means if the CCFG metamodel has all classes and associations needed, and
the rules are adequate with respect to our purpose. Furthermore, we define Con-
current Control Flow Paths, which are a generalization of the conventional Con-
trol Flow Path concept. The control flow analysis technique is applied to an ex-
ample SD to demonstrate the feasibility of the approach.

1 Introduction

Control Flow Analysis (CFA) [1] is a widely used approach for analyzing programs.
A Control Flow Graph (CFG) [1] represents all alternatives of control flow in a pro-
gram. The concept of CFG was first used as a data structure in compilers [1] for code
optimization purposes. Later, it was adopted extensively in the software engineering
and particularly in the software testing community (e.g. [2, 3]). In a CFG, different
paths from the start node to the end node are called Control Flow Paths (CFP), which
show the different paths a program may follow during execution. Furthermore, Data
Flow Analysis (DFA) and data flow-based testing techniques (such as [4, 5]) are also,
to a great extent, based on CFA: different CFPs, derived by CFA, are examined to ex-
tract data flow information such as def-use pairs (definition-uses of data).

Based on the source of information to derive the control flow information of a sys-
tem, we can divide the CFA techniques into two groups: code-based and model-based.
Code-based CFA (CBCFA) is the traditional CFA [1], in which control flow informa-
tion is derived from the available source code. CBCFA has been greatly used in the
software testing literature [2, 3, 6, 7] and owns strong mathematical foundations [1].

 Control Flow Analysis of UML 2.0 Sequence Diagrams 161

On the other hand, we define model-based CFA (MBCFA) to be the derivation of
control flow information from the design model (such as UML [8-10]). To the best
knowledge of the authors, there have been few works [11-15] on MBCFA and in par-
ticular based on UML. UML provides ways to model the behavior of an Object-
Oriented (OO) system using interaction (sequence and collaboration) diagrams. How-
ever, as it will be discussed in Section 2.1, analysis and derivation of control flow in-
formation are not straight-forward in UML interaction diagrams, and most specifi-
cally sequence diagrams (SD). There are challenges such as impact of asynchronous
messages and intra-SD parallelism due to par interaction operators.

The motivations for our work are twofold: (1) When and where is MBCFA prefer-
able over CBCFA? and (2) What is missing in the existing works and has to be ad-
dressed by a comprehensive MBCFA technique? Some of the advantages of MBCFA
over CBCFA are easier extraction of concurrent control flow and dynamic control
flow information (such as polymorphism), which will benefit applications of CFA
such as testing and refactoring. As another benefit, MBCFA can be used in model-
based test techniques, earlier in the software development life cycle, i.e., as early as
the UML design model of a system is available. Our MBCFA technique can be useful
in most of the existing SD-based testing techniques, such as [16-18]. Some of the pos-
sible applications of our approach in the context of MDA [19] include the testing
phase of the MDA software development life cycle (Figure 1-2 of [19]) and also
model compilation, comprehension, and execution. Model execution, model compre-
hension, model checking, model optimization, and model walk-through are other pos-
sible applications of MBCFA in the context of MDA. These tentative application ar-
eas remain to be further investigated.

1.1 Related Works

To the best knowledge of the authors, there have been few MBCFA techniques
[11-15] based on UML. These strategies are reported in Table 1 and are compared ac-
cording to eleven criteria: (1) The source model on which a MBCFA technique is ap-
plied. It can be either SD or reverse-engineered SD (RE-SD); (2) UML version sup-
ported: UML 1.x (1.3, 1.5) or 2.0; (3) The output Control Flow Model (CFM)
produced by a MBCFA technique; (4) The degree of formality employed when defin-
ing the CFM (if any), ranging from a set of examples to a formal representation (such
as a metamodel); (5) The degree of formality employed in defining the transforma-
tion/mapping from SDs to the CFM (if any), ranging from a set of examples to formal
mapping rules; (6) Whether the MBCFA technique supports the control flow resulted
from asynchronous messages in SDs; (7) Whether inter-SD control flow is supported,
i.e. when SDs refer to each other using ref construct in SDs; (8) If loops are sup-
ported; (9) Whether conditions are supported; (10) Support for polymorphism in SD
lifelines. When an operation in a parent class is involved in a SD, overwritten ver-
sions of this operation have to be accounted for during CFA as varying control flows
may occur at runtime; and (11) If the technique provides a formalism for CFPs and
offers an algorithm to derive CFPs from a CFM.

162 V. Garousi, L.C. Briand, and Y. Labiche

As Table 1 shows, all of the existing works are based on UML 1.x versions. Only
one of them proposes a formal syntax for the produced CFM [11]. Only two ([13] and
[14]) have formal transformation/mapping techniques from SDs to their chosen CFM.
None of the existing works support inter-SD control flow and polymorphic messages.
None of the approaches cover all criteria and this is the goal of the research reported
in this paper (the last column in Table 1). Some of the existing CFMs are IRCFG (In-
ter-procedural Restricted Control-Flow Graph), CRE (Concurrent Regular Expres-
sions), LGSPN (Labeled Generalized Stochastic Petri-Net), and Concurrent Control
Flow Graph (CCFG). An IRCFG contains a set of Restricted CFGs (RCFGs), together
with edges which connect these RCFGs. Each RCFG corresponds to a particular
method and is similar to the CFG for that method, except that it is restricted to the
flow of control that is relevant to message sending [12]. CRE was proposed as alge-
braic descriptions of the language of Petri nets by Garg et al. [20]. It is an extension of
regular expressions with four operators: interleaving, interleaving-closure, synchro-
nous composition and renaming. LGSPN is an extension to GSPN (Generalized Sto-
chastic Petri-Net) where labels are assigned to Petri-net places and transitions. GSPN
is itself an extension to Petri nets that allows both timed and immediate transitions
[21]. Our CCFG model is further described in the rest of the article.

Table 1. Comparison of existing MBCFA techniques

 [11] [12] [13] [14] [15] This work
1. Source of information SD RE-SD SD SD SD SD
2. UML version UML 1.x UML 1.x UML 1.x UML 1.x UML 1.x UML 2.0
3. Produced CFM CRE IRCFG LGSPN Petri-Net None CCFG
4. CFM’s formalism Set theory By example By example By example None Metamodel
5. Transformation By example By example Semi-formal

1
 Formal None Formal

6. Asynchronous mes-
sage control flow

No (but can
be extended)

No Yes Yes Not clear Yes

7. Inter-SD control flow No No No No No Yes
8. Loop Yes No No No No Yes
9. Condition No Yes No No Yes Yes
10. Polymorphism No No No No No Yes
11. CFP formalism Yes Yes No No No Yes

There has been another group of related works (see [22] for further details) which
we can classify as CBCFA techniques with concurrency analysis. Most of these works
are based on formal methods and are intended to be used by compilers mainly for
program optimization purposes. Among the CFMs used, Task Interaction Graph
(TIG) [23], i.e., a model that accounts for control flows within and between concur-
rent tasks, and TIG-based Petri-nets [24] are the closest models to our CCFG. More
details on how they compare to our approach can be found in [22]. The work in [25]
transforms Message Sequence Charts (MSC) (predecessors of UML SDs) to state-
charts. This can not be easily applied to SDs since their new metamodel [10] has more
complex constructs (such as loops and interaction occurrences) which makes their
transformation to statecharts challenging. This, though, has to be further investigated.

1 Plain English pseudo-code with some formal definitions.

 Control Flow Analysis of UML 2.0 Sequence Diagrams 163

1.2 Goals

The goals of our MBCFA approach are: (1) to devise a Control Flow Model (CFM),
to handle concurrent control flow in SDs, (2) to present a set of formal mappings from
an instance of SD to an instance of CFM, and (3) to propose a formalism to represent
different concurrent CFPs.

Our technique assumes that the SDs and CDs (class diagrams) of a system’s UML
2.0 [10] design model are available. The technique uses the given SDs and CDs to de-
rive the control flow information of each SD. SDs will be used as the input for the
derivation of control flow information, while CDs will be used to account for poly-
morphic messages in SD lifelines [22]. To perform a MBCFA technique based on
UML 2.0, we propose a three-pronged solution: (1) A CFM referred to as Concurrent
Control Flow Graph (CCFG); (2) A set of formal OCL-based mappings from an in-
stance of the SD metamodel to an instance of the CCFG metamodel; (3) A formal rep-
resentation of different CFPs of a CCFG, referred to as Concurrent CFPs (CCFPs),
under the form of a grammar handling nested concurrent paths.

The rest of this paper is structured as follows. A Control Flow Model (referred to
as CCFG), for MBCFA, is presented in Section 2. Section 3 presents a set of OCL-
based mapping rules from SDs to CCFGs, and illustrates them on an example SD.
Based on the CCFGs metamodel, Section 4 discusses how different control flow paths
of a SD can be formally represented. Section 5 finally concludes this article and
points out some of the future research directions.

2 Concurrent CFG: A Control Flow Model for SDs

One might argue that an intermediate CFM is not needed for MBCFA as an algorithm
can be built to directly derive CFPs from a SD. However, there is a requirement that
necessitates an intermediate CFM for SDs, as discussed below. Furthermore, in the
context of MDA, and since the CFG is derived from UML sequence diagrams, the
CFG model should be based on the UML notation and thus allow UML CASE tools
to visualize/animate concurrent control flow in SDs. This can be useful in, for exam-
ple, model execution, comprehension, and walk-through.

To better justify our choice, we first briefly identify the challenges of SDs’ CFA in
Section 2.1. Using the discussion in Section 1.1, in which we surveyed some of the
existing CFMs in the literature, Section 2.2 explains our choice of a suitable CFM.
We present the metamodel of our CFM in Section 2.3.

2.1 Challenges of SDs’ CFA

Conventional CFA techniques [1] are usually applied to sequential programs, and are
thus not easily applicable when concurrency has to be accounted for.

Asynchronous messages and the par interaction operator in SDs entail intra-SD concur-
rency. Fig. 1 shows an example SD that we will use later in the article to illustrate our ap-
proach. It contains two asynchronous messages, namely addToQueue() and process(), la-
beled C and E respectively. (The other messages are synchronous.) Fig. 1 also shows one
of the new constructs in UML 2.0 SDs, namely combined fragments. The combined frag-
ments are labeled opt and loop, which are respectively used to specify options (alterna-

164 V. Garousi, L.C. Briand, and Y. Labiche

tives) and loops. The interaction occurrence (ref) is used to refer to other SDs. par is an-
other combined fragment used to illustrate asynchronous communications of groups of
messages: for instance, in Fig. 2, messages m1, and m2 and m3 are handled in parallel.
The reader not familiar with those new constructs is referred to [10] for further details.

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjkkkkkkkkkkkkkkkk

sd AsynchronousRequestProcessing

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjkkkkkkkkkkkkkkkk

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjkkkkkkkkkkkkkkkk

c:Controller pf:ProcessorFactory apr:AsyncProcessor
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

jjkkkkkkkkkkkkkkkk
ap:AsyncProcess

A-getAsynchProcessor()

C-addToQueue()

E-Process()

B-AsyncProcessor

D-at=AsynchTicket

F-getProcessResult()

G-AsynchProcessResult

while (s!=FINISHED)
loop

H-getStatus()

I-s=Status

dummy:Class

opt [at=NULL]

ref
N

Fig. 1. A SD with asynchronous messages

Although traditional CFG models have constructs (i.e., nodes and edges) to specify
branching and sequences of executions, they do not possess specific constructs to
specify asynchronous messages or the concurrent sequences of executions.

2.2 Towards a CFM for SDs

Various CFMs have been proposed for CBCFA of con-
current programs in the literature, such as: [26], [27],
[28], [29], [23] and [24]. The first three CFMs are used
in the context of compilers, languages and formal
methods. Although they are well-defined, they are dif-
ficult to adapt to the UML notation. Thus, they cannot
be easily used in the context of UML and metamodel-
based transformations. The work in both [23] and [24]
reports on Petri net-based CFMs. Petri-nets [29] con-
tain specific constructs to specify sequences of execu-
tions, either synchronous or not, where fork and join
nodes (bars) are used to model synchronization of con-
current executions. One advantage of Petri-nets is that
they have a well-established formal notation that has been widely used for the modeling of
dynamic behavior, as well as extensive tool support.

Among the CFMs used in the previous MBCFA techniques (i.e., IRCFG [12], CRE
[11], and LGSPN [13]), only LGSPN (a Petri-net based model) takes into account
concurrent control flow.

o1 : ClassA o2 : ClassB

m1

m2

m3

par

Fig. 2. A SD with par operator

 Control Flow Analysis of UML 2.0 Sequence Diagrams 165

UML has adopted a Petri-net like semantics for control and object flow modeling
referred to as Activity Diagrams (AD). ADs have been in UML since its early 1.x ver-
sions . They account for both sequential and concurrent control flow and data flow.
As UML 2.0 points out (Section 12.1 of [10]): “These [UML activities] are commonly
called control flow and object flow models.” Among the alternative representations of
LGSPN, TIG [23], TIG-based Petri-nets [24], Petri-net and UML AD, we choose the
latter for the CFA of SDs. The reasoning for this decision is threefold:

1. AD already has a well-defined metamodel, which is needed by our MBCFA
technique and satisfies our needs.

2. SD and AD are both in the context of UML. Both metamodels are part of a
large collection (UML) and they have been designed in a similar methodology.
Therefore, our technique may potentially benefit from the fact that both meta-
models are part of the same context.

3. Furthermore, the generated CFM (a slightly modified version of ADs in our
case) can be easily visualized/analyzed by standard UML 2.0 CASE tools.

UML 2.0 proposes six different but dependent activity packages (Section 12 of
[10]): BasicActivities (BA), StructuredActivities (SA), IntermediateActivities (IA),
CompleteStructuredActivities (CSA), ExtraStructuredActivities (ESA), and Com-
pleteActivities (CA). Based on the analysis of the metamodel and class descriptions of
the activity packages, we decide to use the IA package as the starting point towards a
CFM for our MBCFA approach. The reasons for this selection are: (1) The IA pack-
age fits the needs of MBCFA, since it supports modeling both concurrency (by being
Petri-net like, i.e., including ForkNode and JoinNode) and structured control con-
structs, and (2) The IA package is simpler than the other three packages (CSA, ESA
and CA), as it does not include the modeling features needed for advanced data flow
modeling. The BA and SA packages are not chosen since they are too simple, i.e. they
do not include the ForkNode and JoinNode constructs. However, due to specific re-
quirements in our MBCFA, which will be explained in the next section, we need to
extend the IA package to a new activity package called CCFG.

2.3 Concurrent CFG Metamodel

We merge1 the Concurrent CFG (CCFG) package from the IA package by adding new as-
sociations and sub-classes as a CFM for SDs. A CCFG (activity class in the metamodel)
will be generated for one SD. In the case where a SD calls (refers to) another SD, there
will be control flow edges connecting their corresponding CCFGs. We can refer to this
concept as Inter-SD CCFG, similar to the concept of inter-procedural CFG [1].

The CCFG metamodel is shown in Fig. 3. Extensions are made to four of the
classes in the IA metamodel: Activity, ActivityNode, ExecutableNode, and Activity-
Partition, which are described next. Furthermore, since the Activity class of the IA

1 Merge” is a terminology (stereotype) used on associations between two UML AD packages

(Figure 175 of [10]). The classes of the AD package on the tail of the “merge” association
extend the classes of the AD package on the head of the association.

166 V. Garousi, L.C. Briand, and Y. Labiche

Activity

ActivityEdge

ControlNode

ActivityNode

ControlFlow

InitialNode

FinalNodeDecisionNode

ActivityFinalNode

ActivityGroup

ForkNode

JoinNode

FlowFinalNode

1

1

ValueSpecification
1

1

1

1 target

1 source

incoming *

outgoing *

guard
0..1

ObjectPartition
inPartition 1

outFlow* inFlow*
* nodes

SD::MessageEnd

ValueSpecification

1guard 0..1

NamedElement

objectName 1

SD::Message

message 1

CallNode ReplyNode

ExecutableNode

ActivityPartition

MergeNode

MessageNode

children * parent 1

*
 n

od
e

activity 1

SD::InteractionFragment

interFrag

1
1 activity

*
ed

ge

Fig. 3. CCFG metamodel

metamodel is extended, its sub-classes (ControlNode, ExecutableNode and their sub-
classes as well) in the CCFG metamodel are also implicitly extended from their corre-
sponding classes in the IA metamodel.

Each instance of the Activity class in the CCFG metamodel corresponds to an in-
stance of the InteractionFragment class in the SD metamodel. Therefore, in order to
access the interaction fragment associated with an activity, we need to add an associa-
tion from the activity class in the CCFG metamodel to the interaction fragment class
in SD metamodel. Note that the activity and CCFG classes of the CCFG metamodel
are used interchangeably in this article. Furthermore, since SD interaction fragments
can be nested, their corresponding activities have to be nested too. Therefore, we add
a reflexive bidirectional association from the activity class to itself with role names
parent and child. Each CCFG has one parent CCFG and can have multiple child
CCFGs.

The need for an extension to ActivityNode arose when we started to design our
mapping approach (Section 3). In order to build all control flows (edges) among all
activity nodes of a CCFG, we need to make associations between activity nodes and
their corresponding messages’ message ends. In other words, we add two associations
to ActivityNode: inFlow and outFlow, which are both targeted to the SD::MessageEnd
class. These two associations will keep track of in and out flows of an activity node,
to be used later in control flow connection. The reason why we assign a zero to many
multiplicity (*) for these two associations is that there might be cases in which more
than one in/out flows have to be built towards/from a node. Consider node F in Fig. 5
as an example, which has two in flows. Our strategy for control flow connection is to
store send and receive events of each message in the in and out flow sets of its corre-
sponding executable node. In case when a message is inside an alt or loop combined
fragment, the message ends are stored inside in and out flows of the decision node, re-
sponsible for controlling the flow of the combined fragment. The guard association of

 Control Flow Analysis of UML 2.0 Sequence Diagrams 167

the MessageEnd is intended for storing guard conditions when storing in/out flows of
a node. The guard will be later copied to the corresponding activity edge. More details
on how the in and out flows are handled are provided in Section 3 and [22]. Note that
the subclasses of ActivityNode in the CCFG metamodel extend ActivityNode in similar
ways like subclasses of ActivityNode in the IA metamodel. For example,
CCFG::ControlNode extends CCFG::ActivityNode (which itself extends
IA::ActivityNode) and IA::ControlNode. We also change the semantic of activity final
nodes in a way that they can have outgoing edges. This is needed to be done since
when a SD calls another SD using an interaction occurrence, there needs to be a con-
trol flow from the activity final node of the CCFG corresponding to the called SD to a
message node in the CCFG corresponding to the caller SD (see Fig. 5 for example).

We define new CallNode and ReplyNode classes in a CCFG which correspond to a
call/reply message in the corresponding SD. Distinguishing between call and reply
messages (and their corresponding activity nodes) can enrich our MBCFA technique
(Section 4). These two classes in a C CFG are generalized by a new abstract class
MessageNode which itself is being generalized by ExecutableNode in IA. One more
extension is to make it possible to access the corresponding message of an Execu-
tableNode. In order to do this, we add an association to ExecutableNode, which is en-
titled message and is targeting the SD::Message class.

An extension to ActivityPartition is made by adding a subclass named ObjectParti-
tion. This is to group a CCFG’s activity nodes based on the receiver object of their
corresponding messages: swimlanes in an AD then correspond to classifiers in the
corresponding SD.

3 Consistency Mapping Rules from SDs to CCFGs

Using OCL [30], we propose a consistency rule-based approach to map SDs into
CCFGs. The mapping rules are useful in several ways: (1) they provide a logical
specification and guidance for our transformation algorithms that derive a CCFG from
a SD (both being instances of their respective metamodels), and (2) they help us en-
sure that our CCFG metamodel is correct and complete with respect to our control
flow analysis purpose, as the OCL expression composing the rules must be based on
the metamodels.

3.1 SD Metamodel

Since our technique uses the SD metamodel as the source, we extract the SD meta-
model from the UML specification [10].

After omitting unnecessary details, and showing only those feature that are of in-
terest to us (e.g., role names, multiplicities), we obtain the class diagram in. In the SD
metamodel, Interaction is the class from which SD instances are instantiated. Each In-
teraction has a set of Message’s whose orders are indicated by instances of Gener-
alOrdering, via MessageEnd’s. CombinedFragment is a construct which is used to-
model loops, conditions, parallel sequence of messages, etc. A CombinedFragment
can have one or more InteractionOperand. The rest of the class descriptions can be
found in Section 14 of [10].

168 V. Garousi, L.C. Briand, and Y. Labiche

InteractionFragment

EventOccurrenceExecutionOccurrenceStateInvariant

0..1

-{ordered}

*

Lifeline

1

*

MessageEnd
-messageKind
-messageSort
-return_value

Message

GeneralOrdering

toBefore * toAfter *

1

1

*

sendEvent

receiveEvent
0..1 0..1

«enumeration»
MessageKind
complete
lost
found
unknown

«enumeration»
MessageSort
synchCall
synchSignal
asynchCall
asynchSignal

start
[0..1] 1

finish

InteractionOperand

Continuation

InteractionConstraint

0

1
-guard 0..1

-InteractionOperator

CombinedFragment

Gate

InteractionOccurrence

.1

*

0..1

*

1

*

*

*

refers to

Constraint
1

*

Value
Specification

Named
Element

1
*

Interaction

-End1

*

-End2

*
signature

argument

0..1
*

[0..1] 1

before 1 after 1

covered

startExec
finishExec

guard 0..1

0..1 0..1

«enumeration»
InteractionOperator
alt
opt
break
neg
loop
seq
strict
par
region
assert
ignore
consider

Fig. 4. UML 2.0 sequence diagram metamodel

3.2 Consistency Rules

We have derived fourteen consistency rules, expressed in OCL, that relate differ-
ent elements of an instance of a SD metamodel to different elements of an in-
stance of the CCFG metamodel.
They are all listed in Table 2 and
are illustrated them with the ex-
ample SD of Fig. 1. However, due
to space constraint, we only de-
scribe a subset of them in the re-
maining sections.

To demonstrate the feasibility of
our approach, we have applied the
consistency rules to the SD of Fig.
1 and the resulting CCFG is shown
in Fig. 5. Each message node in
CCFG of Fig. 5 is labeled with the
corresponding message name in SD
of Fig. 1. Two fork nodes in the
CCFG are created because of the
two asynchronous messages in the
SD of Fig. 1. Due to space limita-
tions, we describe in the next sec-
tions only two of the rules (#2 and #3) and how they are applied to the SD of Fig. 1.
In the rule descriptions below, symbol means mapping from a SD feature to a
CCFG feature. Further details on applying each consistency rule and the OCL expres-
sions of the other consistency rules are described in [22].

 Table 2. Mapping rules from SDs to CCFGs

SD feature CCFG feature
1 Interaction Activity
2 First message end Flow between InitialNode

and first control node
3 SynchCall/SynchSignal CallNode
4 AsynchCall or AsynchSig-

nal
(CallNode+ForkNode) or
ReplyNode

5 Message SendEvent and
ReceiveEvent

ControlFlow

6 Lifeline ObjectPartition
7 par CombinedFragment ForkNode
8 loop CombinedFragment DecisionNode
9 alt/opt CombinedFragment DecisionNode

10 break CombinedFragment ActivityEdge
11 Last message ends Flow between end control

nodes and FinalNode
12 InteractionOccurrence Control Flow across CCFGs
13 Polymorphic message DecisionNode
14 Nested InteractionFrag-

ments
Nested CCFGs

 Control Flow Analysis of UML 2.0 Sequence Diagrams 169

Fig. 5. CCFG of the SD in Fig. 1

3.2.1 First Message End Flow Between InitialNode and First Control Node
This consistency rule checks if there is a flow from the initial node of every CCFG to
its first control node. The first control node of a CCFG is the one that corresponds to
the first message of the corresponding SD.

OCL Mapping

The CCFG of each interaction fragment is checked to have an initial node (lines 1-2)
with specific characteristics. There should be a control flow from the initial node to
the activity node having the sendEvent of the first message of the interaction fragment
in its inflow (lines 4–7).

To reduce the complexity of our
consistency rules, we have defined
several utility functions inside a utility
class Util, such as getCCFG() and
getFirstMessage(), as they are used in the
above rule. getCCFG() returns the
CCFG::Activity instance associated with
an instance of SD::InteractionFragment.
getFirstMessage() returns the first mes-
sage of a given interaction fragment
according to the ordering provided by its
GeneralOrdering. GeneralOrdering is
the SDs mechanism to order messages.
More details are provided in [22].

Example

Fig. 6-(a) shows part of the CCFG
instance that satisfies the above consis-
tency rule based on Fig. 1. The
corresponding part of the resulting CCFG
is represented in Fig. 6-(b). Executable
node enA corresponds to the message A
(getAsynchProcessor) in Fig. 1. enAse is the sendEvent MessageEnd of the message A.
enAse is already in the inflow of node enA because of the rule #3. Furthermore, get-
FirstMessage(ccfg) returns message A, and in this way, the appropriate control flow
connection between the ccfg‘s initial node and node enA is checked to exist.

1 SD::InteractionFragment.allInstances->forAll(interFrag:InteractionFragment|

2 CCFG::InitialNode.allInstances->exits(in:InitialNode|

3 in.activity=Utility::Util.getCCFG(interFrag) and

4 in.outgoing->includes(flow:ControlFlow|

5 getCCFG(interFrag).node->exits(an:ActivityNode|

6 an.inFlow->includes(Utility::Util.getFirstMessage

7 (interFrag).sendEvent) and flow.target=an

8)

9)

10)

11)

A

B

C

E

H

[s!=FINISHED]

[else]

D

I

F

G

Call Node

Reply Node

Legend

[else]

[at=NULL]
CCFG(N)

...

170 V. Garousi, L.C. Briand, and Y. Labiche

ccfg:Activity

flow:ControlFlow

in:InitialNode enA:ExecutableNode
1

1

targetsource

incomingoutgoing

A:SD::Message
message

enAse:SD::MessageEnd
inflow

 (a)

enA:ExecutableNode

ccfg=getCCFG(AsynchronousRequestProcessing)

in:InitialNode

flow:ControlFlow

enA.message=A

enA.sendEvent

(b)

Fig. 6. (a)-Part of the CCFG instance ccfg mapped from the SD in Fig. 1, satisfying the consis-
tency rule #2. (b)-Part of the CCFG, corresponding to the instance shown in (a).

3.2.2 SynchCall/SynchSignal CallNode
This rule maps synchronous (call or signal) messages of a SD to call nodes of a
CCFG. (These messages are identified thanks to enumeration values synchCall and
synchSignal of message attribute messageSort.)

OCL Mapping

The synchCall and synchSignal messages of a SD are selected in lines 1-3. The ex-
istence of a corresponding call node c is checked in lines 5-10. The call node cn’s
message association value should be m (line 6), its object partition should be lifeline
of message m (line 7), and its inflow and outflow sets should include only m’s send
and receive events, respectively (lines 8-9). These inflow and outflow information are
needed since the control flow consistency rule (#5) will use them to connect nodes to
each other to form the control flow. Line 10 makes sure that node cn is a part of the
CCFG corresponding to interaction containing message m. getObjectPartition() is an-
other utility function, which returns the object partition instance associated with a life-
line (using consistency rule #6).

1 SD::Message.allInstances->forAll(m:Message|

2 (m.messageSort=SD::MessageSort.synchCall) or

3 (m.messageSort=SD::MessageSort.synchSignal)

4 implies

5 CCFG::CallNode.allInstances->exits(cn:CallNode|

6 cn.message=m and

 -- check object partition

7 cn.inPartition= Utility::Util.getObjectPartition(

 m.receiveEvent.covered.connectable_element_name) and

-- make sure cn is prepared for control flow (edge) connections

-- m.SendEvent/m.ReceiveEvent should be in inFlow/outFlow of cn

8 cn.inFlow->includes(m.sendEvent) and

9 cn.outFlow->includes(m.receiveEvent) and

10 Utility::Util.getCCFG(m.interaction).node->includes(cn)

11)

12)

 Control Flow Analysis of UML 2.0 Sequence Diagrams 171

Example

Fig. 7-(a) shows part of the CCFG instance corresponding to message A in Fig. 1 that
satisfies the consistency rule #3. The corresponding part of the resulting CCFG is rep-
resented in Fig. 7-(b). Call node cn corresponds to message A in Fig. 1. Since the re-
ceiver lifeline of message A is pf:ProcessorFactory, the inPartition association of cn
corresponds to ObjectPartition instance op which is associated with object and class
names pf and ProcessorFactory, respectively.

ccfg:Activity

op:ObjectPartition cn:CallNode

1 1

outFlowinFlow

inPartition

A.sendEvent:
SD::MessageEnd

A:SD::Message
message

A.receiveEvent:
SD::MessageEnd

“pf”:NamedElement

“ProcessorFactory”
:NamedElement

objectName

className

(a)

cn:CallNode

ccfg=getCCFG(
AsynchronousRequestProcessing)

op:ObjectPartition

A.sendEvent

A.receiveEvent

cn.message=A

 (b)

Fig. 7. (a)-Part of the CCFG instance ccfg mapped from the SD in Fig. 1, satisfying the consis-
tency rule #3. (b)-Part of the CCFG, corresponding to the instance shown in (a).

4 Concurrent Control Flow Paths

The CCFG corresponding to a SD includes one or more Concurrent Control Flow
Paths (CCFPs). Each CCFP is defined as a concurrent path, starting from the initial
node of the CCFG to its activity final node. Concurrent paths include all the branches
going out from a fork node in a CCFG. A CCFP is derived by traversing from the ini-
tial node to the final node and concatenating all the nodes in the path, in order. Simi-
lar to conventional CFA techniques, special considerations regarding decision nodes
should be made in terms of conditions and loops, i.e., two different CCFPs for
true/false edges of a conditional should be derived. Formally, the set of all CCFPs of a
CCFG can be represented using the grammar [31] in Fig. 8.

() ()

CCFP::FalseCCFP

CCFP::TrueCCFP

FalseCCFP|TrueCCFP::lCCFPConditiona

|CCFP|CCFP|CCFP::LoopCCFP

JoinNode|ForkNode|plyNodeRe|CallNode|FinalNode|eInitialNod::FlowNode

|lCCFPConditiona|LoopCCFP|

CCFP

CCFP

|FlowNode|CCFP.CCFP::CCFP

maxavg

=
=
=
=

=

=

ε

εL

Fig. 8. Grammar defining the set of CCFPs of a CCFG

172 V. Garousi, L.C. Briand, and Y. Labiche

In the grammar shown in Fig. 8, the first line indicates that: (1) the concatenation
of two CCFPs gives a CCFP, (2) FlowNode instances are the basic building blocks for
CCFPs, and (3) the notation with two parentheses is for CCFPs with intra-SD concur-
rency. When there are fork and join nodes in a CCFG, it means that there is intra-SD
concurrency in the CCFG: different paths between the fork and join nodes can be
executed concurrently. An open (close) parenthesis corresponds to a fork (join) node.
LoopCCFP and ConditionalCCFP denote that a CCFP can be built from loop and
conditional blocks of a CCFG. ε is the standard empty string notation, meaning an
empty CCFP in our context.

The third line in Fig. 8 is for loop CCFPs and has a strategy similar to what is used
to test loops in code, i.e. each loop is bypassed (ε) – if possible, taken only once
(CCFP), a representative or average number above one (avg), and a maximum num-
ber of times (max). The fourth line is for conditional CCFPs and specifies that both
the true or false path of a condition must be followed to derive two different CCFPs.
The fifth and sixth lines state that the true and false paths of a conditional CCFP are
CCFPs as well.

For example, our representation of CCFPs of a CCFG can be useful for test require-
ment generation applications and data flow analysis purposes (such as def-use pairs).

A constraint for a well-formed CCFP
is that the first and the last flow nodes
of a CCFP should be the initial and ac-
tivity final nodes of the CCFG corre-
sponding to an interaction (SD). As ex-
amples of CCFPs, considering the
CCFG in Fig. 5, the set of all CCFPs is
shown in Fig. 5, assuming the average
and maximum number of times one
wants to exercise the loop are 2 and 3, respectively. The ρi symbols are used to refer
to distinct CCFPs.

5 Conclusions

This article presents a control flow analysis methodology for UML 2.0 sequence dia-
grams, which is based on defining formal mapping rules between metamodels. The
output of our technique can be used in Sequence Diagram-based test techniques.
Other usages of the generated control flow information include model execution,
model comprehension, and conformance verification of model with code. Based on
well-defined UML 2.0 activity diagrams, we used a customized activity diagram
metamodel, referred to as Concurrent Control Flow Graph (CCFG), as the control
flow model in this work. Furthermore, a grammar was defined for Concurrent Control
Flow Paths (CCFPs). CCFPs are a generalization to the conventional Control Flow
Path concept handling nested concurrent paths. Our entire approach was applied to an
example SD and is further described and illustrated in [22].

Some of our future research directions are: (1) definition of test-based coverage
criteria for CCFGs and CCFPs, (2) a metamodel for CCFPs and algorithms to derive
CCFPs from a CCFG, (3) more investigation on the proposed grammar for CCFPs

==

==

FG

HI
DE

ABC

FG

HI
DE

ABC

FG

HI
DE

ABC

FG

DE
ABC

3

4

2

3

21

)()(
ρρ

ρρ

Fig. 9. CCFPs of the CCFG in Fig. 5

 Control Flow Analysis of UML 2.0 Sequence Diagrams 173

and ways to automate the CCFPs derivation process by building a parser, (4) defining
a consistency-rule based Data Flow Analysis (DFA) technique to derive data flow in-
formation from SDs, (5) tool support, and (6) implementing OCL transformation rules
to transform a SD into a CCFG, i.e., using MDA’s [19] transformation definition lan-
guage. The last idea is similar to the transformation rules given in [19] to transform a
PIM (Platform Independent Model) to a PSM (Platform Specific Model) in the con-
text of the MDA framework.

References

 [1] S. Muchnick, Advanced Compiler Design and Implementation, First ed: Morgan Kauf-
mann, 1997.

 [2] A. T. Chusho, "Test data selection and quality estimation based on the concept of essen-
tial branches for path testing," IEEE Tran. on Soft. Eng., vol. 13, no. 5, pp. 509-517,
1987.

 [3] A. Bertolino and M. Marre, "Automatic Generation of Path Covers Based on the Control
Flow Analysis of Computer Programs," IEEE Tran. on Soft. Eng., vol. 20, no. 12, pp.
885-899, 1994.

 [4] S. Rapps and E. J. Weyuker, "Data flow analysis techniques for test data selection," Proc.
Int. Conf. on Soft. Eng., pp. 272-278, 1982.

 [5] M. Harrold and M. Soffa, "Interprocedual data flow testing," Proc. Symp. on Soft. Test-
ing, Analysis, and Verification, pp. 158-167, 1989.

 [6] B. Marick, "Experience With the Cost of Different Coverage Goals For Testing," Proc.
Pacific Northwest Soft. Quality Conf., pp. 147-164, 1991.

 [7] Z. Jin and J. Offutt, "Coupling-based Criteria for Integration Testing," Soft. Testing, Veri-
fication, and Reliability, vol. 8, no. 3, pp. 133-154, Sept. 1998.

 [8] OMG, "Unified Modeling Language Specification (v1.3)," 1999.
 [9] OMG, "Unified Modeling Language Specification (v1.5)," 2003.
[10] OMG, "UML 2.0 Superstructure Final Adopted specification," 2003.
[11] M. Okazaki, T. Aoki, and T. Katayama, "Formalizing sequence diagrams and state ma-

chines using Concurrent Regular Expression," Proc. Int. Workshop on Scenarios and
State Machines: Models, Algorithms, and Tools, pp. 74-79, 2003.

[12] A. Rountev, S. Kagan, and J. Sawin, "Coverage Criteria for Testing of Object Interac-
tions in Sequence Diagrams," Proc. Conf. Fundamental Approaches to Soft. Eng., pp.
289-304, 2005.

[13] S. Bernardi, S. Donatelli, and J. Merseguer, "From UML sequence diagrams and state-
charts to analyzable Petri-net Models," Proc. Int. Workshop on Soft. and Performance,
pp. 35-45, 2002.

[14] J. Cardoso and C. Sibertin-Blanc, "Ordering actions in sequence diagrams of UML,"
Proc. Int. Conf. on Information Technology Interfaces, pp. 3-14, 2001.

[15] E. Burd, D. Overy, and A. Wheetman, "Evaluating Using Animation to Improve Under-
standing of Sequence Diagrams," Proc. Int. Workshop on Program Comprehension, pp.
07-113, 2002.

[16] Y. Wu, M.-H. Chen, and J. Offutt, "UML-Based Integration Testing for Component-
Based Software," Proc. Int. Conf. on COTS-Based Software Systems, pp. 251-260, 2003.

[17] A. Abdurazik and J. Offutt, "Using UML Collaboration Diagrams for Static Checking
and Test Generation," Proc. Int. Conf. on the Unified Modeling Language, pp. 383-395,
2000.

[18] F. Fraikin and T. Leonhardt, "SeDiTeC-testing based on sequence diagrams," Proc. Int.
Conf. on Automated Soft. Eng., pp. 261-266, 2002.

174 V. Garousi, L.C. Briand, and Y. Labiche

[19] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven Architecture-
Practice and Promise, 1st ed: Addison-Wesley Prof., 2003.

[20] V. K. Garg and M. T. Ragunath, "Concurrent regular expressions and their relationship to
Petri nets," Theoretical Computer Science, vol. 96, no. 2, pp. 285-304, 1992.

[21] S. Donatelli and G. Franceschinis, "PSR Methodology: integrating hardware and soft-
ware models," Proc. Int. Conf. in Application and Theory of Petri Nets, pp. 133-152,
1996.

[22] V. Garousi, L. Briand, and Y. Labiche, "Control Flow Analysis of UML 2.0 Sequence
Diagrams," Technical Report SCE-05-09, Carleton University,
http://www.sce.carleton.ca/squall/pubs/tech_report/TR_SCE-05-09.pdf, 2005.

[23] D. L. Long and L. A. Clarke, "Task interaction graphs for concurrency analysis," Proc.
Int. Conf. on Soft. Eng., pp. 44-52, 1989.

[24] A. T. Chamillard and L. A. Clarke, "Improving the accuracy of Petri net-based analysis
of concurrent programs," Proc. Int. Symp. on Soft. testing and analysis, pp. 24-38, 1996.

[25] I. Krüger, R. Grosu, P. Scholz, and M. Broy, "From MSCs to Statecharts," Proc. Int.
Workshop on Distributed and parallel Embedded Systems, pp. 61-71, 1999.

[26] H. R. Nielson and F. Nielson, "Infinitary Control Flow Analysis: a Collecting Semantics
for Closure Analysis," Symp. on Principles of Programming Languages, pp. 332-345,
1997.

[27] J. Bauer, "A control-flow-analysis for multi-threaded java with security applications,"
Master’s thesis, Universitat des Saarlandes, 2001, pp. 97.

[28] P. D. Blasio, K. Fisher, and C. Talcott, "A Control-Flow Analysis for a Calculus of Con-
current Objects," IEEE Trans. on Soft. Eng., vol. 26, no. 7, 2000.

[29] W. Brauer, W. Reisig, and G. R. (eds.), "Petri nets, central models and their properties,"
LNCS, vol. 254, 1987.

[30] J. Warmer and A. Kleppe, The Object Constraint Language: Getting Your Models Ready
for MDA: Addison Wesley, 2003.

[31] G. Rozenberg and A. Salomaa, Handbook of Formal Languages, 1st ed: Springer, 1997.

Designing a Domain-Specific Contract Language:
A Metamodelling Approach

Zhan En Chan1 and Richard F. Paige2

1 Department of Computer Science, University of Warwick, UK
echan@dcs.warwick.ac.uk

2 Department of Computer Science, University of York, UK
paige@cs.york.ac.uk

Abstract. Domain-specific languages are of increasing importance in software
engineering. Little attention has been paid to the systematic production of
domain-specific contract languages (DSCLs). In this paper, we present a
metamodel-based approach for designing DSCLs. An extensible metamodel for
software contracts is presented, and a process for building DSCLs is sketched.
Finally, an example of building a DSCL is demonstrated, using the metamodel
and process.

1 Introduction

Software contracting has been proposed as a useful technique to improve software re-
liability, particularly, but not exclusively, in object-oriented (OO) software develop-
ment, usually in the form of pre- and postconditions on methods. The strengths and
weaknesses of contracting are widely acknowledged in the literature, e.g., [20,22]. The
key mechanism in software contracting is the assertion. Assertions have been used for
many years in software development [34], and rich mathematical theories have been
developed [10].

Since their introduction, software contracts have been used in many different ways –
and to different purposes – in different software projects. A wealth of contract languages
have been developed, and tool support for some of these languages is now mature. Un-
fortunately, the sheer number of different contract languages and approaches for using
them create a barrier for component integration and reuse, for developing software con-
tract tool support, and for improving existing languages. Moreover, with the growing
move towards domain-specific languages [11], it is becoming increasingly difficult to
see how to systematically inject contracts into these languages. This could be simpli-
fied by the existence of domain-specific contract languages (DSCLs), and techniques
for helping to construct DSCLs, particularly a development process and a metamodel
explaining existing types of contracts and their relationships.

A general, broad, though incomplete classification of software contracts was pre-
sented by Beugnard [5]. It is incomplete for several reasons: it omits certain types of
contracts (e.g., those for aspect-oriented modelling), and some types of domain-specific
contracts (e.g., unit measurement in safety critical systems) cross several categories
(e.g., unit contracts are neither purely syntactical nor behavioural).

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 175–189, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

176 Z.E. Chan and R.F. Paige

The lack of a systematic classification of software contracts makes it difficult to
develop software contract tool support, determine which kinds of contracts are useful
for particular development projects, and impedes domain-specific contract language de-
sign. To help to remedy this situation, we present an extensible metamodel for software
contracts, along with a process for eliciting contracts, which can be used for producing
DSCLs. The benefits of metamodelling are informally acknowledged in [1]. In our case,
a metamodelling approach has the following advantages:

1. It helps software engineers identify and apply software contracts more efficiently,
since the metamodels help to structure and classify the different types of contracts
and the ways in which they can be applied.

2. The metamodels introduced are extensible. This gives an account for producing
new types or uses of software contracts beyond those currently identified. A process
for building and extending the metamodels is introduced in Section 3.1.

The remainder of this paper is organised as follows: Section 2 describes the different
types of software contracts used in practice. Section 3 discusses the metamodelling
approach, and particularly details four views in the metamodel for software contract.
Section 4 demonstrates how the metamodelling approach can be used to help in the
process of building a domain-specific contract language.

2 Background

In this section, the current uses of software contracting in systems engineering will
be discussed, in terms of contract binding (i.e., when and how contracts are bound to
software entities), contract representation, and domain of applicability. This will be
used to generate different views in the contract metamodel, and can also be used to
precisely define a contract:

Definition 1. [Contract]. A contract is a set of one or more assertions that are
expressed in a language (ideally with a precise specification of its syntax and seman-
tics), are bound to one or more software entities, and are used in a specific domain of
applicability.

2.1 Contract Binding

The key element in contracts, the assertion, has been used in structured methodologies,
e.g., [34,30]. Contracts have also been successfully used to specify aspect composition
in Aspect-Oriented Programming (AOP) [13]. More recently, software contracts have
been used in event-driven software systems for event specifications [17,21], architec-
tural models [28,26], and components. We argue that a software contract can be bound
or attached to any software artifact (e.g., procedures, classes, aspects, events) in any
modelling language. The meaning, importance, and value of a binding will of course be
dependent on the modelling technique and how it is used. This binding or attachment
can be done statically (i.e., at software construction time) or dynamically (when the
software executes).

Designing a Domain-Specific Contract Language: A Metamodelling Approach 177

2.2 Contract Representation

A representation is a logical category of contracts which have similar syntax, degree of
formality, and degree of expressiveness. There are four different types of representations
for software contracts [7], though distinctions are not meant to be exact:

1. mathematical languages (e.g., Z, OCL); these can be further categorised into lan-
guages that support proof (e.g., Z) and those that do not (e.g., OCL).

2. semi-formal modelling languages (e.g., UML)
3. programming languages (e.g., C#, Java)
4. natural languages (e.g., comments in program source code, requirements)

There are limitations in using particular contract representations in different situations.
This depends on the purpose behind using the contract, the level of formality, and when
the contract is used in the software development lifecycle (e.g., to drive testing).

2.3 Domain of Application

Domain-Specific Software Engineering has received much attention in recent years; it
advocates tailored approaches to address domain-specific concerns. Domain-specific
solutions are common in application domains such as safety-critical systems, Web Ser-
vices, and mobile computing. Numerous examples of contract languages constructed to
work in specific domains can be found in the literature, e.g., [8,3,9,32,15].

Fig. 1 shows an example of a domain-specific contract for a poll function in the
Cooling Control of an IMA system [27]. The precondition of the contract requires an
input in units of kg2 and with an accuracy of 10−6, whilst the postcondition promises
to return a result in unit of kg if the precondition is satisfied. The accuracy and units
contracts enrich OCL modelling in the safety-critical domain with data accuracy and
measurement units. A more detailed survey on contracts in different application do-
mains is available in [7].

context Cooling Control::poll(x:float):float
pre: accuracy(x)>=10ˆ(-6) and units(x)==kg2
post: result*result == x and units(result)==kg

Fig. 1. A contract in a safety-critical application (extracted from [27])

3 A Metamodel for Contracts

We now turn to the two key contributions of this paper: an extensible metamodel for
software contracting approaches, and a description of the engineering process used for
constructing the metamodel. This process can in turn be used to elicit new types of
contracts, which can then be integrated into the metamodel.

The metamodel for contracts is derived from the results of an extensive survey [7]
on contracts and their applications. It is described in UML annotated with OCL; as such

178 Z.E. Chan and R.F. Paige

it should be accessible and understandable to a substantial proportion of the Model-
Driven Development community.

We first present the engineering process that we used to elicit contracts and construct
the contract metamodel. This process will be useful for engineers who wish to extend
the contract metamodel that we provide, and produce their own DSCL instantiated from
the metamodel.

3.1 Contract Elicitation and Analysis Process

The metamodel for contracts is the result of a Contract Elicitation and Analysis Process
(CEAP). As its name suggested, the aim of the CEAP is to elicit and analyse contracts
in order to understand their key attributes: their binding, their representation, and their
domain of applicability. The CEAP is an iterative process (Figure 2). There are three
main activities: Elicitation, Analysis, and Classification. Each cycle in the CEAP en-
riches the existing taxonomy in terms of one or more of the key attributes of interest.
For instance, a cycle may focus on safety critical applications; another may focus on
contracts that are used in different modelling techniques.

Fig. 2. Contract Elicitation and Analysis Process

CEAP is derived from the spiral software development model [33] and the spiral
model in requirements engineering [14]. The main difference is that CEAP produces
metamodels and taxonomies, rather than software or requirements.

The advantage of defining and using CEAP is that it gives extensibility to its prod-
uct: the metamodel for contracts. This is very useful for DSCL design, as new types of
contracts can emerge from new application domains for new purposes. In other words,
the metamodel can be kept up-to-date by performing additional CEAP cycles.

Designing a Domain-Specific Contract Language: A Metamodelling Approach 179

3.2 Overview of the Metamodel

We now present our contract metamodel, derived from applications of CEAP cycles,
starting with an architectural package diagram. As shown in Fig. 3, there are six pack-
ages in the metamodel:

1. SoftwareContract represents the concept of a software contract; this will be spe-
cialized in different views and representations in the metamodel. Essentially this
package represents common behaviours of software contracts, e.g., that their asser-
tions evaluate to true or false based on some state binding. Additional details are
considered below.

2. Representation encapsulates those classes that are used to represent a software con-
tract’s abstract or concrete syntax (see Section 2.2).

3. ModelTechView, EngTaskView, DomainView, NegLevelView represent four views of
software contract, which are extensions of SoftwareContract. These are explained
in more detail in successive sections. Some of these views encompass the categories
of [5], but there are new views capturing domains and engineering tasks as well.

Fig. 3. Software Contract Metamodel

Dependencies among these packages are straightforward; the dependencies are im-
plemented by generalisations: each package contains a top-level class that generalises
Contract, thus producing a simple, flat taxonomy of contracts. Additional details will
be added in the following sections.

3.3 An Abstract Software Contract

We now present the details of the Software Contract package, which is used to capture
the essential characteristics of contracts. This metamodel will in turn be specialised
and generalised to capture different representations and views in subsequent sections.
A generic, yet extensible architecture is more accessible to study, analyse, and use for
building DSCL and produce tool support for existing contract languages. Based on this

180 Z.E. Chan and R.F. Paige

claim, we constructed a metamodel derived from the framework found in Design-by-
Contract [19], which is based on assertions. Most contracts in the literature are based on
such a foundation (e.g., OCL), which supports conceptual elements found in assertions
(i.e., preconditions, postconditions, invariants).

As shown in Fig. 4, there are three different mechanisms which define software
contracts:

1. ExceptionHandlingPolicy is a set of mechanisms which are used to handle contract
violations [5,18,20]. There are five different types of handling policy: reject, retry,
ignore, wait, and negotiate. Note that this model supports selecting and sequenc-
ing of policies; in some cases it may be necessary to identify a unique exception
handling policy.

2. StaticAnalysis checks that a contract is satisfied at compile time; the default is that
the contract is satisfied at run-time, so this mechanism may be empty.

3. Assertion evaluates to true or false at runtime. A false evaluation will result in
invoking the exception handling policy noted previously.

Detailed discussion of contract checking and enforcement mechanisms is out of the
scope of this paper; we refer the reader to the literature [5,20,7].

As well as capturing enforcement mechanisms, Fig. 4 also depicts the relationships
among the elements of a typical software contract. A Contract may consist of many
Constraints. These constraints may bind to various artifacts depending on the mod-
elling technique that is in use. A Contract may consist of sub-contracts [20] or depend
on another contract [23,24]. There are seven types of constraints that can be associated
with a contract, namely Pre (precondition), Post (postcondition), ClassInv (class in-
variant)1, LoopInv (loop invariant), LoopVar (loop variant), Guard (conditional logic),
and Interface (component interface). However, only the first six constraints are used as
assertions and are verifiable at runtime.

In Beugnard’s paper [5], an interface is the simplest form of contract. Though an
Interface is not used in assertions, we argue that an interface contract is a constraint of
a component rather than a type of contract.

The metamodel for an abstract software contract is not yet complete. For instance,
it is currently possible to describe a contract that has two interfaces; or a contract that
contains itself. Hence, we need to add OCL constraints to the metamodel. The necessary
expressions are shown in Fig. 5.

3.4 Four Additional Views

The typical contract metamodel in Section 3.3 only depicts the common elements
in contracts; it is insufficent for reasoning about contracts for special purposes, e.g.,
domain-specific contracts which may add further information pertaining to a domain
of application. In this section, we extend the typical contract metamodel from four dif-
ferent perspectives. Although these views are apparently disjoint, they are inter-related
and can be used simultaneously to construct a language and reason about a contract. A
detailed example of applying all four views to reason about a software contract can be
found in (p.56-60, [7]).

1 UML 2.0 also supports StateInvariant which is similar in intent to ClassInv.

Designing a Domain-Specific Contract Language: A Metamodelling Approach 181

Fig. 4. A Metamodel for an Abstract Software Contract

context Contract inv:
self.depends.forall(c : Contract | c <> self)
self.constraint.select(oclIsTypeOf(Interface)).size() == 1

Fig. 5. Additional OCL constraints

View of Application Domains. Domain-specific contracts usually contain charaterised
counterparts of area of concerns from their application domain. For example, measure-
ment units in safety-critical systems [31,27], information flow in web applications [3],
location and itinerary constraints in mobile agent systems [15] and end-user software
engineering [4]. Some of the areas of concern overlap with others (e.g., security [8] and
safety). This is due the nature of shared information in the application domain (e.g.,
information used for certifying safety, such as hazards and risks, may also be of impor-
tance in certifying security). As a result, the domain-specific contract is an extension of
a typical contract containing domain-specific contraints (Fig. 6). This architecture has
numerous advantages:

1. It is simple to extend in order to accommodate domain-specific contraints that are
extracted from contracts in unexplored domains.

2. It can accommodate interdisciplinary or intra-domain contracts.

Due to space limitations, the OCL constraints for this view are omitted here; they can
be found in (p.51-52, [7]).

View of Engineering Tasks. In the view of engineering tasks, we emphasize the iden-
tity of contracts pertaining to different software engineering tasks. Evidence [22,20,12]
shows that contracts contribute to various engineering tasks, from requirements docu-
mentation to system deployment to certification. They also tend to appear in various
representations and structures in different engineering tasks [16,6]. Typically, there are
five major tasks in software development life cycle: requirements gathering, design,
implementation, testing, and deployment [33]. There may be additional tasks in some

182 Z.E. Chan and R.F. Paige

Fig. 6. View of Application Domains

situations, e.g. usability evaluation. As yet, there is no evidence that software contract-
ing is used in these tasks.

As shown in Fig. 7, a contract can be used in various engineering tasks, in different
representations. On the other hand, an engineering task may use a number of differ-
ent contracts for specifying a software component. Five major engineering tasks are
specialised under EngTask. Fig. 7 cannot articulate which representation is or is not
available to a given engineering task; some of these decisions are domain-specific (e.g.,
whether a programming language can be used to provide contracts acceptable for de-
ployment in a safety critical domain), but others can be made at this time. Therefore,
we must supply OCL constraints; these are omitted and found in [7].

Fig. 7. View of Engineering Tasks

View of Modelling Techniques. Contracts are bound to different units or elements in
different modelling techniques, for example,

1. In OO and CBSE, contracts are bound to components, packages, classes, services,
or states.

2. In structured programming, contracts are bound to packages, routines, statement
blocks [20].

Designing a Domain-Specific Contract Language: A Metamodelling Approach 183

3. In aspect-oriented modelling, contracts are used to specify the link between aspects
and classes [13], i.e., weaving.

4. In event-driven approaches, contracts are bound to events and event handlers
[17,21].

Fig. 8 outlines a metamodel architecture which is suitable for describing the rela-
tionship between contracts and elements in different modelling techniques.

View of Negotiability. The extension of our metamodel in terms of level of negotia-
bility of a contract is based on the layered model in [5]. As shown in Fig. 9, all contract
layers in [5] become subclasses of NegContract, which represents a negotiable contract.
There are two attributes in NegContract: negotiability and level. Negotiability is an in-

Fig. 8. View of Modelling Techniques

Fig. 9. View of Negotiability

184 Z.E. Chan and R.F. Paige

teger value which quantifies the degree of negotiability of a contract: zero represents
non-negotiable, while the opposite extreme represents full negotiability. Level is used
to preserve the concept of negotiability level in [5], which classifies contracts into four
levels of negotiability. There are two ways to preserve prerequisites of contract layers in
Beugnard’s model: i) multi-tiered inheritance, ii) annotations with OCL. We have cho-
sen the latter approach to avoid complex diagram and to maintain flexibility to changes.
The required OCL annotations are in [7].

4 Building a Domain-Specific Contract Language

Domain-specific contract languages (DSCL) have previously been built, often in an ad-
hoc manner, to address particular needs and specific domain requirements. DSCLs built
in an ad-hoc manner can be difficult to extend and may cause integration and readability
problems. They are also unlikely to easily accommodate new requirements in rapidly
changing domains, e.g., the Web Services domain.

We now construct a simple DSCL to illustrate the benefit of our systematic exten-
sible metamodelling approach. To continue our metamodelling apporach, the abstract
syntax of this simple DSCL is specified with a metamodel, which is closely linked
to our software contract metamodel. This will be discussed in section 4.1. We will
then show how the metamodel instantiates to become an XML contract language in
Section 4.2, thus providing a concrete syntax.

4.1 A Metamodel for a Software Contract Language

When we build a metamodel for a DSCL, we can consider two approaches, either: i)
build it from first principles; or ii) extend an existing metamodel. In the former, which
generally requires more effort, the language designer has substantial flexibility. In the
latter, there may be less flexibility but the language may take less time to design.

Building a full-fledged DSCL metamodel requires a detailed design for its abstract
and concrete syntax, as well as formal descriptions of its underlying semantics. Since
the focus of our work lies on supporting the process of building DSCLs rather than

Fig. 10. Metamodel structure for a simple DSCL

Designing a Domain-Specific Contract Language: A Metamodelling Approach 185

producing a full-fledged DSCL, we build our DSCL metamodel based on an existing
metamodel. As yet, only OCL and dialects [25] are specified using a metamodelling
approach.

We have examined several OCL metamodels, particularly [29,2,25]. We have cho-
sen [29] as the skeleton for our DSCL metamodel due to its completeness and sim-
plicity. Fig. 10 highlights core modifications to the original OCL metamodel. New and
modified classes are shaded in the figure. We preserved the package structure and the
main class architecture from [29]. In order to integrate with the top-level architecture
of our DSCL metamodel, we have made a number of changes to the metamodel:

1. The prefix Ocl in all classes is dropped.
2. Controversial classes OclAny, OclType, and their derivatives (e.g., OclAnyType) are

removed from the metamodel.
3. The superclass in the Type package is changed to Classifier. Therefore, every

unique classifier in our DSCL can be a type. This allows greater expressiveness
at the price of a weaker type system.

4. ExtendedExpression, ExtendedType, and ExtendedValue are introduced in Expres-
sion, Type, and Value package respectively. These extension points allow us to at-
tach domain-specific expressions, types, and values.

Recall that we have the notion of Constraint and Mechanism in our metamodel. The
modified OCL metamodel is not a complete DSCL metamodel. As shown in Fig. 11,
infrastructure is necessary to ’contain’ the modified metamodel. The connection point
between this infrastructure and the modified metamodel is in the Expression class. In the
software contract metamodel, DomainConstraint is subclass of Constraint. A domain-
specific constraint may be implemented by one or more domain-specific expressions.
Hence, it is a part of Constraint in a Contract in the DSCL metamodel. A contract
may be used to specify the relationship between two or more parties, i.e., Server and
Client. Various contract enforcement mechanisms were modelled in the software con-
tract metamodel, however, only ExceptionHandlingPolicy has a practical meaning in

Fig. 11. Metamodel of syntax for a simple DSCL

186 Z.E. Chan and R.F. Paige

a DSCL syntax. Therefore, we only preserve ExceptionHandlingPolicy from the sub-
classes of Mechanism.

4.2 Building a Contract Language in XML

XML [35] is a popular markup language for information exchange, which is simple, yet
highly extensible. We present an example to illustrate how to use the DSCL metamodel
to construct an XML-based contract language. Space limitations prevent us from captur-
ing the concrete syntax for the contract language, but doing so is reasonably straightfor-
ward. Fig. 12 presents an instantiation of the metamodel for capturing the safety-critical
contract in Fig. 1. On the top level, a Contract instance represents the CoolingControl
contract. It contains a sub-contract which binds to the poll service withing the compo-
nent. The poll service contract specifies the constraints for its interface, precondition,
and postcondition. Both AccuracyExp and UnitExp are domain-specific expressions in
the safety-critical contract. Unsurprisingly, AccuracyType and UnitType are the result
types of AccuracyExp and UnitExp respectively.

At this point, the structure of the final XML contract has emerged. We simply
rewrite classes in the safety-critical contract model (Fig. 12) into XML constructs, thus
producing a concrete instantiation (given a metamodel for the concrete syntax this pro-
cess could be automated using QVT transformations without difficulty).

1. Classes in the model are converted into XML tags.
2. Roles, i.e., source and argument, become XML tags as well.
3. Class attributes, e.g., name, type, become XML attributes.
4. Subclass of Expression is converted into <expression>; its class iden-

tifier becomes the type attribute, e.g., UnitExp becomes <expression
type=’x-unit’>.

Fig. 12. Instantiation of the metamodel for a simple DSCL

Designing a Domain-Specific Contract Language: A Metamodelling Approach 187

Fig. 13. Translation of the DSCL metamodel into a contract in XML

5. Arithmetic operations like ’=’ and ’>=’ are converted into expressions since Op-
erationExp are subclasses of Expression in the DSCL metamodel.

Therefore, the safety-critical contract in Fig. 1 will be represented by a contract in XML
in Fig. 13.

5 Conclusion

This paper has preseted a metamodelling approach to the development of domain-
specific contract languages. A conceptual metamodel and classification of contracts and
views of contracts has been presented, as has a process, CEAP, for refining this meta-
model. The metamodel has been used to construct an abstract syntax metamodel for a
domain-specific contract language, and this in turn has been instantiated to produce a
domain-specific contract language in XML.

The paper was able to provide only an overview of the metamodelling approach.
The interested reader should refer to [7] for additional technical details and more com-
prehensive examples and justifications.

The main aim of the paper from our perspective is to try to convince the reader
that a metamodel approach to analysing and designing software contracts and software
contract languages is the most suitable way, for building better languages and improve

188 Z.E. Chan and R.F. Paige

the overall use of contracts. This is mainly achieved via the four viewpoints of the
model. The extensible metamodels contribute to software contract language design,
which gives a framework for future extensions. This is somehow similar to the idea of
allowing plugins in software, and the UML Profiling approach.

Our future work includes instantiation of the metamodelling approach to domain-
specific contract languages, particularly for high-integrity real-time systems. We have
produced prototype tool support for such language (particularly for use in simulation of
real-time systems) and plan to experiment on their use in incrementally certifying these
systems as well.

References

1. What is metamodeling, and what is it good for? available at www.metamodel.com, last ac-
cessed 5 June 2005.

2. T. Baar and R. Hahnle. An integrated metamodel for OCL types. In Proceedings of OOPSLA
2000, Workshop Refactoring the UML: In Search of the Core, Minneapolis, Minnesota, USA,
2000.

3. L. Baresi, G. Denaro, L. Mainetti, and P. Paolini. Assertions to better specify the Ama-
zon bug. In Proceedings of the 14th international conference on Software engineering and
knowledge engineering. ACM Press, July 2002.

4. M. Barnett, C. Cook, O. Pendse, G. Rothermel, J. Summet, and C. Wallace. End-user soft-
ware engineering with assertions in the spreadsheet paradigm. In Proceedings of the 25th
International Conference on Software Engineering, pages 93–103. IEEE Computer Society,
2003.

5. Antoine Beugnard, Jean-Marc Jézéquel, Noel Plouzeau, and Damien Watkins. Making com-
ponents contract aware. IEEE Computer, 32(7):38–45, July 1999.

6. L. C. Briand, Y. Labiche, and H. Sun. Investigating the use of analysis contracts to support
fault isolation in object oriented code. In Proceedings of the 2002 ACM SIGSOFT interna-
tional symposium on Software testing and analysis, pages 70–80. ACM Press, 2002.

7. Zhan En Chan. Multiview of a contract metamodel in systems engineering. Msc thesis,
Department of Computer Science, University of York, United Kingdom, September 2004.

8. N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder policy specification language.
In Proceedings of Policy 2001: Workshop on Policies for Distributed Systems and Networks,
LNCS 1995, pages 18–39. Springer-Verlag, 2001.

9. S. Flake and W. Mueller. An OCL extension for real-time constraints. In Object Modeling
with the OCL, LNCS 2263, pages 150–171. Springer-Verlag, 2002.

10. C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576–580, October 1969.

11. Microsoft Inc. Domain-Specific Language (DSL) Tools, 2004.
12. C. Mingins J.-M. Jézéquel, M. Train. Design Patterns and Contracts. Addition-Wesley,

1999.
13. H. Klaeren, E. Pulvermüller, A. Rashid, and A. Speck. Aspect composition applying the

design by contract principle. In GCSE 2000, LNCS 2177, pages 57–69. Springer-Verlag,
2001.

14. G. Kotonya and Ian Sommerville. Requirements Engineering: processes and techniques.
John Wiley & Sons, 1998.

15. S. W. Loke and S. Ling. Design-by-contract for Java based mobile agents. In Proc.
OOSDS’99, 1999.

Designing a Domain-Specific Contract Language: A Metamodelling Approach 189

16. P. Madsen. Enhancing design-by-contract with knowledge about equivalence partitions.
Journal of Object Technology, Special issue: TOOLS USA 2003, 3(4):5–21, April 2004.

17. A. McNeile and N. Simons. Methods of Behaviour Modelling: A Commentary on Behaviour
Modelling Techniques for MDA. Metamaxim Ltd., 2004. DRAFT Version 3.

18. Bertrand Meyer. Building bug-free O-O software: An introduction to design by contract,
available at www.eiffel.com.

19. Bertrand Meyer. Design-by-contract. Technical report tr-ei-12/co, ISE Inc., 1987.
20. Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, 1997.
21. C. Michiels, M. Snoeck, W. Lemahieu, F. Goethals, and G. Dedene. A layered architec-

ture sustaining model driven and event driven software development, technical report, KU-
Leuven.

22. R. Mitchell and J. McKim. Design by Contract, by Example. Addison-Wesley, 2001.
23. I. Nunes. Design by contract using meta-assertions. Journal of Object Technology, Special

Edition: TOOLS USA 2002 proceedings, 1(3):37–56, 2002.
24. I. Nunes. An OCL extension for low-coupling preserving contracts. In UML 2003, LNCS

2863, pages 310–324. Springer-Verlag, 2003.
25. Object Management Group. UML 2.0 OCL Final Adopted Specification, 2004.
26. Society of Automative Engineers. Architectural Analysis and Design Language (AADL).

SAE, 2005.
27. Richard Paige. An encoding of unit and accuracy assertions in UML and OCL, DARP inter-

nal report, 2003.
28. A. Radjenovic. AIM: Architectural Modelling for Managing Change in HIRTS. DARP

HIRTS Project, 2005.
29. M. Richters and M. Gogolla. A metamodel for OCL. In UML ’99, LNCS 1723, pages 156–

171. Springer-Verlag, 1999.
30. David S. Rosenblum. A practical approach to programming with assertions. IEEE Transac-

tions on Software Engineering, 21(1):19–31, January 1995.
31. G. Rosu and F. Chen. Certifying measurement unit safety policy. In 18th IEEE International

Conference on Automated Software Engineering, page 304. IEEE Computer Society, October
2003.

32. J. Skene, D. D. Lamanna, and W. Emmerich. Precise service level agreements. In Proc.
ICSE’04. IEEE Press, 2004.

33. Ian Sommerville. Software Engineering. Addison-Wesley, 7th edition edition, 2004.
34. R. N. Taylor. Assertions in programming languages. ACM SIGPLAN Notices,, 15(1):105–

114, 1980.
35. Franois Yergeau, John Cowan, Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve

Maler. Extensible markup language (XML) 1.1.

Making Metamodels Aware of Concrete Syntax�

Frédéric Fondement and Thomas Baar

École Polytechnique Fédérale de Lausanne (EPFL),
School of Computer and Communication Sciences,

CH-1015 Lausanne, Switzerland
{frederic.fondement, thomas.baar}@epfl.ch

Abstract. Language-centric methodologies, triggered by the success of
Domain Specific Languages, rely on precise specifications of modeling
languages. While the definition of the abstract syntax is standardized by
the 4-layer metamodel architecture of the OMG, most language specifi-
cations are held informally for the description of the semantics and the
(graphical) concrete syntax. This paper is tackling the problem of spec-
ifying the concrete syntax of a language in a formal and non-ambiguous
way. We propose to define the concrete syntax by an extension of the
already existing metamodel of the abstract syntax, which describes the
concepts of the language, with a second layer describing the graphical
representation of concepts by visual elements. In addition, an intermedi-
ate layer defines how elements of both layers are related to each other.
Unlike similar approaches that became the basis of some CASE tools,
the intermediate layer is not a pure mapping from abstract to concrete
syntax but connects both layers in a flexible, declarative way. We illus-
trate our approach with a simplified form of statecharts.

Keywords: Metamodeling, MOF, UML, OCL, Concrete Syntax De-
scription, Visual Languages.

1 Introduction

Productivity gains brought by Domain Specific Languages (DSL) [1] have shown
the importance of using appropriate modeling languages in the early phases of
the software lifecycle. DSLs have triggered the new trend of language-centric
methodologies (see [2,3] for first proposals) and are based on the idea that the
first step to efficiently treat a problem is to create or to customize a language that
allows to describe the problem adequately. The precise definition of DSLs is in
practice often a task for domain or methodology specialists who have only basic
knowledge on language design. To minimize the effort, all phases of the language
definition should be standardized and supported by tools or frameworks.

A modeling language is usually defined in three major steps. The first one is
to define concepts of the language, i.e. its vocabulary and taxonomy, as captured
by its abstract syntax. Then, its semantics should be described in such a form
� This work was supported by Hasler-Foundation, project DICS-1850.

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 190–204, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Making Metamodels Aware of Concrete Syntax 191

that the concepts are clearly understood by the users of the language. Finally,
it is necessary to precisely describe the notation, as captured by its concrete
syntax. Whereas the semantics definition is out of the scope of this paper, we
will concentrate on the concrete syntax part, and especially on its relations to
the abstract syntax.

The clear separation between abstract and concrete syntax is a technique
to cope with the complexity of real-world language definitions since it allows
to define the language concepts independently from their representation. For
language designers, it is of primary importance to agree on language concepts
and on the semantics of these concepts. The graphical representation of the
concepts is often considered less important and is described in many language
specifications only informally. However, an intuitive graphical representation is
crucial for usability and indispensable for tool vendors who want to support a
new modeling language with graphical editors, model animators, debuggers, etc.
Sometimes, it is appropriate to have for one language more than one graphical
representation, for instance when different stakeholders use the same language
but need different views on the model. An example of such a language is ORM [4]
that provides a graphical syntax intended for ontology engineers and a pseudo-
natural syntax intended for non-specialists.

Metamodeling is a widely used technique to capture the abstract syntax of a
language. A well defined set of metamodeling constructs such as classes, associa-
tions, attributes, etc., complemented with a constraint language such as Object
Constraint Language (OCL) allows one to define the concepts of the language
and the relationships between them [5]. The abstract syntax is doubtlessly one
of the most important parts of language definitions. Each sentence of the lan-
guage can be represented without loss of semantic information as an instance of
the metamodel. Such an instance can be represented in a standardized, textual
format based on the general-purpose representation language XMI [6]. Model
representations based on XMI are useful for interchanging models between tools
but humans need more comprehensible views on models.

Our approach defines the graphical concrete syntax of modeling languages
by complementing each metaclass in the metamodel with a display scheme. A
display scheme contains an iconic and a constraining part. The iconic part in-
troduces a new layer of display classes that define the visual objects for the
representation of language concepts. The constraining part defines the connec-
tion between the instances of the metaclasses and their graphical representation
by the instances of the display classes. Technically, the constraining part of a
display scheme consists of a display manager class that is placed between the
metaclass and the display class. Furthermore, display manager classes serve as
anchor points for OCL constraints that are used to describe the connection
declaratively.

The definition of our representation classes is heavily inspired by visual lan-
guage definition techniques [7]. Representation classes take for instance into ac-
count the spatial relationships between visual objects such as overlap, right, hid-
denBy, etc., and whether visual objects are connected by a polyline, curved line,

192 F. Fondement and T. Baar

etc. However, there are some noteworthy differences between our approach and
common approaches to define a visual language. Firstly, many visual language
definitions do not explicitly distinguish between concrete and abstract syntax.
In our approach, the classes for the abstract syntax are completely separated
from classes for concrete syntax. Secondly, the mainstream approach to define a
visual language is by graph grammars (see [8] for an overview). The underlying
idea is to generate all syntactically correct sentences of the visual language as
derivations of the grammar rules. In order to decide the question, whether or
not a given diagram is syntactically correct, a derivation of the graph grammar
rules must be constructed. The same question is decided following our approach
just by evaluation of constraints attached to the display manager classes.

The rest of the paper is organized as follows. First, in Sect. 2, a simplified
version of the statechart language is briefly described. This language will be used
as a case study in Sect. 3 where our approach is stepwise developed. Section 4 will
give an overview on related approaches. Finally, Sect. 5 will present conclusions
and future work directions.

2 The Statechart Language

We briefly introduce here the concepts of a simplified, but yet illustrative version
of statecharts [9] whose metamodel is shown in Fig. 1. State vertices might be
connected by transitions. A transition has exactly one source vertex and one
target vertex. A vertex is either a pseudo state (initial state, choice, etc.) or a
state, which is in turn either a composite state (i.e. containing other vertices and
transitions), a simple state, or a final state. Transitions are triggered by events.
A state machine is given by its top state. Not shown in Fig. 1 are well-formedness

ModelElement

name : String

StateMachine

StateVertex Transition

State

Composite
State

Simple
State

Event

Final
State

PseudoState

kind : PseudoStateKind
«enumeration»

PseudoStateKind

initial
choice
...

1

1

source

target

outgoing

incoming

*

*

subvertex

*

0..1

container

top 1

0..1trigger

*

Fig. 1. A simplified metamodel for statecharts

Making Metamodels Aware of Concrete Syntax 193

Table 1. Symbols for representation of concepts

Transition SimpleState Composite
State

FinalState PseudoState
(initial)

PseudoState
(choice)

event name

name

contents

:StateMachine

:CompositeState

:Transition

:PseudoState

kind=initial

opened:SimpleState

closed:CompositeState

:Transition

:Transition

:PseudoState

kind=initial

locked:SimpleState

unlocked:SimpleState

:Transition

:Transition

top

source

target
target

source

source

target

source

target

subvertex

subvertex

subvertex

subvertex

source

target
subvertex

subvertex

(a) Instantiation of metamodel

closed

opened

lock unlock

close

unlocked

locked

open

unlocked

(b) More human-friendly,
graphical notation

Fig. 2. Two representations of the same statechart

rules that complement the metamodel and stipulate, for example, that a final
state can never be the source vertex and an initial pseudo-state can never be the
target vertex of any transition.

An informal concrete syntax definition might propose the symbols shown in
Table 1 for the representation of language concepts defined in the metamodel.
Note that there is no need to define a symbol for StateMachine because the state
machine is represented by its top state. The intended meaning for the concrete
syntax definition is illustrated with Fig. 2. Here, the same statechart sentence is
shown both as an raw instance of the metamodel and, in a more intuitive form,
using the intended concrete syntax. For the sake of keeping Fig. 2(a) compact,
events have been omitted in the metamodel instance.

This simple example reveals already some of the weaknesses of informal con-
crete syntax definitions. The mapping of concepts to visual objects as given in
Table 1 must be complemented by comments stating that the name of a com-
posite state is optional in the upper part of the symbol whereas the lower part
optionally shows the representation of the substates. A transition representation

194 F. Fondement and T. Baar

(an arrow) starts in one representation of the transition’s source and ends in
one representation of its target. If a symbol contains parameters as placehold-
ers for additional information, e.g. transitions are supplemented with events,
then it must be specified where the information come from, e.g. that the event
attached to a transition is indeed the same event that triggers the transition.
Another problem is that there may be different icons for the same concept, as
for PseudoState. Here, it is necessary to describe precisely all conditions for the
selection of the correct icon. It is also possible to represent the same concept with
variants of the same icon. For instance, a composite state is displayed with or
without its name what requires to display or to suppress the name compartment
of the symbol.

3 A Scheme-Based Approach to Concrete Syntax
Definition

This section presents our approach to define a concrete syntax of a given lan-
guage. We concentrate here on the definition of a graphical syntax for two rea-
sons. First, most modeling languages provide nowadays an (often informally de-
fined) graphical notation. Second, graphical notations are more challenging as,
for example, purely textual notations. In fact, our approach can also be applied
for the definition of textual notations. In this case, the display classes on the
concrete syntax layer would represent tokens and would be extensions of String
with additional attributes to encode the location of the currently represented
model element.

The concrete syntax is defined by a set of display schemes. A display scheme
is attached to each metaclass of the metamodel. Although schemes have a formal
structure and can be processed by tools, the syntax definition they provide is
nevertheless easily accessible by humans.

The scheme-based approach differs in two respects from related approaches.
First, we do not aim to define a completely new language but concentrate just
on the concrete syntax. This goal is different from what most approaches based
on graph grammars aiming at. They define a language from scratch and have
to capture in a way both the concrete and the abstract syntax of a language.
In most cases, the clear separation between abstract and concrete syntax gets
lost. Second, a scheme-based syntax definition intentionally ignores many prob-
lems related to tool support for the defined syntax. For example, a graphical
editor usually stores the elements of both the abstract syntax layer (the model
elements) and the concrete syntax layer (the display objects). The scheme-based
syntax definition will provide simple criteria to decide whether or not the model
elements are represented correctly by the display objects. However, it is out of
the scope of the concrete syntax definition to describe the mechanisms how ed-
itors can keep abstract and concrete syntax layers in sync. For example, if the
user of the editor creates a new visual object, then, internally, the editor has
also to create an instance of the corresponding metaclass and to connect both
instances.

Making Metamodels Aware of Concrete Syntax 195

3.1 Visual Language Theory

Almost each of todays modeling languages comes with a graphical representa-
tion in order to improve readability and usability. Thus, the concrete syntax of
modeling languages is usually defined in terms of a visual language. For this
reason, we summarize here the relevant basic terms from visual language theory
before we explain our approach in detail in the next subsection.

A visual language describes a set of visual sentences which in turn are given by
a set of visual elements. A visual element can be seen as an object characterized
by values of some attributes. It depends on the language which attributes are
important for a graphical element1, some of the most frequently used attributes
are shape, color, size, position, attach regions.

Visual elements are placed in the Cartesian plane. For some languages, clas-
sified in [7] as geometric-based languages, the position of visual elements is an
important information. Other languages ignore the position of elements but
focus on the connections between them (connection-based languages). In fact,
most real-world languages show characteristics of both geometric-based and
connection-based languages and are thus called hybrid languages. The strong
classification into geometric-based and connection-based languages is notwith-
standing extremely helpful since it uncovers the ’ingredients’ a visual language
can have.

For geometric-based languages there are two possibilities to encode the po-
sition of a visual element. If the language is based on absolute positions then
a sentence consisting of a circle and a square placed at point (1,0) and (2,0),
respectively, is different from the sentence where the circle is placed at (1,0)
and the square is placed at (3,0). If the language is based on relative positions
(spatial relationships) then both sentences would be described by the fact that
the square is placed to the right of the circle. Some of the most frequently used
spatial relationships are right, up, contain, overlap (see [7] for a more complete
list). It heavily depends on the visual language which of the spatial relationships
are considered to be important. Sometimes, languages are geometric-based even
if it seems that the visual elements can be arranged freely. One example is the
language of UML class diagrams. At a first glance, rectangles for classes can be
placed freely at any point in the space. For instance, a diagram consisting of two
rectangles labeled with A and B would always be read as the same sentence no
matter where the (rectangles for) class A and B are placed. However, there is one
exception from this rule: If - let’s say - the rectangle for B appears completely
inside the rectangle for A, then the class A is read to be composed of class B.
Thus, the spatial relation contain is important to define the visual representa-
tion of class diagrams whereas the relations right, up, etc., do not play any role
here.

Connection-based languages allow visual elements to be placed arbitrarily in
the space. None of the spatial relationships has an influence on the parsing of
1 There is a common classification of attributes into graphical, syntactical and seman-

tic attributes. Only the first two classes of attributes are relevant for our approach
because semantic attributes are already captured by the abstract syntax definition.

196 F. Fondement and T. Baar

a sentence of such languages. Instead, it is an important information whether
two elements are connected by a connector (usually a line, polyline, curved line)
or not. Connectors start and end in special regions of visual elements, so-called
attach regions. A visual object can have one or more attach regions which some-
times collapse to attach points. As already mentioned, visual language definitions
formalize an attach region of a visual element just as an attribute of it. This ab-
stracts from the problem to define where an attach region is exactly located
in respect of the visual element (e.g. in the lower right corner). However, some
symbol editors, e.g. VLDESK [10] or AToM3 [11], allow to exactly define the po-
sition of attach regions inside a visual element. They also solve the very similar
problem of defining a shape for visual elements.

3.2 Scheme-Based Definition of Concrete Syntax

The definition of a concrete syntax means to define (1) a visual language, i.e.
visual elements with relevant attributes and relationships between them and (2)
how the visual elements are connected to the concepts of the language they are
supposed to represent. Figure 3 gives an overview how both goals are basically
achieved by our approach: A sentence of a visual language, i.e. a set of visual ob-
jects, is first mapped to a set of display objects. This mapping and the formalism
to define the graphical rendering of visual objects is intentionally left open in
our approach. We have experienced with Scalable Vector Graphics (SVG) [12], a
language to describe diagrams, but other formalisms or existing tools as symbol
editors can be applied for this purpose as well.

Display classes declare for display objects attributes and operations what
helps to lift up the abstraction level on which the syntax definition is given. An
attribute of a display object summarizes the value of more low level attributes
of the underlying visual object such as xpos, ypos, size, shape, color, etc. The
operations of a display object – as we will see later, operations correspond to
spatial relationships such as contain, overlap, etc. – have to be implemented by
the underlying visual object. If SVG is taken as a formalism to describe visual
objects, the implementation can be done smoothly. If another formalism is taken,
some additional adapter classes might be required.

The connection between display objects and model elements is given by dis-
play managers which are attached to model elements. Usually, each metaclass is

Display
Class

Display Manager
Class

Metaclass
(Concept)

Display ObjectDisplay ManagerModel Element

instanceOfinstanceOfinstanceOf Visual Object

mappedTo

Fig. 3. Scheme definition architecture

Making Metamodels Aware of Concrete Syntax 197

connected with exactly one display manager class that in turn is connected with
the display class defining the graphical representation. The criteria for a syntac-
tically correct representation are defined in form of OCL invariants attached to
the display manager classes. A set of display objects is a syntactically correct
representation of a model, i.e. a set of model elements, if and only if the display
managers attached to the model elements satisfy all invariants of the display
manager classes.

3.3 A Concrete Syntax Definition for Statecharts

We illustrate our approach with a formal definition of the concrete syntax of
statecharts whose abstract syntax was given in Sect. 2. Prior to the formal
definition, an informal version of it should illustrate the gap between the abstract
and concrete syntax, as already introduced in Sect. 2:

Problem 1. A text is shown on the top of transitions to represent the triggering
event if it exists;

Problem 2. Depending on the viewer’s choice, a composite state is depicted
either by a text showing the name of the composite state, or by a region
showing the contents of the composite state (i.e. its contained states), or
both. In the latter case, the two regions are separated by a line;

Problem 3. The plain side of the transition icon is connected to a representa-
tion of its source state; the arrow side is connected to a representation of its
target state;

Problem 4. The shape of a pseudo-state representation depends on its kind.

Figure 4 shows the backbone of the statechart concrete syntax definition.
Four display schemes for graphically representable concepts of statecharts are
defined: Transition, SimpleState, CompositeState, and PseudoState. The
display scheme for FinalState has been omitted for the sake of brevity. All
other concepts defined in the metamodel are either abstract (ModelElement,
State) and thus will be depicted by the scheme of their subclass, or are displayed
implicitly by the concepts they are attached to (StateMachine by its top state
and Event by the transition it triggers). Note that the missing display scheme
for Event might make the graphical representation of a model incomplete. If
an event does not trigger any transition (according to the metamodel it is not
mandatory to trigger at least on transition) then this event is not shown in the
representation.

Each display scheme can be split into two parts. The iconic part defines the
graphical rendering of visual objects. The constraining part fills the gap between
the model elements and the display objects. A display manager class is connected
to exactly one metaclass by the association end me (for model element); thus, ev-
ery display manager refers to exactly one model element. The cardinality of the
opposite association end dm (for display manager) encodes how many different
display managers can exist for each model element. Following the syntax defini-
tion given in Fig. 4, model elements of Transition and PseudoState can only be
depicted at most once whereas instances of SimpleState and CompositeState

198 F. Fondement and T. Baar

Transition

Simple
State

Pseudo
State

TransitionDM

Simple
StateDM

Pseudo
StateDM

SVGSimpleState

SVGText

SVGPseudo
State

Constraining Part

Metaclasses Display Manager
Classes

Display Classes

1

S
im

pl
eS

ta
te

S
ch

em
e

me vo

me vo

vo

1 0..1

*

1

1

1

1

T
ra

ns
iti

on
S

ch
em

e
P

se
ud

oS
ta

te
S

ch
em

e

Iconic Part

«Interface»
GraphicalObject

contain()
overlap()
...

dm

dm

SVGTransition

SVGArrowEnd

SVGArrowEnd

1

start

end

1

0..1

event

name

Composite
State

SVGComposite
State

SVGText

SVGContents

1

C
om

po
si

te
S

ta
te

S
ch

em
e

me vo

*

0..1

1
1

dm

name

contents

0..1

SVGInitial

SVGChoice

Composite
StateDM

showName
showContent

SVGLine
0..1

separator

SVGText
text:String

dm

0..11

me

Fig. 4. Display schemes for statechart metaclasses

Making Metamodels Aware of Concrete Syntax 199

may be represented arbitrarily often. Thus, also such representations of a state-
chart are syntactically correct that omit parts of the model or show some states
more than once.

Iconic Part of a Scheme. For each display manager class there is always a
standard association to the corresponding display class with multiplicity 1 and
role name vo (abbreviation for visual object) on the end of the display class. A
display class represents an abstraction of visual objects that have to be defined
in terms of shape, color, etc. It also declares some query facilities. Some standard
queries, as introduced in Sect. 3.1, are declared in interface GraphicalObject
that must be implemented by every display class. This ensures that any display
object is capable to respond to such queries. As seen below, queries are heavily
used in the OCL invariants attached to display manager classes.

<event name>

SVGTransition
event:SVGText

start:SVGArrowEnd
end:SVGArrowEnd

Fig. 5. The icon for Transition

Often, a model element is not displayed just by one atomic visual object but
rather by a composition of such objects. Thus, the main display object linked
to the display manager is composed of sub-objects whose position, size, etc.,
is controlled by the main display object. Figure 5 illustrates the internal defi-
nition of SVGTransition, the display class to represent transitions. Objects of
SVGTransition are composed of one sub-object to display the event and two
sub-objects representing attach points. Whereas the sub-object to display the
event is optional, the two sub-objects of type SVGArrowEnd are mandatory.

Besides composing display classes, it is also sometimes necessary to subclass
them. The class SVGPseudoState is an example. The concept PseudoState is
represented depending on the value of attribute kind by completely different
shapes. Each of these shapes is defined by a single display class (e.g. SVGInitial
for initial states, SVGChoice for choices) that inherits from SVGPseudoState. The
class SVGPseudoState itself is declared as abstract.

Constraining Part of a Scheme. Based on the backbone shown in Fig. 4, the
relationship between abstract and concrete syntax layers can be formalized by
OCL invariants. In order to illustrate the expressive power of these formal con-
straints, we discuss now each of the four, already sketched problems of informal
syntax definitions.

Problem 1 requires to keep attribute values for model elements and repre-
senting display objects in sync. This problem can be resolved by the following
constraint:

200 F. Fondement and T. Baar

−− Problem 1
context TransitionDM
inv : i f s e l f .me . t r i g g e r −>isEmpty ()

then s e l f . vo . event−>isEmpty ()
else s e l f . vo . event . t ex t = s e l f .me . t r i g g e r . name
endif

The constraint ensures that the correct name of the event is displayed when-
ever a transition is triggered by an event. Sometimes, it might be appropriate to
relax this rule so that the triggering event of a transition can be suppressed in
the graphical representation. In this case, the invariant looks as follows:

−− Problem 1 wi th op t i ona l event d i s p l a y
context TransitionDM
inv : s e l f . vo . event−>notEmpty () implies

s e l f . vo . event . t ex t = s e l f .me . t r i g g e r . name

Problem 2 is an example for user-directed representation policies which can
be encoded by attributes of type Boolean in the display manager class. Problem
2 is captured by the following constraint:

−− Problem 2
context CompositeStateDM
inv : s e l f . showName = s e l f . vo . name−>notEmpty () and

s e l f . showContent = s e l f . vo . contents−>notEmpty () and
(s e l f . showName and s e l f . showContent)
= s e l f . vo . separator−>notEmpty ()

Problem 3 is similar to Problem 1 but the synchronization between model and
representation cannot be achieved by constraining the values of attributes. In-
stead, the spatial relationships between display objects have to be taken into
account. This can be done by an OCL invariant due to the declaration of
overlap(GraphicalObject):Boolean in interface GraphicalObject that is im-
plemented by all display classes. Note that the semantics of the query overlap is
hidden in the implementation of the visual objects. Thus, the ’correctness’ of the
OCL invariant depends on the ’correctness’ of the implementation of overlap
in the visual objects.

−− Problem 3
context TransitionDM
inv : s e l f .me . sou rce .dm. vo−>one (svo |

s e l f . vo . s t a r t . ove r lap (svo)) and
s e l f .me . t a r g e t .dm. vo−>one (tvo |

s e l f . vo . end . over lap (tvo))

Problem 4 is an example for the representation of modeling elements belong-
ing to the same concept (PseudoState) by different shapes. The OCL invariant
takes advantage of OCL’s ability to check the actual type of an expression with
oclIsKindOf().

−− Problem 4
context PseudoStateDM

Making Metamodels Aware of Concrete Syntax 201

inv : l e t kindAsso : Set (TupleType(kind : PseudoStateKind ,
type : OclType)) =

Set{Tuple{kind = PseudoStateKind : : i n i t i a l ,
type = SVGInit ia l } ,

Tuple{kind = PseudoStateKind : : choice ,
type = SVGChoice}}

in
s e l f . vo . oc l I sKindOf (

kindAsso−>any (t | t . kind = s e l f .me . kind) . type)

4 Related Work

The problem of defining a graphical concrete syntax on the top of a metamodel
has already been addressed by the OMG and numerous authors.

The OMG has adopted a standard for diagram interchange for UML2.0
(UML-DI [13]) to overcome the shortcomings of model interchange based on
XMI. Indeed, XMI focuses on transmitting pure modeling data, given by the
abstract syntax of models, and ignores graphical information. UML-DI provides
a generic metamodel for extending any other metamodel so that graphical infor-
mation can also become part of the data interchanged in XMI. However, UML-DI
only concentrates on gathering graphical data and does not focus on how those
data are structured. Consequently, these data are still ambiguous and tools in-
terchanging them still need to agree on their meaning. For instance, the UML-DI
meaning for UML is defined using an XMI to SVG translator that cannot be
reused for a completely new language. Moreover, neither UML-DI nor XMI-to-
SVG translators capture spacial relationships in order to express, for example,
that two graphical elements do overlap.

Other approaches, like XMF [14], argue that the concrete syntax involves a
representation language. An example of such languages is Scalable Vector Graph-
ics (SVG) [12], but the XMF framework provides its own graphical language in
form of a representation metamodel with well defined semantics. Here, semantics
corresponds to a graphical representation rendering. Thus, to define the repre-
sentation of a given language whose abstract syntax is given by a metamodel,
it is sufficient to define a model transformation between the metamodel of the
language and the representation metamodel.

Another approach is taken by most meta-CASE tools, like GME [15], DOME
[16], MetaCASE [17], or AToM3 [11]. In principle, they define a representation
template for each metaclass in the abstract syntax. A template includes a set of
representation language constructs, as instances of the representation language
metamodel, together with some holes to make variants in the representation
possible. Again, each of these tools impose its own graphical language. When
a model element has to be represented, the holes are replaced depending on
relevant information from the current model. Unfortunately, while most of these
tools provide a constraint language that can be used to impose restrictions on
the abstract syntax, they do not provide access to the concrete syntax. A notable

202 F. Fondement and T. Baar

exception is AToM3 that allows constraints written in Python to select among
variations of the icons. However, also in AToM3 the definition of the concrete
syntax is done at a much lower level as our approach which uses OCL as the
main language to specify the concrete syntax.

Graph-grammar based language definitions (as Triple-Graph-Grammar [18],
GenGED [19]) are constructive and aim at finding a derivation for a given dia-
gram. In addition to rules, GenGED offers the possibility to attach constraints
to the concrete syntax classes (called type graph nodes in the GenGED terminol-
ogy), but the purpose of the constraints is merely the computation of a possible
layout for a diagram. The language definition itself is still based on graph gram-
mar rules (see [20] for the GenGED definition of the same statechart fragment
as we used here for illustration).

5 Conclusion

We have presented a way to specify the concrete syntax of languages whose
abstract syntax is already available in form of a metamodel. The main idea is to
complement the metamodel with display schemes.

The iconic part of a scheme defines some display classes for representing
model elements. Variants in the representation are expressed by attributes or
methods attached to the display classes. We do not impose any language to
define display classes but assume that display classes do implement the interface
GraphicalObject.

The constraining part of a scheme consists of a display manager class to-
gether with associations to metaclasses and display classes as well as a number
of constraints. The purpose of the constraints is to stipulate restrictions for the
visualization of model elements. The expressive power of constraints has been
illustrated by applying them on a simplified version of the statechart language.

Our scheme-based approach resides at a higher level abstraction than most
other approaches. Except for the shape information for the icons, only OCL
constraints have to be attached to display manager classes. The relatively high
number of new classes that must be defined is outweighed by the fact that many
of these classes can be defined mechanically.

We are currently implementing our approach in form of a free editor that
is customizable with modeling language specifications. The user is able to place
different symbols on a canvas and by creating a symbol (instance of a display
class) the corresponding display manager and model element is created as well.
At any time, the user can ask the editor whether the current diagram is syntac-
tically correct or not. Internally, the editor evaluates then all OCL constraints
attached to the extended metamodel. This check might be costly if implemented
naively because each constraint must be checked for a rather high number of
objects. A solution for this problem is to use strategies to determine only those
constraints that might be broken by the changes in the diagram made after the
last check (see [21]). However, the efficiency aspect becomes less important if our
free editor is seen as a reference implementation for concrete syntax definitions.

Making Metamodels Aware of Concrete Syntax 203

Other tool vendors, that have implemented the same language using more effi-
cient techniques, could test whether their tools comply with the formally given
syntax of the modeling language or not.

References

1. Richard B. Kieburtz, Laura McKinney, Jeffrey M. Bell, James Hook, Alex Kotov,
Jeffrey Lewis, Dino Oliva, Tim Sheard, Ira Smith, and Lisa Walton. A software
engineering experiment in software component generation. In Proceedings of the
18th International Conference on Software Engineering (ICSE), pages 542–552,
1996.

2. Stuart Kent. Model driven engineering. In Michael J. Butler, Luigia Petre, and
Kaisa Sere, editors, Proceedings of Third International Conference on Integrated
Formal Methods (IFM 2002), volume 2335 of LNCS, pages 286–298. Springer, 2002.

3. Stephen J. Mellor, Anthony N. Clark, and Takao Futagami. Guest editors’ intro-
duction: Model-driven development. IEEE Software, 20(5):14–18, 2003.

4. Terry Halpin. Information Modeling and Relational Databases : From Conceptual
Analysis to Logical Design. Morgan Kaufmann, second edition, 2003.

5. OMG. Meta-Object Facility (MOF) 1.4. OMG Document formal/02-04-03, April
2002.

6. OMG. XML Metadata Interchange (XMI) 2.0. OMG Document formal/03-05-02,
May 2003.

7. Gennaro Costagliola, Andrea De Lucia, Sergio Orefice, and Giuseppe Polese. A
classification framework to support the design of visual languages. Journal of
Visual Languages and Computing, 13(6):573–600, 2002.

8. Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations. World Scientific, 1997.

9. David Harel. Statecharts: A visual formulation for complex systems. Science of
Computer Programming, 8(3):231–274, 1987.

10. Gennaro Costagliola, Vincenzo Deufemia, and Giuseppe Polese. A framework for
modeling and implementing visual notations with applications to software engi-
neering. ACM Transactions on Software Engineering and Methodology (TOSEM),
13(4):431–487, 2004.

11. Juan de Lara and Hans Vangheluwe. Using AToM3 as a meta-case tool. In Pro-
ceedings of the 4th International Conference on Enterprise Information Systems
(ICEIS), pages 642–649, 2002.

12. W3. Scalable Vector Graphics (SVG) 1.1 Specification, January 2003.
13. OMG. UML 2.0 diagram interchange specification - final adopted specification.

OMG Document ptc/03-09-01, September 2003.
14. Tony Clark, Andy Evans, Paul Sammut, and James Willans. Applied

metamodelling: A foundation for language-driven development. Available at
http://albini.xactium.com, 2005.

15. Matthew J. Emerson, Janos Sztipanovits, and Ted Bapty. A MOF-based meta-
modeling environment. Journal of Universal Computer Science, 10(10):1357–1382,
2004.

16. Honeywell. Dome users guide. http://www.htc.honeywell.com/dome/support.htm,
2000.

17. MetaCase. Abc to metacase technology. http://www.metacase.com/papers, 2004.
White Paper.

204 F. Fondement and T. Baar

18. Andy Schürr. Specification of graph translators with triple graph grammars. In
Proceedings of 20th International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG’94), volume 903 of LNCS, pages 151–163. Springer, 1995.

19. GenGED Team. GenGED homepage. http://tfs.cs.tu-berlin.de/˜genged/, 2005.
20. Roswitha Bardohl, Hartmut Ehrig, Juan de Lara, and Gabriele Taentzer. Integrat-

ing meta-modelling aspects with graph transformation for efficient visual language
definition and model manipulation. In Proceedings of 7th International Conference
on Fundamental Approaches to Software Engineering (FASE 2004), volume 2984
of LNCS, pages 214–228. Springer, 2004.

21. Jordi Cabot and Ernest Teniente. Determining the structural events that may
violate an integrity constraint. In Thomas Baar, Alfred Strohmeier, Ana M. D.
Moreira, and Stephen J. Mellor, editors, Proceedings of UML 2004 - The Unified
Modelling Language: Modelling Languages and Applications, volume 3273 of LNCS,
pages 320–334. Springer, 2004.

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 205 – 219, 2005.
© Springer-Verlag Berlin Heidelberg 2005

XRound: Bidirectional Transformations and Unifications
Via a Reversible Template Language

Howard Chivers and Richard F. Paige

Department of Computer Science, University of York, York, YO10 5DD, UK
Fax: +44 1904 432767

hrchivers@iee.org, paige@cs.york.ac.uk

Abstract. Efficient tool support for transformations is a key requirement for the
industrialisation of MDA. While there is substantial and growing support for
unidirectional transformations (e.g., from PIM-to-PSM), for bidirectional
transformations there is little. This paper presents tool support for bidirectional
transformations, in the form of a language, called XRound, for specifying
reversible templates. The language supports round-trip transformations between
UML models and predicate logic. Its supporting tool also implements model
unification, so that new information encoded in logic can be seamlessly
integrated with information encoded in the model.

1 Introduction

Transformations are a critical component of Model-Driven Development, particularly
in the MDA [2]. To this end, the Queries-Views-Transformations (QVT) [1] standard
has been developed, in order to provide a precise, flexible mechanism for modelling
transformations between models. Even though QVT is still in the process of
standardisation, several tools and QVT-compatible (or QVT-like) languages have
been developed for supporting the transformation process. Of note amongst these are
QVTMerge [3] and the Atlas Transformation Language (ATL) [4], the latter of which
provides substantial tool support for model transformation; similarly, XMF [5]
provides modelling support for transformations based on an executable dialect of
OCL. There are also transformation tools outside of arena of OMG standards; for
example, the TXL [7] framework has some similarities to QVT, though it has been
predominantly targeted at programming language transformation. The generative
programming community has made use of templates to accomplish similar tasks [6],
and the meta-programming language Converge [9] has been successfully used to
implement a transformation language as an instance of a domain-specific language.

QVT transformations can be unidirectional (i.e., from one metamodel to a second,
not necessarily new, metamodel) or bidirectional (i.e., reversible between two
metamodels). The former is of critical use in MDA, e.g., for transforming platform
independent models (PIMs) into platform specific models (PSMs). The latter is vital
for supporting rigorous analysis of models: the results of analysis may need to be
reflected in the source of a transformation. For example, a static analysis may be
applied to a PSM, resulting in changes being made to that PSM. These changes may
need to be reflected in the original PIM.

206 H. Chivers and R.F. Paige

Limited tool support currently exists for bidirectional transformations; it can be
partly supported using sequential application of unidirectional transformations, but
this is not entirely satisfactory because information – e.g., diagram layout, detailed
representations of platforms – is likely to be lost after each unidirectional
transformation is applied.

Related to model transformation technology is model composition technology; this
is sometimes also referred to as model merging, weaving, or unification. With model
composition, two or more models (usually of parts of the same system) are combined
into one, in the process resolving inconsistencies, overlaps, and nondeterminism. As
of yet, there is minimal language and tool support for model composition; the Atlas
Model Weaver [8] is one of the first generic prototypes. Model composition
techniques could alleviate some of the problems with using unidirectional
transformations for supporting round-trip engineering.

This paper presents a new, template language, called XRound, for supporting
bidirectional transformations. This language is not QVT-compatible, as of yet, but it
uses standard underpinning technology and mechanisms that suggests it could easily
be made so. Moreover, the paper presents powerful tool support for this language that
allows bidirectional transformations, as well as a form of model unification.

1.1 Context and Contribution

The template language described in this paper arose from the need to support round
trip engineering from a specialized analytic tool. The tool, the Security Analyst
Workbench (SAW), carries out risk-based security analysis of UML system models,
and provides an environment in which the user can interactively set and test security
policies. The resulting policies (e.g., access controls) are part of the system design, so
they must be re-integrated into the engineering documentation, i.e., the UML models.

SAW does not need the whole of a UML system model on which to perform risk-
based analysis; it needs a view that describes certain features of the system (such as
classes, operations, and stereotypes), and these are expressed as predicates. For
example, (class,foo) would identify a class object named foo. Predicate representation
is the basis of the model unification that we describe in the sequel.

Originally, SAW used xsl templates to generate a predicate view from an XMI
representation of a UML model. Template processing provided a bridge between tool-
specific XMI and the analysis application, which remained UML-tool independent.
This allows designers to use their preferred UML environment, and is preferable from
the tool software perspective; for example, type checking of security properties is
implemented once within the analytic tool, rather than in each UML environment.

Template processing provides an important bridge between different tools, but the
available solutions are unable to support the reverse path of unifying the output data
back into its original source. Round-trip engineering of analysis results back into the
UML is therefore not straightforward with a conventional template processor, but is a
significant requirement for specialist analytic tools.

XRound is designed to overcome this problem. Its objective is to maintain the
advantages of template processing, including simple scripting of data transformations

 XRound: Bidirectional Transformations and Unifications 207

and independence between input and output applications, while supporting bi-
directional transfers, and unification, of data. This language and its supporting
processor allows the SAW application to import UML designs in tool-specific XMI,
and re-generates the XMI when the analytic model is changed.

The contribution of this paper is that it describes a new template language with the
unique ability to support transformations in both directions, the general principles that
underline its design, and a template processor for the new language.

This paper continues by describing XMISource, which is a Java-based processor
for XRound. The processor is presented first to clarify how the language will be used,
including its straightforward client application interface. The principles behind
reversible templates are then introduced, and the structure of the template processing
is described. The template language is then presented in detail; the core syntax is first
described, followed by two worked examples. Further sections describe language
features that support performance management and debugging, and summarise
limitations in the current implementation.

2 The Template Processor

The purpose of this section is to clarify the system in which the template language
will be used. The first implementation of an XRound processor is a Java class that
encapsulates an XML file and allows its client application to important and export
predicates from and to the XML source. The design of the processor is given in Fig. 1.
Although this is named XMISource after its main application, there is nothing XMI-
specific in XRound or in this processor.

XMISource

+ XMISource(File, File, XMIMessage)

+ transform(PublishHandler) : void

+ saveAs(ExportInterface, File) : void

+ getWorkingFile() : File

+ isValid() : boolean

«interface»

ExportInterface

+ getPredicateIterator(String[]) : Iterator

«interface»

PublishHandler

+ publishPredicate(String[]) : void

«interface»

XMIMessage

+ writeXMIMessage(String) : void

Fig. 1. The XRound Template Processor

The XRound processor has a single class, XMISource, which encapsulates an
XML file whose name is provided in the constructor. Three interfaces are defined in
the package, and these call-backs are provided by the application client to allow the
processor to import and export predicates.

208 H. Chivers and R.F. Paige

Predicates are represented as arrays of Strings, such as {class,foo}, which describe
features in the XML input that are required by the application. The processor supports
three transform operations: validation, import and export. (see Template Processing
for further detail).

Validation. The XMISource constructor takes three parameters, the reference XML
File, the Template File, and a message interface. (The Java File class encapsulates a
file name.) The message interface is used to pass certain error messages back to the
application, particularly those that report inconsistencies between the template and the
XML input. A message interface is used in preference to a thrown exception, since it
allows a sequence of messages to be reported during processing, which is valuable
during template debugging.

The initialization process parses both the Template and XML input file, and
executes a section of the template which is intended to validated the input. Methods
are provided to allow the client application to check that the validation was successful
(isValid) and to retrieve the name of the XML input file (getWorkingFile).

Import. A single method, transform, runs the import process, which extracts
predicates from the XML input, as specified by the template, and publishes them to
the client application. As each predicate is constructed the PublishHandler interface
provided by the application client is called to transfer the predicate to the client.

Export. A single output method (saveAs) is provided to export predicates from the
client application to a named XML file. The output filename is provided by the client,
together with an interface (ExportInterface) which allows XMISource to obtain
predicates from the application. This is slightly more functional than the other
interfaces, but is still straightforward: the client is provided with an incomplete
predicate, which is an array of Strings, some elements of which may be null. The
client responds with an iterator, which encapsulates predicates matching this template.

The export function updates the reference XML input with predicates obtained
from the application, and then writes the result to the named File. File naming
strategies and backup files, etc, are implemented by the client application.

Because the input XML is retained, there is no need for the complete XML tree to
be exported to the application; the transformation therefore includes only the features
required by the application.

The important feature of the template processor is its straightforward client
interface; this is a direct result of the reversible template model, since:

• The application only needs to obtain the predicates that it needs for its function, the
rest of the input XML remains hidden.

• The application interface is independent of the tool used to generate the XML: any
tool differences are accounted for in the template.

• The template includes an explicit validation section that is run at initialisation.

The internal design of the processor is beyond the scope of this paper, but an
outline of how the three main operations relate to the template specification is
discussed in the next section, before the language itself is given.

 XRound: Bidirectional Transformations and Unifications 209

3 Template Processing Overview

This section introduces the key concepts behind a reversible template, then describes
how the need for the processing operations described above motivate the coarse
structure of the template language.

3.1 Bidirectional Transformations and Model Unification

Template processing is usually a one-way operation as shown in figure 2: the template
processor locates elements in the input tree and publishes them, suitably formatted.

Value 2

Value 1

Value 3

Input Tree

A.1 A.2

A.1.1

A.1.2

A

Template Output

navigate A.1.1

print text

…

navigate A.2

print text

…

navigate A.1.2

print text

Value 1

Value 2

Value 3

Fig. 2. Conventional Template Processing

In the case of XML data, such as XMI, the input to the template processor is a tree;
the output may be XML, or it may be published in another format such as text or
HTML. Conventional templates are capable of encapsulating comprehensive
programming behaviour, but their fundamental structure is still to navigate to selected
nodes in the input tree, extract information, and produce suitably formatted output.
The benefit of a template over a standard programming language is usually that it is
tailored to the particular type of input and output required.

Reversible templates defined in XRound are similar in structure to existing
templates, but encapsulate a fundamentally different type of operation: unification.
The operation of a reversible template is shown in Fig. 3.

A reversible template navigates to elements in the input tree, in a similar way to a
conventional template, but it also references values in the application predicate. The
fundamental operation is to match, or unify, values in the source tree with values in
the predicate. Unification allows values to be determined from either the source tree,
or the application predicate, or if values are set in both, to ensure that they are
consistent. For example, in Fig. 3 the first value is not known in the source, but is
available in a predicate; the opposite is true for the second value; and the third is the
same in both source and predicate, so this unification succeeds.

210 H. Chivers and R.F. Paige

This underlying unification process determines the design of the template
language; as well as carrying navigation information to identify information in the
source tree, each part of the template identifies a unification slot, and the fundamental
operation is ‘match’, which is to unify the slot with either the XML input tree, or the
application predicate.

Value 2

???

Value 3

Input Tree

A.1 A.2

A.1.1

A.1.2

A
Unifying

Template

Application

Predicate

navigate A.1.1

match p.1

()

...

navigate A.2

match p.2

()

…

navigate A.1.2

match p.3

()

Value 1

Value 2

Value 3

p.1 = Value 1

p.3 = Value 3

p.2 = ???

Fig. 3. The Template Unification Process

Unification is conceptually straightforward, but designing a template language that
exploits this process does present some problems, including:

• The source navigation for a reversible processor is not quite the same as a
conventional template processor, because is has to unify input nodes that do not
exist. For example, in Fig. 3 it is not simply the case that the input node does not
have the first value set, but that the whole node (A.1.1) is missing. The template
language must allow the programmer to specify which nodes are allowed to be
missing, and which areas in the source tree are fixed. In XRound, nodes that may
be missing are marked as mutable and can also be created by the template
processor during the process of reverse engineering.

• Because some nodes in the input tree may be missing, it is not straightforward to
select nodes based on an attribute value, as is possible in an Xpath expression. In
XRound this problem is solved by a general constraint mechanism, which
constrains unification slots to specified values. Constraints are also unified as part
of the matching process and can therefore be used to specify the types of predicate
that can be generated, constrain XML node selection, and determine application
predicates to be unified.

The underlying unification process determines some features that are needed in a
reversible template language: the definition of unification slots and slot constraints.
The next section describes how the main operations of the template processor are
supported.

 XRound: Bidirectional Transformations and Unifications 211

3.2 Template Processing

This section describes the operation of template processing in sufficient detail to
introduce the clause structure of the template language.

The previous section described the process of unification, and this places some
requirements on the sections, or clauses, of the template language. Essentially a clause
must:

• Specify a number of unification slots.
• Allow the specification of constraining values for each slot.
• Unify values in the XML input and/or in application predicates with slot values

and constraints.

In order to allow for a separate verification section, and also to allow the user to
distinguish parts of the XML input that should be fixed, as opposed to those that may
be rewritten, three types of clause are defined in XRound:

• validate
• structure
• roundtrip

A validate clause specifies validation checks, a structure clause references
elements of the XML input that should not be modified, and a roundtrip clause
includes input nodes that may be modified when the XML is regenerated from
application predicates. The value of the structure clause is that it allows a wider range
of navigation types and some performance optimisations compared to roundtrip
clauses, because it does not have to account for missing nodes. However, it is not the
case that all nodes visited by roundtrip clauses can or should be re-written; nodes that
can be updated are specifically identified in XRound by a mutable attribute.

The three main processing operations can now be described:

Validation. Validation can be used to make any checks that the programmer requires,
but its primary aim is to ensure that the template and XML input are compatible.
Because XMI is tool specific, a particular template will apply to a limited range of
tools and versions; validation clauses in the template are used to check that the input
data (e.g., tool type and version number) are compatible with the current template.

After the XMI input and the template have been successfully opened and parsed,
each validate clause is executed, and each must succeed for the validation to succeed.
No other clauses are executed during validation, and the validation clauses are not
executed as part of any other processing.

Import. The import operation is similar to normal template processing, it is used to
assemble predicates from the XML input and provide them to the client application.

Any structure clauses are first executed, followed by roundtrip clauses. Each
clause is unified with constraints specified within the clause, but not with any
application predicates. The clauses have one or more publish attributes that mark
completion; when these are reached the unification slots within the clause are checked
and, if complete, a predicate is exported to the client.

212 H. Chivers and R.F. Paige

Export (saveAs in XMISource, see Fig. 1). The export operation merges predicates
from the client application back into the XML input, then saves the result. The
purpose of the operation is to update the XML representation with any changes that
have been made by the application, without the need for the application to manage the
specific XML format, and without the need to write different templates for input and
output processing.

The first processing stage executes all the structure clauses in the template;
although this will not result in any updates to the XML output, it is necessary because
it may build reference information that is used later (see Performance Management,
below). There are two further processing stages, the second removes mutable nodes,
assuming that nodes no longer present in the application have been deleted
intentionally, and the third re-builds nodes from the application predicates. In both
cases, the operation (remove, build) takes place only for mutable nodes that have been
encountered during a successful unification of a roundtrip template clause. The values
written to the rebuilt nodes are obtained from the unification slots in the template, and
so may contain values from the application predicates, from the XML input, or
directly from clause constraints. The relevant application predicate is obtained when
the clause is encountered; essentially, the template processor builds a predicate mask
that matches any fixed values specified in the constraint clauses, and requests the
application for an iterator over all predicates that match the mask. The clause is then
executed once for each predicate in the iterator.

In summary, the process that allows a template to be interpreted in both directions
is unification; this has implications for the types of navigation that can be carried out
within a template and determines the need for other structure in each clause:
unification slots and constraints. The three key operations of validation, import and
export are supported by the clause structure in XRound, allowing the programmer to
specify validation checks (validate), elements of the XML that should not change
(structure), and parts of the XML tree that can be modified (roundtrip).

4 The XRound Language

This section describes the XRound language. It begins by describing how an XRound
template is organised in terms of clauses and how they support unification slots,
constraints, and transformations. This is followed by a detailed description of
transformations, and two examples of template clauses. This section concludes by
describing language features that support performance management and debugging.

4.1 Basic Template Structure

The top-level structure is most easily described with an abbreviated DTD:

<!ELEMENT tpl.template
((tpl.validate|tpl.structure|tpl.roundtrip)*)>

<!ELEMENT tpl.validate (tpl.constraint*,tpl.specification+)>

 XRound: Bidirectional Transformations and Unifications 213

<!ATTLIST tpl.validate length CDATA #IMPLIED
 auxLength CDATA #IMPLIED>

<!ELEMENT tpl.stucture (tpl.constraint*,tpl.specification+)>
…

<!ELEMENT tpl.roundtrip (tpl.constraint*,tpl.specification+)>
…

<!ELEMENT tpl.constraint (tpl.value+)>
<!ATTLIST tpl.constraint position CDATA #REQUIRED>
<!ELEMENT tpl.value (#PCDATA)>

A template is a well-formed XML document containing three node types that may
occur in any number and any order: tpl.validate, tpl.structure and tpl.roundtrip. These
are the clauses introduced in the previous section. Attributes in each clause node
specify the number of unification slots (length + auxLength) and these are simply
indexed as an array in the subsequent template (e.g. position = “0”). The slots are
divided into two, and the first section (specified by length) is mapped directly to an
application predicate.

Each clause may have any number of constraints; each constraint has a position
attribute that specifies the associated unification slot, and a number of values.

A clause therefore specifies the unification space, or number of slots, and gives
constrained values to those slots. One or more specification nodes in each clause
determine the correspondence between the XML input and unification slots in the
template, and hence the application predicates.

4.2 Template Specifications

A template specification is well-formed XML, but unlike some template languages it
follows a tree structure, rather than a sequence. Depth in the tree indicates subsequent
operations and breadth allows the specification of alternatives. A publish attribute can
appear anywhere in the tree, and its effect is to test that unification is complete, and if
so mark that result as successful. For example:

<first>
<second tpl.publish=”TRUE”/>
<third>
<fourth tpl.publish=”TRUE”/>
</third></first>

This would find all instances of first…second and first…third…fourth that unified.
(first, etc, are not of course valid node names)

There are three types of node in a template specification: Source Nodes,
Navigation Nodes, and Matching Nodes. Source and Navigation Nodes may carry the
attribute tpl.mutable=”TRUE” in a roundtrip clause. This specifies that the node that
can be removed or re-written when predicates from the client application are exported
back into XML.

Source nodes simply name a node in the XML input tree. They cause the template
to evaluate all nodes of that name from the current position in the XML input.

214 H. Chivers and R.F. Paige

At present the language supports five types of navigation statement, two of which
are concerned with performance management. Examples of the three core types are:

<tpl.select node="UML:ClassifierRole">

<tpl.selectFromChildren
 node="UML:AssociationEnd" position="0">

<tpl.moveUp steps="2”>

The tpl.select node evaluates all nodes in the input tree with the specified node
name, the example selects all UML:ClassifierRole nodes in an XMI tree.

The tpl.selectFromChildren node is intended to select child nodes from the present
position in a specified order. Each occurrence of tpl.selectFromChildren specifies the
position (i.e. index) and name of the child node to be selected. In this example the
first occurrence of a UML:AssocationEnd node is selected.

The tpl.moveUp node simply moves the present position in the XML input tree up
by a number of steps. This command has been included because it provides a very
compact way of navigating certain tree structures, but there is a restriction on its use:
it must never follow a mutable node. Nodes marked as mutable can unify with nodes
that are not present in the XML input; allowing a step up from such a node may be
non-deterministic, depending on how the mutable node has been reached, so this
navigation is not permited from a mutable node.

There are three matching node types within the template language, and they each
instruct the template processor to unify an element in the XML input tree with one of
the unification slots, any previously specified constraints and, depending upon the
process mode, a predicate retrieved from the client application. Examples of these are:

<tpl.match nodeType="ATTRIBUTE_NODE"
 attribute="name" position="1">

<tpl.match nodeType="TEXT_NODE" position="0">

<tpl.match nodeType="MULTIPLE_ATTRIBUTE"
 attribute="myLunch“ tagIndex="1“
 length="2“ position="3" >

Each tpl.match node specifies the index of the unification slot that must be
matched (position). The relationship between the unification slots and the client
predicates is fixed, so this does not need to be specified. The node to be matched from
the XML input is always the current node, reached by the last navigation. The first
two match types unify the value of an attribute by name, or node text data,
respectively. The third is more specialized and provides the ability to pack several
parts of a predicate into a single XML attribute.

A multiple attribute match node unifies one value in an attribute list of separated
values. For example, given the attribute mylunch=”fish,chips” , the example above
would correctly match the number of values in the attribute (length=”2 “) and attempt
to unify the value ‘chips’ (tagIndex=”1”) with the template slot 3.

This is the core of the reversible template language. A small number of specialized
language statements are omitted from this paper for reasons of space, they include the
creation of xmi.ids and additional forms of constraint. Language features to support

 XRound: Bidirectional Transformations and Unifications 215

performance management and debugging are described below, but first the essentials
of the language will be illustrated by some worked examples.

4.3 Examples

This section provides two examples of template clauses, which demonstrate how well
the template language is able to hide the round-trip complexity. The first example is a
complete structure clause:

<tpl.structure length="2">
 <tpl.constraint position="0">
 <tpl.value>data</tpl.value>
 <tpl.value>service</tpl.value>
 </tpl.constraint>
<tpl.specification>
 <tpl.select node="UML:Class">
 <tpl.match nodeType="ATTRIBUTE_NODE"

 attribute="name" position="1">
 <UML:ModelElement.stereotype><UML:Stereotype>
 <tpl.match nodeType="ATTRIBUTE_NODE"
 attribute="name" position="0" publish="TRUE"/>
 </UML:Stereotype></UML:ModelElement.stereotype>
 </tpl.match></tpl.select>
</tpl.specification>
</tpl.structure>

There are two unification slots in the template, and these correspond directly to a
client predicate with two values. The constraint section of this clause limits the first
slot position to the values ‘data’ or ‘service’.

The specification searches all the nodes in the XML input for UML:Class nodes.
For each node of this type it extracts the name attribute, which is unified with the
second unification slot position. The template then searches child nodes for the
stereotype (UML:ModelElelement.stereotype/UML:Stereotype) and it unifies the
attribute name of the stereotype with first unification slot. Of course, this slot is
constrained, so the only values that succeed are ‘data’ or ‘service’. The effect of this
clause, therefore, is to search the XML input for UML:Class nodes with stereotype of
‘data’ or ‘service’ and, depending on mode, publish predicates of the form
(data|service,name). The form of this template is very similar to other template
languages, demonstrating that although reversible templates are theoretically quite
different to conventional templates, their programming form can be made familiar.

The specification of mutable XMI nodes is essentially the same. The following is
part of template clause for the Security Analyst Workbench:

<!—Slots:
 (tagname 1st_value className 2nd_value)(xmi.id) -->
<!—Client use:
 (PermitAccess fromClass inClass toOperation) -->

<tpl.roundtrip length="4" auxLength="1">
 <tpl.constraint position="0">
 <tpl.value>PermitAccess</tpl.value>
 </tpl.constraint>
 …

216 H. Chivers and R.F. Paige

<tpl.specification>
 <XMI><XMI.content><UML:TaggedValue
 tpl.mutable="TRUE">
 <tpl.match nodeType="ATTRIBUTE_NODE"
 attribute="tag" position="0">
 <tpl.match nodeType="MULTIPLE_ATTRIBUTE"
 attribute="value"
 tagIndex="0" length="2" position="1">

 <tpl.match nodeType="MULTIPLE_ATTRIBUTE"
 attribute="value"
 tagIndex="1" length="2" position="3" >

 <tpl.match nodeType="ATTRIBUTE_NODE"
 attribute="modelElement" position="4" >

 <tpl.selectNode node="UML:Class">
 <tpl.match nodeType="ATTRIBUTE_NODE"
 attribute="xmi.id" position="4">
 <tpl.match nodeType="ATTRIBUTE_NODE"
 attribute="name" position="2"
 publish="TRUE">
 …

The comments at the start of this extract describe the use of the unification slots
and the resulting application predicate. This template matches an XMI tag, which is
attached to a UML class. The name of the tag is ‘PermitAccess’ and the tag has two
separated values (e.g. PermitAccess=”subject,object”). The application predicate
contains the same information as the tag, but also includes the name of the class in
which the tag was declared (inClass). The first four template slots correspond to the
values in the application predicate, and the fifth is used for the xmi.id of the class. The
header to this clause specifies the number of unification slots, and constrains the first
to the single value ‘PermitAccess’.

The specification navigates directly from the document root (XMI) to a tagged
value, which is marked as mutable. This specifies that any tagged values that match
this clause will be re-written on export. This navigation identifies all possible tagged
values, but only those that unify as far as the ‘publish’ tag at the end of this fragment
will be rewritten.

The next three match statements unify the three elements of the tag (name plus two
values) with their respective template slots. An important feature of this language is
that the programmer is not concerned with the underlying operations. These
statements are able to both extract data from the XMI tree and publish them to the
client application, and also obtain predicates from the client and re-write it into an
XMI tag, depending upon the operational mode of the template processor.

The fourth match operation unifies the modelElement attribute value with an
auxiliary slot in the unification template (i.e. one that is not part of the application
client’s predicate). This value is the xmi.id of the class in which the tag is placed, and
the next section of the template navigates to the corresponding class by selecting all
the class nodes in the XML input, and matching the one with the correct xmi.id. The
final match statement unifies the class name associated with this xmi.id with the third
template slot. At this point the publish attribute tests if the unification process is
complete, causing publication to the client, or the addition of a node to the XMI tree.

 XRound: Bidirectional Transformations and Unifications 217

This fragment illustrates the extent that the underlying semantics of unification and
reversible working are hidden from the template programmer, who is still able to
think of the template as little more than a ‘select and publish’ script.

One notable feature of this fragment is the relative lack of constraint checking. In
the Security Analyst Workbench, the two values in the tag are known types, the first
corresponding to a class with a specific association to the class in which the tag
appears, and the second to an operation within that class. It would be quite
straightforward to navigate the XMI input tree and use the unification process to
check that these values correspond to correct types. However, there are good reasons
for avoiding these checks at this stage. Firstly, the template is specific to the tool that
generated the XML input, but given that the template processor delivers tool-
independent predicates, the type checking could be coded once, in the application,
rather than separately for each supported tool. There is also a second consideration,
which is that in its normal operation the template processor will often fail to unify,
since it will attempt to match nodes and predicates that are not compatible. If
constraint checking is included in the template, then badly constructed types will not
unify, and will not be passed to the application. However, the result of a constraint
failure in a template processor is silence, whereas constraint failures in the application
can generate warnings to the user. The programming philosophy adopted has
therefore been to specify the minimum in the template language, consistent with
establishing an accurate relationship between the XML input and application
predicates, and to carry out more extensive type checking in the application.

 These examples illustrate the core language, two further issues, performance and
debugging, add extra features, which are discussed in the next sections.

4.4 Performance Management

The main performance problem in template processing is the need to repeatedly scan
all the nodes in a document. This problem occurs in the roundtrip example above. It is
necessary to scan the entire document for UML:Class nodes, in order to match the
xmi.id in the tag with the correct class name. Since Classes are in user-defined
packages they can occur at any level of the XMI hierarchy, so it is not feasible to limit
the search size by navigating from the tree root.

However, in UML templates, the types of node that are revisited often in this way
are a relatively limited number of fixed design points, primarily the classes and
objects. If it were possible to simply remember the location of these nodes then these
auxiliary searches could be made much more efficient. This, quite simply, is what the
performance management statements in XRound implement. There are two
statements, one that records fixed points, and one that navigates to previously
recorded nodes. For example, in the two examples above, the first, which identifies
specific Classes, could include the statement:

<tpl.registerNode>

This registers the current node (in this case UML:Class), allowing it to be
efficiently revisited later. The second example could then replace the selectNode
navigation to a UML:Class with:

<tpl.selectRegisteredNode node="UML:Class">

218 H. Chivers and R.F. Paige

The result is the same, but considerably faster. The only restriction on the use of
these statements is that mutable nodes cannot be registered, and that nodes must be
registered before they can be selected. Normal practice is to register nodes in early
structure clauses, they can then be referenced anywhere in the template.

4.5 Debugging

Finally there are two important features in the language that are an aid to debugging –
message and debug attributes – which can be added to any node.

The message attribute (tpl.message=”…”) can be included in any node, and sets a
message for the template tree below that node. If any errors are issued from the
processing of that section of the template, then the message will be included in the
error report. It is good programming practice to include messages in every clause
header; they provide useful comments and invaluable narrowing of the problem space
when an error is reported.

The debug attribute (tpl.debug=”TRUE”),is not intended to be a permanent feature
of a template. Whenever a node is encountered with the debug attribute, the status of
the unification slots is printed, together with the current template and XML nodes.
Although this provides sufficient information to debug a template, usually the
existence of debug output is sufficient: when a template fails the most common
problem is detecting the node that caused the failure, so the most common use of this
feature is as a probe to detect where a template succeeds or fails.

5 Limitations

There are few inherent limitations in the XRound language; the practical limits arise
from two sources: variability in XMI between different UML tools, and limits to the
scope of the current template processor.

Differences in XMI between UML tools was one of the main motivating factors in
the design of XRound, and has been discussed at several points in the paper; different
templates are required for different UML tools, but the use of a reversible template
isolates the application logic from this variability. The XMI import behaviour of tools
can also vary in detail; for example, some tools regenerate missing xmi.id fields,
where others fail. The design of a template may therefore go beyond the need to
understand the XMI tool dialect. Although this is an inconvenience, it has not yet
proved a major problem, or required tool-specific language features.

At present the XMIsource processor is more limited than the language.
Although it supports all the language features it does not support unification of
nodes that are interdependent: for example it would not be able to unify both
missing classes and associations between those classes. This is not an inherent
limitation in the XRound language, but reflects the initial applications for
XMISource, in which the class structure is stable but other elements of a model
can be varied by analysis tools.

 XRound: Bidirectional Transformations and Unifications 219

6 Conclusion

XRound adds a new dimension to template processing of models: the ability to
transform data in both directions with a single descriptive template. Reversible
template processing solves the problem of maintaining independence between UML
and analytic tools, while retaining the benefit of easily scripted transformations.
Reversible templates could provide a clean implementation mechanism for bi-directional
transformations specified in QVT, and could help in the definition of model
unification languages as well.

This paper has outlined the theory behind reversible templates, and presented a
mature template language, XRound, that has been used in practice and is supported by
a Java template processor. As well as including transformations the language includes
performance management and debugging facilities.

The examples presented here illustrate the extent that the underlying semantics of
unification and reversible transformation are hidden from the template programmer,
who is still able to think of the template as a ‘select and publish’ script.

The successful implementation and use of a template processor demonstrates that it
is feasible to implement a reversible processor that interprets the XRound template
language, and the specification of the processor shows how straightforward the
reversible interface is from the perspective of the client application.

References

1. Object Management Group. Queries-Views-Transformations Specification, available at
http://www.omg.org, last accessed June 2005.

2. Object Management Group. Model-Driven Architecture Specification, available at
http://www.omg.org, last accessed June 2005.

3. QVT-Merge Group, Revised submission for MOF 2.0 Query/Views/Transformations RFP
(ad/2002-04-10), 2004, www.omg.org.

4. ATLAS Transformation Language web page. http://www.sciences.univ-nantes.fr/lina/atl/,
last accessed June 2005.

5. Xactium Inc. XMF Reference Guide 0.1, available at http://www.xactium.com, last
accessed June 2005.

6. J. Herrington. Code Generation in Action, Manning, 2004.
7. TXL Web Page, available at http://www.txl.ca, last accessed June 2005.
8. M. Del Fabro, J. Bezevin, F. Jouault, E. Bertan, G. Guillaume. AMW: a Generic Model

Weaver. In Proc. IDM 2005, July 2005.
9. L. Tratt. The Converge Programming Language, King's College Technical Report TR-05-

01, 2005.

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 220 – 238, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Towards General Purpose, High Level,
Software Languages

Anneke Kleppe

Klasse Objecten, Netherlands
a.kleppe@klasse.nl

Abstract. A highly significant benefit of MDA is that it raises the level of
abstraction at which the soft-ware developer is able to work. However, the
languages available to the developer have not seen much change in the last
decade. Modeling languages offer high level concepts, but the pre-dominant
modeling language (UML) offers too little expressive power to be able to
specify a system completely. Meanwhile, the level of abstraction of most
programming language con-cepts is the same as 10 to 15 years ago. Although
transformation tools may to some extent bridge the gap between modeling and
programming languages, in practice the developer still needs to do both
modeling and programming. This means switching between the two levels of
abstractions, which is difficult for most people. We argue that a general
purpose, high level, software language is necessary to get MDA adopted. This
language will enable any developer to focus on the problem at hand while the
supporting tools - transformation tools or generators- take care of the nitty
gritty details. This paper introduces an early version of such a language, which
brings together a number of powerful concepts from various sources: UML,
OCL, design patterns, existing programming languages, and eventually aspect-
oriented languages.

Keywords: Modeling language, programming language, UML, OCL, design
patterns, domain specific languages, MDA, model transformations.

1 Introduction

MDA claims amongst others the following benefits: portability, interoperability, and
productivity. These benefits are all very difficult to realise. In fact, almost every hype
in the last two decades promised similar benefits, most of which were not or only to
small extent realised. In our opinion the only real — but highly significant — benefit
of MDA is that it raises the level of abstraction at which the software developer is
able to work.

In the last decade, the expressive power of programming languages has developed
slowly. The latest truly innovative concept that was incorporated in a programming
language, is the interface, which dates from around 1994. On the other hand, there
were some very interesting new developments, like the emerge of UML, design
patterns, aspect-oriented languages, and last, but not least, OCL. Each of these
developments offers new high level concepts: associations, patterns, aspects,
collection iterators, etc. Few of these concepts have been incorporated into pro-

 Towards General Purpose, High Level, Software Languages 221

gramming languages, which means that few of these concepts are easily available for
the average software developer. If these concepts could be incorporated into a single
language, this language would be very powerful, and would greatly add to the
developer’s ability to create the complex systems that customers demand.

This paper introduces an early version of Alan (short for A LANguage), which is a
new software language that brings together a number of powerful concepts from
various sources. Its aim is to bring more power to the software developer, and thereby
realising one of the claimed benefits of MDA: increased productivity.

In [1] we defined 6 levels at which software development can take place. These
levels are called Model Maturity Levels. Alan is a language that can be used to
develop software at Modeling Maturity Level 4 or 5. At level 4 a model/program is a
consistent and coherent set of texts and/or diagrams with a very specific and well-
defined meaning. At level 5 the model/program contains enough information that the
system can be generated completely. No adjustments need to be made to the resulting
code.

Large parts of this paper, in particular sections 2 and 3, deal with the question why
Alan was created. After we have explained the rationale behind Alan, we sketch the
outlines of the language in section 4. Our plans for future work are presented in
section 5. Section 6 contains some remarks on related work and some conclusions.

2 Rationale

We call Alan a high level, general purpose, software language. There are a large
number of arguments for creating a this new type of language. We will encounter
most of them as we explore the various parts of the term high level, general purpose,
software language.

2.1 Software Language

Traditionally modeling and programming are viewed to be different. Differences like
the ones in table 1 are commonly mentioned. Furthermore, traditionally there has
been a gap between the analysis and design phase, and the implementation phase (the
gap that two decades ago was supposed to be bridged by object orientation).
Apparently, the expressive power of modeling languages stops somewhere along the
line of the development process, and at that point the existing artefacts need to be
transformed into one or more programming language artefacts, after which the
development process can proceed.

Although we are living in a different era, many of the misconceptions of the
previous age remain. It is for this reason that the question “what is the difference
between a model and a program” pops up time and again. On the positive side, we see
that the interest in MDA has brought us (at least some) agreement that both models
and programs are descriptions of software systems. On the other hand MDA opens a
wide chasm between platform specific and platform independent models, which at
first glance appears to be just a different terminology for what used to be called
models and programs. The problem here is the definition of the notion of platform.

222 A. Kleppe

Table 1. Perceived differences between modeling and programming languages

Modeling Language Programming Language

imprecise precise

not executable executable

overview detailed view

high level low level

visual textual

informal semantics execution semantics

analysis by-product end product

Fortunately, Atkinson and Kühne [2] have provided a definition of platform that
crosses the divide. In their view a platform consists of the combination of a language,
predefined types, predefined instances, and patterns, which are the additional
concepts and rules that are needed to use the capabilities of the other three elements.
Using this definition each model (or program) is bound to a certain platform. It is
100% platform specific to the language it is written in, and to the types, instances, and
patterns associated with that language. In the same manner it is more or less
independent of any other platform.

Anything written in this new type of language that we propose, is therefore 100%
dependent upon the platform defined by such a language, and by its types and
instances. If the language offers high level constructs, we may call it a modeling
language. If the language is textual and/ or executable we might call it a programming
language. Because this new type of language aims to combine the good aspects of
both, we simply call it a software development language, or software language.

The question remains how to name the product written in a software language,
should it be called model or program? The answer can be found in the fact that
software languages build a bridge between programming and modeling. If a model is
precise and executable, why not call it a program? Because the end result of software
development has long been called program and because in the eyes of the developer
the product written in a software language will be the end product, we choose to call
it program as well.

2.2 General Purpose Language

Recently there has been much attention to the subject of domain specific languages
[e.g. 3, 4]. In fact, some people argue that all MDA transformations transform domain
specific languages to programming languages. In contrast, we think that there are
sufficient grounds to introduce a general purpose language.

First, tool development for domain specific languages is at least as complex as for
general purpose languages, whereas the potential number of users of these tools is
much larger for general purpose languages. Thus, for economical reasons it is a good
thing to have general purpose languages.

Second, domain specific languages are positioned as languages that can be
developed by the domain experts themselves. If the supporting tools allow each

 Towards General Purpose, High Level, Software Languages 223

expert to define his own domain specific language, the world would see a new version
of the story of the Tower of Babel [5]. None of the experts, even in the same domain,
would be able to understand the language built by one of his colleagues.

Third, the line between domain specific and general purpose, or as one might say
domain independent, is as blurred as the line between platform specific and platform
independent. For instance, there are arguments to say that graphical user interface
design is a separate domain; only user interfaces contain buttons and windows. On the
other hand, a graphical user interface is part of almost every software system, either in
the form of traditional windows and subwindows, or in the form of webpages and
frames or tables.

An excellent example of what can be called a domain specific language is the
Enterprise Integration Patterns language by Hophe and Woolf [6]. This language is
dedicated to the domain of asynchronous messaging architectures. Again, one might
argue that with the current advent of web-based systems, asynchronous messaging is
part of a large number of software systems. Should such a system be built using two
domain specific languages, one for the user interface and one for the messaging,
combined with an ordinary programming language for the rest of the system? We
think not.

2.3 High Level Language

Frederick Brooks argues in his book the Mythical Man Month [7] that the productivity
of a software developer is constant in terms of the number of statements he/she
produces per time unit. He states: "Programming productivity may be increased by a
much as five times when a suitable high-level language is used" (page 94 of the 1995
edition). In other words, the use of a high level language could bring us one of the
claimed benefits of MDA: increased productivity.

Currently there are a large number of programming languages, all more or less on
the same level of abstraction. When we compare them with the level of OCL
expressions, it becomes clear that it is possible to increase productivity largely. Take
for example the following OCL expression:

partners.deliveredServices->forAll(pointsEarned = 0)

This expression translates to the following Java code, which means that to implement
one line of OCL seventeen lines of Java are needed, as well as an extra method.

Iterator it = collect5().iterator();
while (it.hasNext()) {

Service i_Service = (Service) it.next();
if (!(i_Service.getPointsEarned() == 0)) {

return false;
}

}
...
private List collect5() {

List /*(Service)*/ result = new ArrayList(*Service*/);
Iterator it = this.getPartners().iterator();
while (it.hasNext()) {

ProgramPartner i_ProgramPartner =

224 A. Kleppe

(ProgramPartner) it.next();
result.addAll(
i_ProgramPartner.getDeliveredServices());

}
return result;

}

Contrary to programming languages, modeling languages offer constructs at a high
level of abstraction. The problem with today’s modeling languages is that they do not
have enough expressive power. For example, how can you create a system based on a
UML model without a concrete syntax (called surface language in latest UML 2
specification [8]) for actions? You can not even indicate the creation of an object.

A combination of the high level constructs of modeling languages with the
completeness of programming languages seems the obvious direction for future
language developments. In this we feel supported by the words of Richard Soley,
managing directory of the OMG, in his foreword to MDA Distilled [9]:

“Somehow the high level abstraction allowed by programming
languages does not always have significant run-time costs, so long
as the precision of the abstraction allows complete definition of the
algorithm.”

High level abstraction is what we should aim for.

2.4 Additional Reasons

Next to the arguments that are packaged in the term high level, general purpose,
software language, there are two additional reasons for the development of this new
type of language.

First, an important aspect of MDA is that models should be transformed
automatically. The artefacts of an earlier phase in the development process should no
longer be transformed by hand into the format needed in the next phase, instead this
part of the software development process is to be automated. There is a debate going
on whether the developer should be able to manually alter the output model after the
transformation. In our view manual manipulation is currently necessary for a number
of reasons. However, when MDA technology has reached maturity, manual
manipulation should be an exception, just as manual manipulation of compiler
generated byte code or assembler code is an exception. Transformation tools are the
compilers of the next decade.

A consequence of this is that either the language of the source model must be at
least as powerful as the language of the target model, or the transformation engine
combined with the transformation definition must add any lacking information. If the
source language has insufficient expressive power, then the output model still needs
to be manually developed further. In other words, either the languages used to
develop software, or the tools, need to be brought to a higher level. Because it is
always wise to investigate all options, it is best to do both.

A second observation is that a key development of the last decades: the emergence
of design patterns, is not truly incorporated in either modeling or programming
languages. Almost ten years ago (in 1996) Budinsky and others [10] wrote:

 Towards General Purpose, High Level, Software Languages 225

“Some developers have found it difficult to make the leap from the
pattern description to a particular implementation, ... Others have no
trouble translating the pattern into code, but they still find it a chore,
especially when they have to do it repeatedly.”

Since then not much has changed. At best the programming IDE offers some support,
but the languages themselves have not changed. The support for patterns in the UML
is not conveniently integrated. One has to draw a separate collaboration diagram to
express that some classes play a part in a pattern. In practice, this is rarely done.

Hence, there are a large number of reasons to invest some effort in the
development of this new type of software language. In the next section we will have a
closer look at the requirements on such a language.

3 Requirements on General Purpose, High Level, Software
Languages

Our new type of language should combine the positive aspects of both modeling and
programming languages. So, what are the positive aspects that should be incorporated
in software languages? To answer this question we take a second look at the
characteristics in table 1. As shown in table 2, there are three negative aspects of
modeling languages that should be avoided: non-executability of the model, the
informal semantics of the modeling languages, and the model being a by-product. In
the table these items have been crossed out. The other characteristics should be
present in the new type of language.

Table 2. Characteristics of General Purpose, High Level, Software Languages

Modeling Language Programming Language Software Language

imprecise precise imprecise in early stages,

precise in later stages

not executable executable executable

overview detailed view various levels of detail

high level low level high level

visual textual both visual and textual

informal semantics execution semantics execution semantics

analysis by-product end product end product

It is often considered convenient that a model/program may be imprecise in the
early stages of development, but in later stages it should be precise. Furthermore, a
model/program should be the end product and therefore, when it has reached the stage
of precision, it should be executable. Thus a software language should have at least
execution semantics. Different transformations may add different non-functional
requirements to the end product. For instance, how the storage is arranged, whether
logging is required, etc.

The visual syntax of modeling languages is often considered to be a positive
aspect, but not all details can be shown visually in a convenient manner. Therefore it

226 A. Kleppe

would be best to have a visual syntax and a textual alternative. The visual syntax will
provide overviews, whereas the textual alternative may include many of the details of
the program. In the same manner it is wise to provide two textual alternative syntaxes,
one that is human readable, and one that is meant to be machine readable. Languages
with multiple syntaxes have been created before, one example being the Mjølner
BETA language [11] developed in the early nineties of last century.

Likewise, we want to keep several views, more and less detailed. This means not
necessarily that the language should provide only two different views. A hierarchy of
views, each level a bit more or less detailed than the following, is to be preferred.
Traditional data flow modeling as described by Tom DeMarco and Edward Yourdon
[12], has an excellent levelling mechanism that has been sadly missed in the UML,
although in version 2 some leveling is possible. (Data flow models had a good way of
zooming in.)

When listing these aspects it is sometimes difficult to determine whether a certain
aspect should lead to the creation of language concepts, or whether it should lead to
specific support in the development environment, the IDE. The following list is
ordered by the influence the re-quirement has on on the language itself.

1. The modeling language should have a several concrete syntaxes that are all
mapped onto the same abstract syntax.

2. The modeling language should have a clear semantics for precise programs. As
long as the program is imprecise, the semantics may be unclear.

3. The program will be a complete functional description of the the system.
4. The developer should be allowed to be imprecise at certain stages of the

development proces.
5. The program should be precise at most stages of development, specially during

the last stages, when it is prepared to be used as input to a transformation.
6. If the program is imprecise it will very likely not be executable, but when all

details are present, it should be executable (model simulator, model virtual
machine)

7. The modeller should be able to have different views on the same program:
overview and more detailed.

And surely, we should not forget the ultimate requirement, because otherwise the
new language will be nothing more than a programming language in pictures: the
language should provide constructs that are more abstract than current day
programming languages.

4 ALAN: A Software Language

The goal of the Alan project is to gather and combine the concepts that are already
well-known and have shown their use, into a format that is usable for a developer, not
to create new software development concepts. Therefore, we use a number of
different sources. The first source is UML [8, 13], for instance, the two-directional
association is a powerful concept that is not present in current day programming
languages. The second source is OCL [1, 14]. The possibilities OCL offers on
collections are far more powerful than any programming language offers. The third

 Towards General Purpose, High Level, Software Languages 227

source is design patterns [15], which beyond a doubt have been a landmark in
software development. Currently, support for patterns can be found in some IDEs, but
little support can be found in languages. The fourth source is found in current day
programming languages, like Java, C#, and Python.

In the future we hope to include constructs from aspect-oriented languages as well.
In our opinion a user of Alan should be able to define a number of cross-cutting
aspects and weave them into a single output. Whether this effects the design of the
language, or merely the design of the Alan IDE, is a question that remains to be
answered.

What we present in this paper is an early version of Alan. Our ideas need to be
developed further, but we feel it is already worthwhile to share them with the
community and get some feedback. In the following sections we will present
examples of language constructs from the above mentioned sources and explain how
they are incorporated. The length of this paper does not allow us to be complete. Alan
comprises more than just the examples given below. The language has been fully
implemented and the Alan IDE and compiler are available as an Eclipse plug-in. This
paper does not merely describe ideas, everything presented here was tested in our
implementation, and shown to be feasible.

Alan’s textual syntax is based on the Java syntax. One notable difference is that the
equal sign is reserved for comparisons; assignments are denoted using the Pascal
notation (“:=”). Alan’s visual syntax is basically the same as the UML class diagram
syntax. However, the semantics of Alan are much more strict than those defined for
UML. The semantics of Alan are defined by a mapping to Java. This mapping is
implemented as an MDA transformation.

4.1 UML Constructs in Alan

Apart from having used the syntax of the UML class diagram for the Alan visual
syntax, we have borrowed a number of UML constructs. Some of which are explained
in the following sections.

4.1.1 Associations
The UML association is a powerfull construct that needs to be implemented carefully.
Specially, the two-directional association leads to complicated code, because setting
the field that implements the association in the class at one end, must also ensure that
the field that implements the other association end has the correct value.

In Alan, associations are always two-directional. A uni-directional association, as
is present in the UML, is in Alan simply an attribute, or in ordinary programming
terminology: a pointer. In our view, mixing the concepts of a reciprocal relationship
and a reference, as is the case with the UML association, is confusing and, to some
extent, overkill. As we explained elaboratedly in [16], if Eve is in the bag of Adam’s
girlfriends, then Adam must be in the of Eve’s boyfriends, otherwise one could not
speak of a relationship called friendship. If Eve insists in calling Adam her boyfriend,
even though Adam does not regard Eve to be his girlfriend, then this fact can only be
represented as a reference from Eve to Adam (or to a bag of not-interested boyfriends
including Adam).

228 A. Kleppe

In Alan associations may have no more than two ends, and each association abides
to the following characteristics, which we call the ABACUS rules.

• Awareness: Both objects are aware of the fact that the link exists.
• Boolean existence: If the objects agree to end the link, it is dissolved at both ends.
• Agreement: Both objects have to agree with the link.
• Cascaded deletion: If one of the objects is deleted, the link is dissolved as well.
• USe of rolenames: An object may refer to its partner using the role name provided

with the association.

A simple example of associations depicted using the visual syntax can be found in
figure 1. The Alan textual syntax that maps to the same abstract syntax is the
following.

class Man {
public Woman wife otherside husband;
public Bag[Woman] girlfriends[1..10] otherside boyfriends;
...

}
class Woman

public Man husband otherside wife;
public Bag[Man] boyfriends otherside girlfriends;
...

}

The multiplicities in the figure need not always be part of the textual syntax for
associations. In Alan the exact lower and upper bounds need only be present when
they differ from 1..* or 1. The exact lower and upper bounds of multiplicities are
considered to be invariants, which will be explained in section 4.2.3. Currently Alan
does not support association classes. We are investigating if and how this could be
done.

Man Woman
girlfriendsboyfriends

1..* 1..10<bag><bag>

husband wife1 1

Fig. 1. An Alan association example

4.1.2 Enumeration Types
Typesafe enumeration types may not look like a powerful language construct, but in
practice they come in very handy. However, implementing a typesafe enumeration
type is not a simple matter. Joshua Bloch spends as much as 10 pages on this subject
in his book Effective Java [17]. Still, when you have learned the trick, you see that
every enumeration type can be handled in the same fashion. This is where the MDA
transformation techniques can provide much assistance: a single line in a higher level

 Towards General Purpose, High Level, Software Languages 229

language can be automatically transformed into a much more verbose text in a lower
level language.

In Alan, typesafe enumeration types can again be written in the same simple way
that they were written in C, while the translation of Alan into Java takes care of all the
details of implementing the type safeness. An example of a declaration of a typesafe
enumeration type:

enum myColor { red; white; blue }

This declaration may be part of a package, and thus have package scope, or it may be
part of a class declaration, and thus have class scope.

4.1.3 Composite or Aggregate Objects
Another example of a higher level construct that is part of UML, but not part of any
programming language, is the composite object. Much has been said on the semantics
of the UML aggregate and composite, e.g. in [18]. The Alan composite object has
deletion semantics; when the container is deleted, so are all its parts. Furthermore,
although other objects may refer to the object by means of an attribute or association,
this object may be part of no more than one composite object. Figure 2 contains a
simple example of an Alan composite object. The code below is the textual
alternative.

class Bike {
public part Set[Wheel] wheels[2];
public part Frame frame;
...

}
class Wheel {

public part Tire tire;
...

}

As for associations, each part in a composite object is aware of the link to its owner.
In fact, the role name owner may be used in the part object to indicate the containing
object. If instances of the same class may be part of multiple composite objects, as for
instance the class Wheel may be used as part in a class Car as well as the class Bike,
the owner always refers to the one composite object that contains the specific
instance.

Bike Wheel
wheels

2

TireFrame

1 1

Fig. 2. An Alan composite object example

230 A. Kleppe

Although on the surface the notion of the composite object may appear to be
nothing more than a more specialized version of the association, it serves a larger
purpose. It enables us to easily specify the Visitor pattern, as explained in section
4.3.1. Furthermore, we are experimenting with a specific form of delegation, in which
operations offered by the part objects become available in the composite object. A
call to such an operation on the composite object will delegate the call to the part
object or objects that implement it. For instance, when the operation turn is specified
in the class Wheel, a call to a Bike object, as in myBike.turn(), will delegate this call
automatically to both wheels.

4.2 OCL Constructs in Alan

The constructs that were defined in OCL, are incorporated in Alan completely, but
Alan takes things one step further. For instance, OCL expressions may be used in
statements, like assignments, and concepts like invariants are integrated in the textual
syntax for the definition of a class. Again, this is not a new idea, it has been done in,
for instance, Eiffel. What makes Alan different is the combination of existing ideas.

4.2.1 Primitive Types
The primitive types that are available in Alan are the same as the UML/OCL
primitive types: Integer, Real, String, and Boolean. We believe that the abstraction
level that Alan targets, has no need for low level details, like the differences between
char[] and String, between float and double, and between int and long.

4.2.2 Collection Types and Iterators
OCL defines four collection types: Set, OrderedSet, Sequence, and Bag. These types
are also available in Alan. Furthermore, the iterators defined on OCL collections, like
select, collect, exists, and isUnique, are all part of Alan as well. In the future, we hope
to augment Alan with a syntax for defining new iterators, to enable users to specify
their own iterators in terms of existing ones. The example in section 2.3 shows clearly
the power that OCL collection types and iterators bring to Alan. Because the available
collection types reside at a much higher level of abstraction, Alan does not support
arrays.

Furthermore, we are investigating two additional collection types: the SortedSet
and the SortedBag. Both should sort their elements based on the “natural” order of the
element’s type, defined by the equals, greater-than, and smaller-than operations.

4.2.3 Invariants and Pre- and Postconditions
As can be expected, Alan supports OCL invariants and pre- and postconditions
completely. In the textual syntax they are integrated in the class definition, as in the
following example.

class Man {
public Woman wife = oclUndefined otherside husband;
public Bag[Woman] girlfriends[1..10] otherside boyfriends;
public Integer age = 0;
private Real moneyEarned = 0;
inv ofAge: age < 16 implies wife = oclUndefined;

 Towards General Purpose, High Level, Software Languages 231

public void work()
pre: age >= 14
post: moneyEarned =

moneyEarned@pre + 100 and notassert(girlfriends-
mult)

 {
 ...
 }

 }

All invariants are checked at postcondition time of all operations of the class, as
well as after the setting of the value of an attribute. If the developer needs to speed up
processing, he can choose to check only some invariants or none at all by using the
keyword notassert. The notassert takes as parameters the names of the invariants that
should not be checked. If no parameters are given, then none of the invariants will be
checked.

In section 4.1.1 we mentioned that the upper and lower bound of the multiplicities
for an association are considered to be invariants. This means that the bounds will
also be checked at postcondition time of any operation execution. When this check is
not necessary, this too can be indicated in the notassert clause. As name of the
invariant the role name of the association end concatenated with “-mult” may be used,
as in girlfriends-mult.

4.2.4 Derivation rules
OCL derivation rules can be expressed in Alan as well. Before the execution of an
operation of the class, the value of the derived attributes is determined, during
execution this value remains the same. The next example contains two examples of
derived attributes: frontwheel, and speed.

 class Bike {
public part Sequence[Wheel] wheels;
public derived Wheel frontwheel := wheels->first();
public derived Real speed :=
 frontwheelsize * frontwheel.revolutionsPerSec;

 ...
 }

4.3 Design Patterns in Alan

Currently, only the most popular patterns are incorporated in Alan. We expect to add
to this list in the future.

4.3.1 Visitor
The visitor pattern in Alan is linked to the composite object concept. Only composite
objects can be visited. In general composite objects have the form of a directed graph;
only some of the graphs will have the form of a tree. The graph is not necessarily
acyclic, therefore the implementation algorithm ensures that the execution will
terminate. Figure 3 shows an example, where node 3 is about to be visited twice, once

232 A. Kleppe

caused by the link with node 1 and once caused by the link with node 5. Here the
algorithm ensures that node 3 will not be visited because of its link with node 5.

The textual syntax for the visitor pattern is shown in the next example. The visual
syntax shows only the fact that the class BikeVisitor is a visitor to Bike objects, the
details are not shown visually.

class BikeVisitor visits Bike <breadthfirst> {
String visit(Bike bike) {
 String brand;
 before {

brand := bike.getDefaultBrand();
 }
 after {

brand := resultOf(bike.frame);
brand + resultOf(bike.frontwheel);
brand + resultOf(bike.wheels->last());
return beautify(brand);

 }
}
String visit(Wheel wheel) {
 after {
 return wheel.brand + resultOf(wheel.tire);
 }
}
String visit(Frame frame) {
 return 'frame';
}
String visit(Tire tire) {
 return 'dunlop';
}
String beautify(String brand) {
 ...
}

}

The keyword visits indicates that instances of this class are visitors of composite
objects of type Bike. Directed graphs can be transversed in several ways. The most

1

3

2

4 5

Fig. 3. An Alan composite object as directed graph

 Towards General Purpose, High Level, Software Languages 233

important traversal methods are breadthfirst and depthfirst. The visitor in the example
visits Bike objects breadth-first, that is it visits all direct parts of the Bike instance
before visiting the parts of the Wheel instances. Alan also supports visitors that use
the depthfirst method.

Any visit operation is divided into two parts. Before visiting parts of an composite
instance the statements in the before clause are executed. After visiting parts of the
instance the statements in the after clause are executed. Classes that are part of the
composite, but are not composite objects themselves, are the leaves of the tree or
directed graph. For them the distinction between the before and after clause cannot be
made.

Visit operations may have a result. In the example all visit operations have a String
result. This result can be used in the after clause of the visit operation that visits the
containing object, using the keyword resultOf. The type of the value that is returned
by resultOf, is the type of the corresponding visit operation. If, in the example, the
visit of a Tire instance would have re-turned an Integer value, then the expression
resultOf(wheel.tire) in the visit operation for Wheels would have returned an
Integer as well (which would have resulted in a type error).

The visitor class need not define a visit operation for all nodes in the composite
graph. When a visit operation for a certain type of node is not present, the traversal
algorithm simply proceeds. Next to the visit operations, visitors may have ‘normal’
operations as well. The operation beautify is an example.

Visiting may start at any node within the directed graph. You simply create a
visitor instance and tell it to start visiting a certain object. If the object is not within
the composite object that the visitor was defined for, a type error occurs. The next
example shows how the BikeVisitor can be used.

myBike := ...;
visitor := new BikeVisitor();
if (visitor.visit(myBike).equals(“someString ”)) { ... }
System.out.println(visitor.visit(myBike.frontwheel));
visitor.visit(myBike);

4.3.2 Singleton
Another popular design pattern is the singleton pattern. This pattern is easy to use in
Alan, one extra keyword suffices, as shown in the next example. The output of this
example is, of course, twice the String ‘this is the unique instance of
MyFirstSingleton’, followed by two occurrences of 'changed name of unique
singleton'. Note that the singleton user is unaware of the fact that it is using a
singleton instance, which is different from the use of a singleton in e.g. Java, where
you cannot use "new", but you have to use a specific class method to get the instance.

singleton class MyFirstSingleton {
 public String name :=
 'this is the unique instance of MyFirstSingleton';
 ...
}

234 A. Kleppe

class SingletonUser {
 public useSingleton() {

 MyFirstSingleton a := new MyFirstSingleton();
 System.out.println(a.name);
 MyFirstSingleton b := new MyFirstSingleton();
 System.out.println(b.name);
 a.name := 'changed name of unique singleton';
 System.out.println(a.name);
 System.out.println(b.name);
 }
}

4.3.3 Observer
The third pattern that is incorporated in Alan, is the Observer pattern. The key to this
pattern are two predefined operations that are available on every class: observe and
disobserve1. The observe operation takes as parameters the object to be observed, and
the name of the operation that should be called whenever a change occurs in the
subject. This operation must be defined in the class of the observer, and it must have
one parameter, which type is the type of the object to be observed. The disobserve
operation takes as parameter the object that should no longer be observed. The next
example defines a simple observer that observes two other instances, one of type
Subject, and one of type OtherSubject.

class MyFirstObserver {

public start() { Subject mySubject1 :=
new Subject(); OtherSubject
mySubject2 := new OtherSubject();

System.out.println('>>>observing
mySubject1');self.observe(mySubje
ct1, 'uponChange1');
mySubject1.attr := 'blue';
mySubject1.attr := 'red';

System.out.println('>>>observing
mySubject2');self.observe(mySubje
ct2,
'uponChange2');mySubject2.attr :=
"black';mySubject1.attr :=
'green';

System.out.println('>>>DISobserving
mySubject1');self.disobserve(mySubje

1 The name disobserve is still under debate. Other options considered are unlink, and

unsubscribe. The term disobserve is closely related to the term observe, which seems
preferable.

 Towards General Purpose, High Level, Software Languages 235

ct1);mySubject1.attr :=
'white';mySubject2.attr := 'yellow';

}
public uponChange1(
Subject mySubject) {System.out.println("The value of
Subject.attr is "
 + mySubject.attr);
}
public uponChange2(OtherSubject mySubject)

{System.out.println("The value of
OtherSubject.attr is " + mySubject.attr);
}

...

}
The output of operation start is:

>>>observing mySubject1
The value of Subject.attr is blue
The value of Subject.attr is red
>>>observing mySubject2
The value of OtherSubject.attr is black
The value of Subject.attr is green
>>>DISobserving mySubject1
The value of OtherSubject.attr is yellow

4.4 Programming Language Constructs in Alan

Most of the constructs known in programming languages are also present in Alan,
although some have been discarded because their level of abstraction was considered
too low. A few programming language constructs in Alan deserve more attention.
They are explained in the following sections.

4.4.1 Generic Types
Only few programming languages support generic types. Alan offers full support, in
fact, the collection types are considered to be predefined generic types. Generic types
may be defined independently of any other types, but, as the next example shows, one
may also define a new generic type by inheriting from one of the collection types.

class MySetType [TYPEVAR] extends Set [TYPEVAR] {

public attr : TYPEVAR;
public setAttr : Set[TYPEVAR];

...

public oper1(newV : TYPEVAR) : TYPEVAR {
 attr := newV;
 return res;
}

}

236 A. Kleppe

4.4.2 Visibility and Set and Get Operations
In Alan, explicit definition of get and set operations for attributes is not necessary.
When these operations are not defined for a certain attribute, they will be generated
according to the visibility of that attribute. If the developer wants to execute some
extra statements and/or checks in the get or set operation, he may define the
operations himself. This is similar to properties in C#.

4.4.3 Loops
In Alan, the OCL iterators are available for many of the cases where you would
normally use a loop construct in a program.Therefore, the need for loop constructs in
Alan will be much less than in one of today’s programming languages. However, we
still need a loop construct for some special cases, like simply doing the same thing for
a fixed number of times.

Alan provides two primitive loop constructs: the for-loop and the while-loop. The
for-loop must be used with two Integer values separated by two dots, that indicate the
lower and upper bound of the number of times the body of the loop must be executed.
The while-loop takes a boolean expression as guard, as in the next examples.

for(1 .. someInt) { ... }
while(someBoolean) { ... }

5 Future Work

As explained earlier, this paper describes an early version of Alan. Many aspects of
the language still need to be fleshed out. We have already mentioned the inclusion of
constructs from aspect-oriented languages, the support for association classes, and
support for other patterns. Another issue are the libraries that should accompany this
language, which should include extra predefined types like the SortedSet and
SortedBag. Key to the success of Java has been the enormous number of predefined
types available. We are convinced that languages like Alan will need a similar set of
libraries, which should also be full of higher level constructs ready to use.

The Alan IDE is currently being implemented as an Eclipse plug-in. Because of the
ongoing work the Alan IDE is not yet available for a large audience, but if you want

Table 3. The realisation of the requirements by Alan

Software Language Alan

imprecise in early stages,

precise in later stages

yes, visual syntax allows imprecision, textual

syntax does not

executable yes, by translation to Java code

various levels of detail not yet established

high level yes!

both visual and textual yes!

execution semantics yes!

end product not yet, but going strong

 Towards General Purpose, High Level, Software Languages 237

to have some idea of the Java code being generated, you can take a look at the Java
code generated by the OCL tool Octopus [19]. The code for the associations and for
the OCL expressions is the same.

What remains is a check to see whether the requirements we defined in section 3
are met by Alan. Alan meets almost all of the requirements, as shown by table 3. We
strongly believe that it is only a matter of time (and hard work) to realise the
remaining requirements, and that in the near future Alan will be the general purpose,
high level software language that we envisioned.

6 Conclusion and Related Work

On the topic of related work we can be short. A lot of work is being done in the area
of domain specific languages, e.g. [3, 4], including work in the area of Executable
UML [20], as well as in the area of formal specifications [21, 22], but virtually none
is done in the area of general purpose, high level software languages. One might
argue that we too have created a DSL, one dedicated to programming, but in our view
this argument stretches the concept of domain far too much. If programming itself can
be identified as a domain, then COBOL, Ada, and all other programming languages
should also be called DSLs.

Currently, it is possible to create a complete visual representation of Java, or any
other programming language in UML. This fact does not in any way diminish the
need for a general purpose, high level software language. The essence of Alan is not
that it combines a visual and a textual representation, as stated in section 3, this has
been done successfully before. Instead Alan’s merits lie in the fact that it incorporates
higher level concepts, and makes them available to the programmer in a way he or she
is likely to understand.

Please note that the creation of general purpose, high level, software languages
will not make informal models obsolete, it will just raise the level of abstraction. This
is a normal phenomenon in the history of any technology (or culture). Old ways
become the stepping stone for future developments. In the same way current day
middleware will, in time, take its place on one of the lower levels of our technology
stack.

Raising the level of abstraction does not mean that the old ways are crooked or
misformed. One has to build a wall by putting in the first stone, which will support all
the other stones. Therefore, the first few stones need to be solid and well fitted. By
creating Alan we do not criticize any other technologies, for instance, Java 5 has done
some good work on enumeration types. We simply argue that it is time to start
building the next layer of stones, and that the next layer should include general
purpose, high level software languages.

We hope that Alan will not be the only software language at this level. Software
development needs the boost that this new type of language can give. Therefore, in
the future we hope to see a large family of general purpose, high level, software
languages.

238 A. Kleppe

References

[1] Anneke Kleppe, Jos Warmer, The Object Constraint Language Second Edition, Getting
Your Models Ready for MDA, 2003, Addison-Wesley

[2] C. Atkinson and T. Kühne, "A Generalized Notion of Platforms for Model Driven
Development", in Model-driven Software Development - Volume II of Research and
Practice in Software Engineering, ed. S. Beydeda and V. Gruhn, Springer Verlag. 2005.

[3] Jack Greenfield and Keith Short with Steve Cook and Stuart Kent, Software Factories,
Assembling Applica-tions with Patterns, Models, Frameworks, and Tools, Wiley, 2004

[4] Alexander Felfernig e.a., UML as Domain Specific Language for the Construction of
Knowledge-Based Con-figuration Systems, InInternational Journal of Software
Engineering and Knowledge Engineering, Vol.10 No. 4 (2000) pp. 449 - 469, World
Scientific Publishing Company

[5] The Bible, Genesis 11: 1-8
[6] G. Hophe and B. Woolf, Enterprise Integration Patterns, Addison-Wesley, 2003.
[7] Frederick P. Brooks, The Mythical Man-Month, Addison-Wesley, 1995
[8] UML 2.0 Superstructure Specification, OMG document ptc/04-10-02, October 2004
[9] Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk Weise, MDA Distilled, Principles of

Model_Driven Ar-chitecture, Addison-Wesley, 2004
[10] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu, Automatic code generation

from design patterns, IBM Systems Journal, 35(2), 1996.
[11] Object-oriented environments: The Mjolner approach, Editors: Jorgen Lindskov Knudsen

(Aarhus University, Denmark), Mats Lofgren (Telia Research AB, Sweden) , Ole
Lehrmann Madsen (Aarhus University, Denmark), Boris Magnusson (Lund University,
Sweden) , Prentice Hall, 1994

[12] T. DeMarco, P.J. Plauger, Structured Analysis and System Specification, Prentice Hall,
1985

[13] Unified Modeling Language (UML) Specification: Infrastructure, OMG document
ptc/04-10-14, October 2004

[14] UML 2.0 OCL Specification, OMG document ptc/03-10-14, October 2003
[15] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns,

Elements of Reusable Ob-ject-Oriented Software, Addison-Wesley, 1995
[16] Anneke Kleppe and Jos Warmer, Wed Yourself to UML with the Power of Associations,

part 1 and 2, online publication at http://www.devx.com/enterprise/Article/28528 and
http://www.devx.com/enterprise/Article/ 28576

[17] Joshua Bloch, Effective Java, Programming Language Guide, Addison-Wesley, 2001
[18] Brian Henderson-Sellers and Franck Barbier, Black and White Diamonds, in "UML" '99

- The Unified Modeling Language: Beyond the Standard, Second International
Conference, Fort Collins, CO, USA, October 1999. Proceedings, Editors: R. France and
B. Rumpe, LNCS 1723, pp. 550 - 565, Springer-Verlag, 1999

[19] Octopus: OCL Tool for Precise Uml Specifications, available from http://www.klasse.nl/
english/research/octopus-intro.html

[20] Stephen J. Mellor and Marc J. Balcer, Executable UML, A foundation for Model-Driven
Architecture, Addison-Wesley, 2002

[21] A. Nymeyer and J-P. Katoen, Code generation based on formal bottom-up rewrite
systems theory and heuris-tic search, Acta Informatica, Vol. 8, pages: 597 - 635, 1997

[22] V.M. Jones. Realization of CCR in C. in Bolognesi T, Van de Lagemaat J and Vissers
C.A. (eds.), LOTO-Sphere: Software Development with LOTOS, pp. 348-368, Kluwer
Academic Publishers, 1995.

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 239 – 253, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Toward Standardised Model to Text Transformations

Jon Oldevik, Tor Neple, Roy Grønmo, Jan Aagedal, and Arne-J. Berre

SINTEF Information and Communication Technology,
Forskningsveien 1, 0373 OSLO, Norway

{jon.oldevik, tor.neple, roy.gronmo, jan.aagedal,
arne.berre}@sintef.no
http://www.sintef.no

Abstract. The objective of this work is to assess the qualities of the MOFScript
language, which has recently been submitted to the OMG as a proposed model
to text transformation language. This is done by identifying requirements for
this type of language and evaluating the MOFScript language with regard to
these. The language is presented along with a tool implementation and com-
pared with the alternative languages submitted to the OMG Model to Text RFP.

1 Introduction

Ever since dawn of software modelling, technologies have been around to provide
mappings from software models to useful technology platforms, such as databases,
implementation languages etc. Along with the maturity of the modelling domain, the
standardisation of modelling languages and technologies such as UML and the Meta
Object Facility (MOF)[1], and the adoption of these technologies in practical use, the
need for standardising transformation and mappings of these models has become
apparent.

This need is currently being addressed through the ongoing standardisation activi-
ties in OMG concerning model to model transformations (MOF Query, View and
Transformations – QVT)[2] and model to text transformations[4]).

The MOFScript language has been submitted as a proposal for a model to text
transformation language to the OMG. This paper identifies different requirements for
model to text transformation languages and evaluates the MOFScript language and
tool against those requirements. There are three competing languages to MOFScript
which are also discussed with regard to the requirements. The rest of this paper is
structured as follows: Chapter 0 gives some background in the area of model to text
transformation. Chapter 0 describes a set of requirements for model to text transfor-
mation languages. Chapter 0 describes the details of the MOFScript language and tool
and gives a brief evaluation. Chapter 0 describes related work and chapter 0 con-
cludes.

2 Background

Traditionally models have been used in software development to define and under-
stand the problem domain or the different aspects of a system’s architecture. After the

240 J. Oldevik et al.

modelling, one dove into implementation of the system without updating the models
based on the actual implementation that was made. This issue is remedied within the
MDA paradigm where the models are the prime artefact. From these artefacts large
portions of the source code for the system can be generated.

The issue of generating code from models can be abstracted to the term model to
text transformations as opposed to model to model transformations. The goal is to be
able to create textual artefacts based on model information. Textual artefacts include
other things than source code, such as various types of documentation.

Typically a code generator will not be able to generate all of the code that is
needed to implement a system. Certain facets of a system, e.g. the static parts, are
well suited for code generation, while there are challenges in modelling the more
dynamic parts, for instance method bodies of classes. This means that parts of the
source code for a system will be generated from the models while other parts will be
hand crafted. The ability to protect the hand crafted parts of the code from subsequent
code generation passes is important. In some cases one even may want to update the
model based on changes made in the source code. One may say that the same issue is
relevant for document generation, where one typically may want to add writings that
are not part of the model to the resulting document.

The task of writing model to text transformation definitions will probably not be
carried out by all software developers. However, it is important that the language used
for such definitions is as easy to use as possible, e.g. by sharing properties with com-
mon programming or scripting languages. The usability of the language can made
better through good tool support including features such as code completion, a feature
present in most integrated development environments (IDEs) for normal program-
ming languages today.

3 Requirements for Model to Text Transformation Languages

In the Request for Proposal (RFP) for MOF Model to Text Transformation[4], a set of
requirements to such languages is identified. These are high-level requirements that
provide a framework for defining a language that will fit the OMG way of thinking
and align well with already adopted OMG specifications. The essential requirements
that must be met include the basic ability of generating text from models, specifying
transformations based on metamodels, the ability to specify complex transformations,
the ability to allow multiple input models/metamodels for transformations, support for
text manipulation functions, and reuse of existing standards, such as QVT, Object
Constraint Language (OCL)[12], and MOF.

In addition, there are other obvious requirements, such as the ability to generate
text to files, and the ability to query model element properties, which need to be sup-
ported by a model to text transformation language.

We acknowledge the OMG requirements as essential basic properties, and extend
with a set of additional requirements that we deem desirable for a model to text trans-
formation language. Some of these were previously identified in [6].

 Toward Standardised Model to Text Transformations 241

1. Structuring: The language should support structuring and control of text genera-
tion. This means that it should be possible to specify structures that orchestrate a
set of finer grained text generations.

2. Control mechanisms: It should provide basic control flow mechanisms. This im-
plies that it must be possible to provide the semantic equivalent of loops and condi-
tional statements.

3. Mix code and clear text: It should provide a simple way of combining transforma-
tion code (logic), model data, and clear text. It shall also provide a way of convert-
ing model data to strings and use this in produced text

4. System services: It should provide support for string manipulation functions. It
should also provide the ability to interact with system services or library functions,
e.g. inquiring about the current date and time.

5. Ease-of-use: The concrete language should show similarity with existing well
known approaches in order to be easy to use (such as programming or scripting
languages). Adhering to aspects of the forthcoming QVT standard concrete syntax
may also be beneficial.

6. Expressiveness: Finally, it should provide expressiveness to support expected do-
main needs; sufficient expressiveness may be a trade off with respect to ease of
use.

The above described requirements are related to qualities of the transformation lan-
guage. Some pertinent aspects for model to text transformation need to be addressed
outside the scope of the language itself, and rather in the architecture of the tools
implementing the language. Specifically, this is valid for change management scenar-
ios such as incremental generation, reverse engineering, and round-trip engineering.
Support for traceability between model elements and generated text can facilitate
these aspects. Traceability links are also independent of the transformation language
itself, although the language may open for defining configuration properties that con-
trol the nature of traceability links. The language itself may also define mechanisms
to control the processing of such links.

The following chapter will look at the MOFScript language in detail and discuss
how it meets the identified requirements.

4 The MOFScript Language

The MOFScript language has been defined to answer the needs of a standardized
model to text transformation language, as called for by the OMG in the MOF Model
to Text Transformation RFP[4]. MOFScript is based on the QVT-Merge[3] specifica-
tion in terms of metamodel extensions and lexical syntax.

A MOFScript rule is a specialisation of QVT-Merge operational mappings, and
MOFScript constructions are specialisations of QVT-Merge constructions. The main
goals with the language are to provide ease-of-use, minimize additions to QVT, as
well as providing flexible mechanisms for generating text output. It is presumed that a
source metamodel is defined on which one can perform queries. This is analogous to
QVT, while the explicit definition of a target metamodel is not required in MOF-

242 J. Oldevik et al.

Script. MOFScript can be classified as an imperatively oriented language with tradi-
tional scope rules and with optionally typed variables.

The following sections look at the details of the MOFScript language, a tool that
implements it, and an evaluation considering the requirements identified.

4.1 The Lexical Language

Module: MOFScript transformations are packages within modules, which defines the
properties and rules of a transformation. A module is denoted with the keyword
“textmodule” followed by a name for the module. The initial part of the module is
identical to a QVT mapping rule module except for the keyword which is called
textmodule as opposed to the QVT module.

textmodule UML2WSDL (in uml:uml2)

A module can import and reuse rules defined in other modules. This is achieved
with the ‘access library’ statement.

access library Uml2wsdl ("uml2wsdl-lib.m2t")

Rules: The transformation rules are defined with a name and a potential context type.
A rule may have a return type. It may also have a guard. The syntax is similar to that
of QVT mappings. There is no specific keyword associated with the declaration of
rules.

uml.Class::classToJava () {
 // statements }

The guard for a rule is defined in the same manner as guards in QVT, using a
‘when’ clause.

uml.Class::classToJava ()
 when {self.getStereotype() = ‘Entity’}
{ // statements }

Files and Output Printing: Files are the most important kind of output device for
text. A file is declared with a set of properties: name, extension, directory, and type.
The File name property must always be present. File name and directory can be speci-
fied as separate properties. The directory portion may also be embedded in the file
name property.

A file can be used implicitly or explicitly in output statements. For example, if a
file device is declared, subsequent output statements will use that device as the target.
If several file devices are declared, the latest one is used by default. If a specific de-
vice is the target, it can be referenced by its name. Output printing is done by using
standard print functions or escaped output. The standard print functions are either
‘print’ or ‘println’, which output an expression (the latter adds a new line character
(for the appropriate platform / encoding).

A couple of other utility print functions are defined, to provide easier whitespace
management: newline (or nl), tab, or space, followed by an optional count integer.
Standard String escape characters (\n\t) are also legal within String literals.

file (“an-output-file.txt”)
<%
 This text is generated to the output file.
%>

 Toward Standardised Model to Text Transformations 243

file f2 (“AnotherFile.txt”)
file (“Yet-another.txt”)
println (“ Now, I am writing to the file ‘yet-another.txt’”)
f2.println (“ Now, I am writing to the file ‘AnotherFile.txt’”);

Escaped Output: Escaped output provides a different and in some cases simpler way
of providing output to a device. Escaped output works similar to many scripting lan-
guages, e.g. Java script.

Escaped output is signalled by escape characters, beginning and ending of an es-
cape. Basically, it is a print statement that can subsume multiple lines and be com-
bined with all expressions that evaluate to a string. Escaped text is signalled by the
characters ‘<%’ to start an escape and ‘%>’ to end an escape. Note that whitespace is
copied to the output device.

uml.Operation::bindingOperation () {
 <%
 <operation name="%> self.name <%">
 <soap:operation soapAction="%> nameSpaceBase + self.name <%"
style="document"/>
 <input>
 <soap:body%>
 if (self.ownedParameter.size() > 0) {
 <% parts="%> self.getParameterOrder() <%"%>
 }
 <% use="literal"/>
 </input>
 <output>
 <soap:body%>
 if (self.returnResult.size() > 0){
 <% parts="response"%>
 }
 <% use="literal"/>
 </output>
 </operation>
 %>
}

Properties: Properties are used in the same manner as in QVT. They can be defined
at the module level or within a rule. There are two types of properties; local properties
which are constants within a module or a rule, and configuration properties which are
global properties that may be used in many transformations.

property javaPackageName = “org.sintef”

A property cannot be modified after its declaration. It is typically used in output
statements.

<% The Java package name is: %> javaPackageName <% Nothing more,
nothing less %>

Variables: Variables are defined and used as in QVT. They can be defined globally
for a module, or locally within a rule. A variable can have an assigned value when
declared, which can be modified during its lifetime.

var exportCounter = 0
var modifiableName:String = “temporary name”;
var storedNames:Hashtable;

244 J. Oldevik et al.

A variable can be typed. The standard OCL types are used (String, Boolean, Inte-
ger, Real). In addition, the Collection types List and Hashtable are introduced in
MOFScript, which are similar to List and Hashtable classes in Java. These are used
for holding sets of values during transformation execution, e.g. to temporarily store
pre processed information that is needed several times during generation.

var packageNames:List
var packageIdList:Hashtable
self.ownedMember->forEach(p:uml.Package) {
 packageNames.add (p.name)
 packageIdList.put (p.id, p.name)

 }
if (packageIdList.size () > 0) {
 <% Listing the package names that does not start with ‘S’ %>
 packageIdList->forEach (s:String | not(s.startsWith(“S”)) {
 <% Package: %> s
 }
}

Iterators: Iterators in MOFScript are used primarily for iterating collections of model
elements from a source model. A for-each block expression defines an iterator expres-
sion which also has a block of executable expressions.

It works similarly to forAll in OCL or the shorthand iterator expressions from
QVT.

-- applies to all objects in the collection
-- of type DBTable that has a name that starts with ‘a’
c.elements->forEach(e:DBTable | e.name.startsWith(“a”)) {
 -- statements
}

If-Then-Else: If-expressions provide basic functionality for controlling execution
based on logical expressions. An if-expression has a condition and a block of state-
ments that are executed if the condition is met. It might have a set of else conditional
branches and an empty else branch. It basically has the same semantics as any con-
ventional programming language if statement.

uml.Package::interfacePackage () {
 if (self.name = "Interface Model") {
 self.ownedMember->forEach(p:uml.Package) {
 p.interfacePackages()
 }
 } else {
 stdout.println (“Error in model.”)
 }
}

Invoking Rules: Text transformation rules are invoked either directly or as part of
expressions.

uml.Package::interfacePackages () {
 if (self.getStereotype() = “Service”){
 file (rootdir + self.name.toLower() + ".wsdl")
 self.wsdlHeader()
 self.ownedMember->forEach(i:uml.Interface) {

 Toward Standardised Model to Text Transformations 245

 i.wsdlPortType()
 }
 self.wsdlFooter()
 }
}

Return Results: Text transformation rules may have return results. This is most use-
ful for defining helper functions.

uml.TypedElement::getType () : String {
 if (self.type.name.equalsIgnoreCase("string"))
 result = "xsd:string"
 else
 result = self.type.name
}

Library Functions: MOFScript defines a set of functions to support manipulation of
strings and collections. The string manipulation functionality is similar to that pro-
vided in Java. In addition it defines utility functions to manage white space, and func-
tions to retrieve system date and time. It currently does not provide additional func-
tions to interact with the system environment.

4.2 The MOFScript Tool

This section gives an overview of the MOFScript tool, a tool supporting the definition
and execution of model to text transformations using the MOFScript language, im-
plemented as an Eclipse plug-in, which is available for download[8].

The architecture: The MOFScript tool is developed as two main logical architectural
parts: tool components and service components (see Fig. 1). The tool components are
end user tools that provide the editing capabilities and interaction with the services.
The services provide capabilities for parsing, checking, and executing the transforma-
tion language. The language is represented by a model (the MOFScript model), an
Eclipse Modeling Framework (EMF) model populated by the parser. This model is
the basis for semantic checking and execution. The MOFScript tool is implemented as
an Eclipse plug-in using the EMF plug-in for handling of models and metamodels.

The Service Components consist of these component parts: The Model Manager is an
EMF-based component which handles management of MOFScript models. The Parser
and Lexer are responsible for parsing textual definitions of MOFScript transformations,
and populating a MOFScript model using the Model Manager. The parser is based on
antlr[7]. The Semantic Checker provides functionality for checking a transformation’s
correctness with respect to validity of the rules called, references to metamodel elements,
etc. The Execution Engine handles the execution of a transformation. It interprets a model
and produces an output text, typically to a set of output files. The Text Synchroniser han-
dles the traceability between generated text and the original model, aiming to be able to
synchronize the text in response to model changes and vice versa.

The Tool Components consist of these component parts: The Lexical Editor provides the
means of editing transformations, invoking the parser, checker, and the execution engine.
The Result Manager is responsible for managing the result of a transformation in a sensible
way, such as integrating result code files in an Eclipse project.

246 J. Oldevik et al.

Fig. 1. MOFScript component and tool architecture

The Outline Viewer, Preference Manager, and Problem Viewer provide simple
graphical components to guide the user in writing and executing transformations.

The Model: This section shows the model design used in MOFScript. It is used to generate
the EMF model representation of MOFScript, which in turn is utilized by the parser (which
produces instances of it) and the Execution Engine. Fig. 2 shows the main MOFScript model
structure.

- The MTTTransformation class represents a MOFScript transformation module. It
has a name, it imports a set of other transformations, it may have parameters, and
variable/constant declarations. Finally, it has a set of transformation rules.

- A TransformationRule represents a rule (or a function) within a MOFScript trans-
formation. A rule owns a set of statements (it is a MTTStatementOwner), and may
have parameters and a return type. Rules define the behaviour of a transformation.

- The MTTImport class represents the import of external transformations for a trans-
formation module (MTTTransformation). It is represented by a name and a URI.

- The VariableDeclaration class represents variable or constants (properties) for a
module (or for statement owners. It has a name, a type, a constant flag and a cal-
culatedValue property (to store the value of simple variables). Basic OCL variable
types are supported (String, Boolean, Real, Integer), as well as List and Hashtable
types.

A transformation rule consists of different kinds of statements that define the opera-
tional logic of the rule:

- The PrintStatement class represents printing to a file or to standard output. Print
statements produce output towards either the current output device or an explicit
prefixed output device. A special syntactic kind of print statement is escape state-
ments, which provide direct output without a print/println command. A print /
println statement without prefix will produce output to the current output device.
The same will an escaped output statement do.

- The ResultAssignment represents the assignment of a value to the result of a rule.

 Toward Standardised Model to Text Transformations 247

- The IteratorStatement represents a loop that iterates on a collection of elements
(typically a collection of model elements in a source model). For each element in
the collection, a set (a block) of statements is executed.

- The IfStatement represents a normal if statement with a condition. It may have an
else branch.

- The GeneralAssignment represents an assignment of a value to a variable
- The FunctionCallStatement represents an explicit call to a rule.
- The FileStatement represents the declaration of an output file context, which can

be used to print output with print statements.

MTTImport

VariableDeclaration MTTStatementOwner

0..*

+variables

0..*

MTTStatement

0..*0..*+statements

MTTTransformation

name : String

0..*

+variables

0..*

0..*
+constants
0..*

0..*

+imports

0..*

TransformationRule

isEntryPoint : boolean
name : String
return : String

0..1

+extends

0..1

MTTParameter

0..*

+parameters

0..*

0..1+context 0..1

0..*0..*

+parameters

Fig. 2. MOFScript model structure

The User Interface: The MOFScript tool UI is provided through Eclipse editor func-
tionality. It encompasses, as depicted in Fig. 1, a lexical editor, an outline viewer, a
configuration manager, and a problem viewer. The lexical editor provides syntax
high-lighting and useful code completion associated with the currently active meta-
models.

4.3 Change Management

Change management is a highly pertinent issue for model to text generation and in-
volves several aspects, such as management of manual changes to generated code,
management of changes to source models, handling reverse engineering and model
synchronization, tracing mode information to generated code, and round-trip engi-
neering.

MOFScript does not specify any language-specific mechanisms to support trace-
ability, but a metamodel has been defined to potentially manage the traces from a
source model to target files.

248 J. Oldevik et al.

TraceabilityModel

id : String
name : String
description : String
creationDate : String
sourceModelURI : String

ModelE lement
(from EMOF)1

+sourceModel

1

ModelProperty

propertyName : String
propertyValue : String

Trace

tracingDescription : String
sourceReference : String

0..*

+t races

0..*

1+originatingElement 1

1

+propertyReference

1

File

fileUri : String
fileGenDate : String

0..*+targetFi les 0..*

FileLocation

offset : Integer
length : Integer1

+location

1

Fig. 3. Model to Text Traceability Model

Traces in this model are managed per model element of the source model. For each
(relevant) model element, links are managed to files and file locations within those
files that reference the model element.

Source model changes: Changes to source models are only an issue if the already
generated text/code has been manually modified, and not yet synchronized with the
model. In this case, traceability information can be used to synchronize modified text
with newly generated.

Traceability of model information in generated code: In order to support manual
changes in generated files, a kind of traceability mechanism that associates generated
text with model elements must be in place.

A commonly used solution for handling this is to provide tags in the generated
code, which establishes the relationship with a part of the text (such as a property or a
method) with a model element. This kind of scheme will define a set of relationships
between the generated text and the model. These kinds of tags are however dependant
of the target language, so they cannot be standardized. The MOFScript language must
offer a flexible, user-defined tag mechanism, which can be used as delimiters in the
generation (typically, these are embedded as part of comments, Javadoc or similar).

Another solution is to manage traceability information in a separate model, refer-
encing the source model and the generated text files.

4.4 Evaluation of MOFScript

MOFScript supports the basic requirements described in the OMG RFP, i.e. it is ca-
pable of generating text based on MOF M2 metamodel specifications, it supports
manipulation of strings, it can generate files, etc.

This section looks at the additional requirements and assesses how MOFScript
meets those requirements.

1. Structuring: Structuring is supported through definition, composition, and invoca-
tion of transformation rules. A transformation can import other transformations,
and a rule can invoke other rules in a structured manner.

 Toward Standardised Model to Text Transformations 249

2. Control mechanisms: Control mechanisms are provided by supporting iteration
over model collections as well as for conditional processing (if-statements).

3. Mix code and clear text: Code, clear text output, model references and other ex-
pressions can easily be combined in print and escaped print statements.

4. System services: MOFScript provides the ability to interact with a limited set of
system services, based on what is considered most useful. This is open for future
extensions.

5. Ease-of-use: The MOFScript language was originally designed to have a look and
feel similar to existing programming languages. It then migrated toward the look
and feel of the QVT textual concrete syntax in order to establish the compatibility
at that level.

6. Expressiveness: The expressiveness of MOFScript is kept on an as-simple-as-
possible level and defined on a need-to-have basis. Its resulting concrete syntax is
therefore quite simple, yet expressive enough to handle complex model to text
transformation tasks.

The current MOFScript tool[8] realisation implements all aspects of the language
described here, except for guards on transformation rules and change management
functionality.

5 Related Work

The most relevant work in this context is the alternative languages submitted to the
OMG MOF Model to Text RFP process in three other proposals.

Basically, all the proposals meet the general requirements of the RFP. This chapter
will describe the proposals and discuss their positions concerning the additional re-
quirements identified in this paper.

5.1 MOF2Text Partners and the Template Language Specification (TPL)

The MOF2Text partners consist of Mentor Graphics, Pathfinder Solutions, and Com-
puware Corporation. Their submission [9] presents an imperative approach which also
focuses on aspect-oriented concepts. The concrete language is called Template Lan-
guage Specification (TPL). TPL defines Patterns, which are basic structuring mecha-
nisms, similar to modules. They can extend and import other patterns or block librar-
ies. It defines Methods as invokable units, which are evaluated in the context of an
active output buffer. Methods have parameters, and seem to be defined without any
particular metamodel context. A special kind of parameter is a Literal Parameter,
which allows for sending complex literal expressions as parameters (these may have
parameters themselves). File statements declare active output buffers. The language
provides basic control statements in terms of ‘if’-statements and ‘for’-statements, and
variable assignment in terms of ‘let’-statements.

This submission focuses heavily on the use of aspects as a central mechanism.
These are defined within the metamodel, but are not so visible in the concrete syntax.

250 J. Oldevik et al.

The listing below gives a brief overview of how this submission meets the identified
additional requirements.

1. Structuring: Structuring is supported in terms of Patterns and Methods. In addition,

the concept flexible literal parameter, allows for complex parameters to be passed
to methods.

2. Control mechanisms: Control mechanisms are provided in terms of for-statements
and if-statements.

3. Mix code and clear text: Clear text can be combined with model expressions to
produce output.

4. System services: The MOF2Text submission defines a set of operations for string
and buffer manipulation. It also defines the notation of context operations, which
support the notion of functions on well-known objects (e.g. introspection). Addi-
tional environment operations are not mentioned.

5. Ease-of-use: TPL uses a tagged-based syntax, with square brackets that defines
keyword tags in an XML-like manner: CREATE SCHEMA [SCHEMANAME(schema)/];
The MOF2Text metamodel is aligned with MOF and OCL, but does not seem to
consider the QVT metamodel. The concrete syntax (TPL) is not aligned with QVT.
It appears to be less than easy-to-use.

6. Expressiveness: The TPL concrete language provides a tag-based syntax, providing
advanced template-like substitution mechanism with the literal parameters. There
is however discrepancies between the concrete syntax and the metamodel de-
scribed, e.g. in lack of aspect support. The language seems to provide a high degree
of expressive power.

5.2 Interactive Objects (IO)

The IO submission [10] presents a declarative approach with a two-phase transforma-
tion strategy. The first phase is the calculation of a target text model based on trans-
formation rules. The second phase is the serialization of text from this model. The
submission defines a range of special structuring concepts: Artifact, Section, and Slot
define the things to generate. In practice, artefacts represent files. Sections represent
(method-like) parts of those artifacts. Slots are properties of an artifact, which are
assigned at runtime. An artifact defines parameters (typically with types from the
source metamodel) similar to an operation. A Section defines a kind of method which
is used by an artifact. It always returns a sequence of its respective type. Pool parame-
ters represent references to collections of objects (typically from the source model),
assigned using an OCL expression. The concept Record is used to define functions
that cannot produce output text. These are used to group construction of multiple
artifacts. The concept Transformation defines an entry point for a transformation,
relates to the source metamodels, and invokes artifact sections. The actual text pro-
duction is performed by templates linked with artifacts and sections. These are de-
fined externally (in separate template files) and provide output text combined with
usage of section and artifact slots (properties).

The listing below gives a brief overview of how this submission meets the identi-
fied requirements.

 Toward Standardised Model to Text Transformations 251

1. Structuring: The IO language defines a particular kind of language to structure text
transformations, controlled by artifacts, sections and slots. These effectively repre-
sent model elements of a text/file model, which in turn is used to generate text us-
ing text templates.

2. Control mechanisms: Control mechanisms are implicit in matching mechanisms of
templates. No explicit mechanisms seem to be defined.

3. Mix code and clear text: Code and text output are combined within template files.
4. System services: The IO language does not specify any ability to interact with sys-

tem services.
5. Ease-of-use: The IO language seems designed to match the artifact metaphor used

in IO‘s tool (ArcStyler). This gives it a distinct structure and style to match the IO
graphical transformation structure. It does not seem to reuse any part of the QVT
metamodel or syntax. It does, however, reuse OCL for expressions. The language
architecture may cater for a high learning curve, but may also be easy to use when
first learned.

6. Expressiveness: The IO language proposes a declaratively tuned language, where
artifact structure is defined independently of template files. Although defining a lot
of specialised concepts, it the approach seems flexible and providing for sufficient
capabilities.

5.3 Tata Consultancy Services (TCS)

The TCS submission [11] defines an imperative approach based on templates rules.
Template rules can be structured into modules. A template rule consists of output text
(clear text) in combination with control logic (such as for loops) and metamodel ref-
erences. Other template rules are invoked explicitly. Template rules may have guards
and may override other template rules. A module can extend other modules. Concep-
tually, the TCS submission seems similar to MOFScript, although different in look
and feel.

The listing below gives a brief overview of how this submission meets the identi-
fied requirements.

1. Structuring: Structuring is provided in terms of modules that can import other

modules, and rules that can invoke other rules.
2. Control mechanism: Control mechanisms are provided in terms of for-loops and

guards on rules.
3. Mix code and clear text: Output combines clear text with model reference expres-

sions.
4. System services: The TCS language specifies a library for string manipulation and

setting current output file. It does not provide other means of system library inter-
action.

5. Ease-of-use: The TCS language defines a quite simple syntax that combines tem-
plate code with clear text output, similar to a scripting language. The TCS lan-
guage reuses MOF and OCL concepts, but does not seem to relate to QVT. It ap-
pears to be as an easy-to-use language.

6. Expressiveness: The TCS language is based on simple principles of templates
providing output and calling other templates. It seems to have necessary expres-
siveness to support complex text transformations.

252 J. Oldevik et al.

5.4 Summary

Based on this comparison we can learn that it is not that easy to differentiate the con-
cepts in the different submissions. Although different in the flavour of concrete lan-
guage, the conceptual differences are not that big. Clearly, concepts such as the as-
pect-oriented focus of the MOF2Text proposal are clearly distinct. The two-phase
transformation focus of the IO proposal appears conceptually distinct in its more
declarative approach, as well as the separation between structure and output tem-
plates. The TCS proposal is conceptually very close to what is proposed in MOF-
Script with most distinctions at the concrete syntactical level.

6 Summary and Conclusion

This paper has described the MOFScript language and tool with evaluation against a
set of criteria that we see as important for a model to text transformation language
standard. These criteria are used also to evaluate the other proposals for the MOF
OMG Model to Text transformation RFP.

The MOFScript language and tool allow a user to define model to text transforma-
tions from instances of arbitrary metamodels. The language has party based on the
definitions from the current QVTMerge specifications, thus keeping the family of
transformation languages as similar as possible.

The implementation of the MOFScript tool as an Eclipse plug-in allows for its us-
age as part of a MDD workbench that can include modelling tools, model to model
transformations and model to text transformations in addition to the standard pro-
gramming environment. We believe that it is necessary to have the model to text
transformation tool (at least the execution part) as a tightly integrated part of the
MDD tool chain or workbench. Otherwise the number of tool changes needed to
complete a full MDD iteration will become too large, causing developers to loose
focus through the context changes. This need should of course be balanced with the
important issue of choosing the best tool for the task.

Currently the MOFScript tool and language are being used in pilot projects within
the MODELWARE* project in order to assess the ideas and to provide feedback and
input to the further development. Early feedback indicates that some of the QVT like
syntax is somewhat unfamiliar to the developers.

From the current status of OMG submissions, it is not easy to see exactly which di-
rection the standard for model to text transformation is headed. A standard needs to
accommodate several requirements, but most importantly, it needs to be usable and
used. Time will show if the involved parties are capable of arriving of a best-of-breed
integration that will be able to meet this requirement.

Acknowledgment. The work presented here has been carried out within the
MODELWARE project (IST Project 511731)*.

* MODELWARE is a project co-funded by the European Commission under the "Information

Society Technologies" Sixth Framework Programme (2002-2006). Information included in this
document reflects only the author’s views. The European Community is not liable for any use
that may be made of the information contained herein.

 Toward Standardised Model to Text Transformations 253

References

1. Meta Object Facility 2.0, MOF 2.0 Core Final Adopted Specification, OMG document
ptc/03-10-04

2. MOF 2.0 Query / Views / Transformations RFP, OMG document ad/2002-04-10
3. QVT-Merge Group, Revised submission for MOF 2.0 Query/Views/Transformations RFP

version 2.0, OMG document id ad/2005-03-02, http://www.omg.org/cgi-
bin/apps/doc?ad/05-03-02.pdf

4. MOF Model to Text Transformation Language RFP, OMG document ad/04-04-07,
http://www.omg.org/cgi-bin/apps/doc?ad/04-04-07.pdf

5. MOFScript Revised Submission to the MOF Model to Text Transformation RFP , OMG
document ad/05-05-04, http://www.omg.org/cgi-bin/apps/doc?ad/05-05-04.pdf

6. J. Oldevik, T. Neple, “Model Abstraction versus Model to Text Transformation”, position
paper at European Workshop on MDA (EWMDA)

7. ANTLR, ANother Tool for Language Recognition, http://www.antlr.org/
8. MOFScript Eclipse plug-in, http://www.modelbased.net/mofscript
9. MOF2Text Partners Revised Submission for MOF Model to Text Transformation Lan-

guage RFP, OMG document ad/2005-05-14, http://www.omg.org/cgi-bin/apps/doc?ad/05-
05-14.pdf

10. Interactive Objects MOF Model-To-Text Transformation Language RFP – First Revised
Submission, OMG document

11. Tata Consultancy Services, Submission for MOF Model to Text Transformation Lan-
guage, OMG document ad/2005-05-15, http://www.omg.org/cgi-bin/apps/doc?ad/05-05-
15.pdf

12. UML 2.0 OCL Specification (OCL 2.0), OMG Document ptc/03-10-14

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 254 – 268, 2005.
© Springer-Verlag Berlin Heidelberg 2005

On Relationships Between Query Models

Dominik Stein, Stefan Hanenberg, and Rainer Unland

University of Duisburg-Essen, Essen, Germany
{dstein, shanenbe, unlandR}@cs.uni-essen.de

Abstract. Queries on software artifacts play an important role in novel software
development approaches, such as Aspect-Oriented Software Development and
OMG's Model Driven Architecture. Keeping them separate from the
modifications operating on them has proven to be beneficial with respect to
their comprehensibility and their reusability. In this paper we describe what
relationships can exist between such stand-alone queries. These relationships
allow the combination of existing queries to form new ones, enabling
developers to come up with abstractions for common selection patterns.

1 Introduction

Queries are an essential software artifact in modern software development techniques,
such as Aspect-Oriented Software Development (AOSD) [12] and OMG's Model-
Driven Architecture (MDA) [18]. Experiences gained in AOSD have shown that
dealing with queries as first-class entities (i.e., as autonomous entities that can exist
without further reference to any other entities) helps to understand and reason about
the purpose and the effects of aspect-oriented adaptations, and improves the
reusability of aspect-oriented code [9] [8]. From these experiences we anticipate that
the same benefits will be brought forth to MDA if model queries are handled as
autonomous artifacts. However, to actually achieve these benefits, developers require
appropriate means to relate two (or more) queries to each other, so that to combine
two queries to form a new one (for example).

In this paper, we present a set of binary relationships that can be established
between two query models. With help of these relationships, developers can compose
new queries from existing ones. Furthermore, the relationships help developers to
reason on the semantic dependencies between queries; thus, providing developers
with the means to identify recurring "selection patterns" that they may abstract from
for future use.

The remainder of this paper is structured as follows: First of all (section 2), we
give a brief overview of «Join Point Designation Diagrams» [23], the model query
notation used throughout this paper, and introduce the running example for the
motivation section. After that, we discuss why and what relationships between
query models are needed and beneficial (section 3). Then we give a general
description of the relationships that may exist between query models, and detail
their semantics, giving a supplementary example (section 4 and 5). After
elucidating related work in section 6, we conclude the paper with a summary and a
short discussion in section 7.

 On Relationships Between Query Models 255

2 Overview to JPDDs and to the Motivating Example

«Join Point Designation Diagrams» (JPDDs) have been introduced in [23] and [22] as
a notation to specify query models. The notation is based on Unified Modeling
Language (UML) [20] user-model symbols, and provides means to specify lexical
constraints on element names (in terms of name and signature patterns) as well as on
the structural context and/or the behavioral context those elements reside in (e.g. the
(non-)containment of features in classes and of classes in packages; or the
(non-)existence of paths between classes (or objects) in the class (or object) hierarchy
and between messages in the call graph, etc.). Fig. 1 gives a graphical overview to the
most important symbols, which may be arranged in analogy to standard UML
symbols as stated in the UML specification [20].

Apart from selection constraints, JPDDs may specify those elements that are to be
exposed for further adaptations (e.g. for model transformations). These elements are
given identifiers, which are prepended by a question mark (?) and entangled in angle

<?c> * : Con*

{not} att1 : String
att2 : Integer [2!..100]

set*(val : *)
get*() : *
run(val1 : Integer, ..,

 vali : Real, ..,
 valn : String)

 Operations

 Attributes

class name pattern

expected features

multiplicity range
restriction

exact multiplicity
restriction

signature patterns

boolean restriction

identifier

D

{not}

explicit multiplicity restriction

C

A

*!

boolean restriction

AC

D

B

association name pattern

PII

[0..*]

A

C

PI

C {not}

C
existence of path along
generalization relationships

boolean restriction

C

[0..*]

existence of path
along call graph

someOp*(..)

CII
signature pattern

op2()

activated control flow

someOp*(..)
op1()

CI

activating control flow

Classifier Constraints

Association Constraints

Generalization Constraints

Message Constraints

existence of path
along associations

C

AC

[0..*]
A

 SomePackage

*

package containment

Package Constraints

association role
name pattern

aRole

object name pattern

Fig. 1. Specifying selection constraints with «Join Point Designation Diagrams» (cf. [23])

256 D. Stein, S. Hanenberg, and R. Unland

brackets (< >), and which are listed in a parameter box in the lower right corner of the
JPDD.

In the following section, multiple sample JPDDs will be given and explained in
further detail (see Fig. 2, Fig. 3, Fig. 5, and Fig. 6). These JPDDs are used to represent
a pointcut as it is used to implement the decorator design pattern [7] with AspectJ
[14]. The example is adopted from [15]; its goal is to monitor the progress of reading
some input stream. To do so, it hooks onto method read of any InputStream
object, and ties the monitoring dialog to a GUI component – in this case, a
JComponent object from the javax.swing package.

3 Motivation

Relationships between query models are needed for the following reasons: First of all,
they are necessary to concatenate selection constraints that are rendered by different
diagrams and/or different notations. In Fig. 2, for example, the object diagram on the
left outlines the structural selection constraints of a query (select all objects <?is> of
(sub)type InputStream), while the interaction diagram on the right renders the
behavioral selection constraints (select all method invocations <?jp> to operations
named "read" (of objects being (sub)type of InputStream), taking an arbitrary
number of parameters (..), and returning one parameter of type int). Usage of
relationships in this way permits the representation of each selection constraint in its
most appropriate manner. For example, control flow-based constraints can be
represented in terms of interaction diagrams; state-based constraints can be
represented using state chart notation; and data flow-based constraints can be
represented with help of activity diagrams; etc. In the context of MDA, these
relationships allow each part of a query to be specified in terms of the diagram and/or
notation which it is eventually going to be applied to.

Apart from that, relationships enable developers to come up with abstractions over
recurring selection patterns, thus facilitating their comprehension and allowing their
reuse in different settings. For example consider Fig. 3, which visualizes an
application of the prominent "wormhole selection pattern" [14] as it is regularly used
in AOSD. The wormhole selection pattern in AOSD is used to perform adaptations on
the behavior of programs which make use of context information from an earlier step
in the execution process. The wormhole shown in Fig. 3, for example, selects all

<?jp>: read(..) : int

* : * <?is>* : *

 ?jp

behavioral_constraint

 ?is

structural_constraint

* : InputStream

<?is>* : *

[0..*] «confine»

Fig. 2. Concatenating selection constraints of different nature (e.g. structural and behavioral
selection constraints, in this case)

 On Relationships Between Query Models 257

method invocations (<?jp>*(..) : *) that occur in the control flow () of any
(other) method (*(..) : *) invoked on an object of (sub)type JComponent (as
defined in package javax.swing); the receiver object of the latter is exposed by
the query model for further adaptations, or for use by another query model. Factoring
out the wormhole selection semantics into a separate query (and giving it an
appropriate name) helps developers to recognize the intention as well as the effects of
the query more easily1. Furthermore, the same wormhole can now be reused by
multiple (other) queries.

We expect to see many selection patterns like that to arise in the MDA context.
Over time, developers are going to recognize that they are using similar selection
patterns over and over again. They are going to find suitable idioms for those
selection patterns, and we anticipate them to ask for suitable means to abstract over
those patterns and to reuse them in most different contexts. The wormhole pattern
described above is one example of such recurring selection patterns. It is used to
reason about the entities that have participated in (e.g. initiate) a certain task, and to
select them for future adaptation (i.e. transformation). Another interesting example is
concerned with the reasoning on and selection of recurring method calls; this will be
considered in the subsequent chapter 4 in subsection 4.5.

1 It may be advisable to abbreviate the (explicit) relationships to the structural selection

constraints using the (implicit) short hand described in section 4.3 (see Fig. 5), in this case.
That way, we have to deal with just two rather than four JPDDs.

* (..) : *

* : * <?c>* : * * : *

<?jp>: * (..) : *

* : *

 ?jp
 ?c

aWormholeSelectionPattern

[0..*]

<?jp>: read(..) : int

* : * <?is>* : *

 ?jp
 ?c

behavioral_constraint

 ?is

structural_constraint

* : InputStream

<?is>* : *

[0..*]

 ?c

structural_constraint2

* : JComponent

<?c>* : *

[0..*]

javax.swing

«confine»

«confine»

«confine»

Fig. 3. Grouping selection constraints according to intention and effects, and finding abstract-
ions for common selection patterns to facilitate comprehension and enhance reusability

258 D. Stein, S. Hanenberg, and R. Unland

4 Relationships

Having elucidated necessity and benefits of query model relationships, we now take
a closer look at the nature of these relationships and define them more rigorously.
We introduce three kinds of relationship: «union», «confinement», and «exclusion».
These relationships combine the selection criteria of one query model with the
selection criteria of another query model; however, every time in a different
manner.

In the following, we refer to the including query model (e.g. JPDD_D in Fig. 4) as
the "client" query model, and to the included query model (e.g. JPDD_A, JPDD_B,
or JPDD_C in Fig. 4) as the "supplier" query model (in compliance to common UML
parlance).

4.1 Mapping Rules

All combination relationships can be annotated with mapping rules indicating what
identifiers from the including (client) query model are matched to what identifiers
from the included (supplier) query model for unification purposes. Mapping rules are
enclosed in curly braces ({ }) and are prepended by a lower-case Rho "ρ" in the
following manner "ρ{clientid=supplierid}" (see Fig. 4 for an example). In
case no explicit mapping rules are given, correspondence is assumed for all identifiers
of same name. If explicit mapping rules are given, though, any identifier from
included (supplier) query model and/or the including (client) query model not being
mentioned in the mapping rules is considered irrelevant for the union, confinement, or
exclusion, respectively.

Mappings may only be established between identifiers referring to the same type of
element (i.e. classes, objects, attributes, operations, parameters, stimuli, etc.).
Furthermore, mapping rules may only be specified for identifiers of the included
(supplier) query model if they are exposed in the query model's parameter box. Any
other identifier specified inside the included query model is not accessible from
outside the query model. In contrast to this, identifiers specified inside the including
(client) query model may be involved in mapping rules. This is because the inclusion
is assumed to happen in the namespace of the including query model (the including

∪

JPDD_D

 ?jpd

JPDD_A

 ?jpa

JPDD_B

 ?jpb

JPDD_C

 ?pjc

ρ{?jpd = ?jpa}

\

ρ{?jpd = ?jpb}

ρ{?jpd = ?jpc}

∩

Fig. 4. Graphical representation of combination relationships between query models

 On Relationships Between Query Models 259

query model is "calling for" the inclusion). Consequently, the identifiers of the
including query model are deemed to be visible.

It remains to note that if a JPDD calls for multiple unions, confinements, and
exclusions at the same time, combining is accomplished in the following order "1. all
unions – 2. all confinements – 3. all exclusions". Any other combination order needs
to be explicitly modeled using an execution tree.

4.2 Union

The first kind of relationship considers the selection criteria of the included (supplier)
query model to be alternative selection criteria that extend those given in the
including (client) query model. Consequently, the elements being designated by the
including (client) query model are complemented with those being designated by the
included (supplier) query model. Basically, this lead to a union of the designation
results of both query models. Therefore, we use a union symbol "∪" to symbolize this
kind of relationship (see Fig. 4 for an example). In union relationships, mapping rules
must be specified at least for all identifiers contained in the parameter box of the
including (client) query model so that no element may be left unspecified in any tuple
of the final designation result.

4.3 Confinement

The second kind of relationship looks at the selection criteria of the included
(supplier) query model as additional restrictions that confine the selection criteria of
the including (client) query model. Confinement is accomplished using mapping rules
which are attached to the relationship and that indicate what identifier from the

* (..) : *

* : * <?c>* : * * : *

<?jp>: * (..) : *

* : *

 ?jp
 ?c

aWormholeSelectionPattern

[0..*]

* : JComponent

<?c>* : *

[0..*]

javax.swing

<?jp>: read(..) : int

* : * <?is>* : *

 ?jp
 ?c

joined_structural_and_behavioral_constraints

* : InputStream

<?is>* : *

[0..*]

ρ{?jp = ?jp,
 ?c = ?c}

∩

Fig. 5. Shorthand for concatenating selection constraints of different nature using a dotted line

260 D. Stein, S. Hanenberg, and R. Unland

including (client) query model confines what identifier from the included (supplier)
query model. In consequence, the designation result of the including (client) query
model is diminished to those tuples only that have a corresponding tuple in the
designation result of the included (supplier) query model. We use an intersection
symbol "∩" to indicate this kind of relationship (see Fig. 4 for an example).

As a short hand, confinement relationships can be abbreviated in a single query
model by means of a dotted line. This is particularly useful when selection constraints
of different nature (e.g. structural and behavioral selection constraints) are to be
confined, and no distinct representation of either (or both) selection constraint(s)
seems befitting. For example, Fig. 5 demonstrates how the structural and behavioral
selection constraints from Fig. 3 (see section 3) can be merged into two rather than
four query models. Further merging (e.g. in order to get one single all-inclusive query
model) would be possible. Doing so, however, would obstruct the easy recognition of
the application of the wormhole selection pattern in the query model.

4.4 Exclusion

The third kind of relationship regards the selection criteria of the included (supplier)
query model to be exclusion constraints, which means that all tuples designated by
the including (client) query model are excluded from its designation result if there is a
corresponding tuple in the designation result of the included (supplier) query model.
Again, correspondence between tuples is established by means of mapping rules that
specify what identifier from the including (client) query model matches with what
identifier from the included (supplier) query model. We use the difference symbol "\"
to designate this kind of relationship (see Fig. 4 for an example).

4.5 Example

Having introduced the different combination relationships in detail, we now want to
demonstrate their usage and their different effects with help of a small example.

Fig. 6 shows two query models, one of which is already well known from the
previous examples (the bottom one). The other (top) one represents a general
abstraction over recurring method calls: It selects two messages <?jp1> and
<?jp2>, which both are sent to the same object <?obj>, and which both invoke
methods with the (same) signature <?sig>. Message <?jp1> is "chained" to
message <?jp2> with help of an indirect message symbol, which designates that
message <?jp2> occurs in the control flow of message <?jp1>. Assuming that an
object does not have two methods with the same signature, this query model selects
all (equivalent) recurrences of a given message in its own control flow. This selection
pattern is often needed to ensure that a given adaptation (or transformation) is applied
only once (e.g. at the first occurrence of a method call) rather than every time the
method is invoked.

The upper (supplier) query model is now included into the lower (client) query
model in three different ways: by means of a confinement relationship, by
means of a exclusion relationship, and by means of a combination of both. The
confinement relationships are annotated with mapping rules stating that message

 On Relationships Between Query Models 261

<?jp> from the lower (client) query model is mapped to message <?jp1> in the
upper (supplier) query model. The exclusion relationships are annotated with mapping
rules stating that message <?jp> from the lower (client) query model is mapped to
message <?jp2> in the upper (supplier) query model. The effects of these
combination relationships are as follows:

In the first case , method calls matching the lower (client) query model are
only selected if there exists an recurring, i.e. an equivalent, method call in their
control flow. As a result, all recursive method calls are selected, but the last. In the
second case , method calls matching the lower (client) query model are selected
only if they do not represent a recurring method call in the control flow of an
equivalent method call. In consequence, only the first method call of a recurring set
of equivalent method calls is selected, as well as any non-recurring method call. In
the third case , the selection semantics of and are combined. As a result, all
method calls representing the first ones in a recurring set of equivalent method calls
are selected (due to the exclusion relationship); unlike to the previous case, though,
selection of non-recurring method calls is not considered (due to the confinement
relationship).

5 Semantics

In this section, the semantics of the relationships (that have been introduced in the
previous section) are specified using the Object Constraint Language (OCL) 2.0 [19].
The OCL is chosen as it has been commonly proposed as the standard query language
for QVT model transformations (cf. [10], [21], [6]).

<?jp1>:
<?sig>* (..) : *

* : * <?obj>
* : *

* : *

<?jp2>:
<?sig>* (..) : *

<?obj>
* : *

 ?jp1
 ?jp2

recurringCalls

[0..*]

<?jp>: read(..) : int

* : * <?is>* : *

 ?jp

joined_structural_and_behavioral_constraints

* : InputStream

<?is>* : *

[0..*]

ρ{?jp = ?jp1} ρ{?jp = ?jp2}ρ{?jp = ?jp1} ρ{?jp = ?jp2}∩ ∩

Fig. 6. Different usages of combination relationships

262 D. Stein, S. Hanenberg, and R. Unland

5.1 General OCL Semantics

Using the Object Constraint Language (OCL), the combination relationship can be
defined more rigorously. To do so, we assume that each query model selects a set of
model elements – i.e. those model elements that are given an identifier in the query
model – from a given user-model. The model elements are returned as a set of tuples,
while each tuple represents a distinct combination of model elements (from the given
user-model) that satisfies the selection criteria outlined in the query model. In Table 1,
these sets are rendered by QueryA_identifierResultSet and QueryB_identifier-
ResultSet. The operations take one parameter (someModel) that is the user-model
which is to be queried.

From all model elements in the query model that are given an identifier, only a
projection is exposed for further processing. These model elements (i.e. their
identifiers) are listed in the query model's parameter box. Again, the model elements
are returned as a set of tuples. In Table 1, these set operations are exemplified by
QueryB_parameterResultSet. And again, the operations take one parameter
(someModel) identifying the user-model that is to be queried.

Available to a «union», «exclusion», or «confinement» combination relationship
are (a) all identified model elements of the including (client) query model (i.e.
QueryA_identifierResultSet in Table 1, subsequently referred to as T1)2, as well as
(b) only the exposed model elements of the included (supplier) query model (i.e.

Table 1. OCL semantics of combination relationships

-- identifier result sets
let QueryA_identifierResultSet(someModel : Namespace) :
 Set(TupleType(idA1 : idTypeA1, ..., idAi : idTypeAi, ..., idAk : idTypeAk, ..., idAn : idTypeAn)) = ...
let QueryB_identifierResultSet(someModel : Namespace) :
 Set(TupleType(idB1 : idTypeB1, ..., idBj : idTypeBj, ..., idBl : idTypeBl, ..., idBm : idTypeBm)) = ...
-- exposed result set
let QueryB_parameterResultSet(someModel : Namespace) :
 Set(TupleType(parB1 : parTypeB1, ..., parBr : parTypeBr, ..., parBs : parTypeBs)) =
 QueryB_identifierResultSet(someModel)->collect(tup |
 Tuple{parB1 = tup.idB1, ..., parBr = tup.idBj, ..., parBs = tup.idBm})
-- result sets to be combined
let T1(..) = QueryA_identifierResultSet(..)
let T2(..) = QueryB_parameterResultSet(..)

-- set of tuple type labels in T1 and T2 having identical names (cf. [3])
let D = p.first.allAttributes->intersection(p.second.allAttributes)
-- set of joinable tuples from T1 T2
let X(..) = T1(..)->product(T2(..))->select(p | D->forAll(d | p.first.d = p.second.d))

-- union
T1(..)->union(T2(..))
-- confinement
T1(..)->select(q | X(..)->exists(p | p.first = q))
-- exclusion
T1(..)->reject(q | X(..)->exists(p | p.first = q))

 On Relationships Between Query Models 263

QueryB_parameterResultSet in Table 1, subsequently referred to as T2)2 (cf.
Mapping Rules section).

In case of a union, the set of tuples T1 and T2 are unified using the OCL core
operation union (see Table 1).

In case of a confinement, all pairs of tuples from T1 and T2 that comply to each
other in all of their attributes having the same name (referred to as D in Table 1) are
collected from the Cartesian product of T1 and T2 (following the approach of [3] to
compute a relational join). These pairs of tuples (referred to as X in Table 1)2 are then
used to diminish the set of tuples T1 to those that are also part of X.

In case of an exclusion, initial proceeding is the same as in case of a confinement.
Afterwards, though, the set of tuples T1 is diminished to those tuples that are not part
of X (see Table 1).

Note that the semantics of both confinement and exclusion relationships are
defined such that they allow the combination of query models whose result sets are
different in structure (i.e. that comprise different – that is, only partially overlapping –
sets of attributes). Note further that in the OCL code (see Table 1) we abstract from
the mapping rules. Mapping, i.e. renaming of and projection to relevant identifiers in
T1 and T2, cannot expressed trivially – and in a general way (!) – in the OCL (cf. [3],
[4]). Hence, this can only be done manually for a particular combination relationship
(as it will be demonstrated in the following).

5.2 A Concrete Example

After describing the general OCL semantics of the combination relationships in
Table 1, we now take a look at their actual implications to a concrete example. We do
so by revisiting the example from section 4.5.

First of all, we need to specify the relevant result sets of the query models, i.e. the
identifier result set of the including query model as well as the parameter result set of
the included query model (see above). Table 2 exemplifies how this is accomplished
for query model recurringCalls3 – referred to as QueryB in Table 2 (the specification
of the result set of query model joined_structural_and_behavioral_constraints
– referred to as QueryA in Table 2 – is omitted here for space reasons): The OCL
code4 starts out with collecting all possible combinations of model elements from the
user-model being passed (someModel) that are of same type as the identifier model
elements in the query model. In this example, the result set therefore contains all
combinations of two stimuli model elements (stim1 and stim2), one instance model
element (inst), and one operation model element (sig) that can be found in the user-
model. Then, in a second step, this result set is reduced to only those combinations
that consist of elements complying to the selection criteria specified in the query
model. This evaluation is accomplished by special matchModelElement operations,

2 Note that we abstract from parameter someModel of the result sets T1, T2, and X in the

subsequent text and in Table 1.
3 The approach has been inspired by the OCL code in [13].
4 We used OCLE 2.02 (http://lci.cs.ubbcluj.ro/ocle) to syntax and type check the OCL code.

Note that we abstract from any type cast (oclAsType) in the code shown.

264 D. Stein, S. Hanenberg, and R. Unland

Table 2. Applying the OCL semantics to the example

-- identifier result sets
let QueryA_identifierResultSet(someModel : Namespace) :
 Set(TupleType(stimulus : Stimulus, instance: Instance)) = [...]

let QueryB_identifierResultSet(someModel : Namespace) : Set(TupleType(stimulus1 : Stimulus,
stimulus2 : Stimulus, instance : Instance, signature : Operation)) =
-- create Cartesian product of all stimuli, instances, and signatures in someModel
someModel.allContents->select(me | me.oclIsKindOf(Stimulus))->collect(stim1 |
 someModel.allContents->select(me | me.oclIsKindOf(Stimulus))->collect(stim2 |
 someModel.allContents->select(me | me.oclIsKindOf(Instance))->collect(inst |
 someModel.allContents->select(me | me.oclIsKindOf(Operation))->collect(sig |
 Tuple {
 stimulus1 : Stimulus = stim1,
 stimulus2 : Stimulus = stim2,
 instance : Instance = inst,
 signature : Operation = sig
 }))))
-- select those tuples that match the selection criteria specified in the query model...
->select(tup | tup.stimulus1.matchesStimulus(self.allContents->any(me | me.name="jp1"))
 and tup.stimulus2.matchesStimulus(self.allContents->any(me | me.name="jp2"))
 and tup.instance.matchesInstance(self.allContents->any(me | me.name="obj"))
 and tup.signature.matchesOperation(self.allContents->any(me | me.name="sig"))
-- ...and whose elements are related to each other as specified in the query model
 and tup.stimulus1.receiver = tup.instance
 and tup.stimulus2.receiver = tup.instance
 and tup.stimulus1.dispatchAction.method.specification = tup.signature
 and tup.stimulus2.dispatchAction.method.specification = tup.signature
 and tup.stimulus2.allActivators()->includes(tup.stimulus1))

-- exposed result set
let QueryB_parameterResultSet(someModel : Namespace) :
 Set(TupleType(stimulus1 : Stimulus, stimulus2 : Stimulus)) =
-- project identifier result set to those elements being exposed by the query model
 QueryB_identifierResultSet(someModel)->collect(tup |
 Tuple{ stimulus1 = tup.stimulus1, stimulus2 = tup.stimulus2 })

-- result sets to be combined
let T1(someModel : Namespace) = QueryA_identifierResultSet(someModel)
let T2(someModel : Namespace) = QueryB_parameterResultSet(someModel)
-- set of joinable tuples from T1 T2 (according to mapping rules outlined in Fig. 6)
let X1(someModel : Namespace) = T1(someModel)->product(T2(someModel))
 ->select(p | p.first.stimulus = p.second.stimulus1)
let X2(someModel : Namespace) = T1(someModel)->product(T2(someModel))
 ->select(p | p.first.stimulus = p.second.stimulus2)

-- confinement ()
let ResultSet_1(someModel : Namespace) = T1(someModel)
 ->select(q | X1(someModel)->exists(p | p.first = q))
-- exclusion ()
let ResultSet_2(someModel : Namespace) = T1(someModel)
 ->reject(q | X2(someModel)->exists(p | p.first = q))
-- simultaneous confinement and exclusion ()
let ResultSet_3(someModel : Namespace) = T1(someModel)
 ->select(q | X1(someModel)->exists(p | p.first = q))
 ->reject(q | X2(someModel)->exists(p | p.first = q))

 On Relationships Between Query Models 265

such as they have been specified in [23] [22]. The operations take as parameter an
identifier model element from the query model (i.e. jp1, jp2, obj, and sig,
respectively5); the parameter is taken as a selection pattern to which the user-model
elements are compared. At last, the OCL code assures that the elements in the
remaining combinations actually relate to each other as specified in the query model
(the evaluation is based on the (meta-)associations between the model elements as
specified in the UML meta-model [20]).

Once we have retrieved the identifier result set of the (included) query model
(QueryB_identifierResultSet), we need to project that result set such that its tuples
only consists of model elements that are actually exposed by the query model.
Therefore, a parameter result set (QueryB_parameterResultSet) is created from the
identifier result set, whose tuples only consist of model elements that are (designated
by the identifier model elements) listed in the parameter box of the query model (i.e.
the stimuli stimulus1 and stimulus2, in this case).

Now we are ready to perform the confinement and the exclusion, respectively. To
do so, two sets X1 and X2 of "joinable tuples" are created – one for each mapping
specification given in the example (see Fig. 6). The sets comprise all pairs of tuples
from QueryA_identifierResultSet (referred to as T1) and QueryB_parameter-
ResultSet (referred to as T2) that are referring to the same model elements in their
attributes being mapped (i.e. in stimulus and stimulus1, as well as in stimulus and
stimulus2, respectively). The sets are then used to filter the identifier result set of the
including query model (QueryA_identifierResultSet, referred to as T1) such that it
consists only of those tuples being part of X1 (resulting into a confinement),
being not part of X2 (resulting into an exclusion), and finally, being part of X1, but
not part of X2 (resulting into a combined confinement and exclusion).

6 Related Work

JPDDs as we have used them in this paper relate to other approaches that provide
visualization means for model queries in the MDA domain. Examples of such
approaches are basically all proposals to specify model transformations, such as
MOLA [11], BOTL [17], or the QVT-Merge submission [21], etc. However, none of
these approaches provide means to reason about model queries in isolation. In
consequence, no abstraction means are provided to segregate recurring selection
patterns, and no relationships are specified to re-use such recurring selection patterns
in different discrete application domain-specific selection queries.

Instead, OCL 2.0 is commonly suggested to serve as a (purely textual) query
language – e.g. for OMG's transformation language QVT (cf. [10], [21], [6]).
Therefore, it is interesting to relate our combination relationships to OCL's proper
capabilities to express and calculate combination of sets of tuples. Several studies [16]
[1] [3] have been conducted in this regard to investigate the expressiveness of OCL
with respect to relational algebra [5], a well-known and well-founded approach to

5 It is assumed that the OCL code is specified in the context of the query model; thus,
self.allContents refers to all model elements contained in QueryB. See [22] for
further information on how identifiers and name patterns are stored in the meta-representation
of model elements.

266 D. Stein, S. Hanenberg, and R. Unland

specify operations on (e.g. combinations of) sets of tuples, originating from the
database domain. In the latest study [3], it has been stated that since the introduction
of tuple types and product types as primitive operators in OCL 2.0, OCL became
much more expressive. But still, projection and renaming of tuple attributes needs to
be done on a per-case basis and cannot be expressed in a general way. When
compared to the mentioned work, it is important to note that our work is not focused
on providing a (relational) complete set of graphical operators that could serve as a
basis for arbitrary computations over sets of tuples (of model elements). Instead, the
goal was to find appropriate abstractions for common combinations of query models
and daily needs in query design.

Nonetheless, the identified combination relationships can be compared to relational
operations, and would correspond to the following expressions: Assuming that sets of
tuples T1 and T2 (see Table 1) designate relations, a union relationship equates to the
following relational operation: T1 ∪ T2. A confinement relationship could be
expressed as a left semi-join between T1 and T2: T1 T2. And finally, an exclusion
relationship equates to T1 – (T1 T2) . A mapping rule serves two purposes: First of
all, it projects the second relation T2 to those attributes that are relevant for the
respective relational operation: πattT2.1, attT2.2, ..., attT2.n T2. Furthermore, it renames the
projected attributes so that their labels comply to the attribute labels of the first
relation T1 (and the relational operation can actually be performed): ρattT1.1 ← attT2.1,

attT1.2 ← attT2.2, ..., attT1.n ← attT2.n
Apart from that, the presented relationships also compare to (and have been

influenced by) the combination operators for join point queries (so-called "pointcuts")
&&, ||, and ! in AspectJ [14], the most popular aspect-oriented programming
language. If two join point queries are combined by means of an AND-operator &&,
the result set contains all join points that are picked out by both queries – which
corresponds to the selection semantics of the confinement relationship. If two join
point queries are combined by means of an OR-operator ||, the result set contains all
join points that are picked out by either query – which equates to the union
relationship. If a join point query is prepended by a NOT-operator !, the join points
designated by that query are dismissed from the selection result. This complies to the
exclusion relationship (that is, to be more exact, the exclusion relationship equates to
a combination of an AND-operator and a NOT-operator in AspectJ, i.e. "&& !").

7 Conclusion

In this paper we elucidated the need of having suitable means to combine query
models. We presented three kinds of combination relationships – «union»,
«confinement», and «exclusion» – and detailed their semantics informally and with
help of OCL 2.0 expressions. We demonstrated the usage and the benefits of these
relationships with help of two common selection patterns.

By means of the presented combination relationships, developers are able to
abstract from recurring selection patterns and to reuse them in different application
contexts. Furthermore, they are able to relate queries pertaining to different modeling
notations or diagrams (e.g. to both structural and behavioral model specifications);
thus, they are able to specify context-sensitive model queries. Of course, in order to

 On Relationships Between Query Models 267

efficiently do so in model transformations, the meta models of the involved modeling
notations must share some common abstractions.

Provided with the combination relationships presented in this paper, abstractions of
recurring selection patterns can be assembled in public libraries (just like abstractions of
common transformations can be assembled in public transformation libraries), ready for
reuse by the model-driven developer. That way, developers are freed from elaborating on
recurring selection semantics again and again (e.g. how to handle recursive method calls;
see section 4.5), each time they are dealing with a new problem.

It remains to mention that our work is not concerned with the actual evaluation of
query combinations. That is, we do not consider how the resulting sets of tuples (of
model elements) are actually extracted from a given user model. In particular, we
currently abstract from problems that may occur due to recursive or circular query
combinations. Such combinations may lead to infinite loops during query evaluation,
or may introduce irresolvable dependencies between the involved query
specifications. It is an interesting field for future research to investigate if such
problems may be detected prior to query execution time and how they could be
possibly resolved automatically based on static query analysis.

References

[1] Akehurst, D., Bordbar, B., On Querying UML Data Models with OCL, in: Proc. of
UML'01, Toronto, Canada, LNCS 2185, Springer, October 2001, pp. 91-103

[2] Aßmann, U., Aksit, M., Rensink, A., Model Driven Architecture (European MDA
Workshops: Foundations and Applications, MDAFA 2003 and MDAFA 2004, Twente,
The Netherlands, June 26-27, 2003 and Linköping, Sweden, June 10-11, 2004; Revised
Selected Papers), LNCS 3599, Springer, June 2004

[3] Balsters, H., Modelling Database Views with Derived Classes in the UML/OCL-
Framework, in: Proc. of UML'03, San Francisco, CA, LNCS 2863, Springer, October
2003, pp. 295-309

[4] Blaha, M., Premerlani, W., Object-Oriented Modeling and Design for Database
Applications, Prentice Hall, Englewood Cliffs, NJ, 1998

[5] Codd, E.F., Relational Completeness of Data Base Sublanguages, in: Rustin, R. (ed.),
Courant Computer Science Symposia, Vol. 6: Database Systems, Prentice Hall,
Englewood Cliffs, NJ, 1972, pp. 65-98

[6] Compuware Corporation, SUN Microsystems, 2nd revised submission for MOF 2.0
Query/Views/Transformations RFP, 11. October 2004 (OMG Document ad/2004-10-03)

[7] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, 1995

[8] Hanenberg, S., Schmidmeier, A., Idioms for Building Software Frameworks in AspectJ,
2nd AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Software
(ACP4IS), Boston, MA, March 17, 2003

[9] Hannemann, J., Kiczales, G., Design pattern implementation in Java and AspectJ, in:
Proc. of OOPSLA'02, Seattle, Washington, SIGPLAN Notices 37(11), ACM, November
2002, pp. 161-173

[10] Interactive Objects Software, Project Technology, 2nd revised Submission for MOF 2.0
Query/Views/Transformations RFP, 12. January 2004 (OMG Document ad/2004-01-
14.pdf)

[11] Kalnins, A., Barzdins, J., Celms, E., Model Transformation Language MOLA, in: [2],
pp. 62-76

268 D. Stein, S. Hanenberg, and R. Unland

[12] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, Chr., Lopes, C.V., Loingtier, J-M.,
Irwin, J.: Aspect-Oriented Programming, in: Proc. of ECOOP '97, Jyväskylä, Finland,
LNCS 1241, Springer, June 1997, pp. 220-242

[13] Kožusznik, J., Dotazování, pohledy a transformace v MDA, in: Proc. of Objekty 2003,
Ostrava, Czech Republic, ISBN 80-248-0274-0, VŠB-Technical University of Ostrava,
November 2003, pp. 120-128

[14] Laddad, R., AspecJ in Action: Practical Aspect-Oriented Programming, Manning
Publications, Greenwich, 2003

[15] Lesiecki, N., Enhance design patterns with AspectJ, Part 1, IBM DeveloperWorks > Java
Technology > AOP@Work (http://www-128.ibm.com/developerworks/java/library/j-
aopwork5)

[16] Mandel, L., Cengarle, M., On the Expressive Power of OCL, in: Proc. of FM'99,
Toulouse, France, LNCS 1708, Springer, September 1999, pp. 854-874

[17] Marschall, F., Braun, P., Model Transformations for the MDA with BOTL, in: Workshop
Proc. of MDAFA 2003, Enschede, The Netherlands, CTIT Technical Report TR-CTIT-
03-27, University of Twente, June 2003, pp. 25-36

[18] OMG, MDA Guide Version 1.0, 2003 (OMG Document omg/2003-05-01)
[19] OMG, OCL 2.0 Final Adopted Specification, 2003 (OMG Document ptc/03-10-14)
[20] OMG, Unified Modeling Language Specification, Version 1.5, 2003 (OMG Document

formal/03-03-01)
[21] QVT-Merge Group, Revised submission for MOF 2.0 Query / Views / Transformations

RFP, 2. March 2005 (OMG Document ad/2005-03-02)
[22] Stein, D., Hanenberg, S., Unland, R., A Graphical Notation to Specify Model Queries for

MDA Transformations on UML Models, in: [2], pp. 77-92
[23] Stein, D., Hanenberg, S., Unland, R., Query Models, in: Proc. of UML'04, Lisbon,

Portugal, LNCS 3273, Springer, October 2004, pp. 98-112

Transformations Between UML and OWL-S

Roy Grønmo1, Michael C. Jaeger2, and Hjørdis Hoff1

1 SINTEF Information and Communication Technology,
P.O.Box 124 Blindern, N-0314 Oslo, Norway

{Roy.Gronmo, Hjordis.Hoff}@sintef.no
2 Technische Universität Berlin, Institute of Telecommunication Systems,

SEK FR6-10, Franklinstrasse 28/29, D-10587 Berlin, Germany
mcj@cs.tu-berlin.de

Abstract. As the number of available Web services increases there is a growing
demand to realize complex business processes by combining and reusing avail-
able Web services. The reuse and combination of services results in a composition
of Web services that may also involve services provided in the Internet. With se-
mantically described Web services, an automated matchmaking of capabilities
can help identify suitable services. To address the need for semantically defined
Web services, OWL-S and WSML have been proposed as competing semantic
Web service languages.

Both proposals are quite low-level and hard to use even for experienced Web
service developers. We propose a UML profile for semantic Web services that
enables the use of high-level graphical models as an integration platform for se-
mantic Web services. The UML profile provides flexibility as it supports multiple
semantic Web service languages. Transformations of both ways between OWL-S
and UML are implemented to show that the UML profile is expressive enough to
support one of the leading semantic Web service languages.

1 Introduction

A growing number of Web services are implemented and made available internally in an
enterprise or externally for other users to invoke. These Web services can be reused and
composed in order to realize larger and more complex business processes. We define
Web services to be services made available by using Internet protocols such as HTTP
and XML-based data formats for their description and invocation. Web service registries
such as UDDI allows for Web services to be published and discovered. A Web service
composition is a description of how Web services can interoperate in order to perform
a larger task.

The Web service proposals for description (WSDL [16]), invocation (SOAP [15])
and composition (BPEL4WS [2]1) that are most commonly used, lack proper semantic
descriptions of services. This makes it hard to search for appropriate services because a
large number of syntactically described services need to be manually interpreted to see
if they can perform the desired task. The requester may also need additional communi-
cation with the provider to determine the suitability of the service.

Semantically described Web services make it possible to improve the precision of
the search for existing services and to automate the composition of services. Two recent

1 BPEL4WS is currently being updated. It will be released in future under the name WS-BPEL.

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 269–283, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

270 R. Grønmo, M.C. Jaeger, and H. Hoff

proposals have gained a lot of attention; The American-based OWL Services (OWL-
S) [4] and the European-based Web Services Modeling Language (WSML2) [17]. These
emerging specifications overlap in some parts and are complementary in other parts.
They are both described by low-level lexical notations. WSML uses its own lexical
notation, while OWL-S is XML-based.

The leading organization for object-oriented programming, the Object Management
Group (OMG), has defined the Unified Modeling Language (UML), a standard graphi-
cal language for expressing system development models. OMG also promotes a Model-
Driven Architecture (MDA) approach for analysis, design and implementation of soft-
ware systems. In a model-driven development process, models are used to describe
business concerns, user requirements, information structures, components and compo-
nent interactions. These models govern the system development because they can be
transformed into executable code.

The work described in this paper adopts the MDA strategy for developing compo-
sitions of semantic Web services. An important question to be addressed in this paper
is: How can the new semantic Web service proposals be utilized within a model-driven
Web service composition methodology? An important part of the main question is to
investigate if UML 2.0 [11] can be used as an integration platform for modeling se-
mantic Web services. This implies the following requirements for the resulting UML
models:

1. Expressiveness. They can contain sufficient semantic annotations so that they can
be transformed to and from complete semantic Web service documents.

2. Independence. They are independent of the lexical semantic Web service languages.

3. Readability. They are easy to understand, interpret and specify for experienced
modelers.

The motivation of the independence requirement is that one does not want to be
tied to a particular semantic language, especially when there are competing standards.
Furthermore, we believe that the semantic Web service developer can become more
productive when working at a higher level than the low-level XML code. In order to
satisfy the requirements, we have suggested a UML profile for semantic Web services
and implemented transformations for both ways between UML and OWL-S. In addi-
tion, we explain how our UML profile can be transformed to WSML description, which
demonstrates its semantic Web language-independence.

The paper is structured as follows: Section 2 briefly describes the procedure for
semantic Web service composition that clarifies the need for a UML profile and trans-
formations between UML and semantic Web service languages; Section 3 introduces
the UML profile for semantic Web services; Section 4 presents the transformation rules
both ways between OWL-S and UML; Section 5 shows the correspondence between
WSML, OWL-S and our UML Profile; Section 6 evaluates our approach; Section 7
covers related work; and finally Section 8 concludes the paper.

2 Note that WSML is often referred to as WSMO as it is defined by the WSMO working group
and the WSML has only recently been published.

Transformations Between UML and OWL-S 271

STEP 1

Model the Composition

STEP 2

Discovery

Search for Domain

Ontologies

Import Domain

Ontologies to

Model

Design the Control

and Data Flow

of Composition

Annotate IOs and

Categories w/

Semantics

Composition

Model w/Tasks

Search &

Matchmaking

Sets of

matched WSs

Manual

Investigation,

Selection

Sets of selected

WSs

Composition
Model w/

selected WSs

Semantic

Desc. of each

Task

Generate

Semantic Desc of

Comp WS
Reverse Transform.
from Sem. Desc. to

UML

Generate Semantic
Desc. from UML for

Matchmaking

Manual Task Automated Task UML Model Description/Document

STEP 3

Selection

Fig. 1. Procedure for Composition of Semantic Web Services

2 Model-Driven Semantic Web Service Composition

This Section presents the model-driven procedure for creating compositions of seman-
tically described Web services (Figure 1). The procedure consists of three main steps.
The first step focuses on modeling a composition consisting of tasks, assuming that spe-
cific services are not yet identified. The second step focuses on service discovery and
matchmaking based on the semantic description of tasks and services. In the third and
final step, the service candidates are selected and the composition is completed. The
procedure is described in a sequential manner although it should be emphasized that
the procedure is an iterative process.

Step 1. The modeler specifies a new Web service composition in UML by creating a
model that defines the control and data flow between the tasks. Each task is given with a
task name and required inputs and outputs. Then, the designer must identify appropriate
domain ontologies to semantically annotate the UML model. Domain ontologies may
be searched at organizations or business interest communities. For example, the North
American Industry Classification System represents such an effort3 and provides an
ontology of products and services. After the modeler has determined one or more can-
didate ontologies, he imports these into the UML model. Such a technique has already
been proposed by the work of Duric to bring OWL ontologies into a UML modeling en-
vironment [1]. Then, the desired Web services can be classified with inputs and outputs
and a service category.

Only for the case that appropriate ontologies do not exist or are not suitable for
being extended, the designer should consider to design a new ontology. However, we
do not expect the need for creating a new ontology for the following reason: if a service

3 The ontology is available at http://www.naics.com/. An OWL version of this ontology is
provided at http://www.daml.org/ontologies/.

272 R. Grønmo, M.C. Jaeger, and H. Hoff

requester cannot find ontologies, then he cannot presume that a provider provides a
semantic description of his services using those non-existing ontologies. The outcome
of the first step is a composition model that contains all the needed information for
performing a discovery of service candidates.

Step 2. The second step handles discovery of suitable Web services. The discovery
process is based on a matchmaking algorithm for semantic descriptions of services.
It is assumed that a Web service registry is available with the following information
provided for each Web service: a) a service interface description with location and
b) a semantic description that can be used for the matchmaking process. The abstract
composition model produced in step 1 is automatically transformed into a lexical doc-
ument (”Semantic Desc. of each Task” in Figure 1) that can be parsed by a search and
matchmaking algorithm. The recent proposals for matchmaking algorithms deal only
with semantic matching of inputs, outputs and categories [9]. However, even if all these
parts have clear matches, we are not guaranteed that the provided service is a perfect
match. To guarantee perfect matches, further reasoning would be necessary that also
take preconditions, postconditions and effects into account.4 Since this topic requires a
lot of research, software tools and adoption of such techniques by the user community,
we do not expect that all services can be discovered fully automatic in the near future.
The matchmaking of inputs, outputs and categories will improve the precision of the
search, but it will not remove the need for manual investigation of the discovered Web
services to determine if they are suitable or not.

We anticipate that the found candidates provide a semantic description of their capa-
bilities. The leading proposals for such semantic descriptions are OWL-S and WSML.
However, the low-level and verbose OWL-S or WSML files are time-consuming and de-
manding to comprehend for the designer. To ease the manual investigation process, we
propose to reverse engineer OWL-S and WSML into high-level UML models. Another
benefit of importing the semantic description into UML, is that the imported services
can be used directly as UML elements when finalizing the composition model. To ac-
complish this step, we have realized a transformation from OWL-S to UML which is
further described in Section 4. The outcome of step 2 is a set of candidate services for
each task.

Step 3. Based on the reverse engineered semantic description, the investigation of the
services in UML can take place. The modeler selects the appropriate services and ide-
ally at least one chosen service is assigned to each task. Tool support will preferably
help the modeler to finalize the concrete composition model, which is the outcome of
step 3. Theoretically, it could be wise to choose more than one service for a task. If dur-
ing run-time a service becomes temporarily or permanently unavailable, an alternative
service performing the same task can compensate the unavailable one.

At last, the concrete composition model is used to generate a semantic Web service
description of the newly composed service (OWL-S, WSML etc.). This description can

4 The OWL-S proposal considers only the element effects to define resulting conditions from
the service execution. The WSML proposal features both: it declares that postconditions cover
the data output while effects can be used to describe general state changes not covering to the
output.

Transformations Between UML and OWL-S 273

be automatically generated by the transformation which we have explained further in
Section 4. The generated lexical semantic Web service descriptions can be published in
global registries which enables third parties to discover and use the composed service.

3 UML Profile for Semantic Web Services

This section defines a UML profile which can be used to model semantic aspects of
Web services. UML offers three extension mechanisms that can be used when extending
UML’s base meta-model elements:

– stereotypes introduce new elements by extending a base element,
– tagged values introduce new properties for the new element, and
– constraints are restrictions on the new element with respect to its base element.

A group of UML extensions constitute a UML profile. Figure 2 shows a meta-model
of our proposed UML profile. We build the UML profile on top of two existing meta-
models which are shown as packages in the figure. The first reused meta-model is the
UML Ontology Profile that is most relevant when defining associations to our UML
profile. UOP which is defined by Duric [1]. UOP is an extension to UML 1.5 class
models which we have upgraded to UML 2.0. UOP captures ontology concepts with
properties and relationships. The UOP package in the Figure contains the two elements
(Ontology and OntClass. An OntClass element extends a UML class and represents
a semantic concept. The OntClasses are semantically defined types which are grouped
into Ontology packages. By modeling the semantic concepts in UOP, there will be a
set of UML elements available to use as semantic types in the to be defined semantic
Web service composition models.

The second meta-model represents standard UML 2.0 activity model elements. Our
UML profile is defined as an extension to UML 2.0 activity models by extending the
elements shown inside the standard UML 2.0 package. The new UML profile elements
are shown in a darker color than the extended and reused elements. In order to avoid a
cluttered diagram, we intentionally do not show tagged values, constraints, and the as-
sociations of the four elements Pre-condition, Post-condition, Category and Effect.
These omitted relationships are explained in the subsequent paragraph.

The most central concept in the profile is WebService which extends the UML
Activity element. A WebService represents a single callable Web service operation,

Standard UML 2.0

+ Activity

+ Comment

+ Constraint

+ InputPin

+ OutputPin

UML Ontology Profile (UOP)

+ OntClass

+ Ontology

Category

Effect

Input Output

Post-condition

Pre-condition

WebServ ice

Standard UML 2.0::Activ ity

UML Ontology Profile (UOP)::OntClass

Standard UML 2.0::

Comment

Standard UML 2.0::

InputPin
Standard UML 2.0::

OutputPin

Standard UML 2.0::Constraint

0..*0..*

0..1+semanticType0..1+semanticType

0..*0..*

Fig. 2. The Meta-model of the UML profile

274 R. Grønmo, M.C. Jaeger, and H. Hoff

Table 1. Summary of the UML profile

SODIUM project meeting, Zurich, 13-14 January 200

as opposed to a collection of operations. A WebService has four tagged values (wsdl,
service, port, operation) which uniquely identify a Web service operation within a
WSDL file. The other extensions to UML 2.0 activity models are introduced to support
semantic annotation of WebService elements. A WebService can have an arbitrary
number of Input and Output parameters. The Input and Output elements are minor
extensions to the inputPin and outputPin of a UML Activity. The type of each of
the parameters can be a syntactic type as previously for standard UML 2.0 Pins, but
preferably now it will be a semantic type given as a UOP OntClass.

A semantic categorization of the WebService is given by a link to a Category el-
ement. The Category element extends the UML Comment element. It must be linked
to a WebService and it has four tagged values which identify a category concept de-
fined within an ontology. Although pre-conditions and post-conditions already exist in
the UML meta-model, we have introduced two new elements for this purpose by ex-
tending the UML Constraint element. If a Pre-condition includes more than one input
parameter in its expression, then it will be linked to all of the included parameters. The
same rule applies to Post-condition with respect to output parameters. If the pre- or
post-condition does not refer to any parameter, then it must be linked directly to the
WebService. Note that the semantics of these new pre- and post-conditions are the
same as in those already present in UML 2.0 by being conditions that apply to an oper-
ation (in this case specialised to be a Web service operation). The improvement is that
they are now clearly linked to the Pins it concerns for improving the visualisation of the
UML diagrams. Finally, the Effect element extends the UML Constraint. It is linked
to a WebService to indicate the result of a successful execution of the WebService.
The contents of Pre-condition, Post-condition and Effect should all be boolean ex-
pressions where the Object Constraint Language (OCL) is a natural candidate. Table 1
contains a summary of all the new elements in our UML profile. When modeling in the

Transformations Between UML and OWL-S 275

«WebService»

ExpressCongoBuy

bookISBN :ISBN

signInInfo :SignInData

creditCardNumber :decimal

creditCardType :CreditCardType

creditCardExpirationDate :gYearMonth

output1 :OrderShippedAcknowledgement

output2 :FailureNotification

This is an express "one shot" service for buying

a book with Congo...

«Pre-condition»

{hasAcctID(signInInfo)}

<<Pre-condition>>

{ValidCreditCard

(creditCardNumber,

creditCardType,

creditCardExpirationDate)

}

«Post-condition»

{bookExistsForISBN

(bookISBN) and

bookInStock()}

If the book is in stock, then

the result is that the order

was shipped and an

appropriate

acknowledgment is output.

<<Effect>>

The selected book is

shipped to the account.

If the book is out of stock,

then the result is simply that

an appropriate

acknowledgment is output,

indicating that the book is

out of stock.

«Post-condition»

{bookOutOfStock()}

<<Category>>

Taxonomy = NAICS

TaxonomyURI = www.naics.com

Value = Book Stores

Code = 451211

XMLSchemaDataTypes

+ decimal

+ gYearMonth

+ string

PrintedMaterial

+ ISBN

(from ExpressCongoBuyClasses)

«OntClass»

PrintedMaterial::ISBN

«Ontology»

Shipment

+ FailureNotification

+ OrderShippedAcknowledgement

+ SignInData

«Ontology»

BankAndFinance

+ CreditCardType

<<input>>

<<input>>

<<input>>

<<input>>

<<input>>

<<output>>

<<output>>

Fig. 3. ExpressCongoBuy service represented in our UML profile

UML profile it is important to note that also the reused elements from the UOP and the
UML 2.0 activity models are available.

Now that we have defined how to model single, semantically annotated Web ser-
vices in UML, we use UML 2.0 activity models to model compositions of semantically
annotated Web services. The built-in control and data flow capabilities allow us to de-
fine how single semantic Web services interoperate in order to accomplish larger tasks.
The resulting composition model can have its own boundary definition with a set of
input and output parameters and thus can expose itself as a new Web service. A Web
service may be decomposed as a composition, with some of its Web services being
compositions itself and this may be recursively continued at an arbitrary number of
levels.

3.1 The ExpressCongoBuy Example Expressed in the UML Profile

The model instance in figure 3 is used to explain our proposed UML profile by showing
the OWL-S reference example ExpressCongoBuy in UML.5 ExpressCongoBuy is a
Web service that allows a customer to buy books. In the ExpressCongoBuy example

5 The Congo example used can be found at the OWL-S home page: http://www.daml.org/
services/owl-s/1.1/examples.html.

276 R. Grønmo, M.C. Jaeger, and H. Hoff

there are five input parameters to identify the customer information (signInInfo), credit
card (creditCardNumber, creditCardType and creditCardExpirationDate) and the
book (bookISBN).

There are two mutually exclusive output parameters in the example.The first output
parameter indicates that the book is successfully purchased and shipped to the buyer’s
address, while the second output provides a message informing that the book was out
of stock. The parameter types are linked to syntactic and semantic types. In the Ex-
pressCongoBuy example the parameters creditCardNumber and creditCardExpira-
tionDate are syntactically defined by referring to standard XML Schema data types.
The other parameters are defined with semantic types as UOP OntClasses and grouped
inside UOP Ontology packages.

Note that the model in figure 3 has only pseudo-logical expressions as the content
of the pre-conditions, post-conditions and effect elements to make the example more
readable. The post-conditions are attached to the output pins which states that there
is a conditional output parameter. Only one of the two output parameters is returned,
depending on which of the two post-conditions that evaluates to true. Finally we en-
courage the extensive use of human-understandable comments as UML notes attached
to the relevant UML elements. This will help the model reader to interpret the model.
All the three used plain comments (without stereotypes) in the UML model example
are the original comments as found in the OWL-S example document.

4 Transformations Between OWL-S and Our UML Profile

The transformation between OWL-S and UML is necessary for two tasks when building
semantic Web service compositions: a) to facilitate the reengineering process using the
UML view, and b)to publish the semantically annotated composed service at the end.
This Section provides an overview of our proposed transformation rules for a) and b).
Figure 4 shows a schematic view of the transformation elements. The figure consists
of two parts: the left side shows the UML representation of the service. And the right
side outlines fragments of the OWL-S description using a simplified non-XML-notation
which is less verbose than the true XML. In between the two parts, the arrows indicate
which part of the model corresponds to which part in OWL-S.

The service is represented in the UML model according to our UML profile as an
activity with the stereotype WebService. Parameters of this activity element repre-
sent the inputs and outputs. The Web service has got five inputs and two (conditional)
outputs. The figure also shows that properties of the service – such as the pre- and
postcondition – are visualised with stereotyped notes. On the OWL-S side such an ac-
tivity corresponds to the frame of one OWL-S document (indicated by the box labeled
1 in the figure). The inputs and outputs of an activity correspond to the hasInput and
hasOutput elements in OWL-S accordingly (labelled 5 and 6).

In OWL-S it is proposed to use the Semantic Web Rule Language (SWRL [5]) for
representing the hasPrecondition, hasPostcondition and hasEffect elements
(labeled 4 and 7, please note that the figure does not show the postcondition due to
space limitations). In UML, our proposal uses stereotyped notes containing an expres-
sion using OCL. However, the transformations of logical expressions would signifi-

Transformations Between UML and OWL-S 277

rdf:RDF xmlns:owl= "http://www.w3.org/2002/07/owl#"

 (...)

 service:Service rdf:ID="ExpressCongoBuyService"

 service:presents rdf:resource="&location;#Profile_Congo_BookBuying_Service"

 service:describedBy rdf:resource="&location;#ExpressCongoBuy"

 service:supports rdf:resource="&location;#ExpressCongoBuyServiceGrounding"

 (...)

 service:presentedBy rdf:resource="&location;#ExpressCongoBuyService"

 profile:has_process rdf:resource="&location;#ExpressCongoBuy"

 profile:serviceName

 Congo_BookBuying_Agent

 profile:serviceCategory

 addParam:NAICS rdf:ID="NAICS-category"

 profile:value

 Book Stores

 profile:code

 451211

 profile:hasInput rdf:resource="&location;#ExpressCongoBookISBN"

 profile:hasInput rdf:resource="&location;#ExpressCongoSignInInfo"

 profile:hasPrecondition rdf:resource="&location;#AcctExists"

 profile:hasPrecondition rdf:resource="&location;#CreditExists"

 profile:hasEffect rdf:resource="&location;#ExpressCongoOrderShippedEffect"

 profile:hasOutput rdf:resource="&location;#ExpressCongoOrderShippedOutput"

 profile:hasOutput rdf:resource="&location;#ExpressCongoOutOfStockOutput"

 (...)

 process:AtomicProcess rdf:ID="ExpressCongoBuy"

 process:hasEffect

 process:ConditionalEffect rdf:ID="CongoOrderShippedEffect"

 process:ceCondition rdf:resource="#BookInStock"

 process:ceEffect rdf:resource="#OrderShippedEffect"

 process:hasOutput

 process:ConditionalOutput rdf:ID="CongoOrderShipped"

 process:coCondition rdf:resource="#BookInStock"

 process:parameterType rdf:resource="#OrderShipped"

 process:hasOutput

 process:ConditionalOutput rdf:ID="CongoOutOfStockOutput"

 process:coCondition rdf:resource="#OutOfStock"

 process:parameterType rdf:resource="#OutOfStock"

 process:hasInput

 process:Input rdf:ID="ExpressCongobookISBN"

 process:parameterType rdf:resource="&ISBN"

 process:hasInput

 process:Input rdf:ID="CongoSignInInfo"

 process:parameterType rdf:resource="#SignInData"

 (...)

 process:hasPrecondition rdf:resource="#hasAcctID"

 process:hasPrecondition rdf:resource="#ValidCreditCard"

 (...)

«WebService»
ExpressCongoBuy

bookISBN:ISBN

signInInfo:SignInData

creditCardNumber:decimal

creditCardType:CreditCardType

creditCardExpirDate:gYearMonth

output1:
 OrderShipped

output2:
 OutOfStock

«Pre-condition»
{hasAcctID
(signInInfo)}

«Pre-condition»

{ValidCreditCard(

creditCardNumber,

CreditCardType,

CreditCardExpirdate)}

«Effect»

The selected book is

shipped to the account

«Category»

Taxonomy = NAICIS

Taxonomy URI = http://...

Value = Book Stores

Code = 451211

«Ontology»

BankAndFinance

+CreditCard
+CreditCardType
+Receipt

«OntClass»

BankAndFinance::

CreditCard

- type: CreditCardType
- expireDate: Date
- cardHolder: string
- cardNumber: string

rdf:RDF (...) xmlns = "&BankAndFinance;#"

owl:Ontology rdf:about=""

 (...)

owl:Class rdf:ID="CreditCard"

 rdfs:subClassOf

 owl:Restriction

 owl:onProperty rdf:resource="#cardNumber"

 owl:cardinality rdf:datatype="&xsd;#integer"

 1

 (...)

owl:DatatypeProperty rdf:ID="cardNumber"

 rdfs:domain rdf:resource="#CreditCard"

 rdfs:range rdf:resource="&xsd;#string"

 (...)

and more ...

UML Example OWL-S Example

Transformation

Fig. 4. Schematic view of transformations between UML and OWL-S

cantly extend the scope of the paper and thus is not handled by our transformations.
The inputs, outputs, pre- and postconditions, and effects are generated at two places in
the OWL-S document: the Process section and the Profile section. The transformation
generates the elements in the Process part first. Then, these elements are basically du-
plicated for the Profile part. In fact, the referring elements found in the Profile section
can be seen as a summary.

Reused ontologies are modeled in UML as separate packages with a URI as tagged
value to identify the ontology. All such ontologies result in an import statement in the
produced OWL-S document. Then the ontology concepts belonging to an imported
ontology can be used at the adequate places (such as parameterType) by combining
a short name of the imported ontology and the full name of the ontology concept. For

278 R. Grønmo, M.C. Jaeger, and H. Hoff

ad Activ ity Diagram

LocateBook

Start End

BuyBook

SpecifyDeliv eryDetailsFinalizeBuyEnd

PutInCart SignInAlternativ es SpecifyPaymentMethod

Start

[InStock (Book)]

[Not (InStock (Book))]

Fig. 5. FullCongoBuy service manually reverse engineered into UML

each new ontology concept a new owl:class is created. We do not explain further how
to facilitate this part of the transformation, which is outlined with the box labelled 8, as
this is covered by Duric’s work about representing OWL ontologies in UML [1].

The transformation can be extended to also handle conversations of Web services.
A conversation occurs when several operations have to be called in a specific order be-
fore the service is completed. The OWL-S CompositeProcess element describes Web
services that are to be called in a conversational manner. In OWL-S, the conversation
of a Web service is described by a CompositeProcess element. The CompositePro-
cess represents the conversation model by using control flow constructs to connect
other contained OWL-S Processes. An OWL-S CompositeProcess is a Web service
composition which corresponds to a sub activity in UML. All the available control flow
elements in OWL-S are shown in the table of Figure 5. The table shows corresponding
UML elements for each of the OWL-S control flow constructions, except for the un-
ordered element which have no natural corresponding element in UML. The unordered
element contains a collection of Web services that shall be called in a sequence, but the
order may be arbitrarily. A new stereotype called Unordered based on a sub activity
could be introduced where the content is restricted to a set of unconnected activities.
The single OWL-S Split+Join element corresponds to two separate elements in UML,
a Fork followed by a join. Repeat-Until, Repeat-While and Iterate in OWL-S can
all be mapped to UML LoopNode. However the LoopNode has no defined graphical
notation, which then remains to be solved in order to have a visual representation. The
rest of the mappings in the table are trivial.

The Congo example consists of two parts: ExpressCongoBuy and FullCongoBuy.
The ExpressCongoBuy is a single Web service operation which we have already shown
a representation of in our UML profile. The right part of Figure 5 shows how the conver-
sational OWL-S FullCongoBuy example can be imported into a UML activity model
by using the transformations defined in the table on the left side. Note that this is a
simplified UML model which contains only the control flow and the individual service
names. First the LocateBook service is called. The resulting output indicates if the
book is in stock or not. The UML decisionNode control flow construct is introduced
as a conditional OR-split that will finish the interaction if the book is not in stock. Oth-
erwise, the composite service BuyBook is called, which involves a control flow graph
of its own. A sequence of service calls is performed to put the book in cart, get the sign
in alternatives, provide payment details, provide delivery information, and finally the
complete Web service conversation ends.

Transformations Between UML and OWL-S 279

5 Correspondence Between WSML, OWL-S and Our UML Profile

This Section explains the main parts of WSML and how this relates to OWL-S and
our UML profile. WSML consists of four main parts: Ontologies, Goals, Mediators
and Web services. The Ontologies part in WSML corresponds to OWL ontologies in
an OWL-S document or to the UOP part of the UML profile. Goals represents ab-
stract services for which one desires to find realizing Web services that can satisfy the
requirements. There is no support for goals in OWL-S or in our specified UML pro-
file. However, a new stereotype called Goal could be introduced which shares all the
properties of the WebService concept except the four WSDL tagged values. Mediators
deal with transformations and relationships that can be categorized as four kinds: OO-,
WW-, GG- and WG-mediators. The OO-Mediator is the translation from one ontology
to another. The WW-Mediator handles interoperability between Web services. The GG-
Mediator expresses relationships between different goals. The WG-Mediator matches
a goal with a realizing Web service. There is no equivalent to the mediators in OWL-S
and its functionality is outside the scope of our UML profile.

The Web services part of WSML corresponds to our semantic Web service profile
in UML and the OWL-S focus. The table on the left side of Figure 6 shows the cor-
respondence between elements in the UML profile and the elements of WSML. The
right side of the figure shows how the previously described ExpressCongoBuy can be
expressed in WSML. We have simplified the WSML example by omitting the full defi-
nitions of the logical expressions for pre-condition, post-condition and effect. Many of
the concepts have trivial mappings, but the definition of input and ouput parameters in
the interface is quite different in WSML. The concepts to be used in the Web service
interface are imported from ontologies and specialized by the WSML subConceptOf
keyword. Namespaces are used to separate the imported super type from the new sub
type. The sub type defines if the concept is used as an input or output parameter. The

webservice http://.../ExpressCongoBuy
nonFunctionalProperties

dc:title hasValue "ExpressCongoBuy"
dc:creator hasValue "DERI International"
dc:description hasValue "This is an express ..."
...

endNonFunctionalProperties

importedOntologies {<<http:://.../Shipment>>,
<<http:://.../BankAndFinance>>,
<<http:://.../PrintedMaterial>>}

capability
precondition <hasAcctID> + <ValidCreditCard>
postcondition <bookExistsForISBN> + <bookOutOfStock>
effect <Shipment of book>

concept bookISBN subConceptOf pm-namespace#bookISBN
nonFunctionalProperties

wsml#mode hasValue wsml#in
wsml#grounding hasValue PrintedMaterial#ISBN

endNonFunctionalProperties
concept signInInfo ...
concept creditCardNumber ...
concept creditCardType ...
concept creditCardExpirationDate ...
concept output1 ...

nonFunctionalProperties
wsml#mode hasValue wsml#out
wsml#grounding hasValue OrderShippedAcknowledgement

endNonFunctionalProperties
concept output2 ...

Fig. 6. Left: Mapping our UML profile to WSML. Right: ExpressCongoBuy in WSML

280 R. Grønmo, M.C. Jaeger, and H. Hoff

bookISBN parameter is shown with a complete WSML definition which illustrates the
use of subConceptOf.

6 Evaluation

This Section evaluates the UML profile for semantic Web services against our require-
ments. The requirements which we have mentioned in Section 1 are:

– expressive enough for semantic Web services,
– independence of the lexical semantic Web service language, and
– readability for human readers.

Expressiveness. We have implemented a reverse transformation from OWL-S to UML
and a forward transformation from UML to OWL-S. Both are implemented in the
UML Model Transformation Tool (UMT) [7]. UMT is based on the XML Metadata
Interchange Format (XMI) [10] which allows the realization of transformations that are
UML tool-independent. The transformations between UML and OWL-S show to a large
extent that our UML profile is expressive enough to capture and generate the needed se-
mantic information of OWL-S. There are however three parts that are not implemented
and that needs further extensions to make the profile fully expressive: metadata (such as
contact name, address etc.), logic expressions and control flow. The support for organi-
zational metadata about the service can be regarded as trivial. We have also suggested
how the available control flow constructs can be handled, while logic expressions need
more investigation to be covered properly.

The transformation from OWL-S to UML have been verified by testing on the
Congo and Bravo OWL-S reference examples. The parser of a previously developed
OWL-S matchmaking implementation [9] has successfully processed the OWL-S out-
put of the UML to OWL-S transformation. However, we regard this test as a proof-of-
work but not as a formal verification.

Independence. The independence of the lexical semantic Web service language cannot
be fully claimed as we have not implemented any transformation between UML and
the competitor WSML. However, we have explained how to fully support OWL-S and
how to cover the relevant concepts of WSML in conjunction with our UML profile.
Furthermore, the constructs we have proposed in our UML profile are not specifically
designed to match one particular semantic Web service language.

Readability. The approach taken in this paper of using annotated UML activity models
may be compared with a different approach of using UML interfaces with operations.
UML Interfaces have the strength that they better define the separation between input
and output parameters for which we needed to introduce stereotypes. We also need to
be careful in the way the activity parameters are laid onto the activity depending on the
incoming and outgoing flow when it is integrated into a composition model. If the input
parameters are placed on the left side, then the incoming flow should also hit the left
side boundary of the activity in order not to confuse a human interpreter.

A disadvantage of using UML interfaces is that comments, pre- and postconditions
belonging to an input or output are not easily visualized in the diagram of an interface

Transformations Between UML and OWL-S 281

element, while this is clearly visualized in our approach. The same argument goes for
individual operations within an interface. These are handled properly in our approach
since all operations are mapped to separate activities where comments, preconditions,
postconditions, effects, category description etc. can be attached.

7 Related Work

We have already covered the two semantic Web service languages, OWL-S and WSML,
that have the largest attention at the moment. Two other semantic Web service languages
have also been proposed recently. WSDL-S [13] extends WSDL 2.0 with semantic de-
scriptions. This language uses OWL types instead of the XML Schema syntactical data
types to define the parameter types in operations. There are no extensions defined for ex-
pressing logical constraints such as pre-conditions, post-conditions and effects. Hakim-
pour et al. [8] shows how The Operational Conceptual Modeling Language (OCML)
is used by the IRS-III system to enable automatic service composition. They discuss
differences and similarities between OCML, OWL-S and WSML. None of these two
additional semantic Web service languages seem to introduce concepts that are not cov-
ered by our UML profile.

Duric explains in his work [1] how OWL concepts can be transformed into the
UML Ontology Profile. This work is adopted as part of our transformation strategy
from OWL-S to UML, and the domain ontology modeling part of this paper does not
contain any new aspects. Elenius et al. [3] present the OWL-S editor as a graphical
tool with the ability to both import and export OWL-S documents. Their approach is
OWL-S-dependent, while our approach delivers a graphical language and transforma-
tions that can be reused towards different semantic Web languages, where OWL-S is
just one candidate. Scicluna et al. [14] have a similar approach to ours by using UML
2.0 activity models to represent semantic Web services with a generation to OWL-
S. Their approach is also tailored for OWL-S. Gomez-Perez et al. [6] have identified
the same requirement as we have to deliver a semantic Web language-independent
graphical language. To fulfill this need they propose the proprietary ODE SWS graph-
ical language for modeling tasks that can be associated with inputs, outputs, precon-
ditions and postconditions. In addition to their work we have defined transformation
rules between OWL-S and UML. The inputs and outputs in ODE SWS are modeled as
separate data objects on the outside of the task quite similar to UML 1.5 Activity mod-
els. In our approach we have used the more compact pin-notation of UML 2.0 Activity
models that attaches a small symbol to the boundary, which makes the interface easier
to read.

The METEOR-S tool presented by Rajasekaran et al. [13] is an approach where
a user can annotate operations and its parameters with pre-conditions, post-conditions
and semantic types in a tree view browser. From this tree view both WSDL-S and OWL-
S generations have been implemented which shows a semantic language-independent
approach. However, importing existing semantic Web service documents is not possi-
ble in this tool and compositions with control flow is not covered. Peer [12] proposes a
lexical language to define imperative constructions with complex goals that are used to
automatically generate executable Web service compositions. The executable Web ser-

282 R. Grønmo, M.C. Jaeger, and H. Hoff

vice compositions can be displayed with a graphical interface showing control flow and
semantic annotations, but importing and exporting semantic Web service documents is
not supported.

8 Conclusions

The contributions of this paper are a UML profile for semantic Web service composi-
tion and transformations both ways between UML and OWL-S. By importing semantic
OWL-S descriptions of existing Web services into UML diagrams, we show that UML
can be used as a common integration platform. The ability to generate Web service
composition documents with semantic descriptions from a graphical model represents
a valuable gain to the service developers, who otherwise have to write a lot of low-level
XML code.

Fully defined transformations between UML and WSML is also desired so that our
UML profile also can be used with the other leading semantic Web service specifica-
tion. Another future improvement is to enhance the transformations between UML and
OWL-S by also handling the logical expressions to cover the pre- and postconditions
and the effects. This could be achieved by defining and implementing transformations
between the logical languages used by OWL-S and WSML and the Object Constraint
Language in UML. We see this as the next step towards providing a user-friendly envi-
ronment to interpret and define the logical expressions.

Acknowledgements. The work of SINTEF is partially funded by the European IST-
FP6-004559 project SODIUM (Service Oriented Development In a Unified frame-
work). We would also like to thank Martin Hepp from DERI for his valuable input.

References

1. Dragan Djuric. MDA-based Ontology Infrastructure. Computer Science Information Systems
(ComSIS), 1(1):91–116, February 2004.

2. Satish Tatte (Editor). Business Process Execution Language for Web Services Ver-
sion 1.1. Technical report, BEA Systems, IBM Corp., Microsoft Corp., http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/, February 2005.

3. Daniel Elenius, Grit Denker, David Martin, Fred Gilham, John Khouri, Shahin Sadaati, and
Rukman Senanayake. The OWL-S Editor - A Development Tool for Semantic Web Ser-
vices. In 2nd European Semantic Web Conference (ESWC 2005), Heraklion, Crete, Greece
(accepted for publication), May 2005.

4. David L. Martin et al. Bringing Semantics to Web Services: The OWL-S Approach. In Se-
mantic Web Services and Web Process Composition, First International Workshop, SWSWPC
2004, Revised Selected Papers, Volume 3387 of Lecture Notes in Computer Science, San
Diego, California, USA, July 2004. Springer.

5. Ian Horrocks et al. SWRL: A Semantic Web Rule Language Combining OWL
and RuleML. Technical Report, http://www.w3.org/Submission/2004/SUBM-SWRL-
20040521/, May 2004.

6. Asunción Gómez-Pérez, Rafael González-Cabero, and Manuel Lama. ODE SWS: A Frame-
work for Designing and Composing Semantic Web Services. IEEE Intelligent Systems,
19(4):24–31, 2004.

Transformations Between UML and OWL-S 283

7. Roy Grønmo and Jon Oldevik. An Empirical Study of the UML Model Transformation Tool
(UMT). In The First International Conference on Interoperability of Enterprise Software
and Applications (INTEROP-ESA), Geneva, Switzerland, February 2005.

8. Farshad Hakimpour, John Domingue, Enrico Motta, Liliana Cabral, and Yuangui Lei. In-
tegration of OWL-S into IRS-III. In First AKT Workshop on Semantic Web Services, AKT-
SWS04, Athens, Greece, December 2004.

9. Michael C. Jaeger, Gregor Rojec-Goldmann, Gero Mühl, Christoph Liebetruth, and Kurt
Geihs. Ranked Matching for Service Descriptions using OWL-S. In Kommunikation in
verteilten Systemen (KiVS 2005), Informatik Aktuell, Kaiserslautern, Germany, February
2005.

10. Object Management Group (OMG). XML Metadata Interchange (XMI) Specification v1.2,
OMG Document: formal/02-01-01. Technical report, January 2002.

11. Object Management Group (OMG). UML 2.0 Superstructure Specification, OMG Adopted
Specification ptc/03-08-02. Technical Report, August 2003.

12. Joachim Peer. A PDDL Based Tool for Automatic Web Service Composition. In Proceedings
of the Second International Workshop on Principles and Practice of Semantic Web Reasoning
(PPSWR), St. Malo, France, September 2004.

13. Preeda Rajasekaran, John A. Miller, Kunal Verma, and Amit P. Sheth. Enhancing Web Ser-
vices Description and Discovery to Facilitate Composition. In Semantic Web Services and
Web Process Composition, First International Workshop, SWSWPC 2004, Revised Selected
Papers, volume 3387 of Lecture Notes in Computer Science, San Diego, California, USA,
July 2004.

14. James Scicluna, Charlie Abela, and Matthew Montebello. Visual Modelling of OWL-S Ser-
vices. In Proceedings of the IADIS International Conference WWW/Internet, Madrid Spain,
October 2004.

15. World Wide Web Consortium (W3C). SOAP Version 1.2 Part 0: Primer. Technical Report,
http://www.w3.org/TR/soap12-part0/, June 2003.

16. World Wide Web Consortium (W3C). Web Services Description Language (WSDL) Version
2.0 Part 1: Core Language. Technical Report, http://www.w3.org/TR/wsdl20, August 2004.

17. WSMO working group. D16.1v0.2 The Web Service Modeling Language WSML, WSML
Final Draft. Technical Report, March 2005.

A Graphical Specification of Model

Transformations with Triple Graph Grammars

Lars Grunske1, Leif Geiger2, and Michael Lawley3

1 School of Information Technology and Electrical Engineering,
University of Queensland, Brisbane, QLD 4072, Room 72-458 IT Building

grunske@itee.uq.edu.au

http://www.itee.uq.edu.au/
2 University of Kassel, Software Engineering Research Group,
Department of Computer Science and Electrical Engineering,

Wilhelmshöher Allee 73, 34121 Kassel, Germany
leif.geiger@uni-kassel.de

http://www.se.eecs.uni-kassel.de/se/
3 CRC for Enterprise Distributed Systems Technology (DSTC)�,

University of Queensland, Brisbane, QLD 4072, Australia
michael@lawley.id.au

http://www.dstc.edu.au/

Abstract. Models and model transformations are the core concepts of
OMG’s MDATM approach. Within this approach, most models are de-
rived from the MOF and have a graph-based nature. In contrast, most
of the current model transformations are specified textually. To enable
a graphical specification of model transformation rules, this paper pro-
poses to use triple graph grammars as declarative specification formal-
ism. These triple graph grammars can be specified within the FUJABA
tool and we argue that these rules can be more easily specified and they
become more understandable and maintainable. To show the practicabil-
ity of our approach, we present how to generate Tefkat rules from triple
graph grammar rules, which helps to integrate triple graph grammars
with a state of a art model transformation tool and shows the expres-
siveness of the concept.

1 Introduction

Model Driven Engineering (MDE) is a software engineering principle that pro-
motes the use of models and transformations as primary development artifacts.
To practically apply this principle, the Object Management Group (OMG) has
proposed the MDATM [1] as a set of standards for integrating MDE tools. The
MDATM approach separates the specification of systems from the implemen-
tation of these systems. For this reason two basic model types are introduced,
� The work reported in this paper has been funded in part by the Co-operative Re-

search Centre for Enterprise Distributed Systems Technology (DSTC) through the
Australian Federal Government’s CRC Programme.

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 284–298, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Graphical Specification of Model Transformations 285

Platform Independent Models (PIM’s) and Platform Specific Models (PSM’s)
using specific implementation platforms. PIM’s can be specified in an abstract
style without thinking about platform specific details. If all necessary PIM’s are
specified, they should be automatically mapped to a platform specific model by
adding the platform specific details. To allow this mapping, model transforma-
tions are necessary.

The need for standardization of model transformations as well as the gener-
ation of views and the definition of queries lead to the MOF 2.0 Query/ Views/
Transformations Request for Proposals (RFP) [2] from the OMG. For this RFP
the OMG initially received eight proposals of varying degrees of completeness
which are reviewed and assessed in [3]. A final revised, merged submission sup-
ported by all original submitters is expected to be voted for adoption at the
June 2005 OMG meeting in Boston. This submission supports several flavours
of transformation specification allowing for both declarative and procedural
specifications.

One important aspect we noticed when reviewing the revised submissions for
the RFP is that most transformation languages are specified textually. This con-
flicts with the graph-based nature of most of the current MOF 2.0 models (e.g.
UML 2.0 models). A graph-based transformation language would be more ap-
propriate for specifying and applying model transformations. Having made this
observation, we propose to use graph transformations rules (specifically triple
graph transformation rules) and graph transformation systems as an extension
to the current model transformation languages. These graph transformation rules
are a straightforward extension of string or term rewriting rules, which were in-
troduced in the seventies [4] and are currently applied in various domains [5] to
transform or rewrite graph-based structures. However, normal graph transfor-
mation rules and systems are only suitable to operate on one particular graph.
Thus, they are only suited to describe intra-model transformation, as they are
needed to specify quality-improving refactorings [6,7,8]. To operate on two dif-
ferent graphs with two different graph schemata an extension called triple graph
grammars [9] is suitable. These triple graph grammars and their rules are the
theoretical foundation of this paper and we want to show their suitability for
describing complex model-to-model transformations. Especially, we argue that
triple graph grammars provide the following benefits, which are useful for the
specification and application of model-to-model transformations [10]:

– Triple graph grammars allow incremental change propagations between two
models A and B, if a model transformation system with triple graph gram-
mar rules is applied once to transform a model A to a model B and the
correspondence graph is generated. This means you can create tools that
update a model if the other has been changed. [11,9] This change propaga-
tion is also bidirectional and is especially important for iterative software
engineering processes where a model evolves continuously.

– Triple graph grammars can be used to check the consistency between two
models.

286 L. Grunske, L. Geiger, and M. Lawley

– Triple graph grammars can be applied to all graph-based data structures and
models, not only to tree-based ones. This also includes hierarchical graph-
based data structures [12,13,14], which we think is imported to model trans-
formations between two MOF 2.0-compliant models.

The rest of the paper is structured as follows: Section 2 introduces the ba-
sic concepts of graph-based structures and graph transformations in general.
Thereafter, Section 3 reviews the concepts of triple graph grammars and shows
how triple graph grammar rules can be used to specify model-to-model trans-
formations. In Section 4, the practical applicability of triple graph grammars is
presented with the well-known example of the transformation from an object-
oriented class diagram model into a relational database model. Section 5 presents
an implementation of triple graph grammars within the FUJABA tool and de-
scribes how FUJABA could be used to generate textually specified model trans-
formation rules (e.g. Tefkat rules). Before concluding, Section 6 discusses the
limitation of triple graph grammars and sets up directions for future work to
extend the current model-to-model transformation languages successfully.

2 Preliminaries

This section introduces the basic concepts of graph-based structures and the
fundamental graph transformation theory in an informal and intuitive way. In
addition, this section presents an overview about useful graph transformation
techniques and extensions that are needed to specify model transformations
within the MDATM approach.

2.1 Directed Typed Graphs and Graph Morphisms

We choose directed typed graphs as the basic structure, because they are well
suited to specifying different types of models, especially MOF-based models [15].
These directed typed graphs contain nodes and edges that are instances of node
and edge types. The instance relation between the nodes and edges and their
types is similar to the relation between objects and classes in object-oriented
software engineering. Due to this, a node or edge type can contain a set of ap-
plication specific attributes and operations. To model the graph-based structure
each edge is associated with a source and a target node. Formally, a typed graph
can be defined as follows:

Definition 1. (Directed Typed Graphs) Let LV be a set of node types and LE

be a set of edge types; then a directed typed graph G from the possible set of
graphs G over LV and LE is characterized by the tuple 〈V, E, source, target,
type〉, with two finite sets V and E of nodes (or vertices) and edges, a function
type composed of the two functions typeV : V → LV and typeE : E → LE which
assigns a type to each edge and node and two functions source : E → V and
target : E → V that assign to each edge a source and a target node.

A Graphical Specification of Model Transformations 287

Another preliminary for the definition of graph transformation systems are
graph morphisms. These graph morphisms are structure and type-preserving
mappings between two graphs that can be defined as follows:

Definition 2. (Graph Morphism) Let G = 〈V, E, source, target, type〉 and
G′ = 〈V ′, E′, source′, target′, type′〉 be two graphs; then a graph morphism
m : G → G′ consists of a pair of mappings 〈mV , mE〉, with mV : V → V ′

and mE : E → E′, which satisfy the following conditions (type and structure-
preserving):

– ∀ e ∈ E : type′(mE(e)) = type(e)
– ∀ v ∈ V : type′(mV (v)) = type(v)
– ∀ e ∈ E : source′(mE(e)) = mV (source(e))
– ∀ e ∈ E : target′(mE(e)) = mV (target(e))

If both mappings mV : V → V ′ and mE : E → E′ are injective (surjective,
bijective) then the mapping m : G → G′ is injective (surjective, bijective).

Graph Variants. Besides the introduced directed typed graphs, several other
variants and extensions gain attention in the graph transformation community.
One basic variant uses undirected edges. These undirected edges can be modeled
in a directed graph with two contrary edges for each undirected edge. Another
variant are hypergraphs[16], where each (hyper) edge is associated with a se-
quence of source and target node. That means, these edges can have an arbi-
trary number of source and target nodes. For the construction of hierarchical
models, hierarchical graphs are important. These hierarchical graphs model the
hierarchical structure either by (hyper)edge [12] or node refinement [17].

2.2 Graph Transformation and Graph Transformation Systems

Basic Principles. Graph transformation systems make use of graph rewriting
techniques to manipulate graphs. A graph transformation system is defined with
a set of graph production rules, where a production rule consists of a left-hand
side (LHS) graph and a right-hand side (RHS) graph. Such rules are the graph
equivalent of term rewriting rules, i.e., intuitively, if the LHS graph is matched
in the source graph, it is replaced by the RHS graph. Intuitively, a graph trans-
formation rule can be defined as follows:

Definition 3. (Graph Transformation Rule) A graph transformation rule p =
〈GLHS , GI , GRHS , ml, mr〉 consists of three directed typed graphs GLHS , GI

and GRHS , which are called left-hand side graph, interface graph and right-hand
side graph. The interface graph GI is just an auxiliary graph. The morphisms
ml : GI → GLHS and mr : GI → GRHS are used to describe the correspondence
between these graphs and map the elements of the interface graph to either the
left-hand side or the right-hand side graph.

For the application of a graph transformation rule to an application graph
GAPP the following simplified algorithm can be used:

288 L. Grunske, L. Geiger, and M. Lawley

1. Identify the left-hand side GLHS within the application graph GAPP . For
this, it is necessary to find a total graph morphism m : GLHS→GAPP that
matches the left-hand side GLHS in the application graph GAPP .

2. Delete all corresponding graph elements, w.r.t. m, in the application graph
GAPP that are part of the left-hand side GLHS and are not part of the
interface graph GI .

3. Create a graph element in the application graph GAPP for each graph ele-
ment that is part of the right-hand side GRHS and is not part of the interface
graph GI . Connect or glue these added graph elements to the rest of the ap-
plication graph GAPP .

For a formal description of the rule application formalisms, we refer to [18,19],
where the formal foundations of the single pushout (SPO) and double pushout
(DPO) approach are reviewed. Currently these approaches have the most impact
in the graph transformation community [5,15,8].

Application Conditions. In complex graph transformation systems it is often
necessary to restrict the application of single rules. Therefore, in [20] the concept
of positive and negative application conditions (PACs and NACs) is introduced.
These application conditions are formally graphs that define a required context
(PACs; e.g. the presence of nodes or edges) or a forbidden context (NACs; e.g
the absence of nodes or edges). The fulfillment of these application conditions
must be checked before the rule is applied. Consequently, the algorithm in the
previous Section must be extended by adding another step after the first one,
which checks the application conditions. In this paper, we use crossed out nodes
to visualize nodes belonging to the negative application condition.

Specification of Graph Transformation Rules. In traditional approaches
for specification of graph transformation rules the right hand side and the left
hand side of a rule are drawn separately [19,18]. Throughout this paper the
approach of the Fujaba Tool [21], that combines both sides, is used. Fujaba uses
UML collaboration diagrams to model graph transformations. Nodes become
objects and edges become links between objects. Objects and links that have
no stereotypes appear on both sides of the graph transformation rule. Objects
and links marked with the �destroy� stereotype appear only on the left hand
side, i.e. they are deleted. The stereotype �create� marks elements only used
on the right hand side, i.e. such elements are created. Fujaba uses programmed
graph transformation rules. This means a control structure can be specified
that manages the order of the execution of transformation rules. Such control
structure is modeled using UML activity diagrams. The transformation rules
are then embedded into the activities. Fujaba makes use of typed graphs. In
the graph transformations, the type is specified after the object’s name, and
separated by a colon. More elaborate elements of graph transformations like
negative application conditions, multi objects and non-injective matching are
also supported by the Fujaba tool. All of these features will be needed for the
effective specification of model transformation rules.

A Graphical Specification of Model Transformations 289

Figure 1 shows a graph transformation rule in Fujaba. The rule consists only
of one transformation that deletes every column in a table that has the same
name as another column. To achieve this, the transformation tries to match an
object c1 of type Column which has a col link to a Table object t. This object
must itself have a col link to another object of class Column. If this column
has the same attribute value for
its attribute name as the object
c1, the matching can be applied.
If a matching is found, the col-
umn c2 and its col link will be
destroyed. Note, that the activ-
ity has a doubled border. Such
an activity, a so-called for-each
activity, is applied as long as a
matching is found. Thus, the rule
deletes every duplicated column
in every table. Fig. 1. Graph transformation ”Fujaba-style”

3 Triple Graph Grammars

In this section we introduce the concept of triple graph grammars (TGG) and
describe their suitability to extend current model transformation systems. There-
after, we show how triple graph grammars can be specified within the Fujaba
tool and how forward and backward transformations can be derived from these
triple graph grammar rules.

3.1 Introduction

Triple graph grammars are a straightforward extension of pair grammars and
pair grammar rules that were introduced by Pratt [17] in the early seventies.
These pair grammars are used to specify graph-to-string translations. By this
means, a pair grammar rule rewrites two models: a source graph and a target
string. Thus, it contains a pair of production rules (a graph and a string produc-
tion rule), which modify simultaneously the two participating models. Because
of this, pair grammars are well suited to specify transformations between graphs
and strings. If the string production rule is substituted by a graph production
rule, these pair grammars can be also used for graph-to-graph translations.

Triple graph grammars, as introduced in the early nineties [22] are used for
graph-to-graph translations and data integration. Each triple graph grammar
rule contains three graph productions; one operates on a source graph, one on
the target graph and one on a correspondence graph. The correspondence graph
describes a graph-to-graph mapping that relates elements of the source graph
to elements of the target graph. Based on this mapping, incremental change
propagations, that update the target graph if an element in the source graph is
changed, are possible. Formally, triple graph grammar rules can be defined as
follows [22]:

290 L. Grunske, L. Geiger, and M. Lawley

Definition 4. (Triple Graph Transformation Rule) A triple graph transforma-
tion rule tgg = 〈pleft, pright, pmap〉 consists of three graph transformation rules
pleft, pright and pmap where pleft transforms the source model, pright transforms
the target model and pmap transforms a relation model that maps source to
target elements. All three graph production are applied simultaneously.

3.2 Specification

To specify a complex triple graph grammar rule all three graph grammar rules
should be specified in one rule diagram. For the specification of each single rule
we use the Fujaba-style and separate the three rules within the rule diagram.
Due to this separation a user can identify to which side the element belongs.

Fig. 2. Example of a TGG rule class-to-table in FUJABA

Figure 2 shows a transformation rule that contains seven objects; two source
model objects, three target model objects and two correspondence model objects.
The objects from the source model are drawn left, the objects of the target model
are drawn right and the objects of the correspondence model are drawn in the
middle of the rule diagram. Additionally, they are marked with the stereotypes
�left�, �map� or �right�. The rule shown in the figure demonstrates a
mapping between classes in a class diagram and tables in a relational database.
The precondition of this rule is drawn in the top of the diagram. This means, to
apply this rule there must already exist a class diagram which is mapped via a
Mapping node to a relational database. The elements which have to be related
are drawn green with a �create� stereotype. This means, an object of the type
Class is mapped to an object of the type Table which has a link to a key object
and vice versa. Attribute conditions are modeled as constraints. For example,
the id of a class is stored as name of the table’s key.

A triple graph grammar rule enable the generation of three transformation
rules [9]: the forward rule, the reverse rule and a relation rule that checks the con-
sistency of both models. The forward rule is created by removing the �create�
stereotype from all elements which belongs to the source (�left�) model. The
reverse rule is created by removing the �create� stereotype from all elements
which belongs to the target (�right�) model. The last rule, the relation rule, is

A Graphical Specification of Model Transformations 291

derived by removing the �create� stereotype from all elements that does not
belong to the correspondence (�map�) model.

Figure 3 shows the derived forward rule. If a mapping from a class diagram to
a relational database exists and if the class diagram contains a class, a new table
and a new key are created and its attributes are set accordingly to the TGG
rule. These newly created objects are marked as being mapped to the class using
a new mapping node.

Figure 4 shows the reverse rule, which will create a class for every table in
the relational model. The matching and creation of objects is done in the same
manner as is done for the forward rule.

The last rule created is the relation rule shown in Figure 5. This rule needs
a class diagram and a database and tries to relate them. This will result in a
consistency check between these two models. Therefore, the only objects created
in this rule are the mapping nodes.

The rule in Figure 5 searches for a class diagram that has already been
mapped to a relational database. If the class diagram contains a class which
can be related to a table as specified in the rule, a new mapping is created. If

Fig. 3. Forward rule derived from the TGG-rule class-to-table

Fig. 4. Reverse rule derived from the TGG-rule class-to-table

292 L. Grunske, L. Geiger, and M. Lawley

Fig. 5. Relation rule derived from the TGG-rule class-to-table

a mapping can be created for all classes and for all tables the two models are
consistent.

4 Example

To show the practical applicability of triple graph grammars in the context of
model transformations we use the well-known example of the transformation
from an object-oriented class model to a relational database model. This trans-
formation is required if an application needs to store a set of objects persistently
in a database. A text-based realisation of this example can be found in several
QVT-proposals [23,24]. A graphical specification of the transformation rules of
this example can be found in [25].

The basic meta-models, the object-oriented class model and the relational
database model, for this transformation are presented in Figure 6. To keep the
transformations simple the object-oriented model is cut down in the following
aspects:

– A class can contain only attributes and no methods, because methods don’t
need to be stored persistently.

– Only 1:1 and 1:n associations are considered. These associations are rep-
resented by attributes that have classes as types. For a modelling of m:n
associations a new meta class Association need to be introduced, that has a
source and a target association to the meta-class Class.

– In some examples, the meta-class Classifier or Class has a Boolean attribute
ispersistent that is used to mark all objects that need to be stored in the
database. For simplicity in our transformation we transform the complete
object-oriented model into a relational model.

The effect of these simplifications will be described and discussed in the
following, when we describe the transformations in detail.

A Graphical Specification of Model Transformations 293

Fig. 6. Meta-models including the mapping relation

To transform an instance of the object-oriented meta-model into the rela-
tional model the following natural language rules(requirements/laws) are used:

– Classes correspond to Tables that have a unique Key. This Key is identical
to the id of the Class.

– Types in the relational model correspond to simple Datatypes in the object-
oriented model.

– Attributes are stored in Columns, where each Column is owned by the Table
of the corresponding Class.

To implement the transformations and consistency checks between the
object-oriented class model and the relational database model a set of triple
graph grammar rules must be created for each law. The triple graph grammar
rule for the first law, the mapping from classes to tables, has already been dis-
cussed in Section 3.2. The rule for the second law is very similar. This rule relates
each Datatype in the object-oriented model and each Type in the relational model
the same way as it is done for the first law.

To store the attributes in columns and vice versa, as requested in the third
law, we need to distinguish between attributes of a simple type and attributes
that are classes. Due to this reason, we need to specify two different TGG-rules
(cp. Figure 7). To get an impression what these rules do, we now have a look
at the forward rules, which can be generated from the two TGG-rules. The first
rule searches for all Attributes of a Class that are typed by a DataType. It then
creates a Column for each Attribute and assigns the Column to the Table of
the Class and to the Type of the corresponding Attribute. The second rule tries
to match all Attributes of a Class that refer to another Class. If this rule finds
such a match, it creates a new Column and assigns it to the Table of the Class
to which the Attribute belongs. To set the correct Type of the Attribute the Table

294 L. Grunske, L. Geiger, and M. Lawley

Fig. 7. TGG-rules for attributes and columns

of the Class is identified with the mapping relation and the association refer to
is set to the Key of this Table.4,5

5 Implementation

For specifying triple graph grammar rules we use FUJABA’s [21] TGG Plug-
in, which provides all necessary triple graph grammar concepts for specifying
model transformations. Additional, the TGG-Plug-in is open source and easily
extendable.

4 Note that before these rules can be applied it is necessary to apply the rules that
transform Classes and Datatypes. If these rules are not previously applied, the map-
ping relations are missing and the LHS of the TGG-rule can’t be matched. This
leads to an implicit specification of the ordering of the rules.

5 With the described transformations of attributes that are typed by classes, all 1:n and
1:1 associations can be transformed. To transform the m:n associations an additional
rule is necessary. This rule creates a new table for all m:n associations and stores
the links to the corresponding classes as foreign keys in this table.

A Graphical Specification of Model Transformations 295

RULE c l a s s −to−tableForward (c l a s s , cd , rdb , key , t ab l e)
FORALL Class c l a s s , ClassDiagram cd , Database rdb
WHERE cd2rcdb LINKS cd=cd , db=rdb

AND cd . conta in s=c l a s s
MAKE Key key , Table t ab l e

SET key . key=tab le ,
rdb . conta in s=tab le ,
key . name=c l a s s . id ,
t ab l e . name=c l a s s . name

LINKING c2t
WITH tab l e=tab le , c l a s s=c l a s s , key=key ;

Fig. 8. Forward Rule in Tefkat

To execute model transformations, that are specified as TGG rules, two op-
tions are provided by the FUJABA tool. As a first option, story diagrams could
be generated from TGG rules. These story diagrams can be used to generate
Java code, which enables a so called in-memory model transformation [26].

Based on this approach we have implemented a second alternative, which gen-
erates rules that can be used in the Tefkat tool [27]. Tefkat is an implementation
of the transformation language proposed by DSTC et al [23] in their response to
the OMG’s QVT RFP. It is a declarative, logic-based language with a fixpoint
semantics. It supports single-direction transformation specifications from one or
more source models to one or more target models. The transformation specifica-
tions are constructive meaning that they specify the construction of the target
model(s). There is currently no support for in-place update of models.

The Tefkat implementation is based on the Eclipse Modeling Framework
(EMF) [28] and supports transforming native Ecore models as well as those
based on MOF2, UML2, and XMLSchema. It is usable in both standalone form
and as an Eclipse plugin with a source-level debugger.

To generate Tefkat rules the TGG plug-in identifies for each object, link and
constraint its position (e.g. �left�, �map� and �right�) and its modifier
(e.g. �create� and �delete�) and fills based on this information a template for
the forward, backward and consistency checking rule. The complete algorithm
follows the basic concepts given in Section 3. As an example from the TGG rule
2 the Tefkat rule presented in Fig 8 will be generated.

6 Discussion

With the transformation example given in Section 4 we have shown that triple
graph grammars and triple graph grammar rules are suitable to specify simple
inter-model-transformations. However, we still see some problems in the applica-
tion of these triple graph transformation rules to real world transformation prob-
lems. First, the success of all transformation languages within the MDA depends

296 L. Grunske, L. Geiger, and M. Lawley

mostly on the performance of the application of the transformation rules. It is unac-
ceptable to wait several hours until all rules are applied. The most time consuming
task within the application of triple graph grammar rules, is to find all matches
of the left hand side (LHS) in an application graph. Consequently, it is necessary
to optimise the rule matching algorithms. This can be done e.g. by specifying or
identifying an optimal order in which the objects should be matched.

Another important point is an optimal support for an easy specification of
transformation rules. This includes a tool that guides the user within the spec-
ification without restricting them too much. At this point Fujaba helps a lot.
However, it can still be improved. The other aspects that comes to mind when
talking about the easy specification of a rule, is a support to reuse and to adapt
existing rules. This includes extending and superseding rules as described in [23].
To our current knowledge, there is no theoretical concept for applying inheri-
tance to graph grammar rules.

Finally, current triple graph grammar rules are only suited to model trans-
formations between one source and one target model. To solve this problem
in [29], an extension, called MDI-rules, is presented, which allows transformation
between N source models and M target models. To provide this possibility, for
each additional source or target model an additional graph production rule must
be specified. This means, that a 1-to-2 transformation must be specified with
quadruple graph grammar rules. However, in most cases these N-to-M transfor-
mations can be also specified with a set of 1-to-1 transformation rules, except
from the case of model merging (N-to-1), where not only tree-based structures
are involved [30].

7 Conclusion and Future Work

This paper describes a possible extension for the current transformation language
within the MDATM approach. This extension is based on triple graph grammars
and triple graph grammar rules, which provide a deep theoretical concept for data
integration [9] between different graph-based structures. Thus, they can easily be
adapted for model-to-model transformations [26]. An important feature of triple
graph grammar rules is the implicit creation of a correspondence graph between
the two models. This allows incremental change propagation in case one model
evolves. The practical applicability of triple graph grammars for model-to-model
transformations is presented with the well-known example of the transformation
from an object-oriented class model to a relational database model.

The main benefit of triple graph grammars is the ability to graphically spec-
ify transformation rules. However, it needs to be proven that these graphical
transformation rules are really easier to specify and to maintain. One possibility
to prove this would be with empirical studies. We are currently planning such
study with student teams that need to specify and maintain (implement new
requirements) a complex model-to-model transformation system.

Besides the benefits of triple graph grammars, we have also discussed (cp.
Section 6) the existing problems with applying TGG-rules in real-world model

A Graphical Specification of Model Transformations 297

transformation systems. Thereby, especially the extension of the theoretical con-
cepts to allow inheritance and M-to-N transformations with TGG-rules seem to
be interesting research topics. With these extensions and optimized algorithms
for matching the right hand side of a rule, we think that triple graph gram-
mars can become a useful concept for specifying and applying model-to-model
transformations within the model driven engineering paradigm.

References

1. OMG (The Object Managemant Group): MDA specifications, http://
www.omg.org/ mda/ specs.htm. (2002-2004)

2. OMG (The Object Managemant Group): OMG MOF 2.0 query, views,
transformations request for proposals (QVT RFP), http://www.omg.org/ tech-
process/ meetings/ schedule/ MOF 2.0 Query View Transf.RFP.html or
http://www.omg.org/docs/ad/02-04-10.pdf (2002)

3. Gardner, T., Griffin, C., Koehler, J., Hauser, R.: A review of OMG MOF 2.0 Query
/ Views / Transformations Submissions and Recommendations towards the final
Standard, http://www.omg.org/docs/ad/03-08-02.pdf (2003)

4. Ehrig, H., Pfender, M., Schneider, H.J.: Graph grammars: An algebraic approach.
In Book, R.V., ed.: Proceedings of the 14th Annual Symposium on Switching and
Automata Theory, University of Iowa, IEEE Computer Society Press (1973) 167–
180

5. Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.J., Kuske, K.,
Plump, D., Schürr, A., Taentzer, T.: Graph transformation for specification and
programming. Science of Computer Programming 34 (1999) 1–54

6. Fowler, M.: Refactoring - Improving the Design of Existing Code. Addison Wesley
(1999)

7. Van Gorp, P., Van Eetvelde, N., Janssens, D.: Implementing refactorings as graph
rewrite rules on a platform independent meta model. In: Proceedings of Fujaba
Days 2003. (2003)

8. Mens, T., Demeyer, S., Janssens, D.: Formalising behaviour preserving program
transformations. In: Graph Transformation. Volume 2505 of Lecture Notes in
Computer Science., Springer-Verlag (2002) 286–301

9. Schürr, A., Winter, A., Zündorf, A.: Graph grammar engineering with PROGRES.
In: Proceedings 5th European Software Engineering Conference ESEC. Volume
LNCS 989., Springer (1995) 219–234

10. Grunske, L., Geiger, L., Zündorf, A., VanEetvelde, N., VanGorp, P., Varró, D.:
Using graph transformation for practical model driven software engineering. In:
Model-driven Software Development - Volume II of Research and Practice in Soft-
ware Engineering, edited by Sami Beydeda and Volker Gruhn, ISBN: 3-540-25613-
X. (2005) 91–119

11. Becker, S., Haase, T., Westfechtel, B., Wilhelms, J.: Integration tools supporting
cooperative development processes in chemical engineering. In: Proceedings Inte-
grated Design and Process Technology (IDPT-2002), Pasadena, California (2002)

12. Drewes, F., Hoffmann, B., Plump, D.: Hierarchical graph transformation. J. Com-
put. Syst. Sci. 64 (2002) 249–283

13. Grunske, L.: Automated software architecture evolution with hypergraph trans-
formation. In: 7th International Conference Software Engineering and Application
(SEA 03), Marina del Ray, CA, USA (2003) 613–621

298 L. Grunske, L. Geiger, and M. Lawley

14. Grunske, L.: Formalizing architectural refactorings as graph transformation sys-
tems. In: Sixth International Conference on Software Engineering, Artificial In-
telligence, Networking and Parallel/Distributed Computing (SNPD05), Towson,
Maryland, USA, IEEE Computer Society, IEEE Computer Society (2005) 324–329

15. Baresi, L., Heckel, R.: Tutorial introduction to graph transformation: A software
engineering perspective. In: International Conference on Graph Transformation,
ICGT, LNCS. Volume 2505 of Lecture Notes in Computer Science., Springer (2002)
402–439

16. Habel, A.: Hyperedge replacement: grammars and languages. Volume 643 of Lec-
ture Notes in Computer Science. Springer-Verlag Inc., New York, NY, USA (1992)

17. Pratt, T.W.: Pair grammars, graph languages and string-to-graph translations.
Journal of Computer and System Sciences 5 (1971) 560–595

18. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Alge-
braic approaches to graph transformation I: Basic concepts and double pushout
approach. In Rozenberg, G., ed.: Handbook of Graph Grammars and Computing
by Graph transformation, Volume 1: Foundations. World Scientific (1997) 163–246

19. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini,
A.: Algebraic approaches to graph transformation II: Single pushout approach
and comparison with double pushout approach. In Rozenberg, G., ed.: The Hand-
book of Graph Grammars and Computing by Graph Transformation, Volume 1:
Foundations. World Scientific (1997) 247–312

20. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundamenta Informaticae 26 (1996) 287–313

21. FUJABA: (Fujaba homepage http://www.fujaba.de/)
22. Schürr, A.: Specification of graph translators with triple graph grammars. In:

Proceedings 20th Workshop on Graph-Theoretic Concepts in Computer Science.
(1994) 151–163

23. DSTC/IBM/CBOP: Second revised submission for MOF 2.0 Query / Views /
Transformations RFP, http://www.omg.org/ docs/ad/04-01-06.pdf (2004)

24. QVT-Partners: Revised submission for MOF 2.0 Query / Views / Transformations
RFP, http://www.omg.org/docs/ ad/03-08-08.pdf (2003)

25. Jahnke, J.H.: Management of Uncertainty and Inconsistency in Database Reengi-
neering Processes, Ph.D Thesis Uni Paderborn (2002)

26. Kindler, E., Rubin, V., Wagner, R.: An Adaptable TGG Interpreter for In-Memory
Model Transformation. In Schürr, A., Zündorf, A., eds.: Proc. of the 2nd Inter-
national Fujaba Days 2004, Darmstadt, Germany, University of Paderborn (2004)
35–38

27. DSTC: Tefkat: The EMF Transformation Engine, online documentation.
(http://www.dstc.edu.au/tefkat/)

28. Merks, E., Eliersick, R., Grose, T., Budinsky, F., Steinberg, D.: The Eclipse Mod-
eling Framework. Addison Wesley (2003)

29. Königs, A., Schürr, A.: Multi-domain integration with mof and extended triple
graph grammars. In: in Proceedings of the Dagstuhl Seminar 04101, Language
Engineering for Model-Driven Software Development J. Bzivin (Univ. Nantes, FR),
R. Heckel (Univ. Paderborn, DE), Dagstuhl (2004)

30. Mens, T.: A state-of-the-art survey on software merging. IEEE Trans. Software
Eng. 28 (2002) 449–462

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 299 – 315, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Horizontal Transformation of PSMs

Jamal Abd-Ali and Karim El Guemhioui

Department of Computer Science and Engineering,
University of Quebec in Outaouais (UQO),

C.P. 1250 succ. Hull, Gatineau (Quebec), H3A 2N4 Canada
{abdj01, karim}@uqo.ca

Abstract. In this last decade component technology has known a fast
expansion, initially with EJB (Enterprise JavaBeans), and more recently with
.NET. Many companies would probably not hesitate to embrace the new
technological wave of .NET components if they could recover (part of) their
investment in EJB. As it is more than probable that existing EJB applications do
not have models independent of the technological platform (PIM), we propose a
horizontal migration path between these two technologies by the definition of a
transformation which converts a model specific to EJB (PSM) into a model
specific to the .Net components. Since metamodels of these two technologies
are essential to the definition of our transformation, we use the EJB metamodel
adopted by the OMG and, for the .NET components, we propose a metamodel
of our vintage. The transformation is written in a well-defined language derived
from a submission in response to the RFP issued by the OMG to standardize the
transformation language QVT. The feasibility of the idea is illustrated with an
example.

Keywords: Model Transformation, Metamodeling, MDA, MDE, Horizontal Trans-
formation, EJB to.NET.

1 Introduction

The development of modern applications is not only characterized by the reliance on
component technology, but also by a substantial modeling activity that goes beyond the
mere documentation of the system under development, and becomes central to
production. This is achieved by the resort to code generators, and more recently, to
comprehensive conceptual frameworks based on the Model Driven Architecture (MDA)
[8, 5] defined by the Object Management Group (OMG) [11]. MDA and, more
generally, Model Driven Engineering (MDE) approaches advocate neutral design from
any technology of the moment, before the derivation of specific models for targeted
technological platforms and the automatic generation of code from these latter models.�

Now, each time that a new technology emerges by offering solutions to existing
problems and a set of supporting tools, we observe a migration towards the new
technology. The recent .Net components technology does not seem to be an exception
to this rule. While the EJB technology has a recognized metamodel [9], the .Net
components technology, to the best of our knowledge, does not have a published one
which we could use to define models specific to this platform (PSMs). Furthermore,

300 J. Abd-Ali and K. El Guemhioui

such a metamodel would allow the definition of transformation rules for an automatic
conversion between PSMs, avoiding the costly adaptation of existing applications to
the newest platform.�

In this paper, we propose a horizontal migration path between these two
widespread component technologies, by the definition of a transformation that makes
it possible to shift from a model specific to EJB (PSM) to a model specific to the .Net
components. In absence of a recognized metamodel for the .NET components, we use
our own metamodel [1], certainly perfectible and that we are ready to amend or
replace if a better proposal becomes available.�

2 The EJB Metamodel

The work of several pioneer companies in object oriented distributed computing gave
rise to a metamodel of the Enterprise JavaBeans architecture [9] which was
standardized by the OMG. The core of this metamodel is represented in figure 1.
Every EJB component is derived from EnterpriseBean which is part itself of an
EJBjar element. The latter is the root of a deployment descriptor containing, among,
other things, the required information for the deployment and management of the EJB
component. The Assembly element embodies the deployment descriptor by
organizing the information it contains according to a structure defined in the
specification of this technology.

A Session type component offers services to clients, via its public interface, and
defines methods implementing domain specific functionalities. An entity type
component models a domain concept and offers a service for managing the
persistence of the states of its instances.

Fig. 1. Main diagram of the EJB metamodel

 Horizontal Transformation of PSMs 301

The EJB metamodel encompasses other diagrams and relies on the Java
metamodel. We refer the interested reader to the official standard [9] and the latest
specification [3] for further details. �

3 A .Net Components Metamodel

The proposed metamodel has been devised with the main concern of capturing the
essential concepts and semantics of the core .Net components technology. A detailed
presentation and discussion of the metamodel can be found in [1]. In this paper, we
limit ourselves to a quick overview of the diagrams of our metamodel relevant to the
understanding of the transformation discussed later.�

3.1 Main .NET Components Diagrams

Figure 2 shows that every class implementing a .NET component must inherit from
MarshalByRefObject (MBR), and that it is generally associated to a host application,
a client application, and possibly a COM+ application offering a set of services.

Fig. 2. The .NET Components metamodel main diagram

Not shown in this figure but useful for understanding the transformation of
section 4, the metamodel comprises also an element named Attribute that represents
the Attribute concept in the .NET world. NetClass is related to Attribute with the role
name “mark”. The NetDefinedAttribute and all the metamodel elements whose names
end with “Attribute” inherit the Attribute element.

Figure 3 summarizes the main COM+ services offered to any .NET component
derived from the ServicedComponent class. A detailed explanation of the COM+
services and the .NET component technology can be found in [6], [7], and [16].

The proposed metamodel remains simple and yet comprehends the key elements of
the .Net component technology. It allows to describe the implementation of .NET

302 J. Abd-Ali and K. El Guemhioui

component based applications, as well as transformation rules targeting this
technology. It could also be used for a quick introduction to this technology, from a
software architecture perspective.

Fig. 3. COM+ Services diagram of the .NET Components metamodel

3.2 Preliminary Considerations on Transformation Characteristics

A model transformation is a process that enables the conversion of a model into
another one [8]. From an MDA viewpoint, a transformation is meant to be automated;
it consists of a set of rules, and must be written in a well-defined language that a tool
can compile and execute. Therefore, this automation implies that the models must be
written in a language that ultimately can be processed by machines.

A transformation language is characterized by the way its rules are applied, which
entails that the following elements be specified [2]:�

• The order in which the different rules are applied;
• Rule composition and structuring;
• The relationship between source and target models (same, different);
• The ability to restrict the transformation to a part of the source model;
• The traceability that records links between source and target elements;
• Directionality specifying whether the transformation can be executed in both

directions between source and target models;
• Parameterization allowing tuning and configuration of transformation rules.

 Horizontal Transformation of PSMs 303

We also need to closely examine the pivotal element of any transformation, which
is the rule. It is generally an expression of mappings between a fragment of the source
model and a fragment of the target model; and it is characterized by [2]:

• The rule application strategy to determine which match to process first, when
we have more than one match for a rule;

• Variables usage, their type and visibility;
• How to specify the matching model fragment for a rule using direct

manipulation, graph theory, etc.;
• Execution logic: imperative or declarative;
• Directionality, traceability, and parameterization at the rule level.

4 The Transformation

For both discussed technologies (EJB and .NET), each element of a PSM is an
instance of a unique element of its metamodel. Hence, we will specify each element
involved in a transformation rule, by referring to its type in the corresponding
metamodel and by imposing a filter condition on the properties of this element and on
the PSM model to which it belongs.

4.1 Expression Language

The transformation that converts an EJB PSM into a .NET PSM is made of a set of
rules. To write these rules, we use the model transformation language OpenQVT [10]
as implemented by the actual syntax of the ATL tool [15] which, in its turn, supports
the standardized Object Constraint Language [12]. The following ATL syntactic
details will help in the reading of the proposed rules:

• The ATL compiler is case sensitive regarding source code and file names
• The name of a rule must be unique within its scope
• The symbol ! denotes the scope operator ; the symbol -- denotes a comment
• A value assignment is done via the left arrow operator <-
• Two assignment values in a row are separated by a comma,
• The symbol # at the beginning of a string indicates that the string represents an

enumeration member
• To navigate from an element to its attribute, write the element name followed

by a dot, then the attribute name
• To express string concatenation use the operator +
• Literals are expressed between quotes “ ”
• Filter conditions are expressed in OCL

To express the definition of a transformation rule, we use the following syntax:

rule R {
 from s : name-meta-source!el-s (cond)
 to t : name-meta-target!el-t

(-- sequence of value assignments to populate

304 J. Abd-Ali and K. El Guemhioui

 -- newly created element
 -- e.g.; title<-s.title,name<-s.name + “new”)

 }
With:

R: name of the rule.

name-meta-source : name of metamodel of source model.

el-s: name of a metamodel element. Instances of this element will be, in turn,
subjected to the rule R.
s: local name of el-s instance (being processed by R) occurring in the source
model.

cond : filtering condition on source instances input to the rule R.

name-meta-target :name of metamodel of target model.

t: local name of instance created as output to the rule R.

el-t: name of metamodel element to instantiate in target model, whenever an
instance s occurs in the source model.

Besides rules, one can specify actions to be triggered at the beginning of the

transformation or of some rule. Such actions are defined in a block of code with an
init header. Note that init as well as other elements of OpenQVT are currently not
directly supported in ATL.

The following notations will help simplify the expression of our transformation
rules:

EJB : The EJB metamodel.
Java : The Java metamodel.
Net : The .Net Components metamodel.
in : the source model.
out : the target model.

In OpenQVT, the "Net::UseDefaultValue := true" declaration means that the
creation of an element causes the creation of all of its owned elements initialized to
their default values. This declaration will be implicit in the formulation of our
transformation rules.

If A and B are two metamodel elements related by an association, the navigation at
the model level, from an instance a of A to an instance b of B, uses the name of the
role played by B in the association. If no role name is explicitly mentioned in the
association, the name B is then used. Hence, a.B = a.roleOfB = b.

Moreover, the names of the instances following the keywords from and to will be
used as names of variables visible inside the same rule they are declared in.

These last two syntactic uses are not supported by ATL, but facilitate the reference
to model elements within the same rule, and the efficient formulation of the
transformation rules.

4.2 Mapping of Java Primitive Elements

We recall that the EJB metamodel builds upon the Java metamodel, and therefore one
must define .NET mappings for primitive Java elements (Class, Field, Method,

 Horizontal Transformation of PSMs 305

Interface, Parameter), without getting lost in subtleties inherent to the respective
technologies and beyond the scope of this work. For simplicity and due to the semantic
coincidence of the concepts of class, field, type, and parameter in the two worlds (Java
and .NET), we will be content with the Java metamodel to provide the expression
language for their counterparts in .NET. Though, to avoid any confusion, the Java class
type will be called JavaClass, and the .NET class type will be called NETClass.

Furthermore, the Java primitive types will keep the same names in .NET, except
for the Java boolean type which is called bool in .NET. We also adopt the Java
modifier default values for the Field, Method, and Class elements of .NET.

4.3 Transformation Rules

The rules are briefly explained in natural language, and then formulated in the ATL
syntax previously introduced. In our explanations in natural language, we use the
symbol = to mean assignment of value as well as a reference to an element of the
source model implying an equality with its mapping by the transformation rule. We
have defined a total of 13 transformation rules, but for lack of space, we only show
the rules involved in the example at the end of the paper.

Rule 1. COMplusApplication - If the source model contains at least one instance of
type EJBJar, we create in the target model one instance of COMplusApplication, we
call Comp, with:

o The attribute name is set to “Comp”
o We create an instance appAct of the ApplicationActivationAttribute

element and set its activationOption attribute to Server.
o We create an instance as of Assembly ; as is associated to Comp and

appAct.
o We create an instance appAc of ApplicationAccessControl, associate it

to as, and set the following attributes:
 Enabled = true
 AccessCheckLevel = ApplicationComponent
 Authentication = Connect
 ImpersonationLevelOption = Default

rule R1 {
from jar : EJB ! EJBJar (jar = EJBJar.allInstances() ->asSequence()->first())
-- the filter is set so as to select only the first instance of EJBJar
to as : Net ! Assembly
to Comp : Net ! COMplusApplication (name <- “Comp”, Comp.Assembly <-as) ,
to appAC : Net ! ApplicationAccessControl (enabled <- true,
 accessCheckLevel <- #ApplicationComponent ,
 authentication <- #Connect, impersonationLevelOption <- #Default , Assembly <- as),
to appAct : Net!ApplicationActivationAttribute (activationOption <- #Server, Assembly
<- as)
}

Rule 2. Application, LifeTime, Channels, Channel and Service – If the source
model contains at least one instance of type EJBJar, we create and initialize in the

306 J. Abd-Ali and K. El Guemhioui

target model, instances of NetApplication, ConfigurationFile, Application, LifeTime,
Channels, Channel and Service.

rule R2 {
-- create instances of Application, NetApplication, and ConfigurationFile
from jar : EJB!EJBJar (jar = EJBJar.allInstances()->asSequence()->first())
-- the filter used allows to select only the first instance of EJBJar, if it exists.
to app : Net!NetApplication () ,
to conf : Net!ConfigurationFile (configure <- app),
 to appElement : Net!Application (owner <- conf),
to chs : Net!Channels (owner <- appElement),
to ch : Net!Channel (owner <- chs, ch.ref <- “tcp’’, ch.port <- 8010),
-- 8010: arbitrary choice; can be changed by whoever executes
-- the transformation
to lf : Net!LifeTime (lf. LeaseTime <- “1 H”, -- 1 H means one hour
-- arbitrary choice
 lf.SponsorshipTimeout <- “1 H”,
 lf.RenewOnCallTime <- “1 H”,
 lf.LeaseManagePollTime <- “1 H”,
 owner <- appElement),
to serv : Net!Service (owner <- appElement)
}

Rule 3. Bean Session stateful or stateless – For each instance S of EJB Session, we
create:

o An instance SC of .NET ServicedComponent, with:
• name of SC corresponding to S.remoteInterface.name
• If S.sessionType = Stateful, the attribute CanBePooled of SC

is set to false
• If S.sessionType = Stateless, the attribute CanBePooled of SC

is set to true
• SC.associatedto = the unique instance Comp of

COMplusApplication already created
• SC.netApplication = the unique instance of NetApplication

o An instance opa of ObjectPoolingAttribute, with:
• enabled = true
• creationTimeout = 5
• maxPoolSize = 10
• minPoolSize = 0
• opa.mark = S

o An instance act of Activated and we associate it to the unique instance
of Service already created, with:

• act.Service = the unique instance of Service already created
by rule 2

• act.ref = “tcp://localhost:8010” - This arbitrary value can be
adjusted by whoever executes the transformation.

• act.type = SC.name + “,” + SC.name

 Horizontal Transformation of PSMs 307

o An instance syn of SynchronizationAttribute, with :
• syn.synchronizationOption = #Required
• syn.mark = SC – mark being the role name of any element

with regard to the attribute that affects it.

Below, the formulation of this rule and of the pooling function it uses:

-- We start by defining an operation on the instances of Session.
helper context EJB!Session
def : pooling () : Boolean = if sessionType = #Statless true else false;

rule R3 {
from S : EJB!Session
to SC : Net!ServicedComponent (CanBePooled <- S.pooling(), name <-
S.remoteInterface.name,

SC.associatedto = l’unique instance Comp, SC.netApplication <-
NetApplication.allInstances()),

to opa : Net!ObjectPoolingAttribute (opa.enabled <- true, opa.creationTimeout <- 5,
opa.maxPoolSize <- 10, opa.minPoolSize <- 0, opa.mark <- S)

to act : Net!Activated (owner <- Service.allInstances (),
-- Only one instance of Service is created

ref = “tcp://localhost:8010”, type <- S.ejbClass.name + “,” + S.ejbClass.name),
to syn : Net!SynchronizationAttribute (syn.synchronizationOption <- #Required)
}

Note that we created a .NET instance of ObjectPoolingAttribute for an EJB instance S
regardless of its sessionType. If the latter is stateful, this creation is not necessary. To
avoid this systematic creation, we can resort to helpers or we can define two different
rules selectively targeting the Session instances according to the value of their
sessionType attribute.

Rule 4. ContainerManagedEntity – In order to create in .Net a pattern that
represents an Entity bean whose persistence is managed by the EJB container, we
apply a rule that creates for each instance of ContainerManagedEntity, a component
SC of type ServicedComponent which is at the disposal of calling clients, and which
declares a serializable class (class name with suffix “_Serializable”) holding all the
fields whose persistence we want to manage. An instance att of .NET Attribute will
contain the information on the primary key fields, and will be associated to the SC
component to supply it with all this information.

After that, the management of persistence becomes easy by using a DBMS (e.g.;
SQLServer) supporting the persistence management of serializable class objects in
XML format.

The mapping detailing this rule is as follows:
 For each instance ent of EJB ContainerManagedEntity, we map:

o An instance ESerial of Netclass containing the persistent fields, with:
• NetDefinedAttribute.name = “Serializable”
• name = ContainerManagedEntity.remoteInterface.name +

“_Serializable”

308 J. Abd-Ali and K. El Guemhioui

o An instance SC of ServicedComponent associated to
COMplusApplication and NetApplication instances, with:

• name = ContainerManagedEntity.remoteInterface.name
• CanBePooled = true
• Maping methods of remote and home interfaces
• We create an instance act of .NET Activated with :

 act.Service = the unique instance of Service already
created by rule 2

 act.ref = tcp://localhost:8010
 act.type = SC.name + “,’’ + SC.name

o An instance opa of ObjectPoolingAttribute with :
• enabled: true
• creationTimeout = 5
• maxPoolSize =10
• minPoolSize =0
• opa.mark = SC

o An instance kNames of .NET Attribute with:
• Creation of an instance f of .NET Field
• f.name = “KeyFieldsNames”
• f.type = String
• The created field f will be used to store the set of all the names of

the primary key fields of the entity. This set of names can be
represented by the value:

ent.keyFor ->iterate(att : Field, acc :String =“” |acc + att.name + “,”)
• kNames.mark =SC

We have created an Attribute which marks SC and supplies it
with the names of the primary key fields separated with commas.
An instance syn of .NET SynchronizationAttribute with:

• syn.synchronizationOption = Disabled if syn.isreentrant = true ;
otherwise is will be equal to #Required.

• syn. mark = SC

Rule 5. References to other components – For every instance eref of EJBRef, we
create an instance cref of .NET CompRef, with:

o the corresponding descriptions
o cref.type = eref.remote

We associate eref to the SC instance and specify that:

o CompRef.owner maps to cref.ejb

Other rules: The complete transformation definition comprehends many more rules
that handle other elements and concepts of the EJB metamodel. However, in the
context of this work, we voluntarily limit our explanations to the above shown main
set of rules that illustrate our approach.

 Horizontal Transformation of PSMs 309

5 Discussion

When writing our transformation rules, we were aware of the fact that an EJB bean
can never become a straight .NET component. We rather tried to produce a target
.NET PSM that permits to meet the functional and nonfunctional requirements of the
system described in the source PSM. Divergences between source and target must be
confined to details collapsed in the models. We set forth the two following criteria to
guide us in the development of the transformation rules.

• Do not to alter the business logic conveyed in the source PSM. Indeed, we
can easily notice that the EJB metamodel deals primarily with the
structural part of the business model, leaving aside implementation details.
Hence, our transformation produces a PSM which preserves for each
component the fields, interfaces, and references to other components or
resources.

• Ensure that the target model represents .Net components that benefit
from middleware services comparable with those provided by the EJB
model.

Table 1. Main EJB technological concepts and corresponding elements in .Net

EJB Concepts Corresponding
Elements in .Net

Components Metamodel

A component passes a reference
to a distant caller which then
disposes of a proxy that appears
like a local instance of the
component.

MarshalByRefObject

Remote
access

A component has a JNDI name. Service, Channel,
Activated, WellKnown

Security Role based security with
checking at the application,
component, method, and
interface level.

SecurityRoleAttribute can
be associated to different
elements.

Instance
management

Pooling, passivation of inactive
instances, lifetime.

ObjectPoolingAttribute,
JITA, ILeaseObject,
LifeTime, SingleCall,
Singleton

Transactionnel
behavior
management

There are several choices to
determine how to reconcile
between the transactional context
of the client and that of the
component.

TransactionAttribute and its
attributes.

310 J. Abd-Ali and K. El Guemhioui

Synchroniza-
tion and
reentrance

Container guarantees a queuing
of the calls to a session instance.

Reentrance is not recommended
but always allowed.

SynchronizationAttribute
and the allowed options via
its synchronizationOption
attribute.
Reentrance can be allowed
by setting the value of
synchronizationOption to
disabled. The resulting
lack of synchronization is
worse than reentrance with
respect to data consistency
that can be controlled at the
DBMS level.

Persistence ContainerManagedEntity allows
the storage of its attributes on a
permanent support by using a
service offered by the container
and transparent to the developer

The DefinedNetAttribute
whose name is Serializable
represents an attribute
supporting the serialization
of objects, in XML format.
On the other hand,
SQLServer allows requests
or updates by handling
serialized objects in XML
format. Thus, we always
end up with persistence
controlled by program, but
which directly handles the
storage of the instances of
the serializable class
associated to the
ServicedComponent.

Note also that we limited ourselves to a target model comprising only one .Net
application and one COM+ application, in order to concentrate on the component
characteristics, regardless of the site in which it is running or the number of
applications that can reuse it.

The target model does not store EJB transaction management information if the
instances of MethodTransaction (related to an EntrepriseBean via MethodElement) do
not share the same transactionAttribute value which means that the methods of the
same bean have different managements of their transactional behavior. This is due to
the fact that the management of transactions in the .NET metamodel is configurable at
the component level rather than at the method level.

A developer must also resort to tricks to overcome the fact that a class derived
from ServicedComponent does not support a constructor with parameters. For
example, we can take advantage of the create method in the home interface of an EJB

 Horizontal Transformation of PSMs 311

bean entity and map it, via the transformation, to a .NET initialization method
accepting parameters.

The point is that despite the restrictions in our current definition of the
transformation, it is always possible to circumvent them or deal with them via a tool
which supports a parameterization of the transformation rules and which offers a user-
friendly interaction with the user.

Finally, we need to raise the issue of the reverse transformation from a .NET
PSM to an EJB PSM. Obviously, our rules are far from being symmetrical to
support a straightforward deduction of their inverse, especially when they associate
one EBJ element to several .NET elements. Furthermore, in our initial attempts to
define a reverse transformation, we experienced a significant loss of information
due mainly to the fact that the standardized EJB metamodel does not preserve the
fine granularity of the abstracted EJB services (e.g.; timeOut, poolSize in
EnterpriseBean container).

6 Testing the Transformation

We illustrate the workings of our transformation through a model representing an
ecommerce application similar to the broadly published Pet Store example. Our
example, borrowed from [4], consists of a virtual web shop selling goods that clients
can order.

The EcommerceSession bean is the EJB component ready to handle client
application users. It authenticates a user and offers several services allowing the
latter to fill her shopping cart and order the goods in it. This bean being stateful, its
object instance keeps the information about its interactions with users until the end
of its lifetime. The bean Person assists our Session bean in managing user data
persistency. It allows the creation of new instances and of requests to existing ones.
To manage the persistency of information related to orders, we can use Entity beans
representing the orders, the order lines, the goods data, etc. However, to stay
focused on the EBJ metamodel transformation rather than on the accuracy of the
application, we limited ourselves to a Session bean interacting with a client and
using another Entity bean (implicitly assuming a direct interaction between the
Session bean and a DBMS).

Figure 4 shows the EJB PSM source model. With respect to notation, an instance
of a Method or Field element is represented in the same way we represent an
operation in UML. An instance of an element called X in the metamodel is
represented as a UML class with the stereotype <<X>>.

Figure 5 shows the .NET PSM target model produced by our transformation.
The circled numbers on the figure indicate the name of the rule applied to create
the annotated element. Notice that the output model can be shown in one
diagram but for paper size and readability we choose to divide it in three
diagrams.

312 J. Abd-Ali and K. El Guemhioui

Fig. 4. EJB PSM for the ecommerce application

13

2

53

3

 Horizontal Transformation of PSMs 313

Fig. 5. .Net PSM produced by the transformation (three diagrams)

1

2
1

4

4

4

44

3
4

2
2

2 2

2

2

2

1 1

4

4

314 J. Abd-Ali and K. El Guemhioui

7 Conclusion

The proposed .Net Components metamodel can be considered a first step towards a
standardized metamodel comparable with that of Enterprise JavaBeans. This
standardization of metamodels is crucial to fully benefit from a model driven
engineering approach, since the latter provides the appropriate language for the
writing of PSMs essential to the definition of model transformations.

We believe that the definition of a horizontal transformation of PSMs between two
widespread technologies (namely, EJB and .NET) is beneficial to developers wishing
a diversification of their technology or migration to the other technology at a cut-price
cost. Hopefully, this work should open the door to other initiatives of metamodeling
and transformation definitions targeting other technologies.

A logical continuation of this work is the development of a code generator based
on the .NET metamodel. Another extension will be the definition of the two vertical
transformations which will make it possible to convert a PIM written in an EDOC
UML profile [13] into PSMs specific to EJB and .Net, respectively.

Another interesting issue to investigate would be to compare and contrast our
horizontal transformation from PSM to PSM with an approach in which the original
PSM is first reversely transformed into a PIM, then this latter transformed into the
target PSM.

Finally, the contribution of metamodeling to the software development process is
still far from its full potential, partly due to a lack of tools and standards. We hope
that future work will provide relevant technologies metamodels as well as integrated
development environments open to these metamodels, and supporting the edition and
automated transformation of models.�

References

1. Abd-Ali, J., K. El Guemhioui. “An MDA-Oriented .Net Metamodel”, 9th IEEE
International EDOC Conference (EDOC 2005), Enschede, The Netherland, Sept. 2005.

2. Czarnecki, K., S. Helsen. “Classification of Model Transformation Approaches”. 2nd
OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven
Architecture, Anaheim, CA, October 2003.

3. EJB Specifications from Sun http://java.sun.com/products/ejb/docs.html
4. Fauré, A., N. Soukouti. EJB 2.0 Mise en oeuvre. Dunod. 2002.403 p.
5. Kleppe, Anneke, Jos Warmer, Wim Bast. MDA Explained - The Model Driven

Architecture : Practice And Promise. Addison-Wesley, 2003. 170 p.
6. Lowy, Juval. COM and .NET Component Services. O'Reilly, 2001. 384 p.
7. Lowy, Juval. Programming .NET Components. O'Reilly, 2003. 459 p.
8. OMG: MDA GUIDE Version 1.0.1 document number omg/2003-06-01 available at

http://www.omg.org/docs/omg/03-06-01.pdf
9. OMG. Metamodel and UML Profile for Java and EJB Specification. February 2004.

Version 1.0, formal/04-02-02. An Adopted Specification of the Object Management
Group, Inc.

10. OMG: MOF 2.0, Query/Views/Transformation. ad/2002-04-10, Revised Submission,
Version 1.0, 2003/08/18, OpenQVT; available at http://www.omg.org/docs/ad/03-08-
05.pdf

 Horizontal Transformation of PSMs 315

11. OMG : Object Management Group. www.omg.org
12. OMG : OCL Response to the UML 2.0 OCL RfP (ad/2000-09-03). Revised Submission,

Version 1.6. January 6, 2003. OMG Document ad/2003-01-07; available at
http://www.omg.org/docs/ad/03-01-07.pdf

13. OMG: UML Profile for EDOC. Available at http://www.omg.org/technology/documents/
modeling_spec_catalog.htm#UML_for_EDOC

14. Sun Microsystems, Enterprise JavaBeans. http://java.sun.com/products/ejb/
15. The ATL language definition page web - Available at http://www.sciences.univ-

nantes.fr/lina/atl/atlProject/languageDefinition/
16. The Microsoft Developer Network (MSDN). Available at http://msdn.microsoft.com/

library/default.asp

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 316 – 330, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Automatic Support for Traceability in a Generic Model
Management Framework∗

Artur Boronat, José Á. Carsí, and Isidro Ramos

Department of Information Systems and Computation,
Polytechnic University of Valencia, Camí de Vera s/n, 46022 Valencia-Spain

{aboronat, pcarsi, iramos}@dsic.upv.es

Abstract. In a MDA process, software artifacts are refined from the problem
space (requirements) to the solution space (application). A model refinement
involves the application of operators that perform tasks over models such as
integrations and transformations, among others. We are working on a model
management framework, called MOMENT (MOdel manageMENT), where
model operators are defined independently of any metamodel in order to
increase their reusability. This approach also increases the level of abstraction
of solutions of this kind by working on models as first-class citizens, instead of
working on the internal representation of a model at a programming level. In
this context, traceability constitutes the mechanism to follow the
transformations carried out over a model through several refinement steps. In
this paper, we focus on the generic traceability support that the MOMENT
framework provides. These capabilities allow the definition of generic complex
operators that permit solving specific problems such as change propagation.

Keywords: Model-Driven Architecture, Model Management, traceability, software
maintenance.

1 Introduction

Traceability is an important issue in environments where there is a process chain. In
these cases, information about each step in the chain may be stored for further
processing. For example, in the automotive industry, traceability makes recalls
possible; in the food industry, it contributes to food safety; in the Software
Engineering field, it provides support for requirements validation and improves the
quality of the software development process.

In any scenario of the Software Engineering field, there is a manipulation of a
software artifact. The capability of describing and querying the manipulation that has
been performed on a specific artifact might be relevant to correlated tasks. However,
traceability still remains in the background when software engineering problems are
solved. It is often misunderstood and burdensome due to the lack of tools that provide
full automatic support for it [1, 2].

∗ This work was supported by the Spanish Government under the National Program for

Research, Development and Innovation, DYNAMICA Project TIC 2003-07804-C05-01.

 Automatic Support for Traceability in a Generic Model Management Framework 317

In the Model-Driven Architecture initiative [3] (MDA), a software artifact is
viewed as a model. Typical tasks, such as code production, integration of
applications, interoperability between applications, are performed on models directly.
This allows the user to work at a conceptual level, and makes the identification of the
elements needed to automate these tasks easier. These tasks are pervasive in many
scenarios and are usually solved in an ad-hoc manner.

Following this model-driven approach, a new discipline, called Model
Management, was proposed in [4]. This discipline considers models as first-class
citizens and provides a set of generic operators to deal with them: Merge, Diff,
ModelGen, etc. These operators provide a reusable solution to the tasks described
above so that the user deals directly with models, rather than working on the internal
representation of a model at a programming level. Several approaches to this
discipline [5, 6] specify operators that are based on mappings to deal with models. A
mapping is a relationship between an element of a domain model and an element of a
range model that indicates that they represent the same element in different models.
This means that mappings between two models must be explicitly defined in order to
apply an operator to them.

Using our experience in applying the algebraic specification formalism to solve
actual software engineering problems [7, 8], we are working on a model management
framework called MOMENT (MOdel manageMENT). In our approach, we represent
the relationships between two models in an implicit manner by means of an
equivalence morphism that is defined between two metamodels. Our approach
describes equivalence relationships between two models from a more abstract and
reusable point of view. However, explicit mappings between two models are also
beneficial when there is no definition of the equivalence morphism between two
metamodels. We refer to mappings of this kind as traceability links.

In this paper, we focus on the automatic traceability support that is provided by our
framework from a generic point of view. We define what a traceability model is in
this setting and how they can be used to provide traceability support in many different
scenarios: requirements, workflows, ontologies, etc. We also show how traceability
support contributes to automate solutions such as the software maintenance.

The structure of the paper is as follows: Section 2 reviews the traceability
management studies that have been performed in the Requirements Engineering field;
Section 3 provides an example to illustrate the use of traceability; Section 4 provides
an overview of our model management approach; Section 5 details the generic
traceability support that is provided in our framework; Section 6 solves the problem
of the case study with our model management operators; Section 7 presents some
related work; finally, Section 8 summarizes the main features of our approach.

2 The Traceability Problem in Requirements Engineering

In Requirements Engineering, the IEEE Guide to Software Requirement
Specifications [9] indicates that a software requirements specification is traceable if
the origin of each requirement is clear and if it facilitates the referencing of each
requirement in future development or enhancement documentation.

318 A. Boronat, J.Á. Carsí, and I. Ramos

Based on this definition, Gotel and Finkelstein [10] described requirements
traceability as the ability to describe and follow the life of a requirement, both
forwards and backwards, through all the refinement steps in a software development
process. Queries of this kind allow the user to know what refinements have been
applied to a requirement (in a forward direction), and permit the identification of a
requirement from a more specific software artifact such as code (in a backward
direction). Therefore, traceability can be used for requirements validation and for
providing support for software maintenance. Traceability also provides economic
leverage as it details how the system has been developed and avoids the redundant
development of certain parts.

To achieve traceability in a software development process, several tasks should be
taken into account [2]:

1. Trace definition, to indicate the kinds of objects in our system that can be traced
and what information is going to be defined in a trace.

2. Trace production, to indicate what activities, actions, decisions and events
happening during software development generate traces for further use.

3. Trace extraction, to indicate how the traces produced in the previous task can be
queried in order to achieve certain goals, such as requirements validation or
software maintenance.

4. Trace verification, to maintain the integrity of the set of objects and traces.

There are many tools that provide requirements traceability management [11]. To
provide efficient traceability management, these tools must resolve certain problems
that are present in the industrial setting:

− The lack of a common guideline that describes how to define a traceability model
through a well-defined metamodel and how to use it; for example, the way the
UML standard provides support to object-oriented modeling. This is due to the
variable nature of the traceability capture and use [2], which varies from one
organization to another, from one project to another and even from one stakeholder
to another.

− The establish and end-user conflict [10], where trace providers and users have
different goals and priorities.

− The use of heterogeneous tools to define and manipulate the software artifacts
involved in a software development process. Thus, the interoperability issue arises
as an important feature to be taken into account in a traceability management tool.

These tools are also implemented in an ad-hoc way for the requirements
traceability problem without taking into account that the same functionality can be
used in other contexts.

3 A Software Maintenance Case Study: Change Propagation

In this case study, we use the change propagate scenario that was introduced in [5].
We illustrate it by means of a specific example shown in Fig. 1. We have defined the
information structure of an application in a XML schema (XSD). To build a new

 Automatic Support for Traceability in a Generic Model Management Framework 319

Fig. 1. An example of change propagation

application that stores the information in a relational database, we reuse the
metainformation that describes the XML schema. By applying a transformation1
mechanism (step 1), we obtain the new relational database (RDB). The transformation
mechanism also generates a set of links between the new generated RDB relational
schema and the source XML schema in order to provide traceability support
(mapXSD2RDB).

After obtaining a semantically equivalent relational database from the original
XML schema, we continue with the development of the new system. This may
involve changes in the application and in the database (step 2), obtaining the
relational schema (RDB’). These changes are traced and stored by the tool that
manages the model manipulation or by the user directly (mapRDB2RDB’).

Once the new system is developed, changes may occur in the requirements of the
system, requiring modifications. It is easier to extend the XML schema than to modify
the RDB database. At this point, the application of the transformation mechanism
used in step 1 will discard the changes applied from RDB to RDB’.

A solution to this change propagation example can be performed by using model
management operators, as shown in Section 6. In our approach, traceability links are
used to automate the propagation of changes that were applied to the RDB relational
schema, for the new system C.

4 The MOMENT Framework: A MOdel manageMENT
Environment into Eclipse

The MDA initiative of the OMG consists of a family of standards that indicate how to
define and how to use models to develop software applications in a MDE setting.
Application integration and interoperability are two goals of this initiative, as
indicated in the request for proposals for the new standard Query/Views/

1 We use the term ‘model transformation’ for the mechanism that translates a model between

two different metamodels.

XML Schemas

Task

code

description

priceXSD’

Invoice
code

date

Item

id

descriptor

duration

XSD
RDB

Invoice

PK code

 date

InvoiceLine

PK,FK1 id

 description
 duration
FK2 task
 workers

Task

PK code

 description
 price

Invoice

PK code

 date

InvoiceLine

PK,FK1 id

 description
 duration
 workers

RDB’

C

Relational Schemas

?

(step 1)
automatic

transformation

(step 2)
changes

mapXSD2RDB mapRDB2RDB’

Invoice

PK code

 date

InvoiceLine

PK,FK1 id

 descriptor
 duration

320 A. Boronat, J.Á. Carsí, and I. Ramos

Transformations [12]. Nevertheless, to achieve interoperability between applications,
bridges built between them are still ad-hoc.

We are working on the application of the model management trend in the context
of MDA. We have developed a framework, called MOMENT (MOdel
manageMENT), which is embedded in the Eclipse platform. It provides a set of
generic operators to deal with models through the Eclipse Modeling Framework
(EMF) [13]. EMF provides a close implementation to the MDA guidelines. This
framework enables the automatic importation of software artifacts from
heterogeneous datasources: UML models (by means of visual modeling
environments), relational schemas of any relational database management system
(through the Rational Rose tool) and XML schemas. Moreover, third-party
researchers and developers are bringing new tools to work on ontologies through
EMF [14, 15] and graphical Domain Specific Languages [16, 17]. Therefore, EMF
has become an industrial framework for MDA.

4.1 Bridging the EMF and the Maude Technical Spaces

The concept of technical spaces (TS) was introduced by Kurtev et al. in the discussion
on the problem of bridging different technologies [18]. A technical space is a working
context with a set of concepts, a body of knowledge, tools, required skills, and
possibilities [19]. For example, we use the EMF and Maude technical spaces for our
framework. The EMF is characterized by its interoperability with industrial tools for
solving actual Software Engineering problems. Maude constitutes the formal
backbone for our model management approach.

The algebra of operators, which was proposed by Bernstein [20] to deal with
models and mappings between models as first-class citizens, has been adapted and
directly specified as a generic algebra by using the algebraic specification formalism
Maude [21] in the MOMENT framework. This algebraic specification language
belongs to the OBJ family, and its equational deduction mechanism animates the
specification of an operator over a piece of data, providing the operational semantics
for our model management operators. We have developed a plug-in that embeds the
Maude environment into the Eclipse framework so that we can use it for our purposes.

In [7, 8], we envisioned the advantages of applying this formalism to solve actual
problems in MDA such as model transformation. To fulfill this goal, we have defined
two bridges between both technical spaces, at the M2-layer and at the M1-layer (using
the Meta-Object Facility [22] terminology). Both of them permit the integration of
MOMENT with EMF.

We have defined a projection mechanism at the M2-layer that obtains the algebraic
specification2 that corresponds to a specific metamodel automatically, by applying
generative programming techniques. The inverse projection mechanism that obtains
an EMF metamodel from an algebraic specification is not interesting in our tool,
because the algebraic specification must conform to several features in order to be

2 The algebraic specification that is generated for a given metamodel (defined in EMF as an

Ecore model) permits the representation of models as algebraic terms. Thus, models can be
manipulated by our model management operators. Algebraic specifications of this kind do not
specify operational semantics for the concepts of the metamodel, they only permit the
representation of information for model management issues.

 Automatic Support for Traceability in a Generic Model Management Framework 321

used by our operators, and they should be automatically achieved. We also think that
visual modeling environments are more suitable to define such metamodels.

At the model level, we have developed a bidirectional projection mechanism that
permits us to project an EMF model as a term of an algebra and to project an EMF
model from a term. In this case, the bidirectionality is needed to apply an operator to
an input model, since the input model must be serialized as a term and the output term
must be deserialized into an EMF model in order to be persisted.

4.2 Operators

In MOMENT, operators are defined in a parameterized module called MOMENT-OP.
In this way, operators are defined generically. To apply these operators to specific
models, this module must be instantiated by passing a metamodel as actual parameter.
This task is automatically performed by the MOMENT tool.

To understand the solution that is given for the change propagation example in
Section 6, we informally present some of the model management operators that we
use in our approach by indicating their inputs, outputs and semantics:

1. Cross and Merge
These operators correspond to well-defined set operations: intersection and disjoint
union, respectively. Both operators receive two models (A and B) as input and
produce a third model (C). The Cross operator returns a model C that contains
elements that participate in both the A and B input models; while the Merge
operator returns a model C that contains elements that belong to either the input
model A or the input model B, deleting duplicated elements. Both operators also
return two models of links (mapAC and mapBC) that relate the elements of each
input model to the elements of the output model.
Example: <C, mapAC, mapBC> = Cross(A,B).

2. Diff
This operator performs the difference between two input models (A and B). The
difference between the two models (C) is the set of objects in model A that does
not correspond to any element in model B.

3. ModelGen
ModelGen performs the translation of a model A, which conforms to a source
metamodel MMA, into a target metamodel MMB, obtaining model B. This
transformation implies dealing with two metamodels. This is perfectly feasible in
our approach due to the modularity and reusability that algebraic specifications
provide. This operator also produces a model of links (mapAB) relating the elements
of the input model to the elements of the generated model.
Example: <B, mapAB> = ModelGenMMA2MMB(A).

5 Traceability Support in Model Management

All the definitions of Requirements Traceability stated in Section 2 have one feature
in common: a trace provides information about a task that has been performed on a
source software artifact in a software development process, and relates it to the
resulting software artifact. Traceability support must provide both the mechanism that

322 A. Boronat, J.Á. Carsí, and I. Ramos

is needed to define traceability links and the query functionality that permits link
navigation. In this section, we define traceability in MDA through a model
management lens, and we present a set of operators that provide traceability support
in the MOMENT framework.

5.1 Generic Traceability Management

A MDA process consists of a sequence of operations performed over a set of models.
These models conform to a metamodel and represent specific software artifacts.
Operations such as model integration or model transformation can be directly
supported by simple model management operators (Section 4.2). Other operations,
such as the change propagation mechanism of the case study, can be specified as a
complex operator made up of other operators.

Each simple operator carries out a manipulation over a set of input models. To
fulfill this, the operator invokes a function that is defined at the metamodel level. The
semantics of this function is defined axiomatically in equational logic, and each one
of its axioms is called a manipulation rule. To register the task performed over a
model, each operator automatically produces a set of links between the elements of a
source model and the elements of the resulting model. Such links are stored as models
and are used to provide support for traceability.

Following the model management approach, we define Generic Traceability
Management as two main issues:

1. The definition of a traceability metamodel to indicate the information needed to
link the elements of two different models that can belong to different metamodels
in a specific context. The detail of the metamodel depends on the common
understanding of the traceability management in a specific society. For example, a
generic traceability metamodel may be described for the Requirements Engineering
field, although it seems more feasible to define a traceability metamodel for each
organization or even each project.

2. A mechanism to extract information from a traceability model independently of the
metamodel used. This mechanism is made up of two kinds of operators:
− Query operators that provide forward and backward navigation through a

traceability model.
− Traceability management operators to manipulate the traceability models in

order to automate the reasoning over traceability links. For instance, the
Compose operator permits chaining traceability links in order to make implicit
traceability links explicit; and the Match operator permits the inference of
traceability models between two models. Furthermore, a traceability model can
also be manipulated by model management operators.

5.1.1 Definition of the Traceability Metamodel
To define the traceability metamodel, the user can use the UML notation. This work
is done by the user for a specific working context. For the case study, we have
specified a traceability metamodel which basically provides the constructs needed to
relate elements of a domain model to elements of a target model, independently of
their metamodels. In Fig. 2, we show the part of the MOMENT framework
metamodel that concerns the traceability support.

 Automatic Support for Traceability in a Generic Model Management Framework 323

Fig. 2. The default traceability metamodel of the MOMENT framework

In our specific metamodel, the TraceabilityModel class is the root element of the
package. It allows us to define traceability models. An instance of the TraceabilityModel
class contains: information about the storage of both the domain and the range model
(represented by the interface ecore::Resource); which element of each model is the
root (by means of the domainContainer and rangeContainer roles); the operator that
has been applied to the domain model; and the links that constitute the traceability
model.

The TraceabilityLink class indicates how to define a relationship between a set of
elements of the domain model and a set of elements of the range model (by means of
the domain and range roles). Each link is associated to the step of the model
manipulation task that has produced it (through the manipulationRule role). In the
metamodel of the figure, ecore::Resource and ecore::EObject refer to the interface
org.eclipse.emf.ecore.resource.Resource and to the class org.eclipse.emf.ecore.EObject,
respectively. The former permits access to a model stored physically. The latter permits
access to any element of an EMF model so that any model defined by means of the
EMF can be dealt with. The Operator class represents an operator that is defined
algebraically in MOMENT. The ManipulationRule class defines the information
needed to specify an axiom for the manipulation function used by the simple
operators.

By applying the projection mechanism defined between the EMF TS and Maude
TS, we obtain the algebraic specification of the traceability metamodel. This means
that we can specify traceability models as sets of elements so that MOMENT
operators can be used to manipulate them (Merge, Cross, ModelGen, …).

5.2 Traceability Operators

Once we have shown the definition of a specific traceability metamodel, we explain
the generic traceability operators that are provided by MOMENT. The operators that
provide support for traceability are defined generically in a parameterized algebraic
specification, called MOMENT-TRAC(Y :: BASICTMM).

Fig. 3 shows the elements involved in the parameter passing mechanism diagram.
BASICTMM (BASIC Traceability MetaModel) is the algebraic specification of the
formal parameter, called theory in Maude. This theory declares some operators that
guarantee the independence between the semantics of the generic traceability

ecore::Resou
rce

Operator
TraceabilityModel 1

+domainModel

1

1

+rangeModel

11

+operator

1

ecore::EObject

1 +domainContainer1
1

+rangeContainer

1

Manipulation
Rule

TraceabilityLink
1..*

1

+links
1..*

+model1

1..*

+domain

1..*
1..*

+range
1..*

1

+manipulationRule

1

324 A. Boronat, J.Á. Carsí, and I. Ramos

Fig. 3. The parameter passing diagram for the MOMENT-TRAC(Y :: BASICTMM) parameterized
module

operators and the semantics of a specific metamodel. For example, an operator of this
kind is GetDomain. It obtains the domain element of a traceability link independently
of the syntactical representation of the link. Thus, the formal parameter behaves as an
interface through which the generic operators can access the elements of a model that
conforms to a specific traceability metamodel.

TRAC is the algebraic specification obtained by the projection mechanism from a
specific traceability metamodel. The TRAC specification constitutes the actual
parameter for the MOMENT-TRAC(Y :: BASICTMM) module and defines the
semantics of the operators that are only declared in the BASICTMM theory. The
vTRAC view is the morphism that relates the elements of the BASICTMM formal
parameter to the elements of the TRAC actual parameter.

The MOMENT-TRAC(Y::BASICTMM) parameterized algebraic specification
contains the definition of the traceability operators that are independent of the specific
TRAC traceability metamodel. The MOMENT-TRAC(vTRAC) value specification
results from the instantiation3 of the parameterized module with the specific TRAC
traceability metamodel.

In this figure, p and p’ are inclusion morphisms that indicate that the formal
parameter specification is included in the parameterized specification, and that the
actual parameter specification is included in the value specification, respectively. The
h morphism is the induced passing morphism that relates the elements of the
parameterized module to the elements of the MOMENT(vTRAC) value specification,
by using the vTRAC parameter passing morphism.

The traceability operators defined in the MOMENT-TRAC(X::BASICTMM)
parameterized module are classified in two groups: operators that provide support for
navigability and operators that perform tasks on traceability models. In this paper, we
focus on the first group of operators.

We define the operators that provide navigability through a traceability model with
the following elements: two input models (A and B); a traceability model (mapAB)
that relates the elements of the two input models and that has been automatically
produced by an operator or manually produced by a user; a model (A’) that is a sub-
model of A (i.e. A’ only contains elements that also belong to A); and a model (B’)
that is a sub-model of B. The traceability operators that are considered here are:

3 In the context of algebraic specifications, the instantiation of a parameterized module refers to

the fact of passing an actual parameter to the parameterized module, obtaining the final value
specification.

p

vTRAC

p’

h

BASICTMM MOMENT-TRAC(X::BASICTMM)

TRAC MOMENT-TRAC(vTRAC)

Formal parameter inclusion

Actual parameter inclusion
Actual parameter
specification

Value
specification

parameter
passing
morphism

induced
passing
morphism

Formal parameter
specification

Parameterized
specification

 Automatic Support for Traceability in a Generic Model Management Framework 325

1. Domain and Range
These operators provide the backward and forward navigation through a
traceability model, respectively. Both operators obtain a model as output, which is
not a traceability model.

The operator Domain takes three models as input: a traceability model (mapAB),
a domain model (A), and a range model (B’). The operator navigates the
traceability links of the traceability model that have elements of B’ as target
elements, and returns a sub-model of A (A’), as shown in Fig. 4.a.

mapAB
A’

A

B’
B

mapAB
A’

A

B’
B

.a. A’ = Domain(mapAB, A, B’) .b. B’ = Range(mapAB, A’, B)

mapAB

A’

A B

.c. SelectMappingsByDomain(A’, mapAB)

mapABA

B’
B

.d. SelectMappingsByRange(B’, mapAB)

Fig. 4. Generic operators for traceability navigation

The operator Range also receives three inputs: a traceability model (mapAB), a
domain model (A’), and a range model (B). This operator performs the opposite task to
the previous one: it navigates the traceability links that have elements of A’ as domain
elements and returns a sub-model of the range model B (B’), as shown in Fig. 4.b.

2. SelectMappingsByDomain and SelectMappingsByRange
These operators produce a traceability model as output and permit selection of
parts of a traceability model.

The operator SelectMappingsByDomain receives two input models: a domain
model (A’) and a traceability model (mapAB). The operator extracts the traceability
links of the mapAB traceability model that have elements of the A’ model as domain
elements and returns this sub-model. The traceability links that are added to the
output traceability model are highlighted by a dotted line in Fig. 4.c.

The operator SelectMappingsByRange receives two input models: a range model
(B’) and a traceability model (mapAB). In this case, the operator extracts the
traceability links of the mapAB traceability model that have elements of the B’
model as range elements, and returns this sub-model, as shown in Fig. 4.d.

5.3 Process

Taking into account the process described in [2] to define a traceability model, we
indicate how its tasks are performed in our tool:

1. Trace definition. Users can define their own metamodel to fit into a specific
working context. Moreover the default traceability metamodel of the MOMENT
framework can be used in its place. As seen above, the traceability metamodel
can be defined using well-known graphical notations, such as UML, through
EMF-compliant tools.

2. Trace production. By default, the traceability model is automatically generated by an
operator when it performs a manipulation over a set of input models. Nevertheless,
traceability links can be defined manually by means of an editor generated from the
traceability metamodel, following the EMF software development culture. Moreover,

4 4 4 4

326 A. Boronat, J.Á. Carsí, and I. Ramos

a traceability model can be inferred automatically between two models by using
heuristics [23] or historical knowledge [24].

3. Trace extraction. The analysis of the knowledge provided by a set of traceability
models can be useful to perform other tasks. The traceability operators are used to
deal with this information in our framework. Such operators constitute an
automatic reusable solution that provides support for traceability in many scenarios
in the MDE field. Therefore, our framework provides automatic support for this
step although the user has to reason about the extracted knowledge. In future
works, heuristics may be applied in this step to achieve richer information.

4. Trace verification. The consistency of traceability models can be kept automatically
when either their domain or their range model is modified, by means of the
application of traceability operators. Consider that we have a domain model A, a
range model B and a traceability model mapAB that has been defined between them.
Three kinds of model modifications are available: addition of elements,
modification of existing elements and deletion of elements. In the case of adding
elements to a model, the traceability model remain consistent on the grounds that
there is no connection between the new elements and the elements of the other
model, unless this connection is defined explicitly afterwards. In the case of
modifying and deleting elements of a model, links can be broken when the domain
or the range elements are deleted. This problem is easily solved by using
traceability operators. If we delete elements in model A, obtaining model A’, we
can apply the SelectMappingsByDomain operator to obtain the new consistent
traceability model mapAB’: mapAB’ = SelectMappingsByDomain(A’, mapAB).

6 Application to the Case Study

The problem explained in the case study can be simplified as shown in Fig. 5, where
the mapXSD2RDB’ traceability model can be easily obtained from the mapXSD2RDB and

mapRDB2RDB’ traceability models by means of the Compose operator. Therefore, the
problem can be enunciated as follows:

We have the following models: an original XML schema (XSD); a XML schema
(XSD’), which has been evolved from XSD; a relational database RDB’, which has been
generated from the XML schema XSD and modified afterwards; and a traceability
model between XSD and RDB’ (mapXSD2RDB’). The goal is to obtain a relational
database from the XML schema XSD’ that preserves the changes applied to RDB’.

mapXSD2RDB

XSD

XSD’

RDB
mapRDB2RDB’

RDB’

mapXSD2RDB’

evolution

Fig. 5. Schematization of the case study problem

 Automatic Support for Traceability in a Generic Model Management Framework 327

mapXSD2RDB’

mapnewXSD2newRDB mapnewRDB2C

mapRDB’’2C

XSD

Unmodified

XSD’

newXSD

RDB’’

RDB’

newRDB

C

Unmodified

mapXSD’2C

Fig. 6. Solution to the case study problem

This problem can be solved by the following complex operator:

This operator is made up of simple operators of the MOMENT algebra and the
steps followed in the script are represented in Fig. 6. These steps are the following:

1. Unmodified is the part of the XSD model that remains unmodified in the XSD’
model.

2. RDB’’ is the sub-model of RDB’ that corresponds to the unmodified part of XSD’.
3. newXSD is the part of XSD’ that has been added to the XSD model.
4. newRDB is the relational schema obtained from the translation of newXSD into the

relational metamodel.
5. C is the final model obtained from the integration of the relational databases that

we have obtained in steps 2 and 4.

If we want to add traceability support to this operator to generate the traceability
model that relates the XSD’ model to the new model (C) as well, we only have to add
the next step after step 54:

This step merges two traceability models: one is defined between the unmodified
part of XSD’ and C, and the other is defined between the new part of XSD’ and C.
This step merges both traceability models by means of the Merge operator, in the

4 In this step, the operator Compose (<mapAC> = Compose(A, mapAB, B, mapBC, C)) has five

input parameters: three models (A, B, C), and two traceability models, which are defined
between models A and B (mapAB) and between models B and C (mapBC). It concatenates both
traceability models obtaining a new one that directly relates A to C.

operator PropagateChanges(XSD, XSD’, RDB’, mapXSD2RDB’) =
 <Unmodified, mapXSD2Unmodified, mapXSD’2Unmodified> = Cross(XSD, XSD’) (1)
 RDB’’ = Range(mapXSD2RDB’, Unmodified, RDB’) (2)
 <newXSD> = Diff(XSD’, Unmodified) (3)
 <newRDB, mapnewXSD2newRDB> = ModelGenXSD2RDB(newXSD) (4)
 <C, mapRDB’’2C, mapnewRDB2C> = Merge(RDB’’, newRDB) (5)
return (C)

<mapXSD’2C, mapmapUnmodified2C2mapXSD’2C, mapmapnewXSD2C2mapXSD’2C> = Merge(
 Compose(Unmodified, SelectMappingsByDomain(Unmodified, mapXSD2RDB’),RDB’’,
mapRDB’’2C, C),

328 A. Boronat, J.Á. Carsí, and I. Ramos

same way that any two models that belong to the same metamodel are merged. The
model mapXSD’2C has to be added as a return value in the script.

The resulting complex operator solves the change propagation problem of the case
study independently of the metamodels involved so that we can apply it to any
combination of metamodels, instead of using the XSD and the relational metamodels.

7 Related Work

In the Model Management field, tools do not deal with traceability directly. They
usually work on mapping models, which define equivalence relationships between the
elements of two models so that a model management operator can be defined
generically. Rondo [5] and [6] are good examples of this approach. For instance,
Rondo’s Merge operator permits the integration of two models. It receives two
models (A and B) and a mapping model (mapAB) between them as inputs, and it
produces the merged model C and two new mapping models (mapAC and mapBC): <C,
mapAC, mapBC> = Merge (A, B, mapAB).

In MOMENT, mapping models are introduced as traceability models. This is because
operators do not have to rely on them to be applied to a set of models. In MOMENT, the
traceability relationships between the elements of two models, which are needed to apply
an operator to them, are defined between the elements of their corresponding metamodels
axiomatically within the corresponding operators. The collection of equivalence
relationships between two metamodels constitutes a morphism that can be reused for all
the operators of the MOMENT algebra. This permits a clearer specification of complex
operators. In MOMENT, the Merge operator is as follows: <C, mapAC, mapBC> =
Merge(A, B). Mapping models are produced by the application of a simple operator to a
set of models and keep information about the manipulation task that has been performed
to a model. Therefore, we deal with these mapping models from a traceability standpoint.

The Generic Model Weaver AMW [25] is a tool that permits the definition of
mapping models (called weaving models) between EMF models in the ATLAS Model
Management Architecture. AMW provide a basic weaving metamodel that can be
extended to permit the definition of complex mappings. These mappings are usually
defined by the user, although they may be inferred by means of heuristics, as in [23]. In
MOMENT, such mappings are generated by model management operators
automatically in a traceability model, and can be manipulated by other operators. We
also support extension of the traceability metamodel. Although the simplicity of our
initial traceability metamodel, it allows us to deal with complex operators satisfactorily.

8 Conclusions

In this paper, we have presented an overview of our model management approach,
focusing on the automatic support that the MOMENT framework provides for
traceability. To do this, we have based our approach on the traceability management
studies that have been made in the Requirements Engineering field.

We have introduced the Generic Traceability Management concept in the MDA
initiative through a Model Management lens. We have also discussed some operators

 Automatic Support for Traceability in a Generic Model Management Framework 329

and illustrated how they can be used to solve common software engineering scenarios,
like the software maintenance case study presented here. The traceability support has
been defined in the MOMENT framework generically so that it can be applied to any
context (requirements, workflows, ontologies,…). It can also be customized with a
specific traceability metamodel depending on the needs of each working context.

We provide a new vision of the traceability support with respect to previous model
management approaches [5, 6], where all operators are based on mappings. In these
approaches, the equivalence relationships between elements of two models are
defined with specific explicit mappings at the model level. Such mappings are defined
by the user or can be inferred by means of heuristics or historical knowledge.
However the obtained mappings should be reviewed by a user, which can become
burdensome when huge models are involved.

In MOMENT, such equivalence relationships are defined as morphisms between
metamodels because algebraic specifications are used as the background formalism.
The specification of an equivalence morphism at metamodel level contributes to a
more abstract and reusable solution for model management. Users of our model
management approach do not have to deal with algebraic specifications directly. The
use of EMF to algebraically define models dramatically reduces the learning curve for
dealing with models from a formal generic standpoint. It also increases the
interoperability with many industrial software development tools.

As we are implementing the MOMENT tool as an Eclipse plugin, AMW
constitutes a good environment to define our traceability models by the user.
Nevertheless, we are developing our own editor for traceability models in order to add
the chance of invoking traceability operators directly from the editor interface. In this
way, we will be able to automatically compose traceability models or to navigate
them from visual interfaces, using the underlying algebraic specification formalism.

The next step in the MOMENT framework development process is to provide
support for the QVT Relations language in order to use it for the definition of
equivalence relationships and transformations. The work presented in this paper
constitutes the traceability support that MOMENT will provide for the QVT standard.

References

1. Palmer, J.D.: Traceability. Richard H. Thayer and Merlin Dorfman, Software
Requirements Engineering, 2nd Edition, IEEE Computer Society, pages 412–422, 2000.

2. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability. Software
Engineering, 27(1):58–93, 2001.

3. OMG Model-Driven Architecture. http://www.omg.org/mda/
4. Bernstein, P.A., Levy, A.Y., Pottinger, R.A.: A Vision for Management of Complex

Models. Microsoft Research Technical Report MSR-TR-2000-53, June 2000, (short
version in SIGMOD Record 29, 4 (Dec. '00)).

5. Melnik, S., E. Rahm, P. A. Bernstein, "Rondo: A Programming Platform for Generic
Model Management," Proc. SIGMOD 2003, pp. 193-204 (PDF, 344KB). Extended
version in Web Semantics, Volume 1, Number 1.

6. Song, G., Zhang, K., Kong, J.: Model Management Through Graph Transformation. IEEE
VL/HCC'04. Rome, Italy. 2004.

330 A. Boronat, J.Á. Carsí, and I. Ramos

7. Boronat, A., Pérez, J., Carsí, J. Á., Ramos, I.: Two experiencies in software dynamics.
Journal of Universal Science Computer. Special issue on Breakthroughs and Challenges in
Software Engineering. Vol. 10 (issue 4). April 2004.

8. Boronat, A., Carsí, J.Á., Ramos, I.: Automatic Reengineering in MDA Using Rewriting
Logic as Transformation Engine. IEEE Computer Society Press. 9th European Conference
on Software Maintenance and Reengineering. Manchester, UK. 2005.

9. M. Dorfman and R. Thayer. Guide to software requirements specification. IEEE
Standards, Guidelines and Examples on System and Software Requirements Engineering,
1990.

10. Gotel, O. C. Z. and Finkelstein, A. C. W.: An Analysis of the Requirements Traceability
Problem, Proceedings of the First International Conference on Requirements Engineering
(ICRE '94), IEEE Computer Society Press, Colorado Springs, Colorado, U.S.A., April 18-
22, pp. 94-101.

11. Requirements tools in the Volere web site: http://www.volere.co.uk/tools.htm
12. Object Management Group. Request for Proposal: MOF 2.0 Query/Views/

Transformations RFP, 2002. ad/2002-04-10.
13. The EMF site: http://download.eclipse.org/tools/emf/scripts/home.php
14. Zhang, L., Yu, Y., Lu, J., Lin, C., Tu, K., Guo, M., Zhang, Z., Xie, G., Su, Z., Pan, Y.:

ORIENT: Integrate Ontology Engineering into Industry Tooling Environment. In Proc. of
the Third International Semantic Web Conference 2004, Hiroshima, Japan.

15. The Hyena web site: http://www.pst.ifi.lmu.de/~rauschma/hyena/
16. The Graphical Modeling Framework proposal: http://www.eclipse.org/proposals/eclipse-

gmf/main.html
17. The JANE Model-specific editor generator web site: http://www.dstc.edu.au/Research/

Projects/Pegamento/jane/
18. Kurtev, I., Bézivin, J., Aksit, M.: Technological Spaces: An Initial Appraisal. Int.

Federated Conf. (DOA, ODBASE, CoopIS), Industrial track, Irvine, 2002.
19. Bézivin, J., Devedzic, V., Djuric, D., Favreau, J.M., Gasevic, D., Jouault, F.: An M3-

Neutral infrastructure for bridging model engineering and ontology engineering. In
Proceedings of INTEROP-ESA’05, Geneve, Switzerland. 2005.

20. Bernstein, P.A: Applying Model Management to Classical Meta Data Problems. pp. 209-
220, CIDR 2003.

21. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.F.:
Maude: specification and programming in rewriting logic. Theoretical Computer Science,
285(2):187-243, 2002.

22. OMG, “Meta Object Facility 1.4”, http://www.omg.org/technology/documents/formal/
mof.htm

23. Madhavan, J., P.A. Bernstein, and E. Rahm: Generic Schema Matching using Cupid.
VLDB 2001.

24. Madhavan, J., Bernstein, P. A., Chen, K., Halevy, A.Y., Shenoy, P.: Corpus-based Schema
Matching," Workshop on Information Integration on the Web, at IJCAI'2003, pp. 59-66.

25. Didonet Del Fabro, M, Bézivin, J, Jouault, F, Breton, E, and Gueltas, G : AMW: a generic
model weaver. Proceedings of the 1ère Journée sur l'Ingénierie Dirigée par les Modèles
(IDM05). 2005.

Synchronizing Cardinality-Based Feature Models

and Their Specializations

Chang Hwan, Peter Kim, and Krzysztof Czarnecki

University of Waterloo, Canada
{chpkim, kczarnec}@swen.uwaterloo.ca

Abstract. A software product line comprises a set of products imple-
menting different configurations of features. The set of valid feature con-
figurations within a product line can be described by a feature model.
In some practical situations, a feature configuration needs to be derived
in stages by creating a series of successive specializations of the initial
feature model. In this paper, we consider the scenario where changes
to the feature model due to, for example, the evolution of the product
line, need to be propagated to its existing specializations and configu-
rations. After discussing general dimensions of model synchronization,
a solution to synchronizing cardinality-based feature models and their
specializations and configurations is presented.

1 Introduction

Feature modeling is a systematic way of describing variabilities and commonal-
ities of systems in a software product line [1,2]. A feature model describes a set
of possible configurations or combinations of features. In this paper, we focus
on a particular style of feature models referred to as cardinality-based feature
models [3].

A configuration can be arrived at in stages, where at each stage some choices
are made [3]. The outcome of each stage is a feature model which is a special-
ization of the input feature model for that stage. A specialization of a feature
model describes a subset of the configurations represented by that model. The
need for staged configuration arises in several practical situations, such as in

– software supply chains, e.g., a platform vendor may need to make some con-
figuration choices to a platform before releasing it to a specific customer,
and the customer may need to provide further settings for individual appli-
cations;

– optimization, e.g., certain configuration choices could be made at compile
time, while remaining ones are decided at runtime; the application code
could be optimized based on the compile-time choices;

– multi-level policies, e.g., security policies may be specialized at different levels
of an organization.

In any realistic setting, the variabilities and commonalities in a product-
line will evolve. Inevitably, a feature model will also have to change, and the

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 331–348, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

332 C. Hwan, P. Kim, and K. Czarnecki

existing specializations of multiple stages will have to be synchronized in order
to reflect the change in the feature model. The interesting challenge is to perform
synchronization with the intent of preserving the choices made in the stages of
specializations. For simplicity, we refer to the synchronization of cardinality-
based feature models and their specializations and configurations as feature-
model synchronization.

In this paper, we first characterize feature-model synchronization according
to dimensions that are applicable to other model synchronization problems. Then
we give a solution to the feature-model synchronization problem. The solution
and the significant issues surrounding the problem are explained in natural lan-
guage. The main characteristic of the solution is that it treats feature models,
specializations, and configurations in a uniform way. Additionally, we describe
how the solution can be specified using the Relations language from the latest
submission for the Object Management Group’s MOF 2.0 Query/View/ Trans-
formation standard [4]. To our knowledge, feature model synchronization in a
multi-staged configuration setting is a problem unexplored until now. We believe
that the results we present are novel contributions with relevance to both the
software product-line community and the model-based development community.

In Section 2, the synchronization problem is motivated through an example.
In Section 3, general dimensions of model synchronization are discussed. In Sec-
tion 4, feature model synchronization is characterized and a technique to achieve
it is described. Section 5 discusses related work. Section 6 concludes the paper.

2 Background and Motivating Example

A feature model is a hierarchy of features plus constraints describing valid con-
figurations of features. Features are used to model functional and non-functional
characteristics of systems, but for the purpose of our discussion, they are just
symbols with no further semantics. A feature model always has a root feature.
The remaining features are either grouped or solitary, i.e., they are either part
of a feature group or not. Each solitary feature is annotated with a feature car-
dinality, which is an interval constraining how many times the feature has to be
included in a configuration if its parent is also included.1 Each feature group is
annotated with a group cardinality, which is an interval constraining how many
features from that group have to be included in a configuration if the parent
feature of the group is also included. Additional constraints on possible configu-
rations may also need to be expressed, such as requires and excludes constraints.
Constraints may be specified using XPath, as explained elsewhere [5]. A feature
may be associated with an attribute type, in which case an attribute value can
be specified during configuration.
1 As explained later in Section 4.2, we also associate feature cardinalities with grouped

features. However, the only possible values are [0..0], [0..1], and [1..1]. Normally, a
grouped feature has [0..1] as its default cardinality. The cardinalities [1..1] and [0..1]
are used for features that were selected or eliminated, respectively, from a group
during specialization.

Synchronizing Cardinality-Based Feature Models and Their Specializations 333

(a) Initial feature model (b) Modified feature model

Fig. 1. Security profile feature model before and after changes

Table 1. Symbols used in cardinality-based feature modeling

Symbol Explanation

Root feature

Solitary feature with cardinality [1..1], i.e., mandatory feature

Solitary feature with cardinality [0..1], i.e., optional feature

[0..m] Solitary feature with cardinality [0..m], m > 1, i.e., optional clonable feature

[n..m]
Solitary feature with cardinality [n..m], n > 0 ∧ m > 1, i.e., mandatory

clonable feature

Grouped feature

f(‘value′ : T) Feature f with attribute of type T and value of ‘value′

Feature group with cardinality 〈1– 1〉, i.e. xor-group

Feature group with cardinality 〈1– k〉, where k is the group size, i.e. or-group

〈i– k〉 Feature group with cardinality 〈i– k〉

Figure 1(a) shows a sample feature model describing the configuration choices
available in a security profile of an operating system. The notation is explained in
Table 1. The profile contains a policy for password expiration, which can be never
or after a specific number of days, and for the kind of characters required in a
password. The permission set specifies allowable operations on various resources
such as files, file dialogs, and environment variables. A configuration can have
multiple permission sets, e.g., a permission set defined for code downloaded from
the Internet and another for code coming from the intranet of an organization.

A specialization of a feature model is another feature model which describes a
subset of the configurations represented by the original feature model.

334 C. Hwan, P. Kim, and K. Czarnecki

(a) Specialization of 1(a) in
check-box view

(b) Specialization of 1(a) in
feature model view

(c) Configuration of 2(b) in
check-box view

Fig. 2. Specializations of the initial feature model from Figure 1(a)

A specialization can be created by first copying the original model and then
applying specialization steps to the copy [6]: select or eliminate an optional soli-
tary feature, select or eliminate a grouped feature from a group, refine feature
cardinality, refine group cardinality, clone a clonable solitary feature, and assign
value to a feature attribute.2 Figure 2(a) shows a specialization of the feature
model from Figure 1(a) in the check-box view, which supports the application of
the specializations steps. Check boxes are shown for optional solitary features
and grouped features. Placing a check on a check box corresponds to selecting
a feature. A cross corresponds to eliminating the feature. An empty check box
means no change. Cardinalities can be refined by editing them. The clone oper-
ation can be invoked on clonable features through the context menu. Values can
be assigned to feature attributes. The resulting specialization rendered in the
feature model view is shown in Figure 2(b). Note that we use a filled square to
indicate a selected grouped feature, e.g., inDays and restricted. Compared to the
original model, in the specializations shown in the check-box view in 2(a) and in
the feature model view in 2(b), never is eliminated, inDays is assigned an at-
tribute value of 30, the cardinality of the group under chars is refined to 〈2– 4〉,
permissionSet has a clone with the attribute value Internet assigned to it.
Furthermore, restricted is selected in the clone, and unrestricted and save

2 The original description of specialization steps [6] includes unfolding feature model
references. We do not consider the latter in this paper for simplicity. Furthermore,
selecting or eliminating an optional solitary feature is equivalent to refining its car-
dinality to [1..1] or [0..0], respectively.

Synchronizing Cardinality-Based Feature Models and Their Specializations 335

are eliminated. The prototype feature for the clone, i.e., permissionSet with
cardinality [0..∗], is shown in collapsed form for brevity.3 An alternative ren-
dering could suppress the display of the groups under expiration and fileIO
and show inDays and restricted as mandatory subfeatures of expiration and
fileIO, respectively.

The specialization in Figure 2(b) could have been created by an organization to
take their special security requirements into account. Further specializations could
be created based on the presented one, for example, in order to satisfy the security
constraintsof individualdepartments.Finally, thedepartment-level specializations
could be used as a basis for creating configurations for individual computers.

The relationship between a feature model and its configuration corresponds
to the one between a type and its instance. A feature model in which there is no
variability represents exactly one configuration. Such a feature model, which is
comparable to the notion of a singleton type, can also be used in place of the con-
figuration it describes. This observation allows us to treat configurations as fea-
ture models, too. As a consequence, a tool can use the same interface for creating
specializations and configurations, e.g., the check-box view, and configurations
and specializations can be also rendered in the feature-model view. Figure 2(c)
shows a sample configuration, which was created based on the specialized feature
model from Figure 2(b). Note some of the choices made, including the elimina-
tion of specialChar and the selection of open. Figure 2(c) shows a configuration
even though it still contains filepath with cardinality [0..∗]. This is because we
assume that features with cardinality [0..n], where n > 1, are by default not part
of the configuration. Similarly, undecided optional features, i.e., those with empty
check boxes, could also be considered as by default not part of the configuration.
We keep features such as filepathwith cardinality [0..∗] in the check-box view as
prototypes, should the user decide to create more clones. If desired, the prototype
filepath can be eliminated explicitly by refining its cardinality to [0..0].

Any changes made to a feature model need to be propagated to all its special-
izations and configurations, which is an example of model synchronization. For
example, the available security settings described by the feature model in Figure
1(a) could change in the next release of the operating system to those described
by the feature model in Figure 1(b) (the changes are highlighted). Comparing
the models reveals that blank character type has been added, the cardinality of
the group containing blank has been changed to 〈3– 5〉, append has been added
to the group under filepath, and that group’s cardinality has changed to 〈0– 3〉.
All these changes need to be propagated to the specialization and configuration
in Figure 2, whose updated versions are shown in Figure 3. Please note that
the configuration from 2(c) became a specialization in Figure 3(b) due to the
newly added features blank and append, which are undecided. Furthermore,
the organization could decide to change the specialization in Figure 2(a) by ap-
plying further specialization steps or undoing some of the previously applied
ones. These changes would also need to be propagated to the configuration in
Figure 2(c).

3 The feature from which a clone is created is referred to as the prototype of the clone.

336 C. Hwan, P. Kim, and K. Czarnecki

(a) Specialization shown in 2(a) and
2(b) updated

(b) The resulting specialization after
updating the configuration in 2(c)

Fig. 3. Specializations updated according to the changed feature model from Figure

1(b)

3 General Dimensions of Model Synchronization

In this section, we analyze dimensions of model synchronization in general and
classify feature model synchronization in terms of these dimensions. This exercise
will help us to better understand the characteristics of feature model synchro-
nization and devise a solution in Section 4.

Model synchronization is concerned with maintaining consistency among two
or more models in the presence of changes to one or more of them. Synchro-
nization includes both the detection of inconsistencies among the models and
modification of one or more models in order to re-establish consistency. The
modification is referred to as reconciliation.4

Structural characteristics. Synchronization problems can be character-
ized through their structural properties:

– Number of models and synchronization direction. Synchronization
can be thought of as a procedure with two or more input parameters, some
or all of which are also output parameters. Even more generally, different
subsets of the input parameters could be additionally marked as output
parameters for different individual invocations of synchronization. A com-
mon case is unidirectional synchronization between two models, where a

4 There is no fundamental difference between synchronizing a set of models and syn-
chronizing different parts of one model because the set of models could be viewed
as parts of one large model. However, in order to keep our discussion more clear, we
take the former rather than the latter view.

Synchronizing Cardinality-Based Feature Models and Their Specializations 337

change to a source model needs to be propagated to a target model. Unidi-
rectional synchronization corresponds to making the source immutable and
target mutable for the synchronization procedure. In contrast, bidirectional
synchronization between two models treats both models as mutable.

– Types of models. Each model involved in synchronization conforms to a
metamodel. Each model could conform to a different metamodel, or some or
all of the models could conform to the same metamodel.

– Multiplicity of relationships among elements. The consistency among
the involved models can be expressed as relationships among their elements.
The instances of these relationships are traceability links. An important
characteristic of the relationships is their multiplicities, such as one-to-one,
one-to-many, and many-to-many. Models involving one-to-one or one-to-
many relationships are usually easier to synchronize than those involving
many-to-many relationships.

User-facing characteristics. Several characteristics are related to how syn-
chronization is triggered and performed from the user viewpoint:

– Point in time and frequency of triggering. Synchronization could be
performed continuously, where every change to a model is immediately prop-
agated to the other models, or could be triggered on demand. The continuous
mode is inappropriate in most practical cases. The continuous mode would
slow down editing because every editing operation would trigger change prop-
agation. Also, we usually do not want to keep models synchronized at all
times; in particular, we do not want to synchronize with all intermediate
states of a model while the model is edited. A more practical choice is to
allow the user to invoke synchronization when he deems it appropriate.

– Scope of synchronization. Synchronization can be performed in a push or
pull mode. In the push mode, a change to a model is pushed to all dependent
models. In the pull mode, each dependent model can be synchronized indi-
vidually on demand. An important consideration is whether all the models
to be synchronized are available within a single development environment,
or whether they are distributed among different physical locations. In the
latter case, the push mode would usually involve pushing change notifica-
tions only, while the user at the receiving side would decide whether and
when to perform synchronization.

– Reconciliation strategy. In general, different reconciliation strategies may
involve different degrees of automation versus interaction with the user,
preservation of the existing model structure, and completeness. During rec-
onciliation, some model changes may be determined as necessary. They can
be performed automatically. However, different alternative changes may be
available in order to achieve further progress with reconciliation. The se-
lection of alternative changes could be automated by making some default
choices, or the alternatives could be presented to the user so that choices can
be made interactively. Furthermore, the different choices may involve differ-
ent degrees of modification to the existing elements of the models being

338 C. Hwan, P. Kim, and K. Czarnecki

reconciled. If the model to be changed by reconciliation has been automati-
cally generated, overriding existing structures may not be an issue; however,
if the model contains manual modifications, they should be preserved as
much as possible. Finally, the reconciliation process could be partial. The
remaining inconsistencies would be marked as such and left to the user to
be resolved manually.

Implementation Choices. Two main issues need to be considered when
implementing model synchronization:

– Representation of the synchronization logic. The synchronization logic
could be expressed in action- or state-oriented style. In the action-oriented
style, edit operations on one model are mapped to edit operations on the
dependent models. Such a mapping could be used to implement the contin-
uous mode of synchronization. On-demand mode could be achieved by map-
ping whole histories of operations. The history of the source model could
be recorded during editing, or it could be created by comparing the version
of the model before the edits with the version after the edits. In the state-
oriented style, the models to be synchronized are analyzed, and one or more
of them are transformed to re-establish consistency. The state-oriented ap-
proach may sometimes require access to the source model versions before and
after editing in order to properly propagate changes. The necessary model
transformation can be expressed algorithmically or as a set of transformation
rules. The transformation rules can address synchronization explicitly. Al-
ternatively, synchronization can be defined implicitly by model consistency
rules. In the former case, the transformation rules will read source and tar-
get models and modify the target models to establish consistency. In the
latter case, the consistency between the models is specified as rules, and a
rule engine will attempt to fix any violations of these rules by modifying
the target models. The engine may need to interact with the user, apply
some heuristics, and use additional problem-specific strategies to perform
the reconciliation.

– Representation of traceability links. Traceability links can be explicit
or implicit in the synchronization rules. Implicit links are established as
instances of pattern matching. They are created and maintained by the rule
engine. Explicit links need to be taken care of explicitly by the user. They are
not automatically created and maintained by the rule engine. Traceability
links can be implemented using in-memory pointers and/or globally unique
identifiers of model elements.

4 Feature Model Synchronization

In the following three subsections, we first characterize feature model synchro-
nization using the dimensions introduced in Section 3, then specify the meta-
model for representing feature models, and, finally, describe how feature model
synchronization can be performed.

Synchronizing Cardinality-Based Feature Models and Their Specializations 339

4.1 Classification of Feature Model Synchronization

Feature model synchronization can be characterized in terms of the general
dimensions for model synchronization as follows:

Structural characteristics. Assuming that specializations and configura-
tions are feature models (as explained in Section 2), feature model synchroniza-
tion is a unidirectional synchronization between two feature models. In other
words, both models conform to the same metamodel. Furthermore, because of
cloning, the relationship between elements in a feature model and the elements
in one of the feature model’s specializations or configurations, is in general, one
to many rather than one to one.

User-facing characteristics. Feature model synchronization requires ac-
tivation on demand. Both pull and push modes are of interest. We also need
to consider both synchronization among feature models loaded within one de-
velopment environment and those distributed to different users. Preservation
of existing user choices in specializations and configurations is absolutely im-
portant. Therefore, the synchronization process will usually be only partially
automatic. Remaining inconsistencies, such as violated cardinality or additional
constraints, will be marked. The user can resolve them by using the constraint-
solving facilities normally available in feature model specialization and configu-
ration [7]. In other words, an automatic synchronization phase is followed by a
tool-supported, interactive phase, in which alternative conflict resolution choices
and completions based on defaults are presented to the user.

Implementation Choices. Feature model synchronization can be imple-
mented using the variety of implementation choices listed in Section 3. In the
further discussion, we only consider the state-oriented approach. Since continu-
ous update is inappropriate for feature model synchronization, the action-based
approach would need to operate on histories. We find the state-oriented ap-
proach simpler and more robust since it does not need to consider histories.
In Section 4.3 and Appendix A, we will discuss an algorithmic solution and a
rule-based one using consistency rules, respectively. Only the latest versions of
the source and target models are needed for feature model synchronization. The
presented solutions use explicit links, which are established automatically when
a copy of a feature model to be specialized is first created. In the case of feature
model synchronization, the additional complexity of maintaining the links by
the synchronization algorithm explicitly is minimal.

4.2 Metamodel and Renderings for Cardinality-Based Feature
Models and Their Specializations

Before getting into the specifics of synchronization, the underlying represen-
tation of cardinality-based feature models and their specializations needs to
be understood. Figure 4 shows the metamodel for representing feature mod-
els and their specializations and configurations. A feature model is a hierarchy
of Nodes modeled by the parent-child composition. A RootFeature is the
only Node without a parent. A Feature or a RootFeature may have Features

340 C. Hwan, P. Kim, and K. Czarnecki

Feature

-valueType : ValueType
-state : FeatureState

-name : String

-max : Integer
-min : Integer

...

<<enumeration>>

FeatureState

-UNDECIDED
-ELIMINATED
-SELECTED

<<enumeration>>

ValueType

-STRING_VALUE
-INT_VALUE
-NO_VALUE

RootFeature

FeatureGroup

-max : Integer
-min : Integer

TypedValue

Node

IntValue

-value

StringValue

-value

-prototype

1

-clone

0..*

0..1

-specRootFeature

0..*

-parent

0..1

-child

0..*

-origin
0..1

-spec

0..*

1-value

0..1

Fig. 4. Metamodel for cardinality-based feature models and their specializations

and/or FeatureGroups as children. Each child of a FeatureGroup must be a
Feature. Features and FeatureGroups use min and max to represent cardinal-
ities. The cardinality of root and grouped features is always 〈1– 1〉. A Feature
may have an attribute, in which case its type is indicated by valueType. A
Feature with an attribute may contain a TypedValue. The specRootFeature
composition on RootFeature is used to represent a hierarchy of specializations.
The RootFeature of a feature model contains the RootFeatures of its direct
specializations and configurations, which are feature models too. Traceability
links between Nodes of a feature model and its specialization are modeled by
the origin-spec association. Group and feature cardinalities in the nodes of a
specialization are used to override cardinalities of their origin nodes. A spe-
cialization cannot add an attribute, but only an attribute value. Adding an
attribute value is only possible if a value has not been yet assigned in the previ-
ous stage. Feature has the field state, which is used to represent specialization
choices on optional solitary features and grouped features, which are made in
the check-box view, as shown in Figure 2(a). The allowed values for state are
SELECTED, UNDECIDED, or ELIMINATED. The meaning of these values will be ex-
plained shortly. The relationship clone-prototype is used to relate clones to its
prototype feature, i.e., the feature from which they were cloned.

When a feature model is first created in the feature model editor as in Figure
1(a), none of the nodes in the model have a corresponding origin node. A spe-
cialization of the feature model is created by first creating a copy of it and then
setting the origin of each node in the specialization to the corresponding node
in the original feature model. The feature model editor showing the original fea-
ture model renders the model according to Table 1, where the group and feature

Synchronizing Cardinality-Based Feature Models and Their Specializations 341

Table 2. Interpretation and rendering of min, max, and state

Stored
cardinality
[min..max]

Value of
state

Effective
cardinality

Rendering in
check-box view

Rendering in
feature-model view

min−c ≤ 0∧
max−c ≤ 0

— [0..0] or feature not shown

min−c ≤ 0∧
max−c = 1

ELIMINATED [0..0] or feature not shown

UNDECIDED [0..1]
for solitary and for
grouped feature

SELECTED [1..1]
for solitary and for
grouped feature

min−c = 1∧
max−c = 1

— [1..1] for solitary and for grouped feature

min−c ≤ 0∧
max−c > 1

— [0..max−c] [0..max−c]

min−c ≥ 1∧
max−c > 1

— [min−c..max−c] [min−c..max−c]

cardinalities shown in this rendering are those stored in the model instance, i.e.,
[min..max] and 〈min– max〉, respectively. Rendering of specializations is different.
First, specializations are not to be shown using the feature model editor, as free
editing is not allowed for a specialization. Instead, a specialization can be shown
in (1) the check-box view (e.g., Figure 2(a)), which allows the application of spe-
cialization steps, or (2) the feature model view (e.g., Figure 2(b)), which renders
the result of the specialization as a feature model and does not allow any editing.
Second, the views do not display the cardinalities stored in the specialization in-
stance, i.e., [min..max] and 〈min– max〉, directly. Instead, both views render the
model nodes according to their effective cardinality. The effective cardinality for
a feature and its corresponding rendering in the check-box and feature model
views are given in Table 2. In that table, c refers to the number of clones of
that feature. An entry of “—” in the second column means that the value of
state is insignificant for the case represented by the corresponding row. Feature
groups are rendered according to Table 1 and their effective cardinality. The
effective cardinality of a feature group with the group cardinality 〈min– max〉
and k features is defined as 〈min–min(max, k − e)〉, where e is the number of
features with the effective feature cardinality of [0..0] that are contained in the
group. The specialization step of feature or group cardinality refinement can be
achieved in the check-box view by directly editing the cardinality stored in a
node, with the only constraint that the refined stored cardinality is a subinterval
of the effective cardinality of the node’s origin.

4.3 Feature Model Synchronization Steps

Synchronization between a feature model and a specialization starts with an
automatic phase, possibly followed by an interactive phase. During the the au-
tomatic phase, synchronization steps are applied to the specialization, such as
adding, deleting, and relocating nodes, adding and removing attributes, and

342 C. Hwan, P. Kim, and K. Czarnecki

adjusting attribute values and cardinalities. The interactive phase may be nec-
essary in order to enforce new cardinality values by deleting or creating clones
and changing feature selections within groups and in order to re-establish global
constraints (such as implies and requires constraints) by further reconfiguration.
The changes in the interactive phase cannot be fully automated because there
may be many different ways to enforce cardinalities and global constraints and
the user may need to be consulted.

In the case of multiple specializations in a multi-stage scenario, the synchro-
nization steps need to be repeated for each stage. The direct specializations
of the feature model that was modified are synchronized first. Then the direct
specializations of the newly synchronized specializations are synchronized. This
process continues recursively until all models are synchronized.

The automatic synchronization steps are described in the remainder of this
section in an algorithmic style. In Appendix A, we indicate how these steps can
be represented as consistency rules between a model and its specializations in
the OMG QVT Relations language [4].

Addition. Node instances that are missing in the specialization are added.
For every node m in the original model and for every node s in m.spec, if m has a
child mChild for which there is no child sChild of s such that sChild.origin =
mChild, such an sChild is created. Note that since all the cloned features in the
specialization have a traceability link back to the original-model feature, adding
nodes underneath that feature means that the specializations of the nodes will
be added to each clone.

Removal. Node instances in the specialization whose origin attribute is
null are removed.

Changing attribute. If a feature f in the original model has an attribute
type, i.e., valueType �= NO VALUE, every feature in f.spec must have the same
attribute type. Furthermore, if f has an attribute value, every feature in f.spec
must also have the same attribute value.

Relocation. A model node and everything below may be moved from one
parent to another parent. As a result, the specializations of the changed model
are out of sync with the model. In particular, the parent of the model node and
the parent of a corresponding specialization node will not be connected by the
origin-spec traceability link. Due to the possible presence of clones, relocating
out-of-place specialization nodes is a challenge for synchronizing cardinality-
based feature models. Consider a simple feature model in Figure 5(a) and its
specialization in 5(b). Imagine that d is moved under c, as shown in Figure
5(c). There are different ways to synchronize. One way is simply to take all
the specialization nodes of d and copy them for each specialization node of c.
There are six d specialization nodes in 5(b). That means there would be six d
specialization nodes in each of the two c specialization nodes. In general, because
clones are collected throughout the hierarchy, this solution tends to produce an
excessive number of clones. Also, the high number of clones will often lead to
cardinality violations. The model allows a maximum of two clones of d, but the
relocation, as described, yields six clones.

Synchronizing Cardinality-Based Feature Models and Their Specializations 343

Another way is to perform relocation under a well-defined scope, as shown
in Figure 5(d). We could take the source container node, or b, in this case, and
the target container node, or c, and find the common ancestor node between
the two in the model, which is a. We could perform the relocation under the
scope of the common ancestor, by taking all the nodes of d under the ancestor
and copying them under each target node of c under the ancestor. In this case,
four d nodes would end up under the first c node and two d nodes would end up
under the second c node. Still, there is a cardinality violation, as four d clones
are not allowed according to the feature model. However, the move performed
against the second c clone is fine. This relocation method attempts to reduce
the probability and extent of cardinality violation. Nodes violating cardinality
are marked as such to allow the user to fix them manually.

(a) Model (b) Specialization (c) Modified model (d) Updated spe-
cialization

Fig. 5. Feature relocation example

The synchronization mechanism described can also be used for moving a
solitary feature into a feature group in the model. Moving the solitary feature into
the feature group this way would mean that both the corresponding prototypes
and their clones in the specialization would all end up in the corresponding
feature group. Alternatively, only the prototypes can be moved into the feature
group, discarding the clones. In any case, the prototypes and clones will be
marked for the user to be inspected manually. The user will have to choose
exactly one prototype or clone to keep among the prototypes and clones with
the same origin and delete the remaining ones.

Cardinality changes. The stored cardinality of every feature group and
feature prototype in a specialization has to be a subinterval of the effective
cardinality of the corresponding origin group or feature. If this is not the case,
min and/or max of the feature group or feature prototype need to be adjusted to
enforce this constraint. Finally, the number of clones in the specialization may
violate the stored cardinality of their corresponding prototype feature. Also, the

344 C. Hwan, P. Kim, and K. Czarnecki

number of selected features in a group may violate the stored group cardinality
Both kinds of violations have to be resolved by the user, as they may involve
deciding which nodes to delete and which nodes to create.

5 Related Work

We are not aware of any previous work on feature model synchronization. The
closest bodies of work are that on model synchronization and schema evolution.

There has been a considerable amount of effort in the model-driven develop-
ment community to provide generic frameworks for model transformation that
support synchronization. An OMG standard for model transformations called
“MOF 2.0 Query/View/ Transformation (QVT)” [4] is under development. In
Appendix A, QVT Relations language is demonstrated through the specification
of synchronization rules. Although there does not yet exist a publicly available
implementation of QVT, a prototype implementing some of its ideas was de-
veloped by IBM under the name Model Transformation Framework (MTF) [8].
MTF provides a concise language for specifying equivalence relations for models
represented using the Eclipse Modeling Framework (EMF) and a transforma-
tion engine. We have experimented with MTF as an infrastructure to implement
feature model synchronization for FeaturePlugin [5], a feature modeling tool for
Eclipse. The prototype implementation was able to synchronize node additions
and removal. Unfortunately, in its current state, MTF simply lacks support for
defining the custom constraints that are required to fully achieve synchroniza-
tion. A comparable approach to MTF is ModelWeaver, as proposed by Bezivin
et al. [9]. However, in contrast to MTF, which is EMF-centric, the ModelWeaver
approach focuses on relationships between different technical spaces, such as
MOF, XML, EMF, GrammarWare, etc.

Other works in the model transformation area include the efforts of Ivkovic
and Kontogiannis on synchronizing software artifacts across levels of abstrac-
tion [10]. In their approach, model dependencies are implicitly encoded using
transformation rules and an equivalence relation is used to evaluate when two
models become synchronized. Furthermore, Mens et al. use description logics to
synchronize between UML models [11].

The synchronization problem has also been explored in the context of schema
evolution, for example, in object-oriented databases [12,13,14]. Bernstein et al.
describe a general model management framework for schema evolution in which
mappings between models are treated as first class objects and operators are
defined for common operations on models, such as merging, matching, and dif-
ferencing [15]. They provide a concrete implementation of the framework called
Rondo that implements some model operators [16]. Also, Sprinkle et al. describe
the use of a graphical model transformation language to migrate models form
one version of a metamodel to another version [17]. The relationship between
a feature model and its configurations is comparable to that of a schema and
the data conforming to that schema. However, in contrast to schema evolution,
feature model evolution considers multiple stages of specialization.

Synchronizing Cardinality-Based Feature Models and Their Specializations 345

Mens et al. [18] propose a taxonomy for software evolution, in which they
also discuss dimensions relevant to model transformation such as the time and
frequency of updates. However, they are much less detailed and at a much higher
abstraction level with respect to model synchronization, compared to the dimen-
sions in Section 3.

6 Conclusion and Future Work

In this paper, we characterize the feature model synchronization problem accord-
ing to dimensions that are applicable to other model synchronization problems
and devise a solution to this problem. Important characteristics of our solution
are (1) the use of a uniform metamodel for representing feature models, special-
izations, and configurations; (2) a two-phase approach automatically synchro-
nizing node hierarchy, attributes, and cardinalities, and leaving the violations
of cardinalities and additional constraints (such as requires and excludes con-
straints) to be resolved using the constraint-solving facilities normally available
in feature model specialization and configuration. As a bonus, the unification
of the metamodel for feature models, specializations, and configurations lead to
the development of the check-box view as a uniform interface for editing both
specializations and configurations. This is in contrast to our prior work [5], in
which the specialization interface was different from the configuration interface.

We have explored two styles of expressing the synchronization logic. A rule-
based solution using the Relations language of QVT is presented in Appendix
A. As experience with this emerging standard and technology is still very scarce,
preparing these rules has been an interesting and useful exercise. Unfortunately,
we could not test them because no implementation of the language is publicly
available as of writing. However, we currently have a Java implementation of
our approach to feature model synchronization in an algorithmic style. The im-
plementation is a part of FeaturePlugin [5]. The synchronization facility in Fea-
turePlugin is used to synchronize feature models with their specializations and
configuration that are loaded into the tool. It is also used to synchronize feature
models with their metamodels after the metamodels have been modified The use
of our synchronization technique is possible in the latter case since metamodels
in FeaturePlugin are feature models, too.

In future work, we plan to explore different practical application scenarios
for feature model synchronization, including the case where the feature models
to be synchronized are distributed. Furthermore, we would like to better under-
stand the kind of changes needing synchronization that are common in practice.
On this basis, we would like to explore practical evolution and synchronization
strategies. For example, synchronizing feature additions is usually easier than
synchronizing removals and relocations. Thus, a conservative evolution strategy
could be to avoid changes other than extensions. Alternatively, modifications
could be achieved by including both the old and new parts in the new version of
a feature model, with the old part marked as obsolete. The feature model could
contain constraints and scripts to configure the new parts of a configuration

346 C. Hwan, P. Kim, and K. Czarnecki

based on the old parts of the configuration. Furthermore, we would like to un-
derstand what factors should be looked at to determine when and how often to
synchronize. Finally, we plan to explore the application of the constraint based
configuration facilities in FeaturePlugin to increase the automation level and
support the user in resolving cardinality and other constraint violations during
the interactive phase.

Acknowledgements

We would like to thank Ulrich Eisenecker and the anonymous reviewers for their
valuable comments on earlier drafts of this paper.

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston, MA (2001)

2. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented domain
analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (1990)

3. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration through spe-
cialization and multi-level configuration of feature models. Software Pro-
cess Improvement and Practice 10 (2005) 143–169 Available from http://

swen.uwaterloo.ca/∼kczarnec/spip05b.pdf.
4. Object Management Group, Inc.: Revised submission for MOF 2.0

Query/View/Transformation RFP (ad/2002-04-10). (2005) QVT-Merge Group,
version 2.0, ad/2005-03-02.

5. Antkiewicz, M., Czarnecki, K.: FeaturePlugin: Feature modeling plug-in for
Eclipse. In: OOPSLA’04 Eclipse Technology eXchange (ETX) Workshop. (2004)
Paper available from http://www.swen.uwaterloo.ca/∼kczarnec/etx04.pdf.
Software available from gp.uwaterloo.ca/fmp.

6. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature
models and their specialization. Software Process Improvement and Practice 10
(2005) 7–29

7. Batory, D.: Feature Models, Grammars, and Propositional Formulas. Technical
Report TR-05-14, University of Texas at Austin, Texas (2005)

8. Griffin, C.: Model Transformation Framework (2000-2004) Tool available at
http://www.alphaworks.ibm.com/tech/mtf.

9. Bézivin, J., Jouault, F., Valduriez, P.: First experiments with a ModelWeaver. In:
Proceedings of the OOPSLA/GPCE’04 Workshop on Best Practices for Model-
Driven Software Development. (2004)

10. Ivkovic, I., Kontogiannis, K.: Tracing evolution changes of software artifacts
through model synchronization. In: ICSM. (2004) 252–261

11. Straeten, R.V.D., Mens, T., Simmonds, J., Jonckers, V.: Using description logic to
maintain consistency between UML models. In: Proceedings of UML 2003. Volume
2863 of LNCS., Heidelberg, Germany, Springer-Verlag (2003) 326–340

Synchronizing Cardinality-Based Feature Models and Their Specializations 347

12. Monk, S., Sommerville, I.: Schema evolution in OODBs using class versioning.
SIGMOD Rec. 22 (1993) 16–22

13. Ra, Y.G., Rundensteiner, E.A.: A transparent schema-evolution system based
on object-oriented view technology. IEEE Transactions on Knowledge and Data
Engineering 9 (1997) 600–624

14. Rashid, A.: A database evolution approach for object-oriented databases. In:
ICSM. (2001) 561–564

15. Bernstein, P.A., Levy, A.Y., Pottinger, R.A.: A Vision for Management of Complex
Models. Technical Report MSR-TR-2000-53, Microsoft Research, Redmond, WA
(2000)

16. Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: A programming platform for generic
model management. In: Proceedings of ACM SIGMOD, San Diego, California, USA
(2003)

17. Sprinkle, J., Karsai, G.: Model migration through visual modeling. In: Proceedings
of 3rd OOPSLA Workshop on Domain-Specific Modeling, Anaheim, CA (2003)

18. Mens, T., Buckley, J., Zenger, M., Rashid, A.: Towards a taxonomy of software
evolution. In: Proceedings of FWO Network Meeting. Foundations of Software
Evolution, Vienna, Austria (2002)

A Synchronization Rules in the QVT Relations Language

The following text shows how the synchronization rules can be specified in the
Relations language that is described in the latest approved version of the MOF
2.0 QVT proposed standard [4].

The synchronization is expressed as a transformation between a model and its
specialization (line 1). When the transformation is called with a specialization as
its target, the contained relations (lines 3 and 11) will be enforced (as indicated
on lines 6 and 14). The relation ModelRootFeatureToSpecializationRoot-
Feature requires that if a model root m (line 5) and a specialization root s (line
6) are connected by a origin-spec link (line 8), both roots will also satisfy the
ModelNodeToSpecializationNode relation (line 9). The latter relation states
that for every three matching nodes m, mChild, and s, such that m.child =
mChild and s is in m.spec (line 13), another node sChild must exist (line 14–
15). That node sChild must be a child of s, have mChild as its origin, and
satisfy ModelNodeToSpecializationNode together with mChild (lines 17–19).
If such a node does not exist, it will be created automatically. The rule also
states implicitly that any node in specialization that does not participate in the
relationship will be deleted.

1 transformation synchronization(model:FeatureMetamodel, specialization:FeatureMetamodel)
2 {
3 relation ModelRootFeatureToSpecializationRootFeature
4 {
5 checkonly domain model m:RootFeature{spec=aSpec:RootFeature{}}
6 enforce domain specialization s:RootFeature{}
7

8 when { s=aSpec; }
9 where{ ModelNodeToSpecializationNode(m, s); } }

10

11 relation ModelNodeToSpecializationNode
12 {

348 C. Hwan, P. Kim, and K. Czarnecki

13 checkonly domain model m:Node{child=mChild:Node{}, spec=s:Node{}};
14 enforce domain specialization sChild:Node{parent=sChildParent:Node{},
15 origin=sChildOrigin:Node{}};
16

17 where { sChildParent = s;
18 sChildOrigin = mChild;
19 ModelNodeToSpecializationNode(mChild, sChild); } }
20 }

It is relatively easy to extend the above code to handle the synchronization
of node names, attribute types, and attribute values. However, handling node
relocation and cardinality changes requires calls to imperative functions, which
can be provided as part of the metamodel.

Author Index

Aagedal, Jan 239
Abd-Ali, Jamal 299
Abdelwalhed, Sherif 115

Baar, Thomas 190
Becker, Michael 19
Belaunde, Mariano 1
Bendraou, Reda 59
Berre, Arne-J. 239
Bloomfield, Tony 9
Bordbar, Behzad 145
Boronat, Artur 316
Briand, Lionel C. 160
Burgstaller, Rainer 19
Burmester, Sven 25

Caron, Olivier 130
Carré, Bernard 130
Carśı, José Á. 316
Chan, Zhan E. 175
Chen, Kai 115
Chivers, Howard 205
Czarnecki, Krzysztof 331

Desfray, Philippe 59

El Guemhioui, Karim 299

Fiege, Ludger 19
Fondement, Frédéric 190
Fritz, Thomas 19

Garousi, Vahid 160
Geiger, Leif 284
Gervais, Marie-Pierre 59
Giese, Holger 25
Göbel, Steffen 74
Grønmo, Roy 239, 269
Grunske, Lars 284

Hanenberg, Stefan 254
Hoff, Hjørdis 269
Humm, Bernhard 103
Hwan, Chang 331

Jackson, Ethan 115
Jaeger, Michael C. 269

Kim, Peter 331
Kleppe, Anneke 220

Labiche, Yvan 160
Lawley, Michael 284

Muller, Alexis 130

Nakamura, Hiroaki 41
Neple, Tor 239

Oldevik, Jon 239

Pahl, Claus 88
Paige, Richard F. 175, 205
Presso, Maria José 1

Ramos, Isidro 316

Sato, Naoto 41
Schäfer, Wilhelm 25
Schreier, Ulf 103
Siedersleben, Johannes 103
Staikopoulos, Athanasios 145
Stein, Dominik 254
Sztipanovits, Janos 115

Tabuchi, Naoshi 41

Unland, Rainer 254

Vanwormhoudt, Gilles 130

Wuchner, Egon 19

	Frontmatter
	MDA Development Processes
	Applying MDA to Voice Applications: An Experience in Building an MDA Tool Chain
	MDA, Meta-Modelling and Model Transformation: Introducing New Technology into the Defence Industry
	Using Domain Driven Development for Monitoring Distributed Systems

	MDA for Embedded and Real-Time Systems
	Model-Driven Architecture for Hard Real-Time Systems: From Platform Independent Models to Code
	Model-Driven Performance Analysis of UML Design Models Based on Stochastic Process Algebra
	MDA Components: A Flexible Way for Implementing the MDA Approach

	MDA and Component-Based Software Engineering
	An MDA Approach for Adaptable Components
	Layered Ontological Modelling for Web Service-Oriented Model-Driven Architecture
	Model-Driven Development -- Hot Spots in Business Information Systems

	Metamodelling
	Semantic Anchoring with Model Transformations
	On Some Properties of Parameterized Model Application
	A Comparative Study of Metamodel Integration and Interoperability in UML and Web Services
	Control Flow Analysis of UML 2.0 Sequence Diagrams
	Designing a Domain-Specific Contract Language: A Metamodelling Approach
	Making Metamodels Aware of Concrete Syntax

	Model Transformation
	XRound: Bidirectional Transformations and Unifications Via a Reversible Template Language
	Towards General Purpose, High Level, Software Languages
	Toward Standardised Model to Text Transformations
	On Relationships Between Query Models
	Transformations Between UML and OWL-S
	A Graphical Specification of Model Transformations with Triple Graph Grammars

	Model Synchronization and Consistency
	Horizontal Transformation of PSMs
	Automatic Support for Traceability in a Generic Model Management Framework
	Synchronizing Cardinality-Based Feature Models and Their Specializations

	Backmatter

