
M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 450 – 459, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Selecting Prototypes in Mixed Incomplete Data

Milton García-Borroto1 and José Ruiz-Shulcloper2

1 Bioplants Center, UNICA, C. de Ávila, Cuba
mil@bioplantas.cu

http://www.bioplantas.cu
2 Advanced Technologies Applications Center, MINBAS, Cuba

jshulcloper@cenatav.co.cu
http://www.cenatav.co.cu/

Abstract. In this paper we introduce a new method for selecting prototypes
with Mixed Incomplete Data (MID) object description, based on an extension
of the Nearest Neighbor rule. This new rule allows dealing with functions that
are not necessarily dual functions of distances. The introduced compact set
editing method (CSE) constructs a prototype consistent subset, which is also
subclass consistent. The experimental results show that CSE has a very nice
computational behavior and effectiveness, reducing around 50% of prototypes
without appreciable degradation on accuracy, in almost all databases with more
than 300 objects.

1 Introduction

Supervised classifiers need a good training matrix for classifying with effectiveness.
This “goodness” is usually achieved by expert criterion, but sometimes even experts
make this selection arbitrarily. These classifiers typically compare a new unclassified
object with all stored classified ones to make a decision. This can make them
prohibitively costly for large training sets. One possible solution to these problems is
to reduce the cardinality of the object descriptions sample, while simultaneously
insisting that the decisions based on the reduced data set perform as well, or nearly as
well, as the decisions based on the original data set. This process is known as finding
prototypes.

There are two different goals approached while finding prototypes:

− Minimize the size of the training set (condensing methods).
− Reduce the size of the training set obtaining classification accuracy never worse

than with the initial training matrix (editing methods).

On the other hand, in order to solve practical real problems, especially in soft
sciences, we have to deal frequently with description of objects that are non-classical,
that is, the features are not exclusively numerical or categorical. Both kinds of values
can appear simultaneously, and a special symbol is necessary to denote the absence of
values (missing values). A mixed and incomplete description of objects should be
used in this case (MID). Many examples of real problems with this sort of objects can
be found [1, 2] and also in the UCI Repository of Machine Learning Databases [3].

 Selecting Prototypes in Mixed Incomplete Data 451

Although the terms distance and dissimilarity have been widely exchanged, it is
not true that a dissimilarity function is always dual to a distance function. There are
many practice applications that use non-reflexive and/or non-symmetrical
dissimilarities, which their duals are evidently not distances [4, 5].

Most prototype selection algorithms were developed to deal with distances defined
in metric spaces, which almost never is possible to use while working with MID.
Some of them may be trivially extended to work with MID (Hart’s CNN [6], Wilson’s
ENN [7], Random [8]) and many others do not, because use properties of distances
and metric spaces for working (Construction of new prototypes [9], proximity graphs
[10]).

2 Basic Concepts

Let U a universe of objects, structured in K1, …,Kr classes, described in terms of a
finite set of features R={x1,… xn}. Each of these features has associated a set of
admissible values Mi, which include de value ‘*’ for the case of unknown value. Over
Mi no algebraic, topologic of logic structure is assumed. Then be U=M1×…×Mn, the
Cartesian product of the admissible values sets of features of R. Let O=(x1(O), x2(O),
…, xn(O)), where xi:U→Mi . A comparison criterion ϕi:Mi× Mi→Li is associated to
each xi, where Li is a totally ordered set. A similarity function is a function Γ as be
defined in [11]. Γ(O1,O2) is an evaluation of the degree of similarity between any two
descriptions of objects belonging to U. Any restriction of Γ to any subset of R will be
called a partial similarity function. Besides, this function is characterized by the
following properties: the partial similarity relationships between any pair of objects
are preserved when the total similarity between these objects is considered. Also, the
maximum value of similarity is reached when the same part of the same object for any
non-empty subset of R is considered, including the case of whole R.

There are many pattern recognition algorithms for either numerical data processing
or categorical data processing, that can be extended for the case of MID. These
extensions are scarce and non trivial because it is necessary to face several problems.
One of the simplest is the assumption of a distance for the comparison of MID.

Nearest neighbor rule can not be applied with similarities which are non-dual to
distances because the term “near” is associated with distances, while the term “most
similar” is associated with analogies.

Let α(O) =(α1(O),…, αr(O)) the membership t-uple of O in which αi(O) means the
grade of membership of O to the class Ki, i=1,..,r. For example, it could have αi(O)

={0,1} with the obvious interpretation. Let Q=U
r

i

iK
1

'

=

, '
iK ⊂Ki, i=1,…r, a training set.

Let O∈U\Q, the most similar neighbor rule (MSN) for classifying O is to assign it
the membership t-uple α(O) in the following way:

A) Assuming Γ as just a similarity function

If
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ΓΓ
∈∈

)},({)},,({max maxmax OOOO i
QO

i
QO ii

=Γ(O,O') or Γ(O', O) then

α(O)= α(O')

452 M. García-Borroto and J. Ruiz-Shulcloper

B) Assuming Γ as symmetric similarity function
If)},({max i

QO
OO

i

Γ
∈

=Γ(O,O') then α(O)= α(O'), with O'∈Q

Observe that in these cases MSN rule does not require that K be a partition neither
a hard structuralization of U.

We say that Oi, Oj∈U are β0-similar objects if Γ(Oi, Oj) ≥ β0. In the same way Oi is
a β0-isolated object if 0),(β<Γ∈≠∀ ijij OOUOO .The β0 threshold value can be

used to control how similar a pair of objects must be in order to be considered β0-
similar.

Definition. NU ⊆ U, NU ≠ ∅ is a compact set if: [11]

− { } NUOOOOONUOUO jjiti

OO
UO

ij

it

t

∈⇒
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
≥Γ=Γ∧∈∈∀

≠
∈

0),(),(max β

− { } NUONUOOOOO pttpip

OO
UO

pii

i

∈⇒
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
∈∧≥Γ=Γ

≠
∈

0),(),(max β

− |NU| is minimal.
− Every β0-isolated object is a compact set (degenerated).

The compact set criterion induces a unique partition for a given data set, which has
the property that one object x and all its most similar neighbors belongs to the same
cluster and also, those objects for which x is its most similar neighbor.

In many classification problems, a class is not uniformly formed. Consider, for
example, in the universe of all humans we can define two classes: S is the class of all
who are sick, and H is the class of all who are healthy. In the class S are grouped
together many different objects with many different diseases, which compose
subclasses inside the outer class. Intuitively, if an object belongs to a subclass its most
similar neighbor must be in the same set, so it is obvious that a subclass should be
considered as a union of compact sets.

Consider now the problem of selecting a set of prototypes which describes this
problem. We face two important difficulties:

1. Selecting the number of prototypes per subclass (and obviously per class) can not
be done a priori, because it depends on the inner structure of each subclass, which
can only safely be inferred from data.

2. If the subclass structure of the class is not preserved someway it may be a serious
degradation on accuracy, and it may be whole subclasses without a single
representative. That is why it is important to introduce a new kind of consistency.

Let Q ⊂ U a training matrix of a set of classes K={K1, K2,…, Kr}, Cf(LM, x) a
classifier with learning matrix LM and MSNR(x) the most similar neighbor of object x
in set R.

 Selecting Prototypes in Mixed Incomplete Data 453

Following Hart [6] R ⊂ Q is a prototype consistent subset with respect to (wrt) Cf
and Q iff)],(),([xRCfxQCfQx =∈∀

Definition. Let Φ a partition of Q in subclasses, such that
)]()(, [2121 xxxxIi ii αα =⇒Φ∈Φ∈Φ∈∀ and Ri ⊂ Φi, a set of representatives

associated to each subclass. U
Ii

iRR
∈

= is subclass consistent wrt Φ iff:

])([(iRi xMSNxQxIi Φ∈⇒Φ∈∈∀∈∀

3 Compact Set Editing (CSE) Algorithm

Inputs:

- β0-compact sets in a maximal similarity graph (oriented graph each edge from
vertex a to vertex b means that b is the most β0-similar element of a) described by
a set of edges C and a set of vertexes V.

- α(x): class associated with vertex x
Output:

- Subset of selected prototypes R
Notations:

- S(x) = {b ∈ V / (x, b) ∈ C}, set of the successors of vertex x in graph V. The
presence of these elements in K guarantee the good classification of x

- A(x) = {a ∈ V / (a, x) ∈ C}, set of the predecessors of vertex x in graph V.
0. R = ∅
1. Let associate each vertex x in V with a quadruple (S’x, Ex, Sx, Flagsx), where:

S’x = |{y ∈ S(x) / α(x) ≠ α(y)}|
Ex = |{y ∈ A(x) / α(x) = α(y)}|
Sx = |{y ∈ S(x) / α (x) = α (y)}|
Flagsx ⊂ V, Flagsx = ∅

2. R’ = { x ∈ V / S’x > 0}
3. If R’ = ∅ go to step 6
4. C ← C \ {(x, y) ∈ C / x ∈ R’ ∧ α(x) ≠ α(y)}
5. For each element x ∈ R’ execute Move(x).
6. ∀ x ∈ V [(Sx = 0) ⇒ execute Move(x)]

7.
⎥
⎦

⎤
⎢
⎣

⎡
⇒∉∈∀∈∀

∈

Move(x) execute
}\{

U
xVz

zx FlagsyFlagsyVx

8. Sort the elements of V with the following order relation:
)()(yxyxyxyxyxyx FlagsFlagsSSEESSEEEEyx >∧=∧=∨<∧=∨<⇔p

9. Execute Discard(x1), where x1 is the first vertex of V (p)
10. If V = ∅ end, else go to step 6

454 M. García-Borroto and J. Ruiz-Shulcloper

The indexes calculated in step 1 are the core of the later decision of which vertex to
select and which to discard. Steps 2-6 break the compact sets eliminating the edges
connecting vertexes with different classes, leaving “pure” components (v. gr. in figure
1b eliminating edges c-d, d-c and e-d). To guarantee consistency predecessors nodes
in this edges are moved to R, because they would be bad classified if do not (its MSN
have a different class).

a) b)

Fig. 1. Maximal similarity graph with a single class (a) and a couple of classes (b)

Let see how the algorithm decides what objects should be included in the result set.
Suppose that the graph represented in Figure 1 is associated with a real problem. As
you can see nodes C and D are more important than nodes A, B and E, because their
presence in the result set guarantee the good classification of the rest of the nodes.
The order relation defined assures that nodes with low importance are removed first
from the set, and an additional process is done to keep consistency: if a node is
discarded one of its MSN must to stay. This is done “flagging” all the successors of x
with a non-simultaneous elimination mark (step d2). In step 7 if an object is the last
having such “flag”, it is automatically moved to R. After each modification in the
graph, the indexes are updated. If the good classification of some node x is already
assured, its Sx is assigned the value infinite, meaning that this information is no longer
necessary for that object.

In the example, node A is the first discarded, flagging C as its only successor.
Node C is moved to result set because is the only one to have the “A” flag. So, nodes
B and D have Sx equal infinite. All indexes are recalculated, and the process is
repeated again. Finally the result set is nodes C and D. Note that this set is prototype
consistent, no matter the distribution of the other objects in the space, because of the
use of maximal similarity graph.

Move(x)
m1. Calculate A(x) and S(x) with the

current set of vertexes V.
m2. ∀ y ∈ A(x) [Sy ← ∞]
m3. ∀ y ∈ S(x) [Ey ← Ey – 1]
m4. ∀ y ∈ V [Flagsy ← Flagsy \ Flagsx]
m5. V ← V – {x}, R ← R ∪ {x}
m6. C ← C \ {(a, b) ∈ C / a = x ∨ b = x}

Discard(x)
d1. Calculate A(x) and S(x) with the

current set of vertexes V.
d2. ∀ y ∈ S(x) [Flagsy ← Flagsy ∪ {x}]
d3. ∀ y ∈ S(x) [Ey ← Ey – 1]
d4. ∀ y ∈ A(x)[Sy ≠ ∞ ⇒ Sy ← Sy - 1
d5. V ← V – {x}
d6. C ← C \ {(a, b) ∈ C / a = x ∨ b = x}

 Selecting Prototypes in Mixed Incomplete Data 455

Let demonstrate some properties of the algorithm.

Proposition 1. Let Cf the classifier defined by the MSN rule. We have:
 (R ⊂ Q is prototype consistent) ⇔ []))(()(xMSNxQx Rαα =∈∀

Proof. If R ⊂ Q is prototype consistent, then by definition we have
)],(),([xRCfxQCfQx =∈∀ (1).

Cf(Q, x) = α(MSNQ(x))= α(x), because x is its own MSN (2).
Cf(R, x) = α(MSNR(x)), because the definition of MSN (3).
Substituting (2) and (3) in (1) we have []))(()(xMSNxQx Rαα =∈∀ .

The back implication is also obvious.

Proposition 2. If a set of prototypes R ⊂ Q is subclass consistent wrt a partition Φ,
then it is prototype consistent wrt Q.
Proof.
This is obvious based on the fact that the partition Φ is such that two elements in the
same subclass have the same class.

Theorem 1. The result set of the algorithm CSE is subclass consistent wrt the
partition induced by the β0-connected subgraphs.
Proof. Basically the CSE algorithm, for each x ∈ Q decides if x ∈ R or not (and then
its most similar neighbor MSNQ(x) ∈ R), so we have

[]RxMSNRxQx Q ∈∨∈∈∀)(

Let x∈ R and x ∈ Vi, then x ∈ R∩Vi = Ri (1)
x ∈ R implies that MSNR(x) = x, because x is its own MSN in R. (2)
By (1) and (2) we have that MSNR(x) ∈ Ri, and then MSNR(x) ∈ Vi (3)
Let MSNQ(x) ∈ R and x ∈ Vi (4)
x ∈ Vi implies that MSNQ(x) ∈ Vi, because Vi is a β0-compact set (5).
From (4) and (5) we have:
MSNQ(x) ∈ R and MSNQ(x) ∈ Vi, so MSNQ(x) ∈ R∩Vi = Ri, and then, because Ri⊂R
and R⊂Q, we have MSNR(x) ∈ Ri, and finally MSNR(x) ∈ Vi. (6)
By (3) and (6) we have:

[] []iRiQ VxMSNVxQxIiRxMSNRxQx ∈⇒∈∈∀∈∀⇒∈∨∈∈∀)()(
what prove the theorem.

4 Experimental Results

Traditionally all prototypes selection methods have been defined in ℜn with distances
functions. Many of them can not be extended to deal with MID, because they need
properties of metric spaces, for example, the existence of an addition and
multiplication operator. We have trivially extended some methods, originally
enounced for working in metric spaces, allowing the comparisons with CSE. These
methods are: AllKnn [12], Hart’s CNN [6], IB2 [13], Dasarathy’s MCS [14], Random
[8], Relative neighbor editing [10], Random Mutation Hill Climbing (RMHC) [15],
Shrink [16] and Wilson’s ENN [7].

456 M. García-Borroto and J. Ruiz-Shulcloper

incomplete object description. Each database was split randomly, taking 30% for
training (training matrix) and 70% for testing (control matrix). To reduce the
influence of the randomness in partition, we repeat the process 5 times, and average
the results. We measure the accuracy (# correct classification / # of objects) of each
method by the difference of the accuracies over the training matrix and the edited
matrix with respect to the control matrix, respectively.

A MSN classifier was used for testing, without weighing the features, because we
are only interested in the differences between the selection methods, more than
finding a best classifier for a particular example.

Table 1. Databases used in the experiments

Number UCI name Objects Outperforms CSE
1. Annealing 257 MCS
2. Audiology 64 -
3. Breast cancer 1 230 Random
4. Breast cancer 2 182 Random
5. Breast cancer 3 69 RMHC
6. Credit-screening 228 Random, RMHC
7. Heart-disease Cleveland 94 Random, RMHC
8. Heart-disease Hungarian 91 Random, RMHC
9. Heart-disease Long Beach 63 MCS, ENN
10. Heart-disease Switzerland 37 AllKnn, MCS, Random,

RMHC, Shrink, ENN
11. Hepatitis 56 -
12. Horse-colic 96 MCS, Random
13. Monks-problems 1 186 Shrink
14. Monks-problems 2 194 AllKnn, IB2, Random,

RMHC
15. Monks-problems 3 184 MCS
16. Mushroom 2655 MCS
17. Soybean large 95 MCS
18. Thyroid-disease Allbp 903 -
19. Thyroid-disease ann 2399 -
20. Thyroid-disease dis 1243 -
21. Thyroid-disease hyper 936 -
22. Thyroid-disease hypo 1233 -
23. Thyroid-disease hypothyroid 1049 -
24. Thyroid-disease new-thyroid 72 -
25. Thyroid-disease rep 1246 -
26. Thyroid-disease sick 1268 -
27. Thyroid-disease sick-

euthyroid
1055 -

We use 27 databases from UCI Repository of Machine Learning with mixed and

Table 1 shows the databases used in the experiments, the size of those databases

and the list of methods that outperforms CSE in both, compression ratio and accuracy

 Selecting Prototypes in Mixed Incomplete Data 457

difference. In the 27 databases evaluated, twelve of them CSE had the best behavior,
in eight cases was outperformed by only one of the nine methods (not always the
same) and in the remainder cases in which was outperformed by other methods, the
databases were small.

We can also observe that gaining in compression ratio by other classifiers above
CSE will lead to a drastic reduction in classification accuracy, as shown in Table 2
and Table 3 (bolded rows). Random based and evolutive methods (Random and
RMHC) have a good performance in small databases [8], but are usually slow and
inaccurate for big ones. MCS exhibit good performance for medium size database, but
for big ones is always worse than CSE.

Table 2. Results of prototype selection for “thyroid-disease ann” database

Method Name Acc. Difference & Comp. Ratio Time(sec)
CSE -1,75 53,9 151,93
RMHillClimb -0,43 50,1 670,91
RelativeNeighborEditor -5,10 79,37 3738,04
MCS -5,54 83,74 487,32
IB2 -13,99 85,16 10,95
Shrink -28,45 88,70 81,07
AllKnn 1,98 8,71 1173,69
WilsonENN 1,70 5,04 148,54
CNN -6,99 8,63 115,64

We have to note than the Time result shown in tables are only useful for
comparisons, because the absolute value is highly dependant on the computer where
they are executed.

Table 3. Results of prototype selection for “thyroid-disease dis” database

Method Name Acc. Difference & Comp. Ratio Time
CSE -0,42 58,25 57,1418
RMHillClimb -0,22 50,52 248,1506
MCS -2,54 95,58 121,0522
IB2 -6,33 95,09 1,5004
CNN -2,31 35,32 38,7486
Wilson ENN 0,25 1,21 55,376
AllKnn 0,28 1,85 443,863
Shrink -21,71 97,35 28,3314

The compression ratio of the method is around 50% of the prototypes in almost all
databases, and the reduction of accuracy for medium and big databases is usually
lower than 1. The behavior of the remainder methods is not so stable, and is more
dependent to the data nature.

458 M. García-Borroto and J. Ruiz-Shulcloper

5 Conclusions

Many practical pattern recognition problems, especially many of those appearing in
soft sciences (medicine, geosciences, criminology, and others), make a necessity to
work with MID. Training set prototype selection is a core issue for improving the
efficiency and efficacy of many supervised classifiers. To face those problems, firstly
we have extended the well known NN rule to MSN, for allowing to work with
similarity functions non necessarily dual to distances and with object representation
spaces different to metric spaces, which is usual while working with MID. We have
defined subclass consistency property, to preserve the subclass structure of the data
set while selecting a subset of prototypes.

A new prototype selection method has been introduced (CSE). It works with MID
and more general similarities (even non-symmetric or non-positive defined). It
produces a subclass consistent subset. We have shown that this algorithm has a good
performance compared to other prototype selection algorithms that can be used also
with MID after a trivial extension. The new method is neither a pure condensing
method nor a pure editing method, having desirable properties of both. Also the
method leverages the user to spend time in selecting the training matrix, doing the
selection automatically.

Based on preliminary experiments and the results shown, CSE seems to be very
adequate for synergy of editing methods with mixed incomplete data, in which we are
actually working.

References

1. F. Martínez-Trinidad and A. Guzmán-Arenas. The logical combinatorial approach to
Pattern Recognition, an overview through selected works. Pattern Recognition, 34: 741-
751, 2001.

2. J. Ruiz-Shulcloper and M. A. Abidi. Logical combinatorial pattern recognition: A Review.
In S. G. Pandalai, editors, Recent Research Developments in Pattern Recognition.
Transword Research Networks, USA.

3. C. J. Merz and P. M. Murphy. UCI Repository of Machine Learning Databases. Technical
report, University of California at Irvine, Department of Information and Computer
Science, 1998.

4. M. Sato and Y. Sato. Extended fuzzy clustering models for asymmetric similarity. In B.
Bouchon-Meunier, R. Yager, and L. Zadeh, editors, Fuzzy logic and soft computing.
World Scientific.

5. H. Chen and K. J. Lynch. Automatic construction of networks of concepts characterizing
document databases. IEEE Transactions on systems, man and cybernetics., 22: 885-902,
1992.

6. P. E. Hart. The condensed nearest neighbor rule. IEEE Trans. on Information Theory, 14:
515-516, 1968.

7. D. L. Wilson. Asymptotic properties of nearest neighbor rules using edited data. IEEE
Transactions on systems, man and cybernetics, SMC-2: 408-421, 1972.

8. L. I. Kuncheva and J. C. Bezdek. Nearest prototype classification: clustering, genetic
algorithms or random search. IEEE transactions on systems, man and cybernetics. Part C,
28: 160-164, 1998.

 Selecting Prototypes in Mixed Incomplete Data 459

9. S.-W. Kim and J. B. Oommen. A brief taxonomy and ranking of creative prototype
reduction schemes, in IEEE SCM Conference, 2002.

10. G. T. Toussaint. Proximity Graphs for Nearest Neighbor Decision Rules: Recent Progress,
in 34 Symposium on Computing and Statistics INTERFACE-2002, 2002.

11. J. F. Martínez-Trinidad, J. Ruiz-Shulcloper, and M. S. Lazo-Cortés. Structuralization of
universes. Fuzzy sets and systems, 112: 485-500, 2000.

12. I. Tomek. Two modifications of CNN. IEEE Transactions on systems, man and
cybernetics, SMC-6: 769-772, 1976.

13. D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms. Machine
Learning, 6: 37-66, 1991.

14. B. D. Dasarathy. Minimal consistent set (MCS) identification for optimal nearest neighbor
decision systems design. IEEE Transactions on systems, man and cybernetics., 24: 511-
517, 1994.

15. D. B. Skalak. Prototype and Feature Selection by Sampling and Random Mutation Hill
Climbing Algorithms, in Eleventh International Conference on Machine Learning, 1994.

16. D. Kibler and D. W. Aha. Learning representative exemplars of concepts: An initial case
study., in Fourth international workshop on Machine learning, pages 24-30, 1987.

	Introduction
	Basic Concepts
	Compact Set Editing (CSE) Algorithm
	Experimental Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

