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Abstract. In this paper we introduce a new method for selecting prototypes 
with Mixed Incomplete Data (MID) object description, based on an extension 
of the Nearest Neighbor rule. This new rule allows dealing with functions that 
are not necessarily dual functions of distances. The introduced compact set 
editing method (CSE) constructs a prototype consistent subset, which is also 
subclass consistent. The experimental results show that CSE has a very nice 
computational behavior and effectiveness, reducing around 50% of prototypes 
without appreciable degradation on accuracy, in almost all databases with more 
than 300 objects.  

1   Introduction 

Supervised classifiers need a good training matrix for classifying with effectiveness. 
This “goodness” is usually achieved by expert criterion, but sometimes even experts 
make this selection arbitrarily. These classifiers typically compare a new unclassified 
object with all stored classified ones to make a decision. This can make them 
prohibitively costly for large training sets. One possible solution to these problems is 
to reduce the cardinality of the object descriptions sample, while simultaneously 
insisting that the decisions based on the reduced data set perform as well, or nearly as 
well, as the decisions based on the original data set. This process is known as finding 
prototypes. 

There are two different goals approached while finding prototypes: 

− Minimize the size of the training set (condensing methods).  
− Reduce the size of the training set obtaining classification accuracy never worse 

than with the initial training matrix (editing methods).  

On the other hand, in order to solve practical real problems, especially in soft 
sciences, we have to deal frequently with description of objects that are non-classical, 
that is, the features are not exclusively numerical or categorical. Both kinds of values 
can appear simultaneously, and a special symbol is necessary to denote the absence of 
values (missing values). A mixed and incomplete description of objects should be 
used in this case (MID). Many examples of real problems with this sort of objects can 
be found [1, 2] and also in the UCI Repository of Machine Learning Databases [3]. 
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Although the terms distance and dissimilarity have been widely exchanged, it is 
not true that a dissimilarity function is always dual to a distance function. There are 
many practice applications that use non-reflexive and/or non-symmetrical 
dissimilarities, which their duals are evidently not distances [4, 5].  

Most prototype selection algorithms were developed to deal with distances defined 
in metric spaces, which almost never is possible to use while working with MID. 
Some of them may be trivially extended to work with MID (Hart’s CNN [6], Wilson’s 
ENN [7], Random [8]) and many others do not, because use properties of distances 
and metric spaces for working (Construction of new prototypes [9], proximity graphs 
[10]). 

2   Basic Concepts  

Let U a universe of objects, structured in K1, …,Kr classes, described in terms of a 
finite set of features R={x1,… xn}. Each of these features has associated a set of 
admissible values Mi, which include de value ‘*’ for the case of unknown value. Over 
Mi no algebraic, topologic of logic structure is assumed. Then be U=M1×…×Mn, the 
Cartesian product of the admissible values sets of features of R. Let O=(x1(O), x2(O), 
…, xn(O)), where xi:U→Mi . A comparison criterion ϕi:Mi× Mi→Li is associated to 
each xi, where Li is a totally ordered set. A similarity function is a function Γ as be 
defined in [11]. Γ(O1,O2) is an evaluation of the degree of similarity between any two 
descriptions of objects belonging to U. Any restriction of Γ to any subset of R will be 
called a partial similarity function. Besides, this function is characterized by the 
following properties: the partial similarity relationships between any pair of objects 
are preserved when the total similarity between these objects is considered. Also, the 
maximum value of similarity is reached when the same part of the same object for any 
non-empty subset of R is considered, including the case of whole R.  

There are many pattern recognition algorithms for either numerical data processing 
or categorical data processing, that can be extended for the case of MID. These 
extensions are scarce and non trivial because it is necessary to face several problems. 
One of the simplest is the assumption of a distance for the comparison of MID.  

Nearest neighbor rule can not be applied with similarities which are non-dual to 
distances because the term “near” is associated with distances, while the term “most 
similar” is associated with analogies.  

Let α(O) =(α1(O),…, αr(O)) the membership t-uple of O in which αi(O) means the 
grade of membership of O to the class Ki, i=1,..,r. For example, it could have αi(O) 

={0,1} with the obvious interpretation. Let Q=U
r
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iK ⊂Ki, i=1,…r, a training set.  

Let O∈U\Q, the most similar neighbor rule (MSN) for classifying O is to assign it 
the membership t-uple α(O) in the following way: 

A) Assuming Γ as just a similarity function 
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B) Assuming Γ as symmetric similarity function 
If  )},({max i

QO
OO

i

Γ
∈

=Γ(O,O') then α(O)= α(O'), with O'∈Q 

Observe that in these cases MSN rule does not require that K be a partition neither 
a hard structuralization of U.  

We say that Oi, Oj∈U are β0-similar objects if Γ(Oi, Oj) ≥ β0. In the same way Oi is 
a β0-isolated object if 0),( β<Γ∈≠∀ ijij OOUOO .The β0 threshold value can be 

used to control how similar a pair of objects must be in order to be considered β0-
similar. 

Definition. NU ⊆ U, NU ≠ ∅ is a compact set if: [11]  
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− |NU| is minimal.  
− Every β0-isolated object is a compact set (degenerated). 

The compact set criterion induces a unique partition for a given data set, which has 
the property that one object x and all its most similar neighbors belongs to the same 
cluster and also, those objects for which x is its most similar neighbor.  

In many classification problems, a class is not uniformly formed. Consider, for 
example, in the universe of all humans we can define two classes: S is the class of all 
who are sick, and H is the class of all who are healthy. In the class S are grouped 
together many different objects with many different diseases, which compose 
subclasses inside the outer class. Intuitively, if an object belongs to a subclass its most 
similar neighbor must be in the same set, so it is obvious that a subclass should be 
considered as a union of compact sets.  

Consider now the problem of selecting a set of prototypes which describes this 
problem. We face two important difficulties: 

1.  Selecting the number of prototypes per subclass (and obviously per class) can not 
be done a priori, because it depends on the inner structure of each subclass, which 
can only safely be inferred from data. 

2. If the subclass structure of the class is not preserved someway it may be a serious 
degradation on accuracy, and it may be whole subclasses without a single 
representative. That is why it is important to introduce a new kind of consistency. 

Let Q ⊂ U a training matrix of a set of classes K={K1, K2,…, Kr}, Cf(LM, x) a 
classifier with learning matrix LM and MSNR(x) the most similar neighbor of object x 
in set R. 
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Following Hart [6] R ⊂ Q is a prototype consistent subset with respect to (wrt) Cf  
and Q iff )],(),([ xRCfxQCfQx =∈∀  

Definition. Let Φ a partition of Q in subclasses, such that 
)]()(, [ 2121 xxxxIi ii αα =⇒Φ∈Φ∈Φ∈∀  and Ri ⊂ Φi, a set of representatives 

associated to each subclass. U
Ii

iRR
∈

=  is subclass consistent wrt Φ iff: 

])([( iRi xMSNxQxIi Φ∈⇒Φ∈∈∀∈∀  

3   Compact Set Editing (CSE) Algorithm 

Inputs:  

- β0-compact sets in a maximal similarity graph (oriented graph each edge from 
vertex a to vertex b means that b is the most β0-similar element of a) described by 
a set of edges C and a set of vertexes V. 

- α(x): class associated with vertex x 
Output: 

- Subset of selected prototypes R 
Notations: 

- S(x) = {b ∈ V / (x, b) ∈ C}, set of the successors of vertex x in graph V. The 
presence of these elements in K guarantee the good classification of x 

- A(x) = {a ∈ V / (a, x) ∈ C}, set of the predecessors of vertex x in graph V.  
0. R = ∅ 
1. Let associate each vertex x in V with a quadruple (S’x, Ex, Sx, Flagsx), where: 

S’x = |{y ∈ S(x) / α(x) ≠ α(y)}| 
Ex = |{y ∈ A(x) / α(x) = α(y)}|  
Sx = |{y ∈ S(x) / α (x) = α (y)}| 
Flagsx ⊂ V, Flagsx = ∅  

2. R’ = { x ∈ V / S’x > 0} 
3. If R’ = ∅ go to step 6 
4. C ← C \ {(x, y) ∈ C / x ∈ R’ ∧ α(x) ≠ α(y)} 
5. For each element x ∈ R’ execute Move(x). 
6. ∀ x ∈ V [(Sx = 0) ⇒ execute Move(x)] 

7. 
⎥
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⎤
⎢
⎣

⎡
⇒∉∈∀∈∀

∈

Move(x) execute 
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U
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8. Sort the elements of V with the following order relation: 
)()( yxyxyxyxyxyx FlagsFlagsSSEESSEEEEyx >∧=∧=∨<∧=∨<⇔p  

9. Execute Discard(x1), where x1 is the first vertex of V (p ) 
10. If V = ∅ end, else go to step 6 
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The indexes calculated in step 1 are the core of the later decision of which vertex to 
select and which to discard. Steps 2-6 break the compact sets eliminating the edges 
connecting vertexes with different classes, leaving “pure” components (v. gr. in figure 
1b eliminating edges c-d, d-c and e-d). To guarantee consistency predecessors nodes 
in this edges are moved to R, because they would be bad classified if do not (its MSN 
have a different class). 

a)            b)    

Fig. 1. Maximal similarity graph with a single class (a) and a couple of classes (b) 

Let see how the algorithm decides what objects should be included in the result set. 
Suppose that the graph represented in Figure 1 is associated with a real problem. As 
you can see nodes C and D are more important than nodes A, B and E, because their 
presence in the result set guarantee the good classification of the rest of the nodes. 
The order relation defined assures that nodes with low importance are removed first 
from the set, and an additional process is done to keep consistency: if a node is 
discarded one of its MSN must to stay. This is done “flagging” all the successors of x 
with a non-simultaneous elimination mark (step d2). In step 7 if an object is the last 
having such “flag”, it is automatically moved to R. After each modification in the 
graph, the indexes are updated. If the good classification of some node x is already 
assured, its Sx is assigned the value infinite, meaning that this information is no longer 
necessary for that object. 

In the example, node A is the first discarded, flagging C as its only successor. 
Node C is moved to result set because is the only one to have the “A” flag. So, nodes 
B and D have Sx equal infinite. All indexes are recalculated, and the process is 
repeated again. Finally the result set is nodes C and D. Note that this set is prototype 
consistent, no matter the distribution of the other objects in the space, because of the 
use of maximal similarity graph. 

 

Move(x) 
m1. Calculate A(x) and S(x) with the 

current set of vertexes V. 
m2. ∀ y ∈ A(x) [Sy ← ∞] 
m3. ∀ y ∈ S(x) [Ey ← Ey – 1] 
m4. ∀ y ∈ V [Flagsy ← Flagsy  \ Flagsx] 
m5. V ← V – {x}, R ← R ∪ {x} 
m6. C ← C \ {(a, b) ∈ C / a = x ∨ b = x} 

 

Discard(x) 
d1. Calculate A(x) and S(x) with the 

current set of vertexes V. 
d2. ∀ y ∈ S(x) [Flagsy ← Flagsy ∪ {x}] 
d3. ∀ y ∈ S(x) [Ey ← Ey – 1] 
d4. ∀ y ∈ A(x)[Sy ≠ ∞ ⇒ Sy ← Sy - 1 
d5. V ← V – {x} 
d6. C ← C \ {(a, b) ∈ C / a = x ∨ b = x} 
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Let demonstrate some properties of the algorithm. 

Proposition 1. Let Cf  the classifier defined by the MSN rule. We have: 
 (R ⊂ Q is prototype consistent) ⇔ [ ]))(()( xMSNxQx Rαα =∈∀  

Proof. If R ⊂ Q is prototype consistent, then by definition we have 
)],(),([ xRCfxQCfQx =∈∀  (1).  

Cf(Q, x) = α(MSNQ(x))= α(x), because x is its own MSN (2). 
Cf(R, x) = α(MSNR(x)), because the definition of MSN (3). 
Substituting (2) and (3) in (1) we have [ ]))(()( xMSNxQx Rαα =∈∀ . 

The back implication is also obvious. 

Proposition 2. If a set of prototypes R  ⊂ Q is subclass consistent wrt a partition Φ, 
then it is prototype consistent wrt Q. 
Proof.  
This is obvious based on the fact that the partition Φ is such that two elements in the 
same subclass have the same class.   

Theorem 1. The result set of the algorithm CSE is subclass consistent wrt the 
partition induced by the β0-connected subgraphs. 
Proof.  Basically the CSE algorithm, for each x ∈ Q decides if x ∈ R or not (and then 
its most similar neighbor MSNQ(x) ∈ R), so we have  

[ ]RxMSNRxQx Q ∈∨∈∈∀ )(  

Let x∈ R and x ∈ Vi, then x ∈ R∩Vi = Ri (1) 
x ∈ R implies that MSNR(x) = x, because x is its own MSN in R. (2) 
By (1) and (2) we have that MSNR(x) ∈ Ri, and then MSNR(x) ∈ Vi  (3) 
Let MSNQ(x) ∈ R and x ∈ Vi (4) 
x ∈ Vi implies that MSNQ(x) ∈ Vi, because Vi is a β0-compact set (5). 
From (4) and (5) we have: 
MSNQ(x) ∈ R and MSNQ(x) ∈ Vi, so MSNQ(x) ∈ R∩Vi = Ri, and then, because Ri⊂R 
and R⊂Q, we have MSNR(x) ∈ Ri, and finally MSNR(x) ∈ Vi. (6) 
By (3) and (6) we have: 

[ ] [ ]iRiQ VxMSNVxQxIiRxMSNRxQx ∈⇒∈∈∀∈∀⇒∈∨∈∈∀ )()(
what prove the theorem. 

4   Experimental Results 

Traditionally all prototypes selection methods have been defined in ℜn with distances 
functions. Many of them can not be extended to deal with MID, because they need 
properties of metric spaces, for example, the existence of an addition and 
multiplication operator. We have trivially extended some methods, originally 
enounced for working in metric spaces, allowing the comparisons with CSE. These 
methods are: AllKnn [12], Hart’s CNN [6], IB2 [13], Dasarathy’s MCS [14], Random 
[8], Relative neighbor editing [10], Random Mutation Hill Climbing (RMHC) [15], 
Shrink [16] and Wilson’s ENN [7]. 
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incomplete object description. Each database was split randomly, taking 30% for 
training (training matrix) and 70% for testing (control matrix). To reduce the 
influence of the randomness in partition, we repeat the process 5 times, and average 
the results. We measure the accuracy (# correct classification / # of objects) of each 
method by the difference of the accuracies over the training matrix and the edited 
matrix with respect to the control matrix, respectively. 

A MSN classifier was used for testing, without weighing the features, because we 
are only interested in the differences between the selection methods, more than 
finding a best classifier for a particular example.  

Table 1. Databases used in the experiments 

Number UCI name Objects Outperforms CSE 
1.  Annealing 257 MCS 
2.  Audiology 64 - 
3.  Breast cancer 1 230 Random 
4.  Breast cancer 2 182 Random 
5.  Breast cancer 3 69 RMHC 
6.  Credit-screening 228 Random, RMHC 
7.  Heart-disease Cleveland 94 Random, RMHC 
8.  Heart-disease Hungarian 91 Random, RMHC 
9.  Heart-disease Long Beach 63 MCS, ENN 
10.  Heart-disease Switzerland 37 AllKnn, MCS, Random, 

RMHC, Shrink, ENN 
11.  Hepatitis 56 - 
12.  Horse-colic 96 MCS, Random 
13.  Monks-problems 1 186 Shrink 
14.  Monks-problems 2 194 AllKnn, IB2, Random, 

RMHC 
15.  Monks-problems 3 184 MCS 
16.  Mushroom 2655 MCS 
17.  Soybean large 95 MCS 
18.  Thyroid-disease Allbp 903 - 
19.  Thyroid-disease ann 2399 - 
20.  Thyroid-disease dis 1243 - 
21.  Thyroid-disease hyper 936 - 
22.  Thyroid-disease hypo 1233 - 
23.  Thyroid-disease hypothyroid 1049 - 
24.  Thyroid-disease new-thyroid 72 - 
25.  Thyroid-disease rep 1246 - 
26.  Thyroid-disease sick 1268 - 
27.  Thyroid-disease sick-

euthyroid 
1055 - 

We use 27 databases from UCI Repository of Machine Learning with mixed and 

 
Table 1 shows the databases used in the experiments, the size of those databases 

and the list of methods that outperforms CSE in both, compression ratio and accuracy 
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difference. In the 27 databases evaluated, twelve of them CSE had the best behavior, 
in eight cases was outperformed by only one of the nine methods (not always the 
same) and in the remainder cases in which was outperformed by other methods, the 
databases were small.  

We can also observe that gaining in compression ratio by other classifiers above 
CSE will lead to a drastic reduction in classification accuracy, as shown in Table 2 
and Table 3 (bolded rows). Random based and evolutive methods (Random and 
RMHC) have a good performance in small databases [8], but are usually slow and 
inaccurate for big ones. MCS exhibit good performance for medium size database, but 
for big ones is always worse than CSE. 

Table 2. Results of prototype selection for “thyroid-disease ann” database 

Method Name Acc. Difference & Comp. Ratio Time(sec) 
CSE -1,75 53,9 151,93 
RMHillClimb -0,43 50,1 670,91 
RelativeNeighborEditor -5,10 79,37 3738,04 
MCS -5,54 83,74 487,32 
IB2 -13,99 85,16 10,95 
Shrink -28,45 88,70 81,07 
AllKnn 1,98 8,71 1173,69 
WilsonENN 1,70 5,04 148,54 
CNN -6,99 8,63 115,64 

We have to note than the Time result shown in tables are only useful for 
comparisons, because the absolute value is highly dependant on the computer where 
they are executed. 

Table 3. Results of prototype selection for “thyroid-disease dis” database 

Method Name Acc. Difference & Comp. Ratio Time 
CSE -0,42 58,25 57,1418 
RMHillClimb -0,22 50,52 248,1506 
MCS -2,54 95,58 121,0522 
IB2 -6,33 95,09 1,5004 
CNN -2,31 35,32 38,7486 
Wilson ENN 0,25 1,21 55,376 
AllKnn 0,28 1,85 443,863 
Shrink -21,71 97,35 28,3314 

The compression ratio of the method is around 50% of the prototypes in almost all 
databases, and the reduction of accuracy for medium and big databases is usually 
lower than 1. The behavior of the remainder methods is not so stable, and is more 
dependent to the data nature. 
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5   Conclusions  

Many practical pattern recognition problems, especially many of those appearing in 
soft sciences (medicine, geosciences, criminology, and others), make a necessity to 
work with MID. Training set prototype selection is a core issue for improving the 
efficiency and efficacy of many supervised classifiers. To face those problems, firstly 
we have extended the well known NN rule to MSN, for allowing to work with 
similarity functions non necessarily dual to distances and with object representation 
spaces different to metric spaces, which is usual while working with MID. We have 
defined subclass consistency property, to preserve the subclass structure of the data 
set while selecting a subset of prototypes.  

A new prototype selection method has been introduced (CSE). It works with MID 
and more general similarities (even non-symmetric or non-positive defined). It 
produces a subclass consistent subset. We have shown that this algorithm has a good 
performance compared to other prototype selection algorithms that can be used also 
with MID after a trivial extension. The new method is neither a pure condensing 
method nor a pure editing method, having desirable properties of both. Also the 
method leverages the user to spend time in selecting the training matrix, doing the 
selection automatically. 

Based on preliminary experiments and the results shown, CSE seems to be very 
adequate for synergy of editing methods with mixed incomplete data, in which we are 
actually working. 
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