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Preface

Computing technology has become ubiquitous, from global applications to mi-
nuscule embedded devices. Trust in computing is vital to help protect public
safety, national security, and economic prosperity. A new area of research, known
as global computing, has recently emerged that aims at defining new models of
computation based on code and data mobility over wide area networks with
highly dynamic topologies, and that aims at providing infrastructures to sup-
port coordination and control of components originat from different, possibly
untrusted, sources. Trustworthy global computing aims at guaranteeing safe and
reliable network usage, also by providing tools and framework for reasoning
about behavior and properties of applications.

An International Symposium on Trustworthy Global Computing (TGC 2005),
was held in Edinburgh, UK, April 7–9, 2005. The symposium contained presen-
tations and discussions dealing with issues such as:
– resource usage,
– language-based security,
– theories of trust and authentication,
– privacy, reliability and business integrity,
– access control and mechanisms for enforcing it,
– models of interaction and dynamic components management,
– language concepts and abstraction mechanisms,
– test generators, symbolic interpreters, type checkers,
– finite state model checkers, theorem provers,
– software principles to support debugging and verification.

The themes of the workshop were inspired by the activities of the IST/FET
proactive Initiative on Global Computing funded by the European Union. In-
deed, TGC 2005 can be considered as the evolution of the previous Global Com-
puting Workshops held in Trento (see, for example, LNCS 2874) and the work-
shops on Foundation of Global Computing held as satellite events of ICALP or
Concur (see, for example, ENTCS Vol. 85)

The format of the symposium was not that of a classical conference, but one
structured to leave room for discussions stimulated by a conspicuous number of
invited talks and by the papers selected after standard refereeing.

At the symposium we had 10 invited talks, and 11 contributed papers selected
by the Program Committee (PC) after a call for contributions and a selective
refereeing process (each paper was reviewed by four researchers). The invited
talks were delivered by the following distinguished researchers, chosen by the
PC members: Michele Bugliesi (Univ. of Venice, Italy), Luis Caires (Univ. Nova
of Lisbon, Portugal), Matthew Hennessy (Univ. of Sussex, UK), Peter Van Roy
(Univ. Catholique de Louvain, Belgium), Elsa Gunter (New Jersey Inst. of Tech-
nology, USA), Joshua Guttman (Mitre, Bedford, USA), Greg Meredith (CTO,
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Djinnisys Corporation, USA), Mark Miller (HP, USA), Benjamin Pierce (Univ.
of Pennsylvania, USA), Wolfram Schulte (Microsoft, USA).

This volume contains revised versions of the accepted papers which took into
account both the referees’ reports and the discussions that took place during
the symposium. The volume contains also 8 papers contributed by the invited
speakers.

The organization of TGC 2005 was stimulated by the IFIP Working Group
(WG) 2.2. (http://www.irisa.fr/s4/wg22/). In the past, this WG organized
a general working conference every 4 years. Members felt that the format should
change, and the conference should be more focused. TGC 2005 was the first the-
matic conference promoted by the WG. The symposium had the co-sponsorship
of IFIP TC-2 (Technical Committee 2 “Software: Theory and Practice”), to
which WG 2.2 belongs.

The Program Committee included coordinators of EU Global Computing
projects, organizers of past events similar to TGC 2005, and a few external ex-
perts on security and GC: Luca Cardelli (Microsoft Cambridge, UK), Giuseppe
Castagna (ENS Paris, France), Adriana Compagnoni (Stevens Institute, USA),
Rocco De Nicola (Florence, Italy, Chair), José Luiz Fiadeiro (Leicester, UK),
Roberto Gorrieri (Bologna, Italy), Jean-Jacques Levy (Inria, France), Huimin
Lin (Chinese Academy of Sciences, China), Eugenio Moggi (Genoa, Italy),
Mogens Nielsen (Aarhus, Denmark), Flemming Nielson (Lyngby, Denmark),
Joachim Parrow (Uppsala, Sweden), Corrado Priami (Trento, Italy), Julian
Rathke (Sussex, UK), Davide Sangiorgi (Bologna, Italy, Chair), Don Sannella
(Edinburgh, UK), Vladimiro Sassone (Sussex, UK), Jean-Bernard Stefani (Inria,
France), and Martin Wirsing (Munich, Germany).

We would like to thank all the members of the Program Committee, and
their subreferees, for putting together the selective program of the conference.

TGC 2005 was co-located with the events of ETAPS 2005, in Edinburgh. Spe-
cial thanks is due to the Local Organizing Committee from Edinburgh University,
in particular Don Sannella and Massimo Felici, who helped us patiently through
our (almost endless) email messages. We would also like to thank Lorenzo Bet-
tini (University of Florence) for his help during the periods of paper submission
and preparation of the LNCS proceeedings.

Rocco De Nicola
July 2005 Davide Sangiorgi

TGC 2005 Co-chairs
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Harmony: The Art of Reconciliation

(Invited Talk)

Benjamin C. Pierce

University of Pennsylvania
http://www.cis.upenn.edu/~bcpierce

The Harmony system is a generic framework for reconciling disconnected up-
dates to heterogeneous, replicated XML data. It can be used, for instance, to
synchronize the bookmark files of several different web browsers, allowing book-
marks and bookmark folders to be added, deleted, edited, and reorganized by
different users running different browser applications on disconnected machines.

A central theme of the Harmony project—and of this talk—is bringing ideas
from programming languages to bear on a set of problems more commonly re-
garded as belonging to the purview of databases or distributed systems. In partic-
ular, a major component of the proposed work concerns developing the founda-
tions of bi-directional programming languages [1], in which every program denotes
a pair of functions—one for extracting a view of some complex data structure,
and another for “putting back” an updated view into the original structure.
Bi-directional programs play a crucial role in the way the system deals with
heterogeneous structures, mapping between diverse concrete application data
formats and common abstract formats suitable for synchronization. Similarly,
the issue of alignment during reconciliation—that is, of determining which parts
of divergent replicas are intended to represent “the same information”—can be
addressed by focusing on the type structure of the data being reconciled [2].

Further information and an open-source implementation can be found on the
Harmony home page: http://www.cis.upenn.edu/~bcpierce/harmony.

References

1. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bi-directional tree transformations: A linguistic approach to the view update
problem. In: ACM SIGPLAN–SIGACT Symposium on Principles of Programming
Languages (POPL), Long Beach, California. (2005) Extended version available as
University of Pennsylvania technical report MS-CIS-03-08. Earlier version presented
at the Workshop on Programming Language Technologies for XML (PLAN-X), 2004.

2. Foster, J.N., Greenwald, M.B., Kirkegaard, C., Pierce, B.C., Schmitt, A.: Schema-
directed data synchronization. Technical Report MS-CIS-05-02, University of Penn-
sylvania (2005) Supercedes MS-CIS-03-42.

R. De Nicola and D. Sangiorgi (Eds.): TGC 2005, LNCS 3705, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Theory of Noninterference for the π-Calculus�

Silvia Crafa1 and Sabina Rossi2

1 Dipartimento di Matematica, Università di Padova
crafa@math.unipd.it

2 Dipartimento di Informatica, Università Ca’ Foscari di Venezia
srossi@dsi.unive.it

Abstract. We develop a theory of noninterference for a typed version of the π-
calculus where types are used to assign secrecy levels to channels. We provide
two equivalent characterizations of noninterference based on a typed behavioural
equivalence relative to a security level σ, which captures the idea of external ob-
servers of level σ. The first characterization involves a universal quantification
over all the possible active attacks, i.e., malicious processes which interact with
the system possibly leaking secret information. The second definition of non-
interference is expressed in terms of an unwinding condition, which deals with
so-called passive attacks trying to infer confidential information just by observ-
ing the behaviour of the system. This unwinding-based characterization natu-
rally leads to efficient methods for the verification and construction of (composi-
tional) secure systems. Furthermore, we characterize noninterference in terms of
bisimulation-like (partial) equivalence relations in the style of a stream of similar
studies for other process calculi (e.g., CCS and CryptoSPA) and languages (e.g.,
imperative and multi-threaded languages).

1 Introduction

A central issue of multilevel security systems is the protection of sensitive data and re-
sources from undesired access. Information flow security properties have been proposed
as a means to provide strong guarantees of confidentiality of secret information. These
properties impose constraints on information flow ensuring that no information can flow
from a higher to a lower security level. Since Denning and Denning’s work [7], infor-
mation flow analysis has been studied for various programming languages, including
imperative languages [7,21,24], functional languages [11,19] and concurrent languages
[1,5,8,15,16,17,18,20,23,26].

One of the most successful approaches to information flow security relies on the
notion of Noninterference [10]. The basic idea is that a system is interference free if the
low level observation of the system is independent from the behaviour of its high com-
ponents. Recently, various type-based proof techniques for the π-calculus have been
proposed [12,15,16,17,18]. In these works type systems are actually part of the defi-
nition of noninterference, in that both the observation of the system and the observed
processes are constrained by types. A soundness theorem is then proved stating that if a

� Supported by the EU-FET project IST-2001-32617 and the FIRB project RBAU018RCZ.

R. De Nicola and D. Sangiorgi (Eds.): TGC 2005, LNCS 3705, pp. 2–18, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Theory of Noninterference for the π-Calculus 3

system is well-typed, then no change in the behaviour of its high components can affect
the low level view of the system.

In this paper we wish to define a general theory of noninterference for the π-
calculus, where the use of types is much lighter. In particular, the only typing constraint
we impose is that values at a given security clearance cannot flow through channels with
a lower security level. Such a typing discipline ensures that information does not ex-
plicitly flow from high to low. Instead, implicit flows are not dealt with the type system,
and then we cannot use it as a proof technique for noninterference. On the contrary, we
characterize noninterference in terms of the actions that typed processes may perform.

Our approach intends to generalize previous ideas, mainly developed for CCS, to
the π-calculus, where new difficulties arise due to the presence of scope extrusion.
The contribution of this paper is twofold: (i) we develop a rich and elegant theory of
noninterference intrinsic of the π-calculus, almost independent of types, and (ii) we
find a number of sound and complete characterizations of secure processes leading to
efficient verification techniques.

The noninterference property we are going to study is based on the notion of process
behaviour relative to a security level σ, taken from a complete lattice 〈Σ,�〉 of security
annotations. We define typed equivalences for the π-calculus relative to an observation
level σ, namely σ-reduction barbed congruences (see [13]). Two processes P,Q are σ-
equivalent in the type environment Γ , written Γ � P ∼=σ Q, if they exhibit the same
σ-level behaviour, i.e., they are indistinguishable for a σ-level observer.

A σ-level observer is formalized as a σ-context, i.e., a well typed context which can
interact with the observed process only through channels of level at most σ. We require
∼=σ to be a congruence for all σ-level contexts.

We also develop a proof technique for ∼=σ in terms of a quite natural bisimilarity
on σ-actions defined on typed labelled transition systems. A typed LTS is built around

typed actions of the form Γ �P
α

−−→δ Γ ′ �P ′ indicating that in the type environment
Γ , the process P performs the action α of level δ and evolves to P ′ in the possibly
modified environment Γ ′. We prove that two processes are σ-barbed congruent if and
only if they are bisimilar on typed actions of level σ.

Relying on this equational theory for the π-calculus, we introduce the noninterfer-
ence propertyNI(∼=σ) for typed processes, which is inspired by the P BNDC property
defined in [9] for CCS. We say that a process P in a type environment Γ satisfies the
propertyNI(∼=σ), written Γ � P ∈ NI(∼=σ), if for every configuration Γ ′ � P ′ reach-
able from Γ �P in the typed LTS, and for every σ-high level source H (that is a process
which can perform only actions at level higher than σ) it holds

Γ ′ � P ′ ∼=σ Γ ′ � P ′ | H.
This definition involves a universal quantification over all the possible active attacks,
i.e., high level malicious processes H which interact with the system possibly leaking
secret information. Moreover, it is persistent in the sense that if a configuration satisfies
NI(∼=σ) then also all the configurations reachable from it in the typed LTS satisfy
NI(∼=σ). As discussed in [9], persistence is technically useful since it allows us to
apply inductive reasoning when proving security results (e.g., compositionality), but
it is also intuitively motivated by the need for mobile processes to be secure at any
computation step.
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We provide a first characterization of NI(∼=σ) in terms of an unwinding condition
in the style of [3]. The unwinding condition aims at specifying local constraints on
process transitions which imply the global security property. More precisely, we require
that whenever a configuration C performs a typed action of level higher than σ moving
to C′, then a configuration C′′ can also be reached through an internal computation
such that C′ and C′′ are indistinguishable for a σ-level observer. In other words, the
unwinding condition ensures that the σ-high actions are always simulated by internal
computations, thus becoming invisible for the low level observers.

It is interesting to observe that the unwinding condition characterizes security with
respect to the so-called passive attacks, which try to infer information about the classi-
fied behaviour (σ-high actions) just by observing the σ-level behaviour of the system.
Thanks to this characterization, the noninterference property NI(∼=σ) becomes decid-
able for finite state processes, i.e., processes whose typed LTS is finite. Furthermore,
we show that NI(∼=σ) is compositional with respect to most of the operators of the
π-calculus. In particular, if P and Q satisfy NI(∼=σ) then P | Q and !P also do.

We further develop two quantifier-free characterizations of noninterference based
on bisimulation-like (partial) equivalence relations. More precisely, we first introduce
a partial equivalence relation

.≈σ (per model) over configurations and, inspired by the
definitions in [21] for imperative and multi-threaded languages, we prove that

.≈σ is
reflexive only on the set of secure processes. Hence, we obtain that a typed process P
is secure if and only if P is

.≈σ-equivalent to itself. Then we investigate the impact of
name restriction on noninterference. Let (νσ)P be the process P where all its σ-high
free names are restricted. We define the equivalence relation

..≈σ and prove that a typed
process P is secure if and only if P and (νσ)P are

..≈σ-equivalent. Finally we show
that two well typed processes P and Q are equivalent on σ-actions if and only if (νσ)P
and (νσ)Q are equivalent on every action. This property allows us to precisely relate
the standard bisimulation equivalence ≈ for the π-calculus with our bisimulation on
σ-actions and also to express our noninterference property in terms of the equivalence
relation ≈.

The rest of the paper is organized as follows. In Section 2 we present the language,
its semantics and the type system. In Section 3 we study typed observation equivalences
relative to a security level. In Section 4 we introduce the notion of σ-noninterference and
provide a number of characterizations based on typed actions. In Section 5 we illustrate
the expressivity of our approach through a couple of examples. Section 6 concludes the
paper discussing some related work.

All the proofs of the results presented in this paper are available in [6].

2 The Language

In this section we introduce the language, its operational semantics and the type system
with which we will be concerned.

We presuppose a countably-infinite set of names and a countably-infinite set of vari-
ables ranged over by n, .., q and by x, .., z, respectively. We often use a, b, c to range
over both names and variables. We also assume a complete lattice 〈Σ,�〉 of security
annotations, ranged over by σ, δ, where 	 and ⊥ represent the top and the bottom el-
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Table 1. Syntax

Prefixes Processes

π ::= a〈b〉 output P ::= π.P prefix

| a(x : T ) input | if a = b then P else P matching

| P | P parallel

Types | (νn : T )P restriction

T ::= σ[ ] | !P replication

| σ[T ] | 0 inactive

ements of the lattice. The syntax of processes and types is shown in Table 1. It is a
synchronous1, monadic, calculus with the match/mismatch operator. As explained in
[13], the matching construct is essential for the coinductive characterization of the re-
duction barbed congruence shown in Section 3.

As usual, the input construct a(x : T ).P acts as a binder for the variable x in P ,
while the restriction (νn : T )P acts as a binder for the name n in P . We identify
processes up to α-conversion. We use fn(P ) and fv(P ) to denote the set of free names
and free variables, respectively, in P . We write P{x := n} to denote the substitution
of all free occurrences of x in P with n, and we often write a(x:T ), a〈b〉 omitting
trailing 0’s. In this paper we restrict to closed processes, i.e., processes containing no
free occurrences of variables; in Section 6 we discuss how to extend our theory to open
terms.

Types are used to assign security levels to channels. More precisely, if σ ∈ Σ, then
σ[ ] is the type of channels of level σ which carry no values, while σ[T ] is the type of
channels of level σ which carry values of type T . We consider the functionΛ associating
to types the corresponding level, that is Λ(σ[ ]) = σ = Λ(σ[T ]).

Semantics. The operational semantics of our language is given in terms of a labelled
transition system (LTS) defined over processes. The set of labels, or actions, is the
following:

Actions α ::= n〈m〉 send a name

| (νm:T )n〈m〉 send a fresh name

| n(m) receive a name

| τ internal action

We write fn(α) and bn(α) to denote the set of free and bound names occurring in the
action α, where bn(α) = {m} if α = (νm:T )n〈m〉, and bn(α) = ∅ otherwise. The
LTS is defined in Table 2 and it is entirely standard; we just omitted the symmetric

1 We consider the synchronous calculus since it allows for more interferences. Nevertheless, our
results can be adapted to the asynchronous, polyadic calculus.
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Table 2. Labelled Transition System

(OUT)

n〈m〉.P
n〈m〉
−−−→ P

(IN)

n(x : T ).P
n(m)

−−−→ P{x := m}

(MATCH)

if n = n then P else Q
τ−−→ P

(MISMATCH)
n �= m

if n = m then P else Q
τ−−→ Q

(PAR)

P
α−−→ P ′ bn(α) ∩ fn(Q) = ∅

P | Q α−−→ P ′ | Q

(COMM)

P
n〈m〉
−−−→ P ′ Q

n(m)

−−−→ Q′

P | Q τ−−→ P ′ | Q′

(CLOSE)

P
(νm:T ) n〈m〉
−−−−−−−−−→ P ′ Q

n(m)

−−−→ Q′ m /∈ fn(Q)

P | Q τ−−→ (νm:T )(P ′ | Q′)

(OPEN)

P
n〈m〉
−−−→ P ′ m �= n

(νm:T )P
(νm:T ) n〈m〉
−−−−−−−−−→ P ′

(RES)

P
α−−→ P ′ n /∈ fn(α) ∪ bn(α)

(νn:T )P
α−−→ (νn:T )P ′

(REP-ACT)

P
α−−→ P ′

!P
α−−→ P ′ | !P

rules for (SUM), (PAR), (COMM) and (CLOSE) in which the role of the left and right
components are swapped.

Type System. Our type system corresponds to the basic type system for the π-
calculus (see [22]). The main judgements take the form Γ � P , where Γ is a type
environment, that is a finite mapping from names and variables to types. Intuitively,
Γ � P means that the process P uses all channels as input/output devices in accor-
dance with their types, as given in Γ . The other, auxiliary, judgments are Γ � a : T
stating that the name/variable a has type T in Γ , and Γ �  stating that the type en-
vironment Γ is well formed. The typing rules are collected in Table 3, and they are
based on the following rules of type formation, which prevent a channel of level δ from
carrying values of level higher than δ.

(EMPTY TYPE)

� δ[ ]

(CHANNEL TYPE)

� T Λ(T ) � δ

� δ[T ]

Notice that the type formation rules guarantee the absence of any explicit flow of infor-
mation from a higher to a lower security level: for instance, the process pub〈passwd〉.0
where a secret password is forwarded along a public channel, is not well-typed.
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Table 3. Type System

(EMPTY)

∅ 
 �

(ENV a)

Γ 
 � 
 T a /∈ Dom(Γ )

Γ, a : T 
 �

(PROJECT)
Γ, a : T 
 �

Γ, a : T 
 a : T

(OUTPUT)

Γ 
 a : δ[T ] Γ 
 b : T Γ 
 P

Γ 
 a〈b〉.P

(INPUT)

Γ 
 a : δ[T ] Γ, x : T 
 P

Γ 
 a(x : T ).P

(MATCH)

Γ 
 a : δ[T ] Γ 
 b : δ[T ] Γ 
 P Γ 
 Q

Γ 
 if a = b then P else Q

(PARA)
Γ 
 P Γ 
 Q

Γ 
 P | Q

(RES)
Γ, n : T 
 P

Γ 
 (νn : T )P

(REPL)
Γ 
 P

Γ 
!P

(DEAD)
Γ 
 �

Γ 
 0

3 Observation Equivalences Relative to a Security Level

In this section we introduce the notion of σ-level observation equivalence and we de-
velop an equational theory for the π-calculus which is parametric on the security level
(i.e., the observational power) of the observers.

Our equivalences are reminiscent of the typed behavioural equivalences for the π-
calculus [2,13,15,22]: they are equivalences indexed by a type environment Γ ensuring
that both the observed process and the observer associate the same security levels to
the same names. Our equivalences, however, are much simpler than those in the above
mentioned works since we do not consider subtyping nor linearity/affinity.

Our type-indexed relations are based on the notion of configuration. We say that
Γ �P is a configuration if Γ is a type environment and P is a process such that Γ � P 2.
A type-indexed relation over processes is a family of binary relations between processes
indexed by type environments. We write Γ � P R Q to mean that P and Q are related
by R at Γ and Γ � P and Γ � Q are configurations.

To define our σ-level observation equivalences, we will ask for the largest type-
indexed relation over processes which satisfies the following properties.

Reduction Closure. A type-indexed relation R over processes is reduction closed
if Γ � P RQ and P

τ−→ P ′ imply that there exists Q′ such that Q =⇒ Q′ and

Γ � P ′RQ′, where =⇒ denotes the reflexive and transitive closure of
τ

−−→ .

2 The two notations Γ �P and Γ 
 P are essentially the same; however, we prefer to keep them
distinct to make it uniform with the literature.
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σ-Barb Preservation. Let σ ∈ Σ, P be a process and Γ a type environment such

that Γ � P . We write Γ � P ↓σ
n if P

n〈m〉−→ with Λ(Γ (n)) � σ. We also write Γ � P ⇓σ
n

if there exists some P ′ such that P =⇒ P ′ and Γ � P ′ ↓σ
n. A type-indexed relation R

over processes is σ-barb preserving if Γ � P RQ and Γ � P ↓σ
n imply Γ � Q⇓σ

n.
σ-Contextuality. Let a typed context be a process with at most one typed hole [·Γ ].

If C[·Γ ] is a typed context and P is a process such that Γ � P , then we write C[P ] for
the process obtained by replacing the hole in C[·Γ ] by P . In order to type contexts, the
type system of Table 3 is extended with the following rule:

(CTX)

Γ, Γ ′ � [·Γ ]

Proposition 1. Let Γ � P and Γ, Γ ′ � C[·Γ ], then Γ, Γ ′ � C[P ].

We are interested in σ-contexts that capture the idea of σ-level observers. Intuitively, a
σ-context is an evaluation context which may interact with the process filling the hole
just through channels of level at most σ.

Definition 1 (σ-context). Let σ ∈ Σ. A context C[·Γ ] is a σ-context if there exists a
type environment Γ ′ such that Γ, Γ ′ � C[·Γ ] and C[·Γ ] is generated by the following
grammar

C[·Γ ] ::= [·Γ ] | (νn:T )C[·Γ ] | C[·Γ ] | P | P | C[·Γ ]

where P is a process such that ∀n ∈ fn(P ) we have Λ(Γ, Γ ′(n)) � σ.

Example 1. Let Γ be the type environment h : 	[⊥[ ]], � : ⊥[ ] and σ ≺ 	. The context
(νh)(h〈�〉 | [·Γ ]) is not a σ-context since the process h〈�〉 in parallel with the hole has a
free occurrence of the high name h. This context does not represent a σ-level observer
since it can interact with a process filling the hole through the high channel h. On the
other hand, (νh)(h〈�〉) | [·Γ ] is a σ-context.

We say that a type-indexed relationR over processes is σ-contextual if Γ � P RQ
and Γ, Γ ′ � C[·Γ ] imply Γ, Γ ′ � C[P ] R C[Q] for all σ-contexts C[·Γ ].

Definition 2 (σ-Reduction Barbed Congruence ∼=σ). Let σ ∈ Σ. The σ-reduction
barbed congruence, denoted by ∼=σ, is the largest type-indexed relation over processes
which is symmetric, σ-contextual, reduction closed and σ-barb preserving.

The following proposition is immediate.

Proposition 2. Let σ ∈ Σ, Γ be a type environment and P,Q be processes such that
Γ � P,Q. If Γ � P ∼=σ Q then Γ � P ∼=σ′ Q for all σ′ � σ. In particular, Γ � P ∼=�
Q implies Γ � P ∼=σ Q for all σ ∈ Σ.

3.1 A Bisimulation-Based Proof Technique

In this section we develop a proof technique for the equivalences ∼=σ defined above.
More precisely, following [2,12,13], we define a LTS of typed actions (called typed
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LTS) over configurations. As in [12], actions are parameterized over security levels and
take the form

Γ � P
α

−−→δ Γ ′ � P ′

indicating that the process P in the type environment Γ can perform the action α to
interact with some δ-level observer. In this case, we say that α is a δ-level action.

The rules of the typed LTS are obtained from those in Table 2 by taking into account
the type environment Γ which records the security levels of the channels used by the
process. Differently from [12], our typed actions are built around just a single type
environment Γ constraining the observed process P . This differs from [12] where, due
to the presence of subtyping, two distinct type environments are needed, one for the
observer and the other for the observed process.

The rules of the typed LTS are reported in Table 4; note that there is an additional
input action of the form (νm:T )n(m) occurring when the process receives a new name
m generated by the environment.
Relying on the typed LTS, we now introduce the bisimilarity on σ-actions which pro-
vides a coinductive characterization of σ-reduction barbed congruence∼=σ .

With an abuse of notation, we write =⇒ for the reflexive and transitive closure of
τ

−−→δ. We also write
α==⇒δ for =⇒

α
−−→δ =⇒, and

α̂==⇒δ for =⇒ if α = τ
and

α==⇒δ otherwise.

Definition 3 (Bisimilarity on σ-actions ≈σ ). Let σ ∈ Σ. Bisimilarity on σ-actions is
the largest symmetric relation ≈σ over configurations, such that whenever (Γ �P ) ≈σ

(Γ �Q), if Γ � P
α

−−→σ Γ ′ � P ′, then there exists Q′ such that Γ �Q
α̂==⇒σ Γ ′ �Q′

and (Γ ′ � Q′) ≈σ (Γ ′ � P ′).

In the following, for a given relation R over configurations, we write Γ � P R Q
whenever (Γ � P )R (Γ � Q).

Theorem 1. Let σ ∈ Σ, Γ be a type environment and P,Q be processes such that
Γ � P,Q. Γ � P ∼=σ Q if and only if Γ � P ≈σ Q.

4 Noninterference

In this section we introduce a notion of noninterference for processes of the typed π-
calculus which uses the σ-reduction barbed congruence∼=σ as observation equivalence.
This property, called NI(∼=σ), is inspired by the P BNDC property defined in [9] for
CCS processes; it requires that no information flow should occur even in the presence
of active malicious processes, e.g., Trojan Horse programs, that run at the classified
(higher than σ) level.

We start by introducing the following notations:

– We say that a configuration Γ ′ �P ′ is reachable from a configuration Γ �P , written
Γ � P � Γ ′ � P ′, if there exist n ≥ 0, α1, . . . , αn and σ1, . . . , σn such that
Γ � P

α1−→σ1

α2−→σ2 · · ·
αn−→σn Γ ′ � P ′. (Notice that the concept of reachability is

independent from the levels σi.)
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Table 4. Typed LTS for π-calculus

(OUT)

Γ 
 n : δ1[T ] δ1 � δ

Γ � n〈m〉.P
n〈m〉
−−→δ Γ � P

(IN)

Γ 
 n : δ1[T ] Γ 
 m : T δ1 � δ

Γ � n(x:T ).P
n(m)

−−→δ Γ � P{x := m}

(WEAK)

Γ, m : T � P
n(m)

−−→δ Γ ′ � P ′

Γ � P
(νm:T ) n(m)

−−−−−−−−→δ Γ ′ � P ′

(PAR)

Γ � P
α−−→δ Γ ′ � P ′ bn(α) ∩ fn(Q) = ∅

Γ � P | Q α−−→δ Γ ′ � P ′ | Q

(RED)

P
τ−−→ P ′

Γ � P
τ−−→δ Γ � P ′

(OPEN)

Γ, m:T � P
n〈m〉
−−→δ Γ ′ � P ′ m �= n

Γ � (νm:T )P
(νm:T ) n〈m〉
−−−−−−−−→δ Γ ′ � P ′

(RES)

Γ, n:T � P
α−−→δ Γ ′, n:T � P ′ n /∈ fn(α) ∪ bn(α)

Γ � (νn:T )P
α−−→δ Γ ′ � (νn:T )P ′

(REP-ACT)

Γ � P
α−−→δ Γ ′ � P ′

Γ�!P
α−−→δ Γ ′ � P ′ | !P

– Given a type environment Γ , we say that a process P is a σ-high level source in Γ ,
written P ∈ Hσ

Γ , if Γ � P and either Γ � P � α−→δ (i.e., Γ � P does not perform
any action) or if Γ � P

α−→δ Γ ′ � P ′ then σ ≺ δ and Γ ′ � P ′ is a σ-high level
source. In other words, a σ-high level source can only perform δ-level actions with
σ ≺ δ. Notice that this definition does not prevent a σ-high level source from
communicating σ-low values (along σ-high channels).

– Given a security level σ ∈ Σ, we write Γ � P
α

−−→σ Γ ′ � P ′ (with a superscript
σ) if whenever Γ � P

α−→δ Γ
′ � P ′ then σ ≺ δ. In this case we say that Γ � P has

performed a σ-high level action. We define
α̂

==⇒σ accordingly.

A process P in a type environmentΓ satisfies the propertyNI(∼=σ) if for every config-
uration Γ ′�P ′ reachable from Γ �P and for every σ-high level source H , a σ-level user
cannot distinguish, in the sense of ∼=σ , Γ ′ � P ′ from Γ ′ � P ′ | H . The formal definition
of NI(∼=σ) is as follows.

Definition 4 (σ-Noninterference). Let σ ∈ Σ, P be a process and Γ be a type envi-
ronment such that Γ � P . The process P satisfies the σ-noninterference property in Γ ,



A Theory of Noninterference for the π-Calculus 11

written Γ � P ∈ NI(∼=σ), if for all Γ ′ � P ′ such that Γ � P � Γ ′ � P ′ and for all
H ∈ Hσ

Γ ′ it holds Γ ′ � P ′ ∼=σ P ′ |H .

Example 2. In the following examples, we assume just two security levels: H and L
with L ≺ H; let also h be a high level channel and �, �1, �2 be low level channels. Let Γ
be the type environment h : H[ ], � : L[ ], �1 : L[ ], �2 : L[ ] and σ = L.

Let us first consider the following simple insecure process: P1 = h().�() | h〈〉. To
show that Γ � P1 �∈ NI(∼=σ) it is sufficient to consider the configuration Γ � P ′

1 with
P ′

1 = h().�() that is reachable from Γ � P1 after performing the output action h〈〉. The
processP ′

1 is clearly insecure in the type environmentΓ since the low level, observable,
action �() directly depends on the high level input h(). Indeed, by choosing H = h〈〉
one can easily observe that Γ � P ′

1 �∼=σ P ′
1 | H .

Let us consider a further classic example of insecure process, that is P2 = h(x :
T ).if x = n then �1〈〉 else �2〈〉 in the type environment Γ ′ = h : H[T ], �i : L[ ], n : T
(here the security level of n is irrelevant). To show that Γ ′ � P2 /∈ NI(∼=σ) one can
choose H = h〈n〉, where H ∈ Hσ

Γ ′ independently on the level of n, and observe that
Γ ′ � P2 �∼=σ P2 | H . Intuitively, when n is a high level name, a low level observer may
infer from P2 the value of the high level variable x, which is clearly unsound.

Finally, consider the process P3 = P2 | h〈n〉 | h〈m〉, where the variable x can be
nondeterministically substituted either with n or m. P3 is still an insecure process since
an external attack can destroy the nondeterminism causing an interference: for instance,
if H = h(y).h(z).h〈n〉, then Γ ′ � P3 �∼=σ P3 | H .

Building on the ideas developed in [3] for a class of persistent noninterference prop-
erties for CCS processes, we provide a characterization of NI(∼=σ) in terms of an un-
winding condition. Intuitively, the unwinding condition specifies local constraints on
the typed actions of the system which imply the global security property. More pre-
cisely, our unwinding condition ensures that no σ-high action α leading to a config-
uration C is observable by a σ-low user, as there always exists a configuration C′,
σ-equivalent to C, that the system may reach without performing α.

Definition 5 (σ-Unwinding Condition). Let σ ∈ Σ, P be a process and Γ be a type
environment such that Γ � P . The process P satisfies the σ-unwinding condition in Γ ,
written Γ � P ∈ W(∼=σ), if for all Γ ′ � P1 such that Γ � P � Γ ′ � P1

– if Γ ′�P1
α

−−→σ Γ ′�P2 with α ∈ {n〈m〉, n(m)}, then ∃P3 such that Γ ′�P1 =⇒
Γ ′ � P3 and Γ ′ � P2 ∼=σ P3;

– if Γ ′ � P1
α

−−→σ Γ ′,m:T � P2 with α ∈ {(νm:T )n〈m〉, (νm:T )n(m)}, then
∃P3 such that Γ ′ � P1 =⇒ Γ ′ � P3 and Γ ′ � P3 ∼=σ (νm:T )P2.

This unwinding-based schema characterizes a notion of security with respect to all pas-
sive attacks which try to infer information about the classified behavior just by observ-
ing the σ-level behaviour of the system.

Both properties NI(∼=σ) and W(∼=σ) are persistent, as stated in the following
proposition.

Proposition 3 (Persistence). Let σ ∈ Σ, P be a process and Γ be a type environment
such that Γ � P . For all Γ ′ � P ′ such that Γ � P � Γ ′ � P ′ it holds
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– if Γ � P ∈ NI(∼=σ) then Γ ′ � P ′ ∈ NI(∼=σ).
– if Γ � P ∈ W(∼=σ) then Γ ′ � P ′ ∈ W(∼=σ).

The equivalence of propertiesNI(∼=σ) and W(∼=σ) is stated below.

Theorem 2. Let σ ∈ Σ, P be a process and Γ be a type environment such that Γ � P .
Γ � P ∈ NI(∼=σ) if and only if Γ � P ∈ W(∼=σ).

The unwinding-based characterization of σ-noninterfering processes provides a better
understanding of the operational semantics of secure processes. Moreover, it allows one
to define efficient proof techniques for σ-noninterference just by inspecting the typed
LTS of processes. Notice that the σ-unwinding condition W(∼=σ) is decidable over the
class of finite state processes, i.e., processes whose typed LTS is finite. Moreover, by
exploiting the following compositionality results, the unwinding conditionW(∼=σ) can
be used to define methods, e.g., proof systems, both to check the security of complex
systems and to incrementally build processes which are secure by construction.

Theorem 3 (Compositionality of W(∼=σ)). Let σ ∈ Σ, P and Q be processes and Γ
be a type environment such that Γ � P,Q. If Γ � P ∈ W(∼=σ) and Γ � Q ∈ W(∼=σ)
then

– Γ, Γ ′ � a〈b〉.P ∈ W(∼=σ) where Γ, Γ ′ � a : δ[T ], Γ, Γ ′ � b : T and δ � σ;
– Γ, Γ ′ � a(x : T ).P ∈ W(∼=σ) where Γ, Γ ′ � a : δ[T ] and δ � σ;
– Γ, Γ ′ � if a = b then P else Q ∈ W(∼=σ) where Γ, Γ ′ � a : T and Γ, Γ ′ � b : T ;
– Γ � P | Q ∈ W(∼=σ);
– Γ ′ � (νn : T )P ∈ W(∼=σ) where Γ = Γ ′, n : T ;
– Γ�!P ∈ W(∼=σ).

Example 3. Let P and Q be finite state processes and Γ be a type environment such
that Γ � P,Q. Although R =!P | Q might be an infinite state process, one can easily
check whether Γ �R ∈ NI(∼=σ) just by exploiting the decidability of Γ �P ∈ W(∼=σ)
and Γ � Q ∈ W(∼=σ) and the compositionality of NI(∼=σ) with respect to the parallel
composition and replication operators.

4.1 Noninterference Through a Partial Equivalence Relation

In [21,20] the notion of noninterference for sequential and multithreaded programs is
expressed in terms of a partial equivalence relation (per model) which captures the view
of a σ-level observer. Intuitively, a configuration C, representing a program and the
current state of the memory, is secure ifC ∼σ C where∼σ is a symmetric and transitive
relation modeling the σ-level observation of program executions. The relation ∼σ is in
general not reflexive, but it becomes reflexive over the set of secure configurations.

Below we show how this approach can be adapted to the π-calculus to characterize
the class of σ-noninterfering processes. We first introduce the following notion of partial
bisimilarity up to σ-high actions,

.≈σ . Intuitively,
.≈σ requires that σ-high actions are

simulated by internal transitions, while on the remaining actions it behaves as ≈σ .

Definition 6 (Partial Bisimilarity up to σ-high actions
.≈σ). Let σ ∈ Σ. Partial

bisimilarity up to σ-high actions is the largest symmetric relation
.≈σ over configu-

rations, such that whenever Γ � P
.≈σ Q
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– if Γ �P
α

−−→σ Γ ′ � P ′, then there exists Q′ such that Γ �Q
α̂==⇒σ Γ ′ �Q′ with

Γ ′ � Q′ .≈σ P ′.

– if Γ � P
α

−−→σ Γ � P ′ with α ∈ {n〈m〉, n(m)}, then there exists Q′ such that
Γ � Q =⇒ Γ � Q′ with Γ � Q′ .≈σ P ′.

– if Γ � P
α

−−→σ Γ,m : T � P ′ with α ∈ {(νm:T )n〈m〉, (νm:T )n(m)}, then
there exists Q′ such that Γ � Q =⇒ Γ � Q′ with Γ � Q′ .≈σ (νm : T )P ′ and
Γ,m : T � P ′ .≈σ P ′ .

The relation
.≈σ is a partial equivalence relation, i.e., it is not reflexive. In fact, if we

consider the process P = h〈〉.�〈〉.0 and the type environment Γ = h : 	[ ], � : ⊥[ ] we
get Γ � P � .≈σ P when σ = ⊥.

The next theorem states that relation
.≈σ is reflexive on the set of well typed non-

interfering processes. The proof exploits a sort of persistence property of
.≈σ, that is: if

Γ � P
.≈σ P , then for all Γ ′ � P ′ such that Γ � P � Γ ′ � P ′, it holds Γ ′ � P ′ .≈σ P ′.

Theorem 4. Let σ ∈ Σ, P be a process and Γ be a type environment such that Γ � P .
Γ � P ∈ NI(∼=σ) if and only if Γ � P

.≈σ P .

4.2 Noninterference Through Name Restriction

In [9] the P BNDC property for CCS processes is characterized in terms of a single
bisimulation-like equivalence check. We show that the same idea can be applied to the
π-calculus. Let us first introduce the following definition.

Definition 7. Let σ ∈ Σ, P be a process and Γ be a type environment such that Γ � P .
We denote by (νσ)P the process (νm1:T1) . . . (νmk:Tk)P where m1, . . .mk are all
the free names occurring in P such that Γ (mi) = Ti and Λ(Ti) � σ.

Definition 6 of partial bisimilarity up to σ-high actions can be modified as follows in
order to obtain an equivalence relation.

Definition 8 (Bisimilarity up to σ-high actions
..≈σ). Let σ ∈ Σ. Bisimilarity up to

σ-high actions is the largest symmetric relation
..≈σ over configurations, such that when-

ever Γ � P
..≈σ Q

– if Γ �P
α

−−→σ Γ ′ � P ′, then there exists Q′ such that Γ �Q
α̂==⇒σ Γ ′ �Q′ with

Γ ′ � Q′ ..≈σ P ′.

– if Γ � P
α

−−→σ Γ � P ′ with α ∈ {n〈m〉, n(m)}, then there exists Q′ such that

either Γ � Q
α̂

==⇒σ Γ � Q′ with Γ � Q′ ..≈σ P ′ or Γ � Q =⇒ Γ � Q′ with
Γ � Q′ ..≈σ P ′.

– if Γ �P
α

−−→σ Γ,m : T �P ′ with α ∈ {(νm:T )n〈m〉, (νm:T )n(m)}, then there

exists Q′ such that either Γ � Q
α̂

==⇒σ Γ,m : T � Q′ with Γ,m : T � Q′ ..≈σ P ′

or Γ �Q =⇒ Γ �Q′ with Γ � Q′ ..≈σ (νm : T )P ′ and Γ,m : T � P ′ ..≈σ (νσ)P ′.

We can now characterizeNI(∼=σ) in terms of a single equivalence check betweenP and
(νσ)P through

..≈σ . The proof of the next theorem exploits the fact that if Γ � P
..≈σ

(νσ)P , then for all Γ ′ � P ′ such that Γ � P � Γ ′ � P ′, it holds Γ ′ � P ′ ..≈σ (νσ)P ′.
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Theorem 5. Let σ ∈ Σ, P be a program and Γ be a type environment such that Γ � P .
Γ � P ∈ NI(∼=σ) if and only if Γ � P

..≈σ (νσ)P .

Corollary 1. Let σ ∈ Σ, P be a process and Γ be a type environment such that Γ � P
and ∀n ∈ fn(P ), Λ(Γ (n)) � σ (i.e., P has no free σ-high level names). Then Γ � P ∈
NI(∼=σ).

Example 4. Let us consider the processes P1 = h().�() | h〈〉 and P3 = h(x:T ).if x =
n then �1〈〉 else �2〈〉 | h〈n〉 | h〈m〉 and the type environments Γ and Γ ′ of Example 2.
We have seen that Γ �P1 �∈ NI(∼=σ) and Γ ′ �P3 �∈ NI(∼=σ). Now, by Corollary 1, we
can immediately state that both Γ � (νh)P1 ∈ NI(∼=σ) and Γ ′ � (νh)P3 ∈ NI(∼=σ).

Notice that a process whose free names have a security level higher than σ is, in
general, not secure. For instance, let Γ be the type environment h : 	[⊥[ ]], � : ⊥[ ]
and P be the process h(x:⊥[ ]).x〈〉. Assuming that σ ≺ 	, we have that the only
free name h occurring in P has a security level higher than σ. It is easy to see that
Γ � P �∈ NI(∼=σ): in fact, by choosing H = h〈�〉, we have Γ � P �∼=σ P | H , that is
P is insecure.

We conclude this section observing that, as in [8] for CCS, the definition of σ-
noninterference can be also expressed in terms of bisimilarity on 	-actions over well-
typed processes whose σ-high level names are restricted. This comes as a corollary of
the following property.

Proposition 4. Let σ ∈ Σ, P and Q be two processes and Γ be a type environment
such that Γ � P,Q. Γ � P ≈σ Q if and only if Γ � (νσ)P ≈� (νσ)Q.

Corollary 2. Let σ ∈ Σ, P be a process and Γ be a type environment such that Γ � P .
Γ � P ∈ NI(∼=σ) if and only if for all Γ ′ � P ′ such that Γ � P � Γ ′ � P ′ and for all
H ∈ Hσ

Γ ′ it holds Γ ′ � (νσ)P ′ ≈� (νσ)(P ′ | H).

5 Examples

In this section we show a couple of examples that illustrate the expressiveness of our
approach. In the following, we use a CCS-style for channels that do not carry values,
writing simply n and n instead of n() and n〈〉. Moreover, we assume just two security
levels: H and L with L ≺ H and we let σ = L.

Example 5. Consider the process P = (νh:H[])(h | !h.k.h) | k.� in the type environ-
ment Γ = k : H[], � : L[]. The process P is secure since Γ � P

..≈σ (νσ)P . Indeed, let
S be the symmetric closure of the following relation:

{ (P, (νσ)P ), (P1, (νσ)P1), (P2, (νσ)P2), (P3, (νσ)P3), (P4, (νσ)P4),
(P5, (νσ)P5), (P, (νσ)P1), (P3, (νσ)P4), (P2, (νσ)P5) }

where

P1 = (νh)(k.h | !h.k.h) | k.� P4 = (νh)(k.h | !h.k.h)

P2 = (νh)(h | !h.k.h) | � P5 = (νh)(k.h | !h.k.h) | �
P3 = (νh)(h | !h.k.h)

It is straightforward to prove that S is a bisimulation up to high actions, i.e. S ⊆ ..≈σ .
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Example 6. Job Scheduler. Assume that there are n jobs P1, . . . , Pn whose execution
must be scheduled. We implement the scheduler as the parallel composition of two
threads: the first one produces a numbered token and assigns it to the next job. The sec-
ond thread consumes a token checking if its number corresponds to the next scheduled
job. Let be Scheduler = Produce | Consume, with

Produce = (νp:T )(p〈1〉 | ! p(x:L[L[]]).enqueue(y:L[L[]]).(y〈x〉 | p〈x + 1〉))
Consume = (νc:T )(c〈1〉 | ! c(x:L[L[]]).check(y:L[L[]]).

if x = y then (y〈ok〉 | ack.c〈x+ 1〉)else (y〈no〉 | c〈x〉) )

where the channels enqueue and check are used by jobs respectively to get a token and
to exhibit it to the scheduler. Jobs are then written as follows:

Jobi = (νj:L[L[]])(enqueue〈j〉.j(y:L[L[]]).

(νl:L[])(l | ! l.check〈y〉.y(z:L[]).if z = ok then Pi.ack else l))

First, a job asks for a token and waits for it along the private channel j. The job then
starts a loop where it repeatedly exhibits the token to the scheduler, waiting for its turn
to be executed. The loop ends when the job receives the ok message, so that it can run
the process P , and signal its end using the ack channel.

The system Scheduler | Job1 | · · · | Jobn can be proved to be secure if we rely on
the following type assignment, where the two private channels c and p are high-level,
while tokens are low level value (of suitable arity), and the channels enqueue and check
are low level as well.

c, p : T
�
= H[L[L[]]], enqueue, check : L[L[L[]]], 1, 2, ... : L[L[]], ok, no, ack : L[]

The fact that the system is secure comes easily by Corollary 1 since there are no free
high level names.

6 Conclusion and Related Work

In this paper we develop a theory of noninterference for processes of the typed π-
calculus. In the literature there are a number of works which study type-based tech-
niques for noninterference. A few of them are discussed in the following.

Hennessy and Riely [14,12] consider a typed version of the asynchronous π-
calculus where types associate read/write capabilities to channels as well as security
clearances. They study noninterference properties based on may and must equivalences.
A similar study is conducted by Pottier [18] relying on the synchronous π-calculus and
bisimulation equivalence. Honda, Yoshida, Vasconcelos and Berger [15,16,25] consider
advanced type systems for the linear/affine π-calculus and express noninterference in
terms of typed bisimulation equivalences. Their type systems guarantee that every com-
munication on a linear channel must eventually succeed, and so its success alone does
not carry any information. For instance, the process h().�〈〉, which waits an input on
the secret channel h and then performs the low-level output �〈〉, is considered secure
as long as h is a linear channel. Similarly, Zdancewic and Myers [26] propose a type
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system dealing with linear channels in a concurrent language with (a restricted form of)
join-patterns as synchronization primitives. Furthermore, their type system controls the
temporal ordering of communications on linear channels. Kobayashi [17] presents an
even more flexible type system which can deal with arbitrary usage of channels, so that
programs using various concurrency primitives (including locks) can be encoded into
the π-calculus and analyzed.

The typing constraints imposed by the type systems discussed above allow one
to reason only on a limited class of processes and contexts. For instance the process
!x(y).P |!x(y).Q is rejected by the type system of, e.g., [16] and thus it is considered
insecure independently of the security level of its channels. As another example, when
h is a nonlinear channel, the process (νh)(h().�() | h〈〉) is never typed in most of the
mentioned type systems. However, this process does not leak any secret information, as
shown in Example 4.

Our approach relies on a much simpler typing discipline which does not deal with
implicit information flow. Instead, we characterize secure processes in terms of the
actions they perform. The use of a lighter type system leads to stronger noninterfer-
ence properties, that check the security of processes against a bigger class of attackers.
Compared with the literature discussed so far, such properties could be considered too
restrictive. Nevertheless, they are more suitable in contexts with partial trust, where it
would be not realistic to assume that attackers are well typed in a strong way. Inter-
estingly, we can increase the flexibility of our approach by admitting mechanisms for
downgrading or declassifying information as done in [4] for CCS. This would allow the
process h().�〈〉 to be deemed secure by declassifying the high action h().

Another difference with respect to previous works is that they deal with open terms,
while our theory applies to closed processes. However, the results presented in this
paper scale to open terms by: (1) introducing the open extension of ∼=σ as the type-
indexed relation∼=o

σ over terms such that Γ � T ∼=o
σ U if and only if Γ ′ � Tρ ∼=σ Uρ

for all closing substitution ρ which respects3 Γ with Γ ′, and (2) saying that a term
T satisfies the σ-noninterference property in Γ if for all closing substitution ρ which
respects Γ with Γ ′, it holds Γ ′ � Tρ ∈ NI(∼=σ).
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Typed Processes in Untyped Contexts 

(Abstract)

Michele Bugliesi and Marco Giunti

Dipartimento di Informatica, Università Ca’ Foscari di Venezia

1 Background

The use of types to control the behavior of processes in the pi-calculus is a long known
and well established technique. The idea was first introduced by Pierce and Sangiorgi in
their seminal work on the subject [9], and is best illustrated by their motivating example:

S = (νs)!d〈s〉 | !s(x).print〈x〉 C = d(x).x〈 j〉

S is a print spooler serving requests from a private channel s that it communicates to its
clients via the public channel d. C is one such client, that receives s and uses it to print
the job j.

While the intention of the specification is clear, reasoning on its properties is subtler.
For instance, given the initial configuration S |C, can we prove that the jobs sent by C
are eventually received and printed? Stated in more formal terms: is there a proof of the
following equation?

S |C
?∼= S | print〈 j〉 (1)

Here we take P ∼= Q to mean that P and Q are behaviorally indistinguishable, i.e. they
have the same observable behavior when executed in any arbitrary context. Back to our
example, (1) is easily disproved by exhibiting a context that interferes with the intended
protocol between S and C. A first example is the context C1[−] =−|d(x).!x(y).0, that
initially behaves as a client, to receive s, but then steals the jobs intended for S. A sec-
ond example is the context C2[−] = −|(νs′)d〈s′〉, which may succeed in transmitting
to C a dead-ended channel that will never serve the purpose C expected of it.

As shown in [9], hostile contexts such as those above can be ruled out by resorting to
a system of capability types to control the transmission and/or reception of values over
channels based on the possession of corresponding type capabilities. In our example,
that system allows us to protect against contexts like C1 by requiring that clients be only
granted write capabilities on the channel s, and by reserving read capabilities on s to
the spooler. Similarly, we may build safeguards against attackers like C2 by demanding
that clients only have read access on d.

Both the requirements are expressed formally by the typing assumption d : ((T )w)r:
this typing grants read-only access on d and write-only access to any name received on
d, as desired. We may now refine the equation in (1) into its typed version below (where
print :	 indicates that

d : ((T )w)r |= S |C ∼= S | print〈 j〉. (2)
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Typed equations of the form I |= P ∼= Q express behavioral equivalences between pro-
cesses in any context that typechecks in the type environment I. Here I represents the
context’s view of the processes under observation, given in terms of a set of typing
assumptions on the names shared between the processes and the context itself. Inci-
dentally, but importantly, the typing assumptions on the shared names may in general
be different –in fact, more accurate– for the processes than they are for the context.
To illustrate, in (2), a context is only assumed to have read-capabilities on d, while for
the system to typecheck the name d must be known at the lower (hence more accu-
rate) type ((T )w)rw, so that to allow S to write and C to read. Similarly, for the system
S |C to typecheck, the name s must be known at the type (T )rw including both a write-
capability, granted to S, and read-capability, granted to any process that receives s: the
context, instead, will only acquire s at the super-type (T )w determined by the type of
the transmission channel d.

2 Typed Equivalences Fail in Untyped Contexts

Given the type for d available to the context, it is not difficult to be convinced that
(2) above (under appropriate hypotheses on the context’s view of the name print, see
Section 4) represents a valid equivalence as no context that typecheks under d : ((T )w)r

may tell the two processes apart.
Typed equivalences like these are very useful, and effective in all situations in which

we have control on the contexts observing our processes, i.e. in all situations in which
we may assume that such contexts are well-typed, hence behave according to the in-
variants enforced by the typing system.

The question we address in this abstract is whether the same kind of reasoning can
still be relied upon when our processes are to be deployed in distributed, open envi-
ronments. Stated more precisely: can we implement our typed processes as low-level
agents to be executed in arbitrary, open networks, while at the same time preserving the
typed behavioral congruences available for the source processes?

One is readily convinced that no implementation with the desired properties may
rely on static typing alone, as distributed and open networks do not validate any useful
assumption on the trustworthiness, hence the well-typedness, of the contexts where (the
low-level agents representing) our typed processes operate. Rather than assuming that a
context satisfies the constraints imposed by a typing assumption, our implementations
should enforce them.

The implementation schema we envision here is one in which the statically checked
possession and distribution of type capabilities in the source-level processes is realized
in terms of the possession and the dynamic distribution of corresponding term-level
capabilities in the implementation agents. For instance, each channel could be imple-
mented by means of a pair of cryptographic keys representing the write and read ca-
pabilities. If designed carefully, and instrumented with adequate measures to protect
against hostile contexts (cf. [1,3,7]) this represents a viable idea to pursue.

The problem remains, however, to make sure that the implementation preserves
the desired typed equations of the source calculus: for that to be the case, one must
guarantee that for each name, the distribution of the term capabilities in the low-level
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agents match the corresponding type capabilities in the source level process. While
this is possible for the names that are statically shared with the context, ensuring such
correspondence is much harder, if at all possible, for the names that are dynamically
acquired by the context. There are two fundamental difficulties:

– first, as we have observed, the type at which the context acquires a name depends
on the type of the channel over which the name is communicated;

– secondly, the type of the transmission channel may vary dynamically in ways that
cannot be predicted statically.

The dynamic evolution is particularly problematic in a calculus with matching because,
as noticed by Hennessy and Rathke in [8], matching makes it possible to progressively
refine the type at which a name is known during the computation. This is best illustrated
by the following typed labelled transition, borrowed from [8], that formalizes the effect
of emitting a name on a public channel.

Ir(a) ↓

I� a〈n〉.P
a〈n〉
−−→ I�n : Ir(a)�P

The configuration I �P represents a process P operating in a context that typecheks
under I, and Ir(a) ↓ indicates that I (hence the context) has a read capability on the
name a. The meet I�n : Ir(a) in the resulting configuration represents the ability of the
context to “merge” its current type for n with the type determined by receiving n on a:
as explained in [8], taking the meet mimics the ability of the context to match n with the
names already known to it (possibly, at different types), and obtain a more informative
type based on that. The problem is that the effect of this type refinement may propagate
dynamically in ways that cannot be determined statically. To illustrate, let I and P be
the typing environment and the process defined as follows:

I = n : ((T )w)r,a : (((T )r)r)r

P = a〈n〉 |(νp : (T )rw)n〈p〉

We have Ir(n) = (T )w and Ir(a) = ((T )r)r, and from this we compute I′ � I�n : Ir(a) =
a : (((T )r)r)r,n : ((T )rw)r. Now we see that a context that typechecks under I will ac-
quire p at the type (T )w or at the type (T )rw depending on which one of the two names p
and n it receives first in its interactions with process P. This is reflected by the following
two transition sequences available from I �P.

I�P
(νp)n〈p〉
−−−−−→ I, p : (T )w � a〈n〉

a〈n〉
−−→ I�n : ((T )r)r, p : (T )w � 0

I�P
a〈n〉
−−→ I′ � (νp : (T )rw)n〈p〉

(νp)n〈p〉
−−−−−→ I′, p : (T )rw � 0

Clearly, this dynamic evolution of the typing knowledge of the context is problem-
atic, as a fully abstract implementation would need to tune the distribution of the term-
capabilities associated with n on the types available dynamically to the context: as the
example shows, this is in general impossible to achieve at compile time, by simply
inspecting the structure of the source level processes.
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3 Dynamic Typing to the Rescue

While the problem with the previous example is a direct consequence of the presence
of matching, a more fundamental obstacle against full abstraction is in the very struc-
ture of the capability types adopted in the source calculus, and in the way that structure
determines the acquisition of new capabilities on a name. As we have shown, acquir-
ing a name, say n, at a type not only informs on how n will be used, but also deter-
mines how other names transmitted over n will be circulated and used in the system.
These invariants are all encoded in the static type of the channel at which n is received,
and clearly they will not be guaranteed if that channel is shared with an untyped con-
text.

To make a fully abstract implementation feasible, the solution we propose here is to
adopt a new typing discipline for the source calculus, based on a combination of static
and dynamic typing to control the interaction with the context.

We formalize our approach by introducing a typed variant of the (asynchronous)
pi-calculus. In this calculus, named API@, the types at which the emitted values are to
be received by the context are decided the output sites. This is accomplished by intro-
ducing a new output construct, noted a〈v@T 〉, that relies on type coercion to enforce
the delivery of v at the type T , regardless of the type of the communication channel a.
A static typing system will ensure that v has indeed the type T to which it is coerced,
while a mechanisms of dynamically typed synchronization guarantees that v is received
only at supertypes of T , so as to guarantee the type soundness of each exchange of
values.

By breaking the dependency between the types of the transmission channels and
the types of the names transmitted, in API@ we may safely dispense with the nested
types of [9,8], and rely instead on channel types with a flat structure that only exhibits
the read/write access rights associated with the channels, regardless of the types of the
values they transmit. Needless to say, the resulting discipline of static typing is much
looser: to compensate for that one then needs a dynamically typed operational seman-
tics to ensure type soundness.

What is more interesting and relevant for our present concerns is that the new typing
discipline makes it possible to recover fully abstract implementations, i.e. implementa-
tions for which the typed congruences of the source calculus are preserved even in the
presence of untyped, and potentially hostile contexts. We give a brief overview of how
that can be accomplished in Section 6. Before that, we introduce the source calculus
formally, and look at the consequences of the new typing discipline on the ability to
reason about process behavior.

4 A Pi- alculus with Dynamic Typing

API@ is a typed dialect of the asynchronous pi-calculus [5]. The choice of an asyn-
chronous calculus is only meant to ease the implementation in [7], and has no effect or
consequence on our present development.

We presuppose countable sets of names and variables, ranged over by a− n and
x,y, . . . respectively. We use bv todenote basic values, and u,v to range collectively

C
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over names, variables and basic values whenever the distinction does not matter. The
structure of processes is defined by the following productions:

P,Q, . . . ::= 0 | P |Q | (νn : A)P | !P pi-calculus

| [u = v]P;Q matching
| u〈ṽ@Ã〉 type-coerced output
| u(x̃@Ã).P typed input

We use ũ and Ã to note (possibly empty) tuples of values and types, respectively, and the
notation ṽ@Ã as a shorthand for v1@A1, . . . ,vn@An. As in companion calculi, the typ-
ing system rules out meaningless terms, like bv(x).P, that use basic values in positions
where names are expected.

The reading of the process forms is standard, with the exception of the constructs
for input/output. As we anticipated, u〈ṽ@Ã〉 represents the output of the values ṽ at
the types Ã: the rules of the operational semantics will ensure that outputs at this type
only synchronizes with input prefixes expecting values at types higher than (or equal
to) Ã.

The types of API@ include types for basic values, a top type and capability types for
names. As promised in Section 3, the channel types we use have the flat structure de-
fined in Table 1, that informs on the access rights associated with the channel: read (r),
write (w) or both (rw). The subtyping relation, also in Table 1, is the preorder that satis-
fies the expected relationship over capability types, and admits a partial meet operator
�.

4.1 Typing System

Most of the typing rules are standard and self explained, with the two exceptions we dis-
cuss next. The typing of matching is inherited, unchanged, from [8]: as in that case, it
requires a few preliminary definitions to formalize the structure of typing environments.
We build type environments, noted Γ, by using the operator � : Γ� u : A = Γ,u : A if
u �∈ dom(Γ), otherwise Γ� u : A = Γ′ where Γ′ differs from Γ only at u, since the ca-
pability of this identifier is extended to be Γ(u)�A (if Γ(u)�A is undefined, then so is
Γ�u : A). We use the notation Γ�(v1, . . . ,vn) : (A1, . . . ,An) � Γ�v1 : A1� . . .�vn : An,
and in case dom(Γ)∩ dom(Γ′) = /0, we write Γ,Γ′ to indicate the type environment
containing all mappings in Γ and in Γ′. Subtyping is extended to type environments as
expected. We write Γ<: Γ′ if Γ(u)<: Γ′(u) for all u ∈ dom(Γ). If the type environment
Γ at n has a type of the form r or rw then Γr(n) is defined (written as Γr(n) ↓). Similarly
for the dual case of write capabilities.

The typing of input/output is characteristic of our present calculus, and is a direct
consequence of the structure of the channel types. In particular, notice that the rules (T-
OUT) and (T-IN) do not expect/impose any relationship between the type of the channel
u and the types associated with the values transmitted (in (T-OUT)) or expected (in (T-
IN)). The only constraint, at the output sites, is that the types at which the emitted values
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Table 1. The typing system

Types
A,B, . . . ::= rw | r | w capabilities

| B basic values

| 	 top

Subtyping
rw <: r rw <: w A <: 	

Typing Rules
(T-Pro) (T-Tuple)

Γ(u)<: A
Γ � u : A

Γ � vi : Ai ∀i ∈ 1..n
Γ � (v1, . . . ,vn) : (A1, . . . ,An)

(T-New) (T-Par) (T-Repl) (T-Nil)

Γ,n : A � P
Γ � (νn : A)P

Γ � P Γ � Q
Γ � P |Q

Γ � P
Γ �!P Γ � 0

(T-Match)

Γ � Q Γ(u) = A Γ(v) = B Γ�u : B� v : A � P
Γ � [u = v]P;Q

(T-Out@) (T-In@)

Γw(u) ↓ Γ � ṽ : B̃

Γ � u〈ṽ@B̃〉
Γr(u) ↓ Γ, x̃ : Ã � P

Γ � u(x̃@Ã).P

are coerced must be valid. As we mentioned earlier, this rather loose form of static
typing is complemented by dynamic type checks to be performed upon synchronization.

4.2 Operational Semantics

The dynamics of the calculus is defined by means of a labelled transition system built
around the following actions:

Actions α ::= τ | u(ṽ@B̃) | (c̃ : C̃)u〈ṽ@B̃〉

Most of the transitions, in Table 2, are standard. The output action (c̃ : C̃)u〈ṽ@B̃〉 car-
ries a type tag along with the output value: it represents the output of (a tuple, possibly
including fresh) values ṽ at the types B̃. Dually, the input action u(ṽ@B̃) represents
the input of ṽ at the types B̃. As anticipated, synchronizing input and output requires
a dynamic type check: in (PI-COM@), complementary labels synchronize only if they
agree on the type of the values exchanged. The subject reduction theorem below follows
routinely thanks to these dynamic checks.
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Table 2. LTS for the source calculus

(PI-OUTPUT)

a〈ṽ@B̃〉
a〈ṽ@B̃〉
−−−−→ 0

(PI-OPEN)

P
(c̃:C̃)a〈ṽ@B̃〉
−−−−−−−−→ P′ b �= a, b ∈ fn(ṽ)

(νb : B)P
(b:B, c̃:C̃)a〈ṽ@B̃〉
−−−−−−−−−−−→ P′

(PI-INPUT@)

a(x̃@B̃).P
a(ṽ@B̃)
−−−−→ P{x̃ := ṽ}

(PI-COM@)

P
(c̃:C̃)a〈ṽ@B̃〉
−−−−−−−−→ P′ Q

a(ṽ@B̃′)
−−−−−→ Q′ B̃ <: B̃′ c̃∩ fn(Q) = ∅

P |Q
τ

−−→ (νc̃ : C̃)(P′ |Q′)

(PI-MATCH)
a = b

[a = b]P;Q
τ

−−→ P

(PI-MISMATCH)
a �= b

[a = b]P;Q
τ

−−→ Q

(PI-PAR)

P
α

−−→ P′ bn(α)∩ fn(Q) = /0

P |Q
α

−−→ P′ |Q

(PI-RES)

P
α

−−→ P′ a �∈ n(α)

(νa : A)P
α

−−→ (νa : A)P′

(PI-REPL)

P
α

−−→ P′

!P
α

−−→ P′ | !P

Theorem 1 (Subject Reduction). Suppose Γ � P. Then

1. P
τ

−−→ P′ implies Γ � P′

2. P
a(ṽ@B̃)
−−−−→ P′ implies Γr(a) ↓ and if Γ� ṽ : B̃ is defined then Γ� ṽ : B̃ � P′

3. P
(c̃:C̃)a〈ṽ@B̃〉
−−−−−−−−→ P′ implies Γw(a) defined, Γ, c̃ : C̃ � ṽ : B̃ and Γ, c̃ : C̃ � P′

4.3 Observational Equivalence

As usual in typed calculi, the notion of observational equivalence is based on typed

(reduction) barbed congruence. Barbs arise as expected: we let P ↓a�
(c̃:C̃)a〈ṽ@B̃〉
−−−−−−−−→

denote the predicate true of any process P ready to output on a public channel a �∈ c̃,
and define P⇓a� P =⇒ P′ ↓a.

An interesting aspect of our congruence relation, that we inherit from [8], is that we
look at the behavior of processes by means of contexts that have a certain knowledge
of the processes. As we noted, the typing information available to the context may be
different (less informative) than the information available to the system. Thus, while the
system processes may perform certain action because they posses the required (type)



26 M. Bugliesi and M. Giunti

capabilities, the same may not be true of the context. We formalize these intuitions
below.

Given two type environments Γ and I, we say that Γ is compatible with I if and only if
dom(Γ) = dom(I) and Γ <: I.

Definition 1 (Type-indexed relation). A type-indexed relation R is a family of binary
relations between processes indexed by type environments. We write I |= PR Q to mean
that (i) P and Q are related by R at I and (ii) that there exist Γ and Δ compatible with
I such that Γ � P and Δ � Q.

We define contexts as the set of terms defined by the following productions, where [·]
denotes a typed hole: C ::= [·Γ] | (νa:A)C |C |P | P |C. Contexts defined in this way,
which do not include replication and prefixes, are normally referred to as evaluation
contexts. The definition of typed behavioral equivalence is now standard. We first lift
the notion of barb to the typed case, defining I |= P⇓a� Ir(a) ↓ ∧P⇓a. Then we have:

Definition 2 (Typed behavioral equivalence [8]). Typed behavioral equivalence,
noted ∼=, is the largest symmetric type-indexed relation such I |= PR Q implies

– if I |= P⇓n then I |= Q⇓n

– if P
τ−→ P′ then Q =⇒Q′ and I |= P′R Q′ for some Q′

– I |= C[P]RC[Q] for every evaluation context C[·Γ] such that I �C[P],C[Q]

As a simple illustration of the calculus and its behavioral theory we give the API@
version of our running example. Letting J be the type of jobs, the two processes S and
C may be defined as follows:

S = (νs : rw)!d〈s@w〉 | !s(x@J).print〈x@J〉 C = d(x@w).x〈 j@J〉

The important thing to note is the type s@w chosen by S for the output on d to make
sure that the spooling channel will only be received with output capabilities. Then we
can prove the desired equivalence by assuming that contexts may only read on d, and
have no control on the channel print, namely:

j : J, print :	, d : r |= S |C ∼= S | print〈 j@J〉 (3)

As usual, proving such equivalences takes some effort and is often not easy, as it re-
quires induction to capture all the typed contexts. Luckily (but not surprisingly), the
construction from [8] works just as well for our calculus in providing a purely coinduc-
tive characterization for reduction barbed congruence.

4.4 A Coinductive Proof Technique

The characterization draws on the definition of a set of typed labelled transitions in
which the interaction between a process and its context is mediated by the type capa-
bilities that the context possesses on the shared names. The typed actions, in Table 3,
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Table 3. Typed Actions

(G-OUT)

Ir(a) ↓ Ã <: B̃

I�a〈ṽ@Ã〉
a〈ṽ@B̃〉
−−−−→ I� ṽ : B̃ �0

(G-OPEN)

I,b :	�P
(c̃)a〈ṽ@Ã〉
−−−−−−→ I′ �P′ b �= a, b ∈ fn(ṽ)

I� (νb : B)P
(b, c̃)a〈ṽ@Ã〉
−−−−−−−−→ I′ �P′

(G-IN@)

Iw(a) ↓ I � ṽ : Ã′ Ã′ <: Ã

I�a(x̃@Ã).P
a(ṽ@Ã′)
−−−−−→ I�P{x̃ := ṽ}

(G-WEAK@)

I,b : B�P
(c̃:C̃)a(ṽ@Ã)
−−−−−−−−→ I′ �P′ b �∈ {a, c̃}

I�P
(b:B, c̃:C̃)a(ṽ@Ã)
−−−−−−−−−−−→ I′ �P′

(G-REDUCE)

P
τ

−−→ P′

I�P
τ

−−→ I�P′

(G-PAR)

I�P
α

−−→ I′ �P′ bn(α)∩ fn(Q) = /0

I�P |Q
α

−−→ I′ �P′ |Q

(G-RES)

I,a :	�P
α

−−→ I′,a : 	�P′ a �∈ n(α)

I� (νa : A)P
α

−−→ I′ � (νa : A)P′

(G-REPL)

I�P
α

−−→ I′ �P′

I� !P
α

−−→ I′ �P′ | !P

encode transitions over configurations of the form I � P
α

−−→ I′ �P′, and identify ac-
tions by the process P that are only possible if they are allowed by the environment I.
Not surprisingly, most of the typed transitions in our system are derived directly from
their companion transitions in the system of [8], to which we refer the reader for the
underlying intuitions and full details.

The only differences are in the transitions for the input and output forms, as these
reflect the nature of the interactions with the context distinctive of our calculus. Specif-
ically, the (G-OUT) rule formalizes the fact that a context willing to observe an output
action performed by a process may only do so by guessing a super-type of the actual
type used in the type coercion: that supertype is also the type at which the context
acquires the values emitted. Dually, the (G-IN) rule shows that an input by a process
may in general only be observed at a lower type than actually performed by the pro-
cess. All this is a consequence of the format of our subtype-based synchronization rule
(PI-COMM@) in Table 2.

The resulting notion of asynchronous bisimilarity arises as expected [4].

Definition 3 (Typed labelled bisimilarity). A symmetric type indexed relation R over
processes is an asynchronous bisimulation if whenever I |=a PR Q, one has:
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– if I�P
α−→ I′ �P′ and α is (c̃)a〈ṽ@Ã〉 or τ then I�Q

α̂=⇒ I′ �Q′ with I′ |=a P′R Q′

– if I�P
α−→ I′ �P′ and α is (c̃ : C̃)a(ṽ@Ã) then

– I�Q
α=⇒ I′ �Q′ with I′ |=a P′R Q′ or

– I�Q =⇒ I�Q′ with I, c̃ : C̃ |=a P′R Q′ |a〈ṽ@Ã〉.

Asynchronous labelled bisimilarity, noted ≈, is the largest type indexed asynchronous
bisimulation.

Perhaps interestingly, the reader will notice that the types C̃ and Ã chosen to match the
input transition are, in both cases, exactly the types occurring in the label of the tran-
sition to be matched. Labelled bisimilarity, as defined above, can be shown to coincide
with barbed congruence. We omit the proof, which is mostly standard and can be found
in [6], and only state the result.

Theorem 2 (Soundness and Completeness). I |=a P≈ Q if and only if I |= P∼= Q.

Using this characterization, our equation (3) can now be proved coinductively. We leave
the details to the interested reader, and focus instead on some distinguishing equations
for API@. As we show below, the presence of typed synchronization has some notice-
able consequences on the behavioral theory.

A first law we examine is the following generalization of a standard fact about
replication.

a : r |= a〈n@T 〉 | !a〈n@S〉 ∼= !a〈n@S〉 whenever S <: T (4)

That this law holds also in case S �= T is a consequence of our subtype-based synchro-
nization rule. The proof of this equivalence follows by coinduction by verifying that the
relation R below is a bisimulation:

R � Id ∪ {a : r |=a a〈n@T 〉 | !a〈n@S〉 ≈ !a〈n@S〉}
∪ {a : r,n : S′ |=a a〈n@T 〉 | !a〈n@S〉 ≈ !a〈n@S〉 | S <: S′}

Another interesting consequence of the typed semantics is observed in the behavior of
forwarder processes like a(x).b〈x〉. In particular, we show that one of the distinguishing
equations of the asynchronous pi calculus holds only in very specific cases in API@.
Specifically, we have:

a : rw |= a(x@T ).a〈x@T 〉 ∼= 0 iff T is minimal

The “if” direction can be proved by co-induction, showing that R below is an asyn-
chronous bisimulation.

R � {a : rw |=a a(x@T ).a〈x@T 〉 ≈ 0} ∪
{a : rw,n : T |=a a〈n@T 〉 ≈ a〈n@T 〉 | n name}

Note that n may only be received at T as T has no proper subtypes. For the “only if”
direction, it is enough to exhibit a distinguishing context:

CS[−] �−|a〈v@S〉 |a(x@S).ω〈〉
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It is easy to see that this context tells the two processes apart if S is a proper subtype of
T . Let P � a(x@T ).a〈x@T 〉. For all S <: T , we have CS[0] τ−→ ω〈〉 with one reduction
internal to the context. If S is a proper subtype of T this move cannot be matched by
CS[P], as a case analysis shows. We only have two possible cases: either C[P] =⇒C[P],
or CS[P] τ=⇒ a〈n@T 〉 |a(x@S).ω〈〉, and in neither case the process reached by the weak
action is congruent to ω〈〉.

5 Relationships with Statically Typed Pi- alculi

Having presented our calculus in detail, we are in a position to draw more precise com-
parisons with the statically typed pi calculus of [8] to which we have referred through-
out.

It is a very simple observation that the typed pi-calculus can be encoded in API@.
Below we give the relevant clauses of a type-directed translation from well-typed pi-
processes to processes of API@. If A is a fully fledged capability type, we let |A| denote
the outermost capability in A, and define:

[[u〈ṽ〉 ]]Γ = u〈v@|Γw(u)|〉
[[u(x̃).P ]]Γ = u(x̃@|Γr(u)|).[[P ]]Γ,x̃:Γr(u)

This encoding has some of the good properties on expects: it is type-preserving, and
sound, in the following sense. Let Γ �π P and I |=π P∼= Q denote the typability relation
and the asynchronous version of the typed congruence of [8], respectively. Then we
have:

Theorem 3. Let Γ,Γ′ be two type environment compatible with I and such that Γ �π P
and Γ′ �π Q. Then |I| |= [[P ]]Γ ∼= [[Q ]]Γ′ implies I |=π P∼= Q.

Not surprisingly, however, the translation is not fully abstract. To see that, simply take
Q = 0, and P = [[a(x).a〈x〉 ]]Γ with Γ = a : ((T )r)rw, so that [[P ]]Γ = a(x@r).a〈x@r〉.
Then, a : ((T )r)rw |=π P ∼= Q while a : rw �|= a(x@r).a〈x@r〉 ∼= 0, as we have showed
previously.

While we do not have a formal separation result between the two calculi, it appears
that achieving a fully abstract encoding is just as hard as giving a fully abstract imple-
mentation of the pi-calculus. In fact, as we observed, the flat capability types of API@
provide much looser control over the dynamic invariants of execution than the the fully
fledged capability types of [8]. Clearly, this affects the notion of typed equivalence, as
the representation of contexts in terms of the typing assumptions they satisfy is much
less informative on the behavior of those contexts that it is with traditional typing sys-
tems. This loss of control is compensated by the type coercions available for API@
processes to determine the types at which a context receives the emitted values: still, as
the example above shows, the underlying equational theory remains affected.

On the other hand, just because its typing system makes looser assumptions on the
structure of the typed contexts, API@ lends itself to be behavior preserving implemen-
tations into low-level calculi. We give a brief overview of how that can be achieved in
the following section.

C
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6 Towards a Fully Abstract Implementation

The obstacles and challenges hidden in the implementation of high-level process cal-
culi into low-level environments are well understood [1]. The crux of the problem is
that low-level network infrastructures provide very limited reliability for communi-
cation. Thus, for instance, while in the source-level calculi we write processes like
(νn)( n〈m〉 |n(x).P ) with the understanding that no context will have access to n, this
assumption makes little sense in low-level environments. It is therefore wiser to imple-
ment channels meant to deliver private information with lower level mechanisms, such
as an encrypted connection over the public network.

(νn)( net〈{m}n〉 |net(y).decrypt y as {x}n in [[P ]]

The knowledge of n is still confined here, but its role is different: n is an encryption key,
rather than a channel. The message is encrypted and communicated along net; even
though the encrypted packet is intercepted, only the intended receivers, which possess
the key n, may decrypt it to obtain m.

In a calculus with capability types, this schema may be refined by associating each
channel with a pair of asymmetric keys: an encryption key to transmit and a decryp-
tion key to receive data. In our source calculus, this leads us readily to the following
correspondence between high-level type capabilities, and low-level term-capabilities
associated with a name: [[n@w ]] = n+ and [[n@r ]] = n−. Given this representation, one
may try and devise an implementation for API@ based on the following translation:

[[n〈m@A〉 ]] = net〈{[[m@A ]]}n+〉
[[n(x).P ]] = net(y).decrypt y as {x}n+ using n− in [[P ]] else 0

While this translation scheme is appealing in its simplicity, it suffers from a number
of shortcomings and attacks, first made explicit by Abadi in [1]. In subsequent work
[3], Abadi, Fournet and Gonthier have shown how to counter these shortcomings and
recover full abstraction for an implementation of the join calculus.

The fundamental obstacle against using the join implementation for our purposes is
related to the property known as forward secrecy. The problem is best illustrated with
the following example, that we adapt from [1]. Let P and Q be the following API@
processes (where we omit the type coercions whenever irrelevant):

P = (νn)(n〈m〉 |n(x).p〈n@r〉) Q = (νn)(n〈m′〉 |n(x).p〈n@r〉)

It is not difficult to see that these two processes are barbed congruent (essentially under
any typing assumption), as m and m′ are sent over an secret channel and no API@
context may recover the content of messages sent. On the other hand, a low-level context
may tell [[P ]] and [[Q ]] apart by buffering the message sent on n and then decipher it
when n− is published.

In [3], this problem is avoided altogether, as the join calculus does not allow names
to be communicated with read capabilities. In our case, to recover forward secrecy in
API@, we need a less naive representation of the type capabilities to make sure that
distributing a read capability does not correspond to leaking any description key. We
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show how this can be accomplished in [7], where we give a fully abstract translation of
our source calculus into an asynchronous version of the Applied pi calculus [2].

We refer the reader to [7] for full details, and content ourselves here with few in-
tuitions. Briefly, the idea is to implement each channel with a process that serves input
and output requests so that each exchange of messages over the channel is the result
of two separate protocols that the server runs with the writer and the reader clients.
All channels are associated with two separate key-pairs, that the channel server uses in
its protocols with the clients that read from/write to the channel. In the write protocol,
the client sends data, and the server buffers it on private queue; on the read protocol,
a client sends a session key server returns data encrypted with session key. The trans-
lation enforces the following invariants. The channel server possesses the decryption
keys associated with the channel and never leaks them; the clients posses (and may
eventually release) the encryption keys. Given the structure of the protocols, publishing
a read/write capability on a channel corresponds to publishing the read/write encryp-
tion keys associated with the channel. Since the decryption keys remain secret with the
channel server, the translation should guarantee the forward secrecy of messages.

7 Conclusions

Typed behavioral theories provide a powerful technique for reasoning on the behavior
of typed processes in typed contexts. However, they are of little use in the more general
case of typed processes interacting with untyped contexts. That is unfortunate, as the
gap translates directly into a fundamental impediment to fully abstract implementation
of the typed calculi.

We have proposed a new dialect of the asynchronous pi-calculus for which this gap
can be filled, and fully abstract implementations recovered. As in previous attempts of
this kind, filling the gap has a price (in [3] we must give up the ability to communicate
read access rights, in our case we need dynamic typing): on the other hand, it is worth-
while, as reasoning on the high-level calculus is feasible, and relatively simple, while
reasoning on the implementation is utterly complex.
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Abstract. Modeling is a popular way of representing the behavior of a
system. A very useful type of model in computing is an abstract state ma-
chine which describes transitions over first order structures. The general
purpose model-based testing tool SpecExplorer (used within Microsoft,
also available externally) uses such a model, written in AsmL or Spec#,
to perform a search that checks that all reachable states of the model are
safe, and also to check conformance of an arbitrary .NET implementation
to the model. Spec Explorer provides a variety of ways to cut down the
state space of the model, for instance by finitizing parameter domains or
by providing predicate abstraction. It has already found subtle bugs in
production software.

First order structures and abstract state machines over them are also
a useful way to think about cryptographic protocols, since models for-
mulated in these terms arise by natural abstraction from computational
cryptography.

In this paper we explain this abstraction process, ‘experiments as
structures’, and argue for its faithfulness. We show how the Dolev–Yao
intruder model fits into SpecExplorer. In a word, the actions of the
Dolev–Yao intruder are the ‘controllable’ actions of the testing frame-
work, whereas the actions of protocol participants are the ‘observable’
actions of the model. The unsafe states are the states violating say Lowe’s
security guarantees. Under this view, the general purpose software testing
tool quickly finds known attacks, such as Lowe’s attack on the Needham–
Schroeder protocol.

1 Introduction: Why Yet Another Formal Model

A new ‘behavioral’ theory of algorithms has been developed in recent years in a
series of papers by Y.Gurevich, A.Blass [Gur00, BG03, BG04a, BG04b, Gur05],
and also B.Rossman and the authors [RR05]. The gist is that algorithms can
be mathematically captured at their own native level of abstraction - ex. the
native level of abstraction of the Euclidean algorithm is that of Euclidean rings.
Algorithms operate over abstract first-order structures, well studied and familiar
in mathematical logic, algebra and abstract mathematics in general.

The techniques developed for behavioral theory suggest a natural represen-
tation of Dolev-Yao assumptions in first-order structures, and a natural mapping
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of ad-hoc notations present in abstract models of cryptography. Unlike the
static abstract models, which necessarily invoke additional proof-theoretic de-
vices to capture dynamic aspects, the behavioral theory explicitly targets the
dynamic behavior of algorithms semantically. By recent work on behavioral the-
ory [BG04a, BG04b, RR05, Gur05], this also includes interactive algorithms
talking to an environment between steps, and within a step, allowing us to rep-
resent the abstract content of oracle algorithms and adversary games typical of
computational cryptography directly. In the framework of intra-step interactive
algorithms exact abstract representations of computational security notions, de-
fined in terms of adversary games, emerge clearly. The experiments of asymptotic
computational cryptography can be naturally represented in terms of interac-
tive algorithms over first-order structures, this is our experiments-as-structures
paradigm, providing a setting for soundness/completeness proofs. The abstract
content of these proofs gets more clearly separated from the probabilistic aspects.

In this paper we execute a small initial segment of this program, in case of
confusion-free symmetric encryption. Abstract models for the standard asymp-
totic security notions in this case are provided, with proofs of their soundness
(under the assumption of acyclicity) and completeness. The relation of these
proofs to proofs in the literature [AR02, MW04a, AJ01, Ban04, ABS05] can best
be described as extraction of abstract content. We also briefly indicate how the
assumptions of confusion-freeness and acyclicity can be relaxed in our setting.
Partially establishing the exact relation to existing models of abstract cryptog-
raphy, we show how a variant of Abadi-Rogaway expressions with explicit coins
naturally embeds into our framework.

Section 2 is a (necessarily cursory) overview of the behavioral theory of al-
gorithms, essentially referring the reader to the literature. Section 3 is a brief
summary of the relevant assumptions of asymptotic computational cryptogra-
phy in the asymmetric (public key) case. Section 4 presents the experiments-as-
structures paradigm and our abstract model of cryptographic adversary games.
Section 5 contains sketches of soundness and completeness proofs, and how the
Abadi-Rogaway expression language variant embeds into our framework. Test-
ing model for public key protocols is in Section 6, together with an example of
rediscovery of Lowe’s attack on the Needham–Schroeder protocol by SpecEx-
plorer.

In addition to quoted cryptographic literature, some understanding of the
framework as presented in [RR05] is expected of the reader.

2 Behavioral Theory of Algorithms

The behavioral theory of algorithms is not an attempt to question the Church-
Turing thesis, saying that every computable function over natural numbers can
be computed by a Turing machine, or the stronger implicit thesis, actually ar-
gued for by Turing, that every algorithm can be simulated by a Turing machine.
The aim of the behavioral theory is to make semantical distinctions finer than
that precise.
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While algorithms get implemented (simulated) exclusively over bits these
days, they are often intended to operate over much more abstract objects, ab-
stract data-structures of algebraic or geometric or analytic or even not explicitly
mathematical character. The behavioral theory aims to capture algorithms as
they are intended, at their own level of abstraction.

The requirement of “capturing algorithms at their own level of abstraction”
is made precise as the requirement of simulation step-by-step. The technology
to achieve this is using first-order structures, well known to capture faithfully
arbitrary static mathematical situations, as states of algorithms. The dynamics,
the step, is also defined in terms of the abstract state.

This philosophy leads to a sharp mathematical definition, technically de-
veloped in [Gur00] and overviewed in [BG03], computationally realized in the
theoretical programming language of Abstract State Machines [Gur00] and the
implemented programming languages AsmL [AsmL] and Spec# [Spec#]. Models
written in these modelling languages are used by a model-based software testing
tool SpecExplorer, also developed at Microsoft Research [SpecExp].

2.1 Interactive Algorithms

Interactive algorithms issue queries to the environment, which contain labels and
data, and receive replies, which are data, elements of algorithm’s state, within a
step. This mechanism allows a clean separation of computational (the algorithm)
and declarative (the environment) aspects, and naturally models nondetermin-
ism, function calls, interaction with oracles, input and output,. . . The full theory
of (ordinary) interactive algorithms is developed in [BG04a, BG04b]; overviews
are given in [Gur05] and [RR05].

All algorithms in this paper are assumed to be small-step ordinary interactive
algorithms in the sense of [BG04a, BG04b, Gur05].

2.2 Accessibility, Reachability and Indistinguishability

The notions of accessibility of objects, reachability and indistinguishability of
states, as introduced in [RR05], will be important here. An object is accessible
at a state if it is the value of a term there. A state Y is reachable from a state
X if there is an algorithm turning X to Y . Two states X,Y are distinguishable
if there is an algorithm turning them into states distinct by values of a specific
term. Structures X,Y of the same vocabulary are similar, written X ∼ Y if they
induce the same equivalence on ground terms:

V al(t1, X) = V al(t2, X) iff V al(t1, Y ) = V al(t2, Y )

Precise definitions and the theory behind these notions can be found in [RR05].
Here we shall repeatedly use the following results from [RR05](where Y −X is the
set of differences of two states over the same carrier, see [Gur00, BG04a, RR05]
for definitions):

-
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Theorem 1. State Y is reachable from state X iff

– X and Y have the same base set; and
– Y −X is finite and every element in Y −X is accessible.

Theorem 2. State X and Y are indistinguishable by small–step algorithm iff
X ∼ Y .

2.3 Background Structures and Importing/Creating

An algorithms often needs to create a new object. A Turing machine often needs
to access a new tape location never used before.

In the TM case it obviously doesn’t matter whether we conceive its tape as
finite, creating new locations as needed, or as infinite, with all locations possibly
needed given in advance. In the latter case locations get activated as the TM
visits them for the first time.

The case of a first-order structure is the same, a reserve pool (“the heap”) of
sufficiently many fresh amorphous objects can be given in advance, to be accessed
as needed. For interactive algorithms, they are available to the environment to
be returned in reply to an appropriate query (get me a new . . . ). The reserve
elements are amorphous in the sense that no “significant” functions are defined
on them, or denote them as values. For abstract cryptography the amorphous
reserve objects will represent random coins.

But if we have some infrastructure defined on all objects, such as ordered
pairs and/or finite sets and/or encryptions, it would be both unnatural and very
boring to have to establish all the infrastructure over a new element each time
one is introduced, brought forward from the reserve.

The notions of background structure and background class [BG00] serve ex-
actly this purpose: the axioms for a background class of [BG00] specify what
kind of structure can exist over amorphous atoms without imposing any specific
properties on them except for identity.

See [BG00, RR05] for definitions of background classes, background of algo-
rithms, exposed elements, active part, reserve.

A structure X is explicitly atom–generated if the smallest substructure of X
that includes all atoms is X itself. All background structures in the paper are
assumed to be explicitly atom-generated. Atomic support of a set S of elements
of a structure X from a background class K is the set of atoms of the envelope
of S, the smallest K-substructure containing S.

Corollary 1. If the atomic support SupX({x}) of an element x is accessible in
a state X, then x is accessible in X.

We assume that the set of exposed elements is finite, but not necessary uni-
formly bounded, in every state. Remember that the foreground of an algorithm
is its (generalized) memory, storing input data and results of previous calcula-
tions. As such, after a finite number of algorithm steps, only a finite number of
locations can be changed.
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Let 0X denote the reduct of X to the background vocabulary, the structure
obtained by “forgetting” all foreground functions in state X . We assume that
all states have an infinite but countable reserve. It follows immediately from the
axioms of [BG00] that if X and Y are K-states over the same carrier, then their
background reducts are isomorphic 0X

∼= 0Y .

Theorem 3. Let X be a state with background BC. Then there is an algorithm
A and an injective answer function α appropriate for 0X with only reserve ele-
ments in its codomain such that X = A(0X , α).

3 Computational Cryptography

3.1 Encryption Schemes

An asymmetric encryption scheme Π is a tuple of polytime algorithms (K, I, E ,D)

K : Parameter× Coins −→ DecryptionKey

I : DecryptionKey−→ EncryptionKey

E : EncryptionKey× String× Coins −→ Ciphertext∪ {⊥}
D : DecryptionKey× String −→ Plaintext∪ {⊥}

where String denotes the set of finite strings over {0, 1}, domains
EncryptionKey, DecryptionKey, Ciphertext, Plaintext are subsets of String,
⊥ is a distinguished string representing failure of the algorithm, and Coins is the
set of all infinite strings over {0, 1} . The polytime assumption for K means time
polynomial in η (not the size of its string representation) and ignores the Coins
argument representing random coin flips. Suppressing the Coins argument K, E
become probabilistic polytime algorithms, and K(η, c), E(k,m, c),D(K,m) are,
according to tradition, often written as K(η), Ek(m),DK(m) respectively.

The key-inversion algorithm I returns an encryption key matching the de-
cryption key.

Remark 1 (Usual Assumptions). We require that

– DK(Ek(m)) = m whenever k = I(K), for every key K sampled from K(η)
and every plaintext m such that Ek(m) doesn’t fail;

– the Plaintext domain is the set of all m for which, for some EncryptionKey
k, Ek(m) doesn’t fail; Ciphertext is the corresponding codomain;

– if K,K ′ are two outputs of K(η) for the same η, then
• K,K ′ have the same length;
• k = I(K), k′ = I(K ′) have the same length;
• if m,m′ are strings of the same length, then Ek(m) doesn’t fail if and only

if Ek′(m′) doesn’t fail, and then the encryptions have the same length.

Remark 2. Syntax of an asymmetric encryption scheme is usually defined as a
triple of algorithms (K, E ,D), where K returns a pair of both encryption and
decryption keys [BDPR98]. But then I is simply a projection and the decryp-
tion algorithm simply ignores one of the parameters. We find our variant more
convenient for the purpose of abstract modeling.

Model Ba-



38 D. Rosenzweig, D. Runje, and W. Schulte

We also assume a (polytime) encoding of ordered pairs, which means a triple
of functions Σ = (P ,F ,S), where P is a binary pairing function on strings, and
F and S are unary projections, with the usual properties. We also assume a
type-flaw preventing tagging scheme, ensuring that the codomains of K, E , I,P
are pairwise disjoint, and that neither of them contains ⊥.

3.2 Notions of Security

Notions of security of encryption schemes are typically based on a notion of in-
distinguishability, represented by two sequences of oracles of the same length,
the good-oracles OG

1 , . . . , O
G
n and the fake-oracles OF

1 , . . . , O
F
n . Each of the se-

quences gets initialized by randomly generating a sequence of keys to be used by
respective oracles, good-init and fake-init. The oracles and the initializations are
implicitly paremeterized by the encryption scheme Π and possibly the pairing
scheme Σ, but we shall drop this from the notation. Some data resulting from
the initialization can be passed to the adversary algorithm as parameters—we
consider this to be a part of the initialization. Let us call the initialization and
oracle data just ATT, and let the notion of security defined by ATT be IND-
ATT. The idea is that no PPT-limited adversary can distinguish whether she is
working with the good or the fake oracles:

Definition 1. Let A be an algorithm working with n oracles. Its advantage for
IND-ATT is

Advind-att
Π (A) = Pr[good-init : A(. . .)OG

1 ,...,OG
n = 1]−

Pr[fake-init : A(. . .)OF
1 ,...,OF

n = 1]

The encryption scheme Π is IND-ATT secure if no probabilistic polytime algo-
rithm A can guess which set of oracles it is provided with probability negligible
in the security parameter η: Advind-att

Π (A) is negligible.

The A(. . .) notation denotes the adversary algorithm called with any param-
eters that the initialization chooses to provide. Thus the notion of security is
completely characterized by the initializations and the oracles selected.

By negligible we mean, throughout this paper, polynomially negligible func-
tions: f(n) such that for every c for all sufficiently large n we have f(n) ≤ 1

nc ,
and by overwhelming those negligibly close to 1.

We define oracles characterizing notions of securities called indistinguishabil-
ity under chosen–plaintext attack and indistinguishability under adaptive
chosen–ciphertext attack, denoted with IND-CPA and IND-CCA, respectively.

Example 1 (IND-CPA).

– Let good-init be K ← K(η), passing along to the adversary algorithm k =
I(K).

– Let good-oracles be O with O(m1,m2) = Ek(m1).
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– Let fake-init be as good-init.
– Let fake-oracles be O with O(m1,m2) = Ek(m2), where k = I(K).

This defines the notion of security known as IND-CPA, “security under known
plaintext attack”.

Example 2 (IND-CCA).

– Let good-init, fake-init be as for IND-CPA.
– Let good-oracles be O,Od where O is as good-oracles of IND-CPA, and
Od(e) = DK(e) given that e is not an output obtained from O; if it is, then
Od(e) fails.

– Let fake-oracles be O,Od, with O as fake-oracle of IND-CPA and Od as in
good-init.

This defines a strictly stronger notion of security known as IND-CCA or IND-
CCA2, “security under known ciphertext attack”.

Nonces. Nonces are random values enclosed with some formating data gen-
erated with a nonce generation algorithm N . They serve as a source of fresh,
unguessable data exchanged in protocols. Nonce generation algorithms can be
stateful, which somewhat complicates the appropriate definition of their security.
We define the advantage of an arbitrary algorithm A of breaking the security
of nonce generation algorithm N as a probability of succeeding in the following
game: k+ l+1 nonces are sequentially generated with N and then the algorithm
A is run on the first k and the last l nonces with the task to guess the value of
k + 1-th nonce:

Advnonce
N (A) = Pr[m, n,p

$←− N (η) : A(m,p) = n]

If this advantage is negligible in η for every ppt algorithm A, then N is secure.
In practice, this type of security is achieved by simply enclosing η long uni-

formly sampled string with formating data.

3.3 Confusion Freeness and Weak Key Authenticity

Neither the syntax of an encryption scheme nor the typical notions of security,
such as the one defined above, say much about what happens if we attempt to
decrypt an encryption with a key distinct from the decryption key. Syntax of
an encryption scheme allows for such decryption to fail, but it does not insist
on it. If it does not fail, notions of security forbid that the result is in any
meaningful way related to the underlying plaintext — a ppt algorithm has no
way of distinguishing it from any other potential plaintext with non-negligible
probability.

As a reader might already suspect, a failure to detect such situations would
affect the completeness of an abstract model of cryptography. It is implicitly
assumed that an abstract agent recognizes undecryptable encryptions in most
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if not all abstract models; if a ppt agent in the computational model is strictly
weaker, then the abstract model would be incomplete.

We might require that decrypting an encryption with independently gener-
ated fresh key fails with all but negligible probability (as a function of security
parameter η). This property was defined in [MW04a] and called confusion free-
ness. It is sufficient to prove the completeness of an abstract model. Similar and
independent definition can also be found in [AJ01].

However, confusion freeness is a quite strong requirement on an encryption
scheme. It turned out not to be a necessary one: a strictly weaker notion called
weak key authenticity was defined and shown to be both necessary and sufficient
for proving completeness [HG03]. Weak key authenticity requires only that an
attempt to decrypt an encryption with incorrect decryption key fails with non-
negligible probability.

4 The Abstract Model

4.1 Messages as Experiments

The act of creating a cryptographic message, in view of the probabilistic charac-
ter of cryptographic algorithms, is a probabilistic experiment. Say the message
is Ek(P(n, 0)). Without any contextual assumptions on the key k and nonce n,
meaning that they should be freshly generated, this implies the following cryp-
tographic experiment:

[K $←− K(η); k ←− I(K); n $←− N (η); m←− P(n, 0); e $←− E(k,m) : e]

While it is easy to formalize the above notation for experiments directly, we
skip it here. It should suffice to say that an experiment is a sequence of actions
delimited with semicolon; if the experiment has an output, then it is separated
from preceding actions by a colon. Left arrows are assignment operators, some-
times decorated with $ to emphasize the use of randomized algorithms on the
right hand side.

Expanding the shorthand for probabilistic algorithms, the above experiment
would take the form of

[c1
$←− Coins; K ←− K(η, c1); k ←− I(K); c2

$←− Coins;

n←− N (c2); m←− P(n, 0); c3
$←− Coins; e←− E(k,m, c3) : e]

We shall in the sequel assume that all experiments are so expanded, that $←−
appears only at the left of Coins.

4.2 Experiments as Terms

Here we develop a more systematic notation for representing cryptographic prob-
abilistic experiments, with well-known and widely used terms of first-order logic.
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In logic every function symbol comes equiped with its arity and, optionally,
can be marked as relational. We in addition mark some function symbols as
probabilistic and some as parameterized.

Here we list all vocabularies that will be used throughout this paper.

Vocabularies:

– Υlog is the vocabulary of logical constants, containing nullary symbols true,
false and undef, the usual boolean operators and the equality =.

– Υexp contains unary symbols key, inv, fst, snd and nonce, binary decrypt and
pair, and ternary encrypt. Symbols key, nonce and encrypt are marked as
probabilistic and symbols key and nonce are also marked as parameterized.

– Υconst contains nullary symbols for some constants, at least for bits 0 and 1.
– Υfun contains unary relation symbols PriKey,PubKey,Ciphertext,Pair, unary

len and a binary relation symbol sameKey.
– Υ = Υlog ∪ Υexp ∪ Υconst ∪ Υfun.

For experiment-representing terms the vocabulary Υexp∪Υconst∪{undef} will
suffice, together with some set of additional constants to denote some coins.

Definition 2. Let C be a set of constants. The set of experiment-representing
terms, in short e-terms, of vocabulary Υconst ∪ Υexp ∪ {undef} over C, is defined
inductively as:

– nullary symbols in Υconst and undef are e-terms;
– if n-ary symbol f ∈ Υexp is not marked as probabilistic and t1, . . . , tn are

e-terms, then f(t1, . . . , tn) is an e-term; and
– if n-ary symbol f ∈ Υexp is marked as probabilistic, t1, . . . , tn−1 are e-terms

and c ∈ C, then f(t1, . . . , tn−1, c) is an e-term.

Given an assignment of infinite strings to constants in C and a concrete value
of security parameter η, we can assign a concrete string to every e-term.

Definition 3. Let t be an experiment-representing term of vocabulary Υconst ∪
Υexp ∪ {undef} over C, Π = (K, E ,D) an encryption scheme, Σ = (P ,F ,S) a
pairing scheme, N a nonce generation algorithm, and σ an assignment of infinite
strings to constants in C. Then a string �t�Π,Σ,N

η,σ is defined inductively as follows
(when Π,Σ,N are known, we drop them from the notation):

– undef is interpreted as the failure string

�undef�η,σ = ⊥

– if g is neither marked as probabilistic nor marked as parameterized, then

�g(t1, . . . , tn)�η,σ = G (�t1�η,σ, . . . , �tn�η,σ)

– if g is marked as probabilistic but not as parameterized, then

�g(t1, . . . , tn−1, c)�η,σ = G (�t1�η,σ, . . . , �tn−1�η,σ, σ(c))
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– if g is marked as both probabilistic and parameterized, then

�g(t1, . . . , tn−1, c)�η,σ = G (η, �t1�η,σ, . . . , �tn−1�η,σ, σ(c))

for every (g,G) ∈ {(key,K), (encrypt, E), (decrypt,D), (pair,P), (fst,F), (snd,S),
(nonce,N )} and every c ∈ C.

Thus taking any e-term t, sampling for σ from the uniform distribution we
obtain a probability distribution Pr

[
σ

$←− U : �t�η,σ

]
; varying η we obtain an

ensemble.
The assumptions on the encryption scheme force that

Pr
[
c, c′

$←− U : D(K(η, c), E(I(K(η, c)),m, c′)) = m
]

= 1

must hold for any message string m, while the confusion-freeness assumption
forces

Pr
[
c, c′, c′′

$←− U : D(K(η, c), E(I(K(η, c′)),m, c′′)) = ⊥
]

to be overwhelming for every message string m. Similar equivalences are forced
by assumptions on the pairing function and projections.

We show that these equivalences carry over to formalization by e-terms, for
instance that

Pr
[
σ

$←− U : �decrypt(key(c1), encrypt(inv(key(c1)), t, c2))�η,σ = �t�η,σ

]
must be overwhelming for every e-term t.

Definition 4 (Equivalence of E-Terms). Let T be a set of e-terms of vocab-
ulary Υconst ∪ Υexp ∪ {undef} over C. Then .= is the smallest equivalence over T
induced by the clauses

– for every pairwise distinct c1, c2, c3 ∈ C and every e-term t

decrypt(tk, te) =
{
tm if tk = key(ck) ∧ te

.= encrypt(inv(tk), tm, ce)
undef otherwise

– for all e-terms t1, t2, t, where t �= pair(x, y) for all x, y, then

fst(t) =
{
tf if t .= pair(tf , ts)
undef otherwise snd(t) =

{
ts if t .= pair(tf , ts)
undef otherwise

Let [t] .= be the standard notation for the class of .= equivalent terms. The
above definition justifies the common representation of cryptographic messages
with terms without decrypt, fst and snd symbols:

Corollary 2. For every e-term t there is an e-term t0 in which decrypt, fst and
snd do not occur and t0

.= t.

Finally, we will show that the equivalence just introduced is justified by its
computational interpretation.
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Lemma 1. Let t1, t2 be experiment-representing terms of vocabulary Υconst ∪
Υexp ∪ {undef} over C, Π = (K, E ,D) a confusion-free encryption scheme, Σ =
(P ,F ,S) a pairing scheme, N a nonce generation algorithm. If t1

.= t2, then

Pr
[
σ

$←− U : �t1�η,σ = �t2�η,σ

]
is overwhelming in η.

Proof. The proof is by induction on the definition of equivalence .=. Use the
assumptions on Π,Σ, the confusion freeness property of Π and the fact that
negligible functions are closed under addition. � 

Remark 3. A corresponding statement can be made in the case of weak key
authenticity. Under this assumption, the statement of the above lemma becomes

Pr
[
σ

$←− U : �t1�η,σ = �t2�η,σ

]
is not negligible in η. The proof is (almost) the same.

We shall often assume the following properties of encryption schemes:

Pr
[
c1, c2

$←− U : K(c1) = K(c2)
]

Pr
[
ck, c1, c2

$←− U : E(K(I(ck)),m, c1) = E(K(I(ck)),m, c2)
]

are both negligible in η. We shall name these properties, which easily follow from
the usual security notions such as IND-CPA, but are themselves much weaker,
as “random keys” and “random encryption” properties.

Lemma 2. Let Π be a confusion-free encryption scheme with random keys and
random encryption properties, Σ a pairing scheme, N a secure nonce generation
algorithm and t1, t2 e-terms. If [t1] .= �= [t2] .= then

Pr
[
σ

$←− U : �t1�
Π,Σ
η,σ = �t2�

Π,Σ
η,σ

]
is negligible in η.

Proof. By Lemma 1 and Corollary 2, it suffices to show that

Pr
[
σ

$←− U : �t1� = �t2�
]

is negligible for terms t1 and t2 in which decrypt, fst and snd do not occur. The
rest of the proof is straightforward simultaneous induction on the structure of
construction terms t1 and t2. � 
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4.3 Experiments as Structures

Given a set of abstract representatives of coins to interprete constants from
C, we can organize the e-terms modulo .= to a first-order structure. What
it buys us is possibility to harness the well-developed theory of interactive
algorithms of [BG04a, BG04b], which operate over such structures as their
states.

If elements of the structure are essentially equivalence classes of e-terms,
and .= is closed under substitution, the interpretation of any function g in the
vocabulary Υconst ∪ Υexp ∪ {undef} is naturally defined as

g([t1] .=, . . . , [tn] .=) = [g(t1, . . . , tn)] .=

The logical part of the structure is defined in the usual way. Some additional re-
lations are added to the interpretation, reflecting the assumptions on the tagging
scheme T , holding in codomains of functions key, encrypt, pair and nonce.

We proceed with a verbose definition of an isomorphism-closed classes of
structures K.

Definition 5. Let K be an isomorphism closed class of Υ–structures such that
X ∈ K if and only if there is a uniquely defined set CoinsX such that:

– true, false and undef denote distinct elements; elements in domains and
codomains of all logical constants except equality are logical elements in
X ; the interpretations of logical connectives in Υlog are the usual ones, and

– each k ∈ Υconst denotes a unique non-logical element, we denote the set of
such elements Const;

– domains and codomains of functions in Υconst and Υexp, and the set CoinsX
contain non-logical elements only;

– the non-logical part of X is freely generated with functions key, inv, encrypt,
pair and nonce from CoinsX ∪ Const;

– PriKey, PubKey, Ciphertext, Pair and Nonce hold on codomains of functions
key, inv, encrypt, pair and nonce respectively,

– sets CoinsX , Const, PriKey, PubKey, Ciphertext, Pair, Nonce are pairwise dis-
joint, and we define Msg = Const∪PriKey∪PubKey∪Ciphertext∪Pair∪Nonce;

– functions key, inv, encrypt, pair, nonce are injective, with the domains CoinsX ,
PriKey, PubKey×Msg × CoinsX , Msg×Msg, CoinsX , respectively;

– decrypt, fst and snd are defined as

fst(pair(m1,m2)) = m1
snd(pair(m1,m2)) = m2

decrypt(key(c1), encrypt(key(inv(c1)),m, c2)) = m

for every m,m1,m2 ∈ Msg and every c1, c2 ∈ CoinsX ; elsewhere these func-
tions take the value undef;
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– function len assigns an integer to each m ∈ Msg such that, assuming len(m1)=
len(m′

1), len(m2) = len(m′
2), we have:

len(pair(m1,m2)) = len(pair(m′
1,m

′
2))

len(encrypt(inv(key(c1)),m1, c2)) = len(encrypt(inv(key(c′1)),m
′
1, c

′
2))

len(m1) + len(m2) ≤ len(pair(m1,m2))
len(m1) ≤ len(encrypt(inv(key(c1)),m1, c2));

for every m1,m
′
1,m2,m

′
2 ∈ Msg and every c1, c

′
1, c2, c

′
2 ∈ CoinsX ;if the argu-

ment is not in Msg, len takes the value undef.
– relation sameKey holds in e1, e2 iff e1 = encrypt(inv(key(c)),m1, c1) and e2 =

encrypt(inv(key(c)),m2, c2) for some c, c1, c2 ∈ CoinsX , m1,m2 ∈ Msg.

Defining the structure, we have used e-terms with set of constants C =
CoinsX .

What exactly is the relation of e-terms and structures just defined? Elements
of CoinsX are not accessible by ground terms in a structure X ∈ K, and therefor
e-terms cannot be directly evaluated in X . But if we expand the structure X
with constant symbols denoting CoinsX , then non-logical elements can be seen as
a class of .= equivalent terms. For X ∈ K, we will denote with X+ its unique ex-
pansion with constants CoinsX denoting themselves in X+. Since the non-logical
part of X is freely generated by key, inv, encrypt, pair, nonce from Const∪CoinsX ,
there is a unique ground term tXx of vocabulary {key, inv, encrypt, pair, nonce} ∪
Υconst ∪ CoinsX denoting every non-logical x in X+. Denote with TX

x the set of
all ground terms denoting x in X+. Then TX

x is exactly [tXx ] .=. This reading of
the definition allows us to attach the computational interpretation to elements
of structures as well.

Definition 6. Let X ∈ K, x a non-logical element in X and σ an assignment
of infinite strings to CoinsX . Then

�x�X,η,σ = �tXx �η,σ.

If any of the parameters is determined by the context, we might suppress it and
ultimately write �t� and �x� if all parameters are understood from the context.

By Lemma 1 and Lemma 2, both equality and inequality on non-logical part
are preserved with overwhelming probability. If we fix some distinct coding of
the logical elements, then we can extend the computational interpretation to
all elements of the structure. The abstract interpretation will be preserved with
overwhelming probability by the computational representation.

Corollary 3. Let Π = (K, I, E ,D) be a confusion-free encryption scheme with
random keys and random encryption properties, Σ = (P ,F ,S) a pairing scheme,
N a secure nonce generation algorithm, X ∈ K and t1, t2 terms of X+. Then
V al(t1, X+) = V al(t2, X+) if and only if �t1�η,σ = �t2�η,σ with overwhelming
probability.
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4.4 Experiments and Algorithms

If we wanted to capture full static logic of asymptotic computational cryptog-
raphy, we would need much more involved logical constructions. But full static
logic is not what we are after, capturing equality and inequality suffices for our
purposes. Equality and inequality, which means similarity, suffices to determine
the behavior of abstract interactive algorithms of [BG04a, BG04b].

Under the computational interpretation, concrete ppt Turing machines op-
erating on concrete cryptographic messages can simulate abstract algorithms
operating over structures representing such messages. A concrete ppt Turing
Machine, run on a tape containing a finite set of cryptographic messages, can
analyze the messages by running deterministic algorithms such as decryption D
and projections of pairs F and S, testing parts of analyzed messages for equality
etc. It can also create new messages by running probabilistic key and nonce gen-
eration algorithmsK andN , encryption algorithm E , or deterministic algorithms
such as the pairing algorithm P .

The fact that concrete ppt Turing machines can do essentially no more than
the abstract algorithms will be forced by security assumptions on the encryption
schemes.

Abstract algorithms represent all possible internal actions of an algorithm
with evaluation of terms, and external actions, such as receiving of input mes-
sages, with an answer function attached to a state. Internal memory of the
abstract algorithm will be modeled with additional functions expanding the
structures. The modeling choices we just made are quite obvious and suffi-
cient for everything but coin flipping, e.g. creation of fresh nonces, encryptions
etc.

The behavioral theory of algorithms has a well developed theory of importing
of fresh objects. Almost every non-trivial application of the theory use import-
ing over a background structure. There is nothing fundamentally different in
extending the working space of an algorithm with a fresh atom used to build
hereditarily finite sets, or with a fresh atom representing a fresh coin flip used
for probabilistic functions. Only atoms that are not used in any meaningful way
in the state can be imported, and the exact choice of the atom imported is
irrelevant since they all produce isomorphic states.

The isomorphism-closed class of structures K is a background classes with
Atoms(X) = CoinsX for every X ∈ K. We will denote it by BCcpa.

Let A be an ordinary interactive small–step algorithm with background
BCcpa. In every state X , A evaluates a finite set of terms, possibly using re-
sults of interaction with its environment α, and finally, based of the result of the
evaluation, generates an update set Δ+

A(X,α). We will make no limitations on
coins that can be imported by α, except the usual one that an imported coin
must be a reserve atom.

Definition 7. Let A be an ordinary interactive small-step algorithm with back-
ground BCcpa and X its state. Let Π an encryption scheme, Σ a pairing scheme
and N a nonce generation algorithm. Then
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– �X�η,σ is a concatenation of strings �x�η,σ for all accessible x ∈ X.
– �A�η is a Turing machine that evaluates computational interpretations of

abstract terms evaluated by A.

Example 3. An abstract algorithm modeling the first action of responder B in
the Needham–Schroeder protocol:

A
{kA, nA}kB−−−−−−−−−−−−−→ B

{nA, nB}kA←−−−−−−−−−−−−−

is given with the following ASM program:

let p = decrypt(B, in), kA = fst(p), nA = snd(p) in

if PubKey(kA) and Nonce(nA)
then

import c1, c2 in

let nB = nonce(c1) in

a := kA

n := nA

m := nB

out(encrypt(kA, pair(nA, nB), c2))

The program is executed in a state X with background BCcpa and a context
α. State X contains a constant B denoting the private key KB, and undefined
constants n, m, and a. Context α is

α = {(c1, c1), (c2, c2), (in, e1), (out[e2], ack)}

for some c1, c2 ∈ Reserve(X) and encryptions e1, e2 ∈ X . Queries in and out are
used for communicating for the environment, while c1 and c2 represent internal
coin flips made by the algorithm—environment replies to queries c1, c2.

The corresponding Turing machine �A�η operates on three tapes. The first
tape represents the internal memory of the algorithm and contains the string
�KB�η,σ. The second one represents internal randomness needed by the algo-
rithm, it is an infinite sequence of random bits. The third tape represents inter-
action with an environment, containing �e1�η,σ at beginning and �e2�η,σ at the
end of the calculation.

The interpretation of actions of an abstract algorithm with experiments de-
serve some additional attention. The (abstract) work performed by an algorithm
is measured in ground terms it evaluates. Evaluation of a term is inductively de-
fined as:

1. interpretation of a background function,
2. interpretation of a foreground function, and
3. querying and receiving an answer from the environment.

Model Ba-
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Work performed in (1) amounts to evaluation of the appropriate function G rep-
resented by a background function g. Foreground functions represent the internal
memory of an algorithm, and therefore (2) is usually a simple memory lookup.
Work performed by the environment (3) is not done by the algorithm, as it
simply creates queries and uses the answers provided. This view has the follow-
ing simple consequence when A is instantiated with a concrete implementation
working on strings:

Corollary 4. Let A be a small–step algorithm with background BCcpa, Π an
encryption scheme, and Σ an pairing scheme. Then �A�η is a ppt Turing ma-
chine.

As already said, we will assume that every algorithm is capable of performing
experiments on its own, and therefore we will pose no restriction on importing of
fresh coins from the reserve of a state. However, algorithms might also receive,
within a step, results of experiments from its environment, such as answers
obtained by oracles. Specific modeling circumstances, such as a specific notion
of security, will determine our restrictions on such answer functions.

Theorem 4 (Completeness). Let Π = (K, I, E ,D) be a confusion-free en-
cryption scheme with random keys and random encryptions, Σ = (P ,F ,S) a
pairing scheme and N a secure nonce generation algorithm. Furthermore, as-
sume that for all but a finite number of values of η:

– len(x) = len(y) in X iff |�x�η,σ | = |�y�η,σ | for every state X with background
BCcpa;

– encryption scheme Π is equipped with a ppt algorithm that can distinguish
two encryptions created with different keys.

Let X and Y be states with background BCcpa. If X �∼ Y then there is a ppt
algorithm distinguishing �X�η and �Y �η with overwhelming probability.

Proof. If X �∼ Y , then there are ground terms t1 and t2 such that V al(t1, X) =
V al(t2, X) and V al(t1, Y ) �= V al(t2, Y ). By Corollary 3, the equality and in-
equality of terms is preserved with overwhelming probability by the computa-
tional interpretation. Let A be an algorithm outputting true when t1 = t2 and
false otherwise. Then �A�η distinguishes �X�η and �Y �η with overwhelming prob-
ability. By Corollary 4, �A�η is a ppt algorithm. � 

4.5 Abstract Notions of Security

Abstract interactive algorithms of [BG04a, BG04b] allow us to model the oracle
adversary games defining cryptographic security notions directly on the abstract
level!

The security of an encryption scheme is completely characterized with the
corresponding oracles attached to a ppt algorithm trying to break the secu-
rity of an encryption scheme, as described in section 3.2. The oracles attached
to the algorithm also perform experiments, and the results of the experiments
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are already representable by elements of the base set of the background classes
BCcpa. From the algorithm’s point of view, actions of oracles are actions of its
environment. Interaction of an algorithm and environment is well studied in
the behavioral theory of algorithm. It is represented with a collection of answer
functions attached to a state completely characterizing all possible reactions of
environment.

We will show how to view definitions of the notions of security from section
3.2 abstractly as a set of abstract answer functions attached to a state of an
algorithm. Recall the IND-CPA notion of security given by Definition 2. Its ab-
stract representation is as follows, minding that n, pk, eo(x, y) are queries asking
the environment for a new nonce, a new private key, an encryption of one of the
two messages respecitvely:

Definition 8. Let X be a state with background BCcpa. Then

– a context α of an ordinary interactive small–step algorithm A in X is IND-
CPA good if there are distinct elements ck, c1, . . . , cn, ce1, . . . , c

e
k in the reserve

of X such that

α(ni) = ci

α(pk) = invX(keyX(ck))

α(eoj(xj , yj)) =
{

encryptX(invX(keyX(ck)), xj , c
e
j) if lenX(xj) = lenX(yj)

undef otherwise

for some xj , yj ∈ X , i = 1, . . . , n, j = 1, . . . , k; and
– a context β of an ordinary interactive small–step algorithm A in X is IND-

CPA fake if there are distinct elements ck, c1, . . . , cn, ce1, . . . , c
e
k in the reserve

of X such that

α(ni) = ci

α(pk) = invX(keyX(ck))

α(eoj(xj , yj)) =
{

encryptX(invX(keyX(ck)), yj , c
e
j) if lenX(xj) = lenX(yj)

undef otherwise

for some xj , yj ∈ X , i = 1, . . . , n, j = 1, . . . , k.

Let A be the set of all IND-CPA good contexts and B the set of all IND-CPA
fake contexts in state X . Then A,B is the abstract model of IND-CPA oracle
interaction in X .

Instantiations of these answer functions with concrete encryption schemes
are exactly the experiments defined with the IND-CPA notion of security in
Definition 2.

Both IND-CCA good and fake contexts are extension of IND-CPA good and
fake contexts with additional queries and answers representing the decryption
oracles

α(do(xl)) = β(do(xl)) = decryptX(keyX(ck), xl)
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for some xl such that xl is not one of the answers to encrypt queries in α or β,
for l = 1, . . . ,m.

The abstract model of interaction of IND-CPA notion of security induces
an equivalence relation on states in the following way. We say that a small–step
algorithmA reduces state X to state Y for answer functions α, β if X = A(0X , α)
and Y = A(0Y , β). State X is reducible to Y for α, β if such a small–step
algorithm exists.

Definition 9. Let A,B be the abstract model of IND-CPA interaction. Then
X is reducible to Y for IND-CPA, denoted with X

cpa−→ Y , if X is reducible to
Y for some α ∈ A and β ∈ B. If both α and β are parameterized with the same

oracle encryption key K, then we also write X K−→ Y .
The equivalence induced by the reducibility relation for IND-CPA relation,

its transitive and symmetric closure, is denoted with X
cpa= Y .

Lemma 3. Let Π be a confusion-free IND-CPA secure encryption scheme, Σ a
pairing scheme and N a secure nonce generation algorithm. Let X and Y states
with background BCcpa. If X cpa= Y , then �X�η is indistinguishable from �Y �η by
probabilistic polynomial time algorithms with all but negligible probability.

Proof. Since computational indistinguishability is an equivalence, it is sufficient
to show that �X�η ≈ �Y �η when X

cpa−→ Y .
We argue by contradiction. Suppose there is a ppt algorithmA distinguishing

�X�η and �Y �η with non-negligible probability. We will use this algorithm to
distinguish oracles characterizing IND-CPA security.

Denote with α an IND-CPA good context and with β an IND-CPA fake con-
text such that for some algorithm A we have X = A(0X , α) and Y = A(0Y , β).
Run the algorithm �A�η with an IND-CPA oracle to create �X�η,σ or �Y �η,σ,
depending on whether you are provided with a good oracle or a fake one. Run
A on the resulting state. If A can distinguish �X�η,σ from �Y �η,σ with non-
negligible probability, then we can break IND-CPA security of the encryption
scheme used. � 

The above lemma tells us that certain challenges are indistinguishable as a
simple consequence of the notion of security. If two inputs of a challenge can
be generated by the same abstract algorithm, but using two different oracles,
then it is clear that this algorithm, if successful, would break security of the
underlying encryption scheme.

Remark 4. Given some enumeration of coins c1, c2, . . . in a state X , we will
often use the following notation for elements of X : ni for nonceX(ci), Ki for
keyX(ci), ki for invX(keyX(ci)), 〈m1,m2〉 for pairX(m1,m2) and {m}i

Kj
for

encryptX(kj ,m, ci). If a state has a single nullary foreground symbol, then we
will identify the state with the unique element the symbol is denoting in it. E.g.
a state X with f denoting encryptX(invX(keyX(c2)), keyX(c1), c3) for some coins
c1, c2, c3 ∈ Reserve(X) is identified with {K1}3

K2
.
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Example 4. We will show that

{{K1}4
K2
,K3}5

K1

K2−→ {{0}4
K2
,K3}5

K1

K1−→ {0}5
K1

for IND-CPA security (assuming that 0 denotes a zero string of an appropriate
length). Let A1 and A2 be algorithms with programs Π1 and Π2:

Π1 = import c1, c3, c5

let K1 = key(c1), K3 = key(c3), k1 = inv(K1) in

f := encrypt(K1, pair(eo(K1, 0),K3), c5)
Π2 = import c2, c3, c4

let K2 = key(c2), K3 = key(c3), k2 = inv(K2) in

f := eo(pair(encrypt(k2, 0, c4),K3), 0)

and let IND-CPA positive α1, α2 and IND-CPA negative β1, β2 be

α1 = {(c1, c1), (c3, c3), (c5, c5), (eo[K1, 0], {K1}4
K2

)}
β1 = {(c1, c1), (c3, c3), (c5, c5), (eo[K1, 0], {0}4

K2
)}

α2 = {(c2, c2), (c3, c3), (c4, c4), (eo[〈{0}4
K2
,K3〉, 0], {〈{0}4

K2
,K3〉}5

K1
)}

β2 = {(c2, c2), (c3, c3), (c4, c4), (eo[〈{0}4
K2
,K3〉, 0], {0}5

K1
)}

Then

A1(0, α1) = {{K1}4
K2
,K3}5

K1
A1(0, β1) = {{0}4

K2
,K3}5

K1

A2(0, α2) = {{0}4
K2
,K3}5

K1
A2(0, β2) = {0}5

K1

By Lemma 3, we can conclude that

Adv(A) = Pr
[
K1,K2,K3

$←− K(η); e $←−: Ek1(P(Ek2(K1),K3)) : A(e) = 1
]

−Pr
[
K1

$←− K(η); e $←− Ek1(0

) : A(e) = 1

]
is negligible for every ppt algorithm A (we use ki = I(Ki)).

5 Soundness and Completeness of the Abstract Model

5.1 Indistinguishability

If we prove that state X and Y are indistinguishable by small–step algorithms,
what have we proved? We hope that than there is no probabilistic polytime
algorithm that can distinguish strings produced by experiments encoded by X
and Y with all but negligible probability.

For the IND-CPA notion of security, the background class BCcpa, an en-
cryption scheme Π , a pairing scheme Σ and a nonce generation algorithm N ,
we have three equivalence relations on abstract states with background BCcpa

representing experiments

Model Ba-
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1. computational indistinguishability;
2. abstract indistinguishability; and
3. abstract reducibility.

If �X�η and �Y �η are indistinguishable by ppt algorithms, we write X
Π≈ Y .

Computational indistinguishability is the semantical relation on states, defined
independently from our formalism in terms of capabilities of probabilistic poly-
nomial time Turing machines.

If X and Y are indistinguishable by small–step algorithms, we write X ∼ Y .
Abstract indistinguishability articulates our intention about what an encryption
scheme should achieve. It can also be seen as the power explicitly given to an
agent by an encryption scheme: if an agent can distinguish two states with an ab-
stract algorithm, then she can use an instantiation of the program to distinguish
instantiations of the states, all with the concrete instantiated encryption scheme.
This property is usually called completeness, and it can be phrased as “whatever
an abstract algorithm can do, a concrete instantiation can do with overwhelming
probability as well”. The proof given in Theorem 4 is quite straightforward, but
it involves some simple reasoning about probabilities. This is necessary, since it
relates an abstract relation with semantics defined in terms of ppt algorithms.
We get

X �∼ Y ⇒ X
Π

�≈ Y,

or equivalently

X
Π≈ Y ⇒ X ∼ Y. (1)

Abstract reducibility tells us what a concrete ppt algorithm cannot do as
a direct consequence of the notion of security. The proof given in Lemma 3 is
again very simple, it is nothing more than expressing what is the true meaning
of a particular notion of security. We get

X
cpa= Y ⇒ X

Π≈ Y (2)

From equations (1) and (2), we have

X
cpa= Y ⇒ X

Π≈ Y ⇒ X ∼ Y (3)

If we could relate abstract notions of equivalence by showing that

X ∼ Y ⇒ X
cpa= Y, (4)

we could, using (3), conclude that all three notions are equivalent

X ∼ Y ⇔ X
cpa= Y ⇔ X

Π≈ Y.

The theorem establishing (4) is the essence of the computational soundness
of abstract wrt computational cryptography. It is also the most difficult one to
prove. However, it is expressed and proved completely in abstract terms, with
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no mention of Turing machines and their probabilities to distinguish concrete
strings in ppt time.

A state X is said to be in (IND-CPA) normal form if every accessible en-
cryption with inaccessible decryption key has zero string (of appropriate length)
as a subject.

Let A,B be the model of interaction for IND-CPA security in 0X . If an
inaccessible key k is not a subject of any used message in a state X , then X can
be constructed from 0X by a small–step algorithm A and some α ∈ A. If A is
run on 0X , β for some β ∈ B, we can produce a state X ′ in which k encrypts
only zeros, like we did in Example 4.

Lemma 4. Let X be a state with background BCcpa and K a decryption key
not occurring as a submessage of any used encryption in X. Then X

cpa−→ X ′

for some state X ′ with the same background reduct and the same accessibility of
nonces and keys such that

– all keys and nonces are accessible with the same terms in both X and X ′;
– key K encrypts only zero strings in X ′; and
– if encryption key k1 encrypts decryption key K2 or nonce n in X ′, then k1

encrypts K2 or n in X as well.

Now we have everything we need to prove that acyclic states are reducible
to normal form.

Lemma 5. Let X be an acyclic state with background BCcpa and accessible all
exposed elements. Then X is IND-CPA reducible to its normal form.

Proof. Enumerate inaccessible decryption keys such that encryption key kj does
not encrypt Ki if i ≤ j. Since the state is acyclic, such numeration is possible.

We will reduce X in n steps to a state Xn such that 0 is the only used subject
encrypted by an inaccessible encryption key. The proof is by induction on the
enumeration of inaccessible decryption keys. Key K1 is inaccessible and does not
occur as a submessage of subject of any used encryption in X . By Lemma 4,
then there is a state X1 such that X0

cpa−→ X1, k1 does not encrypt any decryp-
tion key in X1 and encrypts in X1 is a subrelation of encrypts in X . Hence, the
enumeration of keys in X is good for X1. Since key k1 does not encrypts any
decryption key in X1, there is no key in X1 that encrypts K2 in X1. But then
K2 satisfies the condition of Lemma 4 in X1 and we can make another step of
the induction.

In Xn, subject of every undecryptable encryption is zero. Thus Xn is in the
normal form.

� 

An example of a reduction of a (cyclic) state to its normal form is given in
Example 4.

Since a normal form is a representative of its similarity class, we have:
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Corollary 5. Let X and Y be acyclic states with background BCcpa and acces-
sible all exposed elements. If X ∼ Y then X

cpa= Y .

Theorem 5 (Soundness). Let Π be an IND-CPA secure encryption scheme,
Σ a pairing scheme, N a nonce generation algorithm, and X and Y acyclic states
with background BCcpa. If X ∼ Y , then �X�η and �Y �η are indistinguishable by
probabilistic polynomial time algorithms.

Proof. We will assume that all exposed elements are accessible in both states. If a
state contains exposed but inaccessible elements, replace it with a state obtained
by undefining all foreground functions on such elements. The resulting state is
clearly computationally indistinguishable from the original one, it provides the
same information to the intruder. By Corollary 5, we have X cpa= Y . Finally, by
Lemma 3, �X�η and �Y �η are indistinguishable. � 

5.2 Accessibility

If an element x is not accessible by a term in X,α for some state X with back-
ground BCcpa and α whose codomain is in the reserve of the state, can we
conclude that no ppt algorithm can output �x�η when run on �X�η with non-
negligible probability? The similar theorem was proved for an Abadi–Rogaway
language in [MW04b]. We will extend the soundness result of the previous sub-
section to accessibility here.

Lemma 6. Let X be a state with background BCcpa and x ∈ X with non-empty
support in X: SupX({x}) �= ∅. Then

Pr
[
σ

$←− U : A = �x�X,η,σ

]
is negligible for every ppt algorithm A.

Intuitively, this means that a ppt algorithm cannot guess an independently
created key, nonce or encryption if no data is provided to it.

Lemma 7. Let Π be an IND-CCA secure encryption scheme and X,X ′ non-
isomorphic states with background BCcpa such that X K−→ X ′ for IND-CCA
contexts α and β. If some ppt algorithm A can produce �x�X,η,σ with non-
negligible probability when run on �X�η,σ, then

– decryption key K is not as a submessage of x in X (key invX(K) can occur
as a submessage or as an encryption key);

– there is a term t such that x = V al(t,0X , α) and A can produce �x′�X′,η,σ

with non-negligible probability when run on �X ′�η,σ for x′ = V al(t,0X′ , β);
– x is accessible in X iff x′ is accessible in X ′.

Proof. We argue by contradiction. Suppose that K is a submessage of x in X . All
decryption keys are accessible in 0X , α except K, and every encryption created
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by encryption oracle in α does not contain K in the subject. Hence we can
use IND-CCA decryption oracle and decryption with accessible keys to retrieve
�K�X,η,σ from �x�X,η,σ . But then we can distinguish �X�η,σ and �X ′�η,σ with
non-negligible probability, which is a contradiction by Lemma 3.

Since K can only occur in x as an encryption key, there is a term t such that
x = V al(t, α). Suppose that A can produce �x′�X′,η,σ with negligible probability
only. Then

Pr
[
σ

$←− U : �t�η,σ = A(�X�η,σ)
]
− Pr

[
σ

$←− U : �t�η,σ = A(�X ′�η,σ)
]

is non-negligible and can be used to distinguish states X and X ′, which is a
contradiction.

The last part is a simple consequence of X and X ′ being indistinguishable.
� 

Lemma 8. Let Π be an IND-CCA secure encryption scheme and X a state with
background BCcpa in the IND-CPA normal form. If x is not accessible in X, then
�x�X,η,σ is not accessible with non-negligible probability to ppt algorithms.

Proof. If x is not accessible in X , then some inaccessible key K must occur as
a submessage in x. Use IND-CCA decryption oracle and keys not used in X to
retrieve it and break the IND-CCA security. � 

Theorem 6. Let Π be an IND-CCA secure encryption scheme and X a state
reducible to its normal form. If x ∈ X is not accessible in X to a small-step
importing algorithm, then

Pr
[
σ

$←− U : A(�X�η,σ) = �x�X,η,σ

]
is negligible for every ppt algorithm A.

Proof. Let Xn be the normal form of X and

X
K1−→ X1

K2−→ X2
K3−→ . . .

Kn−→ Xn

for some inaccessible decryption keys K1, . . . ,Kn. Let x, x1, x2, . . . , xn be ele-
ments from Lemma 7. Then xn is inaccessible in Xn. By Lemma 8, �xn�Xn,η,σ

is not accessible by ppt algorithms with non-negligible probability, which is a
contradiction by Lemma 7.

6 Model Based Testing of Protocols

In this section we will show how to encode ASM programs working over BCcpa

in Spec# and how to use SpecExplorer to explore all possible execution traces
for a bounded number of roles and agents.

Model Ba-
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The interactive algorithms of [BG04a, BG04b] are implemented in AsmL and
Spec#. SpecExplorer is a tool developed at Microsoft Research for exhaustive
exploration of (finitized) state spaces of specifications written in AsmL or Spec#,
in order to test an implementation for conformance and to generate unit tests.

We have found that it can be effectively used to explore state spaces of
protocol adversary situations, given a finite number of roles ensuring that the
state space is finite. Our analysis shows that this exploration also has direct
computational significance.

class Coins {}

structure Message{
public virtual int len(){ return 1; }
case Nonce{

private Coins c;
}
case Pair{

public Message fst;
public Message snd;
public override int len(){ return fst.len() + snd.len(); }

}
case PrivateKey{

private Coins c;
public PublicKey inv(){ return PublicKey(this); }

}
case PublicKey{

private PrivateKey sk;
}
case Encryption{

public PublicKey pk;
private Message subject;
private Coins c;
public Message decrypt(PrivateKey sk)
require sk.inv() == pk;

{
return subject;

}
public bool sameKey(Encryption e){ return pk == e.pk; }
public override int len(){ return subject.len() + 1; }

}
public PrivateKey key(){ return PrivateKey(new Coins()); }
public Encryption encrypt(PublicKey pk, Message subject) {

return Encryption(pk, subject, new Coins());
}
public Pair pair(Message f, Message s){ return Pair(f, s); }

}

Fig. 1. BCcpa background encoding in Spec#
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6.1 Encoding in Spec# and SpecExplorer

The original idea of modeling abstract properties of cryptographic primitives by
an object–oriented programming language is from [RRS03]. An encoding of the
BCcpa background in Spec# is given in Figure 1. The encoding should be clear
to a reader with some basic understanding of accessibility modifiers private
and public in OO programming languages. A more elaborate discussion of the
similar encoding in AsmL language can be found in [RRS03].

An honest role will be represented with a Spec# encoding of an ASM program
operating over BCcpa background, such as the one given in example 3. On the
other hand, the intruder will not be represented explicitly in the model with a
concrete program. We will use the exploration capabilities of SpecExplorer to
explore all possible execution paths with a given set of honest roles. It is not
very difficult to teach SpecExplorer to completely analyze a message created by
an honest role, but we have a dramatically different situation when it comes
to creating a message that would be accepted by a role, forcing it to make a
step and possibly output a fresh message. The set of states of an honest role
is closed under isomorphisms and therefore infinite. We will look into a very
common class of protocols in which the set of messages that can be created by
an intruder and accepted by an honest role is infinite, but representable with
a finite set of messages. Every step that a role can make will produce a state
isomorphic to one of the states obtained by running the role with one of the
representative messages.

A role of a protocol exposes a very simple interface to the outside world.
It analyzes an input message and, if certain conditions are satisfy, outputs a
message. If conditions are not met, it typically hangs, not producing a new
messages regardless of any future inputs. If A is an action with a message m
given as input in a state X and an answer function α with only reserve elements
in its codomain, then τA(X,m,α) is a state

An action of such role is called simple if it checks the type of all submessages
of an input message. This means that any encryption must be decrypted, any
pair must be analyzed, and type of any nonce and key must be checked. A
protocol is simple if all actions of its roles are simple.

Theorem 7. Let A be a simple action and I an intruder with a finite set of
messages accessible by ground terms. Then there is a finite set of messages M
accessible to I in X,α such that for every message m′ accessible to I in X, β
there is m ∈M such that

τA(X,m,α) ∼= τA(X,m′, β)

Proof. If action A is simple, then atomic support of m′ in X SupX(m′) is finite
and bounded. It suffice to import |SupXm

′| fresh coins from the reserve of X
and create all messages of a fixed submessage structure using freshly created
coins and known messages. � 

We use the above fact, together with theorems 1 and 6, to produce abstract
representations of all non-negligible computational traces representable by the
BCcpa background for a bounded number of honest roles.

Model Ba-
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Fix a simple protocol P . Let k be a maximum number of coins in support of
any message accepted by an action of an honest role in P . At the initialization
phase, SpecExplorer creates a fixed number of honest agents and corrupted keys.
In each subsequent step, SpecExplorer imports k fresh coins from the reserve,
and creates all messages from fresh coins and already know messages that could
potentially be accepted by some honest role. Each role is ran with each such
message used as its input by SpecExplorer, thus producing a set of all reach-
able states in the model. The exact order in which states are explored is non-
deterministic, although the tool allows different priorities to be assigned to states.
A role accepting an input message, can possibly output a message. The output
message gets analyzed by the tool, thus updating the internal memory of the
intruder. At the end of each step, the protocol guarantees are checked in new
states by the tool. If any of protocol guarantees is not satisfied, the exploration
is aborted and a graph with explored states, including the one in which the
guarantee is not fulfilled, is rendered by the tool. The trace that resulted with
the bad state can be explored and studied using the tool.

One optimization of the exploring process can be achieved by a grouping
of states and further exploration of a single state representative of a group.
The exploration space can be dramatically reduced for an appropriate grouping,
but an optimal grouping is not always easy to find. In our case, isomorphism
seems like a good choice of grouping relation on states. Since SpecExplorer does
not have a built-in option of grouping of isomorphic states, we use an ad–hoc
coding of states resulting in a grouping relation finer than isomorphism, but still
significantly reducing the exploration space.

Example 5 (Lowe’s attack on Needham–Schroeder protocol). One example of a
simple protocol in the above sense is the public–key variant of the Needham–
Schroeder authentication protocol. The flaw found by Lowe is easily (re)
discovered by SpecExplorer, usually in less than 100 explored states.

The model is initially in a state marked as Initial in Figure 2. The first step
of initialization is performed by calling CreateAgentFactory, which creates an
object capable of creating honest agents of the protocol. The next invocation of
CreateAgents(2,1) creates two honest agents and one corrupted private key.
The internal memory of the intruder is enriched with public keys of the hon-
est agents and the private corrupted key. The resulting state is marked with
Agents Created. The exploration process starts here. SpecExplorer now can
create fresh roles of already created honest agents using CreateInitiatorRole
and CreateresponderRole, or run already an created role using RunRole. The
parameters for RunRole are picked up from the finite set of representative of
messages using the Theorem 7.

The Lowe’s attack on the protocol is found after creating one initiator and
one responder role, and then calling RunRole four times with the appropriate
parameters. In the resulting state, protocol guarantee is violated and the explo-
ration process is terminated. The resulting state is clearly marked and the trace
leading to the state is included in its description in the exploration graph in
Figure 2.
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Fig. 2. SpecExplorer discovers Lowe’s attack on the Needham–Schroeder protocol
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Abstract. We study fusion and binding mechanisms in name passing
process calculi. To this purpose, we introduce the U-Calculus, a process
calculus with no I/O polarities and a unique form of binding. The latter
can be used both to control the scope of fusions and to handle new name
generation. This is achieved by means of a simple form of typing: each
bound name x is annotated with a set of exceptions, that is names that
cannot be fused to x. The new calculus is proven to be more expressive
than pi-calculus and Fusion calculus separately. In U-Calculus, the syn-
tactic nesting of name binders has a semantic meaning, which cannot be
overcome by the ordering of name extrusions at runtime. Thanks to this
mixture of static and dynamic ordering of names, U-Calculus admits a
form of labelled bisimulation which is a congruence. This property yields
a substantial improvement with respect to previous proposals by the
same authors aimed at unifying the above two languages. The additional
expressiveness of U-Calculus is also explored by providing a uniform en-
coding of mixed guarded choice into the choice-free sub-calculus.

1 Introduction

Name binding is a key issue in many languages for the design of distributed
and mobile systems based on message-passing. This is certainly the case for
foundational calculi like pi-calculus [5,6] and Fusion [10], but the relevance of
name binding extends also to languages like Biztalk [4] and Highwire [3], oriented
towards web services. Fusion extends the pi-calculus by introducing fusions,
i.e. name equivalences that, when applied onto a term, have the effect of a
(possibly non-injective) name substitution. Fusions conveniently formalise, e.g.,
forwarders for objects that migrate among locations [2], or forms of pattern
matching between pairs of messages [3].

While Fusion is presented in [10] as a generalisation of the pi-calculus, the
authors prove in the paper [1] that no satisfactory semantic embedding exists of
pi-calculus into Fusion. In particular, Fusion ignores the issue of name unicity. In
pi-calculus, names declared through the restriction operator are unique, in the
sense that they cannot be identified with any other name. In Fusion, the binder
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(x) can be used to control the scope of fusions, but not to forbid them: names
are like logical variables, i.e., unification always succeeds. In [1], we introduce
D-Fusion, a calculus with two binders, ν and λ, which extend the binders of
pi-calculus and Fusion. We show that D-Fusion is strictly more expressive than
both pi-calculus and Fusion. In particular, we prove that both Fusion and pi-
calculus can be uniformly mapped into D-Fusion, and exhibit an encoding of
mixed guarded choice into the choice-free fragment of D-Fusion.

In D-Fusion, however, constraints on name fusions are totally determined by
the extrusion ordering of names at runtime: the fact that a λ-name x will be
fusable to a ν-name y depends on whether x will be extruded after y or before
y. In other words, fusions cannot be constrained statically. As we explain below,
this causes bisimilarity defined on the labelled transition system not to be a
congruence. As a consequence, in D-Fusion one is forced to work with barbed
congruence, which lacks adequate proof techniques.

In this paper we introduce the U-Calculus, a process calculus with no I/O
polarities and a unique form of binding. In U-Calculus, the syntactic nesting of
name binders has a semantic meaning, which cannot be overcome by the ordering
of name extrusions at runtime. Thanks to this mixture of static and dynamic
ordering of names, U-Calculus labelled bisimulation is a congruence.

To understand why a static ordering of names is useful, we can reason as
follows. Assume that an agent has a free name x and a ν-bound name y. Names
x and y cannot be fused in any reasonable semantics. For example, in open pi-
calculus [13], one has (νy) [x = y]P ∼ 0. This can be expressed by the following
expansion law, which holds true because communication between the two prefixes
is forbidden (here we use polarities for the sake of readability; a〈x〉 is Fusion’s
free input, a〈y〉 is output, and ∼ is labelled bisimilarity):

P
�
= (νy)(a〈x〉|a〈y〉) ∼ (νy)(a〈x〉.a〈y〉+ a〈y〉.a〈x〉) �

= Q.

Now, suppose P and Q above are plugged into a context (λx)[·]. If (λx)P ν-
extrudes y before λ-extruding x, fusion of x and y will be allowed. This must
be the case, at least, if one keeps the traditional scope-extrusion law, which is
common to Pi, Fusion and D-Fusion. In fact, scope extrusion allows the binders
(λx) and (νy) in (λx)P to be freely swapped. This swapping makes the syntactic
ordering of binders immaterial. So (λx)P is equivalent to a(x)|(νy)a〈y〉, where
the bound input a(x) is just the same as (λx)a〈x〉. In other words:

(λx)P ∼ (λx)Q + τ �∼ (λx)Q.

Thus, in D-Fusion, plugging an agent into a λ-context may trigger additional
communication capabilities, making two agents in the λ-context not bisimilar,
when the two original agents were so. Note that this is true even if we require
that ∼ be closed under all substitutions, in sharp contrast with both open pi-
calculus [13] and Fusion. In these calculi, the problem does not arise simply
because free input and restriction do not coexist.

A static ordering of name binders solves the problem. In U-Calculus, the
syntactic nesting (λx)(νy) forbids the fusion of the two names in any case. Op-
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erationally, when the extrusion of y takes place under (λx), name x is decorated
with an exception y, yielding (λx : y). This indicates that the fusion between x
and y will never be allowed, and so it holds that (λx)P ∼ (λx)Q. Semantically,
this fact has consequences on the scope extrusion laws. In particular, we have
the following new swapping law:

(λx)(νy)R ∼ (νy)(λx : y)R.

Incidentally, a simple generalisation of the exception types allows to oper-
ationally unify the mechanism of λ- and ν-binding. In fact, a ν-binder is just
a λ-binder where all names free at the moment of extrusion are considered as
exceptions. This is indicated by a new type ω, as in (λx : ω). With this notation,
ν and λ enjoy a uniform treatment. As a consequence, the U-Calculus achieves
minimal syntax and operational rules.

The expressive power of the U-Calculus is essentially the same as D-Fusion’s:
also for the U-Calculus we can provide uniform mappings of both pi-calculus
and Fusion, and a uniform encoding of mixed guarded choice into the choice-free
sub-calculus. In our assesment of the expressive power we shall rely on barbed
bisimilarity [12], when this is technically convenient.

The rest of the paper is organised as follows. In Section 2 we introduce
the U-Calculus, its operational semantics and a notion of open bisimulation.
In Section 3 we show that U-Calculus is strictly more expressive than both pi-
calculus and Fusion. We further explore this expressiveness gap in Section 4, by
encoding mixed guarded choice into the choice-free calculus. Section 5 contains
a few concluding remarks.

2 The U-Calculus

Syntax. We consider a countable set of namesN ranged over by a, b, . . . , u, v, ..., z.
We write x̃ for a finite tuple (x1, . . . , xn) of names. The set U of U-
Calculus processes, ranged over by P, Q, . . ., is defined by the syntax:

P ::= 0
∣∣ a ṽ.P

∣∣ P |P
∣∣ P + P

∣∣ [x = y]P
∣∣ !P

∣∣ (λx : T )P.

Types T are defined as:
T ::= N |ω,

where N ⊆fin N and ω is a constant. The intended meaning of (λx : T ) is that x
cannot be fused with any name in T . In particular, ω stands for ‘any name’ free
at the moment of extrusion, thus (λx : ω)P corresponds to declaring x fresh.
We will often abbreviate (λx : ω) as (νx) and (λx : ∅) as (λx) . By (λx̃ : T̃ ) we
will denote (λx1 : T1) · · · (λxn : Tn) , where it is assumed that xi ∈ Tj implies
i < j, for i, j = 1, · · · , n. We will also adopt the convention that (λx : T )P |Q
stands for ((λx : T )P ) |Q.

The occurrences of x in (λx : T )P are bound, thus notions of free names and
bound names of a process P arise as expected and are denoted by fn(P ) and
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bn(P ), respectively. The notion of alpha-equivalence also arises as expected. In
the rest of the paper we will identify alpha-equivalent processes. A context C[·]
is a process with a hole that can be filled with any process P , thus yielding a
process C[P ].

Note that we consider one kind of prefix, thus ignoring polarities. However, a
sub-calculus with polarities can be easily retrieved, as we will show later in this
section.

Notation

– T + T ′ def= N ∪ N ′ if T = N and T ′ = N ′, T + T ′ def= ω if T = ω or T ′ = ω.
We abbreviate T + {y} as T + y.

– T − y
def= N \ {y} if T = N , T − y

def= ω if T = ω.
– T � N

def= N ′ ∩ N if T = N ′, T � N
def= N if T = ω.

– Predicate y E T is defined as follows:

y E T ⇔ T = ω or (T = N and y ∈ N)

The above notations are extended to tuples T̃ as expected. For instance, T̃�N def=
T1 �N, · · · , Tn �N , if T̃ = T1, · · · , Tn. For x̃ = (x1, · · · , xn), T̃ = (T1, · · · , Tn),
and Ñ = (N1, · · · ,Nn), by x̃ : T̃ � Ñ we denote x1 : T1 �N1, · · · , xn : Tn �Nn.

Operational Semantics. For R a binary relation over N , let R� denote the re-
flexive, symmetric and transitive closure of R with respect to N . We use σ, σ′ to
range over substitutions, i.e. finite partial functions from N onto N . The domain
of σ is denoted by dom(σ). We denote by tσ the result of applying σ onto a term
t. Given a tuple of names x̃, we define σ|x̃ as σ ∩ (x̃×N ).

Below, we define fusions, that is, name equivalences. These arise as the result
of equating two tuples of names in a synchronisation.

Definition 1 (fusions). We let φ,χ, . . . range over fusions, that is total equiv-
alence relations on N with only finitely many non-singleton equivalence classes.
We let:

– n(φ) denote {x : xφ y for some y �= x};
– τ denote the identity fusion (thus, n(τ ) = ∅);
– φ−z denote (φ− ({z} × N ∪N × {z}))�;
– {x̃ = ỹ} denote {(x1, y1), . . . , (xn, yn)}�, where x̃ = x1, . . .xn and

ỹ = y1, . . . yn;
– φ[x] denote the equivalence class of x in φ.

Definition 2. Let σ be a substitution. Then, σ is a substitutive effect of a fusion
φ iff ∀x, y : xφ y ⇔ xσ = y σ and ∀x, y : σ(x) = y ⇒ xφ y.

We introduce below a concept of distinction, akin to [13]. The purpose of
distinctions is to keep track of those name fusions that have to be forbidden.



A General Name Binding Mechanism 65

Definition 3 (distinctions). A distinction D is a tuple x1 : T1, x2 : T2, . . . ,

xn : Tn, written x̃ : T̃ , with ω not in T̃ , up to permutations and up to the law:

x̃ : T̃ , w : T1, w : T2 = x̃ : T̃ , w : T1 + T2.

Let D = x̃ : T̃ and D′ = x̃′ : T̃ ′ be two distinctions. Then:

– D,D′ def= x̃x̃′ : T̃ T̃ ′;
– D \ z

def= (xi : Ti − z)i: xi �=z;

– D σ
def= x̃σ : T̃ σ.

We write xD y iff x �= y and x : T ∈ D and y E T , for some T . Given a
substitution σ and a distinction D, we say that σ respects D, written σ � D, if
xD y implies xσ �= y σ.

Definition 4 (structural congruence). The structural congruence ≡ is the
least congruence on processes satisfying the abelian monoid laws for Summa-
tion and Composition (associativity, commutativity and 0 as identity) plus the
following rules:

(λx : T ) (λy : T ′ + x)P ≡ (λy : T ′) (λx : T + y)P x not in T ′

(λx : T ) (λy : T ′)P ≡ (λy : T ′) (λx : T )P x �E T ′

(λx) (P + Q) ≡ (λx)P + (λx)Q

(λx : T )0 ≡ 0

!P ≡ P | !P

and the scope extrusion law:

(λx : T ) (P |Q) ≡ (λx : T )P |Q x /∈ fn(Q) and

(T = ω or ω does not occur in Q).

Note that a special case of the first rule is: (λx) (νy)P ≡ (νy) (λx : y)P .
The above structural congruence rules can be applied to reduce every pair of
communicating subprocesses into a form where their ν-binders have been moved
at top level. The side condition “ω does not occur in Q” prevents a λ-binder
from ‘capturing’ ν-names out of its scope. For instance, according to the SOS
rules presented below, a process P = (λx) ax | (νz) az can do a τ -transition. On
the other side, extruding the scope of (λx) over (νz) az would yield a process
P ′ = (λx) (ax | (νz) az), which cannot do any synchronisation.

Definition 5 (labelled transition system). The transition relation P
μ−→ Q,

for μ a label of the form (λỹ : T̃ ) aṽ (action) or of the form D,φ (effect) is
defined by the SOS rules in Table 1.
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Notation. In Table 1, we use the following abbreviation. We write P > Q (and

say that P commits to Q) if: P = P1 |P2, P1
(λx̃:T̃ ) ab̃−−−−−−→ P ′

1, P2
(λỹ:Ũ) ac̃−−−−−−→ P ′

2,
with ω not in T̃ Ũ , and Q = (λx̃ỹ : T̃ Ũ) (ab̃.P ′

1 | ac̃.P ′
2).

Some comments on the rules of Table 1 are in order. Actions occurring within
the scope of a λ are governed by rules Pass and Open. Roughly, a name z that is
declared with exceptions T ′ may get extruded (rule Open) or not (rule Pass) by
an action occurring under the scope of its declaration (λz : T ′) , depending on
whether z occurs in the object part of the action. In the case of rule Pass, z is
removed from the current set of exceptions T̃ . However, no distinction is lost,
because the extruded names having z as an exception are added to T ′ (condition
(1)). E.g.:

(λz : a) (λx : z) ax.P
(λx) ax−−−−−→ (λz : {a, x})P.

Effects are similar to those found in Fusion, but here they also carry a set of
exceptions represented by a distinction x̃ : T̃ . Effects are created as a result of
a communication that unifies two tuples of names (rule Com), and propagated
across parallel components, until a λ is encountered. The rule Passf has a meaning
similar to Pass. The rule Openf acts on a name z in the fusion: a substitutive effect
[w/z] is applied both to the transition label and to the target process, and z is
removed from the fusion (the result is φ−z). The side condition φ[z] � T ′′ = ∅
forbids fusion of z with any name in its set of exceptions (T ′ + {Tj | z = xj}),
or having z as an exception ({xi | z E Ti}); in particular, the rule does not fire if
T ′ = ω, i.e. if z is declared to be new. Note that applying [w/z] onto (x̃z : T̃ T ′)
implicitly lets w inherit z’s exceptions. For example:

(λz : y) (νc) (cza.P |cww.0)
w:y, {a=w}−−−−−−−→ (νc)P [w/z]

while
(λz : a) (νc) (cza.P |cww.0) �−→ .

Here, z cannot be fused to w or to a, because a is in z’s exceptions (φ[z]� T ′′ =
{a}). Note that in rule Com the labels in the premise have no binders because
communication among processes with λ-binders is dealt by means of rule Commit.
The absence of ν-binders in rule Commit is explained by the fact that, by the
structural congruence, communicating processes can be reduced into a canonical
form where the scope of ν-binders is extruded over parallel components.

Example 1.

1. The construct (λx) ax behaves as a(x) in pi-calculus:

(λx) ax.P | ay.0 τ−→ P [y/x] and (λx) ax.P | (νy) ay.0 τ−→ (νy)P [y/x]

but ax.P | (λy : x) ay.0 � τ−→ and ax.P | (νy) ay.0 � τ−→
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Table 1. Actions and effects transitions in U-Calculus

(Act) ab̃.P
ab̃−→ P (Match)

P
μ−→ Q

[a = a]P
μ−→ Q

(Sum)
P

μ−→ Q

P + R
μ−→ Q

(Pass)
P

(λx̃:T̃ ) ab̃−−−−−−→ Q

(λz : T ′)P
(λx̃:T̃−z) ab̃−−−−−−−→ (λz : T ′′) Q

z /∈ b̃ , x̃ ∪ {a} and (1)

(Open)
P

(λx̃:T̃ ) ab̃−−−−−−→ Q

(λz : T ′) P
(λzx̃:T ′T̃ ) ab̃−−−−−−−−→ Q

z ∈ b̃ − {a, x̃}

(Passf )
P

x̃:T̃ ,φ−−−→ Q

(λz : T ′) P
(x̃:T̃ )\z,φ−−−−−−→ (λz : T ′′) Q

z /∈ n(φ) and (1)

(Openf )
P

x̃:T̃ ,φ−−−→ Q

(λz : T ′)P
(x̃z:T̃T ′)[w/z],φ−z−−−−−−−−−−−−→ Q[w/z]

w φ z, w �= z, φ[z] � T ′′ = ∅ and (1)

(Com)
P1

ab̃−→ Q1 P2
ac̃−→ Q2

P1|P2
{b̃=c̃}−−−−→ Q1|Q2

(Commit)
P |Q > A

x̃:T̃ ,φ−−−→ R

P |Q x̃:T̃ ,φ−−−→ R

(Par)
P

μ−→ Q

P |R μ−→ Q|R (Struct)
P ≡ P ′ P ′ μ−→ Q′ Q′ ≡ Q

P
μ−→ Q

(1) : Let x̃ = x1, · · · , xn, and T̃ = T1, · · · , Tn in

T ′′ = T ′ + Σ{xi | z E Ti} + {Tj | z = xj}.
Symmetric rules for (Sum) and (Par) are not shown. Usual conventions about

freshness of bound names apply.

2. The two examples below show combined use of rules (Com), (Openf ) and (Com-

mit):

(λx : y) (axx.P | awz.0)
w:y,{w=z}−−−−−−−→ P [w/x].

(νy) axyz.P | (λx′ : z) (λy′) ax′y′z′.Q
x:z,{z=z′}−−−−−−−→ (νy) (P |Q)[x/x′][y/y′]

3. Nesting of binders is important, even on names in the same action:

(νy) (λx) axy.0 | (λu) auu
τ−→ while (λx) (νy) axy.0 | (λu) auu � τ−→
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Encoding I/O polarities We can encode polarities as follows:

a〈ṽ〉.P �
= (νx) (λy) aṽxy.P a〈ṽ〉.P �

= (νx) (λy) aṽyx.P

for some chosen fresh x and y. The position of name x forbids fusions between
actions with the same polarity and, hence, communication. For instance, the
process a〈ṽ〉.P |a〈ũ〉.Q has no τ -transition, since the latter would force the fusion
of two globally distinct names, which is forbidden by the operational rules. We
denote by Up, polarised U-Calculus, the subset of U in which every prefix can
be interpreted as an input or output, in the above sense.

Open Bisimulation. Like in the case of Fusion, a ‘natural’ semantics of
U-Calculus is required to be closed under substitutions. However, one should
be careful in respecting exceptions raised by λ-extrusions. The following defini-
tion of open bisimulation relies on the notion of distinctions (Def. 3).

By {RD}D we denote a set of process relations {RD |D is a distinction}. By
PRD′Q, with D′ = D · (νx̃) , ỹ : T̃ , we abbreviate PRD′′Q, with D′′ = D, x1 :
N1, · · · , xk : Nk, ỹ : T̃ and Ni = fn(P, Q,D, ) ∪ {x1, · · · , xi−1}, with i = 1, · · ·k.

Definition 6 (open bisimulation). A set R = {RD}D of process relations in-
dexed by distinctions is an indexed simulation if for each D, whenever P RD Q:

– if P
(νx) (λỹ:T̃ ) az̃−−−−−−−−−→ P ′ then Q

(νx) (λỹ:T̃ ) az̃−−−−−−−−−→ Q′ and P ′ RD′ Q′, with

D′ = D · (νx̃) , ỹ : T̃ ;

– if P
x̃:T̃ ,φ−−−→ P ′, σ is a substitutive effect of φ and σ respects D, x̃ : T̃ then

Q
x̃:T̃ ,φ−−−→ Q′ and P ′σ RD′′ Q′σ, with

D′′ =
(
D, x̃ : T̃

)
σ.

R is an indexed bisimulation if both R = {RD}D and R−1 = {R−1
D }D are

indexed simulations. Open bisimulation, {∼D}D, is the largest indexed bisimu-
lation preserved by respectful substitutions, i.e.: for each σ and distinction D, if
P ∼D Q and σ respects D then Pσ ∼Dσ Qσ.

We write P ∼ Q for P ∼ε Q, where ε is the empty distinction. In the following
examples we shall write {x̃ = ỹ}.P for (νc) (cx̃|cỹ.P ) (for a fresh name c).

Example 2.

1. (νc) (νn) (λx)
(
cx.P | cn.0

) ∼ (νc)
(
(λx) cx.P | (νn) cn.0

) ∼ (νc) (νn) τ.P [n/x]

but (νc) (λx) (νn)
(
cx.P | cn.0

) ∼ (νc) (λx)
(
cx.P | (νn) cn.0

) ∼ 0.

2. An example of ‘expansion’ for parallel composition is as follows:

(λy : T )ay.0|ax.0 ∼ (λy : T )ay.ax.0 + ax.(λy : T )ay.0 + {x = y}.0 if x �E T,

while (λy : T ) ay.0|ax.0 ∼ (λy : T )ay.ax.0 + ax(λy : T )ay.0 if x E T
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3. The static nesting of name binding is relevant:

(νy) (λx) ay.ax.{x = y}.0 �∼ (λx) (νy) ay.ax.{x = y}.0.

The above two processes extrude y and x in the same order. However, after
the two extrusions, the process on the left-hand side can fuse the two names,
while the other one cannot.

Theorem 1. Let P and Q be two processes. Then:

1. P ∼D,x:T	N Q and x /∈ n(D) imply (λx : T )P ∼D (λx : T )Q, with
N = fn( (λx : T )P, (λx : T )Q, D ).

2. Prefix, parallel composition, sum, matching and replication operators pre-
serve ∼D.

Example 3. Let P
def= (λy) ay.(νx) ax.0 and Q

def= (λy) ay.(νx) ax.{x = y}.Q′. It
holds that P ∼ Q. Indeed, Q cannot fuse x and y, since ν-extruding x yields a
distinction x : y. Suppose R

def= (λz) az. It also holds that P |R ∼ Q |R. Indeed,
after synchronising (λz) az and (λy) ay, Q |R ν-extrudes x and then evolves, for
instance, to (λz : x) {x = z}.Q′[z/y]. Thus, the fusion {x = z} cannot take place
and (λz : x) {x = z}.Q′[z/y] ∼ 0.

3 Pi- alculus and Fusion as Subcalculi of U-Calculus

The labelled transition systems of pi-calculus and Fusion are embedded into
polarised U-calculus’s, under the two obvious translations given below. Note
that these translations are uniform, in the sense of [1]; in particular, no central
coordinator is introduced in the translated processes.

Definition 7. The translations [[·]]π : Π → Up and [[·]]f : F → Up are defined by
extending in the expected homomorphic way the following clauses, respectively:

[[a〈x〉.P ]]π = a〈x〉.[[P ]]π [[a(x).P ]]π = (λx) a〈x〉.[[P ]]π [[(νx)P ]]π = (νx) [[P ]]π

[[a〈x〉.P ]]f = a〈x〉.[[P ]]f [[a〈x〉.P ]]f = a〈x〉.[[P ]]f [[(x)P ]]f = (λx) [[P ]]f

Embedding in terms of labelled transition systems naturally lifts to behav-
ioural equivalences. Here, we restrict our attention to equivalences based on
barbed bisimulation.

Definition 8 (barbed bisimulation and barbed congruence). We write
P ↓ a if and only if there exist an action μ = ((λx̃ : T̃ ) , aṽ) and a process Q

such that P
μ−→ Q.

A barbed bisimulation is a symmetric binary relation R between processes
such that P RQ implies:

C
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1. whenever P
τ−→ P ′ then Q

τ−→ Q′ and P ′RQ′;
2. for each name a, if P ↓ a then Q ↓ a.

P is barbed bisimilar to Q, written P
.∼ Q, if PRQ for some barbed bisimulation

R.
Two processes P and Q are barbed congruent, written P ∼b Q, if for all

contexts C[·], it holds that C[P ] .∼ C[Q].

Let ∼π and ∼f denote barbed congruence, respectively, over Π ([12]) and
over F (see [14]). Also, let ∼[[π]] and ∼[[f]] be the equivalences on U obtained by
closing barbed bisimulation .∼ only under translated pi- and Fusion-contexts,
respectively (e.g., P ∼[[π]] Q iff for each Π-context C[·], [[C]]π [P ] .∼ [[C]]π [Q]).

Proposition 1.

1. Let P and Q be two pi-calculus processes. P ∼π Q iff [[P ]]π ∼[[π]] [[Q]]π.

2. Let P and Q be two Fusion processes. P ∼f Q iff [[P ]]f ∼[[f]] [[Q]]f .

Next, we now show that the U-calculus cannot be uniformly encoded into
Π . The intuition is that, in U-calculus (like in D-Fusion [1]), the combined use
of fusions and restrictions allows one to express a pattern matching atomically.
This is not possible in Π . To show this fact, we restrict our attention to polarised
U-calculus, Up.

The reference semantics for Π is the late operational semantics. Given P ∈ Π

and a trace of U-calculus actions s, let us write P
ŝ=⇒ if P

s′
=⇒ for some pi-actions

trace s′ that exhibits the same sequence of subject names as s, with the same
polarities (e.g., s = a〈x̃〉 · (λỹ) b〈ṽ〉 and s′ = a(z̃) · b〈w̃〉). The reference semantics
for Π is again the late operational semantics.

Definition 9. A translation [[·]] : Up → Π is uniform if for each P, Q ∈ Up:

– for each trace s, P
s=⇒ implies [[P ]] ŝ=⇒;

– [[P |Q]] = [[P ]]|[[Q]];
– for each y, [[(νy)P ]] = (νy) [[P ]];
– for each substitution σ, [[Pσ]] = [[P ]]σ.

Below, we denote by ∼Up any fixed equivalence over Up contained in trace
semantics (defined in the obvious way), and by ∼Π any fixed equivalence over
Π contained in trace equivalence. Note that both barbed congruence over Up,
and open bisimulation are contained in trace equivalence.

Proposition 2. There is no uniform translation [[·]] : Up → Π such that
∀P, Q ∈ Up:

P ∼Up Q ⇒ [[P ]] ∼Π [[Q]].

Proof: Suppose that there exists such a translation [[·]]. Let us consider the
following two Up-processes P and Q:

P = (νc, k, h) (c〈k〉.a.0|c〈h〉.b.0|c〈k〉.0) Q = τ.a.0.
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It holds that P ∼ Q in Up: the reason is that, in P , synchronisation between
prefixes c〈h〉 and c〈k〉, which carry different restricted names h and k, is forbid-
den (see rule Passf). Thus P can only make c〈k〉 and c〈k〉 synchronise, and then
perform a. Thus, P ∼Up Q holds too.

On the other hand, by Definition 9, for any uniform encoding [[·]], c and c̄ in

[[P ]] can synchronise and, thus, [[P ]] b=⇒, while [[Q]] � b=⇒ (because of b �∈ fn(Q)
and of the uniformity with respect to substitutions). Thus [[P ]] �∼Π [[Q]]. �

Of course, it is also true that the U-calculus cannot be uniformly encoded
into F , as this would imply the existence of a uniform fully abstract encoding
from Π to F , which does not exist (see [1]).

The conclusion is that there is some expressiveness gap between U-calculus
on one side and Pi/Fusion on the other side, at least, as far as our simple notion
of uniform encoding is concerned.

Remark. There cannot exist any encoding from D-Fusion to the U-calculus, or
vice-versa, that is uniform in a sense extending Def. 9, in particular mapping λ
to λ and ν to ν. The reason is that in D-Fusion, as mentioned, the order of λ’s
and ν’s can be freely swapped, while in the U-calculus this requires changing the
respective exceptions. More in detail, the equality (λx) (νn) {x = n}.c̄ ∼ 0 in
the U-calculus would be mapped to [[(λx) (νn) {x = n}.c̄]] ∼DF [[0]] in D-Fusion
(for ∼DF included in trace equivalence). In D-Fusion, using commutativity of ν
and λ, one would get [[(νn) (λx) {x = n}.c̄]] = [[P ]] ∼DF [[0]]. But this equivalence
does not hold true, since P

c̄=⇒ implies by definition that [[P ]] c̄=⇒, while [[0]] � c̄=⇒
(the latter follows by uniformity with respect to substitutions). This shows that
the U-calculus cannot be uniformly encoded into D-Fusion. A similar argument
applies to the other direction (that is, mapping D-Fusion to U-Calculus).

4 Encoding Guarded Choice

We show that in U-calculus, like in D-Fusion [1], the combined use of fusions
and restrictions can still be used to uniformly encode guarded mixed choice via
parallel composition. Practically, this guarantees that there is no significant loss
of expressive power when moving from D-Fusion to U-calculus.

In the encoding, different branches of a guarded choice will be represented
as concurrent processes. The encodings add pairs of extra names to the object
part of each action: these extra names are used as ‘side-channels’ for atomic
coordination among the different branches. Let us first look at a simple example.

Example 4. Consider the guarded choice A = (νn) (λx) a〈xn〉.P +
(νm) (λx) a〈xm〉.Q. Its intended ‘parallel’ implementation is the process:

B = (νn) (νm) (λx) ( a〈xn〉.P | a〈xm〉.Q )
(here, x, n, m /∈ fn(a, P, Q)). Assume parallel contexts are constrained so that
output actions on channel a must carry two identical names. In B, the parallel
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component that first consumes any such message, forces fusion of x either to n
or to m, and consequently inhibits the other component, thus:

(λu) a〈uu〉|B τ−→∼ (νn) (P | (νm) a〈mn〉.Q) ∼ P |(νn, m) a〈mn〉.Q.

Under the mentioned assumption, (νm, n) a〈mn〉.Q should be ‘equivalent’ to 0,
because there is no way of fusing m and n together. In other words, choice
between P and Q has been resolved atomically. Note that this example exploits
in a crucial way features of both Fusion (sharing of the variable x, in B) and of
U-calculus (restricted input).

We generalise the above example by providing a fully abstract encoding of
mixed guarded choice. For the sake of simplicity, we shall work here with barbed
equivalence. We believe the results can also be stated in terms of labelled bisimi-
larity ∼, at the cost of breaking uniformity of the encoding (e.g. by introducing
of ‘firewalls’ contexts which filter out output messages that disrupt the encoding,
see [1]) .

As a source language we fix a sorted version of polyadic pi-calculus [5] with
‘mixed’ choice, Πmix. In this language, prefixes and + are replaced by mixed
summation,

∑
i∈I ai (x̃i).Pi +

∑
j∈J bj〈ṽj〉.Qj . The target language is the frag-

ment of polarised U-Calculus with no summation at all. The relevant clause is
shown below, where ñ = (ni)i∈I and m̃ = (mj)j∈J are two disjoint tuples of
distinct names:

[[
∑

i∈I ai (x̃i).Pi +
∑

j∈J bj〈vj〉.Qj ]]mix =

(νñm̃) ((λz, u) ) ( Πi∈I(λx̃i) ai〈x̃izniuu〉.[[Pi]]mix | Πj∈Jbj〈ṽjuuzmj〉.[[Qj ]]mix ).

The encoding acts as a homomorphism over the remaining operators of Πmix.
Note that, differently from [1], the declaration of the λ-names is within the scope
of the ν-names. Communication between two remote prefixes of opposite polar-
ities causes all λ-names within the same choice to be fused to a single ν-name.
This atomically inhibits the remaining prefixes. Note that the relative positions
of ν-names correctly forbid communication between branches of opposite polar-
ities within the same choice (no ‘incestuous’ communication, according to the
terminology of [7]).

Below, ∼mix denotes barbed congruence over Πmix, and ∼[[mix]] the equiva-
lence over the U-calculus obtained by closing barbed bisimulation under trans-
lated Πmix-contexts, i.e.: P ∼[[mix]] Q iff for each Πmix-context C[·], it holds
[[C]]mix[P ] .∼ [[C]]mix[Q]). Both equivalences are reasonable semantics in the sense
of [9]. The proof of the following theorem is straightforward, given that there is a
1-to-1 correspondence between reductions and barbs of R and of [[R]]mix, for any
R, and given that the encoding is compositional, in particular, for any context
C[·], it holds [[C]]mix[[[P ]]mix] = [[C[P ]]]mix.

Theorem 2 (full abstraction for mixed choice). Let P, Q ∈ Πmix. It holds
that P ∼mix Q if and only if [[P ]]mix ∼[[mix]] [[Q]]mix.
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In a pi-calculus setting, it is well-known that mixed choice cannot be encoded
into the choice-free fragment, if one requires the encoding be uniform and pre-
serve a reasonable semantics [8,9,7]. The theorem above shows that pi-calculus
mixed choice can be implemented into the choice-free fragment of the U-calculus.
The encoding is uniform, deadlock- and divergence-free, and preserves a reason-
able semantics.

5 Conclusions

We have introduced U-Calculus, a process calculus with no I/O polarities and
a unique binding, that can be used both to control the scope of fusions and
new name generation. This is achieved by means of a simple form of typing that
prevents a name x such that x : T from being fused with any name in T .

We have proved that the U-Calculus is strictly more expressive than pi-
calculus and Fusion calculus separately. Remarkably, thanks to the combination
of static and dynamic ordering of names, the labelled bisimulation defined for the
U-Calculus is a congruence. This property represents a substantial improvement
with respect to D-Fusion.

We plan to extend the U-Calculus by generalising name fusions to substitu-
tions over an arbitrary signature of terms. We believe that the extended calculus
would be strictly more expressive that Logic Programming, the intuition being
that restriction (creation of new fresh names) cannot be modelled in LP.

It would also be interesting to investigate whether the partition refinement
algorithm proposed in [11] for checking open bisimilarity could be extended to
U-Calculus.
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Abstract. Our society is increasingly moving towards richer forms of
information exchange where mobility of processes and devices plays a
prominent role. This tendency has prompted the academic community
to study the security problems arising from such mobile environments,
and in particular, the security policies regulating who can access the
information in question.

In this paper we propose a a mechanisms for specifying access privi-
leges based on a combination of the identity of the user seeking access,
its credentials, and the location from which he seeks it, within a recon-
figurable nested structure.

We define BACIR, a boxed ambient calculus extended with a Dis-
tributed Role-Based Access Control mechanism where each ambient con-
trols its own access policy. A process in BACIR is associated with an
owner and a set of activated roles that grant permissions for mobility
and communication. The calculus includes primitives to activate and
deactivate roles. The behavior of these primitives is determined by the
process’s owner, its current location and its currently activated roles. We
consider two forms of security violations that our type system prevents:
1) attempting to move into an ambient without having the authorizing
roles granting entry activated and 2) trying to use a communication port
without having the roles required for access activated. We accomplish 1)
and 2) by giving a static type system, an untyped transition seman-
tics, and a typed transition semantics. We then show that a well-typed
program never violates the dynamic security checks.

1 Introduction

The exchange of information by electronic means in a mobile environment has
become part of everyday life, with cellphones, PDA’s, and laptop computers ac-
cessing remote information and transmitting signals and data. An increasingly
mobile workforce needs to be able to access corporate information while at work,
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from home, and on the road. This tendency has prompted the academic com-
munity to study the security problems arising from this constantly escalating
mobility.

The concept of Trust Management has been actively studied in the network
security community since it was first introduced by Blaze, Feigenbaum, and Lacy
in the paper Decentralized Trust Management [6]. According to their formula-
tion, trust management addresses the question: is this request, supported by these
credentials, in compliance with this user’s policy? In [6], they identify three com-
ponents of trust management: security policies, security credentials, and trust
relationships. Security policies are local policies that an application trusts un-
conditionally, security credentials are assertions about objects by trusted third
parties, and trust relationships are special cases of security policies.

One way to address Trust Management is by considering Role-Based Access
Control (RBAC) [18,36,19], where a role is defined by a set of privileges. RBAC
is a methodology for defining security policies and for giving privileges to users.
However, it is not concerned with the authentication of users. Whether the user
claiming to be Bob is indeed Bob is beyond the scope of Trust Management, and
of this work. In an RBAC framework there are two special relations between
roles, privileges, and users: one assigns privileges to roles, and the other one
assigns users to roles. These two relations form part of the security policy.

Mobility adds a new dimension to RBAC, since the services available to a
given user also depend on the location of the user, agreements between parties,
and the technology underlying the connection. For example, without roaming
agreements in place, a cell-phone may be rendered useless beyond the scope
of its provider’s network. Furthermore, whether a user’s connection is wireless,
wired, secure, or insecure also conditions the available services. For example,
an administrator on an insecure wireless connection may be denied access to
sensitive information.

In a distributed environment the policies regulating access control may be
distributed among several parties, and each principal may only have partial
knowledge of the overall security policy [29,30,27].

In a mobile environment, different domains will have different access policies
and when users (and potentially programs) migrate from domain to domain they
will be ruled by a combination of the access policies of their enclosing domain
and remote server domains.

In this work we study RBAC based Trust Management. As we described
earlier, RBAC is a method of regulating access of users to information and
resources based on the activity they need to perform. Access is fundamentally
controlled by roles. On one side, each user of a system is associated with a set
of roles. On the other side, each role is associated with a set of permissions
(access privileges to existing resources). Some roles may be mutually exclusive,
and others may be deactivated leaving the user with only a subset of the full
set of roles with which she is associated. Therefore, in simple RBAC, a user is
granted an access privilege to a resource if one of her activated roles has that
privilege. This factorization of access control simplifies the administration of the
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security policy by allowing the systems administrator to separately decide which
resources a given role needs in order to successfully operate, and what roles to
assign to each user. It also allows for the choice of authentication method to be
handled separately. How to enrich RBAC by adding orderings and other forms
of structure on the roles, and the privileges is an active area of research. They all
share in common the separation of concerns given by the introduction of roles.

Role-based access control is currently a popular mechanism for governing
the access to databases, files, executable programs and other computational re-
sources. In networking there is another kind of access control that is done by
packet filtering. A given router may be configured to drop all SMTP or HTTP
packets denying access to certain services of a domain from outside that domain.
Here, there is no notion of user and role, but only IP domain and packet type.
However, it can be beneficial to have a finer-grain access control that is aware
of roles and network domains. Consider the following example.

The University of Wizbrau is equipped with intelligent buildings, and
students carry their laptops with them to class. While in the classroom,
students have only limited Internet access and they are not allowed to
use e-mail, instant messenger, or visit general websites. However, these
activities are allowed when done from the student lounge instead. Since
the instructor of the course needs a greater access to resources than
the students, those activities temporarily disabled to the students are
available to the instructor. For example, during a lecture, the instructor
may consult her e-mail to address a question raised by a student in an
e-mail message.

The restrictions placed on users in this environment need to be sensitive to both
the location of the user (classroom versus lounge) as well as the role (student
versus instructor). Such fine-grained control is not readily handled by either
packet filtering or RBAC.

In this paper we design a formal language featuring formal notions for re-
source, access, computation, communication, location and mobility. The starting
point of our design is a mobile ambient calculus in the style of [14], where prin-
cipals and locations are modeled by ambients.

1.1 Background on Ambient Calculi

In Cardelli and Gordon’s Mobile Ambients (MA)[15], ambients represent nested
computational environments containing data and live computation. In a nut-
shell, ambients are administrative units forming a dynamic hierarchy, where an
ambient can move up and down the hierarchy by moving into a child or a parent
ambient. Furthermore, a mobile ambient is a communicating entity that can ex-
change information with parents and children. Ambients are capable of moving
under the influence of the process they enclose and can dissolve their perimeter
with an open operation. Mobile Ambients provide a direct characterization of
computational processes as well as computational devices.
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Boxed Ambients (BA) [10] evolved from MA, by removing the ability of an
ambient to dissolve its boundary. In BA, an ambient is a “box” that cannot be
opened. This notion of closed ambient provides a complete encapsulation of the
agents they contain. To enable the communication lost by disabling the open
operation, ambients are equipped with communication channels to exchange
information with adjacent ambients (parent and children ambients).

Both in MA and BA, ambient mobility is commanded by processes inside
the ambient. The commands for mobility are called capabilities. The capabilities
tell an ambient to open or move inside or outside another ambient. Unrestricted
mobility, however, can lead to undesired interferences between two concurrent
processes. Addressing this concern, control over capabilities was first introduced
in Safe Ambients [25] and later used in New Boxed Ambients (NBA) [11] in
the form of co-capabilities. A capability can be exercised only in the presence
of a matching co-capability. Hence, in order to enter an ambient using the in
capability, that ambient must contain a matching in co-capability authorizing
that access; similarly for exiting using the out capability.

BACI, a Boxed Ambients with Communication Interfaces [7], introduced
the notion of local views. In this calculus, each ambient has an associated com-
munication port and a local view. The communication port is used for sending
and receiving messages to and from other ambients, and the local view repre-
sents the communication types that are used by the processes enclosed inside
the ambient. BACI is flexible enough to allow an ambient to communicate with
different parents using different types. However, this flexibility came with the
price of a rather complex syntax and some run-time type checking required to
guarantee type safety. BACIv2 [20] further enhanced communication mecha-
nisms and mobility control by introducing multiple communication ports, access
control lists, and port hiding.

Motivated by our earlier work on BACI [7], we define a typed boxed ambient
calculus called BACIR extended with a Distributed Role-Based Access Control
mechanism where each ambient controls its own access policy. Following the
style of BACI, our new calculus distinguishes between names of ambients and
names of communication ports. Ambients are used for mobility and ports are
used for communication, either locally within a channel or between a parent and
a child. This distinction is instrumental in defining our RBAC mechanism, since
it provides for a finer grain in the security policy. Each ambient controls its own
access policy by specifying which roles (or which porcesses with at least one of
those roles activated) are allowed to enter it. Similarly, a port specifies its own
access policy by specifying which roles can read from it and which roles can write
to it.

A process in BACIR is associated with an owner and a set of activated roles
that grant permissions for mobility and communication. The calculus includes
primitives to activate and deactivate roles. The behavior of these primitives is
determined by the owner of the process and its current location and its currently
activated roles. In order for a process to activate a role, the security policy has
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to allow the owner of the process to do so. Moreover, deactivating roles should
should not remove the roles authorizing the process to be in its current location.

We consider two forms of security violations that our type system prevents:
1) attempting to move into an ambient without having the authorizing roles
granting entry activated and 2) trying to use a communication port without
having the roles required for access activated. We accomplish 1) and 2) by giving
a static type system in Section 3, an untyped transition semantics, and a typed
transition semantics in Section 4. We then show that a well-typed program never
violates the dynamic security checks in Theorem 4.

2 Syntax of BACIR

Based on our earlier work on BACI [7], we define BACIR, a boxed ambient
calculus with a Distributed Role-Based Access Control mechanism, where the
location of an ambient conditions its privileges. The intuitive idea is that to
accommodate security checking an ambient is associated with its owner and
with a set of roles that are currently activated. This set of roles can be changed
by activation and deactivation primitives. Whether a role can be activated or
deactivated depends on the location of the ambient and its owner. This control is
made explicit in the type system where the type of an ambient has a set of roles
authorizing the entrance of ambients. Going back to the example, the professor
can send mail because she can activate the faculty mail, while the students
can only activate the student mail role, which is not enough to qualify to send
mail in the classroom.

In order to define the syntax of BACIR we use the following disjoint cate-
gories of identifiers:

User Names: u, v ∈ Users
Roles: r ∈ Roles
Port Names: c, c′ ∈ C
Ambient Names: n,m ∈ Amb
Capability Variables: i ∈ CapVar
Message Identifiers: x ∈ Amb ∪ CapVar

We assume a fixed set Users of users, a fixed set Roles of roles, and a fixed
function UserPolicy associating each user and set of currently activated roles with
a set of roles that may become activated. The syntax of BACIR is presented in
Table 1. Processes and Messages are the two main syntactic categories.

Messages, ranged over by M and N , include message identifiers and capabil-
ities. Capabilities, ranged over by C, can be either the capabilities for entering
and exiting an ambient, variables or a “path”, which is a sequence of capabilities
describing a mobility path. A special sort of capability is that of quiet capability,
ranged over by Q, used for entry with no accompanying possibility of commu-
nication. These are used for mobility alone, and are the primary component of
paths.

Processes, ranged over by P and R, are built from the constructors of in-
activity, showing the end of a process; parallel composition of two processes;
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Table 1. Syntax of BACIR

Quiet Capabilities:
Q::=inQ m quiet enter

| outQ m quiet exit

Capabilities:
C::=Q quiet capability

| in m enter
| out m exit
| Q.C path
| i capability variable

Locations:
η::=↑ c parent port γ

| ↓ c child port γ
| � local

Actions:
π::=C(c) capability

| S quiet co-capability
| K(c) co-capability
| activate〈r〉 activate a role
| deactivate〈r〉 deactivate a role
| (x1, . . . , xk)η input
| 〈M1, . . . , Mk〉η output

Quiet Co-Capabilities:
S | inQ allow quiet enter

| outQ allow quiet exit

Co-Capabilities:
K | in (c) allow enter

| out (c) allow exit

Messages:
M, N ::=x message identifier

| C capability

Basic types
τ ::=amb(ρin, σ) ambient type

| cap(ρin, σ) capability

Communication types
σ::=shh no exchange

| (ρr, ρw, τ ) exchange tuple

Processes:
P ::=0 nil process

| P1 | P2 composition
| ννν(n :τ)P restriction
| !P replication
| π.P prefixing
| mu[[[P ]]]@ρ ambient

replication, used for recursion; ambient name restriction; prefixing, where π is
an operation that is followed by a continuation process P ; and finally, a named
ambient encapsulating a process, indexed by a user name u and a set of activated
roles ρ.

An action or prefix π can be a capability ranged over by C(c); a co-capability,
ranged over by K(c); and quiet co-capability ranged over by S, for granting
permission to the matching capabilities; and input and output communication,
indexed by a location η indicating whether the communication is local within
the same ambient, with the parent ambient, or with a child ambient. Communi-
cation ports are established by one ambient entering or exiting another ambient.
To request movement, we have the actions in m (c), out m (c), inQ m (c) and
outQm (c). The actions inm (c) and outm (c) request to enter to or exit to ambi-
ent m, establishing communication port c in the process. The actions inQm (c)
and outQ m(c) are similar but establish no actual communications port, and
the typing rules enforce that the port c cannot subsequently be used for com-
munication. The syntax inQ m and outQ m is allowed, but is an abbreviation
for inQm (c) and outQm(c) respectively. It should be noted that we change the
intention of out m from the usual of meaning a request to go out from m to a
request to go out to m. For each action requesting the movement of an ambient
to within another, there is a co-action enabling the ambient to enter: inm(c),
outm(c), inQm and outQm.

In addition to moving and communicating, there are two actions related to
security: activate〈r〉 for activating a user role r, and deactivate〈r〉 for deactivating
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it. These control what privileges are available to the ambient at any given point
during execution by modifying the set of activated roles ρ.

Table 2. Structural Congruence

!P ≡ P | !P (Struct RepPar)

ννν(n :τ)ννν(m :τ ′)P ≡ ννν(m :τ ′)ννν(n :τ)P (Struct Res Res)
ννν(n :τ)(P | P2) ≡ P | ννν(n :τ)P2, if n /∈ fn(P ) (Struct Res Par)
ννν(n :τ)mu[[[P ]]]@ρ ≡ mu[[[ννν(n :τ)P ]]]@ρ, if n �= m (Struct Res Amb)

inQ n .P ≡ inQ n (c).P ≡ in n (c).P, if c /∈ fv(P ) (Struct InQ)
outQ n .P ≡ outQ n (c).P ≡ out n (c).P, if c /∈ fv(P ) (Struct OutQ)

in (c).P ≡ inQ (c).P, if c /∈ fv(P ) (Struct Co-InQ)

out (c).P ≡ outQ (c).P, if c /∈ fv(P ) (Struct Co-OutQ)

(Q.C).P ≡ Q(c).(C.P ), where c �∈ fv(P ) (Struct Prefix)

We introduce the usual notion of process equivalence through the structural
congruence generated by alpha conversion, associativity and commutativity of
parallel composition with 0 for identity, and the rules given in Table 2. The
rules for replication and restriction are fairly standard. We add a rule for al-
lowing restriction to pass through an ambient, provided that ambient is the one
whose name is being restricted. The third set of rules state that capabilities
and co-capabilities that make no use of their associated communication port are
equivalent to the corresponding quiet capabilities or co-capabilities. That is, a
quiet capability is just a capability that doesn’t communicate. The last rule tells
us that to follow a path is the same as to follow it in pieces. This makes sense
because ambients can only enter one other ambient at a time. In Section 4 we
will see that the operational semantics respects process equivalence.

3 Types for Security

Attempting to enter an ambient without an authorizing role activated is a secu-
rity violation. Trying to use a communication port without having activated at
least one of the required roles to access the port is also a security violation. In
this section we define a type system such that well-typed processes can compute
without committing a security violation. The type of a process is a set of roles
sufficient for it to compute without security violations. In particular, the type of
an ambient name is the set of roles needed for mobility and communication.

The syntax of types can be found in Table 1. Basic types describe the kind
of data to be communicated over a port. The communication type further in-
cludes the sets of roles ρr and ρw granting read and write access to a port. In
Tables 3 to 8, let Γ be a mapping from message identifiers to basic types and
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from port names to communication types. The typing judgment for a process
is of the form Γ, ρhere, ρdeac m, u � P : ρact, where Γ is a typing environment
for free message identifiers and port names, ρhere is the set of roles sufficient for
authorizing the process to be in its current location (the entrance policy for am-
bient containing m), ρdeact are the set of roles that the process may at any time
in its computation safely deactivate, m is the assumed surrounding ambient, u
is the current user, and ρact is the set of “currently active” roles. The judgments
for the other syntactic categories are similar.

Table 3. Well-typed Quiet Capabilities

Quiet Enter:

Γ (m) = amb(ρin, σ)

Γ 
 inQ m : ρin

Quiet Exit To:

Γ (m) = amb(ρin, σ)

Γ 
 outQ m : ρin

Table 4. Well-typed Capabilities

Quiet Capability:

Γ 
 Q : ρin

Γ 
 Q : (ρin, shh)

Enter:

Γ (m) = amb(ρin, σ)

Γ 
 in m : (ρin, σ)

Exit To:

Γ (m) = amb(ρin, σ)

Γ 
 out m : (ρin, σ)

Path:

Γ 
 Q : ρin Γ, m 
 C : (ρin, σ)

Γ 
 Q.C : (ρin, σ)

Variable:

Γ (i) = cap(ρin, σ)

Γ 
 i : (ρin, σ)

An ambient name type amb(ρin, σ) has two arguments: a set of roles ρin in-
dicating which roles are allowed to enter it, and the type σ of its communication
port. The typing rules for quiet capabilities in Table 3 together with rule Quiet
Capability in Table 4 reflect the fact that these capabilities allow mobility,
while disabling communication. Therefore, the type of the communication port
of the communication policy is shh. The only part we need to collect from the
ambient type is the entrance policy ρin. However, in the general case for capabil-
ities (Table 4), we need to learn the full security policy from the ambient type,
i.e., the entrance policy ρin and the communication policy σ. It is worth noting
that for a capability that is a path, i.e., a sequence of capabilities, the entrance
security policy is required to be the same for all members in the path. See rule
Path.

The type of a location (Table 5) is the read-write security policies for access-
ing the associated communication port, together with the security policy for the
messages communicated through the port. For local communication, we use the
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Table 5. Typing of Locations

Parent Port:

Γ (c) = σ

Γ, m 
 ↑ c : σ

Child port:

Γ (c) = σ

Γ, m 
 ↓ c : σ

Local:

Γ (m) = amb(ρin, (ρr, ρw, τ ))

Γ, m 
 � : (Roles, Roles, τ )

Table 6. Well-typed Messages

Message Identifier:

Γ (x) = τ

Γ, m 
 x : τ

Capability:

Γ 
 C : (ρin, σ)

Γ 
 C : cap(ρin, σ)

A message is either an ambient name or a capability, and thus its type is the
security policy of the ambient or capability, appropriately labeled. See Table 6.

The rules for typing actions appear in Table 8. Actions are the basic unit of
work in processes. They have the potential for changing the set of variables in
scope, the current position and hence the current authorizing policy, and the set
of activated roles. Thus the type of an action is a tuple of the revised typing en-
vironment, the revised authorizing policy, and the revised set of activated roles.
Capabilities change the current position and hence the current authorizing pol-
icy, but co-capabilities do not. Capabilities and co-capabilities add a new port
name and type to the typing environment. Unlike capabilities, co-capabilities do
not incur any security checks. Inputting a message introduces a tuple of new
message variables. Outputting a message does not change the typing environ-
ment.

The particular approach we have taken to handling local communications
leads to allowing local communication only when at least one role has been
activated for the process. See rules Input and Output. We can eliminate this
requirement by removing the explicit rules for typing locations in Table 5, and
replacing them by three rules for typing input actions and three rules for output
actions. In this setting, we can then simply fail to check whether there is an
active role among the roles for reading from or writing to a local port.

Activating a role adds the role to the set of currently active roles, provided
the user of the process is allowed to activate that role, and deactivating a role
removes it, provided the role is allowed to be deactivated and that removing

ambient assumed as the surrounding ambient, and we want no restrictions on
reading or writing. However, it is important that we maintain the restrictions on
the types of data transmitted. We could violate the security policy if we omitted
the type checks on messages locally communicated, because we potentially could
send a capability with one security policy but receive it with a different one.
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Table 7. Well-typed Actions

Capabilities:

Γ 
 C : (ρin, σ)
(ρact − ρdeact) ∩ ρin �= ∅

Γ, ρhere, ρdeact, ρact, m, u 
 C(c) : (Γ + {c :σ}, ρin, ρact)

Co-Capabilities:

Γ (m) = amb(ρin, σ)

Γ, ρhere, ρdeact, ρact, m, u 
 K(c) : (Γ + {c :σ}, ρhere, ρact)

Quiet Co-Capabilities:

Γ, ρhere, ρdeact, ρact, m, u 
 S : (Γ, ρhere, ρact)

Activation:

r ∈ UserPolicy(u, ρact)

Γ, ρhere, ρdeact, ρact, m, u 
 activate〈r〉 : (Γ, ρhere, ρact ∪ {r})

Deactivation:

r �∈ ρdeact (ρ − {r} − ρdeact) ∩ ρhere �= ∅

Γ, ρhere, ρdeact, ρact, m, u 
 deactivate〈r〉 : (Γ, ρhere, ρact − {r})

Input:

Γ, m 
 η : (ρr, ρw, τ )
(ρact − ρdeact) ∩ ρr �= ∅

Γ, ρhere, ρdeact, ρact, m, u 
 (x1, . . . , xk)η : (Γ + Σk
i=1{xi :τ}, ρhere, ρact)

Output:

Γ, m 
 η : (ρr, ρw, τ )
Γ 
 Mi : τ i = 1, . . . , k
(ρact − ρdeact) ∩ ρw �= ∅

Γ, ρhere, ρdeact, ρact, m, u 
 〈M1, . . . , Mk〉η : (Γ, ρhere, ρact)

it doesn’t leave us without a way of satisfying the authorizing policy of our
current position. With this last check and others of its kind, we always assume
the roles that can be deactivated are. The reason for this is that with parallel
composition, one process may type check based on needing certain roles, while
a parallel process may have the ability to deactivate those roles.

The rules for typing processes appear in Table 8. Processes are the outer-
most level of syntax. The type for a process is a (any) set of roles, which if
active at the start of the process, are sufficient to assure that the process will
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Table 8. Well-typed Processes

Nil:

Γ, ρhere, ρdeact, m, u 
 0 : ρact

Composition:

Γ, ρhere, ρdeact, m, u 
 P1 : ρact Γ, ρhere, ρdeact, m, u 
 P2 : ρact

Γ, ρhere, ρdeact, m, u 
 P1 | P2 : ρact

Restriction:

Γ + {m′ : τ}, ρhere, ρdeact, m, u 
 P : ρact

Γ, ρhere, ρdeact, m, u 
 ννν(m′ :τ )P : ρact

Replication:

Γ, ρhere, ρdeact, m, u 
 P : ρact

Γ, ρhere, ρdeact, m, u 
!P : ρact

Prefixing:

Γ, ρhere, ρdeact, ρact, m, u 
 π : (Γ ′, ρ′
here, ρ′

act) Γ ′, ρ′
here, ρdeact, m, u 
 P : ρ′

act

Γ, ρhere, ρdeact, m, u 
 π.P : ρact

Ambient:

Γ (m′) = amb(ρin, σ)

Γ, ρin, ρ′
deact, m, v 
 P : ρm

Γ, ρhere, ρdeact, m′, u 
 mv[[[P ]]]@ρm : ρact

never attempt a security breach (i.e. an unauthorized entry, read, or write).
The nil process (0) types with any set of roles. The parallel composition of two
processes types with a set of roles if both processes individually do. A process
beginning with a restricted ambient name types with a given set of processes if
the underlying process types with the same set of roles but using an extended
environment with a binding for the restricted ambient name. The replication of
a process types with a set of roles if the process to be replicated does. The most
interesting cases are those of prefixes and ambients. For prefixes (Prefixing in
Table 8), we must type the action at the head to derive a new typing environ-
ment, new authorizing policy, and a new set of active roles, and then use the
new environment, authorizing policy, and active role set to check the remaining
process. This is because actions have the ability to expand the needed typing
environment or alter the authorizing policy or the set of activated roles. If r is
in ρ and the process begins by deactivating it, then the remainder of the process
must be able to typecheck with a reduced set of activated roles. The typing for
an ambient (Ambient in Table 8) throws away the surrounding ambient infor-
mation and checks the ambient in isolation. Since an ambient may travel into
other ambients with unknown active roles, an ambient must be secure relative
to the context it carries with itself.
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4 Operational Semantics

Our goal in defining the static type system given in Section 3 is to enable us
to prove that if a process type checks with a given set of roles, then it will
never attempt an action that it is not authorized to perform when executed in a
state where all the roles in the set have previously been activated. To this end,
we define two transition semantics for our language, one with dynamic security
checks and one without. For the untyped semantics, we have a form of subject
reduction. We also have that, if a process type checks, then it reduces to another
process in the untyped transition system if and only if it reduces to that process
in the typed transition system.

4.1 Untyped Transition Semantics

The untyped transition semantics is given in Tables 9 and 10. It is worth noting
that almost all the reduction rules explicitly mention a context containing an
ambient, except for the rule for Local communication.

The rules for ambient movement are the most complicated. For an ambient
to move inside another, the first ambient must contain a process requesting
entrance to the second, and the second ambient must have a process allowing
the entrance. If these two conditions are met, then the request and permission are
consumed and the resulting first ambient enters that resulting second ambient.
All the rules for entrance are the same, except for the way the communication
ports are handled. In general (enter, Table 9), when one ambient enters another
a fresh port is created for the two ambients to share for communication. In the
case (enter’, Table 9) that a regular entrance request is permitted by only a
quiet permission (inQ ), the entrance still takes place, but the host ambient does
not offer a port to be shared. The standard case on a quiet entrance request
being granted by a quiet entrance permission (quiet enter, Table 9) is similar
to the previous case. We need to create a dummy port for the ambient requesting
entrance, but there is no match with the other ambient, so no communication is
possible. If an ambient requests a quiet entrance and it is granted by an ordinary
entrance permission (in ) (quiet enter’, Table 9), then strictly speaking they
both create half of a port, but we prevent any communication by giving them
two different fresh ports, neither of which will ever be usable.

An exit action is more complicated than an enter. We have three ambients
nested in each other, m in n in p. The ambient m request to exit to p. The
ambient p grants the request. The exit takes place so that now m and n are
in parallel inside p. As m exits n, effectively entering p, there is the potential
for establishing a communication port between m and p. In order to determine
whether such a communication port really should be established, we consider
the same cases as those for entrance and we handle them identically.

The rules for activation and deactivation cause the addition or deletion of
the given role from the role set of the surrounding ambient. A message can be
sent in one of three ways: locally, to a child, or to a parent. Communication is
implemented by substitution of the values sent by one process for the variables
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Table 9. Simple Transition System – Mobility

enter: mv[[[in n (c).P1 | P2 ]]]@ρm | nu[[[in (c′).P3 | P4 ]]]@ρn ⇒
nu[[[mv[[[P1{{c := c′′}} | P2 ]]]@ρm | P3{{c′ := c′′}} | P4 ]]]@ρn

for fresh variable c′′

enter’: mv[[[in n (c).P1 | P2 ]]]@ρm | nu[[[inQ .P3 | P4 ]]]@ρn ⇒
nu[[[mv[[[P1{{c := c′}} | P2 ]]]@ρm | P3 | P4 ]]]@ρn

for fresh variable c′

quiet enter: mv[[[inQ n (c).P1 | P2 ]]]@ρm | nu[[[inQ .P3 | P4 ]]]@ρn ⇒
nu[[[mv[[[P1{{c := c′}} | P2 ]]]@ρm | P3 | P4 ]]]@ρn

for fresh variable c′

quiet enter’: mv[[[inQ n (c).P1 | P2 ]]]@ρm | nu[[[in (c′)P3 | .P4 ]]]@ρn ⇒
nu[[[mv[[[P1{{c :=c′′}} | P2 ]]]@ρm | P3{{c′ :=c′′′}} | P4 ]]]@ρn

for fresh distinct variables c′′ and c′′′

exit: pw[[[nv[[[mu[[[out p (c).P1 | P2 ]]]@ρm | P3 ]]]@ρn | out (c′).P4 | P5 ]]]@ρp ⇒
pw[[[nv[[[P3 ]]]@ρn | mu[[[P1{{c :=c′′}} ]]]@ρm | P4{{c′ :=c′′}} | P5 ]]]@ρp

for fresh variable c′′

exit’: pw[[[nv[[[mu[[[out p (c).P1 | P2 ]]]@ρm | P3 ]]]@ρn | outQ .P4 | P5 ]]]@ρp ⇒
pw[[[nv[[[P3 ]]]@ρn | mu[[[P1{{c :=c′}} ]]]@ρm | P4 | P5 ]]]@ρp

for fresh variable c′

quiet exit: pw[[[nv[[[mu[[[outQ p (c).P1 | P2 ]]]@ρm | P3 ]]]@ρn | outQ .P4 | P5 ]]]@ρp ⇒
pw[[[nv[[[P3 ]]]@ρn | mu[[[P1{{c :=c′}} ]]]@ρm | P4 | P5 ]]]@ρp

for fresh variable c′

quiet exit’: pw[[[nv[[[mu[[[outQ p (c).P1 | P2 ]]]@ρm | P3 ]]]@ρn | out .(c′)P4 | P5 ]]]@ρp ⇒
pw[[[nv[[[P3 ]]]@ρn | mu[[[P1{{c :=c′′}} ]]]@ρm | P4{{c′ :=c′′′}} | P5 ]]]@ρp

for fresh distinct variables c′′ and c′′′

used to receive the values in another. It is worth noting that local communication
is expressly not between ambients, but between ordinary processes. Recursion
causes a copy of the body of the recursive process to be created and composed
with the recursive process. In addition to the above rules for top-level reduction,
there is a rule allowing us to descend through compositions, restrictions, and
ambients to find a process capable of reducing. In particular, it is worth noting
that an ambient within another ambient may keep computing, even while the
outer ambient is blocked.

The untyped transition semantics respects process equivalence:
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Table 10. Simple Transition System – Remaining Rules

activate: mu[[[(activate〈r〉P ) | R ]]]@ρ ⇒ mu[[[P | R ]]]@(ρ ∪ {r})
deactivate: mu[[[(deactivate〈r〉P ) | R ]]]@ρ ⇒ mu[[[P | R ]]]@(ρ − {r})
local: 〈M1, . . . , Mk〉�. P | (x1, . . . , xk)�. R ⇒ P | R{xi := Mi |i = 1 . . . k}
to child (↓): mu[[[〈M1, . . . , Mk〉↓c. P1 | nv[[[(x1, . . . , xk)↑c.P2 | R1 ]]]@ρn | R2 ]]]@ρm ⇒

mu[[[P1 | nv[[[P2{xi := Mi|i = 1 . . . k} | R1 ]]]@ρn | R2 ]]]@ρm

to parent (↑): nv[[[mu[[[〈M1, . . . , Mk〉↓c.P1 | R1 ]]]@ρm | (x1, . . . , xk)↓c. P2 | R1 ]]]@ρn⇒
nv[[[mu[[[P1 | R1 ]]]@ρm | P2{xi := Mi|i = 1 . . . k} | R2 ]]]@ρn

recursion: !P ⇒ P | !P

context:
P ⇒ R

E{P} ⇒ E{R}
Evaluation Contexts:E ::= {·} | E|P | P |E | ννν(n :τ)E | mu[[[E ]]]@ρ

Theorem 1. Let P1, P2, and P3 be processes such that P1 ≡ P2 and P1 ⇒ P3.
Then, there exists a process P4 such that P2 ⇒ P4 and P3 ≡ P4.

Theorem 2. (Subject Reduction) Let P1, P2, and P3 be processes, m and n be
ambient names, u and v be users, ρhere, ρdeact, ρact and ρ′act, be sets of roles,
and let Γ be a mapping from message identifiers to basic types and port names
to communication types. If Γ, ρhere, ρdeact, m, u � P1 : ρact and P1 ⇒ P2, then
Γ, ρhere, ρdeact, m, u � P2 : ρact. Moreover, if mu[[[P1 ]]]@ρact ⇒ nv[[[P3 ]]]@ρ′act,
then Γ, ρhere, ρdeact, n, v � P3 : ρ′act, and m = n and u = v.

4.2 Typed Transition Semantics

In this subsection we introduce a transition semantics with runtime type checks
(e.g. security checks). The rules of the semantics are found in Tables 11 – 15. In
those tables,Γ is a mapping from message identifiers to basic types and port names
to communication types (i.e, a typing environment), ρhere is a set of roles, and τ
is a basic type. As usual, the typing environment supplies us with the types for
free ambient names and ports occurring in our process. The set of roles tells which
roles are sufficient to authorize the process’s current location. The basic type is the
type of a message that can be locally communicated at top level. We do not need
read and write policies, because there are no security checks on local communica-
tion. The typed reduction relation transforms a typing environment, a set of roles,
a basic type and a process into a new typing environment, role set, basic type and
process. If we ignore the typing environment, role set and basic type, including the
premises concerning them, then we get the untyped system in the previous section.
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Table 11. Roles

activate:

r ∈ UserPolicy(u, ρ)

(Γ, ρhere, τ ) � mu[[[(activate〈r〉P ) | R ]]]@ρ −→ (Γ, ρhere, τ ) � mu[[[P | R ]]]@(ρ ∪ {r})
deactivate:

(ρ − {r}) ∩ ρhere �= ∅

(Γ, ρhere, τ ) � mu[[[(deactivate〈r〉P ) | R ]]]@ρ −→ (Γ, ρhere, τ ) � mu[[[P | R ]]]@(ρ − {r})

The typing environment, role set and basic type are the extra information we need
to carry around with us to do dynamic security checks.

Since the reductions on the processes are the same as in the untyped transi-
tion semantics, we will focus on the security checks and the transformations to
the typing environment and basic type. Activation and deactivation are relative
to an enclosing ambient and serve to change that ambient’s set of active roles.
For activation, we must check that the user of the ambient together with the
currently active roles are allowed to activate the role. For deactivation, we need
to check that deactivating the role will still leave some other role that is sufficient
to authorize the ambient’s current location.

When one ambient enters another, we need to know that the entering ambient
has an appropriate role activated authorizing it to enter, and we need to establish
a shared communication port sending and receiving messages of a type specified
by the host ambient. The new communication port needs to be added to the
typing environment. (See enter in Table 12.) When either the capability or
co-capability involved in the move is quiet, then instead of the new port(s)
receiving the basic type assigned by the host ambient, it is assigned the type
shh. The location of the whole process hasn’t changed, so ρhere remains the
same. The use of two distinct new ports in rules quiet enter’ (Table 12) and
quiet exit’ (Table 13) is redundant. The assignment of shh to the type of
the port is sufficient to assure that no communication takes place. We left the
creation of distinct ports as a part of these rules to keep the connection with the
untyped rules transparent. In general, the side conditions for the rules for exit
are dual to those for enter.

There are three kinds of communication: local communication between top-
level subprocesses, sending a message from a parent to a child and sending a
message from a child to a parent. For local communication, we only need check
that the type of the messages being sent are of the type specified for local
communication (by τ), and that the number of messages sent is the same as
those received. For trans-generational communication, in addition to checking
the number of messages as before, we need to check that the writing ambient
has write access to the port and the reading ambient has read access, and that
the type of all messages sent is the type specified in the type of the port as given
by the typing environment.
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Table 12. Mobility – Enter

enter:

Γ (n) = amb(ρin, τ ) ρm ∩ ρin �= ∅ c′′ �∈ dom(Γ ).

(Γ, ρhere, τ ) � mv[[[in n (c).P1 | P2 ]]]@ρm | nu[[[in (c′).P3 | P4 ]]]@ρn−→
(Γ + (c′′ :τ ), ρhere, τ ) � nu[[[mv[[[P1{{c := c′′}} | P2 ]]]@ρm | P3{{c′ := c′′}} | P4 ]]]@ρn

enter’:

Γ (n) = amb(ρin, τ ) ρm ∩ ρin �= ∅ c′ �∈ dom(Γ ).

(Γ, ρhere, τ ) � mv[[[in n (c).P1 | P2 ]]]@ρm | nu[[[inQ .P3 | P4 ]]]@ρn−→
(Γ + (c′ :shh), ρhere, τ ) � nu[[[mv[[[P1{{c := c′}} | P2 ]]]@ρm | P3 | P4 ]]]@ρn

quiet enter:

Γ (n) = amb(ρin, τ ) ρm ∩ ρin �= ∅ c′ �∈ dom(Γ )

(Γ, ρhere, τ ) � mv[[[inQ n (c).P1 | P2 ]]]@ρm | nu[[[inQ .P3 | P4 ]]]@ρn−→
(Γ + (c′ :shh), ρhere, τ ) � nu[[[mv[[[P1{{c := c′}} | P2 ]]]@ρm | P3 | P4 ]]]@ρn

quiet enter’:

Γ (n) = amb(ρin, τ ) ρm ∩ ρin �= ∅ c′′, c′′′ �∈ dom(Γ )

(Γ, ρhere, τ ) � mv[[[inQ n (c).P1 | P2 ]]]@ρm | nu[[[in (c′).P3 | P4 ]]]@ρn−→
(Γ + (c′′ :shh) + (c′′′ :shh), ρhere, τ ) �

nu[[[mv[[[P1{{c := c′′}} | P2 ]]]@ρm | P3{{c′ := c′′′}} | P4 ]]]@ρn

The structural rules for our transition semantics tell us how and when we
can descend through structures. None of the structural rules impose any security
checks in and of themselves. The rules for recursion and composition use the
same environment to security check the premises as they use in their conclusions.
Restriction uses a type environment augmented by the type assignment for the
restricted ambient name for reducing the body of the restriction. For descending
through ambients, the typing environment is the same in the premise as in the
conclusion, but here we need to change the type for the local communication to
that of the basic type in the communication policy of the ambient, and we need
to change the authorizing roles to the entrance policy of the outer ambient.

The next theorem gives us that the typed transition semantics is a refinement
of the untyped transition semantics.

Theorem 3. Let P and R be processes, Γ and Γ ′ be typing environments, ρhere

and ρ′here be sets of roles, and τ and τ ′ be basic types. If (Γ, ρhere, τ) � P −→
(Γ ′, ρ′here, τ

′) �R, then ρhere = ρ′here, τ = τ ′, Γ ⊆ Γ ′, and P ⇒ R.

Theorem 4 is the main result of the paper. It says that if a process type
checks, then to evaluate it you can omit all runtime checks. A side-effect of this
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Table 13. Mobility – Exit

exit:

Γ (p) = amb(ρin, τ ) ρm ∩ ρin �= ∅ c′′ �∈ dom(Γ )

(Γ, ρhere, τ ) � pw[[[nv[[[mu[[[out p (c).P1 | P2 ]]]@ρm | P3 ]]]@ρn | out .(c′)P4 | P5 ]]]@ρp−→
(Γ + (c′′ :τ ), ρhere, τ ) � pw[[[nv[[[P3 ]]]@ρn | mu[[[P1{{c :=c′′}} ]]]@ρm | P4{{c′ :=c′′}} | P5 ]]]@ρp

exit’:

Γ (p) = amb(ρin, τ ) ρm ∩ ρin �= ∅ c′ �∈ dom(Γ )

(Γ, ρhere, τ ) � pw[[[nv[[[mu[[[out p (c).P1 | P2 ]]]@ρm | P3 ]]]@ρn | outQ .P4 | P5 ]]]@ρp−→
(Γ + (c′ :shh), ρhere, τ ) � pw[[[nv[[[P3 ]]]@ρn | mu[[[P1{{c :=c′}} ]]]@ρm | P4 | P5 ]]]@ρp

quiet exit:

Γ (p) = amb(ρin, τ ) ρm ∩ ρin �= ∅ c′ �∈ dom(Γ )

(Γ, ρhere, τ ) � pw[[[nv[[[mu[[[outQ p (c).P1 | P2 ]]]@ρm | P3 ]]]@ρn | outQ .P4 | P5 ]]]@ρp−→
(Γ + (c′ :shh), ρhere, τ ) � pw[[[nv[[[P3 ]]]@ρn | mu[[[P1{{c :=c′}} ]]]@ρm | P4 | P5 ]]]@ρp

quiet exit’:

Γ (p) = amb(ρin, τ ) ρm ∩ ρin �= ∅ c′′, c′′′ �∈ dom(Γ )

(Γ, ρhere, τ ) � pw[[[nv[[[mu[[[outQ p (c).P1 | P2 ]]]@ρm | P3 ]]]@ρn | out (gv′).P4 | P5 ]]]@ρp−→
(Γ + (c′′ :shh) + (c′′′ :shh), ρhere, τ ) �

pw[[[nv[[[P3 ]]]@ρn | mu[[[P1{{c :=c′′}} ]]]@ρm | P4{{c′ :=c′′′}} | P5 ]]]@ρp

is that if a process type checks, there is no runtime significance to activation and
deactivation, and they could be removed after type-checking as an optimization.

Theorem 4. Let P be a process that type checks with role set ρ using typ-
ing environment Γ , authorizing role set ρhere, ambient m, and user u (e.g.
Γ, ρhere, ρdeact, m, u � P : ρact). If P ⇒ R for some process R, then (Γ, ρin, τ)�
P −→ (Γ ′, ρin, τ) �R where Γ (m) = amb(ρin, (ρr, ρw, τ)) for some Γ ′ ⊇ Γ .

Using Theorem 3 we can strengthen the conclusion of Theorem 4 to say that
P ⇒ R for some process R if and only if (Γ, ρin, τ) � P −→ (Γ ′, ρin, τ) �R.

The typed transitional semantics developed in this section was primarily
introduced as a vehicle to formalize the benefit of static type checking. It is
worth noting that this semantics is of value in its own right. The static rules are
predicated on static access to the information as to which roles are granted access
to which resources. With the typed transition semantics, we can still perform
security checks even in a situation where the control policy is only known at
runtime.
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Table 14. Communication

local:

Γ 
 Mi : τ i = 1, . . . , k

(Γ, ρhere, τ ) � 〈M1, . . . , Mk〉�. P | (x1, . . . , xk)�. Q−→
(Γ, ρhere, τ ) � P | Q{xi := Mi |i = 1 . . . k}

to child (↓):
Γ (c) = (ρr, ρw, τ ′) ρm ∩ ρw �= ∅ ρn ∩ ρr �= ∅ Γ 
 Mi : τ ′ i = 1, . . . , k

(Γ, ρhere, τ ) � mu[[[〈M1, . . . , Mk〉↓c. P1 | nv[[[(x1, . . . , xk)↑c.P2 | R1 ]]]@ρn | R2 ]]]@ρm−→
(Γ, ρhere, τ ) � mu[[[P1 | nv[[[P2{xi := Mi|i = 1 . . . k} | R1 ]]]@ρn | R2 ]]]@ρm

to parent (↑):
Γ (c) = (ρr, ρw, τ ′) ρm ∩ ρw �= ∅ ρn ∩ ρr �= ∅ Γ 
 Mi : τ ′ i = 1, . . . , k

(Γ, ρhere, τ ) � nv[[[mu[[[〈M1, . . . , Mk〉↓c.P1 | R1 ]]]@ρm | (x1, . . . , xk)↓c. P2 | R1 ]]]@ρn−→
(Γ, ρhere, τ ) � nv[[[mu[[[P1 | R1 ]]]@ρm | P2{xi := Mi|i = 1 . . . k} | R2 ]]]@ρn

Table 15. Structural Rules

recursion:

(Γ, ρhere, τ ) � !P −→ (Γ, ρhere, τ ) � P | !P

left compostion:

(Γ, ρhere, τ ) � P1 −→ (Γ, ρhere, τ ) � P2

(Γ, ρhere, τ ) � P1 | R −→ (Γ, ρhere, τ ) � P2 | R

right compostion:

(Γ, ρhere, τ ) � P1 −→ (Γ, ρhere, τ ) � P2

(Γ, ρhere, τ ) � R | P1 −→ (Γ, ρhere, τ ) � R | P2

restriction:

(Γ + {m : τ}, ρhere, τ ) � P −→ (Γ + {m : τ}, ρhere, τ ) � R

(Γ, ρhere, τ ) � ννν(m :τ)P −→ (Γ, ρhere, τ ) � ννν(m :τ)R

ambients:

Γ (m) = amb(ρin, (ρr, ρw, τ ′))
(Γ, ρin, τ ′) � P −→ (Γ, ρin, τ ′) � R

(Γ, ρhere, τ ) � mu[[[P ]]]@ρ −→ (Γ, ρhere, τ ) � mu[[[R ]]]@ρ
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5 Related Work

For a variety of calculi for mobile and distributed systems that have emerged
in the last years, access control was one of the primary concerns. The proposed
access control mechanisms range from simple ones that use of co-actions [26,40,7]
allowing or denying all access to a particular location (and the resources it con-
tains) to more refined ones that use different aproaches: credentials to authorize
the access [12], restricted groups [13,16], Mandatory Access Control mechanisms
to constraint un-authorized access [9], and even “membranes” that specify secu-
rity policies for controlling the access to a particular location [22].

The work most closely related to our study of RBAC for an ambient calculus
is [8]. The authors define a distributed π-calculus (D-π) based on [23] with
primitives to activate and deactivate roles. However, there is no notion of an
individual privilege being disabled or enabled depending on the current location,
and the domain topology is static: domains cannot move. In [24] Hennessy and
Riely introduce a type system for a distributed version of the π-calculus for
restricting the access of processes to resources based on the current location of
the process. In this work, again the domain topology is static, and there is no
direct connection to RBAC.

At the Symposium on Trustworthy Global Computing 2005 (TGC 2005),
during his invited address, Matthew Hennessy presented a calculus for RBAC
based on D-π. Unlike our system, his calculus has dependent types to avoid
dynamic typechecks of the security policy.

The work of RBAC in [29,30] does not deal with the implementation of an
RBAC mechanism in a given calculus as is the case in [8]. Instead they define a
calculus to describe an RBAC security policy and how to answer queries to the
security policy.

Various groups have developed methods for guaranteeing that specifications
of RBAC systems are consistent. In [37], Schaad and Moffett discuss the appli-
cation of formal methods for the development of specifications of a conflict-free
role-based system. In [3] a formal language for the specification of role-based
authorization constraints, including prohibition, is introduced. Bertino et al. [5]
develop a logical framework for reasoning about access control models in general,
including RBAC models.

6 Con lusions and Future Work

We defined BACIR, a boxed ambients calculus with Distributed Role-Based
Access Control, where the privileges associated to processes change during com-
putation and are determined by their location, their owners, the roles they have
activated, and the security policy. The distributed nature of the RBAC mech-
anism comes from the fact that each ambient controls the security policy au-
thorizing the entrance of ambients and each port specifies the security policy
controlling the reading and writing privileges.

Our type system prevents two forms of security violations, those consisting of
attempting to enter an ambient without proper authorization, and those consist-

c
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ing of trying to read or write from ports without the corresponding permissions.
These security violations are controlled using roles, that can be dynamically ac-
tivated and deactivated. The type system prevents security violating actions by
those processes not vested with the required authorizing roles.

Our main contribution is the design of the first ambient calculus with a
distributed RBAC mechanism where the location of a process conditions its
mobility and its ability to communicate with other processes. Our main result in
Theorem 4 shows that a well-typed program never violates the dynamic security
checks.

Although the classroom example in the introduction is focused on Internet
networking for a sense of location and communication, our Distributed RBAC
mechanism should be applicable to other settings such as those arising from
mobile telecommunications.

The area remains full of open and challenging problems. An interesting aspect
to consider is the notion of trust in such a way that the access control policy
governing the users’ requests will further depend on whether the user is in a
trusted or untrusted domain. Furthermore, RBAC can be enriched by placing
order structures on roles (role hierarchies), constraints on roles such as mutual
exclusion (no user may activate two given roles at the same time), combination
of roles (two given roles have to be activated at the same time), and composition
of roles (users having a given role are given another role). Defining type systems
to address these richer notions of RBAC is the subject of our ongoing and future
research.
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Abstract. This paper presents a type system to control the migration of code
between network nodes in a concurrent distributed framework, using the Dπ lan-
guage. We express resource access policies as types and enforce policies via a
type system. Types describe paths travelled by migrating code, enabling the con-
trol of history sensitive access to resources. Sites are logically organised in sub-
networks that share the same security policies, statically specified by a network
administrator. The type system guarantees that well-typed networks are exempt
from security policy violations at runtime.

1 Introduction

The spreading of small, powerful portable machines like PDAs, cellular phones, and
laptop computers, equipped with long lasting batteries and wireless communications,
is promoting the integration of a broad range of services and encouraging the sharing
of resources. Consequently, the protection of personal data and resources from abusive
usage is a central concern for the global network participants. This paper proposes a
discipline to control the security of resources in a mobile distributed environment.

Take, for example, a typical network architecture for an institution that exposes
some services (e.g. SSH, HTTP, SMTP, and DNS) to an untrusted network, like the
Internet, as described in Figure 1 (cf.[23]). The task of the network administrator is to
find the correct balance between hiding and revealing the institution’s services to the
outside world. Some institutions, however, need to give permission to untrusted third
parties, for example, to browse their web pages or to download information from their
data server, while at the same time need to prevent valuable assets from being defrauded.

One common approach to tackle the problem is to separate the external untrusted
network from the institution’s network, using a firewall, and to split the inner network
into three major areas, offering different levels of security to their components: an in-
ternal network, protected by an extra firewall, that is not exposed to the outside world
at all; a DMZ—Demilitarised Zone—that houses servers which are visible to untrusted
clients (a semi-protected area); and an EDMZ—Extended Demilitarised Zone—hosting
internal servers that may be accessed from the DMZ, but not from the external network.

Clustering nodes that share the same security requirements (e.g. DMZ, EDMZ, and
users subnet) seems a natural method to define security policies for a network. We
propose a security model inspired on this notion of clusters (which we name security
groups) each listing the necessary security requirements. Then, we use security groups
as building blocks to set up security policies for larger networks, exploiting the policies
already defined. Each group represents a kind of firewall that dictates the rules and
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SMTP
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Fig. 1. A two-firewall tiered network architecture

supervises the migration of code that crosses its border. We conceive a model where
sites may belong to more than one group and where groups form a hierarchical structure.

We choose Dπ [14, 15] as the underlying calculus and extend it with the notion of
security groups, an enriched view of the groups Cardelli, Ghelli, and Gordon introduced
for the ambient calculus [5–7], thus obtaining a flat computation model (that of Dπ),
coupled with a hierarchical organisation from the point of view of security groups,
promoting a layered specification of security. Our main motivation is to design a flexible
security policy description language, while at the same time, statically guarantee the
integrity of user-declared security policies.

Sites form a network of computational shells where processes compete for memory,
CPU cycles, and other local resources. Communication is local; therefore, the interac-
tion between sites must be programmed explicitly via code migration.

The group’s security officer defines a set of rules enumerating what admissible mi-
gration paths are allowed to perform what actions. The migration path, path for short,
is the sequence of groups a piece of code has travelled through, until reaching its cur-
rent position. We classify actions as resource usage actions—the installRes and useRes
control attributes describe reading and writing from local channels; resource allocation
actions—the createRes, createSite, and createGroup attributes enumerate local chan-
nel, site, and group creation; code migration actions regulated through the tuning of
forward control attribute; and finally management actions—the inherit attribute enables
a group to inherit the policies specified for its parents.
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In what follows we explain how to set up security policies using the example in
Figure 1. As in most real life examples, we take a conservative approach to defining
security: all actions are denied unless otherwise stated. Our simple method for writing
security rules disables contradictory policies: granting and denying the same privilege.

Groups. The diagram below illustrates an interaction to obtain a valid IP address be-
tween a client named data from group SQL and a server named kass, belonging to
group DHCP. The client runs the process goto kass.askIP !〈reply@data〉, and the
server replies back running process goto data.reply!〈IP 〉.

data kass
SQL DHCPaskIP!

reply!

To establish the adequate policies for the network, allowing the code at site data and
at site kass to execute without infringing the security rules, group DHCP must allow
SQL’s code to use local resources (useRes policy) and vice-versa. For each group, we
can write down these policies using a simple notation: a pair of sets describing the
security policies for the group, and its parent groups.

SQL : ({useRes : DHCP}, ) DHCP : ({useRes : SQL}, )

We omit the group hierarchy in group types, whenever it is not relevant for the
example.

Subgroups. The notion of subgroups provides for a method to combine group policies.
Consider now an IP query from a client c1 in the Users internal network, as depicted in
the following diagram.

askIP!

reply!

c1
Users

... ...
kass

DHCP
EDMZ

Group EDMZ must forward code from group Users and, furthermore, group DHCP
must allow group Users to use local resources. The types for EDMZ and DHCP become

EDMZ : ({forward : Users}, ) DHCP : ({useRes : Users}, {EDMZ})

Notice that group DHCP is now a subgroup of EDMZ (as specified in the second
component of the type for DHCP), and that permission to use local resources is only
specified at DHCP. The point is that each group specifies the policies for the sites that
are directly under its control. When a site is under the control of a subgroup, the parent
groups only concede the authority for code to cross their boundaries. The remaining
policies are “delegated” to the groups where the sites directly belong to, thus avoiding
the replication of policies at each group level.
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Let us turn our attention to the response goto c1.reply!〈IP 〉 from site kass. Site
kass is a member of group DHCP, which, in turn, is a subgroup of EDMZ. So, kass
may be seen as a member of DHCP or as a member of EDMZ. Hence, group Users
may specify security policies addressed specifically at group DHCP or at group EDMZ.
Suppose that we want to express that group Users allows group EDMZ to install re-
sources, but that only code from group DHCP may use resources. We could set up
group Users policies as

Users : ({useRes : DHCP, installRes : EDMZ}, )

In addition, we may want to be more specific and enable the installation of resources
only for group DHCP (thus denying code from sites belonging to group SQL). So, we
could write

Users : ({useRes : DHCP, installRes : DHCP}, )

Policy inheritance. The inheritance of security policies helps in designing and main-
taining policies for subgroups. The inheritance is twofold: (a) explicit, via keyword
inherit, stating that a subgroup inherits the security policies of its direct parent groups;
(b) implicit, adopting the identity of a parent group. Defining security policies for dif-
ferent levels on the grouping hierarchy prevents the enumeration of a myriad of leaf
subgroups in the rules.

As an example, suppose all subgroups from group EDMZ allow subgroups from
DMZ to use their resources. Furthermore, group SQL likewise consents the installation
of resources from group HTTP.

SSH

HTTP

SMTP

DNS

DMZ

SQL DHCP

EDMZsqlQuery?

askIP!

The security policy for EDMZ, SQL, and DHCP may then be written as

EDMZ : ({forward : DMZ, useRes : DMZ}, )
SQL : ({inherit, installRes : HTTP}, {EDMZ}) DHCP : ({inherit}), {EDMZ})

Notice that we write the policy for group EDMZ mentioning only group DMZ, thus
implicitly conceding the privileges to all subgroups of DMZ; subgroups SQL and DHCP
inherit explicitly common security policies from its parent EDMZ; moreover, group
SQL specifically grants the installRes privilege to group HTTP.

Migration paths. In addition to indicate that a group may perform some action over the
sites of a particular group, we may specify a path representing an acceptable sequence
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of groups that the code must pass through before entering the destination site. The path
is specified using a regular expression.

Our last example addresses the granting of privileges when the code travels through
sites from distinct groups. Consider an intruder browsing web pages that contain data
sitting on some data server. We need to give rights to the intruder to view the web pages,
but prevent him from gaining access to the data server, either directly from the Internet
or via the web server. The network depicted below illustrates this situation

Internet

sqlReq!

sqlReq!
webSintruder

httpReq!

goto data.sqlReq!
data

SQL

...

EDMZHTTP

Suppose that the policies for groups HTTP, EDMZ, and SQL are

HTTP : ({useRes : Internet}, ) EDMZ : ({forward : HTTP}, )
SQL : ({useRes : HTTP}, {EDMZ})

Processes goto webS.httpReq!〈〉 and goto data.sqlReq!〈〉 do not violate the
security rules, whereas goto data.sqlReq!〈〉 launched by the intruder breaks the se-
curity rules at groups EDMZ (since EDMZ only forwards code from HTTP group) and
SQL (since SQL only allows the use of resources from HTTP). What about process
goto webS.goto data.sqlReg!〈〉? A trusting relation must not be transitive: although
group HTTP allows code from group Internet to use its resources, and group SQL allows
HTTP the same privileges, that does not imply that SQL should allow code migrating
from Internet to use its resources, either directly or through a site in HTTP.

The security policies set above for EDMZ and for SQL do not allow migration of
code from intruder to webS and then to data, because the path the code travels is “HTTP
after Internet”, which is not allowed. However, it could be interesting to model a sit-
uation in which this migration path is acceptable. Consider the subgroup SSHUsers
in Internet accessing to the data server. The network administrator may allow sites in
group SSH to be used as proxies for sites in group SSHUsers, and allow code from an
honest agent to migrate through SSH to use SQL’s resources. The types for SSH, EDMZ,
and SQL groups would then become

SSH : ({useRes : SSHUsers}, ) EDMZ : ({forward : SSH SSHUsers}, )
SQL : ({useRes : SSH SSHUsers}, {EDMZ})

Would the network administrator need to specify that all the code arriving through
group SSH is welcome to use SQL’s resources, it might set EDMZ and SQL policies as

EDMZ : ({forward : SSH•�}, ) SQL : ({useRes : SSH•�}, {EDMZ})

We use wildcard • to denote any site, and symbol � to represent a sequence of zero
or more occurrences of an expression. Therefore, SSH•� means any migration path
ending at group SSH that has passed through any sequence of sites (possible empty).
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v ::= Values n ::= Names
a@s located channel a, b, c, x channels

| � basic value | r, s, t, y sites
| f, g, h groups

P, Q ::= Processes N, M ::= Networks
stop termination stop termination

| (νn : L@s) P restriction | (ν t̃ n : L) N restriction
| P |Q composition | N |M composition
| goto s.P migration | s̃[P ] site
| a!〈v〉 output
| a?(v) P input see Figure 12 for the syntax of types L
| a?∗(v) P replication

Fig. 2. Syntax of Dπ

Other examples of simple path patterns are, for instance, code originated at group
SSH as, •�SSH, or code that passes through group SSH as, •�SSH•�.

Outline. The next section briefly introduces the Dπ syntax and its operational seman-
tics. Section 3 introduces our approach to the checking of security policies and present
the notion of runtime errors (via a tagged version of Dπ). Section 4 is devoted to the
type assignment system and states the results we achieved. The last section presents the
related work and states our conclusions.

2 Dπ Syntax and Operational Semantics

This section presents the syntax and the operational semantics of Dπ, mainly taken from
Hennessy and Riely [15].

Syntax. The syntax of the calculus is defined in Figure 2. The main difference w.r.t. the
original Dπ is the usage of groups, namely the new constructor to create groups, and the
inclusion of the migration path in the syntax for sites. We consider a monadic version
of the calculus where only located names can be passed around, since our main focus is
the control of migration, not that of communication.

We briefly address the Dπ syntax; the interested reader should refer to [14, 15] for
motivations and details. The calculus presents two main syntactic categories: processes
and networks. At process level we find the usual asynchronous π-calculus constructs
[2, 16]; processes are built from the inactive process, stop, and from the asynchronous
output process, a!〈v〉, using three constructs: name restriction, (νn : T ) P , parallel
composition, P |Q, and input, a?(v) P . We also include a form of replicated input,
a?∗(v) P . Moreover, Dπ contains an operator that sends a process P to a specific
location s: the goto s.P process.

Networks are assembled from the inaction network, stop, and from processes running
at specific named locations called sites, st̃[P ], using name restriction, (ν t̃ n : T ) N ,
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1. (N |M) |M ′ ≡ N | (M |M ′) M |N ≡ N |M (N | stop) ≡ N

2. (ν t̃ n : T ) N |M ≡ (ν t̃ n : T ) (N |M) if n �∈ fn(M)

(ν r̃ n : T ) (ν t̃ m : T ′) N ≡ (ν t̃ m : T ′) (ν r̃ n : T ) N i)

(ν t̃ n : L@s) st̃[P ] ≡ st̃[(νn : L) P ] if n not in st̃

3. s̃[P ] | s̃[Q] ≡ s̃[P |Q]

i) if m not in T and not in r̃, and n not in T ′ and not in t̃.

Fig. 3. Structural congruence

st̃[a!〈�〉] | sũ[a?(�) P ] → sũ[P ] (COMC1)

st̃[a!〈b@r〉] | sũ[a?(x@y) P ] → sũ[P{r/y}{b/x}] (COMC2)

st̃[a!〈�〉] | sũ[a?∗(�) P ] → sũ[P ] | sũ[a?∗(�) P ] (COMR1)

st̃[a!〈b@r〉] | sũ[a?∗(x@y) P ] → sũ[P{r/y}{b/x}] | sũ[a?∗(x@y) P ] (COMR2)

t̃[goto r.P ] → rt̃[P ] N → M
(ν t̃ n : L@s) N → (ν t̃ n : L@s) M

(MIG, RES)

N → N ′

N |M → N ′ |M
N ≡ N ′ N ′ → M ′ M ′ ≡ M

N → M
(PAR, STR)

Fig. 4. Reduction rules

and parallel composition, N |M . The site construct st̃[P ] denotes a computational area
named s, running process P . The (possibly empty) sequence of sites t̃ designates the
sites P has visited before arriving at s. The top level syntax admits only sites where t̃
is the empty sequence. Network name restriction (ν t̃ n : T ) N records the sequence of
sites t̃ visited by the process that has created name n.

Operational semantics. The binders of the calculus are the usual in π-calculi like lan-
guages: name n is bound in (νn : T ) P and in (νn : T ) N , whereas x and y are both
bound in a?(x@y) P . Networks are taken up to α-congruence in such a way that bound
names are different from free names and from each other.

Operational semantics is defined on top of a structural congruence relation, ≡, that
is the least congruence relation closed under the rules defined in Figure 3. It follows
closely the structural congruence relation introduced for Dπ. Notice that when extrud-
ing a name from process to network level (third rule of group two), we record the code
journey leading to name creation, whereas restricting it to a site is only possible when
the code running at the site followed the same migration path as that of name creation.

Reduction in Figure 4 is mainly taken from Dπ, except for obvious adjustments to
incorporate groups and migration paths. When code migrates, rule MIG, we append the
name of the source site to the migration path. Migration path information is fundamen-
tal to reason about security. We check the security policies considering the sites that
migration code visits, since this information is important to express the trust between
the destination group and the rest of the network.
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P ::= Policies τ ::= Actions S ::= Paths
{π1, . . . , πn} useRes output ε empty path

| installRes input | g group
π ::= Security rules | createRes ch. creation | • any group

τ : S action rules | createSite site creation | SS concatenation
| inherit inherit policies | createGroup group creation | S + S alternation

| forward code forward | S� kleene star

Fig. 5. Syntax for security policies

3 Security Policy

This section presents how we specify and verify security policies. To formalise the
notion of runtime error, we develop a tagged version of the language introduced in the
previous section.

Writing security policies. A security policy (P) consists of a set of rules (π). Action
rules (τ : S) describe the set of admissible paths in the group hierarchy that code must
visit before being able to perform the action the policy protects. Rule forward governs
the migration of code. For code migration to succeed, there must be a path all along the
group hierarchy that authorises the forwarding of the code to the destination site. The
inherit allows a group to import the rules defined for its direct parents.

Actions τ correspond directly to the actions of the calculus: input and output ac-
tions are related with the installRes and useRes, respectively; channel, site, and group
creation are associated with createRes, createSite, and createGroup actions.

A path pattern S is a regular expression. A group g stands for itself or for any group
in its hierarchy; the symbol • is a wildcard representing any group. Concatenation,
alternation, and Kleene closure possess the usual meaning.

Checking security policies. A typing Γ is a partial function of finite domain from names
to types. The type for channels C represents the datatype channels may carry, the type
for sites G is the set of groups that the site belongs to, and the type for groups is a pair
(P , G) denoting the security policy and the parent groups of the group. For a complete
discussion on types refer to Section 4. We write dom(Γ ) for the domain of Γ . When
x �∈ dom(Γ ), Γ, x : T denotes the typing Γ ′ such that dom(Γ ′) = dom(Γ ) ∪ {x},
Γ ′(x) = T and Γ ′(y) = Γ (y) for y �= x. One uses s̃ and g̃ to denote a possibly empty
sequence of sites s1 . . . sn and of groups g1 . . . gn.

Functions allows and canEnter, defined in Figures 7 and 8, perform security check-
ing. Before outlining function allows, we give an overview of function matches defined
in Figure 6. Formula g̃ matches S means that a path g̃ is an instance of path pattern S.
The rules for most path constructs should be easy to understand and specify the match-
ing for each path pattern constructor. Notice that ruleallows for a group to match any
group in its hierarchy.

Γ, g : (P , G) � h matches f h ∈ G

Γ, g : (P , G) � g matches f
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Γ 
 ε matches ε Γ 
 g matches •

Γ 
 g matches g

Γ, g : (P , {h} ∪ G) 
 h matches f

Γ, g : (P , {h} ∪ G) 
 g matches f

Γ 
 g̃ matches S Γ 
 g̃′ matches S′

Γ 
 g̃g̃′ matches SS′

Γ 
 ε matches S�

Γ 
 g̃ matches S Γ 
 g̃′ matches S�

Γ 
 g̃g̃′ matches S�

Γ 
 g̃ matches S

Γ 
 g̃ matches S + S′
Γ 
 g̃ matches S′

Γ 
 g̃ matches S + S′

Fig. 6. matches relation

Formula g allows f̃ : τ (Figure 7) says that group g grants privilege to perform
action τ to code that has travelled along path f̃ ; path f̃ is matched against the path pat-
tern associated with action τ using function matches. The createGroup action receives
special treatment, since the creation of a group establishes a new node in the group hi-
erarchy, and the groups above must accept its new member. Since a group may identify
itself as any of its parents, the creation of a subgroup must collect the acceptance of
the whole hierarchy. Forwarding code requires that at least one branch in the hierarchy
grants the forward policy to the path the code travelled. When the inherit policy key-
word is set for a group, the security policies for the direct parent groups are considered
as a part of the security specification for the group.

Function canEnter (Figure 8) checks whether code that travels through a given path
has permission to enter a target group. A formula g̃ canEnter f means that group f
accepts code that has travelled through path g̃. This privilege is controlled using the
forward policy. Code that went all along path g̃ is able to enter the frontier of group f ,
if there exists a path through f ’s hierarchy granting, at each group in the path (except
for the target group), the forward right to g̃.

Tagged language. To precise the notion of runtime error, we are obliged to define a
tagged version of the language introduced in Figure 2, since the exposed syntax does
not express information about security policies (cf. [15]). In what follows, one presents
the syntax and corresponding operational semantics for the tagged language.

Tagged syntax. We make explicit the policies for groups, by appending a typing Γ to
the syntax of sites. In fact, this Γ contains enough information to type process P . The
syntax for the tagged language is that of Figure 2, replacing the site construct by its
tagged version s̃[P ]Γ .

Tagged structural congruence. The rearrangements in the structural congruence rela-
tion for tagged networks, denoted by ≡T , are found in Figure 9 and, except for the
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Γ (g) = (P ∪ {τ : S}, G)

Γ 
 f̃ matches S
τ �= createGroup

Γ 
 g allows f̃ : τ

Γ (g) = (P ∪ {createGroup : S}, G)

Γ 
 f̃ matches S

∀h ∈ G Γ 
 h allows f̃ : createGroup

Γ 
 g allows f̃ : createGroup

Γ (g) = (P ∪ {forward : S}, ∅)
Γ 
 f̃ matches S

Γ 
 g allows f̃ : forward

Γ (g) = (P ∪ {forward : S}, {h} ∪ G)

Γ 
 f̃ matches S Γ 
 h allows f̃ : forward

Γ 
 g allows f̃ : forward

Γ (g) = ({inherit} ∪ P , {h} ∪ G) Γ 
 h allows f̃ : τ

Γ 
 g allows f̃ : τ Γ 
 s allows εf : τ

∀g ∈ G, f1 ∈ F1, . . . fn ∈ Fn, Γ 
 g allows f̃ : τ

Γ, s : G, r1 : F1, . . . , rn : Fn 
 s allows r̃ : τ

Fig. 7. allows relation

Γ (f) = (P , ∅)
Γ 
 g̃ canEnter f

Γ (f) = (P , {h} ∪ G) Γ 
 h allows g̃ : forward

Γ 
 g̃ canEnter f

Γ 
 g̃ canEnter ε

∀g1 ∈ G1, . . . , gn ∈ Gn, f ∈ F, Γ 
 g̃ canEnter f

Γ, s1 : G1, . . . sn : Gn, r : F 
 s̃ canEnter r

Fig. 8. canEnter relation

displayed rules, the changes w.r.t. the original structural congruence relation only re-
flect the syntactic adjustments (and are omitted). As for scope extrusion (rule 2), the set
of assumptions at the left-hand side of the congruence relation enlarges with the name
declared at network level, announcing the creation of the name. Merging sites (rule 3) is
only viable when tagged information agrees: it is not possible to merge sites governed
by distinct security policies.

Tagged reduction. The tagged reduction relation, denoted by symbol →T , is obtained
from the original reduction (Figure 4) by decorating sites with typing Γ . Function
tagΓ (N), Figure 10, takes an original network N and a typing Γ , and yields its tagged
counterpart. Recall that security policies are expressed as types. Therefore, to obtain
a tagged term we need to provide the missing security information. For the sake of
simplicity, we often write a tagged term tagΓ (N) as NΓ .

Runtime errors. The unary relation,
err$−→, partially defined in Figure 11, identifies pro-

cesses that break some security policy during reduction.
The output (input) process fails, R-OUT (R-INP), if the site that sent the code, r,

has no permission to use (install) resources. We omit the rule for replicated input, since
it is similar to rule R-INP. For code migration, rule R-MIG states that a goto process
incurs in a runtime error if it cannot enter the border of the groups where the target site
resides. Notice the role of typing Γ (a placeholder for security policies), and the need
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2. (ν t̃ n : L@s) st̃[P ]Γ,n : L@s ≡T st̃[(νn : L) P ]Γ if n �∈ dom(Γ ) ∪ {s}
3. st̃[P ]Γ | st̃[Q]Γ ≡T st̃[P |Q]Γ
(plus rules in group 1. and the first two rules in group 2. from Figure 3)

Fig. 9. Tagged structural congruence

tagΓ (stop) = stop

tagΓ (N |M) = tagΓ (N) | tagΓ (M)

tagΓ (s̃[P ]) = s̃[P ]Γ
tagΓ ((ν t̃n : T ) N) = (ν t̃ n : T ) tagΓ,n : T (N)

Fig. 10. Tag function

to talk about the site where the code is, s, the sequence of sites visited by the code,
r̃, and the site where the code is migrating to, t. Rule R-RESC1 says that the channel
creation operation fails if the current site does not allow the site that sent the code
to create channels. Rule R-RESC2 is similar. We omit the rules for creating sites and
groups, since they are similar to rules R-RESC1 and R-RESC2, as well as the induction
rules for name restriction, parallel composition, and structural congruence (cf. [15]).

4 Typing System

In this section we present two type systems (for the original and for the tagged lan-
guages) that check whether networks respect the security policies defined for groups,
taking into account the path travelled by processes. The type systems are based on a
subtyping relation à la Sangiorgi and Pierce [21], and are parametric on two functions
that are used to check the security policies, namely, allows and canEnter functions.

Types. The syntax for types is depicted in Figure 12. We assign types to channels,
to sites, and to groups. Types T may be local or global: local types L are used when
creating names at a given site; global (or located types) L@s are assigned to names
when declared at network level. A name assignment n : L@s means that name n has
type L and was created at site s.

Name types L aggregate channel types C, site type P , and group types (P , G). A
channel type 〈V 〉I traces the type V of the values communicated along the channel,
as well as the channel usage I . The type for a site records the set of groups the site
belongs to. Group types are a central notion in our work: it is at group level that we
record information for security, namely, (a) the set of security rules P that govern the
interaction with the network, and (b) the set of the parent groups G of the group.

Channels can carry other channels, as well as basic values, as described by value
types, V . The type for channel values assumes the form C@G, where C is the type of
the channels that can be carried, and G is the set of groups hosting the communicated
channels. The subtype relation characterising channel tags I is introduced in Figure 13.
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sr̃[a!〈v〉]Γ err�−→ if Γ �
 s allows r̃ : useRes (R-OUT)

sr̃[a?(v) P ]Γ
err�−→ if Γ �
 s allows r̃ : installRes (R-INP)

sr̃[goto t.P ]Γ
err�−→ if Γ �
 sr̃ canEnter t (R-MIG)

sr̃[(νa : L) P ]Γ
err�−→ if Γ �
 s allows r̃ : createRes (R-RESC1)

(ν r̃ a : L@s) N
err�−→ if Γ �
 s allows r̃ : createRes (R-RESC2)

Fig. 11. Runtime errors

T ::= Types C ::= Local channel types V ::= Value types

L local type 〈V 〉I local channel C@G channel
| L@s global type | unit basic type

L ::= Name types I ::= Tags G set of groups
C local channel r input

| G site type | w output
| (P , G) group type | rw input/output

Fig. 12. Syntax of types

Subtyping. The subtyping relation, <:, is defined as the least preorder relation on types
that satisfies the rules in Figure 13, where channels are tagged according to their usage:
input (r), output (w), and input/output (rw). We extend the subtyping relation to deal
with types involving groups. The original intuitions remain unchanged, namely that
the subtyping relation is covariant for inputs, contravariant for outputs, and invariant if
the channels are used both for input and for output purposes. The subtyping rules are
straightforward. Notice the set inclusion to handle groups in value subtyping and the
last subtyping rule that relates located channels.

Typing the original language. Our type system checks each action performed by
processes: either input, output, restriction, or code migration. We associate a policy
with an action. Therefore, useRes, installRes, createRes, createSite, createGroup, and
forward specify the security policies for input, output, restriction, and code migration
actions. We do not check code running at its host site (code that is not in the contin-
uation part of a goto process), since we assume that there is no need to grant specific
privileges to code in such circumstances.

The type system, described in Figures 14–16, includes three kinds of judgements:
(a) judgement � Γ asserts that Γ is a well-formed environment; (b) judgement Γ �st̃ P
means that process P is well typed under typing Γ , when running at site s, having
travelled through the sequence of sites t̃; and (c) judgementΓ � N denotes that network
N is well typed under typing Γ .

The typing rules in Figure 14 are intended solely to avoid group structures from
being circular. Therefore, rule E-GROUP ensures that when we enlarge a typing with a
new group definition, the parent groups of that new group are already in the typing.
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unit <: unit
C1 <: C2 G1 ⊆ G2

C1@G1 <: C2@G2
(Value subtyping)

i = r, rw V1 <: V2

〈V1〉i <: 〈V2〉r
i = w, rw V2 <: V1

〈V1〉i <: 〈V2〉w
V1 <: V2 V2 <: V1

〈V1〉rw <: 〈V2〉rw
(Local channel subtyping)

C1 <: C2

C1@s <: C2@s
(Global channel subtyping)

Fig. 13. Subtyping relation

(E-UNIT)


 � : unit

(E-CHANNEL)


 Γ

 Γ, a : C@r

(E-SITE)


 Γ

 Γ, s : G@r

(E-GROUP)


 Γ G ⊆ dom(Γ )


 Γ, g : (P ,G)@r

Fig. 14. Well-formed environments

As for processes (Figure 15), rule P-OUTB enforces that typing Γ is well formed,
and that channel a, located at the site (s) where the process is running, is a write or
a read-write channel and is capable of carrying unit values. Moreover, the host site s
must permit that code that has travelled through site sequence t̃ may use its resources.
Rule P-OUTC is similar to NP-OUTB, but here channel a must be able to carry chan-
nels of the same type as b (located at the groups that site r is a member). To type an
input process a?(x@y) P using rule NP-INPC, channel a must be a read or a read-write
channel. The continuation process P must be well typed in a typing augmented with x
and y.

Notice that channel x is located at y and that y is defined as a site member of the
groups that channel a can carry. Hence, we guarantee that the privileges for the actions
involving x and y are correctly checked, since we verify policies against all groups in
G. One requires that y must not appear (at all) in Γ . Notice that y may occur in the
type of a free channel, and such networks should be ruled out, since we can not include
the type of these channels in the typing (the type refers a name that is bound). Take
s[a?(x@y) goto y.b!〈〉] as an example. The type of channel b is 〈unit〉I @y, which can
not be part of Γ , since y is bound and b is free. Finally, we verify that the host site s
concedes permission to use its resources to code that has travelled site sequence t̃. Rules
P-INPB and P-INPR are similar to rule P-INPC.

We split name restriction over three rules, P-RESS, P-RESC, and P-RESG, since there
is a specific policy associated to each creation action.

To type code migration goto r.P applying rule P-MIG, one types process P in the
target site r, using path sequence t̃, and verifies that code travelling path sequence t̃
may reach its target r. Notice the use of function canEnter to check security upon code
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(P-OUTB)


 Γ Γ (a) <: 〈unit〉w@s

Γ 
 s allows t̃ : useRes
Γ 
st̃ a!〈�〉

(P-OUTC)


 Γ Γ (a) <: 〈C@Γ (r)〉w@s

Γ (b) = C@r Γ 
 s allows t̃ : useRes

Γ 
st̃ a!〈b@r〉

(P-INPB)

Γ 
st̃ P Γ (a) <: 〈unit〉r@s

Γ 
 s allows t̃ : installRes
Γ 
st̃ a?(�) P

(P-INPC)

Γ, x : C@y, y : G 
st̃ P
Γ (a) <: 〈C@G〉r@s y not in Γ

Γ 
 s allows t̃ : installRes
Γ 
st̃ a?(x@y) P

(P-INPR)

Γ 
t̃ a?(v) P

Γ 
t̃ a?∗(v) P

(P-PAR)

Γ 
t̃ P Γ 
t̃ Q

Γ 
t̃ P |Q

(P-NIL)


 Γ
Γ 
t̃ stop

(P-RESS)

Γ, r : G@s 
st̃ P r not in Γ

Γ 
 s allows t̃ : createSite
Γ 
st̃ (νr : G) P

(P-RESC)

Γ, a : C@s 
st̃ P

Γ 
 s allows t̃ : createRes
Γ 
st̃ (νa : C) P

(P-RESG)

Γ, g : (P , G)@s 
st̃ P g not in Γ

Γ 
 s allows t̃ : createGroup

Γ 
st̃ (νg : (P , G)) P

(P-MIG)

Γ 
rt̃ P Γ 
 t̃ canEnter r

Γ 
t̃ goto r.P

Fig. 15. Typing processes

migration. We must ensure that there exists a path through the group hierarchy that
allows code to enter site r.

Figure 16 depicts the type system for networks. The rules are similar to those for
processes, apart from rule N-SITE. To type a site Γ � st̃[P ], we type process P in site s,
knowing that it has travelled the sequence of sites t̃.

The type system we present preserves typings during reduction.

Theorem 1 (Subject Reduction). If Γ � N and N →M , then Γ �M .

Typing the tagged language. The type system for the tagged language is obtained from
that of the original language (Figures 14, 15, and 16) by just changing rule N-SITE.
We use the symbol �T when writing typing judgements for tagged networks and prefix
typing rules with TN. To type tagged sites st̃[P ]Γ , we propose the following typing
rule.

TN-SITE
Γ �st̃ P

Γ �T st̃[P ]Γ

One types process P in site s, having travelled through site sequence t̃. The tagging
information matches the typing for process P .
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(N-SITE)

Γ 
st̃ P

Γ 
 st̃[P ]

(N-PAR)

Γ 
 N Γ 
 M
Γ 
 N |M

(N-RESC)

Γ, a : C@s 
 N Γ 
 s allows t̃ : createRes

Γ 
 (ν t̃a : C@s) N

(N-NIL)


 Γ
Γ 
 stop

(N-RESS)

Γ, r : G@s 
 N r not in Γ
Γ 
 s allows t̃ : createSite

Γ 
 (ν t̃ r : G@s) N

(N-RESG)

Γ, g : (P ,G)@s 
 N g not in Γ

Γ 
 s allows t̃ : createGroup

Γ 
 (ν t̃g : (P , G)@s) N

Fig. 16. Typing networks

Theorem 2 (Tagged subject reduction). If Γ �T N and N →T M , then Γ �T M .

Type safety. There is an operational correspondence between the original and the tagged
reduction relations. The following results ensure that types are preserved both by tag-
ging function and by tagged reduction.

Theorem 3 (Tagging preserves types). Γ � N if and only if Γ �T NΓ .

Theorem 4 (Operational correspondence between original and tagged languages).
Let Γ � N . N →M if and only if NΓ →T MΓ .

The type safety result states that well-typed networks do not incur in runtime errors.

Theorem 5 (Type safety). If Γ �T M , then M
err
�$−→.

5 Conclusions and Related Work

Summary. We present an approach to express and control history-based access to re-
sources using types. We use Dπ as the underlying calculus and, on top of it, define a
hierarchical structure of security groups. The security model we propose is based on
the notion of security group that delimits a region of the network with the same security
requirements. Security groups may be understood as a firewall that dictates and super-
vises the sites under its control. We use a type system as the security mechanism to
enforce that networks respect the security policies defined by groups and claim a type
safety result.

Ongoing work comprise the refinement of the type system to enforce a fine grained
control of resources’ security and the study of how to change policies dynamically.

Related work. Refer to [3] for a general survey on concurrent mobile calculi, type
systems, and security policies. As far as we known, our security model is the first to
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combine group policies with record history-based access to resources, and to use group
hierarchies for helping the writing of new security rules and the reusing of existent ones.

Cardelli, Ghelli, and Gordon introduced the notion of groups for the Ambient cal-
culus [5–7] to control the movement and the opening of ambients. They use groups to
combine ambients in clusters, but specify the security properties for each ambient re-
gardless the group the ambient belongs to. Instead, we use groups to specify security
policies shared by the sites that compose each group.

Lhoussaine and Sassone [17] use dependent types as an alternative to groups. The
type system is far more complex and the calculus does not facilitate the writing of
policies.

The work on Dπ has proposed advanced type systems [14, 15] to control resource
access. The control of policies is based on a subtype relation that permits the delivery of
different types of the same channel to distinguished parties. Code mobility is controlled
with the mig keyword. If a process “sees” the mig keyword as part of the type of a site,
then it may migrate code to that site. The subtype relation, together with the capability to
communicate site names, allows for a site to tailor the information (e.g. resource names,
control keywords) that the target site is able to use. This approach spreads security
annotations along the code and it makes difficult to understand what actions are really
allowed to execute.

Martins and Ravara [18] presented a type system to control migration in lsdπ [22]
with no site creation. The paper discusses an earlier stage of development of the current
work, where there is no notion of groups, nor history-based access control to resources.
The works of Abadi and Fournet [1] and of Edjlali, Anurag, and Vipin [11] present a
practical application of history-based access control to resources. Both works are deeply
committed with the frameworks they select to make their security experiments, namely,
the Java language, and by this reason, are difficult to compare to the current work.
Chothia and Stark [8] present a notion of local areas that resemble our group hierarchy,
but they just use local areas to ensure that channels are used in the appropriate domain.

The decentralised label model of Myers and Liskov [20] uses the notions of labels
and principals to control information flow. These are related with our idea of groups and
policies. Labels, assigned to variables, define the information flow policy: the sequence
of principals that can read information for each owner. Principals may act for other
principals, thus forming a hierarchy similar to our group hierarchy. However, we assign
policies to groups and manage other policies besides the read policy. Bugliesi, Colazzo,
and Crafa [4] also work with groups to control information flow for the π-calculus.
Channel types record the information carried by channels, as well as the path the chan-
nel travels. We use a similar mechanism to keep track of code mobility, but since we
control code migration instead of information flow, the assignment of migration paths
is to mobile threads rather than to channels.

Finally, KLAIM [9, 10, 12, 13] uses a capability type system to control operations
on tuple spaces. The KLAIM approach uses a notion of security policies, which are
declared at site level, but differs substantially from our approach in what concerns how
policies are programmed and checked. One main distinction is the place where the
security policies are defined: security policies in KLAIM talk about what operations a
site may perform on other sites, whereas in our framework each security group talks
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about what actions it allows others to perform on it. From the administrator’s point of
view this looks more adequate. Recent type systems proposed for μKLAIM tackle the
compilation of open systems, using a kind of partial compilation mechanism that marks
parts of the processes that cannot be checked statically to be analysed at runtime.
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Abstract. Cryptographic protocols are useful for trust engineering in
distributed transactions. Transactions require specific degrees of confi-
dentiality and agreement between the principals engaging in it. More-
over, trust management assertions may be attached to protocol actions,
constraining the behavior of a principal to be compatible with its own
trust policy. We embody these ideas in a cryptographic protocol pro-
gramming language cppl at the Dolev-Yao level of abstraction. A strand
space semantics for cppl shaped our compiler development, and allows
a protocol designer to prove that a protocol is sound.

1 Introduction

In this paper, we describe the core of a cryptographic protocol programming lan-
guage, cppl, a domain specific language for expressing cryptographic protocols.
It matches the level of abstraction of the Dolev-Yao model [15], in the sense that
the programmer regards the cryptographic primitives as black boxes, and con-
centrates on the structural aspects of the protocol. cppl allows the programmer
to control protocol actions using trust constraints [23], so that an action such
as transmitting a message will occur only when the indicated trust constraint
is satisfied. We offer a semantics for cppl in the style of structured operational
semantics; this semantics identifies a set of strands [34] as the meaning of a
role in a protocol. The semantics is useful for two reasons. First, it suggests a
method by which the programmer may prove that a protocol meets its security
goals [21]. Second, it clarifies issues of scope and binding, and therefore assisted
us in implementing a correct compiler.

Trust Engineering. A domain specific language for cryptographic protocols raises
the question, however, why programmers need to create new protocols. Although
there could be several answers to this, one specific answer motivated our work
on cppl. When a programmer must implement a transaction in a distributed
application, cppl allows him to engineer a protocol to achieve the specific au-
thentication and confidentiality goals needed by this transaction. This process—
the process of shaping a transaction so that it can reflect the trust goals of its
participants—we call trust engineering.
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Moreover, each participant must understand at exactly which step in the
protocol they undertake a commitment, such as the commitment to pay for
some goods. If a principal P makes several successive commitments in a protocol,
then P should be able to decide before each of these steps whether it is willing
to incur that commitment. If not, it may prefer to select some alternative, or it
may need to abort the transaction. The content of the commitment will depend
on the constituents of the messages in this execution, for instance the cost of the
purchase or the principal to whom the money should be transferred.

Thus, it is not sufficient to have a few specific security protocols, such as TLS
or SSH; instead, different combinations of confidentiality and agreement are re-
quired in different transactions. Although a transaction may be implemented
using TLS or SSH as a lower level medium for confidentiality or entity authen-
tication, a protocol design problem still persists, of ensuring the right degree of
agreement and secrecy between the participants, and of identifying the trust and
commitments required for each step in the protocol.

The protocol design problem is pervasive in electronic commerce, web ser-
vices, and other aspects of distributed applications. cppl is intended to express
the core functionality that programmers will need, if they are to use crypto-
graphic protocols as a central mechanism in trust engineering, and especially to
connect trust management [25] and protocols [23].

An Example. Suppose that we would like to go into business, offering on-line
stock quotes to a set of clients registered as customers. On a particular occasion,
a client will request a collection of data D, possibly representing a market sec-
tor; we assume that the value D also contains a transaction identifier that the
client can use to re-identify this request when billed. The client and server use
a Needham-Schroeder-like protocol [32] to agree on a session key, and then the
server delivers a real time stream of data containing stock quotes for sector D.
In Figure 1, we see that the session key SK replaces the responder’s nonce of
the Needham-Schroeder protocol; we assume for now that each principal has the
other’s public encryption key. The server B wants to authenticate A to ensure
that he can bill A for delivering this data. Conversely, the client A wants B to
successfully authenticate its clients, so that A will not be charged for any service

A B

m1

{|Na, A, D|}KB � {|Na, A, D|}KB � n1

m2

��
� {|Na, SK |}KA � {|Na, SK |}KA n2

��

m3

�� {| SK |}KB � {| SK |}KB � n3

��

m4

��
�{|data is, V |}SK �{|data is, V |}SK

n4

��

Fig. 1. NS Quote Protocol
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consumed by other clients C. A also needs to authenticate B, and ensure that
the session key is shared only with B. This allows A to infer—based on a trust
decision about B—that the data is accurate, timely, and therefore suitable for
business use.

In this protocol, A is committing himself to the request for D in sending
the message on node m1. B learns that A has made this request when the
authenticating handshake completes, which occurs when B receives the third
message on node n3. When sending the message on node n4, B is committing
itself to the assertion that V is an accurate stream of values for the market
sector D. B also must guarantee to itself that A will pay for the data D before
transmitting it; this decision may depend on databases of subscribers, accounts
in arrears, and similar facts.

Structure of the paper. In Section 2, we summarize the main ideas of the lan-
guage, describing its core syntax and informal semantics in Section 3. A strand-
based semantics for individual local protocol runs in given in structured oper-
ational semantics format in Section 4, and the global execution semantics in
terms of bundles is in Section 5. The strand space methods for proving results
about protocols are adapted to this context in Section 6. Our stock quote service
example is described in detail in Section 7.

2 Main Ideas of CPPL

cppl is intended to provide only the minimal expressiveness necessary for pro-
tocol design, which calls for three fundamental ingredients. First, a protocol run
must respond to choices made by its peer, as encoded in different formats of
message that could be received from the peer. Second, the principal on behalf
of whom the protocol is executing must be able to dictate choices reflecting
its trust management policy [2,7,17,23], using the choices to determine whether
messages are sent, and if so of what format. Finally, cppl provides a mechanism
to encapsulate behaviors into subprotocols, so that design may be modularized.
The interface to a subprotocol shows what data values must be supplied to it
and what values will be returned back on successful termination. The interface
also shows what properties the callee assumes about the input parameters, and
what properties it will guarantee to its caller about values resulting from suc-
cessful termination. These—branching on messages received, consulting a trust
management theory before transmission, and subprotocols—are the three main
forms of expressiveness offered by cppl.

We also rely on three libraries. The first is a cryptographic library, which
is used to format messages, to encrypt and decrypt, to sign and verify, and to
hash. The second is a communications library. It connects to other principals on
the network and manages network level channels to them. These channels need
not achieve any authentication or confidentiality in themselves [15].

The third library is a trust management engine. The trust management en-
gine allows us to integrate the protocol behavior with access control in a trust
management logic [2,5,28], giving an open-ended way to control when to abort
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a run, and to control the choice between one subprotocol and another. The
trust management engine is free to determine the formulas expressing trust con-
straints. However, cppl determines the set of values that may appear as individ-
ual constants in these formulas. These values are nonces, keys, and other values
that we regard as texts; texts include addresses and names. The trust manage-
ment engine maintains a theory, a set of formulas in the trust management logic.
The theory is used to infer that trust constraints are satisfied; a theory may be
augmented with new formulas as a protocol execution proceeds.

We associate a formula with each message transmission or reception. The
formula associated with a message transmission is a guarantee that the sender
must assert in order to transmit the message. The formula associated with a
message reception is an assumption that the recipient is allowed to rely on. It
says that some other principal has previously guaranteed something. A protocol
is sound if in every execution, whenever one principal P relies on P ′ having
said a formula φ, then there was previously an event at which P ′ transmitted a
message as part of this protocol, and the guarantee formula on that transmission
implies φ.

In the NS Quote protocol shown in Figure 1, on node m1 the client guar-
antees that it is requesting the value of D from B. We represent this with
the formula requests(A,B,D). At the end of the authentication phase, in node
n3, B has ascertains that this has occurred, and relies on the formula A says
requests(A,B,D). Knowing that A has made this request presumably helps B be
sure of being paid. On node n4, B guarantees will pay(A,D) and curr val(D, V ).
The first part is intended to protect B itself, since B wants not to transmit the
value V without an expectation of being paid. The second part is intended to
protect A, that is, to ensure that A receives correct information. There is one
other guarantee in this protocol. It guards node n2, stipulating owns(A,KA),
i.e. that the value used to encrypt the second message is in fact the public key
of A.

The same rely/guarantee idea shapes our treatment of subprotocols. A lo-
cal message, sent by the calling protocol, starts a subprotocol run. Hence, the
caller makes a guarantee on which the callee can rely. When the subprotocol
run terminates normally, the callee sends a message back to its caller; the callee
now makes a guarantee on which the caller can rely for the remainder of its run.
Thus, a subprotocol call is a mechanism for the caller to discover the information
guaranteed when the callee terminates successfully.

The Run-Time Environment. The language is organized around a specific view
of protocol behavior. In this view, as a principal executes a single local run
of a protocol, it builds up an environment that binds identifiers to values en-
countered. Some of these values are given by the caller as values of parameters
when the protocol is initiated; some are chosen randomly; some are received as
ingredients in incoming messages; and some are chosen to satisfy trust manage-
ment requirements. These bindings are commitments, never to be updated; once
a value has been bound to an identifier, future occurrences of that identifier
must match the value or else execution of this run aborts. In particular, when
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a known value (such as SK ) is expected in an incoming message (such as the
message received on n3), any other value will prevent execution of this run from
continuing.

The environment at the end of a run records everything learnt during execu-
tion. A selection of this information is returned to the caller.

Related Work. Despite the large amount of work on protocol analysis, the pre-
dominant method for designing and implementing a new protocol currently con-
sists of a prolonged period of discussion among experts, accompanied by careful
hand-crafted implementations of successive draft versions of the protocol. The
recent reworking of the IP Security Protocols including the Internet Key Ex-
change [24] for instance, involved a complex and important cluster of protocols.

Languages for cryptographic protocols, such as spi calculus [4,3,14,8], have
been primarily tools for analysis rather than programming languages.

There has been limited work on compilation for cryptographic protocols,
with [33,31,13] as relevant examples. We add a more rigorous model of protocol
behavior, centered around the environment mentioned above. We provide clear
interfaces to communications services and the cryptographic library. We stress
a model for the choices made by principals, depending on a trust management
interpretation of protocols and on an explicit pattern-matching treatment of
message reception. A semantics ties our input language to the strand space
model [21]. This semantics motivates the structure of our compiler; moreover,
a designer can use it to verify that a new protocol meets its confidentiality
and authentication goals. Alternatively one could translate cppl into spi or the
applied pi calculus [4,3], allowing other verification methods [18,1].

3 The CPPL Core Language

We describe here not the user-level syntax for cppl, but a simplified syntax,
which we call the cppl core language. It provides information at the right loca-
tions to make the semantics easy to express, and likewise to direct the compiler.
Users write programs in a different surface syntax, illustrated in Section 7.

The syntax of the cppl core language is presented in Figure 2. The cppl
core language has procedure declarations and seven types of code statements.
Programming language identifiers are indicated by x and y, and message tags
by r. When used to concatenate message patterns, the comma operator is right
associative, and tagging binds less tightly than comma. The language has syntax
for guarantees and relies—by convention we write guarantees as Φ and relies as
Ψ—which are finite lists of trust management formulas. We use finite lists, which
we interpret conjunctively. Formulas in relies and guarantees may contain, in
addition to logical variables and cppl values, also cppl identifiers. If bound in
the environment at runtime, a cppl identifier will be replaced in Φ, Ψ by the
value to which it is bound; if not yet bound, it serves as a query variable that
will be bound as a consequence of a trust management call. Logical variables in a
trust management formula, if they occur, are interpreted implicitly universally.
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p → proc p (x∗) Ψ c
c → return Φ x∗

| let x = new in c
| let x = accept in c
| let x = channel y in c
| (sb∗) | (x rb∗) | (cb∗)

sb → send Φ x m c
rb → recv m Ψ c
cb → call Φ p (x∗) (y∗) Ψ c
m → x | m,m′ | r m

| (m) | [ m ] x | { m } x

Fig. 2. cppl Core Language

A procedure declaration specifies the name p of the procedure, a list (x∗) of
formal parameters, and a list of preconditions Ψ involving the formal parame-
ters. The body of the procedure is a code statement c. A code statement may
be: a return instruction, which specifies a list of postconditions Φ and return
parameters (x∗); a let-statement; or a list of send branches, receive branches, or
call branches. An identifier x is either a lowercase identifier id, or else an identi-
fier with typing information id:type. We write ide(X) for the set of identifiers
used in the phrase X .

A well-formed code statement c with two return statements at different lo-
cations must have the same postconditions Φ and return parameters x∗. Our
translation from the user-level syntax to the core language ensures this.

NS Quote Example in cppl. To illustrate the cppl core language, we will return
to the NS Quote example. We first focus on the protocol actions, leading to the
behavior shown in Figure 3. We replace the trust management annotations with
underscores to focus attention on the channels, new values, and messages. The
server’s parameters are its own name and public encryption key. It waits to
accept an incoming connection, which the communication layer delivers as the
bidirectional channel chan. It reads a message off this channel, which binds na
to a nonce, and a and d to texts interpreted as a name and the desired data.

proc server (b:text, kb:key) _
let chan = accept in
(chan recv {na:nonce, a:text, d:text} kb _

let sk:symkey = new in
(send _ chan {na, sk, b} ka
(chan recv {sk} kb _

(send _ chan {Data is v} sk
return _))))

Fig. 3. The NS Quote Server’s Behavior
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The server generates a fresh session key sk, which is transmitted and received
back in different encrypted forms to accomplish the authentication test of a’s
identity. Finally, the current value is returned encrypted with the session key sk,
tagged with Data is to make its interpretation unambiguous.

We now insert the trust management information in italicized form in Fig-
ure 4. The procedure relies on the assumption that kb is really the public key that

proc server (b:text, kb:key) [owns(b, kb) ]
let chan = accept in
(chan recv {na:nonce, a:text, d:text} kb [true ]

let sk:symkey = new in
(send [owns(a, ka) ] chan {na, sk, b} ka
(chan recv {sk} kb [says requests(a, a, b, d) ]

(send [will pay(a, d); curr val(d, na, v:text) ]
chan {Data is v} sk

return [supplied(a, na, d, v) ]))))

Fig. 4. The NS Quote Server, with Trust Formulas

b owns, and states this assumption in its procedure header. The caller must ar-
range to start the server with values satisfying this assumption. The server learns
nothing from the first message; it is encrypted using b’s public key, and could
have been prepared by an adversary as well as a regular principal. The transmis-
sion of sk is guarded by a guarantee that a owns the public encryption key ka.
We regard this as a query against a deductive database. As a consequence, either
ka becomes bound to a suitable value, or the query fails, aborting execution of
this run. Presumably, the server has a database of keys for all of its subscribers.
After the next message is received, b has authenticated the peer a, and relies
on a having said that a is requesting the data d from b. We use the predicate
says_requests(A, A’, B, D) to mean that A says requests(A’, B, D). This
has the advantage of fitting the “says” locution into Datalog [10], our implemen-
tation’s trust management logic, at least when only atomic formulas rather than
compound formulas are said. It places a burden however on a principal—the
server in this case—to include rules in its theory to allow requests(A, B, D)
to be inferred from says_requests(A, A’, B, D) for suitable values of the
variables.

If b convinces itself that a will pay, and that the current value is v, then
the value can be sent. The return parameters may be used by the caller for
accounting and billing, with the guarantee that this data was supplied. We will
extend the example in Section 7 to illustrate branching and subprotocols.

Informal execution semantics. To explain how procedures execute, we first in-
troduce an auxiliary notion: guaranteeing formulas Φ in a runtime environment.
This means to ask the runtime trust management system to attempt to ascertain
the formulas Φ. Identifiers in Φ already bound in the runtime environment are
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instantiated to the associated values. Identifiers not yet bound in the runtime
environment are instantiated by the trust management system, if possible, to
values that make the formulas Φ true. The runtime environment extended with
these new bindings is the result of successfully guaranteeing Φ. If the runtime
trust management system fails to establish an instance of Φ the guarantee fails.

To execute a return statement, we attempt to guarantee the formulas Φ.
If successful, we select from the resulting environment the values of each of the
return parameters x∗; these values are returned to the caller. If the attempt to
guarantee Φ fails, execution terminates abnormally, and the caller is informed of
the failure. The caller receives no parameter values in case of failure.

To execute a list of send branches, the runtime trust management sys-
tem selects a branch within which it can successfully guarantee the formulas Φ.
The message pattern m specified on this branch, instantiated using the values
in the resulting extended runtime environment, is then transmitted. Execution
proceeds with the code c embedded within this send branch in the extended
environment. If the runtime trust management system fails to guarantee the
formulas Φ on any send branch, then execution terminates abnormally, and the
caller is informed of the failure.

To execute a list of receive branches with identifier x, the runtime envi-
ronment is consulted for the value bound to x. This value should be a channel.
When a message is received over this channel, the message is matched against
the patterns m within the receive branches. In a successful match, the message
must agree with the runtime environment for identifiers in m that are already
associated with a value. Other identifiers in m will be bound to the values ob-
served in the incoming message, yielding an extended runtime environment. If at
least one receive branch has a successful match, one such branch is selected. The
formulas Ψ are instantiated using the extended runtime environment, and sup-
plied to the runtime trust management system as additional premises. Execution
proceeds with the code c embedded within this send branch in the extended envi-
ronment. If no receive branch has a successful match, then execution terminates
abnormally, and the caller is informed of the failure.

To execute a list of call branches, the system treats the call branches as
sends followed by receives. That is, the the runtime trust management system
selects a branch, within which it can successfully guarantee the formulas Φ. It
calls the associated subprotocol procedure p with the parameters x∗ instantiated
using the values in the resulting extended runtime environment. This procedure
may return normally, in which case it supplies values for the parameters y∗; ex-
ecution continues with the embedded statement c, using the extended runtime
environment. The instances of the formulas Ψ are supplied to the runtime trust
management system as additional premises during execution of c. If p does not
return normally, then execution may continue with a different call branch; ex-
ecution proceeds in the original environment, without any extension from the
abnormally terminated call branch.

Local nature of this description. This execution semantics is local in the sense
that it describes what one principal P does. This involves deciding what values
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to bind to identifiers; what messages to send; how to process a message that is
received; and how to select a procedure to call as a subprotocol. It says noth-
ing about how messages are routed on a network; nothing about what another
principal P ′ does with messages received from P ; nothing about how another
principal P ′ created the messages that P receives. Likewise, it describes only the
execution of one procedure. It says nothing about the behavior of a subprotocol
invoked in a call branch. In essence, the execution semantics describes only a
single principal executing a single run of a single procedure. Thus, it is natural
to describe any single run by a strand. We describe how to do this in Section 4,
and then describe what global executions are possible in Section 5.

4 Local Semantics

We give the semantics of cppl procedures and code statements by describing
the strands describing their possible behavior. Each strand specifies a sequence
of transmissions and receptions that is possible for a principal executing this
cppl phrase faithfully.
Term Algebra. Each transmission or reception is a term in a free algebra A.
The atomic terms are texts, nonces, and keys, denoted below as a. A compound
term in A is either a concatenation g, h, a tagged message tagname g, or the
result of a cryptographic operation. In this section and the next, we will write
the results of all cryptographic operations involving a plaintext g and an atomic
key K in the form {|g|}K . However, cppl has syntax to distinguish symmetric
and asymmetric operations, and to distinguish encryptions from signatures.

A direction is a value with polarity + or −, which we use to indicate trans-
mission and reception respectively. A directed term is a pair (d, t) where d is a
direction and t ∈ A.

Strand Spaces. A strand space Σ is a set equipped with a trace mapping tr
such that S ∈ Σ implies tr(S) is a finite sequence of directed terms. We regard
finite sequences such as tr(S) as (1-based) finite partial functions defined on an
initial segment of the positive integers. Σ is typically defined to be the union of
a set of regular strands, representing the behaviors compatible with a protocol
being studied, and a set of penetrator strands, representing behaviors within the
capability of an adversary. Our standard adversary model is formalized in the
Appendix as Definition 9.

Σ is an annotated strand space if in addition Σ is equipped with pair of
functions γ, ρ, such that for all S ∈ Σ and all positive integers i, if tr(S)(i) has
positive [respectively, negative] direction, then γ(S)(i) [respectively, ρ(S)(i)] is a
finite list of formulas. The formulas in the range of γ and ρ are called guarantee
formulas and rely formulas respectively. We do not stipulate the logic to which
the formulas belong, as the logic is an implementation-specific choice, which in
our implementation is Datalog. The formulas are of interest only when S ∈ Σ is
regular; penetrator strands never make an enforceable commitment, and never
rely on assertions of other principals. Thus, if S is a penetrator strand, then
γ(S)(i) = [ ] and ρ(S)(i) = [ ] whenever they are defined.
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Σ is a strand space with uniqueness assumptions if Σ is equipped with an
operation Υ such that, for each S ∈ Σ, Υ (S) is a set of atoms that occur in
tr(S); these are values that are uniquely originating in bundles of interest.

To give the semantics for a set of cppl procedures, we define an annotated
strand space with uniqueness assumptions. We give the semantics in the form
of a Structured Operational Semantics. The primary judgments are of the form
σ;Γ � c : s, υ. Here σ is a runtime environment, meaning a finite function map-
ping identifiers to values; Γ is a set of formulas serving as a theory; c is the code
to be executed; and s, υ describes a strand. In this description, s describes the
messages and associated formulated, while υ is a set of atoms containing the
values assumed to have been freshly chosen. The judgment σ;Γ � c : s, υ says
that s, υ is one possible behavior that can result if c is executed in environment
σ, when the principal holds theory Γ . A typical rule shows that a larger piece
of code c1 can unleash a strand of length n+ 1, assuming that a code statement
c0 embedded within c1 can unleash a strand of length n. The behavior of c0
describes everything after the first event of some behavior of c1.

We describe strands S ∈ Σ by grouping tr, γ, ρ together:

Definition 1 (Strand Descriptions). Let s be a finite sequence of pairs, where
the first element in each pair is a directed term ±t and the second element in
each pair is a list of formulas. A sequence of length 1 〈(±t , Φ)〉 describes a
strand S ∈ Σ iff the length of S is 1, tr(S)(1) = ±t; if its direction is +, then
γ(S)(1) = Φ; if its direction is −, then ρ(S)(1) = Φ.

Sequence (−t , Ψ) ⇒ s0 describes S if for some S0 ∈ Σ, s0 describes S0 and

1. tr(S)(1) = −t and ρ(S)(1) = Ψ ;
2. tr(S)(i+ 1) = tr(S0)(i), γ(S)(i+ 1) = γ(S0)(i), and ρ(S)(i + 1) = ρ(S0)(i),

where in each equation, the left hand side is defined just in case the right
hand side is.

Similarly, (+t , Φ) ⇒ s describes S if for some S0 ∈ Σ, s0 describes S0 and

1. tr(S)(1) = +t and γ(S)(1) = Φ; and
2. tr(S)(i+ 1) = tr(S0)(i), γ(S)(i+ 1) = γ(S0)(i), and ρ(S)(i + 1) = ρ(S0)(i),

where in each equation, the left hand side is defined just in case the right
hand side is.

A strand space for a set of procedures p1, . . . pn is a Σ containing strands de-
scribed by all the s, υ for which, for some σ, Γ, c, we have σ;Γ � pi : s, υ.

Since σ, σ′ are finite partial functions mapping identifiers to values, we write
σ ⊕ σ′ to mean their disjoint union. That is, if σ ⊕ σ′ is defined, then σ, σ′ have
disjoint domains, and σ ⊕ σ′ maps x to a if either σ maps x to a or σ′ does.

We use two auxiliary judgments. First, we use the judgment Γ −→ φ to
mean that the formula φ is a logical consequence of the formulas Γ . We do not
provide inference rules for Γ −→ φ here; they are inherited from the underlying
logic, e.g. Datalog in our implementation. Second, we use the judgment Γ ‖− Φ
to record the successive derivation of the formulas in the list Φ. The values
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instantiating identifiers appearing free in Φ = [φ1, . . . ,φn] may be chosen left-to-
right, in the sense that an implementation may commit to some binding x $→ a
when x appears free in φ1, even though some later formula φj may be jointly
satisfiable with φ1 only if some other binding x $→ b had been chosen. That is,
an implementation may get stuck and cause a strand to fail, even when a more
farsighted choice of bindings would have made success possible.

Sequential derivation
σ1 = σ ⊕ σ′ dom(σ′) ⊆ ide(φ1) Γ −→ φ1 σ Γ ‖− Φ σ1

Γ ‖− [φ1; Φ] σ1

Vacuous derivation
Γ ‖− [ ]

Fig. 5. Sequential derivation and instantiation

Structured Operational Semantics. The semantics of procedure p is given by
describing its behavior when it is invoked. In this semantics, a procedure is
invoked when it receives a message with a call tag, its own principal identity, an
activation identifier a, and a vector of atoms, one for each parameter declared
by the procedure (Invocation in Figure 6). The initial environment σorig maps
the principal identifier pr to the executing principal’s identity.

Invocation
σ1 = σorig ⊕ σ′ dom(σ′) ⊆ ide(pr , n, ai , x∗) σ1; Γ0, (Ψ σ) 
 c : s, υ

σorig ; Γ0 
 proc n Ψ x∗ c : (−call pr , n, ai , x∗ σ1 , Ψ σ1) ⇒ s, υ

Fig. 6. Procedure Semantics

The procedure semantics show the principal and activation identifier being
bound to pr , ai , but this binding is hidden from programmers. In cppl programs,
there is nothing special about the identifiers pr and ai.

A run of a procedure may conclude by signaling a failure. It does so by sending
a message with a fail tag, its principal identifier, and the activation identifier ai .
The code c causing a failure may be an empty list of send branches (), or a return
statement return Φ x∗ whose formulas Φ cannot be guaranteed. It may also be
a channel name together with an empty list of receive branches (x), or else a
name that is not bound to a channel, followed by zero or more receive branches,
or else any receive statement that the implementation considers to have timed
out. A successful run of a procedure concludes by returning its results, or by
invoking a subprotocol by means of a tail recursive call. In this semantics, to
return, the strand sends a message with a ret tag, the activation identifier ai ,
and an atom for each variable named in the return statement (Return, Tail call
in Figure 7). The activation identifier ai is used to ensure results are delivered
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Fail
σ; Γ 
 c : 〈(+fail ai σ , true)〉, ∅
Return

σ1 = σ ⊕ σ′ dom(σ′) ⊆ ide(Φ) Γ ‖− Φ σ1

σ; Γ 
 return Φ x∗ : 〈(+ret (ai , x∗)σ1 , Φ σ1)〉, ∅
Tail call

σ1 = σ ⊕ σ′ dom(σ′) ⊆ ide(Φ) Γ ‖− Φ σ1

σ; Γ 
 (call Φ n x∗ y∗ Ψ return Ψ y∗ cb∗) :
〈(+(call pr , n, ai , x∗) σ1 , Φ σ1)〉, ∅

Fig. 7. Success and Failure Semantics

to the proper caller. To do so, the caller uses a uniquely originating atom, noted
in the semantics by adding it to the set of atoms associated with the calling
strand (see Figure 11). The “let new” statement generates a nonce or session
key, also a uniquely originating atom (Let new in Figure 8). The “let channel”
and “let accept” statements also bind the variable x to a value, in this case a
channel created by the runtime system. We omit formalizing them. In all of the
“let” statements, we require the let-bound identifier not to have been bound
previously. In this way we preserve the principle that the environment may be
extended with new bindings, but the value bound to any identifier never changes.

Let new
a �∈ υ σ1 = σ ⊕ (x �→ a) σ1; Γ 
 c : s, υ

σ; Γ 
 let x = new in c : s, υ ∪ {a}

Fig. 8. Let new semantics

The semantics of sending and receiving have much in common. A send branch
adds an event—consisting of the sent message paired with the guarantee guarding
the send—to the front of any behavior of the following statement (Figure 9). If
a send statement has a number of branches, the semantics is non-deterministic,
taking the union of the behaviors possible for the send branches, together with a
failure if all branches are refused (Figure 7). For a group of rules, σ′ assigns values
to identifiers occurring free in Φ, i.e. dom(σ′) ⊆ ide(Φ). This group contains the
successful Send rule with its guarantee, as well as the Return rule and the Tail
call rule in Figure 7.

The semantics of a receive statement has the opposite sign (Figure 10). More-
over, in a group of rules, σ′ assigns values to identifiers occurring free in the
message pattern m, i.e. dom(σ′) ⊆ ide(x, m). This group includes the successful
Receive rule, as well as procedure invocation in Figure 6, where the pattern m
is pr , n, ai , x∗.

The semantics of subprotocol call is a combination of a transmission to the
callee and a message reception from it (Figure 11). A call may start a subpro-
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Send with guarantee
σ1 = σ ⊕ σ′ dom(σ′) ⊆ ide(Φ) Γ ‖− Φ σ1 σ1; Γ 
 c : s, υ

σ; Γ 
 (send Φ x m c sb∗) : (+msg (x, m) σ1 , Φ σ1) ⇒ s, υ

Send alternative
σ; Γ 
 (sb∗) : s, υ

σ; Γ 
 (send Φ x m c sb∗) : s, υ

Fig. 9. Semantics of send

Receive and rely
σ1 = σ ⊕ σ′ dom(σ′) ⊆ ide(m) σ1; Γ, Ψ σ1 
 c : s, υ

σ; Γ 
 (x recv m Ψ c rb∗) : (−msg (x, m) σ1 , Ψ σ1) ⇒ s, υ

Receive alternative
σ; Γ 
 (x rb∗) : s, υ

σ; Γ 
 (x recv m Ψ c rb∗) : s, υ

Fig. 10. Semantics of receive

Call and rely
σ1 = σ ⊕ σ′ dom(σ′) ⊆ ide(Φ)

Γ ‖− Φ σ1 σ2 = σ1 ⊕ σ′′ dom(σ′′) ⊆ ide(y∗) σ2; Γ, Ψ σ2 
 c : s, υ

σ; Γ 
 (call Φ n x∗ y∗ Ψ c cb∗) :
(+call pr , n, ai , x∗ σ1 , Φ σ1) ⇒ (−(ret ai , y∗ σ′′) , Ψ σ2) ⇒ s, υ ∪ {ai}

Callee fails
σ1 = σ ⊕ σ′ dom(σ′) ⊆ ide(Φ) Γ ‖− Φ σ1 σ;Γ 
 (cb∗) : s, υ

σ;Γ 
 (call Φ n x∗ y∗ Ψ c cb∗) :
(+(call pr , n, ai , x∗ σ1) , Φ σ1) ⇒ (−fail ai , true) ⇒ s, υ ∪ {ai}

Call alternative
σ; Γ 
 (cb∗) : s, υ

σ; Γ 
 (call Φ p x∗ y∗ Ψ c cb∗) : s, υ

Fig. 11. Call Semantics

tocol that eventually fails, in which case execution has not committed to this
branch; execution may continue with the next call branch and the unextended
environment σ.

In the “Call and rely” production, σ′ assigns values to identifiers occurring
in Φ, i.e. dom(σ′) ⊆ ide(Φ), while σ′′ assigns values to identifiers occurring free
in the pattern ret ai , y∗, i.e. dom(σ′′) ⊆ ide(ai , y∗) = y∗. Our implementation
assumes that all of the identifiers y∗ will be unbound in σ1, and issues an error
message otherwise, but an implementation could allow some of these identifiers
already to be bound, in which case the values received in these positions would
have to match the values already bound to the identifiers in σ1.
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Definition 2. If δ = proc n Φ x∗ c is a cppl procedure declaration, then [[δ]]σΓ
is the set of s, υ such that

σ;Γ � δ : s, υ

is derivable using the inference rules in this section and the rules for the under-
lying logic’s consequence relation −→.

Given cppl procedures δ1, . . . , δn, let

Δ =
⋃

δi,σ,Γ

[[δi]]σΓ.

Σ, an annotated strand space with uniqueness assumptions, models the proce-
dures δ1, . . . , δn if every S ∈ Σ is described by some s with s, Υ (S) ∈ Δ, and for
every s, υ ∈ Δ, s describes at least one S ∈ Σ with Υ (S) = υ.

Parametric Strands. The structured operational semantics that we have just
given clarifies the relations between the code being executed, the runtime envi-
ronment, the theory in force, and the actions taken. However, there is another
kind of regularity in the behavior of cppl programs. This is the fact that the
infinite number of strands described by the semantics are in fact all instances
of a finite number of genuinely different strands. They are simply instantiated
with infinitely many different values.

Any execution of the return statement return Φ x∗ unleashes either a strand
of the form

〈(+ret (ai , x∗)σ , Φσ)〉, ∅

or one of the form 〈(+fail ai σ , true)〉, ∅. If we let σ0 be an assignment that
maps each identifier in this code statement to a value of the appropriate type,
then every assignment σ in these two forms may be written as σ0 ◦ α for some
replacement α. That is, every strand of the forms shown is an instance of the
strands for the specific value σ = σ0. Similarly, any strand unleashed from let
x = new in c will be of the form s, υ ∪{a} for some a �∈ υ where s, υ is a strand
unleashed from c.

Send and receive branches are roughly tagged unions. The strands that may
be unleashed by the send branches (sb∗) are, in addition to a failure, all strands
that may be unleashed by the code embedded within the send branches, each
prefixed with a single positive message pattern. For receive branches, the prefixed
pattern is negative. However, our nondeterministic semantics does not require
the “tagging” initial patterns to be disjoint. Call branches are slightly more com-
plex, since there is the uncommitted behavior of a call and a failure, preceding
invocation of another branch.

We refer to this informally presented finite set of strands as S. Suppose in a
procedure δ the nesting depth d is the number of nested parentheses introduced
by send, receive, and call statements. Let the branching factor k be the maxi-
mum number of send branches, receive branches, and call branches in any one
statement.
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Proposition 1. Suppose the depth of a procedure δ is d and its branching factor
is k. There is a set S(δ) of strands with cardinality |S(δ)| ≤ kd such that, for
every strand s, υ, if s, υ ∈ [[δ]]σΓ , then s, υ = (s0, υ0) · α for some α and some
s0, υ0 ∈ S(δ).

If s, υ = (s0, υ0) · α for some α and some s0, υ0 ∈ S(δ), then for some σ, Γ ,
s, υ ∈ [[δ]]σΓ . If s0, υ0 ∈ S(δ), then length(s0) ≤ (2kd) + 2.

Typically, k and d are small, and the cardinality of S(δ) is far less than kd.
Although a finite set of procedures δi yields a finite set

⋃
S(δi), there are never-

theless infinitely many global executions associated with the δi; indeed, natural
questions such as secrecy are not uniformly decidable [16], although important
classes are decidable [6,22].

We assume that for every replacement α, Γ −→ φ implies Γ ·α −→ φ ·α, this
being a defining property of a consequence relation for logics with replacements.

Proposition 2. For every procedure δ, and replacement α, the judgment

σ;Γ � δ : s, υ implies σ · α;Γ · α � δ : (s, υ) · α.

Proof. Each rule is invariant under applying a replacement α.

5 Global Semantics

In order to model subprotocol call and return, and other local or inherently
secure interactions, we enrich the notion of a direction. Directions will distinguish
transmission from reception as before. However, a direction may additionally
specify that the peer at the other end of a message transmission arrow is regular.
It may also specify, in the case of message transmission, that the message will
definitely be delivered.

Definition 3. A direction d is a value with the following properties: (1) the
polarity of d is one of the symbols +,−, indicating transmission and reception
respectively; (2) the partner of d is one of the symbols regular and any; and (3)
the delivery confidence of d is one of the symbols guaranteed and maybe.

We write directions in the form +c
p and −c

p. The subscript p indicates whether
the partner is regular (r) or any (a). The superscript c indicates whether the
delivery confidence is guaranteed (g) or maybe (m). When the partner is any,
we generally omit the subscript. When the delivery confidence is maybe, we
generally omit the superscript. We say that a node is negative when its polarity
is −, and that it is positive when its polarity is +. The delivery confidence is of
interest only when a node is positive; the recipient of a message knows that it
has been received. With this amplification of the notion of direction, we preserve
the definitions of strand space from the beginning of Section 4.

Strands are either penetrator strands, taking the forms shown in Definition 9
from Appendix A, or else substitution instances of a finite number of roles of a
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given protocol. When a protocol is defined by a finite number of cppl declara-
tions δ1, . . . , δn, then these roles are the members of

⋃
S(δi) as in Proposition 1.

We call the instances of the roles regular strands.
Transmission that preserves confidentiality is a special kind of message trans-

mission; these nodes have direction d with positive polarity and regular partner.
Reception that ensures authenticity is (dually) a special kind of message recep-
tion; these nodes have direction d with negative polarity and regular partner.
If a communication arrow n → n′ ensures both confidentiality and authentica-
tion, then the directions of n and n′ both have regular partner. Purely local
communication such as subprotocol call or return is of this kind.

We write Conf for the set of nodes n of the form +c
r and Auth for the set of

nodes n of the form −c
r (where c may be either g or m).

The set N of all nodes forms a directed graph 〈N , (→ ∪ ⇒)〉 together with
both sets of edges n1 → n2 for communication and n1 ⇒ n2 for succession
on the same strand (Definition 8). The content of the annotations comes from
an enriched notion of bundle, in which message transmission arrows n1 → n2
behave as indicated by the properties of the directions of the two nodes.

Definition 4. Let B = 〈NB, (→B ∪ ⇒B)〉 be a finite acyclic subgraph of 〈N , (→
∪⇒)〉. B is a bundle with secure communication or sc-bundle if:

1. If n2 ∈ NB is negative, then there is a unique n1 such that n1 →B n2.
2. If n2 ∈ NB and n1 ⇒ n2 then n1 ⇒B n2.
3. If n′ ∈ Auth and n→B n′, then n is regular. If n ∈ Conf and n→B n′, then

n′ is regular; if moreover n→B n′′, then n′ = n′′.
4. If n1 ∈ NB is positive with delivery confidence guaranteed, then there is a

n2 such that n1 →B n2.

n �B n′ if some sequence of zero or more arrows →B,⇒B lead from n to n′.

An sc-bundle B does not assume secure communication if every node n occurring
in it has partner any and delivery confidence maybe. Thus, the bundles in the
sense of earlier work such as [21] are a special case of sc-bundles.

Proposition 3. If B is an sc-bundle, �B is a finite partial order. Every non-
empty subset of the nodes in B has �B-minimal members.

Secure Communication within CPPL. We represent the strands in the cppl
semantics as strands with secure communication as a function of the tags in the
terms. In particular, if a term is of one of the forms ±call t, ±ret t, or ±fail t, then
we regard the direction as being ±g

r . That is, the partner is assumed regular, and
the delivery is assumed to be guaranteed. If a term is of the form ±msg t, then
we regard the direction as being ±m

a . As a consequence, any sc-bundle formed
from cppl strands will provide authentication, confidentiality, and guarantee
of delivery for the local mechanism of subprotocol invocation and termination.
No assumption is made for the messages dispatched and received in ordinary
protocol transmission and reception events.
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In this, we follow the Dolev-Yao model for protocol messages over the net-
work, but we assume that each individual participant has a secure platform on
which to run her cppl procedures. Secure communication in the sense of Defini-
tion 4 can also be used to represent communication through a secure transport
medium such as the tunnels provided by TLS and IPsec, thus providing a strand
space variant to the methods of Broadfoot and Lowe [9]. We will now develop
a method—encapsulated in Propositions 4–6 and the finite semantics S(δ)—to
prove security properties for the procedure definitions of a protocol.

6 Reasoning About the Global Semantics

Occurrences and Sets. We view each term as an abstract syntax tree, in which
atoms are leaves and internal nodes are either tagged messages, concatenations,
or else encryptions. A branch through the tree traverses a key child if the branch
traverses an encryption {|t|}K and then traverses the second child (the key)
labeled K.

An occurrence of t0 in t is a branch within the tree for t that ends at a node
labeled t0 without traversing a key child. A use of K in t (for encryption) is a
branch within the tree for t that ends at a node labeled K and that has traversed
a key child. We say that t0 is a subterm of t (written t0 � t; see Definition 8,
Clause 1) if there is an occurrence of t0 within t. When S is a set of terms, t0
occurs only within S in t if, in the abstract syntax tree of t, every occurrence of
t0 traverses a node labeled with some t1 ∈ S (properly) before reaching t0. Term
t0 occurs outside S in t if t0 � t but t0 does not occur only within S in t.

A term t originates at node n1 if n1 is positive, t � term(n1), and n0 ⇒+ n1
implies t �� term(n0). It originates uniquely in a set N of nodes if there is exactly
one n ∈ N at which it originates. It is non-originating in N if there is no n ∈ N
at which it originates.

Definition 5 (Safety). Let B be an sc-bundle. a ∈ Safe ind0(B) if a originates
nowhere in B. a ∈ Safe indi+1(B) if either (1) a ∈ Safe indi(B) or else

(2) a originates uniquely on a regular node n0 ∈ B and, for every positive regular
node n ∈ B such that a � term(n), the following holds: Either n ∈ Conf or
else a occurs only within S in term(n), where

S = { {|h|}K0 : K−1
0 ∈ Safe indi(B) }.

a ∈ Safe ind(B) if there exists an i such that a ∈ Safe indi(B).

Proposition 4 (Safety ensures secrecy). If a ∈ Safe ind(B) and there exists
n ∈ B such that term(n) = a, then n is regular.

Proofs of this proposition and the others in this section will appear elsewhere.

Definition 6 (Export Protection). A set S of terms provides export protec-
tion for B if for every t ∈ S, t is of the form {|h|}K where K−1 ∈ Safe ind(B).
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When C is a set of terms, we also write Conf(C) for the set of nodes n ∈ Conf
such that term(n) ∈ C. The outgoing authentication test allows us to infer that
there is a regular strand including m0 ⇒+ m1 as in Figure 12.

n0
n0 ∈ Conf(C) or a occurs only within S � m0

n1

�
�������

�n0 �∈ Conf(C) and a occurs outside S � m1

�
�������

Fig. 12. The Outgoing Authentication Test

Proposition 5 (Outgoing Authentication Test). Let B be an sc-bundle
with regular nodes n0, n1 ∈ B; let S be a set of terms providing export pro-
tection for B; and let C be a set of terms. Suppose that (1) a originates uniquely
at n0 and either n0 ∈ Conf(C) or else a occurs only within S in term(n0); and
(2) n1 �∈ Conf(C) and a occurs outside S in term(n1).

There exists a regular m0 ⇒+ m1 such that (1) m0 is the earliest occurrence
of a on its strand s; (2) m1 is the earliest node on s such that m1 �∈ Conf(C) and
a occurs outside S in term(m1); (3) m1 is positive, and m0 is negative unless
m0 = n0. Moreover, n0 �B m0 ⇒+ m1 �B n1; a � term(m0); and for all
m �B m0, either n0 ∈ Conf(C) or a occurs only within S in m.

Proposition 6 (Incoming Authentication Test). Suppose n1 ∈ B is nega-
tive. (1) If t � term(n1) and t = {|h|}K for K ∈ Safe ind(B), then there exists
a positive regular m1 ≺ n1 such that t originates at m1. (2) If n1 ∈ Auth, then
there exists a unique positive regular m1 → n1. Moreover in either case:

Solicited Incoming Test. If a � t originates uniquely on n0 �= m1, then n0 �
m0 ⇒+ m1 ≺ n1.

Propositions 4–6 suffice to prove the main authentication and secrecy properties
of protocols. In our context, we want particularly to establish soundness, i.e. that
in every execution, one principal’s relies are supported by earlier guarantees by
other principals [23]. We write prin(m) to refer to the regular principal acting
on a node m, which we assume is some conventionally chosen parameter to the
regular strand that m lies on. If m lies on a penetrator strand, then prin(m) is
undefined. We also write P says φ, subject to the understanding that this will
be encoded suitably into the implemented logic.

Definition 7. Soundness. Bundle B supports a negative node n ∈ B iff ρ(n)
is a logical consequence of the set of formulas {prin(m) says γ(m) : m ≺B n}.

Let Π be an annotated protocol, and let B be a set of sc-bundles over Π. Π
is sound for B if, for all B ∈ B, for every negative n ∈ B, B supports n.
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In practice, we use the authentication test theorems to prove the existence of
nodes m such that the formulas prin(m) says γ(m) imply ρ(n). Since only positive
regular nodes m help to support ρ(n), if we cannot prove the existence of positive
regular nodes m of a protocol preceding a negative node n, then the rely formula
on n must be trivial, i.e. a consequence of the empty set of formulas. In particular
if the message received on n could have been generated without help by the
adversary, then ρ(n) = [ ], i.e. it is vacuously true.

7 Example: Protocol-Based Access

We will now return to the NS Quote Protocol given at the beginning of the paper
in Figure 1. In it, an initiator A requests on-line stock quotes from a responderB,
and B delivers them if it can determine that A is a registered subscriber. We
prove first that it is unsound, hardly surprising as it is based on the (broken)
Needham-Schroeder protocol.

Proposition 7. NSQ is unsound; there is a bundle B in which the public keys
of A and B are non-originating, and the nonces Na,Nb are uniquely originating,
but in which node n4 is unsupported.

Proof. In Figure 13, ρ(n4) = A says requests(A,B,D), while by contrast γ(m1) =
requests(A,M,D′).

m1
{|Na, A, D′|}KM � n1

•
�� {|Na, A, D|}KB � B

•
�
��������

� {|Na, SK |}KA •
��

•
�� {| SK |}KM � M

•
�� {| SK |}KB � •

�
��������

•
��

� {|Data is V |}SK
n4

��

Fig. 13. Counterexample to NS Quote Soundness

A Corrected Protocol. To correct the protocol, and also enrich its functionality,
we revise our example protocol to take the form in Figure 14. In this version of
the protocol, we add B’s name to the message sent from node n2, as suggested
by Lowe [29] when he discovered the attack we showed in Figure 13. We also
add a decision, made by the server B. It chooses in nodes n4 and n′

4 between
two levels of service. Corporate users may pay dear, but they receive prompt
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delivery of precise data at a premium price; individual users may pay much more
cheaply to receive information that is delayed a few minutes and rounded from
thirty-seconds of a point to the nearest eighth of point. The resulting protocol is
the same except at the last step, where different tags distinguish the two types
of outcome (Figure 14). There are three steps we will take to implement this

A B

m1
{|Na, A, D|}KB � {|Na, A, D|}KB � n1

m2

�
�{|Na, SK , B|}KA �{|Na, SK , B|}KA n2

�
m3

� {|SK |}KB � {| SK |}KB � n3

�
m4

�
� {|Dear V |}SK � {|Dear V |}SK

n4

�
. . . . . .

m′
4

�
� {|Cheap V |}SK � {|Cheap V |}SK

n′
4

�

Fig. 14. NSL Quote Protocol with Choice

example. First, we will program the message flow, namely the portion of the cppl
implementation that manipulates communication channels, generates nonces and
session keys, and sends and receives messages. Second, we will integrate the trust
management semantics for each of the messages. The final step is to specify
procedure headers, thereby providing a way to link behaviors together by calling
subprotocols. In this example, the benefit is to allow flexibility in retrieval of
certified public keys. However, the general ability to encapsulate subprotocols in
an informative way appears to us to be one of the major strengths of the cppl
integration of trust management and protocols.

Message Behavior. The client generates a nonce, opens a channel to the server,
and then expects to engage in two round trips of sending a message and receiving
a reply (Figure 15). The return statements here do not carry the parameters and
final guarantee, because those will be declared instead in the procedure header.
We omit the trust management formulas for now, leaving only underscores in
their place.

The server (Figure 16) waits to accept an incoming connection. It then re-
ceives a message off that channel, authenticates the claimed sender via a message
round trip, and delivers data of one quality or the other, tagged with either Dear
or Cheap.

Trust Management Annotations. For readability, we italicize the trust man-
agement formulas. The client (Figure 17) guarantees that it is requesting the
information in its first outgoing message, and relies on the server having guar-
anteed the information in its last incoming message, at one of the two possible
levels of service.
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let chan = connect(b addr) in
let na = new nonce in
send chan {na, a, d} kb
receive chan {na, k, b} ka
send chan {k} kb
receive chan cases

{Dear v} k return
| {Cheap v} k return

end

Fig. 15. Client Behavior in NSL Quote

let chan = accept in
receive chan {na, a, d} kb
let k = new symkey in

send chan {na, k, b} ka
receive chan {k} kb
send cases

chan {Dear v} k return
| chan {Cheap v} k return

end

Fig. 16. Server Behavior in NSL Quote

let chan = connect(b addr) in
let na = new nonce in
send [requests(a,b,d) ] chan {na, a, d} kb
receive chan {na, k, b} ka []
send [] chan {k} kb
receive chan cases

{Dear v} k [says curr val(b, d, v) ] return
| {Cheap v} k [says approx val(b, d, v) ] return

end

Fig. 17. Client Trust Management, NSL Quote

The server’s trust management behavior is described in Figure 18. The rely
formula on the server’s first receive statement is empty, i.e. an empty list []
meaning true , as is required because the adversary may have prepared the
message {na, a, d} kb. Before the final transmission, the server chooses be-
tween the two branches in the send statement according to a trust management
formula, guaranteeing payment for the information transmitted, and retrieving
a current value for v. If B can establish that A will pay for the high quality data
it selects the first branch. If B can establish only that A will pay for the low
quality data, it selects the second branch. If B cannot establish even that, for
instance because A is not yet a subscriber, then B must fail in this protocol run,
terminating abnormally without sending either of these messages, and without
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returning information to its caller. For either class of service, part of determin-
ing whether A will pay for the data is determining whether he has requested
it. A crucial authentication service provided by the protocol is to justify B in
relying on this conclusion when B receives message three, illustrating the value
of protocol soundness. B has one other guarantee in this version of the protocol;
he guarantees owns(a,ka) asserting that the purported peer in this run is the
owner of the public encryption key to be used in this run. This is the first oc-
currence of the identifier ka, reflecting the fact that the guarantee is a query, in
the manner of logic programming; it binds the new identifier ka to some value k
for which the trust management engine can establish that the principal bound
to a owns k as public encryption key.

Procedure Headers. We encapsulate the behavior of cppl procedures using head-
ers. The header gives the name of the procedure, the parameters with which it
should be called, the parameters that it will return, and two formulas. The
first, the rely statement, declares the condition under which this procedure may
properly be called. It is a relation on the parameters to the call. The caller must
guarantee at least this strong a condition before calling the procedure with ac-
tual parameters. The second statement is the procedure’s guarantee. This is a
relation on the procedure’s input and output parameters, and it defines what
the caller has learned by means of the procedure call. The guarantee need only
hold on successful termination; failure returns no parameters and guarantees
no formula. The server’s guarantee supplied(a, q, d, v) informs its caller
that data has been supplied to a client, so that the client may be billed. The
identifier q is one of the return parameters; the participants use it to interpret
the quality of the information returned in v. The identifier q occurs only in the
return guarantee, and the trust management engine selects a suitable value for
it immediately before a successful return. It uses the rules in Figure 20 as an
ingredient in selecting its value.The client must additionally use its trust in b
for this type of data, inferring curr_val(d, V) from says_curr_val(b, d, V),
and inferring approx_val(d, V) from says_approx_val(b, d, V).

let chan = accept in
receive chan {na, a, d} kb []
let k = new symkey in

send [owns(a, ka) ] chan {na, k, b} ka
receive chan {k} kb [says_requests(a, a, b, d) ]
send cases
[will_pay_dear(a, d); curr_val(d, v) ] chan {Dear v} k
return

| [will_pay_cheap(a, d); approx_val(d, v) ] chan {Cheap v} k
return

end

Fig. 18. Server Trust Management, NSL Quote
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client (a, ka, b, kb, b addr, d) (na, q, v)
rely [owns(a, ka); owns(b, kb); at(b, b addr) ]
guarantee [val(d, q, v) ]

statement, see Figure 17

end

server (b:text, kb) (a, q, d, v)
rely [owns(b, kb) ]
guarantee [supplied(a, q, d, v) ]

statement, see Figure 18

end

Fig. 19. Client and Server Procedure Headers in NSL Quote

val(D, "high quality", V) :-
curr_val(D, V).

val(D, "low quality", V) :-
approx_val(D, V).

Fig. 20. Axioms Governing Quality for NSL Quote

Subprotocols. An advantage of connecting procedures with their trust manage-
ment pre- and post-conditions in this way is that it leads to attractive notions
of subprotocol and of call. We illustrate subprotocols here (Figure 21) by incor-
porating an optional subprotocol for certificate retrieval when the server B does
not have a certificate for the client in its local certificate database. Possibly B
would like to increase its clientele; an independent service certifies customers,
and delivers the certificates for a fee. B attempts to retrieve the client’s public
key from its local store; if that succeeds, it calls the null_protocol, which does
nothing. If the local retrieval fails, it consults the certification service via the
get_public_key protocol. This protocol may be implemented separately, as the
only constraint that the programmer requires is that it should satisfy the inter-
face given in its header. We summarize the protocol’s correctness in a soundness
assertion. We state it here without being precise about the unique origination
and non-origination assumptions that define the set B of bundles with respect
to which soundness holds.

Proposition 8. The set of cppl procedures displayed in Figures 17–21 is sound
for bundles in which the private decryption keys are uncompromised and the
newly generated values are uniquely originating.

Using the disjoint encryption result for protocol composition [20], the soundness
of the main protocol depends only on a simple property of the certificate retrieval
subprotocol, beyond what is declared in its header.
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maybe_get_public_key (a:text) (ka:verkey)
guarantee [owns(a, ka) ]

call cases
[owns(a, ka) ]
null_protocol () () []

return
| [cert_auth(c:text); owns(c, kc:verkey); at(c, c_addr:text) ]

get_public_key (a, c, kc, c_addr) (ka)
[owns(a, ka) ]

return
end

null_protocol () () return end

get_public_key (a:text, c:text, kc, c_addr) (ka:verkey)
rely [owns(c, kc); at(c, c_addr) ]
guarantee [owns(a, ka) ]

... statement ...

end

Fig. 21. Subprotocols for Certificate Retrieval

8 The Current CPPL Implementation

We have developed two successive cppl implementations. The second generation
compiler was written after the structured operational semantics presented here
in Section 4, and benefited from the concise specification. In both cases, we
used OCaml [27] as the implementation language, and the compilers translate a
cppl source file into OCaml. When parsing a source file, the compiler generates
an abstract syntax tree modeled after the core syntax given in Figure 2. In
particular, it replicates the return parameter list and the guarantee formula in
the header for a procedure at each return statement within that procedure. Each
cppl procedure is translated into an OCaml procedure that takes a number of
cppl values as arguments and returns a tuple of results.

A full cppl program is constructed from at least two source files. The first is
a cppl source file used to specify the cppl procedures. The other is an OCaml
source file that defines the main routine invoked when the program is started.
This routine generates the principal’s theory from a sequence of Datalog [10]
formulas, and generates additional Datalog facts by opening a keystore contain-
ing public keys. Code generated from both files is linked against three libraries
needed at runtime. One is a communications library. It provides the channel
abstraction, including code to open channels to specified addresses and to await
an incoming connection. Second, the cryptographic library controls the format-
ting of messages as bitstrings, and provides abstractions of keys and operations
for encryption, decryption, hashing, signatures, and verification. Because of the
well-defined interfaces, alternative libraries can easily be substituted; we have
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developed one cryptographic library based on Leroy’s Cryptokit [26] and an-
other that provides access to a Trusted Platform Module [35,36], if the latter is
available on the underlying hardware.

The third main runtime library is our Datalog [10] trust management engine.
Datalog is a declarative logic language in which each formula is a function-free
Horn clause, and every variable in the head of a clause must appear in the body
of the clause. Our implementation uses the tabled logic programming algorithm
described in [11,12]. All queries terminate because of Datalog’s syntactic restric-
tions, and because the implementation maintains a table of intermediate results.

One of the main jobs of the compiler is to translate the message patterns con-
tained in the cppl source program into executable code. For a message pattern
in a receive statement, the generated code must parse incoming messages. The
compiler emits code containing calls to the interface procedures exported by the
cryptographic library. The emitted code must raise an exception if the incoming
message is not of the right form, or if an identifier in the pattern is already bound,
and the incoming message contains a different value in that position from the
value bound in the runtime environment. For message patterns in transmission
statements, the generated code must use the cryptographic library to assemble a
suitable concrete message, which is then handed to the communications library
for transmission through a channel. When asymmetric cryptography is used in
message transmission or reception, the code may require the cryptographic li-
brary to use a private key held only in its own keystore. For instance, when the
NSL Quote server B parses the message {na, a, d}kb, kb is bound in the run-
time environment. However, parsing succeeds only if the cryptographic library
possesses a private decryption key K−1

B inverse to the value KB bound to kb.
The private decryption key is not mentioned in cppl source programs, and it
is the obligation of the cryptographic library together with the main routine
to ensure that suitable private keys are available. The semantic productions for
Send and Receive in Figures 9 and 10 are optimistic, since they do not indicate
that these keys may be missing. The Receive production also does not explicitly
say that the environment is extended only from values contained as subterms of
an incoming message, not from values used only as encryption keys.

A number of different demonstration-sized protocols have been implemented
in cppl, suggesting solutions to different information security problems. Alter-
native protocols allow adapting the solutions to differing trust relations among
the principals.

9 Conclusion

Three central ideas have shaped our approach to cppl. First, cryptographic
protocols are a coordination mechanism between principals. The purpose of a
cryptographic protocol is to ensure that principals which have successfully com-
pleted their strands are sure to agree on certain values [37,30]. In this view, an
authentication property is an assertion about parameters matching between sep-
arate strands. “Entity authentication” means agreeing specifically on the param-
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eters naming the principals; “message authentication” for a message t requires
agreement on all of the atomic values contained in t. These and other variants
of agreement may be proved uniformly using the authentication test theorems
(Propositions 4–6). In the case of an annotated protocol, in which nodes are as-
sociated with rely and guarantee formulas, an agreement on values also ensures
a corresponding degree of agreement between the principals on assertions; we
summarize this in the notion of soundness (Definition 7). Many protocols must
also establish recency, by ensuring that an event in each local run occurs between
two events of each other local run [19]. Recency comes for free from the outgoing
test and the solicited incoming test. A cryptographic protocol thus coordinates
values, assertions, and time across different strands.

Our second motivating idea was that trust decisions at run time may control
a principal’s protocol behavior. Each message transmission is associated with a
commitment that the principal makes if it transmits the message. If the principal
cannot derive the trust constraint for a message, then the principal does not
send the message. This provides a mechanism for selecting between branches of
execution, namely to choose a branch with a derivable guarantee. If there is no
such branch, then the principal stops and aborts this protocol run.

Our third central idea was a semantic idea. We gave the semantics for a single
protocol procedure as a finite number of parametric strands, each of bounded
length. Each regular strand determines a sequence of messages that may have
been sent and received by the time the run is complete; these messages are
parametrized by the values (keys, nonces, names, prices, etc.) selected in this
run. The instances of the parametric strands are determined by the structured
operational semantics presented in Section 4. A global execution is a bundle. This
says that it is a number of regular strands, possibly together with penetrator
strands, that are linked together in a causally well founded way (Section 5). A
regular (non-penetrator) strand in a bundle represents a sequence of transmis-
sions and receptions enacted by one principal while executing a single session
of a single protocol role or subprotocol role. The bundle may use secure com-
munication, allowing it to model subprotocol call and return as local, secure
message transmissions. In Section 6 we developed useful techniques for deter-
mining whether all bundles for a particular set of protocols and subprotocols
satisfy security goals.

Future Work. Various areas remain for future work. For instance, our method
carefully separates the protocol properties that are used to prove soundness,
but not represented in a logic, from the trust management decisions that are
logically represented. The advantage of this procedure is that there is a clear
boundary between operational reasoning about protocol behavior and logical
reasoning within trust theories. However, there is also a disadvantage, since rea-
soning involving both protocol behavior and its trust consequences is not easily
integrated. As an example, if a principal is deciding whether to accept a new
protocol, it would be desirable to deduce its acceptability from an explicit policy.
We also need a better way to represent the imperative effects that may be the re-
sult of a protocol execution, for instance, a bank transferring money from buyer
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to seller at the end of an electronic commerce transaction. Finally, the current
data model of cppl is extremely impoverished, and an improved language would
allow processing of structured data to be integrated with protocol actions and
trust decisions.
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A Additional Strand Notions

Definition 8. Fix a strand space Σ:

1. The subterm relation � is the smallest reflexive, transitive relation such that
t � {|g|}K if t � g, and t � g, h if either a � g or a � h.
(Hence, for K ∈ K, we have K � {|g|}K only if K � g already.)

2. A node is a pair 〈s, i〉, with s ∈ Σ and i an integer satisfying 1 ≤ i ≤
length(tr(s)). We often write s ↓ i for 〈s, i〉. The set of nodes is N . The
directed term of s ↓ i is tr(s)(i).

3. There is an edge n1 → n2 iff term(n1) = +t or +c t and term(n2) = −t or
−a t for t ∈ A. n1 ⇒ n2 means n1 = s ↓ i and n2 = s ↓ i+ 1 ∈ N .
n1 ⇒∗ n2 (respectively, n1 ⇒+ n2) means that n1 = s ↓ i and n2 = s ↓ j ∈ N
for some s and j ≥ i (respectively, j > i).

4. Suppose I is a set of terms. The node n ∈ N is an entry point for I iff
term(n) = +t for some t ∈ I, and whenever n′ ⇒+ n, term(n′) �∈ I. t
originates on n ∈ N iff n is an entry point for I = {t′ : t � t′}.

5. An term t is uniquely originating in S ⊂ N iff there is a unique n ∈ S such
that t originates on n, and non-originating if there is no such n ∈ S.

If a term t originates uniquely in a suitable set of nodes, then it plays the role of
a nonce or session key. If it is non-originating, it can serve as a long-term shared
symmetric key or a private asymmetric key.

Definition 9. A penetrator strand is a strand s such that tr(s) is one of the
following:
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Mt: 〈+t〉 where t ∈text
KK : 〈+K〉 where K ∈ KP
Cg,h: 〈−g, −h, +g, h〉
Sg,h: 〈−g, h, +g, +h〉
Eh,K : 〈−K, −h, +{|h|}K〉
Dh,K : 〈−K−1, −{|h|}K , +h〉
Vh,K: 〈−[[h ]]K , +h〉
Ah,K: 〈−K−1, −h, +[[h ]]K〉
Hh: 〈−h, +hash(h)〉
TCh: 〈−h, +tag h〉
TSh: 〈−tag h, +h〉
A node is a penetrator node if it lies on a penetrator strand, and otherwise it is
a regular node.
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Abstract. We propose a probabilistic variant of the pi-calculus as a
framework to specify randomized security protocols and their intended
properties. In order to express an verify the correctness of the proto-
cols, we develop a probabilistic version of the testing semantics. We then
illustrate these concepts on an extended example: the Partial Secret Ex-
change, a protocol which uses a randomized primitive, the Oblivious
Transfer, to achieve fairness of information exchange between
two parties.

1 Introduction

Probabilistic security protocols involve probabilistic choices and are used for
many purposes including signing contracts, sending certified email and protecting
the anonymity of communication agents. Some probabilistic protocols rely on
specific random primitives such as the Oblivious Transfer ([1]). There are various
examples in this category, notably the contract signing protocol in [2] and the
privacy-preserving auction protocol in [3].

A large effort has been dedicated to the formal verification of security pro-
tocols, and several approaches based on process-calculi techniques have been
proposed. However, in the particular case of probabilistic protocols, they have
been analyzed mainly by using model checking methods, while only few attempts
of applying process calculi techniques have been made. One proposal of this kind
is [4], which defines a probabilistic version of the noninterference property, and
uses a probabilistic variant of CCS and of bisimulation to analyze protocols wrt
this property.

In this paper we present a framework for analyzing probabilistic security
protocols using the πprob-calculus, a probabilistic extension of the π-calculus
inspired by the work in [5]. In order to express security properties in this calculus,
we extend the notion of testing equivalence ([6]) to the probabilistic setting. We
propose a preorder based on the probability of passing a certain class of tests: a
process P is considered smaller than a process Q if, for each test, the probability
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la recherche et nouvelles technologies)

R. De Nicola and D. Sangiorgi (Eds.): TGC 2005, LNCS 3705, pp. 146–162, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Framework for Analyzing Probabilistic Protocols 147

of passing the test is smaller for P than for Q. Following the lines of [7], a
test can be seen as an adversary who interacts with an agent in order to break
some security property. In order to verify a security property, then, we can
create a specification which satisfies the property and show that the protocol is
smaller than the specification with respect to the testing preorder. If this holds,
then the adversary has smaller probability of succeeding with the protocol than
with the specification, so the protocol is correct with respect to the intended
property.

We illustrate the framework with an extended example of fair exchange pro-
tocol, where the property to verify is fairness. In this kind of protocol two agents,
A and B, want to exchange information simultaneously, namely each of them is
willing to send its secrets only if he receives the ones of the other party. We con-
sider the Partial Secrets Exchange protocol (PSE, [2]) which uses the Oblivious
Transfer as its main primitive. An important characteristic of the fair exchange
protocols is that the adversary is in fact one of the agents and not an external
party. As a consequence the behavior of A will be different when B behaves nor-
mally from the case in which B is trying to cheat. After encoding the protocol in
the πprob-calculus, we give a specification which models the behavior of A in case
he is being cheated (the non-cheating case is straightforward). We then express
fairness by means of a testing relation between the protocol and the specification
and we prove that it holds.

The rest of the paper is organized as follows: in the next section we introduce
πprob, our variant of the probabilistic π-calculus. We present its semantics and
propose a notion of probabilistic testing preorder. In Section 3 we illustrate the
Oblivious Transfer primitive, the Partial Secrets Exchange protocol (PSE), and
their encoding in the πprob-calculus. In Section 4 we specify the fairness property
and we prove the correctness of PSE. In Section 5 we discuss related work,
notably the analysis of the PSE protocol using probabilistic model checking.
Finally, Section 6 concludes and presents some ideas for future work.

For reasons of space, the proofs have been removed from the main text. They
can be found in the report version of this paper ([8]).

2 A Probabilistic Variant of π-Calculus

In this section we define a probabilistic process calculus suitable for implement-
ing security protocols. This calculus, which will be referred as the πprob-calculus,
is a probabilistic extension of the π-calculus, similar to the probabilistic asyn-
chronous π-calculus presented in [5].

A common feature of πprob and the calculus in [5] is that there is a distinction
between probabilistic and deterministic behavior. The former, represented by the
choice operator, is associated with the random choices performed by the process
itself. The latter, represented by the parallel operator, is related to the decisions
of an external scheduler.

The πprob-calculus differs from the calculus in [5] in that it allows only
blind (probabilistic) choices. This simplifies considerably semantics and rea-
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soning, while the calculus remains rich enough to model probabilistic security
protocols. Furthermore, the πprob-calculus contains some extra constructs, like
output prefix and pair splitting, that are useful to express the protocols we have
considered.

We could also add certain cryptographic primitives like the shared-key en-
cryption of the spi-calculus, however this is not necessary for the protocols con-
sidered in this paper.

2.1 Syntax

Let x, y range over a countable set of variables and n,m over a countable set of
channel names. The terms and processes of the πprob-calculus are defined by the
following grammar:

M,N ::= terms
x variable

| n name
| 〈M,N〉 pair

P,Q ::= processes
MN.P output

| M(x).P input
| P | Q composition
|

∑
i piPi prob. choice

| νnP restriction
| !P replication
| [M is N ]P match
| let 〈x, y〉 = M in P pair splitting
| 0 nil

The distinction between variables and channel names does not exist in the
original π-calculus but simplifies the treatment of some relations.

2.2 Probabilistic Automata

The semantics of πprob is based on Probabilistic Automata, which were intro-
duced in [9]. We briefly recall here the main notions, simplified and adapted for
our needs.

A discrete probabilistic space is a pair (X, pb) where X is a set and pb a
function pb : X $→ (0, 1] s.t.

∑
x∈X pb(x) = 1. Given a set Y we define the set of

all probabilistic spaces on Y :

Prob(Y ) = {(X, pb) | X ⊆ Y and (X, pb) is a discrete probabilistic space}

Let S be a set of states and A a set of actions. A probabilistic automaton is a
triple (S, T , s0) where s0 ∈ S (initial state) and T ⊆ S × Prob(A × S). The
elements of T are called transition groups or steps. The idea is that the choice
between transition groups is made non-deterministically by an external scheduler
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while the choice of a transition within a group is made probabilistically by the
process itself.1

Given a probabilistic automaton M = (S, T , s0) we define tree(M) as the
tree obtained by unfolding the transition system. The root n0 of tree(M) is
labeled by s0 and if n is a node labeled by s then for each (s, (X, pb)) ∈ T and
each (μ, s′) ∈ X there is a node n′ labeled by s′ and an arc from n to n′ labeled
by μ and pb(μ, s′).

A scheduler ζ is a function which solves the nondeterminism by selecting,
at each moment of the computation, a transition group among the ones allowed
at the current state. The execution tree of an automaton M under a scheduler
ζ, denoted by etree(M, ζ) is the tree obtained from tree(M) by pruning all the
arcs corresponding to transitions in groups not selected by ζ.

2.3 Semantics of πprob

The operational semantics of the πprob-calculus is given by means of probabilistic
automata defined inductively on the basis of the syntax. In order to simplify the
notation, we write

s { μi−→
pi

si | i ∈ I}

iff (s, ({(μi, si) | i ∈ I}, pb)) ∈ T and ∀i ∈ I : pi = pb(μi, si), where I is an index
set. When I is not relevant we will use the notation s { μi−→

pi

si}i.

The transitions of the automaton associated to a process are defined by the
rules in Figure 1.

The behavior of the choice operator is defined by the SUM rule. The transi-
tion to every member of the sum is possible with a τ action (blind choice). Note
that all transitions belong to the same group which means that the choice is not
controlled by the scheduler but is made by the process itself. IN and OUT are
self-explanatory. The RES rules model restriction on channel n: actions on that
channel are not allowed by the restricted process. Note that we have two rules
for the sake of clarity: for the transition groups which contain only τ actions
there is no need to check the channel name. PAR models interleaving, in which
each process maintains its transition groups. COM models communication by
handshaking. Since input/output transitions are always alone in their group,
this rule is rather simple and very similar to the non-probabilistic case. CLOSE
is similar to COM but works together with OPEN in order to implement scope
extrusion, that is the transfer of a new channel name between processes. Finally
CONG states that equivalent processes perform the same actions. The structural
equivalence ≡ used in CONG is defined as follows:

1 For πprob we actually need only a subset of P.A., namely we can restrict to the case
in which the second composant of a transition is either a singleton (a probabilistic
distribution which is 1 on exactly one pair label-state) or it is a distribution which
is positive only on τ labels. This restricted class of automata is similar (although
not identical) to the so-called simple probabilistic automata.
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IN m(x).P {m(x)−→
1

P} OUT mM.P {mM−→
1

P}

SUM
P

i piPi { τ−→
pi

Pi}i OPEN
P { mn−→

1
P ′}

νnP {m(n)−→
1

P ′}
m �= n

RES1
P { μ−→

1
P ′}

νnP { μ−→
1

νnP ′}
μ	=τ,

n/∈nm(μ)
RES2

P { τ−→
pi

Pi}i

νnP { τ−→
pi

νnPi}i

COM
P {mM−→

1
P ′} Q {m(x)−→

1
Q′}

P | Q { τ−→
1

P ′ | Q′[M/x]} PAR
P { μi−→

pi

Pi}i

P | Q { μi−→
pi

Pi | Q}i

∀i fn(μi) ∩ bn(Q) = ∅

CLOSE
P {m(n)−→

1
P ′} Q {m(x)−→

1
Q′}

P | Q { τ−→
1

νn(P ′ | Q′[n/x])} CONG
P ≡ P ′ P ′ { μi−→

pi

Q′
i}i ∀i.Q′

i ≡ Qi

P { μi−→
pi

Qi}i

Fig. 1. The late-instantiation semantics of the πprob-calculus. The functions fn,bn and
nm give the free, bound and total names of their argument respectively.

(α-renaming) P ≡ Q iff P ≡α Q P | Q ≡ Q | P
P | 0 ≡ P !P ≡ P | !P

let 〈x, y〉 = 〈M,N〉 in P ≡ P [M/x][N/y] [M is M ]P ≡ P

In the following sections we define some relations between πprob processes which
will help us expressing some properties of probabilistic protocols and reasoning
about them. We will also examine some properties of these relations.

2.4 Testing Relations Between πprob Processes

Testing is a well-known method of comparing processes, resulting in equivalences
weaker than the ones of the bisimulation family. The idea, proposed by De Nicola
and Hennessy ([6]), is that two processes are equivalent if they both pass the
same set of tests. A test is a process running in parallel with the one being
tested and which can perform a distinguished action ω that represents success.
This idea is very useful for the analysis of security protocols, as suggested in [7],
since a test can be seen as an adversary who interferes with a communication
agent and declares his success with an ω action. Then two processes are testing
equivalent if they are vulnerable to the same attacks.

In the probabilistic setting there are different approaches for defining test-
ing equivalence. For example [10] proposes a probabilistic extension of testing
equivalence which considers the ability of each process to pass a test with non-
zero probability (may testing) or probability one (must testing). However, when
analyzing security protocols we are not only interested in the ability of passing
a test, but also in the exact probability of success. Thus our definition resembles
more the one of [11] and the result is no longer an equivalence but a preorder.
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We start by defining the probability of a set of executions. Given a probabilis-
tic automaton M and a scheduler ζ, an execution fragment ξ is a path (finite or
infinite) from the root of etree(M, ζ). The probability of an execution fragment
ξ = n0

μ0−→
p0

n1
μ1−→
p1

n2
μ2−→
p2

. . . is defined as pb(ξ) =
∏

i pi. An execution is a

maximal execution fragment. The set of all executions of M under ζ is denoted
by exec(M, ζ).

Given an execution fragment ξ, a cone with prefix ξ is defined as Cξ = {ξ′ ∈
exec(M, ζ) | ξ ≤ ξ′} where ≤ is the prefix relation. We define pb(Cξ) = pb(ξ).
Let {Ci}i∈I be a countable set of disjoint cones. We define pb(

⋃
i∈I Ci) =∑

i∈I pb(Ci). We can show that this probability is well defined, that is two dif-
ferent sets of disjoint cones with the same union give the same probability.

A test O is a πprob-calculus process able to perform a distinguished action ω.
An interaction between O and a process P is a sequence of τ transitions starting
from P |O. In order to allow only τ actions we define νP = νn1 . . . νnkP , where
n1, . . . , nk are all the free names in P . Then an interaction between P and O is
an element of exec(ν(P |O), ζ)2 :

ν(P |O) = Q0
τ−→
p0

Q1
τ−→
p1

Q2
τ−→
p2

. . .

An interaction ξ is successful if Qi
ω−→
p

for some i. Let sexec(ν(P |O), ζ) = {ξ ∈
exec(ν(P |O), ζ) | ξ is successful}. This set can be obtained as a countable union
of disjoint cones ([5]), so the probability of a successful execution can be defined
as pb(sexec(ν(P |O), ζ)).

We now define the upper and lower probability for P to pass O.

Definition 1. Let P be a process and O a test. We define

P )O* = sup{pb(sexec(ν(P | O), ζ)) | ζ is a scheduler}
P +O, = inf{pb(sexec(ν(P | O), ζ)) | ζ is a scheduler}

Then we define the testing preorders for πprob-processes.

Definition 2. Let P,Q be processes. We define must and may-testing preorders
as follows:

P - may Q iff for all tests O : P )O* ≤ Q)O*
P - must Q iff for all tests O : P +O, ≤ Q+O,

In this paper we will only use may-testing to express safety properties of
security protocols, so we will write just - for - may .

As we will see in the following sections, an agent in the PSE protocol behaves
differently when his partner deviates from the protocol in an attempt to cheat. In
order to model this behavior we introduce a conditional testing preorder, which
is exactly the same as may-testing except that it only considers tests that satisfy
a certain condition.
2 With a slight abuse of notation we will sometimes use a process to denote its corre-

sponding probabilistic automaton.
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Definition 3. Let P,Q be processes. We define the conditional may-testing pre-
order as follows:

P -φ Q iff for all tests O : φ(O) ⇒ P )O* ≤ Q)O*
where φ(O) is a condition on O.

Finally we define a useful preorder between pairs of processes:
Definition 4. Let P1, P2, Q1, Q2 be processes. We define the relation -p between
pairs of processes as follows

(P1, P2) -p (Q1, Q2) iff P1 +p P2 - Q1 +p Q2

where P1 +p P2 stands for
∑2

i=1 piPi with p1 = p and p2 = 1− p.

2.5 Properties of Testing Preorders

In this section we examine some properties of the previously defined relations.
We present only the corresponding lemmas, all proofs can be found in [8].

The following lemma is very useful for reasoning about the upper probability
of passing a test. It crucially relies on the fact that in πprob probabilistic choices
are blind.
Lemma 1. Let P,Q be πprob processes and p ∈ [0, 1]. Then for all tests O

P +p Q)O* = pP )O*+ (1− p)Q)O*
A context C is a process containing a “hole”. We will denote by C[P ] the

process obtained by replacing the hole in C by P . A preorder is a precongruence
if it is closed under any context. May-testing is not a precongruence on arbitrary
processes since for P = [x is y]P ′, Q = [x is z]Q′, C = n(x).[ ], we have P - Q
but C[P ] - C[Q] does not hold for all P ′, Q′. However all previous relations
become precongruences if we restrict to closed processes.

Definition 5. A process is called closed if it contains no free variables.

Remark 1. Because of the distinction between variables and channel names, a
closed process can still have free channel names and therefore be able to com-
municate with the environment.

Lemma 2. - is a precongruence on closed processes.

The following lemma states that all probabilistic choices can be made in the
begging of the execution.
Lemma 3. Let P,Q be πprob processes and p ∈ [0, 1]. Then for all contexts C:

C[P +p Q] . C[P ] +p C[Q]

where . is the equivalence induced by -.
Finally, the following corollary is a consequence of lemmas 2 and 3.

Corollary 1. -p is a precongruence on closed processes, that is for all contexts
C and all closed processes P1, P2, Q1, Q2

(P1, P2) -p (Q1, Q2) ⇒ (C[P1], C[P2]) -p (C[Q1], C[Q2])
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3 Probabilistic Security Protocols

In this section we discuss probabilistic security protocols based on the Oblivious
Transfer and we show how to model them using the πprob-calculus.

3.1 1-out-of-2 Oblivious Transfer

The Oblivious Transfer is a primitive operation used in various probabilistic
security protocols. In this particular version a sender A sends exactly one of the
messages M1,M2 to a receiver B. The latter receives i and Mi where i is 1 or 2,
each with probability 1/2. Moreover A should get no information about which
message was received by B. More precisely the protocol OT 1

2 (A,B,M1,M2)
should satisfy the following conditions:

1. If A executes OT 1
2 (A,B,M1,M2) properly then B receives exactly one mes-

sage, (1,M1) or (2,M2), each with probability 1/2.
2. After the execution of OT 1

2 (A,B,M1,M2), if it is properly executed, for A
the probability that B got Mi remains 1/2.

3. If A deviates from the protocol, in order to increase his probability of learning
what B received, then B can detect his attempt with probability at least
1/2.

It is worth noting that in the literature the reception of the index i by B is
often not mentioned, at least not explicitly ([2]). However, omitting the index
can lead to possible attacks. Consider the case where A executes (properly)
OT 1

2 (M1,M1). Then B will receive M1 with probability one, but he cannot
distinguish it from the case where he receives M1 as a result of OT 1

2 (M1,M2).
So A is forcing B to receive M1. We will see that, in the case of the PSE
protocol, A could exploit this situation in order to get an unfair advantage.
Note that the condition 3 does not apply to this situation since this cannot be
considered as a deviation from the Oblivious Transfer. A generic implementation
of the Oblivious Transfer could not detect such behavior since A executes OT
properly, the problem lies only in the data being transfered.

Using the indexes, however, solves the problem since B will receive (2,M1)
with probability one half. This is distinguishable from any outcome of OT1

2 (M1,
M1) so, in the case of PSE, B could detect that he’s being cheated. Implemen-
tations of the Oblivious Transfer do provide the index information, even though
sometimes it is not mentioned ([2]). In other formulations of the OT the re-
ceiver can actually select which message he wants to receive, so this problem is
irrelevant.

Encoding in the πprob-calculus. The Oblivious Transfer can be implemented in
the πprob-calculus, using the probabilistic choice operator. In order to make it
impossible to cheat, a server process is used to coordinate the transfer. The
processes of the sender and the server are the following:

OT 1
2 (m1,m2, cas)

Δ= casm1.casm2.0

S(cas, csb)
Δ= cas(m1).cas(m2).(cbs〈1,m1〉+0.5 cbs〈2,m2〉)
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PSE (A, B, {ai}i, {bi}i) {
for i = 1 to n do

OT 1
2 (A,B, ai, ai+n)

OT 1
2 (B, A, bi, bi+n)

next
for j = 1 to m do

for i = 1 to 2n do
A sends jth bit of ai to B

for i = 1 to 2n do
B sends jth bit of bi to B

next
}

Fig. 2. Partial Secrets Exchange protocol

where m1,m2 are the names to be sent. cas is a channel private to A and S and
csb a channel private to B and S. Each agent communicates only with the server
and not directly with the other agent. B receives the message from the server
(which should be in parallel with A and B) by making an input action on csb.

It is easy to see that these processes correctly implement the Oblivious Trans-
fer. The only requirement is that A should not contain csb, so that he can only
communicate with B through the server.

3.2 Partial Secrets Exchange Protocol

This protocol is the core of three probabilistic protocols for contract signing,
certified email and coin tossing, all presented in [2]. It involves two agents, each
having 2n secrets split in pairs, (a1, an+1), ..., (an, a2n) for A and (b1, bn+1), ...,
(bn, b2n) for B. Each secret consists of m bits. The purpose is to exchange a
single pair of secrets under the constraint that, if at a specific time B has one
of A’s pairs, then with high probability A should also have one of B’s pairs and
vice versa.

The protocol, displayed in figure 2, consists of two parts. During the first A
and B exchange their pairs of secrets using OT 1

2 . After this step A knows exactly
one half of each of B’s pairs and vice versa. During the second part, all secrets
are exchanged bit per bit. Half of the bits received are already known from the
first step, so both agents can check whether they are valid. Obviously, if both A
and B execute the protocol properly then all secrets are revealed.

The problem arises when B tries to cheat and sends incorrectly some of his
secrets. In this case it can be proved that with high probability some of the
tests of A will fail causing A to stop the execution of the protocol and avoid
revealing his secrets. The idea is that, in order for B to cheat, he must send at
least one half of each of his pairs incorrectly. However he cannot know which of
the two halves is already received by A during the first part of the protocol. So
a pair sent incorrectly will have only one half probability of being accepted by
A, leading to a total 2−n probability of success.
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Now imagine, as discussed in section 3.1, that B executes OT 1
2 (B,A, bi, bi),

thus forcing A to receive bi. Now, in the second part, he can send all {bi+n | 1 ≤
i ≤ n} incorrectly without failing any test. Moreover A cannot detect this situ-
ation. If indexes are available A will receive (2, bi+n) with probability one half
and since he knows that bi+n is not the second half of the corresponding pair he
will stop the protocol.

Encoding in the πprob-calculus. In this paragraph we present an encoding of the
PSE protocol in the πprob-calculus. Before giving the corresponding process there
are two points worth discussing.

– The secrets exchanged by PSE should be recognizable, which means that
agent A cannot compute B’s secrets, but he can recognize them when he
receives them. Of course a secret can be recognized only as a whole, no single
bit can be recognized by itself. To implement this feature we allowB’s secrets
to appear in A’s process, as if A knew them. However we allow a secret to
appear only as a whole (not decomposed) and only inside a test construct,
which means that it can only be used to recognize another message.

– In our analysis we need to detect the fact that an agent sends a specific bit
in a certain position of a specific message. Thus, in the implementation of
PSE, each parameter aij (resp. bij) is considered to take values from the
domain {0ij, 1ij}, where 0ij (resp. 1ij) is a public channel but different for
each i, j.
Note that having secrets composed by public bits can lead to guessing attacks
by non-deterministic adversaries. Many analysis tools for security protocols,
such as the spi-calculus, do not allow the decomposition of secrets to avoid
such guesses. In our analysis, however, we express the correctness of a pro-
tocol as the equivalence with a properly constructed specification. This only
proves that the protocol will not reveal any secrets and is not related with
the adversary’s ability of guessing the secrets without interfering with any
partner (of course, this is known to happen with very small probability).
Such attacks will apply to both the protocol and the specification.

The encoding for the general case of n pairs and m bits per message is
displayed in figure 3. We denote by ai (resp. bi) the i-th secret of A (resp. B)
and by aij (resp. bij) the j-th bit of ai (resp. bi). ri is the i-th message received
by Oblivious Transfer and ki is the corresponding index.

The first part consists of the first 4 lines of the process definition. In this part
A sends his pairs using OT 1

2 , receives the ones of B and decomposes them. To
check the received messages A starts a loop of n steps, each of whom is guarded
by an input action on qi for synchronization. During the i-th step, ri is tested
against bi or bi+n depending on the outcome of the OT, that is on the value of ki.
The qsi channels are used to send the values to test to the TestOT sub-process.3

The second part consists of a loop of m steps, each of whom is guarded
by an input action on sj. During each step the j-th bit of each secret is sent

3 Note that we use the syntax c(〈x1, . . . , xn〉).P for c(x).let 〈x1, . . . , xn〉 = x in P .
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A({aij}i=1..2n,j=1..m, {bi}i=1..2n)
Δ
=∏n

i=1 OT 1
2 (〈ai1, . . . , aim〉, 〈a(i+n)1, . . . , a(i+n)m〉, casi) |

csa1(〈k1, r1〉).let 〈r11, . . . , r1m〉 = r1 in . . . csan(〈kn, rn〉).let 〈rn1, . . . , rnm〉 = rn in

νq1 . . . νqn+1(q1 � | ∏n
i=1 qi(x).νqsi(qsi〈ki, ri〉 | TestOT (i)) |

qn+1(x).νs1 . . . νsm+1(s1 � |∏m
j=1 sj(x).cpa1j . . . . cpa(2n)j .cp(d1j). . . . cp(d(2n)j).

νt1 . . . νtn+1(t1 � |∏n
i=1 ti(x).νtsi(tsi〈ki, rij , dij , d(i+n)j〉 | Test(i, j)) |

tn+1(x).sj+1�) |
sm+1(x).cpok))

TestOT (i)
Δ
= qsi(〈k, w〉).([k is 1][w is bi]qi+1 � | [k is 2][w is bi+n]qi+1�)

Test(i, j)
Δ
= tsi(〈k, w, x, y〉).([k is 1][w is x]ti+1 � | [k is 2][w is y]ti+1�)

Fig. 3. Encoding of PSE protocol

and the corresponding bits of B are received in dij . Then there is nested loop
of n tests controlled by the input actions on ti. Each test, performed by the
Test subprocess, ensures that B’s bits are valid. Test(i, j) checks the j-th bit
of the i-th pair. The bit received during the first part, namely rij , is compared
to dij or d(i+n)j depending on ki. If the bit is valid, an output action on ti+j is
performed to continue to the next test. Again, the tsi channels are used to send
the necessary values to the Test sub-process.

Finally, an instance of the protocol is an agent A put in parallel with servers
for all oblivious transfers:

I
Δ= A({aij}i=1..2n,j=1..m, {bi}i=1..2n) |

n∏
i=1

(S(casi , csbi) | S(cbsi , csai))

4 Verification of Security Properties

A well known method for expressing and proving security properties using pro-
cess calculi is by means of specifications. A specification Pspec of a protocol P
is a process which is simple enough in order to prove (or accept) that it models
the correct behavior of the protocol. Then the correctness of P is implied by
P . Pspec where . is a testing equivalence. The idea is that, if there exists an
attack for P , this attack can be modeled by a test O which performs the attack
and outputs ω if it succeeds. Then P should pass the test and since P . Pspec,
Pspec should also pass it, which is a contradiction (no attack exists for Pspec).

However, in case of probabilistic protocols, attacks do exist but only succeed
with a very small probability. So examining only the ability of passing a test is
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not sufficient since the fact that Pspec has an attack is no longer contradictory.
Instead we will use a specification which can be shown to have very small prob-
ability of been attacked and we will express the correctness of P as P - Pspec

where - is the testing preorder defined in section 2.4. Then an attack of high
probability for P should be applicable with at least the same probability for
Pspec which is contradictory.

4.1 A Specification for PSE

Let us recall the fairness property for the PSE protocol.

If B receives one of A’s pairs then with high probability A should also
be able to receive one of B’s pairs.

First of all we must point out two important differences between this type of
protocols and the traditional cryptographic ones.

– In traditional protocols both A and B are considered honest. The purpose of
the protocol is to ensure that no outside adversary can access the messages
being transfered.
On the other hand, in PSE the adversary is B himself, who might try to
deviate from the protocol in order to get A’s secrets without revealing his
own ones.

– In traditional protocols the secrets must remain secret all the time. A and
B always perform the same actions and always want to communicate with
each other.
On the other hand in PSE A shows different behavior when B is honest than
in case of an attempt to cheat. A is willing to reveal his secrets, only when
B wants the same too.

A specification of a protocol shows the correct behavior of the agents. Since
A’s behavior depends on B it makes sense to have different specifications de-
pending on B’s behavior. Since the case where B is honest is trivial, we are
considering the case where B tries to deviate from the protocol. That is B will
try to send some of his bits incorrectly. Moreover the behavior of A depends on
which these bits are. If B stays honest for the first half bits then A will do the
same.

It order to model B’s intention to cheat, we will use a function h : {1..n} $→
{1..m} that shows on which bit B is going to cheat for each pair. So h(3) = 4
means that B is going to send the 4th bit of (at least) one of the 3rd pair’s
secrets incorrectly. We consider “cheating” to be a deviation from the protocol
in a way that leads to a violation of fairness. Thus, in order for B to cheat h
must be defined on its whole domain. The goal is to exchange just one pair, if
at least one pair is sent correctly by B then fairness is not violated.

The specification is displayed in figure 4. As already discussed, it depends on
B’s cheating behavior, that is on the function h. The specification resembles a
lot the protocol, with two major differences:
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Aspec({aij}i=1..2n,j=1..m, h)
Δ
=∏n

i=1 OT 1
2 (〈ai1, . . . , aim〉, 〈a(i+n)1, . . . , a(i+n)m〉, casi) |

csa1(x) . . . csan(x).

νq1 . . . νqn+1(q1 � | ∏n
i=1 qi(x).νqsi(qsi〈ki, ri〉 | TestOTspec(i)) |

qn+1(x).νs1 . . . νsm+1(s1 � |∏m
j=1 sj(x).cpa1j . . . . cpa(2n)j .cp(x). . . . cp(x).

νt1 . . . νtn+1(t1 � |∏n
i=1 ti(x).νtsi(tsi〈ki, rij , dij , d(i+n)j〉 | Testspec(i, j, h)) |

tn+1(x).sj+1�) |
sm+1(x).cpok))

TestOTspec(i)
Δ
= qsi(x).qi+1�

Testspec(i, j, h)
Δ
=

{
tsi(x).(ti+1� +0.5 0) if h(i) = j
tsi(x).ti+1� otherwise

Fig. 4. Specification for the PSE protocol

1. The specification does not use any of its input (all input variables are re-
placed by x to point out this fact). Moreover bi’s are no longer used (thus
they are removed from the parameter list).

2. The specification does not test the received bits. In the first part, TestOTspec

accepts all messages. In the second, Testspec accepts all bits, except those
on which B is known to cheat, which are accepted only with probability one
half.

As a consequence the specification is much simpler than the protocol. As we
will show in the next section, if h is total then A will make n choices and the
probability of succeeding in all of them will be negligible.

4.2 Proving the Correctness of PSE

Correctness of the specification. First we show that the specification is indeed
a proper specification for PSE with respect to fairness, in case B tries to cheat.
Let l be the maximum number of bits that B is willing to reveal for its secrets.
So B’s cheating behavior will be described by a function h, such that h(i) ≤ l+1
for all i ∈ {1..n}. This is by definition of PSE, otherwise B would reveal l + 1
bits of at least one pair of secrets and one pair is enough for A.

As we already discussed Aspec does not depend on its input. Moreover it is
deterministic, that is only one transition is possible at any moment, except from
Testspec(i, j, h) for h(i) = j where the process stalls with probability one half.
Since h(i) ≤ l + 1, ∀i ∈ {1..n}, all n of these tests will appear in the first l + 1
steps of the second part of the protocol. If A fails in even one test then he stalls,
so the total probability of advancing to step l+2 and reveal its l+2 pair is 2−n.
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This means that Aspec satisfies fairness. If B at some point of the protocol
has l bits of one of A’s pairs, then with probability at least 1− 2−n A will have
l−1 bits of at least one of B’s pairs. If l = m (B has a whole pair) then A should
have at least m− 1 bits and the last bit can be easily computed by trying both
0 and 1. In other words B cannot gain an advantage of more than one bit with
probability greater than 2−n.

Relation between A and Aspec. Having proved the correctness of the specification
with respect to fairness, it remains to show its relation with the original protocol.
ProvingA - Aspec means to prove that if A is vulnerable with high probability to
an attack O, then Aspec will be also vulnerable with at least the same probability.
Since we know that the probability of a successful attack for Aspec is very small,
we can conclude that an attack on A is very unlikely.

Note however that Aspec models the behavior of A only in case of an attack
described by the function h. So A - Aspec cannot hold in general since A will
pass with greater probability a test which models an honest agent. Thus, we
need to use the conditional may-testing defined in section 2.4.

An instance of the specification is a process Aspec put in parallel with servers
for all oblivious transfers:

Ispec(h) Δ= Aspec({aij}i=1..2n,j=1..m, h) |
n∏

i=1

(S(casi , csbi) | S(cbsi , csai))

LetH be the set of all total functions h : {1..n} $→ {1..m}. PSE will be considered
correct wrt fairness if:

∀h ∈ H : I -φh Ispec(h)
where φh(O) = true iff ∀i ∈ {1..n} :

O does not contain both bih(i) and b(i+n)h(i)

The condition φh ensures that the test will try to cheat on the h(i)-th bit of each
pair i. The idea is that in order to cheat, an intruder should refuse to send at
least one bit of each message. It can be proved that-φh , for the specific condition
φh described above, is a precongrunce on closed processes wrt the contexts that
satisfy φh. More details can be found in [8].

We can now state the correctness of PSE, as defined above.

Theorem 1. PSE is correct with respect to fairness.

5 Related Work

Security protocols have been extensively studied during the last decade and many
formal methods have been proposed for their analysis. However, the vast majority
of these methods refer to non-deterministic protocols and are not suitable for
the probabilistic setting, since they do not allow to model random choices. One
exception is the work of Aldini and Gorrieri ([4]), where they use a probabilistic
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process algebra to analyze fairness in a non-reputation protocol. Their work is
close to ours in spirit, although technically it is quite different. In particular,
we base our analysis on a notion of testing while theirs is based on a notion of
bisimulation.

With respect to the application, the results the most related to ours come from
Normanand Schmatikov ([12], [13]), who use probabilisticmodel checking to study
fairness in two probabilistic protocols, including the Partial Exchange Protocol. In
particular, in [13] they model the PSE using Prism, a probabilistic model checker.
Their treatment however is very different from ours: their model describes only the
“correct” behavior for both A and B, as specified by the protocol. B’s ability to
cheat is limited to prematurely stopping the execution, so attacks in whichB devi-
ates completely from the protocol are not taken into account. Having a simplified
model is important in model checking since it helps overcoming the search state
explosion problem, thus making the verification feasible.

The results in [13] show that with probability one B can gain a one bit
advantage, that is he can get all m bits of a pair of A by revealing only m − 1
bits of his. This is achieved simply by stopping the execution after receiving the
last bit fromA. Moreover a method of overcoming the problem is proposed, which
gives this advantage to A or B, each with probability one half. Is is worth noting
that this is a very weak form of attack and could be considered as negligible,
since A can compute the last bit very easily by trying both 0 and 1. Besides a
one bit advantage will always exist in contract signing protocols, simply because
synchronous communication is not feasible.

In our approach, by modeling an adversary as an arbitrary πprob process
we allow him to perform a vast range of attacks including sending messages,
performing calculations, monitoring public channels etc. Our analysis shows not
only that a one bit attack is possible, but more important that no attack to
obtain an advantage of two or more bits exists with non-negligible probability.
Moreover our method has the advantage of being easily extendible. For example,
treating more sessions, even an infinite number of ones, can be done by putting
many copies of the processes in parallel.

Of course, the major advantage of the model checking approach, with respect
to ours, is that it can be totally automated.

6 Conclusion

In this paper we examined a method to analyze probabilistic security protocols
using process calculi. The main tool for this analysis is the πprob-calculus, a prob-
abilistic variant of the π-calculus. The probabilistic choice, provided by πprob,
allowed us to encode the Partial Exchange Protocol, a probabilistic protocol
based on the Oblivious Transfer. In order to prove the correctness of this pro-
tocol, we defined various preorders between πprob processes and examined their
properties. Then we presented a properly constructed specification and showed
that it is stronger than the original protocol, thus proving that the possibility
of success for any attack is very small.
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Our results show that process calculi techniques can be successfully applied to
security protocol analysis. There are various advantages of this approach. First of
all the use of process calculi allows the use of various tools from the corresponding
theory. The proofs obtained are general, covering every possible adversary and
are not instance-based as in model checking techniques. Moreover process calculi
allow the analysis of a protocol in a more complex environment, having for
example many agents and multiple simultaneous instances of a protocol. It is
worth noting that many attacks of well known protocols only appear in such
situations.

In [14] an algorithm for deciding may-testing is presented, for fully proba-
bilistic automata. We believe that this result can be extended to the probabilistic
automata defined in section 1.2, giving the ability of automatically proving the
correctness of probabilistic security protocols.
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A Formal Semantics for Protocol Narrations
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Abstract. Protocol narrations are an informal means to describe, in an
idealistic manner, the functioning of cryptographic protocols as a sin-
gle intended sequence of cryptographic message exchanges among the
protocol’s participants. Protocol narrations have also been informally
“turned into” a number of formal protocol descriptions, e.g., using the
spi-calculus. In this paper, we propose a direct formal operational seman-
tics for protocol narrations that fixes a particular and, as we argue, well-
motivated interpretation on how the involved protocol participants are
supposed to execute. Based on this semantics, we explain and formally
justify a natural and precise translation of narrations into spi-calculus.

1 Introduction

The setting. In the cryptographic protocol literature, protocols are usually ex-
pressed as narrations (see for example [CJ97, MvOV96]). A protocol narration
is a simple sequence of message exchanges between the different participating
principals and can be interpreted as the intended trace of the ideal execution of
the protocol. The protocol in Table 1 is a typical example of this style. The two

A � S : (A .B)
S � A : {((B . (kAB . t)) . {(A . (kAB . t))}kBS )}kAS

A � B : {(A . (kAB . t))}kBS

Table 1. Denning-Sacco protocol

principals A and B are
both connected to the
server S who shares se-
cret keys kAS and kBS with
each of them. The protocol
tells the story (narration)
where A wants to establish

a secret connection (a shared key) with B via the common server S: first, A
should contact S, S generates the fresh key intended for A and B and passes it
on to A; then, A contacts B directly, at the same time delivering the fresh key.
The name t is used as a time-stamp required to prevent from replay attacks;
earlier version of the protocol were flawed in this respect.

While much of the literature is concerned with stating and proving a security
property of protocols like this one, we are more interested in the bare operational
content of the description technique of narrations.

Our own motivation for the interest in a formal semantics for narrations is
that we had implemented a “straightforward” translator [Gen03] from protocol
narrations into the spi-calculus, which is a pi-calculus extended with encryption
� Supported by the Swiss National Science Foundation, grant No. 21-65180.1
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primitives [AG99]. Then, we were looking for a way to formally prove our trans-
lator correct and had the problem that there was no formal intended semantics
to compare to. This lacking semantics is what we provide within this paper. In-
deed, it turns out that the attempt to properly formalize narrations brings one
already much closer to spi-like executable descriptions, but there are a number
of insightful observations along the way, on which we report here as well.

The challenge. Despite being rather intuitive, the description technique of proto-
col narrations contains lots of implicit concepts. Looking for a formal semantics,
these need to be rendered explicit. For example, Abadi [Aba00] pointed out that
“informal protocol narrations” need to be complemented with explanations of
some either implicitly assumed facts or additional information to remove ambi-
guities. He raised four tasks that need to be pursued:

1. One should make explicit what is known (public, private) before a protocol
run, and what is to be generated freshly during a protocol run.

2. One should make explicit which checks the individual principals are expected
to carry out on the reception of messages.

3. Principals act concurrently, in contrast to the apparently sequential idealized
execution of a run according to a narration.

4. Concurrency occurs also at the level of different protocol sessions, which may
happen to be executed simultaneously while sharing principals across.

(Interestingly, Abadi used these requirements to motivate the use of the spi-
calculus as a description technique for “formal protocol narrations”.)

The first item above should be clear: data is missing otherwise. To this aim,
narrations usually come with a bit of explanation in natural language on the
spirit of the protocol and on the assumptions made. Essentially, these assump-
tions consist of expliciting the pieces of data known in advance by the agents1

and those that are to be freshly generated during the course of a protocol run.
The second item above results from the too high level of abstraction of mes-

sage exchanges, noted as A�B:M . There are a number of problems connected
to the fact that message M is usually transmitted from A to B by passing
through an asynchronous insecure network where a potential intruder can inter-
fere [DY83]. Thus, once B receives some message, it may be just the expected
one according to the protocol, but it may also be an intended message received
at the wrong moment and, worse, it may even be an unintended message forged
by some malicious attacker. So, B needs to perform some informative checks.
But precisely which ones? For example, when B receives M it must first check
in how far, at this very moment, it “understands” M (with respect to possible
encryptions). Then, if B acquires new knowledge by this analysis, it must ensure
that this new knowledge is consistent with its previously acquired knowledge.
Some careful analysis is due, requiring a suitable representation of knowledge.

The third item above looks innocent at first, but once the non-atomic passage
of messages through the network is properly taken into account, some surprising

1 We use the terms principal and agent interchangeably.



A Formal Semantics for Protocol Narrations 165

effects arise due to parts of later message exchanges (referring to the order of
exchanges in a narration) possibly occurring before earlier message exchanges
have completed or even started.

The fourth item above is again intuitively straightforward, but the description
technique of narrations completely ignores the problem.

Our approach. In this paper, we present solutions to the first three items, leav-
ing the fourth for future work (see Section 6). Concerning the first item, we
simply add a declaration part to narrations (§2). Here, we are no different from
competing approaches (see the paragraph on Related work). On item two, we
propose to compile exchanges of the form A�B:M into three separate syntactic
parts (§3):

(i) A asynchronously sends M towards B,
(ii) B receives some message (intended to be M), and
(iii) finally B checks that the message it just received indeed has the expected

properties (associated with M , from the point of view of B).

With respect to the required checks, our approach is to automatically generate
the maximum of checks derivable from the static information of protocol nar-
rations. We call the resulting refined notion of narrations executable, because it
will allow us to formalize an operational semantics of narrations, which was not
possible with an atomic, or synchronous, interpretation of message exchanges.

Concerning the third item, we profit from the above decomposition of mes-
sage transmission and introduce a natural structural equivalence relation on
executable narrations that allows us to bring any of the (con-)currently enabled
actions to top-level. On this basis, we provide a labeled transition semantics (§4).

Finally, we rewrite executable narrations within the spi-calculus, which is
then only a minor, albeit insightful, remaining step (§5). We then establish a
straightforward formal operational correspondence between the two semantics.

Impact. Our paper targets at two different audiences.
To the cryptographic protocol audience, we offer a high-level bridge to the

low-level (process calculus motivated) semantics of protocol narrations. However,
it is our primary intention to accomplish this undertaking such that a reader does
not need to be proficient in spi-calculus or its relatives. Thus, we propose—for
an only slightly refined narration syntax—a formal semantics in which we cast in
high-level narration terms the behavior of a corresponding low-level spi-calculus
semantics. Analysis techniques can now be built on top of this direct semantics.

To the process calculus audience, mainly as a by-product, we offer a gentle
systematic way to comprehend and formally justify spi-calculus representations
corresponding to protocol narrations. In particular, the uniform generation of
“checks-on-reception” was lacking in earlier translations. In this sense, our formal
description can also be seen as an abstract formulation of our compiler [Gen03].

Related work and future work are deferred to the concluding section (§6).
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Table 2. Protocol narrations

M, N ::= a A {M}N (M . N) (messages M )
T ::= A�B:M (exchanges)
L ::= ε T ;L (narrations)
D ::= A knows M A generates n private k (declarations)
P ::= D; P L (protocol narrations D)

2 Extending Protocol Narrations

Like in the competing approaches on the representation of protocol narrations,
we extend narrations with a header that declares the initial knowledge of each
agent, the names generated by them and also the names that are assumed
to be initially only known by the system (this last point permits to simulate
for example a first pass where shared keys have been distributed among some
agents).

Hence, an extended protocol narration is composed of two parts: a sequence
of declarations followed by the narration itself. The agents are picked among a
countably infinite set A of agent names ranged over by A,B,C, . . . , S, . . . and
the messages are built upon a countably infinite set N of names ranged over by
a, b, c, . . . , k, l,m, n, . . .. For sake of simplicity, we assume that A ∩N = ∅.

For simplicity, we consider here only the possibility to concatenate messages
(denoted by (M .N) for M and N) or to encrypt them under a shared-key
cryptosystem ({M}N is the encryption of message M with shared-key N). It is
straightforward to extend the following formal development to a richer message
language (using ideas of [Bri04, BBN04]). We implicitly assume that all agents
involved in the protocol know each other; this can be generalized by explicit
declarations. The syntax of messages and protocol narrations is given in Table 2.

The meaning of private k is that k is a name which is initially only available
for the agents involved in the protocol. Typically, it is useful to simulate that
an agent A and a server S initially share a secret key kAS . The meaning of
A knows M is simply that initially, agent A knows the piece of data M . Finally
the meaning of A generates n is that A will generate a fresh name n (typically
a nonce). For the sake of clarity, we enforce fresh generated names to be declared
explicitly. Table 3 shows the Denning-Sacco protocol using our framework.

Table 3. Denning-Sacco protocol, with formal declarations

private kAS ;private kBS ;
A knows kAS ; A knows t; B knows kBS ; B knows t;
S knows kAS; S knows kBS ; S knows t;S generates kAB;
A�S:(A . B);
S�A:{((B . (kAB . t)) . {(A . (kAB . t))}kBS )}kAS ;
A�B:{(A . (kAB . t))}kBS ; ε
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It often happens in cryptographic protocols that a secret is shared by several
participants. For this reason, we propose to introduce as a macro the construct

A1, . . . , An share k

which is intended to mean that the agents A1, . . . , An share the secret name k.
This macro is simply expanded into:

private k;A1 knows k; . . . ;An knows k

To ease the writing of formal declarations, one can also imagine to introduce the
shortcut A1, . . . , An knows M to mean A1 knows M ; . . . ;An knows M .

3 Compiling Protocol Narrations

Target syntax. As motivated in the Introduction, executable narrations (set X ,
as defined in Table 4) are to be more explicit about the behavior of individual
agents. Instead of atomic exchanges of the form A�B:M as used in the standard
narrations of Table 2, we observe four more fine-grained basic actions (nonter-
minal I in Table 4): emission A:B!E, reception B:?x, and checking B:φ, which
are explicitly attached to some principal, and scoping νk, which is reminiscent of
the spi-calculus and represents the creation and scope of private names. Scoping
is decoupled from principals, allowing us to use a single construct for names that
are private and generated according to the declarations of §2.

In interacting systems, when an agent receives a message, it binds it to a fresh
variable for reference in subsequent processing. For this purpose, we introduce
a well-founded totally ordered countably infinite set x, y, z, . . . of variables V
that we assume to be disjoint from A ∪ N . An agent can operate in different
ways on a message: (1) as with the previous standard narrations, it can con-
catenate two messages or encrypt one message with another (the key); (2) it
can project a message onto its parts using π1(E) or π2(E) (if E “represents”
a pair of two messages) or decrypt it using DF (E) (if it knows the key “rep-
resented by” F that was used to encrypt the message “represented by” E).
Since an agent does not only handle messages but also variables, we introduce
the notion of message expressions (E ), including the above further operations.
The process of finding out whether some expression indeed “represents” some

Table 4. Syntax of executable narrations

E,F ::= a A {E}F (E . F ) (expressions E)
x DF (E) π1(E) π2(E)

φ, ψ ::= tt [E=F ] [E :M ] φ∧φ (formulae F )
I ::= νk A:B!E A:?x A:φ (simple action)

X ::= ε I ;X (executable narrations X )
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particular message, will be formalized later on using the evaluation function in
Table 10.

Formulae φ on received messages are described by (conjunctions of) two
kinds of checks: equality tests [E=F ] on expressions denote the comparison of
two bit-streams of E and F ; well-formedness tests [E :M ] denote the verification
of whether the projections and decryptions contained in E are likely to succeed.

Table 4 lists the syntax of expressions, formulae and executable narrations.
In the following, we will omit the trailing ; ε of a non-empty executable narration.
Moreover, we overload the operator ; to also concatenate narrations.

Definition 1. Let M ∈ M, E ∈ E, φ ∈ F, x ∈ V. We let n(M), n(E), and
n(φ) denote the set of names occurring in M , E, and φ, respectively. Similarly,
we let v(E) and v(φ) denote the set of variables occurring in E and φ. E{M/x}
and φ{M/x} denote the substitution of M for x in E and φ, respectively.

Knowledge representation. As motivated in the Introduction, the central point of
the actual behavior of protocols is to find out which checks are to be performed.
We further motivated that such checks need to be based on (1) the narration
code, which statically spells out the intended message to be received, and (2) the
current knowledge at the moment of reception, which imposes constraints on how
much the recipient can dynamically learn from the received message and on what
other information the newly acquired knowledge must be consistent with.

Instead of accumulating only the dynamically acquired messages (stored in
variables x) we propose to tightly connect the (according to the narration) stat-
ically intended messages M with the dynamically received actual messages x.
For this, we simply use pairs (M,x). Since consistency checks will then (have
to) operate on such pairs, we need to generalize this representation of principal’s
knowledge to finite subsets of M ×E . The underlying idea is that a pair (M,E)
means that the expression E is supposed to be equal (or: has to evaluate) to M .

The following definition introduces knowledge sets, and also some tradition-
ally employed operations on them: synthesis reflects the closure of knowledge
sets using message constructors; analysis reflects the exhaustive recursive de-
composition of knowledge pairs as enabled by the currently available knowledge.

Definition 2 (Knowledge). Knowledge sets K ∈ K are finite subsets of M×
E.

The set of names occurring in K is denoted by n(K).

Table 5. Synthesis

syn-pair
(M, E) ∈ S(K) (N, F ) ∈ S(K)

((M . N), (E . F )) ∈ S(K)

syn-enc
(M, E) ∈ S(K) (N, F ) ∈ S(K)

({M}N , {E}F ) ∈ S(K)
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Table 6. Analysis

ana-ini
(M, E) ∈ K

(M, E) ∈ A0(K)

ana-fst
((M . N), E) ∈ An(K)

(M, π1(E)) ∈ An+1(K)
ana-snd

((M . N), E) ∈ An(K)

(N, π2(E)) ∈ An+1(K)

ana-dec
({M}N , E) ∈ An(K) (N, F ) ∈ S(An(K))

(M, DF (E)) ∈ An+1(K)

ana-dec-rec
({M}N , E) ∈ An(K) (N, F ) �∈ S(An(K))

({M}N , E) ∈ An+1(K)

ana-nam-rec
(M, E) ∈ An(K) M ∈ N ∪A

(M, E) ∈ An+1(K)

The synthesis S(K) of K is the smallest subset of M×E containing K and
satisfying the syn-rules in Table 5.

The analysis A(K) of K is
⋃

n∈N
An(K) where the sets Ai(K) are the small-

est sets satisfying the ana-rules in Table 6.

Our definition of analysis refines the usual approach reminiscent of Paulson
[Pau98]. Instead of directly defining a “flat” analysis set, we had to define a
finitely stratified hierarchy (An(K))n∈N. Essentially, the index n of an analysis
set An(K) approximates the number of proper deconstruction steps that were
needed in order to derive its knowledge items (see the rules ana-ini, ana-fst,
ana-snd, and ana-dec). In contrast to the standard approach, corresponding
to An(K) ⊆ An+1(K), here only certain items—not all of them—may be be
propagated from analysis level n to n+1 without proper deconstruction step.

As the following example shows, with the notion of knowledge of this paper
the simple rule An(K) ⊆ An+1(K) would allow us to possibly analyse the same
message several times, in different ways, which would indeed be harmful. Assume
that we remove the rules ana-dec-rec and ana-nam-rec as well as the indices
of analysis sets in Table 6 (which amounts to admitting An(K) ⊆ An+1(K)).
If we now analyze the knowledge set K = {(k, k), ({k}k, x)} according to this
“standard” approach then we would first get the pair (k,Dk(x)), then the pair
(k,DDk(x)(x)), then (k,DDDk(x)(x)(x)), etc. The resulting analysis set A(K)
would be of infinite size, and thus not even be a knowledge set2, which counters
the goal of providing a finite representation of the knowledge of participants.

Instead, we control the propagation from analysis level n to n+1 by the
rules ana-nam-rec and ana-dec-rec. Knowledge items (M,E) can only be

2 In contrast, the “standard” analysis of the corresponding (i.e., projected onto the
static component) knowledge set K1 = {k, {k}k} simply yields A(K1) = {k, {k}k}.
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propagated to the next level of the analysis if M is not analysable (i.e., de-
constructible) with the knowledge of the same level: either M is a pure name
(possibly an agent name) or M can not be decrypted with knowledge from the
same analysis level. Note that when computing the sequence (An(K))n∈N, the
rules ana-fst, ana-snd and ana-dec strictly decrease the size of the messages,
so they can only be applied a finite number of times. Thus, it is obvious that
the sequence (An(K))n∈N converges and thus A(K) is finite.

Generating checks. The above knowledge representation allows us to generate
the checks required on message reception in a justified manner. Recall that these
checks must verify (1) in how far the expectations of the recipient on the received
message (as expressed statically in the narration) are matched according to the
recipient’s current knowledge, and (2) in how far the gained knowledge is con-
sistent with previously acquired knowledge.

Thus, obviously necessary checks are due to the type of messages: if an ex-
pression shall correspond to a pair then it better allows for projections; if an
expression shall correspond to an encrypted piece of data, then it better allows
for decryption with the appropriate (corresponding) key—but only if it is known.

Less obviously required checks result from the following observation. Since a
message (identifier) M may occur more than once in a protocol narration it may
happen that, in some knowledge set, M is related to two different expressions E1
and E2. As M was precisely used in protocol narrations to indicate the very same
piece of data, such a knowledge set can only be considered consistent if E1 and
E2 indeed evaluate to the same message. Let us assume, as it is customary, that
agents dispose of some meaningful initial knowledge (usually of the form (M,M)
with M representing some initially known key or participant name). Then, the
consistency check for repeated occurrences of data implicitly may take care of
testing, e.g., whether some received datum was sent by the expected agent.

To formalize these requirements, we generate consistency formulae.

Definition 3 (Consistency formula). Let K be a knowledge set. Its consis-
tency formula Φ(K) is defined as follows:

Φ(K) def=
∧

((M . N),E)∈K ([π1(E) :M ]∧ [π2(E) :M ])

∧
∧

({M}N ,E)∈K ∧ (N,F )∈S(K) [DF (E) :M ]

∧
∧

(M,Ei)∈K ∧ (M,Ej)∈K ∧Ei �=Ej
[Ei =Ej ]

The third conjunction clause actually may include some of the checks produced
in the other conjunction clauses. Since our main goal was to capture all possible
checks in a uniform manner, we accept this redundancy.

Usually, knowledge sets can often be simplified without loss of information
by reducing complex elements to their parts. In our case, we can further simplify
due to the occurrence of duplicated elements; there is no loss of information once
the consistency formula of Definition 3 remembers the duplication.
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Definition 4 (Irreducibles). Let K be a knowledge set. We define the set of
irreducibles I(K) as follows:

I(K) def= A(K) \
(

{((M .N), E) ∈ A(K)}
∪ {({M}N , E) ∈ A(K) | ∃F ∈ E : (N, F ) ∈ S(A(K))}

)
Let ∼ denote the equivalence relation on M×E induced by (M,E) ∼ (N, F ) ⇐⇒
M = N . We let rep(K) denote the result of deterministically selecting3 one
representative element for each equivalence class induced by ∼ on K.

Example 1. To see all the previous definitions in action, we consider the ini-
tial knowledge K0 = {(A,A), (B,B), (S, S), (kAS , kAS), (t, t)} of agent A of the
Denning-Sacco protocol given Table 3.

(For the sake of readability, we sometimes write M • E for (M,E).)
We now consider K

def
= K0 ∪ {({((B . (kAB . t)) . {(A . (kAB . t))}kBS )}kAS , x1)}.

We have A(K) = K ∪

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

((B . (kAB . t)) . {(A . (kAB . t))}kBS ) • DkAS (x1)
(B . (kAB . t)) • π1(DkAS (x1))

{(A . (kAB . t))}kBS • π2(DkAS (x1))
B • π1(π1(DkAS (x1)))

(kAB . t) • π2(π1(DkAS (x1)))
kAB • π1(π2(π1(DkAS (x1))))

t • π2(π2(π1(DkAS (x1))))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Φ(A(K)) = [DkAS (x1) :M ]
∧ [π1(DkAS (x1)) :M ]∧ [π2(DkAS (x1)) :M ]
∧ [π1(π1(DkAS (x1))) :M ]∧ [π2(π1(DkAS (x1))) :M ]
∧ [π1(π2(π1(DkAS (x1)))) :M ]∧ [π2(π2(π1(DkAS (x1)))) :M ]
∧ [π1(π1(DkAS (x1)))=B ]∧ [π2(π2(π1(DkAS (x1))))= t ]

And finally, rep(I(K)) = K0 ∪
{
{(A . (kAB . t))}kBS • π2(DkAS (x1))

kAB • π1(π2(π1(DkAS (x1))))

}
.

Here, rep(I(K)) includes (t, t) instead of (t, π2(π2(π1(DkAS (x1))))) and (B, B) in-
stead of (B, π1(π1(DkAS (x1)))).

The compilation. We now have set up all the required ingredients to compile an
extended protocol narration into an executable protocol narration.

Definition 5 (Compilation). The translation X �·�(υ,�,κ,ν) : D → X is de-
fined inductively in Table 7, where υ ⊂ V (current set of used variables), � ⊂ N
(current set of private names), κ : A → K (partial mapping from agents to
their current knowledge), and ν : A → N (partial mapping from agents to their
current set of generated names).

3 Choose a well-founded total order for expressions and select the smallest expression.
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Let P ∈ D be a protocol narration. Let AP denote the set of agent names
appearing in P . Then, X �P �(∅,∅,κP ,∅) denotes the compilation of P , where the
initial knowledge κP is defined by κP (A) := {(B,B) | B ∈ AP } for all A ∈ AP .

P is called well-formed iff its compilation is defined.

For simplicity, the compilation assumes that all agents initially know each other,
as expressed in the initial knowledge set κP . Checks-on-reception are deduced
from the individual knowledge set of a receiver. To avoid to perform the same
checks again and again, the compilation keeps the knowledge sets of κ in reduced
form, i.e., κ(A) = rep(I(κ(A))). To update f ∈{κ, υ}, we note f [x←y] with
f [x←y] (x) = y and f [x←y] (z) = f(z) for z �= x.

The compilation of private k and A generates n checks in both cases that
the local (or generated) name is fresh, but differs with respect to the addition of
the fresh name to the knowledge sets of agents: whereas A generates n increases
the knowledge of A, the name k of private k is not added to any knowledge;
this task is deferred to explicit A knows k clauses for the intended A.

The compilation of A�B:M checks that M can be synthesized by A, picks a
new variable x and adds the pair (M,x) to the knowledge of B.4 The consistency
formula Φ(A(K ′

B)) of the analysis of this updated knowledge K ′
B defines the

checks φ to be performed by B at runtime. Note that this must be done on the
non-reduced version. In fact, it is just the consistency check that allows us then
to continue with the knowledge in reduced form.

Example 2. Let DS be the Denning-Sacco protocol presented Table 3.
We have κDS : A → K

A $→ {(A,A), (B,B), (S, S)}
B $→ {(A,A), (B,B), (S, S)}
S $→ {(A,A), (B,B), (S, S)}

DS is well-formed and its compilation is
X �DS�(∅,∅,κDS ,∅) =

νkAS ; νkBS ; νkAB;
A:S!(A .B); S:?x0; S:φ0;
S:A!{((B . (kAB . t)) . {(A . (kAB . t))}kBS )}kAS ; A:?x1; A:φ1;
A:B!π2(DkAS (x1)); B:?x2; B:φ2

where φ0
def= [π1(x0) :M ]∧ [π2(x0) :M ]

∧ [π1(x0)=A ]∧ [π2(x0)=B ]
φ1

def= Φ(A(K)) where K has been defined in Example 1
φ2

def= [DkBS (x2) :M ]
∧ [π1(DkBS (x2)) :M ]∧ [π2(DkBS (x2)) :M ]
∧ [π1(π2(DkBS (x2))) :M ]∧ [π2(π2(DkBS (x2))) :M ]
∧ [π1(DkBS (x2))=A ]∧ [π2(π2(DkBS (x2)))= t ]

4 Usually, narrations are defined such that the sender A is supposed to statically know
the precise name B of the intended receiver. In a dynamic scenario, the compilation
would need to check that B is synthesizable by A.
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Table 7. Definition of X �·�·

X �ε�(υ,�,κ,ν) def
= ε

X �A knows M ; P �(υ,�,κ,ν) def
= X �P �(υ,�,κ′,ν) if n(M) ∩ ⋃

A∈A

ν(A) = ∅

where K′
A

def
= κ(A) ∪ {(M, M)}

and κ′ def
= κ [A ← rep(I(K′

A))]

X �private k; P �(υ,�,κ,ν) def
= νk;X �P �(υ,�∪{k},κ,ν)

if k �∈ � ∪ ⋃
A∈A

(n(κ(A)) ∪ ν(A))

X �A generates n; P �(υ,�,κ,ν) def
= νn;X �P �(υ,�,κ′,ν′)

if n �∈ � ∪ ⋃
A∈A

(n(κ(A)) ∪ ν(A))

where K′
A

def
= κ(A) ∪ {(n, n)}

and κ′ def
= κ [A ← rep(I(K′

A))]

and ν′ def
= ν [A ← ν(A) ∪ {n}]

X �A�B:M ; P �(υ,�,κ,ν) def
= A:B!E ; B:?x ; B:φ ; X �P �(υ∪{x},�,κ′,ν)

if A �= B and (M, E) ∈ S(κ(A))

where x
def
= min(V \ υ)

and K′
B

def
= κ(B) ∪ {(M, x)}

and κ′ def
= κ [B ← rep(I(K′

B))]

and φ
def
= Φ(A(K′

B))

In the last example, the obtained formulae apparently contain some redun-
dant checks. As usual, two formulae φ and ψ may be considered equivalent if for
all substitutions σ : V → M , we have �φσ� = �ψσ�. Then, for example, φ2 is
equivalent to φ′

2 where:

φ′
2

def= [π1(DkBS (x2))=A ]∧ [π2(π2(DkBS (x2)))= t ]

Formulae like φ2 are to be generated automatically, and it seems mandatory
to also provide automatic simplification to remove redundant checks. However,
in general, it is not obvious to define an intuitive notion of minimality for formu-
lae. For example, φ = [E1 =F1 ]∧ [E2 =F2 ] and ψ = [(E1 . E2)=(F1 . F2) ] are
equivalent; which one should be qualified as simpler? An even more interesting
case is φ = [E=F ]∧ [G :M ] and ψ = [π1((E .G))=F ], which indicates that
there is a trade-off between the bare number of conjoints and their size.

4 Executing Protocol Narrations

In this section, we propose an operational semantics for narrations. It proceeds in
a traditional syntax-directed manner by analyzing the current top-level construct
in order to see what to execute next. Since narrations contain some implicit
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Table 8. Substitution

ε{M/x}@A
def
= ε

(A′:B!E; X){M/x}@A
def
=

{
A′:B!E; X{M/x}@A if A′ �= A

A:B!E{M/x}; X{M/x}@A otherwise

(A′:?y; X){M/x}@A
def
=

⎧⎪⎨⎪⎩
A′:?y; X{M/x}@A if A′ �= A

A:?y;X{M/x}@A if A = A′ and y �= x

A:?x;X otherwise

(A′:φ; X){M/x}@A
def
=

{
A′:φ; X{M/x}@A if A′ �= A

A:φ{M/x}; X{M/x}@A otherwise

(νn; X){M/x}@A
def
= νn; X{M/x}@A

concurrency among principals, we introduce a structural reordering relation to
shuffle concurrently enabled actions to the top level. The actual execution of
steps further needs to take care of the evaluation of messages to be sent, and
also to prevent from name clashes that are possible due to the presence of binders.

Binders and α-conversion. Our language of executable narrations contains two
sort of binders: one for names and one for variables.

The first binder is introduced by the construction νn. If X = νn;X ′, then
n is bound in X (i.e. the free occurrences of n in X ′ refers to this binder). As
the identity of n is not important, we identify X with νn′;X ′{n′

/n} where n′ is
a name that is not free in X and X ′{n′

/n} is X ′ where all the free occurrences
of n has been replaced with n′. X and νn′;X ′{n′

/n} are called α-equivalent. In
the following, we identify α-equivalent executable narrations. Now, for an exe-
cutable narration X , we can define the usual bound names bn(X), free names
fn(X) of X and, moreover, if n, n′ ∈ N , X{n′

/n}, the substitution of n′ for n
in X .

The second binder is the one introduced by the construction A:?x. If X =
A:?x;X ′, then x is bound in the actions of X ′ concerning A: indeed, if further
in the executable narration, B refers to x, the x is not the same as the one used
by A. Since variables will typically be substituted with messages, we do not need
α-conversion on variables but we need to define a new kind of local substitution:
if X is an executable narration, x ∈ V , M ∈ M with n(M) ∩ bn(X) = ∅
(which can be assured by choosing a suitable α-equivalent version of X), and
A ∈ A, we define in Table 8 the substitution X{M/x}@A of M for x in X
on A.

Reordering. Protocol narrations are sequences of actions. However, the sequen-
tial character is not always causally motivated. Instead, the order of two consec-
utive actions carried out by different principals can always be swapped, because
—after our split of message exchanges in the compilation process of Section 3—
they are independent. The same holds for the consecutive occurrence of an action
and a scope, unless the scope’s name occurs in the action. Formally, we manifest
the swapping of independent actions in a structural congruence relation.
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Table 9. Reordering

∼=-S-S
A �= C

A:B!E; C:D!F ∼= C:D!F ; A:B!E
∼=-S-C

A �= C

A:B!E; C:φ ∼= C:φ; A:B!E

∼=-S-R
A �= C

A:B!E; C:?x ∼= C:?x; A:B!E
∼=-R-C

A �= C

A:?x; C:φ ∼= C:φ; A:?x

∼=-R-R
A �= C

A:?x; C:?y ∼= C:?y; A:?x
∼=-C-C

A �= C

A:φ; C:ψ ∼= C:ψ; A:φ

∼=-S-N
n �∈ n(E)

A:B!E; νn ∼= νn; A:B!E
∼=-C-N

n �∈ n(φ)

A:φ; νn ∼= νn; A:φ

∼=-R-N
A:?x; νn ∼= νn; A:?x

∼=-N-N
νn; νm ∼= νm; νn

Definition 6. The reordering ∼= ⊆ X×X is the least equivalence relation satis-
fying the rules given in Table 9, and closed under contexts of the form X ; [·] ;X ′.

We define ∼=α to be the union of ∼= and α-equivalence.

Given a particular message exchange A�B:M , it may possibly seem surprising
at first that the reordering relation allows the respective reception action B:?x to
occur before its associated emission action A:B!M . Clearly, the received message
cannot be the intended one. Such a behavior must be dealt with carefully, e.g.,
by rejecting unintended messages, but its existence cannot be avoided; it is a
matter of fact in concurrent systems that exchange messages asynchronously.

Evaluation of expressions and formulae. Table 10 shows how to evaluate expres-
sions and formulae. The definitions are straightforward and offer no surprises,
except for allowing the observation that [E :M ] is just a macro for [E=E ].

Labeled transitions. We define a straightforward labeled semantics of executable
narrations, in style influenced by semantics for the spi-calculus, in Table 11.

Our semantics relates two executable narrations with a transition
A:β−−→ where

A ∈ A and β is either an input action ?M where M ∈ M or a bound output
action (νñ)B!M where ñ is a (possibly empty) list of pairwise distinct names
n1 · · ·nk (that are bound in the remainder), B ∈ A and M ∈ M . If k = 0 (i.e.
ñ is empty), we will simply write B!M . Note that there is no internal action in
our formal semantics of narrations. We might also have introduced a rule like

Com
X

A:(νñ) B!M−−−−−−−→ X ′ X ′ B:?M−−−−→ X ′′

X
τ−→ νñ;X ′′

but we tend to insist on the fact that every communication necessarily passes
through the network, while such a rule Com would allow to avoid this.
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Table 10. Evaluation of expressions (can fail, in particular if v(E) �= ∅) and formulae

Definition of �·� : E → {⊥} ∪M

�E�
def
= E if E ∈ N ∪ A

�(E . F )�
def
= (M . N) if �E� = M ∈ M and �F � = N ∈ M

�π1(E)�
def
= M if �E� = (M . N) ∈ M

�π2(E)�
def
= N if �E� = (M . N) ∈ M

�{E}F �
def
= {M}N if �E� = M ∈ M and �F � = N ∈ M

�DF (E)�
def
= M if �E� = {M}N ∈ M and �F � = N ∈ M

�E�
def
= ⊥ in all other cases

Definition of �·� : F → {true, false}
�tt� def

= true

�φ∧ψ�
def
= �φ� and �ψ�

�[E=F ]�
def
= true if �E� = �F � = M ∈ M

�[E :M ]�
def
= true if �E� = M ∈ M

�φ�
def
= false in all other cases

Table 11. Labeled semantics of executable narrations

Send
�E� = M ∈ M

A:B!E; X
A:B!M−−−−→ X

Receive
A:?x; X

A:?M−−−−→ X{M/x}@A

M ∈ M

Check
X

A:β−−→ X ′

A:φ; X
A:β−−→ X ′

�φ� = true Open
X

A:(νñ) B!M−−−−−−−→ X ′

νz; X
A:(νzñ) B!M−−−−−−−−→ X ′

z ∈ n(M) \ {ñ}

Rearrange
X ∼=α X ′ X ′ A:β−−→ X ′′

X
A:β−−→ X ′′

5 Rewriting Protocol Narrations . . . into Spi- alculus

The spi-calculus is a process calculus that was designed in order to study cryp-
tographic protocols. In this section, we show that executable narrations closely
correspond to terms in a quite restricted fragment of the spi-calculus.

Syntax. We use a finite spi-calculus without choice, generated as P by:

P ::= 0 E(x).P E〈F 〉.P P |Q (νn)P φP

We use the same syntactic categories (names, agent names) as for narrations.

C
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Table 12. Labeled semantics of spi-calculus

Input
�E� = A ∈ A M ∈ M

E(x).P
A M−−−→ P{M/x}

Output
�E� = A ∈ A �F � = M ∈ M

E〈F 〉.P A M−−−→ P

Open
P

(νñ) A M−−−−−−→ P ′

(νz)P
(νzñ) A M−−−−−−→ P ′

z ∈ n(M) \ ñ Res
P

μ−→ P ′

(νn) P
μ−→ (νn) P ′ n �∈ fn(μ)

Guard
P

μ−→ P ′

φP
μ−→ P ′ �φ� = true Par

P
μ−→ P ′

P |Q μ−→ P ′ |Q
bn(μ) ∩ fn(Q) = ∅

Struct
P ≡ P ′ P ′ μ−→ P ′′

P
μ−→ P ′′

In process E(x).P , the variable x is bound in P and in the process (νn)P ,
the name n is bound in P . For a process P , we denote its set of free names fn(P ),
bound names bn(P ), free variables fv(P ) and bound variables bv(P ).

Semantics. Table 12 shows a labeled semantics for the spi-calculus. It relies
on the definition of structural congruence ≡ defined as the least congruence
satisfying:

– ∀P,Q,R : (P |Q) |R ≡ P | (Q |R)
– ∀P,Q : P |Q ≡ Q |P
– ∀P : P | 0 ≡ P
– ∀P,Q, n : (νn)P |Q ≡ (νn) (P |Q) if n �∈ fn(Q)
– ∀P,Q : P ≡ Q if P and Q are α-equivalent

Communication can only occur on agent names. Moreover, since it is syntac-
tically not possible to hide an agent name from outside, we do not consider
internal communications. Transitions are thus of two kinds: either an input ac-
tion AM or a bound output action (νñ)AM where in both cases A ∈ A and
M ∈ M , ñ being a (possibly empty) list of pairwise distinct names that are
binding occurrences in M .

Executable narrations in spi-calculus. As the reader might have noticed, the ex-
ecutable narrations as of §3 and the spi-calculus above are similar. Thus, we may
now provide a straightforward translation of executable narrations into the spi-
calculus and easily show that the semantics is preserved. The main idea is that
the implicit concurrency structure of narrations as encoded with explicit agent
names is projected out (X�A of Definition 7) and explicitly represented using the
parallel composition operator of the spi-calculus. Any intended sequential occur-
rence of actions, namely those actions that are associated to the same agent, is
preserved by using the prefix operator of the spi-calculus. The private names are
then simply put as a top-level restricted around the parallel composition.
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Table 13. Definition of A(·), R(·), and ·�·

A(ε)
def
= ∅

A(A:B!E; X)
def
= {A} ∪ A(X)

A(A:?x; X)
def
= {A} ∪ A(X)

A(A:φ; X)
def
= {A} ∪ A(X)

A(νn; X)
def
= A(X)

R(ε)
def
= ∅

R(A:B!E; X)
def
= R(X)

R(A:?x; X)
def
= R(X)

R(A:φ; X)
def
= R(X)

R(νn; X)
def
= {n} ∪ R(X)

ε�A
def
= 0

(A′:B!E; X)�A
def
=

{
B〈E〉.X�A if A′ = A

X�A otherwise

(A′:?x; X)�A
def
=

{
A(x).X�A if A′ = A

X�A otherwise

(A′:φ; X)�A
def
=

{
φX�A if A′ = A

X�A otherwise

(νn; X)�A
def
= X�A

Definition 7 (Translation). Let X ∈ X be an executable narration.

1. A(X) (Table 13) defines the set of agents acting in X.
2. R(X) (Table 13) defines the set of fresh restricted names of X.
3. X�A (Table 13) defines the spi projection of X on A ∈ A.
4. The translation T �X� of X into spi-calculus is defined by:

T �X�
def= (νn) n∈R(X)

∏
A∈A(X)

X�A

where (νn) n∈I and
∏

n∈I denote n-ary restriction and composition.

5. T �A:?M�
def= AM and T �A:(νñ)B!M�

def= (νñ)BM map transition labels.

The following theorem concludes that the operational semantics of executable
narrations and their spi-calculus translations precisely coincide up to ≡.

Theorem 1. Let X ∈ X be an executable narration.

1. If X
A:β−−→ X ′ then T �X�

T �A:β�−−−−−→ P ′ with P ′ ≡ T �X ′�.
2. If T �X�

μ−→ P ′ then there exists A ∈ A, X ′ and β

such that X
A:β−−→ X ′, P ′ ≡ T �X ′� and μ = T �A:β�.

6 Conclusions

Contributions. In summary, we stepwise enhance protocol narrations in order
to build up enough structure such that a well-motivated formalization of their
semantics becomes possible. The main technical contribution is the proposal
of the automatic generation of “checks-on-reception”, together with a suitable
representation of the principals’ knowledge on which the generation depends.

In summary, if one wants to reformulate informal protocol narrations within
a calculus like the spi-calculus, then we propose the following method:
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1. Extend the narration, as shown in §2, by a declaration part making precise
the origin of and initial knowledge about the involved data (names). This
step requires human interaction, because ambiguities need to be resolved.

2. Compile the resulting narration, as shown in §3, into an executable narration.
This step can now be done automatically.

3. Extract the implicit concurrency, as shown just above. Again, automatically.

It is worthwhile pointing out that our approach does not bother the protocol
designer to come up with suitable or sufficient checks-on-reception, because they
are generated automatically. Our approach does not even require the designer
to actually look at these generated checks at all.

Tool support. We have implemented the previous developments in OCaml, in-
cluding the syntactic sugar mentioned at the end of Section 2. Due to the big size
of the formulae generated, we have studied possible simplifications for them. To
this end, we have implemented naive ideas such as removing duplicated atoms,
or removing atoms like [E :M ] when E is a message or when it appears as a
subexpression of the remaining formula. We also perform some rewriting inside
formulae, which apparently gives good result in practice.

We have also investigated extension of the work of this paper towards richer
message languages (i.e. with public/private key, hashing). It appears that sim-
plifying formulae becomes even more of a necessity.

Related work. Sumii et. al. [STY05] propose a formal semantics of narrations
by translation into spi-calculus. The paper is written in Japanese, so it remains
unclear to us how they treat the problem of checks-on-reception. In any case, our
intention was to provide a formal semantics that does not require an underlying
(too) general process calculus, so our approach is still substantially different.

The work of Bodei et. al. [BBD+03] is also similar to ours, although still
quite different. Like us, they present a refinement of protocol narrations, but the
respective checks-on-reception appear only informally. Like us, they split message
exchanges into three parts, albeit different to ours. A formal semantics is then
only provided after “rewriting”, again informally, refined narrations into terms
of their process calculus LySa. In the above paper (the only that we are aware
of), the system underlying their “systematic expansion” is not unambiguously
explained, while our expansion is fully automatic and generates a maximum
number of checks. Finally, their approach aims at static analysis techniques,
while we ultimately target at dynamic analysis in the form of bisimulation checks
[BBN04] in the full spi-calculus (LySa is channel-free).

In other related approaches, narrations are reformulated or translated using
Casper [Low98], HLPSL2IF [BMV03], CAPSL [Mil], CASRUL [JRV00], or (s)pi-
calculus [AG99, Bla03]. They have in common that they do not easily help to
understand how the gap between the rather informal narrations and the target
formalism is bridged. A compiler can itself be interpreted as giving semantics to
narrations, but usually the translation process is not well explained or otherwise
justified, in particular regarding the treatment of checks-on-reception. Moreover,
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our interest was to try to formalize the semantics at the level of narrations rather
than by translation into some reasonably unrelated target formalism.

A subtle, but interesting difference between our work and Casper [Low98]
is their modified message syntax using a construction M % v, meaning that the
recipient of M should not try to decrypt M. We think this construct was added
because of Casper’s rather strict policy to require, unless the % is used, to be able
to fully decrypt all messages (and possibly provide a warning in case this fails).
Our (arguably more flexible) policy is instead to require agents to always just try
to decrypt messages as far as their current knowledge permits, so we implicitly
let agents accept messages even if they cannot (yet) fully decrypt them.

Future work. Here, we do not tackle the fourth task listed by Abadi [Aba00]
on how to get to a formalization of concurrent sessions on the basis of proto-
col narrations. The main problem is that principals may play different roles in
concurrent sessions such that the lookup of their respective keys needs to be
dealt with dynamically. The usual convenient confusion of the two concepts of
principal and role is no longer appropriate, so we propose to non-trivially extend
the narration notation rather than providing a suboptimal semantics to an inap-
propriate notation. Note that this confusion also rules out the näıve modeling of
concurrent sessions by the bare unbounded replication within spi-calculus. Some
inspiration from the work of Cremers and Mauw [CM05] may help us here.

Furthermore, we intend to develop reasoning techniques for protocol narra-
tions via an environment-sensitive extension of our semantics that could be used
to define and study meaningful behavioral equivalences.
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Abstract. webπ is a recent process calculus that has been inspired by
the emerging Web Services technologies. In this paper we explore the
expressivity of webπ by discussing two case studies. The first case study
is about the formal semantics of the transactional construct of BPEL –
the scope construct. The second case study is about a standard pattern
of Web Services composition – the speculative parallelism – that allows
several alternative activities to start; only the first one that completes is
taken into account while the other ones are aborted.

1 Introduction

Web Services technologies are emerging mechanisms for describing the services
available on the web, as well as their interfaces and the protocols for locating and
invoking such services. A challenging issue in this area is the definition of lan-
guages and tools for composing services. In fact it is often the case to define new
services out of finer-grained subtasks that are likely available as Web Services.
As a consequence, several proposals for service composition have been recently
devised – the so called Web Services orchestration and choreography languages.
Among the others we recall XLANG [9], WSFL [8], BPEL [1], and WS-CDL [6].

Long-running transactions are used in most of the Web Services orchestra-
tion and choreography languages as basic mechanisms for composing services.
These transactions – that we will call web transactions – usually do not grant
any isolation or atomicity property. As regards isolation, it requires that differ-
ent activities have the same effect whether they are executed in sequence or in
parallel. This is usually enforced by locking the resources used by each activity
until the transaction commits. In the context of Web Services, the processes
involved in a transaction may belong to different companies, and there is no
chance to lock resources of other companies. Additionally, commercial transac-
tions usually last long periods of time, even months, and it is not feasible and
not reasonable to block resources so long. For similar reasons, it is not adequate
supplying a perfect rollback in the context of Web Services composition. As a
matter of facts, in Web Services orchestration and choreography languages, the
transaction isolation is delegated to explicit protocols realized through messages;
whilst the roll-back mechanisms are defined by ad-hoc programs.

Even if web transactions are attracting a great interest, the Web Services
community has not reached a common agreement on a unique notion of this form
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of transaction. Additionally, the semantics that is usually defined is informal and
requires a mathematical analysis. Exceptions we are aware of rely on specific
proposals: the work [5] that is mainly inspired by XLANG, the calculus of Butler
and Ferreira [4] is inspired by BPBeans, the πt-calculus [2] considers BizTalk,
the work [3] deals with short-lived transactions in BizTalk.

A different approach has been recently taken in [7], where a process calculus is
explicitly designed for modelling web transactions. This calculus, called webπ, is
independent of the different proposals and allows to grab the key concepts. Three
major aspects are considered in webπ: interruptible processes, failure handlers
that are activated when the main process is interrupted, and time. Time has been
considered because it is fundamental for dealing with the typical latency of web
activities or with message losses. The above three aspects are analyzed in a model
consisting of a network of locations that contain processes. In this model time
proceeds asynchronously at the network level, while it is constrained by the local
urgency property inside a location. Local urgency entails the fact that process
reductions in a location cannot be delayed to favour idle steps. Said otherwise,
local urgency means that the time may elapse in a location either because the
process inside progresses or because no progress is possible. We refer to [7] for
a discussion about the model of webπ, and its extensional semantics – the timed
bisimilarity.

The aim of this paper is to explore the expressivity of webπ in two non-
trivial case studies inspired by the Web Services technology. The first case study
is about the formal semantics of BPEL. This language, being the conjoint effort
of three major information technology companies, is becoming the standard de
facto for Web Service orchestration. Defining its formal semantics is therefore a
valuable task. In this paper we focus on the unique transactional mechanism in
BPEL – the scope construct – and we define its semantics by means of webπ. The
scope construct is used to associate a failure handler, a compensation handler,
and an event handler to a so-called primary activity. The failure handler is ex-
ecuted if a fault condition occurs during the execution of the primary activity.
The compensation handler, on the other hand, is activated if the execution of
the primary activity is required to be undone after it has provisionally commit-
ted. Finally, the event handler is executed if the primary activity is still under
execution and a specific message or allarm is triggered. In this paper we only
define the formal semantics of fault and compensation handlers that are used
for error handling.

The second case study is about a prototypical pattern of service composi-
tion – the so-called speculative parallelism. This pattern generalizes the request-
response pattern between a client and a server, to cases in which the response
can be produced by more than one server. In these cases, the client sends the
request to all the possible (alternative) servers. The accepted response is the
first one that is received, the other responses are deleted. The non-trivial is-
sue of speculative parallelism is the synchronization of the winner server (the
one producing the accepted response) with the communications of failure to the
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other servers. We model the pattern of speculative parallelism in webπ, together
with a number of erroneous patterns that manifest subtle misbehaviours.

The paper is structured as follows. In Section 2 we recall the syntax ans
semantics of webπ. In Section 3 we discuss the first case study while in Section
4 we discuss the second one. We conclude in Section 5.

2 The Calculus webπ

In this Section we recall the syntax of webπ and informally describe its semantics.
The syntax uses a countable set of names, ranged over by x, y, z, u, · · ·. Tuples

of names are written ũ. The syntax of webπ includes machines and processes.

M ::= (machines) P ::= (processes)
0 (nil) 0 (nil)
| [P ]x̃ (location) | x ũ (message)
| (x)M (machine restriction) | x(ũ).P (input)
| M |M (network) | (x)P (restriction)

| P |P (parallel composition)
| !x(ũ).P (replicated input)
| 〈|P ; P |〉nx (transaction)

A location [P ]x̃ is a uniprocessor machine; the names x̃ indicate that the
location is responsible for accepting messages on such names. Locations possess
their own clock that is not synchronized with the clock of other locations (time
progresses asynchronously between different locations). Namely, if M and N are
locations, and M evolves in M′ then also M |N evolves in M′ |N (the clock of N
remains unchanged).

Processes extend the asynchronous π-calculus with transactions 〈|P ; Q|〉nx ,
where P and Q are the body and the compensation, respectively, n indicates
the deadline, and x is the name of the transaction. The body of a transaction
executes either until termination or until the transaction fails. On failure, the
compensation is activated. A transaction may fail in two different ways, either
explicitly (when the abort message x is consumed, where x is the name of the
transaction to be aborted) or implicitly (when the deadline is reached). The
deadline may be reached either because of computational steps of the body or
because of computational steps of processes in parallel in the same location.

The model of time of webπ is such that, within a location, operations cannot
be delayed in favour of idle operations – this property is called local urgency. For
example, consider two processes running on the same location: a printer process
of a warning message with a timeout and an idle process waiting for an external
event. Local urgency means that, if the external event doesn’t occur, then the
printer process cannot be delayed. Said otherwise, the time elapses in a location
either because the process inside progresses or because no progress is possible.

In webπ networks names always index a unique location. The location names
used in a network are denoted with ln(M). Formally, let ln(M) be defined as
ln(0) = ∅, ln([P ]x̃) = x̃, ln((x)M) = ln(M) \ {x}, and ln(M |N) = ln(M) ∪
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ln(N). Networks M |N are constrained to satisfy the property ln(M)∩ln(N) = ∅.
This constraint permits to deliver messages to the unique machine in the network
that is responsible for accepting that message. However it is also possible to
consume messages in the same machine in which they have been produced as it
will be made clear by the formal definition below.

The input x(ũ).P , restriction (x)P , replicated input !x(ũ).P , and machine
restriction (x)M are binders of names ũ, x, and ũ, and x, respectively. The scope
of these binders are the processes P and the machine M. We use the standard
notions of α-equivalence, free and bound names of processes, and machines, noted
fn(P ), bn(P ), fn(M), bn(M), respectively. In particular,

– fn(〈|P ; Q|〉nx) = fn(P ) ∪ fn(Q) ∪ {x} and α-equivalence equates (x)
(〈|P ; Q|〉nx) with (z)(〈|P{z/x} ; Q{z/x}|〉nz ) provided z �∈ fn(〈|P ; Q|〉nx);

– fn([P ]x̃) = x̃ ∪ fn(P ).

Following the tradition of π-calculus, the semantics of webπ is defined in terms
of a reduction relations that relies on a structural congruence that equates all
terms one never wants to distinguish.

Definition 1. The structural congruence ≡ is the least congruence closed with
respect to α-renaming, satisfying the abelian monoid laws for parallel (associa-
tivity, commutativity and 0 as identity), and the following axioms:

for processes:

1. the scope laws:

(u)0 ≡ 0, (u)(v)P ≡ (v)(u)P,
P | (u)Q ≡ (u)(P |Q) , if u �∈ fn(P )

〈|(z)P ; Q|〉nx ≡ (z)〈|P ; Q|〉nx , if z �∈ {x} ∪ fn(Q)
〈|P ; (z)Q|〉0x ≡ (z)〈|P ; Q|〉0x , if z �∈ {x} ∪ fn(P )

2. the repetition law:
!x(ũ).P ≡ x(ũ).P | !x(ũ).P

3. the transaction laws:

〈|0 ; Q|〉nx ≡ 0
〈|〈|P ; Q|〉ny |R ; R′|〉mx ≡ 〈|P ; Q|〉ny | 〈|R ; R′|〉mx

4. the floating laws:

〈|z ũ |P ; Q|〉nx ≡ z ũ | 〈|P ; Q|〉nx
〈|y(ṽ).P |P ′ ; z ũ |Q|〉0x ≡ z ũ | 〈|y(ṽ).P |P ′ ; Q|〉0x

for machines:

1. the machine scope laws:

(u)0 ≡ 0, (x)(z)M ≡ (z)(x)M,
M | (x)N ≡ (x)(M |N) , if x �∈ fn(M)
[ (x)P ]z̃ ≡ (x)[P ]z̃x , if x /∈ z̃
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2. the lifting law:
[P ]x̃ ≡ [Q]x̃ , if P ≡ Q

The dynamic behaviour of processes and machines is defined by the reduction
relation. The operation of decreasing by 1 the time stamps of active transactions
on the same machine is modelled by the time stepper function. The definitions
of this function and another auxiliary function are in order:

input predicate inp(P ): this predicate verifies whether a process contains an
input that is not underneath a transaction. It is the least relations such that:

inp(x(ũ).P )
inp((x)P ) if inp(P )
inp(P |Q) if inp(P ) or inp(Q)
inp(!x(ũ).P )

time stepper function φ(P ): this function decreases the time stamps by 1.
For the missing cases, φ(P ) = P .

φ((x)P ) = (x)φ(P )
φ(P |Q) = φ(P ) |φ(Q)

φ(〈|P ; R|〉0x) =
{
〈|φ(P ) ; φ(R)|〉0x if inp(P )
〈|φ(P ) ; R|〉0x otherwise

φ(〈|P ; R|〉n+1
x ) = 〈|φ(P ) ; R|〉nx

We are finally in place for defining the reduction relation.

Definition 2. The reduction relation → is the least relation satisfying the re-
ductions:

for processes:
(com)

x ṽ |x(ũ).P → P{ṽ/ũ}
(fail)

x | 〈|z(ũ).P |Q ; R|〉n+1
x → 〈|z(ũ).P |φ(Q) ; R|〉0x

and closed under ≡, (x)-, and the rules:

P → Q

P |R→ Q |φ(R)

P → Q

〈|P ; R|〉n+1
x → 〈|Q ; R|〉nx

P → Q

〈|y(ṽ).R |R′ ; P |〉0x
→ 〈|y(ṽ).R |φ(R′) ; Q|〉0x

for machines:

(intra)

P → Q

[P ]x̃ → [Q]x̃

(time)

P �→
[P ]x̃ → [φ(P )]x̃

(deliv)

[x ṽ |P ]z̃ |[Q]ỹx

→ [P ]z̃ |[x ṽ |Q]ỹx

and closed under ≡, (x)-, and parallel composition.
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It is worth noting that a message can be either consumed in the machine
where it has been produced, see rule (COM), or in the machine responsible for
managing the channel on which the message was sent, see rule (DELIV).

We illustrate the semantics by discussing few examples. The process

z |x | 〈|x().0 ; y |〉nz
has the following two computations (n > 0):

z |x | 〈|x().0 ; y |〉nz → z | 〈|0 ; y |〉n−1
z

z |x | 〈|x().0 ; y |〉nz → x | 〈|x().0 ; y |〉0z
Transactions with time stamps equal to 0 are terminated. There are two kinds
of terminated transactions: (a) the committed transactions, such as 〈|0 ; y |〉n−1

z

that is (structurally) equivalent to 〈|0 ; y |〉0z , whose bodies do not contain input-
guarded processes, and (b) the failed transactions, such as 〈|x().0 ; y |〉0z, whose
body contains input-guarded processes. The input operations in the body of
failed transactions can no longer be executed: the transaction is actually failed
because it has not completed its tasks. In committed transactions the compen-
sation handler is no more considered. This is reflected in the first computation
by the fact that the message y cannot be produced. This message is syntacti-
cally part of the process but it cannot be consumed. In failed transactions the
compensation process becomes active. This is made clear in the second compu-
tation, where the message z explicitly abort the transaction thus making the
time stamp equal to 0. After abortion, the message x cannot be consumed.

The process x | 〈|x().0 ; u |〉1z | 〈|x().0 ; v |〉1z′ evolves as follows

x | 〈|x().0 ; u |〉1z | 〈|x().0 ; v |〉1z′ → 〈|0 ; u |〉0z | 〈|x().0 ; v |〉0z′

(and in a similar way, but consuming the input of z′ instead of the input of z).
This reduction shows the progress of time in a location: a computational step
of a process makes the time elapse of one unit. This is manifested by decreas-
ing the time stamps of every transaction in parallel (in the previous case, of
〈|x().0 ; v |〉1z′). We note that the transaction 〈|0 ; u |〉0z is completed, therefore
the message u is never emitted. On the contrary, 〈|x().0 ; v |〉0z′ is failed, thus v
is emitted.

In webπ, the delivery of one message to its receptor machine is modeled by
the computation step [x w̃ | P ]ỹ | [Q]z̃x → [P ]ỹ | [x w̃ | Q]z̃x.
Asynchrony between machines may give rise to unpredictable delays in commu-
nication. This latency could make timed transaction fail. Consider, for instance,
the machine (trailing 0 are omitted)

[ 〈|x | y() ; z |〉nx ]y | [x().y ]x

where the leftmost location sends the message x to the rightmost one and waits
for the answer y . Due to asynchrony between machines, the following computa-
tion is possible (let m < n and n < m+m′):
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[ 〈|x | y() ; z |〉nx ]y | [x().y ]x →m [x | 〈|y() ; z |〉n−m
x ]y | [x().y ]x

→ [ 〈|y() ; z |〉n−m
x ]y | [x | x().y ]x

→ [ 〈|y() ; z |〉n−m
x ]y | [ y ]x

→m′
[ 〈|y() ; z |〉0x ]y | [ y ]x

→ [ y | 〈|y() ; z |〉0x ]y | [0]x

where →k is used to denote the effect of k subsequent reductions. In the final
state the message y cannot be consumed by the transaction 〈|y() ; z |〉0x as the
time stamp is 0.

A usual source of failure in networks is the loss of messages. Such failures have
not been explicitly considered in webπ because they are modelled by indefinitely
delaying messages.

3 The Scope Construct in BPEL

The first case study we discuss is the modelling of the the scope construct of
BPEL. This construct defines transactional activities by associating a failure han-
dler and a compensation handler to a primary activity. The scope construct in
BPEL also specifies an event handler. In our simplified modeling we only consider
fault and compensation handlers used to deal with exceptional bahaviours.

The failure handler is activated in case a fault condition occurs during the ex-
ecution of the primary activity. The compensation handler is executed in case the
execution of the primary activity is required to be undone after is has provision-
ally committed. In fact, the primary activity could be part of a more complex
task that fails, thus requiring to cancel those subactivities that provisionally
completed.

In this section we consider only the timeless transactions of webπ as we are
mainly interested in the flow of control in the execution of fault and compensation
handlers, independently of the time constraints that can be associated to the
execution of the primary activity within a BPEL scope. Indeed, a timeout can
be associated to a scope using an event handler (the third form of handler that
we do not model) that is triggered by a timed allarm.

We denote the scope construct with scopex(P ; F ; C), where P is the pri-
mary activity, F is the failure handler, and C is the compensation handler. The
name x is used to signal either the occurrence of a failure during the execution of
the primary activity, or the external request of compensation. We assume that
P , F , and C are asynchronous π-calculus processes.

Before discussing the webπ semantics of scope, we present a prototypal ex-
ample about scopes. Consider a travel organization service that requires to or-
chestrate an hotel and a flight reservation service. We first define the last two
services, then we show how to orchestrate them using the scope construct.

The hotel reservation service is (abstractly) modeled as follows:

HOTEL = [ !resh(arr , dep, conf h).(idh)(conf h 〈idh〉 | idh )
| !cancelh(idh).idh()

]resh,cancelh
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The service receives reservation requests indicating the arrival date arr, the
departure date dep, and a channel to be used for communicating the reserva-
tion confirmation conf h. Each reservation has a unique identifier idh, which is
communicated through the reservation confirmation channel conf h. The service
keeps track of the reservation by producing an internal message idh . In case
of cancellation, this message is consumed. This occurs when the name idh is
received back through the channel cancelh.

The flight registration service is modeled similarly, with the unique difference
that the reservation could fail. Let P ⊕ Q be the process (x)(x |x().P |x().Q),
assuming that x �∈ fv(P ) ∪ fv(Q).

FLIGHT = [ !resf (arr , dep, conf h, t). ((idf )(conf f 〈idf 〉 | idf ) ⊕ t )
| !cancelf (idf ).idf ()

]resf ,cancelf

The flight reservation request, besides the arrival and departure dates and the
confirmation channel, carries a fourth name t used in case of reservation failure.
After the reservation request is received, the service internally choose either to
accept or reject it; in case of failure, a message on the channel t is produced.

We are now in place for programming an orchestrator – the travel organiza-
tion service – that combines the above services:

TRVL = (conf h, conf f , storeh, storef , t)
[ scopet( resh 〈arr, dep, conf h〉

| conf h(idh).( storeh 〈idh〉 | resf 〈arr, dep, conf f , t〉
| conf f (idf ).storef 〈idf 〉 )

; storeh(idh).cancelh 〈idh〉
; storeh(idh).cancelh 〈idh〉 | storef (idf ).cancelf 〈idf 〉 )

]conf h,conf f ,t

The travel service uses two local channels storeh and storef to store the identi-
fiers of the hotel and flight reservations, respectively. The primary activity first
sends a request to the hotel reservation service, then to the flight reservation
service. The failure handler manages those cases in which the flight reservation
does not succeed; in these cases the hotel reservation is cancelled. The compen-
sation handler, on the other hand, manages those cases (that we do not model
explicitly) in which the travellers decides to cancel its travel after it has been
fully reserved; in this case both the hotel and the flight reservations are cancelled.

The whole reservation system is modeled as the parallel composition of the
three services described above:

HOTEL | FLIGHT | TRVL

The semantics of scope is defined by the following function [[·]] translating the
term scopex(P ; F ; C) for any name x and asynchronous π-calculus processes
P , F , and C. Let zf , zc �∈ {x} ∪ fn(P |F |C).

[[scopex(P ; F ; C)]] = (zc, zf )
〈|zf | (y)([[P ]]y | y().zf ().(zc | (v)v())) ; zf ().F | zc().C|〉x
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The webπ process associated to scope is a timeless transaction having the same
name x. The body of this transaction cannot commit because of the ending
process (v)v() that is deadlocked. The channels zf and zc are used to indicate
whether the failure or the compensation handler should be activated in case the
transaction is aborted. In particular, the message zf activates the failure handler,
while zc activates the compensation handler. The message zf is present during
the execution of the primary activity. If the primary activity completes, the
message zf is replaced by zc . In order to detect the completion of the primary
activity P we use a continuation passing style.

Let [[P ]]y be the function that executes P and produces y when P terminates.
Let also assume that y, y′, y′′ are always fresh names:

[[0]]y = y

[[x ũ]]y = x ũ | y
[[x(ũ).P ]]y = x(ũ).[[P ]]y

[[(x)P ]]y = (x)[[P ]]y
[[P |Q]]y = (y′, y′′)([[P ]]y′ | [[Q]]y′′ | y′().y′′().y )

[[!x(ũ).P ]]y = !x(ũ).[[P ]]y

The definition of [[P ]]y is standard; we comment only the rule dealing with the
parallel composition P |Q. Two new names y′ and y′′ are used to communicate
the completion of the two processes P and Q, respectively. When both y′ and
y′′ are produced, the overall process completes (thus y is produced).

4 Speculative Parallelism

The second case study is about a special pattern of client-services interaction:
the so-called speculative parallelism. Speculative parallelism is used by a client
that engages (in parallel) request-response interactions with several services in
such a way that if one of the services completes – the winner –, the remaining
services – the losers – are abandoned.

Before discussing a formal representation of speculative parallelism, we con-
sider a simpler case of request-response protocol between one client and one
service. The protocol is modelled in webπ using the following network:

RP = [ 〈|req .resp().(ack | success ) ; fail |nack |〉nt ]resp

| [ req().(resp | ack().done |nack().abort ) ]req,ack,nack

The client (the machine on the first line) sends a request req to the service (the
machine on the second line) and blocks waiting for the response message resp .
If the response arrives in due time (i.e. before the timeout n expires), the client
produces the message success ; otherwise, it produces the message fail . The
service produces the message done in the case the request-response interaction
succeeds, abort otherwise. This is achieved by letting the client to produce ack
(respectively, nack ) when it succeeds (respectively, fails).
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Informally, the request-response protocol is correct if it satisfies the following
property: every partial computation may be completed in such a way that both the
client and the service communicate their final state; moreover, the final states of
the client and the service are consistent. The transliteration of this property in
the network RP is: “every computation may be completed in such a way that the
client emits success or fail , while the service emits done or abort ; additionally,
success and abort cannot be both produced, as well as fail and done ”.

To be more formal, let M ↓ x, read M has barb x, be the predicate defined by

M ↓ x if and only if M ≡ (ỹ)([ x w̃ |P ]z̃ |N) for some ỹ, w̃, P, z̃,N

The following auxiliary notations are also used:

M ↓ 〈x1 . . . xn〉 if M ↓ xi for i ∈ 1 . . . n
M ↓/ 〈x1 . . . xn〉 if M ↓ 〈x1 . . . xn〉 does not hold
M ⇓ 〈x1 . . . xn〉 if M →∗ M′ for some M′ and M′ ↓ 〈x1 . . . xn〉

where→∗ denotes the reflexive and transitive closure of the reduction relation→
defined for machines. Then the correctness property may be rewritten as follows:
for every machine M such that RP →∗ M, the following two conditions hold:

– M ⇓ 〈success, done〉 or M ⇓ 〈fail , abort〉,
– M ↓/ 〈fail , done〉 and M ↓/ 〈success, abort〉.

It is not difficult to verify that RP is a correct request-response protocol.
We now move to the more general case of speculative parallelism. For sim-

plicity, we consider the case of one client and two services; the generalization to
more than two services is trivial. Let the client send in parallel two requests to
two different services. If at least one response reaches the client in due time, that
service is completed and the other one must be aborted. If no response arrives
before the time-out expires, both services must be aborted.

The first machine we discuss is a direct adaptation of RP:

SP1 = [ (f)( f().fail
| 〈|req1 | resp1().(ack1 | success | t2 ) ; f |nack1 |〉nt1
| 〈|req2 | resp2().(ack2 | success | t1 ) ; f |nack2 |〉nt2 )

]resp1,resp2
| [ req1().(resp1 | ack1().done1 |nack1().abort1 )]req1,ack1,nack1
| [ req2().(resp2 | ack2().done2 |nack2().abort2 )]req2,ack2,nack2

The locations in the last two lines are the two services. They behave in much
the same way as the service in RP (the difference is that we use the indexes 1
and 2 to separate them). The client performs two transactions similar to the
one performed by the client in RP. Each transaction engages an interaction with
the corresponding service. The difference with RP is that, in case of success of
one transaction, the other transaction is aborted explicitly (using the message
t1 or t2 ). The local name f is used to implement failure. This is necessary in
order to avoid that two instances of fail are produced when, e.g., the time-out
expires. In this last case both the transactions fail and the two compensations
are activated.
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To analyse the correctness of SP1, we generalize to two services the above
property. Let SP1 be correct if the following property holds: for every machine
M such that SP1 →∗ M, the following two conditions hold:

– M ⇓ 〈success, done1, abort2〉 or M ⇓ 〈success, abort1, done2〉 or
M ⇓ 〈fail, abort1, abort2〉,

– M ↓/ 〈done1, done2〉 and M ↓/ 〈fail, done1, abort2〉 and
M ↓/ 〈fail, abort1, done2〉 and M ↓/ 〈success, abort1, abort2〉.

We notice that SP1 is incorrect because it may happen that both transactions
commit. This occurs if both messages resp1 and resp2 reach the client when
the time stamp is n′ > 1. For instance, consider the computation

SP1 →∗ [ resp1 | resp2
| (f)( f().fail

| 〈|resp1().(ack1 | success | t2 ) ; f |nack1 |〉n
′

t1

| 〈|resp2().(ack2 | success | t1 ) ; f |nack2 |〉n
′

t2 )
]resp1,resp2
| [ ack1().done1 |nack1().abort1 ]req1,ack1,nack1
| [ ack2().done2 |nack2().abort2 ]req2,ack2,nack2

It is easy to verify that this computation may be completed yielding a machine
M such that M ↓ 〈done1, done2〉. This contradicts the second condition of the
previous property.

This problem may be avoided by enclosing the two transactions in an out-
ermost transaction that is responsible to check that at most one transaction
succeeds. This solution is implemented by the machine SP2.

SP2 = [ (r, a1, a2) 〈| 〈|req1 | resp1().(r 〈t2, a1〉 | a1().ack1 ) ; nack1 |〉t1
| 〈|req2 | resp2().(r 〈t1, a2〉 | a2().ack2 ) ; nack2 |〉t2
| r(u, v).(u | v | success )
; t1 | t2 | fail |〉nt

]resp1,resp2
| [ req1().(resp1 | ack1().done1 |nack1().abort1 )]req1,ack1,nack1
| [ req2().(resp2 | ack2().done2 |nack2().abort2 )]req2,ack2,nack2

This machine is correct. The formal proof of this result is not reported, as it is a
tedious analysis of the possible computations. We report an informal discussion
of the basic idea underlying the implementation.

The request-response interactions with the services are realized by the trans-
actions t1 and t2, which are inside a transaction t that is responsible for deciding
the winner and the loser. The transactions t1 and t2 send a request to the corre-
sponding service and wait for the answer. On reception of the answer, t1 and t2
communicate their end on the private channel r . The message carries two names:
the first one is the name of the opposite transaction while the second one is the
name of an input where the transaction body is waiting for an acknowledgement.
When the t-transaction receives these two names, they are used to cancel the
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loser and to acknowledge the winner. Both t1 and t2 have an associated com-
pensation process that may cancel the task itself. The compensation process of
t simply invokes the compensations of t1 and t2.

As regards time, the time stamp n is associated to the transaction t, while t1
and t2 are timeless. It is worth noting that, if t1 and t2 where timed, the protocol
turns out to be incorrect. In fact, the time-outs of t1 and t2 may expire after
the transaction t has received a message on the channel r, but before the winner
transaction is notified. To clarify this circumstance, let SP2′ be the machine SP2
where the time stamp n is also associated to the transactions t1 and t2. It is
possible to obtain

SP2′ →∗ [ (r, a1, a2) 〈| 〈|a1().ack1 ; nack1 |〉0t1
| 〈|req2 | resp2().(r 〈t1, a2〉 | a2().ack2 ) ; nack2 |〉0t2
| t2 | a1 | success
; t1 | t2 | fail |〉0t

]resp1,resp2
| [ ack1().done1 |nack1().abort1 ]req1,ack1,nack1
| [ req2().(resp2 | ack2().done2 |nack2().abort2 )]req2,ack2,nack2

The reader may verify that this computation may be extended reaching a ma-
chine M such that M ↓ 〈success, abort1, abort2〉 thus contradicting the second
condition of the property formalized above.

5 Conclusion

We have explored the expressivity of webπ for modeling and reasoning about
typical mechanisms of Web Services orchestration and composition. In particular,
two case studies have been considered, one inspired by the orchestration language
BPEL and another one based on the pattern of services combination known as
speculative parallism.

In the next future we intend to consider a more significant fragment of BPEL,
in particular the so-called event handlers, as well as composition mechanisms
of other emerging languages such as WS-CDL. We also intend to model and
compare a whole class of patterns of composition for services. In this respect,
the library of patterns described in [10] will be taken as the main source of
inspiration for the protocols to be considered.
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Abstract. Programmers write programs, expressing plans for machines
to execute. When composed so that they may cooperate, plans may in-
stead interfere with each other in unanticipated ways. Plan coordination
is the art of simultaneously enabling plans to cooperate, while avoid-
ing hazards of destructive plan interference. For sequential computation
within a single machine, object programming supports plan coordination
well. For concurrent computation, this paper shows how hard it is to use
locking to prevent plans from interfering without also destroying their
ability to cooperate.

In Internet-scale computing, machines proceed concurrently, inter-
act across barriers of large latencies and partial failure, and encounter
each other’s misbehavior. Each dimension presents new plan coordina-
tion challenges. This paper explains how the E language addresses these
joint challenges by changing only a few concepts of conventional sequen-
tial object programming. Several projects are adapting these insights to
existing platforms.

1 Introduction

The fundamental constraint we face as programmers is complexity. It might seem
that we could successfully formulate plans only for systems we can understand.
Instead, every day, programmers successfully contribute code towards working
systems too complex for anyone to understand as a whole. We make use of
modularity and abstraction mechanisms to construct systems whose component
plans we can understand piecemeal, and whose compositions we can understand
without fully understanding each plan being composed.

Programmers are not to be measured by their ingenuity and their logic
but by the completeness of their case analysis.

—Alan Perlis

In the human world, when you plan for yourself, you make assumptions about
future situations in which your plan will unfold. Occasionally, someone else’s
plan may interfere with yours, invalidating the assumptions on which your plan
is based. To plan successfully, you need some sense of which assumptions are
usually safe from such disruption. You do not need to anticipate every possible

R. De Nicola and D. Sangiorgi (Eds.): TGC 2005, LNCS 3705, pp. 195–229, 2005.
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contingency, however. If someone does something you did not expect, you will
probably be better able to figure out how to cope at that time anyway.

To formulate plans for machines to execute, programmers must also make
assumptions. When separately formulated plans are composed, conflicting as-
sumptions can cause the run-time situation to become inconsistent with a given
plan’s assumptions, leading it awry. By dividing the state of a computational sys-
tem into separately encapsulated objects, and by giving objects limited access
to each other, we limit outside interference and extend the range of assump-
tions our programs may safely rely upon.1 Beyond these assumptions, correct
programs must handle all relevant contingencies. By abstraction, we limit one
object’s need for knowledge of others, reducing the number of cases which are
relevant. However, even under sequential and benign conditions, the remaining
case analysis can still be quite painful.

Under concurrency, an object’s own plans may destructively interfere with
each other. In distributed programming, asynchrony and partial failure limit an
object’s local knowledge of relevant facts, increasing the number of relevant cases
it must consider. In secure programming, we carefully distinguish those objects
whose good behavior we rely on from those we don’t, but we seek to cooperate
with both. Confidentiality further constrains local knowledge; deceit and mal-
ice are further sources of possible plan interference. Each of these dimensions
threatens an explosion of new cases we must consider. To succeed, we must find
ways of reducing the size of the resulting case analysis.

Previous papers have focused on E’s support for limited trust within the
constraints of distributed systems [MMF00, MYS03, MS03, MTS04]. This paper
focuses on E’s support for concurrent and distributed programming within the
constraints of limited trust.

2 Overview

Throughout this paper, we do not seek universal solutions to coordination prob-
lems, but rather, abstraction mechanisms adequate to craft diverse solutions
adapted to the needs of many applications. We illustrate many of our points
with a simple example, a “statusHolder” object implementing the listener pat-
tern.

The Sequential StatusHolder introduces the statusHolder and examines its
hazards in a sequential environment.

Why Not Shared-state Concurrency shows several attempts at a conven-
tionally thread-safe statusHolder in Java and the ways each suffers from plan
interference.

A Taste of E shows a statusHolder written in E and explains E’s eventual-send
operator in the context of a single thread of control.

1 This view of encapsulation and composition parallels Hayek’s explanation of how
property rights protect human plans from interference and how trade brings about
their cooperative alignment [vH45]. See [MD88, TM02] for more.
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Communicating Event-Loops explains how the statusHolder handles con-
currency and distribution under benign conditions.

Protection from Misbehavior examines how the plans coordinated by our
statusHolder are and are not vulnerable to each other.

Promise Pipelining introduces promises for the results of eventually-sent
messages, and shows how pipelining helps programs tolerate latency and how
broken promise contagion lets programs handle eventually-thrown
exceptions.

Partial Failure shows how statusHolder’s clients can regain access following a
partition or crash and explains the issues involved in regaining distributed
consistency.

The When-Catch Expression explains how to turn data-flow back into
control-flow.

From Objects to Actors and Back Again presents a brief history of E’s
concurrency control.

Related Work discusses other systems with similar goals, as well as current
projects adapting these insights to existing platforms.

Discussion and Conclusions summarizes current status, what remains to be
done, and lessons learned.

3 The Sequential StatusHolder

Throughout the paper, we will examine different forms of the listener pattern
[Eng97]. The code below is representative of the basic sequential listener pat-
tern.2 In it, a statusHolder object is used to coordinate a changing status be-
tween publishers and subscribers. A subscriber can ask for the current status of
a statusHolder by calling getStatus, or can subscribe to receive notifications
when the status changes by calling addListener with a listener object. A pub-
lisher changes the status in a statusHolder by calling setStatus with the new
value. This in turn will call statusChanged on all subscribed listeners. In this
way, publishers can communicate status updates to subscribers without knowing
of each individual subscriber.

We can use this pattern to coordinate several loosely coupled plans. For
example, in a simple application, a bank account manager publishes an account
balance to an analysis spreadsheet and a financial application. Deposits and
withdrawals cause a new balance to be published. The spreadsheet adds a listener
that will update the display to show the current balance. The finance application
adds a listener to begin trading activities when the balance falls below some
threshold. Although these clients interact cooperatively, they know very little
about each other.

2 The listener pattern [Eng97] is similar to the observer pattern [GHJV94]. However,
the analysis which follows would be quite different if we were starting from the
observer pattern.
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public class StatusHolder {
private Object myStatus;
private final ArrayList<Listener> myListeners

= new ArrayList();

public StatusHolder(Object status) {
myStatus = status;

}
public void addListener(Listener newListener) {

myListeners.add(newListener);
}
public Object getStatus() {

return myStatus;
}
public void setStatus(Object newStatus) {

myStatus = newStatus;
for (Listener listener: myListeners) {

listener.statusChanged(newStatus);
}

}
}

Even under sequential and benign conditions, this pattern creates plan interfer-
ence hazards.

Aborting the wrong plan: If a listener throws an exception, this prevents
some other listeners from being notified of the new status and possibly aborts
the publisher’s plan. In the above example, the spreadsheet’s inability to
display the new balance should not impact either the finance application or
the bank account manager.

Nested subscription: The actions of a listener could cause a new listener to
be subscribed. For example, to bring a lowered balance back up, the finance
application might initiate a stock trade operation, which adds its own lis-
tener. Whether that new listener sees the current event, fails to see the cur-
rent event, or fails to be subscribed depends on minor details of the listener
implementation.

Nested publication: Similarly, a listener may cause a publisher to publish a
new status, possibly unknowingly due to aliasing. For example, during an
update, the invocation of setStatus notifies the finance application, which
deposits money into the account. A new update to the balance is published
and an inner invocation of setStatus notifies all listeners of the new balance.
After that inner invocation returns, the outer invocation of setStatus con-
tinues notifying listeners of the older, pre-deposit balance. Some of the listen-
ers would receive the notifications out of order. As a result, the spreadsheet
might leave the display showing the wrong balance, or worse, the finance
application might initiate transactions based on incorrect information.
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The nested publication hazard is especially striking because it reveals that prob-
lems typically associated with concurrency may arise even in a simple sequential
example. This is why we draw attention to plans, rather than programs or pro-
cesses. The statusHolder, by running each subscriber’s plan during a step of a
publisher’s plan, has provoked plan interference: these largely independent plans
now interact in surprising ways, creating numerous new cases that are difficult
to identify, prevent, or test. Although these hazards are real, experience suggests
that programmers can usually find ways to avoid them in sequential programs
under benign conditions.

4 Why Not Shared-State Concurrency

With genuine concurrency, interacting plans unfold in parallel. To manipulate
state and preserve consistency, a plan needs to ensure others are not manipu-
lating that same state at the same time. This section explores the plan coor-
dination problem in the context of the conventional shared-state concurrency-
control paradigm [VH04], also known as shared-memory multi-threading. We
present several attempts at a conventionally thread-safe statusHolder—searching
for one that prevents its clients from interfering without preventing them from
cooperating.

In the absence of real-time concerns, we can analyze concurrency without
thinking about genuine parallelism. Instead, we can model the effects of concur-
rency as the non-deterministic interleaving of atomic units of operation. We can
roughly characterize a concurrency-control paradigm with the answers to two
questions:

Serializability: What are the coarsest-grain units of operation, such that we
can account for all visible effects of concurrency as equivalent to some fully
ordered interleaving of these units [IBM68]? For shared-state concurrency,
this unit is generally no larger than a memory access, instruction, or system
call—which is often finer than the “primitives” provided by our programming
languages [Boe05]. For databases, this unit is the transaction.

Mutual exclusion: What mechanisms can eliminate the possibility of some
interleavings, so as to preclude the hazards associated with them? For shared-
state concurrency, the two dominant answers are monitors [Hoa74, BH93]
and rendezvous [Hoa78]. For distributed programming, many systems restrict
the orders in which messages may be delivered [BJ87, Ami95, Lam98].

Java is loosely in the monitor tradition. Ada, Concurrent ML, and the syn-
chronous π-calculus are loosely in the rendezvous tradition. With minor adjust-
ments, the following comments apply to both.

4.1 Preserving Consistency

If we place our sequential statusHolder into a concurrent environment, publishers
or subscribers may call it from different threads. The resulting interleaving of
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Fig. 1. A correct program must both remain consistent and continue to make progress.
The sequence above represents our search for a statusHolder which supports both
well: (1) The sequential statusHolder. (2) The sequential statusHolder in a concurrent
environment. (3) The fully synchronized statusHolder. (4) Placing the for-loop outside
the synchronized block. (5) Spawning a new thread per listener notification. (6) Using
communicating event-loops.

operations might, for example, mutate the myListeners list while the for-loop
is in progress.

Adding the “synchronized” keyword to all methods of the above code causes
it to resemble a monitor. This fully synchronized statusHolder eliminates exactly
those cases where multiple plans interleave within the statusHolder. It is as good
at preserving its own consistency as our original sequential statusHolder was.

However, it is generally recommended that Java programmers avoid this fully
synchronized pattern because it is prone to deadlock [Eng97]. Although each lis-
tener is called from some publisher’s thread, its purpose may be to contribute
to a plan unfolding in its subscriber’s thread. To defend itself against such con-
current entry, the objects at this boundary may themselves be synchronized.
If a statusChanged notification gets blocked here, waiting on that subscriber’s
thread, it blocks the statusHolder, as well as any other objects whose locks are
held by that publisher’s thread. If the subscriber’s thread is itself waiting on one
of these objects, we have a classic deadly embrace.

Although we have eliminated interleavings that lead to inconsistency, some
of the interleavings we eliminated were necessary to make progress.

4.2 Avoiding Deadlock

To avoid this problem, [Eng97] recommends changing the setStatus method to
clone the listeners list within the synchronized block, and then to exit the block
before entering the for-loop, as shown by the code below. This pattern avoids
holding a lock during notification and thus avoids the obvious deadlock described
above between a publisher and a subscriber. It does not avoid the underlying
hazard, however, because the publisher may hold other locks.
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public void setStatus(Object newStatus) {
ArrayList<Listener> listeners;
synchronized (this) {

myStatus = newStatus;
listeners = (ArrayList<Listener>)myListeners.clone();

}
for (Listener listener: listeners) {

listener.statusChanged(newStatus);
}

}

For example, if the account manager holds a lock on the bank account during a
withdrawal, a deposit attempt by the finance application thread may result in
an equivalent deadlock, with the account manager waiting for the notification
of the finance application to complete, and the finance application waiting for
the account to unlock. The result is that all the associated objects are locked
and other subscribers will never hear about this update. Thus, the underlying
hazard remains.

In this approach, some interleavings needed for progress are still eliminated,
and as we will see, some newly-allowed interleavings lead to inconsistency.

4.3 Race Conditions

The approach above has a consistency hazard: if setStatus is called from two
threads, the order in which they update myStatus will be the order they enter
the synchronized block above. However, the for-loop notifying listeners of a later
status may race ahead of one that will notify them of an earlier status. As a
result, even a single subscriber may see updates out of order, so the spreadsheet
may leave the display showing the wrong balance, even in the absence of any
nested publication.

It is possible to adjust for these remaining problems. The style recommended
for some rendezvous-based languages, like Concurrent ML and the π-calculus,
corresponds to spawning a separate thread to perform each notification. This
avoids using the producer’s thread to notify the subscribers and thus avoids
the deadlock hazard—it allows all interleavings needed for progress. However,
this style still suffers from the same race condition hazards and so still fails
to eliminate the right interleavings. We could compensate for this by adding a
counter to the statusHolder and to the notification API, and by modifying the
logic of all listeners to reorder notifications. But a formerly trivial pattern has
now exploded into a case-analysis minefield. Actual systems contain thousands
of patterns more complex than the statusHolder. Some of these will suffer from
less obvious minefields.

This is “Multi-Threaded Hell”. As your application evolves, or as
different programmers encounter the sporadic and non-reproducible cor-
ruption or deadlock bugs, they will add or remove locks around different
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data structures, causing your code base to veer back and forth . . . , erring
first on the side of more deadlocking, and then on the side of more cor-
ruption. This kind of thrashing is bad for the quality of the code, bad
for the forward progress of the project, and bad for morale.

—An experience report from the development of Mojo Nation [WO01]

5 A Taste of E

Before revisiting the issues above, let’s first use this example to briefly explain
E as a sequential object language. (For a more complete explanation of E, see
[Sti04].) Here is the same statusHolder as defined in E.

def makeStatusHolder(var myStatus) {
def myListeners := [].diverge()
def statusHolder {

to addListener(newListener) {
myListeners.push(newListener)

}
to getStatus() { return myStatus }
to setStatus(newStatus) {

myStatus := newStatus
for listener in myListeners {

listener.statusChanged(newStatus)
}

}
}
return statusHolder

}

E has no classes. Instead, the expression beginning with “def statusHolder”
is an object definition expression. It creates a new object with the enclosed
method definitions and binds the new statusHolder variable to this object. An
invocation, such as “statusHolder.setStatus(33)”, causes a message to be
delivered to an object. When an object receives a message, it reacts according to
the code of its matching method. As with Smalltalk [GR83] or Actors [HBS73],
all values are objects, and all computation proceeds only by delivering messages
to objects.

From a λ-calculus perspective, an object definition expression is a lambda
expression, in which the (implicit) parameter is bound to the incoming message
and the body selects a method to run according to the message. The delivery of
a message to an object is the application of an object-as-closure to a message-as-
argument. An object’s behavior is indeed a function of the message it is applied
to. This view of objects goes back to Smalltalk-72 [GK76] and Actors, and is
hinted at earlier in [Hoa65]. Also see [SS04].

Unlike a class definition, an object definition does not declare its instance
variables. Instead, the instance variables of an object are simply the variables
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used freely within the object definition (which therefore must be defined in some
lexically enclosing scope). The instance variables of statusHolder are myStatus
and myListeners. Variables are unassignable by default; the “var” keyword
defines myStatus as an assignable variable. Square brackets evaluate to an im-
mutable list containing the values of the subexpressions (the empty-list in the
example). Lists respond to the “diverge()” message by returning a new mutable
list whose initial contents are a snapshot of the diverged list. Thus, myListeners
is initialized to a new, empty, mutable list, which acts much like an ArrayList.

E provides syntactic shorthands to use objects that define a “run” method
as if they were functions. The syntax for makeStatusHolder is a shorthand for
defining an object with a single “run” method. It expands to:

def makeStatusHolder {
to run(var myStatus) { ...

The corresponding function call syntax, “makeStatusHolder(44)”, is shorthand
which expands to “makeStatusHolder.run(44)”.Each time makeStatusHolder
is called, it defines and returns a new statusHolder.

5.1 Two Ways to Postpone Plans

The E code for statusHolder above retains the simplicity and hazards of the
sequential Java version. To address these hazards requires examining the under-
lying issues. When the statusHolder—or any agent—is executing plan X and
discovers the need to engage in plan Y , in a sequential system, it has two simple
alternatives of when to do Y :

Immediately: Put X aside, work on Y until complete, then go back to X .
Eventually: Put Y on a “to-do” list and work on it after X is complete.

The “immediate” option corresponds to conventional, sequential call-return con-
trol flow (or strict applicative-order evaluation), and is represented by the “.” or
immediate-call operator, which delivers the message immediately. Above, status-
Holder’s addListener method tells myListeners to push the newListener im-
mediately. When addListener proceeds past this point, it may assume that all
side effects it requested are done.

For the statusHolder example, all of the sequential hazards (e.g., Nested
Publication) and many of the concurrent hazards (deadlock) occur because the
statusChanged method is also invoked immediately: the publisher’s plan is set
aside to pursue the listener’s plan (which might then abort, change the state
further, etc.).

The “eventual” option corresponds to the human notion of a “to-do” list:
the item is queued for later execution. E provides direct support for this asyn-
chronous messaging option, represented by the “<-” or eventual-send operator.
Using eventual-send, the setStatus method can ensure that each listener will
be notified of the changed status in such a way that it does not interfere with
the statusHolder’s current plan. To accomplish this in E, the setStatus method
becomes:
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to setStatus(newStatus) {
myStatus := newStatus
for listener in myListeners {

listener <- statusChanged(newStatus)
}

}

As a result of using eventual-send above, all of the sequential hazards are ad-
dressed. Errors, new subscriptions, and additional status changes caused by lis-
teners will all take place after all notifications for a published event have been
scheduled. Publishers’ plans and subscribers’ plans are temporally isolated—so
these plans may unfold with fewer unintended interactions. For example, it can
no longer matter whether myStatus is assigned before or after the for-loop.

5.2 Simple E Execution

This section describes how temporal isolation is achieved within a single thread
of control. The next section describes how it is achieved in the face of concurrency
and distribution.

Fig. 2. An E vat consists of a heap of objects and a thread of control. The stack and
queue together record the postponed plans the thread needs to process. An immediate-
call pushes a new frame on top of the stack, representing the delivery of a message
(arrow) to a target object (dot). An eventual-send enqueues a new pending delivery on
the right end of the queue. The thread proceeds from top to bottom and then from left
to right.

In E, an eventual-send creates and queues a pending delivery, which repre-
sents the eventual delivery of a particular message to a particular object. Within
a single thread of control, E has both a normal execution stack for immediate
call-return and a queue containing all the pending deliveries. Execution proceeds
by taking a pending-delivery from the queue, delivering its message to its ob-
ject, and processing all the resulting immediate-calls in conventional call-return
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order. This is called a turn. When a pending delivery completes, the next one
is dequeued, and so forth. This is the classic event-loop model, in which all of
the events are pending deliveries. Because each event’s turn runs to completion
before the next is serviced, they are temporally isolated.

Additional mechanisms to process results and exceptions from eventual-sends
will be discussed in further sections below.

The combination of a stack, a pending delivery queue, and the heap of objects
they operate on is called a vat, illustrated in Figure 2.3 Each E object lives in
exactly one vat and a vat may host many objects. Each vat lives on one machine
at a time and a machine may host many vats. The vat is also the minimum
unit of persistence, migration, partial failure, resource control, and defense from
denial of service. We will return to some of these topics below.

6 Communicating Event-Loops

We now consider the case where our account (including account manager and
its statusHolder) runs in VatA on one machine, and our spreadsheet (including
its listener) runs in VatS on another machine.

In E, we distinguish several reference-states. A direct reference between two
objects in the same vat is a near reference.4 As we have seen, near references carry
both immediate-calls and eventual-sends. Only eventual references may cross vat
boundaries, so the spreadsheet holds an eventual reference to the statusHolder,
which in turns holds an eventual reference to the spreadsheet’s listener. Eventual
references are first class—they can be passed as arguments, returned as results,
and stored in data structures, just like near references. However, eventual ref-
erences carry only eventual-sends, not immediate-calls—an immediate-call on
an eventual reference throws an exception. Our statusHolder is compatible with
this constraint, since it stores, retrieves, and eventual-sends to its listeners, but
never immediate-calls them. Figure 3 shows what happens when a message is
sent between vats.

When the statusHolder in VatA performs an eventual-send of the
statusChanged message to the spreadsheet’s listener in VatS, VatA creates a
pending delivery as before, recording the need to deliver this message to this
listener. Pending deliveries need to be queued on the pending delivery queue of
the vat hosting the object that will receive the message—in this case, VatS. VatA
serializes (marshals) the pending delivery onto an encrypted, order-preserving
byte stream read by VatS. Should it ever arrive at VatS, VatS will unserialize it
and queue it on its own pending delivery queue.

Since each vat runs concurrently with all other vats, turns in different vats
no longer have actual temporal isolation. If VatS is otherwise idle, it may service
this delivery, notifying the spreadhseet’s listener of the new balance, while the
original turn is still in progress in VatA. But so what? These two turns can
3 Figures 2–5 were created by Ka-Ping Yee with input from the e-lang community.
4 For brevity, we generally do not distinguish a near reference from the object it

designates.
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Fig. 3. If the account manager and the spreadsheet are in separate vats, when the
account manager (1) tells the statusHolder that represents its balance to immediately
update, this (2) transfers control to the statusHolder, which (3) notes that its listeners
should eventually be notified. The message is (4) sent to the spreadsheet’s vat, which
queues it on arrival and eventually (5) delivers it to the listener, which updates the
display of the spreadsheet cell.

only execute simultaneously when they are in different vats. In this case, the
spreadsheet cannot affect the account manager’s turn-in-progress. Because only
eventual references span between vats, the spreadsheet can only affect VatA by
eventual-sending to objects hosted by VatA. This cannot affect any turn already
in progress in VatA—VatA only queues the pending delivery, and will service
it sometime after the current turn and turns for previously queued pending
deliveries, complete.

Only near references provide one object synchronous access to another.
Therefore an object has synchronous access to state only within its own vat.
Taken together, these rules guarantee that a running turn—a sequential call-
return program—has mutually exclusive access to everything to which it has
synchronous access. In the absence of real-time concerns, this provides all the
isolation that was achieved by temporal isolation in the single-threaded case.

The net effect is that a turn is E’s unit of operation. We can faithfully account
for the visible effects of concurrency without any interleaving of the steps within
a turn. Any actual multi-vat computation is equivalent to some fully ordered
interleaving of turns.5 Because E has no explicit locking constructs, computation

5 An E turn may never terminate, which is hard to account for within this simple
model of serializability. There are formal models of asynchronous systems that can
account for non-terminating events [CL85]. Within the scope of this paper, we can
safely ignore this issue.

The actual E system does provide synchronous file I/O operations. When these
files are local, prompt, and private to the vat accessing them, this does not violate
turn isolation, but since files may be remote, non-prompt, or shared, the availability
of these synchronous I/O operations does violate the E model.



Concurrency Among Strangers 207

within a turn can never block—it can only run, to completion or forever. A vat
as a whole is either processing pending deliveries, or is idle when there are
no pending deliveries to service. Because computation never blocks, it cannot
deadlock. Other lost progress hazards are discussed in the section on “Datalock”
below.

As with database transactions, the length of an E turn is not predetermined.
It is a tradeoff left for the developer to decide. How the object graph is carved
up into vats and how computation is carved up into turns will determine which
interleaving cases are eliminated, and which must be handled explicitly by the
programmer. For example, when the spreadsheet was co-located with the status-
Holder, it could immediate-call both getStatus and addListener in order to
ensure that the spreadsheet’s cell sees exactly the updates to an initial valid
state. But when it can only eventual-send these messages, they may arrive at
the statusHolder interleaved with other messages. To relieve potentially remote
clients of this burden, the statusHolder should send an initial notification to
newly subscribed listeners:

to addListener(newListener) {
myListeners.push(newListener)
newListener <- statusChanged(myStatus)

}

6.1 Issues with Event-Loops

This architecture imposes some strong constraints on programming (e.g., no
threads or coroutines), which can impede certain useful patterns of plan cooper-
ation. In particular, recursive algorithms, such as recursive-descent parsers, must
a) happen entirely within a single turn, b) be redesigned (e.g., as a table-driven
parser), or c) if it needs external non-prompt input (e.g., a stream from the user),
be run in a dedicated vat. E programs have used each of these approaches.

Thread-based coordination patterns can typically be adapted to vat granu-
larity. For example, rather than adding the complexity of a priority queue for
pending deliveries, different vats would simply run at different processor priori-
ties. For example, if a user-interaction vat could proceed (has pending deliveries
in its queue), it should; a helper “background” vat (e.g., spelling check) should
consume processor resources only if no user-directed action could proceed. A
divide-and-conquer approach for multi-processing could run a vat on each pro-
cessor and divide the problem among them. The event-loop approach is unsuit-
able for problems that cannot easily be adapted to a message-passing hardware
architecture, such as fluid dynamics computation.

7 Protection from Misbehavior

When using a language that supports shared-state concurrency, one can choose
to avoid it and adopt the event-loop style instead. Indeed, several Java libraries,
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such as AWT, were initially designed to be thread-safe, and were then redesigned
around event-loops. Using event-loops, one can easily write a Java class equiva-
lent to our makeStatusHolder. If one can so easily choose to avoid shared-state
concurrency, does E actually need to prohibit it?

E uses the event-loop approach to simplify the task of preserving consistency
while maintaining progress. Preserving consistency stays simple for the status-
Holder only if it executes in at most one thread at a time. As we discussed
previously, the possibility of multiple threads would necessitate complex lock-
ing. If one of its clients could create a new thread and call it, then the simple
version of the statusHolder could not preserve consistency (i.e., it would need to
perform the complex locking mentioned in the previous section).

In the extreme case, one object may actively intend to disrupt the plans of
another. This leads us to examine plan coordination in the presence of malicious
behavior. The topic is of interest both because large and distributed systems in
practice need to handle potentially malicious components, and because analysis
of the malicious case can help uncover hazards that are already present in the
non-malicious case.

7.1 Defensive Correctness

If a user browsing a webserver were able to cause incorrect pages to be displayed
to other users, we would likely consider it a bug in the webserver—we expect
it to remain correct regardless of the client’s behavior. We call this property
defensive correctness: a program P is defensively correct if it remains correct
despite arbitrary behavior on the part of its clients. Before this definition can
be useful, we need to pin down what we mean by “arbitrary” behavior.

When we say that a program P is correct, this normally means that we
have a specification in mind, and that P behaves according to that specification.
There are some implicit caveats in that assertion. For example, P cannot behave
at all unless it is run on a machine; if the machine operates incorrectly, P on
that machine may behave in ways that deviate from its specification. We do not
consider this to be a bug in P , because P ’s correctness implicitly depends on
the machine’s correctness. If P ’s correctness depends on another component R ’s
correctness, we will say that P relies upon R . For example, a typical webserver
relies on the underlying machine and on operating system features such as files
and sockets. We will refer to the set of all elements on which P relies as P ’s
reliance set.6

We define Q’s authority as the set of effects Q could cause. With regard to
P ’s correctness, Q’s relevant authority is bounded by the assumption that every-
thing in P ’s reliance set is correct, since P was defined under this assumption.

6 The set of all things that P relies on is similar in concept to P’s “Trusted Computing
Base” or TCB. “Rely” articulates the objective situation (P is vulnerable to R), and
so avoids confusions engendered by the word “trust”.

While the focus in this paper is on correctness, a similar “reliance” analysis could
be applied to other program properties, such as promptness [Har85].



Concurrency Among Strangers 209

For example, if a user could cause a webserver to show the wrong page to other
browsers by replacing a file through an operating system exploit, then the un-
derlying operating system would be incorrect, not the webserver. We say that P
protects against Q if P remains correct despite any of the effects in Q’s relevant
authority, that is, despite any possible actions by Q, assuming the correctness
of P ’s reliance set.

Now we can speak more precisely about defensive correctness. The “arbitrary
behavior” mentioned earlier is the combined relevant authority of an object’s
clients. P is defensively correct if it protects against all of its clients. The focus is
on clients in particular in order to enable the composition of correct components
into larger correct systems. If P relies on R , then P also relies on all of R ’s other
clients unless R is defensively correct. If R does not protect against its other
clients, P cannot prevent them from interfering with its own plan, which makes
it infeasible for P to ensure its own correctness. By not relying on its clients, R
enables them to avoid relying on each other.

This explains why it is important for E to forbid the spawning of threads. As
we saw earlier, it can be very difficult to write programs in which threads protect
against each other. Removing threads eliminates a key obstacle to defensive
correctness.

Correctness can be divided into consistency (safety) and progress (liveness).
An object that is vulnerable to denial-of-service by its clients may nevertheless
be defensively consistent. Given that all the objects it relies on themselves remain
consistent, a defensively consistent object will never give incorrect service to well-
behaved clients, but it may be prevented from giving them any service. While a
defensively correct object is invulnerable to its clients, a defensively consistent
object is merely incorruptible by its clients.

Different security properties are feasible at different granularities. Some con-
ventional operating systems attempt to provide support for protecting users from
each other’s misbehavior. But because programs are normally run with their
user’s full authority, all software run under the same account is mutually reliant:
since each is granted the authority to corrupt the others via underlying compo-
nents on which they all rely, they cannot usefully protect against such “friendly
fire”.7 Some operating system designs [DH65] support process-granularity de-
fensive consistency. Others, by providing principled controls over computational
resource rights [Har85, SSF99], can also protect against denial of service. Among
machines distributed over today’s Internet, cryptographic protocols help support
defensive consistency, but defensive correctness remains infeasible.

In most programming languages, all objects in the same process are mutually
reliant. A secure language is one which supports some useful form of protections
within a process. Among objects in the same vat, E supports defensive consis-
tency: Any object may go into an infinite loop, thereby preventing the progress
of all other objects within their vat. Therefore, within E’s architecture, defensive
correctness within a vat is impossible. With respect to progress, all objects within

7 See [SKYM04] for an unconventional way to use conventional OSes to provide greater
security.



210 M.S. Miller, E.D. Tribble, and J. Shapiro

the same vat are mutually reliant. In many situations, defensive consistency is
adequate—a potential adversary often has more to gain from corruption than
denial of service. This is especially so in iterated relationships, since corruption
may misdirect plans but go undetected, while loss of progress is quite noticeable.

7.2 Principle of Least Authority (POLA)

Our statusHolder itself is now defensively consistent, but is it a good abstraction
for the account manager to rely on to build its own defensively consistent plans?
In our example scenario, we have been assuming that the account manager acts
only as a publisher and that the finance application and spreadsheet act only as
subscribers. However either subscriber could invoke the setStatus method. If
the finance application calls setStatus with a bogus balance, the spreadsheet
will dutifully render it.

This is a problem of access control. The statusHolder, by bundling two kinds
of authority into one object, encouraged patterns where both kinds of authority
were provided to objects that only needed one. This can be addressed by grouping
these methods into separate objects, each of which represents a sensible bundle
of authority.

def makeStatusPair(var myStatus) {
def myListeners := [].diverge()
def statusGetter {

to addListener(newListener) {
myListeners.push(newListener)
newListener <- statusChanged(myStatus)

}
to getStatus() { return myStatus }

}
def statusSetter {

to setStatus(newStatus) {
myStatus := newStatus
for listener in myListeners {

listener <- statusChanged(newStatus)
}

}
}
return [statusGetter, statusSetter]

}

Now the account manager can make use of makeStatusPair as follows:

def [sGetter, sSetter] := makeStatusPair(33)

The call to makeStatusPair on the right side makes four objects—an object rep-
resenting the myStatus variable, a mutable myListeners list, a statusGetter,
and a statusSetter. The last two each share access to the first two. The call
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to makeStatusPair returns a list holding these last two objects. The left side
pattern-matches this list, binding sGetter to the new statusGetter, and bind-
ing sSetter to the new statusSetter.

The account manager can now keep the new statusSetter for itself and give
the spreadsheet and the finance application access only to the new statusGetter.
More generally, we may now describe publishers as those with access to
statusSetterand subscribers as those with access to statusGetter.The account
manager can now provide consistent balance reports to its clients because it has de-
nied them the possibility of corrupting this service.

As with concurrency control, the key to access control is to allow the possibil-
ities needed for cooperation, while limiting the possibilities that would allow for
plan interference. We wish to provide objects the authority needed to carry out
their proper duties—publishers gotta publish—but little more. This is known
as POLA, the Principle of Least Authority (See [MS03] for the relationship be-
tween POLA and the Principle of Least Privilege [SS75]). By not granting its
subscribers the authority to publish a bogus balance, the account manager no
longer needs to worry about what would happen if they did. This discipline helps
us compose plans so as to allow well-intentioned plans to successfully cooperate,
while minimizing the kinds of plan interference they must defend against.

7.3 A Taste of E Across a Network

E’s computational model extends across the network. An eventual reference in
a vat can refer to an object in a vat on another machine; eventual-sends to that
reference are sent across an encrypted, authenticated link and posted as pending
deliveries for the target object on the remote vat.

E’s network protocol, Pluribus, actually runs between vats, not between ma-
chines. Therefore, we can ignore the distinction between vats and machines with-
out loss of generality. An incorrect machine is, from our perspective, simply a set
of incorrect vats; i.e., vats that do not implement the language and/or protocol
correctly. The design of Pluribus is beyond the scope of this document, but a
few words are in order.

Pluribus enforces characteristics of the E computational model, such as ref-
erence integrity, so that E programs can rely on those properties between vats
and therefore between machines. Even if a remote vat runs its objects in an un-
safe language like C++, other vats could still view it from a correctness point of
view as a set of (possibly incorrect) objects written in E. From the perspective of
other vats, the objects in the remote vat could collude and act arbitrarily within
the union of the authorities granted to any of them, but they cannot feasibly8

manufacture new authorities. Thus, if an object relies on another object in a
remote vat, then it also relies on that remote vat (because the remote object
relies on that vat).

8 Pluribus relies on the standard cryptographic assumptions that large random num-
bers are not feasibly guessable, and that well-accepted algorithms are immune to
feasible cryptanalysis.
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8 Promise Pipelining

The eventual-send examples so far were carefully selected to be evaluated only
for their effects, with no use made of the value of these expressions. This section
discusses the handling of return results and exceptions produced by eventual-
sends.

8.1 Promises

As discussed previously, eventual-sends queue a pending delivery and complete
immediately. The return value from an eventual-send operation is called a
promise for the eventual result. The promise is not a near reference for the
result of the eventual-send because the eventual-send cannot have happened yet
(i.e., it will happen in a later turn). Instead, the promise is an eventual-reference
for the result. A pending delivery, in addition to the message and reference to
the target object, includes a resolver for the promise, which provides the right
to choose what the promise designates. When the turn spawned by the eventual-
send completes, its vat reports the outcome to the resolver, resolving the promise
so that the promise eventually becomes a reference designating that outcome,
called the resolution.

Once resolved, the promise is equivalent to its resolution. Thus, if it resolves
to an eventual-reference for an object in another vat, then the promise becomes
that eventual reference. If it resolves to an object that can be passed by copy
between vats, then it becomes a near-reference to that object.

Because the promise starts out as an eventual reference, messages can be
eventually-sent to it even before it is resolved. Messages sent to the promise can-
not be delivered until the promise is resolved, so they are buffered in FIFO order
within the promise. Once the promise is resolved, these messages are forwarded,
in order, to its resolution.

8.2 Pipelining

Since an object can eventual-send to the promises resulting from previous
eventual-sends, functional composition is straightforward. If object L in VatL
executes

def r3 := x <- a() <- c(y <- b())

or equivalently

def r1 := x <- a()
def r2 := y <- b()
def r3 := r1 <- c(r2)

and x and y are on VatR, then all three requests are serialized and streamed
out to VatR immediately and the turn in VatL continues without blocking. By
contrast, in a conventional RPC system, the calling thread would only proceed
after multiple network round trips.
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Fig. 4. The three messages in def r3 := x <- a() <- c(y <- b()) are streamed out
together, with no round trip. Each message box “rides” on the reference it is sent on.
References x and y are shown with solid arrowheads, indicating that their target is
known. The others are promises, whose open arrowhead represents their resolvers,
which provide the right to choose their promises’ value.

Figure 4 depicts an unresolved reference as an arrow stretching between its
promise-end, the tail held by r1, and its resolver, the open arrowhead within the
pending delivery sent to VatR. Messages sent on a reference always flow towards
its destination and so “move” as close to the arrowhead as possible. While the
pending delivery for a() is in transit to VatR, so is the resolver for r1, so we send
the c(r2) message there as well. As VatR unserializes these three requests, it
queues the first two in its local to-do list, since their target is known and local. It
sends the third, c(r2), on a local promise that will be resolved by the outcome
of a(), carrying as an argument a local promise for the outcome of b().

If the resolution of r1 is local to VatR, then as soon as a() is done, c(r2) is
immediately queued on VatR’s to-do list and may well be serviced before VatL
learns of r1’s resolution. If r1 is on VatL, then c(r2) is streamed back towards
VatL just behind the message informing VatL of r1’s resolution. If r1 is on yet
a third vat, then c(r2) is forwarded to that vat.

Across geographic distances, latency is already the dominant performance
consideration. As hardware improves, processing will become faster and cheaper,
buffers larger, and bandwidth greater, with limits still many orders of magni-
tude away. But latency will remain limited by the speed of light. Pipes between
fixed endpoints can be made wider but not shorter. Promise pipelining reduces
the impact of latency on remote communication. Performance analysis of this
type of protocol can be found in Bogle’s “Batched Futures” [BL94]; the promise
pipelining protocol is approximately a symmetric generalization of it.

8.3 Datalock

Promise chaining allows some plans, like c(r2), to be postponed pending the
resolution of previous plans. We introduce other ways to postpone plans below.
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Using the primitives introduced so far, however, it is possible to create circular
data dependencies which, like deadlock, are a form of lost-progress bug. We call
this kind of bug, datalock. For example, the epimenides function below returns
a promise for the boolean opposite of flag.

var flag := true
def epimenides() { return flag <- not() }

If flag were assigned to the result of invoking epimenides eventually, datalock
would occur.

flag := epimenides <- run()

In the current turn, a pending-delivery of epimenides <- run() is queued, and
a promise for its result is immediately assigned to flag. In a later turn when
epimenides is invoked, it eventual-sends a message to the promise in flag, and
then resolves the flag promise to the new promise for the not() sent to that
same flag promise. The datalock is created, not because a promise is resolved
to another promise (which is acceptable and common), but because computing
the eventual resolution of flag requires already knowing it.

Although the E model trades one form of lost-progress bug for another, it is
still more reliable. As above, datalock bugs primarily represent circular depen-
dencies in the computation, which manifest reproducibly like normal program
bugs. This avoids the significant non-determinism, non-reproducibility, and re-
sulting debugging difficulty of deadlock bugs. Anecdotally, in many years of
programming in E and E-like languages and a body of experience spread over
perhaps 60 programmers and two substantial distributed systems, we know of
only two datalock bugs. Perhaps others went undetected, but these projects did
not spend the agonizing time chasing deadlock bugs that projects of their nature
normally must spend. Further analysis is needed to understand why datalock
bugs seem to be so rare.

8.4 Explicit Promises

Besides the implicit creation of promise-resolver pairs by eventual-sending, E
provides a primitive to create these pairs explicitly. In the following code

def [p, r] := Ref.promise()

p and r are bound to the promise and resolver of a new promise/resolver pair.
Explicit promise creation gives us yet greater flexibility to postpone plans until
other conditions occur. The promise, p, can be handed out and used just as any
other eventual reference. All messages eventually-sent to p are queued in the
promise. An object with access to r can wait until some condition occurs before
resolving p and allowing these pending messages to proceed, as a later example
will demonstrate.
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8.5 Broken Promise Contagion

Because eventual-sends are executed in a later turn, an exception raised by one
can no longer signal an exception and abort the plan of its “caller”. Instead,
the vat executing the turn for the eventual send catches any exception that
terminates that turn and breaks the promise by resolving the promise to a bro-
ken reference containing that exception. Any immediate-call or eventual-send
to a broken reference breaks the result with the broken reference’s exception.
Specifically, an immediate-call to a broken reference would throw the exception,
terminating control flow. An eventual-send to a broken reference would break
the eventual-send’s promise with the broken reference’s exception. As with the
original exception, this would not terminate control flow, but does affect plans
dependent on the resulting value.

E’s split between control-flow exceptions and data-flow exceptions was in-
spired by signaling and non-signaling NaNs in floating point. Like non-signaling
NaNs, broken promise contagion does not hinder pipelining. Following sections
discuss how additional sources of failure in distributed systems cause broken
references, and how E handles them while preserving defensive consistency.

9 Partial Failure

Not all exceptional conditions are caused by program behavior. Networks suffer
outages, partitioning one part of the network from another. Machines fail: some-
times in a transient fashion, rolling back to a previous stable state; sometimes
permanently, making the objects they host forever inaccessible. From a machine
not able to reach a remote object, it is generally impossible to tell which failure
is occurring or which messages were lost.

Distributed programs need to be able to react to these conditions so that sur-
viving components can continue to provide valuable and correct—though pos-
sibly degraded—service while other components are inaccessible. If these com-
ponents may change state while out of contact, they must recover distributed
consistency when they reconnect. There is no single best strategy for maintain-
ing consistency in the face of partitions and merges; the appropriate strategy
will depend on the semantics of the components. A general purpose framework
should provide simple mechanisms adequate to express a great variety of strate-
gies. Group membership and similar systems provide one form of such a general
framework, with strengths and weaknesses in comparison with E. Here, we ex-
plain E’s framework. We provide a brief comparison with mechanisms like group
membership in the “Related Work” section below.

E’s support for partial failure starts by extending the semantics of our refer-
ence states. Figure 5 shows the full state transition diagram among these states.

We have added the possibility of a vat-crossing reference—a remote promise
or a far reference—getting broken by a partition. A partition between a pair of
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Fig. 5. A resolved reference’s target is known. Near references are resolved and lo-
cal; they carry both immediate-calls and eventual-sends. Promises and vat-crossing
references are eventual; they carry only eventual-sends. Broken references carry nei-
ther. Promises may resolve to near, far or broken. Partition may break vat-crossing
references.

vats eventually breaks all references that cross between these vats, creating even-
tual common knowledge of the loss of connection. A partition simultaneously
breaks all references crossing in a given direction between two vats. The sender
of messages that were still in transit cannot know which were actually received
and which were lost. Later messages will only be delivered by a reference if all
earlier messages sent on that same reference were already delivered. This fail-
stop FIFO delivery order relieves the sender from needing to wait for earlier
messages to be acknowledged before sending later dependent messages.9

On our state-transition diagram (a Harel statechart), we see that “near” and
“broken” are terminal states. Even after a partition heals, all references broken
by that partition stay broken.

In our listener example, if a partition separates the account’s vat from the
spreadsheet’s vat, the statusHolder’s reference to the spreadsheet’s listener will
eventually be broken with a partition-exception. Of the statusChanged mes-
sages sent by the statusHolder, this reference will deliver them reliably in FIFO
order until it fails. Once it fails to deliver a message, it will never deliver any
further messages and will eventually become visibly broken.

An essential consequence of these semantics is that defensive consistency is
preserved across partition and reconnect. A defensively consistent program that
makes no provisions for partition remains defensively consistent. In the earlier
statusHolder example, statusChanged notifications sent to broken listener ref-
erences (e.g., broken because the connection to its subscriber vat was severed)
are harmlessly discarded.

9 The message delivery order E enforces is stronger than FIFO and weaker than Causal
[TMK+87], but FIFO is adequate for all points we make in this paper.
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9.1 Handling Failure

To explicitly manage failure of a reference, an object registers a handler to be
eventually notified when that reference becomes broken. For the statusHolder to
clean up broken listener references, it must register a handler on each one.

to addListener(newListener) {
myListeners.push(newListener)
newListener <- statusChanged(myStatus)
def handler() { remove(myListeners, newListener) }
newListener <- whenBroken(handler)

}

The whenBroken message is one of a handful of universally understood mes-
sages that all objects respond to by default.10 Of these, the following messages
are for interacting with a reference itself, as distinct from interacting only with
the object designated by a reference.

whenBroken(handler) When sent on a reference, this message registers its
argument, handler, to be notified when this reference breaks.

whenMoreResolved(handler) When sent on a reference, this message is nor-
mally used so that one can react when the reference is first resolved. We
explain this in the later “When-Catch” section below.

reactToLostClient(exception) When a vat-crossing reference breaks, it
sends this message to its target object, to notify it that some of its clients
may no longer be able to reach it.

Near references and local promises make no special case for these messages—
they merely deliver them to their targets. Objects by default respond to a
whenBroken message by ignoring it, because they are not broken. So, in our

single-vat scenario, when all these references are near, the additional code above
has no effect. A broken reference, on the other hand, responds by eventual-
sending a notification to the handler, as if by the following code:

to whenBroken(handler) { handler <- run() }

When a local promise gets broken, all its messages are forwarded to the broken
reference; when the whenBroken message arrives, the broken reference will
notify the handler.

A vat-crossing reference notifies these handlers if it becomes broken, whether
by partition or resolution. In order to be able to send these notifications during
partition, a vat-crossing reference registers the handler argument of a
whenBroken message at the tail end of the reference, within the sending vat.

If the sending vat is told that one of these references has resolved, it re-sends
equivalent whenBroken messages to this resolution. If the sending vat decides
that a partition has occurred (perhaps because the internal keep-alive timeout

10 In Java, the methods defined in java.lang.Object are similarly universal.



218 M.S. Miller, E.D. Tribble, and J. Shapiro

has been exceeded), it breaks all outgoing references and notifies all registered
handlers.

For all the reasons previously explained, the handler behavior built into E’s
references only eventual-sends notifications to handlers. Until the above handler
reacts, the statusHolder will continue to harmlessly use the broken reference to
the spreadsheet’s listener. Contingency concerns can thus be handled separately
from normal operation.

But what of the spreadsheet? We have ensured that it will receive
statusChanged notifications in order, and that it will not miss any in the middle
of a sequence. But, during a partition, its display may become arbitrarily stale.
Technically, this introduces no new consistency hazards because the data may
be stale anyway due to notification latencies. Nonetheless, the spreadsheet may
wish to provide a visual indication that the displayed value may now be more
stale than usual, since it is now out of contact with the authoritative source.
To make this convenient, when a reference is broken by partition, it eventual-
sends a reactToLostClient message to its target, notifying it that at least
one of its clients may no longer be able to send messages to it. By default, ob-
jects ignore reactToLostClientmessages. The spreadsheet could override the
default behavior:

to reactToLostClient(exception) { ...update display... }

Thus, when a vat-crossing reference is severed by partition, notifications are
eventually-sent to handlers at both ends of the reference. This explains how
connectivity is safely severed by partition and how objects on either side can
react if they wish. Objects also need to regain connectivity following a partition.
For this purpose, we introduce offline capabilities.

9.2 Offline Capabilities

An offline capability in E has two forms: a “captp://...” URI string and an encap-
sulated SturdyRef object. Both contain the same information: the fingerprint
of the public key of the vat hosting its target object, a list of TCP/IP location
hints to seed the search for a vat that can authenticate against this fingerprint,
and a so-called swiss-number, a large unguessable random number which the
hosting vat associates with the target [Clo04a]. Like the popular myth of how
Swiss bank account numbers work, one demonstrates knowledge of this secret
to gain access to the object it designates. Like an object reference, if you do not
know an unguessable secret, you can only come to know it if someone who knows
it and can talk to you chooses to tell it to you. An offline capability is a form of
“password capability”—it contains the cryptographic information needed both
to authenticate the target and to authorize access to the target [Don76].

Both forms of offline capability are pass-by-copy and can be passed between
vats even when the vat of the target object is inaccessible. Offline capabilities do
not directly convey messages to their target. To establish or reestablish access
to the target, one makes a new reference from an offline capability. Doing so
initiates a new attempt to connect to the target vat and immediately returns a
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promise for the resulting inter-vat reference. If the connection attempt fails, this
promise is eventually broken.

Typically, most inter-vat connectivity is only by references. When these
break, applications on either end should not try to recover the detailed state
of all the plans in progress between these vats. Instead, they should typically
spawn a new fresh structure from the small number of offline capabilities from
which this complex structure was originally spawned. As part of this respawning
process, the two sides may need to explicitly reconcile in order to reestablish
distributed consistency.

In our listener example, the statusHolder should not hold offline capabilities
to listeners and should not try to reconnect to them. This would put the burden
on the wrong party. A better design would have a listener hold an offline capa-
bility to the statusHolder. The listener’s reactToLostClient method would
be enhanced to attempt to reconnect to the statusHolder and to resubscribe the
listener on the promise for the reconnected statusHolder.

But perhaps the spreadsheet application originally encountered this status-
Holder by navigating from an earlier object representing a collection of accounts,
creating and subscribing a spreadsheet cell for each. While the vats were out of
contact, not only may this statusHolder have changed, the collection may have
changed so that this statusHolder is no longer relevant. In this case, a better
design would be for the spreadsheet to maintain an offline capability only to the
collection as a whole. When reconciling, it should navigate afresh, in order to
find the statusHolders to which it should now subscribe.

The separation of references from offline capabilities encourages programming
patterns that separate reconciliation concerns from normal operations.

9.3 Persistence

For an object that is designated only by references, the hosting vat can tell when
it is no longer reachable and can garbage-collect it.11 Once one makes an offline
capability to a given object, its hosting vat can no longer determine when it is
unreachable. Instead, this vat must retain the association between this object
and its swiss-number until its obligation to honor this offline capability expires.

The operations for making an offline capability provide three options for end-
ing this obligation: It can expire at a chosen future date, giving the association a
time-to-live. It can expire when explicitly cancelled, making the association re-
vocable. And it can expire when the hosting vat crashes, making the association
transient. Here, we examine only this last option. An association which is not
transient is durable.

A vat can be either ephemeral or persistent. An ephemeral vat exists only
until it terminates or crashes; so for these, the last option above is irrelevant. A
persistent vat periodically checkpoints, saving its persistent state to non-volatile

11 E’s distributed garbage collection protocol does not currently collect unreachable
inter-vat references cycles. See [Bej96] for a GC algorithm able to collect such cycles
among mutually suspicious machines.
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storage. A vat checkpoints only between turns when its stack is empty. A crash
terminates a vat-incarnation, rolling it back to its last checkpoint. Reviving the
vat from checkpoint creates a new incarnation of the same vat. A persistent vat
lives through a sequence of incarnations. With the possibility of crash admitted
into E’s computational model, we can allow programs to cause crashes, so they
can preemptively terminate a vat or abort an incarnation.

The persistent state of a vat is determined by traversal from persistent roots.
This state includes the vat’s public/private key pair, so later incarnations can
authenticate. It also includes all unexpired durable swiss-number associations
and state reached by traversal from there. As this traversal proceeds, when it
reaches an offline capability, the offline capability itself is saved but is not tra-
versed to its target. When the traversal reaches a vat-crossing reference, a broken
reference is saved instead and the reference is again not traversed. Should this
vat be revived from this checkpoint, old vat-crossing references will be revived as
broken references. A crash partitions a vat from all others. Following a revival,
only offline capabilities in either direction enable it to become reconnected.

10 The When-Catch Expression

The whenMoreResolved message can be used to be register for notification
when a reference resolves. Typically this message is used indrectly through the
“when-catch” syntax. A when-catch expression takes a promise, a “when” block
to execute if the promise resolves to a value, and a “catch” block to execute if
the promise is broken. This is illustrated by the following example.

def asyncAnd(answers) {
var countDown := answers.size()
if (countDown == 0) { return true }
def [result, resolver] := Ref.promise()
for answer in answers {

when (answer) -> {
if (answer) {

countDown -= 1
if (countDown == 0) {

resolver.resolve(true)
}

} else {
resolver.resolve(false)

}
} catch exception {

resolver.smash(exception)
}

}
return result

}
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The asyncAnd takes a list of promises for booleans. It immediately returns a
reference representing the conjunction, which must eventually be true if all ele-
ments of the list become true, or false or broken if any of them become false or
broken. Using when-catch, asyncAnd can test these as they become available, so
it can report a result as soon as it has enough information.

If the list is empty, the conjunction is true right away. Otherwise, countDown
remembers how many true answers are needed before asyncAnd can conclude
that the conjunction is true. The “when-catch” expression is used to register a
handler on each reference in the list. The behavior of the handler is expressed
in two parts: the block after the “->” handles the normal case, and the catch-
clause handles the exceptional case. Once answer resolves, if it is near or far,
the normal-case code is run. If it is broken, the catch-clause is run. Here, if the
normal case runs, answer is expected to be a boolean. By using a “when-catch”,
the if is postponed until asyncAnd has gathered enough information to know
which way it should branch.

Once asyncAnd registers all these handlers, it immediately returns result, a
promise for the conjunction of these answers. If they all resolve to true, asyncAnd
reveals that the result is true, i.e., it eventually resolves the already-returned
promise to true. If it is notified that any resolve to false, asyncAnd reveals false
immediately. If any resolve to broken, asyncAnd reveals a reference broken by
the same exception. Asking a resolver to resolve an already-resolved promise
has no effect, so if one of the answers is false and another is broken, the above
asyncAnd code may reveal either false or broken, depending on which handler
happens to be notified first.

The following snippet illustrates using asyncAnd and when-catch to combine
independent validity checks in a toy application to resells goods from a supplier.

def allOk := asyncAnd([inventory <- isAvailable(partNo),
creditBureau <- verifyCredit(buyerData),
shipper <- canDeliver(...)])

when (allOk) -> {
if (allOk) {

def receipt := supplier <- buy(partNo, payment)
when (receipt) -> {

Promise-chaining postpones plans efficiently by data-flow; the “when-catch”
postpones plans until the data needed for control-flow is available.

11 From Objects to Actors and Back Again

Here we present a brief history of E’s concurrency-control architecture. In this
section, the term “we” indicates that one or both of this paper’s first two authors
participated in a project involving other people. All implied credit should be
understood as shared with these others.
Objects. The nature of computation provided within a single von Neumann
machine is quite different than the nature of computation provided by networks



222 M.S. Miller, E.D. Tribble, and J. Shapiro

of such machines. Distributed programs must deal with both. To reduce cases, it
would seem attractive to create an abstraction layer that can make these seem
more similar. Distributed Shared Memory systems try to make the network
seem more like a von Neumann machine. Object-oriented programming started
by trying to make a single computer seem more like a network.

. . . Smalltalk is a recursion on the notion of computer itself. Instead of
dividing “computer stuff” into things each less strong than the whole—
like data structures, procedures, and functions which are the usual para-
phernalia of programming languages—each Smalltalk object is a recur-
sion on the entire possibilities of the computer. Thus its semantics are
a bit like having thousands and thousands of computers all hooked to-
gether by a very fast network.

—Alan Kay [Kay93]

Smalltalk imported only the aspects of networks that made it easier to pro-
gram a single machine—its purpose was not to achieve network transparency.
Problems that could be avoided within a single machine—like inherent asyn-
chrony, large latencies, and partial failures—were avoided. The sequential subset
of E has much in common with the early Smalltalk: Smalltalk’s object references
are like E’s near references and Smalltalk’s message passing is like E’s immediate-
call operator.
Actors. Inspired by the early Smalltalk, Hewitt created the Actors paradigm
[HBS73], whose goals include full network transparency within all the constraints
imposed by decentralization and mutual suspicion [Hew85]. Although the stated
goals require the handling of partial failure, the actual Actors model assumes
this issue away and instead guarantees that all sent messages are eventually
delivered. The asynchronous-only subset of E is an Actors language: Actors’
references are like E’s eventual references, and Actors’ message passing is much
like E’s eventual-send operator. Actors provide both data-flow postponement of
plans by futures (like E’s promises without pipelining or contagion) and control-
flow postponement by continuations (similar in effect to E’s when-catch).

The price of this uniformity is that all programs had to work in the face of
network problems. There was only one case to solve, but it was the hard case.
Vulcan. Inspired by Shapiro and Takeuchi [ST83], the Vulcan project
[KTMB87] merged aspects of Actors and concurrent logic/constraint program-
ming [Sha83, Sar93]. The pleasant properties of concurrent logic variables (much
like futures or promises) taught us to emphasize data-flow postponement and de-
emphasize control-flow postponement.

Vulcan was built on a concurrent logic base, and inherited from it the so-
called “merge problem” [SM87] absent from pure Actors languages: Clients can
only share access to a stateful object by explicit pre-arrangement, so the equiva-
lent of object references were not usefully first-class. To address this problem, we
created the “Channels” abstraction, which also provides useful ordering proper-
ties [TMK+87].
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Joule. The Joule language [TMHK95] is a capability-secure, massively-
concurrent, distributed language that is one of the primary precursors to E.
Joule merges insights from the Vulcan project with the remaining virtues of
Actors. Joule channels are similar to E’s promises generalized to provide mul-
ticasting. Joule tanks are the unit of separate failure, persistence, migration,
and resource management, and inspired E vats. E vats further define the unit
of sequentiality; E’s event-loop approach achieves much of Joule’s power with a
more familiar and easy to use computational model. Joule’s resource manage-
ment is based on abstractions from KeyKOS [Har85]. E vats do not yet address
this issue.
Promise pipelining in Udanax Gold. This was a pre-web hypertext sys-
tem with a rich interaction protocol between clients and servers. To deal with
network latencies, in the 1989 timeframe, we independently reinvented an asym-
metric form of promise pipelining as part of our protocol design [Mil92]. This
was the first attempt to adapt Joule channels to an object-based client-server
environment (it did not support peer-to-peer).
Original-E. The language now known as Original-E was the result of adding the
concepts from Joule to the sequential, capability-secure subset of Java. Original-
E was the first to successfully mix sequential immediate-call programming with
asynchronous eventual-send programming. Original-E cryptographically secured
the Joule-like network extension—something that had been planned for but not
actually realized in prior systems. Electric Communities created Original-E, and
used it to build Habitats—a graphical, decentralized, secure, social virtual reality
system.
From Original-E to E. In Original-E, the co-existence of sequential and asyn-
chronous programming was still rough. E brought the invention of the distinct
reference states and the transitions among them explained in this paper. With
these rules, E bridges the gap between the network-as-metaphor view of the
early Smalltalk and the network-transparency ambitions of Actors. In E, the
local case is strictly easier than the network case, so the guarantees provided by
near references are a strict superset of the guarantees provided by other refer-
ence states. When programming for known-local objects, a programmer can do
it the easy way. Otherwise, the programmer must address the inherent problems
of networks. Once the programmer has done so, the same code will painlessly
also handle the local case without requiring any further case analysis.

12 Related Work

Promises and Batched Futures at MIT. The promise pipelining technique
was first invented by Liskov and Shrira [LS88]. These ideas were then significantly
improved by Bogle [BL94]. Like the Udanax Gold system mentioned above,
these are asymmetric client-server systems. In other ways, the techniques used
in Bogle’s protocol resembles quite closely some of the techniques used in E’s
protocol.
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Group Membership. There is an extensive body of work on group membership
systems [BJ87, Ami95] and (broadly speaking) similar systems such as Paxos
[Lam98]. These systems provide a different form of general-purpose framework
for dealing with partial failure: they support closer approximations of common
knowledge than does E, but at the price of weaker support for defensive con-
sistency and scalability. These frameworks better support the tightly-coupled
composition of separate plan-strands into a virtual single overall plan. E’s mech-
anisms better support the loosely-coupled composition of networks of indepen-
dent but cooperative plans.

For example, when a set of distributed components form an application that
provides a single logical service to all their collective clients, and when multiple
separated components may each change state while out of contact with the
others, we have a partition-aware application [OBDMS98, SM03], providing a
form of fault-tolerant replication. The clients of such an application see a close
approximation of a single stateful object that is highly available under partition.
Some mechanisms like group membership shine at supporting this model under
mutually reliant and even Byzantine conditions [CL02].

E itself provides nothing comparable. The patterns of fault-tolerant repli-
cation we have built to date are all forms of primary-copy replication, with a
single stationary authoritative host. E supports these patterns quite well, and
they compose well with simple E objects that are unaware they are interacting
with a replica. An area of future research is to see how well partition-aware ap-
plications can be programmed in E and how well they can compose with others.
Croquet and TeaTime. The Croquet project has many of the same goals
as the Habitats project referred to above: to create a graphical, decentralized,
secure, user-extensible, social virtual reality system spread across mutually sus-
picious machines. Regarding E, the salient differences are that Croquet is built
on Smalltalk extended onto the network by TeaTime, which is based on Namos
[Ree78] and Paxos [Lam98], in order to replicate state among multiple authori-
tative hosts. Unlike Habitats, Croquet is user-extensible, but is not yet secure.
It will be interesting to see how they alter Paxos to work between mutually
suspicious machines.

12.1 Work Influenced by E’s Concurrency Control

The Web-Calculus. The Web-Calculus [Clo04b] brings to web URLs the fol-
lowing simultaneous properties:

– The cryptographic capability properties of E’s offline capabilities—both au-
thenticating the target and authorizing access to it.

– Promise pipelining of eventually-POSTed requests with results.
– The properties recommended by the REST model of web programming

[Fie00]. REST attributes the success of the web largely to certain loose-
coupling properties of “http://...” URLs, which are well beyond the scope
of this paper. See [Fie00, Clo04b] for more.
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As a language-neutral protocol compatible and composable with existing web
standards, the Web-Calculus is well-positioned to achieve widespread adoption.
We expect to build a bridge between E’s references and Web-Calculus URLs.
Oz-E. Like Vulcan, the Oz language [VH04] descends from both Actors and con-
current logic/constraint programming. Unlike these parents, Oz supports shared-
state concurrency, though Oz programming practice discourages its use. Oz-E
[SV05a] is a capability-based successor to Oz designed to support both local and
distributed defensive consistency. For the reasons explained in the “Defensive
Correctness” section above, Oz-E suppresses Oz’s shared-state concurrency.
Twisted Python. This is a library and a set of conventions for distributed
programming in Python, based on E’s model of communicating event-loops,
promise pipelining, and cryptographic capability security [Lef].

13 Discussion and Conclusions

Electric Communities open-sourced E in 1998. Since then, a lively open source
community has continued development of E at http://www.erights.org/. Seven
companies and two universities have used E—to teach secure and distributed
programming, to rapidly prototype distributed architectures, and to build several
distributed systems.

Despite these successful trials, we do not yet consider E ready for production
use—the current E implementation is a slow interpreter written in Java. Two
compiler-based implementations are in progress: Kevin Reid is building an E on
Common Lisp [Rei05], and Dean Tribble is building an E on Squeak (an open-
source Smalltalk). Several of E’s libraries, currently implemented in Java, are
being rewritten in E to help port E onto other language platforms. Separately,
Fred Spiessens continues to make progress on formalizing the reasoning about
authority on which E’s security is based [SV05b].

Throughout, our engineering premise is that lambda abstraction and object
programming, by their impressive plan coordination successes in the small, have
the seeds for coordinating plans in the large. As Alan Kay has urged [Kay98], our
emphasis is less on the objects and more on the interstitial fabric which connects
them: the dynamic reference graph carrying the messages by which their plans
interact.

Encapsulation separates objects so their plans can avoid disrupting each
other’s assumptions. Objects compose plans by message passing while respect-
ing each other’s separation. However, when client objects request service from
provider objects, their continued proper functioning is often vulnerable to their
provider’s misbehavior. When providers are also vulnerable to their clients, cor-
ruption is potentially contagious over the reachable graph in both directions,
severely limiting the scale of systems we can compose.

Reduced vulnerability helps contain corruption. In this paper, we draw at-
tention to a specific composable standard of robustness: when a provider is de-
fensively consistent, none of its clients can corrupt it or cause it to give incorrect
service to any of its well-behaved clients, thus protecting its clients from each
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other. When a system is composed of defensively consistent abstractions, to a
good approximation, corruption is contagious only upstream. (Further vulnera-
bility reduction beyond this standard is, of course, valuable and often needed.)

Under shared-state concurrency—conventional multi-threading—we have
shown by example that defensive consistency is unreasonably difficult. We have
explained how an alternate concurrency-control discipline, communicating event-
loops, supports creating defensively consistent objects in the face of concurrency
and distribution. Our enhanced reference graph consists of references in different
states, where their message delivery abilities depends on their state. Only even-
tual references convey messages between event-loops, and deliver messages only
in separately scheduled turns, providing temporal separation of plans. Promises
pipeline messages towards their likely destinations, compensating for latency.
Broken references safely abstract partition, and offline capabilities abstract the
ability to reconnect.

We have used small examples in this paper to illustrate principles with which
several projects have built large robust distributed systems.
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Abstract. This paper reports on work undertaken for the FORWARD
project on the formal verification of distributed data replication mecha-
nisms using CSP and the CSP model checker FDR.

The Dependability Library is an evolving CSP framework and tool
suite for aiding in the design, modelling and verification of fault-tolerant
distributed systems; OceanStore is an architecture for a global-scale,
persistent, distributed storage mechanism. In this paper, we describe
the application of the Dependability Library to two algorithms used by
OceanStore; some correctness results are obtained for these algorithms
for small static networks.

CSP structural induction is a technique for enabling correctness re-
sults of algorithms to be proved for arbitrary large networks. Assump-
tiom-Commitment is a form of specification in which the specified be-
haviour of a system is split into the behaviour assumed of the system’s
environment and the behaviour the system commits to as a result of
that behaviour. We discuss ways in which the Dependability Library is
affording support for these important techniques, and how they can be
applied to extend the correctness results for the OceanStore algorithms
to larger networks.

A software demonstrator of the OceanStore models using the new
Dependability Library IDE will be made available on the Forward project
website at www.forward-project.org.uk.

1 Introduction

1.1 Context

This document reports the second of the four groups of studies constituting
Workpackage 5 of the FORWARD[2] project aimed at establishing basic mech-
anisms for assuring quality of service in ad-hoc networks, a core component of
Next Wave, future ubiquitous computing, environments. The first two studies
address black-and-white questions of “correctness”; the first of these focussed on
routing, whilst this document focuses on distributed data replication.

Industry has traditionally employed simulation and testing in its verification
of computer systems. Whilst these approaches are proven to identify errors/bugs,
they are not exhaustive; unless you have simulated every situation, or tested
every configuration, you simply cannot be sure that your system will always
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behave correctly. In contrast, formal verification techniques can offer exhaustive
analysis (equivalent to 100% coverage testing of system states) which has often
not only led to the discovery of errors previously undetected, but also, in the
absence of errors, provides a guarantee of correctness. The formal verification of
systems of realistic size and complexity in itself requires the help of computers.
We have chosen to use CSP and the accompanying model checker FDR to enable
formal verification of distributed data replication-based systems.

1.2 Replication and Quality of Service

Replication is a fundamental technique, well established in computer hardware,
distributed databases and distributed file systems design etc. Network replication
involves the storing of multiple copies of data objects in distributed locations
throughout the network. Access to data are satisfied by copies stored nearby, thus
saving the need to route requests all the way back to the original source. This
results in four significant benefits: reduced access latency, reduced bandwidth
consumption, server load balancing, and improved data availability/redundancy.

From a quality-of service perspective, there is an important distinction be-
tween caching and replication. Caches have relatively small storage capacity, and
therefore have to evict old objects to make room for new ones; caches cannot
therefore provide any guarantees of data persistence. Replication, on the other
hand, represents a service commitment to keep a persistent copy of the object.

A distributed data replication system should thus provide a means of data
storage that is guaranteed to a high degree of certainty to be resilient to loss
or destruction of individual servers. Information stored on the system must be
highly durable. Also, archiving of information should be automatic and reliable.

1.3 CSP/FDR and the Dependability Library

CSP is a process algebra which is useful for describing systems that interact by
communication. A system is modelled as a process (itself possibly constructed
from a collection of processes) that interacts with its environment by means of
atomic events. Communication is synchronous; an event takes place precisely
when both the process and the environment agree on its occurrence. The syntax
of CSP provides a variety of operators for modelling processes, and the associated

algebra provides rewrite laws. The shared-parallel operator,
‖
X, is referred to in

several places in this document1.
The three main CSP semantic models - traces (T), failures (F) and failures-

divergences (FD) - facilitate the capture of a wide range of process behaviours.
The theory of refinement in CSP allows correctness conditions to be encoded as
refinement checks between processes in the different semantic models. If process
P refines process Q , written Q -M P , then all possible behaviours of P must also
1 If P and Q are CSP processes and X a set of communicate-able events shared by

those processes, then P
‖
X Q is P in parallel with Q constrained so that an event in

X can only occur when both P and Q are willing to perform it.
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be possible behaviours of Q (although Q may admit many other behaviours).
Therefore, P is a correct, and more deterministic, implementation of Q . This
notion of refinement holds for all three of the semantic models (T,F,FD), where
the possible behaviours of processes are interpreted in terms of the semantic
model, M , under consideration.

CSPM [14] is a machine-readable dialect of CSP, it is the combination of a rich
data language, based on functional programming, and the CSP algebra. FDR
[1] is a commercially available CSPM model checker, it can be used to check not
only refinement but also determinism, deadlock-freedom and livelock-freedom of
processes written in CSPM .

The Dependability Library is a CSPM framework for helping in the design,
modelling and verification of fault-tolerant distributed systems. In the Depend-
ability Library, a system is described through a diagrammatic representation of
its network topology - the nodes of the system and communications links - to-
gether with descriptions of the behaviours of the individual leaf processes, which
may be specified using a simple state-machine language. The resultant model of
the system can then be automatically translated to a compile-able CSP model
which may be machine-checked using against a specifaction of the system using
FDR. The main style of specification adopted by the Dependability Library is
assumption-commitment.

The Dependability Library allows one to specify the replication of compo-
nents in a system, amongst other things . Replication is an important means of
achieving greater dependability - the more nodes in the system, the more toler-
ant the system can be made to the failure of some of those nodes. An example
of the use of replication is OceanStore, where data may be replicated over a
number of nodes.

1.4 OceanStore

The use of the Dependability Library is illustrated through an analysis of ele-
ments of OceanStore [8]. OceanStore is an architecture for a global-scale, per-
sistent, distributed storage mechanism, designed by a team at the University of
California, Berkeley.

1.5 Related Work

Diagrammatic representation of CSP processes is not new - see Yong and Butler’s
formalisation of UML State Diagrams in CSP [12] .

Davies and Chricthon [5] have used CSP to provide a formal behavioural
semantics for models and model components expressed in a subset of UML.

Circus is a Z/CSP based specification/modelling language developed by
Woodcock et. al. [16].

There are many other examples of successful front-ends to CSP, including
Lowe’s Casper [10], a security protocol analysis tool.

CSP specification in the assumption-commitment style has been studied by
Roscoe (unpublished) and Kay and Reed [7] amongst others.
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The novelty of our work perhaps lies not so much in the individual compo-
nents of the Dependability Library, rather it is in the bringing together of various
important modelling and specification techniques in one coherent framework.

1.6 Structure of Document

In Section 2 we give an overview of the Dependability Library. In Section 3 we
give an overview of OceanStore and describe our modelling of OceanStore’s data
location and routing algorithms within the Dependability Library framework,
for a limited topology. In Section 4.2 we discuss the potential for CSP struc-
tural induction support within the Dependability Library and its application to
OceanStore. In Section 5 we make our conclusions.

2 The Dependability Library

2.1 Introduction

The Dependability Library is a tool suite for aiding in the design, modelling and
verification of dependable distributed systems.

In our experience it has tended to be the case that modelling efforts in this
problem domain have delivered highly bespoke models, tailored to the specific
processing and communications topologies of the systems under scrutiny. The
bespoke nature of the models is a problem particularly when it comes to using
them to compare the relative dependability of systems - objective comparisons
are only possible when a common basis is used for characterising dependability.

Another concern of the authors is the time and effort typically involved in
the modelling process. Even experienced modellers can take months to model
modest systems, and it tends to be that a large part of the modelling effort is
concerned with making an already faithful model amenable to analysis – the need
to reduce state space is a constant concern in the model-checking community.

From the above considerations and others, a wish list of objectives was drawn
up for our modelling framework, as follows.

1. It should be a generic framework for modelling distributed systems.
2. It should de-skill the modelling process to a significant degree, in part by

allowing easy re-use of existing models.
3. It should provide a common basis for objectively comparing the dependabil-

ity of systems through modelling.
4. It should address the scalability problem in a generic, re-usable way.
5. It should provide an environment that can incorporate (and promote) new

modelling techniques and theory.

The Dependability Library currently comprises: (i) a library of generic
scripts; (ii) a graphical design notation for specifying the topology of the system
- i.e. the nodes and the communications mediums linking the nodes; (iii) a simple
state-machine language used for describing the behaviour of leaf node processes;
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(iv) translators from the graphical network design notation and state-machine
language to the target modelling languages; (v) templates for various dependabil-
ity mechanisms; (vi) models of commonly used processes; (vii) notional support
for the specification of system properties based on the assumption-commitment
paradigm.

The Dependability Library is underpinned by concepts and theory mainly
formulated in the CSP process algebra.

A major Java-based Integrated Development Environment (IDE), Model-
Works, is being written for the Dependability Library.

Below, we describe selected elements of the Dependability Library used in the
OceanStore modelling sufficient to report on that work and the use of structural
induction to extend the results.

Systems, Nodes and Connectors. In the Dependability Library, systems
are represented graphically by connected finite graphs. Each node of a graph
is connected to at least one other node by an arrow. We refer to arrows as
connectors.

We adopted a graphical terminology for the Dependability Library, to avoid
implying overly-restricted applicability. In the Dependability Library, a node
may be anything that can be viewed as providing a stand-alone service to the
rest of its environment via a well-defined interface, e.g. a ‘process’, ‘machine’ or
‘sub-system’. Likewise, a connector could be viewed as a physical layer ‘com-
munications medium’ or as a network layer ‘link’, depending on the attributes
associated with it.

Communications Model. The Dependability Library encourages a distinc-
tion between inter-node and intra-node communications. The natural choice of
communications model for inter-node communication in distributed systems is
message-passing, as opposed to the shared variable. All inter-node communica-
tions are achieved by passing messages along connectors. The Library provides
generic models of these connectors, as parameterised CSPM processes. The user
chooses the parameters for these connector processes from a predefined set of
availability and security attributes – e.g. timed/untimed, ordered/unordered and
authenticated/unauthenticated.

Graphical Network Topology Notation and Process Description Lan-
guages. The Library allows designers to describe the system through a family
of modelling notations. These were devised specifically for systems designers and
programmers, rather than formal methods experts. They are intended for use
by people unfamiliar with formal modelling languages. There are two types of
notation, described below.

The first type of notation is a graphical network topology notation for de-
scribing the system’s communications topology and fault contexts. Nodes of the
system and the communications infrastructure linking the nodes are described
through diagrams (actually connected graphs) drawn from a formal, pre-defined
‘palette’ of shapes. These diagrams can be annotated by text specifying, among
other things, the attributes of the communications mediums, the names of the
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processes running on individual nodes and the types of failure (if any) to which
each node is susceptible. The palette includes shapes representing atomic nodes,
user interfaces, N-replicated nodes, transient nodes and subsystems2. It also in-
cludes ‘lightning strike’ boxes for specifying the fault context of nodes; this is
done by simply drawing lightning strike boxes that cite the types of failure, and
connecting them to the fail-prone nodes.

Figure 3 of Section 3 depicts a small OceanStore network drawn according
to the Dependability Library’s graphical notation.

The second type of notation are process description languages. These can be
used to specify the de-facto ‘normal’ processing of leaf nodes with respect to
the messages received from the rest of the system. Currently, the Dependability
Library provides a state machine language DL-SML as the primary language
for describing the way nodes process information, but CSP can also be used
provided certain modelling conventions used by the library are adhered to. 3

Translation to Target Modelling Languages and Compilation. In the
Dependability Library, a system is described through a diagrammatic represen-
tation of its network topology in the prescribed graphical notation together with
descriptions of its leaf node processes, possibly written in the process description
language DL-SML.

The diagram of the network topology is annotated with various text such as
node identifiers and descriptions of the nature of the communications link. For
example, in figure 3 the three nodes are named NodeQuery N 1, NodeQuery N 2
and NodeQuery N 3. Also in that figure, my medium, is used to define the at-
tributes of the communications links.

A translator is provided that will take as input the network diagram and
outputs a representation of that diagram as a CSP module. A second translator
takes as input the individual leaf node process descriptions and maps them to
CSP processes. These outputs are in turn passed as parameters to a generic CSP
script that returns a compile-able CSP process of the system as a whole. So, in
particular, the user is freed from modelling the communications infrastructure
of a system in the target modelling language – invariably a major part of the
modelling of any distributed system.

2.2 Assumption-Commitment

The problem of scalability is essentially the problem of producing models of
systems with state-space small enough to be amenable to analysis by automatic
checkers - such as FDR - it is an ever present concern in the model-checking
community.

CSP model-checking is refinement-based, that is checks are of the form:

2 Using the subsystem shape, designers may import diagrammatically previously de-
fined systems as subsystems in a new system design. This encourages a modular
approach to the design and verification of systems.

3 Other languages will be supported in due course.
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Spec - System (1)

where Spec is a property being verified of a system System. In our problem
domain, System may be a large distributed system composed of smaller sub-
systems and indivisible nodes. Here, for a check such as (1) to be scalable, we
need to be able to reason compositionally about System and Spec. To this end
we are developing what appears to be a novel approach based on assumption-
commitment style reasoning. Rely-Guarantee/Assumption-Commitment theory
appears in many forms in the literature, the theory is attributed independantly
to Jones [6] and Misra-Chandy [11]. Of particular interest to us are the CSP for-
mulations of A.W. Roscoe (unpublished) and Kay and Reed [7]. Our approach,
very briefly, goes as follows.

Each individual component (node), Component , in a system design is spec-
ified by its own assumption and commitment expressed as CSP processes. We
can then express as a CSP refinement check that Component commits to the
behaviour Commitment under the assumption that its environment behaves as
Assumption:

Commitment - Component ‖ Assumption (2)

where ‖ is the shared-parallel operator.4 This check, plus a number of side-
conditions, again expressed as CSP refinements, can be checked by FDR. As-
suming each component’s assumption-commitment holds, then our theory gives
us an assumption-commitment on the system as a whole, this being a function of
the individual assumption-commitments of the system’s individual components.
In a bit more detail, this compositional reasoning goes as follows.

Suppose systems Sys1 and Sys2 are being composed to form Sys as a parallel
composition of Sys1 and Sys2 (often with the interface events hidden):

Sys = Sys1 ‖ Sys2 (3)

Suppose also Sys1 and Sys2 satisfy the individual assumption-commitment prop-
erties:

Com1 -M Sys1 ‖ Ass1 (4)

Com2 -M Sys2 ‖ Ass2 (5)

Then the Dependability Library IDE will automatically produce a candidate
Com and Ass for Sys as a function of Com1,Ass1,Com2,Ass2. It will also pro-
duces a number of side conditions in terms of refinement checks to ascertain: (i)
whether Com and Ass are ‘useful’ in the sense that Com -M Sys ‖ Ass ; (ii)
whether the assumptions are ‘enforceable’ in a strict technical sense.5

4 The more traditional formulation of refinement check, (1), is a special case of (2) in
which no assumption is made of the environment.

5 The side conditions, among other things, assert that the assumptions of each com-
ponent are satisfied by the commitments of its environment. Non-interference is also
tested for, the ‘enforceability’ notion being a strong form of non-interference.
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The side condition refinement tests involve relatively small processes involv-
ing combinations of the Comi and Sysi . So, to infer that Com -M Sys ‖ Ass ,
we need only verify a number of automatically produced smaller refinement
tests, none of which refer to Sys . So, it is fair to anticipate that the well-known
scaling advantages of assumption-commitment reasoning can be realised by the
Dependability Library to some extent at least.

The compositional assumption-commitment theory outlined above is
intended to be published fully in a separate paper.

3 A Case Study: OceanStore

3.1 Overview of OceanStore

OceanStore [8] is an architecture for a global-scale, persistent, distributed storage
mechanism, designed by a team at the Computer Science department at the
University of California, Berkeley.

OceanStore was designed with two principal goals in mind. The first of these
is that it can be constructed from an entirely untrusted infrastructure, and that
it is therefore resilient to server crashes and information leakage to third parties.
In order that such an infrastructure can be used without data being compro-
mised, all data is protected through redundancy and cryptographic techniques.
The second goal is that OceanStore supports nomadic data, i.e. data that is
allowed to flow freely. In a system as large as OceanStore, locality of data is of
extreme importance; therefore, a stated aim is that data may be cached any-
where, anytime.

The elements of OceanStore that we have modelled using the Dependability
Library are related to data location and routing. The mechanism that performs
these processes is fairly sophisticated, as a result of the fact that objects in the
OceanStore are free to reside at any of the servers. The mechanism used is a
two-tiered approach, with a fast probabilistic algorithm [13], backed up by a
slower, reliable hierarchical method. The reason for this is that objects that are
accessed frequently are likely to be located near to where they are being used.
The probabilistic algorithm may route to objects rapidly if they reside nearby,
but if this method fails, a large-scale hierarchical data structure locates objects
wherever they are in the OceanStore.

The focus of our attention so far has been the probabilistic data location and
routing algorithm; this is described in the next Section.

3.2 Probabilistic Data Location and Routing

In order to perform the probabilistic data location and routing algorithm, each
server must maintain a set of neighbours. A server associates with each neighbour
a probability of finding each object in the system through that neighbour. This
association is maintained efficiently (and in constant space) using an attenuated
Bloom filter, a data structure based on a Bloom filter [3]. To locate an object,
the attenuated Bloom filters are inspected according to the query algorithm, as
described later in this Section.
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Bloom Filters. Bloom filters are an efficient, lossy way of describing sets.
A Bloom filter is a vector of bits, of width w . It is associated with a number
of independent hash functions, each of which maps to the range [0,w -1]. To
represent a set of elements as a Bloom filter, each element is hashed, and the
bits of the vector that correspond to the results are set.

To determine whether a set represented by a Bloom filter contains a particular
element, that element is hashed and the corresponding bits in the filter are
examined. If any of those bits in the filter are not set, the set definitely does not
contain the element. However, if all of the bits are set, the set may contain the
element; but there is a non-zero probability that it does not. This case is called
a false positive. Figure 1 shows a sample Bloom filter.

11 0 0 01 0

0 1 2 3 4 5 6 7 8

hash("X") = {0,3,7}

hash("Y") = {1,3,8}

0 1

Fig. 1. A Bloom filter associated with three hash functions. The set represented by
this Bloom filter probably contains “X”, because bits 0, 3 and 7 are all true. However,
it definitely does not contain “Y”, because bit 8 is false.

Attenuated Bloom Filters. An attenuated Bloom filter of depth d is an
array of d normal Bloom filters. In the probabilistic algorithm, each neighbour
link is associated with an attenuated Bloom filter. The first filter in the array
summarises objects stored at that neighbour, while the ith filter in the array is
the merging of all Bloom filters for all nodes i hops along any path starting at
that link. Figure 2 represents a network of four nodes, and shows the attenuated
Bloom filter that Node A would associate with Node B in this network. For
example, both “W” and “Z” are two hops away from Node A through Node B ,
so the second level of filter F contains true values at all bits in the union of those
objects’ hash values (0, 2, 3, 5, 7).

The Update Algorithm. For servers to have a chance of locating data stored
in the local network, the attenuated Bloom filters stored at each node must be
kept up-to-date. Each time a new piece of data is added to a server, it is possible
that the Bloom filter representing the set of data items it stores will change as
well. This change must be propagated to them in some manner; the method used
is the update algorithm.

An update proceeds as follows. Every server in the system stores both an
attenuated Bloom filter for each outgoing link, and a copy of its neighbour’s
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Fig. 2. A network of four nodes. F is the attenuated Bloom filter associated with the
link A → B.

view of the reverse direction. When a new piece of data is stored, the server
calculates the changed bits in its own filter and in each filter its neighbours
maintain of it. It then sends these bits out to each neighbour. On receiving
such a message, each neighbour attenuates the bits one level and calculates the
changes they will make in each of its own neighbours’ filters. These changes are
then sent out as well. The update continues to be propagated until the last level
of a receiving node’s attenuated Bloom filters is reached.

The Query Algorithm. To perform a location query, the querying node ex-
amines the first level of the attenuated Bloom filter associated with each of its
neighbour links. If any of the filters matches, it is likely that the desired data
item is located at one of the corresponding neighbours, and the query is for-
warded to the nearest one. If no match is found, the querying node examines the
second level of each attenuated Bloom filter, and if there is a match, forwards the
query to the nearest matching neighbour. In this case, it is not the immediate
neighbour who is likely to possess the data, but one of its neighbours, and so the
algorithm proceeds as before, with the current node examining its own stored
attenuated Bloom filters.

A filter of depth d by definition stores information only about servers d hops
from the current server. For this reason, there is no incentive to propagate a
query for more than d hops. When such circumstances arise, the normal action
is to give up and defer to the deterministic algorithm.

3.3 Modelling the System

In order to keep the state space of our model of the probabilistic algorithm to
manageable levels, we split it into two submodels, the first being a model of the
update algorithm, and the second a model of the query algorithm. We describe
our modelling of the query algorithm only.
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The graph for a fully connected network of three nodes performing the Query
algorithm is shown in Figure 3. This graph shows the nodes connected by bidi-
rectional links, with each node having a user input and output. One of the nodes
also has an environmental input and output, which allows communication with
other networks. The names of the input and output transitions of each node are
also shown.

Fig. 3. Network graph for query algorithm

The graph of figure 3 was automatically translated to a representative CSP
module. There remained to specify the behaviour of the leaf nodes performing
the Query algorithm, this behaviour was specified in the state-machine language
DL-SML and the state-machines translated automatically into CSP. We omit
the full code for the state-machines here in favour of a brief outline, below.

In our model, each node has two hash functions, and an initial set of data;
these will be defined after the state-machine specification has been translated
into CSP, when instantiations are made of the resultant process. Each node
also has a set of neighbour/attenuated Bloom filter pairs, which are initially
‘populated’ in accord with various distributions of the data on the network. The
nodes maintain a number of other variables, mainly buffers storing, for example,
the next Query to be forwarded.

The first event defined in our state-machine specification is newQuery, which
is a user-input transition - this represents queries from the node’s local user as
to the wherabouts of some data item.

The second and third events are sendQuery and receiveQuery, one for each
neighbouring node. These represent the sending to and receiving of Queries from
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neighbouring nodes. A node receives a query, examines it as explained in 3.2,
and may forward it to a neighbour.

The third event is the outcome event. This is an output to the local user that
is used to declare that a Query concerning some data item, x , was received by
the node and that the data item resides on that node.

Following translation of the state-machine description into CSP, three in-
stantiations of it are made, one corresponding to each node in the network; the
hash functions and the names of data present at each node are specified at this
point. A function is also defined that associates the state-machine transitions
with the labels on the edges of the network graph.

The state-machine translations together with the CSP module representing
the network graph were passed to a generic CSP function called graph2csp.
This returned a compile-able CSP process of the whole 3-node network, Query
Diagram. QueryDiagram was machine-checked using FDR for ‘success of
Queries’ as described in the next section.

3.4 Specifying Success of Queries

Our ‘successful Query’ refinement tests were quite standard assumption-
commitment style tests of the following form:

Com -FD (QueryDiagram ‖ Ass) \ HideSet (6)

where QueryDiagram is the model of the complete system and Com, Ass and
HideSet are as follows.

COM is a CSP process indicating that a successful query occurs (after which
we generally do not care what happens).

HideSet is used to hide all events other than those indicating all possible
results of a Query (successful or not).

Ass is a CSP process that was used to restrict the behaviour of the envi-
ronment of any particular node being queried. The restriction had to ensure
‘fairness’ conditions to some degree in that: (a) the query had a chance of be-
ing processed, i.e. other queries did not always take precedence; (b) that the
commmunications links behaved reliably during the course of the query, if, that
is, they were not intrinsically defined as being reliable through the my medium
attribute.

In all cases the semantic model was failures-divergences in order to ensure
that some outcome (successful or not) was eventually declared.

The strongest assumption we made was that only one query was allowed to
take place. In that case, Com, HideSet and Ass were as follows.

Com stated that some node, nodeId ′, would (correctly) declare that the par-
ticular data item x resided on that node:

Com = out !outcome!nodeId ′!x .true → STOP (7)

Ass stated that node nodeId would receive the initial Query as to the where-
abouts of the data item x , no other queries were permitted to take place:

Ass = in!newQuery!nodeId !x → STOP (8)
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HideSet was used to hide all events except the initial newQuery referred to
in 8 and the possible Query outcome events, successful or not.

3.5 Results for Networks of Fixed Size

The checks we performed on our model is that the query algorithm will always
terminate, i.e. the events that indicate that the query has propagated to a node
on which the queried data item resides will always be performed for given initial
distributions of data. All the checks were refinement tests of the form 6. In each
case, the test was under a relatively strong assumption, Ass , as outlined in 3.4.

The checks were performed on a number of different versions of the model,
including all arrangements of three pieces of data over a three node network up
to symmetry. The check passed for each version of the model on which it was
performed, indicating that the query is guaranteed to terminate for this network
topology under the given assumptions.

4 Appying CSP Structural Induction to OceanStore

4.1 Rationale

The OceanStore Query modelling reported on in 3 was restricted in a number
of ways. First, it involved a static, relatively small three-node loop topology,
whereas, in reality, OceanStore is likely to be used on much larger, possibly
global-scale networks with dynamic topologies. Second, it was under strong as-
sumptions. Third, there was high abstraction of Hash functions and the Bloom
Filter depth was very shallow.

There are various ways to mitigate, to some extent, all of the above limi-
tations, but arguably the most pressing is the size of the networks. Ideally, we
would like to extend our results to much larger (arbitrary large) networks, and
structural induction is one means to achieve this.

4.2 CSP Structural Induction

Many authors have demonstrated that structural induction is a method which
can be successfully used in the analysis of distributed systems [9,15]. CSP struc-
tural induction is a compositional6 technique for verifying certain properties of
arbitrary large systems by verifying only a finite number of base and step cases.
There follows a digest of the description of CSP structural induction be found
in [4].

For structural induction to be applicable, we must be able to reason that any
single usage of the service is a network invariant - meaning that the specification
of the property is the same for all (sufficiently large) networks.

6 “‘Composition’ in the strict CSP sense of composing implementation and specifica-
tion processes from a number of simpler sub-processes” [4].
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Suppose we want to show that a property Spec (the network invariant) holds
of some network no matter how large the network. Let Sysi , i ∈ I be a finite set
of network models and suppose that the following hold for some CSP operator
◦ and all i ∈ I :

Spec - Sysi (9)

Spec - Spec ◦ Sysi (10)

then it would follow that:

Spec - Sysi1 ◦ Sysi2 ◦ . . . ◦ Sysin (11)

for any ij from I . I.e., Spec holds for any system composed from an arbitrary
number of the systems Sysi using the operator ◦. Usually ◦ is piping ([left ↔
right ]), shared parallel (‖), or, less commonly, interleaving (|||). The equations
(9) are called the base cases, and the equations (10) are called the step cases.

4.3 The Challenges of CSP Structural Induction Proofs

CSP structural induction proofs require a high degree of expertise to formulate
correctly. In 4.4-4.6, below, we discuss the potential for Dependability Library
support for structural induction proofs. We consider, in turn, the three most
challenging aspects of a structural induction proof, i.e.: (i) deriving Sysi suitable
for base and step case statements; (ii) the correct formulation of those statements
from a given set of Sysi and a Spec; (iii) the formulation of a suitable Spec.

Our support is intended to be generic, but we will refer often to the Ocean
Store Update and Query algorithms - we want the support to be applicable to
those algorithms at least.

4.4 Formulating Suitable Sysi

The Sysi of equations (9) and (10) of Section 4.2 are inextricably linked to the
invariant property, represented by Spec, that we want to prove holds of our
systems. The Sysi are ‘building blocks’ from which one may construct more
complex system topologies. In general, the onus is on the modeller to identify
the ‘building blocks’ sufficient to construct her network, but we could reasonably
provide a library of such ‘building blocks’, represented in our graphical notation,
sufficient, for example, to build some of the more commonly studied networks
- e.g. arbitrary large binary trees, loops or star networks, and, perhaps, more
complex networks formed by ‘gluing together’ networks of those three types.

Let us consider, by way of example, the OceanStore Update algorithm run-
ning on a loop network. Let d be the depth of the Bloom filter. An important
invariant property that we would like to prove is that, for sufficiently large loops,
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i.e. loops of more than 1+2d nodes, precisely 1+2d nodes declare a doneUpdate
following an Update request7. This would be our Spec process.

Regarding the Sysi . We note first that nodes have to distinguish between
their two neighbours in order to process an Update correctly. For algorithms
with this characteristic, we should expect Sysi of at least three nodes in order
to demonstrate that the invariant holds in the base cases, (9).

There are many ways of inductively constructing arbitrary large loops, the
following is probably the best known construction. There is a single Sysi , Sys1,
consisting of one node with an input and output channel. The Sys1 are then
glued together by piping the output of one node into the input channel of
another to form a chain. The chain is closed at any point to form a closed
loop.

However, in the above construction information flows around the loop is uni-
directional - which is not the case for the Update algorithm. Below, we describe
a new, more general loop construction, using a Sys1 and a Sys2 each of three
nodes, giving bi-directional information flow around the loop. Informally, Sys1 is
used to form parallel chains of nodes of arbitrary length by adding a new ‘link’,
while Sys2 is used to ‘glue’ the two ends of the chains together to form a loop.

Figure 4 depicts a number of Sys1s being composed using piping. The graphic
has been much simplified by omitting all the connector-process shapes and all
channel (arrow) labels. The rectangles represent individual nodes each running
the same algorithm, P . P has the characteristic that it only need distinguish
between the host node and between its host’s neighbours, each node has been
carefully allocated an identifier ∈ {1 . . . 3} sufficient for it to make these distinc-
tions. The dotted lines indicate the interfaces between the Sys1s.

Figure 5 depicts a Sys1 composed with (i.e. piped to) a Sys2, thereby ‘closing’
one end of the loop.

P:3 P:2

Sys1 Sys1

P:1 P:3

P:1

Sys1

P:2 P:3

P:1

P:2

Fig. 4. Using a Sys1 to add another link onto the right side of two parallel chains

7 An Update request propagates to the d nodes either side of the node that received
the request.
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P:2

Sys2

P:1

P:3 P:1

Sys1

P:3 P:2

Fig. 5. Using Sys2 to close the left ends of two parallel chains

As mentioned above, care must be taken allocating the node identifiers - even
for this simple loop topology where nodes only have to distinguish between their
neighbours. In general, the construction of suitable Sysi , including the alloca-
tion of appropriate identifiers and channels, becomes increasingly difficult as the
number of nodes that need to be distinguished increases. Thus it would be of
considerable help to structural induction proofs if we could provide a library
of Sysis with identifiers already allocated and arrows correspondingly labelled.
These graphically described Sysis would not refer to the processes being run in
the system beyond placeholder process name tags (‘P ’ in the case of Sys1 and
Sys2). Neither would they refer to the semantics of the messages being com-
municated between nodes. Rather, they would be generic templates describing
the basic building blocks sufficient to build particular arbitrary large networks
which, by construction, would be amenable to structural induction proofs.

4.5 Formulating Base and Step Cases

For the loop-topologies constructed using Sys1 and Sys2 of Section 4.4, there is
one base case and two step cases as follows. The base case is:

Spec - Sys2 (12)

and the step cases are:

Spec - Sys2[left ↔ right ]Spec (13)

and
Spec - Sys1[left ↔ right ]Spec (14)

In the above, left is a channel coming from a Sysi ’s environment to the Sysi ,
while right is a channel from a Sysi to its environment. With reference to figures
4 and 5 the left channel will be a single channel demultiplexed from the channels
crossing into the Sysi through a dotted line. The right channel is a single channel
multiplexed to the channels going out from the Sysi through a dotted line.
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As we can see from the above, the exact nature of the base and step state-
ments will depend on the topologies that we are interested in. The single base
case and two step cases stated above are sufficient for loops, but other combina-
tions could give rise to quite different topologies, possibly not even connected.

Suppose we have an invariant property, represented by Spec, plus a given
set of Sysi . It would be useful to have a graphical convention for representing
the different classes of arbitrary large topologies that we wanted to form from
the building block Sysi . Then the corresponding refinement assertions could be
automatically generated from that representation, the Sysi and the Spec.

4.6 Formulating a Suitable Spec

The derivation of a Spec suitable for a structural induction proof can be a very
tricky business. The Spec appears on both sides of the step cases, (13) and
(14), it has to account for the behaviour of every node on an input from inside
its parent Sysi and from outside that part of the system. Accounting for so
much behaviour usually results in a complex, quite chaotic Spec process. We are
experimenting with an alternative approach in which the Sysi are put in parallel
with assumption-commitment style assumption processes, Assi , that constrain
the inputs to the Sysi (i.e. wherever the Sysi appear in the base and step cases,
they would be replaced by Sysi ‖ Assi), thereby allowing for a far simpler Spec
process. This is arguably a more natural approach, as the Sysi in the context
of both base and step cases represent parts of a system otherwise unconstrained
by their natural environment (that being the rest of the system).

5 Conclusions

In this report we described the Dependability Library, an evolving framework
that de-skills and makes more generic the modelling and analysis of depend-
able distributed systems. We illustrated the use of this framework in analysing
OceanStore’s probabilistic data location algorithm. Some simple correctness
properties were formally verified using FDR for a particular network of finite
size. It was shown that queries propagated according to the probabilistic query
algorithm are, under certain specified conditions, guaranteed to be resolved suc-
cessfully.

We discussed the difficulties inherent in generalising model-checked verifica-
tions to models of realistically (arbitrary) large systems, and the accompanying
problem of scalability. We outlined plans for addressing those problems to some
extent through the provision of structural induction support within the Depend-
ability Library.
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Abstract. We present a formal system that models programmable ab-
stractions for access control. Composite abstractions and patterns of ar-
bitrary complexity are modeled as a configuration of communicating sub-
jects. The subjects in the model can express behavior that corresponds
to how information and authority are propagated in capability systems.

The formalism is designed to be useful for analyzing how information
and authority are confined in arbitrary configurations, but it will also
be useful in the reverse sense, to calculate the necessary restrictions in a
subject’s behavior when a global confinement policy is given.

We introduce a subclass of these systems we call ”saturated”, that
can provide safe and tractable approximations for the safety properties
in arbitrary configurations of collaborating entities.

1 Introduction

Since Harrisson, Ruzzo, and Ullman (HRU) showed in 1976 [HRU76] that safety
properties are generally intractable, two approaches have been explored to cal-
culate a safe approximation for safety properties. The first one is to keep on
using Turing Complete models and to deal with the intractability by limiting
the resources allocated to the safety checker. The checker will “give up” after
exhausting the given resources, and report the possibility of a safety breach with-
out proof. Such an approach can for instance be implemented in the SPIN model
checker [Hol97]. This allows the user of the model checker to iteratively increase
the precision (depth) of the calculation.

A second approach builds tractability into the model: instead of calculating a
finite approximation of a possibly intractable safety property, it tries to calculate
the exact value of the corresponding tractable safety property in an approximate
model. Take-Grant systems [BS79] are an example of this approach, in which
the safety properties are tractable [LS77, FB96]. This is the approach we take in
this paper. Because checking tractable models can take arbitrary many resources
too, we will take care that the approximation can be easily adapted: coarsening
the model in some regions to make it simpler while refining it in other regions
to gain precision.

Regardless of the approach taken, model checking involves the translation
from a real world situation to a configuration in the formalism, and from the

R. De Nicola and D. Sangiorgi (Eds.): TGC 2005, LNCS 3705, pp. 248–278, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Practical Formal Model for Safety Analysis in Capability-Based Systems 249

calculated safety properties to conclusions that can be applied to the actual
problem. Both translations should be well understood by the user of the model
checker and should be explicit and well documented.

To ensure that the formalism is practical and useful to software engineers, we
aimed for these translations to be easily described in terms of programming and
design properties. We want our formalism to be useful at all levels of abstraction,
during all stages of the software building process. The precision of modeling can
be iteratively adapted. The resulting formal system forms a suitable base for the
implementation of a dedicated model checker.

We developed Authority Reduction Systems via a series of consecutive re-
finements starting from Take-Grant systems [BS79]. The structure of this paper
coarsely reflects this history. We first give an introduction to capability based
security in Section 2. As a running example, we describe in Section 3 a simple
pattern of authority delegation and revocation, called the Caretaker [MS03]. We
will use this pattern as a touch stone for the expressive power of our formalism.

From studying capabilities [DH65] in general, and especially from the clarifi-
cations about capability based security recently provided by Miller and Shapiro
[MS03], we concluded that modeling collaborative behavior is crucial when mo-
deling capabilities accurately. When propagating authority from one subject to
another, the authority reducing behavior of the subjects involved should be taken
into account.

We explain in Section 4 that this collaborative aspect is underdeveloped in
classical Take-Grant configurations, where only two kinds of subject behavior
are considered: active vs. passive. We then describe three consecutive steps to
refine this formalism. We present every step in its own section: Sections 5 to
7. Every consecutive refinement will build upon the previous one: avoiding its
drawbacks and adding expressive power where necessary while keeping the safety
properties tractable.

As a first step, we model collaborative behavior in Section 5 by annotating
every subject with a set of properties. Each property describes three orthogonal
aspects of collaborative behavior:

– the possibility of initiating a collaboration (invoking behavior) vs. responding
(being invoked)

– the possibility of exchanging capabilities vs. data (information)
– the possibility of providing something during the collaboration (the emit-

ting subject or emitter) vs. accepting something (the collecting subject or
collector).

These three orthogonal aspects result in eight distinctive properties (e.g.
possibly initiate the emitting of data), the combination of which allowed us to
model 256 different types of behavior, including both types that are available
in Take-Grant systems. While the resulting formalism had gained considerable
expressiveness, it soon became clear that to model many relevant problems and
patterns further refinement would be required.

We tried several approaches to make behavior compositional (to build ar-
bitrarily complex subject behavior from configurations of simple subjects), and
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we present the most important one in Section 6. This is step two in our effort
to gain expressive power. The approach is well fit to model composite entities
like components and modules. However, this step did not completely meet our
”practicality” requirement at the finest grained level. The collaborative beha-
vior of smaller entities like objects or procedures is often not structured as a
configuration of collaborating sub-entities with simpler collaborative behavior.
Our model had to allow us to express more refined behavior directly.

In Section 7 (step three) we show how to express a subject’s behavior in
terms of its relations to other subjects it has access to. We think this approach
will provide a practical way to model security related problems in software engi-
neering. Variables in the scope of procedures or objects often do correspond to
relations with other program entities.

The behavior can now express how future relations will be decided too, con-
cerning subjects that will be acquired through collaboration. This is relevant
in practice since it can be deduced from static analysis how entities acquired
via invocation will be treated: some will be stored into a variable with limited
scope, some will be used as arguments in consecutive invocations, and some will
be invoked. We are not trying to accurately model relations between subjects for
its own sake however. We just want to model a more precise approximation of
an entity’s collaborative behavior by taking (part of) its relations into account.

We discuss similar use of predicates and logic programming in other research
work on security (Section 8) and give an overview of what remains to be done
in Section 9.

A streaming video presentation on the contents of this paper is available
[SV05b].

2 Capability Security and Capability Secure Languages

The security concept we call a capability was introduced by Dennis and Van
Horn [DH65] in 1965. The concept is very simple: make designation unforgeable
and combine it with authority, then you have a capability. If you are able to
reference an entity (or a resource), you are allowed to use it. On first sight this
can seem a very weak and discretional policy, but a quick exploration of the
consequences will correct this impression.

We have to define the concept of authority first. Authority is the influence
a program entity can have on other program entities and on the “system” in
general. Part of this influence can be through the redistribution of information
(data), and part of it can be about redistributing authority itself amongst the
program entities. Potential authority is the whole of effects a subject could pos-
sibly induce if it would use its capabilities to the largest possible extent. Actual
authority is the part of Potential Authority that is actually used by the entity.
Actual authority takes the known restrictions in an entity’s collaborative beha-
vior into account. We use the term Authority Reduction to indicate the difference
between a entity’s potential authority and its actual authority.
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In capability systems, all authority is carried via capabilities and capabilities
can be distributed in four ways:

By Initial Conditions: We start reasoning from a given configuration in
which some entities have access to some other entities. Since access is via
references and all references are unforgeable capabilities, all entities are only
referred to by (via, as) capabilities.

By Parenthood: An entity can create another entity, and by the act of cre-
ation get access to the created entity.

By Endowment: The created entity is endowed with (part of) the parent’s
authority. The parent decides which part.

By Invocation: Alice can introduce Bob to Carol by invoking Carol with Bob
as an argument, but only if Alice has access to Bob and to Carol. This
mechanism is sometimes referred to as “granting”. If on the other hand
Carol has access to Alice and Alice to Bob, then Carol can invoke Alice,
and Alice can return Bob as the result of the invocation. This is sometimes
referred to as “taking”.

Ambient authority is all authority that can be acquired in any other way.
Capability systems completely avoid ambient authority. Invocation is the most
important (and potentially dangerous) way of authority propagation. Keep in
mind though, that both the invoker and the invoked entity have control. The
principle is also called object-capabilities, because the encapsulation of author-
ity resembles the encapsulation of data, and the control that can be exerted by
the invoked entity resembles the invocation of a method. Instead of setting up
an access control policy separated from the functionality of a program, the pro-
grammer controls capability propagation by carefully controlling what entities
will invoke what other entities and what will be the input and output argu-
ments. This is not always a simple task, but a well designed capability secure
programming language can help [SV05a].

Let us see how capabilities score on the security checklist compiled by Salzer
and Schroeder [HS73]:

Least Authority: This is the principle of least authority (POLA) at which
capabilities excel. No ambient authority is provided and no authority is ever
granted implicitly. Instead of granting coarse grained privileges or rights,
capabilities are created to fit almost exactly the least authority an entity
needs. Even if the right to use and pass a capability is eternal and absolute,
one-shot authority, temporal authority, revocable or conditional authority
can all be programmed into a capability.

Simplicity of Mechanism: No other mechanisms than referencing and invo-
cation are necessary to propagate and control authority. The mechanism to
enforce the capability rules (at the base of every programmed policy) is sim-
ple and universal, and limits the way how capabilities can be distributed,
and how data can be overtly distributed. That makes the reference monitor
so simple that it will usually be a part of the language runtime.



252 F. Spiessens and P. Van Roy

Complete Mediation: Because of the necessity for collaboration when exert-
ing or propagating authority, the actual authority provided by the invoca-
tion can be very dynamic and can change with every invocation. Without
the need for managing the validity or expiration of a capability, the invoked
entity can completely control the actual authority it provides, based on the
circumstances it can observe and on what it can learn from the arguments
it is invoked with.

Least Common Mechanism: Another property at which capabilities excel:
the authority provided by every capability is programmed and can react to
what it can observe of its environment (local state, parameters, etc.). Of
course, invocations of the same procedure or method share the static part of
their behavior (by having the same code) but to have capabilities share their
authority policies beyond this obvious lower bound would actually be hard
to accomplish, and because of the scalability of the design, there is certainly
no need to do so.

Tamper Resistance: This burden is on the language designers. They have
to make sure that no holes exist through which ambient authority becomes
available. If done well, capabilities can even prevent confused deputy attacks.
A deputy is an entity to which its clients have to delegate authority to enable
it to perform a service on their behalf. A confused deputy is a deputy that
does not know the difference between its own authority and the authority
delegated by the client, so that it can be lured into using its own authority
on behalf of a faking client. As explained in [Har89, SV05a], capabilities can
easily avoid that vulnerability.

Scalability: Since references are necessary anyway, combining them with au-
thority does not in the least affect scalability, even as the authority is man-
aged at the finest grained level.

But there are drawbacks too:

Ease of Use: Instead of carelessly giving out access to unknown entities, the
programmer has to consider very carefully what the least authority is he
should provide. Giving less will introduce bugs, giving more will introduce
unnecessary vulnerabilities. This is certainly not an easy task. Therefore a
real capability secure programming language should have no mechanisms
that make this task even harder [SV05a]. But since capabilities are the only
mechanism that can actually prevent confused deputy attacks [Har89], the
task becomes feasible at last. It would seem that actually enforcing a security
policy (not just being able to declare it) is never an easy task indeed.

Open Design: Attackers should be allowed to inspect the code base in which
they will inject their malicious entity. They then have the same weapons as
the programmer to search for security holes. That means that the program-
mer’s weapons should be nearly perfect, but they definitely are not, as code
analysis is a hard task, even in well designed capability languages. This topic
reveals the need for tool-supported formal safety analysis. This is the main
rationale for our contribution in this paper: to provide a simple but powerful
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and practical formal model for authority propagation that can be the basis
for such a tool.

Orthogonality of Concerns: The security policy is completely entangled
with the functionality, programmed together into the same methods and pro-
cedures. In “The Structure of Authority: Why Security is Not a Separable
Concern” [MTS05] Miller, Tulloh, and Shapiro explain the deeper reasons
for this intrinsic entanglement of concerns. It remains to be investigated
whether this unavoidable burden can somehow be relieved.

3 A Running Example: The Caretaker Pattern

Throughout this paper we will refer to a pattern of capability propagation and
revocation, called the Caretaker. The pattern is useful and used in practice
when programming revocable authority in capability secure language [MSC+01].
Consider a configuration of five subjects, having access to each other as indicated
by the arrows (first part of Figure 1). As usual in a capability system, access
and right-of-invocation are combined.

Fig. 1. The Caretaker in different stages

Alice wanted to give Bob revocable authority to use Carol, and therefore
created a Caretaker entity (CT) that will proxy for Carol, and provided CT
to Bob. Dennis depicts some authority Carol does not mind sharing with Bob.
Bob and Dennis are subjects of which we do not model any knowledge about
their behavior, and therefore have to assume that they might use all authority
they have. We indicate “unknown” subjects with a shadow, and access that
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could possibly be gained via collaboration with a dashed arrow. The second part
of Figure 1 shows what access is expected to be propagated by collaboration
(dashed arrow), and what access should be impossible (dashed arrow with cross).

Alice can instruct CT to stop being a proxy for Carol, thereby becoming
opaque to authority propagation (the stop sign in the last part of the figure),
and depriving Bob of the authority to further use Carol. The reason for this
revocation could be that Alice got hold of some secret she wants to share with
Carol, but not with Bob.

The question now is: can we prevent that Bob gets direct accesss to Carol, –
and thereby irrevocable authority to invoke Carol – and if so, who’s cooperation
is needed to prevent this, and what other authority propagation should these
behavior restrictions prevent?

It will be a touchstone for the formal systems we describe in this paper, to
see how well they can express the necessary behavior restrictions Alice, Carol,
and CT have to respect. Since we aim for a practical formalism, an important
criterion will be how well the modeled abstraction resembles actual code. This
resemblance is crucial because we want to provide (semi-automated) support for
safely and accurately modeling the authority propagation that is going on at
runtime, using static analysis and abstract interpretation.

4 Authority Reduction in Take-Grant Systems

In this section we introduce a slightly modified form of the Take-Grant systems of
[BS79] that is better adapted to our presentation but that retains the properties
of the original formalism. This formalism is the basis from which we will evolve
Authority Reduction Systems in Sections 5, 6, and 7.

Take-Grant systems are configurations of subjects propagating information
and capabilities, represented in a directed graph of nodes with labeled arcs.
Rights are represented by labels on the arcs in the graph. Capabilities are repre-
sented by these labeled arcs. The nodes (subjects) represent entities that can use
capabilities (outgoing arcs) and to which rights can be applied(incoming arcs)
via capabilities.

Some entities will not use their capabilities to propagate information and
capabilities. These are called “objects” in the original paper [BS79], but we will
refer to them as “passive subjects”. We will indicate the subjects that need to
be active by a bold circle.

Capabilities can have (any combination of) four rights:

Take enables a user (Alice) to “take” any capability from the subject (Bob) at
the end of the Take-arc. Graphically it means that (a subset of) the arcs
originating at Bob are duplicated and given an origin at Alice, and labeled
with a subset of the original rights. (Figure 2 left)

Grant enables a user (Bob) to propagate any capability it has, towards the sub-
ject (Alice) at the end of the Grant-arc. (including the very Grant capability
to Alice, used by Bob). Graphically it means that (a subset of) the arcs orig-
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Fig. 2. Rights Propagation via Take (left) and Grant (right)

inating at Bob are duplicated and are given an origin at Alice, and labeled
with a subset of the original rights. (Figure 2 right)

Read enables a user to read information from the subject at the end of the
Read-arc. (Figure 3 left)

Write enables a user to write any information it has, to the subject at the end
of the Write-arc. (Figure 3 right)

Fig. 3. Data propagation resulting in De-Facto authority

Whereas Take and Grant enable the propagation of capabilities (Figure 2),
Read and Write enable the propagation of information (Figure 3). The arrows
in bold indicate which capabilities are used to propagate authority or data. A
dashed arrow indicates a new capability that became available through propa-
gation by using the bold-arrow capabilities. Dotted arrows labeled R represent
the closure of information propagation in the graph.

The dotted arcs are labeled with de facto authority, as opposed to the labels
of normal arcs that indicate de jure authority (by right). De facto read authority
(R) can always be replaced by de facto write authority (W) in the reverse direction
(not shown in Figure 3).

Remark that passive subjects can enable the propagation of both data and
authority by allowing active subjects to use them as a communication channel.
Therefore, when two subgraphs should be authority-separated (kept from influ-
encing each other), they can be connected only via paths that have at least two
consecutive passive subjects.

Besides taking, granting, reading and writing, an active subject can also:

Create new subjects that initially have no capabilities, and to whom the pa-
rent can have all capabilities.
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Drop its capabilities totally or partially. When the last capability towards a
subject is dropped, the arc itself is removed. As all propagation in take-grant
systems only depends on the presence of rights and capabilities – never on
the absence of a right or a capability – dropping rights or capabilities cannot
lead to more propagation. This means that when calculating safety properties
(limits of propagation) there is no need to consider the possible dropping of
rights or capabilities.

Algorithms to check safety properties are proposed in [LS77] and [FB96]. The
tractability is due to the fact that a single generation of created subjects (one
newly created subject for every subject in the initial graph) is enough to enable
maximum propagation of capabilities and data.

4.1 Discussion

The Caretaker Touchstone: Let us investigate the expressive power of Take-
Grant systems when we model the caretaker pattern of Section 3. It turns out
that, to make sure that Bob cannot get a capability to Carol, we must not
give him either a take- or a grant-capability to CT. A take-capability would
immediately result in Bob taking all capabilities from CT. Since CT has to us
his capabilities to Carol, it can only be an active subject. If Bob can grant CT
access to Bob himself, CT will inevitably grant Carol to Bob. CT’s active but
restricted behavior as a proxy cannot accurately be expressed.

The Caretaker pattern, when modeled directly and in a straightforward way
in the Take-Grant formalism, can only be used to provide revocable read/write
authority to Bob. Can we find a solution by modeling CT as a subgraph of
subjects, some of them being passive? This is possible, at the cost of losing any
resemblance to a simple implementation of a proxy.

Authority Reduction: Only passive subjects can model authority reduction.
They model programmed entities that do not (or cannot) exert any of their
rights. A subject that actively uses its read rights but only passively assists in
the propagation of its take and grant capabilities can only be modeled as an
active subject, a safe but generally too coarse approximation.

On the other hand, passive subjects are often too transparent for authority
and allow active subjects to use them as a capability channel. A file reference in
a capability secure language only provides authority to store and retrieve data,
not capabilities. Modeling it as a passive subject will be as if it could also store
authority, again a very coarse approach. Passive subjects are well fit to model
state that is shared between active subjects, but that is not generally useful
in capability languages that support some form of concurrency: the practice of
(secure) concurrent programming strongly deprecates the use of shared state
concurrency [SV05a, VH04, Rei03].

Conceptually the most important drawback of Take-Grant systems to model
object-capabilities is their inability to model the dynamics of collaboration. A
“Take” right represents static and eternal authority to acquire all capabilities
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from a the subject the right points to. The behavior of an entity that always
refrains from using a certain capability cannot be modeled by simply removing
that capability, because then the model would ignore the fact that the unused
capability could still be propagated and be used by another subject. In a capabil-
ity secure program, entities have to collaborate to propagate data and authority.
The invoking entity can offer or request authority but the invoked entity’s be-
havior will decide when and what authority it will return. The only real “right”
available in capability systems is the right to use the capabilities that you have.
Taking, granting, reading and writing are the possible effects (authority) of exert-
ing that right. The decision to actually exert a right is up to the invoking entity,
but the effect of the right exertion is largely decided by the invoked entity.

We are not the first to notice this lack of modeling power, as can be inferred
from a comment in one of the original papers on Take-Grant systems. In [BS79]
Bishop and Snyder mention that Ruzzo suggested them to use “two place” rules,
i.e. two vertices connected by an edge, that describe the circumstances under
which a “token” (corresponding to the information) can be moved along from
one vertex to another. The authors give the idea the benefit of doubt, as it could
lead to an alternative way of modeling de facto transfer that has an appealing
technical simplicity, but do not pursue the question any further.

5 Static Authority Reduction Systems

In this section we propose a way to statically model a safe approximation to
an entity’s readiness to collaborate with other entities. We find 3 orthogonal
dimensions in the role an entity plays is collaboration:

1. invoking or being invoked
2. emitting or collecting
3. propagating capabilities or data

For a collaboration between two subjects to succeed, one subject should invoke
the other, either one should emit and the other should collect, and both should
be compatible in their modus of propagation (data or capabilities). We assume
that all entities differentiate data from capabilities.

The possibility of invoking will be indicated with the prefix i, the possibility
of responding with the prefix r. Emitting capabilities will be indicated with G
(grant), emitting data with W (write). Collecting capabilities will be indicated
with T (take), collecting data with R (read). This gives us eight independent
properties of an entity’s collaborative behavior to model, as presented in table 1

Instead of considering four rights to define the type of authority a capability
carries, we will now have only one: access. This is the irrevocable and eternal
right to invoke the entity designated by the capability. Access is also a necessary
condition for emitting: one can only emit what one has access to. The potential
authority carried by a capability depends on the collaborative behavior of the
entity designated by it. The actual authority also depends on the collaborative
behavior of the owner of the capability.
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Table 1. Eight independent aspects of subject behavior

capabilities data

invoker collecting iT iR
emitting iG iW

responder collecting rT rR
emitting rG rW

Table 2. Take-Grant authority from collaboration

Actual
Invoker Responder Authority Comments

iT rG Take Invoker might try to collect capabilities,
responder might emit them when being invoked

iG rT Grant Invoker might try to emit capabilities,
responder might collect them when being invoked

iR rW Read Invoker might try to collect data,
responder might emit data when being invoked

iW rR Write Invoker might try to emit data,
responder might collect data when being invoked

The new model can also be seen as Take-Grant systems in which the static
“rights” are replaced by static authority. Instead of propagating different kinds of
rights, only access is propagated directly. Indirectly, authority can be propagated
too, because the propagation of access will usually give rise to new authority. The
authority is static in the sense that the behavior of each of the two collaborating
subjects is a static approximation of the behavior of the respective entities they
model. Table 2 shows in what case the authority that corresponds to the four
former rights can be generated by collaboration, given that the invoker has access
to the responder.

Just like subjects in Take-Grant systems can drop their rights and capabili-
ties, a subject will be able to drop access to another subject in Static Authority
Reduction Systems. However, just like in Take-Grant systems, this possibility
will not be taken into account when calculating safety properties. A future ex-
tension, shortly discussed in Section 9, will allow us to explicitly model dropping
access, for reasons of additional expressive power.

Subject Creation: Parenthood and Endowment: Like in Take-Grant sys-
tems, a subject can only be created by a parent. By parenthood, the parent will
be the only subject that has access to its child right after the creation. Because
the child’s cooperation is needed for further propagation of access to it, we have
to model endowment explicitly. A child could very well be unwilling to accept
any authority its clients want to grant to it, but upon creation the parent can al-
ways “impose” part of its access to the child. In that way, endowment is not very
different from imposing initial conditions on an access graph of communicating
entities.
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This “imposing” of information and authority is only possible by endowment,
and can be an indication to the child that its authority came from its parent.
However, this kind of discriminative knowledge will become useful only in Section
7, when subjects will be able to decide their behavior based on what they can
observe from their environment.

5.1 Authority Reduction

The eight independent collaborative aspects of behavior allow us to model enti-
ties as one of 28 different types of subjects. Table 3 shows 15 of these 256 subject
types, including both that were available in Take-Grant Systems.

Take-Grant systems have only two types of subjects but they have four inde-
pendent rights and therefore 2× 24 = 32 types of capabilities. We can therefore
claim a gain in expressive power by a factor 256 ÷ 32 = 8 compared to Take-
Grant systems. More importantly, by modeling collaboration explicitly, we have
a substantial gain in practical applicability to model capability oriented code.

A simple example that illustrates the need for this expressive power is pre-
sented in [MS03], where the authors explain that capabilities obviously can
implement the ∗-property, contrary to the claim made by Boebert [Boe84] in
1984 and supported by Kain and Landwehr [KL87] in 1987. The authors have
to resort to an example in E-language source code to make their claim. The
data diodes from table 3 can easily be used to model this code in a Static Au-

Subjects Type Approximated by aspects

Bond, Q, High, Low unknown {iT, iG, iR, iW, rT, rG, rR, rW}
D2, D4 data diode forward {rR,iW}
D1, D2 data diode backward {iR,rW}

Fig. 4. The ∗-property expressed with Static Authority Reduction
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Table 3. Subject types as subsets of behavior aspects: some examples

Behavior Take-Grant Used to model
aspects subject type

{iT,iG,iR,iW, active Unknown behavior,
rT,rG,rR,rW} approximated by maximal collaboration

{rT,rG,rR,rW} passive Non-invoking behavior (shared store)
approximated by maximal responder behavior

{iT,iG,iR,iW} Non-invokable behavior,
approximated by maximal invoker behavior

{iT,iG,rT,rG} Data opacity (capability filter)

{iR,iW,rR,rW} Capability opacity (data filter)

{rT,rR,iG,iW} Broadcaster in forward direction

{iT,iR,rG,rW} Broadcaster in backward direction

{iG,iW,rG,rW} Source (emits only)

{iT,iR,rT,rR} Drain (collects only)

{rR,iW} Data diode in forward direction

{iR,rW} Data diode in backward direction

{rR,rW} Data store (file, shared data-only store)

{rW} Data source (read only file)

{rR} Data drain (write only file)

{} No Behavior (unforgeable token, name)

thority Reduction configuration, and to prove their claim on an abstract level.
(Figure 4)

The ∗-property stipulates that high confidential information should not leak
to low clearance subjects. Bond in the example (Figure 4) is a high clearance
subject and should have read/write authority to the high confidentiality subject
High, but read-only authority to low confidentiality subject Low: no writing
down. For low clearance subjects (Q in the example) the policy means no reading
up. Q should have read/write authority to Low but write-only authority to High.
Since the behavior of Bond, Q, High, and Low is unknown, it is safe to assume
that they are potential conspirators trying to break the policy.

The fact that this policy holds in the configuration of Figure 4 can easily
be derived from the restrictions on de data diodes D1 through D4. First of all,
no capabilities can be propagated as all connections are to/from data filtering
devices. Q has 3 capabilities, of which only D3 returns information. Given the
direction of this diode, this information can only come from Low. Only D4 can
give information to Low, and D4 can only get its information from Q. This closes
the circle: only Q and Low can influence Q and Low.

5.2 Precautions When Modeling Behavior

The proof is nice but there is another important reason why the formal approach
is preferable. All assumptions are made explicit now, and we can deduce the
requirements for the real code that implements D1 through D4. Most important:
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D2 and D3 should be carefully implemented to avoid that they enable one of
their clients (Bond) to signal to the other (Q). If Q can observe Bond’s usage
of D2 or D3, then Bond can modulate that usage to signal to Q. The formal
approach reveals that special care should be taken when implementing D2 and
D3, whereas D1 or D4 need no such special attention.

The fact that some extra analysis is needed here stems from the fact that the
model only expresses knowledge about what a subject will not do. The aspects
{rR,iW} of the forwarding data diodes mean they could possibly forward data,
but certainly do nothing else. This negative knowledge is necessary to calcu-
late safety properties. But when the actual behavior of a subject is observable,
the uncertainty about the actual behavior in the model can hide an overt data
communication channel.

Every subject that is invokable (modeled with at least one r-prefixed aspect)
should also carry the {rW rR} aspects, unless extra precautions are taken not to
be influenced by invocations (rR) and not to leak information during invocation
(rW). Throwing exceptions is but one obvious example of observable behavior
that should not be overlooked when modeling and entity’s behavior as a set of
collaborative behavior aspects.

Conversely, subjects with at least one i-prefixed aspect, modeling uncertainty
about an entity’s invoking behavior, should be augmented with {iW iR}, unless
extra precautions are taken not to influence the responder (iW) and not to be
influenced by what can be learned from (trying) actual invocations (iR).

The precaution is even more important in Take-Grant systems. Because they
use explicit take-grant rights to model what could happen, every right from an
active subject should be accompanied by Read and Write rights, and so should
every right to a passive subject. This observation further diminishes the practical
use of Take-Grant systems for actual safety analysis.

5.3 Saturation

Until now, we considered the propagation of authority and data via collaboration,
but not yet via parenthood and endowment. When investigating propagation by
parenthood and endowment, we realized that it has no influence on the safety
properties, if some simple conditions are met.

Definition (Saturation): We call a configuration saturated when parenthood
and endowment do not lead to extra propagation of authority or data amongst
the subjects in the original access graph. Definition 6 in the appendix provides
the formal definition of saturation.

Theorem: The maximal propagation of authority and access is not influenced
by the effects of parenthood and endowment, if the following conditions are
met:
1. The parent has access to itself before creating the child.
2. The child’s behavior aspects are a subset of the parent’s behavior aspects.
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The proof of this theorem is by induction on the propagation steps, and is
provided in an appendix (Theorem 1).

Take for example an unknown subject that has access to itself. By creating
maximally endowed offspring subjects with maximal collaborative behavior (also
of type unknown), it can introduce extra paths in the access graph, to propagate
authority and data. These extra paths cannot add to the propagation of authority
amongst the original subjects however, because for every propagation from one
original subject to another one, that involves the offspring, there will be an
equally valid propagation path that involves only the parent subject.

Corollary: This result allows us to model subject creation implicitly, by mode-
ling entities that can create offspring as follows:
1. give the subject modeling the parent entity access to itself
2. add to the subject’s behavior aspects the union of the behavior aspects

of all its possible offspring (for all generations).

This is a very practical way of approximating the unbounded creation of new
entities. In some pure object oriented languages every object can have access to
itself by default anyway.

The above theorem has a nice consequence for unknown (untrusted) subjects.
By giving all unknown subjects self-access, the effects of subject creation by
unknown subjects on the propagation of authority and data is completely taken
into account.

When the analysis of data and authority propagation is still too coarse
grained, the last resort is to start from a more elaborate initial configuration,
that includes some of the created subjects.

5.4 The Caretaker Touchstone

As shown in Section 5.1, Static Authority Reduction Systems can model a simple
implementation of the ∗-property better than Take-Grant systems, but what
about our comparison standard, the caretaker pattern? For ease of reasoning,
Figure 5 shows the caretaker pattern in a simplified version.

Again, there is no way that Bob can get direct access to Dennis without also
getting direct access to Carol. To understand what is wrong, let us first consider
CT’s behavior aspects that would allow him to emit Dennis to Bob, and see if
one of them is safe:

rG: When emitting as a responder, CT would immediately emit Carol to Bob.
iG: When emitting as an invoker, CT should not get access to Bob, because

then he would actively grant Carol to Bob.

This means that CT cannot emit Dennis to Bob without also emitting Carol
to Bob. Since CT is not able to emit Dennis to Bob in a safe way, Carol has to
do the emitting of Dennis to Bob. To enable that, CT should propagate Bob to
Carol, and that is impossible without CT itself getting access to Bob. Therefore
CT needs rT behavior, allowing Bob to grant himself to CT. Then Carol should
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Fig. 5. The caretaker pattern: a simplified version of Figure 1

“take” Bob from CT, but that is impossible because CT would need rG behavior
to enable this collaboration (see above).

Although we have gained some necessary expressiveness compared to Take-
Grant systems (Section 5.1), it would seem we still need more. In Static Authority
Reduction Systems as presented here, a subject can neither:

– differentiate its behavior towards different subjects it has access to, nor
– differentiate its behavior towards subjects it has collected actively (as in-

voker) vs. passively (as responder).

Section 7 will provide a solution for both problems, but we will first investigate
the problem of differentiating behavior in Section 6, and see how far we can get
with that.

6 Extensions for More Expressiveness

The research work for this section directly followed from our frustrating in-
ability to model a suitable forwarding CT object in the caretaker pattern. We
approach the problem pragmatically and introduce an extra set of behavior as-
pects, to express the fact that a subject is willing to propagate a capability
without necessarily also emitting to or collecting from the subject designated by
that capability.

We thus add the possibility to express that an entity only passes capabilities,
without using them, either forward (collecting as a responder, and emitting as
an invoker) or backward (collecting as an invoker, and emitting as a responder).

The rationale is simple and sound: it was the data diodes that allowed us to
model the ∗-property in a practical way. We will also have capability diodes by
modeling the will-pass-but-not-use behavior towards collected capabilities. This
corresponds directly to the possible behavior of a pure proxy entity like CT in
the caretaker pattern.

The extra behavior aspects are presented with a ∼ prefix, to indicate:

∼G : collecting capabilities as a responder, with the sole intent to emit them
as an invoker. (Forward capability diode)



264 F. Spiessens and P. Van Roy

∼T : collecting capabilities as an invoker, with the sole intent to emit them as
a responder. (Backward capability diode)

∼W : collecting data as a responder, with the sole intent to emit it as an invoker.
(Forward data diode)

∼R : collecting data as an invoker, with the sole intent to emit it as a responder.
(Backward data diode)

Equipped with these extra aspects, we show some new and useful types of
subjects in Table 4. Observe that the extended aspects are no longer completely
orthogonal to the standard ones: ∼G is automatically implied by subjects that
already have the aspects {rT,iG}, ∼T is automatically implied by subjects that
already have the aspects {iT,rG}, and similar for ∼R and ∼W.

The converse is not true however: neither for capability diodes nor for data
diodes. The difference is in what will happen to data (authority) that was not
collected, but available from initial conditions or endowment. The standard data
diodes from table 3 will emit this data, while the ones from table 4 will not (unless
of course the same data is re-collected).

Table 4. Subject types with extended behavior aspects: some examples

Aspects Implied Used to model

{iT,iG,iR,iW, {∼T,∼G,∼R,∼W} Unknown behavior,
rT,rG,rR,rW} approximated by maximal collaboration

{iT,iG,rT,rG, {∼T,∼G} Secret data keeper, will not reveal any data
∼R,∼W} provided by initial conditions or endowment

{iR,iW,rR,rW, {∼R,∼W} Authority keeper, will not reveal any capability
∼T,∼G} provided by initial conditions or endowment

{iR,iW,rR,rW} {∼R,∼W} Capability opacity (data filter)

{∼R,∼W} Data relay (direction sensitive two-way data filter)

{rT,rR,iG,iW} {∼G,∼W} Forward broadcaster, will forward to
all capabilities is collects

{∼G,∼W} Forward diode, will forward only to
capabilities acquired via initial conditions or endowment

{iT,iR,rG,rW} {∼T,∼R} Standard backward broadcaster, reveals its
initial capabilities and data

{∼T,∼R} Backward broadcaster, does not reveal
its initial capabilities or data

{rR,iW} {∼W} Standard data diode in forward direction

{∼W} Data diode in forward direction

{iR,rW} {∼R} Standard data diode in backward direction

{∼R} Data diode in backward direction

Conclusions: Experiments with these extensions revealed two major results:

1. Caretaker: We can now model a working caretaker formalism without re-
sorting to composed subjects. Figure 6 shows the caretaker configuration
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Subjects Aspects Comment

Bob and Dennis {iT,iG,iR,iW,rT,rG,rR,rW Unknown behavior

CT {∼T,∼G,∼R,∼W} Direction sensitive 2-way relay

Carol {iT,rT,∼T,∼G,iR,rR,iW,rW} Do not emit what is not collected.

Fig. 6. Behavior of the subjects in the caretaker

with the behavior restrictions of Carol and CT in the table at the bottom.
Alice is out of the picture, but she can have all behavior aspects except iG,
to make sure that she does not introduce Carol to Bob herself. All subjects
are assumed to have self-access. Carol will possibly emit Dennis but never
herself, because she only submits what she can collect. The possibility that
Bob can get access Dennis is therefore not disabled, while the possibility
that Bob can get access to Carol is.

2. Differentiation via Composite Systems: When complex subjects are
composed from simple subjects, the composed subjects can now differen-
tiate their behavior towards different subjects they have access to. This is
illustrated in Figure 7.

The figure shows a composite subject Bob that differentiates its influence
propagation policy towards the two distinct subjects it has access to: Carol
and Dave. If Alice grants a capability, Bob will make sure that it is passed to
Carol, but not to Dave. Alice is allowed to write information to Dave, but not
to pass capabilities to him. Here is an overview of what kinds of things Bob can
guarantee, on condition that Dave is not connected via any other paths to Alice,
Bob, or Carol. The reader is encouraged to verify the statements.

– Dave will never have access to Alice, Bob (any part of Bob), or Carol
– Carol and Alice will never have direct access to Dave, but they might influ-

ence him.
– Carol can only have access to Bob if Alice cooperates. (e.g: Alice grants B1

to Carol)
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Subjects Aspects Comments

Alice, Carol, {iT,iG,iR,iW, Unknown behavior
Dave rT,rG,rR,rW}
B1 {∼G,∼R,∼W} Capability diode forward in parallel with

Direction sensitive 2-way data relay

B2 {∼G,iR,rW} Capability diode forward in parallel with
standard backward data diode

B3 {iT,iW,rR} Backward capability drain in parallel with
standard forward data diode

Fig. 7. Differentiating composite behavior using extended aspects

– Carol can only influence Dave if Alice cooperates. (e.g.: Alice grants herself
to Carol and then passes all influence from Carol via Bob to Dave). Without
Alice’s cooperation, Bob will not leak information from Carol to Dave.

– Dave can influence (a part of) Bob (B3) by allowing Bob to take access
to whatever subject Dave might have access to, but this access will stay
confined to Bob’s B3 part, and never influence Alice or Carol. Bob will treat
all subjects he takes from Dave the same way as he treats Dave: accessed
via B3.

The possibility to let composite subjects model abstractions in programming
constructs is explained in [MS03]. Composite Authority Reduction Systems are
an important step towards the formalization of that idea.

7 Conditional Collaboration

When modeling the propagation of authority and influence, we are now able to
express twelve aspects of a subject’s behavior. Without resorting to composite
subjects, we still cannot model a restriction in Alice’s behavior towards Bob
without at the same time restricting her possibilities to collaborate with Alice.
For Alice, the fact that she cannot return herself when being revoked, means
that she also cannot return Dennis or any other capability she might have ac-
cepted from the Caretaker. Because attempts to solve this problem in Section 6



A Practical Formal Model for Safety Analysis in Capability-Based Systems 267

complicated the modeling by introducing more aspects, some of which were no
longer independent, we now focus on modeling conditional behavior.

Knowledge: A subject can (only) base its behavior on knowledge about its
environment. This knowledge can be built into the subject’s behavior (default,
endowed knowledge), or it can become available through collaboration (deduc-
tion from experience). The availability of knowledge that can cause collaboration
should never be underestimated and should be approximated from above. For
safe approximation we need not directly model knowledge that can prevent col-
laboration, just as we do not need to consider subjects deliberately dropping
access. Non-collaboration conditions should not be overestimated and are there-
fore only expressed by the absence of corresponding collaboration conditions.

Knowledge is positive and eternal in our model, but it can grow. A subject
can react to changes in its environment by learning more, not by forgetting
previous knowledge. Conditional collaboration will wait (possibly forever) until
the subject can know the truth of the condition, before being activated.

Monotonic Evolution: We now have three monotonically changing conditions,
depicted in Figure 8. New knowledge can increase a subject’s readiness to col-
laborate and successful collaboration (propagation of information and access)
can provide new access to data and capabilities, and can provide new knowledge
about the subject’s environment.

Fig. 8. A subject’s monotonic view on the world

By forcing monotonic evolution of knowledge and access we inherit the rich
semantics of Concurrent Constraint Programming (CPP) [Sar93] and the ex-
pressiveness that comes with it. A conditional collaboration is an ask operation,
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waiting in its own thread until the condition is either entailed or disentailed by
the constraint store. We also use CCP to implement a model checker that simply
mimics the monotonic evolution of knowledge by telling initial conditions and
subject behavior to the store, and waiting until the store has reached a global
fix-point.

Because we want this to be feasible in a finite amount of time, to keep the
system tractable, we allow only a finite number of initial conditions, a finite
quantity of discrete knowledge, and a finite upper limit to propagation of access
and data in any configuration. This is not a real restriction, in fact it brings an
important advantage when controlling the precision of the model: not only can
infinite precision be arbitrarily approximated with unbounded finite precision,
but this refinement can be applied selectively to specific areas in the model.

Returning to the caretaker pattern, we can now express that Alice could give
Bob access to the Caretaker but not to anything else. Alice’s ”emitting-invoking”
behavior will read: I will invoke X and emit Y to it if X is Bob and Y is the
caretaker. This rule states a sufficient condition for Alice to grant Y to X. The
“but to nothing else” part is modeled by the absence of any rule that states that
another condition can enable Alice to emit something to Bob.

A subject’s knowledge about its environment will be expressed as a set of
n-ary predicates representing relations between the subject and a tuple of sub-
jects and/or data. Subject behavior is a set of universally quantified implications
(Horn clauses), the condition of which (the body of the Horn clause) is a con-
junction of predicates representing knowledge.

Behavioral aspects are expressed as predicates too and are listed in Table 5.
The arguments of the predicates show what can be decided by collaborating sub-
jects in a capability system: the invoker chooses what subject it invokes (iGrant,
iTake) but the emitter chooses what item it emits (iGrant, rTake). Moreover the
invoked subject has no knowledge about who the invoker is (rGrant, rTake), and
the collector does not know what subject it will collect (iTake, rGrant).

Table 5. Subject Behavior Aspects as Predicates

predicate arity comments

iGrant(S, X) 2 will possibly invoke subject S and emit item X to it
iTake(S) 1 will possibly invoke subject S and collect from it
rGrant() 0 will possibly collect from invokers
rTake(X) 1 will possibly grant item X to invokers

The effects of successful collaboration will become available to the collabo-
rating subjects as read-only predicates, listed in Table 6. Notice that the prop-
agated item (the parameter of the invocation) becomes known to the collector
(iTook, rGranted), but the invoker (S) remains unknown to the invoked subject.

Besides the predefined predicates listed in Tables 5 and 6, subjects can use
other predicates to express their knowledge. As an example, Table 7 shows the
Caretaker’s behavior as a set of Horn clauses. When the condition is always true
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Table 6. Effects of Collaboration as Predicates

predicate arity comments

iGranted(S, X) 2 succeeded in invoking subject S and emitting item X to it
iTook(S, X) 2 succeeded in invoking subject S and collecting item X from it
rGranted(X) 1 succeeded in being invoked and collecting item X from the invoker
rTaken(X) 1 succeeded in being invoked and emitting item X to the invoker

Table 7. The Caretaker’s Proxy Behavior as a set of Horn Clauses

iGrant(S, X) :- proxyFor(S) ∧ relayForward(X)
iTake(S) :- proxyFor(S)
rGrant()
rTake(X) :- relayBackward(X)

relayForward(X) :- rGranted(X)
relayBackward(X) :- iTook( , X)

proxyFor(carol)

it is not shown and the Horn clause is shortened to a fact. Predefined predicates
are put in bold, variables are in uppercase and constants are in lowercase.

The Caretaker is a proxy and will invoke only the subject(s) it is a proxy for
(iGrant, iTake). Items granted to the Caretaker by its invokers will be accepted
and forwarded to the proxy (rGrant, iGrant, relayForward). To invokers that collect
items from it, the Caretaker will emit the items it can collect from (invoking) its
proxy (iTake, rTake, relayBackward). Upon initialization, the Caretaker will be
told that it is a proxy for Carol. In the definition of relayBackward, the subject
is not relevant and replaced by “ ” . Note that in this simple case, the use of
relayForward(X) and relayBackward(X) could have easily been replaced by their
definitions.

Implicit Subject Creation: When the behavior of a configuration of subjects
does not depend on knowledge about the identity of a subject, the capability rules
provide an easy way to take the creation of arbitrary many subjects into account.
We are confident that the approach taken in Section 5.3 (safe approximation in
saturated systems), can be applied to the dynamic Authority Reductions systems
explained in this section. A formal proof of this assumption is future work.

8 Related Work

Another invited talk presented at the TGC’05 workshop by Joshua Guttman,
[Jos] showed us how in their work the authors model a dialog between two
parties that accumulate monotonically growing knowledge, and we realized that
in their setting, the accumulated knowledge can result in less cooperation as
well as in more cooperation. A “simplistic” way to model protocols would have
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involved temporal logic to constrain the order between the events. The fact that
they were able to avoid this, gave us hope that there could be a way for us to
model a conditional decrease in collaborative behavior without resorting to non-
monotonic modeling techniques such as (default) timed concurrent constraint
programming [SJG95] or temporal concurrent constraint programming[NPV02].

Shortly after we found a solution for this problem. We will simply model two
CT subjects: one exhibiting the CT behavior before the revocation and one that
will be created as soon as the revocation conditions apply, to exhibit the post-
revocation behavior of CT. To model the uncertainty about the actual time of
the revocation, the creation of the second one will not disable the first one. In the
future we will simply require that all authority and information between Carol
and Bob flows only through the pre-revocation-CT subject. That way we will
be able to analyze successive “states” of a subject without loosing monotonicity
and tractability in our model.

Another approach to security analysis that is also based on an expressive
model for the specifications of security-critical systems can be found in Jan
Jürjen’s work on Secure Systems Development with UML [J0̈5]. His work ex-
tends UML by using the built-in extension features (stereotypes, tagged values,
and constraints), for expressing security-related properties. This approach is si-
milar to Authority Reduction Systems in the sense that it also models software
(specifications) and then reasons on safety properties in the model. Reasoning
in secure UML is done in first order logic.

9 Ongoing and Future Work

The formalized presentation of the Authority Reduction Systems presented in
Sections 5 and 6 are presented in the Appendix. We are currently working on
the formalization of the concepts introduced in Section 7. In the appendix we
provide a proof for the saturation theorem of Section 5. Most of the reasoning
in this proof can be applied to the Authority Reduction Systems of Sections 6
and 7 as well. We will give a similar formal proof for these system in a dedicated
technical report.

The safety properties is currently express constraints on the the eventual
effects of authority propagation. It is better to reason about the flow of authority.
Recent work on graph reachability constraints [QVD05] enables us to impose
safety properties expressed as constraints in graphs that are derived from the
access graph. The arcs in these derived graphs will indicate the flow of a specific
kind of authority or information. We will then be able to express a more precise
safety property for the caretaker pattern: ”Carol’s authority should be reachable
for Bob only via the caretaker”.

To further enhance the expressive power of Authority Reduction Systems,
we plan to add the possibility to explicitly and conditionally create new sub-
jects. Because we want the safety properties to remain tractable, we will use the
technique of approximation by saturation (Section 5.3) after a given number of
creations.
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We have build a model checker for the models discussed in SectionstaticArs,
and we are currently extending this tool to include the formalism of Section
dynamic. The latter tool is not only be useful to check the safety properties in a
given configuration of collaborating subjects, but also to calculate the maximal
permissive behavior of any subject in the configuration, given a set of global
safety properties that have to be guaranteed. Using this tool, we will investigate
patterns of capability based collaboration (capability patterns) to discover the
limitations of their use. We anticipate that later versions of this tool will also
allow us to discover new and useful capability patterns.
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Appendix

Formal Authority Reduction Systems

In this appendix we give the formal definition of Authority Reduction Systems
(ARS) based on transformations of labeled digraphs. The transformation rules
will correspond to capability rules for propagation of data and authority, de-
scribed in Section 2. The formalism is derived from the more general formal
systems we described in [SMRS04]. It corresponds to the Static Authority Re-
duction Systems introduced in Section 5. We will provide a subclass of “Sat-
urated” Authority Reduction Systems, in which the safety problems of finite
configuration are decidable, and show how the safety properties in every ARS
can be safely approximated by a corresponding ARS in this class. This will proof
the claims of Section 5.3.

We will then show how the formal model can be extended with the extra
behavior aspects described in Section 6, and how that affects the theorem on
saturation, and its proof. The formal model corresponding to Section 7 will be
described in future work.

Definitions

Let Aspects be the set {iT, iG, iR, iW, rT, rG, rR, rW} of behavior aspects.

Definition 1 (Authority Reduction Systems).
An ARS is a tuple (S,B,P) such that:

– S is a countably infinite set of subjects
– B is a behavior function : S → 2Aspects

– P is a parenthood function : S → S : Pn(x) = x ⇐⇒ P(x) = x

Definition 2 (Authority Reduction Configuration ARC).
Let A = (S,B,P) be an ARS.
An ARC is a tuple (S,E,A) such that:

– S ⊆ S contains the subjects of the configuration
– E ⊆ S × S represents the access relation between them

Given an ARC C = (S,E,A), we will indicate its components:
SC = S ;
EC = E ;
AC = A.

Informally, an ARC is an access graph between subjects of an ARS.
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Definition 3 (� and �∗).
Let A = (S,B,P) be an ARS.
Let C1 = (S1, E1, A) be an ARC,
Let C2 = (S2, E2, A) be an ARC with S1 ⊆ S2
C1 � C2 ⇐⇒ one of the following conditions applies:

create(p, c,Δ) : ∃p, c ∈ S2, ∃Δ ⊆ {c} × S1
S2 = S1 ∪ {c} ∧ P (c) = p (creation of c by p)
E2 = E1 ∪ {(p, c)} ∪Δ (parenthood)
∀(c, x) ∈ Δ : (p, x) ∈ E1 (endowment)

grant(x, a, b) : S2 = S1 ∧ ∃a, b ∈ S1 : E2 = E1 ∪ {(a, b)} ∧ rT ∈ B(a)
and ∃x ∈ S1 : iG ∈ B(x) ∧ {(x, a), (x, b)} ⊆ E1 (x grants b to a)

take(a, x, b) : S2 = S1 ∧ ∃a, b ∈ S1 : E2 = E1 ∪ {(a, b)} ∧ iT ∈ B(a)
and ∃x ∈ S1 : rG ∈ B(x) ∧ {(a, x), (x, b)} ⊆ E1 (a takes b from x)

From this we derive the following definitions:

�∗ : is the reflexive and transitive closure of �
�n : C �0 C and C �n C′ ⇐⇒ C �n−1 C′′ ∧ C′′ � C′

Definition 4 (The predicate couldGetAccess(C,x,y)).
Let C = (S,E,A) be an ARC, let x, y ∈ S
couldGetAccess(C, x, y) ⇐⇒ ∃C′ : C �∗ C′ ∧ (x, y) ∈ EC′

Definition 5 (The predicate couldGetInfo(C,x,y)).
Let A = (S,B,P) be an ARS
Let C = (S,E,A) be an ARC, let x, y ∈ S
couldGetInfo(C, x, y) ⇐⇒ one of the following conditions applies:

1. x = y
2. iR ∈ B(x) ∧ rW ∈ B(y) ∧ (x, y) ∈ EC (x reads from y in C)
3. rR ∈ B(x) ∧ iW ∈ B(y) ∧ (y, x) ∈ EC (y writes to x in C)
4. ∃C′ : C �∗ C′ ∧ ∃z ∈ SC′ : couldGetInfo(C′, z, y) ∧ couldGetInfo(C′, x, z)

Lemma 1 (The effect of adding access to the graph).
Let A = (S,B,P) be an ARS
Let C and C′ be ARCs over A with EC ⊆ EC′ and SC = SC′

Let x, y ∈ SC

couldGetAccess(C, x, y) ⇒ couldGetAccess(C′, x, y)
couldGetInfo(C, x, y) ⇒ couldGetInfo(C′, x, y)

Proof. We will prove that every derivation �∗ from C is also applicable from
C′ and that the second derivation results in more (or equal) access in the graph.
We prove that every step in the derivation respects these invariants:

– More (or equal) access in the graph and the same behavior of the subjects,
does not prevent a step to be applicable
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– More (or equal) access in the graph and the same behavior of the subjects
before the step, will result in more (or equal) access in the graph and the
same behavior of the subjects after the step.

Both requirements follow directly from inspection of the preconditions and the
postconditions of the possible steps in Definition 3. Since the initial configuration
C has more (or equal) access than C′ and the same behavior as C′, the lemma fol-
lows from the definitions of couldGetAccess() (Definition 4) and couldGetInfo()
(Definition 5).

Lemma 2 (The influence of more collaborative behavior).
Let A = (S,B,P) be an ARS
Let A+ = (S,B+,P) be an ARS with ∀x ∈ S : B(x) ⊆ B+(x)
Let C = (S,E,A) and C′ = (S,E,A+) be ARCs
Let x, y ∈ S
couldGetAccess(C, x, y) ⇒ couldGetAccess(C′, x, y)
couldGetInfo(C, x, y) ⇒ couldGetInfo(C′, x, y)

Proof. The proof has the same structure as the proof of Lemma 1. We will
prove that every derivation �∗ from C is also applicable from C′ and that the
second derivation can result in the same access in the graph, while the subjects
in the graph resulting from the second derivation will obviously still have more
collaborative behavior. We prove that every step in the derivation respects these
invariants:

– More (or equal) behavior and equal access does not prevent a step from
being applicable

– More (or equal) behavior and equal access before the step, will result in more
(or equal) behavior and equal access after the step.

Both requirements follow directly from inspection of the preconditions and the
postconditions of the possible steps in Definition 3. Since C has the same access
as C′ and more (or equal) behavior than C, the lemma now follows from the
definitions of couldGetAccess() (Definition 4) and couldGetInfo() (Definition 5).

Definition 6 (Saturation).
Let A = (S,B,P) be an ARS
Let A0 = (S,B, I) be the ARS derived from A by replacing P by the identity
function on S (no creation is possible)
Let C = (S,E,A) and C0 = (S,E,A0) be ARCs,
C is saturated ⇐⇒ ∀x, y ∈ S both the following conditions apply:

1. couldGetAccess(C, x, y) ⇒ couldGetAccess(C0, x, y)
2. couldGetInfo(C, x, y) ⇒ couldGetInfo(C0, x, y)

Corollary 1 (Calculating safety properties in a Saturated ARC). Since
by definition, every step in A0 is also a step in A, the converse implications
of definition 6 also hold. This means that in a saturated ARC C, the safety
properties :
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¬couldGetAccess(C, x, y)
¬couldGetInfo(C, x, y)

can be calculated without considering creation steps.

Theorem 1 (Safely approximating safety properties via saturation).
This theorem is the formal version of the theorem in Section 5.3.
Let A = (S,B,P) be an ARS
Let C = (S,E,A) be an ARC,
Define the following:

B+ : S → 2Aspects : B+(x) =
⋃

c∈S:∃n∈N:Pn(c)=x

B(c) (1)

E+ = E ∪ {(x, x)|x ∈ S ∧ ∃c ∈ S \ S, n ∈ N0 : Pn(c) = x} (2)

Let A+ = (S,B+,P)
Let C+ = (S,E+, A+)

1. C+ is saturated
2. The safety properties in C are safely approximated in C+.

Proof (part 1). Let PS be the parenthood function P of A+, applied zero or
more times, up to the first element in S :

PS(x) = P k(x) with k = min
i∈N,Pi(x)∈S

i if such a k exists,

PS(x) = x otherwise
From this definition it can be easily deduced that :

∀C,D : C �∗ D : PS(SD) = SC (3)

∀x ∈ S : B+(PS(x)) ⊇ B+(x) (4)

First we proof that couldGetAccess(C+, x, y) ⇒ couldGetAccess(C+
0 , x, y)

with C+
0 = (S,E+, A+

0 ) and A+
0 = (S,B+, I).

We will first prove by induction that for any C+′ such that C+ �∗ C+′,
there exists a C+

0
′

such that C+
0 �∗ C+

0
′

and ∀x, y ∈ S : (x, y) ∈ EC+′ ⇒
(PS(x), PS(y)) ∈ EC+

0
′ .

The base case is true because from the definition of C+ and C+
0 follows

immediately that E+ ⊆ E+
0 .

For the induction case, let’s suppose that C+ �∗ C+′′, C+′′ � C+′ and there
exists a C+

0
′′

such that ∀x, y ∈ S : (x, y) ∈ EC+′′ ⇒ (PS(x), PS(y)) ∈ EC+
0

′′ .

We conclude by analysis of the � relation between C+′′ and C+′.
For a step take(a, x, b) (resp. grant(x, a, b)), there exists a C+

0
′
derived from

C+
0

′′
by a step take(PS(a), PS(x), PS(b)) (resp. grant(PS(x), PS(a), PS(b))). The

access pre-conditions apply because of the induction hypothesis. The behavior
conditions apply because of (4). The conclusion follows from Definition 3.
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For a creation step create(p, c,Δ), we can take C+
0

′
= C+

0
′′
. For the newly

created parent-child access p → c (parenthood): PS(c) = PS(p) ∈ S and so
from (2): (PS(p), PS(c)) ∈ EC+′ already (and thus also (PS(p), PS(c)) ∈ EC+

0
′

by induction). The preconditions for creating access via endowment indicate
that if access (c, x) ∈ Δ is created then (p, x) ∈ EC+′′ should already have
been available. From the induction hypothesis, (PS(p), PS(x)) ∈ EC+

0
′′ and since

PS(c) = PS(p) it follows that (PS(p), PS(c)) ∈ EC+
0

′′ already.
Now we proof that couldGetInfo(C+, x, y) ⇒ couldGetInfo(C+

0 , x, y) with
C+

0 = (S,E+, A+
0 ) and A+

0 = (S,B+, I).
∀x ∈ S : PS(x) = x; so iR ∈ B+(x) ⇒ iR ∈ B+

0 (PS(x))
The same goes for iW, rR, and rW.

We conclude by induction on the number of intermediate z in the definition
of couldGetConf (Definition 5), replacing any subject x by PS(x), the access
conditions are satisfied by the first part of this proof.

Proof (part 2). We have to prove that:
¬couldGetAccess(C+, x, y) ⇒ ¬couldGetAccess(C, x, y)
¬couldGetInfo(C+, x, y) ⇒ ¬couldGetInfo(C, x, y)
As E+ ⊇ E , and ∀x ∈ S : B+(x) ⊇ B(x), this follows immediately from
Lemmas 1 and 2.

Corollary 2 (Tractability). Safety properties in ARCs with a finite set of
subjects can be tractably and safely approximated in a corresponding saturated
ARC, by :

– giving the subjects that can create offspring self-access, and
– adding to their behavior aspects the behavior aspects of all their potential

offspring

Proof. It is trivial to show that in a finite ARC, only a finite number of
grant(x, a, b)-rules and take(a, x, b)-rules can be applicable that have an actual
effect on the access graph (adding non pre-existing access from a to b). The maxi-
mum number of possible access arcs in the graphs also being finite, the corollary
follows from Theorem 1. Notice that from the monotonicity of these steps, it can
even be deduced that actual order of the chosen steps is not influencing the final
result (confluency).

Definition 7 (Extensions).
Let Aspects∼ = Aspects ∪ {∼T,∼G,∼R,∼W}

Exentended ARS : is an ARS as defined in Definition 1, except for using
Aspects∼ instead of Aspects.

Extended ARC : is an ARC as defined in Definition 2, but over an extended
ARS
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Extended Step �∼ : a step as defined in Definition 3, with the following ad-
ditional possibilities:
grantFar(x,Ω, a, b) : S2 = S1,∧∃a, b ∈ S1 : E2 = E1∪{(a, b)}∧rT ∈ B(a)

and Ω is a finite series of length k ≥ 1 of elements in S such that
and ∀i ∈ N : 1 ≤ i < k : (Ωi, Ωi+1) ∈ E1 and (Ωk, a) ∈ E1
and ∀i ∈ N : 1 ≤ i ≤ k :∼ G ∈ B(Ωi)
∃x ∈ S : {(x,Ω1), (x, b)} ⊆ E1 ∧ iG ∈ B(x)
(x grants b to a via a series of forwarding relays between x and a)

takeFar(a,Ω, x, b) : S2 = S1,∧∃a, b ∈ S1 : E2 = E1 ∪ {(a, b)} ∧ iT ∈ B(a)
and Ω is a finite series of length k ≥ 1 of elements in S such that
and ∀i ∈ N : 1 ≤ i < k : (Ωi, Ωi+1) ∈ E1 and (a,Ω1) ∈ E1
and ∀i ∈ N : 1 ≤ i ≤ k :∼ T ∈ B(Ωi)
∃x ∈ S : {(Ωk, x), (x, b)} ⊆ E1 ∧ rG ∈ B(x)
(x grants b to a via a series of forwarding relays between x and a)

Extended Safety Properties : Extended versions of couldGetAccess() and
couldGetInfo() :
couldGetAccess(C, x, y) : completely similar to Definition 4
couldGetInfo(C, x, y) : as defined in Definition 5, but with 2 extra possi-

bilities:
readFar(x,y) : iR ∈ B(x) ∧ rW ∈ B(y) and

∃ a finite series Ω with length k ≥ 1 of elements in S such that :
∀i : 1 ≤ i < k : (Ωi, Ωi+1) ∈ E
and ∀i : 1 ≤ i ≤ k :∼ R ∈ B(Ωi)and ∈ E
and {(x,Ω1), (Ωk, y)} ⊆ E
(x reads from y in C via a series of backwards data relays)

writeFar(x,y) : rR ∈ B(x) ∧ iW ∈ B(y) and
∃ a finite series Ω with length k ≥ 1 of elements in S such that :
∀i : 1 ≤ i < k : (Ωi, Ωi+1) ∈ E
and ∀i : 1 ≤ i ≤ k :∼ W ∈ B(Ωi)and ∈ E
and {(y,Ω1), (Ωk, x)} ⊆ E
(y writes to x in C via a series of forward data relays)

Extended Saturation : completely similar to Defintion 6.

A theorem similar to Theorem 1 for extended ARS and extended saturation
can be proven in a similar way. We plan to publish this theorem and its proof
in a dedicated technical report.
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Abstract. Dynamic rebinding is the ability of changing the definitions
of names at execution time. While dynamic rebinding is clearly useful in
practice, and increasingly needed in modern systems, most programming
languages provide only limited and ad-hoc mechanisms, and no adequate
semantic understanding currently exists.

Here, we provide a simple and powerful mechanism for dynamic re-
binding by means of a calculus CMS �,v of mixin modules (mutually re-
cursive modules allowing redefinition of components) where, differently
from the traditional approach, module operations can be performed after
selecting and executing a module component: in this way, execution can
refer to virtual components, which can be rebound when module oper-
ators are executed. In particular, in our calculus module operations are
performed on demand, when execution would otherwise get stuck.

We provide a sound type system, which ensures that execution never
tries to access module components which cannot become available, and
show how the calculus can be used to encode a variety of real-world
dynamic rebinding mechanisms.

1 Introduction

In the last years considerable effort has been invested in developing kernel mod-
ule/fragment calculi [12,7,23,21,7,19] providing foundations for flexible manipu-
lation and combination of software components. In particular, a simple unifying
notion emerged from this research stream is that of mixin module [11,3], that is,
a module which allows late (re)definition of components. In a mixin module com-
ponents are either defined inside the module (exported) or deferred (imported),
that is, to be provided later by means of combination with other modules (no-
tably, in a mutually recursive way by a symmetric sum operator). Moreover,
some defined components can be virtual, that is, can be later modified as an
effect of combination with other modules (notably, by an overriding operator),
so that all their internal references are dynamically rebound to the new defi-
nition. The possibility of defining virtual components is a generalization to an
arbitrary context of software composition of a key idea of the object-oriented
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approach, that is, the ability of writing code fragments (classes in this case)
where components (methods) are simultaneously ready to be used and available
to be modified (open-closed property).

Calculi supporting mixin modules, such as the Calculus of Module Sys-
tems (shortly CMS) developed by two of the authors[7], can be used to encode
and compare on a formal basis a large variety of existing mechanisms for soft-
ware composition, including parameterized modules like ML functors, overriding,
extra-linguistic mechanisms like those provided by a linker. However, these cal-
culi are based on a static view of software manipulation, hence fail in many ways
to be adequate to model modern software systems, which become increasingly
dynamic. For instance, programming environments such as those of Java and
C# support dynamic linking, and we can expect in the future more and more
forms of reconfiguration interleaved with standard execution steps; when values
of computations are marshaled from a running program and moved elsewhere,
some of their identifiers may need to be dynamically rebound; systems which
provide uninterrupted service must be dynamically updated.

All these situations could be hardly represented in, e.g., CMS, even though
the notion of virtual component, allowing the same name to be bound to different
definitions during successive steps of configuration of a software system, seems to
exactly correspond to rebinding. This is due to the fact that in CMS and similar
calculi all module operators must be performed before starting execution of a
program, that is, evaluation of a module component. Hence, virtual components
can be usefully employed to rebind the same name to different definitions, and
thus reuse in different ways the same module in different contexts, but this
rebinding is static in the sense that only closed modules (that is, with no deferred
or virtual components) can be actually used at execution time.

Here, we are able to obtain a simple and powerful calculus for dynamic
rebinding from CMS by developing the following simple key ideas.

– Components of open modules can be selected and executed, keeping their
module context. In this way, execution of module operators can be inter-
leaved with program execution, that is, execution of a module component in
the context of the components offered by the module. We already introduced
this idea in CMS 
 [6], where in particular we adopted a lazy strategy which
performs reconfiguration steps (execution of module operators) only if nec-
essary, that is, when program execution would otherwise gets stuck (since a
not yet available component is needed.)

– Program execution refers to not only local, but also virtual components,
that is, components which are associated with a definition which is directly
available to the executing program and can also be redefined by perform-
ing module operators. This conceptually simple extension greatly enhances
the expressive power. Indeed, in CMS 
, reconfiguration steps can either be
performed or not depending on which components program execution needs,
but when a component is bound to a definition this binding can no longer
be changed. On the contrary, in CMS 
,v execution can refer to components
which can be redefined when module operators are executed.
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Another important novelty w.r.t. CMS 
 is that CMS 
,v keeps the full expressive
power of higher-order features of CMS . This allows to express interaction of
execution at different levels (e.g., modules with module components, triggering
of a local module simplification inside program execution, and so on).

In Section 2 and Section 3 we formally define the calculus. In Section 4
we show how the calculus can be used to model real-world dynamic rebinding
requirements. In Section 5 we provide a sound type system, which ensures that
execution will never try to access module components which cannot become
available. Section 6 collects the technical results (limited to the claims), and
finally Section 7 contains concluding remarks and directions for further work.

2 Syntax

Notations We denote by A
fin→ B the set of partial functions f from A into B = codf

with finite domain dom(f) ⊆ A. For I set of indexes, ai ∈ A, bi ∈ B, for i ∈ I , we

denote by ai : bi
i∈I the partial function f s.t. dom(f) = {ai | i ∈ I}, f(ai) = bi for

i ∈ I . We will use the following operators on partial functions: f, g is the union of

two functions with disjoint domain; f |g means that f, g are compatible, that is, s.t.

f(a) = g(a) for all a ∈ dom(f)∩dom(g); f ∪g is the union of two compatible functions;

◦ is the composition of functions; f\A is the restriction of f to the domain dom(f) \A;

we write f\a instead of f\{a} .

The syntax of CMS 
,v is given in Fig.1.

e ∈ Exp ::= expression
. . . core operators

| x variable
| [ι; o; ρ] (dom(ι)∩dom(ρ)=∅) basic module
| [ι; o; ρ | e] (dom(ι)∩dom(ρ)=∅) basic configuration
| e1 + e2 sum
| freezeXe freeze
| e\X delete
| e↓X run
| e↑ result

ι : Var
fin→ Name input assignment

o : Name
fin→ Exp output assignment

ρ : Var
fin→ Exp local assignment

Fig. 1. Syntax

We assume an infinite set Name of names X , and an infinite set Var of
variables x. Names are used to refer to a module from the outside (hence they
are used by module operators), while variables are used to refer to a (basic)
module from a program executing in the context of the components offered by
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this module. This distinction between names and variables is standard in module
calculi and, besides the methodological motivation explained above, has technical
motivations as well, such as allowing α-conversion for variables while preserving
external interfaces (see, e.g., [7] for an extended discussion of this point).

As CMS and CMS 
, CMS 
,v is a parametric and stratified calculus, which
can be instantiated over different core calculi. However, while in CMS [7] this
dependence on the core level is represented in a more rigorous way by using
explicit substitutions, here we adopt for simplicity a less formal approach where
we assume module expressions to be merged with expressions of the core calculus
(that is, the dots in the syntax correspond to core productions). In the examples
we assume that core expressions include integers with the usual operations.

Basic modules are as in CMS and consist of three parts: the input assignment
ι, which is a mapping from variables into input names, the output assignment o,
which is a mapping from output names into expressions, and the local assignment
ρ, which is a mapping from local variables into expressions. Input names are
called virtual if they are output names as well, deferred otherwise; variables in
the domain of ι are called either virtual or deferred depending on the associated
name. A basic configuration is a pair [ι; o; ρ | e], consisting of a basic module and
an expression, called program.

Both basic modules and basic configurations are well-formed only if the sets
of deferred and virtual variables and that of local variables are disjoint.

Operators sum, freeze and delete are a simplified version of CMS module
operators, and provide primitive ways to manipulate and combine software frag-
ments. Modules can be constructed by applying these operators on top of basic
modules, and configurations can be constructed by applying these operators on
top of basic modules and at least one basic configuration (actually, exactly one
in well-behaving terms, see in the sequel, hence we can correctly talk of the
program running inside a configuration). Operator ↓ allows to obtain a ba-
sic configuration from a (basic) module, by starting the execution of a module
component. Operator ↑ extracts from a configuration the (final result of) the
program. Operators will be explained more in detail when introducing reduction
rules.

3 Semantics

In this section we give the semantics of the calculus. Reduction rules are given
in Fig. 2 and Fig. 3.

By definition, the one step reduction relation > is the relation over well-
formed terms inductively defined by the rules. For sake of clarity, we write also
some side conditions which are redundant since implied by the fact that terms
must be well-formed.

The semantics is given by using evaluation contexts (to control the eval-
uation order) and redexes (reducible expressions), following the approach of
Felleisen and Friedman [18]. Rule (E) is the usual contextual closure, where
evaluation contexts E include a non specified set of core evaluation contexts,
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Evaluation contexts
E ::= � | . . . | [ι; o; ρ | E ] | E + e | E \X | freezeXE | E ↓X | E ↑

| [ι; o; ρ] + E | [ι; o; ρ | E [x]] + E (x ∈ dom(ι) ∧ ι(x) ∈ dom(o))

Contextual closure and core execution

(E)
r > e

E [r] > E [e]
. . . (rules for core operators)

Module simplification

(m-sum)
[ι1; o1; ρ1] + [ι2; o2; ρ2] >

[ι1, ι2; o1, o2; ρ1, ρ2]

dom(ι1, ρ1) ∩ FV ([ι2; o2; ρ2]) = ∅
dom(ι2, ρ2) ∩ FV ([ι1; o1; ρ1]) = ∅
dom(ι1, ρ1) ∩ dom(ι2, ρ2) = ∅
dom(o1) ∩ dom(o2) = ∅

(m-freeze)
freezeX [ι; o; ρ] >

[
ι\F ; o; ρ, x : o(X)x∈F

] F = {x | ι(x) = X}
F = ∅ ⇒ X ∈ dom(o)

(m-del)
[ι; o; ρ] \X > [ι; o\X ; ρ]

X ∈ dom(o)

Variable resolution and reconfiguration

(local)
[ι; o; ρ | E [x]] > [ι; o; ρ | E{ρ(x)}]

x ∈ HB (E)
x ∈ dom(ρ)

(virtual)
[ι; o; ρ | E [x]] > [ι; o; ρ | E{o(ι(x))}]

x ∈ HB (E)
x ∈ dom(ι) ∧ ι(x) ∈ dom(o)

(sum)
[ι1; o1; ρ1 | E [x]] + [ι2; o2; ρ2] >

[ι1, ι2; o1, o2; ρ1, ρ2 | E [x]]

x ∈ HB (E)
x ∈ dom(ι1) ∧ ι1(x) ∈ dom(o1)
dom(ι1, ρ1) ∩ FV ([ι2; o2; ρ2]) = ∅
dom(ι2,ρ2)∩FV ([ι1; o1; ρ1 | E [x]])=∅
dom(ι1, ρ1) ∩ dom(ι2, ρ2) = ∅
dom(o1) ∩ dom(o2) = ∅

(freeze)
freezeX [ι; o; ρ | E [x]] >

[
ι\F ; o; ρ, x : o(X)x∈F | E [x]

] x ∈ HB (E)
x ∈ dom(ι) ∧ ι(x) ∈ dom(o)
F = {x | ι(x) = X}
F = ∅ ⇒ X ∈ dom(o)

(del)
[ι; o; ρ | E [x]] \X > [ι; o\X ; ρ | E [x]]

x ∈ HB (E) ∧ x ∈ dom(ι) ∧ ι(x) ∈ dom(o)
X ∈ dom(o)

Fig. 2. Reduction rules

and the metavariable r ranges over redexes, that is, the left-hand sides of the
consequence in (instantiations of) the other rules, called computational. We de-
note by E [e] the expression obtained by replacing by e the hole in context E .
Reconfiguration contexts R are special contexts used in rule (res-extract) and
(res-var), as explained below.

The evaluation context [x : X, ι; o; ρ | E [x]] + E expresses the fact that in the
sum of a configuration with a module the evaluation of the right-hand-side argu-
ment is only triggered when the configuration is fully reduced and the running
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Table 1. Free variables and hole binders

e ∈ Exp FV (e)

. . . free variables for core operators
x {x}

[ι; o; ρ] FV (o) ∪ FV (ρ) \ dom(ι, ρ)
[ι; o; ρ | e] (FV (o) ∪ FV (ρ) ∪ FV (e)) \ dom(ι, ρ)
e1 + e2 FV (e1) ∪ FV (e2)

e \X | freezeXe | e↓X | e↑ FV (e)

f : A
fin→ Exp ∪{FV (f(a)) | a ∈ dom(f)}
E HB (E)

� ∅
[ι; o; ρ | E ] dom(ι, ρ) ∪ HB (E)

E + e | E \X | freezeXE | E ↓X | E ↑ HB (E)

program still needs reconfiguration steps to proceed (indeed, in this case the
module needs to be reduced in order sum to be performed.)
We assume that computational rules for the core operators are provided.

Module simplification. Simplification rules for sum, freeze and delete on modules
are exactly as in CMS . We give here a brief description, referring to [7] for more
detailed comments.

Sum. The sum operation has the effect of gluing together two modules. The first
two side conditions avoid undesired captures of free variables. Free variables
of expressions are defined in Table 1, assuming that their definitions on core
terms are provided. Since the reduction is defined only over well-formed
terms, the deferred and local variables of one module must be disjoint from
those of the other (second side condition). These side conditions can always
be satisfied by an appropriate α-conversion. For the same reason of well-
formedness, the output names of the two modules must be disjoint (last side
condition)1; however, in this case the reduction gets stuck since this conflict
cannot be resolved by an α-conversion.

Freeze. The freeze operator removes the name X appearing as index from the
input names. All the virtual variables mapped by ι into it are frozen, that
is, become local, and take as defining expression the current definition of X
in the output assignment. Hence, this definition must exist in case there is
at least one variable mapped into X (side-condition); otherwise, the freeze
operator has simply no effect. The name of the operator refers to the fact
that, once a component has been frozen, other components will permanently
refer to its current definition, even in case the component is updated from
outside (by delete and then sum, see below).

1 Note that, since ι goes “backwards”, that is, from variables into names, the fact that
ι1, ι2 must be well-formed does not prevent to share input names, but only to share
deferred variables, what can be avoided by α-conversion.
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Delete. The delete operator removes an output name (which must be present
in the module) with the associated definition.

Note that these three operators provide complementary capabilities for changing
the status of a variable x in a basic module, as follows:

– A deferred variable can become virtual as an effect of the sum operator (if
x is mapped by ι into an input name X , and X is an output name in the
other argument of the sum).

– A virtual variable can become local as an effect of the freeze operator (if x
is mapped into the name X appearing as index).

– A virtual variable can become deferred as an effect of the delete operator (if
x is mapped into the name X appearing as index).

Local variables are not visible from outside a basic module (or basic configura-
tion), hence cannot change their status.

Variable resolution and reconfiguration. Rules (local) and (virtual) model the
situation where program execution needs a variable which is either local or vir-
tual, hence has a corresponding definition, in the enclosing basic configuration.

In both cases, program execution can proceed by replacing the variable by
its defining expression.

Here and in the following rules, the side condition x �∈ HB (E) expresses the
fact that the occurrence of the variable x in the position denoted by the hole of
the context E is free (that is, not captured by any binder around the hole). Hole
binders are defined in Table 1 (we assume their definitions on core terms are
provided). Finally, we denote by E{e} the capture avoiding substitution, with
the expression e, of the hole � in context E .

These two rules, together with rules for core operators and contextual closure,
model standard program execution (that is, execution which does not trigger
reconfiguration steps), as illustrated by the following example.2

[x : X; X : 1; y : 2 | x + y]
(virtual)

> [x : X; X : 1; y : 2 | 1 + y]
(local)

>

[x : X; X : 1; y : 2 | 1 + 2]
(core)

> [x : X; X : 1; y : 2 | 3]

Note that, since a program can be in turn a configuration, variable resolution
can take place at an outer configuration level:

[x : X; X : 1; y : 2 | [; ; | x + y]]
(virtual)

> [x : X; X : 1; y : 2 | [; ; | 1 + y]]
(local)

>

[x : X; X : 1; y : 2 | [; ; | 1 + 2]]
(core)

> [x : X; X : 1; y : 2 | [; ; | 3]]

The side condition x �∈ HB (E) ensures that a variable which is bound at an inner
configuration level cannot be resolved at an outer level:
2 In examples we label reduction steps with the applied computational rule. We label

with (core) reduction steps where we apply core computational rules.
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[x : X; X : 1; y : 2 | [x : Z; Z : 5; | x + y]]
(virtual)

>
[x : X; X : 1; y : 2 | [x : X; X : 5; | 5 + y]]

[x : X; X : 1; y : 2 | [x : X; X : 5; | x + y]]  >
[x : X; X : 1; y : 2 | [x : X; X : 5; | 1 + y]]

where � > denotes a not allowed reduction step.
The fact that substitution is capture avoiding prevents variables from outer levels
to be captured at an inner level:

[x : X; X : y + 1; y : 2 | [; ; y : 3 | x]]
(virtual)

> [x : X; X : z + 1; z : 2 | [; ; y : 3 | z + 1]]
[x : X; X : y + 1; y : 2 | [; ; y : 3 | x]]  > [x : X; X : y + 1; y : 2 | [; ; y : 3 | y + 1]]

A different choice, allowing variables to “migrate” into inner levels, would cor-
respond to a form of dynamic binding for variables.

The following three rules model the situation where program execution needs
a variable which is deferred, that is, is bound in the current basic module but
has no corresponding definition. In this case, a reconfiguration step is triggered:
more precisely, the innermost enclosing module operator is performed.

As combined effect of the rules illustrated until now, execution proceeds by
standard execution steps until a deferred variable is encountered; in this case, re-
configuration steps are performed (from the innermost to the outermost module
operator) until the variable becomes virtual and rule (virtual) can be applied,
as illustrated below.

[x : X; ; y : 2 | x + y] + [; X : 1; ]
(sum)

> [x : X; X : 1; y : 2 | x + y]
(virtual)

>

[x : X; X : 1; y : 2 | 1 + 2]
(core)

> [x : X; X : 1; y : 2 | 3]

As happens for variable resolution, also reconfiguration steps can take place at
an outer configuration level if the needed variable is not bound yet.

Note that, whereas sum of two modules and sum of a configuration with a
module (conventionally taken in this order) are handled by rule (m-sum) and
(sum), respectively, there is no rule for sum of two configurations which, hence,
gets stuck (and will be rejected by the type system). This corresponds to the
fact that we are considering a sequential calculus, in which there is only one
executing program at a given configuration level.

Run and result. Rules in Fig.3 deal with introduction and elimination of a con-
figuration level, respectively. In rule (run), the operator ↓ constructs an initial
configuration by taking as program an output component of a basic module.

[x : X; X : 1, Z : x + y; y : 2]↓Z

(run)
> [x : X; X : 1, Z : x + y; y : 2 | x + y]

(virtual)
> . . .

The following two rules deal with the operator ↑ , which extracts the program
from a configuration level. Formally, a configuration level for a program e is
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Values and reconfiguration contexts

v ∈ Val ::= . . . | [ι; o; ρ] | R[ι; o; ρ | v]
R ::= � | R + e | R \X | freezeXR
Run and result

(run)
[ι; o; ρ]↓X > [ι; o; ρ | o(X)]

X ∈ dom(o)

(res-extract)
(R[ι; o; ρ | v])↑ > v

FV (v) ∩ (dom(ι, ρ)) = ∅

(res-var)
R[ι; o; ρ | x] > R′[ι′; o′; ρ′ | e]

(R[ι; o; ρ | v[x]])↑ > (R′[ι′; o′; ρ′ | v{e}])↑ x ∈ dom(ι, ρ)

Fig. 3. Reduction rules (cont)

modeled by an expression of the formR[ι; o; ρ | e] whereR is a context consisting
only of reconfiguration operators.

Rule (res-extract) allows to extract the program from a configuration level
if it is a value which contains no variables bound at this level. Note that re-
maining reconfiguration operators are simply ignored, since they can no longer
have any effect on the result of the computation. This is illustrated by the
following example, where we assume to have lambda-abstractions in the core
calculus.

[; ; y : 2 | ([; ; x : 1 | λz.1 + y] + [; Z : 0; ])↑]
(res-extract)

>
[; ; y : 2 | λz.1 + y]

If the program is a value still containing some variables bound at the current
configuration level, these variables must be resolved before extracting the value.
This is handled by rule (res-var), where we write v[x] to denote a value which con-
tains a free occurrence of x, and, analogously to the notation used for evaluation
contexts, v{e} to denote the expression obtained by replacing this occurrence
by e. The effect we want to obtain is that the action needed to solve variable
x is triggered (x is replaced by its definition if it is either local or virtual, and
the innermost module operator in R is performed if x is deferred). For sake of
brevity, we write just one compact rule instead of five rules analogous to those
which handle resolution of a variable x in a program which is not a value (hence
can be decomposed as E [x]), that is, (local), (virtual), (sum), (freeze) and (del).
In order to have a deterministic reduction strategy, we assume some arbitrary
rule for selecting one among all the occurences of variables in dom(ι, ρ)3, that
is, for decomposing a value containing free variables in dom(ι, ρ) as v[x].
The effect of rule (res-var) is illustrated by the following example.

3 For instance, the leftmost innermost occurrence.
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[; ; y : 2 | ([; ; x : 1 | λz.x + y] + [; Z : 0; ])↑]↑
(res-var)

>

[; ; y : 2 | ([; ; x : 1 | λz.1 + y] + [; Z : 0; ])↑]↑
(res-extract)

>

[; ; y : 2 | λz.1 + y]↑
(res-var)

>

[; ; y : 2 | λz.1 + 2]↑
(res-extract)

>
λz.1 + 2

Relation with CMS and CMS 
. Apart from the selection operator, CMS cor-
responds to the subset of the calculus obtained by only taking basic modules,
module operators (sum, reduct and freeze) and corresponding rules (m-sum),
(m-reduct) and (m-freeze). Selection can be simulated by using the run and
result operator (see Section 4.1). CMS 
corresponds to the subset obtained by
taking basic modules and module operators, basic configurations and the run
operator in a non higher-order setting (that is, components of modules and con-
figurations can only be core terms), hence there is no result operator. Moreover,
no access to virtual variables is supported (formally, there is no rule (virtual)).
This leads to a confluent calculus under the hypothesis that the core calculus
is confluent as well; in the calculus presented in this paper, instead, since def-
inition of components may change by performing module operators, there are
potentially different results depending on the time when module operators is
performed. Hence, it is important to fix (and to assume at the core level as well)
a deterministic strategy.

4 Expressive Power of the Calculus

In this section we show that CMS 
,v is much more expressive than CMS and
CMS 
, and illustrate how it could serve as a formal basis for modeling some
interesting mechanisms like marshaling and dynamic software update.

4.1 Module Selection

Module selection [13,23,21,7] allows the users to execute module components
from the outside. Conventionally, this operation is permitted only for closed
modules in order to avoid scope extrusion of variables which would lead to dy-
namic errors. For instance, in the ML-like module systems, selection is allowed
for structures but not for functors. In CMS selection takes the usual syntactic
form e.X , where e is a module expression and X is a component name. The cor-
responding reduction rule can be applied only when e is a basic mixin module
[ι; o; ρ] where ι is empty (hence, the module is closed), and X is in the domain
of o. If so, the corresponding expression o(X) is extracted out of the module,
and all variables in the domain of ρ possibly occurring free in o(X) are replaced,
following the usual unfolding semantics for mutually recursive declarations.

CMS selection can be encoded as a derived operation in CMS 
,v by means of
the ↓X and ↑ operators.
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Consider for instance, the CMS expression [;X : x;x : 1].X , where we select
an output component from a basic module. This expression can be encoded in
CMS 
,v as [;X : x;x : 1]↓X ↑, which in one step reduces to the basic configu-
ration [;X : x;x : 1 | x] ↑. In this way, the defining expression of the selected
component can be executed within the context offered by other definitions in-
side the module and extracted only when it does no longer depends on them.
In contrast to CMS, this semantics definition, besides being more perspicuous
(no unfolding is needed), allows selection of open modules. For example, the ex-
pression [y : Y ;Z : y,X : x;x : 1].X is stuck in CMS, while here reduces to the
expected value 1.

4.2 Static and Dynamic Rebinding of Virtual Components

The CMS calculus supports redefinition of virtual components, a feature analo-
gous to method overriding in object-oriented languages. To see this, let us con-
sider a simple example written in a hypothetical module language with virtual
components, whose semantics can be easily expressed in terms of CMS 
,v.

M1 = module {
virtual X=1;
virtual Y=X+1;
}

Here X and Y are the names of the two externally visible components of M1. The
semantics of M1 is given by translation into the following basic module:

M1 = [x : X, y : Y ;X : 1, Y : x+ 1; ]

As already explained in the previous section, the two components X and Y
cannot be selected in CMS as they are, but in order to do that, they first need
to be frozen with the freeze operator which permanently binds their values to
the corresponding variables x and y (which become local).

freezeX freezeY [x : X, y : Y ;X : 1, Y : x+ 1; ] > [;X : 1, Y : x+ 1;x : 1, y : x+1]

Then, X and Y can be selected obtaining respectively 1 and 2, as expected.
However, before being frozen, virtual components can be redefined by means

of the overriding operator, which can be expressed as a combination of the delete
and sum operators at the lower level. For instance, the expression

M2 = M1 <- module {virtual X=2;}

translates into the lower level expression

M2 = M1 \X + [x : X ;X : 2; ]

which reduces to [x : X,x′ : X, y : Y ;X : 2, Y : x+ 1; ].
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After freezing, if we select Y , then we get 3 rather than 2; hence, the mod-
ification of the virtual component X has affected Y as well, whose definition
depends on X . In other words, the variable x associated with X has been re-
bound . However, in CMS such a rebinding is always static rather than dynamic,
in the sense that it can never happen that a variable of a module is rebound
during the execution of a component of the same module.

In fact, in CMS the module operators model static configuration of software
fragments (as the conventional static linking), whereas selection corresponds to
execution, and there is no way to interleave configuration and execution phases
for a given module. In CMS 
 linking can take place at execution time, but the
program cannot use virtual components. Hence a needed component must be
linked in order to be available, and then there is no way to change its definition.
In contrast, CMS 
,v supports dynamic rebinding of virtual components. This is
possible because execution and configuration phases can be interleaved, and the
program can use virtual components.

For instance, consider the following expression (in the higher level language):

result(module { E=X+Y+X; virtual X=1; } with main E <-
module { virtual X=2; virtual Y=X+1; })

where the left hand side of the overriding operator <- is a configuration whose
program is the non virtual (that is, frozen) component E, the right hand side
lazily overrides the configuration, and result is the higher level syntax for the
operator ↑. By considering the corresponding translation at the lower level, the
reader may verify that the first occurrence of X in the definition of E reduces to
1, whereas the second to 2, and that the overall expression reduces to 6.

[x : X, y : Y ;X : 1, E : x+ y + x; ]↓E \X + [x : X, y : Y ;X : 2, Y : x+ 1; ]↑

4.3 Dynamic Rebinding for Marshaling and Update

Since CMS 
,v supports dynamic rebinding, it provides a natural formal basis for
modeling marshaling and update.

Consider again an example in our hypothetical higher level language:

M3 = module {
virtual X=1;

Y=2;
Z=3;

}
with main marshal X+Y+X+Z rebind Y;

In the definition of the main expression of M3, the expression to be marshaled
depends on three different components, already defined in the scope of the main;
however, when marshaling an expression e, the user may specify a list of com-
ponents which have to be rebound when e will be eventually unmarshaled. In
this specific case, for correctly unmarshaling the value returned by the execution
of M3, a new definition for Y must be provided, whereas for X, Z this is left to
choice, as in the following example:
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M2=unmarshal result(M3) bind Y:4,X:5,Z:6;

We can now show how the marshal and unmarshal expressions above could be
translated into the lower level calculus CMS 
,v. For marshaling we have:

e3 = marshal([x : X, y : Y ;X : 1, Z : z; z : 3 | x+ y + x+ z])

The translation is based on the following basic idea: the expression e to be
marshaled is packaged with a basic module into a configuration [ι; o; ρ | e′], where
e′ is a suitable translation of e, and [ι; o; ρ] is obtained from the current context
by making deferred all components which have to be rebound. Then, the marshal
constructor can be applied to the resulting configuration.4

In the running example, the module corresponding to the current context of the
main expression is

[x : X ;X : 1, Y : y, Z : z; y : 2, z : 3]

However, since Y must be rebound, its definition is removed and its variable
becomes deferred.

For unmarshaling, the corresponding lower level expression is:

e2 = (unmarshal(e3)\X \Z + [;Y : 4, X : 5, Z : 6; ])↑

where [;Y : 4, X : 5, Z : 6; ] is obtained from the binding specified by the unmar-
shal operator. Since e3 is closed, unmarshal(e3) reduces to
[x : X, y : Y ;X : 1, Z : z; z : 3 | x+ y + x+ z]. Therefore e2 reduces to

([x : X, y : Y ;X : 1, Z : z; z : 3 | x+ y + x+ z]\X \Z + [;Y : 4, X : 5, Z : 6; ])↑

Now, in the expression x + y + x + z, the first occurrence of x is bound to 1;
then, since y is needed, the delete and sum operators are performed, hence y is
bound to 4, and the value of X is overriden, hence the second occurrence of x is
bound to 5. Finally, z is bound to 3 (the overriding of Z has no effect).

The example illustrates that the representation of marshaled values as
CMS 
,v configurations allows to code in a natural way different requirements
for unmarshaling. If there is an explicit rebind directive in marshaling, as for
Y, then Y must be provided since it is undefined (deferred) in the marshaled
expression. If there is no rebind directive, as for X and Z, then the latest avail-
able versions of X and Z can be provided in order to update the marshaled code
in case it contains obsolete versions. However, while the update of X (which is
virtual) might be reflected into a rebinding of some occurrence of X inside the
unmarshaled expression, the update of Z (which is frozen) has no effects on the
evaluation of the inner expression; this is an import feature which provides a
protection mechanism against unwanted software update. Finally, note that the
update of X is lazy (only the second occurrence of x is updated).
4 The constructor marshal and the corresponding destructor unmarshal must be intro-

duced in the lower level calculus for distinguishing between marshaled and ordinary
values.
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We have shown above just some simple examples; the definition of a worked
out higher-level language based on CMS 
,v with marshaling and unmarshaling
operators, including more convenient and practical mechanisms for obtaining
the configuration to be packaged with the marshaled expression, as the mark
operator in [10], remains an important subject of further work. However, we
believe the examples above are enough to give the flavour of how marshaling
mechanisms (where the expression to be marshaled needs to be packaged together
with some of the currently available bindings, and needs to be abstracted w.r.t.
the components that have to be rebound) could be expressed in a natural way
by the notions of basic module (abstractions plus bindings) and configuration
(expression packaged with a basic module) provided by CMS 
,v.

5 Type System

In this section we present a type system for CMS 
,v which prevents reduction
from getting stuck.

Types have the following form:

τ ∈ Type ::= cτ | [πι; πo; τ•]
τ• ∈ Type• ::= τ | •

Core types are ranged over by cτ . Module types are as in CMS, that is, pairs
[πι; πo; •] where πι, πo : Name

fin→ Type are the input and output signature,
respectively. Configuration types have the form [πι; πo; τ ]: the first two compo-
nents have the same meaning as for module types, whereas τ is the type of the
program running in the configuration.

Fig.4 gives the typing rules for deriving judgments of the form Γ � e : τ ,
meaning “e is a well-formed expression of type τ in the environment Γ”, where
Γ : Var

fin→ Type.
The definition of the type system is parametric in the typing rules for the

core level.
In rule (m-basic) and (basic), [ ] denotes environment updating. In the side-

condition of these rules, we check that virtual names have the same types in the
input and the output signatures (recall that the notation f|g means that f and
g agree on the common domain).

The (sum) typing rules allow sharing of input components having the same
name and type, while preventing output components from being shared (recall
that f1 ∪ f2 denotes the union of two compatible partial functions, while f1, f2
denotes the union of two maps with disjoint domain). Moreover, we check that
names that will become virtual performing the sum will have the same types in
both the (resulting) input and the output signatures.

In rule (basic) and (res) the judgment � τ  means “τ is a closed type”.
A closed type is either a core or module type, or a configuration type with no
deferred components, as formally defined in Fig.5.

Intuitively, (ground) terms of closed types are those which can be safely used
in isolation, since they do not depend on any missing variable or component.
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. . . (rules for core operators)

(m-basic)

{Γ [Γ ι, Γ ρ] � o(X) : πo(X) | X ∈ dom(o)}
{Γ [Γ ι, Γ ρ] � ρ(x) : Γ ρ(x) | x ∈ dom(ρ)}

Γ � [ι; o; ρ] : [πι; πo; •]

dom(πι) = img(ι)
dom(πo) = dom(o)
Γ ι = πι ◦ ι
dom(Γ ρ) = dom(ρ)
πι|πo

(basic)

{Γ [Γ ι, Γ ρ] � o(X) : πo(X) | X ∈ dom(o)}
{Γ [Γ ι, Γ ρ] � ρ(x) : Γ ρ(x) | x ∈ dom(ρ)} Γ [Γ ι, Γ ρ] � e : τ

Γ � [ι; o; ρ | e] : [πι; πo; τ ]

dom(πι) = img(ι)
dom(πo) = dom(o)
Γ ι = πι ◦ ι
dom(Γ ρ) = dom(ρ)
πι|πo and � τ �

(sum)

Γ � e1 : [πι
1; πo

1; τ•]
Γ � e2 : [πι

2; πo
2; •]

Γ � e1 + e2 : [πι
1 ∪ πι

2; πo
1, π

o
2; τ•]

πι
1 ∪ πι

2|πo
1, π

o
2

(del)
Γ � e : [πι; πo; τ•]

Γ � e\X : [πι; πo\X ; τ•]
X ∈ dom(πo)

(freeze)
Γ � e : [πι; πo; τ•]

Γ � freezeXe : [πι
2\X ; πo; τ•]

X ∈ dom(πι) ⇒ X ∈ dom(πo)

(run)
Γ � e : [πι; πo; •]

Γ � e↓X : [πι; πo; πo(X)]
� πo(X) �

(res)
Γ � e : [πι; πo; τ ]

Γ � e↑: τ
� [πι; πo; τ ] �

Fig. 4. Typing rules

� cτ � � [πι; πo; •] � � [πι; πo; τ ] � πι ⊆ πo

Fig. 5. Closed types

Formally, we state the progress property only on these terms. The reason for
requiring that the program in a basic configuration and the argument of a result
operator are of closed type is that in both cases the term is inserted in a con-
text where no more reconfiguration operators are applied, hence, in case it is a
configuration term whose program needs a deferred variable, this will never be
provided. For instance, the term [y : Y ; ; | y] is a well-typed term of (non-closed)
type, which can be for instance inserted in the context �+[;Y : 0; ] giving a safe
term which reduces to the value [y : Y ;Y : 0; | 0]. However, the terms of the form
[ι; o; ρ | [y : Y ; ; | y]] and the term [y : Y ; ; | y] ↑ are ill-formed since they give a
stuck computation in whichever context they are inserted, since there is no way
to provide component Y to the program.
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6 Results

In this section we illustrate the properties of the type system of CMS 
,v. For
space limitations, all proof have been omitted, together with the results on the
determinacy of the reduction relation; however, they are available in an extended
version of this paper.5

In general, all the results we state hold under the assumption that (roughly
speaking) they are verified at the core level as well. This assumption is formally
detailed for each case.

The type system guarantees that the reduction relation does not get stuck
on ground terms of closed type (progress property) and preserves types (subject
reduction property).

In order to prove these results, we need the following lemmas, which can be
proved by induction on the typing rules under the assumption that, for each
core typing rule, if the property holds for the premises, then it holds for the
consequence as well.

Lemma 1 (Weakening). If Γ � e : τ and Γ ⊆ Γ ′, then Γ ′ � e : τ .

Lemma 2 (Strengthening). If Γ � e : τ , Γ ′ ⊆ Γ , and FV (e) ⊆ dom(Γ ′),
then Γ ′ � e : τ .

Lemma 3 (Substitution). If Γ � E [x] : τ , Γ (x) = τx and Γ � e : τx, then
Γ � E{e} : τ .

Lemma 4 (Canonical Forms). Given v ∈ Val,

– if Γ � v : cτ , then v is a core value;
– if Γ � v : [πι; πo; •], then v has the form [ι; o; ρ];
– if Γ � v : [πι; πo; τ ], then v has the form R[ι; o; ρ | v′], and Γ [Γ ι][Γ ρ] � v′ :
τ , with dom(Γ ι) = dom(ι) and dom(Γ ρ) = dom(ρ).

In the standard formulation, soundness of a type system is shown by separately
proving subject reduction and progress property. Subject reduction (preservation
of type under reduction) holds for all well-typed terms, whereas progress only holds
for terms which can be seen as “executable”, that is, can be safely reduced in iso-
lation. Usually, executable terms correspond to ground terms, that is, terms with-
out free variables. Terms with free variables represent open code fragments, which
cannot be safely reduced, but are still well-typed since they can be safely used as
subterms of an executable program.

In CMS 
,v, the progress property holds on terms that are not only ground,
but also of a closed type, that is, a type with no deferred components. However,
terms of non-closed types are still well typed, since they can be inserted inside
contexts providing all needed components.

Theorem 1 (Subject Reduction). If Γ � e : τ and e > e′, then Γ � e′ : τ
under the assumption that, for each core reduction rule, if the property holds for
the premises, then it holds for the consequence as well.
5 ftp://ftp.disi.unige.it/pub/person/AnconaD/MMDRlong.pdf
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The progress property follows as a corollary of a generalized progress property,
which states that a well-typed term can get stuck for two reasons: either it
contains some free variable (in which case, intuitively, execution could proceed
by replacing this variable) or it is a basic configuration whose program needs a
deferred component which is not available (in which case, intuitively, execution
could proceed by providing this component.)

Theorem 2. If Γ � e : τ , then one of the following cases holds

– e ∈ Val
– e > e′, for some e′ ∈ Exp,
– e = E [x], x �∈ HB (E), x ∈ dom(Γ ),
– e = [ι; o; ρ | E [x]], with x �∈ HB (E) , x ∈ dom(ι) and ι(x) �∈ dom(o)

under the assumption that, for each core typing rule, if the property holds
for the premises, then it holds for the consequence as well.

Corollary 1 (Progress). If ∅ � e : τ and � τ , then either e ∈ Val or
e > e′, for some e′ ∈ Exp.

7 Conclusion

We have presented a module calculus CMS 
,v which allows to express in a nat-
ural way rebinding through the notion of virtual component, and to make this
rebinding dynamic by allowing standard program execution to be interleaved
with reconfiguration steps. We have illustrated the expressive power of the cal-
culus and provided a sound type system.

This work is part a stream of research [4,6,5,16] whose aim is the development
of foundational calculi providing an abstract framework for dynamic software
reconfiguration. In particular, the possibility of extending module calculi with
selection on open modules, interleaving of component evaluation with reconfig-
uration steps and a lazy strategy has been firstly explored in [6]. As already
explained, the calculus presented in this paper contains two key novelties.

First, CMS 
,v allows the executing program to use virtual variables; this pro-
vides a natural mechanism for rebinding, which greatly enhances the expressive
power. Indeed, execution can refer to components whose definition may change
by performing module operators, leading potentially to different results depend-
ing on the time when module operators is performed, that is, before or after
accessing a virtual variable. This is avoided here by taking a deterministic strat-
egy which performs substitution of local/virtual variables and resolution (by
reconfiguration steps) of deferred variables only on demand.

Then, higher-order configurations, together with the run and result opera-
tors, allow to express interaction of execution at different levels (e.g., modules
with module or configuration components, starting a local configuration level
inside program execution, a scoping mechanism for nested variable resolution
and triggering of reconfiguration steps).
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In [5] we have investigated how to increase flexibility in a different direction,
that is, by allowing a limited form of swapping between module operators. Fi-
nally, Fagorzi’s thesis [16] provides a comprehensive presentation of most part
of this work, and, moreover, the definition of a pure6 reconfiguration calculus
called R, in two versions which either allow or not to use virtual variables. This
calculus is confluent in the non-virtual version, and a comparative discussion on
different possible type systems is also given.

On the theoretical side, the ideas presented in this paper look similar to
those at the basis of literature on laziness in functional calculi (see, e.g., [8])
and dynamic binding. In particular, some recent work on dynamic rebinding
[10] presents a call-by-value λ-calculus which delays instantiation of identifiers,
in such a way that computations can use the most recent versions of rebound
definitions. It is well-known that record-based calculi can provide an alternative
computational paradigm where λ-calculus can be encoded [1,7]. In our work,
we are firstly exploring laziness (obtained by delaying record composition after
selection) in this alternative paradigm. The advantages offered by the record-
based paradigm are a natural syntactic representation of a scope (a record, or
basic module in the terminology of this paper) and a built-in mechanism for
rebinding (by deleting and then adding record component) without any need of
introducing imperative features at the core level.

Hence, a very interesting subject of further work is a formal comparison with
laziness obtained by delaying application in functional calculi. A preliminary
attempt in this direction is in [17], where we outline a call-by-need strategy for
R(in the non-virtual version) which smoothly generalizes the approach in [8]
where an expression is evaluated the first time it is needed and only once.

On a more applicative side, though the area of unanticipated software evo-
lution continues attracting large interest, with its foundations studied in, e.g.,
[22], there is a little amount of work going toward the development of abstract
models for dynamic linking and updating. Apart from the wide literature con-
cerning concrete dynamic linking mechanisms in existing programming envi-
ronments [14,15], we mention [9], which presents a simple calculus modeling
dynamic software updating, where modules are just records, many versions of
the same module may coexist and update is modeled by an external transition
which can be enforced by an update primitive in code, [2], where dynamic linking
is studied as the programming language counterpart of the axiom of choice, and
the module system defined in [20], where static linking, dynamic linking and
cross-computation communication are all defined in a uniform framework.

Further work includes, as already mentioned, a deeper investigation of the
relation with lazy lambda-calculi, and the further development of the techniques
for encoding dynamic rebinding, marshaling and update outlined in Sect.4. The
expressive power of lazy module calculi should also be analyzed by showing
which kind of real-world reconfiguration mechanisms can be modeled and which
kind require a richer model. Finally, an important issue is the integration with

6 That is, with no fixed strategy.
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mobility aspects, that is, the design of calculi for reconfiguration where, roughly
speaking, code to be used for reconfiguring the running program can migrate
from a different process.
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Abstract. In the age of the world-wide web and mobile computing, program-
ming communication-centric software is essential. Thus, programmers and pro-
gram designers are exposed to new levels of complexity, such as ensuring the
correct composition of communication behaviours and guaranteeing deadlock-
freedom of their protocols.

This paper proposes the language Ldoos, a simple distributed object-oriented
language augmented with session communication primitives and types. Ldoos
provides a flexible object-oriented programming style for structural interaction
protocols by prescribing channel usages within signatures of distributed classes.

We develop a typing system for Ldoos and prove its soundness with respect
to the operational semantics. We also show that in a well-typed Ldoos program,
there will never be a connection error, a communication error, nor an incorrect
completion between server-client interactions. These results demonstrate that a
consistent integration of object-oriented language features and session types can
statically check the consistent composition of communication protocols.

1 Introduction

In distributed systems, physically separated (and potentially mobile) computational en-
tities cooperate or compete by passing code and data to one another. Existing theoretical
foundations, which have been successful in sequential programming (as structured pro-
gramming [9] and type disciplines for programming languages [23]) require non-trivial
extensions for the distributed setting. Several new issues arise in this setting, including
how to structure communication-based software, how to guarantee security concerns
such as confidentiality and integrity, and how to identify correct behaviour of concur-
rent programs so that we can safely discuss (for example) optimisation of distributed
software.

The scenario we are considering in the present paper is a set of users at different lo-
cations interacting by means of object-oriented code. Distributed objects are one of the
most popular programming paradigms in today’s computing environments [20], natu-
rally extending the sequential message-passing-oriented paradigm of objects. In current
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practice, however, code is often written in terms of bare socket-based communications
[21]; it consists of isolated method invocations and returns, and there is no way to as-
certain that the code conforms to the intended structure of interaction.

Therefore, the quest for frameworks to enable the expression of structured interac-
tion, and for ways to assure the safety of the resulting interaction protocols based on
that structure, are concerns of paramount importance.

Session types, first introduced in [15], can specify protocols of communication by
describing the sequence and types of entities read on a channel. For example, the session
type !int.!int.?bool.end expresses that two int-values will be sent, then a bool-value is
expected as an input, and finally that the protocol is completed. Thus, session types
provide a natural way to specify the communication behaviour of a piece of software,
and allow verification that several pieces of software are safely composed.

Session types have been widely used to describe protocols in different settings,
i.e. for π-calculus-based formalisms [4, 5, 13, 15, 17, 25], for CORBA [26], for a λ-
calculus with side-effects [14], for a multi-threaded functional language [27], and re-
cently, for a W3C standard description language for web services called Choreography
Description Language (CDL) [29]. To our knowledge, the integration of session types
into an object-oriented language (even a small, core calculus, as in [3, 10, 18]) has not
been attempted so far.

In the present paper we argue that a seamless integration of class-based object-
oriented programming and session types is possible, and that the resulting combination
offers a powerful framework for writing safe, structured distributed applications with
a formal foundation. We substantiate our proposal through the language Ldoos, a Dis-
tributed Object-Oriented language with Session types.

By extending class and method signatures to include the types of sessions, we
achieved a clean integration of session types into the class based, object-oriented
paradigm. Through a combination of remote method invocation (RMI), a standard dis-
tributed primitive in objects, session-based distributed primitives [17, 25] and linear
interactions [16, 19], we obtained a flexible high-level programming style for remote
communication. We also found that the functionality of branching and selection con-
structs in session types [4, 5, 13–15, 17, 25–27] can be compensated by methods, a nat-
ural notion of branching in objects. Subtyping on the branching types [13, 26] is, then,
formalised through a standard inheritance mechanism.

Although we did not include branching and selection constructs in Ldoos, we did
include a more specialized construction: conditional and iterative session types. For
example, the conditional session type !int.!〈?char, !float〉.!int.end expresses that an
integer will be sent followed by a boolean. If this boolean is true, then a character
will be received, otherwise a float will be sent. Finally, an integer will be sent and the
session will complete. Similarly, the iterative session type !int.!〈?char.!float〉∗.!int.end
expresses that an integer will be sent followed by a boolean. If this boolean is true, then
a character will be received, and then a float will be sent, and the process will iterate
until a false is sent. An integer will then be sent, and the session will complete. Such
types allow us to express protocols that require conditionals or repetition on the same
channel.
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To focus on the introduction of session types, Ldoos does not include language
features such as exceptions [2], synchronisation, serialisation [1], class (down)loading
[1, 11], code or agent mobility [1, 7, 28], polymorphism [6, 18, 27], recursive types [26]
or correspondence assertions [4, 5]. We believe that the inclusion of such features into
Ldoos is possible, albeit not necessarily trivial.

A key point for the safety of session communication is channel linearity. To check
linearity by typing in an imperative object-oriented setting where object fields can con-
tain channels requires sophisticated types, see for example [12]. In Ldoos channel lin-
earity as in [4, 5, 13–15, 17, 25, 27] comes from creating a private fresh channel name
every time a session starts. Typing then ensures that all communication in the current
session uses this new channel, and that after the session is completed there are no fur-
ther occurrences of this channel. In this way we also avoid the need to deal with opening
and closing operations on channels [27].

Apart from guaranteeing that all communications have the expected types (sound-
ness), our type system guarantees that in a a well-typed Ldoos program, there will never
be a connection error (i.e. request and accept on same channel will have the same type),
nor a communication error (i.e. never two simultaneous send or receive on same chan-
nel), nor an incorrect completion between server-client interactions (i.e. after a session
started, it will complete on each of the participants, unless there is an exception, or di-
vergence, or an unsuccessful attempt to start a further session). Thus, the type system
can statically check the consistent composition of communication protocols.

The soundness of our system is weaker than that of all systems of session types
for π-calculus processes [4, 5, 13, 15, 17, 25]. In fact all these systems assure a perfect
pairing between processes willing to communicate. This is obtained simply by checking
the compatibility of type environments before putting processes in parallel. Our system
instead, following the approach of [14, 27], only ensures that a communication will
safely evolve after starting: there is no guarantee that processes ready to start a session
will ever find a companion. It is not difficult to add to our system a compatibility check
between environments to ensure the stronger soundness discussed above, but we chose
to avoid it since our aim is to model an open distributed system where new processes can
appear at run time, and so no global assumption on safety liveness can be guaranteed.

In the remainder, Section 2 illustrates the basic ideas of Ldoos through an example.
Section 3 defines the syntax of the language. Section 4 presents the operational seman-
tics. Section 5 illustrates the typing system. Section 6 is devoted to basic theorems on
type safety and communication safety. Section 7 concludes.

A preliminary version of this paper is [8].

2 Example

The following example demonstrates some of the features of Ldoos.1 It describes a situ-
ation where a seller employs an agent to sell some item to some buyer for the best price
possible:

1 Note that in order to write our example more naturally we use several constructs which are not
part of our minimum language Ldoos, i.e. types float and void, methods without parameters,
local variables, and conditionals, which can easily be added to Ldoos.
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The agent begins negotiations by asking the seller both the price and by the min-
imum price. Then the agent sends the price to the buyer. The buyer, upon receipt of
this price, makes an offer which he sends to the agent. The agent calculates whether the
offer exceeds the minimum price and notifies the seller and the buyer accordingly. If
the offer does not exceed the minimum price then the agent invites the seller to lower
his minimum price and the negotiation iterates. Note however that the agent may now
communicate with a different buyer, but will continue communicating with the same
seller.

The example consists of classes Agent, Buyer, and Seller, each of which we shall
now discuss separately:

1 class Agent extends Object {
2 float price , minPrice; // seller ’s asking and minimum price
3 float offer ; // the offer made by the buyer
4

5 bool tryToSell () c1 : !float.? float .! bool .end {
6 // connect with a buyer
7 request c1 : !float .? float .! bool .end {
8 c1 .send(price); offer := c1 .receive; c1 .send(offer<minPrice);
9 return( offer <minPrice ); } }

10

11 void mediate () c2 : ?float.?float .! 〈?float〉∗.end {
12 // connect with a seller
13 request c2 ?float.? float .! 〈?float〉∗.end {
14 price := c2 .receive; minPrice := c2 .receive;
15 c2 .sendWhile ( tryToSell() )
16 // if the value of tryToSell () is true
17 { minPrice := c2 .receive; } }}
18 }

The class Agent represents the agent, with fields price to store the asking price, and
minPrice to store the minimum price. The signature of the method tryToSell contains
the type of the channel c1 , i.e. !float.?float.!bool.end, thus indicating that c1 will send
one float value, will then receive a float value, and then send a bool value.

Indeed, in the body of this method, the agent asks for a connection with a buyer
through a channel c1 by the statement request c1 . . ., which must be matched by a
statement accept c1 . . . at another node in the network.

In general, accept us{e} represents the creation of a new server-side socket as in
the java.net.ServerSocket class. Here u can be either a public channel name c (as in line
6 of class Buyer) or a variable x whose value is a public channel name c. In both cases
the name c is analogous to the port used to instantiate the ServerSocket, which is the
port on which the server will listen for connections. Execution proceeds when another
node in the network contains a statement request u′ s{e′} where u′ is either the name
c or a variable whose value is c. The statement request is similar to the creation of a
new client-side socket from the java.net.Socket class. Here the name c can be thought
of as corresponding to the hostname and port number of the server socket. When these
match, execution continues and a new private channel is created to connect the two
nodes. Execution of e and e′ proceeds concurrently, with all occurrences of u in e and



A Distributed Object-Oriented Language with Session Types 303

all occurrences of u′ in e′ replaced by the name of the just created channel. So both
public channel names and channel variables play the role of placeholders in session
bodies, since they are replaced by restricted and fresh channel names.

In the method tryToSell, after the connection has been established, i.e. in the body
of the request c1 . . ., the agent sends the asking price (c1 .send(price)), then receives
the buyer offer along the same channel (offer := c1 .receive). Lastly he compares the
offer with the minimum price and then decides on behalf of the buyer whether the offer
was successful, and tells the buyer through c1 (c1 .send(offer <minPrice)).

The signature of the method mediate contains the type of channel c2 , i.e. c2 :
?float.?float.!〈?float〉∗.end, which is an iterative session type, and which indicates that
c2 will receive two floats and then send a bool; it that boolean is true, it will iterate,
otherwise it will be the end of the session. The body of method mediate asks for a
connection through channel c2 , receives the asking and the minimum price along that
channel, and then attempts a sale using method tryToSell (which returns a boolean). It
sends the value of tryToSell along channel c2 to the seller; if the value is true, then it
iterates, by receiving a new asking price along channel c2 .

1 class Buyer extends Object {
2 float price ; // seller ’s asking price
3 float offer ; // offer made by the buyer
4

5 void buy() c1 : !float.? float .! bool .end {
6 accept c1 !float.?float .! bool .end {
7 // connect with an agent
8 price := c1 .receive; offer :=....; c1 .send(offer);
9 if c1 .receive then .... else ... } }

10 }

The class Buyer represents the buyer, with fields price, offer, with the obvious mean-
ing. In the method buy, the buyer connects with some agent, receives the asking price,
calculates his offer and send it. He then receives a boolean indicating whether the
seller’s agent accepted the bid, and proceeds with appropriate actions. The signature
of the method buy contains the type of the channel c1 , i.e. !float.?float.!bool.end. No-
tice that this type describes the session from the viewpoint of the Agent, which is dual
to that of the Buyer.

The class Seller represents the seller, with fields price and minPrice for the asking
and the minimum price. The type of the channel c2 in method sell is the same that in
mediate in Agent.

The method sell starts by calculating the asking and minimum prices. After the
connection on channel c2 is established, the seller sends the asking and minimum prices
along the newly created channel. It then receives a boolean value indicating whether the
negotiations need to continue. If so, then the seller will proceed with the body of the
receiveWhile . . . statement, and will calculate a new minimum price and send it on the
same channel to the agent. This process is repeated until the seller receives false, i.e.
until no more negotiations are required.
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Our example demonstrates session types and in particular the use of branching and
iterative session types to express repetition and conditional execution over the same
channel. 2

1 class Seller {
2 float price ,minPrice; // asking price and minimum price
3

4 void sell ( ) c2 : ?float.?float .! 〈?float〉∗.end {
5 price := ... ; minPrice:= ... ;
6 // connect to an agent
7 accept c2 ?float.?float .! 〈?float〉∗.end {
8 c2 .send(price); c2 .send(minPrice);
9 c2 .receiveWhile

10 // if the value received is true , then
11 { minPrice:= ... ; c2 .send(minPrice); } } }
12 }

The present example can be seen as a simplified object-oriented version of the Auc-
tioneer example in [4]; the main difference is that the type system of [4] using corre-
spondence assertions can detect bad behaviours which are type correct in our system.

Our type system guarantees the consistent composition of communication protocols
of the various participants. Thus, it guarantees that:

– All communications have the expected types, e.g. in the method buy, in line 8 the
expression c1 .receive will return a float, while in line 9 the same expression will
return a bool.

– There will never be a connection error, e.g. when line 13 of method mediate estab-
lishes a connection, it will only be with a channel of the appropriate type.

– There will never be a a communication error, e.g. when line 14 of method mediate
performs c2 .receive, there will not be a simultaneous receive on channel c2 .

– There will never be an incorrect completion between server-client interactions, e.g.
once the session in line 13 of mediate started, it will complete in each of the par-
ticipants, unless there is an exception, or divergence. In particular notice that all
iterations in line 15 will be successful.

3 A Distributed Object Oriented Language with Sessions

User syntax. We distinguish user syntax, for programs at a local node, and runtime
syntax, which occurs only at runtime as intermediate forms. We introduce the user syn-
tax in Fig. 3. It is an extension of FJ [18], MJ [3] and DJ [1] (while omitting the new
distributed primitives introduced in [1]), augmented with primitives for session com-
munication [5, 15, 17, 27].

2 In earlier work [8] we had shown sessions as first class values, (e.g. objects containing ses-
sion channels), assigning session values to session variables, session types carrying session
types, and nesting of sessions. However these constructs are not sufficient to enforce repeated
execution on the same channel.
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(type) t ::= C | bool | s
(direction) † ::= ! | ?
(part of session) π ::= ε | †t | †〈π,π〉 | †〈π〉∗ | π.π
(session) s ::= π.end

(meth sig) methSig ::= t m (t ) Σ
(class sig) CSig ::= /0 | CSig, class C extends C {field∗ methSig∗}
(session env) Σ ::= /0 | Σ,c :s
(class table) CT ::= /0 | CT, class

(class) class ::= class C extends C {field∗ meth∗}
(field) field ::= f t
(method) meth ::= t m (t x ) Σ { e }

(expression) e ::= x | v | this | true | false
| e ; e | new C | x := e | e .f := e | e .f | e . m ( e )
| u .receive | u .send(e)
| u .receiveIf {e }{e } | u .sendIf (e ){e }{e }
| u .receiveWhile {e } | u .sendWhile (e ){e }
| request u s {e } | accept u s {e }

(identifier) u ::= c | x
(value) v ::= null | c

Fig. 1. User Syntax

The metavariable t ranges over types for channels and expressions, C ranges over class
names, s ranges over session types. ? means input, while ! means output, and † ranges
over {!,?}, while end indicates the end of the session.

The metavariable π describes parts of a session. The conditional session part !
〈π1 ,π2 〉 sends a boolean value and proceeds with π1 if the value is true, or π2 if the
value is false. Similarly ?〈π1 ,π2 〉 receives a boolean value and proceeds with π1 if the
value is true, π2 if it is false. The iterative session part !〈π1 〉∗ sends a boolean value and
if that value is true, continues with π1 , iterating. If the value sent is false, this session
part finishes. The meaning of ?〈π1 〉∗ is similar. Note that, the closing of a session, end ,
cannot appear within a conditional or iterative session part. This supports the design
principle that sessions have to be closed at the level where they were opened; in other
words, the responsibility of closing a session stays with the party that opened it.

To prescribe the channel usage in a method, we introduce session environments, Σ,
which map channels to session types. Method declarations have the shape

tm (t x ) Σ {e}

which is standard, except for the addition of Σ.
A Class signature, CSig, denotes a class’s interface [1]; it contains the types of

fields, its superclass name and method signatures. This provides a lightweight mech-
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(type) t ::= . . . | chan (t )
(identifier) u ::= . . . | o
(value) v ::= . . . | o
(expression) e ::= . . . | NullExc
(thread) P ::= e | P |P
(store) σ ::= /0 | σ·[x �→ v ] | σ·[o �→ (C,�f :�v )]
(network) N ::= 0 | l[P, σ,CT] | N ‖N | (νu :t )N

Fig. 2. Runtime Syntax

anism for determining the type of remote methods. We assume that CSig is available
globally (this does not restrict generality, since in standard implementations unique-
ness of each class is maintained through its digital signature). In contrast, class tables
(containing method bodies) are maintained on a per-location basis.

The syntax of expressions, e , e ′, is standard except for the four pairs of commu-
nication primitives. The first two lines express standard syntax, i.e. parameter, value,
the receiver this, the literals true and false, sequence of expressions, object creation,
assignment to parameters or fields, field access and method call. The next four lines
describe the four communication pairs.

The first pair is for exchange of values or channels: u .receive receives a value or
a channel via u , while u .send (e) first evaluates the expression e , then sends its result
via u .

The second pair is for conditional communication: u .receiveIf{e}{e ′} receives
a value via u , and if it is true continues with e , otherwise with e ′. The expression
u .sendIf (e){e ′}{e ′′} first evaluates the boolean expression e , then sends its result via
u and if the result was true continues with e ′, otherwise with e ′′.

The third pair is for iterative communication: u .receiveWhile{e} receives a value
via u , and if it is true continues with e and iterates, otherwise ends. The expression
u .sendWhile (e){e ′} first evaluates the boolean expression e , then sends its result via
u and if the result was true continues with e ′ and iterates, otherwise ends.

The last pair is for establishing connections: request u s{e} is for use by clients,
and accept u s{e} for use by servers. The channel u denotes a shared interaction point
which is used for creating new channels. In both request ...s{e}, and accept ...s{e},
the term {e} (called session body) denotes the block of (a sequence of) expressions in
which the new channel is created at the beginning, and discarded at the end; the session
s prescribes the communication protocol, which is opened by request or accept.

Runtime Syntax. The runtime syntax in Fig. 3 extends the user syntax and represents
a distributed state of multiple sites communicating with each other. The syntax uses
location names l,m, . . . which can be thought of as IP addresses in a network.

Metavariable t is extended with runtime channel types, denoting the channel types
used only for method invocations. Identifiers, u , and values, v , are extended to allow
for object identifiers o ,o ′, . . ., which denote references to instances of classes. We shall
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frequently write “o-id” for brevity, and we shall call o and c names. We extend ex-
pressions with NullExc , denoting a null-pointer error. Threads are ranged over by P,P′,
where P |P′ says that P and P′ are running in parallel.

A store σ contains local variables and objects, and f : v is short-hand for a sequence
f1 : v1 ; . . . ; fn : vn . We apply similar abbreviations to other sequences [1, 18]. Sequences
contain no duplicate names.

Networks, written N, comprise zero or more located configurations executing in
parallel. We use 0 to denote the empty network, l[P,σ,CT] to denote the thread P exe-
cuting at location l with store σ and class table CT, N1 ‖N2 is the parallel composition
of two networks, and (νu :t )N makes the identifier u local to N.

The binding is standard and we use fn(e)/fv(e) to denote a set of free names/vari-
ables. We say that a class name C occurs free in a expression e if e contains new C: the
function fcl(e) returns the set of free class names of e .

4 Operational Semantics

This section presents the operational semantics of Ldoos, which extends the standard
small step call-by-value reduction of [1, 3, 23]. The reduction relation is given modulo
the standard structural equivalence rules of the π-calculus [22], written ≡. We define

multi-step reduction as:→→def= (−→∪≡)∗ . We only discuss the more interesting rules.
We start by listing the evaluation contexts.

E ::= [ ] | E .f | E;e | x := E | E .f := e | o .f := E | E.m(e) | o .m(E) | c .send (E)
| u .sendIf (E){e}{e} | u .sendWhile (E){e}

Notice that request E s{e}, and accept E s{e}, are not evaluation contexts.3 Neither
are request u s{E}, accept u s{E}, u .sendIf(e){E}{e}, u .sendIf (e){e}{E},
u .sendWhile (e){E}, u .receiveIf{E}{e}, u .receiveIf{e}{E}, or u .receiveWhile{E}
evaluation contexts, because they would allow session bodies to run before the start of
the session, or parts of a conditional or iterative session to run before determining which
conditional branch should be selected, or whether the iteration should continue.

Local Expressions. The rules for execution of expressions which correspond to the
sequential part of the language are standard [3, 10, 18]. Only the local store is modified,
and the rules involve only the local store and the local class table. In Fig. 4 we give the
rules for object creation and method invocation.

Allocation of new objects, described by RC-New, explicitly restricts identifiers,
thus representing “freshness” or “uniqueness” of the address in the store. The function
fields(C) examines the class signature and returns the field declarations for C.

3 Namely, if request E s{e} were an evaluation context, it would replace the name of a channel
in E without replacing it in e . For example, then, for some session type s , and some state σ1 ,
where σ1 (x) = c , and applying also rule RN-ReqAcc, we would have:
...request x s{x .receive}...σ1 ...‖ ...accept c s{c .send (3)}...σ2 ... −→
...request c s{x .receive}...σ1 ...‖ ...accept c s{c .send (3)}...σ2 ... −→
(νc ′ :s)(...x.receive ...σ1 ...‖ ...c ′.send(3)...σ2 ...), and execution would be stuck.

For similar reasons, accept E s{e} is not a context.
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RC-New
fields(C) =�f�t

new C,σ,CT−→ (νo :C)(o ,σ · [o �→ (C,�f : �null)],CT)
C ∈ dom(CT)

RC-LocMeth
σ(o) = (C, . . .) mbody(m ,C,CT) = (x ,e) mtype(m ,C) = t → t ′

o .m(v),σ,CT−→ (νx :t )(e [o/this],σ · [x �→ v ],CT)

Fig. 3. Expression Reduction

The method invocation rule is RC-LocMeth; the function mbody(m ,C,CT) looks
up m in the local class table, and returns a pair consisting of the method code and
the formal parameter name. The function mtype(m ,C) looks up m in the global class
signature and returns the type of the method [18]. The receiver o replaces this in the
method body and a new store entry x is allocated for the formal parameter v .

Communication. Ldoos has two kinds of communication rules: those for remote method
and field invocation, and those for session communication, which are inspired by π-
calculus rules [22]. Fig. 4 defines reduction for remote method and field invocation; the
first three rules are for congruence, the fourth rule is structural.

Rule RN-Fld allows reading at location l1 a field of an object stored at a different
location, l2 . Similarly, RN-FldAss allows the code in location l1 to assign a value to a
field stored in a different location, l2 .

Rule RN-RemMeth describes remote method call; location l1 executes a method
call where the receiver is an object stored in a different location l2 : a new runtime
private channel c , shared between l1 and l2 , is created; after that, at l2 the method call
is executed by rule RC-LocMeth; the result v is then safely sent back from l2 to l1 via
this new private channel c by RN-CommMeth; since c is only used once (i.e. it is a
linear channel in the sense of [1, 16, 19]), it is finally discarded.

Session Communication. The main session communication rules are formalised in
Fig. 4. Rule RN-ReqAcc describes opening of sessions: if location l1 requires a session
on u1 and location l2 accepts a session on u2 and the values of u1 and u2 are the same
channel name, then, a new private channel c is created and u1 and u2 are replaced by
c in the session bodies in the standard way noting that

request u ′ s{e}[c/u ] = request u ′ s{e [c/u ]}
accept u ′ s{e}[c/u ] = accept u ′ s{e [c/u ]}

but importantly

request u s{e}[c/u ] = request u s{e}
accept u s{e}[c/u ] = accept u s{e}
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RN-Conf
P,σ,CT−→ (ν�u :�t )(P′,σ′,CT)

l[P,σ,CT] −→ (ν�u :�t )(l[P′,σ′,CT])

RN-Par
N −→ N′

N ‖N0 −→ N′ ‖N0

RN-Res
N −→ N′

(νu :t )N −→ (νu :t )N′

RN-Str
N ≡ N0 −→ N′

0 ≡ N′

N −→ N′

RN-Fld
l1 [E[o . fi ] |P,σ1 ,CT1 ]‖ l2 [Q,σ2 ,CT2 ] −→ l1 [E[v i ] |P,σ1 ,CT1 ]‖ l2 [Q,σ2 ,CT2 ]

σ2 (o) = (C,�f :�v)

RN-FldAss
l1 [E[o . f :=v ] |P,σ1 ,CT1 ]‖ l2 [Q,σ2 ,CT2 ] −→ l1 [E[v ] |P,σ1 ,CT1 ]‖ l2 [Q,σ′

2 ,CT2 ]

o ∈ domo(σ2 ) σ2
′ = σ2 [o �→ σ2 (o)[f �→ v ]]

RN-RemMeth
l1 [E[o .m(v)] |P,σ1 ,CT1 ]‖ l2 [Q,σ2 ,CT2 ]

−→
(νc :chan(t ))(l1 [E[c .receive ] |P,σ1 ,CT1 ]‖ l2 [c .send(o .m(v)) |Q,σ2 ,CT2 ])

σ2 (o) = (C, . . .) mtype(m ,C) = t ′ → t c fresh

RN-CommMeth
(νc :chan(t ))(l1 [E1[c .send(v)] |Q1 ,σ1 ,CT1 ]‖ l2 [E2[c .receive ] |Q2 ,σ2 ,CT2 ])

−→
l1 [E1[null] |Q1 ,σ1 ,CT1 ]‖ l2 [E2[v ] |Q2 ,σ2 ,CT2 ]

Fig. 4. Network Communication

i.e. substitutions of synchronisation channel names cannot move inside nested sessions
synchronising on the same name. The freshness of c guarantees privacy and linearity
of the session communication between l1 and l2 . Notice that stores associate values
with variables, so if u1 is a variable of type s then σ1 (u1 ) will be a channel name, and
similarly for u2 .

Rule RN-CommSess formalises the session communication where sent value v has
the type t ; after a series of applications of this rule, the session completes and the
channel c has type end .

In rules RN-CommSessIf-true and RN-CommSessIf-false first a boolean is ex-
changed, and then according to the value of this boolean the execution proceeds with
the first or the second branches.

Rule RN-CommSessWhile simply expresses the iteration by means of the
conditional.



310 M. Dezani-Ciancaglini et al.

RN-ReqAcc
l1 [E1[request u1 s{e1 }] |Q1 ,σ1 ,CT1 ]‖ l2 [E2[accept u2 s{e2 }] |Q2 ,σ2 ,CT2 ]

−→
(νc :s)(l1 [E1[e1 [c/u1 ] |Q1 ],σ1 ,CT1 ]‖ l2 [E2[e2 [c/u2 ]] |Q2 ,σ2 ,CT2 ]) c fresh

u1 and u2 are the same channel name or σ1 (u1 ) = u2 or u1 = σ2 (u2 ) or σ1 (u1 ) = σ2 (u2 )

RN-CommSess
(νc :†t .s)(l1 [E1[c .send(v)] |Q1 ,σ1 ,CT1 ]‖ l2 [E2[c .receive ] |Q2 ,σ2 ,CT2 ])

−→
(νc :s)(l1 [E1[null] |Q1 ,σ1 ,CT1 ]‖ l2 [E2[v ] |Q2 ,σ2 ,CT2 ])

RN-CommSessIf-true
(νc :†〈π1 ,π2 〉.s)
(l1 [E1[c .sendIf(true){e1 }{e2 }] |Q1 ,σ1 ,CT1 ] ‖ l2 [E2[c .receiveIf{e3}{e4}] |Q2 ,σ2 ,CT2 ])

−→
(νc :π1 .s)(l1 [E1[e1 ] |Q1 ,σ1 ,CT1 ]‖ l2 [E2[e3] |Q2 ,σ2 ,CT2 ])

RN-CommSessIf-false
(νc :†〈π1 ,π2 〉.s)
(l1 [E1[c .sendIf(false){e1 }{e2 }] |Q1 ,σ1 ,CT1 ] ‖ l2 [E2[c .receiveIf{e3}{e4}] |Q2 ,σ2 ,CT2 ])

−→
(νc :π2 .s)(l1 [E1[e2 ] |Q1 ,σ1 ,CT1 ]‖ l2 [E2[e4] |Q2 ,σ2 ,CT2 ])

RN-CommSessWhile
(νc :†〈π〉∗.s)
(l1 [E1[c .sendWhile(e){e1 }] |Q1 ,σ1 ,CT1 ] ‖ l2 [E2[c .receiveWhile{e2 }] |Q2 ,σ2 ,CT2 ])

−→
(νc :†〈π.† 〈π〉∗,ε〉.s)(l1 [E1[c .sendIf(e){e1 ;c .sendWhile(e ){e1 }}{null}] |Q1 ,σ1 ,CT1 ] ‖

l2 [E2[c .receiveIf{e2 ;c .receiveWhile{e2 }}{null}] |Q2 ,σ2 ,CT2 ])

Fig. 5. Session Communication

5 Session Types and Typing System

The type system of Ldoos has three kinds of typing judgments. The judgments for
threads and nets are standard, they just tell us that under certain assumptions on the
types of variables, o-ids, this and channels, the thread and respectively the net is well-
formed. So the judgments have the shape:

Γ � P : thread and Γ � N : net

where the environment Γ is defined by:

Γ := /0 | Γ,x :t | Γ,o :C | Γ,this :C | Γ,c :s | Γ,c :chan(t )
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When typing expressions we need to take into account how session types are “con-
sumed”, i.e. when an input or an output communication prescribed by a session type
takes place through receive or send instruction. For this reason we add
session environments to both sides of typing judgments, giving them the shape

Γ;Σ � e : t ;Σ′

where Γ is the environment, t is the type of e , Σ and Σ′ give the session types of channels
before and after the evaluation of e . We call them the pre and post session environment
respectively.

Notice that since request and accept instructions contain the session types of the
connecting channels and method declarations contain the session environment (i.e. the
session types of the used channels), we could avoid global assumptions on session types
of channel names. The cost would be a run time check that the session types in request
and accept coincide before starting sessions.

In the following subsections we will discuss the more interesting rules. We only
mention here that there is a standard subtyping (denoted by <:), which we assume
causes no cycle as in [3, 18], and which is judged on the class signature.

Well-formed class tables. Methods, classes and class tables are well-formed with re-
spect to an environment which must contain all session environments of methods. This
is prescribed by the rule checking that a method is ok:

M-ok
Σ,this : C,x : t1; /0 � e : t ; /0

Γ,this : C � t 2m(t 1x)Σ{e} : ok in C

Σ⊆ Γ
mtype(m,C) = t1 → t2

t <: t2

The environment Γ is propagated in the rules for checking well-formedness of classes
and class tables.

Notice that both the pre and the post session environments for typing the method
body are empty. This ensures that all send and receive instructions are inside sessions
as we will see in discussing thread and network typing.

Expression typing. The rule for typing expression composition illustrates a first use of
session environments:

TE-Seq
Γ;Σ � e : t ;Σ′ Γ;Σ′ � e ′ : t ′;Σ′′

Γ;Σ � e ;e ′ : t ′;Σ′′

The post session environment Σ′ of e typing is used as pre session environment for
typing e ′. The typing rule for method calls:

TE-Meth
Γ;Σ � e : C;Σ′ Γ;Σ′ � e ′ : t ′;Σ′′

Γ;Σ � e .m(e ′) : t ;Σ′′
msignature(m ,C)⊆ Γ
mtype(m ,C) = t ′′ → t
t ′ <: t ′′
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demands that the method signature of m in C (determined by the method signature
look-up function msignature(m ,C)) is contained in the environment Γ. Further, the
session environments of e and e ′ must agree as in rule TE-Seq. Finally the type of e ′

should conform to the method type returned by the look-up function mtype(m ,C).

Session typing. The importance of the session environments in expression typing is
made clear by the rules for typing send and receive :

TE-SessSend
Γ;Σ � e :t ;Σ′,c :!t .s

Γ;Σ � c .send (e) : Object;Σ′,c :s

TE-SessReceive

Γ;Σ,c :?t .s � c .receive : t ;Σ,c :s

The key observation is that in both cases the typing consumes exactly the output or the
input type that heads the session type of the current channel c . The typing of send also
takes into account that the typing of e can modify the session environment.

The typing rules for opening sessions are:

TE-Req

Γ,u :s ;Σ,c :s � e [c/u ] :t ;Σ′,c :end c �∈ fn(e) c �∈ dom(Γ)

Γ,u :s ;Σ � request u s{e} :t ;Σ′

TE-Acc

Γ,u :s ;Σ,c :s � e [c/u ] :t ;Σ′,c :end c �∈ fn(e) c �∈ dom(Γ)

Γ,u :s ;Σ � accept u s{e} :t ;Σ′

where s denotes the dual session type of s defined inductively by end = end , !t .s =
?t .s , ?t .s =!t .s , and the substitution [c/u ] obeys the same conditions as given in Sec-
tion 4.4

The key point is that these rules ensure linear use of runtime session channels; for
every new session, there should be exactly one receiver waiting to receive from c , and
one sender waiting to send on c . This is guaranteed by replacing the opening channel u
in e by a fresh channel c . The type end of c in the post session environment of typing e
ensures that the session is completed after evaluation of e . Notice that c does not appear
in the conclusion.

The remaining rules give types for conditional and iterative session types. Note
that within iterations depending on the value received/sent on a channel c , rules TE-
SessRecWhile and TE-SessSendWhile forbid communication on any other open chan-
nel except for c ; e.g. for c .sendWhile (e ′){e} and c .receiveWhile{e}, the typing
rules require for any communication c ′.receive or c ′.send (...) within e that c =c ′, or
that the communication is enclosed within an inner accept c ′ s{...} or request c ′ s{...}.
This constraint is clearly necessary in order to get soundness of communications
(Theorem 3).

4 Notice that the name of the channel, u , is replaced by a fresh channel name, c . This is so,
because, a) u may be a variable, but Σ contains only constant channels, and b) it allows us to
type nested session openings of the same name, e.g. request c s{...request c s{...}...}.
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TE-SessRecIf
Γ;Σ,c :π1 .s � e1 :t ;Σ′,c :s Γ;Σ,c :π2 .s � e2 :t ;Σ′,c :s

Γ;Σ,c :?〈π1 ,π2 〉.s � c .receiveIf{e1 }{e2} : t ;Σ′,c :s

TE-SessSendIf
Γ;Σ � e :bool ;Σ Γ;Σ,c :π1 .s � e1 :t ;Σ′,c :s Γ;Σ,c :π2 .s � e2 :t ;Σ′,c :s

Γ;Σ,c :!〈π1 ,π2 〉.s � c .sendIf (e){e1 }{e2 } : t ;Σ′,c :s

TE-SessRecWhile
Γ;Σ,c :π.s � e :t ;Σ,c :s

Γ;Σ,c :?〈π〉∗.s � c .receiveWhile{e} : t ;Σ,c :s

TE-SessSendWhile
Γ;Σ � e :bool ;Σ Γ;Σ,c :π.s � e ′ :t ;Σ,c :s

Γ;Σ,c :!〈π〉∗.s � c .sendWhile (e){e ′} : t ;Σ,c :s

Thread and Network typing. Rule TT-Start promotes expressions to threads; all
channels of the post session environment should be completed (i.e. be typed by end )
and all sessions in the pre session environment should conform to the environment.

TT-Start

Γ;{c i :s i | i ∈ I} � e :t ;{c i :end | i ∈ I} ∀i ∈ I.c i :s i ∈ Γ∨ c i :s i ∈ Γ

Γ � e : thread

Notice that when all send and receive operations are inside sessions, both the pre and
the post session environments for typing e can be empty.

Rule TN-Conf states that a location is a well-typed network in an environment if
its thread P is well-typed, its store σ and class table CT are ok in the same environment,
and if all free classes in P as well as their superclasses (we denote this set by fcl(P)) are
locally available – the latter is guaranteed through the requirement fcl(P) ⊆ dom(CT)
and the last condition.

TN-Conf

Γ � P : thread Γ � σ :ok Γ � CT : ok fcl(P)⊆ dom(CT)
∀C ∈ dom(CT) .C <: D ∨ D ∈ fcl(C,CT) =⇒ D ∈ dom(CT)

Γ � l[P,σ,CT] :net

6 Type Safety and Communication Safety

As expected, the type system of Section 5 satisfies the subject reduction property.This
is formulated as follows.

Theorem 1 (Subject Reduction).

– If Γ;Σ � e :t ;Σ′, and Γ � σ :ok, and Γ � CT :ok and e ,σ,CT−→ (νu :t ′)(e ′,σ′,CT)
then Γ,u : t ′;Σ � e ′ :t ′;Σ′ with t ′ <: t and Γ,u : t ′ � σ′ :ok.
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– If Γ � P :thread , and Γ � σ :ok, and Γ � CT:ok and P,σ,CT−→ (νu :t ′)(P′,σ′,CT)
then Γ,u : t ′ � P′ : thread and Γ,u : t ′ � σ′ :ok.

– If Γ � N :net , and N −→ N′ then Γ � N′ :net .

The proof is based on generation lemmas, substitution lemmas and a detailed analysis
of channel use.

Even more interesting than subject reduction, are the following properties of Ldoos:

P1 no connection error can occur, i.e. request and accept on the same channel must
have the same session type;

P2 no communication error can occur, i.e. in the same net there cannot be two sends
or two receives on the same channel;

P3 after a session has begun the required communications are always executed in the
expected order;

P4 after a session has begun all the required communications are executed unless one
of the following situations occurs:

– a null pointer exception is thrown;
– the computation diverges; or
– there is a request or accept instruction waiting for the dual instruction.

These properties hold for a network obtained by reduction from an initial network. We
say that a network N is initial if (writing ∏0≤i<n Ni for N0 ‖N1 ‖ ...‖Nn−1 ):

– � N :net is derivable using rule TT-Start with empty session environments in the
premises;

– N ≡ (νc :s)(∏0≤i<n li [e i , /0,CTi ]), where each e i is a user expression; and
– N is closed.

Notice that the condition on the use of rule TT-Start is satisfied whenever all send
and receive instructions are inside method bodies, a natural choice in the object-oriented
paradigm.

In order to formulate properties P1 and P2, we add a new constant ConmErr (con-
nection or communication error) to the network and the following rule:

l1 [E1[e ] |Q1 ,σ1 ,CT1 ]‖ l2 [E2[e ′] |Q2 ,σ2 ,CT2 ] −→ ConmErr

if e clashes with e ′, where e clashes with e ′ when

e ,e ′ ∈ {c .receive ,c .send(. . .),c .receiveIf{. . .}{. . .},c .sendIf(. . .){. . .}{. . .},
c .receiveWhile{. . .},c .sendWhile(. . .){. . .},request c s{. . .},accept c s{. . .}}

and they do not occur both in the premise of one of the rules in Fig. 4. In other words
when e and e ′ belong both to the above set they do not clash if e = c .receive and
e ′ = c .send (e ′0), or e = c .receiveIf{e0}{e1} and e ′ = c .sendIf (e ′0){e ′1}{e ′2}, or
e = c .receiveWhile{e0} and e ′ = c .sendWhile (e ′0){e ′1}, or e = request c s{e0} and
e ′ = accept c s{e ′0} or vice versa.

We can now prove that from initial nets, we never reach a configuration containing
clashing expressions.
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Theorem 2 (ConmErr Freedom). Suppose that N0 is an initial net and N0 →→N. Then
N does not contain ConmErr , i.e. there does not exist N′ such that N ≡ N′ ‖ConmErr .

The proof of the above theorem is straightforward from the subject reduction theorem.

For properties P3 and P4 we formulate the following soundness theorem:

Theorem 3 (Soundness). Let N0 be an initial net, N0 →→ (νu :t )N, and (νu :t )N −→
(νc :s)(νu :t )N′ def= (νc :s)N1 by rule RN-ReqAcc with s = π1 .π.π2 .end . If (νc :s)N1

does not

– produce NullExc or
– diverge or
– stop on a request or accept instruction waiting for the dual instruction

then

(νc :s)N1 →→ (νc :π.π2 .end)N2 →→ (νc :π2 .end)N3 →→ (νc :end )N4

with c �∈ fn(N4), where:

– if π = †t then (νc :π.π2 .end )N2 →→ (νc :π2 .end)N3 with exactly one application
of rule RN-CommSess on channel c ;

– if π = †〈π′,π′′〉 then the first rule involving channel c is
• either RN-CommSessIf-true and the application of this rules gives

(νc :π′.π2 .end)N′
2 and (νc :π′.π2 .end )N′

2 →→ (νc :π2 .end)N3;
• or RN-CommSessIf-false and the application of this rules gives

(νc :π′′.π2 .end)N′
2 and (νc :π′′.π2 .end )N′

2 →→ (νc :π2 .end )N3;
– if π = †〈π′〉∗ then the first rule involving channel c is RN-CommSessWhile and

the application of this rules gives (νc : π3.π2 .end)N′
2 with π3 ∈ {†〈π′〉∗,ε} and

(νc :π3.π2 .end )N′
2 →→ (νc :π2 .end)N3.

The soundness proof requires careful analysis of the evaluation order and invariant prop-
erties of networks.

Finally we get:

Theorem 4 (Completion of Sessions). Suppose N0 is an initial net, N0 →→ N ≡
(νu : t )∏0≤i<n li [e i ,σi ,CTi ] and N is irreducible. Then either all e i are values
(0≤ i < n ) or there is j (0≤ j < n) such that e j ∈ {NullExc ,E[request c s{e ′}],
E[accept c s{e ′}]}.

7 Conclusions and Further Work

Session types have been successfully applied to theoretical settings such as the π-
calculus [4, 5, 13, 15, 17, 25], a multi-threaded functional language [27], to practical set-
tings such as CORBA [26] and a web-services description language [29]. With Ldoos

we aimed to link language development to engineering and standardisation practice.
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To our knowledge Ldoos is the first application of session types to a distributed,
object-oriented class-based programming language. Our design aims were to restrict
the number of novel features introduced into the object-oriented language (we added
only four pairs of primitives for standard session communication in the user syntax),
and to obtain a simple typing system by extending class and method signatures to con-
tain the usage of channels assigned by session types. We have written several example
programs, demonstrating that Ldoos can express communication in a style that is natural
for programmers from the object-oriented community.

It is worthwhile to notice that our session types are regular expressions of a limited
shape, which can also be denoted by sum and recursion. Branching types instead are
variant types, and therefore the recursive session types of [13, 14, 17, 26] are richer than
ours.

The subtyping relation on session types considered in [13, 26] is covariant for input,
contravariant for output as in [24] and moreover allow to change the number of branches
in branching types. As our session types are regular expressions, the inclusion of regular
languages induces a natural notion of subtyping which is simple but not interesting,
because it lacks covariance and contravariance of inputs and outputs.

We plan to investigate extensions that would allow channels to carry channels, and
channels to be passed as parameters to methods. In particular, we want to allow the
passing of linear channels, through the use of π-types as parameter types; on the other
hand, in order to ensure linearity, we will forbid π-types as the types of local variables
or fields.

Furthermore, we will re-evaluate our design decision of omitting selection primi-
tives from the Ldoos-session types. While in traditional session types, function names
are included in types (e.g. sell:?float.?float.〈!float〉∗.end would be the session type of
the seller), in Ldoos they are not included (e.g. ?float.?float.〈!float〉∗.end is the type of a
channel used by sell). With this design decision the structure of the program is primarily
reflected in the classes and their methods, and therefore method names were not a part
of the sessions types.

Finally, we wish to evaluate the various designs through a sequence of case studies
and to develop type checking algorithms following [4].
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Abstract. The Model-Driven Architecture (MDA) technology toolset
includes a language for describing the structure of meta-data, the MOF,
and a language for describing consistency properties that data must ex-
hibit, the OCL. Off-the-shelf tools can generate meta-data repositories
and perform consistency checking over the data they contain. In this
paper we describe how these tools can be used to implement runtime re-
quirements monitoring of systems by modelling the required behaviour
of the system, implementing a meta-data repository to collect system
data, and consistency checking the repository to discover violations. We
evaluate the approach by implementing a contract checker for the SLAng
service-level agreement language, a language defined using a MOF meta-
model, and integrating the checker into an Enterprise JavaBeans appli-
cation. We discuss scalability issues resulting from immaturities in the
applied technologies, leading to recommendations for their future devel-
opment.

1 Introduction

Run-time monitoring of systems is useful in a variety of situations in which the
behaviour of a system cannot be guaranteed in advance. Such situations include
testing a system against its requirements if it cannot be proven to meet them
by construction, or monitoring the behaviour of a system where the actions of
external agents, such as its users, is the actual object of scrutiny. Such monitoring
can be used in conjunction with a contractual agreement to establish a strong
basis for trust in a system: the owners of the system agree that it will behave
in a particular way, and the system is monitored to ensure that deviations from
the desired behaviour are detected and properly compensated for.

In the past, several approaches to the automatic implementation of runtime
requirements-monitoring systems have been proposed. Such automatic imple-
mentation is intended to provide control over the specification of monitoring,
improve the accuracy of monitoring and reduce the cost of its implementation.
This paper presents a novel approach to runtime requirements monitoring that
has arisen out of work to develop a contract checker for a service-level agreement
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(SLA) language, SLAng. The approach relies on several standards published by
the Object Management Group (OMG), and appears to be particularly suitable
for comparing the behaviour of a system to sets of requirements that can be
selected dynamically at runtime from a range of possible options, as is typical
in SLAs.

The Model-Driven Architecture (MDA) technology toolset includes a lan-
guage for describing the structure of meta-data, the Meta-Object Facility
(MOF), and a language for describing consistency properties that data must
exhibit, the Object Constraint Language (OCL). The Java Meta-Data (JMI)
standard prescribes patterns for implementing programmatic access to MOF de-
fined meta-data repositories. These patterns can be implemented in a generative
programming tool to generate implementations of repositories, which can in turn
be integrated with off-the-shelf tools to perform consistency checking over the
data they contain.

The SLAng SLA language is defined using a MOF meta-model that mod-
els the required behaviour of electronic services governed by SLAs. The model
is divided into two parts, the first describing the syntactic structure of SLAng
contracts, the second describing the behaviour of the services that the contracts
govern. Associations and OCL constraints between the two parts serve to spec-
ify the semantics of the language, both by associating SLAs with the services to
which they apply, and by describing the restrictions on the behaviour of those
services that the SLAs imply. The original intent of this approach was to pro-
vide a precise definition of the language. However, in combination with the JMI
mapping and an OCL interpreter, the meta-model serves as a specification from
which a contract checker can be generated. This contract checker can be com-
bined with simple hand-implemented software instruments to form a complete
runtime monitoring system.

In this paper we describe the approach, critically discuss it as an alternative
to previous work on runtime monitoring, and report on our practical experience
with the technologies involved. The paper includes an overview of the approach
in Section 2. In Section 3 we briefly review the features of the SLAng language
and its specification. In Section 4 we discuss the design and implementation of
a tool for generating the checker. In Section 5 we describe the architecture of
the resulting checker. In Section 6 we describe the deployment of the checker to
monitor an Enterprise JavaBeans application, and evaluate the practicality of
the approach. In Section 7 we compare the approach to other work on run-time
monitoring. Finally, in Section 8 we make some concluding remarks, and discuss
future work.

2 Runtime Requirements Monitoring Using MOF and
OCL

Runtime requirements monitoring systems typically consist of a set of software
instruments for gathering the raw event data pertinent to the properties of in-
terest, some logic for checking that this data meets requirements, and possibly a



Engineering Runtime Requirements-Monitoring Systems 321

repository for data if requirements checking requires data gathered over an ex-
tended period. In the approach outlined in this paper the requirements checking
logic and repository are implemented using a combination of automatic code gen-
eration from a MOF model and a reusable OCL checker component. Generating
software instruments is discussed below.

MOF models are very similar to UML class models [22]. They include sets of
classes, the data they contain, and their relationships. Constraints on the model
that cannot be represented graphically are expressed using the OCL. OCL is a
typed-expression language similar to the expressions parts of Java or C++, and
is used to describe class invariants in the model.

The classes in a MOF model can be interpreted as directly modelling objects
in the real world, as is the case in the SLAng meta-model which describes the
way that services should behave in the presence of SLAs. Requirements can
be expressed directly as constraints over the behaviour of services, which will
generally be modelled as classes of events arising during the execution of the
service. Alternatively they can be expressed in the context of a model of a
requirements language associated with the service. Instances of this model are
requirements that may be expressed in the language at runtime and associated
with services. Constraints between the model of the requirements language and
the model of the service describe how the service must act in the presence of
the requirements. In this manner the semantics of the SLAng SLA language are
defined in terms of constraints over the performance of services that only apply
when SLAs are present.

The meta-model can alternatively be interpreted as a model of data describ-
ing the world, and the set of conditions necessary for those data to meet some
set of requirements. If we interpret the meta-model in this way, then we can
produce a computer program capable of holding those data and checking them,
to see whether services are behaving in the way that we want them to.

This approach is shown in Figure 1 in which thick arrows represent code
generation, and thin arrows represent data flow. The figure represents the case in
which a requirements language is being used to specify requirements at runtime.

To implement the approach we found it necessary to develop a JMI generator.
(As discussed in Section 4, this was needed because previous generators did
not offer adequate flexibility over the type of code generated. However, this
component may be considered ‘off-the-shelf’ as it is a standard MDA component
independent of the particular application.) We combined the resulting generated
data structures with the OCL2 interpreter implemented at Kent University [12],
which features an extension allowing it to evaluate OCL constraints over plain
Java objects using Java reflection. The design of the JMI generator is discussed
in more detail in the next section. The design of the resulting checker is discussed
in detail in Section 5. The performance of the checker is described in 6.

A complete requirements monitoring system also includes software instru-
ments to gather the event data included in the service model. The implementa-
tion of these instruments requires the interpretation of the service model in the
context of the particular system being instrumented. If the service model is de-
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Syntax model Semantic model

Constraints

Code
Generator

Java classes
for SLAs

Java classes
for events

OCL
interpreter

Fig. 1. Generating an SLA checker from the SLAng meta-model

scribed in the same terms as the system being monitored, for example in terms of
particular Java classes and operations present in the implementation, then it will
be possible to implement a generator for the instruments directly for the model.
However, it may be that the service model is at a higher level of abstraction,
and intended to apply to services with a range of designs and implementation
technologies, as is the case with the SLAng language used as an example in this
paper. In this case the instruments must be implemented manually, although
the explicit nature of the service model provides considerable guidance in this
process. In summary, the possibility of generating the instruments automatically
depends on the level of abstraction of the MOF model, although we have not
yet investigated the generation of instruments in practice.

3 The SLAng Language

The SLAng language syntax and semantics are defined by a MOF (version 1.1)
model [20]. The model provides a formal definition of the structure of the syntax
of the language, and of the semantic domain in which SLAs apply. These are
modelled in terms of classes of objects with attributes and associations. Con-
straints in the model restrict the sets of objects described so that SLAs are only
ever associated with services that are consistent with their terms and which meet
their conditions. In this way the semantics of the language are formally defined.
This approach was inspired by the work of the Precise UML group (pUML), who
used the approach to define the semantics for their UML 2 submissions [13].

A view of the meta-model showing the syntax of the Electronic Service (ES)
SLA is shown in Figure 2. The SLA is divided into a section for defining terms,
and another for conditions. The conditions section is further subdivided between
conditions on the behaviour of the service provider, and conditions on the be-
haviour of the client.



Engineering Runtime Requirements-Monitoring Systems 323

E lectronicS erviceS LA

S LA

(from contracts )

+uniqueId:S tring

E lectronicS erviceT erms

E lectronicS erviceC onditions

OperationDefinition

+description:S tring

+failureC riteria:S tring

T erms

(from contracts )

C onditions

(from contracts )

sLA+ terms+

sLAT oT ermssLA+

conditions+

sLAT oC onditions

electronicS erviceS LA+

electronicS erviceT erms+

eS S LAT oE S T erms

electronicS erviceS LA+

electronicS erviceC onditions+

eS S LAT oE S C onditions

S erviceC lientDefinition

+description:S tring

C lientP erformanceC lause

+name:S tring

+maximumT hroughput:F requency
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terms+
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operationDefinition+

1..*
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(from contracts )
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*
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1..*

conditions+ clientP erformanceC lause+

1..*
E S S LAC lientC lauses clientP erformanceC lause+

*

operation+

1..*

Fig. 2. Model of the syntax of SLAng electronic-service contracts

The use of a MOF meta-model to define the syntax of SLAng confers the
advantages of the XML Metadata Interchange (XMI) [21] standard, a standard
for serialising MOF-defined metadata. The XMI mapping of the SLAng syntactic
model constitutes the concrete syntax of the language.

The semantic model of electronic service provision is shown in Figure 3.
Service usages are events, occurring over a period, with the possibility of failure.
They are associated with an operation, which forms part of an electronic service.
They are also associated with the client that caused the usage. The syntactic and
semantic models are co-located in a single model, and the terms in the syntactic
model are associated with elements in the semantic model in order to define
their meaning.

As stated above, the SLAng meta-model also includes OCL constraints that
give meaning to condition statements in the language. The following is the top-
level invariant defining the meaning of performance and reliability for Electronic
Service SLAs:
context contracts::es::ServerPerformanceClause inv:

operation→collect(o : contracts::asp::OperationDefinition |
o.operation

)→forAll(o : services::Operation |
observedDowntime(o) < (timeRemaining(-1) � (1 - reliability)))

This expression is explained in detail in [23]1. It relies on a number of func-
tion definitions, such as observedDowntime defined in the specification. The total
amount of OCL for this constraint runs to about 50 lines.

1 The expression is slightly modified from [23] as a result of testing and developing the
meta-model and constraints using the generated SLA checker. However, its intent is
the same and its structure is quite similar.
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S erviceUsage

+failed:B oolean

Operation

(from services)

+name:S tring

E lectronicS ervice

(from services)

P eriod

(from services)

+duration:Duration

S erviceC lient

(from services)

+name:S tring

E vent

(from services)

+date:Date
serviceC lient+

serviceUsage+

*

C lientUsage

electronicS ervice+

operation+

1..*OperationT oE S

serviceUsage+

*

operation+

UsageOperation

Fig. 3. Model of electronic service usage

In this section we have presented an overview of the SLAng language and
its specification. For a more detailed discussion of the language, including a
discussion of design decisions and objectives, and a comparison to other SLA
languages and technologies, please refer to [23].

4 A JMI Generator

The JMI generator is implemented in Java, and follows the design shown in
Figure 4. It is heavily dependent on the Velocity Template Engine (VTE) [11],
developed as part of the Apache project. Similar to Java Server Pages (JSP) [5],
or PHP [7], Velocity is a tool for generating text from predefined templates.
These templates are text files that include fields delimited using special char-
acters. The VTE is configured with these templates, and also extra data called
‘context’. The templates are parsed by the VTE: ordinary text is passed straight
through; the fields in the templates either control the order of parsing, for ex-
ample by specifying optional or repeated sections, or indicate that data from
the context should be inserted. By varying the context, several outputs can be
produced from the same template.

The templates in our implementation are taken from the JMI specification,
and translated into Velocity’s template syntax. The JMI specification requires
Java types to be produced corresponding to elements in the metamodel: for each
class, a ‘class proxy’ interface, for creating and finding instances of the class, and
an ‘instance’ interface, for editing properties and invoking operations of instances
of the class, are required; for associations, an ‘association proxy’ interface for
creating and querying pairs of associated instances; for each package, ‘package
proxy’ interface enabling the discovery of class proxies, association proxies and
subpackage proxies; for enumerations, an interface type for enumeration values
and a class containing static exemplars of enumeration values. The JMI standard
also specifies XMI reader and writer interfaces.

The generator includes a template for each of these types. Except in the
case of enumerations, the JMI specification only defines interfaces, but does not
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Fig. 4. Design of the JMI generator

indicate how they are to be implemented. The generator therefore also includes
templates for implementations of each of the above elements. The generator also
has a template to produce an XMI DTD following the pattern described in the
XMI standard.

The context for each of these templates is drawn from the particular MOF
model for which a set of JMI interfaces is being generated. In our case this is the
SLAng meta-model. The meta-model is exported from a modelling tool in an
XMI format file. The first stage of the JMI generator reads this file and creates
an in-memory representation of it.

This initial in-memory representation of the API is not a suitable context for
the Velocity templates, as it reflects the structure of the XMI file, rather than
the structure of the templates. Velocity templates can only perform quite simple
data manipulation (they lack recursion, for example, which makes it difficult
to navigate data structures in the context). They must therefore be supplied
with their context data in a form that closely reflects the way it is used in the
template. The second stage of the generator creates a number of different context
objects, appropriate to the Java files that must be generated, using the data from
the in-memory representation of the XMI file.

In the third stage of its operation, the VTE is invoked using the generated
context objects and the JMI templates, in order to generate the requisite JMI
Java code. This is placed in the appropriate places in a package directory hier-
archy on the file system.

Generating program code from UML diagrams is an important step in the
Model Driven Architecture (MDA) methodology. A number of systems to achieve
this have been developed with varying degrees of flexibility in the specification of
their output. However, we found none to be ideal for our purposes, and elected
to implement a generator by hand instead. We evaluated a number of tools in
the autumn of 2003 before deciding on this course. These included the Netbeans
Meta-Data Repository (MDR) [10], the Eclipse Modelling Framework (EMF) [8],
and Novosoft’s NSUML [6]. The EMF was rejected because it generates non-
standard code from a non-standard meta-model (i.e. not JMI from MOF). The
MDR and Novosoft were rejected because at the time they manifested prob-
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lems reading standard XMI as generated by our modelling tool of choice. We
also wished to reserve the possibility of modifying the JMI implementation code
generated by our system, and both of these systems require code-level modifica-
tions to alter the generated JMI implementations, reducing the benefits of reuse
considerably.

The architecture of the AndroMDA tool [1] is essentially identical to that
presented here. However, as stated above, Velocity templates do not have pow-
erful control structures and without the ability to modify the structure of the
context objects to preprocess model information it is impossible to generate some
outputs. We found the OCL-based approach of the Kent Modelling Framework,
version 3 [9] to be adequately expressive. However, the OCL expressions are
hard to write when a ‘generation state’ has to be maintained, containing things
like a list of unique identifiers used. For this reason we preferred to use more
conventional templates.

The decision not to reuse an existing modelling framework was an engineering
decision. In principle any of the systems mentioned above could be adapted to
our approach with some degree of effort. However, our requirement of flexibility
in the generation of the implementation of the system will probably turn out
to be a general requirement, because, as discussed in the evaluation section of
this paper, modelling frameworks of this kind will need be adaptable to meet
application-specific scalability requirements.

5 Architecture of the SLA Checker

The SLA checker consists of three major components:

1. The automatically generated JMI interfaces and implementation for holding
SLAs and event data.

2. The Kent OCL implementation, with SLAng constraints loaded, for checking
whether SLAs have been violated.

3. An API wrapper, that allows checks to be requested, and returns lists of
violations that have been found. This part is hand-written in our imple-
mentation, because it is independent of the structure and semantics of the
SLAng language.

The checker may be incorporated in electronic service systems wherever SLAs
need to be monitored. It is used as follows:

1. The checker is instantiated.
2. The static elements from the semantic model are instantiated or loaded

from an XMI file. These elements, with types such as ElectronicService,
ServiceClient and Operation represent knowledge that the checker has about
the service or services being monitored. The model is manipulated using the
generated JMI interfaces.

3. One or more SLAs are instantiated or loaded from an XMI file, again using
the JMI interfaces.
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4. Associations are established between the service components defined in the
SLAs and those components in the service model created in Step 2.

5. Monitoring data is provided to the component by invoking the various ‘cre-
ate’ methods found on the JMI API (e.g. createServiceUsage() on the
ServiceUsage class proxy interface). These data are associated with the rel-
evant static elements in the service model, created in Step 2.

6. Periodically, the check methods on the violations API may be invoked. These
return lists of violations, if any exist.

To demonstrate the SLA checker and to assist in the development of the
SLAng semantics, we have implemented a browser that allows the editing of
SLA and event data, via a tree-view of the model.

SLAng
JMI
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inter-
preter
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browser
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models

SLAng
meta-
model

XMI

SLAng
Constraints
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SLAng
XMI

reader

MOF
XMI
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Fig. 5. Design of the SLA checker

The user-interface also allows interactive editing and checking of the con-
straints over the SLAng model, possible because the OCL constraints are in-
terpreted at runtime, rather than compiled into the implementation language,
Java.. The design of the checker is shown in Figure 5. A screenshot of the user
interface is shown in Figure 6. The leftmost panel in the user interface contains
the tree representing the SLAng model (SLAs and events). The middle panel
lists the constraints over the model, and the rightmost panel allows the editing
of constraints.

6 Evaluation

6.1 Deployment of the SLA Checker

We tested the SLA checker by deploying it to monitor the performance of an
EJB application. The application is an auction management system developed
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Fig. 6. Screenshot of the SLA checker user interface

by an industrial collaborator. The application is deployed in the popular ap-
plication server JBoss, which implements the Java 2 Enterprise Edition (J2EE)
specification [4], using Apache Tomcat to serve the web front-end [2].

The architecture of JBoss is based on the Java Management eXtensions li-
brary (JMX). In this component-based architecture, all functionality is deployed
as ‘managed beans’ (MBeans), Java components that expose meta-data, config-
urable properties and lifecycle management methods. The JBoss distribution
and default configuration includes MBeans implementing EJB containers, JNDI
naming services, transactions, and many other services. We have deployed the
SLA checker as an MBean, meaning that it has one instance per instance of the
JBoss server. It is made available to other MBeans and to deployed EJBs via
the JNDI naming repository.

To provide external access to the SLA checker, we implemented a small J2EE
application called ‘The SLAng Control Panel’. This consists of a single JSP page
providing an interface to a stateless session bean. This bean in turn delegates
operations to the SLAng checker. The main operation provided by the checker
over this interface is checkAll(), which causes the component to evaluate the
SLAng constraints over its internal model of SLAs and service data, and return
a list of violations, if any exist.

Service performance information is passed to the SLAng service by a server-
side interceptor configured as an option of the JBoss container configuration.
JBoss remoting operates using a stack of interceptors on both the client and
server side. These allow different types of functionality to be added to the com-
munication channel independently, such as transaction management, security,
and the communication protocol itself, which is managed by the outermost in-
terceptor on client and server sides. For the purposes of evaluating the SLAng
component, we added an interceptor on the server side to measure time spent
processing EJB requests. The interceptor accesses the SLAng service using JNDI
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Fig. 7. The SLA checker component deployed to monitor an EJB application

and invokes the createServiceUsage(), method on its JMI interface to record the
measured time. Apache JMeter was used to generate a variety of loads on the
service [3].

6.2 Results

In this section we evaluate the SLA checker on three points: The ease of imple-
mentation of the checker; the ease of deployment of the checker in its intended
context (in this case to monitor the auction application); and the performance
of the checker.

Implementation: Effort in implementing the checker falls into three categories:
implementing the JMI generator; implementing the SLAng language specifica-
tion that is the input to the generator; and implementing the remaining code
for the component, which mainly involves the integration of the OCL evaluator
component and the provision of an API for requesting checks and reporting vio-
lations. Of these three categories, the first two could be speciously discounted on
the grounds that they are separate efforts from the implementation of the actual
component. If this were the case, then implementing the component would have
taken around 1 man-week of labour. In fact, the total amount of labour has
been closer to 1 man-year, and JMI generator, language and component have
co-evolved to some extent. Indeed, as discussed below, the JMI generator, or at
least it’s templates will have to continue to adapt in the face of performance
requirements that are somewhat related to the domain of the application, i.e.
checking SLAng contracts. The SLA checker consists of approximately 115,000
lines of code (including blank lines and comments) outside of standard libraries
of which 77,000 were generated, 36,500 form the implementation of the OCL
evaluator and 1,500 were hand written.
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Deployment: The checker was straightforward to deploy into the JBoss appli-
cation server. This is mainly because JBoss’s architecture is expressly designed
to support the deployment of new services and components. However, the JMI
interfaces also contribute by providing a clear API through which to deliver ser-
vice performance data, and the XMI reader interface and implementation makes
loading SLAs and service models into the component simple. Implementing the
SLAng control panel application and integrating the component into JBoss took
2 weeks for a programmer not previously intimate with the workings of JBoss.

Performance: The major problem with the SLA checker is its inability to scale.
This is manifest in two ways: Firstly, and most seriously, the time taken to
evaluate the OCL constraints is highly correlated to the size of the model, and is
far too long for models containing realistic amounts of service data. For a data set
of 1000 service usages, the client throughput constraint compares every pair of
usages to determine if they occur too closely together. If none do, this results in
a million comparisons, and takes 20 minutes on a PC with 1.7GHz Intel Pentium
4 processor. The evaluation is slow due to a combination of factors: The OCL
interpreter performs almost no optimisations, the interpretation of the OCL is
innately expensive, and the data model over which the expressions are evaluated
offers no shortcuts, such as indices.

The second issue is related. In our current implementation of the JMI interfaces
all data is represented as Java objects stored in main memory. Since we have im-
plemented no policy for removing or persisting old data, this leads inevitably to
memory exhaustion as the application continues to be used. The amount of ser-
vice usage data that can be checked is restricted by the amount of main memory
available to the virtual machine in which the component is deployed.

To correct these issues without discarding the approach altogether requires
some reengineering. The data model needs to be backed by a database. This
could be either object oriented, or the translation to a more conventional model
could be managed by the generated Java code for a particular model. Clearly
not all data can be assumed to be in memory at the same time, and this may
need to be reflected in the interface to the model data. The evaluation speed
of the OCL constraints could be improved by translating it to Java, or possibly
SQL (with some reduction in expressive power), rather than interpreting it.
We gained some improvement in evaluation time by adding results caching to
the OCL interpreter. Further optimisation of evaluation is required, and if the
constraints are still to be evaluated across a generated interface, the generated
interface may have to provide indices to assist in evaluation, possibly resulting
in a closer coupling between interface standard and OCL evaluator.

Clearly these refinements should be the subject of further research.

7 Related Work

In [23] we provide a detailed comparison of SLAng with previous SLA languages,
focusing on the extent to which these languages provide explicit definitions of
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their terms and conditions. Our use of an explicit model for this seems to be
quite novel, and it is this feature of the language that allows us to generate the
checker automatically.

A similar approach has been proposed in [19], a position paper that begins
to elaborate the requirements for specifications supporting the use of contracts
in an MDA process. The paper proposes that contracts can be transformed into
one or more meta-models whose semantics are ultimately those of the Buisi-
ness Contract Language (BCL) [18], a very flexible contract definition language
based on the notion of ‘communities’, a kind of modelling template for collabo-
rations described in the RM-ODP. It is proposed that these models could then
be processed in various ways, including implementing monitors, by tools that
implement the BCL semantics. It is unclear how the transformation of contracts
into these metamodels provides a benefit over simply defining a contract in BCL
directly, since the expressiveness of the contract and the meta-models is likely
to be equivalent. However, it is correct to identify BCL as an alternative to
MOF/OCL to describe runtime requirements. In cases where requirements are
primarily related to the ordering of events, BCL provides considerable semantic
assistance. In more general cases, the contract-oriented nature of BCL may be
hinderance to the expression of the requirements.

Various other systems effectively define their own meta-models for require-
ments. Representative examples are: the Java-MaC system [16] which automati-
cally embeds monitors in Java code from a requirements specification written in a
language called PEDL/MEDL; Java PathExplorer [15] which does the same, but
allows requirements to be specified in any high-level logic compatible with the
Maude rewriting engine; and the KAOS-FLEA [14] system in which requirements
specified using the KAOS methodology are monitored using the FLEA monitoring
system coupled with manually implemented event detectors. These approaches are
of comparable expressive power to the use of MOF/OCL to describe constraints
on a system. JavaMaC and Java PathExplorer are examples of systems capable
of generating software instruments thanks to the fact that their semantics are at
least partially defined in terms of the structure of Java programs.

MOF/OCL offers the possibility to defer the specification of some require-
ments until runtime, by specifying requirements in terms of consistency rela-
tionships between the system and a model of a requirements language. In this
way, the approach can be used to engineer a range of monitoring solutions, each
with a language appropriate to their particular needs. This is in contrast to the
approaches mentioned above, which prescribe a language for requirements, with
the exception of Java PathExplorer which prescribes that a logic be used.

Choosing between systems for runtime requirements management requires
at least two questions to be answered: in what form do I wish to represent my
requirements? and, which monitoring technology will be practical? In compar-
ison to other approaches, the use of MOF/OCL is very general, but also quite
well aligned with conventional software engineering practice in that it is very
similar to the use of UML. It is practical in the sense that it can be imple-
mented using off-the-shelf technologies, but impractical in the sense that those
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technologies currently do not scale well (they may do in the future). In contrast,
the approaches listed above assume the existence of a bespoke module imple-
menting the logic for checking for violations. Engineering this module seperately
may assist in scalability, although a more efficient OCL interpreter could equally
easily be assumed. In terms of investigating the run-time performance of per-
formance monitors, useful work has been done in [17], which demonstrates that
the evaluation of requirements can be intractable, depending on the type of the
requirement. A more comprehensive survey of the performance and practicality
of available technologies would be desirable future work.

8 Conclusion

This paper has described the use of MDA technologies (although not necessarily
an MDA approach) to produce runtime requirements monitoring systems. This
has been exemplified by our implementation of an SLA checker, automatically,
from the specification of our SLA language, SLAng.

In situations in which systems must be monitored against requirements spec-
ified at runtime designers may wish to consider adopting the approach as it offers
the possibility to generate all or part of an interpreter for a requirements spec-
ification language (such as an SLA language) automatically. Where an explicit
representation of the semantic primitives of such a language is practical, an OCL
interpreter can be employed to check that these semantic elements are consis-
tent with statements in the language, thereby implementing the logical part of a
runtime requirements monitoring system. The approach is equally applicable in
cases in which the requirements are invariant at runtime – the constraints in the
model of the service are simply specified independently of any language model.

Our evaluation of the checker revealed some serious practical issues arising
from immaturities in the technologies employed. Although for restricted num-
bers of objects the implementation serves its purpose, it seems that to achieve
scalability both the mapping to implementation and the implementation of off-
the-shelf components such as the OCL interpreter must be considerably more
sophisticated. This is a consideration beyond SLA checking, as it is reasonable to
assume that large software development efforts will wish to maintain and check
consistency within large repositories of models. Future research should investi-
gate this mapping further to produce implementation prescriptions to comple-
ment interface standards such as the JMI.2
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Abstract. The security of a network protocol crucially relies on the sce-
nario in which the protocol is deployed. This paper describes syntactic
constructs for modelling network scenarios and presents an automated
analysis tool, which can guarantee that security properties hold in all
of the (infinitely many) instances of a scenario. The tool is based on
control flow analysis of the process calculus LySa and is applied to the
Bauer, Berson, and Feiertag protocol where is reveals a previously un-
documented problem, which occurs in some scenarios but not in other.

1 Introduction

The security of any network protocol is not only determined by the behaviour
the protocol itself. The security additionally relies upon the scenario in which
the protocol is deployed. A protocol that suffers from a parallel session attack
is an example of this: It may be possible to show that the protocol is secure
— even when it is under attack — in the case that only a single session of the
protocol is deployed on the network. However, when multiple session are present
on the network, the parallel session attack can occur because the attacker uses
messages from one session to perform the attack on another session.

This paper presents an automated analysis tool that focuses on deployment
scenarios for security protocols. Protocols will be modelled in the process cal-
culus LySa [4] and analysed with a control flow analysis that can guarantee
confidentiality and authentication properties. The syntax of a LySa process, P ,
has features for modelling cryptography, nonce generation, message passing, etc.
These features are well-suited to model the internal behaviour of individual prin-
cipals. In this paper, we furthermore want to model the scenarios in which these
principals appear. To this end, LySa is extended with a meta-level that contains
various indexing constructs. For example, the meta-level has an indexing paral-
lel composition, |i∈S M , that describes a number of meta-level processes M in
parallel. These processes only differ in their index i and, thus, the construct can
be used to describe principals A1, A2, A3, . . . that only differ in their identity but
otherwise follow the same protocol.
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A key idea in having the meta-level is that it should not simply be a syntactic
shorthand for succinct modelling of one specific instance of a scenario. Instead,
a meta-level process specifies all the different instances that a protocol may
be deployed in. Each instance of a scenario will be described by an object-
level process P , which is an ordinary LySa process without indexing constructs.
Instantiation is described by an instantiation relation, M 	 P , and meta-level
process may instantiate many different object-level processes. In fact, a meta-
level is allowed to instantiate to infinitely many different object-level processes,
thus, describing an infinitely large scenario.

A second step is to extend the control flow analysis from [4] to cover also
meta-level processes. The control flow analysis is an automatable analysis tech-
nique that works by over-approximating the behaviour of a process. Thus, the
extended meta-level analysis provides an automated analysis of scenarios and
even copes with the fact that they may be infinitely large.

1.1 Contribution of This Paper

This paper contributes with version 2 of the LySatool. Version 1 of the tool [8]
is the implementation of the control flow analysis of object-level LySa [4]. The
second version of the LySatool includes the analysis of the meta-level and, hence,
caters for analysis of arbitrarily large scenarios. The overall idea of adding an
analysable meta-level was first suggested in [9] but for a different calculus. This
paper extends that work in several respects: it (1) gives an implementation of
a meta-level analysis. To take advantage of an existing implementation of an
object-level analysis the idea of a meta-level has been applied on the LySa cal-
culus; (2) gives a more detailed treatment of the correctness of the meta-level
analysis. The simpler format of LySa over the calculus in [9] simplifies the work
needed to do this; (3) makes the meta-level useful both to check confidentiality
and authentication properties; and (4) uses the LySatool to find a previously
undiscovered problem in a classical key establishment protocol [2].

2 LySa and the Meta-level

The process calculus LySa [4] is tailored to model network protocols that attain
their security by means of cryptography. LySa models perfect cryptography, i.e.
that successful decryption of ciphertext is only possible if the correct key is
known. As of [5], LySa caters for both symmetric and asymmetric key cryp-
tography. To keep the presentation simple, only symmetric key cryptography
is presented in this paper. However, all the results in this paper, including the
LySatool implementation, work also for asymmetric cryptography.

2.1 Syntax

The syntax of LySa is given in Figure 1. The syntax of expression E ∈ Expr and
processes M ∈ MProc up until the horizontal double line corresponds closely
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mx ::= xi

E ::= ni | mx | {E1, . . . , Ek}E0

M ::= 〈E1, . . . , Ek〉.M | (E1, . . . , Ej ; mx j+1, . . . ,mxk).M |
decrypt E as {E1, . . . , Ej ; mx j+1, . . . , mxk}E0 in M |
(ν ni) M | !M | M1 | M2 | 0 |

let X ⊆ S in M | |i∈S M | (νi∈S nai)M

Fig. 1. The syntax of LySa including the meta-level

to the syntax of LySa presented in [4]. This subset of processes is sometimes
referred to as object-level processes taken from the set Proc and is ranged over
by P . The syntax below the horizontal double line describes the new meta-level
constructs.

The basic building blocks of LySa are values, which syntactically are de-
scribed by expressions built over distinct countable sets of indexed names
ni ∈ Name and indexed variables xi ∈ Var . A sequence of indexes i = i1 . . . ik
(for k ≥ 0) has each index i taken from a countable set Index . At the object-
level, the indices are simply seen as a syntactic concatenation of i to n or x. At
the meta-level, on the other hand, indices play a crucial role for the indexing
constructs. A k-tuple of expressions, E1, . . . , Ek, may be encrypted under a key
E0 by the encryption expression {E1, . . . , Ek}E0 .

2.2 Object-Level Semantics

Only the object-level of LySa has a dynamic semantics. This semantics describes
how an object-level process, P , evolves in a step-by-step fashion. The semantics
is formalised by a reduction relation, P → P ′, defined as the smallest relation
satisfying the rules in Figure 2. The semantics ranges over values V ∈ Val , which
are expressions without variables. The meaning of the object-level constructs and
their formal semantics is explained in the following.

In LySa a tuple of values can be communicated over a global network. Send-
ing a messages is done by synchronous output 〈V1, . . . , Vk〉.P1 that matches a
pattern-matching input (V1, . . . , Vj ; mx j+1, . . .mxk).P2 as described by the rule
(Com). If the first j values in output and input (until the semi-colon) are iden-
tical then last k− j values in output are component-wise bound to the variables
in input. This binding takes place through a substitution, which may apply
α-renaming to avoid capturing bound names. An encrypted value may be de-
crypted as described by the rule (SDec). The key V0 used for encryption and
decryption must be the same and the first j values inside the encryption are
pattern-matched. The process (ν ni)P restricts the scope of ni to be P , only.
Apart from communication, parallel composition is interleaved as described by
(Par). The inactive process, 0, cannot evolve and consequently it is not men-
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(Com) 〈V1, . . . , Vk〉.P1 | (V1, . . . , Vj ; mx j+1, . . . ,mxk).P2 →
P1 | P2[mx j+1

α�→ Vj+1, . . . ,mxk
α�→ Vk]

(SDec) decrypt {V1, . . . , Vk}V0 as {V1, . . . , Vj ; mx j+1, . . . ,mxk}V0 inP →
P [mx j+1

α�→ Vj+1, . . . ,mxk
α�→ Vk]

(New)
P → P ′

(ν ni) P → (ν ni) P ′ (Par)
P1 → P ′

1

P1 | P2 → P ′
1 | P2

(Congr)
P ≡ P ′′ P ′′ → P ′′′ P ′′′ ≡ P ′

P → P ′

Fig. 2. The reduction relation; P → P ′

tioned in Figure 2. Finally, the rule (Congr) may bring processes on a form where
they match the other rules by applying the structural congruence P ≡ P ′. This
relation is as usual the least congruence on object-level processes where

– parallel composition is associative, commutative with 0 as neutral element,
– !P describes replication of P i.e. !P ≡ !P | P ,
– restriction has capture-avoiding scope extrusion, and
– names may undergo disciplined α-conversion.

The notion of disciplined α-conversion is used solely for the benefit of the analysis
as discussed in Section 3. For the sake of the analysis, the set of names will be
partitioned into equivalences classes. Disciplined α-conversion requires that α-
conversion only takes place within the same equivalence class. Each of these
classes contain countably many elements and consequently disciplining does not
affect the expressive power of the semantics.

Example 1. A repeated nonce handshake between two principals A and B that
initially share a key K may be modelled in LySa as the object-level process

(ν K) ( !(ν n) 〈A,B, n〉.(B,A; x).decrypt x as {n; }K in 0
| !(A,B; y).〈B,A, {y}K〉.0 )

Note in particular that the semi-colon is placed after the nonce n when the
variable x is decrypted. This means pattern-matching takes place and decryption
only succeeds if x is indeed bound to the nonce n encrypted under the key K.

2.3 Meta-level Semantics

The meta-level has no dynamic semantics as such. Instead, a meta-level process
M specifies a scenario, which is made up of a set of object-level processes. The
meta-level process M is said to instantiate to an object-level process P , written
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(IOut)
M 	 P

〈E1, . . . , Ek〉.M 	 〈E1, . . . , Ek〉.P

(IInp)
M 	 P

(E1, . . . , Ej ; mx j+1, . . . ,mxk).M 	 (E1, . . . , Ej ; mx j+1, . . . ,mxk).P

(ISDec)
M 	 P

decrypt E as {E1, . . . , Ej ; mx j+1, . . . ,mxk}E0 inM 	
decrypt E as {E1, . . . , Ej ; mx j+1, . . . ,mxk}E0 inP

(INew)
M 	 P

(ν na) M 	 (ν na) P
(IRep)

M 	 P

!M 	!P

(IPar)
M1 	 P1 M2 	 P2

M1 | M2 	 P1 | P2

(INil) 0 	 0

(ILet)
M [X �→ S′] 	 P

let X ⊆ S in M 	 P
if S′ ⊆fin S

(IIPar)
M [i �→ a1] 	 P1 . . . M [i �→ ak] 	 Pk

|i∈{a1,...,ak} M 	 P1 | . . . | Pk

(IINew)
M 	 P

(νi∈{a1,...,ak} nai) M 	 (ν naa1) . . . (ν naak)P

Fig. 3. The instantiation relation; M 	 P

M 	 P , whenever P is in the set described by M . This set of object-level
processes may be an infinite set.

The instantiation relation is defined in Figure 3. All object-level processes
instantiate to themselves with any subprocesses instantiated as well. In the in-
dexing meta-level constructs S is a set of indexes from P(Index ). The syntax of
index sets, S, is left unspecified but include set identifiers X ∈ SetId as place-
holder for an index set. The process let X ⊆ S inM declares such a set identifier
X to stand for some arbitrary subset of S for use inside M . This is the key
mechanism, which lets instantiation describe sets of object-level processes. Note
that the rule (ILet) requires X to become bound to a finite subset of S. This
is done to ensure that all object-level processes are syntactically finite when in-
stantiation is performed. The rule (IPar) instantiates an indexed parallel to the
parallel composition of the a finite number of processes that have the index i
taken from the index set {a1, . . . , ak}. This index set is required to be finite,
which is again done to attain a finite object-level process. Finally, the indexed
restriction (νi∈S nai)M instantiates to restrictions of all the names nai where i
is substituted with elements from S as described by the rule (IINew).
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Example 2. The nonce handshake in Example 1 describes scenario where pre-
cisely two principals are present. Below the meta-level constructs are used to
describe the same nonce handshake but this time in a more general scenario:

let X ⊆ N in let Y ⊆ N in (νij∈X×Y Kij)(
|i∈X |j∈Y !(ν nij) 〈Ai, Bj , nij〉.(Bj , Ai; xij).decrypt xij as {nij ; }Kij in 0
| |j∈Y |i∈X !(Ai, Bj ; yij).〈Bj , Ai, {yij}Kij〉.0 )

The first line declares the set identifiers X and Y to be subset of the natural
numbers and, thus, the meta-level process describes all instances where any
number of Ai’s initiates a nonce handshake with any number of Bj’s. Note also
that the parts that describe the internals of each Ai and Bj closely correspond
to the object-level processes in Example 1. The scenario, on the other hand is
described by the meta-level constructs.

2.4 Binders and Substitution

The restriction operator (ν ni)M is a binder of the name ni. In general, any kind
of substitution of elements in the syntax respects binders and only substitutes
free (i.e. unbound) instances of elements. Also input and decryption are binders
of variables, the let-construct a binder of set identifiers, indexed parallel is a
binder of the index i, and indexed restriction too is a binder of names.

Names that are not bound by any binder are said to be free names and they
play an important role in the analysis attackers as discussed in Section 4. It is
completely standard to define a function fn(P ) that finds the free names of the
object-level process P . For the meta-level, we define a function, mfn(M) that
returns the most free names there can be in any instance of M . That is, mfn
satisfies that if M 	 P then fn(P ) ⊆ mfn(M).

Names in mfn(M) do not need to be free in every instance of M but will not
be a problem with the way mfn(M) is use in Section 4. This is as oppose to [9],
where only a restricted class of processes were treated, namely the ones where
names are either free in all instances or in none. Thus, the approach taken here
considers a more general class of processes than in [9].

3 The Control Flow Analysis

The aim of a control flow analysis is to statically predict the behaviour of a
process. Since the behaviour of an object-level process is given by its reduction
semantics, the correctness of the analysis of object-level processes will as usual be
given by a subject reduction result. A meta-level process, on the other hand, has
no dynamic behaviour in itself. Instead, the control flow analysis will predict the
behaviour of all the object-level processes that a meta-level process instantiates
to. The correctness of the meta-level analysis will therefore show that the analysis
is preserved by instantiation.

The control flow analysis can also be used to analyse processes under attack
but the discussion of this is postponed until Section 4. An overall trademark of
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the analysis is that it works by finding conservative over-approximations to the
behaviour of a process. This means that any actual behaviour of a process will
be reflected in the analysis result but the converse does not necessarily hold.
With respect to security, this means that the analysis can be used to guarantee
the absence of attacks. However, the analysis cannot be used to guarantee the
presence of an attack because a possible attack reported by the analysis may be
a consequences of approximation.

3.1 Equivalence Classes for Dealing with Infinities

One of the challenges when making an efficiently computable, automated analysis
of the behaviour of a process is the infinity of values that may occur in the
execution of the process. For example, at the object-level a replicated restriction,
such as in !(ν n) 〈n〉.P , may semantically produce an infinity of names by α-
converting the name n. Also, at the meta-level an indexing parallel, such as
|i∈X 〈ni〉.P , may instantiate to infinitely different names if X represents an
infinite set.

To deal with this infinity, the set of values, Val , will be partitioned into
finitely many equivalence classes written +Val,. The partitioning of the value
domain is fixed by the user of the analysis prior to analysing a process. The
partitioning is made by assigning a canonical element +n, to each name n, +x,
to each variable x, and +i, to each index i. These assignments carry through to
indexed names such that +ni, = +n′

i′, if and only if +n, = +n′, and +i, = +i′, and
similarly for indexed variables. Finally, the canonical assignments are extended
homomorphically over encryptions and thereby partition all of the value domain.

It is important to stress, that the partitioning is made purely for the benefit
of the analysis and will in no way affect the semantic behaviour a process. The
analysis records representatives of the equivalence classes i.e. the canonical values
written +V ,. As a consequence, the analysis is only capable of distinguishing two
values V1 and V2 if they belong to different equivalence classes i.e. if +V1, �= +V2,.
The analysis is carefully designed such that any “mistakes” that arise because
it cannot correctly distinguish two values will lead to over-approximation.

The choice of the partitioning is a parameter for controlling the precision of
the analysis: The more distinct elements there are in the equivalence classes, the
more elements the analysis may be able to distinguish between. A fine granularity
in the partitioning will, on the other hand, also mean that the analysis has to
consider more elements, thereby making the analysis result more expensive to
compute. The analysis correctly over-approximates the behaviour of a process for
any partitioning though in practice a very coarse partitioning often results in too
significant over-approximation, which makes the analysis result uninformative.

3.2 The Object-Level Analysis

The object-level control flow analysis aims at giving an account of the messages
communicated on the network during any execution of an object-level process.
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(AN) ρ |= ni : ϑ iff �ni� ∈ ϑ

(AVar) ρ |= xi : ϑ iff ρ(�xi�) ⊆ ϑ

(ASEnc) ρ |= {E1, . . . , Ek}E0 : ϑ iff ∧k
i=0 ρ |= Ei : ϑi ∧

∀U0 ∈ ϑ0 . . . Uk ∈ ϑk : {U1, . . . , Uk}U0 ∈ ϑ

(AOut) ρ, κ |=Γ 〈E1, . . . , Ek〉.M iff ∧k
i=1 ρ |= Ei : ϑi ∧

∀U1 ∈ ϑ1 . . . Uk ∈ ϑk : U1 . . . Uk ∈ κ ∧
ρ, κ |=Γ M

(AInp) ρ, κ |=Γ (E1, . . . , Ej ; mx j+1, . . . ,mxk).M

iff ∧j
i=1 ρ |= Ei : ϑi ∧

∀U1 . . . Uk ∈ κ : ∧j
i=1 Ui ∈ ϑi ⇒

(∧k
i=j+1 Ui ∈ ρ(�mx i�) ∧ ρ, κ |=Γ M)

(ASDec) ρ, κ |=Γ decrypt E as {E1, . . . , Ej ; mx j+1, . . . ,mxk}E0 in M

iff ρ |= E : ϑ ∧ ∧j
i=0 ρ |= Ei : ϑi ∧

∀{U1, . . . , Uk}U0 ∈ ϑ : ∧j
i=0 Ui ∈ ϑi ⇒

(∧k
i=j+1 Ui ∈ ρ(�mx i�) ∧ ρ, κ |=Γ M)

(ANew) ρ, κ |=Γ (ν ni)M iff ρ, κ |=Γ M

(ARep) ρ, κ |=Γ !M iff ρ, κ |=Γ M

(APar) ρ, κ |=Γ M1 | M2 iff ρ, κ |=Γ M1 ∧ ρ, κ |=Γ M2

(ANil) ρ, κ |=Γ 0 iff true

(ALet) ρ, κ |=Γ let X ⊆ S in M iff ρ, κ |=Γ [X →S′] M
where S′ ⊆fin Γ (S) and �S′� = �Γ (S)�

(AIPar) ρ, κ |=Γ |i∈S M iff ∧a∈Γ (S) ρ, κ |=Γ M [i �→ a]

(AINew) ρ, κ |=Γ (νi∈S nai)M iff ρ, κ |=Γ M

Fig. 4. Analysis of LySa expressions, ρ |= E : ϑ, and object-level and meta-level

processes ρ, κ |=Γ M

Messages communicate by the polyadic output are recorded in an analysis com-
ponent κ ∈ P(+Val,∗) by a set of tuples of canonical values, thereby, benefitting
from the finite partitioning of the value domain. It is also practical to have an
analysis component ρ : +Var, → P(+Val,) that records the set of values that
variables may become bound to during the execution of a process. The control
flow analysis is specified using the Flow Logic [20] framework as a predicate

ρ, κ |=Γ P

that holds precisely when ρ, κ is an analysis result that correctly describes the
behaviour of the object-level process P . The predicate is defined inductively in
the structure of processes in Figure 4. The predicate may be seen as a specifica-
tion of which analysis results, ρ, κ, that describe the behaviour of P . In practice,
on the other hand, we will typically be interested in computing such an analysis
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result for a given process, P , and this the topic of Section 3.4. The last three
rules in Figure 4 describe the meta-level analysis and they will be discussed in
Section 3.3. These rules are the only ones that really use the environment Γ and
this environment is often ignored when discussing the object-level analysis.

The object-level part of the analysis in Figure 4 is essentially the control
flow analysis from [4]. It relies on an auxiliary predicate ρ |= E : ϑ defined on
expression. Conceptually, ϑ ∈ P(+Val,) contains the set of values that E may
evaluate to in some execution: (AN) names may evaluate to their canonical name;
(AVar) variables may evaluate to the values recorded in the analysis component
ρ; and (ASEnc) encryption expression may evaluate to any encryption generated
by recursive evaluation of subexpressions.

The rule for k-ary output (AOut) evaluates all expressions using the auxiliary
predicate ρ |= Ei : ϑi and ensures that all combinations of their evaluations are
recorded as k-tuples in κ. Correspondingly, k-ary input succeeds according to
the analysis rule (AInp) for all k-tuples in κ where the first j values correspond
to what the j first expressions may evaluate to. This takes care of the analysis
of pattern-matching. If it is deemed successful then the remaining k − j values
are required to be component-wise recorded in ρ(+mx i,) thereby ensuring that
the analysis records possible variable bindings. The rule (ASDec) for decryption
follows the same idea as for pattern-matching input though here the candidates
are found by evaluating the expression E. The remaining rules for the object-
level analysis are standard. One may capture the fact that the analysis only
distinguished names up to their canonical assignment — a similar result holds
for variables.

Lemma 1 (Invariance of canonical names). If ρ, κ |= P and +ni, = +n′
i′,

then ρ, κ |= P [ni $→ n′
i′ ].

Proof. The lemma is a direct consequence of the fact that the analysis only
records canonical names. The proof proceeds by straightforward by induction in
the definition of the analysis with the only interesting case being the rule (AN)
though it too is straightforward because +ni, = +ni[ni $→ n′

i′ ], = +n′
i′,.

The main technical result about the correctness of the object-level analysis is
that the analysis correctly captures the behaviour of all executions of an object-
level process. This is formulated as a standard subject reduction result:

Lemma 2 (Subject reduction). If ρ, κ |= P and P → P ′ then ρ, κ |= P ′.

Proof. The proof proceeds by structural induction in the reduction step P → P ′.
The proof uses auxiliary lemmata about invariance of structural congruence and
substitution of variables for values in ρ. The details may be found in [4].

3.3 The Meta-level

The analysis of the meta-level constructs are given in the last three rules in
Figure 4. The rules makes use of the environment Γ : (SetId ∪ P(Index )) →
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P(Index ) to record declarations of set identifiers. It is implicitly assumed that
every index set S maps to itself i.e. that Γ (S) = S for all S ∈ P(Index). The
environment Γ also serves as a substitution. For example, taking Γ = [X $→ S]
then MΓ is as M where every occurrence of X has been replaced by S.

The rule (ALet) updates Γ for the set identifier X declared in the let-
construct. However, the analysis only keeps track of indices up to a finite, canon-
ical partitioning of the index sets. Therefore it suffices to update Γ with a finite
subset S′ that belongs to the same equivalence class as the set S, which is de-
clared in the let-construct. Thus, Γ will map all set identifiers to finite sets, which
makes it easy to implement Γ . The rule (AIPar) makes the conjunction of the
analysis of the process M where i has been substituted for the indexes in Γ (S).
This substitution corresponds to what happens semantically in (IIPar) while the
conjunction is analogue to the analysis of binary parallel composition in (APar).
The rule (AINew) ignores the restriction similarly to the rule (ANew).

The fact that the meta-level analysis is invariant up to the canonical parti-
tioning of index sets is captured by the following lemma:

Lemma 3 (Invariance of canonical indices). Let +a1, = +a2,. Then ρ, κ |=Γ

M [i $→ a1] if and only if ρ, κ |=Γ M [i $→ a2].

Proof. The substitution only modifies names and variables so it is suffi-
cient to note that the analysis uses their canonical representatives and that
+ni[i $→ a1], = +ni[i $→ a2], as well as +xi[i $→ a1], = +xi[i $→ a2],. Thus, the
analysis of M [i $→ a1] and M [i $→ a2] will be equivalent for all M .

The analysis of the let-construct uses the largest set of canonical indices. It
suffices to use this set for the analysis because then all scenarios where smaller
subsets are chosen will also be covered by this analysis. This can formally be
stated as the lemma:

Lemma 4 (Subset in let-declaration). If +S2, ⊆ +S1, then ρ, κ |=Γ [X �→S1] M
implies ρ, κ |=Γ [X �→S2] M .

Proof. The proof proceeds by induction in the structure of M .
Case let X ′ ⊆ S inM . Assume that ρ, κ |=Γ [X �→S1] let X ′ ⊆ S inM i.e. by
(ALet)

ρ, κ |=Γ [X �→S1][X′ �→S′] M

for some S′ such that S′ ⊆fin Γ (S) and +S′, = +Γ (S),. Now assume that
X = X ′. Then the inner substitution of X is overwritten by [X ′ $→ S′] so

ρ, κ |=Γ [X �→S1][X′ �→S′] M iff ρ, κ |=Γ [X �→S2][X′ �→S′] M
iff ρ, κ |=Γ [X �→S2] let X ′ ⊆ S inM

as required. Alternatively assume that X �= X ′. Then the order of substitutions
does not matter. Using this and the induction hypothesis (IH) one may derive

ρ, κ |=Γ [X �→S1][X′ �→S′] M iff ρ, κ |=Γ [X′ �→S′][X �→S1] M
implies ρ, κ |=Γ [X′ �→S′][X �→S2] M (by IH)
iff ρ, κ |=Γ [X �→S2][X′ �→S′] M

which allows to conclude that ρ, κ |=Γ [X �→S2] let X ′ ⊆ S inM as required.
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Case |i∈S M . First notice that if S �= X then ρ, κ |=Γ [X �→S1] |i∈S M implies
ρ, κ |=Γ [X �→S2] |i∈S M simply by applying the induction hypothesis for the anal-
ysis of M . Next assume that S = X , which gives that

ρ, κ |=Γ [X �→S1] |i∈S M iff ∧a1∈S1 ρ, κ |=Γ [X �→S1] M [i $→ a1]

From the assumption that +S2, ⊆ +S1, it is known that for every a2 ∈ S2 there
is a corresponding a1 ∈ S1 such that +a2, = +a1,. By Lemma 3 then it holds
that ρ, κ |=Γ [X �→S1] M [i $→ a2] for all a2 ∈ S2. This together with the induction
hypothesis allows to conclude

∧a2∈S2 ρ, κ |=Γ [X �→S2] M [i $→ a2]

which is precisely ρ, κ |=Γ [X �→S2] |i∈S M as required.
The remaining cases are straightforward and follow by applying the induction

hypothesis because the analysis does not directly use Γ in these cases.

Using this lemma, we can now prove the main result about the correctness
of the meta-level analysis, namely that the meta-level analysis of a process M
covers the analysis of all object-level processes that M instantiate to.

Theorem 1 (Correctness of instantiation). If ρ, κ |=Γ M and MΓ 	 P
then ρ, κ |= P .

Proof. The proof proceeds by induction in the structure of M .
Case let X ⊆ S inM . First, calculate

(let X ⊆ S inM)Γ = let X ⊆ Γ (S) inM(Γ \ X)

where Γ \ X is as Γ except that Γ (X) is undefined. Next, assume that (let X ⊆
S inM)Γ 	 P which according to (ILet) in Table 3 happens because

(M(Γ \ X))[X $→ S′] 	 P

for some S′ ⊆fin Γ (S). Because X is undefined in Γ \ X this is the same as

M(Γ [X $→ S′]) 	 P

Next, assume that ρ, κ |=Γ let X ⊆ S inM i.e. from (ALet) that

ρ, κ |=Γ [X �→S′′] M

where S′′ ⊆fin Γ (S) and +S′′, = +Γ (S),. Notice that +S′, ⊆ +S′′, so by Lemma 4

ρ, κ |=Γ [X �→S′] M

From the induction hypothesis it then follows that ρ, κ |= P as required.
Case |i∈S M . Assume ρ, κ |=Γ |i∈S M i.e. from (AIPar) that

∧a∈Γ (S) ρ, κ |=Γ M [i $→ a]
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Furthermore, let Γ (S) = {a1, . . . , ak} for some arbitrary set {a1, . . . , ak}. Next,
assume that (|i∈S M)Γ 	 P1 | . . . | Pk by (IPar). Noting that (|i∈S M)Γ =
|i∈Γ (S) MΓ and using (IIPar) this means that

MΓ [i $→ aj ] 	 Pj

for each aj ∈ Γ (S). Since the two substitutions Γ and [i $→ aj ] range over
different domains the order of the substitution of does not matter. Thus, it also
holds that for all aj ∈ Γ (S) that

(M [i $→ aj ])Γ 	 Pj

The induction hypothesis can be applied k times to establish that

ρ, κ |= P1 ∧ . . . ∧ ρ, κ |= Pk

which by (APar) from Table 4 applied k times give precisely ρ, κ |= P1 | . . . | Pk

as required.

Case (νi∈S nai)M . Assume that ρ, κ |=Γ (νi∈S nai)M i.e. that

ρ, κ |=Γ M

Let Γ (S) = {a1, . . . , ak} and note that ((νi∈S nai)M)Γ = (νi∈Γ (S) nai)MΓ .
Next assume that ((νi∈S nai)M)Γ 	 (ν naa1) . . . (ν naak

)P , which according to
(IINew) happens because

MΓ 	 P

The induction hypothesis applies to give that ρ, κ |= P , which by (ANew) from
Table 4 is the same as ρ, κ |= (ν naa1) . . . (ν naak

)P as requires.
The remaining cases for the object-level syntax are straightforward because

the substitution Γ does not modify anything in the object-level syntax.

3.4 Implementation

The goal of implementing the control flow analysis is to attain an analysis result
for a process. That is, given a process M the implementation provides ρ, κ such
that ρ, κ |=[ ] M . The implementation of the control flow analysis in the LySatool
works in two steps: (1) a generation function G(M) produces a formula that
corresponds to the analysis predicate defined in Figure 4, and (2) a standard
solver [19] is used to find an interpretation, which satisfies the formula.

The main challenge when the object-level analysis of [4] was implemented
in the LySatool version 1 [8] was that the analysis is specified over infinite sets
of terms (which denote encryption). The implementation solves this by encod-
ing sets of terms as regular tree grammars and manipulates a finite number of
grammar rules akin to the strategy proposed in [18].

The second version of the LySatool is based on version 1 and indeed much of
the code is reused. The main modification is to extend the constraint generation
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function G from ranging over object-level processes, only, to range over meta-
level constructs as well. The definition of this function closely follows the three
last rules in Figure 4 by taking the left-hand side of the iff as an argument to the
function and returning the right hand-side. In the case of the let X ⊆ S inM ,
one has to choose a finite set that is within the same equivalence class as S.
In the implementation this is the point where the partitioning of the indexing
sets are important and serve as a parameter for controlling the precision of the
meta-level analysis. The analysis results presented in Section 4 and Section 6
have been attained using this version 2 of the LySatool.

4 The Attacker

The goal of the LySatool is to validate security properties of a LySa process.
Consequently, the main focus is on analysing process under attack from malicious
parties also populating the network. The object-level of LySa has been designed
such that this attack setup can be described as simple parallel composition: if
P is an object-level process describing a protocol and P• is an attacker then the
behaviour of the process P | P• comprises all the attacks that P• may launch
over the network on P .

Instead of having to analyse all the infinitely many attackers P• in parallel
with P we follow ideas from [17]: It suffices to analyse a single process, Phard ,
to get an account of the behaviour of all attackers.

Lemma 5 (Existence of a hardest attacker). There exists process Phard
with the property that: for all attacker processes P•

ρ, κ |= P | Phard implies ρ, κ |= P | P•

Proof. The proof is by construction of Phard and subsequent induction in P•.
The proof also relies on restricting the attention to attackers that only use the
same arities as P for communication and encryption. Details can be found in [4].

By the subject reduction result in Lemma 2 it then follows that ρ, κ |= P | Phard

gives an account of how P behaves under attack from any possible attacker,
which is allowed by the semantics of LySa. This analysis result gives an account
of the behaviour of the attacker. Note also that because P• is placed in parallel
with P it has access to all the free names in P . The hardest attacker, Phard ,
therefore takes fn(P ) as a parameter.

When choosing the partitioning of names and variables, a special equivalence
class is reserved for names and variables at the attacker. Representatives of these
equivalence classes are denoted n• and x•, respectively. For example, ρ(x•) is
an over-approximation of all the values that any variable in an attacker may
become bound to i.e. it represents the knowledge of the attacker.

4.1 The Attacker at the Meta-level

When we want to evaluate the security of a scenario described by a meta-level
process M we must consider the possibility that each of the object-level process
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P , where M 	 P , may be under attack. The aim of the analysis is, hence, to
guarantee that no such attacks can occur on any instance of M .

In order to analyse all instances of a meta-level process under attack, we can
once more rely directly on the hardest attacker Phard . By design every object-
level process instantiates to itself. Consequently, adding Phard at the meta-level
means that it always instantiates to be a hardest attacker at the object-level.
This is made clear by the following theorem:

Theorem 2 (Attacker at the meta-level). If ρ, κ |=Γ M | Phard and MΓ 	
P then ρ, κ |= P | P• for all attacker processes P•.

Proof. From (APar) then ρ, κ |=Γ M and ρ, κ |=Γ Phard . By Theorem 1 then
ρ, κ |= P . Furthermore, because Phard is an object-level process then PhardΓ =
Phard and Phard 	 Phard so by Theorem 1 it follows that also ρ, κ |= Phard .
Consequently, by (APar) then ρ, κ |= P | Phard and finally by Lemma 5 ρ, κ |=
P | P• for all attackers P•.

At the meta-level, the function mfn(M) is used to provide the set of free
names to Phard . This set may actually be larger than the free names in some
specific instance of M meaning that the attacker may increase its power because
it has access to too many names compared to what occurs semantically. However,
if no attacks are reported by the analysis when the attacker has this extra power
then no attacks can occur semantically, either.

Example 3. We refer to the scenario for the nonce handshake from Example 2
as the process M . Taking +N, = {1} the analysis result of ρ, κ |=[ ] M | Phard as
reported by the LySatool reveals that

ρ(x•) ∩ Name = {+n11,, +A1,, +B1,}

The index 1 in the analysis result is a canonical representative of any element
in N. Thus, the attacker may learn any nonce nij as well as the identities of any
principal Ai and Bj for i, j ∈ N. On the other hand, the analysis guarantees that
the keys Kij are confidential because +K11, is not in ρ(x•). Since the analysis is
an over-approximation this means that no attacker can ever learn the keys.

5 Security Properties

As discussed in Example 3, the analysis can guarantee confidentiality properties.
To find out whether a particular value V is confidential one simply inspects
the analysis result. If +V , is not in ρ(x•) then the analysis guarantees that no
attacker can ever bind V to any of its variables.

The analysis of [4] is furthermore able to guarantee destination and origin
authentication. This property considers the places where cryptography is applied
to ensure that a message can only reach a particular principal. The property of
destination and origin authentication is specified by annotations of the form

[at c destC ] and [at c origC ]
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at all points of encryption and decryption, respectively. Here c ∈ CP is a crypto-
point that marks the point in the syntax (akin to a line-number). Encryptions
are furthermore annotated with a set C ⊆ CP of destination crypto-points where
the encrypted values are intended to be decrypted. Symmetrically, decryptions
are annotated with a set C of crypto-points where successfully decrypted value
are intended to have been encrypted.

Semantically annotations are void i.e. they do not interfere with the semantic
behaviour of a process. A process P is said to guarantee dynamic authentication
none of these intentions are broken in any execution of the process. That is, P
guarantees dynamic authentication if there are no reduction steps derived using
the rule (SDec) of the form decrypt{V1, . . . , Vk}V0 [at c′ destC′ ] as{V1, . . . , Vj ;
mx j+1, . . . ,mxk}V0 [at c origC ] inP → P ′ such that c �∈ C′ or c′ �∈ C.

The main result of [4] is that an extension of the object-level analysis pre-
sented in Figure 4 is capable of analysing whether an object-level process guar-
antees dynamic authentication. The extension of the analysis essentially boils
down to adding a check of whether c �∈ C′ or c′ �∈ C in the rule (SDec) for anal-
ysis of decryption. If the analysis finds no errors in these checks then a process
P is said to guarantee static authentication. The main result of [4] is that

Lemma 6. If P guarantees static authentication then P guarantees dynamic
authentication.

Proof. The proof relies on the fact that the analysis over-approximates the dy-
namic behaviour of P and thereby also the potential authentication errors that
may be reported. The details are [4].

5.1 Authentication at the Meta-level

To further refine the authentication property for the meta-level, crypto-points
are equipped with indices analogue to indices on names and variables. That is,
crypto-points will be of the form ci. Crypto-points are also made subject to a
notion of canonicity because the meta-level analysis only distinguishes elements
up to the canonical partitioning of index sets.

The meta-level analysis is now capable of checking destination and origin
authentication up to the partitioning into equivalence classes. Conceptually, the
analysis guarantees that messages only reach principals within a certain equiv-
alence class. The meta-level analysis is extended by adding a check of whether
+ci, �∈ +C′, or +c′

i
, �∈ +C, in the rule (SDec). If no violations of the authen-

tication properties are found by these checks in the meta-level analysis of M
then M guarantees static authentication. The check for static authentication by
the meta-level analysis suffices guarantee the authentication properties for all
object-level process that M instantiates to:

Theorem 3 (Authentication at the meta-level). If M guarantees static
authentication and MΓ 	 P then P guarantees dynamic authentication.

Proof. The theorem follows immediately from Theorem 1, the fact that indexed
crypto-points are subject to canonicity, as well as Lemma 6.
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6 An Example Protocol

To illustrate the usefulness of the meta-level we analyse a protocol by Bauer,
Berson, and Feiertag [2]. According to a recent survey [6] there are no known
attacks on the protocol and, furthermore, the protocol is the basis one of the key
establishment mechanisms in an ISO/IEC standard [15]. The protocol makes use
of a server with which each principal initially shares a key KS i. In the first two
messages of the protocol, fresh nonces naij and nbij produced by principal Ii and
Ij , respectively, are sent to the server along with the identities of the principals.
The server generates a new session key Kij , which is returned encrypted to each
principal along with their own nonce and the identity of the other principal. The
protocol may be encoded as a meta-level scenario in the following way:

let X ⊆ S0 in let Y ⊆ S1 in (νi∈X∪Y KS i)
|i∈X |j∈Y !(ν naij) 〈Ii,naij〉.

(; xaij).decrypt xaij as {Ij ,naij ; xk ij}KSi [at aij orig {s2 ij} ] in 0
| |j∈Y |i∈X !(Ii; ynij).

(ν nbij) 〈Ij , Ii, yn ij ,nbij〉.
(; ybij , yaij).decrypt ybij as {Ii,nbij ; yk ij}KSj

[at bij orig {s1 ij} ] in
〈ya ij〉.0

| |i∈X |j∈Y !(Ij , Ii; zaij , zbij).(ν Kij) 〈{Ii, zbij ,Kij}KSj
[at s1 ij dest {bij} ],

{Ij , zaij ,Kij}KSi
[at s2 ij dest {aij} ]〉.0

Annotations are added to declare that the two encryptions made at the server
are intended for the correct responder and initiator of the protocol, only.

One scenario can be described by taking S0 = {0} and S1 = {1}. Then the
meta-level process describes a scenario where principal I0 repeatedly initiates the
protocol with I1. When choosing +S0, = {0} and +S1, = {1}, the analysis guar-
antees static authentication. That is, the analysis guarantees that the messages
containing the session keys will only be delivered to the correct principals.

Taking instead S0 = S1 = N, the encoding represents a scenario where every
principal Ii can use the protocol with every principal Ij for i, j ∈ N. This scenario
includes the case where a pair of principals uses the protocol in both directions
at the same time. For this scenario, the analysis is no longer guarantees static
authentication. For example, if we choose +N, = {1} the analysis reports possible
cross-overs of messages where something encrypted at +s111, may be decrypted
at +a11, and also that something encrypted at +s211, may be decrypted at +b11,.

In fact, the scenario does not satisfy dynamic authentication i.e. the authen-
tication property may also be violated semantically. The attack occurs precisely
when the protocol is used in both directions at the same time. That this is the
case is illustrated by the following message sequence where A(·) describes the
behaviour of the attacker:

1.1 Ii → Ij : Ii,nai

1.2 Ij → A(S) : Ii,nai, Ij ,nbj

2.1 Ij → Ii : Ij ,naj

2.2 Ii → A(S) : Ij ,naj , Ii,nbi

1.2′ A(S) → S : Ii,nbi, Ij ,nbj
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1.3 S → A(Ij) : {Kij , Ii,nbj}Kj , {Kij , Ij ,nbi}Ki

1.3′ A(S) → Ij : {Kij , Ii,nbj}Kj , garbage
2.3′ A(S) → Ii : {Kij , Ij ,nbi}Ki, garbage

The decryption of message 2.3′ happens at Ii acting as a responder and, thus,
represents an unintended cross-over of a message as reported by the analysis
when “something encrypted at +s211, was decrypted at +b11,”.

As an end result of the attack the two principals Ii and Ij end up sharing
a session key Kij . However, both of them will think that the key came from
the protocol session that the other principal initiated. More precisely, they ex-
pect that the protocol provided two distinct keys Kij and Kji because they ran
two session of the protocol. In fact, the protocol distributed only one key Kij .
The problem is easy to fix: one simply needs to ensure that the two encryp-
tions made at the server do not have the same format. The analysis guarantees
authentication when the messages in one of these encryptions are rearranged.

7 Conclusion

7.1 Related Work

The meta-level analysis bears some resemblance to a result shown by Comon-
Lundh and Cortier [11] that says that it suffices to consider a limited number
of principals when analysing a protocol. Their result is shown by projecting
the semantic behaviour of all principals onto this limited number of principals.
More precisely is suffices to consider k + 1 principals where k is the number of
different parts that a principal can play in the protocol. One comment on this
is that Stoller has shown that there exists protocols require exponentially many
different principals [21] so k may be quite large. Our meta-level analysis can
also be seen as projection the behaviour of different principals. However, the
projection is onto the canonical values in the analysis result rather that onto the
semantic behaviour as in [11]. Thus, our results are provided by a computable
analysis that features a syntactic meta-level, which furthermore allows a flexible
modelling of different scenarios.

The idea of having additional syntax that describes scenarios can also be
found in frameworks such as Casper [16], CAPSL [12], CVS [13],and AVISS [1].
The main difference from our approach is that they use syntactic unfolding i.e.
that their scenarios undergo a syntactic transformation (corresponding to our
instantiation) before analysis takes place.

It is also be appropriate to mention that our object-level analysis is related
to the approaches in [3,14,10]. However, since none of these approaches deal with
scenarios, which are the topic of this paper, the reader is referred to [4,7] for a
detailed comparison.

7.2 Summary

When discussing the security of a protocol it is vital to consider the scenario in
which the protocol will be deployed. This paper puts the focus on these deploy-
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ment scenarios by extending the process calculus LySa with a meta-level. This
meta-level contains language primitives that caters for a flexible description of
scenarios. We have shown that it is viable to make a control flow analysis directly
on the meta-level that, also in practice, is capable of guaranteeing both confiden-
tiality and authentication properties. The analysis has been implemented with
relatively minor effort by relying on a previous implementation of the object-
level analysis. The result is version 2 of the LySatool, which has proven its worth
by finding a previously unreported problem in a classical security protocol. The
LySatool is freely available at

http://www.imm.dtu.dk/cs LySa/lysatool

where the full analysis results for examples in this paper can also be found.

Acknowledgements. The idea of having an analysable meta-level came up when
writing [9] with Flemming Nielson and Hanne Riis Nielson. Many other ideas
concerning LySa come from them as well as Chiara Bodei and Pierpaolo Degano.
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Abstract. In [19] it was observed that a theory like the π-calculus,
dependent on a theory of names, can be closed, through a mechanism
of quoting, so that (quoted) processes provide the necessary notion of
names. Here we expand on this theme by examining a construction
for a Hennessy-Milner logic corresponding to an asynchronous message-
passing calculus built on a notion of quoting.

Like standard Hennessy-Milner logics, the logic exhibits formulae cor-
responding to sets of processes, but a new class of formulae, correspond-
ing to sets of names, also emerges. This feature provides for a number
of interesting possible applications from security to data manipulation.
Specifically, we illustrate formulae for controlling process response on
ranges of names reminiscent of a (static) constraint on port access in a
firewall configuration. Likewise, we exhibit formulae in a names-as-data
paradigm corresponding to validation for fragment of XML Schema.

1 Introduction

Starting from the practical end of things, whether we consider MAC addresses,
IP addresses, domain names or URL’s it is clear that distributed computing is
practiced, today, using names. Moreover, it is essential to the programs that
administer as well as to the ones that compute over this distributed computing
infrastructure that these names have structure. Thus, when we look to theory,
especially a theory, like the π-calculus, of computing based on interaction over
named channels, to help us with this practice some story must be told about
how the structure of these names contributes to interaction and computation
over (channels named by) them.

Starting from the theoretical end, nowhere in the tools available to the com-
puter scientist is there a countably infinite set of atomic entities that might
function as names. All such sets, e.g. the natural numbers, the set of strings of
finite length on some alphabet, etc., are generated from a finite presentation,
and as such the elements of these sets inherit structure from the generating pro-
cedure. As a theoretician focusing on some aspects of the theory of processes
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built from such a set, one may temporarily forget that structure, but it is there
nonetheless, and comes to the fore the moment one tries to build executable
models of these calculi.

Thus the fact that the π-calculus ([20]) is not a closed theory, but rather a
theory dependent upon some theory of names is both enabling and limiting. This
openness of the theory has been exploited, for example, in π-calculus implemen-
tations, like the execution engine in Microsoft’s Biztalk [17], where an ancillary
binding language providing a means of specifying a ‘theory’ of names; e.g., names
may be tcp/ip ports or urls or object references, etc. Reasoning foundationally,
however, when names have structure, name equality becomes a computation;
but, if our theory of interaction is to provide a basis for a theory of computation
– especially of distributed computation – then certainly this computation must
be accounted for as well. Moreover, the fact that any realization of these name-
based, mobile calculi of interaction must come to grips with names that have
structure begs the question: would the theoretical account of interaction be more
effective, both as a theory in its own right and as a guide for implementation, if
it included an account of the relationships between the structure of names and
the structure of processes?

1.1 Overview and Contributions

In [19] we presented a theory of an asynchronous message-passing calculus built
on a notion of quoting in which names have the structure of quoted processes, and
may be thought of as representing the code of some process, i.e. a reification of
the syntactic structure of some process (up to some equivalence). Name-passing,
as such, becomes a way of passing the code of a process as a message, and in the
presence of a dequote operation, turning the code of a process into a running
instance, this machinery yields higher-order characteristics without the introduc-
tion of process variables. 1 As is standard with higher-order calculi, replication
and/or recursion is no longer required as a primitive operation. Somewhat more
interestingly, the introduction of a process constructor to dynamically convert
a process into its code is essential to obtain computational completeness, and
simultaneously supplants the function of the ν operator. 2

In this paper we take the idea a little further via an investigation of a
Hennessy-Milner logic for this calculus. The logic is a form of spatial logic ([6],
[7]) with operators detecting structural as well as behavioral content of process.
Further, like many other logics for message-passing calculi it describes formulae
denoting sets of such processes in a more or less standard manner, but the ad-
ditional reflective structure on names also gives rise to a new class of formulae.

1 Following the tradition started by Smith and des Rivieres, [10] we dubbed this ability
to turn running code into data and back again, reflection; and hence, called the
calculus the reflective, higher-order calculus, or rho-calculus, for short, or ρ-calculus
for even shorter.

2 In fact, [19] gives a compositional encoding of the ν operator into the calculus,
making essential use of dynamic quote as well as dequote.



Namespace Logic: A Logic for a Reflective Higher-Order Calculus 355

These formulae denote sets of names, referred to in the sequel as namespaces
and causing us to dub the logic namespace logic.

These new formulae suggest approaches to various application domains, e.g.
reasoning about security, or the structure of the data passed between processes,
that differ somewhat from the current treatment of these domains using message-
passing calculi. For example, the analytic framework was not designed with
security in mind, and as such has no additional security-specific features like
nonce construction or unpacking, as is found in Gordon’s spi-calculus ([3]), and
yet has very simple formulae to express such properties as that a process will only
ever receive requests from a given range of ports. Moreover, these properties are
expressed as formulae, not as process specifications, thus observance is measured
by satisfaction not protocol equivalence. Further, while closer in spirit – ala
the proposition-as-types paradigm – to type-based approaches like Gordon and
Jeffrey’s approach to typing correspondence assertions [14] or Abadi’s various
type systems for security ([2] [1]), it is a logic and not a type system with the
attendent advantages and disadvantages. For example, a very broad range of
properties may be expressed, but the system is only semi-decidable. Likewise,
neither the calculus nor the logic were designed with any particular data analysis
in mind, and yet we find relatively simple treatment of the semantics of validation
for a fragment of XML schema.

While the main focus of the paper is the logic, and some suggestive examples, to
provide a self-contained presentation, the paper also presents a concrete instance
of a minimal reflective asynchronous message-passing calculus and the manner in
which its processes and names witness the formulae of the logic. As in [19] where
we took the view that the main contribution of the concrete machinery was to pro-
vide an instrument to bring to life a set of questions regarding the role of names
in calculi of interaction, here we assert that the real contribution manifest by the
logic is an instrument to better frame and sharpen those questions. These ques-
tions include the calculation of name equality as a computation to be considered
within the framework of interaction and the roles of name equality in substitution
versus synchronization. These questions don’t really come to life, though, without
the instruments in hand. So, we turn immediately to the formal presentation.

2 The Calculus

This presentation is essentially the same as the one found in [19].

Notation. We let P,Q,R range over processes and x, y, z range over names.

ρ-calculus P,Q ::= 0 null process
| x(y) . P input
| x〈|P |〉 lift
| 
x� drop
| P |Q parallel

x, y ::= �P
 quote
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Quote. Working in a bottom-up fashion, we begin with names. The techni-
cal detail corresponding to the π-calculus’ parametricity in a theory of names
shows up in standard presentations in the grammar describing terms of the lan-
guage: there is no production for names; names are taken to be terminals in
the grammar. Our first point of departure from a more standard presentation of
an asynchronous mobile process calculus is here. The grammar for the terms of
the language will include a production for names in the grammar. A name is a
quoted process, �P
.

Parallel. This constructor is the usual parallel composition, denoting concur-
rent execution of the composed processes.

Lift and Drop. Despite the fact that names are built from (the codes of)
processes, we still maintain a careful disinction in kind between process and
name; thus, name construction is not process construction. So, if one wants to be
able to generate a name from a given process, there must be a process constructor
for a term that creates a name from a process. This is the motivation for the
production x〈|P |〉, dubbed here the lift operator. The intuitive meaning of this
term is that the process P will be packaged up as its code, �P
, and ultimately
made available as an output at the port x.

A more formal motivation for the introduction of this operator will become
clear in the sequel. But, it will suffice to say now that �P
 is impervious to
substitution. In the ρ-calculus, substitution does not affect the process body
between quote marks. On the other hand, x〈|P |〉 is susceptible to substitution
and as such constitutes a dynamic form of quoting because the process body
ultimately quoted will be different depending on the context in which the x〈|P |〉
expression occurs.

Of course, when a name is a quoted process, it is very handy to have a
way of evaluating such an entity. Thus, the 
x� operator, pronounced drop x,
(eventually) extracts the process from a name. We say ‘eventually’ because this
extraction only happens when a quoted process is substituted into this expres-
sion. A consequence of this behavior is that 
x� is inert except under and input
prefix. One way of saying this is that if you want to get something done, some-
times you need to drop a name, but it should be the name of an agent you
know.

Remark 1. The lift operator turns out to play a role analogous to (ν x)P . As
mentioned in the introduction, it is essential to the computational completeness
of the calculus, playing a key role in the implementation of replication. It also
provides an essential ingredient in the compositional encoding of the ν operator.

Remark 2. It is well-known that replication is not required in a higher-order
process algebra [23]. While our algebra is not higher-order in the traditional
sense (there are not formal process variables of a different type from names) it
has all the features of a higher-order process algebra. Thus, it turns out that
there is no need for a term for recursion. To illustrate this we present below an
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encoding of !P in this calculus. Intuitively, this will amount to receiving a quoted
form of a process, evaluating it, while making the quoted form available again.
The reader familiar with the λ-calculus will note the formal similarity between
the crucial term in the encoding and the paradoxical combinator [4].

Input and Output. The input constructor is standard for an asynchronous
name-passing calculus. Input blocks its continuation from execution until it re-
ceives a communication. Lift is a form of output which – because the calculus is
asynchronous – is allowed no continuation. It also affords a convenient syntactic
sugar, which we define here.

x[y] � x〈|
y�|〉

The Null Process. As we will see below, the null process has a more distin-
guished role in this calculus. It provides the sole atom out of which all other
processes (and the names they use) arise much in the same way that the number
0 is the sole number out of which the natural numbers are constructed; or the
empty set is the sole set out of which all sets are built in ZF -set theory [16]; or
the empty game is the sole game out of which all games are built in Conway’s
theory of games and numbers [8]. This analogy to these other theories draws
attention, in our opinion, to the foundational issues raised in the introduction
regarding the design of calculi of interaction.

2.1 The Name Game

Before presenting some of the more standard features of a mobile process cal-
culus, the calculation of free names, structural equivalence, etc., we wish to
consider some examples of processes and names. In particular, if processes are
built out of names, and names are built out of processes, is it ever possible to
get off the ground? Fortunately, there is one process the construction of which
involves no names, the null process, 0. Since we have at least one process, we
can construct at least one name, namely �0
 3. Armed with one name we can
now construct at least two new processes that are evidently syntactically differ-
ent from the 0, these are �0
[�0
] and �0
(�0
) . 0. As we might expect, the
intuitive operational interpretation of these processes is also distinct from the
null process. Intuitively, we expect that the first outputs the name �0
 on the
channel �0
, much like the ordinary π-calculus process x[x] outputs the name
x on the channel x, and the second inputs on the channel �0
, much like the
ordinary π-calculus process x(x) . 0 inputs on the channel x.

Of course, now that we have two more processes, we have two more names,
��0
[�0
]
 and ��0
(�0
) . 0
. Having three names at our disposal we can
construct a whole new supply of processes that generate a fresh supply of names,
and we’re off and running. It should be pointed out, though, that as soon as we

3 Pun gratefully accepted ;-).
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had the null process we also had 0 | 0 and 0 | 0 | 0 and consequently, we had the
names �0|0
, and �0|0|0
, and .... But, since we ultimately wish to treat these
compositions as merely other ways of writing the null process and not distinct
from it, should we admit the codes of these processes as distinct from �0
?

This question leads to several intriguing and apparently fundamental ques-
tions. Firstly, if names have structure, whether this derives from the structure of
processes or something else, what is a reasonable notion of equality on names?
How much computation, and of what kind, should go into ascertaining equal-
ity on names? Additionally, what roles should name equality play in a calculus
of processes? In constructing this calculus we became conscious that substitu-
tion and synchronization identify two potentially very different roles for name
equality to play in name-passing calculi. That these are very different roles is
suggested by the fact that they may be carried out by very different mechanisms
in a workable and effective theory. We offer one choice, but this is just one design
choice among infinitely many. Most likely, the primary value of this proposal is
to raise the question. Likewise, we offer a proposal regarding the calculation of
name equality that is just one of many and whose real purpose is to make the
question vivid. We wish to turn to the core mechanics of the calculus with these
questions in mind.

2.2 Free and Bound Names

The syntax has been chosen so that a binding occurrence of a name is sandwiched
between round braces, ( ·). Thus, the calculation of the free names of a process,
P , denoted FN (P ) is given recursively by

FN (0) = ∅
FN (x(y) . P ) = {x} ∪ (FN (P ) \ {y})
FN (x〈|P |〉) = {x} ∪ FN (P )
FN (P |Q) = FN (P ) ∪ FN (Q)
FN (
x�) = {x}

An occurrence of x in a process P is bound if it is not free. The set of names
occurring in a process (bound or free) is denoted by N (P ).

2.3 Structural Congruence

The structural congruence of processes, noted ≡, is the least congruence, con-
taining α-equivalence, ≡α, that satisfies the following laws:

P | 0 ≡ P ≡ 0 | P
P |Q ≡ Q | P

(P |Q) |R ≡ P | (Q |R)
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2.4 Name Equivalence

We now come to one of the first real subtleties of this calculus. Both the calcu-
lation of the free names of a process and the determination of structural congru-
ence between processes critically depend on being able to establish whether two
names are equal. In the case of the calculation of the free names of an input-
guarded process, for example, to remove the bound name we must determine
whether it is in the set of free names of the continuation. Likewise, structural
congruence includes α-equivalence. But, establishing α-equivalence between the
processes x(z) . w〈|y[z]|〉 and x(v) . w〈|y[v]|〉, for instance, requires calculating
a substitution, e.g. x(v) . w〈|y[v]|〉{z/v}. But this calculation requires, in turn,
being able to determine whether two names, in this case the name in the object
position of the output, and the name being substituted for, are equal.

As will be seen, the equality on names involves structural equivalence on
processes, which in turn involves alpha equivalence, which involves name equiv-
alence. This is a subtle mutual recursion, but one that turns out to be well-
founded. Before presenting the technical details, the reader may note that the
grammar above enforces a strict alternation between quotes and process con-
structors. Each question about a process that involves a question about names
may in turn involve a question about processes, but the names in the processes
the next level down, as it were, are under fewer quotes. To put it another way,
each ‘recursive call’ to name equivalence will involve one less level of quoting,
ultimately bottoming out in the quoted zero process.

Let us assume that we have an account of (syntactic) substitution and α-
equivalence upon which we can rely to formulate a notion of name equivalence,
and then bootstrap our notions of substitution and α-equivalence from that.
We take name equivalence, written ≡N , to be the smallest equivalence relation
generated by the following rules.

�
x�
≡N x
(Quote-drop)

P ≡Q

�P
≡N �Q
 (Struct-equiv)

2.5 Syntactic Substitution

Now we build the substitution used by α-equivalence. We use Proc for the set
of processes, �Proc
 for the set of names, and {y/x} to denote partial maps,
s : �Proc
 → �Proc
. A map, s lifts, uniquely, to a map on process terms,
ŝ : Proc→ Proc by the following equations.

(0) ̂{�Q
/�P
} = 0

(R | S) ̂{�Q
/�P
} = (R) ̂{�Q
/�P
} | (S) ̂{�Q
/�P
}
(x(y) . R) ̂{�Q
/�P
} = (x){�Q
/�P
}(z) . ((R{̂z/y}) ̂{�Q
/�P
})
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(x〈|R|〉) ̂{�Q
/�P
} = (x){�Q
/�P
}〈|R ̂{�Q
/�P
}|〉

(
x�) ̂{�Q
/�P
} =
{


�Q
� x≡N �P


x� otherwise

where

(x){�Q
/�P
} =
{

�Q
 x≡N �P

x otherwise

and z is chosen distinct from �P
, �Q
, the free names in Q, and all the names
in R. Our α-equivalence will be built in the standard way from this substitution.

But, given these mutual recursions, the question is whether the calculation
of ≡N (respectively, ≡, ≡α) terminates. To answer this question it suffices to
formalize our intuitions regarding level of quotes, or quote depth, #(x), of a
name x as follows.

#(�P
) = 1 + #(P )

#(P ) =
{
max{#(x) : x ∈ N (P )} N (P ) �= ∅

0 otherwise

The grammar ensures that #(�P
) is bounded. Then the termination of ≡N

(respectively, ≡, ≡α) is an easy induction on quote depth.

2.6 Dynamic Quote: An Example

Anticipating something of what’s to come, consider applying the substitution,
{̂u/z}, to the following pair of processes, w〈|y[z]|〉 and w[�y[z]
].

w〈|y[z]|〉{̂u/z} = w〈|y[u]|〉
w[�y[z]
]{̂u/z} = w[�y[z]
]

Because the body of the process between quotes is impervious to substitution,
we get radically different answers. In fact, by examining the first process in an
input context, e.g. x(z).w〈|y[z]|〉, we see that the process under the lift operator
may be shaped by prefixed inputs binding a name inside it. In this sense, the lift
operator will be seen as a way to dynamically construct processes before reifying
them as names.

2.7 Semantic Substitution

The substitution used in α-equivalence is really only a device to formally rec-
ognize that binding occurrences do not depend on the specific names. It is not
the engine of computation. The proposal here is that while synchronization is
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the driver of that engine, the real engine of computation is a semantic notion of
substitution that recognizes that a dropped name is a request to run a process.
Which process? Why the one whose code has been bound to the name being
dropped. Formally, this amounts to a notion of substitution that differs from
syntactic substitution in its application to a dropped name.

(
x�) ̂{�Q
/�P
} =
{

Q x≡N �P


x� otherwise

In the remainder of the paper we will refer to semantic and syntactic sub-
stitutions simply as substitutions and rely on context to distinguish which is
meant. Similarly, we will abuse notation and write {y/x} for {̂y/x}.

Finally equipped with these standard features we can present the dynamics
of the calculus.

2.8 Operational Semantics

The reduction rules for ρ-calculus are

x0 ≡N x1

x0〈|Q|〉 | x1(y) . P → P{�Q
/y} (Comm)

In addition, we have the following context rules:

P → P ′

P |Q→ P ′ |Q
(Par)

P ≡ P ′ P ′ → Q′ Q′ ≡Q

P → Q
(Equiv)

The context rules are entirely standard and we do not say much about them,
here. The communication rule does what was promised, namely make it possible
for agents to synchronize and communicate processes packaged as names. For
example, using the comm rule and name equivalence we can now justify our
syntactic sugar for output.

x[z] | x(y) . P

= x〈|
z�|〉 | x(y) . P
→ P{�
z�
/y}
≡ P{z/y}

But, it also provides a scheme that identifies the role of name equality in syn-
chronization. There are other relationships between names with structure that
could also mediate synchronization. Consider, for example, a calculus identical to
the one presented above, but with an alternative rule governing communication.
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∀R.[Pchannel |Qchannel →∗ R] ⇒ R→∗ 0
�Qchannel
〈|Q|〉 | �Pchannel
(y) . P → P{�Q
/y}

(Comm-annihilation)

Intuitively, it says that the codes of a pair of processes, Pchannel, Qchannel,
stand in channel/co-channel relation just when the composition of the processes
always eventually reduces to 0, that is, when the processes annihilate one an-
other. This rule is well-founded, for observe that because 0 ≡ 0 | 0, 0 | 0 →∗ 0.
Thus, �0
 serves as its own co-channel. Analogous to our generation of names
from 0, with one such channel/co-channel pair, we can find many such pairs.
What we wish to point out about this rule is that we can see precisely an ac-
count of the calculation of the channel/co-channel relationship as deriving from
the theory of interaction. We do not know if the computation of name equality
has a similar presentation, driving home the potential difference of those two
roles in calculi of interaction.

We mention, as a brief aside, that there is no reason why 0 is special in the
scheme above. We posit a family of calculi, indexed by a set of processes {Sα},
and differing only in their communication rule each of which conforms to the
scheme below.

∀R.[Pchannel |Qchannel →∗ R] ⇒ R→∗ R′ ≡ Sα

�Qchannel
〈|Q|〉 | �Pchannel
(y) . P → P{�Q
/y}
(Comm-annihilation-S)

We explore this family of calculi in a forthcoming paper. For the rest of this
paper, however, we restrict our attention to the calculus with the less exotic
communication rule, using → for reduction according to that system and ⇒
for →∗.

3 Replication

As mentioned before, it is known that replication (and hence recursion) can
be implemented in a higher-order process algebra [23]. As our first example
of calculation with the machinery thus far presented we give the construction
explicitly in the ρ-calculus.

D(x) � x(y) . (x[y]|
y�)
!P (x) � x〈|D(x) | P |〉 | D(x)

!P (x)
= x〈|(x(y) . (x[y]|
y�)) | P |〉 | x(y) . (x[y]|
y�)
→ (x[y]|
y�){�(x(y) . (
y�|x[y])) | P
/y}
= x[�(x(y) . (x[y]|
y�)) | P
] | (x(y) . (x[y]|
y�)) | P
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→ . . .

→∗ P | P | . . .

Of course, this encoding, as an implementation, runs away, unfolding !P
eagerly. As it is instructive to construct a lazier – and more implementable –
replication operator, restricted to input-guarded processes we recommend this
exercise to the reader interested in gaining further inside into the mechanics of
the calculus.

4 Bisimulation

Having taken the notion of restriction out of the language, we carefully place it
back into the notion of observation, and hence into the notion of program equal-
ity, i.e. bisimulation. That is, we parameterize the notion of barbed bisimulation
by a set of names over which we are allowed to set the barbs. The motivation
for this choice is really comparison with other calculi. The set of names of the
ρ-calculus is global. It is impossible, in the grammar of processes, to guard terms
from being placed into contexts that can potentially observe communication.
So, we provide a place for reasoning about such limitations on the scope of
observation in the theory of bisimulation.

Definition 1. An observation relation, ↓N , over a set of names, N , is the
smallest relation satisfying the rules below.

y ∈ N , x≡N y

x[v] ↓N x
(Out-barb)

P ↓N x or Q ↓N x

P |Q ↓N x
(Par-barb)

We write P ⇓N x if there is Q such that P ⇒ Q and Q ↓N x.

Notice that x(y) . P has no barb. Indeed, in ρ-calculus as well as other
asynchronous calculi, an observer has no direct means to detect if a message
sent has been received or not.

Definition 2. An N -barbed bisimulation over a set of names, N , is a symmet-
ric binary relation SN between agents such that P S NQ implies:

1. If P → P ′ then Q⇒ Q′ and P ′ S NQ
′.

2. If P ↓N x, then Q ⇓N x.

P is N -barbed bisimilar to Q, written P
�≈N Q, if P S NQ for some N -barbed

bisimulation SN .
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5 Logic

Namespace logic resides in the subfamily of Hennessy-Milner logics discovered
by Caires and Cardelli and known as spatial logics [7]. Thus, as is seen below,
in addition to the action modalities, we also find formulae for separation, corre-
sponding, at the logical level, to the structural content of the parallel operator
at the level of the calculus. Likewise, we have quantification over names.

In this connection, however, we find an interesting difference between spatial
logics investigated heretofore and this one. As in the calculus, we find no need
for an operator corresponding to the ν construction. However, revelation in spa-
tial logic, is a structural notion [7]. It detects the declaration of a new name. No
such information is available in the reflective calculus or in namespace logic. The
calculus and the logic can arrange that names are used in a manner consistent
with their being declared as new in the π-calculus, but it cannot detect the dec-
laration itself. Seen from this perspective, revelation is a somewhat remarkable
observation, as it seems to be about detecting the programmer’s intent.

reflective logic φ, ψ ::= true verity
| 0 nullity
| ¬φ negation
| φ&ψ conjunction
| φ | ψ separation
| 
b� descent
| a〈|φ|〉 elevation
| 〈a?b〉φ activity
| rec X . φ greatest fix point
| ∀n : ψ . φ quantification

a ::= �φ
 indication
| b ...

b ::= �P
 nomination
| n ...

We let PForm denote the set of formulae generated by the φ-production,
QForm denote the set of formulae generated by the a-production and V denote
the set of propositional variables used in the rec production.

Inspired by Caires’ presentation of spatial logic [5], we give the semantics
in terms of sets of processes (and names). We need the notion of a valuation
v : V → ℘(Proc), and use the notation v{S/X} to mean

v{S/X}(Y ) =
{

S Y = X
v(Y ) otherwise

The meaning of formulae is given in terms of two mutually recursive func-
tions,

[[−]](−) : PForm× [V → ℘(Proc)] → ℘(Proc)
((−))(−) : QForm× [V → ℘(Proc)] → ℘(�Proc
)
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taking a formula of the appropriate type and a valuation, and returning a set of
processes or a set of names, respectively.

[[true]](v) = Proc

[[0]](v) = {P : P ≡ 0}
[[¬φ]](v) = Proc/[[φ]](v)

[[φ&ψ]](v) = [[φ]](v) ∩ [[ψ]](v)
[[φ | ψ]](v) = {P : ∃P0, P1.P ≡ P0 | P1, P0 ∈ [[φ]](v), P1 ∈ [[ψ]](v)}

[[
b�]](v) = {P : ∃Q,P ′.P ≡Q|
x�, x ∈ ((b))(v)}
[[a〈|φ|〉]](v) = {P : ∃Q,P ′.P ≡Q | x〈|P ′|〉, x ∈ ((a))(v), P ′ ∈ [[φ]](v)}

[[〈a?b〉φ]](v) = {P : ∃Q,P ′.P ≡Q | x(y) . P ′, x ∈ ((a))(v),
∀c.∃z.P ′{z/y} ∈ [[φ{c/b}]](v)}

[[rec X . φ]](v) = ∪{S ⊆ Proc : S ⊆ [[φ]](v{S/X})}
[[∀n : ψ . φ]](v) = ∩x∈((�ψ�))(v)[[φ{x/n}]](v)

((�φ
))(v) = {x : x≡N �P
, P ∈ [[φ]](v)}
((�P
))(v) = {x : x≡N �P
}

We say P witnesses φ (resp., x witnesses �φ
), written P |= φ (resp., x |= �φ
)
just when ∀v.P ∈ [[φ]](v) (resp., ∀v.x ∈ [[�φ
]](v)).

Theorem 1 (Equivalence). P
�≈ Q⇔ ∀φ.P |= φ ⇔ Q |= φ.

The proof employs an adaptation of the standard strategy. As noted in the
introduction, this theorem means that there is no algorithm guaranteeing that
a check for the witness relation will terminate.

Syntactic Sugar. In the examples below, we freely employ the usual
DeMorgan-based syntactic sugar. For example,

φ ⇒ ψ � ¬(φ&¬ψ)
φ ∨ ψ � ¬(¬φ&¬ψ)

Also, when quantification ranges over all of Proc, as in ∀n : �true
 . φ, we
omit the typing for the quantification variable, writing ∀n . φ.

5.1 Examples

Controlling Access to Namespaces. Suppose that �φ
 describes some
namespace, i.e. some collection of names. We can insist that a process restrict its
next input to names in that namespace by insisting that it witness the formula

〈�φ
?b〉 true&¬〈�¬φ
?b〉true
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which simply says the the process is currently able to take input from a name
in the namespace �φ
 and is not capable of input on any name not in that
namespace. In a similar manner, we can limit a server to serving only inputs in
�φ
 throughout the lifetime of its behavior 4

rec X . 〈�φ
?b〉X&¬〈�¬φ
?b〉true

This formula is reminiscent of the functionality of a firewall, except that it is
a static check. A process witnessing this formula will behave as though it were
behind a firewall admitting only access to the ports in �φ
 without the need for
the additional overhead of the watchdog machinery.

Validating the Structure of Data. Of course, the previous example might
make one wonder what a useful namespace looks like. The relevance of this
question is further amplified when we observe that processes pass names as
messages as well as use them to govern synchronization. The next example,
therefore, considers a space of names that might be seen as well-suited to play
the role of data, for their structure loosely mimics the structure of the infoset
model [9] of XML (sans schema).

φinfo = �rec X . (∀m .m〈|∀n . 0 ∨ n〈|X |〉 ∨ rec Y . (∀n′ . 〈n′?b〉(X ∨ Y ))∨ (X |X)|〉)


The formula is essentially a recursive disjunction selecting names that are
first of all rooted with an enclosing lift operation – reminiscent of the way an
XML document has a single enclosing root; and then are either

– the empty ‘document’; or
– an ‘element’; or
– a sequence of documents each ‘located’ at an input action; or
– an unordered group.

Notice that it is possible to parameterize this namespace on names for rooting
‘documents’ or ‘elements’. Currently, these are typed as coming from the whole
namespace, �true
, but they could come from any subspace.

Moreover, the formula is itself a template for the interpretation of schema
specifications [24]. If we boil XSD schema down to its essential type constructors,
we have a recursive specification in which a schema is a

– a sequence, or
– a choice, or
– a group, or
– a recursion, in which a type name is bound to a schema definition

of element-tagged schema or schema references, with the recursive specification
bottoming out at the simple and builtin types. Abstractly, then essential struc-
tures of XSD schema are captured by the grammar
4 Of course, this formula also says the server never goes down, either – or at least is

always willing to take such input...;-).
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schema S ::= ε empty document
| ESequence sequence
| EChoice choice
| EGroup group
| rec N . S recursion

ESequence ::= ε | E,ESequence sequence of elements
EChoice ::= ε | E + EChoice choice of elements
EGroup ::= ε | E | EGroup group of elements

E ::= tag(N | S) element

We use s to range over schema, σ, χ and γ to range over sequences, choices
and groups, respectively.

The encoding below, which for clarity makes liberal – but obvious – use of
polymorphism and elides the standard machinery for treating recursion variables,
illustrates that we can view this grammar as essentially providing a high-level
language for carving out namespaces in which the names conform to the schema.

[[ε]] = �0

[[tag(s), σ]] = �∀n : [[tag]] . 〈n?b〉([[s]] | [[σ]])


[[tag(s) + χ]] = �∀n : [[tag]] . (〈n?b〉[[s]]) ∨ [[χ]]

[[tag(s) | γ]] = �∀n : [[tag]] . (〈n?b〉[[s]]) | [[γ]]

[[rec N . s]] = �rec N . [[s]]


We emphasize that the example is not meant to be a complete account of
XML schema. Rather, it is intended to suggest that with the reflective capabilities
the logic gives a fairly intuitive treatment of names as structured data. The
simplicity and intuitiveness of the treatment is really brought home, however,
when employing the framework analytically. As an example, from a commonsense
perspective it should be the case that any XML document that observes a schema
automatically also corresponds to an infoset. The reader is encouraged to try
her hand at using the framework to establish that if s is a schema, then

x |= [[s]] ⇒ x |= φ′
info

where φ′
info a suitably modified version of φinfo.

6 Conclusions and Future Work

We introduced namespace logic, a spatial-style Hennessy-Milner logic for a reflec-
tive asynchronous message-passing calculus built out of a notion of quote. We
introduced some examples highlighting potential applications to security and
data analysis.

We note that this work is situated in the larger context of a growing in-
vestigation into naming and computation. Milner’s studies of action calculi led
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not only to reflexive action calculi [21], but to Power’s and Hermida’s work on
name-free accounts of action calculi [15] as well as Pavlovic’s [22]. Somewhat
farther afield, but still related, is Gabbay’s theory of freshness [12] and the nom-
inal logics [13]. Very close to the mark, Carbone and Maffeis observe a tower
of expressiveness resulting from adding very simple structure to names [18]. In
some sense, this may be viewed as approaching the phenomena of structured
names ‘from below’. By making names be processes, this work may be seen as
approaching the same phenomena ‘from above’. But, both investigations are re-
ally the beginnings of a much longer and deeper investigation of the relationship
between process structure and name structure.

Beyond foundational questions concerning the theory of interaction, or ap-
plications to security and data analysis such an investigation may be highly
warranted in light of the recent connection between concurrency theory and bi-
ology. In particular, despite the interesting results achieved by researchers in
this field, there is a fundamental difference between the kind of synchronization
observed in the π-calculus and the kind of synchronization observed between
molecules at the bio-molecular level. The difference is that interactions in the
latter case occur at sites with extension and behavior of their own [11]. An ac-
count of these kinds of phenomena may be revealed in a detailed study of the
relationship between the structure of names and the structure of processes.

Acknowledgments. The authors wish to thank Robin Milner for his thoughtful
and stimulating remarks regarding earlier work in this direction, and Cosimo
Laneve for urging us to consider a version of the calculus without heating rules.
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Erratum

Editorial Board

Abstract. Due to an unfortunate error, the conference subtitle was not
correct in the original online version of this volume. The subtitle should
be “International Symposium, TGC 2005, Edinburgh, UK, April 7-9,
2005”.
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