
A Contract-Based Approach for Monitoring
Collaborative Web Services Using Commitments

in the Event Calculus

Mohsen Rouached, Olivier Perrin, and Claude Godart

LORIA-INRIA-UMR 7503,
BP 239, F-54506 Vandœuvre-lès-Nancy Cedex, France

{mohsen.rouached, olivier.perrin, claude.godart}@loria.fr

Abstract. Web services (WS) are gaining popularity for supporting
business interactions in cross-organisational distributed business pro-
cesses. However, current WS specifications mostly concentrate on syntac-
tic aspects. Because multiparty collaborations in business involve com-
plex and long-lived interactions between autonomous partners, their be-
haviour must be specified to ensure the reliability of the collaboration.

This paper presents an event-based framework associated with a se-
mantic definition of the commitments expressed in the event calculus,
to model and monitor multi-party contracts. This framework permits to
coordinate and regulate Web services in business collaborations, by al-
lowing detection of actual and imminent violations.

Keyword: Service Monitoring, Collaboration and Coordination, Event
Calculus, Commitments.

1 Introduction

Web services are gaining popularity for supporting reusable business processes
across distributed and heterogeneous environments. They are well suited to sup-
port cross-organisational interactions because such interactions require tighter
communication between organizations while preserving their individual processes
and practices as an element of their competiveness. However, Web services spec-
ifications mostly concentrate on lower levels and do not offer high-level ab-
stractions to accomodate variations in service invocations and business process
models.

On the other hand, business contracts seems to be an interesting technology
for inter-organisational collaborations, and as such, they are increasingly tak-
ing a central role in the context of virtual entreprises. They provide a flexible
way to define a protocol, which when formally defined, can be analyzed and
checked. Moreover, contracts can be encoded outside the organizations, and this
is interesting as most of the organizations demands are oriented towards more
transparency, autonomy, and preservation of the corporate knowledge. There-
fore, for reliability and efficiency, a contract could be mapped onto a number of

M. Kitsuregawa et al. (Eds.): WISE 2005, LNCS 3806, pp. 426–434, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Contract-Based Approach for Monitoring Collaborative Web Services 427

more formalized modeling concepts which can be used to facilitate its integration
with cross-organisational business processes and other enterprise systems. This
includes contract monitoring features and dynamic updates to the processes and
policies associated with contracts.

This paper presents our contract-based approach which makes use of business
contracts for regulating Web services to support the cross-organisational nature
of collaborations and to integrate contract management services into the overall
business processes between organizations. It consists of:

– an event-based framework to model and monitor multi-party contracts, which
permits to organizations to fulfill their needs of externalisation and autonomy,

– a commitment-based formalisation of contract clauses since commitments
are now widely recognized as a satisfying representation for the interaction
in multi-partners business processes,

– and a representation of commitments in terms of the Event Calculus [KS86]
predicates, as Event Calculus is a formal language with well defined seman-
tics providing an efficient mean for temporal abstractions.

The paper is organized as follows. Section 2 describes our event-based model,
and shows how to express contract events in the Event Calculus. In section 3,
we present the event-based monitoring for e-contracts. We explain our strategy
for expressing contract clauses in terms of commitments in the Event Calculus.
Section 4 discusses the related work. In section 5, we give a running example.
Finally, section 6 concludes the paper and presents some future directions.

2 An Event-Based Model for e-Contracts

Using events for modeling contracts appears to be interesting, and this interest
comes mostly from their effects in terms of changes that are produced by the
execution operations. Indeed, specifying and detecting events play an important
role in the process of analyzing, monitoring, and visualizing the behaviour of
each party involved in the e-contract. Relevant events need to be recorded. After
conflicts between contractual parties, these records can be used as evidence to
determine what happened and to specificy the responsibilities.

2.1 Specifying Composite Events

In order to provide a computational model for events, we use the Event Calculus
[KS86] which is a calculus that allows for specifying some state at particular
time-points for time-varying properties (called fluents). The concepts used are
inspired from the first order logic, and we find four types of objects:

– A(variables a, ai, . . .): events, or actions,
– F(variables f, fi, . . .): fluents, the value of fluents is time-dependent,
– T (variables t, ti, . . .): timepoints,
– X (variables x, xi, . . .): domain objects.

428 M. Rouached, O. Perrin, and C. Godart

The Event Calculus also defines five basic predicates:

(1) Happens(e, t): event e occurs at timepoint t,
(2) HoldsAt(f, t): fluent f is true at timepoint t,
(3) Initiates(e, f, t): if e occurs at t, then f is true and not released at t + 1,
(4) Terminates(e, f, t): if e occurs at t, then f is false and not released at t + 1,
(5) t1 < t2: this is the standard order relation for time, t1 precedes t2.

Then, the last two axioms are Clipped and Declipped, and their definitions are:
Clipped(t1, f, t2) = ∃(a, t)[Happens(a, t)∧(t1 <= t < t2)∧Terminates(a, f, t)].
This means that fluent f is no more true (terminated) between times t1 and t2.
Respectively, we have: Declipped(t1, f, t2) = ∃(a, t)[Happens(a, t) ∧ (t1 <= t <
t2)∧Initiates(a, f, t)]. This means that fluent f is true (initiated) between times
t1 and t2.

With these definitions, it is easy to treat concurrent actions, as different
Happens can refer to the same timepoint. Given this property, we can deduce
that two events (with their corresponding timepoints) can be totally ordered
based on the ordering of their timepoints (and predicate 5).

In our event-based mechanism, a timepoint denoted ts of a distributed com-
posite event e is the supremum of the set of timepoints of the constituent prim-
itive events collected when the composite event occurs.

Temporal Orders. Let e1 and e2 be any primitive events. The temporal order
of these two events is defined as follows:

1. Happens(e1, t1) is said to be happen before Happens(e2, t2) if t1 < t2.
2. Happens(e1, t1) is said to be concurrent with Happens(e2, t2) if t1 = t2.
3. Happens(e1, t1) is said to be happen after Happens(e2, t2) if t1 > t2.

Disjunction. The meaning of disjunction is that as soon as one of the two
events occurs, the disjunctive event occurs. Disjunction of two events e1 and e2
is denoted disj(e1, e2). Formally:

disj(e1, e2)(t) = Initiates(e2, raised, t) ⇐= Happens(e1, t)
∨Initiates(e1, raised, t) ⇐= Happens(e2, t)

Conjunction. The meaning of a conjunction is that two events must both occur
before the conjunctive event occurs, but that the order of occurrence, and any
overlap of occurrence, is not relevant. Conjunction of two events e1 and e2 is
denoted conj(e1, e2). Formally:

conj(e1, e2)(t) = Initiates(e3, raised, t) ⇐=
Happens(e1, t1) ∧ Happens(e2, t2) ∧ t ≥ sup({t1, t2})

Sequence. Sequence is said to be strict, i.e. one event must have occurred
before the next event in the sequence. Sequence of two events e1 and e2 is
denoted seq(e1, e2), and is defined as follows:

A Contract-Based Approach for Monitoring Collaborative Web Services 429

seq(e1, e2)(t) = Happens(e2, t2) ⇐= Happens(e1, t1) ∧ (t2 > t1)

It is possible that after the occurrence of e1, e2 does not occur at all. To
avoid this situation, we must appropriately use definite events, such as absolute
temporal event or the end of the activities execution.

Negation. The meaning of a negation is that an event e1 does not occur in a
closed interval formed by e2 and e3. It is denoted by neg(e1, e2, e3). Formally:

neg(e1, e2, e3)(t) = ∀t2 ∈ [t1, t3],
Happens(e1, t1) ∧ Happens(e3, t3) ∧ ¬Happens(e2, t2)

Temporal Iteration. A periodic event is a temporal event that occurs period-
ically. It is denoted by P (e1, d, e2) where e1 and e2 are arbitrary events and d
is a time slot. e1 occurs for every d in the interval]e1, e2]. Formally:

P (e1, d, e2)(t) = ∃t1, (∀t2 ∈ [t1, t], t =
t1 + i ∗ d for some i)(Happens(e1, t1) ∧ ¬Happens(e2, t2)

If the constraint ”e1 occurs only once e2 occurs” exists, the previous definition
becomes:

P (e1, d, e2)(t) = ∃t1, (t > t1)(Happens(e1, t1) ∧ (Happens(e2, t))

Of course, it is possible to combine different operators. For instance, disj(e1,
seq(e2, e3)) represents a composite event which occurs as a result of the disjunc-
tion of e1 and the sequence of e2 and e3.

3 Event-Based Monitoring for e-Contracts

To determine whether an execution of a contract is correct, we must repre-
sent not only the behavior of the different parties but also the evolution of the
contractual relationships among them. These contractual relationships are natu-
rally represented through commitments which permit to capture the obligations
of one party to another. The time factor is an important element in the represen-
tation of a commitment, and to formally express a commitment, it is necessary
to find a representation able to handle temporal constraints. A richer represen-
tation of the temporal content of commitments will make them more suitable
for representing real situations of business contracts which commonly involve
many clauses and have subtle time periods of reference. The representation of
temporal properties for commitments usually use some branch of the Temporal
Logic [Tl90]. However, as we are interested in analyzing and checking multi-
party contracts, the monitoring mechanism needs a high level of externalisation
and temporal abstraction. That is why we rely on the use of the Event Calculus
introduced so far. Thus, in our monitoring model, we view each action in the
contract as an operation on commitments. Then, we develop an approach for

430 M. Rouached, O. Perrin, and C. Godart

formally representing and reasoning about commitments in the Event Calculus.
Therefore, we can specify the content of the contract throught commitments
of each party. Contract parties create commitments and manipulate them as a
result of performing actions through the contract clauses. Further, by allowing
preconditions to be associated with the initiation and termination of contract
activities, different commitments can be associated with these activities to model
the interactions among parties. Conceptually, these interactions are governed by
the rules mentioned in the contract clauses.

In our approach, we are using three types of commitments as defined in
[Sin99]: (1) a base-level commitment denoted C(p1, p2, c) which stipulates that
party p1 becomes responsible to party p2 for statisfying condition c, i.e, c holds
sometime in the future,(2) a conditional commitment denoted Cc(p1, p2, c1, c2)
stipulates that if the condition c1 is satisfied, p1 will be committed to bring
about condition c2, and (3) a persistent commitment denoted Cp(p1, p2, A(c)) is
defined as a commitment from party p1 to party p2 to ensure that condition c
holds on all future time points (operator A(c)).

Then, deontic clauses can be defined in terms of operations on commitments.
The main step consists of specifying deontic constraints including specification
of roles and their permissions, obligations and prohibitions using both commit-
ments axioms and Event Calculs axioms [Sha97]. Thus, prohibitions (F), per-
missions (P), and obligations (O) can be rewitten as follows:

Prohibitions: a prohibition is used to express that an action is forbidden to
happen for a party. If a party is prohibited to bring out a proposition p, then it
has a commitment to ensure that p never holds.

Create(F (p1, p2, p), p2, C(p2, p1, A(¬p)))

Permissions: by considering permissions as negations of prohibitions, we obtain
that a party p1 is permitted to bring about a proposition p if it has not been
prohibited from it. Permission is given by party p2.

Release(P (p1, p2, p), p1, C(p2, p1, A(¬p)))

Obligations: an obligation is a prescription that a particular behaviour is re-
quired. It is fulfilled by the occurrence of the prescribed behaviour. To express
that a proposition p is compulsory for a party, we use the permission’s expres-
sion presented so far. Among deontic logic rules defined in [MW93], we find
the following rule that establishes a relationship between permission (P) and
obligation (O):

P (p) ←→ ¬(O(¬p))

From this rule we deduce the following relation

O(p) ←→ ¬(P (¬p))

As such, using commitments and event calculus, obligations are defined as:

Create(O(p1, p2, p), p2, C(p2, p1, A(p)))

A Contract-Based Approach for Monitoring Collaborative Web Services 431

Given these formal specifications of contract clauses, we can specify the content
of business contracts through the partners commitments. Indeed, the specifica-
tion of a contract is seen as a set of Initiates and Terminates clauses that define
which activities pertaining to the contract are initiated and terminated by each
party. Then, the contract execution consists of performing a set of actions that
will take place at specific timepoints, that is, a set of Happens clauses along with
an ordering of the timepoints specified in the contrat rules.

4 Running Example

As a running example, we use a business contract established for buying and
selling books on the Internet. Its idea was inspired from the Netbill protocol
introduced by Sirbu in [Sir98]. The contract’s execution begins with a customer
(BR) requesting a quote for some desired books, followed by the purchaser (BP)
sending the quote. If the customer accepts the quote, then the purchaser deliv-
ers just the book’s abstract and waits for an electronic payment order (EPO).
After receiving the EPO, the purchaser forwards the EPO and the book to an
intermediation server, which handles the funds transfer. When the funds transfer
completes, the intermediation server sends a receipt back to the purchaser. As
the last step, the purchaser forwards the receipt to the customer to communicate
the reception date. Here, we focus on a contract that involves the customer and
the purchaser and we try to formalise its operations using commitments in the
event calculus. First, we define the fluents used in this contract protocol.

– Fluents
• request(i): a fluent meaning that the customer has requested a quote for

item i.
• books(i): a fluent meaning that the purchaser has delivered the book i.
• pay(m): a fluent meaning that the customer has paid the agreed upon

amount m.
• receipt(i): a fluent meaning that the purchaser has delivered the receipt

for item i.
– Commitments

• Cc(CT, MR, books(i), pay(m)) means that the customer is willing to pay
if he receives the books.

• promiseBooks(i, m) = Cc(MR, CT, accept(i, m), books(i)) means that
the purchaser is willing to send the goods if the customer promises to
pay the agreed amount.

• promiseReceipt(i, m) = Cc(MR, CT, pay(m), receipt(i)) means that the
purchaser is willing to send the receipt if the customer pays the agreed-
upon amount.

After identifying fluents and commitments necessary for the contract’s execution,
we look now at how the commitments among contract parties evolve during this
phase.

432 M. Rouached, O. Perrin, and C. Godart

1. When the books are sent at time t1 , the fluent books(i) is initiated. Fur-
ther, by Create(sendBooks(i, m), BP, promiseReceipt(i, m)), the commit-
ment Cc(BP, BR, pay(m), receipt(i)) is created. So now the books have been
delivered, and the purchaser is willing to send the receipt if the customer
pays. Formally, we have:
– HoldsAt(books(i), t1) since we have

Initiates(sendBooks(i, m), books(i), t).
– HoldsAt(Cc(GP, GR, pay(m), receipt(i)), t2) after executing

Create(sendBooks(i, m), GP, promiseReceipt(i, m)). (1)
2. By sending the EPO at time t2 > t1, the customer initiates the fluent pay(m)

at time t3 . This ends the commitment Cc(BP, BR, pay(m), receipt(i)) and
creates the commitment C(BP, BR, receipt(i)). Since no event occurred to
terminate books(i), it continues to hold. Formally, we have:
– HoldsAt(pay(m), t3) since Initiates(sendEPO(i, m), pay(m), t) was ini-

tiated. (2)
– HoldsAt(C(BP, BR, receipt(i)), t3) by using (1) and (2).
– ¬ HoldsAt(Cc(BP, BR, pay(m), receipt(i)), t2) by using (1) and (2). (3)

3. At time t3 > t2 the happens clause Happens(sendReceipt(i), t3) is appli-
cable, which initiates the fluent receipt(i). This discharges the commitment
C(BP, BR, receipt(i)) and then it will be terminated. Thus, we reach the
stage where the purchaser has delivered the books and the receipt, and the
customer has paid.
– HoldsAt(receipt(i), t4) by using

Initiates(sendReceipt(i, m), receipt(i), t)
– ¬HoldsAt(C(BP, BR, receipt(i)), t4) by using (3).

4. Thus, at time t4 > t3 , the following holds:
HoldsAt(books(i), t4) ∧ HoldsAt(pay(m), t4) ∧ HoldsAt(receipt(i), t4).

As such, given a business contract composed of obligations, permissions, and
prohibitions, we have formalized these prescriptions using commitments. Then,
by exploiting the strengths of the event calculus to specify business interactions
rigorously, we showed how these commitments enabled Web service interactions
will produce more flexible and reliable business process models.

5 Related Work

Because of the autonomy and decentralization of the participants, specifying and
managing Web services interactions can be challenging. Conventional techniques
fall into one of two extremes, being either too rigid or too unstructured. Our
contract-based approach using commitments takes the middle path, emphasizing
the coherence desired from the activities of autonomous decentralized entities,
but allowing the entities to change their services in a controlled manner, which
enables them to achieve progress in a dynamic and unpredictable environment.
Below we discuss some approaches that are related to our work.

Traditionally, business contracts have been specified using formalisms such
as finite state machines, or Petri Nets, that only capture the legal orderings

A Contract-Based Approach for Monitoring Collaborative Web Services 433

of actions. However, since the semantic content of the actions is not captured,
the participants can not handle unexpected situations at runtime. To remedy
this, our approach relies on the use of commitments and the Event Calculus.
Commitments have been studied before [Cas95] but have not been used for busi-
ness contract specification. One of the problems with the use of commitments
is ensuring that Web services would not be able to retract them with no conse-
quences. Sandholm et al. [SL01] describe various mechanisms for decommitting
that would prevent prevent agents (in our case Web services) from decommit-
ting at will. On the other side, the Event Calculus has been theoretically studied,
but has not been used for modeling commitments or commitment-based speci-
fication. Denecker et al. [DMB92] use the Event Calculus for specifying process
protocols using domain propositions to denote the meanings of actions. Then,
contracts in distributed environments should respect the partners autonomy and
enable them to interact flexibly to handle exceptions and contract breaches.

Paper [FSSB04] studied the automated performance monitoring of contracts,
in terms of tracking contract state. In order to facilitate state tracking, the au-
thors define an XML formalization of the Event Calculus, ecXML. This language
is used to describe how a contract state evolves, according to events that are de-
scribed in the contract. However, the contract monitoring and the composite
event specification were not dressed.

Flores and Kremer [FK02] develop a model to specify conversation protocols
using conversation policies. As in our approach, Flores and Kremer model actions
as creating and discharging commitments. However, they only model base-level
commitments, whereas our approach accommodates conditional commitments
and reasoning rules for these commitments.

A common pattern of the related works discussed above is that all of them are
in the direction of the system administration, but not business process automa-
tion and Web services regulation. The different domains have different require-
ments for monitoring. In our work, the Web services regulation requires semantic
level monitoring, rather than system level monitoring. To achieve this goal, our
e-contract monitorability relies on a purely event-based paradigm allowing a
complete separation of the coordination aspects and functionality aspects which
was not expressed in the works listed so far.

6 Conclusion and Future Work

This paper presents an approach to regulate and monitor collaborative Web ser-
vices. We have described our solution to the problem of integrating contracts
as part of cross-organisational collaborations. This solution consists of an event-
based framework, associated with a semantic definition of the commitments ex-
pressed in the Event Calculus, to model and to manage multi-party contracts.
First, we have developed a methodology to specify and detect composite events
in busines contracts. Second, we have detailed a method to express deontic con-
tract clauses using commitments in the Event Calculus. Finally, the related work
was discussed.

434 M. Rouached, O. Perrin, and C. Godart

In our future work, we plan to test our solution in existing Web services
architectures such as ebXML or RosettaNet. This would help us to determine the
expressive power of the model and its acceptability by contract domain experts
and practitioners. Another alternative is to study correctness requirements in
business process protocols, and then express them in terms of commitments and
Event Calculus predicates.

References

[Cas95] C. Castelfranchi. Commitments: From individual intentions to groups and
organizations. In Proceedings of the International Conference on Multiagent
Systems, pages 41–48, 1995.

[DMB92] M. Denecker, L. Missiaen, and M. Bruynooghe. Temporal reasoning with
abductive event calculus. In Proceedings of the 10th European Conference
and Symposium on Logic Programming (ECAI), pages 384–388, 1992.

[FK02] R. A. Flores and R. C. Kremer. To commit or not to commit: Modeling
agent conversations for action. Computational Intelligence 18(2), pages
120–173, 2002.

[FSSB04] A. D. H. Farrell, M. Sergot, M. Salle, and C. Bartolini. Using the event cal-
culus for the performance monitoring of service-level agreements for utility
computing, WEC 2004.

[KS86] R. Kowalski and M. J. Sergot. A logic-based calculus of events. New gen-
eration Computing 4(1), pages 67–95, 1986.

[MW93] J. Ch. Meyer and R. J. Wieringa. Deontic Logic in Computer Science: Nor-
mative Systems Specification, chapter Deontic Logic: A concise Overview.
John Wiley and Sons, 1993.

[Sha97] M. Shanahan. Solving the frame problem: A mathematical investigation of
the commen sence law of inertia. In Cambridge: MIT Press. 1997.

[Sin99] M. P Singh. An ontology for commitments in multiagent systems: Toward
a unification of normative concepts. In Artificial Intelligence and Law 7,
pages 97–113. 1999.

[Sir98] M. A. Sirbu. Credits and debits on the internet. In Huhns and Singh,1998,
pages 299–305. 1998. Reprinted from IEEE Spectrum, 1997.

[SL01] T. Sandholm and V. Lesser. Leveled commitment contracts and strategic
breach. Games and Economic Behavior, 35:212–270, 2001.

[Tl90] Temporal and Modal logic. Temporal and modal logic. In Theoretical
Computer Science. Amsterdam: North-Holland, pages 995–1072. 1990.

	Introduction
	An Event-Based Model for e-Contracts
	Specifying Composite Events

	Event-Based Monitoring for e-Contracts
	Running Example
	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

